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ABSTRACT

Mathematical Models for Human-Robot Systems in Assistive Robotics:

Perception, Inference, and Assistance

Siddarth Jain

Assistive robotics focuses on human-robot systems that provide physical support and

assistance to the elderly and people with motor-impairments. While assistive machines,

such as the powered wheelchair, can significantly enhance the functional independence of

individuals, many users are challenged by their direct operation, the way such systems are

currently operated by the users. Moreover, as assistive machines become more capable,

they often become more complex to control. This means paradoxically the more severe a

person’s motor-impairment, the more challenging it is for them to operate the very assistive

machines meant to aid them.

An enduring goal is to address this discrepancy by incorporating robotics autonomy

and intelligence into assistive machines to help ease the control burden on the user. Such

human-robot systems emphasize proximate interaction, forming personal and collaborative

relationships, and sharing control with human personnel. Thus, the design, sensing, control,

and assessment of such systems becomes more sophisticated due to a human-in-the-loop.

For autonomously providing assistance in shared autonomy, the robotics autonomy must

be capable of: perceiving the potential goals of the human user, inferring user intentions,
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and sharing control with the user in a manner that is acceptable to the human and at

the same time is efficient for task executions. These behaviors engage multiple disciplines

including computer vision, machine learning, robotics, control systems, human psychology,

and cognitive science.

In this dissertation, we focus on building mathematical models and algorithms for au-

tonomous perception, inference, and assistance in human-robot systems for assistive robot-

ics. Specifically we investigate, the computational perception of navigation goals involving

wheelchair docking at table and desk structures, and manipulation goals for assistive robotic

arms involving the detection of semantic grasp types on novel household objects. We in-

vestigate human intent recognition in shared autonomy by Bayesian filtering and modeling

human actions in a probabilistic behavior model. For assistance personalization and adapta-

tion, we investigate an intent-driven optimization that adapts the model to each individual

user. Furthermore, we also investigate and present a novel application of body-machine in-

terface in human-robot systems, which engage users in sustained physical activities with the

aim to support partial recovery of movement skills. We validate all contributed algorithms

and techniques in this dissertation on real hardware, using a wheelchair robot or a robotic

arm platform. We conduct human subject experiments in a variety of shared-autonomy

settings and report our findings. This dissertation contributes to and across multiple dis-

ciplines, providing a greater understanding of the computational and human requirements

for successful human-robot systems in the assistive domain.

Keywords: Human-robot systems, assistive robotics, shared autonomy, human-in-the-

loop, assistive teleoperation, human-robot interaction, robot perception, grasping, robot

docking, intent inference, human intent recognition, probabilistic modeling, user personal-

ization, human-robot interfaces
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CHAPTER 1

Introduction

Recent technological advancements in robotics and automation have made it possible for

robots to be utilized in a wide range of applications which can revolutionize many domains,

spanning all manner of industry from manufacturing to healthcare. Although today robots

can be helpful in a diverse range of areas, state-of-the-art technology is mostly suitable for

robots to operate autonomously within controlled and isolated environments, for performing

small and specific tasks.

An enduring goal is to move robots out of isolation and into human environments,

forming personal and collaborative relationships, and operating side-by-side with human

personnel. The field of Human-Robot Interaction (HRI) focuses on understanding, modeling,

and assessing the collaboration between robotic systems and human partners. HRI has

recently received considerable attention from the research community [2], pertaining to the

increasing number of domains in which robots can be deployed, and the inevitable need to

interact with humans in many of these domains. Examples of such influential areas include

assistive robotics, robot-assisted search and rescue, and space exploration.

Assistive Robotics, a subfield of HRI, focuses on human-robot systems that seek to

provide physical support to persons who could benefit from it, such as the elderly or people

with motor-impairments. Assistive robotics emphasizes proximate interaction in HRI, where

the humans and the robots are co-located. Although sometimes referred to by names other

than robots, the types of robots/machines used in the assistive robotics domain vary widely

in their physical appearance and applications. Some examples of such assistive machines
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include powered wheelchairs, assistive robotic arms, upper or lower limb prostheses, and

exoskeletons (Figure 1.1).

Figure 1.1. Examples of assistive human-robot systems. Powered wheelchair
(Northwestern University), JACO robotic arm (Kinova, Canada), Prosthetic
leg (Shirley Ryan AbilityLab, USA), Exosuit (Harvard University).

1.1. Motivation

Assistive robots can be used to perform physical tasks for people with motor-impairments,

thereby improving the quality of life and promoting the functional independence of severely

disabled individuals. The tasks usually are embedded within the context of normal hu-

man activities of daily living (ADLs) and would otherwise have to be performed by an

attendant, for example a caregiver. Typically, the person with the disability controls the

operation of the assistive machine, and thereby the design, control, sensing, and evaluation

of such systems become more sophisticated due to a human-in-the-loop.

The most typical and ubiquitous example of an assistive machine is the powered wheelchair.

There are more than 5.5 million people in the United States who benefit from the use of

a wheelchair for their mobility needs [3]. For those with upper extremity disabilities and

additionally for individuals who rely on a wheelchair to compensate for lower body impair-

ment, assistive robotic arms can serve as helpers by aiding in activities like pick-and-place

tasks, object retrieval, opening doors, pushing buttons, and even in personal hygiene and
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feeding. This population includes people with muscular dystrophy (MD), spinal cord injury

(SCI), spinal muscular atrophy (SMA), multiple sclerosis (MS), amyotrophic lateral sclero-

sis (ALS), cerebral palsy (CP), rheumatoid arthritis, post-polio syndrome, and other severe

motor paralysis [4].

While assistive robots can significantly enhance the functional independence of individ-

uals, many users are challenged by their direct teleoperation, also referred as direct control ;

the manner in which powered wheelchairs and assistive robot manipulators like the JACO

(Kinova Robotics, Canada) are currently operated by the users.

Definition 1.1.1. Direct Control is characterized by fully manual control of robotic

platform by the operator using an interface to activate and control different functionalities

(e.g., the actuator velocities) of the robot.

In direct control of assistive robots, the user inputs from a control interface are mapped

directly to robot actions, putting the control burden entirely on the user. All the responsi-

bility of performing tasks, platform safety, obstacle avoidance, or path planning to a goal is

left to the human user. The user commands typically address the robot’s translational and

rotational velocities. For example, the typical operation of a powered wheelchair involves

2-D control (heading + speed) with the standard wheelchair joystick interface comprised of

two axes that can be controlled simultaneously, one for forward/backward speed, and the

other for heading direction.

Operation of assistive machines can be difficult, even when using traditional control in-

terfaces such as a joystick. The operator must be able to accurately sense their environment

and translate their desires into robotic system control commands. Moreover, as assistive

machines become more capable, they often become more complex and exhibit higher degrees
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Figure 1.2. JACO arm teleoperation requires the user to switch between 3
control modes when using 3-axis joystick (Kinova JACO arm user guide).

of freedom (DoF). The requirement to control the many degrees of freedom makes their tele-

operation even more challenging. For example, assistive robotic arms are controlled within

6-D (position + orientation of the end-effector) and thus the control requirements to operate

them become much more complex. Traditional interfaces that seem intuitive to teleoper-

ation of powered wheelchairs could easily become unintuitive and tedious for robotic arm

teleoperation since they cover only a portion of the control space (6-D control problem).

Another significant factor that makes the teleoperation of assistive robotic systems chal-

lenging (both physically and cognitively) is mode switching. Typical teleoperation interfaces

can cover only a portion of the control space and thus high-DoF systems such as robotic

manipulators are customarily controlled via several movement modes, where each mode

controls motion in some DoFs of the robotic system (Figure 1.2).

Definition 1.1.2. Mode Switching is performed by the operator to manually select

and cycle between appropriate control modes using the teleoperation interface—making direct

teleoperation a multi-stepped process.

Mode switching operations are slow, non-intuitive and require the user to divert their

attention away from accomplishing the task, which results in sustained physical and even

cognitive effort from the user [5]. For example, in the case of multi-axis (2-3 axis) joysticks,
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Figure 1.3. A C7 tetraplegic subject using a utensil cuff to press pushbuttons
on a joystick in order to perform mode switching for robotic arm teleoperation.

a set of pushbuttons are used to switch between control modes and the directional nature of

the joystick shaft allows for the arm motion in the selected mode. Operating such joysticks

requires finer motor control in the user’s fingers/thumb and thus can become limiting to the

targeted population with severe motor-impairments (e.g., C7-C8 tetraplegic) (Figure 1.3).

The control problem is exacerbated by constraints arising from the user’s physical im-

pairment on the interface used to provide teleoperation commands. As the users age, or

as their motor functions decline, their ability to use conventional joysticks can also be

compromised. For example, users with quadriplegia experience challenges using conven-

tional interfaces, and are required to operate more limited control interfaces such as the

respiration-based Sip-N-Puff interface or the switch-based Head array. Paradoxically, the

more severe a person’s motor-impairment, the more limited the control interfaces available to

them; limitations which can even impede their ability to operate the very assistive machine

meant to aid them. Furthermore, these limited control interfaces can only issue control

signals which are of low dimensionality and bandwidth—making the direct teleoperation

and the requirements of mode switching even more exacting. For example, in the case of

the Sip-N-Puff interface, the number of control modes increases in proportion to the robotic
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arm’s controllable degrees of freedom—making the direct teleoperation intractable. Per-

forming even simple manipulation tasks can involve several mode switches and the process

can become very tedious and challenging.

1.2. Robotics Autonomy & Human-Robot Systems

Pertaining to the challenges in direct control of assistive robots, one research direction

investigates and designs novel human-machine interfaces, including non-conventional control

interfaces, that could enable the user to interact with assistive devices in a more efficient

and satisfactory manner. We present a detailed review of such approaches in Chapter 2.3.

Another significant research direction investigates the introduction of robotics autonomy to

reduce the user’s control burden for the operation of assistive machines.

Figure 1.4. Continuum of levels of robotics autonomy with an emphasis on
human-robot interaction in assistive robotics, wherein the level of autonomy
can increase or decrease based on the user’s ability and preferences.

Robotics autonomy has been discussed in the literature to describe many different aspects

of robotics, from the robot’s ability to self-govern much like a human, to the level of human

intervention [6]. In this dissertation, we consider autonomy, as associated with robotic

agents, to be a robotic system that can perform its own processes and operations. The

robotics autonomy exists on a continuum from no autonomy to full autonomy, and the

degree, scale or the level of the autonomy (LOA), generally refers to the amount of human
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intervention, as well as the function or control allocation between the human and the robot

(Figure 1.4).

Definition 1.2.1. Level of Autonomy is the extent to which a robot can sense the

environment, plan based on that environment, and act upon that environment; with the

objective of accomplishing or reaching some goal, and with little or no external control.

Direct control, as discussed in assistive robotics, refers to the manual control of the as-

sistive robot with no autonomy; wherein the robot offers no assistance, putting the control

burden entirely on the user. On the other hand, in the case of full autonomy, the robotics

autonomy provides maximum assistance; wherein the robotic system carries out all actions

autonomously. While completely autonomous behaviors can be efficient, they take away

all control from the user, and thereby can lead to a diminishing the sense of task accom-

plishment for the users. Studies report less user acceptance if the assistive robot is entirely

autonomous—as users prefer to remain in control of the assistive device [7]; making full

autonomy undesired in the assistive domain.

An attractive solution is shared autonomy, in which semi-autonomous behaviors can be

achieved via control sharing; such that the robotics autonomy offloads some control burden

of the user while both the robot and the user take the control decisions to accomplish tasks.

Under shared autonomy, dynamic allocation of the level of autonomy could be achieved via

fusion or arbitration of the inputs from manual control and automated controllers.

Such control sharing under shared autonomy has drawn considerable attention in recent

research. Important considerations include how to modulate the balance between human

control and autonomy control and what should be autonomy behavior, such that it is ac-

ceptable to humans while efficient for task executions. We present a detailed review of such

approaches in Chapter 3.1.
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1.3. Challenges & Contributions

Assistive human-robot systems emphasize proximate interaction, forming personal and

collaborative relationships, and sharing control with human personnel. Thus, the design,

sensing, control and assessment of such systems becomes more sophisticated due to a human-

in-the-loop. Furthermore, unstructured human environments pose incredible challenges, and

effective operation of human-robot systems in real-world environments requires a tightly

integrated effort, combining perception, inference, planning and control.

While each aspect of human-robot systems has many unique requirements, most of the

research and experimental work in the literature on shared autonomy focuses on control

sharing with the human partner for providing robotic assistance. Other aspects are equally

important for human-robot systems to be able to provide effective collaboration and as-

sistance to the user. For instance, a feeding task under shared autonomy with a robotic

arm, an important ADL task for assistive robotics [8], requires food perception, knowing

what the user wants to eat and how to assist the user in performing food manipulation.

The successful operation of such systems in real-world environments requires a substantial

engineering effort.

In this dissertation, we present an exposition of what we believe to be some of the most

important research questions and challenges facing those who seek to build complete systems

for human-robot collaboration in the assistive domain:

• Challenge 1: Robotic Perception for Human-Robot Systems

Perception is one of the most important challenges facing the field of robot-

ics. Unstructured human environments present incredible challenges that require

dealing with novel unknown objects, diverse variations, cluttered workspaces, and
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noisy sensor data. Although robots in human environments will almost always face

uncertainty due to their limited view of a changing world, automated perception

can reduce this uncertainty and enable more robust operation.

In order to assist in collaborative tasks, assistive robotic systems must be able

to sense and perceive their working environment. For widespread adoption and

use of assistive technology, it is also important for the perception to generalize and

work without the use of landmarks, fiducial markers, or predefined object models.

The key for human-robot systems is to develop perception models that are centered

on the human user’s intentions and preferences, that is to identify and detect the

high-level potential targets or goals in the environment that might be of interest

to the human collaborator. Perception can thus simplify human-robot interaction

by potentially reducing the burden on robotics autonomy for inferring user inten-

tions with the detection of a finite set of candidate goals. For robotic perception in

human-robot systems, it is important to consider the following research questions:

How can the robot detect and model the environment of the human user?

How can we develop perception centered on user intentions and preferences?

How can the robot detect and identify high-level potential targets or user objectives?

How can we leverage perception to ease the burden of inferring user intentions?

• Challenge 2: Implicit Human Intent Recognition in Human-Robot Systems

Effective human-robot collaboration in shared autonomy requires reasoning

about the intentions of the human partner. To provide meaningful assistance and

appropriately share control with a human, the autonomy must correctly predict,

or infer, the intentions or goals of the human collaborator. Requiring explicit

communication from the user could lead to ineffective collaboration and increased
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Figure 1.5. Illustration of important challenges facing human intent recognition.

cognitive load [9]. Thus, for seamless interaction in shared autonomy, it is vital for

the robotics autonomy to perform implicit inference of user intentions. Addition-

ally, inferring the intentions of the user presents challenges in the assistive domain

as a consequence of the limitations of the interface and/or the human, due to the

underlying motor-impairments. Furthermore, it is important to express uncertainty

in the robot’s prediction of the intended goal, because assisting towards the wrong

goal could be worse than providing no assistance. For intent inference in human-

robot systems, it is important to consider the following research questions:

How can the robot infer the objectives or goals of the human user?

How can the robot perform intent inference without explicit communication?

How can the robot express uncertainty in its predictions of user intentions?

What are the implications of limited control interfaces on intent inference?

How does change in user intentions affect intent inference?

What are the implications of intent inference on shared autonomy performance?
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• Challenge 3: Shared Autonomy & User Personalization in Human-Robot Systems

In the assistive domain, abandonment of assistive machines is a big concern [10].

Consideration of the social and physical ramifications of assistive technology is criti-

cal in predicting its adoption and feasibility of long-term integration with end-users.

For successful control sharing under shared autonomy in human-robot systems, the

following research questions are important:

What should the behavior of autonomy be for providing assistance?

How to perform control sharing with the user?

What should the level of autonomy be?

Figure 1.6. Illustration of important challenges facing shared autonomy and
user personalization.

Furthermore, different people have different abilities to control assistive ma-

chines, depending on their physical capabilities and the type of interface they could

use to operate the assistive machine. Moreover, users also differ in their preferences

regarding the desired amount of assistance. Thus, user personalization is critical in

human-robot systems for successful user adoption. Such requirements present the

following additional challenges:

How can we model users or their actions under shared autonomy systems?

How can we personalize robotic assistance to individual users?
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To address the aforementioned challenges, this dissertation contributes to the under-

standing and development of mathematical models and algorithms for perception, inference,

and assistance in human-robot systems, and presents results of human-robot user studies

with insights into our formulations.

In this dissertation, we:

• Develop and evaluate novel geometric and machine learning models for robotic per-

ception of high-level user goals, with applications for assistive wheelchair navigation

and shared-control manipulation of assistive robotic arms. For wheelchair docking

behavior, our algorithm is first in the domain to address fully automated percep-

tion of docking sites. Our grasp detection framework generates multiple semantic

grasps on objects to handle multiple ways in which a single object can be grasped

by human users. Moreover, grasps are similar to what a human would generate

when teleoperating the robot, which could improve human-robot cooperation.

• Develop a mathematical framework for implicit human intent recognition in shared

autonomy, enabling seamless fusion of observations to probabilistically reason about

user goals. Our approach in many scenarios outperforms existing solutions for intent

inference and otherwise performs comparably. More importantly, we examine the

intent inference implications under multiple control interfaces that typically are

utilized within the assistive domain, a first within the field.

• Develop mathematical models and introduce methods for user personalization in

human-robot systems, including probabilistic modeling of human actions for intent

inference and intent-driven optimization for user personalization in shared auton-

omy. Our models account for the behavior of individual users, and the motivation

for our approaches are prior studies in the field which show that users vary greatly
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in their performance and preferences, thus implying a need for assistive systems to

adapt to each individual user.

• Conduct and implement a variety of user studies involving subjects without motor-

impairments (uninjured) and end users to evaluate: human inference, autonomy

inference, intent inference implications under limited control interfaces, effect of in-

ference on shared autonomy, implications of change of intent during task execution,

and effect of user personalization on inference and assistance in shared autonomy.

Our findings provide a greater understanding of the computational modeling and

human requirements for successful human-robot systems in the assistive domain.

• Develop a novel application of body-machine interface (BMI) and shared autonomy

for assistive teleoperation of robotic arms, which engage users in sustained physical

activities for potential partial recovery of movement skills.

1.4. Dissertation Organization

This dissertation is organized into four parts:

Part I, Preliminaries: Overview, Motivations, Related work for the background mate-
rial of techniques that are employed in this dissertation, and Research platforms

Chapter 1 Overview of assistive robotics; Motivations for the research and discussion of
its purposeful characteristics; Research directions, challenges and dissertation
contributions.

Chapter 2 Background on assistive robotics, human-machine interfaces, intent inference
in human-robot systems, and robot perception for the assistive domain.

Chapter 3 Shared autonomy theory, background and categorization based on control shar-
ing with the human; User personalization and adaptation in human-robot sys-
tems.

Chapter 4 Research platforms and codebase.
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Part II, Mathematical Models, Algorithms & User Studies: High-level Goal
Perception, Probabilistic Intent Inference and Assistance in Shared Autonomy

Chapter 5 Models and algorithms for high-level perception of human goals; Geometric
detection of wheelchair docking locations; Estimation of surface geometry in
point clouds; Machine learning and model fitting for grasp detection and as-
sistive manipulation in shared autonomy.

Chapter 6 Probabilistic human intent recognition for shared autonomy; Goal-directed
probabilistic modeling of user actions with adjustable rationality; Intent-driven
optimization for user personalization; User studies on intent inference and
assistance in shared autonomy.

Part III, Human-Machine Interfaces: Body-Machine Interface (BMI) and Shared
Autonomy for Assistive Manipulation

Chapter 7 Novel application of body-machine interface; Assistive manipulation with
shared autonomy; Pilot study and experiments.

Part IV, Conclusions: Concluding thoughts and open questions

Chapter 8 Final thoughts and a concluding summary of the dissertation.
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CHAPTER 2

Background

2.1. Overview

In this chapter, we first cover relevant background information to familiarize the reader

with the domain of assistive robotics (Section 2.2). We then provide an overview of com-

mon control interfaces that are utilized for robotic teleoperation in different application

areas, and highlight their limitations and challenges relevant to the assistive domain (Sec-

tion 2.3). In addition, we also present the prior work focusing on the development of novel

human-machine interfaces. In the next section, we review research in the field of human-

robot interaction focusing on intent inference and prediction of user goals (Section 2.4).

Finally, we present related work in the area of robot perception and computer vision, tar-

geting human-robot interaction and assistive systems (Section 2.5). For incorporating of

robotics autonomy into human-robot systems, intent inference and perception are two key

components of autonomy. Equally important is the control sharing with the human and

personalization and adaptation to individual users, which we discuss in Chapter 3.

2.2. Assistive Robotics

Many people face difficulties with a multitude of tasks associated with upper or lower

body functions—such as walking, climbing stairs, lifting and grasping objects. In 2014, a

survey by the U.S. Census Bureau [3] reported that more than 24 million individuals need

assistance performing tasks of daily living (ADL), such as getting in or out of bed or picking

up and holding an object.
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In addition to the effects of aging, the other specific cause of functional limitations are

motor-impairments pertaining to a physical injury, neurological diseases, or congenital dis-

orders. Paraplegia is a severe or complete loss of motor function in the lower extremities

and lower portions of the trunk. When four limbs are affected, the condition is known as

quadriplegia or tertetraplegia. The major cause of paraplegia and quadriplegia is spinal cord

injury (SCI) [11], which can have wider-reaching effects on mobility. When individuals with

quadriplegia have no ability to produce movements (outside of eye movement) or to speak

(aphonia, loss of speech), the condition is known as locked-in syndrome (LIS) [12]. In indi-

viduals with LIS, consciousness is preserved and the cognitive function is usually unaffected

but communication is only possible through eye movements or blinking. The etiology ranges

from acute brainstem stroke (most frequent cause) to chronic causes including Amyotrophic

lateral sclerosis (ALS) [13]. ALS is a progressive disease that causes the degeneration of

motor nerve cells in both the upper and lower motor neurons, and eventually affects the

ability to move, speak, eat, and even breathe. Another neuromuscular disorder that affects

mobility is muscular dystrophy (MD) [14], which results in increasing weakening and break-

down of skeletal muscles over time. A congenital disorder that affect the ability to move

and maintain balance is cerebral palsy (CP) [15], which is caused by abnormal development

of the brain or damage to the developing brain.

The daily lives of people with motor impairments can be greatly enhanced with the

application of robotic technology assisting physical tasks. Mobility difficulties associated

with the lower body functional limitations are more common and there are more than

5.5 million people who use a wheelchair for mobility needs. Unsurprisingly, by far the

most ubiquitous powered assistive machine is the powered wheelchair [16]. Accordingly,

the development of smart wheelchairs—which incorporate robotics autonomy into powered
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wheelchairs for providing assistance with collision avoidance and safe autonomous navigation

behaviors has received the most attention within the academic research community [17–20]

Impairments in upper extremities often have a detrimental effect on the ability to per-

form ADL [21]. In addition, wheelchair bound individuals often also face difficulties in

terms of upper extremity activities. In a survey, the ability to reach adequately for objects

was rated as the most important concern related to wheelchair use [22]. For physical task

support and providing manipulation capabilities, assistive robotic arms can compensate for

the loss of mobility in the upper extremities. These robotic arms can be controlled through

a joystick (via direct control) and can be fixed either on a table as stationary workstation

or can be mounted to the user’s wheelchair (WMRA). Only few commercialized assistive

robotic manipulators are currently available on the market [8]. The two major commercial-

ized assistive robotic manipulators are the JACO arm (Kinova Robotics, Canada) and the

MANUS ARM (Exact Dynamics, The Netherlands). These assistive robotic manipulators

have seven degrees of freedom (7-DoF) including the gripper, and they are both WMRAs.

The JACO arm has a three-fingered hand and it can be controlled by a 2- or 3-DoF joystick.

The MANUS ARM has an updated version called iARM that has a two-finger gripper and

it can be controlled by a keypad or a joystick. Direct control of these arms involve toggling

modes (mode switching) using the control interface in order to operate a subset of robot’s

DoF at a time [23], which makes their teleoperation challenging—specially for those with

impaired motor abilities.

Some assistive robots involve a combination of a fixed workstation manipulation robot

and a mobile robotic platform. Such service robots are capable of fetch and carry task, which

can serve as the basis of a wider range of domestic tasks [24], and are targeted for people

with severe motor impairments. Earlier manipulation assistance relied on remote operation

by a human user with either a joystick, keypad input or speech input. However, the limited
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capabilities of the target user populations has driven the research into increasing autonomous

control for mobile manipulation tasks— for example, vision based semi-autonomous object

grasping [25,26].

Another category of assistive robots involve systems that can be worn on the body as an

implant or an accessory. There have been recent advances in the areas of wearable assistive

robotics [27], including actuated robot prostheses [28], orthoses, and exoskeletons [29]. A

prosthesis is a device that supplants a person’s missing limb, and acts in series with a

residual limb. Unlike prosthesis, an orthosis is an externally applied device for an intact

limb, to provide support or improve function for a section of the body. An exoskeleton

provides assistance or enhancement of existing physical capability to a person with intact

limbs. Exoskeletons can be utilized to partly augment the muscular strength or providing

additional support in activities of daily living such as walking [30] and hand grasping [31].

For scenarios in which an assistive device would be worn for extended periods of time, some

long-term goals are to create soft wearable robots that could use compliant actuators and

sensors, does not restrict movement, are light-weight and to reduce the metabolic cost of

wearing them.

2.3. Human-Machine Interfaces

In this section, we will present a summary of human-machine interfaces that have been

used to control assistive robot devices. Many different kinds of interfaces are used for robotic

teleoperation and human-robot interaction. Some typical examples include hand-controllers

such as multi-axis joysticks, touchpads, and haptic devices; multimodal/multisensor inter-

faces that provide multiple control modes or use fused data displays, such as virtual reality

headsets (VR); and supervisory control interfaces which are designed for high-level command

generation and monitoring.
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In assistive robotics, dedicated user interfaces are developed for providing inputs de-

pending on the impairments of the user and the control channels available to them. The

vast majority of powered wheelchair users operate a hand-controlled joystick [32]. A stan-

dard wheelchair joystick provides proportional control with two axes (2-D control) that can

be controlled simultaneously, one for forward/backward speed, and the other for heading

direction of the wheelchair. An alternative is a touch pad interface that uses smart phone

touchscreen technology for ultra sensitive and precise proportional driving capabilities. It in-

volves making contact with a glass surface of the device for full driving capabilities including

speeding, turning and veering; no force is required.

For people with limited hand functions and those who are unable to operate a hand-

controlled joystick, some other interface options are head-array, chin interface, and sip-n-puff

(SNP). These interfaces usually offer a very limited bandwidth and a few distinct commands,

as compared to joysticks.

Head-array or chin control interface is an option for the individuals with good head

movement ability. A head-array comprises a series of switches mounted in a headrest that

are activated by the head movement. The switches are programmed to provide a full range

of acceleration and deceleration, with turning and veering control. Chin control is usually

considered as different to head control. The chin sits in a cup shaped joystick handle and is

usually controlled by neck flexion, extension and rotation. Operation of a head-array or chin

control interface requires fine-tuned adjustments that are adjusted to each user’s strengths,

capabilities and preferences.

Sip-N-puff (SNP) interface is primarily used by people who do not have the use of

their hands. The interface involves breathing in (inhaling or sipping) and breathing out

(exhaling or puffing) of a mouthpiece, a straw-like device, that is activated by changing the

air pressure. SNP require specific amounts of air pressure to be “sipped” or “puffed” by
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the user and these amounts are typically denoted as a hard sip/hard puff or soft sip/soft

puff. Typically, these air pressure levels are set through an initial calibration relative to

the user and depend on their breathing abilities. A sequence of sips and puffs generates a

digital signals that is in turn interpreted by the wheelchair controller for forward/backward

speed, and the heading direction of the wheelchair. SNP interfaces are commonly used by

quadriplegics with high-level spinal cord injury or people with ALS.

While aforementioned interfaces are sufficient for controlling a 2-DoF system such as

a powered wheelchair, these interfaces do not all directly scale to controlling high DoF

systems, such as robot arms which typically requires 6 or more DoF control. The com-

mercially available assistive robot arms (MANUS ARM and JACO) are controlled via a 2-

or 3-axis joystick, by cycling through which degree of freedoms are being controlled at a

time. Such mode switching partitions the controllable degrees of freedom of the robot such

that each control mode maps the input dimensions to a subset of the arm’s controllable

degrees of freedom and thus performing tasks involves control of the shaft (for the robot

motion control) and the pushbuttons (to switch between control modes). Performing even

simple manipulation tasks can involve multiple mode switches and the process can become

extremely challenging with the more limited interfaces like a Sip-N-Puff or a head array

that are available to individuals with severe motor impairments.

For users facing challenges with existing interfaces (people suffering from quadriplegia

and locked-in syndrome) and to improve the control of high-DoF assistive robotic systems,

novel interfaces are researched [33] for particular applications.

An Xbox Adaptive Controller (Microsoft, USA) is designed for people with disabilities

to make it easier to play games on Xbox One. The interface design focus on connectivity

and customization, with players able to build a setup that works for their capabilities and

needs. Mouse-and-keyboard based input interfaces are developed for remote teleoperation
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of high-DoF robotic systems. For robotic manipulation, a 6-DoF ring-and-arrow marker

based approach is generally used for independently controlling each axis of rotation and

translation [34,35]. Such markers can be used to directly move an end-effector or set pose

goals to which the robot can autonomously plan and move. Multiple control methods based

on the ring-and-arrow marker design have been evaluated [36]. An alternative point-and-

click interface approach enables more efficient grasp poses based on a single mouse click [37].

Novel interfaces that use non-conventional input methods are developed for the assistive

domain. A Tongue Drive System (TDS) uses two magnetic sensors placed on the side

of the operator’s head and a magnetic tongue barbell, which allows individuals with severe

motor impairments such as tetraplegia to control powered wheelchair using voluntary tongue

motion [38]. An eye-control based model on electrooculographic (EOG) signal is used for

wheelchair control [39]. Eye and gaze tracking have also been utilized for applications in

human-robot interaction [40–42]. A different promising alternative are Brain Computer

Interfaces (BCIs), which are based on the decoding of the electrical brain activity. BCIs

could enable the use of the brain as a new communication channel for assistive robotics, given

that they are well adapted for tetraplegic patients [43]. Invasive BCI methods provide the

highest spatial and temporal resolution, since they can be placed closer to the area of interest,

and have shown successful use for continuous high degree of freedom control of upper limb

prosthetics [44]. However, these devices suffer from the electrode deterioration and carry

the risks associated with the surgical intervention [45]. Alternative noninvasive methods

that do not require surgery include Electroencephalography (EEG). EEG is the safest way

of recording brain activity and uses electrodes placed directly on the scalp to measure weak

electrical potentials. Non-invasive EEG-based BCI have been used for continuous mental

control of a wheelchair [46] and a prosthetic arm [47].
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Another challenge for people with motor impairments is the rehabilitation process, which

aims to allow patients to keep their remaining motor function and possibly even recover some

lost function. To facilitate the rehabilitation process, body-machine interface (BMI) targets

to extract signals from body motions for operating external devices [48, 49]. Thus, unlike

BCIs, the body-machine interface engage users in sustained physical activities to support

partial recovery of movement skills. However, the inclusion of sensory interfaces in BMI and

the decoding of body signals into machine commands presents a greater challenge. In this

dissertation, we present a novel application of body-machine interface and shared autonomy

for assistive teleoperation of robotic arms (Chapter 7).

2.4. Intent Inference

Intent inference—also referred to as inference of the desired goal, target, action, or

behavior—has been investigated under various settings [50]. For instance, intent infer-

ence include human activity recognition in the area of computer vision [51] using spatio-

temporal representations, and task executions in surgical telemanipulation systems using

Hidden Markov Models [52].

Probabilistic methods have been developed to infer unknown intentions from human

movements. A latent variable model is proposed to infer the human intentions from an on-

going movement, which is verified for target inference in robot table tennis and movement

recognition for interactive humanoid robots [53]. A data-driven approach synthesizes antici-

patory knowledge of human motions and subsequent action steps for the prediction of human

reaching motion towards a target [54]. Predictive inverse optimal control methods also are

utilized to estimate human motion trajectories and shown to work for anticipating the target

locations and activity intentions of human hand motions [55]. Another important line of
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research explores inference of motion trajectories and intent expressive motions for improved

communication of intent via legible motions [56] and intention-driven behaviors [57].

In shared autonomy, many systems simplify the intent inference problem by focusing on

predefined tasks and behaviors or by assuming that the robot has access to the user’s intent

a priori [58,59]. There exist works that rely on explicit commands from the user to com-

municate intent via an interface, such as GUI [60]. There are however studies that suggest

that effective human-robot collaboration should not rely on explicit communications [9]. A

number of human-robot interaction approaches investigate the use of non-verbal commu-

nication including gestures, expressions and gaze. For example, user’s gaze patterns are

studied to understand human control behavior for shared manipulation [61] and to perform

anticipatory actions [42]. The eye gaze data quality can depend on the calibration accuracy

and projection method errors for eye-trackers [42]. Gestures, along with language referential

expressions, are utilized for object inference in human-robot interactions [62].

Intent inference in shared autonomy is often represented as a confidence in the pre-

diction of the intended goal, based on instantaneous observations [63–65]. Some shared-

autonomy systems compute a belief over the space of possible goals. A memory-based

inference approach utilizes the history of trajectory inputs and applies Laplace’s method

about the optimal trajectory between any two points to approximate the distribution over

goals [63]. Memory-based inference is utilized in previous works involving shared autonomy

and human-robot systems [66] [63] [56]. Another approach uses the Laplace’s approxima-

tion [63] and formulates the problem as one of optimizing a Partially Observable Markov

Decision Process (POMDP) over the user’s goal to arbitrate control over a distribution of

possible outcomes [67]. The approach considers user inputs for the prediction model and

uses a hand-specified distance-based user cost function in order to achieve a closed-form

value function computation.
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For intent inference in the assistive domain, it is important we investigate how shared

autonomy systems can take advantage of the indirect signals people implicitly provide when

operating a robot through a direct control interface (e.g., a joystick), and what are the

implications of the limited control interface limitations on intent inference. Note that these

interfaces differ in the continuity and dimensionality of the issued control signals and, for

all, the dimensionality of the control signal is considerably lower than the control space of

the robot—making the intent inference problem more challenging.

In this dissertation, we present a framework for intent inference under shared autonomy

(Chapter 6) that models the uncertainty over the user’s goal within a Bayesian filtering

framework which enables seamless fusion of multiple observations. We model the user’s

actions within a probabilistic behavior model that incorporates an adjustable rationality

and, importantly, we introduce an intent-driven optimization that adapts the rationality

index value to each individual user, and thus can account for their particular behavior

including the implications of the limited control interface limitations. The motivation for

our approach are prior studies which show that users vary greatly in their performance,

preferences and desires [63,67,68], suggesting a need for assistive systems to adapt to each

individual user.

2.5. Robot Perception for HRI & Assistive Robotics

Robot perception using computer vision for robotic systems in HRI and the assistive

domain encompass multitude of tasks [69]. The aim of perception systems are to provide

environment abstraction and modeling for executing autonomous behaviors, simplify the

interaction between the user and the machine, as well as autonomous perception of candidate

goals within the environment, which might be candidate locations of interest to visit, or

objects of interest to manipulate.
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In Table 2.1 a scheme of the relationships between assistive systems and the involved

computer vision tasks is shown.

Table 2.1. Computer vision tasks involved in assistive robotic systems.

Assistive systems → CV tasks ↓ Smart Wheelchairs Robotic Arms Mobile Manipulators Exoskeletons

Localization x x
SLAM x x
Object detection x x
Object tracking x x
Human activity recognition x x x
Doorway detection x
Docking detection x
Incline detection x x
Stairs detection x
Eye Gaze estimation x x x x
Head pose estimation x x x x
Gesture recognition x x x x
Grasp detection x x x
OCR x x

2.5.1. Perception for Mobility and Navigation

Computer vision techniques have been exploited in the development of intelligent wheelchairs.

For development of command interfaces that does not require the function of hands, the

wheelchair autonomy addresses problems like face detection and face movements [70], head

pose estimation [71,72] and/or eye gaze recognition [73] for generating control signals for

the wheelchair. Vision based autonomous localization frameworks have been also used to

make efficient navigation for wheelchairs. Visual self-localization and mapping (SLAM)

techniques have been used to calculate the wheelchair motion [74, 75]. Vision techniques

are also utilized to provide assistance for desired behaviors, involving spatially-constrained

maneuvers [76], person following [77], sidewalk following and terrain classification [78], and

assisted doorway traversal [79,80].
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2.5.1.1. Perception for Robot Docking. Many smart wheelchair works recognize dock-

ing as a desired behavior or mention it as a goal for future work [81–89]. In this dissertation,

we present a novel approach for the automated detection of wheelchair docking locations at

table and desk structures (Section 5.2). In this section, we present an overview of existing

computer vision approaches for robot docking.

Approaches that address robot docking often make use of fiducial markers [90, 91].

Other approaches simplify the problem by focusing on customized docking structures. For

example, a laser scanner and geometric constraints are used to find the corners of a rect-

angular container of known dimensions [92] and a T-shaped fiducial is used for docking at

a wheelchair at a U-shaped bed [83]. Approaches also consider wheelchair docking onto a

vehicle lift platform, using visual feedback control and fiducial for image processing [84].

A handful of works does not rely on environment modifications like fiducial or customiza-

tion. One approach identify table structures using vision with an unclear docking location,

and the algorithm selects a location somewhere in between the edges as a compromise [85].

There also are works that place the identification of docking locations entirely with the

human [86–88].

There are approaches that use 3D data to find supporting planes in the scene; an ap-

proach similar to our work. The application of a probabilistic model built using Expectation-

Maximization (EM) is suggested to find possible docking objects by segmenting LIDAR data

for modeling plane-like clusters—which however requires knowing a priori the number and

types of clusters and is subject to poor local minimum solutions [93]. A 3D semantic map

based approach extract planes in the scene using RANSAC, which are matched to entries

in a model library to identify objects [89]. Our approach uses the geometric structures

of the objects, similar to [92]—however without the requirement of knowing the structure

dimensions a priori. Our work address docking perception as well as the safe position and
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alignment determination, and is also free from the usage of landmarks or fiducial markers

(Section 5.2). Furthermore, our algorithm was recently adapted in a dissertation work in-

volving powered wheelchair parking assistance system and evaluation of wheelchair docking

assistance under shared autonomy with a user study [94].

2.5.2. Perception for Robotic Manipulation

In assistive robotics, computer vision algorithms are involved in the innovative area of the

robotic arm and prosthetic limb control; where autonomy systems use vision techniques to

autonomously detect and recognize target objects, object pose, robot hand orientations and

the grasp pose for manipulation, based on the vision data acquired by camera images and/or

depth data (RGB-D).

2.5.2.1. Environment Modeling & Surface Representations. Unstructured human

environments present incredible challenges for robotic manipulation. Robotic manipulation

in human environments requires dealing with novel unknown objects, cluttered workspaces,

and noisy sensor data. Large variations in objects, lighting, and clutter make household

manipulation a very difficult problem. Furthermore, with humans moving around in the

environment, and for operating near humans safety is an important consideration for any

assistive robot.

Building consistent and detailed models of the environment is required for robotic op-

eration in unstructured environments. Models of the environment can be build using 2-D

or 3-D visual sensors and surface representations [95]. However, surface representations are

unable to distinguish between free and unknown space, and require large memory. In mobile

manipulation scenarios, for example, being able to differentiate free from unknown space is

essential for safe navigation and manipulation.
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Thus, environment models use two representations: a probabilistic occupancy grid repre-

sentation [96] for unmodeled or unrecognized parts of the environment and a semantic repre-

sentation for known parts of the environment. An octree-based representation (Octomap) of

the environment is utilized to incorporate the unmodeled parts of the environment [97,98].

Octomap is an occupancy-grid like probabilistic representation of the environment that can

account for unknown space and can maintain a persistent view of the environment by au-

tomatically incorporating new sensor data. Such environment models can serves as the

primary source of input for collision checking and can also be used for motion planning and

grasping. For known parts (e.g., from object detection), a database of prebuilt 3-D mesh

models for common objects can be used to register the objects in the scene [99].

2.5.2.2. Object Detection & Tracking. Object detection forms the basis for solving

complex or high level vision tasks such as segmentation, scene understanding, tracking,

image captioning, and event or activity recognition [100, 101]. The detection deals with

identifying the presence of various individual objects in a scene using image or RGB-D data.

The goal is to determine whether or not there are any instances of objects from the given

categories (such as cup, glass, orange, apple etc.) in the scene and, if present, to return their

spatial location e.g., via a bounding box [102,103]. A lot of research is being done in the

area of object recognition and detection during the last two decades. Recently, deep learning

techniques [104,105] have emerged as powerful methods for learning feature representations

automatically from data and such techniques have provided significant improvement for

object detection problems.

Object tracking in an image sequence involves continuously identifying its location when

either the object or the camera are moving. Variety of approaches can provide the object’s

2D image position in terms of its centroid and scale or of an affine transformation [106,
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107]. However, these methods does not involve recovering the actual position in space. By

contrast, 3D tracking can continuously recover all six degrees of freedom that define the

camera position and orientation relative to the scene, or, equivalently, the 3D displacement

of an object relative to the camera [108].

2.5.2.3. Grasp Detection. Grasp detection is essential for robotic manipulation of ob-

jects, in which vision techniques autonomously detect and recognize robot hand positions

and orientations that can be used to grasp and manipulate an object of interest. The prob-

lem of robot grasping has been widely studied in the literature and is an active research

field. One camp address grasping using analytical approaches [109,110] that leverage force-

closure and form-closure to assure a stable grasp configuration. Such approaches assume

the availability of contact points on the object, and rely on well-defined 3D models of the

object, which however generally are not available in real-world scenarios. Another line of

research is database-driven (for a survey, see [111]), which also assumes the availability of

complete 3D models of the objects and uses a pre-computed grasp dataset [112–114]. Some

systems use image data for grasp detection and generally require a manually-labeled grasp

dataset to learn models for detection [115, 116]. Recently, approaches make use of deep

learning methods [117], which require large training datasets and generally are not suitable

for real-time applications.

Other approaches approximate an object with shape primitives. Shape primitive fitting

for grasp selection is used using known models of the objects [118], and also performed

using manual assignment by hand [119]. Box primitives are suggested for enveloping 3D

data points constellations for object grasping by parts, however such decomposition step

is time-expensive [120]. Another approach uses principal component analysis (PCA) with

bounding box computation on segmented point clusters for reactive grasping with tactile
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feedback sensors [121]. Methods furthermore rely on simulation software for the grasp

generation [118,120], which does not always correlate well with physical robot grasp per-

formance. There exist approaches that use point cloud data for grasp detection. Mesh gen-

eration for grasp detection in simulation is used with point cloud annotation and geometric

features [122]. An approach for grasping household objects with a mobile manipulator is

proposed which does not rely on object models and detects a single overhead grasp in point

clouds of object [26].

Researchers also study human grasp postures using demonstrations [123], for human-

like robotic grasping. We anticipate that in collaborative human-robot scenarios, detecting

a single object grasp will be insufficient—as environment change, the human user’s choice

of grasp location also will vary. In this dissertation, we present an approach that strives to

satisfy these aims by autonomously generating candidate grasps that are similar to what

users would themselves generate (Section 5.3). Our approach also is unique in that it

generates multiple semantic candidate grasp poses (top, side, pinch) on objects.
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CHAPTER 3

Shared Autonomy

In recent research, there has been a significant effort to leverage robotics autonomy to

make the direct control of robotic systems easier by distributing the control burden between

the robotics autonomy and the user control of the robot. One instance of such control sharing

arises in shared autonomy, where both the user and robotics autonomy act simultaneously

to control the robot, in order to achieve the user’s goal.

3.1. Control Sharing with the Human

Formally, given the existence of a set F of automated controllers f(·) generated by

the robotics autonomy, where each controller produces the functioning or motion of an

autonomous behavior for the robot; a vector of control signals ur is generated by a function

f(·),

ur ← f(·)

while control signals uh are generated by the human. In shared autonomy, these two signals

are reasoned to generate a shared-control signal ut, that gets executed by the robot,

ut ← φ(ur,uh).

The very nature of such control sharing, φ(·), can be determined by different approaches—

where the important considerations are: (i) how to modulate the balance between human

control and autonomy control?, and (ii) what should be the autonomy behavior such that

it is acceptable to the human and at the same time is efficient for task executions?
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We next categorize paradigms of control sharing under shared autonomy as (i) Series,

(ii) Interleaved and (iii) Parallel, and present a background review of relevant works under

such categorization.

Figure 3.1. Series shared autonomy for control sharing.

Definition 3.1.1. Series shared autonomy is a control sharing paradigm under

which the autonomy inputs are generated and/or optimized based on the user inputs, which

then are passed to the robot for execution (Figure 3.1).

In its simplest and more common form, series shared autonomy launches a fully au-

tonomous takeover by the robotics autonomy when some trigger is activated by the user—

such as based on a high-level user command. In such approaches, the user indicate via some

interface a high-level goal or a command, and the robotics autonomy is fully responsible for

generating the lower-level motion control commands [26,59,124] that gets executed on the

robot. Such methods generally present an additional interface requirement (e.g., a screen

(GUI) or a pointer for goal selection). While these systems can be effective, studies suggest

that users often prefer having more control [59].

A more sophisticated approach formulates the control sharing problem as one of opti-

mizing a Partially Observable Markov Decision Process (POMDP) over the user’s goal to

arbitrate control over a distribution of possible outcomes [67]. Specifically, the user input

uh is provided to an autonomy policy πr which generates actions ur to minimize an expected
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sum of robot cost function Cr(s,ur,ur), where s = (x, g) denotes the environment state x

and user goal g. In such policy based method, the autonomy actions are optimized given

the user actions, and both the actions are passed to the robot for execution. The approach

does not rely on predicting a single user goal but instead optimizes for an assistance action

that is helpful for many goals. However, computing the optimal solution for a POMDP with

continuous states and actions is generally intractable and thus in practice [67], the solution

is approximated through Hindsight Optimization [125–127].

Another variant of series shared autonomy probabilistically models the interaction be-

tween the user’s intention and the autonomy behavior as a joint probability distribution.

In such probabilistic shared control (PSC) [128], the control commands for the robot are

generated by formulating shared control as the maximum a posteriori estimation (MAP) of

the joint probability distribution (set to the autonomy commands that maximizes the joint

probability distribution),

p(uh,ur|z1:t) = ψ(uh,ur)p(uh|z1:t)p(ur, z1:t)

(u∗h,u
∗
r) = arg max

(uh,ur)
p(uh,ur|z1:t)

ut = u∗r

where, z1:t represents the measurements of the human intentions and the robot’s state up

until time t, and ψ(uh,ur) is coupling factor that represents the degree to which the human

inputs and the autonomy inputs agree or are similar.

Lastly, series shared autonomy also encompass approaches which assume no prior knowl-

edge of the dynamics of the system and the user’s control policy, but instead learn an

end-to-end mapping from environmental observations and user inputs to autonomy action

values [129, 130]. Such approaches are particularly suitable for complex human-machine
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systems (e.g., quadcopters). However, learning an effective model typically requires good

training data, which can be challenging and burdensome to obtain for human users operating

physical robots, particularly in the assistive domain.

Definition 3.1.2. Interleaved shared autonomy is a control sharing paradigm in-

volving control partitioning schemes, wherein certain functions of the robot are human op-

erated while the remaining functions are controlled by the autonomy (Figure 3.2).

Figure 3.2. Interleaved shared autonomy with control partitioning.

Control partitioning in interleaved shared autonomy could be achieved in many ways.

For example, the robot assumes full control of the orientation while the user is responsible

for the translational motion [131]. Another work [132] place the control of end-effector

position in z with the human and in x, y with the autonomy. The particulars of such

control partitioning scheme might depend on the complexity of the task, robotic platform

or preferences of the user. For assistive robotic arms involving mode switching, where users

control subsets of the degrees-of-freedom of the robot in discrete modes, a related idea is for

the autonomy to provide automatic mode switching assistance. Only recently shared control

schemes for mode switching are gaining interest to make the teleoperation of assistive robotic
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arms easier [5,133], however their effectiveness have only been evaluated on a 2-D simulated

robot [5].

Definition 3.1.3. Parallel shared autonomy is a control sharing paradigm which

simultaneously accepts both the manual user inputs and the autonomy inputs to mathemat-

ically reason about a shared-control signal that gets executed by the robot.

Figure 3.3. Parallel shared autonomy simultaneously accepts both the user
and autonomy inputs to mathematically reason about control sharing.

Parallel shared autonomy is often implemented as a blending based method, that con-

tinuously combine the user control of the robot and the autonomy commands by some

arbitration function φ(·), and the arbitration determines the relative contribution of each

(Figure 3.3). Such approaches have received considerable attention in recent research and

blending is one of the most used shared control paradigm due to its computational efficiency,

simplicity, and empirical effectiveness [18,19,64,134–136].

Generally, linear blending is used to generate the control commands for the robot,

ut = (1− α) · uh + α · ur

where α ∈ [0, 1] is a blending factor that dictates how much control lies with the human

versus the autonomy. Thus, the level of autonomy is determined by α, and α = 0 corresponds

to no assistance and α = 1 implies full autonomy. Assistance can be adjusted dynamically
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with arbitration and there exist works that study the nature of such arbitration [64,134].

For example, one common approach for arbitration is to consider the confidence in the

robot’s prediction of the user’s goal.

3.2. User Personalization and Adaptation

Each person has a large set of qualities that make them unique. People vary significantly

in their skill sets, culture, habits, behaviors etc. [137,138] and these qualities can affect both

how people perceive robots, and also how robots perceive people. In addition to preexisting

attitudes and expectations, a person’s physical and cognitive abilities can greatly affect how

a person interacts with a robot. There is great variation in people’s physical abilities, and

these can often change throughout the lifespan [139], including vision, hearing, mobility,

strength and even controllable muscle movements. A user’s cognitive abilities can also

affect their interaction with a robot. These variations can be attributed to psychological or

developmental disabilities, intelligence, language ability, problem solving skills or learning

capability of individuals. These differences in physical and cognitive abilities across users

greatly impact their technology expectations and likelihood of adoption [140]. User-centered

design is a critical part of HRI that addresses the needs and preferences of human users,

and existing literature have proposed various user-centered design frameworks [141–144].

Therefore, it is important to design robot systems that factor individuality since “one

size does not fit all” and a robot behavior that is ideal for one person may not necessarily be

ideal for another person. Moreover, such personalization has even more important implica-

tions in the assistive domain, where the user’s abilities can potentially change from day to

day [145]—either degrading due to stress, fatigue and degenerative conditions; or improving

due successful rehabilitation and medication. For widespread adoption and incorporation
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of robots into assistive domain, there is a need for assistance personalization and adjustable

autonomy based on individual preferences.

The idea of adjustable autonomy is recognized in different areas of robotics including

socially assistive robotics [140,146,147], multi-robot systems [148,149] and space robotic

systems [150]. In assistive robotics, customization of control sharing [64, 151] and opti-

mization techniques have been adopted to generate different strategies providing assistance

under shared autonomy; for example, formulating the problem as a POMDP and inferring

a distribution over goals [67] or concatenating energy-optimal motion primitives to create

optimal trajectories [152]. Although existing approaches result in improved task perfor-

mance, the assistance schemes are mixed in terms of user acceptance [59,67,134,153]. In

particular, there are instances of assistance resulting in higher user dissatisfaction [67], and

users preferring to be in control and more cautious [152]. In other studies users find the

assistance at times to be uncooperative and tolerate a loss of control only for a significant

improvement in performance [68].

Despite an improvement in task performance, existing works in shared autonomy were

not able to guarantee high user satisfaction. The need for higher user satisfaction is crucial

for the acceptance of robot autonomy by the end-users in the assistive domain. One way

to achieve such behavior is through incorporation of a mathematical user model. Some

approaches model human-robot systems as a cooperative two-player game [154–156], where

the user and robot learn and adapt their strategies to each other. The user could even

actively teach the shared autonomy system the assistance behavior they desire, and could

even be aware of how the shared autonomy system adapts to their behavior, for example

using cooperative inverse reinforcement learning [157]. Unfortunately, such models are

computationally intractable in continuous domains and thus are not feasible in reality.
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To address this gap, in this dissertation we introduce mathematical models for person-

alization to user for inference and assistance in shared autonomy. The motivation for our

approach are prior studies which show that users vary greatly in their performance, prefer-

ences and desires [59,67,134,153], suggesting a need for assistive systems to adapt to each

individual user. For improving intent inference and assistance, we model the user’s actions

within a probabilistic behavior model that incorporates an adjustable rationality and, im-

portantly, we introduce an intent-driven optimization that adapts the rationality index value

to each individual user, and thus can account for their particular behavior (Chapter 6).
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CHAPTER 4

Research Platforms

The particular robot platforms used to validate the investigations of human-robot sys-

tems in this dissertation include, the smart wheelchair (Northwestern) and the MICO robotic

arm (Kinova, Canada).

Figure 4.1. The smart wheelchair (Northwestern) research platform.

4.1. Smart Wheelchair

The smart wheelchair (Northwestern) is built on a commercially available powered

wheelchair, a Permobil C300 (Timra, Sweden), outfitted with additional components in-

cluding a computer, electronics and sensors (Figure 4.1). To interface with the wheelchair

electronics, the control commands are passed directly to the proprietary wheelchair motion

controller. Hardware add-ons to the wheelchair base system include on-board computing

(a mini-PC with Intel Core i7), electronics boards, override buttons, wheel encoders and

a top-mounted RGB-D sensor (Asus Xtion). The platform is augmented with additional
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Figure 4.2. Left: The MICO robot platform (Kinova, Canada). Right: Our
software architectures and ros control framework [1] integration for robotic
arm operation under shared autonomy, with the control interfaces utilized in
the assistive domain.

sensing including, a Hokuyo laser rangefinder, Sharp IR range finders, Maxbotix LV-EZ1

Ultra-sonic Range Finders and Ch Robotics UM6 IMU. The onboard computing system is

directly powered by the wheelchair batteries. Control interfaces, through which the human

provides input to drive the wheelchair, can directly be connected to the mini-PC computer

via USB. The control framework [65] consists of a modular system of software components

and the entire architecture is implemented within the Robot Operating System (ROS) [34].

The smart wheelchair (Northwestern) platform was used in the investigation of our algo-

rithm for automated wheelchair docking (Chapter 5.2).

4.2. MICO Robotic Arm

The MICO robot (Kinova Robotics, Canada) is a 6-DoF manipulator with a 2 finger

gripper (Figure 4.2, left). It is the research edition of the JACO arm (Kinova Robot-

ics, Canada) which is used commercially within the assistive domain. The robot can be

wheelchair-mounted or can also be mounted at a workstation. The arm can be teleoperated

using the same interface that controls the powered wheelchair, typically a joystick. The

control interface provided with the arm (3-axis joystick) has 3 DoFs and producing control
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commands requires either: tilting the stick forward or backward, tilting the stick left or

right, and twisting the stick clockwise or counterclockwise. To control the robot arm’s hand

location and orientation, 6 DoFs are needed, and a seventh is required to open and close

the gripper. Controlling 7 DoFs with a 3-axis joystick requires at least 3 control modes to

divide the robot DoFs: translation mode, wrist mode, and finger mode. A control mode is

switched or activated via buttons on the joystick, and an LED light pattern indicates the

current mode.

Our developed software architecture (Figure 4.2, right) for the robot is implemented

within the Robot Operating System (ROS) [34] and Moveit! [35], which enables joint and

cartesian trajectory planning and execution on the robot. TRAC-IK [158] based implemen-

tation is utilized for inverse kinematics solutions. Robot controllers and robot hardware in-

terface are implemented and managed under ros control framework for real-time performance

and integration with the Kinova proprietary controllers. We furthermore implemented tele-

operation functionality with limited control interfaces that typically are available to people

with motor-impairments, including Sip-N-Puff and Head-Array. These control interface has

1 DoF and to control the robot arm’s hand location, orientation, and gripper requires at

least 7 control modes. The active mode is displayed via an Arduino based custom-built

feedback display device using 7 LED light patterns (one for each mode). The MICO robotic

arm and our control framework was used in the investigation of the models and algorithms

developed in this dissertation.
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CHAPTER 5

Algorithms for High-level Perception of Human Goals

5.1. Overview

In this chapter, we develop and evaluate novel algorithms for robotic perception of high-

level user goals; with applications for assistive navigation of wheelchairs and shared-control

manipulation of assistive robotic arms. The aim is to simplify the interaction between the

user and the robot, by autonomous perception of high-level user goals in the environment—

such as the candidate locations of interest to visit, or objects of interest. With such knowl-

edge the robotics autonomy can efficiently generate assistance behaviors towards finite set

of candidates in the environment. Furthermore, if the machine is able to autonomously

perceive candidate user goals within the environment, this can reduce the burden on the

user with respect to the requirements on the interface to indicate their intentions, and with

a set of finite candidate goals, the process simplifies to inferring which element from this

finite set—rather than needing to perform inference over the (infinite) set of all possible

locations within the environment.

5.2. Automated Perception of Docking Locations

Powered wheelchairs provide a mobility solution for people unable to operate a man-

ual wheelchair, for reasons of strength or impairment. However, operation of a powered

wheelchair can still be a difficult, tedious or challenging task. In a survey of clinicians [32]

The work in this chapter was originally published as [159–161].
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10% of patients who receive powered wheelchair training find it extremely difficult or im-

possible to use, and the number rises to 40% if they are asked about the maneuvering tasks

associated with completing Activities of Daily Living (ADL). In order to provide assistance

to this population, several “smart” wheelchairs have been proposed, that leverage robotics

automation to assist in driving a powered wheelchair. Two spatially-constrained assis-

tance behaviors that receive much attention within the literature are doorway-passage and

docking. While multiple works address the autonomous perception required for doorway-

passage [162–164], fully autonomous perception for docking assistance is minimally ad-

dressed.

In this dissertation, we develop automated perception algorithm to identify suitable

docking surfaces in the environment, assess them for safety, and detect docking pose on

the identified surfaces with accurate alignment or orientation information. The goal is to

develop a complete docking assistance system for smart wheelchairs, which enables the

robot to automatically perceive safe docking locations in the environment, with proper pose

alignment.

5.2.1. Algorithm: Docking Perception

In this section, we present our algorithm for the automated perception of safe docking loca-

tions. Our algorithm first identifies candidate docking surfaces (Section 5.2.1.1), classifies

them as rectangular or circular (Section 5.2.1.2) and extracts their edges/boundary (Sec-

tion 5.2.1.3), and then scans along it for candidate docking locations which furthermore are

assessed for safety (Section 5.2.2)). The input to our algorithm is a point cloud of the scene,

where each point is represented by a tuple containing its 3D position in camera coordinates

〈x, y, z〉. The Kinect is mounted on the wheelchair 130 cm above the ground (Figure 5.1,

left). In the camera coordinate frame the Y-axis is perpendicular to the ground, the Z-axis
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is back-to-front, and the X-axis is left-to-right. This information is then transformed onto

the world coordinate frame and stored in the list χl of safe docking locations.

Figure 5.1. Left: Illustration of our smart wheelchair with Kinect. Right:
The sequential search approach (top) and object anchoring approach for a
restaurant/dinner table setting (bottom).

5.2.1.1. Candidate Docking Structure Extraction. The first challenge is to identify

all the candidate docking structures, such as tables and desks, present in the scene. To

identify such candidates, we use RANSAC to search for all the planar patches that satisfy

the following conditions: (i) they are perpendicular to the Y-axis, i .e the vertical axis of

the camera frame; (ii) their height is at least τ above the ground plane; and (iii) their point

cloud size is larger than η. In our implementation, we used τ = 28in and η = 3000. Each

such planar patch is then clustered to form a set of planar regions Pc.

Once we have the candidate set Pc, the goal is to search each region P i
c ε Pc for the set

of locations χl that are safe for docking, where χil ε χl is a tuple containing the 3D position

〈xil, yil , zil〉 of a safe docking location.
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(a) (b) (c)

Figure 5.2. Example of the candidate structure shape classification by circle
detection on the 2D-grid representation of the convex hull. Point Cloud of a
scene with a round table (a) and a rectangular table (b). Convex hull marked
in green points. (c) Circle estimated from the circular table convex hull.

5.2.1.2. Candidate Structure Shape Classification. We restrict our search for candi-

date surface structures to shapes that are either rectangular or circular in geometry. We

first reason about the shape (rectangular or circular) of the candidate structures in Pc, since

the approach we follow to identify safe docking locations differs between the two.

To differentiate between the two shapes, we base our approach on the application of the

Hough Transform technique to detect circle models. Instead of directly using the candidate

structure point cloud data to run the Hough Transform, we extract the convex hull H i
c for

each P i
c ε Pc and create a 2D-grid representation Gi

x,z of P i
c—using each pair 〈xi,jc , zi,jc 〉 ε H i

c

such that the grid size equals the area of the region P i
c , and each grid cell that corresponds

to a pair 〈xi,jc , zi,jc 〉 is set to 1 with all others being set to 0. Note that quantization is

performed in order to index the grid cells, and the y-coordinates are not considered here

as we are interested in identifying candidate structures that are planar in geometry and

perpendicular to the Y-axis. The 2D-grid representation Gi
x,z simplifies running the Hough

Transform and also reduces the time complexity. Based on the detection result of the Hough

Transform we classify each P i
c ε Pc to create a set of rectangular candidates Rc and a set of
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circular candidates Cc. An illustration of the circle detection on a round table structure is

show in Figure 5.2.

5.2.1.3. Corner and Edge Extraction for Rectangular Structures. We detect each

corner Ri
c ε Rc for two reasons: (i) to use as an anchor to initiate our search for safe docking

locations, and (ii) to exclude corners from the set of locations χl (since it is unlikely that a

user will want to dock at a corner location). We implemented and compared two approaches

to identify corners.

The first approach is based on finding a rotated rectangle of the minimum area enclosing

the input point set in Ri
c. Once we have the minimum area bounding rectangle for P i

c , we

compute the four corners using basic trigonometry.

The second approach is based on the application of the Hough Transform to model lines

in candidate region Ri
c and computing the line intersections to find the corner locations. We

again create a 2D-grid representationGi
x,z as was done in Section 5.2.1.2, but this time we use

the point cloud of Ri
c instead of using the convex hull. Furthermore, we apply morphological

operations using a 3 x3 square structuring element, Mat(3 ,3 ), on Gi
x,z to extract a smooth

boundary for the candidate region Ri
c. Specifically, dilation Gi

x,z ⊕ Mat(3 ,3 ) is performed

to blend the sparse regions in the point cloud data, followed by an erosion operation Gi
x,z 	

Mat(3 ,3 ). Boundary extraction is done by subtracting the result of the erosion operation

from the dilation result, which gives the desired smooth boundary representation Bi
x,z of the

candidate structure. Bi
x,z is then used to model lines by application of the Hough Transform.

A performance analysis of the two approaches for corner detection found the rectangle-

fit approach to be superior to the Hough Transform approach (Tbl. 5.1, 10 runs for each

of 3 viewing angles: 0◦, 45◦ and -45◦ offset, so that the camera faces the edge and the
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Table 5.1. Performance comparison for corner detection

Rectangle Fit Approach
Offset Avg.Time (ms) True Corners Spurious corners

0 degrees 0.20 40 0
45 degrees 0.21 40 0
-45 degrees 0.19 36 4

Hough Transform based Approach
Offset Avg.Time (ms) True Corners Spurious corners

0 degrees 17.07 36 3
45 degrees 18.23 32 3
-45 degrees 16.08 37 3

(a) (b) (c) (d)

Figure 5.3. Example of the sequential search approach. (a) Candidate surface
extraction (blue region). (b) Corner locations (red markers) and extracted
edges represented by line models (dark blue lines). (c) 3D box stripe (vertical
red stripe) running along edges searching for free segments. (d) Identified
docking location (green marker) and docking pose (red arrow).

two corners). Based on this evaluation, the rectangle-fit approach was integrated into our

algorithm.

Once the four corners 〈κi,1c , κi,2c , κi,3c , κi,4c 〉 for each P i
c have been identified (Figure 5.3 (b)),

line models 〈Li,1c , Li,2c , Li,3c , Li,4c 〉 are computed between them. The edge points are computed

according to (1), by progressively varying parameter λ. In this way the algorithm is able to

identify the edges of the rectangular candidate structures present in the scene.

Li,j,kc = κi,jc + λk · (κi,jc − κi,lc ) (1)
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5.2.1.4. Boundary Extraction for Circular Structures. In order to check the circu-

lar candidate structures Cc for the clearance needed for safe docking, we first extract the

boundary of each Ci
c ε Cc. We use RANSAC on the convex hull representation of Ci

c to find

the model parameters of the circle. Having the center a and radius r for each Ci
c, the points

〈Cbi,x,kc , Cbi,z,kc 〉 on the boundary are computed according to (2) and (3), by progressively

varying parameter θ. The y-coordinate of each point, Cbi,y,kc , is then recovered from the

point cloud data of Ci
c. In this way the algorithm is able to extract the boundary of circular

candidate structures present in the scene.

Cbi,x,kc = ai,xc + ri,xc · sin(θk) (2)

Cbi,z,kc = ai,zc + ri,zc · cos(θk) (3)

5.2.2. Identification of Safe Locations

The next step is to scan for the safe docking locations for each of the candidate P i
c ε Pc. We

propose two approaches that both make use of an oriented 3D box that we place or slide

underneath the candidate structure, depending on the candidate edges or object clusters.

We count the number of cloud points falling inside this 3D box and base our safety decision

on this information. The size of the box is set based on table specifications in the Americans

with Disabilities Act (ADA)1 (26×30×19 in h×w×d).

5.2.2.1. Sequential Search—Identifying Safe Segments. For each candidate in Pc,

we scan either along the four edges 〈Li,1c , Li,2c , Li,3c , Li,4c 〉 or the boundary Cbic. The 3D box is

placed under the edge locations to find free segments Si,jc that would be safe for the width

of the wheelchair. Here, the 3D box slides along the four edges or the boundary of the

1Americans with Disabilities Act: http://www.ada.gov/2010ADAstandards_index.htm

http://www.ada.gov/2010ADAstandards_index.htm
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structure candidate and is checked iteratively in sequential vertical strips (Figure 5.3 (c)).

A safe docking location χic is marked as the midpoint of the box.

For alignment information for rectangular structures, we compute the docking pose ori-

entation as the perpendicular direction to the corresponding edge that constitutes the safe

segment (Figure 5.3 (d)). For circular structures, we calculate the direction of the vector

pointing from the docking location to the center of the circle.

(a) (b) (c) (d)

Figure 5.4. Example of the object anchoring approach. (a) Point Cloud of
the scene with image overlay. (b) Candidate surface extraction (blue region).
(c) Object Clusters (rainbow-colored circles), Hough Circle Detection (blue
marker) and 3D box (red box). (d) Identified docking location (green marker)
and docking pose (red arrow).

5.2.2.2. Restaurant/Dinner Table Setting—Object Anchoring. For each structure

candidate in Pc (Section 5.2.1.1), we find object clusters Oi
c present on the candidate surface.

To extract object clusters, we select the cloud points within a predefined threshold (2 cm

≤ Γ ≤ 15 cm) above the surface and identify the points that fall within the convex hull of

the candidate surface. A similar approach has been applied to extract door handles [162].

Next, object clusters are extracted by performing Euclidean clustering. We then base our

candidate shape search on the identification of circle models in the object clusters Oi
c (Figure

5.4 (c))—since the objects considered are bowls, plates and mugs, we assume that the object

clusters will have a circular shape. A 2D-grid representation Gi
x,z for each of the object

cluster Oi
c is created as described in Section 5.2.1.2, which is then used to detect a circle

by the application of the Hough Transform. If a circle is detected, we place a 3D box
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underneath that cluster center to search for a safe docking space (Figure 5.4 (c)). For

alignment information we identify the closest point on the edge or boundary (depending on

the candidate structure shape) to the object of interest and use the method described in

Section 5.2.2.1 to compute the orientation for docking alignment (Figure 5.4 (d)).

5.2.3. Evaluation and Results

A systematic approach to collecting data on docking structures was used to characterize

the algorithm performance. The algorithm was validated for different configurations on four

types of docking structures: a rectangular table, desk, workbench, and a round table (Figure

5.5). Experiments were carried out on an Intel Core i7 Quad-Core processor PC with 8 GB

of RAM and running Ubuntu 12.04. Note that our approach is the first within the domain

to address fully automated perception of safe docking locations on a variety of structures,

and thus a comparison is not made with existing approaches.

(a) (b) (c) (d)

Figure 5.5. Docking structures used for evaluation. (a) Table (b) Desk (c)
Workbench and (d) Round table.

To evaluate shape classification (Section 5.2.1.2) we tested each of the four docking

structures for 10 runs of the algorithm. It was observed that they were correctly classified

by the approach. Table 5.2 summarizes the results.

To test the sequential search and the object anchoring approach, different configurations

that might be commonly encountered were evaluated. For rectangular structures each con-

figuration was tested from three different views: 0◦, 45◦ and -45◦ offset. Each combination
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Table 5.2. Performance evaluation for shape classification

Docking Structure Type Number Classified as
Rectangular Circular

Table 10 10 0
Desk 10 10 0

Workbench 10 10 0
Round table 10 0 10

of docking configuration and viewing angle was evaluated over 10 cycles. The point cloud

stream was paused at each cycle of the algorithm to facilitate the online manual counting

of correctly identified locations, falsely identified locations and missed locations.

The point cloud data underneath the candidate docking structures often is visible only

for the sides closest to the sensor. Our algorithm considers locations to be safe until it has

concrete data to say otherwise. Accordingly, docking locations identified on far sides of the

tables are occasionally marked as safe when in fact they are not free. We consider this risk

to be minimal however, since the wheelchair necessarily needs to drive near a location to

dock at it, at which point the necessary sensor data becomes available. Such cases were not

counted as false positives in the evaluation.

In each of the described cases, the algorithm performed quite well and succeeded in

detecting the safe docking locations, with relatively few missed locations. Table 5.3 presents

the performance data for each of the testing configurations, and the angles at which they

were evaluated. The true positives were 305 (out of 350) and true negatives were 150 (out of

160), resulting in an overall accuracy of 89.21%. Figure 5.6 presents a number of examples

of the algorithm at work on variety of docking structure configurations.

In order to achieve good run-time speed, the RANSAC algorithm was used for plane-

fitting, which occasionally lead to somewhat strange surface selections and resulted in false

positive identifications of docking locations. The effective working distance range of the

algorithm was observed to be approximately 3 m. At distances greater than this, the
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Table 5.3. Performance evaluation at varying offset angles on different docking
structures and configurations

Structure & Con-
figuration

Offset Angle (◦) # Safe locations True Positives True Negatives False Positives False Negatives

Table with 4 chairs 0 / 45 / -45 40 / 40 / 40 37 / 32 / 36 20 / 30 / 10 0 / 5 / 2 3 / 8 / 4
Desk 0 / 45 / -45 10 / 10 / 10 10 / 10 / 9 - / - / - 0 / 0 / 1 0 / 0 / 1
Desk - 2 objects 0 / 45 / -45 10 / 10 / 10 9 / 8 / 8 10 / 10 / 10 0 / 0 / 0 1 / 2 / 2
Workbench 0 / 45 / -45 20 / 20 / 20 19 / 17 / 18 - / - / - 0 / 2 / 0 1 / 3 / 2
Workbench - 2 ob-
jects

0 / 45 / -45 20 / 20 / 20 17 / 17 / 16 - / - / - 0 / 0 / 0 3 / 3 / 4

Workbench - 1 ob-
ject, 1 chair

0 / 45 / -45 10 / 10 / 10 9 / 8 / 8 10 / 10 / 10 0 / 0 / 0 1 / 2 / 2

Circular table - 3
chairs

- 10 9 20 0 1

Circular table - 2 ob-
jects,3 chairs

- 10 8 10 0 2

horizontal planar segmentation became less reliable since the point cloud data returned by

the Kinect decreased in accuracy. However, this operational range is useful and appropriate

for the intended task of assisting wheelchair users, as the docking assistance is mostly

required when the user is in close proximity to the docking structure. A series of videos

were recorded demonstrating the performance of the algorithm.2 Finally, we note that a

quantitative comparison to other docking approaches is not provided, since fully autonomous

perception for docking assistance is not addressed by any other works.

5.2.4. Summary

We have introduced a novel method for the autonomous detection of safe docking locations

using 3D point cloud data, and without any visual fiducial or environment customization

requirements. Through evaluations on differently shaped docking structures in varying con-

figurations, our algorithm has demonstrated good performance and was shown to be effective

in the identification of safe and oriented docking locations. Finding safe docking locations

is important in the context of assistive wheelchairs, and also for autonomous mobile robots.

2The videos can be found at https://www.argallab.northwestern.edu/research/robot-platforms/

robotic-wheelchair/

https://www.argallab.northwestern.edu/research/robot-platforms/robotic-wheelchair/
https://www.argallab.northwestern.edu/research/robot-platforms/robotic-wheelchair/
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Figure 5.6. Examples of our algorithm working correctly on a variety of dock-
ing structures tested from varied viewpoints. The green marker indicates
preferred docking location and the dark blue marker indicates all other dock-
ing locations, the red arrow marks the pose and blocked space is marked by
red.

By detecting safe docking locations along with alignment information, custom trajectories

can be planned and executed by a path planner to achieve the docking maneuver.

5.3. Grasp Detection for Assistive Robotic Manipulation

Robotic grasp detection is a challenging perception problem due to wide range of fac-

tors such as different object shapes and unlimited object poses. Over the past decades,

several vision-based algorithms have been developed that compute grasps that are stable

and suitable for use by an autonomous robotic system. However, such grasps may not be
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predictable to users in human-robot collaboration scenario. Our aim is to detect grasps

that are suitable to be provided as high-level manipulation goals in shared-control systems.

As part of this effort, in this dissertation we present a grasp detection algorithm that use

real-time sensor data for grasping novel objects, with a focus on the two main components:

(i) generates multiple grasps on objects to handle the multiple ways in which a single object

can be grasped, and (ii) for the grasps to be similar to what a human would generate when

teleoperating the robot under direct control.

While the use of deep convolutional neural networks (DCNN) has gained recent popular-

ity in grasp detection, one of the most problematic requirements of deep learning lies in the

requirement of a very large volume of training data [165]. Furthermore, although DCNN

can be trained to find grasp location for an object in an image [117,166], it limits the grasp

approach direction to the normal of the image plane and thus, impose the assumption that

a good 2D grasp can be projected back to 3D space. Some approaches assume that the

robot is supposed to grasp an object in a table-top scenario and thus limit the output of

the DCNN to one overhead grasping pose for a given input image [167], for making the

training process of the network easier. Detection of a single overhead grasp may not be suit-

able for shared-control operation in human-robot systems, where the human grasp choice

could reflect the multiple ways in which a single object can be grasped. Furthermore, it is

important to consider the depth information for robotic applications, as framing the per-

ception problem using unimodal RGB image datasets can lead to failures in capturing the

true semantic meaning of the world. In this dissertation, we explore a geometric approach

for grasp detection that can use real-time sensor depth data and detect multiple semantic

grasps on novel objects.

The set of everyday objects that a robot could encounter in its tasks is vast and diverse

as household objects vary in their size, color, texture and shape. However, there exist
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certain regularities that can be exploited to inform and help robot perception in order to act

on novel objects. In particular, the 3D surface geometries of objects contain characteristic

information that generalizes over a large variety of objects. Geometrical analysis of a point’s

neighborhood can provide discriminative information about the local surface type. The

identification of such local surface types in object point clouds can be utilized to reason about

the shape and global surface characteristics of the object—without the need to recognize the

specific object instance type or category. Such local and global surface geometry information

can be used in manipulation planning for the robots. Thus, the addition of this semantic

information to the 3D representation of object point clouds can enable the robot perception

system to operate in a more general way—enabling the robots to perceive and manipulate

unseen objects with more flexibility and reliability.

In the following sections, we first investigate methods for the estimation of local and

global surface geometries in the 3D point clouds of household objects and then present our

framework for grasp detection based on such geometric characteristics, that satisfies the two

aforementioned main components for application in human-robot systems.

5.3.1. Surface Geometry Estimation

In this section, we discuss local surface geometry estimation to determine the overall shape

characteristics of object clusters. These shape characteristics then will be used for deter-

mination of a global shape which best approximates the object geometry. For local surface

geometry estimation in point clouds, we discuss methods based on Principal Curvatures

(PC) [168] and Radius-based Surface Descriptor (RSD) [169].

RSD [169] describes the geometry of points in a local neighborhood by estimating their

radial relationships. The radius estimation is performed by assuming each point pair to lie

on a sphere. By exploiting the relation of the distance d between the points and the angle
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α between the two point normals, the radius r is estimated,

√
2r
√

1− cos(α) = d,

r ≈ d/α.

The radius approaches infinity for a planar surface and takes on increasingly lower values

for surfaces with a higher curvature. The RSD feature for a point, based on its nearest

neighbors, consists of a minimum radius and maximum curvature radius [rmin, rmax] taken

from all the point-neighbor spheres.

PC [168] describes a point’s local surface geometry from the eigenvectors and eigenvalues

of the principal surface curvatures on that point. For a query point pq ∈ R3, all normals

nj ∈ R3, j = 1...N , of the set of its N neighborhood points are projected onto the tangent

plane of the surface defined by the normal nq at the query point. The centroid of the

projected points p̄ ∈ R3 and the covariance matrix C from all projections are computed as,

p̄ =

∑N
j=1 pj

N
,

C =
1

N

N∑
j=1

(pj − p̄) · (pj − p̄)T

where

pj = (I − nq · nTq ) · nj,

and I is a 3×3 identity matrix.

Principal Components Analysis (PCA) is then performed on the point normals of the

surface patch in the tangent plane of the given point normal, to find the eigenvalues. The

eigenvalues λk ∈ R and eigenvectors vk ∈ R3 are defined by the following relation and form

an orthogonal frame that corresponds to the principal components of the set of neighborhood
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points:

C · vk = λk · vk, k ∈ {0, 1, 2}

where λ3 corresponds to the maximum curvature and λ2 to the minimum curvature denoted

as pcmax and pcmin, respectively. The PC feature consists of these minimum and maximum

curvatures [pcmax, pcmin] as well as the principal curvature direction v3, the normalized

eigenvector of pcmax and pcmin.

Using the RSD and PC values, a geometric class label can be assigned to each point

in the object cluster in order to classify local geometries. To determine the class label,

thresholds on the feature values of the RSD descriptor are used to categorize local surfaces

into classes planar, cylindrical, spherical, edge, corner or noisy. In particular, for each voxel

with a width of 2.5 cm, we compute the minimum and maximum curvature radii [rmin, rmax]

and label the voxel surface by successive checks of the RSD radii in order to categorize it into

one of the geometric classes. This is a simple and fast way to categorize local surfaces. Since

RSD and PC are based on a similar geometrical approach (highest and lowest curvature),

this technique is applicable to classify the PC values [pcmax, pcmin].

5.3.2. Global Shape Classification

Many objects found on tables in typical household environments are cylindrical, spherical

or box-like (that can be decomposed into planes), and thus can be well-represented by

spherical, cylindrical and box-like geometries. To classify the shape primitive which best

approximates the object geometry, we first present an empirical model based on local surface

curvature and surface variation and then introduce a machine learning approach based on

global feature representation for objects.
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5.3.2.1. Empirical Model using Shape Variation. The Eigenanalysis (Principal Com-

ponent Analysis) can be used to evaluate the local surface curvature around p?. Specifically,

eigenvalues λj of the covariance matrix C can be used as approximations of the local surface

variation around p?. The surface variation σp?
at point p?, calculated [170] as

σp?
=

λ0

λ0 + λ1 + λ2

provides an approximation to the change in curvature.3 The surface variation σpi
is calcu-

lated for every point pi ∈ O, of the object cluster O.

We define a metric ∆ that is used to determine the best 3D geometric primitive,

∆ =
M∗

M

M∗: Number of points pi ∈ O for which σpi
≤ δ

M : Number of points pi ∈ O

where δ is an empirically-determined threshold (here δ = 0.01). 4

Higher values of ∆ suggest that most of the object’s points have low surface variation,

and thus can be decomposed into planes and approximated by a box-like primitive. Small

values of ∆ suggest higher surface variation, and that the object can be approximated by

a spherical or a cylindrical geometric primitive. The thresholds on ∆ used for primitive

classification (empirically determined) are presented in Table 5.4.

3 Many alternative analyses of surface curvature require a mesh representation (rather than just sampled
points). For example, the Gaussian and Mean curvatures of a smooth surface using a triangular mesh
representation [171], which however do not provide a good enough representation here as there is strong
correlation between estimated values. Other curvature formulations such as shape index are sensitive to
noise and cannot be estimated from a set of sampled points directly.
4Geometric edges skew the interpretation of ∆. Edges are identified as points with extremely high curvature
values by analyzing the distribution of curvatures σpi

. Points in the upper quartile of this distribution are
not included in ∆ estimation.
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Table 5.4. Classification for best fit primitive

Spherical 0.0 ≤ ∆ ≤ 0.10
Cylindrical 0.10 < ∆ ≤ 0.40
Box-like 0.40 < ∆ ≤ 1.0

5.3.2.2. Machine Learning using Global Descriptors. A global representation of ob-

ject type can be formed from the local surface features (geometries). Specifically, for the

RSD feature, once all voxels are annotated locally with a geometric class, the Global Radius-

based Surface Descriptor (GRSD) [169] is computed, which produces a unique signature

for a given object cluster based on the RSD local feature values. GRSD describes the tran-

sitions between different surface types (and free space) for an object. Note that in this

work we count the transitions between surface types between the occupied voxels instead of

along lines between occupied voxels. Each bin counts a transition between a pair of specific

surface types, or between a specific surface type and free space. By using five local surface

types (planar, cylindrical, spherical, edge and noisy/corner) and considering free space, the

number of GRSD histogram bins is 21.

Following a similar approach, for the PC feature, we introduce a global histogram that

counts transitions between the voxelized PC labels within an object cluster and also include

bins for the number of voxels labeled as planar, cylindrical and spherical (empirically we

found this to slightly increase the shape classification performance), making the bin size

24. We call this new assembled descriptor the Global Principal Curvature Shape Descriptor

(GPCSD). Figure 5.7 shows the surface estimation on a cereal box object cluster.

We use machine learning to learn the mapping from global descriptors of objects to

their primitive shape classes. For training dataset, we select 12 object categories from

the large scale RGBD-Washington dataset [172]. For each category, there are four separate

object instances in the dataset and each instance has more than 600 views of the object from
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Figure 5.7. Surface geometry estimation for an example object cluster (cereal
box). Local feature class labels shown as colors on the point cloud (Left: RSD,
Right: PC). Global descriptor histogram bins shown as plots (Left: GRSD,
Right: GPCSD).

different angles. Figure 5.8 shows an instance of each object for all categories along with the

ground truth class labels. Note that RGB values from the dataset are only represented for

illustration are not utilized in the descriptor computations. GRSD and GPCSD descriptors

are computed for all instances of each object in the 12 categories.

Figure 5.8. Test dataset showing instance of each object category used for evaluation.

An artificial neural network (ANN) is trained on three instances of each object category

in the dataset, with one instance being randomly picked to leave out from each category in

order to form the test set. The ANN structure has 21 input nodes for the GRSD descriptor

(one node for each histogram bin) and 24 for the GPCSD descriptor, one hidden layer with
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10 nodes and three output nodes for the class labels. (Note that multiple network structures

were tested to prevent overfitting before arriving at this structure.)

5.3.3. Grasp Detection

We now present our algorithm for grasp detection that finds a combination of gripper ori-

entations and positions relative to a given object using real-time sensor depth data. The

sensory input to our framework is 3D point cloud data of the scene from a Kinect (Microsoft,

USA) RGB-D sensor. The algorithm generates, for every observed object point cloud clus-

ter Oj, a set of possible grasps Goj . Each grasp gkoj ∈ Goj is a R4×4 transformation matrix

(position and orientation of the robot gripper in base frame Rf ) that can readily be used as

a motion planning goal to grasp object Oj.
5

The first step is to identify the parts of the input point cloud that are likely to belong

to a single object (clusters). Note that any suitable segmentation approach can be used to

identify the object clusters. In our implementation, two simplifying assumptions are made:

the objects are sitting on a flat surface suitable for manipulation (such as a table), and the

minimum distance between two objects in a scene is at least 3 cm. We compute a planar fit

using Random Sample Consensus (RANSAC) to generate a model hypothesis for the flat

surfaces and extract the dominant planar surface that provides support for the objects. We

then find the individual object clusters O in the scene by performing Euclidean clustering.

Next, we model a simplified version of the object’s geometry by automated categorization

to 3D geometric primitives using global shape classification (Section 5.3.2). Such approxi-

mation does not need to match the object’s geometry exactly, and need to only approximate

the 2.5D depth data cloud well enough within some error bounds. We then generate model

5The remainder of this section describes operation on a single object Oj ∈ O, and so for simplicity we drop
the notation j.
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hypotheses of the geometric model parameters for the identified shape primitives using

RANSAC. The obtained models are refined using a linear least-squares fit for the plane and

nonlinear Levenberg-Marquardt optimization for the cylindrical and spherical primitives.

The framework generates, for every observed object point cloud cluster O, a set of

possible grasps G, with the dual aims that grasps be similar to what the human user would

generate when teleoperating the robot and to limit the huge number of possible grasps on

the object.

We define strategies for detecting top, side and/or pinch grasps for each geometric primi-

tive. Our algorithm generates multiple candidate grasps for each object—because we expect

the user preference on where to grasp the object to change with environmental context. Since

the aim also is for these grasps to be easily predicted by the human operators, we limit the

full (infinite) scope of possible grasps to semantic groups (e.g., left side, right side, top)

and generate a single grasp for each group. Our additional aim is for the generated grasps

to be similar to what a human would generate during teleoperation of a robotic arm. A

study involving grasping by human users [123] show that humans tend to grasp with wrist

orientations that are orthogonal to the object’s principal axis and its perpendiculars. Such

grasps also generally are more stable than those that do not value orthogonality. Thus,

we design our strategies to incorporate orthogonality by generating grasps along the object

centroid, wherever possible, which also minimizes torque during grasp execution.

The model parameters for the spherical primitive consist of the sphere center sc and

radius sr. We generate a top grasp pose and a side grasp pose (pinch is not feasible) by

calculating the gripper position and orientation using the model parameters.

The model parameters for the cylindrical primitive consist of the axis vector ~ca, a point

on the cylinder axis cp and the cylinder’s radius cr. We project the inliers of the cylindrical
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Figure 5.9. Left: Cylindrical objects center (green) and height (red line) com-
putation. Right: Clusters of points on the cylindrical shape surface (yellow)
are marked as protrusions (red).

model onto the axis vector and then compute the mean of the projected points to deter-

mine the centroid cc of the cylinder. The height ch of the cylindrical object is determined

by computing the minimum and maximum bounds of the projected points along the axis

~ca. An illustration of this approach for different cylindrical objects is presented in Fig-

ure 5.9, left. Next, we look for possible spurious protrusions (including handles) from the

object. Protrusions may hinder the grasp execution, and moreover in the case of handles

we anticipate a potential handover to human partners. Therefore, objects are grasped on

the opposite side of a protrusion. We employ a model-free approach to find protrusions

rather than fitting specific geometric shapes—since the geometry varies for different kinds

of objects, and we are grasping on the opposite side in any case. We examine the vicinity

of the cylinder model’s surface for clusters of points, and mark such clusters as protrusions

(Figure 5.9, right). We also determine if the cylindrical object is in an upright or lateral po-

sition using the cylinder axis orientation. If the cylinder is in a lateral position, we compute

a top grasp only. If it is upright and with no protrusion, we compute a side and top Grasp

pose. For upright cylinderswith a protrusion, the side Grasp is computed on the opposite

side of the protrusion. To do this, we find direction vector ~cpr along the protrusion cluster

centroid and its projection on the cylinder axis. We then calculate unit vector ĉ⊥,pr, that is

perpendicular to both ~cpr and axis vector ~ca. For the case in which the cylinder the hollow
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(determined by filtering the number of points inside the surface), the algorithm generates a

pinch grasp.

For box-like objects, we first model planar components. Specifically, the algorithm per-

forms principal component analysis on the point cloud cluster O to obtain the eigenvectors

~ν0 and ~ν1, and the centroid bc. Next, the object is decomposed into planar components. We

use RANSAC to extract planar models Π on the O iteratively until the size of O is greater

than ρ (here ρ is set to 10% of the initial object cloud size). For each of the identified planes

we compute its centroid pc and the normal vector ~np. Next, we find planes whose normals

are in the direction of the major eigenvector ~ν1 to generate side grasps on the object and

the planes whose normal is in the direction of ẑ to generate top grasp.

Figure 5.10. Grasp generation (top (T), side (S) and pinch (P)) for different
shape primitives types, modeled from point clouds of object clusters.

The grasp generation strategies for shape primitives are summarized in Table 5.5 and

Figure 5.10 shows the various grasps for different primitive types. Figure 5.11 summarizes

the various steps involved in our algorithm.

5.3.4. Evaluation and Results

We performed three experiments to characterize the performance of our algorithm. We col-

lected a set of 30 household objects that cover various categories, shapes, textures and sizes
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Table 5.5. Semantic Grasp Generation using Global Shape Model Parameters

Global Shape Primitive Model Parameters Grasp

Spherical center sc and
radius sr

Side / Top

Cylindrical center axis vector
~ca, a point on the
cylinder axis cp

and the radius cr.

Side / Top (upright)
Top (lateral)
Pinch (hollow)

Box-like centroid bc,
eigenvectors ~ν0

and ~ν1

Side / Top

Figure 5.11. Grasp detection pipeline and sample grasps on a scene of objects.
The predicted shape primitives are shown along with the grasps produced on
the objects. The red arrow points along the approach direction, and the green
box is positioned along the axis in which the gripper closes.
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of objects (Figure 5.12), to test our approach.6 More importantly, most object categories

in the test set belong to the list of important objects identified for robotic retrieval tasks

by motor-impaired patients [173]. Objects were presented in multiple pose configurations,

consisting of 0◦, 45◦, -45◦, 90◦ offsets. Experiments were carried out on an Intel Core i7

Quad-Core processor PC with 12 GB of RAM and running Ubuntu 12.04, the Robot Op-

erating System (ROS Hydro) and Point Cloud Library (PCL 1.7). Grasp executions were

carried out by the MICO robotic arm (6+1 DoF).

Figure 5.12. Test dataset of 30 household object.

Shape Primitive Selection: To evaluate shape primitive classification, we ran the algorithm

using empirical model for global shape classification on each object in the test set, with

all test pose configurations and lateral and upright positions when possible. Each pose

configuration was evaluated for 10 runs of the algorithm. The algorithm selected the best

shape primitive for the objects with very few errors. Table 5.6 summarizes the results.7

Additionally, we also tested the performance of the learned ANN models on the test

dataset comprising of the RGBD-Washington dataset objects (Section 5.3.2.2). Both models

perform well on the unseen test set objects and the classification accuracy of the learned

6Five of the test set objects—glass (green), mug (orange), tennis ball, coffeemate, plastic bowl—also were
used in development of the algorithm (along with a box-like object not in the test set). The rest of the 25
objects in the test set were novel to the algorithm.
7For the purpose of grasp detection, long narrow box-like objects were represented equally well by cylindrical
and box-like primitives.
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Table 5.6. Evaluation of Best Shape Primitive Fit on the Test Objects

Key: #: Number of. %: Percent correct.

Object #Pose #Cylinder #Sphere #Box-like %

Al. Foil box 40 10 0 30 75
Apple (green) 10 0 10 0 100
Apple (red) 10 0 10 0 100
Band-aid box 40 2 0 38 95
Cereals box 40 0 0 40 100
Ceramic bowl 10 10 0 0 100
Chocolate bar 40 30 0 10 100
Chocolate box 40 0 0 40 100
Coffeemate 50 50 0 0 100
Cookies box 40 2 0 38 95
Flashlight 40 40 0 0 100
Glass1 50 50 0 0 100
Glass2 50 50 0 0 100
Hairbrush1 40 40 0 0 100
Hairbrush2 40 40 0 0 100
Mug1 40 40 0 0 100
Mug2 40 40 0 0 100
Mustard 50 50 0 0 100
Orange 10 0 10 0 100
Plastic bowl 10 10 0 0 100
Pringles can 50 47 0 3 94
Ritz box 40 10 0 30 75
Soap 40 38 0 2 95
Soup can 50 49 0 1 98
Tape 10 10 0 0 100
Tennis ball 10 0 10 0 100
Toothpaste 40 30 0 10 75
Travel mug1 50 50 0 0 100
Travel mug2 40 38 2 0 95
Wafers box 40 0 0 40 100

Figure 5.13. Normalized confusion matrices for GRSD and GPCSD classifica-
tion using ANN models on the test set objects. Class labels are Box-shaped
(B), Cylindrical (C) and Spherical (S).

GRSD model is 94.93% and that of the GPCSD model is 91.02%. The normalized confusion

matrices are shown in Figure 5.13. The main performance difference between the two
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approaches appears to be the occasional mislabeling of spherical as cylindrical (1% for

GRSD and 8% for GPCSD).

Grasp Similarity to Human Teleoperated Grasp: To evaluate the similarity between the al-

gorithm generated grasps to those generated by a human when teleoperating the robot, a

pilot study was performed in which three users (who were all lab members) teleoperated

the MICO robot using a 3-axis joystick interface to grasp the test objects. The test objects

were presented one by one on a table in front of the robot for the task in one of the above

the pose configurations (selection was random and balanced). The users were not provided

with any information about the algorithmic approach and were instructed to teleoperate

the robot to grasp the object in a way they thought would be stable to lift the object from

the table.

Before each trial the algorithm computed a set G of candidate grasps for the presented

object O. As the user teleoperated the robot, the algorithm maintained a confidence score

for each grasp g ∈ G, based on: (1) the euclidean distance between the robot end-effector

position and the grasp position, and (2) the end-effector orientation (roll, pitch and yaw)

alignment with the grasp pose.

The most confident grasp g∗ generated by the algorithm was then compared to the

human-selected grasp gh, defined as the final robot end-effector pose on the object with

the robot gripper closed. For each trial we calculated the difference between poses g∗ and

gh—as the difference in roll δR, pitch δP and yaw δY angles (in degrees), and the euclidean

distance δT in position (in cm).

Table 5.7 provides results for each of the trials, and also reports whether the human

selected a side (S), top (T) or pinch (P) grasp.
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Table 5.7. Comparison of Algorithm Grasp Pose and User-Teleoperated Grasp
Pose (see text for details)

Object User 1 User 2 User 3

g δR◦ δP◦ δY◦ δTcm g δR◦ δP◦ δY◦ δTcm g δR◦ δP◦ δY◦ δTcm

Al. Foil box T 11.45 -13.75 9.64 3.84 T 0.52 -6.88 -9.74 1.55 T 12.61 -7.45 13.18 5.19
Apple (green) S -11.28 9.74 -3.56 3.20 T -1.72 4.01 -1.81 4.26 S 6.83 7.85 17.85 2.37
Apple (red) S -13.01 2.86 -9.83 2.66 S 9.12 1.83 2.55 5.04 T 3.08 10.31 24.21 6.23
Band-aid box T 3.44 -5.16 6.21 1.92 T -0.86 -1.88 -2.66 3.56 T 4.58 -7.96 8.03 4.58
Cereals box S -1.71 9.74 15.5 4.47 S 10.27 1.32 -3.59 5.52 S 2.48 10.89 5.24 9.06
Ceramic bowl P 9.17 -2.29 40.83 10.21 P 1.72 0.92 -11.99 3.06 P -1.72 3.70 4.67 5.22
Chocolate bar T 4.01 -9.17 -6.63 1.17 S -8.59 -2.86 0.34 3.71 T -8.59 -3.15 4.09 8.53
Chocolate box T 13.75 -5.16 -3.92 5.46 T -3.44 -12.03 2.38 3.53 T 2.29 -4.41 12.09 4.67
Coffeemate T 8.02 -8.50 1.27 5.21 T 9.17 -3.50 -1.14 4.20 S -1.82 8.94 25.5 5.09
Mug1 S 5.68 10.88 21.1 4.00 T 0.00 -3.67 44.61 4.11 S 3.39 2.86 13.4 3.32
Mug2 S 0.47 6.88 12.43 3.26 S 3.97 7.45 7.48 1.62 S -0.96 6.88 30.26 4.19
Cookies box T 0.17 -5.73 -6.80 3.83 T -6.30 -8.59 -0.61 5.61 T -15.47 -8.02 -0.89 7.06
Flashlight T 6.30 -4.58 3.63 4.84 T 10.89 -12.03 -3.97 4.66 T 0.52 -3.44 5.39 3.44
Glass1 S 3.97 9.74 -22.67 2.48 S 4.42 7.91 -7.54 3.76 S 3.79 12.61 33.06 4.90
Glass2 S 0.53 8.59 -12.81 5.73 S 5.11 6.88 23.01 4.74 S 2.43 6.44 21.51 3.71
Hairbrush1 T -6.47 -2.29 -6.04 3.54 T 5.16 -8.59 -12.28 3.90 T -10.31 -11.46 3.43 3.36
Hairbrush2 T 6.30 -13.75 -15.10 4.69 T -11.46 -2.29 13.36 6.39 T 2.92 1.60 -8.51 4.52
Mustard S 0.87 18.33 37.57 4.91 S 8.50 6.88 -3.07 3.58 S 7.40 6.53 23.70 2.59
Orange S 3.39 4.58 2.78 5.28 T 26.67 -4.58 7.83 2.56 S -3.71 12.60 22.32 6.04
Plastic bowl P 22.92 -1.03 13.25 10.80 P 12.03 0.86 9.85 2.32 P -2.80 -9.74 20.66 7.36
Pringles can S 10.30 1.71 5.14 12.71 T 16.04 -11.46 1.75 3.22 T 3.21 -1.72 4.13 3.39
Ritz box T -4.01 1.95 -0.09 4.12 T -10.31 -6.53 -6.56 6.17 T -5.16 -6.30 3.35 4.62
Soap T 13.18 1.15 7.36 1.34 T -8.02 -9.74 -4.95 3.62 T -15.47 -7.45 -9.13 3.54
Soup can S 25.7 -9.74 20.20 7.38 S 4.54 4.76 -11.32 3.35 S -2.68 -0.40 36.90 4.67
Tape P 0.57 -2.86 -12.24 10.71 P 14.47 -7.45 -9.72 7.15 P -1.49 -7.33 -6.39 4.27
Tennis ball S -1.80 9.16 10.64 2.66 S -13.62 -4.58 -8.46 3.55 T 20.36 9.17 12.01 3.35
Toothpaste T 6.30 -4.58 3.15 4.33 T 4.01 -5.73 2.78 3.04 T 10.89 -4.30 1.58 3.79
Travel mug1 S 1.10 5.16 23.3 5.93 S 3.97 8.02 5.13 3.77 S -1.19 10.66 31.34 3.92
Travel mug2 S -3.08 28.6 -21.2 3.06 T 4.54 4.24 25.24 4.97 S 3.97 9.74 20.16 4.82
Wafers box T 8.59 5.39 -1.72 7.68 T -6.88 5.16 2.61 5.20 T 9.91 -2.29 15.33 4.41

Mean 4.16 1.53 3.71 5.04 2.79 -1.73 1.65 4.05 0.97 1.17 12.94 4.74
S.E. 1.54 1.71 2.78 0.52 1.65 1.17 2.24 0.24 1.39 1.40 2.27 0.29

Across all users and objects (90 trials), the values for δR (2.64◦ ± 0.88), δY (6.10◦ ±

1.49) and δT (4.61 cm ± 0.21) were quite small. To help qualify small, Figure 5.14 provides

a visualization of δR, δP and δY at 0◦, 10◦ and 20◦.

These results highlight the algorithm’s capability to generates grasps that are similar in

pose (both orientation and position) to what a human user generates when teleoperating the

assistive robot. This similarity may help the human to predict the robot’s motion during

shared-control executions in collaborative tasks.
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Figure 5.14. Visualization of δR (top row), δP (middle row) and δY (bottom
row) for 0◦, 10◦ and 20◦ (left to right).

Figure 5.15. Pose estimation and grasp generation on a variety of novel ob-
jects. The segmented point clouds (middle row) are fit to primitive shapes
(bottom row) and candidate grasps are generated. Grasp approach and ori-
entation indicated by the red arrows and green boxes.

Grasp Robustness : Lastly, we evaluated our algorithm in experiments that autonomously

grasped the test set household objects, again using the MICO robot. Each object from

the test set was placed alone on a table within the reach of the robot in one of the pose

configurations. The algorithm computed grasps G for the presented object, and each was

executed using the manipulation planning framework [174] that allows the robot to plan

in the presence of constraints on end-effector pose using the Task Space Regions (TSRs)

representation. Figure 5.15 shows the pose estimation and grasp generation on a variety of

novel objects. Success was defined by grasping the object, lifting it off the table and holding
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it in air stably for 60 seconds. There were 50 trials in total for the experiment and the

robot achieved a success rate of 82%. Figure 5.16 shows the resulting grasps executed by

the MICO robot on a sample of test objects.

Figure 5.16. A sample of the grasps executed by the MICO robot.

5.3.5. Summary

We have presented an algorithm for detecting robotic grasps from point cloud depth data.

Our method has several advantages over existing approaches for grasp detection as it does

not require known models of the object or a predefined grasp dataset, and can generate

multiple semantic grasps on objects. Furthermore, the algorithm is independent of an object

recognition pipeline and can be used in real-world environments, without requiring expert

intervention. The results have shown that the approach is capable of detecting human-like

grasps for a wide range of unseen household objects, which could improve human-robot

collaboration for assistive manipulation. The detected grasps also were used successfully for

autonomous grasping by the MICO robotic arm.
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CHAPTER 6

Human Intent Recognition and Assistance in Shared Autonomy

Human-robot teams are common in many application areas, such as domestic service,

search and rescue, surgery and driving vehicles. In the area of assistive robotics, shared

autonomy is utilized to aid the human in the operation of an assistive robot through the

augmentation of human control of the robot with robotics autonomy [58,59,64,66]. One

fundamental requirement for effective human-robot collaboration in shared autonomy is

human intent recognition. In order to meaningfully assist the human collaborator the robot

has to correctly infer the intended goal of the user from a number of potential task-relevant

goals—known as the intent inference problem.

One approach to infer the user’s intent could be to have the user communicate the in-

tended goal explicitly, for example via verbal commands as observations. However, requiring

explicit communication from the user could lead to ineffective collaboration and increased

cognitive load [9]. Humans are very good at anticipating the intentions of others with

non-verbal communication [177]. Research studies in experimental psychology show that

humans demonstrate a strong and early inclination to interpret observed behaviors of others

as goal-directed actions [178]. Evidence shows that even young human infants are inclined

to interpret certain types of human behaviors as goal-directed actions. For example, a de-

velopmental proposition to the question of how the child develops a theory of mind posits

that infants learn about the signal value of adult actions because these behaviors predict

the locations of interesting objects and events [179]. Such a teleological interpretation of

The work in this chapter was originally published as [175,176].
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Figure 6.1. Human intent recognition in shared autonomy under limited con-
trol interfaces that typically are available to users in the assistive domain.

actions in terms of goals could inform us why the action has been performed, i.e., it provides

a special type of explanation for the action.

Shared autonomy systems accept user actions as inputs into a robotic system via a

control interface. The commercial control interfaces that are accessible to those with motor-

impairments are limited in both the dimensionality and continuity of the control signals.

Examples include 3- or 2-DoF joystick, and more limited interfaces (1-D control) such as

Head Arrays and Sip-N-Puff control interfaces (Figure 6.1).

Directly leveraging the user’s interaction with the control interface to perform intent

recognition could pose critical challenges—as a consequence of the limitations of the inter-

face and/or the human, due to the underlying motor-impairment. Taking inspiration from

psychology and teleological interpretations of actions, we aim to explore how the robotics

autonomy can implicitly observe and leverage such non-verbal human actions to perform

human intent recognition. Specifically, we model the user’s interaction with the control in-

terface that they use to operate the robot as probabilistic goal-directed actions, in order

to reason about the user’s intention. Note that within the domain of humans operating
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assistive robots such as robotic arms or wheelchairs, control command information from the

interface used to operate the robot is readily available and the operation of such an interface

is already familiar to end users, and does not divert attention from the task execution.

We consider the 3-axis joystick and the Sip-N-Puff as the representative input interfaces,

and study how challenging it is to decode the human user intentions in case of such limited

interfaces. As discussed before, for modeling goal-directed actions we consider the user

control inputs as representative of the action the user wants to take, we model such actions

of the human agent in a probabilistic behavior model with adjustable rationality, and we

use this model to inform human intent recognition. The adjustable rationality model allows

to reason for a number of factors that might induce sub-optimality in the human actions

(discussed further in Section 6.2).

In shared autonomy, often times the only cues available to the system comes from the

input commands received from the human user (as discussed above) and, via sensing the

robot’s environment. In this dissertation, we present a formalism for intent inference under

shared autonomy that models the uncertainty over the user’s goal within a Bayesian filtering

framework. Our approach incorporates a fusion of multiple observations and introduces a

probabilistic modeling of user control inputs as goal-directed actions. Specifically, we model

the user’s actions within a probabilistic behavior model that incorporates an adjustable

rationality and, importantly, we introduce an intent-driven optimization that adapts the

rationality index value to each individual user, and thus can account for their particular

behavior. The motivation for our approach are prior studies which show that users vary

greatly in their performance, preferences and desires [63, 67, 68], suggesting a need for

assistive systems to adapt to each individual user.
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In the majority of the literature on shared-control systems that perform intent in-

ference, the focus of the experimental work is on the control sharing and robot assis-

tance [64–66, 180], with the intent inference being mostly assessed only implicitly. Intent

inference performance can directly affect different aspects in shared autonomy operation,

however, thorough evaluations of intent inference are largely missing from the shared au-

tonomy literature. In our work, we present a more extensive evaluation of intent inference

than is typically seen within the literature.

6.1. Framework for Intent Inference under Shared Autonomy

We first mathematically define the intent inference problem and then present our frame-

work. Our target domain is assistive robots endowed with shared autonomy that assists the

user towards his/her intended goal.

6.1.1. Problem Formulation

Assuming the environment has a discrete set of accessible goals1 g, known at runtime to

both user and robot, the intent inference problem is that the intended goal of the user is

unknown to the robot, and so the robot must infer (predict) the most likely goal g∗ ∈ g that

the user is trying to reach. With knowledge of g∗ the robotics autonomy can meaningfully

assist the user in shared autonomy. Note that the user might change his/her intended goal

during the execution, and thus the intent inference must update in real time so that the

assistance provided can dynamically adjust.

1Potential goals could be detected by perception methods; such as recognizing objects clusters/grasps [160]
or saliency maps [181] for manipulation and navigation goals such as doorways [79] and docking loca-
tions [159].
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6.1.2. Intent Estimation

We formulate the intent inference problem for shared autonomy as Bayesian filtering in

a Markov model, which allows us to model the uncertainty over the candidate goals as

a probability distribution over the goals. Bayesian models have shown to be effective for

inference in cognitive science [182] and human-robot interaction research [62]. We cast the

intent inference problem as a classification task where the robot aims to infer the most likely

goal class g∗ from the set of possible goals g, given a set of observations (features).

We represent the goal gt as the query variable and the observed features Θ0,...,Θt as the

evidence variables, where Θt is a k-dimensional vector of k observations θit, i = 1 : k, and t

represents the current time. For compactness, we use colon notation to write Θ1,...,Θt as Θ0:t.

The uncertainty over goals is then represented as the probability of each goal hypothesis.

The goal probability conditioned on a single observation source θi over t timesteps can be

represented by Bayes’ rule as,

(6.1) bt(g) = P (gt | θ0:t) ∝ P (θt | gt, θ0:t−1)P (gt | θ0:t−1)

where the superscript i has been dropped for notational simplicity, and the posterior proba-

bility P (gt | θ0:t) at time t represents the belief bt(g) after taking the single observation source

into account, where bt(g) is a single element of the posterior distribution bt. Since the Hid-

den Markov Model allows for a conditional independence assumption between observations

at the current and previous timesteps given the current goal estimate (θt ⊥ θ0:t−1 | gt), we

simplify P (θt | gt, θ0:t−1) to P (θt | gt). Applying the law of total probability, the conditional

goal probability becomes,

(6.2) bt(g) ∝ P (θt | gt)
∑
gt−1∈g

P (gt, gt−1 | θ0:t−1)
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ALGORITHM 1: Recursive Bayesian Intent Inference

Given Goals g
Initialize P (gt=0) ∀g ∈ g
Initialize bt=0(g)← P (Θt=0 | gt=0)P (gt=0) ∀g ∈ g
Normalize bt=0

while executing do
Observe Θt

foreach g ∈ g do

bt(g)←
∏
θt∈Θt

P(θt | gt)
∑

gt−1∈g
P (gt | gt−1)bt−1(gt−1)

end
Normalize bt
Update intent g∗t ← arg maxg∈g bt(g)

end

which becomes,

(6.3) bt(g) ∝ P (θt | gt)
∑
gt−1∈g

P (gt | gt−1)bt−1(gt−1)

upon applying the definition of conditional probability to P (gt, gt−1|θ0:t−1) and the Markov

assumption, (gt ⊥ θ0:t−1 | gt−1). The computation of bt(g) thus is a recursive update, and

so encodes memory of prior goal distributions. Furthermore, P (gt | gt−1) is the conditional

transition distribution of changing to goal gt at time t given that the goal was gt−1 at time

t− 1. The model thus encodes that the user’s intent or goal can change over time.

We now take into consideration multiple observation sources θ1, ..., θk as k evidence

variables, which can derive from any number of sources—for example, control commands or

cues such as eye gaze. We assume the k observations sources to be conditionally independent

of each other given a goal g, (θi ⊥ θj | g), ∀i 6= j. Thus, Equation 6.3 becomes

bt(g) = P (gt | Θ0:t) ∝
∏
θt∈Θt

P (θt | gt)

∑
gt−1∈g

P (gt | gt−1)bt−1(gt−1).

(6.4)
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We present our algorithm for inferring the probability distribution over goals in Algo-

rithm 1. The posterior distribution at time t, denoted bt, represents the belief after taking

observations into account. The set of prior probabilities P (gt=0), ∀g ∈ g, initially represents

the robot’s belief over the goals. The beliefs then are continuously updated, by computing

the posteriors P (gt | Θ0:t), ∀g ∈ g, as more observations become available.

Finally, to predict the most likely goal g∗t ∈ g, we select the goal class that is most

probable according to the maximum a posteriori decision,

(6.5) g∗t = arg max
gt∈g

P (gt | Θt).

6.1.3. Inference Uncertainty

Within the domain of shared-control assistive robotics, it is important to express uncer-

tainty in the robot’s prediction of the intended goal—because assisting towards the wrong

goal could be worse than providing no assistance. We express prediction uncertainty as a

confidence computed as the difference between the probability of the most probable and

second most probable goals,

(6.6) C(g) = P (g∗ | Θ)− arg max
g∈g\g∗

P (g | Θ).

When the robot is uncertain about the intended goal of the user, a variety of behaviors

might be implemented, for example to hold off on providing assistance or assist towards

multiple goals simultaneously if possible.

6.1.4. Human Behavior Model as an Observation

We are interested in investigating how we can utilize for intent recognition the indirect signals

people implicitly provide to operate the robot. Taking inspiration from psychology and
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teleological interpretations of actions [178], we aim to explore how the robotics autonomy

can implicitly observe and leverage non-verbal human actions to perform human intent

recognition. Specifically, we model the user’s interaction with the control interface that

they use to operate the robot as probabilistic goal-directed actions, in order to reason about

the user’s intention. We consider the user inputs as representative of the actions the user

wants to take to reach a goal g. We model these actions as observations using Boltzmann-

rationality, which has been shown to explain human behavior on various data sets [183].

We incorporate adjustable rationality in a probabilistic behavior model such that at any

state s (robot configuration) the probability that action ug is chosen by a rational human

agent to reach goal g is given as,

(6.7) P (ug | s, g) ∝ exp(β ·Qg(s,ug))

where Qg(s,ug) denotes the Q-value when the intended goal is g. β is a rationality index

(discussed further below) that controls how diffuse are the probabilities. We model Qg(s,ug)

as the cost of taking action ug at configuration s and acting optimally from that point on

to reach the goal g. We approximate optimal action selection with an autonomy policy, and

compute this cost as the agreement between the user control uh and the autonomy control

ur to reach the goal g. In our implementation, a policy based on potential fields [184]

is employed, and agreement is measured in terms of the cosine similarity, computed as

arccos ((uh · ur)/ ‖ uh ‖‖ ur ‖), where · denotes the dot product and ‖ · ‖ denotes vector

norm. A moving average filter with a two second time window is applied to the observations,

in order to consider a brief history of observations and reduce any undesired oscillations due

to noisy or corrective control signals.



96

6.2. Intent-driven Optimization for User Personalization

A perfectly rational model assumes that a human agent always acts optimally to reach

his/her goal, when in reality a number of factors might induce sub-optimality—for example,

limitations and challenges imposed by the lower degree of freedom (DoF) interfaces (e.g.,

3-axis joystick, Sip-N-Puff, Head Array) available to control high-DoF robotic systems,

cognitive impairments, physical impairments, and environment factors such as obstacles or

distractions. Furthermore, not only users differ in their abilities but also in the manner

in which they interact with the robot. Therefore, a critical detail is to include adjustable

rationality in the human action model for user personalization and adaptation.

We introduce an intent-driven optimization of adjustable rationality to customize value

of β for each user. Adjustable rationality is represented by the rationality index parameter

β in the Boltzmann policy model (Equation 6.7). β reflects the robot’s belief about the

optimality of the human agent actions. By tuning β, the robot can account for human

agents who may behave suboptimally in their actions, and thus can make better inference

from their actions. In order to find the value of the rationality index for a human agent,

we perform an optimization procedure on data gathered while the human teleoperates the

robot to reach multiple goals in the environment. In particular, we find the value β∗ that

minimizes the average log-loss for goal inference across a dataset trajectories given the true

labels Y for the intended goal and the probability estimates P for inference,

(6.8) β∗ = arg min
β
Llog(Y, P, β)

and the log-loss is computed as,

(6.9) Llog(Y, P, β) = − 1

M

M∑
i=1

N∑
j=1

yi,j log pi,j(gi | Θ, β)
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where M is the number of samples in the trajectory, yi,j is a binary indicator of whether or

not the prediction j is the correct classification for goal instance i, and pi,j is the probability

associated with the goal j at timestep i, in case of N goals. The value of β∗ returned by

the optimization procedure is then used to model the human actions using equation 6.7 and

P (ug | s, g) are used as observations to make inference predictions.

6.3. Autonomy Inference Implementation

Our approach, Recursive Bayesian Intent Inference (RBII), allows for the seamless fusion

of any number of observations to perform human intent recognition. In order to examine

how the incorporation of multiple observation sources affects the intent inference and shared

autonomy, we implement two different observation schemes (RBII-1 and RBII-2).

RBII-1: The first observation scheme considers a single modality, the proximity to a goal,

as this feature is utilized most in existing shared autonomy work [63, 64, 66, 180]. We

compute proximity θd as the Euclidean distance between the current position of the robot

end-effector xr and the goal xg. For Algorithm 1, we model the likelihood using the principle

of maximum entropy such that given the goal g, the class conditional probability decreases

exponentially as the likelihood of g decreases, P (θd | g) ∝ exp(−κ · θd). κ is set to the mean

of the range of values that θd can take.

RBII-2: In the second observation scheme we consider probabilistic fusion of observations,

i.e., in addition to proximity to the goal, we model the actions of the human agent as

probabilistic observations. Following a model of human action from cognitive science [182],

we model the user as Boltzmann-rational in their actions to reach a goal g (discussed in

Section 6.1.4).
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Lastly, our approach encodes the possibility that the user’s goal might change during

task execution (Section 6.1.2). We compute the probability of changing goals in the case of

n number of goals as,

(6.10) P (gt = gi | gt−1 = gj) =


1−∆ if i = j

∆/(n− 1) otherwise.

Note that when ∆ = 0, the model represents the case when the user exclusively pursues

one goal during the execution. When ∆ = (n − 1)/n, the model represents the possibility

of choosing a new goal at random at each timestep. Our implementation initializes the

probability distribution over goals to be uniform, and sets ∆ = 0.1.

6.4. Assistance under Shared Autonomy

Assistance under shared autonomy involves both the user and robotics autonomy acting

simultaneously to control the robot, in order to achieve the user’s goal (Chapter 3). In

this section, we discuss implementation details of assistance under shared autonomy that

utilizes the inferred intent. Blending based shared autonomy methods combine the user and

autonomy control of the robot by some arbitration function that determines the relative

contribution of each. Blending is one of the most used shared autonomy paradigms due

to its computational efficiency and effectiveness [63, 64, 135]. Furthermore, it has been

shown in subjective evaluations that users tend to prefer blending and find it easier to learn

over some other approaches of shared autonomy, for example as compared to probabilistic

shared control (PSC) [185] and a POMDP-based policy method [67]. We implement a

blending-based paradigm to provide assistance,

(6.11) ublend = uh · (1− α) + ur · α,
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where uh denotes the user control command, ur the autonomy control command generated

under a potential field policy [184] and ublend is the shared autonomy command sent to the

robot. Note that ur is available in all parts of the robot state space, for every goal g ∈ g

such that g is treated as an attractor, and all the other goals g \ g as repeller.

(6.12) α =



0 C(g) ≤ δ1

δ3
(δ2−δ1)

· C(g) δ1 < C(g) ≤ δ2

δ3 C(g) > δ2

α ∈ [0, 1] is a blending factor which arbitrates how much control remains with the human

user versus the autonomy. In our implementation, α is a piecewise linear function of the

confidence in the intent prediction where C(g) is defined as in Equation 6.6, the difference

between the highest and second highest probable goals. δ1 is a lower bound on C(g) (set

to 30%) below which assistance is not active, δ2 is an upper bound on C(g) (set to 90%),

above which assistance is maximum. The upper bound on assistance α is given by δ3 (set to

70%). Note that: (i) Different approaches to intent inference will generate different values

for C(g), and so the amount of assistance accordingly will differ. (ii) In particular, if C(g)

is lower, meaning that the inference is not very certain in its prediction, the amount of

assistance also will be lower. (iii) If the inferred goal is wrong the robot will assist towards

the wrong goal, with potentially serious implications.

6.5. Experiments on Intent Inference

Our experimental work aims to evaluate the performance of the intent inference algo-

rithm, as well as its impact on shared autonomy. We furthermore are interested in how the
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Figure 6.2. Left: MICO robotic arm. Right: The control interfaces used in
the study and illustration of the respective control modes for the robotic arm
teleoperation.

control interface used by the human affects the intent inference performance. This is partic-

ularly important in the domain of assistive robotics, as traditional joystick control interfaces

are often not accessible to people with severe motor impairments, who instead use limited

1D control interfaces like Head Array or Sip-N-Puff to operate the robot. We performed

two human subject studies, that aim (i) to characterize the complexity and variability of

the intent inference problem, (ii) to compare the inference performance of our approach to

existing approaches utilized in prior shared autonomy work and (iii) to evaluate the impact

of inference on shared autonomy assistance.

Robot Platform: Our research platform for the designed experiments was the MICO

robotic arm (Kinova Robotics, Canada), a 6-DoF manipulator with a 2 finger gripper (Fig-

ure 6.2, left). The MICO is the research edition of the JACO arm (Kinova Robotics, Canada)

which is used commercially within the assistive domain.

Control Interfaces: The control interfaces used in the study were (i) a traditional 3-axis

joystick (Kinova Robotics, Canada) that is typically been utilized for operating robotic arms

and (ii) a limited 1-D Sip-N-Puff interface (Origin Instruments, United States) accessible to
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people with severe motor-impairments. Direct teleoperation using control interfaces, which

are lower dimensional than the control space of the robotic arm, requires the user to switch

between one of several control modes (mode switching). Modes partition the controllable

degrees of freedom of the robot such that each control mode maps the input dimensions to

a subset of the arm’s controllable degrees of freedom. The control interfaces and defined

control modes are shown in Figure 6.2, right. Teleoperation with the 3-axis joystick requires

at minimum 3 control modes and the required number of control modes increases to 6 in

the case of the Sip-N-Puff interface.

In addition to the two variants of our algorithm detailed in Section 6.3 (RBII-1 and

RBII-2), for comparative purposes we also implement two approaches to intent inference

utilized in previous shared autonomy works—Amnesic Inference [63–65] and Memory-based

Inference [56,63,66,67].

Amnesic Inference: The Amnesic inference approach associates a confidence in the pre-

diction of the user’s goal as a hinge-loss function, where it is assumed that the closer a goal

is, the more likely it is the intended goal,

(6.13) c(g) = max(0, 1− d

D
)

where d is the distance to the goal and D a threshold past which the confidence c(g) is

0. It is possible to design richer confidence functions, but in practice this function often

is used for its simplicity. The approach is termed as amnesic prediction [63], because it

ignores all information except the instantaneous observations. In our implementation, d is

the Euclidean distance ‖ xg − xr ‖ between the current position of robot xr and the goal

xg, D is set to 1.0 m (maximum reach of the MICO robot arm).
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Memory-based Inference: The Memory-based prediction [63] approach is a Bayesian

formulation that takes into consideration the history of a trajectory to predict the most

likely goal. Let ξx→y denote a trajectory starting at pose x and ending at y. Using the

principle of maximum entropy [186], the probability of a trajectory for a specific goal g

is given as P (ξ | g) ∝ exp(−cg(ξ)); that is, the probability of the trajectory decreases

exponentially with cost. It is assumed that the cost is additive along the trajectory.

(6.14) P (ξs→x | g) =
exp(−cg(ξs→x))

∫
ξx→g

exp(−cg(ξx→g))∫
ξs→g

exp(−cg(ξs→g))
.

Such solution becomes too expensive to compute in high-dimensional spaces (e.g., for robotic

manipulation), and so [63] estimates the most likely goal, by approximating the integral over

trajectories using Laplace’s method and first order approximation,

(6.15) g∗ = arg max
g∈g

exp(−cg(ξs→x)− cg(ξ∗x→g))
exp(−cg(ξ∗s→g))

P (g).

In practice the cost cg is often the Euclidean distance and the goal probabilities are initialized

with a uniform prior [66,180], which we do in our implementation as well.

6.5.1. Human Inference Study

We first aim to ground the complexity of the intent inference problem through a study of

human inference ability, by having a human observer interpret the motion of a robotic arm

to infer its intended goal. Humans are very good at anticipating the intentions of others

with non-verbal communication [177] and by observation of goal-directed actions [178].

In our experiments, the robot motion trajectories were pre-recorded demonstrations by

a human expert operating a 3-axis joystick to reach a goal. Related work has addressed
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the topic of human interpretation of robot motion trajectories generated by autonomy poli-

cies [56] with the aim to generate intent inexpressive trajectories. We however are interested

in robot motion generated by human control commands, given our target domain of assis-

tive teleoperation. We study human inference under a variety of goal scenarios of varied

complexity (Figure 6.3, left).

We furthermore are interested in how the change of intent can affect the inference. Our

human demonstrator therefore provided two types of motion: (i) No change of intent – the

robot motion maintained a single goal from start to end and (ii) Change of intent – the

robot motion switched during the execution the goal it was reaching towards.

Figure 6.3. Left : Goal scenarios of varied complexity used in human inference
study. Right : Example setup shows the robot executing a trajectory to reach
a goal. The subject predicts the intended goal during robot motion.

Design: The study involved a variety of goal scenarios with varied complexity: in total,

8 different scenarios involving 2 to 4 potential goals (Figure 6.3, left). For each scenario,

one change of intent demonstration was recorded (8 in total) as well as no change of intent

trajectories for each goal in the scene (22 trajectories). We chose a within-subjects design

and each subject observed the 30 recorded demonstrated trajectories replayed on the robot.

Subject Allocation: We recruited 12 subjects without motor-impairments from the local

community (5 male, 7 female, aged 19-35). The subjects were novice users and had no prior



104

experience operating a robotic arm. All participants gave their informed, signed consent to

participate in the studies, which was approved by the Northwestern University Institutional

Review Board.

Protocol: At the start of the experiment, the subjects were given a five minute training

period in which they observed one pre-recorded human teleoperation trajectory towards a

random goal in the environment, to get familiarized with the robot motion capabilities.

The 30 teleoperated trajectories for the 8 goal scenarios then were executed (re-played)

in counterbalanced order on the robot. For each trajectory motion, we tasked the human

subjects to observe the motion of the robot and predict which object was the intended goal

by verbally mentioning the “Object Name” (e.g.,“cup”) or “Number” (e.g., “one”). The

subjects were allowed to change their inference at any time during the robot motion. They

were also given the option to express uncertainty about the intended goal, by saying “not

sure” or “zero”. Note that by default the inference is registered as uncertain (“zero”) at the

start of the trajectory motion. The subject inferences were recorded by the experimenter

via a button press. Figure 6.3 (right) shows the experimental setup for the study.

6.5.2. Autonomy Inference Study

Our second study aimed to evaluate how well the autonomy could infer the intent of a user

under novice teleoperation and how the inferred intent affects assistance in shared autonomy.

Design: We adopted a between-subjects experimental design with two conditions that

differed in the control interface type used by the subjects to operate the robot: (i) a 3-

axis joystick and (ii) a 1-D Sip-N-Puff interface. All other elements were same in the two

conditions. Four intent inference approaches were evaluated: (i) Amnesic inference (ii)

Memory-based inference (iii) RBII-1 and (iv) RBII-2. They each computed the inference
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Figure 6.4. Task scenarios and associated grasp pose on goals used to evaluate
intent inference under novice teleoperation (with and without shared auton-
omy). Note that for Task 3 the two goals on the extreme have the same grasp
pose as shown in task 2.

online as the subject teleoperated the robot to complete tasks. Four different tasks of varied

complexity were used to evaluate the intent inference performance (Figure 6.4). Fetching

objects and manipulation for meal preparation have been identified as the top preferred ADL

tasks [8]. The first three tasks involved object retrieval where the goals were the approach

grasp pose ∈ R6 on the objects. The fourth task involved pouring and placing operations

where the goals were tied to the manipulation operations, the pose of the initiation of

pouring over the bowls and placing in the dish rack.

Subject Allocation: We recruited 24 subjects without motor-impairments from the local

community (11 male, 13 female, aged 19-40) and 6 end-user subjects (5 male, 1 female, aged

18-47). Twelve of the subjects without motor-impairments (5 males, 2 females) and 3 of the

end-user subjects (2 male, 1 female) used the 3-axis joystick interface, and the remaining

subjects used the Sip-N-Puff interface. The end-user group included 4 subjects with spinal
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cord injury (SCI), 1 with muscular dystrophy (MD) and 1 with cerebral palsy (CP). All

participants gave their informed, signed consent to participate in the studies, which was

approved by the Northwestern University Institutional Review Board.

Protocol: At the start, the subjects were given a ten minute training period in which

they got familiar using the control interface (a 3-axis joystick and a Sip-N-Puff) and the

robot operation. Next, they teleoperated the robot to perform a training task (a similar

setup as shown in Task 3 in Figure 6.4, but with different positions and orientations of

the objects.) and the data of which was then used to perform optimization procedure to

tune the rationality index parameter β for each subject (as discussed in Section 6.2). The

optimized value β∗ was used in the RBII-2 approach for intent inference.

There were two stages in the study protocol. In stage one, the subjects teleoperated

the robot without assistance. The subjects performed the tasks shown in Figure 6.4, and

they were instructed to (i) complete each goal in every task setup and (ii) for each task

perform one additional trial in which they change goal during the task execution. The

change of goal was recorded with a time stamp via a button press. All four approaches for

intent inference computed the inference online as the user teleoperated the robot to complete

tasks. In stage two, all the previous trials were performed again but now with assistance

under shared autonomy. Furthermore, stage two trials were performed twice, once with the

RBII-1 approach and once with the RBII-2 approach.

6.6. Analysis and Results

We first discuss performance measures and then present the analysis with the results.

For each performance measure, one factor repeated measure ANOVA (Analysis of Variance)

was performed to determine significant differences (p < 0.05) between the intent inference

approaches. Once the significance was established, multiple post-hoc pairwise comparisons
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were performed by using Bonferroni Confidence interval adjustments. For all figures, the

notation ∗ implies p < 0.05, ∗ ∗ implies p < 0.01, ∗ ∗ ∗ implies p < 0.001.

6.6.1. Performance Measures

Percentage of Correct Predictions: Percent correct predictions is a metric commonly

employed in machine learning works. We compute percent correct as the percentage of time

(success rate) the inference identified the correct intended goal of the user with confidence

(C(g) > 30%).

Log-loss: Assessing the uncertainty of a prediction is an important indicator of performance

which is not captured by the percent correct metric. The cross-entropy or log-loss considers

prediction uncertainty by including the classification probability in its calculation. In the

case of N goals, and given the true labels Y for the intended goal and the probability

estimates P for inference, we calculate the average log-loss across a trajectory as,

(6.16) Llog(Y, P ) = − 1

M

M∑
i=1

N∑
j=1

yi,j log pi,j

where M is the number of samples in the trajectory, yi,j is a binary indicator of whether or

not the prediction j is the correct classification for goal instance i, and pi,j is the probability

associated with the goal j at timestep i. Note that a perfect inference model would have a

log-loss of 0 and the log-loss increases as the predicted probability diverges from the intended

goal. Note also that log-loss is unable to be computed for the Amnesic inference, as it is

not a probabilistic method.

Task Completion Time: It is important to consider how quickly the user is able to

complete a task with and without assistance. Our intuition is that the intent inference
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affects the shared autonomy assistance and thus will indirectly affect the task completion

time. That is, better inference will result in correct, earlier, and stronger assistance.

Number of Control Mode Switches: Teleoperation of robotic arms (e.g., 6-D control)

using traditional control interfaces, such as 3-axis joystick, require the user to switch be-

tween one of several control modes (mode switching) that are subsets of the full control

space. Mode switches can become extremely challenging in the assistive domain, wherein

the interfaces available to individuals with motor impairments are even more limited (e.g.,

1-D Sip-N-Puff). Our intuition is that the intent inference will indirectly affect the number

of mode switches, if earlier assistance results in fewer mode switches.

6.6.2. Human Inference

Figure 6.5 shows the performance of human intent inference and a comparison with auton-

omy intent inference on the demonstration trajectories. Percentage of time the predictions

were (i) correct with confidence (C(g) > 30%), (ii) uncertain (C(g) < 30%) and (iii) incor-

rect with confidence (C(g) > 30%) are analyzed.

Figure 6.5. Human inference performance on the demonstration trajectories.
Plot show mean and standard error.
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The results show that inferring the intended goal of robotic arm motion is a challenging

task, even for humans. The human subjects made fewer incorrect predictions as compared

to correct predictions, but also were inclined to indicate more uncertainty. Also, the per-

centage of correct predictions were comparatively lower in the case of the change-of-intent

trajectories in which the robot changed the intended goal during motion. Interestingly, the

percentage of time inference was uncertain was unaffected by whether there was a change-

of-intent.

6.6.3. Autonomy Inference

6.6.3.1. Novice teleoperation. We compared the predictive accuracy of our method

against the Amnesic and Memory-based autonomy intent inference techniques. We first

analyzed the inference performance with partially observed trajectories.

Figure 6.6 shows the average percentage time correct and confident predictions with

partially observed trajectories. The Amnesic inference performed poorly and failed to get

the prediction correct for a higher percentage of time as compared to the other methods. All

other methods performed comparatively better, with RBII-2 performing best for the change-

of-intent trajectories, the Memory-based approach performing best for trajectories without

a change of intent, and RBII-2 consistently outperforming RBII-1. The Memory-based

technique was not able to recover from the change of intent towards goals. The superior

performance of RBII-2 on the change-of-intent trajectories is attributed to the incorporation

of our more sophisticated probabilistic model of the goal-directed user actions in the RBII-2

likelihood model, which enabled the prediction to quickly recover to the intended goal.

The statistically significant trends were that all other techniques significantly outper-

formed the Amnesic inference technique in all scenarios (p < 0.001), except in the case

of end users with the 3-axis joystick and change-of-intent trajectories. For end users with
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Figure 6.6. Performance comparison across four autonomy inference methods
and two interfaces, during novice teleoperation for the subjects without motor-
impairments and end-user subjects. The percentage of time the prediction is
correct & confident is shown with partially observed trajectories.

the 3-axis joystick and change-of-intent trajectories, the Amnesic inference technique was

outperformed significantly by the RBII-1 technique (p < 0.05) and the RBII-2 technique (p

< 0.01). (The Memory-based technique performed better than the Amnesic technique but

the results were not significant.)
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An interesting observation is that the Memory-based method struggled to perform well

in the case of end users operating the 3-axis interface, as compared to the subjects without

motor-impairments using the same interface (higher percentage time correct predictions

comparatively much earlier in the trajectory). These findings suggest that although the 3-

axis joystick provides more degree of freedom control as compared to a Sip-N-Puff interface,

it could also be more difficult to operate for people with motor-impairments (for example,

because of limited finger and hand motion or hand tremor) and thus be more prone to

noisy signals. Thus, there can be scenarios, when performing intent inference from a lower-

dimensional interface is comparatively less challenging, as seen here in end-user data.

Figure 6.7 shows the performance of the autonomy intent inference methods during

novice teleoperation (without autonomy assistance), measured in terms of average log-loss

with partially observed trajectories. (Note that a perfect inference model would have a

log-loss of 0.) The Memory-based technique performed comparatively better in the case

of no-change-of-intent trajectories, in all scenarios. It was penalized for wrong predictions

by the log-loss performance metric in two scenarios: when the user expressed change of

intention during task execution and also when the tasks involved more than two goals.

In the case of change-of-intent trajectories, the RBII-2 technique outperformed the other

approaches. We saw one case where the RBII-2 technique was unable to outperform RBII-1:

the end-user group operating the 3-axis joystick and without a change-of-intent. This further

supports the finding that performing intent inference for the (arguably more informative)

3-axis joystick interface could be more challenging, for some user groups.

Figure 6.8 shows the mean log-loss across full trajectories. The statistically significant

trends were that RBII-2 significantly outperformed the Memory-based approach for nearly

all change-of-intent scenarios: subjects without motor-impairments operating both inter-

faces (p < 0.01) and end-user subjects operating the Sip-N-Puff interface (p < 0.05). (For
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Figure 6.7. Performance comparison across the autonomy inference methods
and two interfaces, during novice teleoperation for the subjects without motor-
impairments and the end-user subjects. The average log-loss is shown with
partially observed trajectories.

end users operating the joystick, the trend was observable but not significant.) For all

approaches the log-loss was significantly (p < 0.001) higher with a change of intent (unsur-

prisingly) versus no change of intent.

6.6.3.2. Benefit of Adjustable Rationality Model of the Human Actions. We

examined how the rationality index parameter affects performance. To test the benefit
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Figure 6.8. Average log-loss for the autonomy inference methods and two
interfaces, during novice teleoperation. The average log-loss is shown, with
mean and standard error.

of optimizing the rationality index for each subject, we computed the average log-loss using

the optimized values of the rationality index β∗ of that subject to compute the log-loss of the

respective subject’s trajectories versus when the optimized values of each other subject ¬β∗

was used to compute the average log-loss (i.e., β is not optimized for that subject). Figure 6.9

shows that the optimized values of the rationality index β∗ resulted in significantly (p <

0.001) lower log-loss as compared to using the not-individualized rationality index values

of other subjects ¬β∗. This indicates that optimizing the rationality index values for the

human actions in the likelihood model results in better intent inference performance. Lastly,

we also note that the optimized rationality index values β∗ were comparatively higher for

subjects using 3-axis joystick as compared to the subjects who used the Sip-N-Puff interface,

indicating that the operators with the joystick were able to provide more rational actions.
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Figure 6.9. Benefit of optimized adjustable rationality for modeling user ac-
tions. Note that ¬β∗ refers to using the not-individualized rationality index
values of other subjects.

6.6.4. Interplay of Intent Inference and Assistance in Shared Autonomy

We analyzed the implications of the underlying intent inference approach on shared auton-

omy performance (with assistance). For shared autonomy trials we focused on the RBII-1

and the RBII-2 techniques, which have been shown to perform well on novice teleoperation

even with the change-of-intent trajectories.

Figure 6.10 shows the task completion times with and without assistance. The with-

assistance trials involved shared-autonomy operation under the RBII-1 and RBII-2 inference

techniques. The without-assistance trials imply direct teleoperation (Teleop). The task

completion times were significantly higher (p < 0.05) with the Sip-N-Puff, in all cases as

compared to the 3-axis joystick (not marked in figure to reduce visual clutter). Importantly,

both variants of our approach RBII-1 and RBII-2, had significantly lower (p < 0.001) task

completion times than Teleop, in all scenarios. Overall, better and faster inference during

shared-autonomy operation with RBII-2 resulted in lower task completion times than RBII-

1 in the case of both interfaces. For the subjects without motor-impairments, the task

completion times in the case of RBII-2 were significantly lower (p < 0.05) than RBII-1

for both the 3-axis joystick and the Sip-N-Puff interface. Teleop had a significantly higher
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Figure 6.10. Comparison of task completion time and number of mode
switches across two variants of our autonomy inference method under shared-
control operation and teleoperation (without assistance), using two interfaces.
Mean and standard error over all executions are shown.

number of mode switches (p < 0.001) than the RBII-1 and RBII-2 methods, in all scenarios.

Overall, RBII-2 resulted in fewer average number of mode switches than RBII-1 indicating

better assistance informed by the RBII-2 intent inference. Note that for the end user group,

the RBII-2 method was not able to reduce the task completion time when compared to RBII-

1 as much as in the case of the Sip-N-Puff interface. This further validates our consistent

finding that performing intent inference in the case of the 3-axis joystick interface could be

more challenging for some users, for example end users where the underlying impairment

could result in producing more noisy control signals.



116

Figure 6.11. Subjective evaluation shows the percentage distribution of Likert
scores (indicated in color codes).

6.6.5. Subjective Evaluation

Subjective evaluation was performed using an experiment survey after each trial to under-

stand how subjects felt about the intent inference performance and the assistance under

shared autonomy. This evaluation also provides insight as to whether users experienced

performance differences during the robot operation under different intent inference schemes,

both in terms of inference capability and usefulness of assistance to perform the tasks. The

subjective evaluation results are summarized in Figure 6.11 and Table 6.1. Scores of 1 and 7

indicate that the responder strongly agrees or disagrees, respectively. There were noticeable

difference in subjective ratings for both the intent inference capability and shared auton-

omy performance across the two intent inference techniques, with RBII-2 consistently rated

better than RBII-1. The findings further indicate that the subjects were satisfied with the

intent inference and shared autonomy performance, especially the end-user group.
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Table 6.1. Subjective Evaluation - Autonomy Inference and Assistance

Question Interface Inference Mean Score

Uninjured group End-user group

The robot was able to correctly 3-axis RBII-1 5.2 ± 1.3 6.1 ± 1.0
infer the intended goal. RBII-2 5.7 ± 1.1 6.4 ± 0.6

Sip-N-Puff RBII-1 5.0 ± 1.1 5.5 ± 0.8
RBII-2 5.7 ± 0.7 6.3 ± 0.6

The assistance from the robot 3-axis RBII-1 5.3 ± 1.2 6.7 ± 0.5
was useful to accomplish the task. RBII-2 5.7 ± 1.0 6.9 ± 0.2

Sip-N-Puff RBII-1 5.0 ± 1.1 5.9 ± 0.9
RBII-2 5.8 ± 0.8 6.6 ± 0.5

6.7. Discussion

The human inference study results indicated that inferring the intended goal of a robot

is a challenging task, even for humans. One important takeaway from our study is that

humans tend both to make fewer incorrect predictions but also indicate more uncertainty.

This has important implications for the assistive domain, since most often providing the

wrong assistance is worse than providing no assistance. Thus, there is worth in knowing

when the autonomy inference is uncertain and to what extent. The human subjects were

also quickly able to switch their prediction in the case of change-of-intent, though with

comparatively more incorrect predictions.

The autonomy intent inference methods were evaluated on novice teleoperation with and

without shared autonomy assistance, and using two different control interfaces. The Am-

nesic inference failed to generate the correct prediction with sufficiently high confidence as

compared to other techniques. This demonstrates the benefit of using a Bayesian approach

for inference, under which taking proper account of the prior information to compute the

posterior results in better performance. Memory-based inference that utilizes the informa-

tion about the past trajectory history resulted in comparatively highly confident predictions

much earlier in the execution. However, it also more often was wrong in its predictions with
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high probabilities and unable to recover when the user expressed a change-of-intent, particu-

larly when the tasks involved more than two objects. Some limitations of the Memory-based

method are recognized in an exploratory experiment [63]. RBII-1 has the same observation

source for its likelihood model, but performed better than the Memory-based technique in

the case of change-of-intent scenarios. Overall, RBII-2 outperformed other approaches in

terms of faster correct predictions with higher probabilities. Interestingly, our approach was

able to quickly respond in the case of change of intentions from the user, which thus also

allowed it to quickly correct and recover the robot’s belief from incorrect inferences. RBII-2

responded well to changing user goals, thus enabling the system to dynamically adjust its

assistance to new predictions. In addition to contextual observations, probabilistic modeling

and incorporating the human agent’s behavior as goal-directed actions with intent-driven

optimization of the adjustable rationality improved the overall performance.

We anticipated that it would be much more difficult to perform intent recognition in the

case of the limited interface (e.g. Sip-N-Puff) which can only produce 1-D control signal,

as compared to the 3-axis joystick. Surprisingly, however, the results demonstrated that

with end users it frequently was the case that intent inference was more challenging under

the axis operated joystick—perhaps because of signal noise that results from the underlying

motor-impairments. Importantly, even with under limited interface operation our proposed

technique was able to perform well to recognize human intent. Figure 6.12 shows the end-

user subjects controlling the robot using the 3-axis joystick and the Sip-N-Puff interface,

and successfully performing the study tasks with our proposed approach.

We have shown that with the probabilistic modeling of human actions as goal-directed

observations the robotics autonomy can take advantage of control signals that the user im-

plicitly provides during shared autonomy, even with lower dimensional interfaces controlling

higher-DoF robot systems. The inclusion of adjustable rationality in our model accounts
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Figure 6.12. Example of study tasks performed by the end users, with the
3-axis joystick (left) and the Sip-N-Puff interface (right).

for suboptimal behavior in user actions, resulting in better inference performance. Notably,

such suboptimal user behavior is inherent to the assistive domain. We also demonstrated

the benefit of using an optimized adjustable rationality model for users, which produced

better results. One weakness of our approach is that the data likelihood function under

the Boltzmann-rationality model is not convex. The non-convexity makes finding optimal

model parameters difficult and not efficient computationally. However, in practice finding

optimal model parameters are only required once per subject.

Under direct teleoperation, the average task completion time as well as the average

number of mode switches were significantly higher in the case of the Sip-N-Puff interface

as compared to the 3-axis joystick. The inference predictions utilized to provide assistance

in shared autonomy resulted in a significant reduction in the task completion time and

the number of mode switches across both interfaces. Our results further verified that the

underlying intent inference approach directly affects the assistance and the overall shared

autonomy performance. The overall superior performance of RBII-2 as compared to RBII-1

under shared autonomy substantiates the benefit of the probabilistic modeling of human

actions in addition to the contextual observations. Better and faster inference under shared
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autonomy with the RBII-2 technique was able to reduce the average task completion time

and the average number of mode switches under shared autonomy. The subjective evaluation

results further reinforce our findings. The subjects were satisfied with the intent inference

and shared autonomy performance, favoring the RBII-2 technique—especially the end-user

group who are the target population in assistive robotics domain.

We emphasize the importance of evaluating intent inference in shared autonomy op-

eration. The implications of the control interface limitations on intent inference and the

interplay of intent inference with shared autonomy are shown in the results. There is a

particular benefit from probabilistic formulation of intent inference within the domain of

assistive robotics—having an estimate of prediction uncertainty can be leveraged during

shared-control operation, to determine whether and when to provide assistance, and by how

much. For superior assistance under shared autonomy, the inference approach should pro-

vide correct predictions with high probabilities earlier in task executions. In future work,

other observations such as spatial goal orientations and visual cues, distance metrics, and

handling of continuous goal regions could further be explored. The effect of priors (ini-

tial goal probability distribution) and the goal transition probability are also interesting

directions for future.

6.8. Summary

In this chapter, we mathematically defined the intent inference problem and presented a

formulation that models the uncertainty over the user’s goal in a recursive Bayesian intent

inference algorithm to probabilistically reason about the intended goal of the user without

explicit communication. The algorithm is able to fuse multiple observations to reason about

the intended goal of the user. In user studies, we examined human inference on robot mo-

tion and furthermore evaluated and compared the performance of our algorithm to existing
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intent inference approaches—both with and without shared autonomy assistance, and us-

ing multiple control interfaces that are typically available to users in the assistive domain.

Results of our study show that in addition to contextual observations, modeling and in-

corporating the human agent behavior as goal-directed actions with adjustable rationality

improves intent recognition. We also demonstrate the benefit of optimizing adjustable ra-

tionality in the model of human actions for individual users. We furthermore demonstrated

that the underlying intent inference approach directly affects assistance in shared autonomy,

as do control interface limitations.
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CHAPTER 7

Body-Machine Interface for Human-Robot Systems

An important line of research for human-robot systems in assistive robotics is the de-

velopment of novel and dedicated user interfaces. The design of such interfaces take into

consideration the impairments of the user and the control channels available to them. In this

chapter, we present application of a novel body-machine interface (BMI) for human-robot

systems. Body-machine interface (BMI), a non-conventional control interface can make use

of an individual’s residual motion capabilities for operation of human-robot systems in the

assistive domain (Figure 7.1).

Figure 7.1. Our body-machine interface (BMI) make use of an individual’s
residual motion capabilities for the operation of robotic systems.

In particular, we develop a shared autonomy framework in which an individual’s residual

motion capabilities, captured through BMI, are used to generate control signals for assistive

manipulation with a robotic arm. These low-dimensional controls are utilized in our shared-

control framework, that shares control between the human user and robotics autonomy. We

The work in this chapter was originally published as [58].
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present results from a pilot study and demonstrate 100% success rate on task performance.

The novel application demonstrates the effectiveness of the proposed system for individuals

with severe-motor impairments to control human-robot systems. An important advantage

of BMI is that it encourages the continued use of muscular activity, as the participant’s

residual body movements are captured to provide control signals for an assistive device, and

thus can facilitate rehabilitation process.

7.1. System Description

In this section, we present the system description for the body-machine interface and

the proposed shared-control framework for assistive manipulation.

7.1.1. Body-Machine Interface and Control Signals

In a body-machine interface, body motions generate control signals to operate external de-

vices. The BMI provides an effective pathway for control because even in people with severe

impairments, some residual movements remain available. These movements are captured by

multiple sensors, whose combined outputs define a signal space for controlling the external

device. In the proposed BMI system, a high dimensional control signal captured from the

participant’s residual movements is mapped to a lower dimensional control vector. Impor-

tantly, these surviving degrees of freedom captured from the body are higher dimensional

than the required control signal. This kinematic redundancy provides the BMI user with a

unique opportunity to identify and coordinate a convenient subset of movements to achieve

task objectives with a flexible and adaptable motor behavior [187]. This enables the user

to effectively issue control signals for the robotic arm via a reorganization of their own

high-dimensional upper body motions.



124

In the current BMI setup the user wears a vest that is equipped with four MTx (Xsens

Technologies B.V., Netherlands) motion trackers in order to capture shoulder movements.

An IMU is placed on the front and back of each shoulder as can be seen in Figure 7.1. The

orientation of each sensor is computed by a sensor fusion algorithm through the combination

of the output of 3-DoF embedded accelerometers, gyroscopes and magnetometers. For the

purpose of this study we only use roll and pitch as input signals for the interface because

the yaw signals, derived from the magnetometer, have a tendency to drift in the presence of

electric motors and large metallic objects. The IMU signals are captured at the rate of 50Hz.

With four IMUs the body space is defined by an eight dimensional vector of coordinates

captured from the four sensors.

The available residual movements depend on the injury and therefore the interface is user-

specific. To this end, we use a calibration phase to map the user’s movements to control

signals. During the calibration phase, the participants are asked to engage in free-style

motions of the upper body for twenty seconds. The purpose of this activity is to characterize

the space of IMU signals that each subject could comfortably span. The mapping matrix

A is obtained by Principal Component Analysis (PCA). A linear transformation, C = A ·

h, is defined to map the body movements onto the 2-D vector C, that controls the motion

of the robot. PCA lends itself quite naturally to this task, since the principal eigenvectors

represent the dimensions with largest variability in the data—and thus also the dimensions

with the largest capacity for movement from the user. The first two principal eigenvectors

of the calibration data are extracted to form a 2-D control space. For further details of the

interface and calibration, see [188].
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7.1.2. Control Framework for Assistive Manipulation

We are interested in a system that keeps the user in control and at the same time provides

assistance in manipulation tasks. Using low-dimensional control signals from the BMI,

our aim is to enable the simultaneous operation of all degrees of freedom of a high-DoF

robotic arm. To address this challenge, we introduce robot autonomy to reduce the user’s

control burden. By contrast, under direct teleoperation the user would be responsible for

individually controlling each joint of the robotic arm at each time step, or equivalently the

position and orientation of the end-effector. (For our experimental platform, both are 6-D

control problems.)

Our intended system will create a sequence of functionally relevant piecewise segments

based on the semantics of actions performed during a typical execution of a given ma-

nipulation task—such as reaching, grasping, and pouring. As a first step, in this work the

autonomous system plans piecewise trajectory segments for predefined manipulation task us-

ing autonomously perceived goals (Section 7.2.2). Next, the motor-impaired user influences

the execution of these trajectories through (i) control of the speed (U) of the manipulator

along each segment of the task, and (ii) dynamically switching (S) between trajectory seg-

ments in order to complete the desired task. The 1-D continuous valued signal U, controls

the speed of the manipulator along the current trajectory. The 1-D binary signal S triggers

a switch between motion segments. The threshold to generate the binary signal is set as

twice the standard deviation of the second principal component, and is obtained during the

calibration stage of the BMI interface. This approach allows for operation of a high-DoF

arm with the limited control signals 〈U, S〉 available from the BMI interface. Users thus

are able to inject their preference and situational awareness into the otherwise autonomous

task execution.
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Figure 7.2. Schematic of the system pipeline.

The first step in the technical implementation of this framework is to autonomously

generate trajectories from the robot’s current configuration Q to the desired goal configura-

tion. Any suitable motion planner can be used for this purpose. We used task-constrained

motion planning [174] and the Constrained Bi-directional Rapidly exploring Random Tree

(CBiRRT) [189] in our implementation. To achieve speed control along the trajectory, we

calculate joint velocities

ν =
δ

τ
· U

based on (i) the user’s input signal, U ∈ [0, 1], and (ii) the autonomy command, computed

as the Euclidean distance δ between the current configuration Q of the robot and the next

configuration waypoint along the path, divided by timestep τ . Here the command velocity

ν ∈ R is the set of joint velocities sent for execution on the robot manipulator. In order

to progress along the trajectory, we update which waypoint is the current subgoal based on

distance to current configuration Q, and continue to do this until we have achieved the final

goal configuration.
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Figure 7.3. Left : Experimental set-up. Right : Segmented point cloud clusters
(shown in blue).

7.2. System Implementation and Evaluation

To evaluate our proposed system, a user study was performed by subjects with and

without high-level Spinal Cord Injury (SCI).

7.2.1. Task

The manipulation task of the user study consisted of using the robotic arm to pour the

contents of a cup into a bowl. The task was a sequence of the following four motion

segments: (i) reach for the cup, (ii) grasp it, (iii) carry it to the bowl and (iv) pour the

contents of the cup into the bowl.

To assess more extensively the effect of the user’s input, variability was introduced

into the task by modulating the position of the bowl (three positions). Task success thus

depended on the user appropriately triggering the transition between segments (iii) and (iv).

If they did not switch in time, the assistive manipulator would continue along its trajectory,

overshooting the bowl. The pouring task was explained to each participant, along with the

effect of the control signals 〈U, S〉.



128

7.2.2. Autonomy

For the first and third segments we used the CBiRRT planner to generate a set of waypoints

that define a path from the robot’s current configuration to each subgoal position, where

the final goal was defined to be past the three bowl positions (so that the final trajectory

segment passed over all possible bowl locations). For the second and fourth segments, no

planning was needed: segment (ii) involved simply closing the gripper, while segment (iv)

involved rotating the wrist.

To compute the position of the cup, we implemented a tabletop segmentation and Eu-

clidean clustering approach using the point cloud data obtained from the Kinect RGB-D

sensor. This results in segmented clusters of the objects present in the scene (Figure 7.3).

7.2.3. User Input

The user provided 2-D input to the system using the BMI, as described in Section 7.1.2. The

first signal allowed the user to control the speed of the arm along the various trajectories,

and the second signal allowed the user to transition between segments (iii) and (iv). The

transitions between other piecewise trajectories was performed autonomously, to simplify

the task design, since these transitions were not modulated within the study design.

7.2.4. Execution

For each trial one of three bowl positions was randomly selected. The user began the

execution by controlling the speed U during trajectory segment (i). As the robotic arm

reached the cup, the autonomous system transitioned to segment (ii) and the user controlled

the speed U at which the gripper was closed in order to grasp the cup. During segment

(iii), the user again controlled the speed of the robotic arm along the path, until signal S
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Figure 7.4. Illustration of the piecewise segments associated with the exper-
imental task.

was issued by the user to switch to segment (iv). During segment (iv), the user speed U

mapped to control the wrist rotation, and thereby poured the contents of the cup. Figure

7.4 represents an illustration of the experimental procedure.

7.2.5. Subjects

One SCI survivor (31 year old male, 13 years post-injury at the C5 level) and five uninjured

control individuals (mean age: 28 ±3) participated in the user study. All participants gave

their informed, signed consent to participate in this experiment, which was approved by

Northwestern University’s Institutional Review Board. After the calibration of the BMI

each participant performed 24 reaching and pouring trials (8 trials per bowl position) in a

randomized sequence. Note that continuous visual feedback of the control signals together

with the switching threshold was provided on a computer screen that was positioned in front

of the participants. Figure 7.5 shows the experimental setup and a user performing the task

using the proposed system.

7.3. Experimental Results

All subjects were able to perform the task by reorganizing their shoulder movements.

They learned to perform the task effectively after the very first trial and the performance
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Figure 7.5. An SCI user controlling the robot with the BMI during the ex-
perimental task.

level stayed the same for the rest of the experiment. We furthermore observed similar

performance between the SCI and non-injured subjects, across all measures. The end-

effector position and task completion time were recorded for each of the trails.

Figure 7.6 shows the user control signals 〈U, S〉 and the end-effector position for a

representative task trial. Note the use of signal U for the reaching, grasping and pouring

segments, and the use of signal S to switch (around second 28) to pouring after reaching

the bowl position.

Figure 7.7 shows the position of the robot end-effector at the end of each trial for the

SCI participant and a representative control subject. It can be seen that the subjects were

able to successfully switch the trajectory segment in order to perform the pouring task for

each of the three bowl positions. More importantly, the performance of the SCI participant

was comparable to other uninjured control individuals.

Figure 7.8 (left) represents the average time to completion for all participants. The time

taken by the SCI participant for task completion was comparable that of the able-bodied
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Figure 7.6. Top: Robot’s end-effector in (x,y) space. Bottom: User’s control
signals U (blue) and S (red), and the threshold used to switch between segments

(green).

individuals (C1-C5).Furthermore, to quantify movement smoothness we calculated jerk as

J =
∣∣∣ n∑
k=1

...
x (k)

∣∣∣
where x(k) corresponds to discrete samples of the Euclidean norm of the robot end-effector

position. Jerk is the third derivative of position, and a standard measure to quantify move-

ment smoothness [190]. A second-order Butterworth filter with a cutoff frequency of 5Hz

was used to smooth and attain the end-effector trajectory for each trial. Figure 7.8 (right)

shows the average jerk index for all participants. Note that the SCI participant was as

smooth as the uninjured subjects in controlling the arm movements. The above results

demonstrate the effectiveness of the proposed framework and the BMI interface, as the
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SCI Control

Figure 7.7. Position of the robot end-effector at the end of each trial for the
SCI participant (left) and a representative control subject (right). Each color
corresponds to one of the three positions of the bowl. Note that a successful
pouring motion aligns the top of the cup over the bowl, which results in the
robot end-effector position being offset (since the cup has non-negligible
length).

Figure 7.8. Left : Average time to completion for all participants. Right :
Average movement smoothness for all participants. For both plots, error bars
represent standard deviation.

performance of the SCI participant was comparable to the control individuals for the ma-

nipulation task. Future work can generalize the system to achieve assistive control on a

variety of manipulation tasks and can explore mapping the BMI signal to alternate subsets

of the control space, as well as the generation of higher dimensional BMI signals.
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7.4. Summary

We have introduced a novel system for the control of assistive robotic manipulators, that

makes use of both robotics autonomy and a body-machine interface. The aim of this work

was a first evaluation of the BMI with the proposed control framework. The results of the

user study indicate that individuals with severe motor impairments can effectively operate

assistive robotic manipulators using the proposed system. Furthermore, the BMI engages

the users in physical activity while they operate the manipulator, which may have potential

rehabilitation benefits.

7.5. Declaration

The work presented in this chapter was previously published as [58]. S.Jain conceived

of the presented control allocation and was lead in the study design and its execution.

A. Farshchiansadegh contributed expertise related to the BMI. The software development,

hardware integration, and study execution was collaboratively performed by S. Jain, A.

Farshchiansadegh, and A. Broad, and F. Abdollahi assisted with the study sessions.
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CHAPTER 8

Final Thoughts

This dissertation describes a body of work seeking to understand and improve upon the

incorporation of robotics autonomy into human-robot systems for assistive robotics. The

mathematical models presented in this dissertation address how robotics autonomy can:

perceive high-level user goals; probabilistically recognize the intentions of the human user;

model user actions for shared autonomy in assistive teleoperation; share control with the

user; and finally improve human-robot team performance and increase user personalization

with an intent-driven optimization of user actions in shared autonomy. We also presented a

categorization of shared autonomy as series, interleaved, and parallel—based on the control

sharing between the human and the robotics autonomy (Chapter 3). Such categorization

can better inform the shared autonomy design decisions depending on the needs of control

sharing. Pertaining to the challenges in direct control of assistive robots, another important

research direction is to investigate and design novel human-machine interfaces. We presented

a detailed review of such approaches (Section 2.3) and investigated novel application of the

body-machine interface (BMI) for assistive manipulation with a robotic arm (Chapter 7).

We next summarize our contributions with key findings of the research and studies presented

in the dissertation.

Robotic Perception for Human-Robot Systems:

We developed perception algorithms for high-level perception of user goals using geometric

modeling, computer vision, and machine learning (Chapter 5). We primarily worked with the
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detection of navigation goals involving wheelchair docking at table and desk structures, as

well as manipulation goals involving detection of robotic grasps on novel household objects.

For wheelchair docking, our approach is the first in the domain to fully automate the

perception of safe docking locations using point clouds. Our geometric approach can detect

suitable docking pose at a variety of table and desk structures, and more importantly also

assess them for safety according to the ADA specifications. The approach was evaluated

on table, desk, and workbench docking structures in varying configurations, and proved

effective in identifying safe docking locations with pose information. The algorithm provides

a docking pose with accurate alignment information, which can readily be used by motion

planners to plan and execute trajectories for assistance with docking maneuvers.

For grasp detection on novel objects, we investigated methods for estimating local and

global surface geometries in point clouds and developed a framework for grasp detection

based on such geometric characteristics. Our approach approximates object geometries and

generates multiple semantic grasps on objects to address multiple ways in which human

users can grasp a single object. A first set of experiments evaluated the perception model’s

grasp detection ability for grasp similarity between the autonomy generated grasps and

those generated by a human when teleoperating the robot. Multiple grasps were generated

by our approach on each object presented in the test set, according to the semantic groups

(top, side, pinch). The results highlighted the resemblance between the detected grasp poses

(both orientation and position) and what the human subjects generated when teleoperating

the robot. This similarity may help the user to predict the robot’s movement during shared

autonomy operation, and thus can help improve human-robot collaboration in tasks.
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Human Intent Recognition and Assistance in Human-Robot Systems:

For inferring human intentions in shared autonomy (Chapter 6), we first drew a connection

between human actions in experimental psychology and robot inference of human actions,

enabling us to probabilistically model user behavior as goal-directed actions. The idea

being that such teleological interpretation of actions in terms of user goals can inform us

as to why the action has been performed, thus providing a special type of explanation for

the user’s action. We performed probabilistic modeling of implicit observations, and in

addition to a distance-based observation, we modeled the user’s interaction with the control

interface as goal-directed actions with adjustable rationality. For user personalization in

shared autonomy, we furthermore introduced an intent-driven optimization that adapts the

rationality index value to each individual user, and thus can account for a number of factors

that might induce sub-optimality in actions, including the limitations of control interfaces.

We presented a formalism for intent inference that models the uncertainty over the user’s goal

within a Bayesian filtering framework and enables the seamless fusion of observations. Our

approach computes and maintains a probabilistic belief over the user’s goals and expresses

uncertainty in the robot prediction of the intended goal, which has important implications

in assistive domain.

We performed a pilot study with the aim to ground the complexity of the intent inference

problem through analysis of human inference ability, by having human observers interpret

the motion of a robotic arm to infer its intended goal. Study results suggest that inferring

the robot’s intended goal is a challenging task, even for humans. One important takeaway

from our study is that humans tend to make less incorrect predictions, but also indicate

more uncertainty. Human subjects were also quickly able to switch their prediction in the

case of change of intentions, though with comparatively more incorrect predictions. These
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findings have important implications for the assistive domain, since most often providing

the wrong assistance is worse than providing no assistance.

We conducted a subject study to evaluate our human intent recognition framework

and compare performance with existing methods. Importantly, we also examined control

interface implications and performed the study using multiple control interfaces that are

typically available to users in the assistive domain. The study furthermore provides insights

into the interplay of intent inference and assistance in shared autonomy. The findings reveal

that the inference of human intent was less accurate under more limited control interfaces,

the mechanism of intent inference indeed impacts control sharing and assistance in shared

autonomy, and probabilistic modeling of human actions and our intent-driven optimization

resulted in better intent recognition with faster assistance during shared-control operation.

Interestingly, our approach was able to quickly respond in the case of change of intentions

from the user, which thus also allowed to quickly correct and recover the robot’s belief from

incorrect inferences. Surprisingly, the results indicate that for end-users, intent inference

was often more challenging under the axis operated joystick—perhaps because of signal

noise that resulted from the underlying motor-impairments. Even with the limited interface

like Sip-N-Puff, our proposed technique performed well in recognizing human intent. The

subjective evaluations further reinforce our findings, and especially the end users who are

the target population in the assistive domain were satisfied with the intent inference and

shared autonomy performance.

Body-Machine Interface for Human-Robot Systems:

We investigated novel application of body-machine interface (BMI) and presented a shared

autonomy framework that utilizes the non-conventional interface for assistive manipulation

with a robotic arm (Chapter 7). An important advantage of our approach using the BMI
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is that it encourages the continued use of muscular activity, as the participant’s residual

body movements are captured to provide control signals for controlling an assistive device,

and thus can facilitate rehabilitation process. The novel application demonstrates the ef-

fectiveness of the proposed system for individuals with severe-motor impairments to control

high-DoF human-robot systems.

In conclusion, this dissertation has contributed mathematical models and algorithms

for perception, inference, and assistance in human-robot systems, focusing on the assistive

domain. We validated all the contributed algorithms and techniques in this dissertation on

real hardware, using a wheelchair robot or a robotic arm platform. Exciting future work

directions and open questions for human-robot systems based on the ideas from this disser-

tation include, perception and manipulation of deformable objects (e.g. assistive feeding),

intent inference over continuous goal regions as opposed to discrete goal configurations,

bi-directional intent recognition, probabilistic control sharing in shared autonomy, and self-

evaluation of shared autonomy during online collaboration with human users.
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[53] Z. Wang, K. Mülling, M. P. Deisenroth, H. Ben Amor, D. Vogt, B. Schölkopf, and
J. Peters, “Probabilistic movement modeling for intention inference in human–robot
interaction,” The International Journal of Robotics Research, vol. 32, no. 7, pp. 841–
858, 2013.



144
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[91] T. Mart́ınez-Maŕın and T. Duckett, “Fast reinforcement learning for vision-guided
mobile robots,” in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2005.

[92] T. Bailey, E. Nebot, J. Rosenblatt, and H. Durrant-Whyte, “Behaviour-based docking
using the DAMN arbiter,” in Proceedings of ACRA, 1999.

[93] M. Williamson, R. Murray-Smith, and V. Hansen, “Robot docking using Mixtures of
Gaussians,” in Advances in Neural Information Processing Systems 11, 1999.

[94] G. Foley, “A powered wheelchair parking assistance reasoning co-pilot (parc) system
for cognitively impaired older adults,” Ph.D. dissertation, 2017.

[95] M. Habbecke and L. Kobbelt, “A surface-growing approach to multi-view stereo recon-
struction,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition,
2007, pp. 1–8.

[96] S. Chitta, E. G. Jones, M. Ciocarlie, and K. Hsiao, “Mobile manipulation in un-
structured environments: Perception, planning, and execution,” IEEE Robotics &
Automation Magazine, vol. 19, no. 2, pp. 58–71, 2012.

[97] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap:
A probabilistic, flexible, and compact 3d map representation for robotic systems,”
in ICRA 2010 workshop on best practice in 3D perception and modeling for mobile
manipulation, 2010.

[98] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap:
An efficient probabilistic 3d mapping framework based on octrees,” Autonomous
robots, vol. 34, no. 3, pp. 189–206, 2013.

[99] H.-Y. Lin and M. Subbarao, “Vision system for fast 3-d model reconstruction,” Optical
Engineering, vol. 43, no. 7, pp. 1651–1665, 2004.

[100] D. K. Prasad, “Survey of the problem of object detection in real images,” International
Journal of Image Processing (IJIP), vol. 6, no. 6, p. 441, 2012.



148

[101] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep
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