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Abstract

Phenotypic diversity underlies life as we know it–a variety of species, each with different roles, are

essential for a fully functioning ecosystem just as a range of different crops is necessary to provide

different nutritional value. Even within a single species, individual variation promotes diversity, allowing

for adaptation to new environments and achievements despite challenges. Characterizing this

phenotypic diversity and understanding the factors that drive it is a principal goal of biological

research. The fruits of this research could have the power to transform the way farmers cultivate

agriculture and breed livestock, the way scientists discover cures, and the way doctors predict, treat,

and prevent disease. Scientists have long understood that genetic variation is a main contributor to

phenotypic variation and recent advancements in sequencing technologies have improved

characterization of genetic variation among species. However, high environmental variation interferes

with scientists’ abilities to connect phenotypic variation, such as patient response to a

chemotherapeutic drug, to a single genetic variant. For this reason, model organisms such as the

roundworm nematode Caenorhabditis elegans have become forerunners in the field of quantitative

genetics. In this dissertation, I investigate how natural genetic variation in C. elegans shapes the

diverse phenotypes observed across the species. While I mostly focus on the nematode response to a

variety of toxins including chemotherapeutics, anthelmintics, and heavy metals, I also explore how

genetic variation might play a role in the species’ adaptation to new climates. This work highlights the

power of our system to connect phenotypic variation to causal genetic variants. Furthermore, this work

aims to answer several open questions in the field of quantitative genetics such as understanding the

molecular mechanism of phenotypic trait evolution and determining the extent of genetic complexity of

phenotypic traits.
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1 Introduction

1.1 Quantitative variation

Phenotypic variability is a common feature in all populations and is necessary for the advancement

and evolution of a species. Individuals vary in numerous ways ranging from physical attributes such as

height, eye color, or skin color to behavioral attributes such as social habits or sleep patterns. This

variation is what drives individuality and allows organisms to adapt to different environments and

perform complementary functions within a population [1]. Some of these traits might be qualitative,

meaning values can be categorized into discrete bins. For example, humans can have one of eight

different blood types (A, B, AB, or O for either RhD positive or negative). However, most traits are

quantitative, meaning that values exist on a continuous scale. A classic example of a quantitative trait

is human height. Although a majority of adults measure between 155.2 and 170.2 cm, individuals can

fall anywhere on this distribution ranging from the shortest man in the world (54.6 cm) to the tallest

(272 cm) (Figure 1-1) [2]. One of the main goals in scientific research today is to characterize

phenotypic diversity and understand its causes.

Figure 1-1: Human height as a quantitative trait. Distribution of heights is shown as a quantitative trait. Average human
height is 162.7 cm with a standard deviation of 7.5 cm. Data for figure adapted from [2]
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All phenotypic variation (VP ) can be described using a combination of genetic (VG) and

environmental (VE) factors (Equation 1). Some traits–often referred to as Mendelian traits, after the

Austrian monk Gregor Mendel–are mostly influenced by genetics. Examples of these traits range from

color blindness in humans [3] to the classic color and shape of sweet peas observed by Mendel [4].

However, an individual’s environment also plays a major role in determining most phenotypic traits. For

example, Darwin’s finches evolved beaks of different sizes and shapes in response to the divergent

environments across the Galapagos islands [5] and a person who smokes cigarettes is more likely to

develop lung cancer than a non-smoker [6]. Unfortunately, these environmental factors are often

difficult to identify and control within a population. Heritability of a trait (H2) is often calculated to

define the proportion of the total phenotypic variation that can be attributed solely to genetic factors

(Equation 2). The broad field of genetics aims to describe how this genetic variation translates into

phenotypic variation. Understanding how genetic variants influence complex traits will provide

information important for predicting disease risk in human populations, increasing the speed of

selective breeding programs in agriculturally important plants and animals, and predicting adaptive

evolution within species [7].

VP = VG + VE (1)

H2 = VG/VP (2)

Since Mendel’s pea experiments, scientists have been trying to connect phenotypic differences,

from either natural variation within a population or laboratory-induced variation by mutagenesis, to

underlying genes. In 1913, 19-year-old geneticist Alfred Sturtevant, working under the supervision of

Thomas Hunt Morgan, created the first genetic map showing the approximate locations of six genes on

the Drosophila X chromosome [8]. This technique, known as genetic mapping, became the foundation

of classical forward genetics, an approach by which scientists were able to narrow the position of the

variant gene driving phenotypic differences in mutant individuals using known physical markers across

the genome. With the advancement of technology, molecular markers such as single nucleotide variants

(SNVs), short-tandem repeats (STRs), or insertion/deletion (indel) variants are now commonly used
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and allow for more precise gene mapping [9]. In addition to the numerous examples of successes

of gene cloning from mutagenesis screens in model organisms [10, 11, 12, 13, 14, 15], this method

has been used to identify disease-causing genes in humans for Huntington’s disease [16], muscular

dystrophy [17, 18], and cystic fibrosis [17, 19, 20].

1.1.1 Quantitative trait locus mapping

Classical genetic mapping is a simple and powerful tool for mapping large-effect Mendelian traits

driven by a single gene. However, this technique becomes much more cumbersome as traits become

more complex. An alternative method for identifying the genetic basis of complex traits is quantitative

trait locus (QTL) mapping. This technique relies on statistical methods to correlate genetic variation

with phenotypic variation across a population of genetically diverse individuals. QTL mapping is not a

replacement of classical genetic mapping, but rather provides a complementary approach to

understanding the genetics of complex traits. There are several advantages to QTL mapping. First, a

quantitative approach allows identification of small-effect loci in addition to large-effect loci and can

simultaneously map several loci for the same trait. Second, because QTL mapping relies on natural

genetic variation between two or more individuals, this approach allows scientists to investigate how

evolution could have shaped diverse phenotypes. In particular, QTL mapping has the power to identify

SNVs that might alter, rather than break, gene function. Identifying the functional variants that underlie

phenotypic differences might lead to a better understanding of how the forces of evolution act to bring

about genetic adaptation in nature.

There are two complementary mapping approaches: linkage mapping and genome-wide

association (GWA) mapping. Linkage mapping is similar to classical genetic mapping and leverages

statistical power from a large number of recombinants generated from a cross between two or more

genetically diverged individuals. Alternatively, association mapping takes advantage of the breadth of

natural genetic diversity that exists among a large panel of genetically distinct individuals within the

species [7]. Both mapping approaches share a common goal of identifying functional variants that

contribute to phenotypic diversity and involve two main steps: detection and localization.

QTL can be easily detected using either method for large-effect variants with evenly distributed allele



28

frequencies across the population (close to 0.5). However, the power to detect QTL will differ between

methods depending on the population size, the effect size of the variant, and the allele frequency of

the variant within the mapping population. In general, as the effect size becomes smaller and the allele

frequency becomes less evenly distributed (further from 0.5), the number of individuals in the mapping

population must be increased to maintain sufficient power to detect the QTL. In cases where the allele

frequency is extremely skewed (i.e. a rare variant), linkage mapping will have greater power to detect

QTL than association mapping [7]. This increased power stems from the fact that allele frequencies are

more evenly distributed in a population that is from a cross between two individuals, thus magnifying the

effect of rare variants. However, it is necessary that both alleles are present within the limited number of

individuals that generate the recombinant population. Alternatively, although association mapping might

not have the power to detect rare variants, all possible alleles are present in the mapping population,

which increases the probability of finding phenotypic variation that is driven by genetic factors.

The power to localize QTL depends on the population structure, which is different between linkage

and association mapping panels by design. With a recombinant panel, the precision of QTL mapping

depends on the number of recombination events. Higher recombination frequencies and/or more

recombinant individuals will identify a smaller QTL interval. Alternatively, association mapping relies

on historical recombination between individuals in a population. Species with higher historical

recombination (which translates to low linkage disequilibrium, LD) have higher power to localize QTL

to smaller regions of the genome without the need for a large population size [7].

Despite the advancement of technology and the detection of QTL underlying hundreds of complex

traits, several key questions about quantitative variation still remain heavily debated among scientists.

First, what is the underlying genetic architecture of complex traits? Although many studies have

identified few large-effect loci that explain much of the heritable phenotypic variation within a

population, others contend that many small-effect loci together define complex traits. Advocators for

this highly polygenic (or even omnigenic [21]) nature of phenotypic variation argue that biological

pathways are complex and evolution acts on a large number of individually undetectable small-effect

loci [22]. Second, what is the relationship between QTL? Many believe that the majority of phenotypic

variation is composed of additive effects between detected (and undetected) QTL
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[23, 24, 25, 26, 27, 28]. However, some argue that genetic epistasis (interactions between two or more

loci) play a more significant role in defining complex traits [29, 30, 31, 32, 33]. Finally, where in the

genome are functional variants most commonly found? Many known quantitative trait nucleotides

(QTNs) are protein-coding genetic variants that cause large-effect Mendelian-like phenotypic variation.

However, noncoding genetic variation might be more evolutionarily important, although not always

detected in QTL mapping studies because these variants often cause smaller phenotypic effects

[34, 22]. These questions, among others, drive scientists in fields from evolution to population genetics

to identify functional variants in the hope of explaining the molecular basis of phenotypic evolution.

1.1.2 From QTL to QTN

Linkage and association mapping have identified QTL in numerous diverse species from humans to

plants and animals, and even single-celled organisms. However, model organisms are best suited to

take full advantage of the goals of QTL mapping and answer questions regarding the molecular basis

of complex traits and the evolution and function of quantitative alleles. In contrast to other species,

model organisms are cheap and easy to grow in the laboratory and often have compact and defined

genomes. High-throughput assays allow for quick and scalable phenotyping to easily test the high

numbers of individuals necessary for QTL mapping. Most importantly, model organisms allow for

functional validation of quantitative trait genes (QTG) and quantitative trait nucleotides (QTN), which is

essential for proving causality. Several methods have been developed to aid researchers in

discovering the causal gene or variant that underlies a QTL. Some of the most common methods

include fine mapping the QTL interval using additional genetic markers, narrowing the QTL interval

with near-isogenic lines, and testing causality with genome editing tools such as the CRISPR-Cas9

machinery.

Refining QTL with fine mapping and near-isogenic lines. Often the first approach to narrow QTL,

fine mapping involves testing additional genetic markers or strains to improve the QTL resolution. For

a linkage mapping analysis, this often translates to generation of more recombinants within the

defined genomic interval. Alternatively, fine mapping for an association mapping analysis relies on
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additional information that can be acquired by analyzing all SNVs in the defined genomic interval. This

is in contrast to the few genetic markers analyzed during the previous mapping that were selected to

represent unique LD blocks.

QTL mapping uses statistical methods to identify regions of the genome that significantly correlate to

phenotypic variation. To empirically validate the effect of the discovered QTL, researchers can generate

and phenotype near-isogenic lines (NILs) (Figure 1-2). NILs (sometimes referred to as introgression

lines (ILs) or congenics) are strains where a small genomic interval from one strain is introgressed into

the genetic background of another strain [35, 36]. Any differences in phenotype between the NIL and

the parental strain with the same genetic background is due to the introgression of the QTL from the

opposite genotype (Figure 1-2). Once the QTL is isolated and validated, a panel of NILs with smaller

introgressions that tile across the genomic interval can be created by backcrossing to the parental

strain of the NIL genetic background and selecting for individuals with recombination events within the

introgressed region. The phenotypes of these NILs can be used to further refine the QTL interval

by identifying the smallest overlapping region within the introgressions that maintains the QTL effect

observed in the largest introgression (Figure 1-2). In the hypothetical example provided in Figure 1-2,

NILs 3, 4, and 6 phenocopy Parent 1, suggesting that their introgressed regions (in green) contain the

QTL. Alternatively, NILs 5, 7, and 8 phenocopy Parent 2, suggesting that their introgressed regions do

not contain the QTL. From these results, we can conclude that the QTL effect observed in NIL 1 can be

narrowed to the small genomic region from the overlap of introgressions between NIL 4 and NIL 6.

Testing causality with CRISPR-Cas9 genome editing. Candidate genes can be prioritized from

a small genomic region based on their predicted gene function and their extent of genetic variation

in the mapping population. Genes with no genetic variation are not likely to be causal and genes

with genetic variation that causes a change in either the amino acid sequence of the protein (protein-

coding variation) or expression levels of the protein are most likely to be causal. Candidate genes

can be tested for causality using genome-editing tools such as the CRISPR-Cas9 system which takes

advantage of the RNA-dependent DNA nuclease Cas9 of Streptococcus pyogenes [37, 38, 39]. Paired

with a specially designed RNA molecule (sgRNA), the Cas9 protein forms targeted double-stranded
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Figure 1-2: Refining QTL intervals using near-isogenic lines (NILs) Parental strains (green and purple) have different
phenotypes (plus or minus). Recombinant strains generated from crossing the parental strains can be used to identify
quantitative trait loci (QTL) represented here by a dotted vertical line. Recombinants can be backcrossed for several
generations to isolate a single introgressed genomic interval. These near-isogenic lines (NILs) can empirically validate the
QTL if the genotype of the introgressed region determines the strain phenotype. A NIL with a large introgression can be
divided into a panel of NILs with smaller introgressions that tile across the region by backcrossing the NIL and selecting for
recombination events. This panel of NILs can be used to narrow a large interval to a smaller interval with a set of candidate
genes for causal testing.

DNA breaks that are repaired by either non-homologous end joining (creating a deletion) or homology-

driven repair (creating an insertion) [40].

There are several ways CRISPR can be used to identify causal genes or variants. First, CRISPR

can be used to identify a causal gene by loss-of-function studies. Targeted gene deletions that take

advantage of the cell’s non-homologous end joining (NHEJ) pathway can be achieved by designing two

sgRNAs, one that targets each end of the gene of interest [39]. NHEJ is the product of blunt re-ligation of

the two pieces of DNA and often results in a deletion of one or more nucleotides, sometimes resulting in

a reduction or loss of gene function [41]. If a loss-of-function allele in one strain is causing the difference

in phenotype, creating a loss-of-function allele in the strain with the functional copy should result in a

similar phenotype to the strain with the natural loss-of-function allele (Figure 1-3A). However, because

loss-of-function alleles can sometimes have negative fitness consequences, a reciprocal hemizygosity
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test can be performed to justify the effect of genetic variation within a single gene [42]. In this test, a

null mutation is first generated in each genetic background. Mutants are then crossed to the wild-type

strain of the opposite genetic background, generating reciprocal hybrids that are genetically identical

except for the candidate gene, which is hemizygous. Any differences in phenotype between the two

hybrid hemizygous strains can be attributed to the presence of genetic variation within the candidate

gene (Figure 1-3B) [42]. Finally, for a gene that is shown to contribute to phenotypic variation using

this method, CRISPR-Cas9 can then be used to edit a single nucleotide to identify a causal genetic

variant. Taking advantage of the homology-driven repair (HDR) pathway, researchers can design a

single sgRNA near the desired edit and also supply a repair template with long homologous arms.

HDR uses the supplied repair template to incorporate the new desired sequence into the genome [41].

These “allele swaps” where the genetic variant from one strain is introduced into a different genetic

background allow for functional tests of a single variant. Phenotypic differences between the single-

allele-edited strain and the parental strain suggest that the introduction of this single allele underlies the

phenotype of interest (Figure 1-3C).

1.2 C. elegans as a model organism

In June 1963, ten years after the revolutionary discovery of the double-helical structure of DNA, well

esteemed bacterial geneticist Dr. Sydney Brenner began the search for a new model organism. He

dreamed of an organism simple enough for thorough genetic analysis yet complex enough to answer his

burning scientific questions related to organismal behavior and understanding of the nervous system.

He began to scour zoology textbooks in search of a single organism that could fulfill his three basic

demands: a quick life-cycle, a simple reproductive cycle and genome, and a small size [43].

Brenner soon settled on the free-living roundworm nematode Caenorhabditis elegans. About 1 mm

in length (the size of a comma on a printed page), this nematode was named due to the elegant way in

which it moved. In addition to being microscopic, C. elegans are transparent, allowing for visualization

of single cells under a microscope. C. elegans grow well in the laboratory, either on agar plates or

in liquid culture, feeding on E. coli bacteria. The hermaphroditic nematode can produce up to 300

identical progeny in three to four days, making it a great system for genetic screens and selections.
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Figure 1-3: Testing causality with genome editing Genotype of parental strains (green and purple) and genome edited
strains on the left and phenotype (plus or minus) on the right for gene deletions (A), reciprocal hemizygosity (B), and allele
swaps (C). A single rectangle represents a homozygous genome for (A) and (C) while each chromosome of a diploid organism
is shown for (B). The QTL position is represented by the dotted vertical line. Grey triangles represent gene deletions and purple
or green dots represent a single nucleotide exchange between the parental backgrounds. (A) Natural gene loss-of-function in
the purple strain leads to a negative phenotype similar to deleting the gene in both parental backgrounds. (B) Heterozygous
individuals are phenotyped for a reciprocal hemizygous assay. The reciprocal hybrid strains hemizygous for the gene of
interest (bottom two) display different phenotypes, suggesting that genetic variation in the gene of interest is causal for the
variation in phenotype. (C) Replacing a SNV in the green parent with the allele from the purple parent (and vice versa) causes
a change in phenotype, suggesting this allele is causal for the variation in phenotype.
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Although primarily hermaphroditic, C. elegans produce males at a low frequency (< 1% in the laboratory

strain) allowing for ease of generation of new recombinant strains via simple genetic crosses [43].

Targeted genome editing provides a complementary approach to generating new strains by deleting

specific genes or introducing new genes or alleles to the genome [44]. Importantly, nematodes can be

cryopreserved for long-term storage without accumulation of mutations [43].

In 1974, Brenner published the first seminal paper on the genetics of C. elegans in which he

identified close to 300 mutants affecting behavior and morphology [43]. Although Brenner was not the

first to discover C. elegans nor the first to study the nematode, he is often credited for establishing the

worm as a model organism for cellular and molecular biology, neurobiology, developmental biology,

and genetics. Since 1974, over 31,000 papers have been published that mention the nematode C.

elegans. A team of scientists led by Dr. John Sulston and Dr. Robert Horvitz characterized the entire

cell lineage of C. elegans from embryo to adult through its four larval stages [45, 46]. The nematode

remains to this day the only animal with a comprehensive understanding of every neuronal connection

in the brain [47, 48, 49, 50, 51].

1.2.1 Genomics of C. elegans

In 1998, C. elegans became the first multicellular organism to have its genome fully sequenced. The

relatively small 100 Mb genome comprises six chromosomes (five autosomes and one sex

chromosome) and approximately 20,000 protein-coding genes [52]. In comparison, the human

genome is over 3,000 Mb, has 23 chromosomes, yet still has around 20,000 protein-coding genes

[53, 54]. It is estimated that more than two-thirds (13,400+) of the protein-coding genes in C. elegans

have a human homolog [55]. Many prominent pathways that are misregulated in cancer or targeted by

therapeutics including Ras/MAPK, Wnt, Notch, TGF-β, and insulin signaling pathways are conserved

in nematodes [56]. In fact, many of these fundamental pathways were first identified and characterized

in C. elegans, prompting future studies in mammalian systems [57].

Most C. elegans research, including Brenner’s fundamental studies, uses the single reference

strain N2. First isolated from a mushroom compost bin in Bristol, UK in 1951, this strain underwent

somewhere between 300 and 2,000 generations before it was first cryopreserved in 1969 [58]. During
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this time, the N2 strain was exposed to selective pressures in the laboratory and accumulated several

mutations that led to a laboratory-adapted strain drastically different from its wild ancestor [58]. Since

that time, hundreds of wild strains have been collected that represent the species in the absence of

laboratory adaption and have enabled ecological studies of the species [59]. In particular, a wild

isolate from Hawaii, CB4856, has been shown to be remarkably diverged from N2 [60, 61, 62] and

quickly became a second reference strain used in many studies. Currently, there are 403 genetically

distinct strains, known as isotypes, isolated worldwide that describe relatively high genetic diversity.

Information about these strains including the date and location of isolation and the whole-genome

sequencing results can be found at the C. elegans Natural Diversity Resource (CeNDR;

elegansvariation.org) [63]. Researchers can leverage this species-wide diversity to better understand

how natural genetic variants underlie phenotypic differences such as variation in toxin responses.

1.2.2 High-throughput assays to quantify phenotypic variation in C. elegans

In order to best capture both small and large phenotypic differences between strains, high-throughput

assays have been developed using a variety of platforms. Important characteristics of any

high-throughput phenotyping assay include high accuracy, precision, and throughput with minimal

human interaction to avoid errors. Some common phenotyping platforms include automated

fluorescence microscopy [64], microplate readers [65, 66], microfluidic chips [67], and large-particle

flow cytometers [68].

In one such example, a large-particle flow cytometer referred to as the “worm sorter” (COPAS

BIOSORT, Union Biometrica) measures animal development (length and optical density) and

reproductive ability (brood size) in the presence of different toxins [69, 70, 71, 72, 73, 74, 75, 68] or

under other environmental conditions [76, 68] (Figure 1-4). Nematodes get longer and more optically

dense (thicker and denser body composition) as they develop [68]. In the presence of most toxins,

nematodes have smaller broods, shorter lengths, and are less dense compared to non-treated

animals. This system has the power to distinguish phenotypic effect sizes as small as 5% provided

that a high number of replicates are scored [73, 68]. And because the worm sorter can analyze

hundreds of animals in each well of a 96-well plate in just over 23 minutes, high replication is rarely an
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issue. Lastly, large amounts of data collected with the worm sorter can be easily processed and

analyzed using a collection of packages developed and maintained by the Andersen Lab [77, 68].

Figure 1-4: High-throughput assay workflow with COPAS BIOSORT Animals are propagated for multiple generations.
Embryos are prepped by bleach synchronization and aliquoted to 96-well plates. L1s hatch overnight and are fed to allow
development to the L4 larval stage. Three L4s are then sorted into a new well in a 96-well plate containing either drug or
control growth media using the COPAS BIOSORT large-particle flow cytometer (Union Biometrica). The animals are grown
for four days at 20°C, during which time they will mature to adulthood and lay embryos that will subsequently mature. Directly
before scoring fitness traits, the animals were treated with sodium azide to straighten their bodies and allow for more accurate
length and optical density measurements. Phenotypic measurements obtained by the COPAS BIOSORT include brood size,
animal length, and optical density.

1.3 QTL mapping in C. elegans

Thanks to recent advancements in technology, the ability to discover QTL is now limited mostly by the

number of traits that can be accurately and efficiently phenotyped. However, depending on the
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recombination frequency (linkage mapping) or linkage disequilibrium (GWA) between strains, QTL

could span over several megabases containing hundreds of genes and thousands of variants. The

genetic marker with the highest correlation is not always the causal variant, in fact it usually is not.

One major advantage of QTL mapping in C. elegans compared to other organisms is the ability to

fine-map and narrow large QTL intervals methodically and efficiently. Although QTL studies in some

organisms are merely suggestive of a correlative relationship between a phenotype and a genetic

marker and all its linked loci, functional studies in C. elegans allow researchers to directly test the

causal relationship between an allele and phenotype.

1.3.1 Tools for QTL mapping in C. elegans

One strong advantage about QTL mapping in C. elegans is that strains can be frozen and recovered,

allowing for the preservation of mapping sets for future phenotyping. Early association mapping studies

used 41 [78] to 96 [79] genetically distinct wild isolate strains. However, there are currently 403 strains

in CeNDR available for association mapping. Significance of a genotype-phenotype association can be

calculated using several methods including a t-test or a Wilcoxon rank-sum test. However, the Andersen

Lab developed the R package cegwas2 (github.com/AndersenLab/cegwas2-nf) for association mapping

in C. elegans that incorporates a strain-by-strain relatedness matrix K as a random effect in the linear

mixed-model with the equation y = X + Zu+ e where y is the measured phenotype, X is the genetic

variant to be tested for association, Zu is the phenotype y corrected for population structure K, and e

are residual effects [70].

Any two (or more) of the 403 strains can be used to generate a recombinant panel for linkage

mapping. Phenotypically diverse strains improve the likelihood of detecting QTL for a given trait while

genetically diverse strains increase the number of potentially causal alleles, making it more difficult to

localize the QTL. The most common set of strains used to perform linkage mapping analysis are N2

and CB4856. A wild isolate from Hawaii, CB4856 has long emerged as a second reference strain that

is highly divergent from the laboratory-adapted N2 strain [60, 61, 62]. Over the years, there have been

several independently generated panels of recombinants between N2 and CB4856 (Table 1-1). The

first panel of 80 recombinant inbred lines (Kammenga RILs) was generated in 2006 [80] and later led to
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the first gene identified using QTL mapping in C. elegans [81]. A few years later, a second panel of 236

recombinants (Rockman RIAILs) was generated that took advantage of an advanced crossing design

[82, 83] to generate recombinant inbred advanced intercross lines (RIAILs) [78]. In contrast to RILs that

are derived from 20 generations of inbreeding from an F2 cross, RIAILs are the result of ten generations

of random pair mating followed by ten generations of selfing [82, 83]. Because of the design differences

between the two crosses, RIAILs will contain more sites of recombination and should allow for higher

resolution [82]. These RIAILs were first used to map the copulatory plugging phenotype to the gene

plg-1 [84, 78].

However, after its generation, it was discovered that the Rockman RIAIL panel contains a strong

skew in allele frequencies favoring the N2 allele at the peel-1 zeel-1 incompatibility locus on

chromosome I [85, 86]. Additionally, the laboratory-adapted npr-1 locus on chromosome X was

defined as a highly pleiotropic gene affecting many different phenotypes [58]. To address these

concerns, among others, a second panel of 359 RIAILs (Andersen RIAILs) was generated using

CB4856 and QX1430 (a strain with the N2 genetic background but contains a transposon insertion in

peel-1 and an introgression of the CB4856 npr-1 allele) [68]. This panel was first used in 2015 to map

life history traits such as fecundity and body size [68]. Finally, a complementary panel of RILs

(Andersen RILs) was recently generated between QX1430 and CB4856 containing almost 600 strains

that have been sequenced and could be used for fine mapping QTL [72]. Significance of a

genotype-phenotype association using recombinants is calculated as the log of the odds (LOD) ratio

using the formula LOD = log(1 − cor(y, g)2)/2log(10) where y is the measured phenotype and g is

the genotype information. The Andersen Lab has developed the R package linkagemapping

(github.com/AndersenLab/linkagemapping) to facilitate detection and localization of QTL in this

manner.

Although a lot of work focuses on the genetic variation between the N2 and CB4856 strains, several

studies have taken advantage of the genetic variation between other strains in the species. RIL panels

have been generated between the N2 and BO strains [87], the N2 and DR1350 strains [88], the N2

and LSJ2 strains [89], the MY10 and JU1395 strains [90], the N2 and MY16 strains [91], the MY14 and

CX12311 strains [92], the N2 and AB1 strains [93], and the AB2 and CB4856 strains [94]. Although QTL
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Table 1-1: Overview of different N2xCB4856 recombinant panels

Panel Name Parent
strains

Number of
strains

Publication Notes

Kammenga
RILs

N2 x CB4856 80 Li et al. 2006
[80]

- Many QTL mapped across diverse
traits
- Genome-wide expression data
across different environments

Rockman
RIAILs (set 1)

N2 x CB4856 236 Rockman and
Kruglyak 2009
[78]

- Genome-wide expression data
without environmental perturbations
- Many QTL mapped across diverse
traits; peel-1 zeel-1 allele skew on
chrI and laboratory adapted allele
of npr-1 on chrX; Highly structured
population

Andersen
RIAILs (set 2)

N2* (QX1430)
x CB4856

359 Andersen et al.
2015 [68]

- Many QTL mapped across diverse
traits (mostly drug responses)
- Transposon insertion in peel-1 on
chrI and wild allele of npr-1 on chrX

Andersen
RILs (set 3)

N2* (QX1430)
x CB4856

590 Brady et al.
2019 [72]

- No phenotype information yet
- Transposon insertion in peel-1 on
chrI and wild allele of npr-1 on chrX

mapping with one of these RIL panels facilitates detection of QTL that might not be present between the

N2 and CB4856 strains, these alternative mapping populations have mostly been generated to answer

specific research questions and have yet to be as fully explored as the N2xCB4856 panels. More

recently, two multi-parental recombinant panels have been developed to capture more genetic diversity

without sacrificing the power of recombinants to detect and localize QTL. The first is a multi-parental

experimental evolution (CeMEE) panel generated from crossing 16 diverse wild isolates followed by

more than 100 generations of experimental evolution and subsequent inbreeding [95]. The second is

a multi-parental RIL panel generated from four parental wild isolates [96]. Recombinant panels that

capture a majority of the genetic diversity within the species might provide the most power for QTL

mapping, combining the benefits of linkage and association mapping. However, the mapping population

(and thus method of QTL mapping) chosen will ultimately depend on the biological question and the

quantitative trait.

The generation of all these recombinant panels have been useful for the C. elegans quantitative

genetics community and have facilitated the discovery of many QTL. However, this method requires

a large amount of time, money, and work to generate, cryopreserve, and phenotype such a large
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panel of individuals. As an alternative method to phenotyping recombinant individuals, bulk-segregant

analysis (BSA) generates a large pool of genetically divergent recombinants that can be genotyped

and phenotyped in bulk [97]. Often, pools are exposed to a selective pressure, such as a drug, prior

to genotyping. In the absence of selection, allele frequencies are expected to be 50%. However, if

a specific allele is associated with drug resistance, this allele will likely be enriched in the selected

population. BSA was first used to map QTL in yeast [98] and has been recently adapted to C. elegans

to study drug resistance, differences in gene expression, and general nematode fitness between the

N2 and CB4856 strains [99]. Though fast, powerful, and effective, BSA requires a method for selecting

a sub-population based on the phenotypic distribution of the trait and, like all mapping methods, QTL

resolution is highly dependent on the nonuniform pattern of genetic recombination [99, 78]

1.3.2 Overview of quantitative traits mapped in C. elegans

Some of the most complex phenotypic traits are those related to an organism’s life history (reproduction

and development) or behavior (response to external stimuli). For this reason, these complex traits are

often the most commonly studied in quantitative genetics [87]. Numerous QTL have been detected

that underlie life history traits such as reproduction [100, 68, 90, 101, 102, 103, 88, 104, 95, 105, 106],

lifespan and aging [104, 96, 107, 35, 108, 109, 110], body size and development [100, 68, 91, 93, 102,

103, 88, 81, 104, 76, 95, 96, 111], and abundance of gene transcripts [112, 113, 80, 108, 114, 115, 116],

proteins [117], and metabolites [118]. Behavioral traits studied include pathogen immunity [100, 119,

120, 121], stress responses [68, 122, 72, 69, 73, 123, 120, 75, 124, 74, 71, 70, 88, 96, 125, 116,

126, 99], responses to environmental perturbations such as food [127, 128, 129, 110], oxygen [130],

pheromones [92, 76, 89], and temperature [102, 103, 81, 80, 131], and other nematode behaviors

[132, 133, 94, 78, 35]. In addition to these traits, genomic features such as telomere length [134] and

transposable elements [135] as well as geographical and climate variables [136] have been used as

phenotypic traits for QTL mapping. An overview of QTL mapping studies in C. elegans can be found in

Table S1-1.
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Toxin responses as quantitative traits. Many human medicines and environmental toxins are

designed from compounds naturally secreted by bacteria, fungi, or plants as a mechanism of

protection [137]. These compounds usually act to harm a predatory organism by targeting one of

several necessary and conserved genetic pathways that control cellular growth [138]. To enable

survival, organisms have developed mechanisms of resistance, often in the form of genetic variation in

these key molecular pathways [139]. As a result, responses to these compounds are highly variable

between individuals based on a variety of both genetic and environmental factors. Nematode behavior,

development, and reproductive ability in response to a number of toxic conditions have been

extensively studied (Figure 1-5). Although these traits are indirect measures of the toxin’s effect, these

phenotypes have been used to identify numerous QTL [73, 74, 68, 123, 122, 99], causal genes

[69, 72], and causal variants [70, 71, 75, 120, 123, 124].

Several of these studies identified causal genes that function in biologically relevant pathways or are

known drug targets, suggesting that these QTL studies are useful for learning about the biology of toxin

responses [70, 71, 75, 120]. Additionally, studying toxin responses in C. elegans might have broader

applications in human and veterinary medicine. In one example, Zdraljevic et al. (2017) uses C. elegans

to identify a single residue (Q797M) in the topoisomerase II enzyme TOP-2 that contributes to sensitivity

to the double-strand-break-inducing chemotherapeutic drug etoposide. The authors further show that

editing the methionine residue in the human ortholog (hTOPIIα) to a glutamine significantly increased

etoposide resistance in 293T cells, showing that this residue has the same effect in C. elegans and

human cells in culture. Although this residue does not vary naturally within the human population, it

does differ between the two human isoforms (hTOPIIβ naturally has the glutamine residue), suggesting

that variation at this residue contributes to the differential binding of etoposide between the two isoforms

hTOPIIα and hTOPIIβ [71]. In another example, Ghosh et al. (2012) identified a four-amino acid

deletion in the glutamate-gated chloride channel GLC-1 that contributed to variation in response to

the anthelmintic compound abamectin in C. elegans [120]. Glutamate-gated chloride channels are the

known drug targets of abamectin [140, 141] and this study demonstrated that quantitative genetics in

C. elegans can discover alleles that might also confer anthelmintic resistance in parasitic populations.
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Figure 1-5: Toxin-response QTL mapping studies. (A) An example of a toxin-response QTL mapping (linkage mapping
analysis for nematode zinc response [123]). Genomic position (x-axis) is plotted against the logarithm of the odds (LOD)
score (y-axis). Each significant QTL is indicated by a red triangle at the peak marker, and a blue rectangle shows the 95%
confidence interval around the peak marker. The percentage of the total variance in the RIAIL population that can be explained
by each QTL is shown above the QTL. (B) A histogram showing the distribution (x-axis) and number of toxin-response QTL
identified (y-axis) with a bin size of 1 Mb.

Gene expression as a quantitative trait. In addition to organismal phenotypes, gene expression

data has been collected across three panels of recombinants in C. elegans and used as a phenotypic

trait for linkage mapping [80, 108, 115, 69, 113, 116, 109]. QTL mapping of genome-wide gene

expression has several goals. First, the analysis of thousands of random, non-correlated traits allows

for a generalization of how genetic variation influences complex traits in an unbiased manner [22].

Second, the mapping of intermediate phenotypes such as gene expression often gives much higher

resolution compared to organismal phenotypes, making it potentially easier to identify the causal

variant [142]. Finally, expression variation, especially in combination with variation in other

phenotypes, can facilitate connections between genetic variation and the biology of these traits [143].
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More than ten percent of genes in the C. elegans genome (2,000+ genes) vary in expression

between the N2 and CB4856 strains, and variation of most of the genes is correlated with specific

genetic loci [115, 108, 116]. A majority of these expression QTL (eQTL) are defined as cis- or local

eQTL, meaning the genetic variant that controls gene expression is located near the gene in question

(often within 1 Mb) [115]. Interestingly, the genes with local eQTL often overlap between studies,

providing more evidence that expression of these genes is genetically determined [113]. The rest of

the eQTL that are not mapped locally are classified as trans- or distant eQTL. Strikingly, a large

fraction of all distant eQTL fall within one of several trans-bands or eQTL hotspots, suggesting

variation at one pleiotropic locus or several tightly linked loci controls variation in expression of tens or

hundreds of genes. However, the location of these eQTL hotspots seem to differ between studies

suggesting that they are environmentally controlled. In one powerful example, variation in the

neuropeptide receptor gene npr-1 controls variation in expression of 247 genes across the genome

[115, 100]. Furthermore, this variation in npr-1 has also been associated with numerous behavioral

and developmental phenotypes [58]. Because the 247 genes that change expression in response to

variation in npr-1 are enriched for neuropeptide signaling and growth [100], it is possible that

expression of these genes together work to produce several pleiotropic phenotypes. Alternatively, it is

possible that the pleiotropic variant in npr-1 alters expression of 247 genes, each acting independently

to produce different phenotypes. Either way, this study highlights how expression variation can help

bridge the gap between genomic variation and trait biology.

Several expression QTL studies have been performed in C. elegans under a variety of different

environments to study how expression variation changes between environmental conditions. Li et al.

(2006) was the first to show that eQTL significantly vary between environments. The authors found

hundreds of strain-specific or temperature-specific eQTL but identified significantly less plasticity QTL,

defined by the interaction between expression and temperature [80]. The same RILs have been used

to show that variation in alternative splicing for only a few genes is controlled by genetic variation [114]

and that the integrity of the gene expression network declines with age [108, 109]. More recently,

variation in gene expression was studied in combination with the heat shock response where the

authors again reiterate that eQTL hotspots are environment-specific while local eQTL are largely
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maintained across diverse environments [116]. And finally, a panel of recombinants between MT2124

(strain with the N2 genetic background and a let-60(gf) allele) and CB4856 identified eQTL associated

with RAS/MAPK signaling [113]. These studies have all provided insight into the genetics of

expression variation. However, all eQTL studies to date have been performed with microarray

analysis, which is biased towards the N2 reference genome. RNA sequencing would decrease this

bias, also facilitating eQTL studies with other RIL or wild isolate panels.

1.4 Lessons from quantitative genetics in C. elegans

Over the last decade, QTL mapping in C. elegans has worked to address several unanswered questions

in quantitative genetics relating to the genetic architecture of complex traits and the evolution of diverse

phenotypes. Although many early quantitative genetics studies in C. elegans identified mostly single,

large-effect loci, advancements in genotyping and phenotyping technologies as well as the collection

of more genetically distinct wild isolates have revolutionized the field. Many quantitative traits map to at

least two independent loci and some traits have five or more QTL. A study of natural expression variation

of over 15,000 transcripts discovered that expression of most genes are defined by a single large-

effect locus with only 14% of differentially expressed genes controlled by two or more loci [115, 69].

Alternatively, a large QTL mapping study of nematode responses to 16 diverse toxins identified 82 QTL

from 47 non-correlated traits, and more than one third of these traits mapped to two or more loci [73].

Strikingly, 82% of these QTL had small effect sizes, explaining less than 10% of the phenotypic variation

in the RIAIL panel. Using NILs, the authors were able to empirically validate a QTL that explained only

7% of the phenotypic variation, demonstrating that small effects can be studied in C. elegans with the

right tools and a sensitive assay [73].

Most QTL identified appear to have additive effects [123, 122, 73] consistent with what is observed in

other highly powered model organisms like yeast and plants [23, 24, 25, 26, 27, 28]. However, empirical

evidence of genetic interactions present in only one genetic background show that there is not sufficient

power in the RIAIL panels to detect these uni-directional epistatic loci [72, 73]. In fact, several studies

have reported that a single detected locus actually comprises multiple tightly linked loci that either act

additively or interact to produce the overall phenotypic effect observed [122, 123, 128, 144, 145, 131].
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In one thorough example, Bernstein et al. (2019) identified a QTL on chromosome X that underlies

responses to the heavy metal nickel. The genomic region was divided into 15 intervals of ∼100 kb

each using a panel of 16 NILs with increasingly smaller introgressions across the region. The authors

discovered that nine of the 15 intervals had a significant effect on the phenotype. However, the effect

size and direction of effect varied between intervals suggesting multiple, tightly linked, antagonistic QTL

[122]. Given the level of recombination in the current mapping panels, we do not have the statistical

power to distinguish tightly linked loci during QTL detection. Regardless, these examples demonstrate

that the genetic architecture of complex traits is often even more complex than it appears. Furthermore,

these examples provide evidence that the quantitative genetics community is still best suited to identify

large-effect Mendelian-like QTN, leaving a biased gap in our understanding of quantitative variation.

1.4.1 Benefits of combining linkage and association mapping

Linkage and association mapping are two complementary approaches to discover causal genetic

variation underlying phenotypic traits. Each method has different strengths and weaknesses that might

lend one tool to be more powerful than the other for different types of causal variants. Arguably, the

best way to identify the QTN would be to combine the strengths of both linkage and association

mapping by phenotyping both a panel of recombinants and a panel of wild isolates. If the result is that

different QTL are found by the different mapping techniques, this in itself offers more insight into the

quantitative variation underlying each QTL than mapping with either recombinants or wild isolates

alone. For QTL identified with linkage mapping but not association mapping, it can be concluded that

the allele frequency of the causal variant must be rare in the population because association mapping

does not have the power to detect rare variants. In this case, the list of potential causal variants

present between the parental strains of the recombinant lines can be filtered to remove variants that

are also shared among the population. Conversely, for QTL identified with association mapping but not

linkage mapping, it can be concluded that although the allele frequency of the causal variant must be

relatively common in the population, this causal variant is not present in the parental strains of the

recombinants. In this case, the list of potential causal variants can be filtered to remove all variants

present in the recombinant strains.
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If, however, the result is that the same QTL is identified by both mapping techniques, the combined

resources of both techniques can be leveraged to quickly identify the QTN. Under the assumption that

the same variant could be causal in both populations, it can be concluded that the causal variant is

present in the parental strains of the recombinants and commonly found across the population. In this

best-case scenario, the list of potential causal variants can be filtered to remove all common variants

that are not present in the recombinant strains. Depending on the extent of genetic diversity between

the parental strains, this should significantly decrease the number of potential causal variants. In two

examples, this approach narrowed the potential causal variants from thousands to only three [71] or

even one single variant [70]. In both cases, the authors were able to conclusively prove that the

highlighted variant was causal without the extensive use of quantitative narrowing approaches like

NILs and were able to describe the mechanism by which these variants contributed to toxin responses.

Although few QTL might fall into this last category, the benefits of this combined approach will likely

soon outweigh the extra time and resources needed to phenotype an extra panel of strains.

Alternatively, multi-parent recombinant populations like the CeMEE panel were designed to combine

the benefits of linkage and association mapping without having to phenotype two different populations

[95] and could be leveraged in the future.

1.4.2 Mediation analysis: combining expression and phenotypic QTL to identify causal genes

We are no longer limited to studying large-effect protein-coding genetic variants. Several eQTL studies

have discovered thousands of differentially expressed genes that are largely controlled by genetic

factors [112, 113, 80, 108, 114, 115, 116]. Co-localization of eQTL and phenotype QTL could suggest

that a single genetic variant underlies both QTL. Furthermore, mediation analysis now allows

scientists to make statistical connections between genetic variation, variation in gene expression, and

variation in other phenotypes. In addition to providing a resource for candidate gene prioritization

within a QTL interval, mediation analysis can help to identify the mechanism by which genetic variation

causes phenotypic differences. This technique is especially powerful in identifying causal genes

distant from their QTL that would otherwise not have been discovered. For example, in Chapter 3, I

used mediation analysis to implicate the gene scb-1 in responses to several double-strand break
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chemotherapeutics. Functional analysis with deletions of scb-1 using CRISPR-Cas9 genome editing

further showed that scb-1 is a pleiotropic gene that influences responses to other chemotherapeutic

drugs. This study paired genome-wide gene expression data with drug-response phenotypes to

identify the causal gene and provide further evidence for the unknown function of scb-1 [69].

1.4.3 QTN that led to a better understanding of the evolution of quantitative variation

Functional analysis has facilitated the discovery of many QTN from QTL (Table S1-1) and, in

combination with mechanistic studies, has provided numerous insights into the evolution of complex

traits in C. elegans. However, drawing evolutionary conclusions from these studies should be done

with caution. Many QTN have been shown to be the direct result of laboratory adaptation of the N2

strain and thus do not represent natural variation within the species [58, 76, 104, 93, 130].

Furthermore, Rockman et al. (2010) show that the patterning of eQTL across the genome is best

explained by a model of background selection. This result suggests that these QTL might not be the

product of adaptive processes, rather the chromosomal location of a gene might affect its evolutionary

potential [115].

Nevertheless, the discovery of numerous QTN have led to several important evolutionary

conclusions. For example, the insertion of a retrotransposon in a mucin-like gene plg-1 results in

copulatory plugging after mating and is thought to represent a type of sexual selection based on the

natural male frequencies in the wild [84, 87]. Additionally, natural variation in the beta-tubulin gene

ben-1 suggests that variation in this gene arose multiple times during the evolutionary history of C.

elegans, likely in recent years in response to local purifying selective pressures [75]. Conversely,

signatures of balancing selection have been implicated in several traits including density-dependent

foraging behaviour at the srx-43 locus [92], embryonic lethality at the peel-1/zeel-1 [85] and

sup-35/pha-1 incompatibility loci [146], avermectin resistance at the glc-1 locus [120], and pheromone

response at the srg-37 locus [76]. In conclusion, these results, and others, continue to provide strong

evidence that the QTN program in C. elegans can identify the alleles that matter for evolution.
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1.5 Dissertation overview

This dissertation aims to answer several of the important questions in quantitative genetics outlined

above and further aims to discover the QTN underlying complex traits, particularly toxin responses.

Chapter 2 details the largest QTL study for phenotypic traits in C. elegans to date, showing that most

traits have a complex genetic architecture and that additive loci might not explain all the phenotypic

variation for toxin responses. Chapter 3 takes advantage of mediation analysis, a technique never

before used in C. elegans, to better prioritize candidate genes with expression variation in addition to

candidate genes with protein-coding genetic variation. Mediation analysis is further leveraged in

Chapter 4 to predict a top candidate gene underlying the zinc response and uses functional validation

with NILs and CRISPR-Cas9 genome editing to provide new evidence for the function of the

sequestosome-related gene, sqst-5, as a potential negative regulator of the nematode zinc response.

The importance of minimizing environmental variation in quantitative genetics is highlighted in Chapter

5, which suggests that food intake can greatly affect toxin responses. Chapter 6 identifies two novel

QTL for avermectin resistance that might be conserved in the parasitic nematode Haemonchus

contortus, demonstrating the relevance and benefits of studying anthelmintic resistance in the

free-living nematode. Chapter 7 correlates genetic variation with environmental variables such as

temperature and humidity with the goal of discovering genetic adaptation to specific niches. Finally,

Chapter 8 discusses several key challenges for the QTN program in C. elegans and offers

commentary and advice for the future generation.
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1.6 SUPPLEMENTAL TABLES

Table S1-1: List of QTL mapping studies in C. elegans

Reference Experiment Strains Phenotype QTG/QTN
Andersen et al.
(2014) [100]

RIAILs N2 x CB4856 (Rockman
set)

Lifetime fecundity, body size,
susceptibility to S. aureus

NPR-1
(V215F)

Andersen et al.
(2015) [68]

RIAILs N2*(QX1430) x CB4856
(Andersen set)

Growth and development; drug
response (paraquat)

NA

Balla et al. (2015)
[119]

RIAILs N2 x CB4856 (Rockman
set)

Immunity to microsporidian
parasite

NA

Bendesky et al.
(2011) [147]

RIAILs N2 x CB4856 (Rockman
set)

Food foraging responses tyra-3

Bendesky et al.
(2012) [132]

RIAILs N2 x CB4856 (Rockman
set)

Aggregation/social behavior and
bordering

exp-1

Bernstein et al.
(2019) [122]

RIAILs N2*(QX1430) x CB4856
(Andersen set)

Drug response (nickel) NA

Brady et al. (2019)
[72]

RIAILs;
Association
mapping

N2 x CB4856 (Rockman
set); N2*(QX1430) x
CB4856 (Andersen set);
96 wild isolates

Drug response (bleomycin);
gene expression

scb-1(lf)

Burga et al. (2019)
[99]

Bulk-
segregant

N2* x CB4856* (fog-2) Drug response (abamectin),
stress resistance (H2O2),
fitness, gene expression
differences,

NA

Chandler et al.
(2010) [148]

RILs N2* x CB4856*
(temperature-sensitive
mutants)

Sex determination NA

Cleuren et al. (2019)
[91]

Association
mapping;
RILs

96 wild isolates; N2 x
MY16

Nrf/Wnt signaling, endoderm
development

NA

Cook et al. (2016)
[134]

Association
mapping

152 wild isolates Telomere length pot-2

Doroszuk et al.
(2009) [35]

RILs N2 x CB4856 (Kammenga
set)

Lifespan, pumping NA

Duveau et al. (2012)
[93]

RILs N2*(JU605) x
AB1*(JU606)

Vulval induction nath-10

Elvin et al. (2011)
[126]

RIAILs N2 x CB4856 (Rockman
set)

RNAi response ppw-1

Evans and Andersen
(2020) [69]

RIAILs N2 x CB4856 (Rockman
set); N2*(QX1430) x
CB4856 (Andersen set)

Drug responses (amsacrine,
bleomycin, bortezomib,
carmustine, cisplatin, etoposide,
puromycin, silver); gene
expression

scb-1(lf)

Evans and Brady et
al. (2018) [73]

RIAILs N2*(QX1430) x CB4856
(Andersen set)

Drug responses (cadmium,
carmustine, chlorothalonil,
chlorpyrifos, cisplatin, copper,
diquat, fluoxetine, FUdR,
irinotecan, mechlorethamine,
paraquat, silver, topotecan,
tunicamycin, vincristine)

NA

Evans et al. (2017)
[136]

Association
mapping

152 wild isolates Geography and climate NA

Evans et al. (2020)
[123]

RIAILs;
Association
mapping

N2 x CB4856 (Rockman
set); N2*(QX1430) x
CB4856 (Andersen set);
96 wild isolates

Drug response (zinc) sqst-5(lf)
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Frezal et al. (2018)
[90]

RILs MY10 x JU1395 Temperature-induced sterility set-24(lf)

Gaertner et al.
(2012) [131]

RIAILs N2 x CB4856 (Rockman
set)

Thermal preference behavior NA

Gao and Sterken et
al. (2018) [118]

RILs N2 x CB4856 (Kammenga
set)

Metabolite levels NA

Ghosh et al. (2012)
[120]

RIAILs N2 x CB4856 (Rockman
set)

Drug response (abamectin),
pathogen immunity

glc-1(lf)

Gimond et al. (2019)
[101]

Association
mapping;
RILs

97 wild isolates Sperm size NA

Glater et al. (2014)
[128]

RIAILs N2 x CB4856 (Rockman
set)

Olfactory preference to bacteria NA

Greene et al. (2016)
[92]

RILs MY14 x CX12311 Pheromone sensitivity srx-43

Gutteling et al.
(2007a) [103]

RILs N2 x CB4856 (Kammenga
set)

Age at maturity, fertility,
egg size, and growth rate in
response to temperature

NA

Gutteling et al.
(2007b) [102]

RILs N2 x CB4856 (Kammenga
set)

Egg size, egg number, and
body mass in response to
temperature

NA

Hahnel and
Zdraljevic et al.
(2018) [75]

Association
mapping

209 wild isolates Drug response (albendazole) ben-1(lf)

Harvey et al. (2008)
[88]

RILs N2 x DR1350 Dauer development,
reproduction in response to
stress

NA

Harvey et al. (2009)
[88]

RILs N2 x DR1350 Dispersal between food patches NA

Kammenga et al.
(2007) [81]

RILs N2 x CB4856 (Kammenga
set)

Body size and temperature TRA-3
(F96L)

Large et al. (2016)
[104]

RILs N2*(CX12311) x LSJ2 Reproductive timing, lifespan,
dauer formation, growth rate,
and offspring number

nurf-1(lf)

Large et al. (2017)
[106]

RILs N2*(CX12311) x LSJ2 Egg laying NA

Laricchia et al.
(2017) [135]

Association
mapping

152 wild isolates Transposable elements NA

Lee et al. (2017)
[133]

RIAILs N2 x CB4856 (Rockman
set)

Phoretic behavior (nictation) prg-1
(piRNA)

Lee et al. (2019) [76] Association
mapping

157 wild isolates Pheromone response (dauer) srg-37(lf)

Li et al. (2006) [80] RILs N2 x CB4856 (Kammenga
set)

Expression, temperature
sensitivity

NA

Li et al. (2010) [114] RILs N2 x CB4856 (Kammenga
set)

Expression, alternative splicing NA

McGrath et al. (2009)
[130]

RIAILs N2 x CB4856 (Rockman
set)

Oxygen sensing and response NPR-1
(V215F),
glb-5

McGrath et al. (2011)
[89]

RILs N2 x LSJ2 Dauer pheromone resistance srg-36 and
srg-37

NA et al. (2020) [124] Association
mapping

133 wild isolates Drug response (proprionate) glct-3

Nakad et al. (2016)
[121]

RILs N2 x CB4856 (Kammenga
set)

Immune defenses NPR-1
(V215F)

Noble et al. (2015)
[94]

RILs QG5 x QX1199* Male-male plugging behavior plep-1

Noble et al. (2017)
[95]

CeMEE 16 wild isolates Fertility and body size NA
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Rockman and
Kruglyak (2009) [78]

RIAILs,
Association
mapping

N2 x CB4856 (Rockman
set), 41 wild isolates

Copulatory plugging, embryonic
lethality

plg-1

Rockman et al.
(2010) [115]

RIAILs N2 x CB4856 (Rockman
set)

Expression NA

Rodriguez et al.
(2012) [125]

RILs N2 x CB4856 (Kammenga
set)

Heat shock recovery NA

Schmid et al. (2015)
[112]

RILs N2*(MT2124) x CB4856 RAS/MAPK signaling output amx-2

Seidel et al. (2008)
[85]

RIAILs N2 x CB4856 (Rockman
set)

Embryonic lethality peel-1;zeel-1

Singh et al. (2016)
[117]

RILs N2 x CB4856 (Kammenga
set)

Protein abundance NA

Snoek and Orbidans
et al. (2014) [149]

RILs N2 x CB4856 (Kammenga
set)

Egg lay defective incompatibility NA

Snoek and Sterken et
al. (2017) [116]

RILs N2 x CB4856 (Kammenga
set)

Expression, temperature NA

Snoek et al. (2019)
[96]

mpRILs JU1511 x JU1926 x
JU1931 x JU1941

Lifespan, stress resistance,
developmental speed, and
population growth in different
environments

NA

StastNA et al. (2015)
[107]

RILs N2 x CB4856 (Kammenga
set)

Diet and lifespan NA

Sterken et al. (2017)
[113]

RILs N2*(MT2124) x CB4856* Expression, ras/mapk modifier amx-2

Vinuela and Snoek et
al. (2010) [108]

RILs N2 x CB4856 (Kammenga
set)

Aging and expression NA

Vinuela et al. (2012)
[109]

RILs N2 x CB4856 (Kammenga
set)

Aging and expression NA

Webster et al. (2019)
[111]

Association
mapping

96 wild isolates Starvation resistance NA

Zamanian et al.
(2018) [74]

RIAILs N2*(QX1430) x CB4856
(Andersen set)

Drug responses (albendazole,
fenbendazole, mebendazole,
thiabendazole)

NA

Zdraljevic et al.
(2017) [71]

RIAILs,
Association
mapping

N2*(QX1430) x CB4856
(Andersen set), 96 wild
isolates

Drug response (etoposide and
amsacrine)

TOP-2
(Q797M)

Zdraljevic et al.
(2019) [70]

RIAILs,
Association
mapping

N2*(QX1430) x CB4856
(Andersen set), 96 wild
isolates

Drug response (arsenic trioxide) DBT-1
(C78S)

Zhu et al. (2015)
[110]

RIAILs N2 x CB4856 (Rockman
set)

Mito-nuclear compatibility,
lifespan, foraging

NA

Zhu et al. (2019)
[105]

RIAILs N2 x CB4856 (Rockman
set)

Mito-nuclear fecundity NA
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2 Shared genomic regions underlie natural variation in diverse toxin

responses

2.1 PREFACE

When I first joined the lab in the summer of 2016, we had a large collection of QTL from which I could

choose one (or more) to follow up on in more detail. Throughout that summer and fall, I began testing

a variety of these toxins to see if there was any “low-hanging fruit.” About the same time, Dr. Shannon

Brady was beginning a project to analyze a collection of QTL that we may never get the chance to

investigate deeply as a lab. We decided to combine our efforts to perform a broad analysis of toxin-

response QTL in C. elegans, compared with the “normal” Andersen Lab approach of identifying the

genetic mechanism of a single toxin. This time holds some of the craziest days of my graduate school

career. Running 36 plates (approximately 15 hours) on the sorter (a record high we still hold to this

day!), wearing onesies to lab to celebrate the end of the NIL phenotyping, and spending endless hours

thinking about genetic interactions, designing flowcharts to categorize traits, trying to understand what

the Hadamard product is, and writing code and analyzing data side-by-side in Cook 3118. Our two

years of hard work finally paid off with a co-first author manuscript in Genetics in 2018 [73] from which

this chapter is based.

2.2 ABSTRACT

Phenotypic complexity is caused by the contributions of environmental factors and multiple genetic

loci, interacting or acting independently. Studies of yeast and Arabidopsis often find that the majority of

natural variation across phenotypes is attributable to independent additive quantitative trait loci (QTL).

Detected loci in these organisms explain most of the estimated heritable variation. By contrast, many

heritable components underlying phenotypic variation in metazoan models remain undetected. Before

the relative impacts of additive and interactive variance components on metazoan phenotypic variation

can be dissected, high replication and precise phenotypic measurements are required to obtain

sufficient statistical power to detect loci contributing to this missing heritability. Here, we used a panel
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of 296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a high-throughput

fitness assay to detect loci underlying responses to 16 different toxins, including heavy metals,

chemotherapeutic drugs, pesticides, and neuropharmaceuticals. Using linkage mapping, we identified

82 QTL that underlie variation in responses to these toxins and predicted the relative contributions of

additive loci and genetic interactions across various growth parameters. Additionally, we identified

three genomic regions that impact responses to multiple classes of toxins. These QTL hotspots could

represent common factors impacting toxin responses. We went further to generate near-isogenic lines

and chromosome-substitution strains and then experimentally validated these QTL hotspots,

implicating additive and interactive loci that underlie toxin-response variation.

2.3 INTRODUCTION

Rapid advances in sequencing technologies enabled the collection of high-quality genomic datasets

for many species [150]. These data, paired with a broad range of high-throughput phenotypic assays,

made quantitative genetics a powerful tool in biology. Linkage mapping has been used to identify

quantitative trait loci (QTL), leading to profound impacts on human health [151, 152, 153], agriculture

and livestock [154, 155, 156, 157], and basic biology [158, 159, 68]. Despite the growing number of

detected QTL across numerous traits, these QTL often do not explain the complete heritable component

of trait variation [22]. This missing heritability can be attributed to undetected small-effect additive loci

and/or interactions between QTL [28]. Although some studies contend that epistatic effects among QTL

might explain missing heritability [29, 30, 31, 32, 33], others argue that missing heritability comprises

small-effect additive loci that remain undetected in cases where statistical power is too low [23, 24,

25, 26]. Quantitative geneticists have leveraged large numbers of recombinant strains in both yeast

and Arabidopsis to overcome power limitations and concluded that, when power is sufficient, small-

effect additive components can be identified that account for nearly all of the heritability of a given trait

[28, 27, 160]. We require a metazoan system with high statistical power to determine whether this

predominantly additive-QTL model remains broadly applicable in animals.

One such tractable metazoan is the roundworm nematode Caenorhabditis elegans. The genetic

variation among a panel of recombinant inbred advanced intercross lines (RIAILs) generated between
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the N2 and CB4856 strains of C. elegans [78, 68] has been leveraged in many linkage mapping

analyses [130, 147, 133, 132, 117, 112, 119, 71, 74, 100, 147, 108, 35, 149, 125, 81, 103, 80, 102,

128, 161, 115, 86, 85]. Additionally, a high-throughput phenotyping platform to rapidly and accurately

measure animal fitness could provide the replication and precision required to detect small-effect

additive loci and to determine the relative contributions of additive and/or epistatic loci to trait variation

[100, 71]. Notably, the combination of this panel and phenotyping platform have facilitated linkage

mappings of multiple distinct fitness parameters, resulting in the detection of a single QTL, in fact a

single quantitative trait gene (QTG), that underlies several fitness-related traits [100, 71]. This example

of pleiotropy suggests that large-scale studies could reveal additional pleiotropic effects.

Such large-scale studies have implicated pleiotropic QTL that impact the expression of a broad

range of genes [162, 163, 115, 164]. Variation in the master regulators that are within these

expression QTL hotspots have downstream effects on the transcription of many genes. Similarly, other

QTL hotspots could impact multiple traits, such as responses to various conditions. In yeast, most

chemical-response QTL are thought to be unique to one or a few conditions, whereas few QTL have

been found to have pleiotropic effects across many conditions [165, 166, 167]. Although QTL

underlying responses to individual conditions have been identified across multiple animal models

[168, 169, 170, 171, 172], the existence of QTL hotspots that influence multiple condition responses

has yet to be observed broadly in metazoans.

Here, we performed a set of linkage-mapping experiments with a large panel of recombinant lines

to identify QTL implicated in responses to 16 different toxins and found three QTL hotspots that

underlie many of these responses. We demonstrated how high replication in the high-throughput

fitness assay can enable the identification and validation of QTL, even in cases of small phenotypic

effects. Additionally, we analyzed relative contributions of additive and epistatic genetic loci in various

toxin responses. Finally, we discovered evidence for interactions between loci of the N2 and CB4856

strains that impact several toxin responses and could suggest how large regions of the genome were

swept across the species.
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2.4 METHODS

2.4.1 Strains

Animals were grown at 20ºC using OP50 bacteria spotted on modified nematode growth medium

(NGMA), containing 1% agar and 0.7% agarose to prevent animals from burrowing. For each assay,

strains were propagated for five generations after starvation to reduce transgenerational effects of

starvation [100]. Recombinant inbred advanced intercross lines (RIAILs) used for linkage mapping

were constructed previously [68]. The construction of near-isogenic lines (NILs) and chromosome

substitution strains (CSSs) is detailed below. Strains are available upon request.

2.4.2 High-throughput toxin response assay

We used a modified version of the high-throughput fitness assay described previously [71].

Populations of each strain were passaged for four generations, amplified, and bleach-synchronized.

Approximately 25 embryos from each strain were then aliquoted to 96-well microtiter plates at a final

volume of 50 µL of K medium [173]. Embryos hatched overnight and arrested in the L1 larval stage.

The following day, arrested L1 animals were fed HB101 bacterial lysate (Pennsylvania State University

Shared Fermentation Facility, State College, PA; [174]) at a final concentration of 5 mg/mL in K

medium and were grown to the L4 larval stage for 48 hours at 20ºC with constant shaking. Three L4

larvae were then sorted using a large-particle flow cytometer (COPAS BIOSORT, Union Biometrica,

Holliston, MA) into microtiter plates that contained HB101 lysate at 10 mg/mL, K medium, 50 µM

kanamycin, and either diluent (1% DMSO or 1% water) or diluent and a toxin of interest. The sorted

animals were then grown for 96 hours at 20ºC with constant shaking. During this time, the sorted

animals matured to adulthood and laid embryos, yielding a population of parent and progeny in each

microtiter well. Prior to the measurement of fitness parameters from the populations, animals were

treated with sodium azide (50 mM in M9) to straighten their bodies for more accurate growth-response

parameter measurements. Traits that were measured by the BIOSORT include brood size (n), animal

length (time of flight, TOF), and optical density (extinction time, EXT).
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2.4.3 Toxin-response trait calculations

Phenotypic measurements collected by the BIOSORT were processed using the R package

easysorter, which was specifically developed for processing this type of data set [77]. Briefly, the

function read_data imported raw phenotypic data then identified and eliminated bubbles. Next, the

remove_contamination function discarded wells that contained bacterial or fungal contamination

(determined by visual inspection) prior to analyzing population parameters. The sumplate function

then calculated normalized measurements and summary statistics of the assayed traits for the

population of animals in each well. The number of animals in each well was divided by the number of

animals sorted into that well, yielding a normalized brood size (norm.n). Additionally, optical density

(EXT) of each animal was divided by animal length (TOF), resulting in a normalized optical density

(norm.EXT) for each animal in each well. The norm.EXT measurement represents the optical density

without conflating variation in body length. The summary statistics calculated for each population

include 10th, 25th, 50th, 75th, and 90th quantiles, mean, and median measurements of TOF, EXT, and

norm.EXT as well as variance for TOF and EXT. Previously, each of these summary statistics has

been shown to reveal distinct genetic architectures underlying trait variation, suggesting values to

demonstrate the range of biological phenomena that can be captured using this platform [68]. In total,

this analysis resulted in 24 phenotypic measurements for each condition tested. When strains were

measured across multiple assay days, the regress(assay=TRUE) function was used to fit a linear

model with the formula (phenotype ~ assay ) to account for differences among assays. Next, outliers

were removed by eliminating phenotypic values that were outside two standard deviations of the mean

(unless at least 5% of the strains were outside this range in the case of RIAIL assays). Finally,

toxin-specific effects were calculated using the regress(assay=FALSE) function from easysorter, which

fits a linear model with the formula (phenotype ~ control phenotype) to generate residual phenotypic

values that account for differences between populations that were present in control conditions. For

this reason, strain phenotypes in control conditions can influence regressed toxin effects and trait

categorizations (below).
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2.4.4 Dose-response assays

For each toxin, a dose-response experiment was performed using quadruplicates of four genetically

diverged strains (N2, CB4856, DL238, and JU258). Animals were assayed using the high-throughput

fitness assay, and toxin-response trait calculations were performed as described above. The

concentration of each toxin that provided a highly reproducible toxin-specific effect with variation

between N2 and CB4856 across three distinct traits (brood size - norm.n, mean length - mean.TOF,

and mean optical density - mean.norm.EXT) was selected for linkage mapping experiments. The

chosen concentrations and diluents of each toxin are as follows: cadmium 100 µM in water,

carmustine 250 µM in DMSO, chlorothalonil 250 µM in DMSO, chlorpyrifos 1 µM in DMSO, cisplatin

250 µM in water, copper 250 µM in water, diquat 250 µM in water, fluoxetine 250 µM in DMSO, FUdR

50 µM in water, irinotecan 125 µM in DMSO, mechlorethamine 200 µM in DMSO, paraquat 500 µM in

water (50 µM was used for the CSS and NIL assays), silver 150 µM in water, topotecan 400 µM in

water, tunicamycin 10 µM in DMSO, and vincristine 80 µM in water. The concentration of paraquat

differs the concentration used previously [68], suggesting why the genetic architectures are different

between the two studies. Toxins assayed in this manuscript were purchased from Fluka (chlorothalonil,

#36791-250MG; chlorpyrifos, #45395-250MG; diquat dibromide monohydrate, #45422-250MG-R),

Sigma (vincristine sulfate salt, #V8879-25MG; cisplatin, #479306-1G; silver nitrate, #209139;

carmustine, #1096724-75MG; topotecan hydrochloride, #1672257-350MG), Calbiochem (tunicamycin,

#654380), Aldrich (mechlorethamine hydrochloride, #122564-5G, cadmium chloride #01906BX), Alfa

Aesar (irinotecan hydrochloride trihydrate, #AAJ62370-MD), Bioworld (5-fluoro-2’-deoxyuridine,

#50256011), Enzo Life Sciences (fluoxetine, #89160-860), Mallinckrodt (cupric sulfate, #4844KBCK),

and Chem Service (paraquat, #ps-366).

2.4.5 Principal Component Analysis of RIAILs

A total of 296 RIAILs were assayed in the high-throughput fitness assay described previously in the

presence of each toxin listed above as well as control conditions (water or DMSO). Because some of

the 24 population parameters measured by the BIOSORT are highly correlated, a principal component
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analysis (PCA) was performed. For each growth-response trait, RIAIL phenotypic measurements were

scaled to have a mean of 0 and a standard deviation of 1. The princomp function within the stats

package in R [175] was used to run a principal component analysis for each toxin. For each toxin, the

minimum number of principal components (PCs) that explained at least 90% of the total phenotypic

variance in the RIAILs was mapped through linkage mapping. A total of 97 PCs were mapped.

2.4.6 Linkage mapping

Linkage mapping was performed on each of the 97 PCs (described above) using the R package

linkagemapping (www.github.com/AndersenLab/linkagemapping). The genotypic data and residual

phenotypic data were merged using the merge_pheno function. Quantitative trait loci (QTL) were

detected using the fsearch function, which scaled phenotypes to have a mean of zero and variance of

one, then calculated logarithm of odds (LOD) scores for each marker and each trait as

−n(ln(1 − R2)/2ln(10)), where r is the Pearson correlation coefficient between RIAIL genotypes at

the marker and trait values [27]. We note that this scaling of the data did not impact mappings in that

scaled mappings and unscaled mappings were identical. The phenotypic values of each RIAIL were

then permuted randomly while maintaining correlation structure among phenotypes 1000 times to

calculate a significance threshold based on a genome-wide error rate of 5%. This threshold was set

for each mapped PC independently to avoid biases introduced by performing large numbers of

mappings. The marker with the highest LOD score was then set as a cofactor and mapping repeated

iteratively until no significant QTL were detected. Finally, the annotate_lods function was used to

calculate the fraction of variation in RIAIL phenotypes explained by each QTL. 95% confidence

intervals were defined by markers within a 1.5-LOD drop from the marker with the maximum LOD

score. We additionally performed a two-dimensional genome scan using the function scantwo in the

qtl package [176] for all 47 significantly mapped PCs. Significant interactions were determined by

permuting the phenotype data for each PC 1000 times and determining the 5% genome-wide error

rate for QTL detection.
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2.4.7 Heritability estimates

Broad-sense heritability was estimated for each of the 97 PCs using the formula H2 = (σR
2 -σP

2)/σR
2

where σR
2 and σP

2 are the variance among the RIAIL and parental (N2 and CB4856) phenotypic values,

respectively [177]. A variance component model using the R package regress was used to estimate the

fraction of phenotypic variation explained by additive genetic factors (‘narrow-sense’ heritability) [178,

28]. The additive relatedness matrix was calculated as the correlation of marker genotypes between

each pair of strains. In addition, a two-component variance component model was calculated with both

an additive and pairwise-interaction effect. The pairwise-interaction relatedness matrix was calculated

as the Hadamard product of the additive relatedness matrix.

2.4.8 Calculation of hotspots

We estimated cM distances from recombination events in the RIAIL panel to account for non-uniform

distribution of genetic diversity across the genome. The genome was divided into 65 total bins with each

bin containing 26 cM. To determine if the 82 QTL significantly clustered around particular genomic

regions, we set a threshold for significant QTL hotspots based on the 99th percentile of a Poisson

distribution with a mean of 1.2 QTL (total QTL/total bins).

2.4.9 Generation of near-isogenic lines (NIL)

NILs were generated by crossing selected RIAILs to each parental genotype. For each NIL, eight

crosses were performed followed by six generations of propagating isogenic lines to ensure

homozygosity of the genome. For each cross, PCR amplicons for insertion-deletion (indel) variants on

the left and right of the introgressed region were used to confirm progeny genotypes and select

non-recombinants within the introgressed region. NILs were whole-genome sequenced as described

below to confirm their genotype. A statistical power calculation was used to determine the minimal

number of technical replicates required to observe the predicted phenotypic effect of each QTL at 80%

power. The number of technical replicates tested per assay for any given toxin did not exceed 100

because of experimental timing constraints. The principal components that mapped to each NIL region



60

are those with a QTL with a confidence interval that overlaps with or spans the entire introgressed

region in the NILs.

2.4.10 Whole-genome sequence library prep and analysis

DNA was isolated from 100-300 µL of packed animals using Qiagen’s Blood and Tissue kit (catalog #

69506). Following the ATL lysis step, 4 µl of 100 mg/mL RNAse was added to each sample and allowed

to incubate for two minutes at room temperature. DNA concentration was determined using the Qubit

dsDNA BR Assay Kit (catalog # Q32850). For each strain, a total of 0.75 ng of DNA was combined

with 2.5 µL transposome (Illumina; kit # FC-121-1011) diluted 35x with 1x Tris Buffer (10x Tris Buffer:

100 mM Tris-HCl pH 8.0, 50 mM MgCl2) in a 10 µL final volume on ice. This reaction was incubated

at 55°C for 10 minutes. The amplification reaction for each strain contained (final concentrations): 1x

ExTaq Buffer, 0.2 mM dNTPs, 1 U ExTaq (Takara, catalog # RR001A), 0.2 µM primer 1, 0.2 µM primer

2, and 5 µL of tagmentation material from the previous step in a 25 µL total volume. Each strain

had a unique pair of indexed primers. We first made a master mix containing buffer, water, dNTPs,

and ExTaq then aliquoted the appropriate volume of this mix into each well. We added the specific

primer sets to each well and finally the tagmentation reaction. The amplification reaction was incubated

in a thermocycler with the following conditions: 72°C for three minutes (1x); 95°C for 30 seconds

(1x); 95°C for 10 seconds, 62°C for 30 seconds, 72°C for three minutes (20x); 10°C on hold. We

combined 8 µL from each amplification reaction to generate a pool of libraries. A portion of the libraries

was electrophoresed on a 2% agarose gel. DNA was excised and gel purified using Qiagen’s Gel

Purification Kit (catalog # 28706). The libraries were sequenced on the Illumina HiSeq 2500 platform

using a paired-end 100 bp reaction lane. Alignment, variant calling, and filtering were performed as

described previously [134]. NIL and CSS genotypes were called using the VCF file and a Hidden

Markov Model as described previously [179].

2.4.11 Generation of chromosome substitution strains (CSS)

CSSs were generated by crossing N2 and CB4856 parental strains and mating cross progeny to each

parental genotype. For each CSS, eight crosses were performed followed by six generations of
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propagating isogenic lines to ensure homozygosity of the genome. For each cross, PCR amplicons for

indels on the left and right of the introgressed region were used to confirm progeny genotypes and

select non-recombinants within the introgressed region. CSSs were whole-genome sequenced as

described above to confirm their genotype. As described for NIL assays, power calculations were

performed to determine the number of technical replicates required to observe the predicted

phenotypic effect of the CSSs.

2.4.12 Selection of traits to categorize in CSS and NIL assays

Pairwise correlations of RIAIL phenotypes among the 24 growth-response traits measured by the

BIOSORT were calculated using the cor function within the stats package in R with the use argument

set to “pairwise.complete.obs”. For each toxin, hierarchical clustering was performed using the

function hclust from the stats package (R Core Team 2017). Cutree was then used to group the

resulting dendrogram into k groups, where k is equal to the minimum number of principal components

that explained at least 90% of the phenotypic variance in the RIAILs. For each principal component

that mapped to a hotspot, the growth-response trait that was most correlated to that principal

component, as well as all growth-response traits within that cluster of the dendrogram, were assayed

in NIL and CSS experiments (Table 2-2).

2.4.13 Categorization of CSS and NIL results

Toxin responses for NILs and CSSs were tested using the high-throughput fitness assay for traits

correlated with mapped principal components as described above (Table 2-2). Complete pairwise

statistical analyses of strains was performed for each trait tested in all CSS and NIL assays (Tukey

honest significant difference (HSD) test). A p-value of p < 0.05 was used as a threshold for statistical

significance. NIL recapitulation was defined by the significance and direction of effect of the NIL

compared to the parental strains. Six categories were defined: 1) no parental difference, 2)

recapitulation, 3) no QTL effect, 4) bidirectional interaction, 5) unidirectional interaction, and 6)

miscellaneous. Traits for which N2 and CB4856 phenotypes were not statistically different comprise

the ‘no parental difference’ category and were not further categorized. Traits in the ‘recapitulation’
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category must satisfy the following criteria: significant difference between the parental strain

phenotypes, significant difference between phenotypes of each NIL and the parent that shares its

background genotype, and both NILs must display the expected direction of effect of the introgressed

genotype. Traits with ‘no QTL effect’ displayed a significant parental phenotypic difference and the

phenotype of each NIL was not statistically different from the phenotype of the parent sharing its

background genotype. Traits that have a ‘bidirectional interaction’ must display a significant parental

phenotypic difference, the phenotypes of both NILs must be significantly different from phenotypes of

both parents, and the phenotypes of both NILs must be transgressive (lie beyond the phenotypic range

of the parental strains). Lastly, traits with a ‘unidirectional interaction’ were categorized similarly to the

bidirectional interaction, except only one NIL must display a transgressive phenotype and the other

NIL either shows no QTL effect or recapitulation. Traits that did not fit these descriptions were

categorized as ‘miscellaneous’.

Traits in the chromosome V hotspot were further categorized using the combined data from both

the CSS and NIL assays. Seven categories were defined: 1) no parental difference, 2) recapitulation,

3) no QTL effect, 4) external inter-chromosomal interaction (uni- or bidirectional), 5) internal

inter-chromosomal interaction (uni- or bidirectional), 6) intra-chromosomal interaction (uni- or

bidirectional), and 7) miscellaneous. ‘No parental difference’ was defined by traits in which the

parental strains were either not significantly different from each other or did not have the same

direction of effect in both the CSS and NIL assays. ‘Recapitulation’ and ‘no QTL effect’ traits were

defined by traits that were classified as either recapitulating or no QTL effect, respectively, in both

assays. Traits displaying an ‘external inter-chromosomal interaction’ show evidence for interaction in

the CSS but no interaction (either recapitulating or no QTL effect) in the NIL. On the other hand, traits

displaying an ‘internal inter-chromosomal interaction’ showed evidence of the same interaction for both

the CSS and the NIL assays. Finally, traits displaying an ‘intra-chromosomal interaction’ showed

evidence of an interaction in the NIL but not in the CSS assay. All other traits that did not fit these

descriptions were categorized as ‘miscellaneous’.
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2.4.14 Statistical analysis

All statistical tests of phenotypic differences in the NIL and CSS assays were performed in R (version

3.3.1) using the TukeyHSD function [175] on an ANOVA model with the formula (phenotype ~ strain).

The p-values of individual pairwise strain comparisons were reported, and a p-value of p < 0.05 was

deemed significant. The direction of effect of each NIL was determined by comparing the median

phenotypic value of the NIL replicates to that of each parental strain. NILs whose phenotypes were

significantly different from both parents and whose median lied outside of the range of the parental

phenotype medians were considered hypersensitive or hyper-resistant. Comparing LOD scores and

variance explained between traits with no parental effect and traits with a significant parental effect

in the NIL assays was performed using a Wilcoxon rank sum test with continuity correction using the

wilcox.test function in R [175].

2.5 RESULTS

2.5.1 Identification of QTL underlying variation in responses to 16 diverse toxins

Using a high-throughput fitness assay (Methods), we tested variation in 24 fitness-related traits in

responses of four genetically divergent strains to different concentrations of 16 toxins, comprising

chemotherapeutics, heavy metals, pesticides, and neuropharmaceuticals. A concentration of each

toxin was selected that minimized within-strain variation and maximized variation between two of these

divergent strains, N2 (the laboratory strain) and CB4856 (a wild isolate from Hawaii). For the selected

concentration of each toxin, we assayed 24 growth-response traits for a panel of 296 recombinant

inbred advanced intercross lines (RIAILs) generated between the N2 and CB4856 parental genetic

backgrounds [68]. Because some of the growth-response traits are highly correlated, we performed

principal component analysis (PCA) for each toxin. The minimum number of principal components

(PCs) that explained at least 90% of the total phenotypic variance within each toxin was selected for

mapping, for a total of 97 PCs across all toxins (minimum of five PCs and a maximum of eight PCs per

toxin). We then used linkage mapping to identify quantitative trait loci (QTL) that underlie variation in

these 97 PCs.
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We detected a total of 82 significant QTL (across 47 PCs) from the 97 PCs tested (Figure 2-1). We

did not find a single toxin-response QTL shared robustly across all of the various PCs and toxins tested

nor across all PCs within any one toxin. However, the majority of QTL on chromosome I were detected in

responses to chemotherapeutics. Additionally, almost every toxin (with the exception of FUdR) had QTL

that underlie trait variation on at least two different chromosomes, highlighting the diverse architectures

implicated across traits, even within a single toxin. Despite the seemingly independent distributions of

QTL, we found that the majority of the QTL (61%) mapped to chromosomes IV and V.

2.5.2 Both additive and interactive QTL underlie toxin responses

For each of the PCs that were impacted by the 82 QTL identified using linkage mapping, we calculated

the broad-sense heritability, the proportion of broad-sense heritability that could be attributed to

additive genetic components (narrow-sense heritability) (Figure 2-2A), and the proportion of

narrow-sense heritability that was explained by QTL detected through linkage mapping (Figure 2-2B,

Methods). In many cases, additive genetic components could not explain all of the phenotypic

variation predicted to be caused by genetic factors. These results suggest that other additive loci with

small effect sizes impact toxin responses, but we failed to detect these QTL by our linkage mapping

analyses, potentially because of high complexity and/or insufficient statistical power. Alternatively, this

missing heritability could be indicative of genetic interactions [27].

To determine how much of the phenotypic variance comes from additive or interacting genetic

components, we fit a linear mixed-effect model to the RIAIL phenotype data for the 47 PCs controlled

by the 82 QTL. We observed a range of additive and epistatic components contributing to phenotypic

variation across toxin classes. On average, cisplatin, topotecan, and FUdR are primarily explained by

additive models. Alternatively, paraquat, irinotecan, vincristine, and mechlorethamine have a larger

fraction of their phenotypic variance attributable to genetic interactions than additive effects. To

localize potential genetic interactions for these 82 QTL, we scanned the genome for interactions

between pairs of markers that might affect the phenotypic distribution of the RIAIL panel (Methods).

We identified three significant interactions. This two-factor genome scan was unable to localize all

epistatic components identified by the linear mixed-effect model (Figure 2-2), perhaps because of



65

Figure 2-1: Diverse genetic architectures are implicated in responses to 16 toxins. Linkage mapping results for principal
components that represent 82 QTL across 16 toxins, comprising chemotherapeutics (teal), heavy metals (orange), pesticides
(purple), and neuropharmaceuticals (pink) are plotted. Genomic position (Mb) is shown along the x-axis, split by chromosome,
and each of the 47 principal components with a significant QTL is plotted along the y-axis. Each QTL is plotted as a point at
the location of the most significant genetic marker and a line indicating the 95% confidence interval. QTL are colored by the
logarithm of the odds (LOD) score, increasing in significance from blue to green to yellow.

missing small-effect additive loci in the model and/or insufficient statistical power to identify

small-effect interactions.
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Figure 2-2: Additive genetic components identified by linkage mapping do not explain all heritable contributions
to toxin-response variation. For 47 principal components representing the 82 QTL, we compared (A) the broad-sense
heritability (x-axis) calculated from the RIAIL phenotypic data versus the narrow-sense heritability (y-axis) estimated by
a mixed model and (B) the narrow-sense heritability (x-axis) versus the variance explained by all QTL detected by
linkage mapping (y-axis). In both plots, each principal component is plotted as a point whose color indicates drug class
(chemotherapeutic, heavy metal, neuropharmaceutical, or pesticide). The diagonal line represents y = x and is shown as a
visual guide.

2.5.3 Three QTL hotspots underlie variation in responses to diverse toxins

The majority of toxin-response QTL cluster on chromosomes IV and V (Figure 2-1). We sought to

determine if such QTL clustering could be expected by chance or if this clustering is indicative of

toxin-response QTL hotspots. To account for the higher rate of recombination, and thus more genetic

diversity, on the chromosome arms [78], we divided the genome evenly into 65 bins and calculated

the number of QTL that mapped to each bin (Figure 2-3, Methods). Three bins with more QTL than

expected based on a Poisson distribution [177] were classified as hotspots. These hotspots are located

on the center of chromosome IV, the right of chromosome IV, and the center of chromosome V and

are hereby denoted as IVL, IVR, and V, respectively. Importantly, these hotspots are not driven by

multiple principal components within a single toxin. Instead, hotspots comprise multiple QTL across

a variety of principal components and toxins. In fact, 14 of the 16 toxins tested (Table 2-1) have a

principal component that maps to at least one of the three hotspots. Of the 82 QTL, 18 mapped to

IVL, 8 mapped to IVR, and 9 mapped to V. In total, 33 QTL map to a hotspot (note that two QTL

have confidence intervals that span both hotspots on chromosome IV). We sought to experimentally
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validate the predicted additive and epistatic effects on toxin responses for QTL that mapped to the

three hotspots.

Figure 2-3: Three QTL hotspots impact toxin responses. Each chromosome is divided into equal bins of 26 cM, resulting
in a total of 65 bins across the genome. The x-axis shows the genomic position (Mb), and the y-axis shows the number of
QTL that lie within the corresponding bin. The red line indicates the 99th percentile of a Poisson distribution with a mean of
1.26 QTL (total QTL/total bins).

2.5.4 Near-isogenic lines recapitulate some of the predicted QTL effects

To experimentally validate the QTL identified from linkage mapping, we created near-isogenic lines

(NILs) for the IVL, IVR, and V hotspots. Each NIL has a small genomic region introgressed from one

parental strain into the genome of the opposite parental strain (Methods). These NILs were

whole-genome sequenced and found to match the expected genotype in the hotspot region; however,

occasionally additional breakpoints were observed (Methods). We tested each NIL in our

high-throughput fitness assay for a subset of the toxins with a QTL that maps to a given hotspot,

choosing QTL with small, medium, and large effect sizes to test our ability to recapitulate various effect

sizes (Table 2-1, Table 2-2). We tested five toxins (ten QTL) with the IVL NILs, three toxins (four QTL)

with the IVR NILs, and five toxins (six QTL) with the V NILs. In total, we tested 20 QTL across eight

toxins for recapitulation using the NILs.

For each of these 20 QTL, we identified the toxin-response trait that is most correlated with the

principal component controlled by that QTL. We then assayed the NILs for that toxin-response trait

as well as all toxin-response traits within its same trait cluster, because each principal component
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Table 2-1: Summary of toxins and principal components mapped per hotspota

Toxin Class PCs in IVL PCs in IVR PCs in V
Cadmium Heavy Metal 0 0 0

Carmustine* Chemotherapeutic 1* 0 1*
Chlorothalonil* Pesticide 2* 1* 1*

Chlorpyrifos Pesticide 1 1 0
Cisplatin* Chemotherapeutic 2* 1 2*

Copper Heavy Metal 2 0 0
Diquat Pesticide 0 0 0

Fluoxetine* Neuropharmaceutical 1 2* 0
FUdR Chemotherapeutic 1 1 0

Irinotecan* Chemotherapeutic 0 1* 2
Mechlorethamine Chemotherapeutic 0 0 1

Paraquat* Pesticide 0 0 1*
Silver* Heavy Metal 3* 0 1*

Topotecan Chemotherapeutic 1 0 0
Tunicamycin Chemotherapeutic 2* 0 0
Vincristine Chemotherapeutic 2 1 0

a* denotes a toxin tested with NIL and/or CSS assays

comprises multiple toxin-response traits (Table 2-2, Methods). We tested 42 toxin-response traits with

the IVL NILs, 12 toxin-response traits with the IVR NILs, and 45 toxin-response traits with the V NILs

(Table 2-2). In total, we performed 99 tests of recapitulation of QTL effects for toxin-response traits.

The results of these tests allowed us to sort QTL effects into six different categories: ‘no parental

effect’, ‘recapitulation’, ‘no QTL effect’, ‘unidirectional transgressive’, ‘bidirectional transgressive’, or

‘miscellaneous’ (Figure 2-4).

Of these 99 tests, 23 did not display a significant phenotypic difference between the parent strains

(N2 and CB4856) in the NIL assay and were categorized as ‘no parental effect’ (Methods). The

remaining 76 tests in which a significant parental difference was observed were classified further. We

predicted that if a single QTL in the introgressed region contributed to the parental phenotypic

difference, then each NIL would have a phenotype significantly different than the parental strain with

the same genetic background. Furthermore, we expected each NIL to have a phenotype similar to the

parental strain of its introgressed genomic region. This ‘recapitulation’ model was consistent for four

tests. The normalized brood size trait in cisplatin (cisplatin.norm.n in cisplatin PC4) is one such
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Table 2-2: All traits tested in NIL and CSS assays

PC Hotspot Correlated Traits Correlation Range
carmustine.PC1 V mean.EXT, mean.TOF, q75.EXT, median.EXT,

median.TOF, q75.TOF, median.norm.EXT,
q90.TOF, q90.EXT

0.72-0.95

carmustine.PC6 IVL q25.norm.EXT, q10.norm.EXT 0.33-0.39
chlorothalonil.PC1 V mean.EXT, q75.EXT, mean.TOF, median.EXT,

median.TOF, q75.TOF
0.73-0.95

chlorothalonil.PC2 IVL cv.TOF, cv.EXT 0.72-0.90
chlorothalonil.PC3 IVL, IVR mean.norm.EXT, q75.norm.EXT, q90.norm.EXT,

median.norm.EXT
0.50-0.65

cisplatin.PC1 IVL, V mean.EXT, mean.TOF, median.EXT,
median.TOF, q75.TOF, q75.EXT, q90.EXT,
q90.TOF

0.78-0.97

cisplatin.PC3 IVL var.TOF, var.EXT 0.38-0.54
cisplatin.PC4 V norm.n, n 0.76-0.80
fluoxetine.PC1 IVR mean.norm.EXT, q75.norm.EXT, mean.EXT,

q75.EXT, q90.norm.EXT, q90.EXT
0.79-0.96

fluoxetine.PC5 IVR q90.norm.EXT, q75.norm.EXT, mean.norm.EXT,
q75.EXT, mean.EXT, q90.EXT

0.07-0.40

irinotecan.PC2 IVR cv.TOF, cv.EXT 0.57-0.84
paraquat.PC1 V median.EXT, mean.EXT, q25.EXT, q75.EXT,

mean.TOF, q75.TOF, q10.EXT, q90.EXT,
q90.TOF, median.TOF, q25.TOF, q10.TOF

0.75-0.95

silver.PC1 V mean.EXT, median.EXT, q75.EXT, mean.TOF,
q90.EXT, q90.TOF, median.TOF, q75.TOF

0.77-0.96

silver.PC3 IVL q10.norm.EXT, q25.norm.EXT, mean.norm.EXT,
median.norm.EXT, q75.norm.EXT,
q90.norm.EXT

0.32-0.64

silver.PC4 IVL n, norm.n 0.84-0.84
silver.PC5 IVL n, norm.n 0.41-0.41
tunicamycin.PC1 IVL median.EXT, q75.EXT, mean.TOF, q75.TOF,

median.TOF, median.norm.EXT, q90.EXT,
q90.TOF, mean.EXT, q75.norm.EXT,
mean.norm.EXT, q25.norm.EXT, q90.norm.EXT,
q10.norm.EXT

0.69-0.96

tunicamycin.PC3 IVL norm.n, n 0.47-0.50

example of a trait in which the NILs on the center of chromosome V recapitulated the expected

parental phenotype (Figure 2-5A). For 11 of the remaining 72 tests, the phenotype of each NIL was

not significantly different from the phenotype of the parental strain sharing its background genotype.

This phenotype indicates that the introgressed NIL region was not affecting the toxin-response

phenotype. This lack of QTL effect suggests that the genetic architecture is more complex, we lacked

sufficient statistical power to detect the QTL effect, or the real QTL is outside the introgressed region.

The NILs on the center of chromosome V showed this result for median animal length in silver
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All traits

Parents significant? no

yes

No parental
difference

At least one NIL is
significant from its parent?

no No QTL
effect

yes

Both NILs are 
significant from their parent?

ye
s no

Is the NIL hyper-sensitive
or hyper-resistant?

no Miscellaneous

yes

Uni-directional
transgressive

At least one NIL is 
hyper-sensitive or
hyper-resistant?

no

yes

Both NILs are hyper-sensitive
or hyper-resistant?

no

yes

Bi-directional
transgressive

Both NILs 
recapitulate 

parental direction?

yes

no

Miscellaneous

Recapitulation

Category CSS NIL
Recapitulation

No parental effect

No QTL effect

Inter-chromosomal external

Inter-chromosomal internal

Intra-chromosomal

Recapitulation Recapitulation

No parental difference No parental difference

No QTL effect No QTL effect

Uni-directional or bi-directional 
transgressive phenotype

Recapitulation 
or no QTL effect

Uni-directional or bi-directional 
transgressive phenotype

Uni-directional or bi-directional 
transgressive phenotype

Uni-directional or bi-directional 
transgressive phenotype

Recapitulation 
or no QTL effect

Figure 2-4: NIL and CSS trait categorizations. (A) Flowchart for categorizing traits from the NIL or CSS tests of
recapitulation of QTL effects. (B) Six potential categories for chromosome V traits tested in both NIL and CSS assays with
a significant and consistent parental phenotypic split across both assays. The miscellaneous category is not depicted, but
encompasses any other combination of NIL and CSS assay results.

(silver.median.TOF in silver PC1) (Figure 2-5B). The phenotypes of the NILs for the remaining 61

tests cannot be explained by a single QTL model. For many of these tests, we observed NIL



71

phenotypes that are more sensitive or more resistant than both parental strains, suggesting that loci of

opposite genotypes act additively or interact in the NILs to create transgressive phenotypes [180]. This

finding was supported by the mixed-effects model, which suggested that both additive and interacting

QTL remained undetected by linkage mapping (Figure 2-2). We further explored the results of these

61 tests by characterizing them based on the patterns of the transgressive phenotypes we observed.

For 38 of these 61 tests, only one NIL showed a transgressive phenotype. Some of these 38

‘unidirectional transgressive’ phenotypes seem to show an antagonism that counteracted the effect of

the introgressed region (a predicted sensitive phenotype becomes hyper-resistant or a predicted

resistant phenotype becomes hypersensitive, e.g. carmustine.median.EXT in carmustine PC1, Figure

2-5C). Other phenotypes displayed synergy that increased the effect of the introgressed region (a

predicted sensitive phenotype becomes a hypersensitive phenotype or a predicted resistant

phenotype becomes a hyper-resistant phenotype, e.g. cisplatin.q90.EXT in cisplatin PC1, Figure

2-5D). Interestingly, in most cases (82%), the transgressive phenotype was observed in the strain with

the N2 genotype introgressed into the CB4856 background.

In addition to unidirectional transgressive phenotypes, we identified seven tests with suggested

‘bidirectional transgressive’ phenotypes in which both NILs showed an extreme phenotype compared

to the parental strains. Some of these ‘bidirectional transgressive’ phenotypes were suggestive of purely

antagonistic effects (e.g. tunicamycin.mean.norm.EXT), but others suggested an antagonistic effect in

one NIL and a synergistic effect in the other (e.g. paraquat.median.TOF). We identified no cases of

bidirectional synergistic effects. The remaining 16 tests of the 76 with a parental difference did not fall

into any of the above categories and were classified as ‘miscellaneous’.

The toxin-response traits tested above for recapitulation of QTL effects were selected to represent

principal components that were mapped with linkage mapping. We wanted to compare the NIL assay

categorizations for the toxin-response traits that underlie each principal component to analyze the

overall QTL effect (Figure 2-6). For example, two traits, n and norm.n, were selected to represent

cisplatin PC4 (Table 2-2). Both of these toxin-response traits were placed into the ‘recapitulation’

category from the NIL assay results (Figure 2-6). These results suggest that a single additive QTL

underlies the brood size variation captured by PC4. Fourteen tunicamycin-response traits were
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selected to represent tunicamycin PC1 (Table 2-2). Eight of these 14 traits displayed unidirectional

transgressive phenotypes, four traits displayed bidirectional transgressive phenotypes, and the

remaining two traits did not have a significant parental phenotypic difference (Figure 2-6). Regardless

of the classification, we see the same trend of resistance (ECA231 > N2 > CB4856 > ECA229) across

11 of the 14 traits representing this principal component. Therefore, our strict significance thresholds

for categorization might have caused some phenotypes to be mis-categorized (usually into the

miscellaneous or no parental/QTL effect categories). The prevalence of transgressive phenotypes in

tunicamycin-response traits suggests that multiple QTL, acting additively or interacting, might impact

tunicamycin responses.

We next sought to compare categorizations of toxin-response traits and QTL effect sizes of the

PCs for those traits. The QTL underlying cisplatin PC4 explains about 7% of the total phenotypic

variance. The traits selected to represent cisplatin PC4 were placed into the ‘recapitulation’ category,

despite the small effect size of the QTL (Figure 2-6). In the other example above, the QTL underlying

tunicamycin PC1 explains almost 16% of the total phenotypic variance, which is one of the highest effect

sizes mapped in this study. The toxin-response traits selected to represent this principal component

showed mostly transgressive phenotypes, indicating undetected additive or interacting QTL despite the

seemingly large-effect additive QTL identified in linkage mapping (Figure 2-6).

Figure 2-5 (preceding page): Results from near-isogenic line (NIL) and chromosome-substitution strain (CSS) tests of
recapitulation of QTL effects are categorized based on potential genetic mechanisms implicated in toxin responses.
A trait contributing to a mapped principal component for each category is reported: (A) Recapitulation (cisplatin norm.n, PC4),
(B) Inter-chromosomal external bidirectional loci (silver median.TOF, PC1), (C) Inter-chromosomal internal unidirectional loci
(carmustine median.EXT, PC1), and (D) Intra-chromosomal unidirectional loci (cisplatin q90.EXT, PC1). In each case, we
show results from (i) the NIL assay (left) and CSS assay (right) plotted as Tukey box plots. The y-axis indicates residual
phenotypic values for the given trait. Different letters (a-d) above each Tukey box plot represent significant differences (p <
0.05) while the same letter represents non-significant differences between two strains (Tukey HSD). The genotype of each
strain on the x-axis is modeled by the colored rectangles beneath the plots (N2 genotypes are orange, CB4856 genotypes are
blue). (ii) A stacked bar plot shows the the proportion of phenotypic variation attributable to additive (light blue with dashed
error bars) and interactive (dark blue with solid error bars) genetic factors of the principal component represented by each
trait, based on a mixed model.
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Figure 2-6: Categorization of correlated traits. The y-axis shows the principal component tested in NIL assays, split by
hotspot. Each color represents the NIL assay categorization for each trait within a correlation cluster - either recapitulation
(green), no QTL effect (red), unidirectional transgressive phenotype (light blue), bidirectional transgressive phenotype (dark
blue), miscellaneous (light grey) or no significant parental difference (dark grey). The percent of all traits within the correlation
cluster for each principal component that falls within a given category is shown on the y-axis. Numbers on the right of each
bar indicate the number of traits within a correlation cluster.

2.5.5 Chromosome-substitution strains localize QTL underlying transgressive phenotypes

Because we found evidence of loci where opposite genotypes at each locus cause transgressive

phenotypes, we attempted to further characterize these loci (Figure 2-4, Figure 2-7). To define each

set of loci as either intra-chromosomal or inter-chromosomal, we built reciprocal

chromosome-substitution strains (CSSs) for the hotspot on chromosome V that had the entire

chromosome V introgressed from one parental strain into the genome of the opposite parental strain
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(Methods). The hotspot on chromosome V was chosen to isolate the effects of one hotspot and avoid

complications arising from traits whose confidence intervals might lie within both of the hotspots on

chromosome IV. The CSSs were whole-genome sequenced and found to have the expected genotype

at all markers (Methods), except for the chromosome I incompatibility locus [?] (Seidel et al. 2011;

Seidel, Rockman, and Kruglyak 2008). We performed tests of recapitulation of QTL effects with the

CSSs for each of the 45 toxin-response traits across the five toxins tested with the chromosome V

NILs (Table 2-2).

Figure 2-7: A model for potential locations of two loci is shown, according to toxin-response phenotypes of near-
isogenic lines (NILs) and chromosome-substitution strains (CSSs). The NILs are represented on the left, and the CSSs
are represented on the right. The strain genotype is indicated by colored rectangles. N2 is orange, and CB4856 is blue.
Brackets indicate the genomic region that is introgressed in the NILs. White asterisks represent a potential location for additive
or epistatic loci underlying transgressive phenotypes. Although bidirectional transgressive phenotype models are shown, each
model could be bidirectional (both reciprocal introgressed strains show transgressive phenotypes) or unidirectional (only one
reciprocal introgressed strain shows a transgressive phenotype). Models showing (A) inter-chromosomal external effects
between a locus outside of the introgressed region in the NILs and a locus on another chromosome, (B) inter-chromosomal
internal effects between a locus within the introgressed region in the NILs and a locus on another chromosome, and (C)
intra-chromosomal effects between a locus within and a locus outside of the introgressed region in the NILs are drawn.

For traits in which the parental phenotypic difference was significant and consistent across the NIL

and CSS tests, NIL and CSS phenotypes could be compared across assays. Eight traits across five

toxins fit this criterion. One trait (cisplatin.norm.n) displayed phenotypic ‘recapitulation’ of the

introgressed region in both the NIL and the CSS tests, suggesting a single QTL model (Figure 2-5A).

Alternatively, transgressive phenotypes are indicative of a multi-QTL model, and locations of additive
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or interacting QTL can be surmised by comparing results from the NIL and CSS tests. Transgressive

phenotypes controlled by inter-chromosomal loci are defined by two loci on separate chromosomes

that act additively or epistatically. Because NILs and CSSs have introgressed genotypes on

chromosome V, we can deduce that at least one of the two inter-chromosomal loci is located on

chromosome V. We further divided the inter-chromosomal class into two categories:

‘inter-chromosomal external’, in which the chromosome V locus is outside the region introgressed in

the NILs (Figure 2-7A) and ‘inter-chromosomal internal’, in which the chromosome V locus is within

the region introgressed in the NILs (Figure 2-7B). For an ‘inter-chromosomal external’ model, we

expect only the CSSs to display hypersensitivity or hyper-resistance, because both loci share the

same genotype in the NILs (Figure 2-7A) and would therefore not result in a more extreme phenotype

than both parents. We found one such trait that fits a ‘bidirectional inter-chromosomal external’ loci

model (silver.median.TOF) (Figure 2-5B). For an ‘inter-chromosomal internal’ model, we expected

both the CSSs and the NILs to display the same hypersensitivity or hyper-resistance, because both

strains share the same genotype across the introgressed region in the NILs (Figure 2-7B). We

identified one such trait that fits a ‘unidirectional inter-chromosomal internal’ loci model

(carmustine.median.EXT) (Figure 2-5C). To identify intra-chromosomal loci that underlie transgressive

phenotypes in the remaining 10 traits, we searched for traits that display evidence of either a uni- or

bidirectional transgressive phenotype in the NILs but not in the CSSs (2-7C). This result would

suggest that two loci of opposite genotypes on chromosome V, one within and one outside the region

introgressed in the NILs, act additively or epistatically to cause transgressive phenotypes. We found

two examples of such ‘unidirectional intra-chromosomal’ loci models (e.g. cisplatin.q90.EXT, Figure

2-5D). The remaining three traits could not be characterized beyond their NIL assay characterization

based on the results of the CSS assay.

We revisited the two-factor genome scan results for each of these eight empirically classified traits

and compared the findings from these two independent methods used to identify multiple additive or

epistatic QTL. No traits with significant interaction terms were identified by the two-factor genome

scan. Although many other pairs of loci show suggestive evidence of additive or interacting effects, an

increase in statistical power is required to definitively compare these suggestive findings to our
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empirically derived model. Overall, this study highlights the benefits of leveraging both experimental

and computational strategies to further dissect genetic components that underlie quantitative traits in a

metazoan model.

2.6 DISCUSSION

Here, we show that three QTL hotspots underlie differences in responses to 16 diverse toxins. We

further characterized these QTL using both modeling and empirical approaches. Through the use of

near-isogenic lines and chromosome-substitution strains, we confirmed small-effect QTL and attempted

to identify and localize genomic regions causing transgressive phenotypes. Finally, we used statistical

analyses to computationally identify loci that might support some of our empirical findings. Although the

number of biological replicates and recombinant strains in this study increased our power to detect QTL

compared to previous studies, we are still too underpowered to definitively assess if missing heritability

is composed of small additive effects or genetic interactions.

2.6.1 Pleiotropic regions underlie QTL shared between and among toxin classes

We performed principal component analysis on toxin-response phenotypes collected for a panel of

RIAILs and used linkage mapping to identify 82 toxin-response QTL. Although some of these QTL are

unique to one particular toxin, others suggest the existence of pleiotropic QTL that underlie responses

to a diverse set of toxins. In particular, three QTL hotspots across chromosomes IV and V were

enriched for toxin-response QTL and were investigated further. Because the molecular mechanisms

implicated in responses to each toxin differ drastically, the notion that a single gene in each hotspot is

regulating the response to several toxins is unlikely. However, the possibility exists that a single gene

involved in drug transport could underlie one or several of these hotspots. More likely, multiple genes

in close proximity, each regulating a process controlling cellular proliferation and survival, might

underlie these hotspots. Notably, two of the three QTL hotspots are in swept regions with lower

genetic diversity at the species level [79, 135, 63, 134]. The laboratory strain, N2, has experienced

each of the selective sweeps, and CB4856 has not. Linkage mapping using a panel of RIAILs built

between these two strains could identify QTL that underlie phenotypic differences between swept and
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non-swept strains. Moreover, identifying QTL in these swept regions that underlie variation in

fitness-related traits might indicate selective pressures that could have led to these chromosomal

sweeps. For example, N2 is more resistant than CB4856 to tunicamycin, an antibiotic and

chemotherapeutic produced by the soil bacterium Streptomyces clavuligerus [181]. This result might

suggest that selective pressure toward responses to antibiotic compounds played a role in driving

resistance-conferring alleles, such as those present in N2, to a high frequency. Alternatively, climate

conditions could also impact local niche environments to sensitize toxin responses [136]. We observed

that N2 is more resistant than CB4856 in responses to the majority of conditions, which could indicate

that alleles present in swept strains confer robustness in responses to many conditions. This result

emphasizes the importance of genetic background when considering toxin effects [182].

In addition to the three QTL hotspots, pleiotropic QTL across toxins within certain classes are

suggested by our linkage mapping results. We observed an enrichment of QTL from the

chemotherapeutic class on chromosome I, which could be representative of QTL that underlie a

common mechanism targeted by these toxins, such as DNA damage or cell-cycle control. However,

because many of these chemotherapeutics have distinct mechanisms of action and share these

mechanisms with other toxin classes, this enrichment is likely caused by an overrepresentation of

chemotherapeutics in our study. Direct comparisons of toxins with similar cellular mechanisms could

provide more insights. For example, irinotecan and topotecan are both chemotherapeutics that cause

DNA damage by inhibiting topoisomerase I [183] and share a QTL on the center of chromosome I.

However, each of these chemotherapeutics also maps to distinct regions of the genome. For example,

the irinotecan-response QTL on the right arm of chromosome V is not mapped for topotecan response

and the topotecan-response QTL on the left arm of chromosome II is not mapped for irinotecan

response. Vincristine also maps to this same region, however its mechanism of action is distinct from

irinotecan and topotecan. The combination of overlapping and distinct genetic architectures underlying

these highly similar compounds suggest that although some genetic variation implicated in responses

to irinotecan and topotecan is shared, other QTL are specific to each compound and not

representative of a general topoisomerase I inhibition mechanism. We have also observed this

phenomenon of distinct genetic architectures underlying similar compounds for benzimidazole
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responses [74].

2.6.2 A multi-faceted approach suggests that undetected epistatic loci impact toxin responses

To determine if we had sufficient power to experimentally validate even small-effect QTL, we

constructed NILs for the three hotspots and assayed them in responses to multiple toxins. Because

each principal component comprises multiple toxin-response traits, we measured NIL phenotypes for

the most correlated toxin-response traits for each principal component to test recapitulation of QTL

effects. For some of these tests of recapitulation for small-effect QTL, NILs showed a significant

phenotypic effect. One such example is cisplatin.norm.n and cisplatin.n which represent the QTL

mapped by cisplatin.PC4 that only explains 7% of the phenotypic variance. Our ability to recapitulate

such a small effect suggests that our assay had sufficient power to detect small phenotypic effects in

at least some cases. We postulated that our inability to recapitulate other QTL effects could be

attributed to either insufficient power or additional additive or epistatic QTL that were undetected by

linkage mapping. Particularly in cases where the NILs displayed transgressive phenotypes,

undetected loci of opposite genotypes, acting additively or epistatically, likely caused these effects.

Therefore, we investigated these interactions and found evidence for additional QTL that interact with

the originally detected loci. However, we must note that whole-genome sequence data revealed that

three of our NILs had a portion of the genome from the background of the starting RIAIL. Although we

do not believe that these small regions are responsible for the unexpected phenotypes observed, this

explanation could be a consideration for certain silver, cisplatin, carmustine, and chlorothalonil PCs, as

they have significant QTL in these identified regions. This example emphasizes the importance of

whole-genome sequencing NILs to verify the expected genotypes before making conclusions about

phenotypic effects of a targeted QTL.

We used the results from the NIL assays to classify each test into a category that predicts a genetic

model that might underlie NIL phenotypes. Categorizations were consistent across traits representing a

principal component, with most of these traits falling into one or a few categorizations. This widespread

consistency suggests that similar genetic architectures underlie phenotypes for these grouped traits.

Furthermore, this consistency highlights the reproducibility of our high-throughput toxin response assay,
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because results from independent assays (trait correlations, linkage mappings from RIAIL assays, and

phenotype classifications from NIL assays) often align to support the same conclusion obtained from

the individual experiments.

The majority of cases of transgressive phenotypes occurs when the N2 genotype is introgressed

into the CB4856 genome. This trend might indicate allele-specific unidirectional incompatibilities

between the two strains, and localizing these interactions could improve our understanding of the

evolutionary processes driving such incompatibilities. However, identifying the loci that underlie these

unidirectional transgressive phenotypes using a mixed-effect model or a two-factor genomic scan is

difficult, because only a small number of the RIAILs have the required allelic combinations to quantify

such an effect. For example, cisplatin.q90.EXT, a trait chosen to represent cisplatin PC1, fits a

unidirectional intra-chromosomal model. The results of the NIL and CSS assays show that, although

the CSSs seem to display no QTL effect, the NIL with the N2 genotype introgressed into the CB4856

genome displays strong hypersensitivity (Figure 2-5D). All of the narrow-sense heritability for cisplatin

PC1 (25%) predicted by the mixed-effect model is explained by the three QTL identified through

linkage mapping (the variance explained estimates of these three QTL add up to 26%). This finding

suggests that most of the additive loci have been identified through linkage mapping. Therefore, the

intra-chromosomal loci are likely acting epistatically to cause a unidirectional transgressive phenotype.

However, using our mixed-model approach, we do not find a significant interaction component for

cisplatin PC1, the principal component that is represented by cisplatin.q90.EXT. A two-dimensional

genome scan for multiple loci that underlie cisplatin PC1 provides suggestive evidence for a two-QTL

model over a one-QTL model, with or without interaction between the loci. These two loci are located

on the left of chromosome V (outside the NIL interval) and in the center of chromosome V (inside the

NIL interval) and match our empirical evidence of two intra-chromosomal loci underlying the

transgressive phenotype observed (Figure 2-7C). Because the transgressive phenotype is

unidirectional, RIAILs without the allelic combination that causes extreme phenotypes could dilute our

power to detect the loci. For this reason, combining both computational models and empirical

investigation facilitates the detection of loci that control transgressive phenotypes. Additionally, future

studies should include even larger RIAIL panels than what we used here to empower approaches to
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investigate the contributions of interactive loci.

Although we are statistically underpowered to identify some small-effect additive and interacting loci

through modeling, the combination of three methods of searching for potential interactions suggests that

not all fitness traits in C. elegans are composed of additive effects. Our two computational methods were

used to identify additive and epistatic loci underlying many toxin responses, but their power was limited

in cases of unidirectional transgressive phenotypes. Alternatively, the NIL and CSS phenotypic assays

were able to identify unidirectional transgressive phenotypes, but they were restricted by their inability

to distinguish between additive and epistatic loci. Constructing double CSS strains or multi-region NILs

in which pairwise combinations of two genomic regions are introgressed within the opposite genotype

could help to further define loci underlying transgressive phenotypes. However, each locus must be

isolated to determine if the two loci act additively or epistatically. The results from the two-dimensional

genome scan might provide insights into where to begin this approach. In cases where all three of our

techniques suggested epistasis, we suspect that these QTL are not purely additive. Generating an even

larger panel of recombinant strains and assaying a much larger number of biological replicates might

allow us to further address the debate about how heritable loci contribute to trait variation in metazoans.

2.7 FUTURE DIRECTIONS

This project identified several traits with strong evidence of genetic interactions. Discovering both

interacting loci has historically been difficult in most systems. However, our high-throughput platform in

combination with the molecular and genetic tools available in C. elegans provides an opportunity for us

to do just that. One option includes phenotyping over 600 new RILs (recombinant inbred lines) [72] in

addition to the 296 RIAILs phenotyped in this study. Although time consuming, phenotyping an

additional 600 RILs has two main advantages. First, we could use the phenotype data of all 896

recombinants to perform linkage mapping analysis. The addition of new breakpoints in the 600 RILs

would likely result in smaller QTL intervals, making it easier to identify the causal gene or variant.

Second, the increase in the number of strains might allow us to discover significant interactions

computationally by performing a two-dimensional genome scan. This would provide an advantage to

identify the interacting loci by narrowing down the search for the second locus to a specific
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chromosomal region.

Regardless of if more RILs are phenotyped, a few traits that map to the center of chromosome V

and show strong interactions could be selected for further analysis. The first step would be to identify

the gene or variant underlying the QTL on chromosome V. We already have many NILs that tile across

this region with varying lengths of introgressions. These NILs could be used to narrow the region

of interest and CRISPR-Cas9 genome editing could be used to perform causality tests by deleting

genes of interest or performing a single nucleotide variant exchange between N2 and CB4856 [72,

69, 70, 71]. Once the first locus has been isolated, the second locus can be flushed out in a similar

manner. We already know whether or not the interacting locus is on chromosome V. For traits with inter-

chromosomal interactions, chromosome substitution strains between N2 and CB4856 can be generated

for each chromosome to identify on which chromosome the interacting locus lies. Because opposite

genotypes are interacting to produce the transgressive phenotypes observed, we could perform crosses

to remove the opposite genotype on the affected chromosome and look for the transgressive phenotype

to disappear.

Another interesting idea to explore further is whether or not these QTL are pleiotropic (underlied

by the same variant) or not pleiotropic (underlied by different, closely linked, variants). I have begun

to address this question in a recent manuscript to ask if scb-1 is a pleiotropic gene that is controlling

responses to all chemotherapeutics with a QTL on the center of chromosome V [69]. I found evidence

that scb-1 was indeed a pleiotropic gene and I was able to show that deletion of scb-1 resulted in

increased sensitivity to four different chemotherapeutic drugs. It would be interesting to test the role of

scb-1 in other toxin responses in addition to chemotherapeutic drugs. This idea could also be expanded

to identify pleiotropic genes that underlie the IVL and IVR QTL. It is particularly important to keep in

mind that a Piwi-interacting RNA (piRNA) cluster exists within the IVR QTL interval and has been

previously suggested to play a role in several benzimidazole drug responses [74]. Deletions of the

piRNA-controlling gene prg-1 already exist in the lab and could be used to implicate or exclude piRNAs

from these drug responses.
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3 The gene scb-1 underlies variation in Caenorhabditis elegans

chemotherapeutic responses

3.1 PREFACE

This project was born late in my PhD career. Dr. Shannon Brady had discovered that variation in

expression of the nematode-specific gene scb-1 underlied responses to bleomycin [72]. Although we

don’t know the exact function of this gene, it is hypothesized that it plays a role in the stress response

and/or acts as a hydrolase. Given these data combined with the knowledge that we have many

chemotherapeutics that map to the same locus as bleomycin, we wanted to know if scb-1 is specific to

bleomycin response or if it controls nematode drug response generally. Around the same time, I was

exploring mediation analysis, a new technique I brought to the lab, to see if we could pair overlapping

gene expression QTL and drug QTL to identify high-priority candidate genes. This project is

particularly special to me because I developed the mediation analysis for the lab and really pushed to

see this project to completion. I was a first author on this manuscript published in G3 in June 2020

[184], from which this chapter is based.

3.2 ABSTRACT

Pleiotropy, the concept that a single gene controls multiple distinct traits, is prevalent in most

organisms and has broad implications for medicine and agriculture. The identification of the molecular

mechanisms underlying pleiotropy has the power to reveal previously unknown biological connections

between seemingly unrelated traits. Additionally, the discovery of pleiotropic genes increases our

understanding of both genetic and phenotypic complexity by characterizing novel gene functions.

Quantitative trait locus (QTL) mapping has been used to identify several pleiotropic regions in many

organisms. However, gene knockout studies are needed to eliminate the possibility of tightly linked,

non-pleiotropic loci. Here, we use a panel of 296 recombinant inbred advanced intercross lines of

Caenorhabditis elegans and a high-throughput fitness assay to identify a single large-effect QTL on

the center of chromosome V associated with variation in responses to eight chemotherapeutics. We
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validate this QTL with near-isogenic lines and pair genome-wide gene expression data with drug

response traits to perform mediation analysis, leading to the identification of a pleiotropic candidate

gene, scb-1 for some of the eight chemotherapeutics. Using deletion strains created by genome

editing, we show that scb-1, which was previously implicated in response to bleomycin, also underlies

responses to other double-strand DNA break-inducing chemotherapeutics. This finding provides new

evidence for the role of scb-1 in the nematode drug response and highlights the power of mediation

analysis to identify causal genes.

3.3 INTRODUCTION

Pleiotropy refers to the well established notion that a single gene or genetic variant affects multiple

distinct traits [185], and the discovery of pleiotropic genes can provide meaningful insights into the

molecular mechanisms of these traits [186]. It has become easier to identify pleiotropic genes with the

advent of reverse-genetic screens and quantitative trait locus (QTL) mapping [185]. For example,

pleiotropic QTL for diverse growth and fitness traits have been identified in organisms such as yeast

[187, 188, 189], Arabidopsis [190, 191, 192], Drosophila [193, 194], and mice [51, 195, 196]. These

studies have led to important questions in the field of evolutionary genetics regarding the ‘cost of

complexity’ [197, 198], as a single mutation might be beneficial for one trait and harmful for another

[199]. Furthermore, human association studies have identified pleiotropic variants associated with

different diseases [200, 201, 202], highlighting both the ubiquity and importance of certain

immune-related genes and oncogenes across unrelated diseases [203, 204]. Perhaps the strongest

evidence of pleiotropy exists for molecular phenotypes. Large-scale expression QTL (eQTL) mapping

studies have identified single regulatory variants that control expression and likely the functions of

hundreds of genes at once, opening a window into the mechanisms for how traits are controlled

[115, 163, 164, 162, 143, 205].

The nematode Caenorhabditis elegans provides a tractable metazoan model to identify and study

pleiotropic QTL [185]. A large panel of recombinant inbred advanced intercross lines (RIAILs) derived

from two divergent strains, N2 and CB4856 [78, 68], has been leveraged in several linkage mapping

analyses [130, 147, 133, 117, 70, 72, 71, 73, 100, 108, 35, 149, 125, 128, 115, 74, 127, 132, 112, 119,



86

81, 103, 102, 80, 161, 86, 85]. Quantitative genetic analysis using these panels and a high-throughput

phenotyping assay [68] has facilitated the discovery of numerous QTL [74], several quantitative trait

genes (QTG) [72] and quantitative trait nucleotides (QTN) [70, 71] underlying fitness-related traits in the

nematode. Additionally, three pleiotropic genomic regions were recently found to influence responses

to a diverse group of toxins [73]. However, overlapping genomic regions might not represent true

pleiotropy but could demonstrate the co-existence of tightly linked loci [185].

Here, we use linkage mapping to identify a single overlapping QTL on chromosome V that influences

the responses to eight chemotherapeutic compounds. We show that these drug-response QTL also

overlap with an expression QTL hotspot that contains the gene scb-1, previously implicated in bleomycin

response [72]. Although the exact mechanism of scb-1 is yet unknown, it is hypothesized to act in

response to stress [206] and has weak homology to a viral hydrolase [207, 208]. Together, these

data suggest that the importance of scb-1 expression might extend beyond bleomycin response. We

validated the QTL using near-isogenic lines (NILs) and performed mediation analysis to predict that

scb-1 expression explains the observed QTL for four of the eight drugs. Finally, we directly tested the

effect of scb-1 loss of function on chemotherapeutic responses. We discovered that expression of scb-

1 underlies differential responses to several chemotherapeutics that cause double-strand DNA breaks,

not just bleomycin. This discovery of pleiotropy helps to further define the role of scb-1 by expanding its

known functions and provides insights into the molecular mechanisms underlying the nematode drug

response.

3.4 METHODS

3.4.1 Strains

Animals were grown at 20°C on modified nematode growth media (NGMA) containing 1% agar and

0.7% agarose to prevent burrowing and fed OP50 [120]. The two parental strains, the canonical

laboratory strain, N2, and the wild isolate from Hawaii, CB4856, were used to generate all recombinant

lines. 208 recombinant inbred advanced intercross lines (RIAILs) generated previously by Rockman et

al. [78] (set 1 RIAILs) were phenotyped for expression QTL mapping (detailed below). A second set of
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296 RIAILs generated previously by Andersen et al. [68] (set 2 RIAILs) was used more extensively for

drug phenotyping and linkage mapping. The set 2 RIAILs were used for linkage mapping because

they addressed the three main disadvantages of the set 1 RIAILs detailed previously [68], namely a

structured population, the laboratory-derived variant in npr-1 [58], and the peel-1; zeel-1

incompatibility [86, 85]. Because of these limitations, the set 2 RIAILs were generated using QX1430

and CB4856. QX1430 is from the N2 strain background but contains a transposon insertion in peel-1

and the CB4856 npr-1 allele introgressed on chromosome X [68]. Near-isogenic lines (NILs) were

generated by backcrossing a selected RIAIL for several generations to the parent strain (N2 or

CB4856) [72] using PCR amplicons for insertion-deletion (indels) variants to track the introgressed

region. NILs were whole-genome sequenced to verify introgressions were only in the targeted

genomic intervals. CRISPR-Cas9-mediated deletions of scb-1 were described previously [72]. All

strains are available upon request or from the C. elegans Natural Diversity Resource [63].

3.4.2 High-throughput fitness assays for linkage mapping

For dose responses and RIAIL phenotyping, we used a high-throughput fitness assay described

previously [68]. In summary, populations of each strain were passaged and amplified on NGMA plates

for four generations. In the fifth generation, gravid adults were bleach-synchronized and 25-50

embryos from each strain were aliquoted into 96-well microtiter plates at a final volume of 50 µL K

medium [173]. The following day, arrested L1s were fed HB101 bacterial lysate (Pennsylvania State

University Shared Fermentation Facility, State College, PA; [174]) at a final concentration of 5 mg/mL

in K medium and were grown to the L4 larval stage for 48 hours at 20°C with constant shaking. Three

L4 larvae were sorted into new 96-well microtiter plates containing 10 mg/mL HB101 bacterial lysate,

50 µM kanamycin, and either diluent (1% water or 1% DMSO) or drug dissolved in the diluent using a

large-particle flow cytometer (COPAS BIOSORT, Union Biometrica; Holliston, MA). Sorted animals

were grown for 96 hours at 20°C with constant shaking. The next generation of animals and the

parents were treated with sodium azide (50 mM in 1X M9) to straighten their bodies for more accurate

length measurements. Animal length (median.TOF), optical density integrated over animal length

(median.EXT), and brood size (norm.n) were quantified for each well using the COPAS BIOSORT.
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Nematodes get longer (animal length) and become thicker and more complex (optical density) over

developmental time. Because animal length and optical density are highly correlated, we calculated a

fourth trait (median.norm.EXT) that normalizes optical density by animal length (median.EXT /

median.TOF). Phenotypic measurements collected by the BIOSORT were processed and analyzed

using the R package easysorter [77] as described previously [72]. Differences among strains within

the control conditions were controlled by subtracting the mean control-condition value from each

drug-condition replicate for each strain using a linear model (drug_phenotype ∼

mean_control_phenotype). In this way, we are addressing only the differences among strains that

were caused by the drug condition and the variance in the control condition does not affect the

variance in the drug condition. For plotting purposes, these residual values (negative and positive

residuals) were normalized from 0 to 1 where 0 refers to the smallest residual phenotypic value in that

condition and 1 refers to the largest.

3.4.3 Dose-response assays

Four genetically divergent strains (N2, CB4856, JU258, and DL238) were treated with increasing

concentrations of each of the eight drugs using the high-throughput fitness assay described above.

The dose of each drug that provided a reproducible drug-specific effect that maximizes between-strain

variation while minimizing within-strain variation across the four traits was selected for the linkage

mapping experiments. The chosen concentrations are as follows: 100 µM amsacrine hydrochloride

(Fisher Scientific, #A277720MG) in DMSO, 50 µM bleomycin sulfate (Fisher, #50-148-546) in water, 2

µM bortezomib (VWR, #AAJ60378-MA) in DMSO, 250 µM carmustine (Sigma, #1096724-75MG) in

DMSO, 500 µM cisplatin (Sigma, #479306-1G) in K media, 500 µM etoposide (Sigma, #E1383) in

DMSO, 500 µM puromycin dihydrochloride (VWR, #62111-170) in water, and 150 µM silver nitrate

(Sigma-Aldrich, #S6506-5G) in water.

3.4.4 Linkage mapping

Set 1 and set 2 RIAILs were phenotyped in each of the eight drugs and controls using the

high-throughput fitness assay described above. Linkage mapping was performed on each of the drug
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and gene expression traits using the R package linkagemapping as described previously [72]

(https://github.com/AndersenLab/linkagemapping). The cross object derived from the whole-genome

sequencing of the RIAILs containing 13,003 SNPs was loaded using the function

load_cross_obj(“N2xCB4856cross_full”). The RIAIL phenotypes were merged into the cross object

using the merge_pheno function with the argument set = 1 for expression QTL mapping and set = 2

for drug phenotype mapping. A forward search (fsearch function) adapted from the R/qtl package

[176] was used to calculate the logarithm of the odds (LOD) scores for each genetic marker and each

trait as −n(ln(1 − R2)/2ln(10)) where R is the Pearson correlation coefficient between the RIAIL

genotypes at the marker and trait phenotypes [27]. A 5% genome-wide error rate was calculated by

permuting the RIAIL phenotypes 1000 times. The marker with the highest LOD score above the

significance threshold was selected as the QTL then integrated into the model as a cofactor and

mapping was repeated iteratively until no further significant QTL were identified. Finally, the

annotate_lods function was used to calculate the effect size of each QTL and determine 95%

confidence intervals defined by a 1.5 LOD drop from the peak marker using the argument cutoff =

proximal.

3.4.5 Modified high-throughput fitness assay for NIL validation

NILs and scb-1 deletion strains were tested using a modified version of the high-throughput fitness

assay detailed above. Strains were propagated for two generations, bleach-synchronized in three

independent replicates, and titered at a concentration of 25-50 embryos per well of a 96-well microtiter

plate. The following day, arrested L1s were fed HB101 bacterial lysate at a final concentration of 5

mg/mL with either diluent or drug. After 48 hours of growth at 20°C with constant shaking, nematodes

were treated with sodium azide (5 mM in water) prior to analysis of animal length and optical density

using the COPAS BIOSORT. As only one generation of growth is observed, brood size was not

calculated. A single trait (median.EXT) was chosen to represent animal growth generally, as the trait is

defined by integrating optical density over length. Because of the modified timing of the drug delivery,

lower drug concentrations were needed to recapitulate the previously observed phenotypic effect. The

selected doses are as follows: 12.5 µM amsacrine in DMSO, 12.5 µM bleomycin in water, 2 µM
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bortezomib in DMSO, 250 µM carmustine in DMSO, 125 µM cisplatin in K media, 62.5 µM etoposide

in DMSO, 300 µM puromycin in water, and 100 µM silver in water.

3.4.6 Expression QTL analysis

Microarray data for gene expression using 15,888 probes were previously collected from synchronized

young adult populations of 208 set 1 RIAILs [115]. Expression data were corrected for dye effects and

probes with variants were removed [100]. Linkage mapping was performed as described above for

the remaining 14,107 probes, and a significance threshold was determined using a permutation-based

False Discovery Rate (FDR). FDR was calculated as the ratio of the average number of genes across

10 permutations expected by chance to show a maximum LOD score greater than a particular threshold

versus the number of genes observed in the real data with a maximum LOD score greater than that

threshold. We calculated the FDR for a range of thresholds from 2 to 10, with increasing steps of 0.01,

and set the threshold so that the calculated FDR was less than 5%.

Local eQTL were defined as linkages whose peak LOD scores were within 1 Mb of the starting

position of the probe [115]. eQTL hotspots were identified by dividing the genome into 5 cM bins and

counting the number of distant eQTL that mapped to each bin. Significance was determined as bins

with more eQTL than the Bonferroni-corrected 99th percentile of a Poisson distribution with a mean of

3.91 QTL (total QTL / total bins) [209, 73, 115]. We identified nine eQTL hotspots (II, IVL, IVC, IVR, VL,

VC, VR, XL, and XC). To avoid false positives, we increased the LOD threshold for QTL to be counted

in the hotspot analysis to a LOD > 5 or LOD > 6. At a LOD > 5, six of the nine eQTL hotspots persist

(IVL, IVR, VC, VR, XL, and XC), and at a LOD > 6, three persist (IVL, IVR, and XL). We further looked

for spurious eQTL hotspots in ten permuted datasets. At a LOD > 5, we identified four hotspots, and at

a LOD > 6, we identified one hotspot.

3.4.7 Mediation analysis

A total of 159 set 1 RIAILs were phenotyped in each of the eight drugs and controls using the standard

high-throughput fitness assay described above. Mediation scores were calculated with bootstrapping

using the mediate function from the mediation R package (version 4.4.7) [210] for each QTL identified
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from the set 1 RIAILs and all 49 probes (including scb-1, A_12_P104350) that mapped to the

chromosome V eQTL hotspot using the following models:

Mediator_model : lm(expression ∼ genotype)

Outcome_model : lm(phenotype ∼ expression+ genotype)

The output of the mediate function can be summarized as follows: the total effect of genotype on

phenotype, ignoring expression (tau.coef ); the direct effect of genotype on phenotype, while holding

expression constant (z0); the estimated effect of expression on phenotype (d0); the proportion of the

total effect that can be explained by expression data (n0). This mediation proportion (n0) can be a useful

way to identify the impact of gene expression on the overall phenotype. However, cases of inconsistent

mediation (where the direct effect is either smaller than or in the opposite direction of the indirect

mediation effect) render this measurement uninterpretable with values greater than one or less than

zero [211]. We used the estimated effect of expression on phenotype (z0) as the final mediation score

for this reason. Because the effect size can be positive or negative, mediation scores range from -1 to 1,

and we evaluated the absolute value of mediation estimates to compare across traits. Each mediation

estimate generated a p-value, indicating confidence in the estimate, derived from bootstrapping with

1000 simulations. The likelihood of scb-1 mediating a given QTL effect was calculated relative to the

other 48 probes with an eQTL in the region. Traits in which scb-1 was at or above the 90th percentile of

this distribution were prioritized over other traits.

3.4.8 Statistical analysis

Broad-sense heritability was calculated from the dose response phenotypes using the lmer function in

the lme4 R package [212] with the formula phenotype ∼ 1 + (1|strain) for each dose. For the NIL

and scb-1 deletion high-throughput assays, statistical significance of phenotypic differences between

each strain pair was tested using the TukeyHSD function [175] on an ANOVA model with the formula

phenotype ∼ strain to assess differences between strains in the control-regressed phenotype data.
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3.5 RESULTS

3.5.1 Natural variation on chromosome V underlies differences in responses to several

chemotherapeutics

We measured C. elegans development and chemotherapeutic sensitivity as a function of animal length

(median.TOF), optical density (median.EXT), and brood size (norm.n) with a high-throughput assay

developed using the COPAS BIOSORT (see Methods) [70, 72, 73, 71, 68]. Animal length and optical

density (animal thickness and composition) are both measures of nematode development, and brood

size is a measure of nematode reproduction [68]. Because optical density is calculated as a function

of length and these traits are related, a fourth trait that captures the optical density normalized by

length (median.norm.EXT) was also included. We exposed four genetically divergent strains (N2,

CB4856, JU258, and DL238) to increasing doses of eight chemotherapeutic compounds. Five of these

compounds (bleomycin, carmustine, etoposide, amsacrine, and cisplatin) are known to cause

double-strand DNA breaks and/or inhibit DNA synthesis [213, 214, 215, 216, 217]. The remaining

three compounds either inhibit protein synthesis (puromycin) [218], inhibit the proteosome and

subsequent protein degradation (bortezomib) [219], or cause cellular toxicity in a poorly defined way

(silver nitrate) [220] (Table 3-1). In the presence of each drug, nematodes were generally shorter, less

optically dense, and produced smaller broods compared to non-treated nematodes. We observed

significant phenotypic variation among strains and identified a substantial heritable genetic component

for most traits (average H2 = 0.52± 0.53).

We exposed a panel of 296 RIAILs (set 2 RIAILs, see Methods) to all eight chemotherapeutics

at a selected concentration that both maximizes among-strain and minimizes within-strain phenotypic

variation. Linkage mapping for all four traits for each of the eight drugs (total of 32 traits) identified 79

QTL from 31 traits (one trait had no significant QTL), several of which have been identified previously

[72, 73, 71]. Strikingly, a QTL on the center of chromosome V was linked to variation in responses to

all eight compounds (Figure 3-1). In all cases, the CB4856 allele on chromosome V is associated with

greater resistance to the drug than the N2 allele. We previously identified this genomic interval as a

QTL hotspot, defined as a region heavily enriched for toxin-response QTL [73]. Because several of the
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Table 3-1: Main mechanism of action for eight chemotherapeutic drugs

Drug Drug class Mechanism of action
Amsacrine Topoisomerase

inhibitors
DNA intercalation and inhibition of topoisomerase II, causing
DNA double-strand breaks, cell cycle arrest, and cell death

Bleomycin Antitumor antibiotic Forms complexes with iron that reduce molecular oxygen to form
free radicals which in turn cause DNA single- and double-strand
breaks

Bortezomib Proteosome
inhibitors

Reversibly inhibits the 26S proteosome and inhibits nuclear
factor (NF)-kappaB causing disruption of various cell signaling
pathways, cell cycle arrest, and cell death.

Carmustine Alkylating agents Alkylates and cross-links DNA causing cell cycle arrest and cell
death

Cisplatin Alkylating agents Alkylates and cross-links DNA causing cell cycle arrest and cell
death

Etoposide Topoisomerase
inhibitors

Binds to and inhibits topoisomerase II causing an increase of
DNA single- and double-strand breaks, cell cycle arrest, and cell
death

Puromycin Aminonucleoside
antibiotic

Acts as analog of 3’ terminal end of aminoacyl-tRNA and
incorporates itself into growing polypeptide chain causing
premature termination and inhibition of protein synthesis

Silver NA Multi-faceted induction of apoptosis

chemotherapeutics share a similar mechanism of action, a single pleiotropic gene might underlie the

observed QTL for multiple drugs.

In order to isolate and validate the effect of this QTL, we constructed reciprocal near-isogenic lines

(NILs) by introgressing a genomic region on chromosome V from the resistant CB4856 strain into the

sensitive N2 background and vice versa. We used a modified high-throughput assay (see Methods)

to measure length and optical density of a population of animals grown in the presence of the drug

for 48 hours (from larval stages L1 to L4). In this modified assay, less drug was required to observe

the same phenotypic effect as before. Statistical significance was calculated in a pairwise manner for

each strain (see Methods). For all eight chemotherapeutics tested, the strain with the N2 introgression

was significantly more sensitive than its CB4856 parent and/or the strain with the CB4856 introgression

was significantly more resistant than its N2 parent (Figure 3-2). These data confirm that one or more

genetic variant(s) within this region on chromosome V cause increased drug sensitivities in N2.

3.5.2 Expression QTL mapping identifies a hotspot on the center of chromosome V

Genetic variation can affect a phenotype most commonly through either modifications of the amino acid

sequence that lead to altered protein function (or even loss of function) or changes in the expression
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Figure 3-1: A large-effect QTL on the center of chromosome V underlies responses to several chemotherapeutics.
Linkage mapping results with the set 2 RIAILs for a representative trait for each drug are shown (amascrine:
median.norm.EXT, bleomycin median.TOF:, bortezomib: median.TOF, carmustine: norm.n, cisplatin: median.TOF, etoposide:
norm.n, puromycin: median.TOF, silver: median.TOF). Genomic position (x-axis) is plotted against the logarithm of the odds
(LOD) score (y-axis) for 13,003 genomic markers. Each significant QTL is indicated by a red triangle at the peak marker,
and a blue rectangle shows the 95% confidence interval around the peak marker. The percentage of the total variance in the
RIAIL population that can be explained by each QTL is shown above the QTL. The dotted vertical line represents the genomic
position of scb-1.
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Figure 3-2: Near-isogenic lines validate the chromosome V QTL. (A) NIL genotypes on chromosome V are shown, colored
orange (N2) and blue (CB4856). From top to bottom, strains are N2, ECA232, ECA1114, and CB4856. The dotted vertical line
represents the location of scb-1. (B) NIL phenotypes in eight chemotherapeutics (12.5 µM amsacrine, 12.5 µM bleomycin, 2
µM bortezomib, 250 µM carmustine, 125 µM cisplatin, 62.5 µM etoposide, 300 µM puromycin, and 100 µM silver) are plotted
as Tukey box plots with strain (y-axis) by relative median optical density (median.EXT, x-axis). Statistical significance was
calculated for each strain pair. Significance of each strain compared to its parental strain (ECA232 to N2 and ECA1114 to
CB4856) is shown above each strain pair and colored by the parent strain against which it was tested (ns = non-significant
(p-value > 0.05); *, **, ***, and **** = significant (p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).

level of the protein. In the latter case, measuring the intermediate phenotype (gene expression) can

be useful in elucidating the mechanism by which genetic variation causes phenotypic variation. More

specifically, cases with overlap between expression QTL (eQTL) and drug-response QTL suggest that a

common variant could underlie both traits and provide evidence in support of causality for the candidate

gene in question [221, 222].

To identify such cases of overlap between expression QTL and the drug-response QTL on

chromosome V, we need genome-wide expression data for the RIAILs. In a previous study, expression

of 15,888 probes were measured using microarrays for a panel of 208 RIAILs (set 1 RIAILs, see

Methods) between N2 and CB4856 [78]. This study used the variation in gene expression as a

phenotypic trait to identify eQTL using linkage mapping with 1,455 variants [115]. They identified

2,309 eQTL and three regions with significantly clustered distant eQTL (eQTL hotspots), suggesting

that these regions are pleiotropic, wherein one or more variant(s) are affecting expression of multiple

genes. We recently performed whole-genome sequencing for these strains and identified 13,003

informative variants [72]. Using this new set of variants, we re-analyzed the eQTL mapping by

performing linkage mapping analysis for a selected 14,107 of the 15,888 probes without genetic

variation in CB4856 [100]. We identified 2,540 eQTL associated with variation in expression of 2,196

genes (Figure 3-3A). These eQTL have relatively large effect sizes compared to the drug-response
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QTL. On average, each eQTL explains 23% of the phenotypic variance in gene expression among the

RIAIL population. Half of the eQTL (50.2%; 1,276) mapped within 1 Mb of the gene whose expression

was measured and were classified as local (see Methods) [205]. The other half (49.7%; 1,264) were

found distant from their respective gene, and over a third (37%; 940) were found on different

chromosomes entirely. In general, eQTL effect sizes increased, max LOD scores decreased, and

confidence intervals became smaller compared to the original mapping results. These differences and

the additional eQTL observed between this analysis and the original are possibly caused by the

integration of new genetic markers. Additionally, we found several differences in methodology between

the current approach and the previous one. These differences include ignoring the population

structure of the set 1 RIAILs, adding the forward-search marker-regression linkage mapping, and

altering the linkage mapping method itself (see Methods, [115]).

We noticed regions of the genome that appeared to be enriched for distant eQTL. We identified

eQTL hotspots in a similar manner to the previous study (see Methods) and found a total of nine eQTL

hotspots (Figure 3-3B). Six of the nine eQTL hotspots withstood more stringent filtering methods (see

Methods), and three (left of chromosome IV, right of chromosome IV, and left of chromosome X) were

the most significant. These three hotspots also overlap with the most significant eQTL hotspots in the

previous study [115]. Notably, three of the eQTL hotspots (center of chromosome IV, right of

chromosome IV, and center of chromosome V) overlap with the previously identified drug-response

QTL hotspots on chromosomes IV and V (Figure 3-3B) [73]. The overlap of these eQTL and

drug-response QTL hotspots could provide strong candidate genes whose expression underlies the

differences in nematode drug responses generally. Expression of one gene of interest, scb-1, has

been previously implicated in response to bleomycin [72] and resides within the eQTL hotspot region

on the center of chromosome V. Although the exact mechanism of how scb-1 responds to bleomycin is

unknown, its putative hydrolase activity [207, 208, 72] suggests that it might act to break down

chemotherapeutic compounds. These data suggest that variation in expression of scb-1 and

responses to these eight chemotherapeutics (including bleomycin) could be mechanistically linked

through the metabolic breakdown of chemotherapeutic drugs.
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Figure 3-3: Expression QTL mapping identifies several hotspots. (A) The genomic locations of the eQTL peaks derived
from linkage mapping using the set 1 RIAILs (x-axis) are plotted against the genomic locations of the probe (y-axis). The size
of the point corresponds to the effect size of the QTL. eQTL are colored by the LOD score, increasing from purple to pink to
yellow. The diagonal band represents local eQTL, and vertical bands represent eQTL hotspots. (B) Quantification of eQTL
hotspots identified by overlapping distant eQTL. The number of distant eQTL (y-axis) in each 5 cM bin across the genome
(x-axis) is shown. Bins above the red line are significant and marked with an asterisk. The bins with the blue asterisks are
most significant and have been identified in a previous analysis. The dotted vertical line represents the genomic position of
scb-1. Grey rectangles below the plot represent locations of the drug-response QTL hotspots previously identified.
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3.5.3 Mediation analysis suggests that scb-1 expression plays a role in responses to several

chemotherapeutics

Mediation analysis seeks to explain the relationship between an independent and a dependent variable

by including a third intermediary variable. We can use mediation analysis to understand how certain

genetic variants on chromosome V (independent variable) affect drug responses (dependent variable)

through differential gene expression of genes within the eQTL hotspot (mediator variable) (Figure 3-4).

We measured brood size, animal length, and optical density in response to all eight chemotherapeutics

in the set 1 RIAILs and performed linkage mapping for these traits. Although the power to detect QTL

with these strains is lower than in our original mapping set (set 2 RIAILs; see Methods) [68], we still

identified overlapping QTL on chromosome V for half of the drugs tested (bleomycin, cisplatin, silver,

and amsacrine) (Figure 3-5).

Figure 3-4: Model for gene expression as a mediator of a drug-response QTL. (A) The effect size of a QTL is calculated
as the total effect a genetic variant has on the phenotypic variation of the population, regardless of the causal association
of the genetic variant. (B) Mediation analysis tests the hypothesis that a genetic variant does not directly lead to phenotypic
variation but rather causes a change in gene expression that further drives the change in phenotype observed. The “Direct
Effect” can be calculated by including gene expression as a cofactor in the linear model between genotype and phenotype
and extracting the partial coefficient of the effect of genotype on phenotype. The “Mediation Effect” can be calculated by
subtracting the “Total Effect” - “Direct Effect”. Mediation estimates are then calculated as the proportion of the “Total Effect”
that can be explained by the “Mediation Effect” (“Mediation Effect” / “Total Effect”).

We calculated the effect that variation in expression of scb-1 had on drug-response traits compared
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Figure 3-5: Linkage mapping summary for drug-response traits in the set 1 RIAILs. Genomic positions (x-axis) of all
QTL identified from linkage mapping are shown for each drug-trait (y-axis). Each QTL is plotted as a triangle at the genomic
location of the peak marker and a line that represents the 95% confidence interval. QTL with right side up triangles have a
negative effect size (N2 allele is resistant), and QTL with upside down triangles have a positive effect size (CB4856 allele is
resistant). QTL are colored by the logarithm of the odds (LOD) score, increasing in significance from purple to green to yellow.
The dotted vertical line represents the genomic position of scb-1.

to the other 48 genes with an eQTL in the chromosome V eQTL hotspot using mediation analysis (see

Methods). We estimated that the effect of expression variation of scb-1 on bleomycin response is 0.65

(set 1 RIAILs, Figure 3-6). Moreover, out of all 49 genes with an eQTL in the region, scb-1 was a

clear mediation score outlier. All of the remaining three chemotherapeutics with a QTL on the center of
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Figure 3-6: Mediation analysis for the eQTL hotspot on the center of chromosome V. Mediation estimates calculated
as the indirect effect that differences in expression of each gene plays in the overall phenotype (y-axis) are plotted against
the genomic position of the eQTL (x-axis) on chromosome V for 49 probes (including scb-1 (red diamond)) that map to the
chromosome V eQTL hotspot (set 1 RIAILs). A representative trait for each drug from the set 1 linkage mapping analysis are
shown: amascrine (median.EXT), bleomycin (median.EXT), cisplatin (median.TOF), and silver (median.norm.EXT). The 90th
percentile of the distribution of mediation estimates for each trait are represented by the horizontal grey lines. The confidence
intervals for the QTL (set 1 RIAILs) are shown with the vertical blue dotted lines. The confidence of the estimate increases
(p-value decreases) as points become less transparent.

chromosome V in the set 1 RIAIL mapping showed moderate evidence of scb-1 mediation, with scb-1

falling well above the 90th percentile of mediation estimates for all genes with an eQTL in this region

(Figure 3-6). We further performed this mediation analysis on all 32 drug-response traits, regardless

of the presence of a QTL in the set 1 RIAIL panel. Etoposide and puromycin also showed evidence of

scb-1 mediation. This in silico approach indicated that expression of scb-1 might be an intermediate

link between genetic variation on chromosome V and responses to several of the chemotherapeutic

drugs tested.

3.5.4 Expression of scb-1 affects responses to several chemotherapeutics that cause double-

strand DNA breaks

To empirically test whether scb-1 expression modulates the chromosome V QTL effect for each drug,

we used the modified high-throughput assay (see Methods) to expose two independently derived

strains with scb-1 deletions [72] to each chemotherapeutic (Figure 3-7). Statistical significance was

calculated in a pairwise manner for each strain (see Methods). Because RIAILs with the CB4856 allele

on chromosome V express higher levels of scb-1 than RIAILs with the N2 allele, we expect that loss of
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Figure 3-7: Testing the role of scb-1 in drug responses. (A) Strain genotypes on chromosome V are shown, colored
orange (N2) and blue (CB4856). From top to bottom, strains are N2, ECA1132, ECA1134, and CB4856. Deletion of scb-1
is indicated by a grey triangle. The dotted vertical line represents the location of scb-1. (B) Phenotypes of strains in eight
chemotherapeutics (12.5 µM amsacrine, 12.5 µM bleomycin, 2 µM bortezomib, 250 µM carmustine, 125 µM cisplatin, 62.5
µM etoposide, 300 µM puromycin, and 100 µM silver) are plotted as Tukey box plots with strain (y-axis) by relative median
optical density (median.EXT, x-axis). Statistical significance was calculated for each strain pair. Significance of each deletion
strain compared to its parental strain (ECA1132 to N2 and ECA1134 to CB4856) is shown above each strain pair and colored
by the parent strain against which it was tested (ns = non-significant (p-value > 0.05); *, **, ***, and **** = significant (p-value
< 0.05, 0.01, 0.001, or 0.0001, respectively).

scb-1 will cause increased drug sensitivity in the CB4856 background but might not have an effect in

the N2 background. We validated the results of Brady et al. and confirmed that ablated scb-1

expression causes hyper-sensitivity to bleomycin in both N2 and CB4856 (Figure 3-7). We also

observed similarly increased sensitivity to cisplatin with scb-1 deletions in both backgrounds.

Furthermore, removing scb-1 shows moderately increased sensitivity in the CB4856 background for

amsacrine and in the N2 background for carmustine. The remaining four drugs did not show a

significantly different phenotype between the parental N2 and CB4856 strains, suggesting these traits

might be less reproducible or that scb-1 variation does not underlie these drug differences. Overall,

these results provide evidence for the pleiotropic effect of scb-1, which appears to mediate responses

to at least four of the eight chemotherapeutic drugs.

3.6 DISCUSSION

In this study, we identified overlapping QTL on the center of chromosome V that influence sensitivities

to eight chemotherapeutic drugs. Because five of these drugs are known to cause double-strand DNA

breaks, we hypothesized that this genomic region might be pleiotropic – a single shared genetic

variant affects the responses to each drug. Because this variant might affect drug responses by
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regulating gene expression levels, we looked for the co-existence of drug-response QTL and

expression QTL on chromosome V. We identified 2,540 eQTL and nine eQTL hotspots, including a

region on the center of chromosome V. We calculated the mediation effect of all 49 genes with an

eQTL that maps to this hotspot region and identified scb-1 as a candidate gene whose expression

influences the responses to several chemotherapeutics. We used CRISPR-Cas9-mediated scb-1

deletion strains to empirically validate the role of scb-1 in the chemotherapeutic response. In addition

to bleomycin [72], we discovered that responses to cisplatin, amsacrine, and carmustine are affected

by scb-1 expression. In this study, we found evidence that several overlapping QTL are representative

of pleiotropy at the gene level and further elucidated the function of scb-1 as a potential response to

double-strand DNA break stress.

3.6.1 Mediation of drug-response QTL using gene expression to identify causal genes

Mediation analysis often suggests potential candidate genes that underlie different traits [222, 221] and

could be applied to drug responses. Using C. elegans strains and high-throughput assays, we can

rapidly validate hypotheses generated by mediation analysis. Three of the eight chemotherapeutics

that map to an overlapping drug-response QTL and were potentially mediated by scb-1 were validated

using targeted deletion strains.

Although mediation analysis provided moderate evidence that expression of scb-1 could also play

a role in sensitivity to etoposide and puromycin, we observed no experimental evidence of this

relationship. Additionally, we have evidence that expression of scb-1 might mediate response to

carmustine. However, mediation analysis disagrees. The discrepancy between the mediation analysis

and validation of causality using targeted deletion strains could be partially explained by one of several

possibilities. First, different traits were measured in each experiment. The mediation analysis used

traits measured over 96 hours of growth in drug conditions spanning two generations, but the causality

test used traits measured over 48 hours of growth in drug conditions within one generation. Second,

the precision of our mediation estimates was likely reduced by the poor quality drug traits for the set 1

RIAIL panel [68]. Indeed, bortezomib, carmustine, etoposide, and puromycin did not map to the center

of chromosome V using the set 1 RIAILs (Figure 3-5). Expression data for the set 2 RIAIL panel would
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likely generate more accurate mediation estimates, especially if data were collected using RNA

sequencing to avoid the inherent reference bias of microarray data [223]. Third, our mediation analysis

was performed using expression data collected in control conditions and phenotype data collected in

drug conditions. This analysis will only provide evidence of mediation if the baseline expression

differences affect an individual’s response to the drug. Collecting expression data from drug-treated

nematodes could help us learn more about how gene expression varies in response to treatment with

the chemotherapeutic. Finally, as we only directly assessed the complete loss of scb-1 in drug

sensitivity, it is still possible that reduction of function (or change in function) caused by a single

nucleotide variant or other structural variation in CB4856 could validate the role of scb-1 in responses

to these drugs.

This study demonstrates the power of pairing genome-wide linkage mapping of gene expression

and drug response data using simple colocalization as well as more complex mediation analysis

techniques. In addition to providing a resource for candidate gene prioritization within a QTL interval,

mediation analysis can help to identify the mechanism by which genetic variation causes phenotypic

differences. This type of approach could be even more powerful using genome-wide association

(GWA) where the lower linkage disequilibrium between variants also has smaller confidence intervals

in some genomic regions. Smaller intervals have fewer spurious overlapping eQTL, which could help

to narrow the list of candidate genes. Although mediation analysis is only effective if a change in

expression is observed and might not be useful for identifying effects from protein-coding variation,

many current studies show that the majority of genetic variants associated with complex traits lie in

regulatory regions [224]. Whole-genome expression analysis could provide the missing link to the

identification of causal genes underlying complex traits.

3.6.2 New evidence for the pleiotropic function of scb-1

We identified eight chemotherapeutics with a QTL that mapped to a genomic region defined as a QTL

hotspot on the center of chromosome V [73]. Multiple genes in close proximity, each regulating an

aspect of cellular growth and fitness, might underlie each QTL independently. Alternatively, genetic

variation within a single gene might regulate responses to multiple (or all) of the eight drugs tested,
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particularly if the gene is involved in drug transport or metabolism or if the drug mechanisms of action

were shared (e.g. repair of double-strand DNA breaks). Expression of scb-1, a gene previously

implicated in modulating responses to bleomycin, was found to reduce sensitivity to half of the drugs

tested. This pleiotropic effect of scb-1 provides new evidence for the function of the gene and possible

molecular mechanisms underlying nematode drug responses. It is hypothesized that SCB-1 might

function as a hydrolase that metabolizes compounds like bleomycin [72] or somehow plays a role in

the nematode stress response [206]. Both hypotheses are consistent with our data, explaining why

nematodes with low expression of scb-1 are highly sensitive to the compound. Furthermore, all four of

these chemotherapeutics, whose responses are mediated by expression of scb-1, are known to cause

double-strand DNA breaks [213, 214, 216, 217]. Although the results for bortezomib, puromycin, and

silver were inconclusive, we found no clear evidence that expression of scb-1 dictates their responses.

Together, these data suggest a potential role for scb-1 specifically in response to stress induced by

double-strand DNA breaks. However, the lack of sensitivity in etoposide, which also causes

double-strand DNA breaks [215], indicates that this response might be more complex.

The exact variant that causes the differential expression of scb-1 is still unknown. Importantly, scb-

1 lies within an eQTL hotspot region where it is hypothesized that genetic variation at a single locus

might regulate expression of the 49 genes with an eQTL in this region. It is possible that the same

causal variant that regulates expression of scb-1 could also underlie the QTL for the remaining four

chemotherapeutics through differential expression of other genes. For example, mediation analysis for

both bortezomib and etoposide indicated that expression variation of a dehydrogenase (D1054.8) may

underlie their differential responses. Alternatively, the causal variants underlying these drug-response

QTL might be distinct but physically linked in the genome. This result would suggest a cluster of

genes essential for the nematode drug response. Overall, our study highlights the power of using

mediation analysis to connect gene expression to organismal traits and describes a novel function for

the pleiotropic gene scb-1.
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3.7 FUTURE DIRECTIONS

This study combined mediation analysis and CRISPR-Cas9-mediated deletions to implicate the gene

scb-1 in responses to cisplatin, amsacrine, and carmustine in addition to its previously known role in

the bleomycin response. However, reciprocal hemizygosity tests must be performed to conclude that

natural genetic variation in scb-1 is responsible for the variation in drug sensitivity observed. Such

a test has previously been performed for bleomycin [72] and could be replicated with the other three

drugs. Because all the necessary strains already exist, this test would just require performing a series of

crosses and phenotyping the heterozygous progeny. If the results indicate that natural genetic variation

in scb-1 between the N2 and CB4856 strains does not cause variation in drug sensitivity, it can be

concluded that while scb-1 plays a role in the drug responses, it is not the causal gene underlying

the QTL on chromosome V. Alternatively, if the results indicate that natural genetic variation in scb-

1 between the N2 and CB4856 strains does cause variation in drug sensitivity, the search for the

causal variant driving scb-1 expression (and thus drug sensitivity) can commence. Brady et al. was

not able to identify the exact genetic variant that causes increased sensitivity to bleomycin through

decreased expression of scb-1, but lists 72 rare variants that could be causal, none of which are protein-

coding variants [72]. Further analysis of each of these variants could be done by measuring scb-1

expression after replacing the CB4856 allele with the N2 allele using CRISPR-Cas9 genome editing.

Allele replacements could be grouped for testing efficiency. Alleles that cause a decrease in expression

of scb-1 would be prioritized for testing sensitivities to chemotherapeutics.

The function of scb-1 is largely unknown, although it is predicted to function in the cellular stress

response and might act as a hydrolase to break down molecular compounds. This study added to the

hypothesized function of scb-1 by showing that expression of this gene influences responses to several

chemotherapeutics, not just bleomycin. Furthermore, we noticed that all of these drugs cause double

strand DNA breaks, albeit via different mechanisms. Molecular assays to validate the function of scb-1,

particularly how expression of scb-1 mediates the C. elegans drug response, would be valuable. The

hypothesis that SCB-1 acts as a hydrolase could be tested using a variety of in vitro assays to test

its aminopeptidase function. Additionally, mass spectrometry could be used to detect bleomycin and

its metabolites in nematodes with functional and non-functional copies of SCB-1. If SCB-1 acts as a
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hydrolase, we would expect that bleomycin metabolites would be detected in animals with a functional

copy of SCB-1 but not in animals with a non-functional copy of SCB-1. The alternative hypothesis

that SCB-1 responds to double strand DNA breaks could be tested by treating with other compounds

and/or stressors known to cause double strand DNA breaks. Additionally, a recent study showed that

microirradiation in C. elegans allows researchers the opportunity to make precise double strand DNA

breaks in vivo [225]. This technique could be used to cause double strand DNA breaks and observe

if a fluorescently tagged SCB-1 is recruited following this particular stressor. Alternatively, similarly

increased sensitivity to bleomycin and the other chemotherapeutics caused by deletion of a crucial

component of the double strand DNA break repair machinery would provide evidence that SCB-1 might

also be a component of this repair machinery. Better understanding the general function of SCB-1 will

lead to a better understanding of how variation in scb-1 causes variation in drug responses.
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4 Natural variation in the sequestosome-related gene, sqst-5, underlies

zinc homeostasis in Caenorhabditis elegans

4.1 PREFACE

This chapter is what I consider to be the heart of my thesis. I have been working on this project from the

very beginning and it is the only one that made it all the way through–not that there weren’t hardships!

The chromosome V QTL gave me so much grief over the last few years. Every time I thought I had

narrowed the interval and chosen a candidate gene to test, I would run the assay again and the results

would contradict my previous results. More than anything else, this project taught me about the limits

of quantitative genetics. In theory, NILs are amazing and simple, what could go wrong? But in practice,

it became clear to me that the traits we study are complex and there are limits to what we can discover,

regardless of the amount of time and energy a PhD student spends on the project. The chromosome

III QTL taught me to think outside the box and to never give up. I didn’t find sqst-5 until the very last

experiment I ran before cutting my losses and publishing without a causal gene (six months before

graduation). This chapter is based off my first-author manuscript submitted to PLOS Genetics in 2020

[123].

4.2 ABSTRACT

Zinc is an essential trace element that acts as a co-factor for many enzymes and transcription factors

required for cellular growth and development. Altering intracellular zinc levels can produce dramatic

effects ranging from cell proliferation to cell death. To avoid such fates, cells have evolved mechanisms

to handle both an excess and a deficiency of zinc. Zinc homeostasis is largely maintained via zinc

transporters, permeable channels, and other zinc-binding proteins. Variation in these proteins might

affect their ability to interact with zinc, leading to either increased sensitivity or resistance to natural

zinc fluctuations in the environment. We can leverage the power of the roundworm nematode

Caenorhabditis elegans as a tractable metazoan model for quantitative genetics to identify genes that

could underlie variation in responses to zinc. We found that the laboratory-adapted strain (N2) is
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resistant and a natural isolate from Hawaii (CB4856) is sensitive to micromolar amounts of exogenous

zinc supplementation. Using a panel of recombinant inbred lines, we identified two large-effect

quantitative trait loci (QTL) on the left arm of chromosome III and the center of chromosome V that are

associated with zinc responses. We validated and refined both QTL using near-isogenic lines (NILs)

and identified a naturally occurring deletion in sqst-5, a sequestosome-related gene, that is associated

with resistance to high exogenous zinc. We found that this deletion is relatively common across strains

within the species and that variation in sqst-5 is associated with zinc resistance. Our results offer a

possible mechanism for how organisms can respond to naturally high levels of zinc in the environment

and how zinc homeostasis varies among individuals.

4.3 INTRODUCTION

Heavy metals such as zinc, iron, and copper are known to play important roles in many biological

systems [226, 227]. Of these metals, zinc is the most abundant and is essential for proper function of

many proteins, including enzymes and transcription factors [228]. In addition to its function as a cofactor,

zinc can act as a signaling molecule in neurons [229, 230, 231, 232] and is known to play a role in cell-

fate determination [233, 234, 235, 236, 237]. Because of its many functions, zinc deficiency has been

shown to cause major defects, including growth inhibition and death in several species [233, 238, 239,

240, 241]. On the other hand, excess zinc can also be toxic, displaying phenotypic effects similar to

copper deficiency, anemia, and neutropenia [242]. Although the exact mechanisms are unknown, the

data suggest that excess zinc might bind ectopically to other proteins, displacing similar metals such

as copper or magnesium from these proteins [233]. Because of this need for intracellular zinc balance

even though environmental zinc might fluctuate, biological systems must use proper zinc homeostasis

mechanisms for uptake, distribution, efflux, and detoxification [238].

The nematode Caenorhabditis elegans is a tractable metazoan model for studying the molecular

mechanisms of zinc homeostasis and toxicity [233, 243, 244, 245]. As observed in other organisms,

zinc is essential for C. elegans growth [246]. In fact, it is estimated that about 8% of the C. elegans

genes (1,600 genes) encode zinc-binding proteins [247]. However, zinc is also toxic to the nematode

at higher concentrations [246]. High exogenous zinc can cause several defects including decreased



110

growth rate and survival, suppression of the multivulva phenotype, and formation of bilobed

lysosome-related organelles in intestinal cells [233]. Genetic screens have identified several genes

that act to increase sensitivity to high levels of zinc (haly-1, natc-1, and daf-21)

[233, 248, 249, 250, 251]. However, mutations in these genes cause a change in response to multiple

stressors (including metals, heat, and oxidation), suggesting they are not specific to zinc homeostasis

[250, 233]. In addition to these nonspecific zinc proteins, C. elegans also has two complementary

families (composed of 14 proteins each) of zinc transporters responsible for maintaining constant

intracellular zinc concentrations via import and export [233]. Four of these zinc exporters (cdf-1, cdf-2,

sur-7, and ttm-1) have been shown to promote resistance to high zinc toxicity

[233, 248, 246, 252, 253, 234].

Although much is already known about zinc biology in C. elegans, previous studies were

performed using a single laboratory-adapted strain (N2) that is known to differ significantly, both

genetically and phenotypically, from wild isolates in the species [58]. As a complementary approach,

we can leverage the power of natural genetic diversity among wild isolates [59, 79, 63] to identify novel

mechanisms of zinc homeostasis and gain insights into the evolution of this process. We used a large

panel of recombinant inbred advanced intercross lines (RIAILs) [78, 68, 72] constructed from a

multi-generational cross between two genetically and phenotypically diverged strains, N2, the

laboratory-adapted strain, and CB4856, a wild isolate from Hawaii [60]. This panel of RIAILs has been

leveraged in several linkage mapping analyses, identifying hundreds of quantitative trait loci (QTL)

[130, 147, 133, 117, 70, 72, 71, 73, 100, 108, 35, 149, 125, 128, 115, 74, 127, 132, 112, 119, 81, 103,

102, 80, 161, 86, 85, 69]. In combination with a high-throughput phenotyping assay to measure animal

length, optical density, and brood size [68], several quantitative trait genes (QTG) [72, 69] and

quantitative trait nucleotides (QTN) [70, 71] underlying fitness-related traits have been described.

Here, we use linkage mapping analysis to identify four QTL in response to high exogenous zinc.

Several genes previously identified to be involved in the zinc response were found within the QTL

on chromosomes V and X. However, no known zinc-related genes were located in the large-effect

chromosome III QTL, suggesting a potentially novel mechanism of zinc homeostasis. We constructed

reciprocal near-isogenic lines (NILs) for each QTL and used them to validate the two large-effect QTL on
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chromosomes III and V. Expression QTL mapping and mediation analysis identified a single candidate

gene, sqst-5, with predicted zinc ion-binding capability. We used CRISPR-Cas9 genome editing to show

that strains without sqst-5 were significantly more resistant to zinc supplementation than strains with a

functional copy of sqst-5, suggesting a new role for this gene in zinc regulation. In addition to CB4856,

several other wild isolates were found to share a 111 bp deletion in sqst-5. Moreover, we identified a

second group of strains with a distinct haplotype of variation at sqst-5 that was also associated with

zinc resistance. Together, these data suggest that the regulation of zinc in nematodes is complex, but

binding and accumulation of excess zinc might be a mechanism to respond to exogenous zinc.

4.4 METHODS

4.4.1 Strains

Animals were grown at 20°C on modified nematode growth media (NGMA) containing 1% agar and

0.7% agarose to prevent burrowing and fed OP50 [100]. The two parental strains, the canonical

laboratory strain, N2, and the wild isolate from Hawaii, CB4856, were used to generate all recombinant

lines. 253 recombinant inbred advanced intercross lines (RIAILs) generated previously [68] (set 2

RIAILs) were used for zinc phenotyping and QTL mapping. A second set of 121 RIAILs generated

previously [78] (set 1 RIAILs) were phenotyped for mediation analysis.

4.4.2 Standard high-throughput fitness assay

For dose responses and RIAIL phenotyping, we used a high-throughput fitness assay (HTA) described

previously [68]. In summary, populations of each strain were passaged and amplified on NGMA plates

for four generations without starvation. In the fifth generation, gravid adults were bleach-synchronized

and 25-50 embryos from each strain were aliquoted into 96-well microtiter plates at a final volume of

50 µL K medium [173]. The following day, arrested L1s were fed HB101 bacterial lysate (Pennsylvania

State University Shared Fermentation Facility, State College, PA; [174]) at a final concentration of 5

mg/mL in K medium and were grown to the L4 larval stage for 48 hours at 20°C with constant shaking.

Three L4 larvae were sorted into new 96-well microtiter plates containing 10 mg/mL HB101 bacterial
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lysate, 50 µM kanamycin, and either 1% water or zinc sulfate dissolved in 1% water using a

large-particle flow cytometer (COPAS BIOSORT, Union Biometrica; Holliston, MA). Sorted animals

were grown for 96 hours at 20°C with constant shaking. The next generation of animals and the

parents were treated with sodium azide (50 mM in 1X M9) to straighten their bodies for more accurate

measurements. Animal length (TOF) and optical density (EXT) were quantified for every animal in

each well using the COPAS BIOSORT and the medians of each well population (median.TOF and

median.EXT) were used to estimate these traits. Animal length and optical density are both measures

of nematode development; animals get longer and more optically dense (thicker and denser body

composition) as they develop [68]. However, the COPAS BIOSORT measures optical density as a

function of length. Because these two traits are highly correlated, we also generated a fourth trait

(median.norm.EXT) which normalizes the optical density by length (EXT/TOF) in order to provide a

means to compare optical densities regardless of animal lengths. Finally, brood size (norm.n) was

calculated as the total number of animals in the well normalized by the number of parents originally

sorted and provides an estimate of nematode reproductive fitness [68].

4.4.3 Calculation of zinc-response traits

Phenotypic measurements collected by the BIOSORT were processed and analyzed using the R

package easysorter [77] as described previously [72]. Briefly, raw data from the BIOSORT was read

into R using the read_data function and contaminated wells were removed using the

remove_contamination function. The sumplate function was used to calculate summary statistics per

well and four main traits were output: median.TOF (animal length), median.EXT (animal optical

density), median.norm.EXT (animal optical density normalized by animal length), and norm.n (brood

size). When trait measurements were collected across multiple assay experiments, the regress(assay

= T) function was used to fit the linear model phenotype ∼ assay to account for variation among

assays. Outliers were pruned using prune_outliers to remove wells beyond two standard deviations of

the mean for highly replicated assays. Alternatively, for assays with low replication (dose response and

RIAIL phenotyping), bamf_prune was used to remove wells beyond two times the IQR plus the 75th

quartile or two times the IQR minus the 25th quartile, unless at least 5% of the strains lie outside this
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range. Finally, zinc-specific effects were calculated using the regress(assay = FALSE) function, which

subtracts the mean water (control) value from each zinc replicate for each strain using a linear model

drug_phenotype ∼ control_phenotype. The residual phenotypic values were used as the

zinc-response phenotype for all downstream analyses. In this way, we addressed only the differences

among strains that were caused by treatment with zinc and ignored minor phenotypic variation among

strains in the control condition. Pairwise tests for statistically significant differences in the zinc

response between strains were performed using the TukeyHSD function [175] on an ANOVA model

with the formula phenotype ∼ strain. For plotting purposes, these residual values were normalized

from zero to one with zero being the well with the smallest value and one the well with the largest

value.

4.4.4 Zinc dose response

Four genetically divergent strains (N2, CB4856, JU258, and DL238) were treated with increasing

concentrations of zinc using the standard high-throughput assay described above. A concentration of

500 µM zinc sulfate heptahydrate (Sigma #221376-100G) in water was selected for the linkage

mapping experiments. This concentration provided a reproducible zinc-specific effect and maximizes

between-strain variation and minimizes within-strain variation across the four traits. Broad-sense

heritability was calculated from the dose response phenotypes using the lmer function in the lme4 R

package [212] with the formula phenotype ∼ 1 + (1|strain) for each dose.

4.4.5 Linkage mapping

253 RIAILs (set 2 RIAILs) were phenotyped in both zinc and water using the standard high-throughput

assay described above. Linkage mapping was performed for all four zinc-response traits using the

R package linkagemapping (https://github.com/AndersenLab/linkagemapping) as described previously

[72]. The cross object derived from the whole-genome sequencing of the RIAILs containing 13,003

SNPs was loaded using the function load_cross_obj(“N2xCB4856cross_full”). The RIAIL phenotypes

were merged into the cross object using the merge_pheno function with the argument set = 2. A forward

search (fsearch function) adapted from the R/qtl package [176] was used to calculate the logarithm of
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the odds (LOD) scores for each genetic marker and each trait as −n(ln(1 − R2)/2ln(10)) where R

is the Pearson correlation coefficient between the RIAIL genotypes at the marker and trait phenotypes

[27]. A 5% genome-wide error rate was calculated by permuting the RIAIL phenotypes 1000 times.

The marker with the highest LOD score above the significance threshold was selected as the QTL then

integrated into the model as a cofactor and mapping was repeated iteratively until no further significant

QTL were identified. Finally, the annotate_lods function was used to calculate the effect size of each

QTL and determine 95% confidence intervals defined by a 1.5 LOD drop from the peak marker using

the argument cutoff = chromosomal. In the same manner, linkage mapping was performed for four

other divalent cation metals: arsenic dibasic in water [70], copper in water, cadmium in water [73], and

nickel in water [122].

4.4.6 Two-dimensional genome scan

A two-dimensional genome scan to identify interacting loci was performed for animal optical density

(median.EXT) in zinc using the scantwo function from the qtl package [176] as described previously

[73, 72]. Each pairwise combination of loci was tested for correlations with trait variation in the RIAILs.

A summary of the maximum interactive LOD score for each chromosome pair can be output using

the summary function. Significant interactions were identified by permuting the phenotype data 1000

times and determining the 5% genome-wide error rate. The significant interaction threshold for the

zinc-response variation scantwo was 4.09.

4.4.7 Construction of near-isogenic lines (NILs)

NILs were generated as previously described [72, 73, 70, 71] by either backcrossing a selected RIAIL

for six generations or de novo by crossing the parental strains N2 and CB4856 to create a heterozygous

individual that is then backcrossed for six generations. PCR amplification of insertion-deletion (indel)

variants between N2 and CB4856 were used to track the genomic interval. Smaller NILs to further break

up the interval were created by backcrossing a NIL for one generation to create a heterozygous F1

individual. The F1 individuals were selfed, and the F2 population was scored for recombination events.

NILs were whole-genome sequenced to verify introgressions and the absence of other introgressed
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regions [73, 72].

4.4.8 Mediation analysis

121 RIAILs (set 1 RIAILs) were phenotyped in both zinc and water using the standard high-throughput

assay described above. Microarray expression for 14,107 probes were previously collected from the

set 1 RIAILs [115], filtered [100], and mapped using linkage mapping with 13,003 SNPs [69].

Mediation scores were calculated with bootstrapping using the mediation R package [210] as

previously described [69] for each of the 19 probes (including ver-2/sqst-5, A_12_P104472) with an

eQTL on the left arm of chromosome III. Briefly, a mediator model expression ∼ genotype and an

outcome model phenotype ∼ expression + genotype were used to calculate the proportion of the

QTL effect that can be explained by variation in gene expression. All expression and eQTL data can

be found at https://github.com/AndersenLab/scb1_mediation_manuscript.

4.4.9 Generation of deletion strains

Deletion alleles for sqst-5 and ver-2 were generated as previously described using CRISPR-Cas9

genome editing [72, 75]. Briefly, 5’ and 3’ guide RNAs were designed with the highest possible

on-target and off-target scores [254] and ordered from Synthego (Redwood City, CA). The following

CRISPR injection mix was assembled and incubated for an hour before injection: 1 µM dpy-10 sgRNA,

5 µM of each sgRNA for the gene of interest, 0.5 µM of a single-stranded oligodeoxynucleotide

template for homology-directed repair of dpy-10 (IDT, Skokie, IL), and 5 µM Cas9 protein (Q3B

Berkeley, Berkeley, CA) in water. Young adults were mounted onto agar injection pads, injected in

either the anterior or posterior arm of the gonad, and allowed to recover on 6 cm plates. After 12

hours, survivors were transferred to individual 6 cm plates and allowed to lay embryos. Two days later,

the F1 progeny were screened and individuals with Rol or Dpy phenotypes were selected and

transferred clonally to new 6 cm plates. After 48 hours, the F1 individuals were genotyped by PCR

flanking the desired deletions. Individuals with heterozygous or homozygous deletions were

propagated and genotyped for at least two additional generations to ensure homozygosity and to cross

out the Rol mutation. Deletion amplicons were Sanger sequenced to identify the exact location of the
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deletion.

4.4.10 Modified high-throughput fitness assay

Dominance and validation of candidate genes were tested using a modified version of the standard high-

throughput assay detailed above as previously described [72, 69]. For candidate gene testing, strains

were propagated for two generations, bleach-synchronized in six independent replicates, and titered at

a concentration of 25-50 embryos per well of a 96-well microtiter plate. For dominance and hemizygosity

assays, strains (males and hermaphrodites) were propagated and amplified for two generations. For

each cross, 30 hermaphrodites and 60 males were placed onto each of four 6 cm plates and allowed

to mate for 48 hours. Mated hermaphrodites were transferred to a clean 6 cm plate and allowed to

lay embryos for eight hours. After the egg-laying period, adults were manually removed and embryos

were collected by vigorous washing with 1X M9. Embryos were resuspended in K medium and titered

to a concentration of 25 embryos per well of a 96-well microtiter plate. For both assays, arrested

L1s were fed HB101 bacterial lysate the following day at a final concentration of 5 mg/mL with either

water or zinc. After 48 hours of growth at 20°C with constant shaking, nematodes were treated with

sodium azide (5 mM in water) prior to analysis of animal length and optical density using the COPAS

BIOSORT. Because only one generation of growth was observed, brood size was not calculated. Lower

drug concentrations were needed to see the previous effect because of the modified timing of the drug

delivery. A concentration of 250 µM zinc in water was used for these experiments.

4.4.11 Local alignment of the sqst-5 region using long-read sequence data

To confirm the putative sqst-5 deletion in CB4856, we aligned the long-read assembly for CB4856 [62]

to the N2 reference genome using NUCmer (version v3.1) [255]. Using this alignment, we identified the

coordinates of sqst-5 in CB4856 and extracted the sequence using BEDtools (version v2.29.2) [256].

We aligned the unspliced N2 sqst-5 transcript sequence (WormBase WS273) and the N2 SQST-5

protein sequence to this extracted CB4856 sequence using Clustal Omega [257] and GeneWise [258],

respectively. Gene prediction in CB4856 was run using Augustus [259]. We visually inspected both

alignments to identify the length of the deletion in CB4856 and identify the effect of the deletion of the



117

CB4856 SQST-5 protein sequence.

4.4.12 Assessment of strain relatedness through neighbor-joining tree

Variant data for dendrogram comparisons were assembled by constructing a FASTA file with the

genome-wide variant positions across all strains and subsetting to keep only variants near sqst-5

(III:145917-148620). Genotype data were acquired from the latest VCF release (release 20180517)

from CeNDR. Multiple sequence comparison by log-expectation (MUSCLE, version v3.8.31) [260] was

used to generate neighbor-joining trees. A second neighbor-joining tree was constructed with all the

variants within the QTL confidence interval for comparison (III:4664-597553). Both trees were

identical.

4.4.13 Genome wide association mapping

Eighty-one wild isolates were phenotyped in both zinc and water using the standard high-throughput

assay described above. Genome-wide association (GWA) mappings were performed for all four traits

using the R package cegwas2 (https://github.com/AndersenLab/cegwas2-nf) as described previously

[70]. Genotype data were acquired from the latest VCF release (release 20180517) from CeNDR. We

used BCFtools [261] to filter variants with missing genotypes and variants below a 5% minor allele

frequency. We used PLINK v1.9 [262, 263] to LD-prune genotypes. The additive kinship matrix was

generated from the 64,046 markers using the A.mat function in the rrBLUP R package [264]. Because

these markers have high LD, we performed eigen decomposition of the correlation matrix of the

genotype matrix to identify 477 independent tests [70]. We used the GWAS function from the rrBLUP

package to perform genome-wide mapping. Significance was determined in two ways: a strict

Bonferroni threshold and a more lenient eigenvalue threshold set by the number of independent tests

in the genotype matrix. Confidence intervals were defined as ± 150 SNVs from the rightmost and

leftmost markers that passed the significance threshold.
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4.4.14 Statistical analysis

All statistical tests of phenotypic differences between strains were performed using the TukeyHSD

function [175] on an ANOVA model with the formula phenotype ∼ strain. The p-values for individual

pairwise strain comparisons were adjusted for multiple comparisons (Bonferroni). The datasets and

code for generating figures can be found at https://github.com/AndersenLab/zinc_manuscript.

4.5 RESULTS

4.5.1 Natural genetic variation in response to zinc is complex

We exposed four genetically divergent strains of C. elegans (N2, CB4856, JU258, and DL238) to

increasing concentrations of exogenous zinc and measured their development (animal length, optical

density, and normalized optical density) and reproductive ability (brood size) with a high-throughput

assay using the COPAS BIOSORT (see Methods) [70, 72, 73, 71, 68]. In the presence of high

concentrations of zinc, animals of all strains had smaller broods, shorter lengths, and were less

optically dense compared to non-treated animals (Figure 4-1). Because nematodes grow longer and

become more optically dense as they develop, these results suggest a zinc-induced developmental

delay. Furthermore, the lower brood size of animals treated with zinc suggest that exogenous zinc

hinders reproductive ability in some way. In addition to these overall trends, we also observed

significant phenotypic variation among strains. For example, although all strains had smaller lengths in

the presence of exogenous zinc, animals of the N2 strain were the largest (most resistant to zinc), and

animals of the CB4856 strain were smaller (more sensitive to zinc). At 500 µM zinc, a concentration

that both maximizes among-strain and minimizes within-strain phenotypic variation, we identified a

substantial heritable genetic component for two highly correlated developmental traits: animal length

(H2 = 0.48 , 95% CI [0.30, 0.61]) and optical density (H2 = 0.48 , 95% CI [0.28, 0.59]).

To investigate the genetic basis of zinc response, we exposed a panel of 253 RIAILs derived from

a cross between the N2 and CB4856 strains (set 2 RIAILs, see Methods) to high exogenous zinc. In

these conditions, the N2 animals were longer (Figure S4-1) and more optically dense (Figure 4-2A)

than the CB4856 animals, and were thus more resistant to high zinc supplementation. Interestingly,
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Figure 4-1: Dose response with four divergent wild isolates. Results from the zinc dose response HTA for
brood size (norm.n), animal length (median.TOF), animal optical density (median.EXT), and normalized optical density
(median.norm.EXT). For each trait, drug concentration (µM) (x-axis) is plotted against phenotype subtracted from control
(y-axis), colored by strain (CB4856: blue, DL238: green, JU258: purple, N2: orange). A red asterisk indicates the dose
selected for linkage mapping analysis.

many of the RIAILs were either more resistant than N2 or more sensitive than CB4856, suggesting

that loci of opposite genotypes are either acting additively or interacting in the RIAILs to produce the

observed transgressive phenotypes [180]. Linkage mapping analysis identified 12 QTL across all

traits, representing five unique QTL on chromosomes III, IV, V, and X (Figure S4-1). Because genetic

architectures looked similar across these traits, we chose to focus our analyses on optical density to

avoid redundant analyses of correlated traits (Figure 4-2B). Together, the four QTL underlying animal

optical density explain 40.5% of the phenotypic variation among the RIAILs. As expected, QTL of

opposite effects were observed. Strains with the CB4856 allele on chromosome III were more
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resistant to zinc than strains with the N2 allele at this locus. By contrast, strains with the CB4856

alleles on chromosomes IV, V, and X were more sensitive to zinc than strains with the N2 alleles at

these loci (Figure 4-2C). We scanned the genome for interactions between pairs of genomic markers

that might affect the phenotypic distribution of the RIAIL panel and identified no significant interactions

(Figure 4-3). We further examined the additivity of the two QTL with the largest and opposite effect

sizes (QTL on chromosomes III and V). We concluded that RIAILs with the CB4856 allele on

chromosome III and the N2 allele on chromosome V were the most resistant, and RIAILs with the N2

allele on chromosome III and the CB4856 allele on chromosome V were the most sensitive (Figure

4-4). Furthermore, the effect size of the chromosome III locus was similar regardless of the genotype

on chromosome V (Figure 4-4), and no significant interaction term was identified using a linear model

(ANOVA, p = 0.251). These results suggest that multiple additive QTL rather than interacting loci

affect animal optical densities in zinc.

4.5.2 Near-isogenic lines fractionate the chromosome V QTL into multiple additive loci

We first investigated whether any of the 28 known zinc transporters or any of the other 15 zinc-related

genes [233] are located in one of the four detected QTL intervals. We discovered that three of these

genes lie in the QTL on chromosome V and 11 lie in the QTL on chromosome X (Table 4-1). However,

none of these zinc-related genes lie in either of the QTL on chromosomes III or IV (Table 4-1). To

isolate and validate the effect of these four QTL, we constructed reciprocal near-isogenic lines (NILs)

by introgressing a genomic region surrounding each of the QTL from the CB4856 strain into the N2

genetic background or vice versa. We then measured the animal optical densities in the presence of

zinc for these strains to provide experimental evidence in support of each QTL independently. For the

three QTL on chromosomes IV, V, and X, the N2 allele was associated with zinc resistance (Figure

4-2C). However, strains with the N2 allele crossed into a CB4856 genetic background on chromosomes

IV and X were as sensitive as the CB4856 strain, and strains with the CB4856 allele crossed into an N2

genetic background were as resistant as the N2 strain (Figure 4-5). These two QTL have the smallest

effect sizes among the four QTL detected and each explain only 5% of the total phenotypic variation

among the RIAILs. The lack of a significant difference between the NILs and their respective parental
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Figure 4-2: Linkage mapping identifies four QTL in response to high dietary zinc. (A) Normalized residual median optical
densities (y-axis) of 253 RIAILs (x-axis) in response to zinc supplementation are shown. The parental strains are colored: N2,
orange; CB4856, blue. (B) Linkage mapping results for optical density (median.EXT) is shown. Genomic position (x-axis) is
plotted against the logarithm of the odds (LOD) score (y-axis) for 13,003 genomic markers. Each significant QTL is indicated
by a red triangle at the peak marker, and a blue rectangle shows the 95% confidence interval around the peak marker. The
percentage of the total variance in the RIAIL population that can be explained by each QTL is shown above the QTL. (C)
For each QTL, the normalized residual median optical densities (y-axis) of RIAILs split by genotype at the marker with the
maximum LOD score (x-axis) are plotted as Tukey box plots. Each point corresponds to a unique recombinant strain. Strains
with the N2 allele are colored orange, and strains with the CB4856 allele are colored blue.
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Figure 4-3: Two dimensional genome scan for median optical density (median.EXT) in zinc. Log of the odds (LOD)
scores are shown for each pairwise combination of loci, split by chromosome. The upper-left triangle contains the epistasis
LOD scores and the lower-right triangle contains the LOD scores for the full model. LOD scores are colored, increasing from
purple to green to yellow. The LOD scores for the epistasis model are shown on the left of the color scale and the LOD scores
for the full model are shown on the right.

strains suggests that the QTL effect might be smaller than 5% and we were underpowered to detect the

difference. Alternatively, the interval might contain QTL of opposing effects requiring additional smaller

NILs.

Table 4-1: Genetic variation in CB4856 for zinc-related genes in C. elegans

Gene ID Gene name Gene position Variants1 Coding2 eQTL3 Overlap4

WBGene00013668 Y105E8A.3 I:14358502-14367594 Yes No No No
WBGene00009286 F31C3.4 I:15050797-15052420 Yes Yes No No
WBGene00019077 F59A3.4 I:5507123-5509288 Yes No No No
WBGene00018897 F55F8.9 I:5669950-5673352 Yes No No No
WBGene00010644 K07G5.5 I:7169997-7172189 No No No No
WBGene00013207 Y54G9A.4 II:13712921-13715893 Yes No No No

1Genetic variation in CB4856
2Protein-coding genetic variation in CB4856
3Does this gene have an eQTL between N2 and CB4856?
4Is the gene inside the confidence interval of one of the QTL identified?
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WBGene00015940 C18A3.2 II:5718129-5720052 No No No No
WBGene00012712 ttm-1 III:12952969-12966995 Yes Yes No No
WBGene00022174 Y71H2AM.9 III:2690160-2698817 Yes No No No
WBGene00006590 toc-1 III:5275225-5277797 Yes No No No
WBGene00018948 F56C9.3 III:7311290-7313195 Yes No No No
WBGene00014669 C06G8.3 IV:10799614-10802250 No No No No
WBGene00044067 hke-4.1 IV:17285733-17287454 No No No No
WBGene00006487 tag-141 IV:17364791-17366491 Yes Yes No No
WBGene00017936 F30B5.7 IV:4229195-4231861 Yes No No No
WBGene00044481 ZK185.5 IV:4541769-4545918 No No No No
WBGene00021936 Y55F3BL.2 IV:807439-824954 Yes No Yes No
WBGene00006486 tag-140 V:11462999-11466770 Yes No Yes Yes
WBGene00011329 T01D3.5 V:13712854-13716624 Yes No No Yes
WBGene00019841 R02F11.3 V:4802647-4805947 No No No No
WBGene00007591 C14H10.1 X:10233739-10236944 Yes No No Yes
WBGene00011821 cdf-2 X:12464640-12466917 No No No Yes
WBGene00006494 hke-4.2 X:15506037-15507880 Yes Yes No Yes
WBGene00006353 sur-7 X:16376595-16380047 Yes No No No
WBGene00000393 cdf-1 X:6499928-6504613 Yes No No No
WBGene00018280 F41C6.7 X:6882493-6885277 Yes No No Yes
WBGene00019803 PDB1.1 X:7556788-7559085 Yes No No Yes
WBGene00008954 F19C6.5 X:9982402-9985005 Yes No No Yes
WBGene00004962 spe-8 I:118109-120870 Yes Yes No No
WBGene00003996 pgp-2 I:5886613-5895970 Yes Yes No No
WBGene00004966 spe-12 I:8224539-8226297 No No No No
WBGene00007016 mdt-15 III:5828603-5833745 Yes Yes No No
WBGene00004973 spe-27 IV:5864529-5865918 Yes No No No
WBGene00004974 spe-29 IV:9933910-9934285 No No No No
WBGene00003474 mtl-2 V:14018270-14018673 Yes No No Yes
WBGene00000915 daf-21 V:14684918-14688543 Yes No No No
WBGene00003473 mtl-1 V:6691371-6691863 No No No No
WBGene00020719 natc-1 V:8462327-8465569 Yes No No No
WBGene00001250 elt-2 X:10481240-10483446 Yes Yes No Yes
WBGene00010341 glo-3 X:10533699-10537114 Yes No No Yes
WBGene00009813 haly-1 X:10893567-10896598 Yes No No Yes
WBGene00013976 nhr-33 X:11318278-11321085 Yes No No Yes
WBGene00011083 glo-1 X:9872884-9882212 Yes No No Yes

By contrast, the NIL with the N2 allele surrounding the QTL on chromosome V introgressed into

the CB4856 genetic background is significantly more resistant than the sensitive CB4856 strain

(Figure 4-5). This result confirms that genetic variation between the N2 and CB4856 strains on the

center of chromosome V contributes to the differences in animal optical densities between the strains

in the presence of high exogenous zinc. To further narrow this QTL, we created a panel of NILs with

smaller regions of the N2 genome introgressed into the CB4856 genetic background. We exposed a

subset of these NILs to zinc and measured their optical densities. We found strains with the resistant
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Figure 4-4: Reaction norm shows additive QTL effects between chromosome III and V. Normalized residual median
optical density in zinc (median.EXT, y-axis) of RIAILs split by genotype at the chromosome III QTL (x-axis) are plotted as the
mean of the population ± the standard deviation, colored by the genotype at the chromosome V QTL.

N2 phenotype (ECA481; V:9.6-13.8 Mb), strains with the sensitive CB4856 phenotype (ECA411;

V:11.3-13.9 Mb), and strains with an intermediate phenotype (ECA437; V:10.5-13.8 Mb) (Figure 4-6).

These data imply the existence of at least two loci (V:9.6-10.5 Mb and V:10.5-11.3 Mb) at which the N2

allele confers resistance to zinc. The intermediate strain (ECA437) contains one N2 locus and one

CB4856 locus, and the resistant strain (ECA481) contains two N2 loci. Because this region is in the

center of a chromosome where recombination frequency is lower [78], we were unable to generate

NILs with a breakpoint to further narrow the QTL. Furthermore, it is possible that multiple small-effect

loci are contributing to each of the two QTL, rendering it difficult to identify each causal gene or

variant. Regardless, at least two novel loci on chromosome V were identified that influence zinc

sensitivity in C. elegans.

4.5.3 Analysis of the chromosome III QTL suggests that a sequestosome-related gene, sqst-5,

contributes to differences in zinc responses

The QTL on chromosome III accounts for 20% of the phenotypic variance in zinc response across

the RIAIL population. In contrast to the previous three QTL, the CB4856 allele is associated with
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Figure 4-5: Validating QTL using near-isogenic lines (NILs). (A) Strain genotypes are shown as colored rectangles (N2:
orange, CB4856: blue) in detail for each chromosome (left) and in general for the rest of the chromosomes (right). The
solid vertical line represents the peak marker of the QTL and the dashed vertical lines represent the confidence interval.
(B) Normalized residual median optical density in zinc (median.EXT, x-axis) is plotted as Tukey box plots against strain (y-
axis). The parental strains N2 and CB4856 are colored orange and blue, respectively. NILs are colored grey. Statistical
significance of each strain compared to its parental strain (ECA838, ECA240, ECA232, ECA931, and ECA929 to N2 and
ECA859, ECA241, ECA230, and ECA828 to CB4856) is shown above each strain and colored by the parent strain it was
tested against (ns = non-significant (p-value > 0.05); *, **, ***, and *** = significant (p-value < 0.05, 0.01, 0.001, or 0.0001,
respectively).
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Figure 4-6: NILs identify multiple QTL on chromosome V. (A) Strain genotypes are shown as colored rectangles (N2:
orange, CB4856: blue) in detail for chromosome V (left) and in general for the rest of the chromosomes (right). The solid
vertical line represents the peak marker of the QTL, and the dashed vertical lines represent the confidence interval. (B)
Normalized residual median optical density in zinc (median.EXT, x-axis) is plotted as Tukey box plots against strain (y-axis).
Statistical significance of each NIL compared to CB4856 is shown above each strain (ns = non-significant (p-value > 0.05); *,
**, ***, and *** = significant (p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).

zinc resistance and the N2 allele is associated with zinc sensitivity (Figure 4-2C). The strain with the

N2 allele on chromosome III crossed into a CB4856 genetic background (ECA859) was significantly

more sensitive than the CB4856 strain (hyper-sensitive) and the strain with the opposite genotype

(ECA838) was significantly more resistant than the N2 strain (hyper-resistant) (Figure 4-5). These

results demonstrate that this locus contributes to the observed transgressive phenotypes in the RIAILs

(Figure 4-2A). We also measured animal optical densities in zinc for individuals heterozygous for the

chromosome III locus to determine whether the N2 or CB4856 allele confers the dominant phenotype.

To analyze heterozygous individuals, we developed a modified high-throughput assay (see Methods,

Figure 4-7). Individuals heterozygous for the chromosome III locus in the N2 genetic background

(N2xECA838) were hyper-resistant similar to the NIL that is homozygous CB4856 for the chromosome

III locus in the N2 genetic background (ECA838) (Figure 4-8). By contrast, individuals heterozygous

for the chromosome III locus in the CB4856 genetic background (CB4856xECA859) were significantly

more resistant than their hyper-sensitive NIL counterpart, which is homozygous N2 for the chromosome

III locus in the CB4856 genetic background (ECA859). The phenotype of this heterozygous strain was

also similar to that of the CB4856 strain. The results of these crosses validate that genetic variation
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between N2 and CB4856 on the left arm of chromosome III contributes to the nematode zinc response

and indicate that the CB4856 allele conferred a dominant phenotype.

Figure 4-7: Dose response for modified HTA. Results from the zinc dose response with the modified HTA for median optical
density (median.EXT). Drug concentration (µM) (x-axis) is plotted against phenotype subtracted from control (y-axis), colored
by strain (CB4856: blue, N2: orange). A red asterisk indicates the dose selected for further analysis.

Because no previously identified zinc-related genes are in this interval, we investigated the

composition of the genes in N2 to look for any obvious candidates that might underlie this QTL. We

found 119 genes in this interval (Table 4-2). A change in phenotype is often observed when either

genetic variation causes a change in the amino-acid sequence of the protein (protein-coding variation)

or genetic variation causes a change in gene expression. Previously, whole-genome gene expression

was measured in a set of 208 RIAILs derived from the N2 and CB4856 strains [115] and expression

QTL (eQTL) mapping was performed [115, 69]. We used this dataset to find genes with an eQTL that

maps to our region of interest. In total, we eliminated 19 genes that had no genetic variation in

CB4856 and prioritized 62 genes that had protein-coding variation and/or an eQTL that mapped to this

region (Table 4-2).
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Figure 4-8: Dominance of chromosome III QTL. (A) Strain genotypes are shown as colored rectangles (N2: orange,
CB4856: blue) in detail for chromosome III (left) and in general for the rest of the chromosomes (right). Each rectangle
represents a single copy of chromosome III. (B) Normalized residual median optical density in zinc (median.EXT, x-axis)
is plotted as Tukey box plots against strain (y-axis). The N2 strain, which is normally resistant to zinc, was sick in this
experiment. Statistical significance of each strain compared to its parental strain (ECA838/ECA838 and N2/ECA838 to N2
and ECA859/ECA859 and CB4856/ECA859 to CB4856) is shown above each strain and colored by the parent strain it was
tested against (ns = non-significant (p-value > 0.05); *, **, ***, and *** = significant (p-value < 0.05, 0.01, 0.001, or 0.0001,
respectively).

To narrow our list of genes further, we analyzed the functional descriptions and gene ontology (GO)

annotations for all 62 candidate genes. A gene that is predicted to bind zinc and has protein-coding

variation or variation in gene expression between N2 and CB4856 would be a high-priority candidate.

We identified four genes that are predicted to bind zinc and a fifth gene that is regulated by a zinc

finger transcription factor. Upon further inspection, one of these five genes (sqst-5) also had an eQTL

that was originally assigned to the nearby pseudogene ver-2 (Figure 4-9A, Figure 4-10). RIAILs with

the N2 allele at the sqst-5 locus have significantly higher expression of the gene than those with the

CB4856 allele (Figure 4-9B). We previously showed that mediation analysis can be a useful tool to
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Table 4-2: Genes in QTL intervals for chromosome III and V

QTL interval
(bp)

No genetic
variationa

Protein-coding
variation and/or eQTLb

Other genetic
variationc

Other eQTL that
map to intervald

Total

III:4,664-
597,553

19 55 45 7 126

V:9,620,518-
10,511,995

183 49 97 24 353

V:10,511,995-
11,345,444

215 45 115 19 394

dGenes within genomic interval with no genetic variation
dGenes within genomic interval with protein-coding variation and/or an eQTL that maps to this interval
dGenes within genomic interval with non-protein-coding variation and no eQTL that maps to this interval
dGenes outside genomic interval with an eQTL that maps to this interval

link variation in gene expression with drug-response phenotypes [69]. We used the standard high-

throughput assay to measure zinc responses for 121 of the 208 RIAILs with gene expression data and

performed mediation analysis for each of the 17 genes with an eQTL in the region. The mediation

estimate for sqst-5 was the strongest hit (Figure 4-9C). Together, these results suggest that genetic

variation on chromosome III causes a decrease in expression of sqst-5 that leads to increased zinc

resistance.

4.5.4 Variation in sqst-5 underlies differences in zinc responses

To test the function of sqst-5 in the zinc response, we constructed two independently derived strains

harboring large deletions of sqst-5 in both the N2 and CB4856 genetic backgrounds. Because RIAILs

with the CB4856 allele (which was associated with higher resistance to zinc) have lower expression of

sqst-5 (Figure 4-9B), we expected sqst-5 deletions in the CB4856 genetic background might cause

little or no change in zinc resistance. Alternatively, we expected sqst-5 deletions in the N2 genetic

background might cause increased zinc resistance. Surprisingly, we found that deletions of sqst-5 had

no effect in either background (Figure 4-11). However, the increased sensitivity of the N2 allele in the

CB4856 genetic background (ECA859) always had a much larger effect than the increased resistance

of the CB4856 allele in the N2 background (ECA838) (Figure 4-8, Figure 4-5). To take advantage of

this sensitization, we deleted sqst-5 in the hyper-sensitive NIL strain that contains the N2 sqst-5 allele in

the CB4856 genetic background (ECA859). We hypothesized that deleting sqst-5 in the hyper-sensitive
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Figure 4-9: Expression QTL mapping and mediation analysis for sqst-5. (A) Results from the linkage mapping using
expression of sqst-5 as a quantitative trait. Genomic position (x-axis) is plotted against the logarithm of the odds (LOD)
score (y-axis) for 13,003 genomic markers. The significant QTL is indicated by a red triangle at the peak marker, and a blue
rectangle shows the 95% confidence interval around the peak marker. The percentage of the total variance in the RIAIL
population that can be explained by the QTL is shown above the QTL. (B) The expression of sqst-5 (y-axis) of RIAILs split
by genotype at the marker with the maximum LOD score (x-axis) are plotted as Tukey box plots. Each point corresponds to
a unique recombinant strain. Strains with the N2 allele are colored orange, and strains with the CB4856 allele are colored
blue. (C) Mediation estimates calculated as the indirect effect that differences in expression of each gene plays in the overall
phenotype (y-axis) are plotted against genomic position of the eQTL (x-axis) on chromosome III for al 17 genes with an eQTL
in the drug-response QTL confidence interval. The 95th percentile of the distribution of mediation estimates is represented by
the horizontal grey line. The confidence of the estimate increases (p-value decreases) as points become more solid. sqst-5
is represented by a red diamond.

NIL would make this strain less sensitive to zinc (more similar to the CB4856 phenotype). As expected,

we observed a significant increase in resistance for these deletions compared to the NIL (Figure 4-12),

indicating a role for sqst-5 in the C. elegans zinc response.

To provide further evidence that natural variation between N2 and CB4856 in sqst-5 underlies the

chromosome III QTL, we measured the optical density of individuals hemizygous for the N2 sqst-5

allele in the hyper-sensitive NIL genetic background (ECA2517xECA859) in response to zinc. If a
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Figure 4-10: The gene sqst-5, not ver-2, has an eQTL. Original gene model for ver-2 is shown with colored boxes
representing exons connected by lines representing introns. Exons are colored blue for the new gene model for ver-2 and
purple for sqst-5. The black rectangles below represent approximate locations of CRISPR-mediated deletions of ver-2 or
sqst-5. The location of the microarray probe is designated as a red rectangle below the plot.

loss-of-function allele of sqst-5 in the CB4856 strain is responsible for the variation in zinc response

between N2 and CB4856 (Figure 4-11), then this hemizygous strain should show the same sensitivity

as both the CB4856 strain and the strain with the homozygous deletion of sqst-5 in the hyper-sensitive

NIL genetic background (ECA2517). We observed that the strain hemizygous for the N2 sqst-5 allele

was indeed more resistant than the hyper-sensitive NIL and similar in sensitivity to the CB4856 strain

(Figure 4-13). This result recapitulated the result of the dominance assay (Figure 4-8), suggesting that

a loss-of-function allele of sqst-5 conferred a dominant resistance phenotype. A dominant phenotype

caused by a loss-of-function allele is, most times, caused by haploinsufficiency. Therefore, the zinc-

response phenotype driven by the single functional N2 sqst-5 allele is not sufficient to produce the

hyper-sensitive phenotype of the NIL with two functional N2 alleles.

4.5.5 A natural deletion in sqst-5 is conserved across wild isolates

We next searched for specific genetic variants in sqst-5 that could lead to a loss-of-function allele in

CB4856. We investigated the sequence read alignments of the N2 and CB4856 strains at the sqst-5

locus using the Variant Browser on CeNDR (elegansvariaton.org) [63] and observed a putative large

deletion in the second exon. We confirmed that this deletion is 111 bp (N2 coordinates: chrIII:147,076-
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Figure 4-11: Testing the role of sqst-5 in the zinc response. (A) Strain genotypes are shown as colored rectangles (N2:
orange, CB4856: blue) in detail for chromosome III (left) and in general for the rest of the chromosomes (right). The dashed
vertical line represents the location of sqst-5 and grey triangles represent sqst-5 deletions. (B) Normalized residual median
optical density in zinc (median.EXT, x-axis) is plotted as Tukey box plots against strain (y-axis). Statistical significance of each
strain compared to its parental strain (ECA838, ECA1377, and ECA1378 to N2 and ECA859, ECA1379, and ECA1380 to
CB4856) is shown above each strain and colored by the parent strain it was tested against (ns = non-significant (p-value >
0.05); *, **, ***, and *** = significant (p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).

147,186 bp) using a whole-genome alignment between the N2 reference genome and the CB4856

genome recently assembled using long-read sequencing [62] (Figure 4-14). We ran gene prediction

algorithms on the CB4856 sequence, but no gene was predicted. The SQST-5 protein in the N2 strain

has a single characterized protein domain: a Zinc finger, ZZ-type (Wormbase.org, WS275). The ZZ-

type domains are predicted to bind two zinc ions using a repeated conserved motif of Cys-X2-Cys

and are also important for protein-protein interactions [265, 266]. Interestingly, when we overlaid the

location of the ZZ-type domain with the CB4856 alignment, we discovered that the 111 bp deletion

spans most of the ZZ-type domain, including the essential Cys-X2-Cys motif (Figure 4-14A). Because

this domain is important for binding zinc ions, this result suggests that even if CB4856 expresses low



133

Figure 4-12: Isolating the effect of sqst-5 in the zinc response. (A) Strain genotypes are shown as colored rectangles
(N2: orange, CB4856: blue) in detail for chromosome III (left) and in general for the rest of the chromosomes (right). The
dashed vertical line represents the location of sqst-5 and grey triangles represent sqst-5 deletions. (B) Normalized residual
median optical density in zinc (median.EXT, x-axis) is plotted as Tukey box plots against strain (y-axis). The N2 strain, which
is usually resistant to zinc, was sick in this experiment. Statistical significance of each strain compared to ECA859 is shown
above each strain (ns = non-significant (p-value > 0.05); *, **, ***, and *** = significant (p-value < 0.05, 0.01, 0.001, or 0.0001,
respectively).

levels of SQST-5, it is unlikely to bind zinc at the same level as strains with a complete ZZ-type domain.

We next investigated structural variation across a panel of 328 wild isolates to ask if this deletion is

unique to the CB4856 strain or common across many wild strains. We identified 31 additional strains

with the same 111 bp deletion as CB4856 by manual inspection using the Variant Browser on CeNDR

(Table S4-1). We also identified 25 strains that harbored low sequence identity with the N2 reference

genome, indicating that these strains might contain structural variation different from the deletion in the

CB4856 strain (Table S4-1). We assessed the genetic relatedness of these strains by constructing

a neighbor-joining tree for all 328 wild isolates using the single nucleotide variants near and within

sqst-5. All 32 strains with the predicted deletion in sqst-5 cluster together (Figure 4-14B), suggesting

these strains inherited this deletion from a common ancestor. These strains were not isolated from

a single location, but rather spread geographically across Europe and the Pacific Rim (Figure 4-15).

Furthermore, 24 of the 25 strains with other putative structural variation in sqst-5 also cluster together
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Figure 4-13: The gene sqst-5 confers zinc sensitivity. (A) Strain genotypes are shown as colored rectangles (N2: orange,
CB4856: blue) in detail for chromosome III (left) and in general for the rest of the chromosomes (right). Each rectangle
represents a single copy of chromosome III, and grey triangles represent sqst-5 deletions. (B) Normalized residual median
optical density in zinc (median.EXT, x-axis) is plotted as Tukey box plots against strain (y-axis). The N2 strain, which is
normally resistant to zinc, was sick in this experiment. Statistical significance of each strain compared to CB4856 is shown
above each strain and NIL pairwise significance is shown as a bar above strains (ns = non-significant (p-value > 0.05); *, **,
***, and *** = significant (p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).

separately from the strains with the 111 bp deletion (Figure 4-14B). This result suggests that this

second group of strains also share a common ancestor that harbored variation in sqst-5. Additionally,

strains with the deletion and strains with the other haplotype are sometimes found in nearby locations

(Figure 4-15). Regardless, the 111 bp deletion and putative other structural variants might cause loss

of sqst-5 function.

To test if a loss-of-function allele of sqst-5 correlates with zinc resistance among our panel of wild

isolates, we measured animal development (length, optical density, and normalized optical density)

and reproductive ability (brood size) of 81 strains in response to zinc. Including CB4856, we tested

nine strains with variation in sqst-5: four strains with the 111 bp deletion and five strains with the other
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Figure 4-14: Natural genetic variation in sqst-5. (A) Gene model of sqst-5. Grey rectangles represent exons, and
connecting black lines represent introns. The ZZ-type domain is indicated by a green rectangle, and the location of the
natural 111 bp deletion in CB4856 is indicated below with a blue rectangle. (B) Neighbor-joining tree indicating genetic
relatedness between wild isolates at the sqst-5 locus. Branch lengths indicate the rate, the tree is midpoint rooted. Tips are
colored by the variation haplotype at sqst-5: (Wild-type: grey, N2: orange, CB4856: navy, Deletion: magenta, Other putative
structural variation: light pink).

putative structural variation. On average, these nine strains were more resistant than the rest of the

population (Figure 4-16A, Figure S4-2), and variation in sqst-5 explained up to 11.5% (median.EXT;

p-value = 0.0019) of the total variation in zinc responses among the wild isolates. Genome-wide

association mapping identified eight small-effect QTL across the four zinc-response traits (Figure

S4-2). One trait, normalized optical density, had a QTL on the left arm of chromosome III (Figure

4-16B,C). The proximity of this QTL to sqst-5 suggests that natural variation in sqst-5 likely also

contributes to variation in response to zinc among a panel of wild C. elegans strains.
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Figure 4-15: Map of wild isolates. Strains are colored by the variation haplotype at sqst-5 (Wild-type: grey, N2: orange,
CB4856: navy, Deletion: magenta, Other putative structural variation: light pink). Strains with the deletion are labeled.

4.6 DISCUSSION

We used linkage mapping to identify four QTL in response to high levels of exogenous zinc. We

validated the two QTL with the largest effects on chromosomes III and V using near-isogenic lines.

The QTL on chromosome V was further dissected into at least two additive loci that became difficult to

narrow further. Mediation analysis was performed for the genes with expression variation that overlaps

with the QTL on chromosome III, and a single gene (sqst-5) was identified whose variation in

expression between N2 and CB4856 is correlated with differences in responses to zinc. The CB4856

strain harbors a natural deletion of this gene. We deleted the N2 version of sqst-5 using

CRISPR-Cas9 genome editing and showed that strains without sqst-5 were significantly more

resistant to exogenous zinc than strains with a functional copy of sqst-5, suggesting a new role for

sqst-5 in zinc homeostasis. In addition to CB4856, several other wild isolates were found to have a
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putative independent structural variant in sqst-5 that is loosely correlated with resistance to zinc.

These strains cluster genetically into two distinct groups, suggesting that functional variation in sqst-5

has emerged multiple times. These results demonstrate the power of leveraging natural genetic

variation to identify novel genes in a toxin-response pathway and suggest mechanisms for how high

exogenous zinc can be mitigated in natural environments.

4.6.1 A complex genetic architecture underlies differences in zinc responses

The identification of multiple QTL in response to excess zinc is not surprising, as zinc is an essential

trace element and up to 8% of C. elegans genes have been predicted to encode proteins that bind zinc

[247]. In particular, 28 genes encode putative zinc transporters and an additional 15 genes have been

identified via mutagenesis screens in N2 that promote either zinc resistance or sensitivity [233, 243].

We identified two QTL that contain at least one gene that was previously found to be involved in the

nematode zinc response and an additional two QTL that do not contain any genes previously found to

affect zinc responses (Table 4-1). Several of the genes with previously described roles in the zinc

response are located on chromosome X. However, only three of these genes (hke-4.2, hizr-1, and

elt-2) have protein-coding variation in CB4856. The results of the linkage mapping experiment (Figure

4-2B) identified a broad peak on chromosome X, but we were unsuccessful validating this QTL using

NILs (Figure 4-5) likely because the QTL could contain multiple small-effect loci that could each act in

opposite directions. By contrast, we were able to validate that genetic variation on chromosome V

contributes to the nematode zinc responses (Figure 4-6). However, as more NILs were tested with

smaller introgressions, we observed a fractionation of the QTL into at least two small-effect loci.

Several previous studies that aimed to deeply validate a single QTL have instead identified many

tightly linked antagonistic QTL underlying the major QTL

[144, 128, 145, 267, 131, 268, 269, 270, 122]. Unfortunately, as each QTL fractionates into several

QTL, the individual effect sizes become smaller and our ability to accurately interpret signal from noise

becomes more difficult. This polygenic nature of complex traits is a major roadblock in going from QTL

to QTG [7, 22, 21].

Although we were unable to identify specific genes on chromosome V that contribute to the
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Figure 4-16: GWA mapping suggests common variation at sqst-5 is associated with differences in zinc responses
among wild isolates. (A) Normalized residual median normalized optical density (median.norm.EXT, y-axis) of 81 wild
isolates (x-axis) in response to zinc supplementation. Strains are colored by the parental strains N2 (orange) and CB4856
(blue) or by the sqst-5 variation (Deletion: magenta, other variation: light pink) (B) GWA results are shown. Genomic position
(x-axis) is plotted against the -log10(p) value (y-axis) for each SNV. SNVs are colored pink if they pass the genome-wide eigen-
decomposition significance threshold designated by the dotted grey line. The solid grey line represents the more stringent
Bonferroni significance threshold. The genomic regions of interest that pass the significance threshold are highlighted by
blue rectangles. (C) For each QTL, the normalized residual median normalized optical density (median.norm.EXT, y-axis) of
strains split by genotype at the peak marker (x-axis) are plotted as Tukey box plots. Each point corresponds to a wild isolate
strain. Strains with the N2 reference allele are colored grey, and strains with an alternative allele are colored navy.
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nematode zinc response, we were able to narrow the QTL interval from 4.3 Mb

(chrV:10,084,029-14,428,285) to 1.2 Mb (chrV:10,084,029-11,345,444) containing at least two loci that

underlie differential responses to zinc. Of the 573 genes of interest (Table 4-2), we identified two

high-priority candidate genes (zhit-3 and H27A22.1) that are predicted to bind zinc and have

protein-coding variation in the CB4856 strain. The gene zhit-3 encodes a protein that is an ortholog of

the human protein ZNHIT6 and contains a zinc finger HIT-type domain (Wormbase.org, WS275). The

gene H27A22.1 encodes a protein that is an ortholog of the human protein QPCTL with

glutaminyl-peptide cyclotransferase (Wormbase.org, WS275). It is possible that genetic variation in

one or both of these genes underlies the QTL on chromosome V. However, future studies are needed

to confirm the role of these genes in the nematode zinc response.

Although zinc is the most biologically relevant heavy metal, other divalent cations with similar

chemistries also play important roles in biological systems (copper, nickel, and iron) or are highly toxic

(cadmium) [226, 227, 70, 233]. We previously performed linkage mapping for three of these heavy

metals and found that QTL for zinc, copper, and nickel overlap on the right arm of chromosome IV

(Figure 4-17) [70, 73, 122]. The overlap of this QTL with other heavy metal QTL suggests that

perhaps the molecular mechanisms underlying these QTL are not specific to zinc. Furthermore, this

QTL is in regions previously defined as a QTL hotspot where a single pleiotropic gene might control

several toxin responses or several independent yet tightly linked genes might control different traits

[73]. Regardless, the high-effect QTL on chromosome III seems to be unique to the zinc response, as

none of the other metals have a QTL on chromosome III (Figure 4-17).

4.6.2 Common genetic variation underlies differential responses to exogenous zinc

We discovered 31 additional wild strains with the same 111 bp deletion in sqst-5 as found in the CB4856

strain and another 25 strains that show evidence of different structural variation. Long-read sequencing

and local genome assembly of strains with this alternative variation are needed to fully define these

haplotypes. Although these strains were isolated globally (Figure 4-15), phylogenetic analysis suggests

that these strains comprise two common classes of variation at the sqst-5 locus (Figure 4-14B). Strains

from these two classes of variation are sometimes found in close geographical proximity, indicating a
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Figure 4-17: Linkage mapping summary for drug-response traits in response to five heavy metals. Genomic positions
(x-axis) of all QTL identified from linkage mapping are shown for each drug-trait (y-axis). Each QTL is plotted as a triangle
at the genomic location of the peak marker and a line that represents the 95% confidence interval. QTL with right side up
triangles have a negative effect size (N2 allele is resistant), and QTL with upside down triangles have a positive effect size
(CB4856 allele is resistant). QTL are colored by the logarithm of the odds (LOD) score, increasing in significance from purple
to green to yellow.

possibility for convergent evolution in zinc resistance, perhaps in geographic regions with high levels

of zinc in the environment. We require further investigation of metal contents in niches that contain C.

elegans to connect environmental zinc levels to natural genetic variation.

We measured zinc responses for a subset of wild strains and found that variation in sqst-5 could

explain 11.5% of the total variation in response to zinc among the panel of wild isolates. Interestingly,

N2 and CB4856 were among the more sensitive strains tested (Figure 4-16, Figure S4-2), suggesting

the existence of several loci not found within the CB4856 strain that influence zinc responses. GWA

mapping discovered several small-effect loci across the genome that were associated with zinc

resistance or sensitivity (Figure S4-2). In particular, the QTL on chromosome III (nearby the sqst-5



141

locus) and chromosome X overlapped with QTL discovered using linkage mapping. Alternatively, a

QTL on the right arm of chromosome III provides evidence of common genetic variation not present in

the CB4856 strain that plays a role in the nematode zinc response. Because none of the known

zinc-related genes are in this interval, this QTL might represent another novel gene that contributes to

zinc resistance or sensitivity (Table 4-1). Our power to detect QTL would only improve with the

phenotyping of more strains in the presence of high exogenous zinc.

4.6.3 SQST-5 might function to negatively regulate other sequestosome-related genes

We show that strains with a functional copy of sqst-5 are more sensitive to zinc than strains with a

large deletion of the gene, indicating that sqst-5 negatively regulates the zinc response. Using

BLASTp (Wormbase.org, WS275), we searched for paralogs and identified five other members of the

sequestosome-related family (sqst-1, sqst-2, sqst-3, sqst-4, and C06G3.6) each containing a ZZ-type

domain, like sqst-5. Two of these genes have been previously implicated in the nematode stress

response. The gene sqst-1 is upregulated in response to hormetic heat shock [271]. Both SQST-1 and

the human ortholog, SQSTM1/p62, have been shown to bind to and target ubiquitinated proteins to an

organelle (sequestosome) for subsequent degradation by autophagy [272, 271]. The ZZ-domain,

particularly the zinc-coordinating Cys-X2-Cys residues, has been shown to be essential for this

process [273, 274]. Additionally, sqst-3 is expressed in response to exogenous cadmium [275],

suggesting that the sequestosome-related family might be involved in divalent cation metal stress

responses. If we connect these disparate results, then these genes could protect cells against zinc

toxicity using sequestration and fusion with lysosomes. Alternatively, divalent cation metal stress could

cause disruption of proteostasis and upregulation of sequestosome genes indirectly related to the

specific metal stress. The role of this gene family in stress response has not been characterized using

loss-of-function genetics, so we do not know whether the family is protective in response to exogenous

stressors like zinc.

If the sequestosome-related genes do function to protect cells from high exogenous zinc, we would

expect that loss-of-function of these genes should cause increased zinc sensitivity. However, loss-

of-function of sqst-5 caused increased zinc resistance, indicating that sqst-5 might have a different
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function than other sequestosome-related genes. Although the exact function of SQST-5 is unknown,

it is predicted to have protein kinase C and K63-linked polyubiquitin modification-dependent protein

binding activity (Wormbase.org, WS275). From previous studies, we know that the ZZ-type domain is

important for protein-protein interactions [265], and we discovered that the natural 111 bp deletion in the

CB4856 strain causes a loss of this zinc-binding domain. It is possible that SQST-5 could function as

an inhibitor of mechanisms that mitigate exogenous zinc, potentially by binding to other sequestesome-

related proteins and inhibiting their activities. When SQST-5 is removed, the protein partner is no longer

inhibited and is available to bind or capture the excess zinc in the environment, thus reducing the toxicity

induced by high exogenous zinc. Biological processes that are finely balanced in homeostasis often

contain both positive and negative regulators. Functional studies to directly test the role of sqst-5 in the

autophagy pathway, both in control conditions and in the presence of exogenous zinc, are necessary to

provide insights into its function as a negative regulator of zinc homeostasis. Likewise, zinc responses

of animals with targeted deletions of the other sequestosome-related genes are needed to fully define

the roles for these genes in the C. elegans zinc response pathway. Overall, this study leverages natural

genetic variation to discover a novel gene that sensitizes nematodes to exogenous zinc, potentially by

creating a negative feedback loop to regulate other sequestosome-related genes.

4.7 FUTURE DIRECTIONS

4.7.1 From QTL to QTG on chromosomes IV, V, and X

Although this study identified that genetic variation in the gene sqst-5 causes differences in responses

to exogenous zinc, there are still three other QTL that remain to be solved. We generated and tested

NILs for the QTL on chromosomes IV and X, however we were unable to experimentally validate these

genomic regions. This could be because the effect size of these loci are actually smaller than predicted

or there could be multiple small-effect loci of opposite effects. Alternatively, the large-effect chromosome

III QTL might be masking the effects of these loci. For example, ECA241 (which has the resistant N2

allele on chromosome IV introgressed into the sensitive CB4856 genetic background) actually contains

two resistant loci (the CB4856 allele on chromosome III and the N2 allele on chromosome IV) and
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two sensitive loci (the CB4856 alleles on chromosomes V and X). Just like the effect of sqst-5 was

heightened in the sensitive NIL genetic background, so too might this QTL. To test this theory, we

could perform a genetic cross between the hyper-sensitive NIL ECA859 (N2 allele on chromosome III

in a CB4856 genetic background) and the chromosome IV NIL ECA241. Selecting for the N2 alleles

on both chromosome III and IV would create a strain in which the genetic background is completely

sensitive to zinc except the region we are testing on chromosome IV. The same cross could be done

with ECA828 and ECA859 to isolate the chromosome X QTL. However, generating a chromosome X

substitution strain where the entire chromosome X is introgressed from the N2 strain into the CB4856

genetic background might be the first place to start.

If we are able to verify the QTL on chromosomes IV and X, there could be several followup

experiments to identify the causal genes or variants underlying these QTL. For the chromosome X

QTL, we could first test each of the three zinc-related genes within the QTL confidence interval that

have protein-coding genetic variation in CB4856 (hke-4.2, hizr-1, and elt-2). The chromosome IV QTL

has no known zinc-related genes, however it resides in a previously identified QTL hotspot where a

single pleiotropic gene might control responses to several diverse toxins [73]. Furthermore, this region

has also been shown to contain a large cluster of piwi-interacting RNAs (piRNAs) and variation in

piRNAs between the N2 and CB4856 strains has been shown or suggested to play a role in nematode

behavior [133] and drug responses [74]. It would be interesting to test the role of piRNAs in the zinc

response by deleting a master regulator of piRNAs, prg-1. The biology of piRNAs is still understudied

and connecting them to the zinc response, and potentially other toxin responses that also map to this

region, would be novel and exciting.

There are also several candidate genes on chromosome V proposed in this study that could be

explicitly tested for their role in the zinc response. Although there are hundreds of genes in our two

narrowed QTL intervals, two strong candidate genes stand out. The gene zhit-3 encodes a protein that

is an ortholog of the human protein ZNHIT6 and contains a zinc finger HIT-type domain and the gene

H27A22.1 encodes a protein that is an ortholog of the human protein QPCTL with glutaminyl-peptide

cyclotransferase. Both genes are predicted to bind zinc, however binding zinc does not ensure that

these genes are involved in the nematode zinc response. Deletions of these genes using CRISPR-
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Cas9 genome editing are needed. In addition to these candidate genes, this chromosome V QTL

resides in a previously identified QTL hotspot [73]. We previously showed that the pleiotropic gene

scb-1 underlies responses to several double-strand-break-inducing chemotherapeutics with overlapping

QTL on chromosome V [72, 69]. The gene scb-1 is located within one of the two NIL-defined QTL on

chromosome V (V:11.11 Mb), suggesting that variation in scb-1 might also influence the zinc response.

However, excess zinc is not known to cause double strand breaks. Furthermore, the direction of effect

of the zinc-response QTL is opposite those underlied by scb-1 (RIAILs with the N2 allele are resistant

to zinc and sensitive to the double-strand-break-inducing chemotherapeutics like bleomycin). These

results suggest that expression of scb-1 might not be causal in the nematode zinc response. The only

way to know for sure is to test scb-1 deletions in response to high exogenous zinc.

4.7.2 Investigating the function of sqst-5 and its mechanism of action in response to zinc

Although we identified that a deletion in sqst-5 causes resistance to exogenous zinc, many questions

still remain on the function of this gene and its mechanism of zinc resistance. This 111 bp deletion

covers most of the ZZ-type domain, including the essential Cys-X2-Cys zinc-binding motif. It would be

interesting to know if this deletion causes zinc resistance because it causes a loss-of-function allele

and the gene is lowly expressed or because it removes the ZZ-type domain. Targeted genome-editing

of one or more essential residues in the ZZ-type domain (perhaps a Cys > Ala) would eliminate the

zinc-binding ability of sqst-5 and would allow us to test if this function is necessary for responding to

high exogenous zinc. To ensure that the targeted edits are reducing zinc binding, it would be essential

to first measure zinc binding of the SQST-5 protein in both the N2 and CB4856 genetic backgrounds.

Because the N2 strain has a functional copy of sqst-5, we would expect that the N2 copy of SQST-5

binds more zinc than the CB4856 copy of SQST-5.

The sequestosome-related gene family has been previously implicated in the nematode stress

response. The gene sqst-1 is upregulated in response to heat shock and sqst-3 is upregulated in

response to cadmium exposure. Interestingly, SQST-1 is known to bind to ubiquitinated proteins

through its ZZ-type domain and deliver them to the autophagosome for degradation. Although no

direct functional studies have been performed, it is thought that increased zinc would cause an
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increase in SQST-1 which may sequester zinc, protecting cells from its toxicity. However, we observe

the opposite interaction with SQST-5, as strains with a functional copy of this protein are more

sensitive to high exogenous zinc. To fully understand this pathway, it is necessary to test how

deletions of SQST-1 affect zinc response in our assay. Furthermore, it would be interesting to test the

autophagy response in sqst-5 mutants both in the presence and absence of zinc. One study showed

that SQST-1 was upregulated in response to excess zinc in murine macrophage cells [276]. However,

no previous studies have made a direct association between zinc and the sequestosome-related

genes in autophagy.

4.7.3 Expanding natural variation studies to include more strains and provide evolutionary

context of zinc resistance

We performed a GWA mapping for zinc resistance in 81 strains and found several QTL that both

overlapped with linkage mapping or were unique. However, we now have 328 wild isolate strains with

more genetic diversity than before [59]. Phenotyping more of these diverse strains, with and without

variation in sqst-5, could tell us more about how C. elegans respond to zinc in their natural

environments. Finally, it would be interesting to further investigate the evolutionary role of sqst-5 in

shaping zinc resistance in the wild. Using the 328 wild isolates as well as two or more closely related

Caenorhabditis species such as C. brigssae and C. remanei, we could estimate inter- and

intra-species selective pressure by calculating statistics such as Ka/Ks and Tajima’s D [75]. This QTL

lies in a highly divergent region of the C. elegans genome [60, 62, 277]. It is thought that these

punctuated divergent regions might contribute to nematode diversity and evolution in a species with

large chromosomal sweeps and relatively low genetic diversity [79, 277]. Because zinc is a natural

environmental stressor, it would make sense that nematodes have evolved mechanisms to respond to

high or low environmental zinc. Although limited data exists on zinc levels in the soil worldwide,

perhaps future field collection trips could include a soil sample to test for levels of zinc and other

metals.

Similarly, it could be interesting to correlate the natural levels of intracellular zinc with resistance to

high exogenous zinc. The first step could be to test total zinc content in the N2 and CB4856 strains
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using ICP-MS/MS and look to see if there is a significant difference. This method has been used to

quantify differences in zinc content between control and mutant strains and could be easily adapted to

test a diverse set of wild isolates in the presence and absence of high exogenous zinc [278]. If there is a

difference in zinc content between the N2 and CB4856 strains, zinc content could next be measured for

each of the NILs on chromosomes III and V and strains with sqst-5 deletions. This experiment would

determine if genetic variation at these loci control both intracellular zinc content and the individual’s

zinc response, suggesting the two might be functionally related. Alternatively, the zinc content for the

RIAILs and/or the wild isolates could be measured and used as a phenotypic trait for QTL mapping

using linkage or association mapping, respectively, to identify the genetic basis for intracellular zinc

content. Together, these experiments could add to the knowledge of the mechanism behind which

natural genetic variation contributes to the nematode zinc response.
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4.10 SUPPLEMENTAL FIGURES
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Figure S4-1: Linkage mapping identifies 12 QTL across three traits in response to high zinc. (A) Relative phenotype
(y-axis) of 253 RIAILs (x-axis) in response to zinc supplementation. The parental strains are colored: N2, orange; CB4856,
blue. (B) Linkage mapping results are shown. Genomic position (x-axis) is plotted against the logarithm of the odds (LOD)
score (y-axis) for 13,003 genomic markers. Each significant QTL is indicated by a red triangle at the peak marker, and a
blue rectangle shows the 95% confidence interval around the peak marker. The percentage of the total variance in the RIAIL
population that can be explained by each QTL is shown above the QTL. (C) For each QTL, the normalized residual phenotype
(y-axis) of RIAILs split by genotype at the marker with the maximum LOD score (x-axis) are plotted as Tukey box plots. Each
point corresponds to a unique recombinant strain. Strains with the N2 allele are colored orange and strains with the CB4856
allele are colored blue.
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Figure S4-2: GWA mapping identifies QTL in response to high zinc. (A) Normalized residual phenotype (y-axis) of 81
wild isolates (x-axis) in response to zinc supplementation. Strains are colored by the parental strains N2 (orange) and CB4856
(blue) or by the sqst-5 variation (Deletion: magenta, other variation: light pink). (B) GWA results are shown. Genomic position
(x-axis) is plotted against the -log10(p) value (y-axis) for each SNV. SNVs are colored pink if they pass the genome-wide
eigen-decomposition significance threshold designated by the dotted grey line. The genomic regions of interest that pass the
significance threshold are highlighted by blue rectangles. (C) For each QTL, the normalized residual phenotype (y-axis) of
strains split by genotype at the peak marker (x-axis) are plotted as Tukey box plots. Each point corresponds to a wild isolate
strain. Strains with the N2 reference allele are colored grey, and strains with an alternative allele are colored navy.
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4.11 SUPPLEMENTAL TABLES

Table S4-1: Geographic locations of 57 wild isolates with putative structural variation in sqst-5

Strain Latitude Longitude Deletion5

CB4856 21.33 -157.86 TRUE
CX11276 34.20111 -118.21198 TRUE
CX11307 34.12946 -118.10987 FALSE
ECA36 -36.893333 174.745529 TRUE
QX1794 20.70559 -156.35678 TRUE
ECA189 19.423889 -155.2225 FALSE
ECA191 19.424167 -155.22194 TRUE
ECA363 20.723611 -156.30444 TRUE
ECA396 19.449831 -155.23549 TRUE
XZ1514 22.149 -159.668 TRUE
XZ1516 22.149 -159.668 TRUE
ECA705 20.038831 -155.43892 TRUE
ECA722 19.423975 -155.22263 TRUE
ECA741 20.6762 -156.33832 TRUE
ECA742 20.80569 -156.2781 TRUE
ECA743 20.741871 -156.32317 TRUE
ECA745 19.700464 -155.95584 TRUE
EG4725 41.6288 -8.3476 FALSE
GXW1 30.542889 114.419828 FALSE

JU1088 34.7613 138.0149 FALSE
JU1400 37.3845 -5.988 TRUE
JU2316 38.7175 -9.1486 TRUE
JU2464 -13.155 -72.525 TRUE
JU2526 38.7175 -9.1486 TRUE
JU2841 -40 176 FALSE
JU2878 19.29732 -99.098769 TRUE
JU3134 48.7015 2.1725 FALSE
JU3135 48.7015 2.1725 FALSE
JU3144 6.18 10.52 FALSE
JU3166 0.28 6.59837 FALSE
JU3167 0.289 6.612 FALSE
JU3224 -41.296186 174.784857 TRUE
JU3225 -41.296186 174.784857 FALSE
JU3226 -41.29085 174.76872 TRUE
JU3228 -39.02256 175.71458 TRUE
JU3280 50.07182 14.42333 FALSE

5Does this strain have the same 111 bp deletion as CB4856?
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JU3282 50.0711 14.42028 FALSE
MY1 52.54 7.31 TRUE
MY10 51.96 7.53 TRUE

MY2453 51.950777 7.536628 FALSE
MY2585 54.346355 10.117737 FALSE
MY2693 54.3491 10.11505 FALSE
MY2713 54.3491 10.11505 FALSE
MY2741 54.3491 10.11505 FALSE

NIC1 43.279 5.3543 TRUE
NIC251 38.66621 -28.151364 TRUE
NIC260 38.71829 -9.14875 TRUE
NIC265 38.71829 -9.14875 TRUE
NIC275 39.769459 -8.756356 FALSE
PB303 None None FALSE

QG2841 -28.2446 153.2063 TRUE
QG2875 -27.3672 152.1834 FALSE
QG536 37.7679 -122.4415 FALSE
QW947 -33.4213 -70.6106 TRUE
QX1211 37.7502 -122.4331 TRUE
RC301 47.99 7.84 FALSE

WN2002 51.975285 5.694834 FALSE
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5 Gene-by-environment interactions influence docetaxel responses in

Caenorhabditis elegans

5.1 PREFACE

When I joined the lab in the summer of 2016, we had a large collection of QTL from which I could

choose one (or more) to follow up on in more detail. Throughout that summer and fall, I began testing

a variety of these toxins to see if there was any “low-hanging fruit.” Out of the 14 drugs I tested, I

decided to write my qualification exam on docetaxel and zinc. I chose docetaxel because there was a

large and reproducible parental split between N2 and CB4856 and both NILs validated the QTL effect

on chromosome IV. I spent two years chasing down this QTL and getting pre-emptively excited about

potential candidate genes (like ttll-11). Unfortunately, in June 2018 the worms stopped growing in our

assays and no one could explain why. I spent my summer troubleshooting the issue and decided that

the lysate we had been using since 2013 must have expired and is no longer supporting nematode

growth. Lucky for us, our collaborator, Dr. Charlie Baer, had the potential to save us: 300 grams of the

precious HB101 lysate from 2013, preserved in his freezer in Florida. In the fall of 2018 I tested my

strains with his lysate and was ecstatic to find that the worms grew as I had seen before! However, they

grew so well that the docetaxel effect I had been chasing disappeared. I developed what I called the

“lysate hypothesis”, that the quality of our precious lysate had been deteriorating over the years and

had reached a point of no return. Although crushing, these results were transformative for the lab – we

began to search for a new, reproducible food source for all future assays. More importantly, I believe

that the end of this project marked the beginning of my scientific independence. It taught me to trust in

myself and to always investigate inconsistencies, because they are likely telling us about biology!

5.2 ABSTRACT

Docetaxel is a commonly used chemotherapeutic drug in many different types of cancer and acts by

inhibiting essential microtubule dynamics in actively growing cells that eventually leads to cell death.

Although effective against cancer, docetaxel treatment can be associated with severe, patient-specific
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side-effects that are difficult to predict. This variation in patient response to docetaxel can be attributed

to both environmental factors, such as diet and exercise, and genetic factors, such as variation in

proteins involved in drug transport or metabolism. Here, we use the roundworm nematode

Caenorhabditis elegans to identify genetic variation on the center of chromosome IV that is associated

with the nematode’s variation in response to docetaxel. We used near-isogenic lines to validate a 1.8

Mb region on chromosome IV containing the microtubule-regulating gene rmd-4 among other

candidate genes. Finally, we show that environmental factors, such as food quality, strongly contribute

to the docetaxel response in C. elegans and we further identified several important

gene-by-environment interactions. This study highlights the importance of a constant environment

when studying the genetic architecture of complex traits and provides evidence for the existence of

strong gene-by-environment interactions in nematode drug responses.

5.3 INTRODUCTION

Cancer is among the leading causes of death worldwide and is commonly treated by surgery,

radiation, and chemotherapy [279]. Many common chemotherapeutics induce apoptosis by targeting

and disrupting essential cellular functions, often resulting in severe side-effects. Many drugs that are

currently available are treated as “one size fits all”, yet patients exhibit varying degrees of success that

are difficult, or even impossible, to predict [280]. In most cases, both environmental and genetic

factors contribute to this inter-individual variability in drug response. These environmental factors,

such as diet and exercise, are often difficult to identify and control among patients. Alternatively, we

can use several powerful genetic tools to correlate genetic variation to differences in drug responses

across populations. The growing field of pharmacogenomics research attempts to identify genetic

variation that underlies differences in drug import and export, metabolism, interaction with targets,

excretion, and any other mechanism that can result in variable physiological responses [280].

Correlating this genetic variation to a specific response is the first step in the development of safe and

effective treatments tailored to a person’s genetic makeup.

Docetaxel is a chemotherapeutic drug with effective antitumor activity against many cancers

including breast, head and neck, stomach, prostate, and non-small cell lung cancer [281]. Among
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other functions, docetaxel promotes microtubule assembly and stabilization which inhibits microtubule

dynamics essential for cell division and results in cellular apoptosis [282]. Despite its widespread use,

variation in patient response to docetaxel is still a major limiting factor with dose-limiting side effects

that include neutropenia, anemia, asthenia, and skin toxicity [283]. These side effects have been

loosely linked to genetic variation in various drug transporters [283, 284, 285] and enzymes involved in

the metabolism of docetaxel [283, 286, 287, 288, 289], however the correlation is not strong enough to

merit FDA-approval of genetic biomarkers for docetaxel response.

The nematode roundworm Caenorhabditis elegans has numerous advantages that contribute to its

power as a model organism to study genetic variation. C. elegans is easily maintained in the

laboratory, has a quick generation time, and produces large amounts of genetically identical offspring

[87]. C. elegans also has a small and highly annotated genome that contains homologs for 60-80% of

human genes [55]. Importantly, many prominent pathways that are misregulated in cancer or targeted

by therapeutics including Ras/MAPK, Wnt, Notch, TGF-β, and insulin signaling pathways are

conserved in these nematodes [56]. In fact, many of these fundamental pathways were first identified

and characterized in C. elegans, prompting future studies in mammalian systems [57]. Furthermore,

access to 328 genetically divergent wild isolates provide high statistical power to connect quantitative

genetic variation to phenotypic traits [120, 68, 134, 70, 71, 76].

Two strains of C. elegans, the Bristol laboratory-adapted strain, N2, and a wild isolate from Hawaii,

CB4856, are highly genetically divergent, containing more than 300,000 single nucleotide variants

(SNVs) and over 80,000 insertion or deletion events between the strains [60, 62]. A large panel of

recombinant inbred advanced intercross lines (RIAILs) have been generated from a series of crosses

between these two strains [68, 78], providing us with a powerful genetic tool to identify genomic

regions that are correlated to a phenotype of interest. This tremendous genetic diversity has been

found to affect many different traits including, but not limited to, aggregation behavior, growth rate, and

response to various drugs [130, 147, 133, 117, 70, 72, 71, 73, 100, 108, 35, 149, 125, 128, 115, 74,

127, 132, 112, 119, 81, 103, 102, 80, 161, 86, 85].

Here, we show that phenotypic variation between N2 and CB4856 in response to the

chemotherapeutic docetaxel correlates with genetic variation on the center of chromosome IV. We use
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near-isogenic lines (NILs) to validate and narrow this QTL to a 1.8 Mb region containing over one

hundred candidate genes including the putative microtubule-regulating gene rmd-4. However,

throughout the course of the NIL validation experiments, the quality of the food source, otherwise held

constant, was shown to deteriorate. We identified a significant interaction between genotype (N2 and

CB4856) and food quality that severely impacted our ability to identify the quantitative trait gene

underlying the chromosome IV locus. This study highlights the importance of a constant and

reproducible environment, especially when studying traits with low effect sizes.

5.4 METHODS

5.4.1 Strains

Animals were grown at 20°C on modified nematode growth media (NGMA) containing 1% agar and

0.7% agarose to prevent burrowing and fed OP50 [100]. The two parental strains, the canonical

laboratory strain, N2, and the wild isolate from Hawaii, CB4856, were used to generate 247

recombinant inbred advanced intercross lines (RIAILs) [68]. Near-isogenic lines (NILs) were generated

by backcrossing a selected RIAIL or NIL for several generations to the parent strain (N2 or CB4856)

[72] using PCR amplicons for insertion-deletion (indels) variants to track the introgressed region. NILs

were whole-genome sequenced to verify introgressions were only in the targeted genomic intervals.

All strains are available upon request or from the C. elegans Natural Diversity Resource [63].

5.4.2 High-throughput phenotyping assay

For all phenotyping assays, we used a high-throughput fitness assay described previously [68]. In

summary, populations of each strain were passaged and amplified on NGMA plates for four

generations. In the fifth generation, gravid adults were bleach-synchronized and 25-50 embryos from

each strain were aliquoted into 96-well microtiter plates at a final volume of 50 µL K medium [173].

The following day, arrested L1s were fed HB101 bacterial lysate (Pennsylvania State University

Shared Fermentation Facility, State College, PA; [174]) at a final concentration of 5 mg/mL in K

medium and were grown to the L4 larval stage for 48 hours at 20°C with constant shaking. Three L4
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larvae were sorted into new 96-well microtiter plates containing 10 mg/mL HB101 bacterial lysate, 50

µM kanamycin, and either 1% DMSO or docetaxel dissolved in 1% DMSO using a large-particle flow

cytometer (COPAS BIOSORT, Union Biometrica; Holliston, MA). Sorted animals were grown for 96

hours at 20°C with constant shaking. The next generation of animals and the parents were treated with

sodium azide (50 mM in 1X M9) to straighten their bodies for more accurate length measurements.

Animal length (median.TOF), optical density integrated over animal length (median.EXT), and brood

size (norm.n) were quantified for each well using the COPAS BIOSORT. Nematodes get longer

(animal length) and become thicker and more complex (optical density) over developmental time.

Because animal length and optical density are highly correlated, we calculated a fourth trait

(median.norm.EXT) that normalizes optical density by animal length (median.EXT / median.TOF).

Phenotypic measurements collected by the BIOSORT were processed and analyzed using the R

package easysorter [77] as described previously [72]. Differences among strains within the control

conditions were controlled by subtracting the mean control-condition value from each drug-condition

replicate for each strain using a linear model drug_phenotype ∼ mean_control_phenotype. In this

way, we are addressing only the differences among strains that were caused by the drug condition and

the variance in the control condition does not affect the variance in the drug condition. For NIL assays,

complete pairwise strain comparisons were performed on drug residual phenotypes using a

TukeyHSD function [175] on an ANOVA model with the formula phenotype ∼ strain.

5.4.3 Dose response assay

Four genetically divergent strains (N2, CB4856, JU258, and DL238) were treated with increasing

concentrations (0 µM, 2.5 µM, 5 µM, and 10 µM) of docetaxel (Fluka; #01885-5MG-F) in 1% DMSO

using the high-throughput phenotyping assay described above. A dose of 5 µM provided a

reproducible drug-specific effect that maximized between-strain variation while minimizing within-strain

variation across the four traits and was selected for the linkage mapping experiments. Broad-sense

heritability was calculated from the dose response phenotypes using the lmer function in the lme4 R

package [212] with the formula phenotype ∼ 1 + (1|strain) for each dose.
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5.4.4 Linkage mapping

247 RIAILs were phenotyped docetaxel and DMSO using the high-throughput phenotyping assay

described above. Linkage mapping was performed using the R package linkagemapping

(https://github.com/AndersenLab/linkagemapping) as described previously [72]. The cross object

derived from the whole-genome sequencing of the RIAILs containing 13,003 SNPs was loaded using

the function load_cross_obj(“N2xCB4856cross_full”). The RIAIL phenotypes were merged into the

cross object using the merge_pheno function with the argument set = 2. A forward search (fsearch

function) adapted from the R/qtl package [176] was used to calculate the logarithm of the odds (LOD)

scores for each genetic marker and each trait as −n(ln(1 − R2)/2ln(10)) where R is the Pearson

correlation coefficient between the RIAIL genotypes at the marker and trait phenotypes [27]. A 5%

genome-wide error rate was calculated by permuting the RIAIL phenotypes 1000 times. The marker

with the highest LOD score above the significance threshold was selected as the QTL then integrated

into the model as a cofactor and mapping was repeated iteratively until no further significant QTL were

identified. Finally, the annotate_lods function was used to calculate the effect size of each QTL and

determine 95% confidence intervals defined by a 1.5 LOD drop from the peak marker using the

argument cutoff = “chromosomal”.

5.4.5 Genotype-by-environment interactions

To identify significant components of the phenotypic variance, including GxE interactions, we performed

a one-way analysis of variance (ANOVA) test using the anova function in the stats package in R. The

results from each ANOVA analysis are listed in the Supplemental Tables (Tables S1-S3). We calculated

the percent of the total phenotypic variation that could be explained by a single factor or interaction by

dividing the sum squares of the factor by the total variance defined as the sum of the sum squares of

all factors. Terms were considered significant with a p-value < 0.05, and all statistics were reported.
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5.4.6 Modified high-throughput fitness assay

A modified version of the standard high-throughput assay detailed above was used to test docetaxel

response as previously described [72, 69]. Briefly, strains were propagated for two generations, bleach-

synchronized, and titered at a concentration of 25-50 embryos per well of a 96-well microtiter plate.

Arrested L1s were fed HB101 bacterial lysate the following day at a final concentration of 5 mg/mL with

either DMSO or docetaxel in DMSO. After 48 hours of growth at 20°C with constant shaking, nematodes

were treated with sodium azide (5 mM in water) prior to analysis of animal length and optical density

using the COPAS BIOSORT. Because only one generation of growth was observed, brood size was not

calculated.

5.5 RESULTS

5.5.1 Genetic variation on chromosome IV influences animal length in response to docetaxel

We measured C. elegans development and docetaxel sensitivity as a function of animal length

(median.TOF), optical density (median.EXT), and brood size (norm.n) with a high-throughput assay

developed with the COPAS BIOSORT (See Methods) [70, 72, 73, 71, 68]. Because optical density is

calculated as a function of length, these traits are highly correlated. We calculated a fourth trait

(normalized optical density; median.norm.EXT) that normalizes optical density by length, providing a

value for the animal density that is independent of length. We exposed four genetically divergent

strains (N2, CB4856, JU258, and DL238) to increasing doses of docetaxel. In the presence of the

drug, nematodes were generally smaller, less optically dense, and produced smaller broods compared

to non-treated nematodes (Figure 5-1). We also observed significant phenotypic variation among

strains and identified a substantial heritable genetic component for most traits (average H2 = 0.55).

We exposed a panel of 247 RIAILs generated from the N2 and CB4856 parental strains [68] to

docetaxel at a concentration of 5 µM that both maximizes among-strain and minimizes within-strain

phenotypic variation. Linkage mapping for all four traits identified a total of 13 QTL on chromosomes I,

IV, V, and X. Brood size in response to docetaxel had a significant QTL on the center of chromosome

I (Figure S5-1). The remaining three developmental traits shared a large-effect QTL on the center
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Figure 5-1: Docetaxel dose response. For each trait, drug concentration (µM) (x-axis) is plotted against drug phenotype
subtracted from control phenotype (y-axis), colored by strain (CB4856: blue, DL238: green, JU258: purple, N2: orange). A
red asterisk indicates the dose selected for linkage mapping analysis.

of chromosome IV and a low-effect QTL on the right of chromosome X (Figure 5-2, Figure S5-1).

Additionally, normalized animal optical density had a large-effect QTL that mapped to the right arm of

chromosome I, not overlapping with the QTL observed for brood size (Figure S5-1).

To isolate the large-effect QTL on chromosome IV, we generated near-isogenic lines (NILs) by

introgressing the CB4856 genome on the center of chromosome IV into the N2 genetic background or

vice versa. Although the N2 parent is shorter in docetaxel than the CB4856 parent (Figure 5-1), the

N2 allele on chromosome IV is associated with longer animal lengths in the RIAIL panel compared to

the CB4856 allele at this position (Figure 5-2). For this reason, we would expect that the NIL with the

CB4856 genetic background and N2 introgression on chromosome IV would be hyper-resistant

compared to both parental strains. We exposed both parental strains and the reciprocal NILs to

docetaxel and measured animal lengths. Surprisingly, we saw a significant and reproducible switch in

the animal lengths of the parental strains (Figure 5-3). The N2 strain now had a longer length than the

CB4856 strain in response to docetaxel. Although unexpected, these results were reproduced several
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Figure 5-2: Linkage mapping results for animal length in docetaxel. (A) Linkage mapping results for animal length
(median.TOF) is shown. Genomic position (x-axis) is plotted against the logarithm of the odds (LOD) score (y-axis) for 13,003
genomic markers. Each significant QTL is indicated by a red triangle at the peak marker, and a blue rectangle shows the
95% confidence interval around the peak marker. The percentage of the total variance in the RIAIL population that can be
explained by each QTL is shown above the QTL. (B) For each QTL, the relative animal length (y-axis) of RIAILs split by
genotype at the marker with the maximum LOD score (x-axis) are plotted as Tukey box plots. Each point corresponds to a
unique recombinant strain. Strains with the N2 allele are colored orange and strains with the CB4856 allele are colored blue.

times over different experimental conditions and with higher replication than the dose response assay.

Regardless of the discrepancy between the parental effect, the NILs clearly showed evidence

validating the QTL on chromosome IV. The strain with N2 introgressed into CB4856 (ECA599) is

significantly longer than the CB4856 parent and the strain with CB4856 introgressed into N2 (ECA597)

is significantly shorter than the N2 parent (Figure 5-3).

To narrow this QTL, we created a panel of NILs with smaller introgressions by backcrossing

ECA599 to CB4856 and looking for recombination events. We selected three NILs that tile across the

introgressed region in ECA599 and measured animal length of these strains in response to docetaxel

(Figure 5-4). Strains with the N2 allele at the QTL should be longer than strains with the CB4856
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Figure 5-3: NILs validate that the N2 allele on chromosome IV confers resistance to docetaxel. (A) Strain genotypes
are shown as colored rectangles (N2: orange, CB4856: blue) in detail for chromosome IV (left) and in general for the rest of
the chromosomes (right). The solid vertical line represents the peak marker of the QTL and the dashed vertical lines represent
the confidence interval. (B) Relative animal length in docetaxel (median.TOF, x-axis) is plotted as Tukey box plots against
strain (y-axis). Statistical significance of each NIL compared to its parental strain (ECA597 to N2 and ECA599 to CB4856) is
shown above each strain and colored by its parental strain (ns = non-significant (p-value > 0.05); *, **, ***, and *** = significant
(p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).

allele at this locus. We identified a 2 Mb region (IV:3,707,051-5,864,172) isolated within ECA675 that

produced the same resistant phenotype as our original NIL, ECA599. Because the strain ECA673 has

a sensitive phenotype like the CB4856 parental strain, we can narrow the QTL slightly to exclude the

overlapping introgressed region between ECA675 and ECA673 resulting in a 1.8 Mb region

(IV:3,707,051-5,531,970) containing 744 genes. Because we are assessing phenotypic variation

caused by genetic variation, we can ignore 489 genes in this interval without genetic variation in

CB4856. Of the 255 remaining genes, only 90 have variation that is predicted to cause a change in the

amino acid sequence of the protein. In addition to protein-coding variation, phenotypic variation can

also be caused by genetic variation leading to gene expression differences between strains. Using an

expression QTL (eQTL) dataset previously generated from a separate set of N2xCB4856 RIAILs

[78, 115, 184], we identified 115 genes with gene expression differences that mapped to genetic

variation in this region. It is possible that one of these genes with protein-coding variation or an eQTL

in this region is causing the differences observed in animal length in docetaxel between the N2 and

CB4856 strains.
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Figure 5-4: NILs narrow the QTL to a 2 Mb region. (A) Strain genotypes are shown as colored rectangles (N2: orange,
CB4856: blue) in detail for chromosome IV (left) and in general for the rest of the chromosomes (right). The solid vertical line
represents the peak marker of the QTL and the dashed vertical lines represent the confidence interval. (B) Relative animal
length in docetaxel (median.TOF, x-axis) is plotted as Tukey box plots against strain (y-axis). Statistical significance of each
NIL compared to CB4856 is shown above each strain (ns = non-significant (p-value > 0.05); *, **, ***, and *** = significant
(p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).

To narrow our list of candidate genes further, we next analyzed the functional descriptions and GO

annotations for all genes in the region and all genes with an eQTL that maps to this region. Because

docetaxel is known to inhibit microtubule dynamics, we first searched for genes related to microtubules.

From this search, we found one gene in particular, rmd-4, that is an ortholog of the human genes

RMDN2 and RMDN3 that function as regulators of microtubule dynamics (Wormbase.org). RIAILs

with the N2 allele on chromosome IV have higher expression of rmd-4 (Figure 5-5) and are more

resistant to docetaxel (Figure 5-2B) than RIAILs with the CB4856 allele, suggesting that expression

of rmd-4 could be associated with increased resistance to docetaxel. Although the exact function of

rmd-4 is unknown, the homolog rmd-1 has been shown to promote microtubule growth and plays a role

in regulating proper chromosome segregation [290]. A review of the literature provides no evidence

that expression of RMDN2 or RMDN3 has been previously associated with patient response to either

docetaxel or the closely related drug, paclitaxel. Regardless, variation in expression of rmd-4 might
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influence the nematode’s response to docetaxel.

Figure 5-5: Expression QTL mapping for rmd-4. (A) Results from linkage mapping analysis using expression of rmd-4
as a quantitative trait. Genomic position (x-axis) is plotted against the logarithm of the odds (LOD) score (y-axis) for 13,003
genomic markers. Each significant QTL is indicated by a red triangle at the peak marker, and a blue rectangle shows the
95% confidence interval around the peak marker. The percentage of the total variance in the RIAIL population that can be
explained by each QTL is shown above the QTL. (B) For the chromosome IV QTL, the expression of rmd-4 (y-axis) in RIAILs
split by genotype at the marker with the maximum LOD score (x-axis) are plotted as Tukey box plots. Each point corresponds
to the relative expression of a unique recombinant strain. Strains with the N2 allele are colored orange, and strains with the
CB4856 allele are colored blue.

5.5.2 Environmental variation of food quality dictates drug-response traits

For all experiments from dose responses to NIL validations, an HB101 lysate collected from a single

prep at Pennsylvania State University’s Shared Fermentation Facility (see Methods) was used in an

attempt to eliminate environmental variation introduced by independent bacterial preps. However, in

June 2018, this lysate prep appeared to expire and no longer produced healthy L4s within 48 hours

after feeding a population of starved L1s (Figure 5-6). Because we know that different bacterial foods

can drastically affect the C. elegans response to chemotherapeutics [174], we borrowed an aliquot of

the same HB101 lysate from the Baer lab (University of Florida; Gainesville, FL) to continue

performing experiments. We found that this lysate performed similarly to the lysate used in our

previous experiments and produced healthy-sized L4 nematodes after 48 hours (Figure 5-6). We then

used this lysate to measure animal lengths in docetaxel for N2, CB4856, and two of the NILs with a

previously defined response (ECA599 and ECA672). Surprisingly, we discovered that the CB4856
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strain was longer (more resistant) than the N2 strain in response to docetaxel (Figure 5-7). This

parental effect matches that seen in the original dose response assay, but is opposite from what we

previously observed with the NILs (Figure 5-3, Figure 5-4). More importantly, the NILs that used to

confer resistance to docetaxel (Figure 5-3, Figure 5-4) were just as resistant as the CB4856 parent

(Figure 5-7). If CB4856 is resistant and the N2 allele on chromosome IV is also resistant, we would

expect the NILs with the N2 introgression to be hyper-resistant compared to CB4856. This suggests a

lack of evidence for the validation of the chromosome IV QTL in response to docetaxel.

Figure 5-6: Nematodes grown in the bad lysate do not reach L4 stage within 48 hours after feeding. Animal length 48
hours post feed (y-axis) is plotted as Tukey box plots for N2 (orange) and CB4856 (blue) across three experimental conditions
(x-axis). The horizontal dashed line represents the average length of an L4 nematode.

The inconsistency in the parental effect in response to docetaxel could be a direct result of a

genotype-by-environment (GxE) interaction with the quality of the HB101 lysate. The parental effect in

the “good quality” HB101 lysate used in the dose response and linkage mapping experiment matches

the parental effect in the “good quality” HB101 lysate borrowed from the Baer lab. We hypothesized

that sometime between the linkage mapping experiment (2014) and the NIL validation (2016), the
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quality of our HB101 lysate began to deteriorate, resulting in “medium quality” lysate. With this

“medium quality” lysate, we saw an opposite parental effect compared to the “good quality” lysate. In

June 2018, this deterioration hit a new low at which point the nematodes were no longer able to grow,

resulting in “bad quality” lysate. This hypothesis is summarized in Figure 5-8.

Figure 5-7: An older aliquot of the same HB101 lysate changes the parental response to docetaxel. (A) Strain
genotypes are shown as colored rectangles (N2: orange, CB4856: blue) in detail for chromosome IV (left) and in general
for the rest of the chromosomes (right). The solid vertical line represents the peak marker of the QTL and the dashed vertical
lines represent the confidence interval. (B) Relative animal length in docetaxel (median.TOF, x-axis) is plotted as Tukey box
plots against strain (y-axis). Statistical significance of each NIL compared to CB4856 is shown above each strain (ns =
non-significant (p-value > 0.05); *, **, ***, and *** = significant (p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).

5.5.3 The growth-response QTL on chromosome IV responds to environmental variation

Previous studies have reported a growth-response QTL between the N2 and CB4856 strains on the

center of chromosome IV [68]. We hypothesized that this growth-response QTL might be driving the

growth dynamics in the different food qualities. To test if the same growth-response QTL is present in

the DMSO control for our assay, we performed linkage mapping analysis for the four primary

growth-response traits (median.TOF, median.EXT, norm.n, and median.norm.EXT) as well as

summary statistics of the population (q10, q25, median, mean, q75, and q90). Of these 20 traits, 11
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Figure 5-8: The lysate hypothesis (GxE interactions). Timeline of docetaxel experiments showing the parental effect and
a proposed lysate quality (good, medium, and bad).

have a significant QTL in one of four distinct regions on chromosomes II, IV, V, and X (Figure 5-9). In

particular, the QTL on chromosome IV overlaps with the docetaxel-response QTL. The

growth-response QTL shows that RIAILs with the N2 allele have a higher brood, smaller length, and

are less optically dense compared to RIAILs with the CB4856 allele (Figure 5-9). Although differences

between strains in DMSO are accounted for in our experiments with a linear regression (see

Methods), this overlap could still make it difficult to correctly interpret our results.

Because genetic variation on the center of chromosome IV controls both responses to docetaxel and

the general growth response in control conditions, we hypothesized that the observed GxE interaction

could exist in either control or drug conditions. We investigated the potential GxE interactions in both

DMSO and docetaxel for three of our previous assays (dose response (2014), NIL validation (2017),

and NIL validation using lysate aliquot from the Baer lab (2018)) using the different HB101 lysates

as different environmental conditions. In the DMSO control, we see decreasing animal length for the
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Figure 5-9: Growth-response QTL in DMSO control. Linkage mapping results for 20 growth-response traits identifying 18
QTL from 11 traits in response to DMSO are plotted. Genomic position (Mb) is shown along the x-axis, split by chromosome,
and each of the traits with a significant QTL is plotted along the y-axis. Each QTL is plotted as a triangle at the location of
the most significant genetic marker and a line indicating the 95% confidence interval. QTL with right side up triangles have
a negative effect size (N2 allele is resistant), and QTL with upside down triangles have a positive effect size (CB4856 allele
is resistant). QTL are colored by the logarithm of the odds (LOD) score, increasing in significance from purple to green to
yellow. Dotted vertical lines represent the NIL-defined confidence interval of the docetaxel-response QTL.

CB4856 strani from the dose lysate to the NIL lysate, and again to the Baer lysate (Figure 5-10A).

Interestingly, we see a different response from the N2 strain. Although N2 also decreases in length

between the dose and NIL lysates, it does so at a greater slope than the CB4856 strain. The N2 strain

was longer than the CB4856 strain in the dose lysate and significantly shorter than the CB4856 strain

in the NIL lysate (Figure 5-10A). Furthermore, the N2 strain again performs better than the CB4856

strain in the Baer lysate, falling intermediate to its dose and NIL phenotypes (Figure 5-10A).

We next performed an analysis of variance (ANOVA) test to compare the effect of genotype, food,

and the interaction between genotype and food on the nematode growth in DMSO conditions (Table 5-

1, see Methods). In this model, the effect of genotype explained only 1% of the variation in phenotype
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Figure 5-10: Reaction norm plots identify significant GxE interactions. (A) Average animal length (y-axis) in response
to DMSO (left) and docetaxel (right) is plotted for N2 (orange) and CB4856 (blue) across multiple experimental conditions (x-
axis). (B) Average animal length (y-axis) in response to DMSO and docetaxel (x-axis) is plotted for N2 (orange) and CB4856
(blue) across multiple experimental conditions. GxE interactions can be visualized as a difference in slopes between two
conditions for N2 and CB4856.

(p-value = 0.065). Alternatively, 15% of the variation in phenotype can be explained by food quality

(p-value = 6.5e-11) and 19% of the variation in phenotype can be explained by the GxE interaction

between food quality and genotype (p-value = 2.7e-13). Together, these data indicate a statistically

significant GxE interaction between the animal length of the N2 and CB4856 strains in DMSO and the

quality of the lysate.
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Table 5-1: Results of ANOVA testa of genotype, food quality, and genotype-by-food interaction on length in DMSO

DF Sum Sq Mean Sq F value P value
Strain 1 2685 2685.2 3.4357 0.06514
Food 2 40863 20431.7 26.1420 6.517e-11

Strain:Food 2 51705 25852.5 33.0779 2.756e-13
Residuals 220 171944 781.6 NA NA

aanova(lm(phenotype ∼ strain+ food+ strain ∗ food, data = DMSO_phenotypes))

The same general shape is seen for N2 in response to docetaxel, with the NIL lysate producing

the smallest animal lengths (Figure 5-10A). Surprisingly, this same shape is also observed in CB4856,

differing from the strain’s response to the DMSO control. In fact, the animal length of CB4856 in

docetaxel is actually greater than the animal length of CB4856 in DMSO with the Baer lysate (Figure 5-

10A). We again performed a one-way ANOVA to test the effect of genotype, food quality, and interaction

between genotype and food on animal length in docetaxel (Table 5-2). We discovered that 81% of the

variation in phenotype in docetaxel could be explained by the food quality (p-value = 2.2e-16). Unlike

in DMSO conditions, the effect of the GxE interaction between strain and food quality was negligible

(1.8%, p-value = 6.1e-6). The observed difference in responses between the DMSO and docetaxel

conditions provide evidence that the response to docetaxel might still be separate from the response to

DMSO.

Table 5-2: Results of ANOVA testa of genotype, food quality, and genotype-by-food interaction on length in docetaxel

DF Sum Sq Mean Sq F value P value
Strain 1 7611 7611 17.904 3.428e-05
Food 2 484376 242188 569.705 <2.2e-16

Strain:Food 2 10797 5399 12.700 6.085e-06
Residuals 217 92249 425 NA NA

aanova(lm(phenotype ∼ strain+ food+ strain ∗ food, data = docetaxel_phenotypes))

We next looked for GxE interactions between DMSO and docetaxel across the three environmental

conditions and found evidence of an interaction in every case (Figure 5-10B). If the N2 strain was

resistant in DMSO, the CB4856 strain would be resistant in docetaxel. Similarly, if the CB4856 strain

was resistant in DMSO, the N2 strain would be resistant in docetaxel. A one-way ANOVA (Table 5-3)

identified a statistically significant interaction between food quality and drug condition that can explain

19% of the total phenotypic variation (p-value < 2.2e-16). Together, these data suggest that the
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variation in DMSO phenotypes seen across the different food qualities is directly influencing the

docetaxel response. Overall, these results indicate that environmental conditions such as food quality

can drastically affect drug-response phenotypes. Because we can no longer replicate the food

conditions from the original mapping, it is impossible to validate and narrow this QTL in response to

docetaxel.

Table 5-3: Results of ANOVA testa of genotype, food quality, drug condition, and various interactions

DF Sum Sq Mean Sq F value P value
Strain 1 340 340 0.4696 0.493548

Condition 1 161549 161549 223.4059 <2.2e-16
Food 2 330317 165159 228.3970 <2.2e-16

Strain:Food 2 7521 3761 5.2005 0.005858
Strain:Condition 1 11197 11197 15.4839 9.671e-05
Condition:Food 2 195136 97568 134.9261 <2.2e-16

Residuals 439 317450 723 NA NA

aanova(lm(phenotype ∼ strain+ condition+ food+ strain ∗ food+ strain ∗ condition+ food ∗ condition))

5.5.4 Modified high-throughput assay does not facilitate candidate gene testing

Although the bacterial lysate could no longer provide satisfactory nutrition for 96 hours of growth, we

showed that it was still sufficient to produce healthy L4 nematodes after 48 hours (Figure 5-6). In

attempt to circumvent the problem observed with growth over 96 hours, we developed a modified assay

where animals were grown for 48 hours, from L1 to L4, in the presence of docetaxel and then analyzed

for the developmental traits animal length (median.TOF), optical density (median.EXT), and normalized

optical density (median.norm.EXT) [69]. We treated the parental strains (N2 and CB4856) and two NILs

with previously defined phenotypes (ECA599 and ECA672) to increasing concentrations of docetaxel

(Figure 5-11). In this modified assay, we observed a dose-dependent response to docetaxel for all

three traits. Interestingly, the N2 strain showed higher resistance to docetaxel compared to the CB4856

strain, as seen with our original NIL assays. If the N2 strain is resistant to docetaxel and the N2 allele

on chromosome IV is also associated with docetaxel resistance, we would expect that the NILs with the

N2 introgressions in the CB4856 genetic background would be intermediate in resistance compared to

the N2 and CB4856 strains. However, these NILs were both more sensitive than either parental strain

(Figure 5-11). These results suggest that this modified assay would not be useful in testing candidate
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genes, like rmd-4, underlying the docetaxel response.

Figure 5-11: Modified high-throughput assay does not capture phenotypic differences between N2 and CB4856
strains on chromosome IV. Results from the docetaxel dose response modified HTA for animal length (median.TOF),
animal optical density (median.EXT), and normalized optical density (median.norm.EXT) are shown. For each trait, drug
concentration (uM) (x-axis) is plotted against the phenotype subtracted from control (y-axis) and colored by strain.

5.6 DISCUSSION

Here, we showed that phenotypic variation in response to the chemotherapeutic docetaxel maps to

genetic variation on the center of chromosome IV. Using a medium quality of our HB101 lysate, we

were able to narrow the QTL to a 1.8 Mb region containing the microtubule-regulating gene rmd-4.

However, we discovered that this trait is highly susceptible to changes in the environment, such as

food quality. In a post hoc analysis, we retrospectively identified significant GxE interactions between

animal length in the DMSO control across three different lysate qualities for the N2 and CB4856 strains.

We hypothesize that this variation in phenotype in DMSO is causing the inconsistencies seen in the

docetaxel response between assays. However, we also provide evidence of a docetaxel response

independent of the DMSO response. Without access to the same quality of lysate used in the linkage

mapping experiments, we were not able to validate and narrow this QTL further. Regardless, we stress
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the importance of using a stable food source when performing quantitative experiments.

The overlap between the QTL for control and drug conditions might create added complexity when

trying to identify causal genetic variation. We attempt to account for any strain-to-strain variation in

control conditions by performing a linear regression that subtracts the control phenotype from the drug

phenotypes. In the RIAILs, there is a weak correlation between animal optical densities (mean.EXT:

rho = −0.18, p = 0.0036) in DMSO and docetaxel. This correlation, although weak, might make it

difficult to analyze the effect of docetaxel outside of the DMSO effect. This is certainly seen in our NIL

assays where major variation in animal length in DMSO might influence the docetaxel phenotype.

Isolating the DMSO QTL could be useful to further investigate docetaxel response. However,

preliminary studies using NILs on the center of chromosome IV suggest that several loci contribute to

the differential growth response.

Regardless of any GxE interactions observed, it is likely that genetic variation on the center of

chromosome IV does impact docetaxel responses in C. elegans. However, it is obvious that genes

play different roles in the docetaxel response based on the environmental conditions (i.e. food quality).

Several studies have investigated the role of diet on drug metabolism and transport, particularly

implicating that cytochrome P450 genes might be sensitive to changes in diet [291]. There are about

80 cytochrome P450 genes in C. elegans, four of which are contained within the conservative genomic

interval defined by linkage mapping and two (cyp-25A6 and cyp-31A3) are found inside of the

NIL-defined confidence interval. Variation at one of these loci might be causing differential responses

to docetaxel.

5.7 FUTURE DIRECTIONS

Although unintended, this project highlights the very real and very interesting aspects of

gene-by-environment interactions. A great next step would be to directly test the impact of diet on

growth and drug responses (like docetaxel) in different genetic backgrounds (such as N2 and CB4856)

in an otherwise controlled environment. This different diet could be different strains of E. coli or the

same strain of E. coli with certain parameters altered. One could also start to think about changing

other environmental variables such as temperature or oxygen, however these could be more difficult.
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With reliable and replicable GxE interactions, one could perform a mapping to identify QTL that

overlap between environments compared to QTL that are different between environments. These

environment-specific QTL might provide additional insight into the complexity of inter-individual drug

responses.

Unfortunately, because this phenotype seemed to be dependent on the food source and we no

longer have the same food, it does not make sense to continue to follow this QTL. In order to learn more

about how genetic variation impacts docetaxel responses in C. elegans, I believe it would be necessary

to redo the QTL mapping fresh with a new and reproducible food source. Members of the Andersen

Lab (mostly myself, Joy Nyaanga, and Dr. Tim Crombie) have worked hard to develop a new protocol

for growing large-scale HB101 E. coli at a stage and density that is favorable for nematode growth.

Using this protocol, new mappings could be performed with RIAILs and/or wild isolates to identify QTL.

Ideally, we would discover a QTL on the center of chromosome IV. This result would reassure us that

we were in fact chasing a docetaxel effect, not a food effect. No matter the location of the resulting QTL,

it might be important to also identify any growth QTL in control conditions and isolate this region before

fine-mapping with NILs.
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Figure S5-1: Linkage mapping results for docetaxel response. For each trait: (A) Linkage mapping results for is shown.
Genomic position (x-axis) is plotted against the logarithm of the odds (LOD) score (y-axis) for 13,003 genomic markers. Each
significant QTL is indicated by a red triangle at the peak marker, and a blue rectangle shows the 95% confidence interval
around the peak marker. The percentage of the total variance in the RIAIL population that can be explained by each QTL is
shown above the QTL. (B) For each QTL, the phenotype (y-axis) of RIAILs split by genotype at the marker with the maximum
LOD score (x-axis) are plotted as Tukey box plots. Each point corresponds to a unique recombinant strain. Strains with the
N2 allele are colored orange and strains with the CB4856 allele are colored blue.
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6 Genetic mapping of avermectin resistance in Caenorhabditis elegans

identifies two novel loci that overlap with resistance loci in

Haemonchus contortus

6.1 PREFACE

This project has been an orphan project in the lab for many years, passed between many hands. A

previous postdoc in the lab (Dr. Mostafa Zamanian) first started working on it with his highly talented

undergraduate, Grace Park. When he left to start his own lab, Grace continued to test NILs with the

help of Erik, myself, and Briana Rodrigez. Because progress was slow without someone working

on it full time, Dr. Shannon Brady and her talented undergraduate Ellen Chao began working on it

alongside Grace and I. I think this is a really exciting project because of the real-world applicability.

Many of my projects in the lab focus on cancer chemotherapeutics, which may or may not translate

to human medicine. However, much of what we know about parasite resistance to anthelmintics was

discovered in C. elegans. Furthermore, avermectins (abamectin for plants and ivermectin for humans

and animals) are one of the main classes of anthelmintics. My grandpa even treats his cattle with

Ivermectin! Resistance to these drugs is a growing problem and as there have been very few new

drugs on the market in the last few decades, discovering loci that confer resistance is a primary focus

of many research groups. I was lucky enough to be invited to give a talk about my contributions to this

project at the Anthelmintics IV: From Discovery to Resistance conference held in Santa Monica, CA

(Feb 2020). It was my first (and only) conference talk in graduate school and it was a great experience

that deepened my appreciation for this work.

6.2 ABSTRACT

Parasitic nematodes cause a huge economic burden to humans, livestock, and agriculture worldwide.

Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is

increasing, and little is known about the molecular and genetic causes of resistance. The free-living

roundworm Caenorhabditis elegans provides a tractable model to identify genomic regions that
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underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a

complete and well annotated genome, and has many genetic tools available for molecular assays.

Using a panel of recombinant inbred lines constructed from crosses of two genetically and

phenotypically divergent strains of C. elegans, we identified three genomic regions or quantitative trait

loci (QTL) on chromosome V that underlie variation in response to the avermectin abamectin. Each of

these loci acts additively on abamectin resistance. One QTL (glc-1) was identified previously and

encodes an alpha subunit of a glutamate-gated chloride channel. A second QTL overlaps with a

genomic region implicated in ivermectin resistance in the parasitic nematode Haemonchus contortus,

demonstrating the relevance of our approach. The third QTL does not overlap with any known

anthelmintic resistance loci and, therefore, could be unique to C. elegans or represent previously

unidentified resistance alleles shared with parasitic nematodes. Here, we validated and narrowed the

remaining two QTL using near-isogenic lines (NILs) and generated a list of prioritized candidate genes

to evaluate using CRISPR-Cas9-mediated genome editing. Our work highlights the advantages of

using C. elegans as a model to better understand avermectin resistance in parasitic nematodes.

6.3 INTRODUCTION

Parasitic nematodes, commonly termed helminths, pose a significant health and economic threat for

countries around the world [292, 293, 294]. A number of serious diseases have been linked to

parasitic nematode infections, many of which are traditionally underfunded. These diseases vary in

both symptoms and severity but commonly affect developing nations in tropical and subtropical

regions. It is estimated that almost two billion people suffer from infections with one or more species of

helminth [295], and the loss of disability-adjusted life years caused by helminths ranks among the top

of all Neglected Tropical Diseases [292]. In addition to their devastating impact on human health,

several parasitic nematode species can infect a variety of key crops and livestock. These infections

cause severe economic burdens worldwide [296].

Parasitic nematodes are largely treated using a limited number of anthelmintic drugs from one

of the three main drug classes: benzimidazoles, nicotinic agonists, and macrocyclic lactones. Most

anthelmintics are cheap and can efficiently eliminate parasitic nematodes from an infected individual
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[297]. However, the introduction of mass drug administration to treat populations in endemic regions,

combined with the lack of drug alternatives, has led to increased drug resistance [295]. This problem

is highly prevalent for species that infect various livestock, where several studies report a majority of

farms surveyed had anthelmintic-resistant nematodes [298, 299, 300]. In many cases, resistance has

been shown to have a highly heritable component, suggesting the evolution of anthelmintic-resistant

nematodes might occur under drug selection [141]. We must understand the drug mechanisms and

identify the genetic loci that contribute to drug resistance in parasitic nematodes to provide effective

long-term helminth treatments.

The avermectins abamectin and ivermectin are two common anthelmintic drugs used to treat

agricultural and veterinary or human parasitic nematode infections, respectively [297, 140]. However,

widespread resistance to avermectins has been reported and remains a significant concern [141].

Previous research has shown that avermectins target ligand-gated channels such as the

glutamate-gated (GluCl) and GABA-gated (GABACl) chloride channels [140, 141]. Studies in the

free-living nematode Caenorhabditis elegans have shown evidence that mutations in GluCl channels

confer drug resistance [141]. Despite these findings, several resistant parasitic nematode isolates

have been discovered and these isolates do not have mutations in genes that encode GluCl subunits,

suggesting that alternative mechanisms of resistance to avermectins must exist. Recently, advances

in quantitative trait loci (QTL) mapping in numerous species have identified several genomic regions of

interest containing genetic variation that confers drug resistance [301, 302, 303, 304, 74, 75].

However, the identification of specific genes or variants can be challenging in most species [22].

It is difficult to identify the molecular basis of drug resistance in parasitic nematodes for several

reasons. First, their life-cycles are long, complicated, and costly, often requiring the use of a host

organism [305, 304]. Second, most species do not have chromosome-level and annotated genomes.

To date, the most complete genome is from Haemonchus contortus, enabling genetic mapping and

comparative genomic approaches [301]. Finally, most species lack several key molecular and genetic

tools such as CRISPR-Cas9 genome editing [305]. By contrast, the free-living nematode C. elegans

has a short life cycle that is easy to grow in the laboratory, a well annotated reference genome, and a

plethora of molecular and genetic tools to characterize anthelmintic responses [75, 120, 74, 306, 99].
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Genetic screens and selections performed in the laboratory-adapted reference strain, N2, have

identified three GluCl channels (glc-1, avr-14, and avr-15) that mediate avermectin resistance in C.

elegans [141]. Access to 328 genetically and phenotypically diverged wild strains of C. elegans

collected around the world could identify other loci that contribute to avermectin resistance across

natural populations [120, 75, 63].

Here, we use linkage mapping analysis to identify three large-effect QTL on chromosome V that

contribute to resistance to abamectin. One of these QTL was previously identified and is known to be

caused by variation in the GluCl channel glc-1 [120, 99]. The remaining two QTL are novel and might

overlap with QTL identified for ivermectin resistance in H. contortus and Teladorsagia circumcincta

[301, 302]. We used near-isogenic lines (NILs) to validate and narrow each QTL independently and

suggest candidate genes in regions of interest to further test using CRISPR-Cas9 genome editing. This

study demonstrates the value of combining data collected from parasitic nematodes with molecular and

quantitative assays performed in C. elegans to collectively work toward understanding the molecular

mechanisms of anthelmintic resistance.

6.4 METHODS

6.4.1 Strains

Animals were grown on modified nematode growth media (NGMA) containing 1% agar and 0.7%

agarose at 20°C and fed the E. coli strain OP50 [100]. A total of 225 recombinant inbred advanced

intercross lines (RIAILs) were generated previously [68] and assayed here. The two parental strains of

the recombinant lines were a derivative of the canonical laboratory strain N2, QX1430 (which contains

the CB4856 allele at the npr-1 locus and a transposon insertion in peel-1), and the wild isolate from

Hawaii, CB4856. Near-isogenic lines (NILs) were generated by backcrossing a selected RIAIL to

either N2 or CB4856 for several generations [72] using PCR amplicons for insertion-deletion events

(indels) to track the introgressed region. NILs were whole-genome sequenced to verify clean

introgressions. lgc-54 mutants (FX3448 and FX3518) were obtained from the National BioResource

Project (Japan) - C. elegans. All strains are available upon request or from the C. elegans Natural
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Diversity Resource [63].

6.4.2 High-throughput fitness assays for linkage mapping

For all phenotyping assays, we used a high-throughput fitness assay described previously [68]. In

summary, populations of each strain were passaged and amplified on NGMA plates for four generations,

bleach-synchronized, and 25-50 embryos were aliquoted into 96-well microtiter plates at a final volume

of 50 µL K medium [173]. After 12 hours, arrested L1s were fed HB101 bacterial lysate (Pennsylvania

State University Shared Fermentation Facility, State College, PA; [174]) at a final concentration of 5

mg/mL in K medium and were grown for 48 hours to the L4 larval stage at 20°C with constant shaking.

Three L4 larvae were sorted into new 96-well microtiter plates containing 10 mg/mL HB101 bacterial

lysate, 50 µM kanamycin, and either 1% DMSO or abamectin dissolved in 1% DMSO using a large-

particle flow cytometer (COPAS BIOSORT, Union Biometrica; Holliston, MA). Sorted animals were

grown for 96 hours at 20°C with constant shaking. The next generation of animals and the parents

were treated with sodium azide (50 mM in 1X M9) to straighten their bodies for more accurate length

measurements. Animal length (mean.TOF), optical density integrated over animal length (mean.EXT),

and brood size (norm.n) were quantified for each well using the COPAS BIOSORT. Nematodes get

longer (animal length) and become thicker and more complex (optical density) over developmental

time. Phenotypic measurements collected by the BIOSORT were processed and analyzed using the

R package easysorter [77] as described previously [72]. Differences among strains within the control

conditions were controlled by subtracting the mean control-condition value from each drug-condition

replicate for each strain using a linear model drug_phenotype ∼ mean_control_phenotype. In this

way, we are addressing only the differences among strains that were caused by the drug condition and

the variance in the control condition does not affect the variance in the drug condition.

6.4.3 Abamectin dose response

Four genetically divergent strains (N2, CB4856, JU775, and DL238) were treated with increasing

concentrations of abamectin using the standard high-throughput assay described above. A

concentration of 5 µM abamectin (Sigma, #31732-100MG) in DMSO was selected for the linkage



189

mapping experiments and 7.5 nM abamectin in DMSO was selected for the genome-wide association

mapping and NIL experiments. These concentrations provided a reproducible abamectin-specific

effect that maximizes between-strain variation and minimizes within-strain variation across the three

traits. The discrepancy between these two concentrations is likely caused by independent drug orders

and dissolutions.

6.4.4 Linkage mapping

A total of 225 RIAILs [68] were phenotyped in abamectin and DMSO using the HTA described above.

Linkage mapping was performed on the measured traits using the R package linkagemapping

(https://github.com/AndersenLab/linkagemapping) as described previously [72, 69]. The cross object

derived from the whole-genome sequencing of the RIAILs containing 13,003 SNVs was merged with

the RIAIL phenotypes using the merge_pheno function with the argument set = 2. A forward search

(fsearch function) adapted from the R/qtl package [176] was used to calculate the logarithm of the

odds (LOD) scores for each genetic marker and each trait as −n(ln(1 − R2)/2ln(10)) where R is the

Pearson correlation coefficient between the RIAIL genotypes at the marker and trait phenotypes [27].

A 5% genome-wide error rate was calculated by permuting the RIAIL phenotypes 1000 times. QTL

were identified as the genetic marker with the highest LOD score above the significance threshold.

This marker was then integrated into the model as a cofactor and mapping was repeated iteratively

until no further QTL were identified. Finally, the annotate_lods function was used to calculate the effect

size of each QTL and determine 95% confidence intervals defined by a 1.5 LOD drop from the peak

marker using the argument cutoff = “proximal”.

6.4.5 Genome-wide association mapping

A total of 210 wild isolates were phenotyped in both abamectin and DMSO using the standard

high-throughput assay described above. A genome-wide association (GWA) mapping was performed

for animal optical density (mean.EXT), length (mean.TOF), and brood size (norm.n) using the R

package cegwas2 (https://github.com/AndersenLab/cegwas2-nf) as described previously [70, 123].

Genotype data were acquired from the latest VCF release (release 20180517) from CeNDR. We used
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BCFtools [261] to filter variants below a 5% minor allele frequency and variants with missing

genotypes and used PLINK v1.9 [262, 263] to LD-prune genotypes. The additive kinship matrix was

generated from the 83,019 markers using the A.mat function in the rrBLUP R package [264]. Because

these markers have high LD, we performed eigen decomposition of the correlation matrix of the

genotype matrix to identify 1185 independent tests [70]. We performed genome-wide association

mapping using the GWAS function from the rrBLUP package. Significance was determined by an

eigenvalue threshold set by the number of independent tests in the genotype matrix [70]. Confidence

intervals were defined as ± 150 SNVs from the rightmost and leftmost markers that passed the

significance threshold.

6.4.6 Identification of orthologous genes between C. elegans and H. contortus

A list of H. contortus genes within the QTL interval was created from the gene annotation (GFF3) file

downloaded from Wormbase Parasite (parasite.wormbase.org; PRJNA205202). Protein sequences for

the 384 genes were extracted from the protein FASTA file (parasite.wormbase.org) and compared to

the C. elegans protein database (PRJNA13758; WBPS12) using BLASTp [307]. Orthologs with the

highest percent identity match between species were selected for further analysis. C. elegans genes

were filtered based on genomic position and analyzed for functional descriptions and GO annotations.

6.4.7 Modified high-throughput fitness assay

A modified version of the standard high-throughput assay detailed above was used to test docetaxel

response as previously described [72, 69]. Briefly, strains were propagated for two generations, bleach-

synchronized, and titered at a concentration of 25-50 embryos per well of a 96-well microtiter plate.

Arrested L1s were fed HB101 bacterial lysate the following day at a final concentration of 5 mg/mL with

either DMSO or docetaxel in DMSO. After 48 hours of growth at 20°C with constant shaking, nematodes

were treated with sodium azide (5 mM in water) prior to analysis of animal length and optical density

using the COPAS BIOSORT. Because only one generation of growth was observed, brood size was not

calculated.
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6.4.8 Statistical analysis

All gene position data for the C. elegans genome was collected using WormBase WS273. For NIL

assays, complete pairwise strain comparisons were performed on drug residual phenotypes using a

TukeyHSD function [175] on an ANOVA model with the formula phenotype ∼ strain.

6.5 RESULTS

6.5.1 Three additive loci on chromosome V underlie differential responses to abamectin

We measured C. elegans development and anthelmintic sensitivity as a function of animal length

(mean.TOF), optical density (mean.EXT), and brood size (norm.n) with a high-throughput assay

developed with the COPAS BIOSORT (See Methods) [70, 72, 73, 71, 68, 69, 123]. We exposed four

genetically divergent strains (N2, CB4856, JU775, and DL238) to increasing doses of abamectin. In

the presence of abamectin, nematodes were generally smaller, less optically dense, and produced

smaller broods compared to non-treated nematodes, suggesting an abamectin-induced reproductive

and developmental delay. (Figure 6-1). In addition to this general trend, we also observed significant

phenotypic variation among strains, indicating that genetic variation between strains might control the

abamectin-response phenotype.

To investigate the genetic basis of natural abamectin resistance, we exposed 210 wild isolates to

abamectin and measured their developmental rates and brood sizes. We performed genome-wide

association (GWA) mapping and identified a total of 15 QTL across the three traits (animal length,

optical density, and brood size) on chromosomes I, II, III, and V (Figure S6-1). In particular, all three

traits were correlated with genetic variation on chromosome V. Based on QTL overlap among the traits,

we estimate that three independent loci on chromosome V (referred to as VL (left-most), VC (center),

and VR (right-most)) underlie responses to abamectin (Figure 6-2A). To avoid the redundant analysis

of correlated traits, we will focus on mean animal optical density, for which all three QTL on chromosome

V were identified.

In parallel, we measured animal length, optical density, and brood size in response to abamectin

for a panel of 225 RIAILs generated by a cross between the N2 and CB4856 strains [68]. Linkage
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Figure 6-1: Dose response with four divergent wild isolates. Results from the abamectin dose response HTA for brood
size (norm.n), animal length (mean.TOF), and animal optical density (mean.EXT). For each trait, drug concentration (nM)
(x-axis) is plotted against phenotype subtracted from control (y-axis) and colored by strain (CB4856: blue, DL238: green,
JU775: purple, N2: orange). A concentration of 7.5 nM was chosen for future experiments.

mapping analysis for all three traits identified a total of ten QTL on chromosomes II, V, and X including

three distinct QTL on chromosome V (Figure S6-2). At each of the three loci identified on

chromosome V, the CB4856 allele was correlated with resistance (denser animals) in abamectin

compared to the N2 allele (Figure S6-2). To investigate genetic interactions among the three QTL on

chromosome V and other loci throughout the genome, we performed a two-dimensional genome scan

and found evidence of additive QTL on chromosome V but no significant interactions (Figure 6-3). To

more specifically address the additivity of these three QTL, we compared phenotypes of RIAILs with

each of the eight unique genotype combinations (two possible genotypes, N2 or CB4856, across three

loci). As expected, strains with the N2 allele at all three loci were the most sensitive to abamectin and

strains with the CB4856 allele at all three loci were the most resistant (Figure 6-4). Furthermore,

strains with one CB4856 allele, regardless of the locus, were equally more resistant than strains with

no CB4856 alleles and equally less resistant than stains with two CB4856 alleles. This result suggests

that the effect of each locus is comparable and that there are no significant interactions between any
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two loci.

The combination of both association and linkage mapping provides a method to narrow the causal

variants by looking for overlapping QTL. Overlapping QTL between the two methods, as seen with the

VL QTL (Figure 6-2C, Figure 6-5), suggest that a common variant present in the CB4856 strain might

cause differences in abamectin responses in both mapping populations. Alternatively, non-overlapping

QTL, as seen with the VC and VR QTL (Figure 6-2C, Figure 6-5), suggests that a rare variant in

the CB4856 strain drives the QTL identified from linkage mapping and a common variant not found in

the CB4856 strain drives the QTL identified from association mapping. It is somewhat surprising that

the VR locus does not overlap between the two methods because a relatively common four-amino-

acid deletion in the glutamate-gated chloride (GluCl) channel glc-1 had been previously discovered to

underlie phenotypic differences in both swimming paralysis [120] and survival [99] in the presence of

abamectin using three different mapping populations. Here, we test a third trait, nematode development,

in two additional mapping populations, but only identified the glc-1 locus with the RIAILs (Figure 6-2B).

These results could suggest that other genes, in addition to glc-1, contribute to abamectin resistance

on the right of chromosome V in the wild isolate population. However, given prior knowledge about the

causal gene glc-1, it is likely that the differences in population structure between the wild isolates and

RIAILs cause the same QTL to be identified in two distinct, yet linked, regions (Figure 6-2C).

Figure 6-2 (preceding page): Three large-effect QTL on chromosome V control differences in abamectin responses.
(A) Linkage mapping results for optical density (mean.EXT) is shown. Genomic position (x-axis) is plotted against the
logarithm of the odds (LOD) score (y-axis) for 13,003 genomic markers. Each significant QTL is indicated by a red triangle
at the peak marker, and a blue rectangle covers the 95% confidence interval around the peak marker. The percentage of
the total variance in the RIAIL population that can be explained by each QTL is shown above the QTL. (B) Genome-wide
association mapping results is shown. Genomic position (x-axis) is plotted against the -log10(p) value (y-axis) for each SNV.
SNVs are colored pink if they pass the genome-wide significance threshold designated by the grey line. The genomic regions
of interest that pass the significance threshold are highlighted by pink rectangles. (C) Fine mapping of all common variants on
chromosome V is shown. Genomic position (x-axis) is plotted against the -log10(p) values (y-axis) for each variant and colored
by the genotype of the variant in the CB4856 strain (grey = reference, blue = alternative). Genomic regions identified from
linkage mapping analysis are highlighted in blue and genomic regions identified from association mapping are highlighted in
pink. The horizontal grey line represents the significance threshold. The red diamond represents the most significant variant
in the gene glc-1.
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Figure 6-3: Two-dimensional genome scan for mean optical density (mean.EXT) in abamectin. Log of the odds (LOD)
scores are shown for each pairwise combination of loci, split by chromosome. The upper-left triangle contains the epistasis
LOD scores (interaction effects), and the lower-right triangle contains the LOD scores for the full model (both interaction and
additive effects). LOD scores are colored by significance, increasing from purple to green to yellow. The LOD scores for the
epistasis model are shown on the left of the color scale, and the LOD scores for the full model are shown on the right.

6.5.2 Near-isogenic lines validate effects of all three loci

To validate that genetic variation on chromosome V between the N2 and CB4856 strains contributes to

abamectin resistance, we first generated chromosome substitution strains in which the entire

chromosome V from the CB4856 strain was introgressed into the N2 genetic background and vice

versa. We measured the animal lengths, optical densities, and brood sizes of these strains and

observed that the genotype on chromosome V significantly contributed to differences in abamectin

resistance. The strains with the CB4856 genotype on chromosome V in the N2 genetic background
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Figure 6-4: The three loci on chromosome V are independent and additive. Relative mean optical density in abamectin
(mean.EXT, y-axis) for each RIAIL is plotted as Tukey box plots by genotype at the three QTL on chromosome V (y-axis).
The x-axis labels are written with the N2 allele as represented by an “N” and the CB4856 allele as represented by a “C” in
the order left-most (VL), central (VC), and right-most (VR) QTL. For example, the group “NCN” has the N2 allele at both the
left-most (VL) and right-most (VR) loci and the CB4856 allele at the central (VC) locus. Groups are colored by the number of
N2 and CB4856 alleles so that more orange colors represent more N2 alleles and more blue for more CB4856 alleles at the
three QTL.

Figure 6-5: Summary of QTL mapping for responses to abamectin. Genomic positions (x-axis) of all QTL identified from
linkage mapping (top) and association mapping (bottom) are shown for each drug-trait (y-axis). Each QTL is plotted as a
point at the genomic location of the peak marker and a line that represents the confidence interval. QTL are colored by the
significance of the LOD score (linkage) or -log10(p) value (association), increasing from purple to green to yellow.

were significantly more resistant than the sensitive N2 strain (p-value = 2.47e-06) (Figure 6-6).

Similarly, the strains with the N2 chromosome V in the CB4856 genetic background were significantly

more sensitive to abamectin compared to the resistant CB4856 strain (p-value = 0.0041, Figure 6-6).
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These results demonstrate that genetic variation between the N2 and CB4856 strains at one or more

loci on chromosome V contribute to the difference in abamectin sensitivity between these strains.

Figure 6-6: Chromosome substitution strains validate the existence of one or more resistance loci on chromosome
V. (A) Strain genotypes are shown as colored rectangles (N2: orange, CB4856: blue) in detail for chromosome V (left) and
in general for the rest of the chromosomes (right). (B) Relative mean lengths in abamectin (mean.TOF, x-axis) are plotted as
Tukey box plots against strain (y-axis). Statistical significance of each NIL as compared to N2 is shown above each strain (ns
= non-significant (p-value > 0.05); *, **, ***, and *** = significant (p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).

The strong effect of the glc-1 locus has been previously demonstrated [120, 99]. Therefore, it was

important that we show that the two novel QTL on the left and center of chromosome V also contribute

to the overall resistance phenotype observed in the chromosome substitution strain. We generated

a near-isogenic line (NIL) that contains the resistant CB4856 alleles at both the VL and VC loci and

the sensitive N2 allele at the VR glc-1 locus (Figure 6-7A). When tested, we observed that this strain

(ECA1059) was significantly more resistant to abamectin than the N2 strain (p-value = 8.83e-14) and

less resistant than the CB4856 strain (p-value = 1.57e-13, Figure 6-7B). This result indicates that

genetic variation besides glc-1 on chromosome V contributes to the differences in abamectin sensitivity

between the N2 and CB4856 strains.

To further isolate each QTL independently, we generated three NILs containing approximately 5

Mb of the CB4856 genome introgressed into the N2 genetic background at different locations on
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Figure 6-7: Near-isogenic lines confirmed the additive effects of all three QTL. (A) Strain genotypes are shown as
colored rectangles (N2: orange, CB4856: blue) in detail for chromosome V (left box) and in general for the rest of the
chromosomes (right box). The solid vertical lines represent the peak marker of each QTL. (B) Relative mean optical density
in abamectin (mean.EXT, x-axis) is plotted as Tukey box plots against strain (y-axis). Statistical significance of each NIL
compared to N2 is shown above each strain (ns = non-significant (p-value > 0.05), *** = significant (p-values < 0.0001).
Predicted genotypes at the three QTL are shown above each strain from VL to VC to VR (N = N2 allele, C = CB4856 allele).

chromosome V so that they tile across the introgressed region in ECA1059 (Figure 6-7A). The strain

ECA232 was not significantly more resistant to abamectin compared to the N2 strain (p-value =

0.997), suggesting that this NIL has the sensitive N2 alleles at all three loci on chromosome V (Figure

6-7B). Alternatively, both ECA1065 and ECA377 were significantly more resistant to abamectin than

the N2 strain (p-values = 1.45e-13 and 5.44e-09, respectively), suggesting that the introgressed

regions in both of these NILs contain one or more resistant loci (Figure 6-7B). Because both strains

are less resistant than the NIL with two CB4856 alleles (ECA1059-ECA1065 p-value = 8.83e-14,

ECA1059-ECA377 p-value = 8.83e-14), we can deduce that ECA1065 and ECA377 each contain one

resistant locus (Figure 6-7B). Because the introgressions in these two NILs overlap by 1.3 Mb, this

leaves two possibilities: either this overlapped region (V:3,120,168-4,446,729) contains a single QTL

shared by the two NILs or each NIL validates a separate QTL within the non-overlapping regions.

Because we identified three QTL from both linkage and association mapping, we believe the latter
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Table 6-1: Genomic regions significantly correlated with abamectin resistancea

QTL Association mapping Linkage mapping NIL-defined interval
VL V:2,182,093-3,698,359 V:2,629,324-3,076,312 V:1-3,120,167
VC V:4,983,265-5,585,155 V:6,118,360-7,342,129 V:5,260,997-5,906,132
VR V:17,510,186-17,863,725 V:15,933,659-16,336,743 13,678,801-19,303,558 (glc-1b)

aMean animal optical density
bFrom previous data [120]

case that ECA1065 has the CB4856 allele for the VL locus and ECA377 has the CB4856 allele for the

VC locus (Table 6-1, Figure 6-8).

Figure 6-8: Refining QTL positions with NILs. (A) Fine mapping of all common variants on chromosome V is shown.
Genomic position (x-axis) is plotted against the -log10(p) values (y-axis) for each variant and colored by the genotype of the
variant in the CB4856 strain (grey = reference, blue = alternative). Genomic regions identified from linkage mapping analysis
are highlighted in blue and genomic regions identified from association mapping are highlighted in pink. The horizontal
grey line represents the genome-wide eigen-decomposition significance threshold. The red points represent the approximate
locations of glc-1 (diamond), glc-3 (circle), and lgc-54 (square). The vertical lines represent the smallest NIL-defined genomic
region for the VL (solid), VC (dashed), and VR (dotted) QTL. (B) Strain genotypes are shown as colored rectangles (N2:
orange, CB4856: blue) in detail for chromosome V. The vertical lines represent the smallest NIL-defined genomic region for
the VL (solid), VC (dashed), and VR (dotted) QTL.
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The VC QTL is contained within the CB4856 introgression in ECA377 and is defined by the

CB4856 introgressions in the NILs ECA1065 and ECA232 (V:4,446,729-7,374,928) (Figure 6-7,

Figure 6-8). This large 3 Mb interval encompasses both of the genomic regions identified using

linkage and association mappings (Figure 6-8, Table 6-1). We next attempted to narrow this region

further by generating additional NILs with smaller introgressions and measuring the lengths and

optical densities of these strains. All four NILs with the CB4856 introgression on the center of

chromosome V were significantly longer in abamectin than the N2 strain (p-values < 2.83e-06, Figure

6-9). This result suggests that the QTL position was contained within the smallest introgression,

ECA632 (V:5,260,997-5,906,132) (Table 6-1, Figure 6-8). The results for optical density were similar,

but the variation within strains was higher (Table 6-10). Interestingly, this 645 kb region overlaps with

the genomic interval defined by association mapping but not the confidence interval identified from

linkage mapping (Figure 6-8). However, the broad peak on the center of chromosome V observed

from linkage mapping might suggest that the confidence interval is underestimated, possibly because

of the linkage between the three loci on chromosome V. Alternatively, other rare variants within the

CB4856 strain on the center of chromosome V might contribute marginal effects to abamectin

resistance that could result in this discrepancy.

This NIL-defined genomic interval contains 206 genes. Of those genes, 116 harbor genetic variation

in CB4856 that is shared with at least 5% of the mapping population and 45 of these genes have

common genetic variation that causes a change in the amino acid sequence of the protein (protein-

coding variation). Notably, the glutamate-gated chloride channel, glc-3, resides within this narrowed

region (V:5,449,287, Figure 6-8). GLC-3 has been previously implicated in avermectin resistance in

vitro [308]. However, it has yet to be identified in mutant screens nor tested for avermectin resistance

in vivo. The CB4856 strain harbors 10 common variants in glc-3, including a single missense variant

(I493F) that is also present in 10 other wild isolates. It is possible that genetic variation in glc-3 is

causing increased resistance to abamectin in the CB4856 strain.
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Figure 6-9: NILs isolate and narrow the VC QTL. (A) Strain genotypes are shown as colored rectangles (N2: orange,
CB4856: blue) in detail for chromosome V (left) and in general for the rest of the chromosomes (right). The dashed vertical
lines represent the previous NIL-defined QTL interval for VC. (B) Relative mean animal length in abamectin (mean.TOF, x-
axis) is plotted as Tukey box plots against strain (y-axis). Statistical significance of each NIL compared to N2 is shown above
each strain (ns = non-significant (p-value > 0.05), *** = significant (p-values < 0.0001).

6.5.3 Overlap of C. elegans and parasitic nematode candidate genes for avermectin resistance

Several previous studies have identified QTL in parasitic nematode models that provide candidate

genes that might underlie responses to ivermectin, an avermectin closely related to abamectin.

Introgression mapping in the sheep parasite T. circumcincta identified several potential candidate

genes, including the ortholog of the C. elegans gene lgc-54 [302], but this genome is highly

fragmented and genomic locations are likely not correct. Regardless, this gene encodes a

ligand-gated chloride channel, but it has yet to be directly implicated in avermectin resistance.

Interestingly, lgc-54 resides on the C. elegans chromosome V near 6.8 Mb. Although this gene is

outside of the NIL-defined interval (Figure 6-9, Table 6-1, Figure 6-8), it is well within the confidence

interval defined by the linkage mapping experiment (Table 6-1). Furthermore, the CB4856 strain

harbors four genetic variants in this gene, including a common nonsense variant in the first exon. To

test if lgc-54 plays a role in abamectin resistance in C. elegans, we exposed two independent lgc-54
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Figure 6-10: NILs validate and narrow the VC QTL. (A) Strain genotypes are shown as colored rectangles (N2: orange,
CB4856: blue) in detail for chromosome V (left) and in general for the rest of the chromosomes (right). The solid vertical lines
represent the peak marker of each QTL. (B) Relative mean optical densities in abamectin (mean.EXT, x-axis) are plotted as
Tukey box plots against strain (y-axis). Statistical significance of each NIL as compared to N2 is shown above each strain (ns
= non-significant (p-value > 0.05); *, **, ***, and *** = significant (p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).

mutants to abamectin and measured animal length, optical density, and brood size. Both lgc-54

mutants were significantly more resistant than the N2 strain (p-values < 0.0004), which would provide

evidence for the role of lgc-54 in abamectin resistance (Figure 6-11A). However, we noticed that these

mutants grew much slower in the control conditions than both the N2 and CB4856 strains (Figure

6-11B). This growth defect makes it difficult to compare abamectin sensitivities, as the observed

resistance could be an artifact of the statistical regression analysis.

More recently, a large-effect QTL on chromosome V (37-42 Mb) was identified in response to

ivermectin treatment in H. contortus [301]. The authors did not provide candidate genes, but stated

that no previously identified candidate genes for ivermectin resistance were found within this region.

The H. contortus ortholog of glc-3 is also found on chromosome V but left of the defined QTL region

(27.6 Mb). Interestingly, they also identified a smaller-effect QTL nearby (V:45-48 Mb). It is possible

that these two QTL are comparable to the two QTL we identified (VL and VC). To test this hypothesis,

we first compared the synteny of genes in these regions between the two species. We identified the
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Figure 6-11: Testing the role of lgc-54 in the C. elegans abamectin response. Strain genotypes are shown as colored
rectangles (N2: orange, CB4856: blue) in detail for chromosome V (left) and in general for the rest of the chromosomes
(center). Grey triangles represent mutations in the lgc-54 gene. On the right, relative mean optical density in abamectin
(mean.EXT, x-axis) (A) or mean optical density in DMSO control (B) is plotted as Tukey box plots against strain (y-axis).
Statistical significance of each deletion strain compared to N2 is shown above each strain (ns = non-significant (p-value >
0.05), **** = significant (p-value < 0.0001).

384 genes in the large-effect QTL for H. contortus and identified the C. elegans orthologs for each

gene using a best-match BLASTp [307] search. We identified a total of 347 H. contortus genes with

340 C. elegans orthologs. Of these C. elegans genes, 115 also reside on chromosome V and eight

reside within our narrowed VC QTL interval. Two of these genes, pgph-1 and pgph-2, are homologs of

phosphoglycolate phosphatase (PGP). Several PGP genes have been previously implicated in

avermectin resistance including, but not limited to, pgp-1 and pgp-2 [301, 141]. This analysis indicates
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that it is likely that these QTL from differing species overlap, suggesting the potential for shared

mechanisms of drug resistance between C. elegans and parasitic nematodes.

6.5.4 Modified high-throughput assay does not facilitate candidate gene testing

In the summer of 2018, the bacterial lysate used in all our high-throughput experiments expired and

could no longer provide satisfactory nutrition for 96 hours of growth (see Chapter 5). To circumvent this

problem, we developed a modified assay where animals were grown for 48 hours, from L1 to L4, in the

presence of abamectin and then analyzed for the developmental traits animal length (mean.TOF) and

optical density (mean.EXT) [69]. We treated the N2 and CB4856 strains to increasing concentrations

of abamectin while feeding either HB101 lysate or HB101 live bacteria (Figure 6-12). We observed a

dose-dependent response to abamectin under both conditions. However, we did not observe significant

phenotypic variation between the N2 and CB4856 strains. These results indicate that this modified

assay would not be useful in testing candidate genes underlying the abamectin response.

Figure 6-12: Modified high-throughput assay does not capture phenotypic differences between N2 and CB4856
strains. Results from the abamectin dose response modified HTA for animal length (mean.TOF) and animal optical density
(mean.EXT) in both lysate and live bacteria. For each trait, drug concentration (nM) (x-axis) is plotted against the phenotype
subtracted from control (y-axis) and colored by strain (CB4856: blue, N2: orange).
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6.6 DISCUSSION

In this study, we used linkage mapping and genome-wide association analysis to identify three QTL

on chromosome V that influence responses to the anthelmintic abamectin in C. elegans. One of these

QTL overlaps with the previously identified GluCl gene glc-1 [120, 99]. However, the remaining two

QTL are novel and might overlap with ivermectin QTL from parasitic nematodes, suggesting validity of

using C. elegans to discover anthelmintic drug resistance genes. We used NILs to validate and narrow

each QTL independently. Although we were unable to discover the specific causal genes or variants,

we suggest the GluCl channel glc-3 within our narrowed genomic interval could play a role in abamectin

resistance.

6.6.1 Linkage and association mapping identify similar, yet different, QTL

Although the QTL on the left of chromosome V overlapped between the two methods, QTL on the center

and right of chromosome V were separated by up to 1 Mb (Figure 6-4). These results could suggest that

there is a different, rare variant that confers resistance in the CB4856 strain compared to the common

variant in the mapping population. However, the glc-1 variant is common and has been discovered

previously from association mapping with wild isolates [120] and both linkage mapping (Figure 6-2B,

[120]) and bulk segregant analysis [99] with recombinants derived from the N2 and CB4856 strains.

Because this GluCl gene has been identified across different traits, populations, and mapping methods,

it suggests that the VR locus in our mapping might also be driven by variation in this gene. In the fine

mapping of all variants across chromosome V, we observe a sharper, yet less significant, peak at the

glc-1 locus (Figure 6-2C). Furthermore, both the glc-1 locus at 16.1 Mb and the unidentified locus at

17.7 Mb are detected in the association mapping for brood size (Figure S6-1, Figure 6-5), suggesting

they might be linked. The particular causal variant, the four-amino-acid deletion in glc-1, is also not one

of the genetic markers used in our study, as we mostly focused on single nucleotide variants (SNVs).

Therefore, it is likely that SNVs linked to the glc-1 allele are causing the observed association. In

addition, this region on the right of chromosome V overlaps with several known divergent regions in

both the CB4856 strain and other strains [277]. The high density of SNVs in divergent regions might
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increase the possibility of detecting a QTL and artificially narrow the confidence interval (arbitrarily

defined as 150 SNVs on either side of the marker with the strongest association).

A similar issue is also seen with the QTL on the center of chromosome V. Association and linkage

mapping identify different regions and the fine mapping shows a stronger, yet less significant, peak in

the region defined from linkage mapping (Figure 6-2C). Because no genes in this combined region

have been previously implicated in abamectin resistance, we generated NILs to cover both the regions

identified from association and linkage mapping. Surprisingly, we found that in this case the NILs

supported the region identified from association mapping, not linkage (Figure 6-9). Because we used

NILs generated from the N2 and CB4856 parents, this result suggests that the two QTL identified are

likely the same locus. The VC QTL in linkage mapping is the first QTL to be identified from a forward

search algorithm and has a large, broad peak. It is possible that the confidence interval was

miscalculated due to combined effects from the flanking QTL and low recombination frequency, and

thus low resolution, in the center of chromosomes. However, it is also possible that association

mapping identified a causal variant that is commonly found in the population, including in the CB4856

strain, and linkage mapping identified a causal variant that is unique to CB4856. Regardless, this

study emphasizes that, although powerful, QTL mapping is ultimately a statistical method that can be

influenced by population structure, among other things, and that it is essential to validate QTL before

drawing conclusions about the causal variant.

6.6.2 Power of QTL mapping in C. elegans to identify causal genes underlying anthelmintic

resistance

This study highlights the benefits of mutual communication between the parasite and C. elegans

communities. Genetic mappings, screens, and selections are more easily performed in the free-living

nematode to help discover the drug targets and mechanisms of action. However, it is important that

these findings are then translated back to parasitic nematodes to confirm that these genes found in C.

elegans are responsible for drug resistance in parasites both in the lab and in the field. The suggested

overlap between QTL for avermectin resistance in C. elegans and H. contortus [301] strengthens the

validity of our approach and indicates that the causal variants in our mapping population might also
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confer resistance in H. contortus and perhaps other parasitic nematode species. Future studies to

discover the causal genes and variants underlying our two novel QTL (VL and VC) could be

informative to parasitologists and help treat infected individuals smarter and more effectively.

In addition to identifying genes in C. elegans that might cause resistance to anthelmintics in

parasites, hypotheses generated about candidate genes and variants that confer resistance in

parasitic nematode species can be more easily validated in the experimentally tractable C. elegans

model. Here, we tested the role of lgc-54, a gene predicted to be involved in ivermectin resistance in T.

circumcincta. Unfortunately, the results of this assay suggest that loss of function of lgc-54 does not

cause increased resistance to abamectin in C. elegans. However, the decreased fitness of these

mutants make the results more difficult to interpret. Targeted deletions or allele editing of lgc-54 using

CRISPR-Cas9 genome editing might provide more evidence for the role of lgc-54 in abamectin

resistance. However, because lgc-54 is not within our NIL-defined genomic interval, it is not likely to be

the causal gene underlying our mapping results, regardless of its role in avermectin resistance.

Regardless, it is possible that lgc-54 might cause resistance to ivermectin in parasitic nematodes even

if it does not function in the same way in C. elegans. Although predicting candidate genes based on

the gene function can be extremely useful, this study demonstrates the power of functional validation

in model systems like C. elegans to experimentally prove or disprove hypotheses.

6.6.3 Shared niches provide the same selective pressures for soil transmitted helminths and

C. elegans

The potential overlap of QTL for avermectin resistance between C. elegans and parasitic nematodes

suggests that the loci that confer resistance to avermectins are conserved across several nematode

species. Among parasitologists, it is believed that parasitic nematodes gain anthelmintic resistance

due to standing genetic variation in a population (or novel mutations) in combination with exposure to

selective pressures in their environment [309, 310]. Soil transmitted helminths such as H. contortus,

spend part of their life cycle in soil or rotting vegetation–an environment that overlaps with the niche

associated with the free-living C. elegans [311, 59]. Selective pressures in this environment could

originate from natural toxic compounds produced by soil-dwelling bacteria and fungi from which many
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anthelmintic drugs are derived [312, 313, 314]. Additionally, synthetic anthelmintic compounds are

a common soil and water pollutant in some areas and can be found in runoff from farms that use

anthelmintics to treat agriculture or livestock [315, 316]. This exposure to the same selective pressures

and the known genetic diversity in the C. elegans species suggests a method for how the free-living

nematode might evolve the same resistance alleles as other parasitic nematodes. In one example, we

showed that recent selective pressures have likely acted on the C. elegans ben-1 locus, resulting in an

excess of putative loss-of-function alleles across the population despite ben-1 being an evolutionarily

constrained locus [75]. This conclusion again highlights the relevance of using the experimentally

tractable C. elegans as a model to study anthelmintic resistance in parasitic nematode species.

6.7 FUTURE DIRECTIONS

We suggested the GluCl channel glc-3 as a candidate gene for the VC QTL. This hypothesis could be

explicitly tested by first deleting glc-3 in both the N2 and CB4856 strains using CRISPR-Cas9 genome

editing. If a loss of function of glc-3 causes resistance to abamectin in the CB4856 strain, we would

expect the deletion in the CB4856 strain to have no change in its resistance phenotype, but the

deletion in the N2 strain would cause an increased resistance to abamectin compared to the N2 strain.

Alternatively, CRISPR could be used to edit the single nucleotide variant to change the amino acid in

the 439th position from an isoleucine to phenylalanine in the N2 strain and from phenylalanine to

isoleucine in the CB4856 strain. If this variant (I439F) is responsible for increased resistance to

abamectin in the CB4856 strain, we would expect that the strains with the isoleucine (N2 and

CB4856[F439I]) would be sensitive to abamectin and the strains with the phenylalanine (CB4856 and

N2[I439F]) would be resistant to abamectin. If the deletion has an effect but the SNV doesn’t,

reciprocal hemizygosity tests could be used to determine if natural variation in glc-3 between the N2

and CB4856 strains underlies this QTL.

In addition to testing the candidate gene glc-3, the lgc-54 mutants should be re-tested to verify the

growth defect seen in control conditions. It is possible that these strains are sick because of other

genetic mutations that exist outside of lgc-54 since they are mutants derived from EMS mutagenesis.

If this growth defect is still present, targeted deletions of lgc-54 using CRISPR could remove concern
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about background mutations. Alternatively, editing a single variant instead of deleting the entire gene

might allow the worms to grow normally while still testing the function of the variant in abamectin

response.

The VL QTL has a strong peak that overlaps between linkage and association mapping and has

not been previously identified in other studies. To begin narrowing this QTL, we have generated 17

genetically distinct strains derived from ECA1065 containing increasingly smaller introgressions that

tile across this interval (Figure 6-13). These strains should be tested for their response to abamectin

and these phenotypes can then be used to narrow the genomic interval similarly to the VC QTL. Of

the 160 genes inside the confidence interval defined by linkage mapping, there are no known GluCl

channels nor other ligand-gated or ion channels. This result suggests that the resistant-causing locus

on the left of chromosome V might not be related to the drug target, but perhaps is associated with drug

import, export, or metabolism. In particular, three cytochrome P450 genes have expression variation

between the N2 and CB4856 strains that is linked to this region on chromosome V.

Figure 6-13: NILs to isolate and narrow the VL QTL. Strain genotypes are shown as colored rectangles (N2: orange,
CB4856: blue) in detail for chromosome V. All strains are in the N2 genetic background. The solid vertical lines represent the
previous NIL-defined interval.

One major caveat to exploring the causality of the aforementioned candidate genes is that we
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no longer have a reliable assay that can reproduce the QTL effects. This must be the first problem

solved to continue studying abamectin resistance in C. elegans. Using the modified HTA, live HB101

bacteria, and low concentrations of abamectin, we were able to observe a difference in abamectin

response between the N2 and CB4856 parents with the CB4856 strain conferring resistance (Figure

6-12). Although the difference is small, this is a promising start, if reproducible. The next step would

be to test a finer-scale range of abamectin concentrations with NILs to see if the effect of genetic

variation on chromosome V can be captured with this assay. Alternatively, it is possible that 48 hours

of growth from L1 to L4 is not enough to see a difference in abamectin responses between the N2 and

CB4856 strains. The original high-throughput assay could be performed with live HB101 bacteria that

promotes nematode growth over 96 hours to see if the resistant phenotype can be rescued. However,

the live HB101 bacteria used here has been optimized for 48 hours of nematode growth, so it would be

necessary to first optimize a new batch of bacteria that can reproduce the effect of the lysate over 96

hours of growth.
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6.9 SUPPLEMENTAL FIGURES
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Figure S6-1: Genome-wide association (GWA) mapping identifies 15 QTL across three traits in response to
abamectin. (A) Normalized residual phenotype (y-axis) of 210 wild isolates (x-axis) in response to abamectin. Strains
are colored by the parental strains N2 (orange) and CB4856 (blue). (B) GWA results are shown. Genomic position (x-axis)
is plotted against the -log10(p) value (y-axis) for each SNV. SNVs are colored pink if they pass the genome-wide eigen-
decomposition significance threshold designated by the grey line. The genomic regions of interest that pass the significance
threshold are highlighted by pink rectangles. (C) For each QTL, the normalized residual phenotype (y-axis) of strains split by
genotype at the peak marker (x-axis) are plotted as Tukey box plots. Each point corresponds to a wild isolate strain. Strains
with the N2 reference allele are colored grey, and strains with an alternative allele are colored pink.
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Figure S6-2: Linkage mapping identifies 10 QTL across three traits in response to abamectin. (A) Normalized residual
phenotype (y-axis) of 296 RIAILs (x-axis) in response to abamectin. The parental strains are colored: N2, orange; CB4856,
blue. (B) Linkage mapping results are shown. Genomic position (x-axis) is plotted against the logarithm of the odds (LOD)
score (y-axis) for 13,003 genomic markers. Each significant QTL is indicated by a red triangle at the peak marker, and a
blue rectangle shows the 95% confidence interval around the peak marker. The percentage of the total variance in the RIAIL
population that can be explained by each QTL is shown above the QTL. (C) For each QTL, the normalized residual phenotype
(y-axis) of RIAILs split by genotype at the marker with the maximum LOD score (x-axis) are plotted as Tukey box plots. Each
point corresponds to a unique recombinant strain. Strains with the N2 allele are colored orange, and strains with the CB4856
allele are colored blue.
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7 Correlation of genotype with climate parameters suggest

Caenorhabditis elegans niche adaptation

7.1 PREFACE

This project was my rotation project from the Fall of 2015 and the first project I took on as a graduate

student. In Erik’s previous paper from 2012 [79], he identified a QTL on the left arm of chromosome II

using strain latitude from 97 wild isolates as a phenotype. In this manuscript, Erik notes that this

association could reflect population structure or it might implicate this region of the genome in an

unknown ecological niche, such as temperature. Erik pitched this idea to me in my rotation to use the

GPS coordinates and date of isolation from our wild isolate collection, now 152 isotypes, to extract

detailed weather and climate parameters to see if any associations were observed between genetic

variation and environment. This was a great opportunity for me as a first-year graduate student to

learn to code (and work with extremely messy datasets from the internet. . . ), learn to write a

manuscript, and discover an interest in the power of genome-wide association studies. This chapter is

based on my first first-author manuscript published in G3 in 2017 that was the result of my successful

rotation project [136].

7.2 ABSTRACT

Species inhabit a variety of environmental niches, and the adaptation to a particular niche is often

controlled by genetic factors, including gene-by-environment interactions. The genes that vary in order

to regulate the ability to colonize a niche are often difficult to identify, especially in the context of

complex ecological systems and in experimentally uncontrolled natural environments. Quantitative

genetic approaches provide an opportunity to investigate correlations between genetic factors and

environmental parameters that might define a niche. Previously, we have shown how a collection of

208 whole-genome sequenced wild Caenorhabditis elegans can facilitate association mapping

approaches. To correlate climate parameters with the variation found in this collection of wild strains,

we used geographic data to exhaustively curate daily weather measurements in short-term (three
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month), middle-term (one year), and long-term (three year) durations surrounding the date of strain

isolation. These climate parameters were used as quantitative traits in association mapping

approaches where we identified 11 QTL for three climatic variables: elevation, relative humidity, and

average temperature. We then narrowed the genomic interval of interest to identify gene candidates

with variants potentially underlying phenotypic differences. Additionally, we performed two-strain

competition assays at high and low temperatures to validate a QTL that could underlie adaptation to

temperature and found suggestive evidence supporting that hypothesis.

7.3 INTRODUCTION

Ecological niches describe how individuals of a species respond to and alter the distribution of

resources and competitors within their environment [317]. These resources could include food

availability, soil type, short-term weather conditions, and long-term climate. Often, a species can be

found in multiple distinct geographic areas that all share a common set of environmental factors and

resources. For example, a plant that thrives at high temperature might grow equally well anywhere

along the equator. An organism’s ability to survive in a specific niche is driven by both environmental

and genetic factors. Genetic variation between species, and among individuals within a species,

contributes to the wide variety of niches observed [318]. A genetic variant could result in an increased

affinity for an individual to its environment. This individual will be selected and, over time, evolution will

favor the successful variant. This phenomenon, known as gene-by-environment interactions, refers to

phenotypes in which different genotypes respond to environmental variation in diverse ways.

Previous studies in model organisms, particularly Drosophila and Arabidopsis, have investigated

gene-by-environment interactions with clinal variation. In Drosophila, selection on body size is

correlated with temperature [319], and survival is affected by climate change [320]. Machado et al.

performed a longitudinal study of Drosophila collected at differing latitudes during a two-year time

span and compared physiological traits of two different species – D. melanogaster and D. simulans

[321]. Other studies have gone further by identifying quantitative trait loci (QTL) for body size and cold

tolerance traits involved in adaptation to seasonally varying environments [322, 323]. Gerken et al.

found substantial heritable variation in both short-term and long-term acclimation [324]. They then
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performed genome-wide association (GWA) mappings on these traits and found the QTL for

short-term and long-term adaptations did not overlap, but each resulted in a set of gene candidates

sharing similar functions in apoptosis, autophagy, cytoskeletal and membrane structural components,

or ion binding and transport. Additionally, GWA studies have been performed in Arabidopsis for

various adaptive traits such as seed oil melting point [325]. Another A. thaliana study performed QTL

mapping using recombinant inbred lines produced from two strains isolated from different climates and

found that relatively few QTL explain much of the adaptive divergence between them [326].

Furthermore, Fournier-Level et al. provide evidence for broad scale local adaptation in A. thaliana by

using a GWA mapping approach that combines fitness traits measured in multiple natural

environments and geographic and climatic analyses [327].

C. elegans is a free-living nematode often found in microorganism-rich organic material such as

rotting fruits and compost heaps in temperate and humid environments [311, 328]. The first studied C.

elegans strain, N2, was isolated from mushroom farm compost in Bristol, England in 1951 [329]. Since

that time, N2 has been used as the wild-type strain for C. elegans laboratory research. This strain

was cultured for many years in the laboratory, potentially resulting in selection for alleles favorable in

that environment [58]. To study natural variation and the role of niche specification on this species, we

require a worldwide collection of wild strains. Our research group acquired a large collection of 208 wild

strains and sequenced the whole genomes of these strains [63, 60, 134]. By comparing the genomes

of the 208 strains, we found that some strains from similar geographic locations have nearly identical

genome sequences. This analysis resulted in 152 unique genome-wide haplotypes or isotypes. This

large pool of genetic information provides us with the statistical power to make connections between

genotype and phenotype using GWA studies.

A handful of studies have addressed differences in temperature sensitivities across C. elegans

strains, and many of these studies show that temperature affects the lifetime fecundity and

reproductive timing of C. elegans. Two separate groups used a small subset of wild isolates to assay

thermal tolerance [330] and thermal sensitivities for fitness traits [331]. Other studies performed

linkage mappings using a recombinant inbred line panel of C. elegans strains to map life history traits

such as fertility, growth rate, and egg size at both low and high temperatures to various locations
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across the genome [103, 102]. However, the use of population-scale C. elegans data to map

differences found in a large number of wild isolates for natural environmental conditions has yet to be

addressed. In this study, we correlate natural genetic variation among 152 wild C. elegans strains with

climate measurements of their environmental niches as quantitative traits. We mapped traits that

describe the niche of the isolation location for each strain, including geographic parameters, seasonal

weather patterns, and climate variables. We find significant associations for elevation, relative

humidity, and temperature. These findings suggest genetic control of niche specification. Additionally,

we tested the QTL associated with temperature and found possible evidence of adaptation to lower

temperatures based on genetic background.

7.4 METHODS

7.4.1 C. elegans wild isolate collection and sequencing

A collection of 208 wild C. elegans strains have been previously isolated worldwide and annotated for

each strain’s geographic location and date of isolation [63]. Members of the Andersen Lab have

carefully and manually curated this dataset to offer the most accurate information possible while

accounting for sometimes imprecise sample recording. Whole-genome sequence (WGS) data were

collected from all 208 strains [63]. The raw Illumina data are deposited with the Short Read Archive

under project PRJNA318647. WGS data were analyzed as previously described [63]. In brief, after

alignment with BWA [332] and variant calling using Samtools [333], strains with a concordance of

99.93% or higher were grouped as a genome-wide haplotype or isotype. This analysis resulted in 152

unique isotypes.

7.4.2 Weather and climate data acquisition

For each wild strain with a known isolation location, elevation was estimated with the geosphere

package in R [334] using the geographic coordinates of strain isolation. A correlation test using 74

points of known elevation were used to verify accuracy of the elevation function resulting in a

correlation of 0.998. Weather data were downloaded from the Integrated Surface Data (ISD) FTP
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server (ftp://ftp.ncdc.noaa.gov/pub/data/noaa/) managed by the National Oceanic and Atmospheric

Administration (NOAA) and the National Climatic Data Center (NCDC). The ISD dataset comprises

worldwide surface weather observations from over 27,447 stations managed by the Automated

Weather Network (AWN), the Global Telecommunications System (GTS), the Automated Surface

Observing System (ASOS), and others. Data are collected once every three hours for some stations.

Some parameters include air quality, atmospheric pressure, atmospheric temperature, dew point,

atmospheric winds, clouds, precipitation, ocean waves, and tides.

Three distinct sets of weather station data were collected for analysis: a three-month window, a

one-year window, and a three-year window. These data were filtered to include values centered around

the date of isolation. For the three-month set, wild isolates with only a known month or year of isolation

were not considered. Exact day of isolation is necessary to understand the seasonal environment in

which an animal was isolated. For the one-year dataset, wild isolates with a month or day of isolation

were used. For the three-year dataset, strains with only a year of isolation were used in addition to

those strains with more defined dates of isolation. If only the year was known, the date of isolation

defaulted to January 1 of that year, and data were collected surrounding that date. If only the month of

isolation was known, the date of isolation was defaulted to the first of that month for data collection.

The 27,447 NOAA weather stations were filtered by their availability of data collected within the

years of interest. Stations that had less than ten recordings of any type for any month within the time

period of data collection were excluded to avoid misrepresentation by datasets that were averaged

from only a few data points. Stations were then filtered by location, and the closest station to location

of isolation for each wild strain was selected and downloaded using the stationaRy package available

at https://github.com/rich-iannone/stationaRy [335]. We performed a rank-correlation test for

temperature, relative humidity, and atmospheric pressure between two neighboring weather stations

(ranging from 0.93-153 km apart) and found high correlations regardless of distance between stations

(rho = 0.920, 0.913, and 0.707, respectively). All station-isotype pairs were included in our analysis

regardless of the distance between them. The primary fields as well as all additional quantitative data

available for each station were downloaded. Some fields (e.g. “AT1” or “Present-weather-observation”)

were not downloaded from the NOAA database because the traits are qualitative and would not be
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conducive to quantitative analyses. The station data were filtered to contain only information from the

months surrounding the date of isolation. This process was repeated for each dataset (three-month,

one-year, and three-year) in case a closer weather station contained only data for the three-month set

but not for the one-year or three-year sets. The station data were meticulously checked by manually

removing missing values from each weather category independently and, in certain cases, converting

fields to uniform units that can be averaged to form a trait value. For example, precipitation (“AA1”)

was downloaded in two columns: 1) time period; 2) depth of precipitation recorded during that time

period. Because the variable time periods in which data were recorded, averaging precipitation would

lead to skewed results. Precipitation was changed to adapt a “precipitation per hour” model that would

be more permissive to our analyses. The daily average of each trait was averaged over the time span

collected (three months, one year, or three years), and this value was designated as the phenotypic

value for that strain. Furthermore, the minimum and maximum daily values and total variance were

averaged over the time span collected. Only traits with values in more than 90% of strains were

analyzed further.

7.4.3 Association mapping

Genome-wide association (GWA) mapping was performed using 152 genome-wide C. elegans isotypes

using the cegwas R package found at https://github.com/AndersenLab/cegwas. This package uses

the EMMA algorithm for performing association mapping and correcting for population structure [336],

which is implemented by the GWAS function in the rrBLUP package [264]. The kinship matrix used for

association mapping was generated using a whole-genome high-quality single nucleotide variant (SNV)

set [63] and the A.mat function from the rrBLUP package. Single-nucleotide variants identified using

RAD-marker sequencing [79] that had at least 5% minor allele frequency in the 152 isotype set were

used for performing GWA mappings. Association mappings that contained at least one SNV that had a

-log(p-value) greater than the Bonferroni-corrected p-value were processed further using fine mapping,

which entails a Spearman’s rank correlation test with variants from the whole-genome sequence data

of moderate to severe predicted effects as determined by the SnpEff function [337].
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7.4.4 Temperature competition assays

We chose two strains, CX11314 and JU847, that had different alleles for the peak QTL marker (chrV:

14,822,276; JU847: T, CX11314: A) in our three-year temperature GWA mapping. JU847 has the

reference allele for the peak marker and was isolated at a low temperature, whereas CX11314 has the

alternative allele for the peak marker and was isolated at a higher temperature. We designed a Taqman

probe (5’-[A]CCGTTTTTTTT[T/A]AATTTT-3’) to measure each of these two alleles from mixed samples

of nematodes using the standard software from Applied Biosystems and a corresponding primer set to

amplify the region of interest (below).

F : 5′ −AAACCCAAGATTTTTATGGTTACTTTAAGATTTGT − 3′

R : 5′ −ATCTATAGTTAACTTGGATATATTGTTTGTTTTCGGT − 3′

These two strains were chunked to fresh 10 cm NGMA plates seeded with OP50. 48 hours later,

seven L4s from each strain were added to each of 45 6 cm NGMA plates seeded with OP50 for both

15°C and 25°C competition experiments. The 45 plates at each temperature represent nine

experimental replicates each composed of five independent populations. Plates were placed at either

15ºC or 25ºC and grown to starvation. After one week for 25°C competition experiments or 10 days for

15°C competition experiments, nematodes were transferred to fresh NGMA plates by cutting a 0.5 cm

x 0.5 cm square of agar (containing approximately 100 worms) and replaced at the appropriate

temperature. After culture transfers two, four, and six, starved animals were washed off the plates with

M9, and DNA was collected using the Qiagen DNeasy Kit. Genomic DNA from each time point was

digested with the EcoRI enzyme and purified using the Zymo DNA Clean Concentrator Kit. The

concentration of fragmented genomic DNA was adjusted to 2 ng/µL by Qubit assay. The number of

JU847 and CX11314 alleles in each replicate population was measured using Taqman analysis in a

Biorad QZ200 digital droplet PCR system. Digital PCR was performed following the standard protocol

provided by Biorad with the absolute quantification method. The proportion of the JU847 allele and the

relative selection coefficients were calculated.
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7.5 RESULTS

7.5.1 Genome-wide association of geographic traits

The location where a C. elegans strain was identified could reflect the process of selection for a

particular genotype in a specific niche. For this reason, we investigated correlations between genetic

variation in the C. elegans population and parameters describing the geographic locations of isolation

as quantitative traits. Previous work with a smaller set of strains (97 wild isolates) detected a

significant QTL on the left arm of chromosome II associated with the latitude where strains were

isolated [79]. To evaluate this trait and other parameters describing the location where each strain was

isolated in our larger strain set (152 strains), we curated the isolation location information and defined

several traits based on geographic data for each strain (Table 7-1), namely latitude, longitude,

elevation, the absolute value of latitude, and the absolute value of longitude. We performed

genome-wide association mappings with 149 wild strains with known isolation locations (Figure 7-1)

to correlate these trait values with common genetic variation (see Methods). Using this strain set, only

the mapping of the elevation of the isolation location identified a significant QTL on the left arm of

chromosome III (Figure 7-2A). When we divided the population by the genotype at the peak marker,

we found that the elevation values for these two sets of strains were similar with a few outliers (Figure

7-2B), suggesting that the outliers were causing the detection of a QTL. It is possible that the

association is spurious and driven by outliers or that the outliers are strains harboring rare alleles in

the C. elegans species that impact this trait. The outlier strains in our mapping could share some

genetic similarities as they were all collected within the last 15 years, and most were collected in

France or elsewhere in Northern Europe. We did not recapitulate the QTL for latitude observed in the

previous study [79] likely because it also appears to be driven by strains with extreme latitude values.

Again, these outlier strains could be highly related as seven of the 15 strains with the alternate

genotype at the peak marker position originated from South Africa or Kenya. Our larger strain set

reduces the effect of these outliers on the GWA mapping, and the previously detected QTL is no

longer significant. These results suggest that common variation in the C. elegans species does not

correlate with geographic parameters describing the location of strain isolation. However, rare variants
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might control whether strains can colonize and/or proliferate in specific geographic locations.

Table 7-1: Definition of geographic and weather traitsa

Trait name Variableb Strainsc Description
Latitude latitude 149 Latitude coordinate where the nematode strain

was collected (degrees)
Abs. value of latitude abslat 149 Absolute value of the latitude coordinate where

the nematode strain was collected (degrees)
Longitude longitude 149 Longitude coordinate where the nematode strain

was collected (degrees)
Abs. value of longitude abslong 149 Absolute value of the longitude coordinate where

the nematode strain was collected (degrees)
Elevation elevation 149 Calculated elevation based on latitude/longitude

coordinates using “geosphere” package (m)
Temperature temp 145 Average dailyd temperature of the air (°C)
Relative humidity rh 129 Amount of water vapor present in air expressed

as a percentage of the amount needed for
saturation at the same temperature (%)

Wind direction wd 134 Angle, measured in a clockwise direction,
between true north and the direction from which
the wind is blowing (angular degrees)

Wind speed ws 136 Rate of horizontal travel of air past a fixed point
(m/s)

Cloud heighte ceil_hgt 122 Height above the ground level of the lowest
cloud or obscuring phenomena layer with 5/8
or more summation total sky cover, which may be
predominantly opaque, or the vertical visibility into
a surface-based obstruction (m)

Dew point dew_point 129 Temperature to which a given parcel of air must
be cooled at constant pressure and water vapor
content in order for saturation to occur (°C)

aDefinitions for traits obtained from the Federal Climate Complex Data Documentation for Integrated Surface Data (August
20, 2015)

eAbbreviation for weather traits obtained from the raw data file format
eNumber of wild isolates with data for each geographic and weather trait. Number of strains for the weather traits was

obtained from the three-month mapping dataset
eAll weather traits were defined by averaging the average daily values (see Methods)
eAll weather traits were defined by averaging the average daily values (see Methods)

7.5.2 Weather conditions and climate parameters can be determined using the geographic

location of the site of strain isolation

It is likely that the possible genetic association we observed between the elevation of strain isolation

and a region on chromosome III is correlated with weather patterns and/or climate variables at specific

geographic locations. Strain latitude and longitude can be used to determine the weather or climate
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Figure 7-1: Global distribution of wild isolates and NOAA weather stations. (A) Map of 27,447 ISD NOAA weather
stations (blue) and 149 C. elegans wild isolate locations (red). Three isotypes are not depicted as they have no known
location of isolation. (B) Histogram of station distance from wild isolate, measured in kilometers (km). Data from the three-
year weather dataset are shown.

at the time and location from which each wild C. elegans strain was isolated. The short-term weather

surrounding the day of isolation as well as the long-term climate of the geographic location for each

strain could improve our understanding of adaptation to niches for specific strains or for the species as

a whole. Furthermore, correlating these climate parameters with whole-genome sequence data could

identify potential alleles that might contribute to adaptation of a wild isolate to certain environmental

factors.

The National Oceanic and Atmospheric Administration (NOAA) collects and provides multiple

datasets related to weather and climate information, including the Integrated Surfaces Data (ISD). The

ISD dataset is archived at the National Climatic Data Center (NCDC) and is composed of worldwide

surface weather observations from over 27,000 stations managed by different global institutions [338].

First, we manually curated the isolation information for the 152 strains, including the date of isolation,

location, and sampling information. Then, we overlaid the locations of the 27,447 ISD weather stations

with the isolation locations of the 149 C. elegans wild strains with complete sampling data (Figure

7-1A). Using the date and isolation location for each wild strain, we identified the closest weather

station with available data and collected weather observations in three time periods surrounding the
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Figure 7-2: Genome-wide association of elevation. (A) Genome-wide association of elevation of strain isolation shown as
Manhattan plots. Genomic position is plotted on the x-axis against the negative log-transformed p-value on the y-axis. Single
nucleotide variants (SNVs) that are above the Bonferroni-corrected significance threshold, indicated by the dotted grey line,
are shown in red and SNVs below the Bonferroni threshold are shown in black. Confidence intervals are represented by the
pink bars. (B) Box plots show strain isolation elevations, measured in meters (m), separated by the genotype at the peak
marker location. Each point represents one strain. The reference genotype (REF) refers to strains that share the genotype of
the reference strain, N2. The alternative genotype (ALT) refers to all other strains that do not have the reference genotype at
the peak marker position.

date of nematode isolation: three months, one year, and three years. Most strains were found less

than 60 km from a weather station (Figure 7-1B). However, we found a strong correlation (rho =

0.707) between weather stations up to 150 km apart, suggesting the weather station assigned to each

strain is representative of the weather and climate from which the strain was isolated. Of the 149

strains with known isolation locations, we knew at least the year of isolation for 145 strains, the month

for 138 strains, and the day for 122 strains. For the three-month period, we analyzed weather station

data only for strains with known days of isolation to provide a precise account of the daily weather

experienced immediately surrounding the date of isolation for each strain. For the one-year period, we

used data from strains with known day or month of isolation. For the three-year period, we used data

from strains with a known day, month, or year of isolation to provide an estimated overall climate of the

strain isolation location. Not every weather station sampled contained data for each weather

parameter. Additionally, only quantitative weather parameters that were measured at locations shared

in a majority of the wild isolate population (more than 90% of the strains) were considered for further

analysis (Table 7-1). The daily averages of all observations for each weather parameter were

averaged over the given time period, and this averaged value was used as the trait measurement for
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each strain (see Methods).

We evaluated all weather observations over the three months, one year, or three years surrounding

the date of nematode isolation for each of the 149 wild strains to define the weather or climate

experienced by each strain. These data were mapped using GWA to define ten QTL for two distinct

traits – relative humidity and temperature.

7.5.3 Genome-wide association of average relative humidity

C. elegans is found at locations with various average daily relative humidity ranging from 34% to 89%,

with an average of 70%. This estimate of the average relative humidity of locations harboring C. elegans

is in agreement with previous studies that show C. elegans is often found in humid environments [311].

To determine if variation in relative humidity at isolation location is correlated with genetic variation, we

performed GWA mapping for relative humidity of isolation location over three months, one year, and

three years surrounding the date of isolation (see Methods). We found nine significant QTL in three

distinct regions of the C. elegans genome: the left arm of chromosome II, the right arm of chromosome

III, and the right arm of chromosome V (Figure 7-3). The mapping for average relative humidity over

three months surrounding the date of isolation (Figure 7-3A) resulted in two distinct QTL: one on the

left arm of chromosome II and the other the right arm of chromosome V (LD = 0.341). The mapping for

average relative humidity over one year surrounding the date of isolation (Figure 7-3B) resulted in one

QTL on the left arm of chromosome II, two linked QTL on the right arm of chromosome V (LD = 0.536),

and one barely significant QTL on the right arm of chromosome III that is highly linked to the other three

QTL (LD = 0.774, 0.777, 0.548). The position of the chromosome II and V QTL are the same as

those QTL observed for the mapping of three-month humidity. Finally, the mapping of average relative

humidity over the three years surrounding the date of isolation (Figure 7-3C) resulted in the same two

QTL on chromosome V and the QTL on chromosome III as found for the mapping of one-year relative

humidity. For each QTL, strains with the reference allele at the peak marker tend to be isolated at higher

relative humidity, and strains with an alternative allele tend to be isolated at lower relative humidity. This

evidence of a phenotypic split dependent on genotype of the peak marker suggests that at least one

variant could contribute to the adaptation of C. elegans to different relative humidity.
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Figure 7-3: Genome-wide association of humidity traits. Genome-wide association of relative humidity for three different
time periods are visualized as Manhattan plots: three-month (A), one-year (B), three-year (c) durations. Genomic position is
plotted on the x-axis against the negative log-transformed p-value on the y-axis. SNVs that are above the Bonferroni-corrected
significance threshold, indicated by the dotted grey line, are shown in red and SNVs below the Bonferroni threshold are shown
in black. Confidence intervals are represented by the pink bars.

7.5.4 Genome-wide association of average temperature

C. elegans are also found at a variety of average temperatures ranging from 7°C to 25°C, with an

average of 15.3°C. To determine if temperature is associated with genetic variation, we performed a

GWA mapping for the average daily temperature of isolation location over three months, one year, and

three years surrounding the date of isolation (see Methods). We found one significant QTL just right
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Figure 7-4: Genome-wide association of temperature. (A) Genome-wide association of three-year average temperature
is visualized as a Manhattan plot. Genomic position is plotted on the x-axis against the negative log-transformed p-value on
the y-axis. SNVs that are above the Bonferroni-corrected significance threshold, indicated by the dotted grey line, are shown
in red, and SNVs below the Bonferroni threshold are shown in black. Confidence intervals are represented by the pink bars.
(B) Box plots show the strain three-year average temperatures, measured in degrees Celsius, separated by genotype at the
peak marker locus. Each point represents one strain. The reference genotype (REF) refers to strains that share the genotype
of the reference strain, N2. The alternative genotype (ALT) refers to all other strains that do not have the reference genotype
at the peak marker position.

of the center of chromosome V (Figure 7-4A). This QTL is in the same location as that observed for

relative humidity (Figure 7-3). We found that strains with the reference (N2) allele at the peak marker

tend to be isolated from geographic locations with lower temperatures, and strains with an alternative

allele at this position tend to be isolated from geographic locations with higher temperatures (Figure 7-

4B). This QTL suggests that an allele, or alleles nearby this marker, could confer fitness advantages to

strains that experience different temperatures. To identify the variant(s) that could underlie this QTL, we

investigated a region on chromosome V (V:13,845,281-15,332,878) defined by 1.48 Mb that contains

619 total genes. The genes with predicted functional variants are most likely to cause phenotypic

differences among diverse strains in species. Therefore, we focused on 363 genes within this region

predicted to harbor functional variants of moderate or severe effects on gene function, as determined

by SnpEff [337]. We narrowed the list of candidate genes further by identifying 27 genes that are

highly correlated with differences in temperature. Although an investigation of these 27 genes did not

identify an obvious candidate related to temperature regulation, one or more of these variant genes

could explain adaptation to specific temperature.

Because C. elegans are isolated at locations with variable temperatures, we wanted to investigate
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the variance of temperatures experienced by each strain. We found one significant QTL associated

with the variance in annual temperature on chromosome V and another on the right arm of

chromosome III. These QTL appear to be linked (LD = 0.661) but act in opposing manners. On

chromosome III, strains with the reference allele at the peak marker tend to experience lower variance

in annual temperature than strains with the alternative allele at this position. However, the strains with

the reference allele at the peak marker for the QTL on chromosome V tend to experience higher

variance in annual temperature than those strains with the alternative allele. Furthermore, the average

minimum daily temperature for three years experienced by each strain also maps to the same

chromosome V QTL, while the variance in temperature over the three-year window maps to the same

QTL previously identified on chromosome III. Although the same strains have both the alternative

allele at the peak marker for average temperature and minimum temperature (and are mostly found in

either Southern California or Hawaii), only a few of these strains also have the alternative allele for

variance in temperature. Taken together, these data are suggestive of genotypic differences that exist

within the strains harboring the alternative allele that highly correlate with being found in locations with

higher temperatures and lower temperature variation.

7.5.5 Strains from divergent climates might be adapted to specific temperatures

Although we have GWA mappings for various weather conditions, validating these QTL would provide

more evidence for C. elegans selection of niche based on environmental and geographic factors.

Because temperature can be controlled easily and survival at defined temperatures can be tested

experimentally, we decided to determine whether two strains from divergent climates are adapted to

the respective temperatures nearby their isolation locations using a competition assay. Strains were

chosen that had both a different genotype at the peak marker of the QTL on chromosome V identified

in the three-year temperature mapping experiment and a large difference in the temperatures nearby

the isolation locations. JU847, a strain isolated from Northern France in 2005, has the reference

genotype at the three-year temperature QTL peak marker and was found at a low three-year average

temperature (11.3°C). CX11314, a strain isolated from Southern California, USA in 2003, has the

alternative genotype at the three-year temperature QTL peak marker and was found at a higher
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three-year average temperature (20.9°C). High fitness at or around the temperature nearby the

isolation location of one strain and lower fitness at or around the temperature nearby the isolation

location for the other strain would suggest potential adaptive alleles that contribute to better survival at

a specific temperature.

Replicate cultures were initiated with an equal number of animals from each strain at either 15°C

or 25°C and allowed to compete for at least six generations. After culture transfers two, four, and six,

we analyzed the ratios of the two strains found at each temperature (see Methods). CX11314 was

found to have higher fitness than JU847 at both temperatures tested (Figure 7-5). At high temperature,

CX11314 had a clear selective advantage compared to JU847 (for fitness = 1, relative CX11314 fitness

s = 2.29), resulting in JU847 alleles comprising less than 1% of the alleles measured after six culture

transfers. However, JU847 performed better at the lower temperature than at the higher temperature,

comprising almost 8% of the total nematode population after six culture transfers (relative CX11314

fitness s = 1.57). These data suggest that JU847, although not more fit than CX11314 at either

temperature, is more fit at 15ºC than at 25ºC.

7.6 DISCUSSION

In this study, we have defined geographic, weather, and climate variables over three different time

periods as phenotypic traits for 149 unique wild C. elegans strains and performed genome-wide

association mapping for 11 traits. Each phenotype described in this study was obtained using the

location, date, and weather of the known isolation location of each isotype in our collection. We found

significant correlations between genotype and phenotype for three traits and a total of 11 QTL.

However, only temperature displayed strong phenotypic separation associated with genotypic variation

that was likely not driven by outlier strains.

Although we found a significant QTL associated with the elevation of isolation location, we did not

recapitulate the QTL for latitude observed in the previous study [79]. This difference is likely because

the previous mapping appears to be driven by strains with extreme latitude values, similar to our

elevation mapping. The larger strain set in this analysis reduces the effect of these outliers on the

GWA mapping, and thus the QTL is no longer significant. However, we did observe a QTL associated
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Figure 7-5: Two-strain temperature competition assay. U847 (isolated at low temperature) was competed against
CX11314 (isolated at high temperature) at both 15°C (indicated in blue) and 25°C (indicated in red). The mean frequency of
the JU847 allele in the population is plotted on the y-axis. Error bars represent one standard deviation from the mean. Data
were collected from nine experimental and five technical replicates.

with latitude just below the Bonferroni-corrected significance threshold on the right arm of

chromosome V. This suggestive QTL is in close proximity to the QTL for temperature. It is possible that

the moderate association seen with latitude is representative of a real association with temperature, as

the two traits are highly correlated. In our dataset, we see a high negative correlation between the

absolute value of latitude and temperature (rho = −0.827) and between latitude and temperature

(rho = −0.795). Unfortunately, the latitude and longitude recorded for a particular strain are not

always precise, especially for strains with older isolation dates, which were not recorded as accurately.

One tenth of a degree of latitude can distinguish between large cities, but could cover up to 11.1 km of

distance. The function we used to determine elevation of strain isolation used these imprecise latitude

and longitude coordinates, potentially resulting in a range of small to sizeable errors. These

estimations could affect not just the geographic traits, but the weather traits as well, which are

calculated based on the geographic coordinates. However, we do not expect this estimation to have a
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large effect, as we found weather data between stations up to 150 km apart to be highly correlated

(rho = 0.707; see Methods).

We chose to assess weather conditions for each of the 149 strains over three time periods: three

months, one year, and three years. A duration of three months was chosen to define the weather

contemporary to the date of isolation. One year was chosen to evaluate the average weather patterns

a strain must be able to survive in nature. Three years was chosen to define the climate of the

isolation location. Using data from three years could help us understand the average long-term climate

conditions for each strain by eliminating any unusual weather patterns during the year of isolation that

are not representative of the overall average environmental conditions. The relative humidity trait maps

to the same chromosome positions for all three time periods assayed. Previous studies have also

shown that C. elegans tend to be found in humid regions [311]. The same QTL on the right arm of

chromosome V was observed for both relative humidity and temperature. Because relative humidity

depends on air temperature, these traits are expected to be correlated. In our dataset, we see a high

correlation between temperature and relative humidity (rho = −0.675). Although the average

temperature maps with only the three-year data set, we observed a QTL at the same position for

minimum daily temperature and another QTL just below the significance threshold for the average

one-year temperature mapping dataset. Additionally, this QTL was mapped for other weather traits

such as maximum daily dew point and variance of wind direction. Similar to relative humidity, dew

point is dependent on (and highly correlated with) ambient temperature. However, wind direction and

temperature are more difficult to relate to one another. Perhaps, this QTL represents residual

population structure shared by strains at this location and not suggestive of underlying mechanisms

impacting fitness in differing environmental conditions. Volkers et al. attempted to characterize such

genomic and phenotypic diversity in wild C. elegans populations and discovered major hotspots of

polymorphic genes on the left arm of chromosome II and the right arm of chromosome V [339]. Maybe

the higher genetic diversity observed at these positions is controlling the observed QTL for

temperature and other weather traits. Regardless, we observe several QTL that provide evidence that

one or more variants on chromosome V are associated with differences in long-term average

temperature where C. elegans strains are isolated from nature.
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The QTL for temperature was evaluated further because it could be controlled in a laboratory

setting. The competition assay between JU847 and CX11314 showed that CX11314 had a higher

selective advantage than JU847 at both high and low temperatures. This result might be observed

because the laboratory environment cannot completely recapitulate conditions experienced in the wild.

Additionally, it is possible that CX11314 is more fit than JU847 regardless of temperature. To test this

QTL more thoroughly and eliminate this possibility, it would be necessary to compete multiple high and

low temperature strains. Alternatively, because JU847 and CX11314 differ throughout their genomes

in unknown ways that could affect overall fitness, testing near-isogenic lines (NILs), in which only the

region surrounding the QTL is different between the two strains, would be a better way to test

temperature-dependent fitness effects of this QTL. Regardless, we found that the low temperature

strain, JU847, was more competitive with the high temperature strain, CX11314, at the lower

temperature. This result provides evidence that one or more genetic variants within the QTL could

contribute to a higher fitness at specific temperatures. Furthermore, the duration of this experiment

was only six weeks, while the QTL was identified for a time span of three years. At the lower

temperature, it is possible we could observe a stronger competitive advantage for JU847 over a longer

time period.

Although our analyses were unable to identify a single gene or variant that could underlie potential

differences in niche specification, our conclusions suggest that different strains are found in unique

niches and at least some of the environmental differences in niches are related to genetic variation

among strains. As we expand our collection of wild C. elegans strains, we will be able to better define

these weather and climate differences. Additionally, longitudinal collection studies with dense

sampling, especially in a location with known high species diversity (such as the Hawaiian Islands)

would give us more valuable data about how genetic variation in C. elegans is related to environmental

conditions. We expect that similar data could be analyzed for other species and allow for investigation

of niche specification, specifically in plant species where dense sampling and whole-genome datasets

are available.
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7.7 FUTURE DIRECTIONS

This study identified genetic variation on chromosome V that was associated with the temperature

and humidity of the climate in which strains were isolated. We attempted to validate this QTL using a

competition assay between two strains isolated from different environments and found some evidence

that the strain isolated from cooler temperatures performed better in cooler temperatures than the strain

isolated from warmer temperatures. However, only one strain per environment was chosen and there

is a lot of genetic variation between these two strains, not just on chromosome V. A more thorough

experiment would be to create near-isogenic lines (NILs) isolating the region on chromosome V. For

example, if CX11314 were to show a higher fitness at warmer temperatures than a strain with the

CX11314 genetic background and a JU847 introgression on chromosome V, then we would know that

genetic variation in this region contributes to the nematode’s adaptation to different temperatures. It

would also be best to create three or four pairs of reciprocal NILs from strains with different haplotypes

at the chromosome V region to best capture the variation among the GWA panel.

In addition to testing NILs, this study could be repeated as more wild strains are collected. Additional

QTL might be discovered as we collect more divergent strains from different climates. We already

noticed that there was a change in the genetic architecture of latitude of isolation from the 96 strain

set to the 152 strain set containing more genetic diversity [79]. This likely indicates that the population

structure might influence association mapping results. To help improve estimation of the nematode

environmental niche, newer collections even include documented environmental parameters measured

at the time of collection that could be used for association mapping [59]. Finally, adapting this study

to other available datasets could be enlightening. For example, a dataset detailing soil environmental

parameters such as water, oxygen, or carbon content could be more informative than traits like cloud

cover, as C. elegans are soil dwelling nematodes.
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8 Discussion

The majority of my graduate work was focused on identifying causal genetic variants that underlied a

variety of toxin-response traits in C. elegans. The goal of this work is three-fold: to better understand

the genetic architecture of complex traits, to discover the mechanism by which natural genetic

variation influences a phenotype, and to hypothesize how the forces of evolution acted to produce the

observed phenotypic variation. This feat is surprisingly more difficult than it seems due simply to the

complexity of quantitative traits. We learned early on that traits with overlapping QTL from both linkage

and association mapping often converged relatively easily on a small number of candidate variants

[70, 71]. However, QTL in densely populated genomic regions (such as the chromosomal arms) or

genomic regions with extremely high genetic diversity (divergent regions) present even more difficult

problems [123]. Because of several expected and unexpected challenges, I spent a lot of time trying to

identify the causal variant, leaving little time to explore the more interesting mechanistic and

evolutionary questions. Here, I will discuss what I have learned from my experiences performing

quantitative genetics in C. elegans and provide insight that will hopefully propel future research in the

field.

8.1 Functional validation to identify the causal variant underlying a QTL

One of the many benefits of performing quantitative genetics in C. elegans over other species is the

ability to functionally validate detected QTL. NILs are an extremely useful tool in this process because

they allow testing of genomic regions (small or large) without first choosing specific candidate genes.

This unbiased approach to identifying causal variants is important because prior knowledge of gene

function might not be indicative of the mechanism by which natural genetic variation influences

phenotypic traits. Furthermore, many genes in the C. elegans genome remain unannotated with no

known function. A panel of NILs with increasingly smaller introgressed regions can also be generated

and phenotyped relatively quickly to narrow the QTL by identifying the smallest genomic region that

produces the NIL phenotype. However, if the QTL confidence interval is already small or your QTL is

in the center of a chromosome where little recombination occurs, this method might not be beneficial.
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Targeted double strand breaks with CRISPR-Cas9 machinery in heterozygous individuals followed by

homology directed repair might improve the speed and precision of NIL construction. Although it has

not been used yet in C. elegans, this method (sometimes called ‘loss of heterozygosity’) has been

successfully used in yeast to generate a panel of recombinants [340] and offers hope for a new era of

fine-mapping with well-designed recombinants.

NILs are quite effective for simple QTL with a single causal variant. However, there are several

cases in which QTL are more complex than they seem, in which case NILs might yield more questions

than answers. In Chapter 2, we observed many examples of multiple additive or interacting loci in

the NILs that were undetected in the original QTL scan. This result offers two main questions: why

were these secondary loci not detected with linkage mapping and why do we see them with NILs? To

answer the first, the power to detect QTL with linkage mapping is increased with the addition of more

strains. Because many of the putative interactions we identified were uni-directional, we likely did not

have enough strains with the correct genotype combination to detect a signal. In answer to the second

question, NILs remove the genetic heterogeneity of the RIAIL background, making it easier to observe

genetic interactions between two loci. In Chapter 4, we saw a similar, yet distinct, issue where a single

QTL fractionates into two or more small-effect loci. This can make it laborious to identify all small-effect

variants contributing to an already small-effect phenotype. Several quantitative genetics studies do not

even attempt to map QTL to QTN for this very reason and focus instead on understanding the overall

genetic architecture of a trait.

There is no way to escape these issues of uncovering fractionating and undetected QTL because

these results are a product of the underlying genetics of a complex trait. In fact, in these cases, NILs

provide more information than could be gleaned from a CRISPR-targeted knockout of a specific

candidate gene. However, there are certain steps that can be taken to decrease frustration induced by

complicated NIL behavior. First, for all QTL mapping studies, but particularly for those with small-effect

fractionating loci, it is essential to have a high throughput and reproducible phenotyping assay that is

sensitive enough to detect small differences and robust enough to distinguish signal from noise. Any

precautions that can be taken to reduce environmental variation will increase the chance of success. It

is essential to be confident that small differences in NIL phenotypes are in fact derived from
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differences in NIL genotypes and are not an artifact of the assay. Second, efforts to improve

fine-mapping and candidate gene prioritization would lessen the need for a large panel of NILs to

narrow the QTL. This is already often the case for QTL identified with association mapping due to the

decreased linkage disequilibrium between variants. Furthermore, mapping with two or more

populations (e.g. linkage and association) could help to implicate or exclude genomic intervals. And

finally, it might be necessary to sensitize a NIL if there are multiple QTL of opposite effect sizes for a

given trait (see Chapter 4, sqst-5 deletions).

Similar to NILs, genome editing with the CRISPR-Cas9 system is another way to perform functional

validation in C. elegans, but often for specific candidate genes of interest. CRISPR can easily be

used to generate full deletions of genes leading to a loss-of-function mutant. However in some cases,

large insertions or deletions spanning several genes might be possible. To aid the study of natural

variation, CRISPR can also be used to introduce a genomic region or even a single nucleotide variant

from one strain (such as CB4856) into another (such as N2). Although extremely powerful, CRISPR

relies on having a prioritized list of candidate genes. However, QTL often contain hundreds of genes,

further necessitating a method for narrowing a region and/or prioritizing candidate genes. An ambitious

student could methodically delete ten or more top candidate genes, but this takes lots of time and

money and doesn’t even guarantee success. Sometimes a loss-of-function mutation can have an effect

on the phenotype without being the causal variant that underlies the QTL [72]. Othertimes, the loss-of-

function mutation might not have an effect even though variation in the gene does cause the phenotypic

variation observed [123]. Additionally, some loss-of-function mutations cause other phenotypes like

slow growth (Chapter 6, lgc-54 mutants) or even lethality. In these examples, we have shown that a

reciprocal hemizygosity test would be necessary to show causation [72, 123].

8.2 Benefits and limitations of high-sensitivity phenotyping

The sorter platform in the Andersen Lab is great for quantitative genetics because it allows us to discern

small differences that we can’t observe with the human eye. The ability to detect small differences is

necessary for accurately describing quantitative variation. Using this platform, we were able to identify

QTL that explained less than 5% of the phenotypic variation and in some cases we were able to validate
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these loci using NILs [73, 123]. This is really important because it gets us closer to identifying all loci

that contribute to the heritable phenotypic variation for a single trait. Identifying all loci allows us to begin

answering questions about the components of missing heritability. What is the genetic architecture of

complex traits? To what extent do epistatic interactions between loci contribute to complex traits? In

Chapter 2, we attempted to answer these questions using the sorter platform and linkage mapping

analysis. We show evidence for many small-effect QTL but, even with our 296 RIAILs, we still do not

have the power to distinguish genetic interactions in the recombinant panel.

When I joined the Andersen Lab, most of the large-effect “low-hanging” QTL were already being

pursued, which made me the first to attempt to identify causal genes underlying medium- and small-

effect QTL (Chapters 4-6). With this, came a new set of challenges: in order to trust such small

phenotypic differences, it is essential that the environmental variation within an assay is minimized. For

example, with the chromosome V QTL for zinc response in Chapter 4, I observed significant variation

between experiments that made it difficult to pinpoint the causal loci. Furthermore, in Chapter 5, I

provide a clear example of a trait (docetaxel response) controlled by a genetic locus whose effect is

drowned out almost entirely by large environmental variation (food quality). Although nothing could

be done to replicate the original food source to continue studying the docetaxel response, I was able

to minimize the effect of background variation in the zinc response by searching for the experimental

variable that introduced the most variation (bleach synchronization) and then replicating my experiments

across this variable. Moving forward, I believe that this is the best way to feel confident in results for

small-effect loci. Regardless, there is still a limit to the smallest QTL effect size that can be accurately

and robustly validated in our assay, currently estimated near 5% of variation in the RIAILs explained

by the genetic locus. As new phenotyping assays are developed, it will be crucial to fully evaluate

the assay’s sensitivity and specificity and only attempt to validate QTL that fit these specifications, as

disregard for the influence of environmental variation can lead to a misinterpretation of results.

8.3 Representing quantitative traits for mapping and validation

One of the most important parts of QTL mapping is selecting a trait that not just describes the biology

you are looking to study, but also is quantitative, varies across the population, and is heritable.
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Sometimes this is simple: if you are studying lifespan, your trait could be the number of days a worm

lives for. Other times, the trait you are looking to study is more complex or cannot be measured

directly. Our current approach in the Andersen Lab is to describe toxin responses as a function of

animal length, optical density, and brood size. These traits have been successfully used to discover

the causal gene or variant underlying several toxin responses [70, 71, 72, 123, 69], demonstrating that

we have captured at least some of the nematode’s toxin-response biology with these traits. One of the

main challenges, but also one of the main advantages, to using these traits is that because each of

these trait measurements are taken at a population-wide level, we have replicated distributions for

each trait rather than a single value. Early in the development of this assay, we described how

summary statistics describing these distributions can be used to more thoroughly investigate the

complexity of these traits [68]. For example, instead of just taking the mean animal length of the

population, we could also take the 10th and 90th quantiles to look at the range of phenotypic variation.

Despite the strengths of more thoroughly describing a population, there are several weaknesses to

this method. First, this method leads to multiple correlated traits describing one population, and

treating them each as independent traits can lead to an oversampling bias. To address this issue, we

have occasionally used principal component analysis (Chapter 2) to condense traits and identify the

main components of phenotypic variance [73, 70]. However, the main disadvantage to this method is

that these new traits lose biological relevance. Second, how can the trait biology be correctly

interpreted if the median animal length has a QTL that the mean animal length does not? I worry that

having so many traits to choose from could result in “cherry picking” the trait based on the expected

result. Therefore, when describing results for a particular trait, it is important to remember the biology

behind the numbers. Finally, increased environmental variation could alter the calculated quantiles.

For this reason, I believe that the median values are often the most robust and reproducible. However,

simplifying the distributions by describing them with a single value removes potentially valuable

information hidden within the distribution itself. In the future, especially as new assays are developed

that have more trait measurements, it would be great to see an implementation of multivariate trait

mappings as seen in other systems [341, 342, 343]. However, like principal component analysis, it is

unclear how to best functionally validate these complex traits post-mapping.
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As mentioned before, our toxin-response assay measures indirect, organismal phenotypes that are

often very complex and might be driven by the combination of numerous loci. By contrast, molecular

phenotypes such as gene expression are often more simplistic–a single locus may contribute most of

the heritable variation for a gene’s expression, while the expression of this gene might only partly

contribute to the organismal phenotype. Although several molecular phenotypes have been mapped in

C. elegans in our lab and others [112, 113, 80, 108, 114, 115, 116, 117, 118], very few have been

analyzed to identify the underlying causal variant. In one example, a variant in the neuropeptide

receptor npr-1 was shown to control expression of 247 genes [100]. There are a plethora of

expression QTL (eQTL) to be further explored, including at least two additional eQTL hotspots

[115, 69] with potential candidate genes. Furthermore, the lab could begin to explore other molecular

phenotypes. In Chapter 4, I suggested measuring the basal zinc content in the N2 and CB4856 strains

to investigate whether differences in natural zinc content in the nematode contributes to their variable

tolerance to high exogenous zinc. Connecting molecular phenotypes to organismal phenotypes

through methods like mediation analysis (Chapter 3) could further enhance our knowledge on the

genetic and molecular mechanisms underlying phenotypic variation.

8.4 Mediation analysis to improve candidate gene prioritization

Although any genetic variation might cause phenotypic variation, it is most likely that the causal genetic

variation will impact gene expression or function. For this reason, we can begin to narrow a list of

candidate genes to only include genes in the genomic region of interest with genetic variation that

causes a change in the amino acid sequence of the protein (protein-coding variation) and genes with

expression variation linked to variation in the genomic region of interest. To further prioritize these

genes, we can analyze the functional descriptions and GO terms associated with each gene to evaluate

if a gene fits the functional profile associated with the phenotype. However, doing this introduces bias

into the candidate screening and must be interpreted with caution as there are still many genes in

the C. elegans genome with unknown functions. Furthermore, some genes with an obvious functional

connectivity might not be causal such as jmjd-5 for bleomycin [72] and cdr-6 for zinc (Appendix C).

In Chapter 3, to further investigate genes with expression variation, I adapted a method for causal
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mediation analysis to suggest links between genetic variation, gene expression, and drug responses.

The simple overlap of expression QTL and drug-response QTL could indicate that a single variant

controls gene expression and the drug-response phenotype. However, wide confidence intervals for

the drug-response QTL results in a large number of overlapping eQTL. Mediation analysis uses a

series of linear regression models to deduce the probability that a single variant drives variation in

gene expression, which in turn affects the drug response. Mediation analysis is not a conclusive test

to identify causal genes. However, it can be very effective to help identify the causal gene, especially

if the gene function is unknown and/or the gene is distantly localized to the QTL. Although this method

has the potential to be extremely powerful, the tools currently available in the Andersen Lab are fairly

weak and introduce several caveats. Most importantly, we only have genome-wide expression data for

the set 1 RIAILs, although these strains have lowly heritable drug responses. The results of mediation

analysis would be much more robust and interpretable if we had genome-wide expression data for

the set 2 RIAILs that were primarily used for QTL mapping of drug responses. In addition to using

mediation analysis to prioritize candidate genes in linkage mapping, genome-wide expression data

collected from the 328 wild isolates would facilitate mediation for association mapping. Due to the

differences in population structure and the inherently lower linkage disequilibrium in the wild isolates

compared to the recombinants, mediation might be even more advantageous in wild isolates. In addition

to investigating other methods to fine-map a QTL, I believe that incorporating mediation analysis into

the usual Andersen Lab method for prioritizing candidate genes will prove to be an investment worth

making.

8.5 QTL in divergent regions present new challenges that need to be addressed

In addition to large genomic regions with many genes, divergent regions (like the left arm of

chromosome III) complicate the discovery of the causal gene or variant underlying a QTL. Most work

in C. elegans has traditionally been performed in the N2 genetic background for which we have a

reasonably large wealth of knowledge about the genomic features such as gene content and

annotations. By contrast, relatively little has been studied about the genome of other wild isolates. We

know that the CB4856 strain is highly genetically divergent from the genome of the N2 strain and that
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this diversity is largely contained in punctuated divergent regions [60, 62]. Recently, our lab has shown

that these punctuated divergent regions are a common feature across all wild isolates [277]. Using

long-read sequencing data from 15 wild isolates, we showed that genetic variation inside the divergent

regions rivals that seen between species of Caenorhabditis and that the gene content in these regions

are not even conserved between strains [277].

With this in mind, inferring gene annotations in the CB4856 strain from the N2 reference strain, at

least in divergent regions, is unreliable. In Chapter 4, we were lucky that the causal gene was present

in both the N2 and CB4856 strains. However, large structural variation in the CB4856 strain did result

in a lack of gene prediction for sqst-5 using de novo assembly from long-read sequencing [123]. To

improve the chance of success in the future, we first need to first know what genes are in the region for

other strains besides the N2 strain. To accomplish this, long-read sequencing is needed to perform de

novo genome assemblies for each strain. Second, accurate gene prediction models are necessary to

compare gene content between strains. Finally, we need curated gene annotations similar to what we

have for the N2 reference to help identify potential candidate genes based on function. We now have

long-read sequence data for 15 strains, including N2 and CB4856 [277, 62], and I am hopeful that the

inclusion of these data will improve our knowledge about the C. elegans genome and strengthen our

ability to discover the causal variant underlying a QTL.

One potential alternative to using CRISPR to delete specific genes in divergent regions that might

not be conserved between strains is fosmid rescue. Fosmid libraries can be generated and used to

incorporate genomic regions of approximately 40 kb from one strain (such as CB4856) into another

(such as N2). The benefit of fosmids lies in using genomic DNA; it is impartial to the genetic variation

or difference in gene content between strains. This is particularly important for narrowing QTL in

divergent regions. If a particular fosmid generated from the CB4856 strain is found to rescue the

CB4856 phenotype in an N2 strain, this fosmid can be re-sequenced or re-analyzed to identify all

differences between strains in this small genomic region. The major downfall for fosmid rescue is in

the nature of overexpression. A negative result might not be informative, however a positive result

could drive forward the search for the causal gene. Libraries currently exist for both the N2 and

CB4856 strains, and I have recently re-mapped the CB4856 fosmid library to the newly assembled
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CB4856 genome to aid future fosmid rescue experiments. However, QTL identified using a different

set of strains (besides N2 and CB4856) would require first generating the fosmid library, adding

another laborious step to this process.

8.6 A look forward: the future of quantitative genetics

In conclusion, better tools and newer technology have led to an increase in the number of QTL detected

and QTN identified over the last decade. In the coming years, I expect more QTN with medium-to-

small effect sizes to be discovered due to the implementation of suggestions outlined in this chapter

in addition to utilizing more powerful mapping methods such as bulk-segregant analysis, multi-parental

RILs, or a combination of both linkage and association mapping. The research in this field is vital

and cutting-edge. The more QTL we detect, the better our understanding of the genetic factors that

contribute to phenotypic variation. Additionally, the more QTN we identify from these QTL, the better our

understanding of the genetic mechanisms and the evolutionary forces that shape phenotypic variation

in natural populations.
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Appendices

A Co-authored publications

I had the pleasure of collaborating with members of my own laboratory as well as members of other

laboratories on several papers. Here, I describe the papers I co-authored.

A.1 Long-read sequencing reveals intra-species tolerance of substantial structural

variations and new subtelomere formation in C. elegans

Chuna Kim1,2, Jun Kim2,3, Sunghyun Kim1,4, Daniel E. Cook5, Kathryn S. Evans5, Erik C. Andersen5,

and Junho Lee1,2,3

1Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea 08826
2Department of Biological Sciences, Seoul National University, Seoul, Korea 08826
3Research Institute of Basic Sciences, Seoul National University, Seoul, Korea 08826
4Department of Molecular and Computational Biology, University of Southern California, Los Angeles,
California 90089, USA
5Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA

This manuscript was published in Genome Research in May 2019 [62].

A.1.1 ABSTRACT

Long-read sequencing technologies have contributed greatly to comparative genomics among species

and can also be applied to study genomics within a species. In this study, to determine how

substantial genomic changes are generated and tolerated within a species, we sequenced a C.

elegans strain, CB4856, which is one of the most genetically divergent strains compared to the N2

reference strain. For this comparison, we used the Pacific Biosciences (PacBio) RSII platform (80×,

N50 read length 11.8 kb) and generated de novo genome assembly to the level of

pseudochromosomes containing 76 contigs (N50 contig = 2.8 Mb). We identified structural variations

that affected as many as 2694 genes, most of which are at chromosome arms. Subtelomeric regions

contained the most extensive genomic rearrangements, which even created new subtelomeres in
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some cases. The subtelomere structure of Chromosome VR implies that ancestral telomere damage

was repaired by alternative lengthening of telomeres even in the presence of a functional telomerase

gene and that a new subtelomere was formed by break-induced replication. Our study demonstrates

that substantial genomic changes including structural variations and new subtelomeres can be

tolerated within a species, and that these changes may accumulate genetic diversity within a species.

A.1.2 CONTRIBUTIONS

I analyzed the copy number of the TALT region in all wild strains and created a phylogenetic tree for this

region to show that all strains with high copy number are closely related (Figure 4C, E)

A.2 Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity

and admixture with global populations

Tim A. Crombie1, Stefan Zdraljevic1,2, Daniel E. Cook,21, Robyn E. Tanny1, Shannon C. Brady1,2, Ye

Wang1, Kathryn S. Evans1,2, Steffen Hahnel1, Daehan Lee1, Briana C. Rodriguez1, Gaotian Zhang1,

Joost van der Zwagg1, Karin Kiontke3, Erik C. Andersen1

1Department of Molecular Biosciences, Northwestern University, Evanston, United States
2Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
3Department of Biology, New York University, New York, United States

This manuscript was published in eLIFE in December 2019 [59].

A.2.1 ABSTRACT

Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor

genetic diversity greater than the rest of the worldwide population, but this observation was supported

by only a small number of wild strains. To better characterize the niche and genetic diversity of

Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches

across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known

species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at
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high elevations but are not associated with any specific substrate, as compared to other

Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry

between some Hawaiian and non-Hawaiian C. elegans strains. We suggest that the deep diversity we

observed in Hawaii might represent patterns of ancestral genetic diversity in the C. elegans species

before human influence.

A.2.2 CONTRIBUTIONS

I was part of the original team to plan the trip to Hawaii and collect samples in August 2017. I further

worked with the members of the Andersen lab to clean and analyze data from collections, including

looking for enrichment of C. elegans on specific substrate types (Figure 2) and at different temperature

and elevation (Figure 3)
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B R Shiny application development

I learned that one of my favorite parts of lab was writing code to make pretty figures or writing functions

to help make analyzing data easier, both for me and for the lab! Here, I describe some of the R Shiny

applications I designed.

B.1 High-throughput assay dilutions

B.1.1 PREFACE

I created this shiny application to help members of the lab (including myself) easily and accurately

perform drug dilutions for the high-throughput sorter assay. When I first joined the lab, Erik ran a script

that performed the necessary calculations for each person before every assay. Over time, it became

necessary to calculate my own dilutions. I first created a markdown script that eventually evolved to

this user-friendly application. The code used to generate this app can be found here:

https://github.com/AndersenLab/HTA_dilutions.

B.1.2 EXPLANATION OF FUNCTIONALITY

An R shiny web app (version 1.4.0.2) was developed to calculate drug dilutions for the high-throughput

drug-response assays and can be found here: https://katiesevans9.shinyapps.io/HTA_V3_dilution/. The

user selects the type of assay (V2 or V3) and the type of food (lysate or live bacteria), indicates whether

or not they will be performing a dose response (serial dose response or regular) with several drug doses

or a standard assay with just one drug dose, and sets the minimum volume to pipette and the number

of drugs in the assay (Figure B-1A). Once these settings are complete, the user will press the “Setup

Complete” button and a new window will appear to the right under the “setup” tab. In the setup tab, the

user will input the information for the assay including the name and stock concentration of the drug, the

final concentration(s) of the drug, and the number of plates to be run in the assay (Figure B-1B).

When complete, the user pushes the “Calculate” button and the application automatically calculates

the drug dilutions based on pre-set specifications and transfers the user to the “dilution” tab. Here, the

application details the necessary dilutions for 1) food, 2) drug stock and 3) drug plate dilutions. A
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printable PDF can be generated by clicking the “Download Dilutions” button at the bottom (Figure B-

1C).

Figure B-1: Screenshots of the HTA dilutions app.

B.2 Fine-map QTL with NIL phenotypes

B.2.1 PREFACE

I wanted to create an application that could be used to easily view and interact with NIL phenotype

data generated from the sorter. Every time that I ran an assay I had to look at 5-20 different traits, in

both control and drug conditions and drug conditions with and without regression. It soon became an

exhausting task. I developed this app to help myself and others analyze NIL data quickly and use the

“show QTL?” button to narrow a complex NIL interval. The code used to generate this app can be found

here: https://github.com/katiesevans/finemap_NIL.

B.2.2 EXPLANATION OF FUNCTIONALITY

An R shiny web app (version 1.4.0.2) was developed to visualize the results from the high-throughput

assays and can be found here: https://katiesevans9.shinyapps.io/QTL_NIL/. To begin analysis, the user

can find all data controls in a panel on the left-hand side of the screen. A test dataset is provided (user
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should check “Use sample data” checkbox) or the user can upload a file from their local computer. Input

files should be in the R data file format (.Rda or .RData) or a CSV file and should be the pruned output

from the easysorter pipeline. It is important that the “condition” column of the dataframe contains both

a drug and a control and the “control” column contains either the control or “None” (for the control of the

control) [77]. Control regression will be performed in the application. The user should select the control

condition and the drug condition. In some cases, the user might want to further choose a specific assay

to view if multiple options are available. The user also has the option to view one of many drug-response

traits by selecting a trait from the drop-down menu. Finally, the user should choose a chromosome to

view, generally the chromosome which contains the highlighted QTL for that particular assay (Figure

B-2).

Figure B-2: Screenshot of the Finemap QTL Shiny application.
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Along the top of the main panel, the user can navigate several tabs including “Control”, “Condition”,

“Regressed”, “NIL Genotypes”, and “Help!”. The “Control”, “Condition”, and “Regressed” tabs each

show the NIL genotypes along the selected chromosome (left) and the NIL phenotypes for the selected

trait (right) in the control condition (control), raw drug condition (condition), or regressed drug condition

(regressed). Genotypes for strains that are not NILs generated from the N2 and CB4856 strains (such

as NILs generated from different parents or CRISPR-generated deletion strains) are represented by

a grey bar. The user can hover their mouse above the NIL genotype or phenotype plots to see more

information or zoom in on a specific area of the plot. Below this plot is an interactive datatable containing

the pairwise strain comparisons for this condition and trait. The “NIL Genotypes” tab shows a plot of

the NIL genotypes across all chromosomes, not just the chromosome selected by the user (top) and an

interactive datatable with the genotypes of each strain across all chromosomes (bottom). The final tab,

“Help!” provides the user with the instructions detailed here to help them use the Shiny App (Figure

B-2).

In addition to these basic controls, the user also has access to several advanced features. The user

can choose a subset of strains to plot by checking the box labeled “Show a subset of strains?” and

unchecking the boxes next to strains the user wishes to omit. Additionally, the user can plot the location

of one or more QTL as a vertical line on the NIL genotype plot by checking the “Show QTL?” box. The

user then chooses how many QTL to show and uses the appropriate slider input below to designate the

genomic positions of each QTL. Finally, if the “Show genotype?” box is checked, the genotype of each

strain at each QTL position will be shown on the phenotype plot as an orange “N” representing N2 and

a blue “C” representing CB4856 (Figure B-2).

B.3 PCR calculator

B.3.1 PREFACE

We do a LOT of PCR in the Andersen lab and instead of having to calculate how much “master mix” to

make for each different-sized PCR by hand (or using *EXCEL*), I decided to design a shiny app that

could be used on my phone at my bench for extra ease! It is extremely useful for me, probably the most
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useful thing I have done in graduate school (and it only took ∼30 minutes!).

B.3.2 EXPLANATION OF FUNCTIONALITY

An R shiny web app (version 1.4.0.2) was developed for calculating PCR reagents. For ease of use,

this app (found here: https://katiesevans9.shinyapps.io/pcr_calculator/) can be accessed via phone or

computer. User simply inputs 1) the exact number of lysis reactions, 2) the number of different primer

sets and 3) the volume of the PCR. Optionally, the user can change the volume of lysis to add to each

PCR (default is 1 uL lysis in 20 uL PCR volume).

After clicking the “Calculate” button, the application will output the amount of all reagents needed to

make a “master mix” (containing everything but the primers). Below, the application outputs the “Primer

mix”. The user will add the “mix” from the finished “master mix” above plus both primers unique to that

PCR. In the example below I indicated there were two primer sets, so I will have one large master mix

and two different primer mixes. Importantly, the application automatically adjusts the final volumes to

allow for pipetting error. The instructions at the bottom remind the user how much lysis and primer mix

to add for the final PCR product (Figure B-3).

Figure B-3: Screenshot of the PCR Calculator Shiny application.
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C Expression of the cadmium-responsive gene, cdr-6, does not

influence responses to high exogenous zinc in Caenorhabditis

elegans

C.1 PREFACE

As part of the zinc project for Chapter 4, I tested the gene cdr-6 for causality of the chromosome V QTL.

It ended up not being the causal gene and didn’t really fit in the flow of the manuscript, however Erik

and I decided that we still wanted to share the results with the scientific community. I plan to publish

this short appendix as a micropublication in the fall of 2020.

C.2 RESULTS AND DISCUSSION

Regulation of the essential trace element zinc is necessary to avoid the toxic consequences caused by

too little or too much of this metal [226, 228]. The zinc-response pathway has been extensively studied

in the nematode roundworm Caenorhabditis elegans and several genes have been discovered that

function to modulate sensitivity to both high and low zinc concentrations [233]. Recently, we identified

a quantitative trait locus (QTL) on the center of chromosome V, indicating that natural genetic variation

between the laboratory strain, N2, and a genetically divergent wild isolate from Hawaii, CB4856,

contributes to differential responses to excess zinc [123].

The confidence interval for this QTL is 1.6 Mb and contains 629 genes (WS263). Of these genes,

113 have one or more genetic variants predicted to modify the amino-acid sequence of the protein.

However, protein-coding variation is just one of the ways that genetic variation can cause phenotypic

variation. Another is variation in gene expression, which is hypothesized to be important in the majority

of complex traits [224]. We identified 83 expression QTL (eQTL) within this 1.6 Mb region using the

eQTL dataset that mapped expression differences among a panel of RIAILs also derived from N2 and

CB4856 [115, 69]. The most significant eQTL in this region caused a change in expression of the gene

cdr-6 (Figure C-1A). This gene, a homolog of the cadmium-response gene cdr-1, is downregulated

after treatments with arsenic, cadmium, or zinc [344]. Furthermore, cdr-1 was previously shown to
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mitigate cadmium toxicity in C. elegans [345, 346]. Together, these data suggest that expression of cdr-

6 might be toxic to C. elegans in the presence of heavy metals. Additionally, RIAILs with the CB4856

allele on chromosome V naturally express higher levels of cdr-6 (Figure C-1B) and are also more

sensitive to zinc than RIAILs with the N2 allele [123]. This result indicates that strains with naturally low

expression of cdr-6 are more resistant to excess zinc than strains with naturally high expression of this

gene.

To test this hypothesis, we used CRISPR-Cas9 genome editing to create strains with large deletions

of cdr-6 in both the N2 and CB4856 genetic backgrounds (Figure C-1C,D). Because expression of cdr-

6 was higher in RIAILs with the CB4856 allele (associated with zinc sensitivity) than in RIAILs with the

N2 allele (associated with zinc resistance) (Figure A-4B), we expected that a knockout of cdr-6 in the

CB4856 genetic background would cause increased resistance to excess zinc. Alternatively, if variation

in expression of cdr-6 underlies the zinc-response QTL on chromosome V, a knockout of cdr-6 in the

N2 genetic background should not cause an increase in zinc resistance. We exposed N2, CB4856, and

two strains with independently derived cdr-6 deletion alleles in each genetic background to elevated

zinc and measured their optical densities using a high-throughput assay with the COPAS BIOSORT

[69, 123, 68]. We found that strains with a deletion of cdr-6 phenocopied the strain with the same

genetic background (Figure C-1E), suggesting that differences in expression of cdr-6 do not underlie

zinc responses.

This study not only provides evidence against cdr-6 as the causal gene underlying differences in

zinc resistance between the N2 and CB4856 strains, but also indicates that cdr-6 does not influence

zinc resistance in C. elegans. These results are not in disagreement with the previous study that

showed that expression of cdr-6 was downregulated in response to zinc [344]. In fact, the authors also

showed that the accumulation of fluid-filled droplets in the pseudocoelom, a phenotype observed in

strains with inhibited cdr-6 expression using RNAi, is not increased in response to zinc or cadmium

exposure [344]. Taken together, we conclude that expression of cdr-6 decreases in response to zinc

but animal development in the presence of zinc is not affected by cdr-6 function. It is likely that cdr-6

does not function in the nematode zinc response but rather is downregulated as an indirect effect of

zinc exposure.
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Figure C-1: Testing the role of cdr-6 in the C. elegans zinc response. (A) Linkage mapping analysis using expression
of cdr-6 as a quantitative trait. Genomic position (x-axis) is plotted against the logarithm of the odds (LOD) score (y-axis)
for 13,003 genomic markers. Each significant QTL is indicated by a red triangle at the peak marker, and a blue rectangle
shows the 95% confidence interval around the peak marker. The percentage of the total variance in the RIAIL population that
can be explained by each QTL is shown above the QTL. (B) For each QTL, the expression of cdr-6 (y-axis) in RIAILs split
by genotype at the marker with the maximum LOD score (x-axis) are plotted as Tukey box plots. Each point corresponds to
the relative expression of a unique recombinant strain. (C) Gene model for cdr-6 is shown. Exons are represented by light
purple rectangles and introns are represented by connecting lines. Location of the CRISPR-Cas9 deletion is shown with the
grey box below the gene model. (D) Strain genotypes are shown as colored rectangles (N2: orange, CB4856: blue) in detail
for chromosome V (left) and in general for the rest of the chromosomes (right). The solid vertical line represents the peak
marker of the zinc-response QTL, and the dashed vertical lines represent the confidence interval. Grey triangles represent
cdr-6 deletions. (E) Relative animal optical density in zinc (median.EXT, x-axis) is plotted as Tukey box plots against strain
(see C, y-axis). Statistical significance of each strain compared to its parental strain (ECA1330 and ECA1332 to N2 and
ECA1333 and ECA1334 to CB4856) is shown above each strain and colored by the parent strain it was tested against (ns =
non-significant, p-value > 0.05; * = significant, p-value < 0.05).
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