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ABSTRACT

The Impact of Consumption and Liquidity Constraints on Optimal Consumption and

Investment Decisions

Amit Vijay Bhandari

Both individual and institutional investors face a number of constraints in their con-

sumption and investment decisions. We look at well-motivated constraints on the con-

sumption process as well as liquidity constraints and study their impact on optimal con-

sumption and investment policies under a dynamic discrete time setting.
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CHAPTER 1

Introduction

The dynamic consumption and investment optimization problem has been well studied.

Merton [1969] and Samuelson [1969] laid the foundations with their seminal papers that

dealt with this problem in the continuous-time and discrete-time settings respectively.

This thesis looks at the impact of consumption and liquidity restrictions on the optimal

consumption and investment policies.

Chapter 2 provides a solution to the discrete time dynamic consumption and invest-

ment problem where the agent’s consumption is constrained to be non-decreasing. The

continuous time version of this problem was solved by Dybvig [1995]. Motivation for such

a constraint comes from a couple of different sources. They are examined below, with a

focus on two factors in particular, viz. consumption requirements and trading frequencies.

• First, we can look at the case of a very long-term institutional investor such as

a university endowment, that might require quarterly or annual payouts from its

portfolio to maintain its operations and pay its employees. Typically, a university

endowment faces a large cost for decreases in these payouts, both in monetary

forms such as severance pay as well as in social terms such as loss of goodwill.

Moreover, it is now the norm for institutional investors such as university

endowments or pension funds to maintain investments in alternative assets such

as hedge funds since they offer the prospects of attractive returns (at least the
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ones that survive) vis-à-vis the market and also allow these institutional investors

to further diversify their holdings. However, investments in hedge funds bring

their own baggage - complications such as lock-out periods, advance notice re-

quirements for withdrawals, quarterly trade dates and the like. Even if the insti-

tutional investor has the resources and the manpower to execute multiple trades

on a daily or even hourly basis, the very nature of these alternative assets do not

allow for frequent changes in such a position.

• We can also consider the case of a long-term individual investor with an in-

tolerance for a decline in standard of living. Most analytical consumption and

investment optimization models ignore the undesirability of fluctuations in con-

sumption patterns, especially downturns. If the individual investor is using such

a model to optimize the benefits of her wealth, clearly there is something amiss

when the model sends her on a lavish spending spree one month, only to preach

thrift for the next six. Duesenberry [1949] equates the investor’s standard of liv-

ing to the consumption level, and discusses the preference for a rising standard

of living as one of the primary societal goals.

A more theoretical argument can be built from prospect theory as proposed

by Kahneman and Tversky [1979]. Once an agent has experienced a particular

consumption level, any drop in consumption will be perceived as a loss and

the marginal cost of this loss is high. Consequently, the agent would have a

strong preference for non-decreasing consumption - her current consumption level

being the reference point for the agent’s Kahneman-Tversky value function. The

non-decreasing consumption formulation represents an extreme case of prospect
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theory, where the value function below the reference point is −∞, or equivalently,

at each decision step, the utility of consumption lower than that at the previous

step is −∞.

Another theoretical conceptualization of this constraint is as an extreme ver-

sion of habit formation.

In terms of the frequency with which the investment decisions are imple-

mented, most individual investors are unlikely to trade on an daily or even weekly

basis - a quarterly or even annual readjustment of the investor’s portfolio seems

more probable.

Both the above settings motivate a solution to this consumption-constrained problem

in a discrete time setting. In addition, it is also important to examine the impact of the

time interval between decision epochs on the optimal consumption and investment policy.

In recent years, institutional investors’ holdings in hedge funds have increased signifi-

cantly. Chapter 3 discusses the case of an investor with CRRA utility, who can allocate

wealth to a bond, a stock and a hedge fund. If the investor chooses to trade continuously,

she will optimize allocations as per the Merton model, whereas if she chooses to rebalance

her portfolio at a lower frequency (e.g. monthly, quarterly or annually), the investor will

use the Samuelson model to obtain optimal allocations.

However, as mentioned earlier, hedge funds typically do not allow for continuous trad-

ing, and usually have specific lock-out periods or advance notice requirements. Given this

liquidity constraint on the hedge fund, what is the investor’s optimal investment strategy

if she wants to allocate some of her wealth to hedge funds (since they promise attractive

returns and diversification benefits), and also wants to take advantage of her ability to
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trade in and out of the stock and the bond on a continuous basis? What is the impact

of the length of the lock-out period? One would expect that the allocations to the hedge

fund would decrease as the length of the time interval increases. How does this impact

vary when the problem parameters such as the stock-hedge fund correlation, the expected

growth rates, the volatilities, the risk-free rate of return, etc. change?

This lockup requirement represents illiquidity of a very specific form. Longstaff [2001]

studies the impact of illiquidity on optimal portfolio choice and the price of the asset.

However, the setting in Longstaff [2001] is one with limited liquidity whereas in our

situation the trading opportunities for one out of the two risky assets are restricted to

specific points in time.

As part of this analysis, Chapter 3 examines the impact of including consumption

on the allocation to the hedge fund. The annual or quarterly payouts at institutional

investors such as pension funds and university endowments can be cast as consumption

streams. For proprietary trading desks or fund of funds, on the other hand, consumption

is not a consideration.

Chapter 3 also lays out a methodology to compute the premium associated with the

lockup restriction, termed the lockup premium - this allows potential investors to check

whether the lockup requirement is justified for a particular hedge fund. Aragon [2007]

demonstrates that the excess returns for funds with lockup restrictions are significantly

higher than those for funds without these restrictions. Derman [2007] and Derman et al.

[2007] represent recent attempts at computing this premium, but as discussed in Chapter

3, there are several shortcomings in their approach. The analysis in Chapter 3 however,
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does not consider survivorship among hedge funds, something that Derman [2007] and

Derman et al. [2007] both do.

The value of hedge fund share price information is important in analyzing the impact

of the typical secrecy that surrounds hedge fund performance reporting. Based on a

comparison of the case where the hedge fund price is available only just before a decision

has to be made on adjusting the position in the hedge fund to the default situation where

the hedge fund share price is always known, Chapter 3 describes a method to compute

the value of this information in the form of an information premium.

Chapter 4 brings together the results obtained in Chapters 2 and 3 by addressing the

consumption and investment optimization problem for an agent facing a non-decreasing

consumption constraint, and having the ability to continuously trade in a bond and a

stock, and trade at pre-specified regular intervals in a hedge fund.
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CHAPTER 2

Discrete-Time Optimization of Consumption and Investment

Decisions given Intolerance for a Decline in Standard of Living

Abstract

We extend Samuelson’s (1969) discrete-time dynamic consumption and investment

optimization problem to the case where the investor is intolerant of any decline in her

standard of living. This constraint represents a strong form of habit formation such that

the consumption rate is non-decreasing over time. To achieve this objective, the investor

first guarantees a consumption perpetuity at the current consumption rate and then

allocates the remaining wealth under a state-dependent, adjusted coefficient of relative

risk aversion. We study the impact of the length of the time interval on the optimal

consumption and investment policies. This effect has implications for investors considering

investments in assets, such as hedge funds and private equity, that have restrictions on

trading intervals.
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2.1. Introduction

The lifetime consumption and investment optimization problem is well studied, both

in single- and multi-period settings. In their classic papers on lifetime portfolio selection

given continuous- and discrete-time settings respectively, both Merton [1969] and Samuel-

son [1969] show that under a constant relative risk aversion (CRRA) utility assumption,

optimal consumption (rate for continuous-time, amount for discrete-time) at any instant

is of constant proportion to the then current wealth. Consequently, the consumption

pattern can vary drastically, and a significant loss of utility may result from losses on

investments in risky assets. This is equivalent to allowing the agent’s standard of living

to fluctuate considerably, which is not desirable.

Duesenberry [1949] makes the case for equating standard of living to consumption

levels, which is a reasonably accurate quantification. The net result is a characterization

of the problem as a search for optimal consumption and investment policies under the

constraint that the consumption rate is non-decreasing. Another argument in favor of this

constraint can be built from prospect theory as proposed by Kahneman and Tversky [1979].

Once an agent has experienced a particular consumption level, any drop in consumption

will be perceived as a loss - even though the agent did not actually possess an equivalent

consumption perpetuity. The marginal cost of this loss is high, and consequently, the

agent would have a strong preference for avoiding a decrease in consumption - the current

consumption level being the reference point for the agent’s Kahneman-Tversky value func-

tion. The non-decreasing consumption constraint is an extreme application of prospect

theory, where the value function below the reference point is −∞, or equivalently, at each
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decision step, the utility of a consumption rate lower than that at the previous step is

−∞.

Constantinides [1990] formalizes the inclusion of habit persistence by introducing time

dependence in the utility function to reflect a reference value depending on past consump-

tion. As Constantinides observes, this model provides a resolution of the equity premium

puzzle that empirical consumption levels appear too smooth relative to equity market

volatility. The model here can be viewed as an alternative representation of habit forma-

tion that is developed over discrete intervals of time.

The focus of our paper is to study the discrete-time optimization of consumption

and investment decisions given intolerance for a decline in standard of living, i.e., under

a non-decreasing consumption constraint. This constraint might seem very restrictive

but we show that it does not actually create significant utility losses relative to the no

habit formation case. Therefore, it serves as a useful alternative to other forms of habit

formation utilities.

Dybvig [1995] derives an analytical solution for the continuous-time version of this

problem. As noted by Dybvig, Black and Perold [1992] arrive at a solution similar to

that of Dybvig in a special case of their constant proportions portfolio insurance (CPPI)

strategy where consumption is restricted to be above some fixed minimum level and the

utility function is partly linear and partly in the more traditional CRRA form. The

structure of the utility function is derived based on the minimum subsistence level of

consumption; however, this derivation is not well motivated in economic terms but rather

comes across as a consequence of the (CPPI) strategy.
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The non-decreasing consumption requirement can be observed in the following set-

tings:

• A long-term individual investor with an intolerance for a decline in standard of

living, as measured by her expenditures;

• A very long-term institutional investor such as a university endowment that might

require quarterly or annual payouts from its portfolio to maintain its operations

and pay its employees and which faces a large monetary or social cost for decreases

in these payouts (e.g., severance pay, loss of goodwill).

In either of the above settings, how practical is the continuous-time setting? The

typical individual investor is unlikely to rebalance her portfolio or consumption targets

every day, or even every week. A typical institutional investor such as the university

endowment, or say a pension fund, invariably has investments in alternative assets such

as hedge funds. These usually give rise to complications such as lock-out periods, advance

notice requirements for withdrawals, quarterly trade dates and the like. So even if the

institutional investor has the resources and the manpower to execute multiple trades on

a daily or even an hourly basis, the regulations attached to these alternative assets would

not allow for this to happen.

One approach for the discrete-time setting is to use the continuous-time solution as an

approximation, but how good is this approximation? Do the optimal consumption and

allocation policies have exactly the same structure in both continuous-time and discrete-

time frameworks? What is the impact of the length of the time interval on these op-

timal policies? To answer these research questions, we need a solution method for the

discrete-time consumption and investment optimization problem with a non-decreasing
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consumption rate. Since discrete-time solutions are not analytically available as they are

in the continuous-time case, the complete structure of these solutions is unknown. In this

paper, we present a solution for the discrete-time problem in terms of the structure of the

optimal consumption and investment policies and a convergent numerical algorithm.

At each decision epoch, the agent must first decide whether or not to increase the

consumption rate. Then, a consumption perpetuity at the current consumption rate

must be guaranteed by investing an appropriate amount in the risk-free asset. The agent

now has to allocate the remaining wealth between the risky and risk-free assets. However,

this allocation must now be done under a pseudo-coefficient of relative risk aversion to

account for the amount already put into the perpetuity. In the continuous-time case, the

pseudo-coefficient is a constant, independent of the state variables. In the discrete-time

case, however, there is an added complication. As we will see, the agent derives value

from two sources - first from guaranteeing herself a steady consumption perpetuity, and

second from the chance that her wealth grows to a level where it is optimal for her to

increase the level of this steady consumption. Both the continuous-time and discrete-

time solutions call for an increase in consumption as soon as the wealth level hits a new

maximum. In the continuous-time case, it is possible to constantly monitor the wealth

level and change the consumption rate in an appropriate fashion exactly when the new

wealth maximum is achieved, so that optimal amounts of value are derived from both

the above sources. In the discrete-time case, however, the monitoring of wealth takes

place at discrete decision epochs and some of the value associated with an increase in

consumption may be lost due to a delayed implementation of this increase. Since there is

now a non-zero probability that we might not be able to take immediate advantage of an
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increase in the consumption level, we have to incorporate this into our analysis. We show

that in the discrete-time framework, the pseudo-coefficient is a non-constant function of

the ratio of two state variables - the previous consumption rate and the current wealth.

The solution is analytical to a large extent, but requires a (convergent) numerical

iteration scheme to determine the above function over the feasible state space. Because

the numerical scheme is fairly flexible, it is possible to extend this methodology to similar

problems with transaction costs or tax considerations.

It is also worth pointing out that although the continuous-time problem has an an-

alytical solution, the assumed geometric Brownian motion of prices implies a lognormal

distribution for the price of the risky asset; consequently, because of continuous monitor-

ing, the wealth at any future time is lognormally distributed. In the discrete-time case,

even with a normality assumption on the returns, the wealth at a future decision epoch

will not be lognormally distributed, since the portfolio growth factor is now a weighted

sum of two lognormally distributed growth factors, and hence is not lognormal. Under

this scenario, Ohlson and Ziemba [1976] have demonstrated the use of a lognormal ap-

proximation to the weighted sum of lognormally distributed growth factors which could

be utilized; however, even normality of individual asset returns is not clear (e.g., Brooks

and Kat [2001] shows that hedge fund returns are not normally distributed and exhibit

both negative skewness and leptokurtosis).

Based on these observations, in solving the discrete-time case, we take advantage of

the versatility of the numerical scheme and avoid placing normality restrictions on the

distribution model for the risky asset’s returns, as done by Dybvig [1995] in analytically

solving the continuous-time case, and utilize numerical optimization techniques instead
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of seeking analytical optima. The continuous-time solution only serves as an approximate

result when considering risky assets that have non-normal return distributions.

We conduct an analysis of the impact of the length of the time interval on the optimal

consumption and investment policy. A similar analysis is carried out by Rogers [2001] for

the Merton [1969] problem with no consumption constraints. Our results imply that the

combined effect of limited trading opportunities and consumption constraints or strong

habit formation has a greater impact on investor decisions than these two factors have

alone.

From a portfolio theory perspective, Table 2.1 shows the gap in research that we fill

with this work.

Continuous Time Discrete Time

Unconstrained Merton Samuelson
(1969) (1969)

Non-Decreasing Dybvig ?
Consumption (1995)

Table 2.1. Research Gap

2.2. The Discrete Time Problem

First, we state the discrete-time problem in a fashion similar to the continuous-time

case. The notation we use is a little different from Dybvig [1995], both by necessity and

preference.
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2.2.1. Setup for the Discrete Time Problem

Consider an agent who is intolerant of any decline in her standard of living, as measured

by the rate cn at which she consumes between decision epochs n and n+1 (n ≥ 0, integer).

In other words, cn is non-decreasing for n ≥ 0. The decision epochs arrive at an interval

of time τ . Conditioning on meeting the constraint of increasing consumption, the von

Neumann - Morgenstern utility function is given by

∫ ∞

t=0

e−δtu(ct)dt =

∞
∑

n=0

(

1 − e−δτ

δ

)

e−δnτu(cn) (2.1)

where u(·) is the felicity function and the constant δ > 0 is the pure rate of time preference.

We can interpret the increasing consumption requirement as a modification of the utility

that introduces strong habit formation and relaxes time separability. Effectively, the

assumed utility function follows from replacing u with û, which is a function of ct and its

time derivative ċt, such that û(ct, ċt) = u(ct)δ(ċt ≥ 0), where δ is an indicator function

that is 1 if ċt ≥ 0 and −∞ otherwise.

The agent has an initial endowment of W0, an inherited consumption rate of c0− and

can allocate unconsumed wealth to either a risk-free asset or a risky one. The one-period

growth factor for the riskless asset is R (constant), while R̃n represents the nth period

growth rate (stochastic) for the risky asset. We assume that {R̃n; n ≥ 0} are independent

and identically distributed - we will often use R̃ to represent the stochastic return of the

risky asset over any single period. We can also define a similar quantity ∆ (constant) as

the growth factor corresponding to the time preference for utility.
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If r is the instantaneous riskless rate and δ is the pure rate of time preference, then

we simply have

R = erτ (2.2)

∆ = eδτ (2.3)

Note that we have not assumed a particular distribution for the returns on the risky

asset. If we operate in the Black-Scholes scheme and the risky asset provides lognormally

distributed returns, i.e.,

dS

S
= µdt + σdB (2.4)

where µ and σ > 0 are constants and B is a standard Wiener process, then we have

R̃n ∼ e(µ− 1
2
σ2)τ+σ(B(n+1)τ−Bnτ ) (2.5)

or equivalently

R̃ ∼ e(µ− 1
2
σ2)τ+σ

√
τZ (2.6)

where Z ∼ N(0, 1).

As with consumption, the reallocation of the wealth after consumption can occur only

at the decision epochs, which are equispaced at τ . For a feasible solution that allows us
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to guarantee maintaining a non-decreasing consumption rate, we must have

W0 ≥
c0−

r
(2.7)

Operating in the domain of constant relative risk aversion (as implied by the assumed

scale independence of preferences), let the Arrow-Pratt coefficient of relative risk aversion

for the agent be 1 − γ. If γ = 0, then u(c) = log(c); otherwise, u(c) = cγ/γ for γ < 1,

γ 6= 0.

2.2.2. Statement of the Discrete-Time Problem

Given the above setting, what is the optimal course of action for the agent in terms of

consumption and investment allocation at each decision epoch? We are looking for the

policy that allows us to determine the optimal values of the consumption rate cn and

the portion of the remaining wealth αn allocated to the risky asset at any decision epoch

n ≥ 0, integer. The problem can then be stated as follows:

Problem 1. (The Discrete-Time Problem)

Choose adapted {cn}∞n=0 and {αn}∞n=0 to maximize E

[

∑∞
n=0

(

1−e−δτ

δ

)

e−δnτu(cn)
]

sub-

ject to

c0 ≥ c0− (2.8)

cn ≥ cm ∀ n > m ≥ 0, n,m integers (2.9)

and Wn ≥ 0 ∀ n ≥ 0 (2.10)
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where {Wn}∞n=0 is given by

Wn+1 = Wn

[

(1 − αn)R + αnR̃n

]

− cn

r
(R − 1) (2.11)

given the initial wealth W0. Again, if the instantaneous rate of return on the riskless asset

was r and the risky asset had lognormally distributed returns as specified by equation (2.4),

then equation (2.11) could be written as

Wn+1 = Wn

[

(1 − αn)erτ + αne(µ− 1
2
σ2)τ+σ(B(n+1)τ−Bnτ )

]

− cn

r
(R − 1) (2.12)

It is assumed that µ − r, σ and δ are all positive.

Note that the growth factor in the above equation is not lognormally distributed and

this complicates the search for a purely analytical solution. Samuelson [1969] uses the

concept of the util-prob mean as defined in Samuelson and Merton [1969] whereas Ohlson

and Ziemba [1976] provide a lognormal approximation to this growth factor based on

a matching of the first two moments. The lognormal approximation gets worse as the

time interval between decision epochs increases. Given the ease with which numerical

integration can be performed, our approach will be similar to that adopted in Samuelson

[1969] but we will avoid the util-prob terminology.

2.2.3. Issues in the Solution of the Discrete-Time Problem

In the continuous-time case, the agent is able to regulate the consumption rate level c such

that it is bounded below by the optimal minimal consumption level which is a fraction

of the wealth level at that instant. Equivalently, the wealth w is bounded above by an
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optimal (finite) multiple of the consumption rate as a result of this continuous monitoring.

The probability that the wealth w at any time will be greater than this optimal multiple

of the consumption rate is 0. However, in the discrete-time case, typical risky asset

return distributions (such as normal) do not limit the upside, and consequently, the

probability that the wealth level W increases past any finite level in a discrete interval of

time is non-zero in such cases. Since this probability is adapted, we have to now account

for it in our computations. As we will see, this becomes important in the context of

finding the appropriate risk aversion level for the wealth remaining after guaranteeing

the consumption perpetuity, and consequently affects the optimal allocation of remaining

wealth between the risky and riskless assets.

2.2.4. Proposed Form of Solution

The state variables for our dynamic system are the current wealth Wn and the consump-

tion rate at the previous decision epoch cn−1. Define a new state variable

Xn ≡ cn−1

Wn

(2.13)

which will be of use later. We will refer to this as the Ratio of Previous Consumption to

Current Wealth, or simply Ratio. Clearly, once we know the values of two of these state

variables, the value of the third is immediately known.

Note that the consumption rate must be positive. Moreover, the highest value of cn

for which we can guarantee that consumption rate is non-decreasing is rWn, at which

point we must put all our wealth into the risk-free asset and consume the equivalent

perpetuity amount. Using some straightforward algebra, we see that cn = rWn implies
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that cn = rWn+1 because of the wealth dynamics in equation (2.11) and consequently, the

range of cn−1 is [0, rWn]. The advantage of inventing the new state variable Xn is that its

range is [0, r] - here the bounds on Xn are independent of the wealth Wn. This allows us

to define the state space S as

S = R+ × [0, r] (2.14)

In the analysis conducted in Appendix A, we use both

s ≡ (w, x) ∈ S (2.15)

and

y ≡ (w, c−), where
(

w,
c−
w

)

∈ S (2.16)

in addition to the notation (w, x) and (w, c−) to denote feasible states for our problem.

Clarifications on the notation will be made as necessary.

We are trying to find the optimal consumption and investment policies cn(Wn, cn−1)

and αn(Wn, cn−1) or equivalently cn(Wn, Xn) and αn(Wn, Xn). For the sake of brevity,

we refer to these as cn and αn respectively. We now propose a particular form for the

solution and show that it is a valid form for the optimal solution to Problem 1.

Theorem 1. (Form of the solution to the Discrete Time Problem) Let u(c) =

log(c) for γ = 0 and u(c) = cγ

γ
for γ < 1, γ 6= 0. Then Problem 2 is feasible (in the sense

that the constraints (2.8), (2.9), and (2.10), can be satisfied) if and only if both c0− ≤ rW0

and r > 0. Given feasibility, there exists a function γ∗(w, c−) such that for all feasible
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states (w, c−) (i.e. for c− ≤ rw, w ∈ R+),

γ∗(w, c−)















∈ (0, 1) if γ < 0

∈ (γ, 1) if γ ≥ 0

(2.17)

which generates the value function Vγ∗ that solves the Bellman equation for our problem,

Vγ∗(w, c−) = max
0≤α≤1

c≥c−

1 − e−δτ

δ
u(c)

+ ∆−1
ER̃

[

Vγ∗

(

w[(1 − α)R + αR̃] − c

r
(R − 1), c

)

∣

∣w, c−

]

(2.18)

The value function Vγ∗(·) for any feasible state (w, c−) is given by

Vγ∗(w, c−) =
1

δ
u (max (c−, r∗(w, c−)w))

+
r

δ

(

1

r∗(w, c−)
− 1

r

)1−γ∗(w,c−)

(max (c−, r∗(w, c−)w))γ

(

w

max(c−, r∗(w, c−)w)
− 1

r

)γ∗(w,c−)

(2.19)

where

r∗(w, c−) ≡ r

(

γ∗(w, c−) − γ

1 − γ

)

(2.20)

The solution to Problem 2 is characterized at each decision epoch by the amount invested

in the risky asset,

α(Wn, cn−1)Wn = α̂(Wn, cn−1)(Wn − cn

r
) (2.21)
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where

α̂(w, c−) = argmax ER̃

[

Vγ∗

((

w − c

r

)

[(1 − α̂)R + α̂R̃] +
c

r
, c
)

∣

∣w, c−

]

(2.22)

c = max(c−, r∗w) (2.23)

and a non-decreasing consumption rate process {cn} regulated to be no smaller than

{r∗(Wn, cn−1)Wn}:

(∀ n)
n
∑

i=0

(ci − r∗(Wi, ci−1)Wi)
+(ci − ci−1) = 0 where c−1 ≡ c0− (2.24)

(∀ n) cn ≥ r∗(Wn, cn−1)Wn (2.25)

and (∀ n)

n
∑

i=0

(cn − cn−1)
− = 0 where c−1 ≡ c0− (2.26)

Here, x+ (resp. x−) denotes the positive part (resp. negative part) of x.

Proof: Proving this theorem requires several intermediate results. For the corre-

sponding lemmas, their proofs, and the proof of this theorem, see Appendix A. �

Note that we can combine the original wealth dynamics in equation (2.11) with equa-

tion (2.21) and obtain a new variation of the wealth dynamics,

Wn+1 =
(

Wn − cn

r

) [

(1 − α̂(Wn, cn−1))R + α̂(Wn, cn−1)R̃n

]

+
cn

r
(2.27)

We will use this version of the wealth dynamics in a subsequent proof. Also, this version

provides a more intuitive understanding of the consumption and investment process -
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essentially, the agent places an amount cn

r
into the risk-free asset as her consumption

perpetuity, which leaves her with an excess of (Wn − cn

r
) to invest in either the risky

or the risk-free asset. α̂(Wn, cn−1) is the proportion of this amount that goes into the

risky asset, which gives us the growth factor
[

(1 − α̂(Wn, cn−1))R + α̂(Wn, cn−1)R̃n

]

for

the excess amount (Wn − cn

r
). Finally, over the next period, the consumption perpetuity

grows at a rate cn

r
r = cn, which is the same as the agent’s consumption rate. Consequently,

at the end of the period, the agent has consumed at the rate cn and still has an amount cn

r

left in the consumption perpetuity. In effect, the agent has guaranteed herself a perpetual

consumption rate of cn.

Over the rest of paper we use a more compact form of notation - γ∗, r∗, α and α̂ -

these still represent functions of the state variables and are not constants.

2.2.5. Implications of the Proposed Form

The above solution is still incomplete since we do not yet know how to determine some

of the parameters. However, before moving on to completing the solution, we try to get

a quick understanding of its key elements:

• the amount of wealth invested in the risky asset αWn

• the consumption rate cn

• the value function Vγ∗ (Wn, cn−1)

The parameters, γ∗ and r∗, also have economic interpretations which can be derived

from our understanding of αWn.

αWn as defined in equation (2.21) is not the usual proportion of wealth invested in the

risky asset, but instead gives the actual amount of the investment. Examining the terms
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on the right hand side of the equation, we note that cn

r
is the exact amount invested in the

risk-free asset that guarantees a consumption perpetuity at the rate of cn. The remaining

amount can be invested either in the risky asset or the risk-free asset. The term α̂, based

on its definition in equation (2.22), can be interpreted as the optimal proportion of wealth

invested in the risky asset when the agent has CRRA utility with a risk aversion of 1−γ∗.

This in turn leads us to the conclusion that 1 − γ∗ is the risk aversion of the agent for

the amount left over from her wealth after she has guaranteed the lifelong consumption

stream at the rate of cn. Clearly, the agent will be less risk averse with this amount, and

hence we can expect that γ∗ > γ. r∗, as defined in equation (2.20), can be interpreted as

a pseudo-interest rate corresponding to γ∗.

Consumption rate {cn} is non-decreasing and bounded below by r∗Wn. It is also

bounded above by rWn. If cn hits the rWn level, the investor will put all of her current

wealth Wn in the risk-free asset and thereby maintain a constant consumption perpetuity

at the rate of cn. The term max(cn−1, r
∗Wn) as seen in the value function definition

(equation (2.19)) represents the consumption rate decision at decision epoch n, i.e., cn.

This expression also uniquely solves equations (2.24), (2.25) and (2.26). An informal way

of stating the consumption rate is

cn = max(cn−1, r
∗Wn) (2.28)

or, in stationary form,

c = max(c−, r∗w) (2.29)
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Examining the value function as defined in equation (2.19), the term

u (max(cn−1, r
∗Wn))

is the utility rate corresponding to the consumption rate cn over the nth time period;

1

δ
u (max(cn−1, r

∗Wn))

thus gives us the present value of the perpetual utility stream that has been guaranteed

by guaranteeing the consumption rate cn = max(cn−1, r
∗Wn). This term captures the

value derived by the agent by guaranteeing herself a perpetual consumption stream of

max(cn−1, r
∗Wn). The remaining term on the right hand side of equation (2.19) represents

the value derived from being able to invest in the risky asset, allowing for the possible

growth of the agent’s wealth to a level where it is feasible to increase her consumption

rate.

2.2.6. Completion of the Solution

Now that we have an understanding of the form of the solution, we return to the determi-

nation of the as-yet unknown parameters. We still do not have a clear way of evaluating

γ∗, r∗, and α̂. However, from equations (2.20) and (2.22), we see that r∗ is merely a

function of γ∗; α̂ can also be determined once we know how to evaluate γ∗ for all feasible

states (w, c−). Consequently, the key element that is missing is the function γ∗(·) in terms

of the state variables. The corresponding parameter in the continuous-time case can be

calculated analytically (Dybvig [1995]) - albeit restricted to the case of a lognormal return

distribution for the risky asset. Note that we do not assume that γ∗ will turn out to be
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state independent (i.e., a constant) as in the continuous-time case. Unfortunately, an

analytical expression for γ∗(·) is not easy to obtain in the discrete-time case. However, we

can evaluate γ∗ from having to satisfy the Bellman equation (2.18). We first show that,

for this problem, the Bellman equation can be expressed solely in terms of the new state

variable Xn as defined in equation (2.13).

Theorem 2. Reduction of the Bellman Equation to One State Variable The

Bellman equation (2.18) can be expressed as an equation in a single state variable - the

Ratio of Previous Consumption to Current Wealth, x, as follows

Uγ∗ (x) =
1

γ

1 − e−δτ

δ
(max(x, r∗))γ +

∆−1
ER̃

[(

(1 − max(x, r∗))
[

(1 − α)R + αR̃
])γ

Uγ∗(x+)
∣

∣w, x
]

(2.30)

Also, the dynamics of x are independent of the wealth w and can be written as

x+ =
1

(

1
max(x,r∗)

− 1
r

) [

(1 − α̂)R + α̂R̃
]

+ 1
r

(2.31)

Proof: See Appendix A. �

Consequently, γ∗ purely depends on the value of the state variable Xn. We model γ∗

as a function of Xn and use an iterative scheme to obtain the function numerically over

the domain [0, r] of Xn (n ≥ 0, integer). This easily leads to a valuation of r∗. Equation

(2.22) allows us to evaluate α̂ once γ∗ is known.

2.2.6.1. Iteration Scheme. Since an analytical solution for γ∗(·) is not easily obtained,

we use the following iterative scheme to numerically evaluate γ∗(·) over the domain [0, r]

of X ≡ c−
W

:
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• Fix wealth level W = w arbitrarily

• Divide the domain [0, r] of X ≡ c−
W

into N intervals

• At each ratio x = ir
N

, i = 0..N , being evaluated:

– Assign γ∗
[1](x) = 1 − R∗

– Set r∗[1](x) = r
γ∗
[1]

(x)−γ

1−γ

– Set α̂[1](x) = argmax EW+

[

V
[1]
γ∗

(

W+(w, x, α̂), max(xw, r∗[1](x)w)
)

∣

∣w, x
]

• Set j = 2

• Do until a stopping criterion is met:

– Loop i = 0..N

∗ For x = ir
N

, evaluate

EW+

[

V
[j−1]
γ∗

(

W+(w, x, α̂), max(xw, r∗[j−1](x)w)
)

∣

∣w, x
]

numerically us-

ing the latest values of γ∗(·)’s and of α̂(·)’s at each ratio

∗ Find γ∗
[j](x) and r∗[j](x) = r

γ∗
[j]

(x)−γ

1−γ
such that

V
[j]
γ∗ (w, xw) = u

(

max
(

xw, r∗[j−1](x)w
))

+ ∆−1
EW+

[

V
[j−1]
γ∗

(

W+(w, x, α̂), max
(

xw, r∗[j−1](x)w
)) ∣

∣w, x
]

where V
[j]
γ∗ (w, xw) is evaluated under γ∗

[j](x) and r∗[j](x)

∗ Set

α̂[j](x) = argmax EW+

[

V
[j−1]
γ∗

(

W+(w, x, α̂), max
(

xw, r∗[j−1](x)w
)) ∣

∣w, x
]

– Increment j by 1

• Report the latest values of γ∗(·)’s as result



35

While the iterative scheme outlined above is fairly intuitive, it should be pointed

out that instead of using γ∗
[1](·) = 0, which would correspond to the traditional starting

point of the value iteration algorithm (Vγ∗ = 0) as used in Bertsekas and Shreve [1978,

reprinted 1996], we start with the continuous-time equivalent of γ∗ (a constant) as our

initial guess to the solution. This is because we expect the value of the objective function

for the discrete-time problem to be reasonably close to its continuous-time counterpart

and therefore the above iterative scheme would converge significantly faster. Numerical

experiments with the two different starting points bear this out.

2.2.6.2. Iteration Results. The iterative scheme described above has reasonably quick

convergence. Of course, the time taken for the iterations to stop not only depends on the

number of ratios evaluated, but also on the stopping criterion used. In this section, we

discuss the convergence pattern of the γ∗ and α̂ curves over many iterations.

The following results are based on an implementation of the above algorithm in Matlab.

100 iterations were performed using parameter values r = 4%, µ = 6%, σ = 30%, δ = 2%,

C0− = 0, 1 − γ = 1.5, and τ = 1 (annual decision epochs). The number of intervals was

set at N = 100. For the numerical optimization elements, the tolerance for change in

function value was set at 5 × 10−20 and for search algorithms (to find new values of γ∗(·)

that satisfy the Bellman equation) the tolerance for change in variable value was set at

5 × 10−10. In doing the following computations, we have used two enhancements to the

above algorithm. First, we use the optimal consumption policy c = max(c−, r∗( c−
w

)w) to

realize that if c−
w

< r∗( c−
w

), then we will immediately raise our consumption c to r∗( c−
w

)w.

Writing this out in terms of x = c−
w

, we see that if we are in state x such that x < r∗(x),

then the optimal consumption policy will immediately move us to the state x̄ such that
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x̄ = r∗(x̄). A direct consequence of this is that the functions we are seeking (γ∗(·), r∗(·),

α̂(·) and Vγ∗(·)) will all be constant for x = [0, x̄]. It is reasonably easy to find ī such that

x̄ ∈ [ īr
N

, (̄i+1)r
N

]; we can suitably code the algorithm to take advantage of this property of

the solution.

Secondly, in trying to find α̂(x), the algorithm is highly sensitive for values of x

close to r. The reason for this is straightforward - any value of γ∗(r) (remember the

interpretation of 1 − γ∗ as a pseudo-coefficient of relative risk aversion) will satisfy the

Bellman equation for state x = r because in this state the agent’s entire wealth is put into

the consumption perpetuity, leaving nothing to be potentially invested in the risky asset.

Consequently, the exact value assigned to α̂(r) is also irrelevant, since it is a proportion of a

zero residual amount. To compute the expectation of the next-step value function, we use

numerical integration. For any ratio x, the value function Vγ∗(x) is calculated using a γ∗(x)

value obtained by linear interpolation. Experimenting with the interpolation of the value

function between the last few (approximately 5−10 in number) ratios evaluated, we found

that the α̂(·) values vary in either direction from the otherwise flat behavior displayed

over the preceding values of x. After having studied several interpolation schemes over

the ending evaluated ratios, we decided to force α̂(·) values to stay constant over these

ratios and find appropriate γ∗(·) values that satisfy the Bellman equation for those states.

The effects are negligible - after 10 iterations, the variations in γ∗(·) between different

schemes are of the order of 10−6 and the variations in the value function Vγ∗(·) between

different schemes are of the order of 10−4 % - and these variations grow smaller with each

iteration.
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Figure 2.1. Evolution of γ∗ and α̂ curves
r = 4%, µ = 6%, σ = 30%, δ = 2%, C0− = 0, 1 − γ = 1.5, τ = 1 yr,
N = 100

Returning to the results of the iteration scheme as shown in figure (2.1), the first

iteration is the initialization of the γ∗ curve to its continuous-time counterpart and is

represented by the constant line at the bottom of figure (2.1(a)). As we go through the



38

iterations, the γ∗ curve rises and takes on a particular shape, which we discuss below. The

convergence is fairly quick - by the tenth iteration, the change in the value of γ∗ at each

evaluated ratio is smaller than 10−4. This corresponds to a change in the value function

of the order of 10−1 %. Figure (2.1(b)) shows the final ten iterations - at this stage the

changes in the γ∗ curve at each evaluated ratio are of the order of 10−5 with the corre-

sponding change in the value function being of the order of 10−3 %. Figure (2.1(c))shows

the γ∗(·) function after the hundredth iteration is completed. Figures (2.1(d)), (2.1(e))

and (2.1(f)) show the corresponding evolution of the α̂ curve over iterations 1 through

100, 91 through 100 and the final iteration respectively. Again, we see a quick convergence

rate with the last ten iterations showing very little change.

We will now attempt to explain the shape of the γ∗(·) and α̂(·) curves, as seen in

figures (2.1(c)) and (2.1(f)) respectively. The explanation is based on the following key

factor:

The probability Q(x), when the current state is x, that during the next time interval,

the agent’s wealth rises to a level where it would be optimal to increase the consumption

rate.

The corresponding intermediate state x̃ would be lower in value than r∗(x̃). Since

this state x̃ would be achieved during the time interval and not at a decision epoch, the

agent would be unable to actually implement an increase in the consumption rate. In

some sense, this would be a lost opportunity and therefore the agent faces a potential

loss in value. This is the fundamental impact of switching to a discrete-time framework

from a continuous-time framework and drives all distinctions between the two. Since this

probability Q(x) is adapted, it impacts our optimal consumption and investment policy
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through the functions γ∗(·), r∗(·) and α̂(·). The agent can counter this negative influence

in two ways - by consuming at a higher rate upfront and by reducing her level of risk

aversion for the amount left over once the consumption perpetuity is guaranteed. At

x = r, the consumption at each decision epoch is exactly rw and all of the agent’s wealth

is invested in the risk-free asset. Since 1
r

is the perpetuity factor, the wealth level will

remain constant at w for all subsequent decision epochs. Thus, Q(r) = 0. Also, as pointed

out earlier, the exact values of γ∗(r) and α̂(r) are irrelevant since the Bellman equation

for x = r will be satisfied by any value of γ∗(r), and α̂(r) is a proportion out of a zero

residual amount. In the above calculations, we have used a fourth order extrapolation

of the γ∗(·) function to determine its value at r, and we have assumed that α̂(·) stays

constant near r, as indicated by α̂ values for preceding ratios. For γ∗(r), we could also

leave its value to be equal to the corresponding constant in the continuous time case.

This would be consistent with the fact that Q(r) = 0 - i.e. for x = r, the discrete-time

framework does not lead to any potential loss in value.

Q(x) depends on three things - the amount left over after guaranteeing the consump-

tion perpetuity, the proportion of this invested in the risky asset (α̂) and the ideal fraction

of wealth to be consumed (r∗). As we lower the value of x from r, the amount left over

after guaranteeing the prevailing consumption rate increases. This increase dominates

any change in α̂(x) (which is more or less constant for this range of x values). As we see

in figure (2.1(c)), γ∗(x) increases as x decreases from r. Since r∗(x) is a positive linear

transform of γ∗(x), r∗(x) increases as x decreases. The net effect is that Q(x) increases

as x decreases from r, and the agent counters the increased potential loss in value by

• increasing the ideal fraction r∗(x) of wealth to be consumed;
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• taking on a riskier investment policy, i.e. lowering her risk aversion (1 − γ∗(x))

for the wealth remaining once her consumption perpetuity is guaranteed.

The key to understanding the impact of shifting to the discrete-time framework lies in

the combined effect of the above actions - although the investment policy is riskier, it is

being applied to a lower residual amount after guaranteeing the consumption perpetuity,

and the net result is higher upfront consumption and a lower net proportion invested

in the risky asset. All else being equal, the agent, therefore, has a more conservative

approach to her situation in the discrete-time framework, as one would expect.

For values of x close to r, the ratio of consumption rate to wealth is close to the

maximum possible (r). We expect that the ideal ratio of consumption rate to wealth

r∗(x) for these states will be lower than x since otherwise we would be forced to increase

x even further. So even though r∗(x) is increasing, the agent is not able to achieve this

ideal consumption-to-wealth ratio right away. That begets the question - when can the

agent increase her consumption rate? It is reasonable to expect r∗ > 0 for all feasible

values of x - in fact, it is a direct consequence of equation (2.20) and γ∗ > γ (as established

in A-9). Therefore, given feasibility, we must have some x = x̄ > 0 such that x̄ = r∗(x̄) -

this is exactly the value of x corresponding to the kink in the curves.

We now shift our attention to the portion of the curves where x < x̄. For any state

x < x̄, the previous step consumption c− is less than r∗(x)w; hence, the consumption

must immediately be increased to r∗(x)w, or alternatively, x must be increased to r∗(x),

but x cannot be increased to any point y where y < r∗(y), since the optimal policy would

immediately require an increase in x to a value higher than y. Therefore, x must be
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increased to x̄ since x̄ = r∗(x̄). A direct consequence of this is that

r∗(x) = r∗(x̄) = x̄ ∀ x < x̄ (2.32)

and similarly

γ∗(x) = γ∗(x̄) ∀ x < x̄ (2.33)

α̂(x) = α̂(x̄) ∀ x < x̄ (2.34)

and the corresponding curves are all flat for x ∈ [0, x̄]. The final point of interest is with

respect to the α̂ curve

Observation 3. The α̂ curve seems to be converging to a constant value for all x ∈

(x̄, r].

This is certainly a plausible result under the CRRA utility scheme and bears similar-

ities to the solution in Dybvig [1995], as well as in Merton [1969] and Samuelson [1969].

It might be possible to utilize this form of the α̂ curve and add more structure into the

solution - this is something that warrants further investigation.

2.3. Computational Results

In this section we discuss the results of simulation runs. We use this to illustrate some

of the qualitative differences between three consumption and investment strategies:
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• Discrete Time Unconstrained (DT-U): This is the classic Samuelson policy, which

is optimal for the discrete-time consumption and investment problem without any

constraints on the consumption process;

• Discrete Time Constrained(DT-C): This is the policy derived in this paper, which

is optimal for the discrete-time consumption and investment problem when the

consumption process is required to be non-decreasing;

• Continuous Time Constrained (CT-C): This is an approximate solution to the

discrete-time problem based on the Dybvig policy, which is optimal for the

continuous-time version of the problem.

For CT-C, we are applying the continuous-time result in a discrete-time setting. To

do this, we assume that the consumption rate for this policy is fixed at each decision

epoch for the next time interval. This rate is fixed according to the policy that is optimal

for the continuous-time version of the problem. Clearly, CT-C is a non-optimal solution

to our problem. Moreover, the problem addressed in this paper can be thought of as the

Samuelson problem with an additional constraint. Consequently, we would expect that

the objective function values are (in an expected value or mean sense) the highest for

DT-U, smaller for DT-C and the lowest for CT-C when these policies are applied to a

discrete-time setting. We would also expect a strong correlation between the results for

the DT-C and CT-C strategies.

2.3.1. Results from Multiple Simulation Runs

Figure (2.2) shows a comparative histogram of 10,000 simulation runs. For each run,

the stock price is simulated over a period of 100 years, and each of the three strategies is
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applied over this time horizon. The histogram represents the distribution of the discounted

sum of utility - a proxy for the objective function.
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Figure 2.2. Results from 10,000 Sample Runs
r = 4%, µ = 6%, σ = 30%, δ = 2%, C0− = 0, 1 − γ = 1.5, τ = 1 yr,
N = 100

The differences in utility among the three strategies can be characterized in terms of

the relative efficiency of the poorer strategy with respect to the better one. The relative

efficiency of the poorer strategy is the fraction of its initial wealth that the better strategy

would require to match the poorer strategy’s expected discounted sum of utility. In the

context of our current problem, we can also define relative efficiency to be the ratio of the

certainty equivalent consumption rate corresponding to the expected discounted sum of

utility for the poorer strategy to that of the better one. The two definitions are consistent

with each other and yield the same numerical results. This measure is used extensively
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in Rogers [2001], who considers the effect of time lags on the unconstrained consumption-

investment decision.

With parameter values set as in figure (2.2), the CE consumption rates for the DT-U,

DT-C and CT-C strategies are 5.72%, 5.65% and 5.57% of initial wealth respectively.

These correspond to relative efficiencies of 98.9% (DT-C relative to DT-U), 98.5% (CT-C

relative to DT-C) and 97.4% (CT-C relative to DT-U). As expected, the DT-U strategy

has the best performance, but it also has the highest volatility. While the DT-U strategy

can perform well compared to DT-C and CT-C, it can also perform poorly. The CT-C

and DT-C strategies have a smaller range of results. In essence, both are conservative

strategies - a direct result of the non-decreasing consumption constraint. The intuition

for these results is further developed in the following sub-section (2.3.2).

Similar results are obtained for parameter values as set in a particular example in

Rogers (r = 10%, µ = 18%, σ = 35%, δ = 10%, C0− = 0, 1 − γ = 4, τ = 0.6 yrs). The

CE consumption rates for the DT-U, DT-C and CT-C strategies are 10.61%, 10.23% and

10.03% of initial wealth respectively. These correspond to relative efficiencies of 96.4%

(DT-C relative to DT-U), 98.1% (CT-C relative to DT-C) and 94.5% (CT-C relative to

DT-U). In comparison, with the same parameter values Rogers reports a relative efficiency

of 96.4% when the unconstrained discrete-time solution is compared to the unconstrained

continuous-time solution.

Rogers observed that the utility loss from the time lag in the discrete time setting was

smaller than the potential loss from incorrect parameter estimates, but that the time lag

effect was much stronger for consumption investors than for wealth-only investors. Our
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results above indicate that habit formation in the form of a consumption constraint may

increase the value of frequent trading opportunities even further than consumption alone.

Similar analysis for parameter values set in Dybvig [1995] was aborted because in

the continuous-time case those parameter values result in borrowing from the wealth set

aside for the consumption perpetuity which can create infeasibilities in the discrete-time

setting. Our discrete-time solution handles this by not allow borrowing due to the chance

of ruin over any non-zero period of time.

2.3.2. Results under Two Contrary Scenarios

Figures (2.3(a)) and (2.3(b)) show two different scenarios A and B where, over a period

of 100 years, the risky asset increased significantly in value and dropped significantly in

value respectively. Figures (2.4(a)), (2.5(a)), (2.6(a)) and (2.4(b)), (2.5(b)), (2.6(b)) show

the total wealth, consumption and utility processes over these 100 years for each of the

two scenarios.

Under scenario A, where the risky asset value maintains an increasing trend, the

non-decreasing consumption constraint will frequently be non-binding in the sense that

the ideal consumption rate at any decision epoch will typically be higher than the rate

established at the previous decision epoch. Since DT-U is the optimal solution to the

unconstrained problem, its performance can be expected to be better than that of either

DT-C or CT-C. Under scenario B, the protection from the non-decreasing consumption

constraint kicks in - while the consumption rate under the DT-U strategy has significant

downside, both the DT-C and the CT-C avoid this pitfall and outperform the DT-U

strategy. The DT-C strategy calls for a higher fraction of the wealth to be consumed up
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front and a lower fraction of the remaining wealth to be invested in the risky asset, as

compared to CT-C. In some sense, the CT-C approximation sacrifices some immediate

consumption for an increase in the potential for future gains - it does this by investing a

higher fraction of the higher amount left over (after guaranteeing the lower consumption

rate) in the risky asset. Consequently, it is feasible for CT-C to perform better than

DT-C. However, under most scenarios, DT-C will outperform CT-C, which we expect

since it is the optimal solution to the constrained problem. One can see that the DT-C

and CT-C strategies are conservative in nature when compared with the DT-U strategy,

the results of which vary significantly under these two opposing scenarios. In comparison

with CT-C, DT-C not only provides more upward potential for consumption (and hence

utility) but also provides better protection against downturns.
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Figure 2.3. Stock prices over 100 years
r = 4%, µ = 6%, σ = 30%, δ = 2%, C0− = 0, 1 − γ = 1.5, τ = 1 yr,
N = 100
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Figure 2.4. Total wealth over 100 years
r = 4%, µ = 6%, σ = 30%, δ = 2%, C0− = 0, 1 − γ = 1.5, τ = 1 yr,
N = 100
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Figure 2.5. Consumption rate over 100 years
r = 4%, µ = 6%, σ = 30%, δ = 2%, C0− = 0, 1 − γ = 1.5, τ = 1 yr,
N = 100
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Figure 2.6. Utility over 100 years
r = 4%, µ = 6%, σ = 30%, δ = 2%, C0− = 0, 1 − γ = 1.5, τ = 1 yr,
N = 100
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2.3.3. Impact of the Length of the Time Interval between Decision Epochs

We now turn to examining the impact of the length of the time interval τ on our optimal

policy. Using the iteration scheme of Section 2.2.6, we compute the γ∗(·), r∗(·) and α̂(·)

curves for four different values of τ and compare them to the corresponding constants of

the continuous-time case. The parameter values used are r = 4%, µ = 6%, σ = 30%,

δ = 2% and 1 − γ = 1.5. 101 ratios were evaluated over 100 iterations. The results for

γ∗(·), r∗(·) and α̂(·) are shown in figures (2.7(a)), (2.7(b)) and (2.8(a)) respectively.
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Figure 2.7. Impact of the length of time interval τ on γ∗ and r∗

r = 4%, µ = 6%, σ = 30%, δ = 2%, C0− = 0, 1 − γ = 1.5, N = 100

What are the implications of these results? First, as τ increases, the kink in the γ∗(·)

curve (and consequently in the r∗(·) and α̂(·) curves) shifts to the left - i.e., x̄ decreases

with an increase in τ . This implies that the ideal fraction of wealth to be consumed is

decreasing with an increase in τ .

For the same value of the ratio x, the value of γ∗ increases with τ . At first this

seems odd - why would the risk aversion (1 − γ∗) of the agent for the wealth left after

guaranteeing consumption drop with a longer time interval between decision epochs? This
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can be understood by looking at the r∗ curve. For a given value of x, r∗(x) increases with τ

since it is directly proportional to γ∗(x) (see equation (2.20)). Consequently, as the length

of the time interval increases, the minimum fraction of wealth being consumed increases as

well. The amount required to guarantee this higher rate of consumption also increases and

the amount left over for reinvestment is lower for higher values of τ . Now that the agent

has locked in a consumption stream at a particular rate (and thereby a utility stream at a

corresponding rate), the only way for the agent to increase the utility rate is to generate

enough wealth over the subsequent time periods to be able to increase the consumption

rate while maintaining the optimal balance between the current consumption rate and the

potential for future increases in it. The lower level of risk aversion provides the counter-

balance to the higher minimum consumption rate (per unit wealth) that comes with the

increase in the length of the time interval.

To complete the picture, we examine what this implies for the investment in the risky

asset. As can be seen from figure (2.8(a)), the α̂(·) curve is lowered with an increase in τ .

Thus, as expected, with an increase in the length of the time interval a lower fraction of

the wealth available for reinvestment is put into the risky asset. Since α̂ is a proportion

of the total wealth that also includes the perpetuity to maintain previous consumption,

we also consider the fraction of wealth after setting aside the perpetuity in the riskfree

asset as the net proportion of wealth invested in the risky asset α(·) for varying lengths of

the time interval. α(·) can be evaluated using a single-state variant of equation (2.21)

α(x) = α̂(x)

(

1 − max(x, r∗(x))

r

)

(2.35)
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The above-mentioned comparison is performed in figures (2.8(a)) and (2.8(b)) - we see

that the net proportion invested in the risky asset decreases with an increase in the length

of the time interval for all feasible states, which is in line with our intuition. It is to be

noted that in the states where the previous step consumption is high relative to what we

would ideally prefer give our current wealth (i.e., for x > x̄), the investment levels in the

risky asset are bunched closer together - however, even for these states the net proportion

in risky asset is lower as τ increases.
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Figure 2.8. Impact of the length of time interval τ on α̂ and α
r = 4%, µ = 6%, σ = 30%, δ = 2%, C0− = 0, 1 − γ = 1.5, N = 100

Finally, as τ decreases to 0, both the γ∗(·) and α̂(·) curves flatten out and converge

to the corresponding constant values of the continuous-time case, as we would expect.
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2.3.4. Impact of Negative Skewness and Leptokurtosis

We now examine the possibility of the return distribution of our risky asset possessing neg-

ative skewness and leptokurtocity. As we discussed in the introduction, Brooks and Kat

[2001] show that the distributions of hedge fund returns typically possess negative skew-

ness and excess kurtosis. If such was the case for the risky asset under our consideration,

one could still use the CT-C strategy as an approximation, but the approximation would

ignore both the time lag and the lack of normality. We conduct the following analysis

to ascertain whether the approximation performs worse than it did when the risky asset

returns were normally distributed as would be expected given the normality assumption

for the continuous-time result. To test this, we employ the Pearson Type IV distribution

as the distribution of the risky asset return. This allows us to compute probability density

function values for numerical integration as well as obtain random draws for simulation

purposes by simply specifying the mean, standard deviation, skewness and kurtosis of the

return distribution. Heinrich [2004] provides an excellent guide to the details of using the

Pearson Type IV distribution in the above manner.

Table 2.2 summarizes our findings. To measure the performance of the approximation,

instead of looking at the expected discounted sum of utilities (our objective function), we

focus on the lower percentiles of the corresponding distribution of the discounted sums

of utilities. This provides us with a measure of the downside risk of using the CT-C

approximation.

As seen in the tabulated results, the magnitude of the decrease in the objective function

value is greater (both in absolute and relative terms) when the risky asset return has

negative skewness and excess kurtosis as compared to the case of normally distributed
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risky asset returns. This ties in with our intuition that the CT-C approximation would

afford us a lowered level of downside protection if the risky asset were to have a left-skewed

leptokurtic return distribution.
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Return Distribution = Normal Return Distribution = Pearson Type IV

Certainty Equivalent Magnitude of Decrease Certainty Equivalent Magnitude of Decrease
Consumption Perpetuity Rate caused by Consumption Perpetuity Rate caused by

(% of W0 per yr) CT-C approximation (% of W0 per yr) CT-C approximation

DT-C CT-C Approx. Absolute Relative DT-C CT-C Approx. Absolute Relative

1 %ile 3.9372% 3.8258% 0.1114% 2.8307% 3.9907% 3.8685% 0.1222% 3.0626%
2 %ile 4.1051% 3.9928% 0.1123% 2.7361% 4.1448% 4.0214% 0.1234% 2.9771%
5 %ile 4.3570% 4.2452% 0.1118% 2.5654% 4.3926% 4.2671% 0.1255% 2.8568%
10 %ile 4.6080% 4.4943% 0.1136% 2.4658% 4.6531% 4.5333% 0.1197% 2.5727%
20 %ile 4.9321% 4.8301% 0.1020% 2.0678% 4.9672% 4.8582% 0.1090% 2.1950%

Table 2.2. Impact of negative skewness and leptokurtosis in risky asset returns
r = 4%, µ = 6%, σ = 30%, δ = 2%, C0− = 0, 1 − γ = 1.5, τ = 1 yr, N = 100
For the Pearson Type IV return distribution,

√
β1 = −0.25 and β2 = 4

The certainty equivalent consumption perpetuity rate is the fixed rate of perpetual consumption that
will give us a von Neumann - Morgenstern utility equal to the objective function of the optimal
solution. The above percentiles come from a simulated distribution.
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2.4. Conclusion

We have presented a solution method for the discrete-time consumption and invest-

ment optimization problem where the consumption rate process is constrained to be non-

decreasing. We first prove that the value function for our problem must have a specific

form that depends on an unknown function of a bounded state variable, and then use an

iterative procedure to complete the solution.

The key element of the solution is to find a function γ∗(·) where 1 − γ∗(·) represents

the risk aversion of the agent applied specifically to the wealth remaining after the current

consumption rate level has been guaranteed, given a particular state of our system. We

have proposed an iterative method to find γ∗(·), and, as part of the method, we also find

functions r∗(·) and α̂(·), the values of which rely on the value of γ∗(·) for the same state.

The structure of the solution is intuitive. Feasibility of the problem is easily checked -

does the agent have enough wealth to guarantee herself the current consumption rate by

putting all her wealth into the risk-free asset? Once we have feasibility, the agent achieves

an optimal outcome as follows:

• At each decision epoch, the agent decides on the current consumption rate based

on her current wealth and the consumption rate at the previous step (our state

variables). This is done by using the ratcheting formula (A-14) which uses the

function r∗(·).

• Next, the agent puts an amount in the risk-free asset that is equivalent to the

present value of a perpetuity stream with a payout at the current consumption

rate.
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• Now, based on the current state of the system, a proportion α̂(·) of the remaining

wealth is put in the risky asset, with the rest going into the risk-free asset. This

completes the optimal decision process at a particular decision epoch.

As we can see from the simulation runs, the non-decreasing consumption constraint

leads to a conservative approach being adopted by the agent which offers significant

downside protection without significant losses in certainty-equivalent consumption. The

continuous-time solution approximation provides good performance when risky asset val-

ues increase but may perform poorly with mediocre or poor risky asset returns. The result

is that the optimal discrete-time solution can obtain relatively large gains in certainty-

equivalent consumption over the continuous-time solution approximation. This observa-

tion implies that investors should beware of using continuous-time approximations for

investments that only have limited liquidity.

The impact of an increase in the time interval between decision epochs (τ) is as

expected - an increase in the length of the time interval is seen to lower the ideal fraction

of wealth consumed as well as decrease the net proportion of wealth invested in the

risky asset for any feasible state. Note that because of the non-decreasing consumption

constraint, it is not always feasible to be at a state where this fraction is at the ideal

level. Also, with an increase in the length of the time interval, the performance of the

continuous-time solution as an approximation to the discrete-time case becomes worse.

Finally, for the case of negatively skewed leptokurtic risky asset return distributions,

we have demonstrated the lowered effectiveness of the continuous-time approximation in

providing protection against downside risk. In such cases, the ability of our methodology

to work with any reasonable asset return distribution proves very useful. This is especially
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of appeal to institutional investors in hedge funds that may have both limited trading

opportunities and non-normal returns.

We could consider some other form of habit formation but we anticipate results that

are very similar to those derived in this paper. As an example, the solution method

designed in this paper would also work when the consumption rate, at the beginning of a

new time interval, is allowed to decrease by a specific relative amount, say 10%. In this

case, we can still calculate the amount we need to set aside in a perpetuity to guarantee

such a consumption stream and the solution follows. But clearly, this is not as conservative

a strategy as non-decreasing consumption, thereby the loss of utility from this method of

smoothing consumption can not be more than that from forcing consumption to be non-

decreasing. Thus, a broader implication of this paper, when considered in conjunction

with Rogers [2001], is that the limitations on trading frequency can have a greater impact

in utility terms than smoothing of consumption.

From a technical standpoint, we have devised a novel method for solving dynamic

programming problems which have no closed-form solution. While we do not present the

method in a formal fashion, we anticipate that a similar approach could apply to a number

of dynamic programming problems where some intuition in regards to the structure of

the optimal solution is available but not fully exploited.
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CHAPTER 3

Hedge Funds: Optimal Portfolio Allocation, the Lockup

Premium and the Information Premium

Abstract

We present a systematic approach to the analysis of hedge funds as components of an

investor’s portfolio. The main differentiator for hedge funds as compared to equities is

that they typically require investor funds to be locked up for a pre-specified duration. In

this regard, investments in private equity also face similar restrictions. This is illiquidity

of a very specific form and has an impact on the attractiveness of the hedge funds as

investable assets.

We first provide a framework for the calculation of the hedge fund lockup premium

given the ability to calculate the optimal allocation to the hedge fund. Then we study

the optimal structure for a portfolio consisting of a bond, a stock and a hedge fund under

various settings. The hedge fund lockup premium can then be easily calculated under any

of these settings using the framework provided.

Additionally, we introduce the concept of an information premium, which can be

thought of as compensation required for a lack of continuously available hedge fund share

price information. We present a framework for the calculation of the information premium

as well.
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3.1. Introduction

In recent years, institutional investors’ holdings in hedge funds and private equity have

increased significantly. While promising high returns, they also typically impose several

restrictions on the investors. The most significant one requires investor funds to be locked

up for a pre-specified duration. This requirement represents illiquidity of a very specific

form. Longstaff [2001] studies the impact of illiquidity on optimal portfolio choice and

the price of the asset. However, the setting is one with limited liquidity whereas we have

to deal with not being allowed to trade an asset at all except at specific points in time.

There are a couple of aspects that we would like to study with respect to the lockup

restriction. First, it is clear that this imposed illiquidity changes the allocation to the

hedge fund as part of an optimal portfolio structure. We will specifically examine a case

where we have three assets available to us for investment - a bond, a stock and a hedge

fund. The positions in the bond and the stock can be changed continuously, however the

position in the hedge fund can only be altered at pre-specified intervals of time.

Within this general setting we will examine the impact of including consumption, as

well as describe a method to calculate the value of hedge fund share price information.

Consumption is important in the context of institutional investors such as pension funds

and university endowments, whereas the no-consumption case is a better description of

the setting in which proprietary trading desks or fund of funds operate. The value of hedge

fund share price information is important in analyzing the impact of the typical secrecy

that surrounds hedge fund performance reporting. We will compare the case where the

hedge fund price is available only just before a decision has to be made on adjusting the
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position in the hedge fund to the default situation where the hedge fund share price is

always known.

The second aspect we want to study is the premium associated with the lockup restric-

tion, termed the lockup premium. Aragon [2007] demonstrates that the excess returns for

funds with lockup restrictions are significantly higher than those for funds without these

restrictions. Calculating the lockup premium allows potential investors to check whether

the lockup requirement is justified for a particular hedge fund. Derman [2007] and Der-

man et al. [2007] represent recent attempts at computing this premium. However, there

are several issues in their approach. First, these papers rely on persistence among hedge

fund returns (the existence of which is quite controversial in nature). Second, they seek

to calculate the lockup premium only for extended lockup periods relative to the typical

one-year lockup requirement. Finally, they do not consider the presence of equities as an

alternative investment and by doing so they essentially restrict the applicability of their

approach to fund of funds. Our analysis includes a consideration of bonds and equities in

addition to hedge funds, which represents a more typical portfolio structure for pension

funds and endowments. We will not, however, consider survivorship among hedge funds,

something that Derman [2007] and Derman et al. [2007] both consider.

In §3.2, we present a framework for computing the lockup premium for hedge funds,

as well as an easier-to-calculate alternative that we call the lockup penalty. In §3.3 and

§3.5, we present methods to obtain optimal hedge fund allocations under considerations

of the utility of terminal wealth and consumption respectively. In §3.4, a method for

computing the optimal allocation for the hedge fund to maximize terminal wealth utility

is presented, but this time with the hedge fund share price information being available
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only just before the decision epoch where adjustments to the hedge fund position can be

made. Juxtaposing this with §3.3, it is possible to determine the value of hedge fund

share price information being continuously available (dubbed the information premium),

or correspondingly the information penalty that should be assessed on hedge funds that

do not make this information readily available. This analysis is presented only for the non-

consumption case, which as mentioned before is the appropriate setting for fund of funds

and proprietary traders. However, it is easy to extend this concept to the consumption

case as well, making it applicable for pension funds and university endowments.

3.2. A Framework for Calculating the Hedge Fund Lockup Premium

In this section we present the basic framework for calculating the lockup premium

for the hedge fund. First, consider a scenario where there is no lockup restriction on the

hedge fund. In this case, the hedge fund is like a typical stock (except that one can not

take short positions in it) and the standard rules of portfolio optimization apply and the

hedge fund would receive an allocation of αH . An example of how to obtain αH would be

to utilize the Merton [1969] solution to the portfolio optimization problem.

The next step would be to solve for the optimal allocation to the hedge fund α̂H when

the lockup requirement is in place. Clearly, the hedge fund is no longer as attractive

an asset as it was without the restriction, and therefore α̂H ≤ αH , keeping the problem

parameters the same across the two scenarios.

Once we can obtain values for αH and α̂H , to compute the lockup premium we pose

the following question: at what value µ+
H of the expected hedge fund return µH would the

optimal allocation to the hedge fund be αH in spite of the lockup being enforced? Or in
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other words, what is the value µ+
H such that when µH = µ+

H , we have α̂H = αH , where

α̂H is obtained by whatever method is used to solve the restricted problem?

Upon calculating this value, the lockup premium for the hedge fund is given by

p+
l = µ+

H − µH (3.1)

Since α̂H ≤ αH , we expect that µ+
H ≥ µH and thus p+

H ≥ 0.

The process for finding α̂H might not be in of itself a problem, but it is likely (as we

will see in subsequent sections), it is probably not something that is amenable to easily

find µ+
H given a specific value that is required of α̂H (αH). However, we expect that in

most problem setups this would require a simple iterative process, along the lines of a line

search algorithm.

An alternative approach is to compute a lockup penalty instead of a lockup premium.

The lockup penalty can be thought of as a deduction to be applied to the expected return

for the hedge fund to account for its lockup restrictions. Once we can obtain values for

αH and α̂H , we pose the following question: at what value µ−
H of the expected hedge

fund return µH would the optimal allocation to the hedge fund be α̂H under the non-

restricted setting? Or in other words, what is the value µ−
H such that when µH = µ−

H ,

we have αH = α̂H , where αH is obtained by the Merton solution or an equivalent (i.e.

non-restricted) method?

Upon calculating this value, the lockup penalty for the hedge fund is given by

p−l = µ−
H − µH (3.2)

Since α̂H ≤ αH , we expect that µ−
H ≤ µH and thus p−H ≤ 0.
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Finding µ−
H is relatively straightforward for the Merton framework, or equivalently the

mean-variance framework with risk aversion. Because of this, some practitioners might

find it easier to deal with the lockup penalty rather than the lockup premium.

3.3. Problem I: Maximizing the Utility of Terminal Wealth with Hedge Fund

Price Information Available

In this section, we consider the problem of maximizing the utility of terminal wealth.

Initial wealth can be invested in a bond, a stock or a hedge fund, with the hedge fund

requiring a lockup period of T . Hedge fund share price information is assumed to be

continuously available.

Let X(t) : t ≥ 0 be the wealth process and H(t) : t ≥ 0 be the hedge fund investment

value process. Let r be the risk-free rate, µS and µH the expected rates of return on the

stock and the hedge fund and σS and σH the stock and hedge fund volatilities. Define

νS = µS −r and νH = µH −r. h(t) ≡ H(t)
X(t)

(h in brief) is the fraction of total wealth in the

hedge fund at time t and βS(t) (β in brief) is the fraction of total wealth invested in the

stock at time t. β is a decision variable at all times t ≥ 0, whereas h is a decision variable

only at time t = 0. Correspondingly, an alternative notation for h(0) is αH . Finally, our

planning horizon is T , the same as the duration of the lockup period.

The stochastic differential equations for our problem are

dH = µHHdt + σHHdWH = (νH + r)Hdt + σHHdWH (3.3)
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and

dX = (rX + βνSX + νHH)dt + σSβXdWS + σHHdWH (3.4)

where WH and WS are Wiener processes with dWHdWS = ρdt. We want to maximize

E

[

1
γ
X(T )γ

]

.

Using a result in §8.5 of Arnold [1974], it can be shown that this system of stochastic

differential equations have no closed-form solution. Equation (3.3) does however have a

closed-form solution by itself.

Now we proceed in a fashion similar to that in Kahl et al. [2003]. Since X and H

form a joint Markov process, the value-to-go function J(X, H, t) satisfies the following

Hamilton-Jacobi-Bellman (HJB) equation

max
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Sβ2X2 + 2ρσSσHβXH + σ2
HH2)JXX
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HH2JHH + (ρσSσHβXH + σ2
HH2)JXH

+(rX + βνSX + νHH)JX + (r + νH)HJH + Jt













= 0 (3.5)

The first order optimality condition is βσ2
SX2JXX +ρσSσHXHJXX +ρσSσHXHJXH +

νSXJX = 0, thus

β∗ =
−νS

σ2
S

JX

XJXX

− σSH

σ2
S

H

X

JXH

JXX

− σSH

σ2
S

H

X
(3.6)

Note that this expression for β∗ is the same as that for φ∗ in Appendix A of Kahl et al.

[2003], even though they consider consumption. Although it may lead one to conclude that

including consumption has no impact on the optimal portfolio strategy, this is incorrect

- the value functions J will be different in the two cases.
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We conjecture that value-to-go function is of the form

J(X, H, t) =
Xγ

γ
V (h, t) (3.7)

We can verify the validity of this conjecture by rewriting the HJB equation in terms

of this function V (h, t) and checking that the boundary and terminal conditions are free

of X.

We first compute the partial derivatives JX , JXX and JXH in terms of h and the

function V (h, t) and its partial derivatives Vh and Vhh as

JX =
1

γ
Xγ−1(−hVh + γV ) (3.8)

JXX =
1

γ
Xγ−2(h2Vhh + 2(1 − γ)hVh + γ(γ − 1)V ) (3.9)

JXH =
1

γ
Xγ−2(−hVhh + (γ − 1)Vh) (3.10)

We can now write β∗ in terms of these quantities

β∗ =

σSH

σ2
S

h2Vhh +
(

νS

σ2
S

+ (1 − γ)σSH

σ2
S

)

hVh − γ νS

σ2
S

V

h2Vhh + 2(1 − γ)hVh − γ(1 − γ)V
− σSH

σ2
S

h (3.11)

Note that the equivalent formula in Kahl et al. [2003] contains a small typographical

error.

Our next step is to convert the HJB into a form that uses h and the partial derivatives

of the function V (h, t). To do this we also need JH , JHH and Jt in terms of V (h, t) and
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its partial derivatives

JH =
Xγ−1

γ
Vh (3.12)

JHH =
Xγ−2

γ
Vhh (3.13)

Jt =
Xγ

γ
Vt (3.14)

Substituting the partial derivatives of J(X, H, t) into the HJB gives us

max



































1
2
(σ2

Sβ2X2 + 2ρσSσHβXH + σ2
HH2) 1

γ
Xγ−2

(h2Vhh + 2(1 − γ)hVh − γ(1 − γ)V )

+1
2
σ2

HH2 Xγ−2

γ
Vhh + (ρσSσHβXH + σ2

HH2) 1
γ
Xγ−2

(−hVhh − (1 − γ)Vh)

+(rX + βνSX + νHH) 1
γ
Xγ−1(−hVh + γV )

+(r + νH)H Xγ−1

γ
Vh + Xγ

γ
Vt



































= 0
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Dividing through by Xγ

γ
and rearranging the terms gives us the HJB equation in terms

of the function V (h, t)

max















































1
2
(σ2

Sβ2h2 + 2σSHβh3 + σ2
Hh4)

+1
2
σ2

Hh2 − (σSHβh2 + σ2
Hh3)






Vhh

+













(1 − γ)(σ2
Sβ2h + 2σSHβh2 + σ2

Hh3)

−(1 − γ)(σSHβh + σ2
Hh2)

−(rh + βνSh + νHh2) + (rh + νHh)













Vh

+Vt +







−γ(1 − γ)1
2
(σ2

Sβ2

+2σSHβh + σ2
Hh2) + γ(r + βνS + νHh)






V









































= 0 (3.15)

It is easy to confirm the validity of equation(3.11) by checking it against the value of

β∗ that would be implied by equation (3.15), thereby confirming the typographical error

in the formula in Kahl et al. [2003].

The maximum in equation (3.15) holds when β = β∗ and therefore







1
2
(σ2

S(β∗)2h2 + 2σSHβ∗h3 + σ2
Hh4)

+1
2
σ2

Hh2 − (σSHβ∗h2 + σ2
Hh3)






Vhh

+













(1 − γ)(σ2
S(β∗)2h + 2σSHβ∗h2 + σ2

Hh3)

−(1 − γ)(σSHβ∗h + σ2
Hh2)

−(rh + β∗νSh + νHh2) + (rh + νHh)













Vh

+Vt +







−γ(1 − γ)1
2
(σ2

S(β∗)2 + 2σSHβ∗h + σ2
Hh2)

+γ(r + β∗νS + νHh)






V = 0

(3.16)
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We write this in brief as

f1(h, β∗)Vhh + f2(h, β∗)Vh + Vt + f3(h, β∗)V = 0 (3.17)

where

f1(h, β∗) = 1
2
(σ2

S(β∗)2h2 + 2σSHβ∗h3 + σ2
Hh4)

+1
2
σ2

Hh2 − (σSHβ∗h2 + σ2
Hh3)

(3.18)

f2(h, β∗) = (1 − γ)(σ2
S(β∗)2h + 2σSHβ∗h2 + σ2

Hh3)

−(1 − γ)(σSHβ∗h + σ2
Hh2)

−(rh + β∗νSh + νHh2) + (rh + νHh)

(3.19)

and

f1(h, β∗) = −γ(1 − γ)1
2
(σ2

S(β∗)2 + 2σSHβ∗h + σ2
Hh2)

+γ(r + β∗νS + νHh)
(3.20)

We now set up an implicit finite difference scheme to evaluate the function V (h, t).

Instead of plugging in the expression for β∗ into equation (3.16), we follow Kahl et al.

[2003] in linearizing the HJB equation by evaluating the values of β∗ using the estimated

values of the function V (h, t) and its derivatives at the subsequent time step. As in Kahl

et al. [2003], we ensure the accuracy of the scheme by using extremely small time steps.

We use the following central difference estimates for the partial derivatives of V in h

Vhh(hi, tj) =
1

∆h2
[V (hi+1, tj) − 2V (hi, tj) + V (hi−1, tj)] (3.21)
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Vh(hi, tj) =
1

2∆h
[V (hi+1, tj) − V (hi−1, tj)] (3.22)

and a forward difference estimate for Vt

Vt(hi, tj) =
1

∆t
[V (hi, tj+1) − V (hi, tj)] (3.23)

Inserting these estimates into equation (3.17) and rearranging terms gives us the fol-

lowing set of equations for the interior points of our grid

[

f1(h,β∗)
∆h2 + f2(h,β∗)

2∆h

]

V (hi+1, tj) +
[

−2 f1(h,β∗)
∆h2 − 1

∆t
+ f3(h, β∗)

]

V (hi, tj)

+
[

f1(h,β∗)
∆h2 − f2(h,β∗)

2∆h

]

V (hi−1, tj)] = − 1
∆t

V (hi, tj+1)
(3.24)

As seen later, we know the terminal value of V (h, t), i.e. V (h, T ) is known for all

values of h. Consequently, we will perform a backward recursion to evaluate V (h, t) for

all (h, t) combinations. In the above equation, the single term on the right hand side of

the equation is indexed at time tj+1 and is known. However, the three terms on the left

hand side of the equation are indexed at time tj , are evaluated at different values of h

and are unknown, thus making this an implicit scheme.

We now need to determine the terminal and boundary conditions. At t = T , we have

J(X, H, T ) =
Xγ

T

γ
(3.25)

or equivalently

V (h, T ) = 1 (3.26)
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So at t = T , we can use

V (hi, tNt) = 1 (3.27)

At h1 = 0, the entire wealth of the investor is in the stock and the bond. Since these

two can be traded continuously, the optimal portfolio is obtained using the Merton (1969)

solution, i.e. by maintaining a proportion β∗
M = νS

σ2
S(1−γ)

in the stock. Consequently, the

value function at time t for h1 = 0 is found as follows

J(X, 0, t) = E







Xγ
t

γ
exp







γ(r + β∗
MνS − 1

2
(β∗

M)2σ2
S)(T − t)

+γβ∗
MσS(WS(T ) − WS(t))












(3.28)

and thus

V (0, t) = exp

(

γ(r + β∗
MνS)(T − t) − 1

2
γ(1 − γ)(β∗

M)2σ2
S(T − t)

)

(3.29)

So at h1 = 0, we can use

V (h1, tj) = exp

(

γ(r + β∗
MνS)(T − tj) −

1

2
γ(1 − γ)(β∗

M)2σ2
S(T − tj)

)

(3.30)

Similarly, at hNh
= 1, the entire wealth of the investor is in the hedge fund and stays

there until time T . Consequently, the value function at time t for h1 = 0 is found as

follows

J(X, X, t) = E







Xγ
t

γ
exp







γ(r + νH − 1
2
σ2

H)(T − t)

+γσH(WH(T ) − WH(t))












(3.31)
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and thus

V (1, t) = exp

(

γ(r + νH)(T − t) − 1

2
γ(1 − γ)σ2

H(T − t)

)

(3.32)

So at hNh
= 1, we can use

V (hNh
, tj) = exp

(

γµH(T − tj) −
1

2
γ(1 − γ)σ2

H(T − tj)

)

(3.33)

3.4. Problem II: Maximizing the Utility of Terminal Wealth with Hedge

Fund Price Information Restricted to Decision Epochs

In this section, we consider the problem of maximizing the utility of terminal wealth.

Initial wealth can be invested in a bond, a stock or a hedge fund, with the hedge fund

requiring a lockup period of T . Hedge fund share price information is assumed to be

continuously available.

Let X(t) : t ≥ 0 be the wealth process, H(t) : t ≥ 0 be the hedge fund price process,

as defined in section [3.3]. Their values are unknown for 0 < t < T . Let Ĥ(t) : t ≥ 0

be the estimated hedge fund price, where our estimation process is simply to take the

expected value given all the information at time t in terms of the SBM’s WS and WH . At

time t (0 < t < T ) we know the exact value of WS(t) but know nothing about the value

of WH(s) for 0 < s ≤ t.

The stochastic differential equation for H(t) is:

dH = µHHdt + σHHdWH = (νH + r)Hdt + σHHdWH (3.34)
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or alternatively

dH = µHHdt + ρσHHdWS +
√

1 − ρ2σHHdWI

= (νH + r)Hdt + ρσHHdWS +
√

1 − ρ2σHHdWI

(3.35)

where WI is defined to be orthogonal to WS such that WH = ρWS +
√

1 − ρ2WI . The

solution of this stochastic differential equation is readily available, and H(t) can be written

out as

H(t) = H(0) exp

[(

µH − 1

2
σ2

H

)

t + ρσHWS +
√

1 − ρ2σHWI

]

(3.36)

The estimated value of the hedge fund price at time t can be calculated as follows

Ĥ(t) = E

[

H(0) exp

[(

µH − 1

2
σ2

H

)

t + ρσHWS(t) +
√

1 − ρ2σHWI(t) | WS(t)

]]

= H(0) exp

[(

µH − 1

2
σ2

H

)

t + ρσHWS(t) +
1

2
(1 − ρ2)σ2

Ht

]

Thus

Ĥ(t) = H(0) exp

[(

µH − 1

2
ρ2σ2

H

)

t + ρσHWS(t)

]

(3.37)

Let X̂(t) : t ≥ 0 be the corresponding estimated total wealth process. Then

ĥ =
Ĥ

X̂
(3.38)
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is the estimated fraction of total wealth in the hedge fund at time t with ĥ(0) = h(0) = αH

and βS(t) (β in brief) is the fraction of estimated total wealth invested in the stock at

time t. β is a decision variable at all times t ≥ 0, whereas h is a decision variable only at

time t = 0. Correspondingly, an alternative notation for h(0) is αH . Finally, our planning

horizon is T , i.e. at time t = T , the investor is allowed to adjust the investment in the

hedge fund, and essentially faces the same problem again as at time t = 0.

The stochastic differential equations for our problem are

dĤ = µHĤdt + ρσHĤdWS = (νH + r)Ĥdt + ρσHĤdWS (3.39)

and

dX̂ = (rX̂ + βνSX̂ + νHĤ)dt + (σSβX̂ + ρσHĤ)dWS (3.40)

where WS is a Wiener process. We want to maximize E

[

1
γ
X(T )γ

]

.

Now we proceed in a fashion similar to that in Kahl et al. [2003]. Since X̂ and Ĥ form

a joint Markov process, the value-to-go function J(X̂, Ĥ, t) satisfies the following HJB

equation

max













1
2
(σ2

Sβ2X̂2 + 2ρσSσHβX̂Ĥ + ρ2σ2
HĤ2)JX̂X̂

+1
2
ρ2σ2

HĤ2JĤĤ + (ρσSσHβX̂Ĥ + ρ2σ2
HĤ2)JX̂Ĥ

+(rX̂ + βνSX̂ + νHĤ)JX̂ + (r + νH)ĤJĤ + Jt













= 0 (3.41)
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The first order optimality condition is βσ2
SX̂2JX̂X̂ +ρσSσHX̂ĤJX̂X̂ +ρσSσHX̂ĤJX̂Ĥ +

νSX̂JX̂ = 0, thus

β∗ =
−νS

σ2
S

JX̂

X̂JX̂X̂

− σSH

σ2
S

Ĥ

X̂

JX̂Ĥ

JX̂X̂

− σSH

σ2
S

Ĥ

X̂
(3.42)

Note that this expression for β∗ is similar to that for β∗ in §3.3, except that X and

H have been replaced by X̂ and Ĥ respectively. It is also similar to the expression for φ∗

in Appendix A of Kahl et al. [2003], even though they consider consumption. Again, it is

incorrect to conclude that including consumption has no impact on the optimal portfolio

strategy - in addition to the substitution of X̂ and Ĥ for X and H respectively, the value

functions J will be different in the two cases.

Unfortunately, for this problem there is no clear way of establishing whether the value

function J is in either of the following forms:

J(X̂, Ĥ, t) =
Xγ

γ
V (ĥ, t)

or

J(X̂, Ĥ, t) =
X̂γ

γ
V (ĥ, t)

We are therefore unable to reduce the dimensionality of the HJB equation (3.41).

Now, the maximum in equation (3.41) holds when β = β∗. Thus

1
2
(σ2

Sβ∗2X̂2 + 2ρσSσHβ∗X̂Ĥ + ρ2σ2
HĤ2)JX̂X̂

+1
2
ρ2σ2

HĤ2JĤĤ + (ρσSσHβ∗X̂Ĥ + ρ2σ2
HĤ2)JX̂Ĥ

+(rX̂ + β∗νSX̂ + νHĤ)JX̂ + (r + νH)ĤJĤ + Jt = 0

(3.43)
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In this case, we have to solve for J(X̂, Ĥ, t) by building a grid on a 2-dimensional state

space. Ideally, we would like to use the Alternating Direction Implicit (ADI) scheme (due

to Peaceman and Rachford) in a fashion similar to that described in Brandimarte [2006].

The basic idea is to introduce an intermediate time layer tk− 1
2

when stepping from tk

to tk−1 as part of the backward recursion. The approximation scheme for the partial

derivatives is implicit with respect to one space dimension and explicit with respect to

the other when going from tk to tk− 1
2

and the roles get reversed when going from tk− 1
2

to

tk−1. The net effect is to solve the 2-D problem as a series of 1-D problems. This scheme

allows us to bypass the difficulties inherent in implementing implicit schemes in higher

dimensions.

However, the major difference in our problem with respect to the two-dimensional heat

equation example demonstrated in Brandimarte is that here we have a mixed second-order

derivative JX̂Ĥ . Unfortunately, this can not be eliminated. A second, smaller issue is the

following: the amount estimated to be in the hedge fund Ĥ can not be larger than the total

estimated wealth X̂. Thus, one of the boundaries for our problem is Ĥ = X̂, leading us to

implement a rectangular grid on a two-dimensional feasible state space that is triangular

in shape. To resolve this second issue, we replace Ĥ by ĥ as a state variable. Clearly,

we lose no information by making this change, but the feasible state space now becomes

rectangular, with the bounds on both state variables becoming independent of each other.

Since

JĤ =
Jĥ

X̂
(3.44)
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JĤĤ =
Jĥĥ

X̂2
(3.45)

JX̂Ĥ =
JX̂ĥ

X̂
(3.46)

equation (3.42) becomes

β∗ =
−νS

σ2
S

JX̂

X̂JX̂X̂

− σSH

σ2
S

ĥ
JX̂ĥ

X̂JX̂X̂

− σSH

σ2
S

ĥ (3.47)

and equation (3.43) changes to

1
2
(σ2

Sβ∗2 + 2ρσSσHβ∗ĥ + ρ2σ2
H ĥ2)X̂2JX̂X̂

+1
2
ρ2σ2

H ĥ2Jĥĥ + (ρσSσHβ∗ + ρ2σ2
H ĥ)X̂ĥJX̂ĥ

+(r + β∗νS + νH ĥ)X̂JX̂ + (r + νH)ĥJĥ + Jt = 0

(3.48)

which we write in brief as

g1(X̂, ĥ, β∗)JX̂X̂ + g2(X̂, ĥ, β∗)Jĥĥ + g3(X̂, ĥ, β∗)JX̂ĥ

+g4(X̂, ĥ, β∗)JX̂ + g5(X̂, ĥ, β∗)Jĥ + Jt = 0
(3.49)

where

g1(X̂, ĥ, β∗) =
1

2
(σ2

Sβ∗2 + 2ρσSσHβ∗ĥ + ρ2σ2
H ĥ2)X̂2 (3.50)

g2(X̂, ĥ, β∗) =
1

2
ρ2σ2

H ĥ2 (3.51)
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g3(X̂, ĥ, β∗) = (ρσSσHβ∗ + ρ2σ2
H ĥ)X̂ĥ (3.52)

g4(X̂, ĥ, β∗) = (r + β∗νS + νH ĥ)X̂ (3.53)

and

g5(X̂, ĥ, β∗) = (r + νH)ĥ (3.54)

We continue with setting up the ADI finite difference scheme to evaluate the function

J(X̂, ĥ, t). Instead of plugging in the expression for β∗ into equation (3.48), we follow

Kahl et al. [2003] in linearizing the HJB equation by evaluating the values of β∗ using the

estimated values of the function V (h, t) and its derivatives at the subsequent time step.

As in Kahl et al. [2003], we ensure the accuracy of the scheme by using extremely small

time steps.

In going from tk to tk− 1
2
, we use the following approximations for the derivatives

JX̂X̂(X̂i, ĥj, tk) =
1

∆X̂2







J(X̂i+1, ĥj , tk− 1
2
) − 2J(X̂i, ĥj , tk− 1

2
)

+J(X̂i−1, ĥj , tk− 1
2
)






(3.55)

Jĥĥ(X̂i, ĥj, tk) =
1

∆ĥ2
[J(X̂i, ĥj+1, tk) − 2J(X̂i, ĥj, tk) + J(X̂i, ĥj−1, tk)] (3.56)

JX̂ĥ(X̂i, ĥj , tk) =
1

4∆X̂∆ĥ







J(X̂i+1, ĥj+1, tk) − J(X̂i+1, ĥj−1, tk)

−J(X̂i−1, ĥj+1, tk) + J(X̂i−1, ĥj−1, tk)






(3.57)
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JX̂(X̂i, ĥj, tk) =
1

2∆X̂
[J(X̂i+1, ĥj , tk− 1

2
) − J(X̂i−1, ĥj , tk− 1

2
)] (3.58)

Jĥ(X̂i, ĥj , tk) =
1

2∆ĥ
[J(X̂i, ĥj+1, tk) − J(X̂i, ĥj−1, tk)] (3.59)

Jt(X̂i, ĥj, tk) =
1

∆t
[J(X̂i, ĥj, tk) − J(X̂i, ĥj, tk− 1

2
)] (3.60)

Accordingly, for the half-step from tk to tk− 1
2
, equation (3.49) becomes

g1(X̂, ĥ, β∗) 1
∆X̂2

[

J(X̂i+1, ĥj, tk− 1
2
) − 2J(X̂i, ĥj, tk− 1

2
) + J(X̂i−1, ĥj, tk− 1

2
)

]

+g2(X̂, ĥ, β∗) 1

∆ĥ2
[J(X̂i, ĥj+1, tk) − 2J(X̂i, ĥj , tk) + J(X̂i, ĥj−1, tk)]

+g3(X̂, ĥ, β∗) 1

4∆X̂∆ĥ







J(X̂i+1, ĥj+1, tk) − J(X̂i+1, ĥj−1, tk)

−J(X̂i−1, ĥj+1, tk) + J(X̂i−1, ĥj−1, tk)







+g4(X̂, ĥ, β∗) 1
2∆X̂

[J(X̂i+1, ĥj, tk− 1
2
) − J(X̂i−1, ĥj , tk− 1

2
)]

+g5(X̂, ĥ, β∗) 1

2∆ĥ
[J(X̂i, ĥj+1, tk) − J(X̂i, ĥj−1, tk)]

+ 1
∆t

[J(X̂i, ĥj , tk) − J(X̂i, ĥj , tk− 1
2
)] = 0
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Rearranging the terms gives us

[

g1(X̂,ĥ,β∗)

∆X̂2
+ g4(X̂,ĥ,β∗)

2∆X̂

]

J(X̂i+1, ĥj , tk− 1
2
)

−
[

2 g1(X̂,ĥ,β∗)

∆X̂2
+ 1

∆t

]

J(X̂i, ĥj, tk− 1
2
)

+
[

g1(X̂,ĥ,β∗)

∆X̂2
− g4(X̂,ĥ,β∗)

2∆X̂

]

J(X̂i−1, ĥj , tk− 1
2
)

= −g3(X̂,ĥ,β∗)

4∆X̂∆ĥ
J(X̂i+1, ĥj+1, tk) + g3(X̂,ĥ,β∗)

4∆X̂∆ĥ
J(X̂i+1, ĥj−1, tk)

−
[

g2(X̂,ĥ,β∗)

∆ĥ2
+ g5(X̂,ĥ,β∗)

2∆ĥ

]

J(X̂i, ĥj+1, tk)

+
[

2 g2(X̂,ĥ,β∗)

∆ĥ2
− 1

∆t

]

J(X̂i, ĥj, tk)

+
[

−g2(X̂,ĥ,β∗)

∆ĥ2
+ g5(X̂,ĥ,β∗)

2∆ĥ

]

J(X̂i, ĥj−1, tk)

+ g3(X̂,ĥ,β∗)

4∆X̂∆ĥ
J(X̂i−1, ĥj+1, tk) − g3(X̂,ĥ,β∗)

4∆X̂∆ĥ
J(X̂i−1, ĥj−1, tk)

(3.61)

Note that all unknowns J(·, ·, tk− 1
2
) are to be evaluated at ĥj . This allows us to solve

a system of equations for each ĥj individually, effectively making this a series of one-

dimensional problems.

In going from tk− 1
2

to tk−1, we use the following approximations for the derivatives

JX̂X̂(X̂i, ĥj, tk− 1
2
) =

1

∆X̂2







J(X̂i+1, ĥj, tk− 1
2
) − 2J(X̂i, ĥj, tk− 1

2
)

+J(X̂i−1, ĥj, tk− 1
2
)






(3.62)

Jĥĥ(X̂i, ĥj, tk− 1
2
) =

1

∆ĥ2







J(X̂i, ĥj+1, tk−1) − 2J(X̂i, ĥj, tk−1)

+J(X̂i, ĥj−1, tk−1)






(3.63)
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JX̂ĥ(X̂i, ĥj , tk− 1
2
) =

1

4∆X̂∆ĥ





















J(X̂i+1, ĥj+1, tk− 1
2
)

−J(X̂i+1, ĥj−1, tk− 1
2
)

−J(X̂i−1, ĥj+1, tk− 1
2
)

+J(X̂i−1, ĥj−1, tk− 1
2
)





















(3.64)

JX̂(X̂i, ĥj, tk− 1
2
) =

1

2∆X̂
[J(X̂i+1, ĥj , tk− 1

2
) − J(X̂i−1, ĥj, tk− 1

2
)] (3.65)

Jĥ(X̂i, ĥj , tk− 1
2
) =

1

2∆ĥ
[J(X̂i, ĥj+1, tk−1) − J(X̂i, ĥj−1, tk−1)] (3.66)

Jt(X̂i, ĥj, tk− 1
2
) =

1

∆t
[J(X̂i, ĥj , tk− 1

2
) − J(X̂i, ĥj , tk−1)] (3.67)

Accordingly, for the half-step from tk− 1
2

to tk−1, equation (3.49) becomes

g1(X̂, ĥ, β∗) 1
∆X̂2







J(X̂i+1, ĥj, tk− 1
2
) − 2J(X̂i, ĥj, tk− 1

2
)

+J(X̂i−1, ĥj, tk− 1
2
)







+g2(X̂, ĥ, β∗) 1

∆ĥ2







J(X̂i, ĥj+1, tk−1) − 2J(X̂i, ĥj, tk−1)

+J(X̂i, ĥj−1, tk−1)







+g3(X̂, ĥ, β∗) 1

4∆X̂∆ĥ







J(X̂i+1, ĥj+1, tk− 1
2
) − J(X̂i+1, ĥj−1, tk− 1

2
)

−J(X̂i−1, ĥj+1, tk− 1
2
) + J(X̂i−1, ĥj−1, tk− 1

2
)







+g4(X̂, ĥ, β∗) 1
2∆X̂

[J(X̂i+1, ĥj, tk− 1
2
) − J(X̂i−1, ĥj , tk− 1

2
)]

+g5(X̂, ĥ, β∗) 1

2∆ĥ
[J(X̂i, ĥj+1, tk−1) − J(X̂i, ĥj−1, tk−1)]

+ 1
∆t

[J(X̂i, ĥj , tk− 1
2
) − J(X̂i, ĥj , tk−1)] = 0



81

Rearranging the terms gives us

[

g2(X̂,ĥ,β∗)

∆ĥ2
+ g5(X̂,ĥ,β∗)

2∆ĥ

]

J(X̂i, ĥj+1, tk−1)

−
[

2 g2(X̂,ĥ,β∗)

∆ĥ2
+ 1

∆t

]

J(X̂i, ĥj, tk−1)

+
[

g2(X̂,ĥ,β∗)

∆ĥ2
− g5(X̂,ĥ,β∗)

2∆ĥ

]

J(X̂i, ĥj−1, tk−1)

= −g3(X̂,ĥ,β∗)

4∆X̂∆ĥ
J(X̂i+1, ĥj+1, tk− 1

2
)

−
[

g1(X̂,ĥ,β∗)

∆X̂2
+ g4(X̂,ĥ,β∗)

2∆X̂

]

J(X̂i+1, ĥj , tk− 1
2
)

+ g3(X̂,ĥ,β∗)

4∆X̂∆ĥ
J(X̂i+1, ĥj−1, tk− 1

2
)

+
[

2 g1(X̂,ĥ,β∗)

∆X̂2
− 1

∆t

]

J(X̂i, ĥj, tk− 1
2
)

+ g3(X̂,ĥ,β∗)

4∆X̂∆ĥ
J(X̂i−1, ĥj+1, tk− 1

2
)

+
[

−g1(X̂,ĥ,β∗)

∆X̂2
+ g4(X̂,ĥ,β∗)

2∆X̂

]

J(X̂i−1, ĥj , tk− 1
2
)

−g3(X̂,ĥ,β∗)

4∆X̂∆ĥ
J(X̂i−1, ĥj−1, tk− 1

2
)

(3.68)

Again, note that all unknowns J(·, ·, tk−1) are to be evaluated at X̂i. This allows us to

solve a system of equations for each X̂i individually, effectively making this a series of

one-dimensional problems.

We now need to determine the terminal and boundary conditions for our problem. At

t = T , X̂T − ĤT is the amount in the stock and the bond and we have

J(X̂, ĥ, T ) = E

[

Xγ
T

γ
| X̂T , ĥT

]

= EWH(T )







1

γ







X̂T − ĤT

+H0 exp
(

(µH − 1
2
σ2

H)T + σHWH(T )
)







γ

| X̂T , ĥT
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Using

H0 = ĤT exp

(

−
(

µH − 1

2
ρ2σ2

H

)

T − ρσHWS(T )

)

and

WH(T ) = ρWS(T ) +
√

1 − ρ2WI(T )

we get

J(X̂, ĥ, T ) =

EWI(T )













X̂
γ
T

γ













1 − ĥT

+ĥT exp







−1
2
(1 − ρ2)σ2

HT

+
√

1 − ρ2σHWI(T )



















γ

| X̂T , ĥT













(3.69)

which must be evaluated numerically.

For X̂ = 0, the HJB equation (3.48) reduces to

Jt = 0 (3.70)

Consequently, at X̂1 = 0, we can use

J(X̂1, ĥj, tk) = J(X̂1, ĥj , tk+1) (3.71)

At the grid’s upper bound for X̂ (large but finite), we simply assign the utility of this

wealth (at time T ) to the value function. We are basically assuming that the wealth is

already large enough that any growth will have minimal incremental impact on the utility
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derived at T .

J(X̂gridmax, ĥ, t) =
X̂γ

gridmax

γ

So at X̂NX
= X̂gridmax, we have

J(X̂NX
, ĥj , tk) =

X̂γ
NX

γ

For ĥ = 0, the entire portfolio is in the stock and the bond, and we are essentially

back in the Merton world with two assets. Note that in this case, X̂(t) = X(t), i.e. the

total wealth is known at all times. Thus, the value function for ĥ = 0 is

J(X̂, 0, t) =
X̂γ

t

γ
exp

(

γ(r + β∗
MνS)(T − t) − 1

2
γ(1 − γ)(β∗

M)2σ2
S(T − t)

)

where β∗
M = νS

σ2
S(1−γ)

Consequently, at ĥ1 = 0, we can use

J(X̂i, ĥ1, tk) =
X̂γ

i

γ
exp

(

γ(r + β∗
MνS)(T − tk) −

1

2
γ(1 − γ)(β∗

M)2σ2
S(T − tk)

)

Similarly, for ĥ = 1, the entire wealth of the investor is in the hedge fund and stays

there until time T . The corresponding value function is

J(X̂, 1, t) = E

[

Xγ
T

γ
| X̂t = Ĥt

]

= E

[

Hγ
T

γ
| X̂t = Ĥt

]

= EWH(T )

[

1

γ

(

H0 exp

(

(µH − 1

2
σ2

H)T + σHWH(T )

))γ

| X̂t = Ĥt

]
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Now, if we have X̂t = Ĥt for some time t, then equation (3.37) gives us

H0 = X̂t exp

(

−
(

µH − 1

2
ρ2σ2

H

)

t − ρσHWS(t)

)

Then, using ρWS = WH −
√

1 − ρ2WI and the independence of WI and WH over non-

overlapping time intervals, we get

J(X̂, 1, t) = EWH(T )







1

γ







X̂t exp
(

−
(

µH − 1
2
ρ2σ2

H

)

t − ρσHWS(t)
)

exp
(

(µH − 1
2
σ2

H)T + σHWH(T )
)







γ

| X̂t = Ĥt







=
X̂γ

t

γ
EWH(T )






exp







γµH(T − t) − 1
2
γσ2

H(T − ρ2t)

−γρσHWS(t) + γσHWH(T )













=
X̂γ

t

γ
EWI(t),WH(T )−WH(t)













exp













γµH(T − t) − 1
2
γσ2

H(T − ρ2t)

+γ
√

1 − ρ2σHWI(t)

+γσH(WH(T ) − WH(t))

























=
X̂

γ
t

γ
exp

(

γµH(T − t) − 1
2
γσ2

H(T − ρ2t)
)

EWI (t)

[

exp
(

γ
√

1 − ρ2σHWI(t)
)]

EWH(T )−WH(t) [exp (γσH(WH(T ) − WH(t)))]

Thus

J(X̂, 1, t) =
X̂γ

t

γ
exp

(

γµH(T − t) − 1

2
γ(1 − γ)σ2

H(T − ρ2t)

)

So at hNh
= 1, we can use

J(X̂i, ĥNh
, tk) =

X̂γ
i

γ
exp

(

γµH(T − tk) −
1

2
γ(1 − γ)σ2

H(T − ρ2tk)

)

(3.72)
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3.4.1. A Framework for Calculating the Hedge Fund Information Premium

In §3.3 and the initial part of §3.4 above, we have the methodology to compute the

allocations to the hedge fund that maximize the utility of terminal wealth under two

scenarios - one in which the hedge fund price information is readily available, and the

other in which the hedge fund price information is only available just before the decision

epochs. Armed with this, we can use the framework outlined in §?? to obtain the lockup

premiums p+
l (A) and p+

l (R) under the above two scenarios. A and R denote available

and restricted respectively, in reference to the hedge fund share price information.

Then, the information premium for the hedge fund is given by

p+
i = p+

l (R) − p+
l (A) (3.73)

We expect that p+
l (R) ≥ p+

l (A) and thus p+
i ≥ 0.

An alternative approach is to compute the information penalty which we define as

p−i = p−l (A) − p−l (R) (3.74)

where p−l (A) and p−l (R) are the lockup penalties associated with the information available

and restricted information scenarios respectively. We expect that p−l (A) ≤ p−l (R) and thus

p−i ≤ 0.

3.5. Problem III: Maximizing the Utility of Consumption with Hedge Fund

Price Information Available

In this section, we consider the problem of maximizing the utility of consumption.

Initial wealth can be invested in a bond, a stock or a hedge fund, with the hedge fund
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requiring a lockup period of T . Hedge fund share price information is assumed to be

continuously available.

Assume the notation as laid out in §3.3. The investor now consumes at a rate C, which

is a decision made at time 0. c(t) ≡ C
X(t)

(c in brief) is correspondingly the consumption

rate as a fraction of the total wealth. Note that while C is fixed over the time period

under analysis, c(t) is a function of time due to the changes in wealth.

As before, our planning horizon is T , i.e. at T , the investor is allowed to rebalance

the investment in the hedge fund, and essentially faces the same problem again as at time

t = 0.

The stochastic differential equations for our problem are

dH = µHHdt + σHHdWH = (νH + r)Hdt + σHHdWH (3.75)

and

dX = (rX + βνSX + νHH − C)dt + σSβXdWS + σHHdWH (3.76)

where WH and WS are Wiener processes with dWHdWS = ρdt. We want to maximize

J(X(0), H∗(0), C∗(0), 0)

= E

[

∫∞
0

e−δt 1
γ
C(t)γdt

]

=
∫ T

0
e−δt 1

γ
(C∗(0))γdt + e−δT

E [J(X(T ), H∗(T ), C∗(T ), T )]

(3.77)

where δ is the discount rate for utility and H∗(0), C∗(0) and H∗(T ), C∗(T ) are determined

according to our resulting optimal policy.
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Now we proceed in a fashion similar to that in Kahl et al. [2003]. Since X and H

form a joint Markov process, the value-to-go function J(X, H, t) satisfies the following

Hamilton-Jacobi-Bellman (HJB) equation

max





















1
2
(σ2

Sβ2X2 + 2ρσSσHβXH + σ2
HH2)JXX

+1
2
σ2

HH2JHH + (ρσSσHβXH + σ2
HH2)JXH

+(rX + βνSX + νHH − C)JX

+(r + νH)HJH + Jt + e−δt 1
γ
Cγ





















= 0 (3.78)

The first order optimality conditions for β is

βσ2
SX2JXX + ρσSσHXHJXX + ρσSσHXHJXH + νSXJX = 0

Thus

β∗ =
−νS

σ2
S

JX

XJXX

− σSH

σ2
S

H

X

JXH

JXX

− σSH

σ2
S

H

X
(3.79)

Note that this expression for β∗ is the same as that for β∗ in §3.3 as well as that for φ∗ in

Appendix A of Kahl et al. [2003].

We conjecture that value-to-go function is of the form

J(X, H, C, t) =
Xγ

γ
V (h, c, t) (3.80)

We can verify the validity of this conjecture by rewriting the HJB equation in terms of

this function V (h, c, t) and checking that the boundary and terminal conditions are free

of X.
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We first compute the partial derivatives JX , JXX and JXH in terms of h, c and the

function V (h, c, t) and its partial derivatives Vh, Vhh, Vc and Vcc as

JX =
Xγ−1

γ
(−hVh − cVc + γV ) (3.81)

JXX =
Xγ−2

γ

(

h2Vhh + c2Vcc + 2(1 − γ)hVh + 2(1 − γ)cVc − γ(1 − γ)V
)

(3.82)

JXH =
Xγ−2

γ
(−hVhh + Vhc − (1 − γ)Vh) (3.83)

We can now write β∗ in terms of these quantities

β∗ =
σSH

σ2
S

h2Vhh−
σSH

σ2
S

hVhc+

(

(1−γ)
σSH

σ2
S

+
νS

σ2
S

)

hVh+
νS

σ2
S

cVc− νS

σ2
S

γV

h2Vhh+c2Vcc+2(1−γ)hVh+2(1−γ)cVc−γ(1−γ)V

−σSH

σ2
S

h

(3.84)

In this case, comparing this formula with that in Kahl et al. [2003], we see that the

formulae are significantly different. This is because in Kahl et al. [2003], consumption is

a decision at all points in time. In our case however, consumption is a decision only at

time 0 and later shows up through the state variable c.

Also, assuming that we do not allow borrowing, it is easy to show that given values for

h and c, the maximum allowed value for β at any time t is βmax(t) = 1−h− c
r
(1−e−r(T−t).

Depending on the values for the problem parameters, it might be necessary to enforce

this restriction. However, we will concentrate on cases where the stock is not an overly

attractive investment and its allocation is well below this bound.
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Our next step is to convert the HJB into a form that uses h and the partial derivatives

of the function V (h, c, t). To do this we also need the JH , JHH and Jt in terms of V (h, c, t)

and its partial derivatives

JH =
Xγ−1

γ
Vh (3.85)

JHH =
Xγ−2

γ
Vhh (3.86)

Jt =
Xγ

γ
Vt (3.87)

Substituting the partial derivatives of J(X, H, C, t) into the HJB gives us

max



































1
2
(σ2

Sβ2X2 + 2ρσSσHβXH + σ2
HH2)Xγ−2

γ






h2Vhh + c2Vcc + 2(1 − γ)hVh

+2(1 − γ)cVc − γ(1 − γ)V






+ 1

2
σ2

HH2 Xγ−2

γ
Vhh

+(ρσSσHβXH + σ2
HH2)Xγ−2

γ
(−hVhh + Vhc − (1 − γ)Vh)

+(rX + βνSX + νHH − C)Xγ−1

γ
(−hVh − cVc + γV )

+(r + νH)H Xγ−1

γ
Vh + Xγ

γ
Vt + e−δt 1

γ
Cγ



































= 0
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Dividing through by Xγ

γ
and rearranging the terms gives us the HJB equation in terms of

the function V (h, c, t)

max



















































































1
2
(β2σ2

Sh2 + 2βσSHh3 + σ2
Hh4)

+1
2
σ2

Hh2 − (βσSHh2 + σ2
Hh3)






Vhh

+(βσSHh + σ2
Hh2)Vhc

+1
2
(β2σ2

Sc2 + 2βσSHhc2 + σ2
Hh2c2)Vcc

+













(1 − γ)(β2σ2
Sh + 2βσSHh2 + σ2

Hh3)

−(rh + βνSh + νHh2 − hc)

−(1 − γ)(βσSHh + σ2
Hh2) + (rh + νHh)













Vh

+







(1 − γ)(β2σ2
Sc + 2σSHβhc + σ2

Hh2c)

−(rc + βνSc + νHhc − c2)






Vc

+







−γ(1 − γ)1
2
(β2σ2

S + 2βσSHh + σ2
Hh2)

+γ(r + βνS + νHh − c)






V

+Vt + e−δtcγ













































































= 0 (3.88)
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The maximum in equation (3.88) holds when β = β∗ and therefore







1
2
((β∗)2σ2

Sh2 + 2β∗σSHh3 + σ2
Hh4)

+1
2
σ2

Hh2 − (β∗σSHh2 + σ2
Hh3)






Vhh

+(β∗σSHh + σ2
Hh2)Vhc

+1
2
((β∗)2σ2

Sc2 + 2β∗σSHhc2 + σ2
Hh2c2)Vcc

+













(1 − γ)((β∗)2σ2
Sh + 2β∗σSHh2 + σ2

Hh3)

−(rh + β∗νSh + νHh2 − hc)

−(1 − γ)(β∗σSHh + σ2
Hh2) + (rh + νHh)













Vh

+







(1 − γ)((β∗)2σ2
Sc + 2σSHβ∗hc + σ2

Hh2c)

−(rc + β∗νSc + νHhc − c2)






Vc

+







−γ(1 − γ)1
2
((β∗)2σ2

S + 2β∗σSHh + σ2
Hh2)

+γ(r + β∗νS + νHh − c)






V

+Vt + e−δtcγ = 0

(3.89)

As in the case of Problem II (§3.4), we have to solve for the value function by building a

grid on a 2-dimensional state space. Again, we would like to use the Alternating Direction

Implicit (ADI) scheme but we are faced with the same issues as before. First, we have a

mixed second-order derivative Vhc which can not be eliminated. The second issue is the

following: the maximum allowed consumption rate depends on the amount invested in

the hedge fund. We enforce this condition at time 0, and then assume that an appropriate

amount is invested in the bond to meet the consumption requirements. This ties in with

the earlier condition on the maximum allowed value of β. Once the consumption rate

is fixed at C, to guarantee this consumption stream we require to put C
r
(1 − e−rT ) in
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the bond. Clearly this amount increases with an increase in C. Then, given an initial

investment H(0) in the hedge fund, the maximum allowed consumption rate Cmax would

satisfy the following equation

X(0) =
Cmax

r
(1 − e−rT ) + H(0) (3.90)

Dividing by X(0), we get an expression for the maximum initial value for cmax, which is

the consumption rate expressed as a fraction of the total wealth

cmax =
r

1 − e−rT
(1 − h) (3.91)

Thus, one of the boundaries for our problem is c = r
1−e−rT (1−h), leading us to implement

a rectangular grid on a two-dimensional feasible state space that is triangular in shape.

To resolve this issue, we replace c by d as a state variable, where

d =
c

1 − h
(3.92)

d can be interpreted as the consumption rate as a fraction of the liquid wealth. Then

dmax =
r

1 − e−rT
(3.93)

Clearly, we lose no information by making this change, but the feasible state space now

becomes rectangular, with the bounds on both state variables becoming independent of

each other. Since

Vc =
1

1 − h
Vd (3.94)
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Vcc =
1

(1 − h)2
Vdd (3.95)

Vhc =
1

1 − h
Vhd (3.96)

equation (3.84) becomes

β∗ =
σSH

σ2
S

h2Vhh−
σSH

σ2
S

h
1−h

Vhd+

(

(1−γ)
σSH

σ2
S

+
νS

σ2
S

)

hVh+
νS

σ2
S

dVd−
νS

σ2
S

γV

h2Vhh+d2Vdd+2(1−γ)hVh+2(1−γ)dVd−γ(1−γ)V

−σSH

σ2
S

h

(3.97)

and equation (3.89) changes to







1
2
((β∗)2σ2

Sh2 + 2β∗σSHh3 + σ2
Hh4)

+1
2
σ2

Hh2 − (β∗σSHh2 + σ2
Hh3)






Vhh + (β∗σSH + σ2

Hh) h
1−h

Vhd

+1
2
((β∗)2σ2

Sd2 + 2β∗σSHhd2 + σ2
Hh2d2)Vdd

+













(1 − γ)((β∗)2σ2
Sh + 2β∗σSHh2 + σ2

Hh3)

−(rh + β∗νSh + νHh2 − h(1 − h)d)

−(1 − γ)(β∗σSHh + σ2
Hh2) + (rh + νHh)













Vh

+







(1 − γ)((β∗)2σ2
Sd + 2σSHβ∗hd + σ2

Hh2d)

−(rd + β∗νSd + νHhd − (1 − h)d2)






Vd

+







−γ(1 − γ)1
2
((β∗)2σ2

S + 2β∗σSHh + σ2
Hh2)

+γ(r + β∗νS + νHh − (1 − h)d)






V

+Vt + e−δt(1 − h)γdγ = 0

(3.98)
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or in brief as

f1(h, d, β∗)Vhh + f2(h, d, β∗)Vhd + f3(h, d, β∗)Vdd + f4(h, d, β∗)Vh

+f5(h, d, β∗)Vd + Vt + f6(h, d, β∗)V + f7(h, d) = 0
(3.99)

where

f1(h, d, β∗) = 1
2
((β∗)2σ2

Sh2 + 2β∗σSHh3 + σ2
Hh4)

+1
2
σ2

Hh2 − (β∗σSHh2 + σ2
Hh3)

(3.100)

f2(h, d, β∗) = (β∗σSH + σ2
Hh)

h

1 − h
(3.101)

f3(h, d, β∗) =
1

2
((β∗)2σ2

Sd2 + 2β∗σSHhd2 + σ2
Hh2d2) (3.102)

f4(h, d, β∗) = (1 − γ)((β∗)2σ2
Sh + 2β∗σSHh2 + σ2

Hh3)

−(rh + β∗νSh + νHh2 − h(1 − h)d)

−(1 − γ)(β∗σSHh + σ2
Hh2) + (rh + νHh)

(3.103)

f5(h, d, β∗) = (1 − γ)((β∗)2σ2
Sd + 2σSHβ∗hd + σ2

Hh2d)

−(rd + β∗νSd + νHhd − (1 − h)d2)
(3.104)

f6(h, d, β∗) = −γ(1 − γ)1
2
((β∗)2σ2

S + 2β∗σSHh + σ2
Hh2)

+γ(r + β∗νS + νHh − (1 − h)d)
(3.105)

and

f7(h, d) = e−δt(1 − h)γdγ (3.106)
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We continue with setting up the ADI finite difference scheme to evaluate the function

V (h, d, t). Instead of plugging in the expression for β∗ into equation (3.89), we follow

Kahl et al. [2003] in linearizing the HJB equation by evaluating the values of β∗ using

the estimated values of the function V (h, d, t) and its derivatives at the subsequent time

step. As in Kahl et al. [2003], we ensure the accuracy of the scheme by using extremely

small time steps.

In going from tk to tk− 1
2
, we use the following approximations for the derivatives

Vhh(hi, dj, tk) =
1

∆h2







V (hi+1, dj, tk− 1
2
) − 2V (hi, dj, tk− 1

2
)

+V (hi−1, dj, tk− 1
2
)






(3.107)

Vhd(hi, dj, tk) =
1

4∆h∆d







V (hi+1, dj+1, tk) − V (hi+1, dj−1, tk)

−V (hi−1, dj+1, tk) + V (hi−1, dj−1, tk)






(3.108)

Vdd(hi, dj, tk) =
1

∆d2
[V (hi, dj+1, tk) − 2V (hi, dj, tk) + V (hi, dj−1, tk)] (3.109)

Vh(hi, dj, tk) =
1

2∆h
[V (hi+1, dj, tk− 1

2
) − V (hi−1, dj, tk− 1

2
)] (3.110)

Vd(hi, dj, tk) =
1

2∆d
[V (hi, dj+1, tk) − V (hi, dj−1, tk)] (3.111)

Vt(hi, dj, tk) =
1

∆t
[V (hi, dj, tk) − V (hi, dj, tk− 1

2
)] (3.112)
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Accordingly, for the half-step from tk to tk− 1
2
, equation (3.99) becomes

f1(h, d, β∗) 1
∆h2 [V (hi+1, dj, tk− 1

2
) − 2V (hi, dj, tk− 1

2
) + V (hi−1, dj, tk− 1

2
)]

+f2(h, d, β∗) 1
4∆h∆d







V (hi+1, dj+1, tk) − V (hi+1, dj−1, tk)

−V (hi−1, dj+1, tk) + V (hi−1, dj−1, tk)







+f3(h, d, β∗) 1
∆d2 [V (hi, dj+1, tk) − 2V (hi, dj, tk) + V (hi, dj−1, tk)]

+f4(h, d, β∗) 1
2∆h

[V (hi+1, dj, tk− 1
2
) − V (hi−1, dj, tk− 1

2
)]

+f5(h, d, β∗) 1
2∆d

[V (hi, dj+1, tk) − V (hi, dj−1, tk)]

+ 1
∆t

[V (hi, dj, tk) − V (hi, dj, tk− 1
2
)]

+f6(h, d, β∗)V (hi, dj, tk) + f7(h, d) = 0

Rearranging the terms gives us

[

f1(h, d, β∗) 1
∆h2 + f4(h, d, β∗) 1

2∆h

]

V (hi+1, dj, tk− 1
2
)

−
[

2f1(h, d, β∗) 1
∆h2 + 1

∆t

]

V (hi, dj, tk− 1
2
)

+
[

f1(h, d, β∗) 1
∆h2 − f4(h, d, β∗) 1

2∆h

]

V (hi−1, dj, tk− 1
2
)

= −
[

f2(h, d, β∗) 1
4∆h∆d

]

V (hi+1, dj+1, tk)

+
[

f2(h, d, β∗) 1
4∆h∆d

]

V (hi+1, dj−1, tk)

−
[

f3(h, d, β∗) 1
∆d2 + f5(h, d, β∗) 1

2∆d

]

V (hi, dj+1, tk)

+
[

2f3(h, d, β∗) 1
∆d2 − 1

∆t
− f6(h, d, β∗)

]

V (hi, dj, tk)

−
[

f3(h, d, β∗) 1
∆d2 − f5(h, d, β∗) 1

2∆d

]

V (hi, dj−1, tk)

+
[

f2(h, d, β∗) 1
4∆h∆d

]

V (hi−1, dj+1, tk)

−
[

f2(h, d, β∗) 1
4∆h∆d

]

V (hi−1, dj−1, tk) − f7(h, d)

(3.113)
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Note that all unknowns (V (·, ·, tk− 1
2
) are to be evaluated at dj . This allows us to solve

a system of equations for each dj individually, effectively making this a series of one-

dimensional problems.

In going from tk− 1
2

to tk−1, we use the following approximations for the derivatives

Vhh(hi, dj, tk− 1
2
) =

1

∆h2







V (hi+1, dj, tk− 1
2
) − 2V (hi, dj, tk− 1

2
)

+V (hi−1, dj, tk− 1
2
)






(3.114)

Vhd(hi, dj, tk− 1
2
) =

1

4∆h∆d





















V (hi+1, dj+1, tk− 1
2
)

−V (hi+1, dj−1, tk− 1
2
)

−V (hi−1, dj+1, tk− 1
2
)

+V (hi−1, dj−1, tk− 1
2
)





















(3.115)

Vdd(hi, dj, tk− 1
2
) =

1

∆d2







V (hi, dj+1, tk−1) − 2V (hi, dj, tk−1)

+V (hi, dj−1, tk−1)






(3.116)

Vh(hi, dj, tk− 1
2
) =

1

2∆h
[V (hi+1, dj, tk− 1

2
) − V (hi−1, dj, tk− 1

2
)] (3.117)

Vd(hi, dj, tk− 1
2
) =

1

2∆d
[V (hi, dj+1, tk−1) − V (hi, dj−1, tk−1)] (3.118)

Vt(hi, dj, tk− 1
2
) =

1

∆t
[V (hi, dj, tk− 1

2
) − V (hi, dj, tk−1)] (3.119)
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Accordingly, for the half-step from tk− 1
2

to tk−1, equation (3.99) becomes

f1(h, d, β∗) 1
∆h2 [V (hi+1, dj, tk− 1

2
) − 2V (hi, dj, tk− 1

2
) + V (hi−1, dj, tk− 1

2
)]

+f2(h, d, β∗) 1
4∆h∆d







V (hi+1, dj+1, tk− 1
2
) − V (hi+1, dj−1, tk− 1

2
)

−V (hi−1, dj+1, tk− 1
2
) + V (hi−1, dj−1, tk− 1

2
)







+f3(h, d, β∗) 1
∆d2 [V (hi, dj+1, tk−1) − 2V (hi, dj, tk−1) + V (hi, dj−1, tk−1)]

+f4(h, d, β∗) 1
2∆h

[V (hi+1, dj, tk− 1
2
) − V (hi−1, dj, tk− 1

2
)]

+f5(h, d, β∗) 1
2∆d

[V (hi, dj+1, tk−1) − V (hi, dj−1, tk−1)]

+ 1
∆t

[V (hi, dj, tk− 1
2
) − V (hi, dj, tk−1)]

+f6(h, d, β∗)V (hi, dj, tk− 1
2
) + f7(h, d) = 0

Rearranging the terms gives us

[

f3(h,d,β∗)
∆d2 + f5(h,d,β∗)

2∆d

]

V (hi, dj+1, tk−1)

−
[

2 f3(h,d,β∗)
∆d2 + 1

∆t

]

V (hi, dj, tk−1)

+
[

f3(h,d,β∗)
∆d2 − f5(h,d,β∗)

2∆d

]

V (hi, dj−1, tk−1)

= −f2(h,d,β∗)
4∆h∆d

V (hi+1, dj+1, tk− 1
2
)

−
[

f1(h,d,β∗)
∆h2 + f4(h,d,β∗)

2∆h

]

V (hi+1, dj, tk− 1
2
)

+f2(h,d,β∗)
4∆h∆d

V (hi+1, dj−1, tk− 1
2
)

+
[

2 f1(h,d,β∗)
∆h2 − 1

∆t
− f6(h, d, β∗)

]

V (hi, dj, tk− 1
2
)

+f2(h,d,β∗)
4∆h∆d

V (hi−1, dj+1, tk− 1
2
)

−
[

f1(h,d,β∗)
∆h2 − f4(h,d,β∗)

2∆h

]

V (hi−1, dj, tk− 1
2
)

−f2(h,d,β∗)
4∆h∆d

V (hi−1, dj−1, tk− 1
2
) − f7(h, d)

(3.120)
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Again, note that all unknowns (V (·, ·, tk−1) are to be evaluated at hi. This allows us to

solve a system of equations for each hi individually, effectively making this a series of

one-dimensional problems.

We now need to determine the terminal and boundary conditions for our problem. At

t = T , we are able to rebalance our entire portfolio. Essentially, we face the same problem

as at time 0, except that our wealth level is now X(T ) instead of X(0). So we must have

J(X, H∗(X, T ), C∗(X, T ), T ) = J∗(X, H∗(X, 0), C∗(X, 0), 0) (3.121)

where H∗(X, 0) denotes the optimal value of H if the wealth at time 0 were to be X.

Note that this boundary condition is different from that in Kahl et al. [2003] because of

the problem context. So at t = T , we could use

V (h, d, T ) = V ∗(h∗(0), d∗(0), 0) = V ∗ (3.122)

This however, is problematic. We obviously do not know the value V ∗ until we solve for

the function V (h, d, t) by completing the backward recursion, and we can not perform the

backward recursion until we have the terminal and boundary conditions. As it were, even

the boundary conditions are reliant on V ∗.

One option is an iterative procedure based on an initial guess of V ∗ and then updated

estimates based on the outcome of the backward recursion. But we prefer an alternative

route to the solution. Let us consider N time periods of this problem, and assume that

we are dealing with the last one. Assuming that after the N th period is over, the investor

immediately consumes the left-over wealth. If so, for this time period, the terminal
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condition is

JN (X, H, C, T ) =
Xγ

γ
(3.123)

and therefore

VN(h, d, T ) = 1 (3.124)

Assuming we are able to then solve the nth period problem, then we can use V ∗
n , the

optimal value function for the nth period problem, as the terminal condition for the

(n − 1)th problem. Then, as n → ∞, the solution to the first period problem converges

to the solution to our problem.

Now, we set up the boundary conditions for the generic nth problem with the terminal

condition

V (h, d, T ) = V ∗
n (3.125)

At tNt = T , we can use

V (hi, dj, tNt) = V ∗
n (3.126)
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At d = 0, the consumption rate is 0 and therefore the value function at time t is the

expected value of the value function at time T

V (h, 0, t) = e−δ(T−t)V ∗
n E

[(

X(T )
X(t)

)γ]

= e−δ(T−t)V ∗
n

E







1
X(t)γ







H(t)e(µH− 1
2
σ2

H)(T−t)+σH (WH(T )−WH(t))

+(X(t) − H(t))e(β̂(µS− 1
2
σ2

S)+(1−β̂)r)(T−t)+β̂σS(WS(T )−WS(t))







γ





where β̂ = β

1−h
. Note that this is an approximation that assumes that we will keep β̂

constant, but in reality we have β as a function of h, and h itself varies over time. However,

we expect this approximation to be quite close. Thus

V (h, 0, t) = e−δ(T−t)V ∗
n

E













h(t)e(µH− 1
2
σ2

H)(T−t)+σH (WH(T )−WH(t))

+(1 − h(t))e(β̂(µS− 1
2
σ2

S)+(1−β̂)r)(T−t)+β̂σS(WS(T )−WS(t))







γ





(3.127)

which has to be evaluated numerically. So at d1 = 0, we can use

V (hi, d1, tk) = e−δ(T−tk)V ∗
n

E













hi(tk)e
(µH− 1

2
σ2

H)(T−tk)+σH (WH(T )−WH(tk))

+(1 − hi(tk))e
(β̂(µS− 1

2
σ2

S)+(1−β̂)r)(T−tk)+β̂σS(WS(T )−WS(tk))







γ





(3.128)

At d = dmax, we use the facts that the consumption rate (as a fraction of wealth) is

at its maximum cmax = r
1−e−rT (1 − h) and β is 0 since all the liquid wealth is being used
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to guarantee the consumption stream. Therefore

V (h, dmax, t) =

∫ (T−t)

0

e−δscγ
maxds + e−δ(T−t)V ∗

n E

[(

X(T )

X(t)

)γ]

=

(

r

1 − e−rT

)γ (
1 − e−δ(T−t)

δ

)

(1 − h)γ

+e−δ(T−t)V ∗
n E

[

hγ
(

e(µH− 1
2
σ2

H)(T−t)+σH (WH(T )−WH(t))
)γ]

Thus

V (h, dmax, t) =
(

r
1−e−rT

)γ
(

1−e−δ(T−t)

δ

)

(1 − h)γ

+e−δ(T−t)V ∗
n hγe(γµH− 1

2
γ(1−γ)σ2

H )(T−t)

(3.129)

So at dNd
= dmax, we can use

V (hi, dNd
, tk) =

(

r
1−e−rT

)γ
(

1−e−δ(T−tk)

δ

)

(1 − hi)
γ

+e−δ(T−tk)V ∗
n hγ

i e
(γµH− 1

2
γ(1−γ)σ2

H )(T−tk)

(3.130)

At h = 0, the entire wealth of the investor is in the stock or the bond, and therefore

V (0, d, t) =

∫ (T−t)

0

e−δsdγds + e−δ(T−t)V ∗
n E

[(

X(T )

X(t)

)γ]

=

(

1 − e−δ(T−t)

δ

)

dγ

+e−δ(T−t)V ∗
n E

[(

e(r+βνS−d− 1
2
β2σ2

S)(T−t)+βσS (WS(T )−WS(t))
)γ]

Thus

V (0, d, t) =
(

1−e−δ(T−t)

δ

)

dγ

+e−δ(T−t)V ∗
n e(γ(r+βνS−d)− 1

2
γ(1−γ)β2σ2

S)(T−t)

(3.131)
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So at h1 = 0, we can use

V (h1, dj, tk) =
(

1−e−δ(T−tk)

δ

)

dγ
j

+e−δ(T−tk)V ∗
n e(γ(r+βνS−dj)− 1

2
γ(1−γ)β2σ2

S)(T−tk)

(3.132)

At h = 1, the entire wealth is in the hedge fund, hence there is no liquid wealth that

can be consumed. Therefore

V (1, 0, t) = e−δ(T−t)V ∗
n e(γµH− 1

2
γ(1−γ)σ2

H )(T−t) (3.133)

So at hNh
= 1, we can use

V (hNh
, dj, tk) = e−δ(T−tk)V ∗

n e(γµH− 1
2
γ(1−γ)σ2

H )(T−tk) (3.134)

3.6. Summary

We have presented a systematic framework for the analysis of hedge funds as investable

assets. We have looked at the impact of illiquidity of a very specific form - where investor

funds are required to be locked up in the hedge fund for a pre-specified duration - on two

fronts.

First, we have provided a framework for the calculation of the hedge fund lockup

premium as well as an alternative measure of the impact of the lockup requirement that

we call the lockup penalty. Second, we have studied the optimal structure for a portfolio

consisting of a bond, a stock and a hedge fund under both terminal wealth and consump-

tion utility considerations. These two scenarios apply to different types of institutional

investors, with fund of funds and proprietary traders falling under the no-consumption
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setting and pension funds and university endowments falling under the utility of con-

sumption setting. Under both scenarios, we account for the availability of equities as

an alternative risky investment. While fund of funds do not usually maintain equity

positions, that is not a restriction imposed on them due to the hedge fund lockup require-

ment. Consequently, in computing the lockup premium it is appropriate to account for

the presence of equities even if they are not part of the investor’s portfolio.

An interesting aside is the following - the positions in the bond and the stock can be

changed continuously, however the position in the hedge fund can only be altered at pre-

specified intervals of time. Thus, this setting falls neither under the Merton continuous-

time framework, nor under the Samuelson discrete-time framework. We take blatant

advantage of our first-mover status and christen this the mixed continuous-discrete time

framework problem.

We have also introduced the concept of an information premium, as well as a frame-

work to calculate this premium and an alternative measure of the value of hedge fund

price information that we call the information penalty. The value of hedge fund share

price information is important in analyzing the impact of the typical secrecy (although in

most cases this is simply a result of a lack of market price information for highly illiquid

investments made by the private equity or hedge funds) that surrounds hedge fund per-

formance reporting - often hedge fund share prices are available only just before a decision

has to be made on adjusting the position in the hedge fund.
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CHAPTER 4

Consumption and Equity-Hedge Fund Portfolio Optimization

given an Intolerance for a Decline in Standard of Living

Abstract

Institutional portfolios of today are more complex than ever. Pension funds and

university endowments require steady payout streams and must try and avoid major

declines in these payouts. Moreover, their portfolios typically also include significant

exposure to alternative assets such as hedge funds. The major complication that arises

from the inclusion of hedge funds in the investor’s portfolio is that they often have a

lockup requirement, where the investor is restricted from withdrawing funds from the

hedge fund for a pre-specified duration of time.

Considering a situation where the investor has an intolerance for a decline in standard

of living, or in other words, where the investor seeks guaranteed non-decreasing consump-

tion, we provide a framework for obtaining the optimal consumption and investment

policies. The investor is allowed to invest in a bond, a stock or a hedge fund, with the

bond and the stock being continuously tradeable and the hedge fund requiring a lockup

period of given duration.
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4.1. Introduction

In their classic papers on lifetime portfolio selection given continuous- and discrete-

time settings respectively, Merton [1969] and Samuelson [1969] both show that under a

constant relative risk aversion (CRRA) utility assumption, optimal consumption (rate for

continuous-time, amount for discrete-time) at any point in time is in direct proportion to

the then current wealth. The consumption pattern can therefore vary significantly, and

given losses on investments in risky assets, a significant loss of utility may result.

Long-term institutional investors such as pension funds and university endowments

that might require quarterly or annual payouts from their portfolios would want to

avoid major downturns in these payouts. Since the classical optimal consumption and

investment policies would not help achieve these goals, in Chapter 2 we looked at a sce-

nario where these institutional investors impose a constraint that their payouts be non-

decreasing. Note that since we impose a constraint on the classical problem, we expect a

decrease in the overall value to be gained.

Clearly, this is about as conservative as one can get in regard to downturns in con-

sumption and not a policy one would expect to be implemented. However, by study-

ing this scenario we analyze a worst-case scenario of sorts. Weaker restrictions on the

consumption pattern would yield results that are somewhere in between those from the

classical problem and those from the non-decreasing consumption problem, and the de-

crease in value relative to the classical case would consequently be lower than that in the

non-decreasing consumption problem. If desired, this solution framework can easily be

extended to other forms of habit formation, as long as they can be specified as a constraint

on the consumption process.
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In Chapter 3, we analyze the inclusion of hedge funds in institutional investors’ port-

folios. Specifically, one of the things we study is the impact that the lockup restrictions

imposed by the hedge fund have on the allocation to the hedge fund as part of the optimal

portfolio where we have three assets available to us for investment - a bond, a stock and

a hedge fund. The positions in the bond and the stock can be changed continuously,

however the position in the hedge fund can only be altered at pre-specified intervals of

time.

Here we combine these two restrictions and lay out a framework to determine the op-

timal consumption and investment policies when we have the three assets to invest in, the

hedge fund imposes a lockup period and the investor desires non-decreasing consumption.

4.2. Problem IV: Maximizing the Utility of Non-Decreasing Consumption

with Hedge Fund Price Information Available

In this section, we consider the problem of maximizing the utility of consumption,

which is restricted to be non-decreasing. Initial wealth can be invested in a bond, a stock

or a hedge fund, with the hedge fund requiring a lockup period of T . Hedge fund share

price information is assumed to be continuously available.

Assume the notation as laid out in §3.3. The investor decides to consume at a rate

C, which is a decision made at time 0. c(t) ≡ C
X(t)

(c in brief) is correspondingly the

consumption rate as a fraction of the total wealth. Note that while C is fixed over the

time period under analysis, c(t) is a function of time due to the changes in wealth.

Assume that the inherited consumption rate is C− and therefore we must have C ≥

C−. Equivalently, define c−(t) ≡ C−

X(t)
(c− in brief). Once we set C(0) ≥ C−(0), we
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automatically have that c(t) ≥ c−(t) for all 0 ≤ t ≤ T . This is an important fact and we

will utilize this in our solution framework.

As before, our planning horizon is T , i.e. at T , the investor is allowed to rebalance

the investment in the hedge fund, and essentially faces the same problem again as at time

t = 0, except that the wealth and the inherited consumption rate have now changed.

The stochastic differential equations for our problem are

dH = µHHdt + σHHdWH = (νH + r)Hdt + σHHdWH (4.1)

and

dX = (rX + βνSX + νHH − C)dt + σSβXdWS + σHHdWH (4.2)

where WH and WS are Wiener processes with dWHdWS = ρdt. We want to maximize

J(X(0), H∗(0), C∗(0), C−, 0)

= E

[

∫∞
0

e−δt 1
γ
C(t)γdt

]

=
∫ T

0
e−δt 1

γ
(C∗(0))γdt + e−δT

E [J(X(T ), H∗(T ), C∗(T ), C∗(0), T )]

(4.3)

subject to the constraint that C∗(0) ≥ C−. δ is the discount rate for utility and

H∗(0), C∗(0) and H∗(T ), C∗(T ) are determined according to our resulting optimal policy.

Note that although C− is a state variable, it influences the value function only through

the restriction it imposes on C.

Now we proceed in a fashion similar to that in Kahl et al. [2003]. Since X and H form

a joint Markov process, the value-to-go function J(X, H, C, C−, t) satisfies the following
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Hamilton-Jacobi-Bellman (HJB) equation

max





















1
2
(σ2

Sβ2X2 + 2ρσSσHβXH + σ2
HH2)JXX

+1
2
σ2

HH2JHH + (ρσSσHβXH + σ2
HH2)JXH

+(rX + βνSX + νHH − C)JX

+(r + νH)HJH + Jt + e−δt 1
γ
Cγ





















= 0 (4.4)

The first order optimality conditions for β is

βσ2
SX2JXX + ρσSσHXHJXX + ρσSσHXHJXH + νSXJX = 0

Thus

β∗ =
−νS

σ2
S

JX

XJXX

− σSH

σ2
S

H

X

JXH

JXX

− σSH

σ2
S

H

X
(4.5)

Note that this expression for β∗ is the same as that for β∗ in §3.3 as well as that for φ∗ in

Appendix A of Kahl et al. [2003].

We conjecture that value-to-go function is of the form

J(X, H, C, C−, t) =
Xγ

γ
V (h, c, c−, t) (4.6)

We can verify the validity of this conjecture by rewriting the HJB equation in terms of this

function V (h, c, c−, t) and checking that the boundary and terminal conditions are free

of X. Also, similar to the relationship between J(X, H, C, C−, t) and C−, c− influences

V (h, c, c−, t) only through the restriction it imposes on c.
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We first compute the partial derivatives JX , JXX and JXH in terms of h, c and the

function V (h, c, c−, t) and its partial derivatives Vh, Vhh, Vc and Vcc as

JX =
Xγ−1

γ
(−hVh − cVc + γV ) (4.7)

JXX =
Xγ−2

γ

(

h2Vhh + c2Vcc + 2(1 − γ)hVh + 2(1 − γ)cVc − γ(1 − γ)V
)

(4.8)

JXH =
Xγ−2

γ
(−hVhh + Vhc − (1 − γ)Vh) (4.9)

We can now write β∗ in terms of these quantities

β∗ =
σSH

σ2
S

h2Vhh−
σSH

σ2
S

hVhc+

(

(1−γ)
σSH

σ2
S

+
νS

σ2
S

)

hVh+
νS

σ2
S

cVc− νS

σ2
S

γV

h2Vhh+c2Vcc+2(1−γ)hVh+2(1−γ)cVc−γ(1−γ)V

−σSH

σ2
S

h

(4.10)

Assuming that we do not allow borrowing, it is easy to show that given values for h

and c, the maximum allowed value for β at any time t is βmax(t) = 1−h− c
r
(1− e−r(T−t).

Depending on the values for the problem parameters, it might be necessary to enforce

this restriction. However, we will concentrate on cases where the stock is not an overly

attractive investment and its allocation is well below this bound.

Our next step is to convert the HJB into a form that uses h and the partial derivatives

of the function V (h, c, c−, t). To do this we also need the JH , JHH and Jt in terms of

V (h, c, c−, t) and its partial derivatives

JH =
Xγ−1

γ
Vh (4.11)
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JHH =
Xγ−2

γ
Vhh (4.12)

Jt =
Xγ

γ
Vt (4.13)

Substituting the partial derivatives of J(X, H, C, C−, t) into the HJB gives us

max



































1
2
(σ2

Sβ2X2 + 2ρσSσHβXH + σ2
HH2)Xγ−2

γ






h2Vhh + c2Vcc + 2(1 − γ)hVh

+2(1 − γ)cVc − γ(1 − γ)V






+ 1

2
σ2

HH2 Xγ−2

γ
Vhh

+(ρσSσHβXH + σ2
HH2)Xγ−2

γ
(−hVhh + Vhc − (1 − γ)Vh)

+(rX + βνSX + νHH − C)Xγ−1

γ
(−hVh − cVc + γV )

+(r + νH)H Xγ−1

γ
Vh + Xγ

γ
Vt + e−δt 1

γ
Cγ



































= 0
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Dividing through by Xγ

γ
and rearranging the terms gives us the HJB equation in terms of

the function V (h, c, c−, t)

max



















































































1
2
(β2σ2

Sh2 + 2βσSHh3 + σ2
Hh4)

+1
2
σ2

Hh2 − (βσSHh2 + σ2
Hh3)






Vhh

+(βσSHh + σ2
Hh2)Vhc

+1
2
(β2σ2

Sc2 + 2βσSHhc2 + σ2
Hh2c2)Vcc

+













(1 − γ)(β2σ2
Sh + 2βσSHh2 + σ2

Hh3)

−(rh + βνSh + νHh2 − hc)

−(1 − γ)(βσSHh + σ2
Hh2) + (rh + νHh)













Vh

+







(1 − γ)(β2σ2
Sc + 2σSHβhc + σ2

Hh2c)

−(rc + βνSc + νHhc − c2)






Vc

+







−γ(1 − γ)1
2
(β2σ2

S + 2βσSHh + σ2
Hh2)

+γ(r + βνS + νHh − c)






V

+Vt + e−δtcγ













































































= 0 (4.14)
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The maximum in equation (4.14) holds when β = β∗ and therefore







1
2
((β∗)2σ2

Sh2 + 2β∗σSHh3 + σ2
Hh4)

+1
2
σ2

Hh2 − (β∗σSHh2 + σ2
Hh3)






Vhh

+(β∗σSHh + σ2
Hh2)Vhc

+1
2
((β∗)2σ2

Sc2 + 2β∗σSHhc2 + σ2
Hh2c2)Vcc

+













(1 − γ)((β∗)2σ2
Sh + 2β∗σSHh2 + σ2

Hh3)

−(rh + β∗νSh + νHh2 − hc)

−(1 − γ)(β∗σSHh + σ2
Hh2) + (rh + νHh)













Vh

+







(1 − γ)((β∗)2σ2
Sc + 2σSHβ∗hc + σ2

Hh2c)

−(rc + β∗νSc + νHhc − c2)






Vc

+







−γ(1 − γ)1
2
((β∗)2σ2

S + 2β∗σSHh + σ2
Hh2)

+γ(r + β∗νS + νHh − c)






V

+Vt + e−δtcγ = 0

(4.15)

As in the case of Problem II (§3.4), we have to solve for the value function by building

a grid on a 2-dimensional state space (h,c). Again, we would like to use the Alternating

Direction Implicit (ADI) scheme but we are faced with the same issues as before. First, we

have a mixed second-order derivative Vhc which can not be eliminated. The second issue

is the following: in addition to the maximum allowed consumption rate depending on the

amount invested in the hedge fund, the minimum allowed consumption rate depends on the

inherited consumption rate. We enforce these condition at time 0, and then assume that

an appropriate amount is invested in the bond to meet the consumption requirements.

This ties in with the earlier condition on the maximum allowed value of β. Once the
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consumption rate is fixed at C ≥ C−, to guarantee this consumption stream we require to

put C
r
(1− e−rT ) in the bond. Clearly this amount increases with an increase in C. Then,

given an initial investment H(0) in the hedge fund, the maximum allowed consumption

rate Cmax would satisfy the following equation

X(0) =
Cmax

r
(1 − e−rT ) + H(0) (4.16)

Dividing by X(0), we get an expression for the maximum initial value for cmax, which is

the consumption rate expressed as a fraction of the total wealth

cmax =
r

1 − e−rT
(1 − h) (4.17)

Thus, one of the boundaries for our problem is c = r
1−e−rT (1−h), leading us to implement

a rectangular grid on a two-dimensional feasible state space that is triangular in shape.

To resolve this issue, we replace c by d as a state variable, where

d =
c

1 − h
(4.18)

d can be interpreted as the consumption rate as a fraction of the liquid wealth. Then

dmax =
r

1 − e−rT
(4.19)

Similarly

dmin =
c−

1 − h
≡ d− (4.20)
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Clearly, we lose no information by making this change, but the feasible state space now

becomes rectangular, with the bounds on both state variables becoming independent of

each other. Since

Vc =
1

1 − h
Vd (4.21)

Vcc =
1

(1 − h)2
Vdd (4.22)

Vhc =
1

1 − h
Vhd (4.23)

equation (4.10) becomes

β∗ =
σSH

σ2
S

h2Vhh−
σSH

σ2
S

h
1−h

Vhd+

(

(1−γ)
σSH

σ2
S

+
νS

σ2
S

)

hVh+
νS

σ2
S

dVd−
νS

σ2
S

γV

h2Vhh+d2Vdd+2(1−γ)hVh+2(1−γ)dVd−γ(1−γ)V

−σSH

σ2
S

h

(4.24)
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and equation (4.15) changes to







1
2
((β∗)2σ2

Sh2 + 2β∗σSHh3 + σ2
Hh4)

+1
2
σ2

Hh2 − (β∗σSHh2 + σ2
Hh3)






Vhh + (β∗σSH + σ2

Hh) h
1−h

Vhd

+1
2
((β∗)2σ2

Sd2 + 2β∗σSHhd2 + σ2
Hh2d2)Vdd

+













(1 − γ)((β∗)2σ2
Sh + 2β∗σSHh2 + σ2

Hh3)

−(rh + β∗νSh + νHh2 − h(1 − h)d)

−(1 − γ)(β∗σSHh + σ2
Hh2) + (rh + νHh)













Vh

+







(1 − γ)((β∗)2σ2
Sd + 2σSHβ∗hd + σ2

Hh2d)

−(rd + β∗νSd + νHhd − (1 − h)d2)






Vd

+







−γ(1 − γ)1
2
((β∗)2σ2

S + 2β∗σSHh + σ2
Hh2)

+γ(r + β∗νS + νHh − (1 − h)d)






V

+Vt + e−δt(1 − h)γdγ = 0

(4.25)

or in brief as

f1(h, d, β∗)Vhh + f2(h, d, β∗)Vhd + f3(h, d, β∗)Vdd + f4(h, d, β∗)Vh

+f5(h, d, β∗)Vd + Vt + f6(h, d, β∗)V + f7(h, d) = 0
(4.26)

where

f1(h, d, β∗) = 1
2
((β∗)2σ2

Sh2 + 2β∗σSHh3 + σ2
Hh4)

+1
2
σ2

Hh2 − (β∗σSHh2 + σ2
Hh3)

(4.27)

f2(h, d, β∗) = (β∗σSH + σ2
Hh)

h

1 − h
(4.28)
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f3(h, d, β∗) =
1

2
((β∗)2σ2

Sd2 + 2β∗σSHhd2 + σ2
Hh2d2) (4.29)

f4(h, d, β∗) = (1 − γ)((β∗)2σ2
Sh + 2β∗σSHh2 + σ2

Hh3)

−(rh + β∗νSh + νHh2 − h(1 − h)d)

−(1 − γ)(β∗σSHh + σ2
Hh2) + (rh + νHh)

(4.30)

f5(h, d, β∗) = (1 − γ)((β∗)2σ2
Sd + 2σSHβ∗hd + σ2

Hh2d)

−(rd + β∗νSd + νHhd − (1 − h)d2)
(4.31)

f6(h, d, β∗) = −γ(1 − γ)1
2
((β∗)2σ2

S + 2β∗σSHh + σ2
Hh2)

+γ(r + β∗νS + νHh − (1 − h)d)
(4.32)

and

f7(h, d) = e−δt(1 − h)γdγ (4.33)

We continue with setting up the ADI finite difference scheme to evaluate the function

V (h, d, t). Instead of plugging in the expression for β∗ into equation (4.15), we follow

Kahl et al. [2003] in linearizing the HJB equation by evaluating the values of β∗ using

the estimated values of the function V (h, d, t) and its derivatives at the subsequent time

step. As in Kahl et al. [2003], we ensure the accuracy of the scheme by using extremely

small time steps.
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In going from tk to tk− 1
2
, we use the following approximations for the derivatives

Vhh(hi, dj, tk) =
1

∆h2







V (hi+1, dj, tk− 1
2
) − 2V (hi, dj, tk− 1

2
)

+V (hi−1, dj, tk− 1
2
)






(4.34)

Vhd(hi, dj, tk) =
1

4∆h∆d







V (hi+1, dj+1, tk) − V (hi+1, dj−1, tk)

−V (hi−1, dj+1, tk) + V (hi−1, dj−1, tk)






(4.35)

Vdd(hi, dj, tk) =
1

∆d2
[V (hi, dj+1, tk) − 2V (hi, dj, tk) + V (hi, dj−1, tk)] (4.36)

Vh(hi, dj, tk) =
1

2∆h
[V (hi+1, dj, tk− 1

2
) − V (hi−1, dj, tk− 1

2
)] (4.37)

Vd(hi, dj, tk) =
1

2∆d
[V (hi, dj+1, tk) − V (hi, dj−1, tk)] (4.38)

Vt(hi, dj, tk) =
1

∆t
[V (hi, dj, tk) − V (hi, dj, tk− 1

2
)] (4.39)
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Accordingly, for the half-step from tk to tk− 1
2
, equation (4.26) becomes

f1(h, d, β∗) 1
∆h2 [V (hi+1, dj, tk− 1

2
) − 2V (hi, dj, tk− 1

2
) + V (hi−1, dj, tk− 1

2
)]

+f2(h, d, β∗) 1
4∆h∆d







V (hi+1, dj+1, tk) − V (hi+1, dj−1, tk)

−V (hi−1, dj+1, tk) + V (hi−1, dj−1, tk)







+f3(h, d, β∗) 1
∆d2 [V (hi, dj+1, tk) − 2V (hi, dj, tk) + V (hi, dj−1, tk)]

+f4(h, d, β∗) 1
2∆h

[V (hi+1, dj, tk− 1
2
) − V (hi−1, dj, tk− 1

2
)]

+f5(h, d, β∗) 1
2∆d

[V (hi, dj+1, tk) − V (hi, dj−1, tk)]

+ 1
∆t

[V (hi, dj, tk) − V (hi, dj, tk− 1
2
)]

+f6(h, d, β∗)V (hi, dj, tk) + f7(h, d) = 0

Rearranging the terms gives us

[

f1(h, d, β∗) 1
∆h2 + f4(h, d, β∗) 1

2∆h

]

V (hi+1, dj, tk− 1
2
)

−
[

2f1(h, d, β∗) 1
∆h2 + 1

∆t

]

V (hi, dj, tk− 1
2
)

+
[

f1(h, d, β∗) 1
∆h2 − f4(h, d, β∗) 1

2∆h

]

V (hi−1, dj, tk− 1
2
)

= −
[

f2(h, d, β∗) 1
4∆h∆d

]

V (hi+1, dj+1, tk)

+
[

f2(h, d, β∗) 1
4∆h∆d

]

V (hi+1, dj−1, tk)

−
[

f3(h, d, β∗) 1
∆d2 + f5(h, d, β∗) 1

2∆d

]

V (hi, dj+1, tk)

+
[

2f3(h, d, β∗) 1
∆d2 − 1

∆t
− f6(h, d, β∗)

]

V (hi, dj, tk)

−
[

f3(h, d, β∗) 1
∆d2 − f5(h, d, β∗) 1

2∆d

]

V (hi, dj−1, tk)

+
[

f2(h, d, β∗) 1
4∆h∆d

]

V (hi−1, dj+1, tk)

−
[

f2(h, d, β∗) 1
4∆h∆d

]

V (hi−1, dj−1, tk) − f7(h, d)

(4.40)
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Note that all unknowns (V (·, ·, tk− 1
2
) are to be evaluated at dj . This allows us to solve

a system of equations for each dj individually, effectively making this a series of one-

dimensional problems.

In going from tk− 1
2

to tk−1, we use the following approximations for the derivatives

Vhh(hi, dj, tk− 1
2
) =

1

∆h2







V (hi+1, dj, tk− 1
2
) − 2V (hi, dj, tk− 1

2
)

+V (hi−1, dj, tk− 1
2
)






(4.41)

Vhd(hi, dj, tk− 1
2
) =

1

4∆h∆d





















V (hi+1, dj+1, tk− 1
2
)

−V (hi+1, dj−1, tk− 1
2
)

−V (hi−1, dj+1, tk− 1
2
)

+V (hi−1, dj−1, tk− 1
2
)





















(4.42)

Vdd(hi, dj, tk− 1
2
) =

1

∆d2







V (hi, dj+1, tk−1) − 2V (hi, dj, tk−1)

+V (hi, dj−1, tk−1)






(4.43)

Vh(hi, dj, tk− 1
2
) =

1

2∆h
[V (hi+1, dj, tk− 1

2
) − V (hi−1, dj, tk− 1

2
)] (4.44)

Vd(hi, dj, tk− 1
2
) =

1

2∆d
[V (hi, dj+1, tk−1) − V (hi, dj−1, tk−1)] (4.45)

Vt(hi, dj, tk− 1
2
) =

1

∆t
[V (hi, dj, tk− 1

2
) − V (hi, dj, tk−1)] (4.46)
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Accordingly, for the half-step from tk− 1
2

to tk−1, equation (4.26) becomes

f1(h, d, β∗) 1
∆h2 [V (hi+1, dj, tk− 1

2
) − 2V (hi, dj, tk− 1

2
) + V (hi−1, dj, tk− 1

2
)]

+f2(h, d, β∗) 1
4∆h∆d







V (hi+1, dj+1, tk− 1
2
) − V (hi+1, dj−1, tk− 1

2
)

−V (hi−1, dj+1, tk− 1
2
) + V (hi−1, dj−1, tk− 1

2
)







+f3(h, d, β∗) 1
∆d2 [V (hi, dj+1, tk−1) − 2V (hi, dj, tk−1) + V (hi, dj−1, tk−1)]

+f4(h, d, β∗) 1
2∆h

[V (hi+1, dj, tk− 1
2
) − V (hi−1, dj, tk− 1

2
)]

+f5(h, d, β∗) 1
2∆d

[V (hi, dj+1, tk−1) − V (hi, dj−1, tk−1)]

+ 1
∆t

[V (hi, dj, tk− 1
2
) − V (hi, dj, tk−1)]

+f6(h, d, β∗)V (hi, dj, tk− 1
2
) + f7(h, d) = 0

Rearranging the terms gives us

[

f3(h,d,β∗)
∆d2 + f5(h,d,β∗)

2∆d

]

V (hi, dj+1, tk−1)

−
[

2 f3(h,d,β∗)
∆d2 + 1

∆t

]

V (hi, dj, tk−1)

+
[

f3(h,d,β∗)
∆d2 − f5(h,d,β∗)

2∆d

]

V (hi, dj−1, tk−1)

= −f2(h,d,β∗)
4∆h∆d

V (hi+1, dj+1, tk− 1
2
)

−
[

f1(h,d,β∗)
∆h2 + f4(h,d,β∗)

2∆h

]

V (hi+1, dj, tk− 1
2
)

+f2(h,d,β∗)
4∆h∆d

V (hi+1, dj−1, tk− 1
2
)

+
[

2 f1(h,d,β∗)
∆h2 − 1

∆t
− f6(h, d, β∗)

]

V (hi, dj, tk− 1
2
)

+f2(h,d,β∗)
4∆h∆d

V (hi−1, dj+1, tk− 1
2
)

−
[

f1(h,d,β∗)
∆h2 − f4(h,d,β∗)

2∆h

]

V (hi−1, dj, tk− 1
2
)

−f2(h,d,β∗)
4∆h∆d

V (hi−1, dj−1, tk− 1
2
) − f7(h, d)

(4.47)
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Again, note that all unknowns (V (·, ·, tk−1) are to be evaluated at hi. This allows us to

solve a system of equations for each hi individually, effectively making this a series of

one-dimensional problems.

We now need to determine the terminal and boundary conditions for our problem. At

t = T , we are able to rebalance our entire portfolio. Essentially, we face the same problem

as at time 0, except that our wealth level is now X(T ) instead of X(0). So we must have

J(X, H∗(X, C∗(X, C−, 0), T ), C∗(X, C∗(X, C−, 0), T ), T )

= J(X, H∗(X, C−, 0), C∗(X, C−, 0), 0)
(4.48)

where H∗(X, C−, 0) and C∗(X, C−, 0) denote the optimal value of H and C if the wealth

at time 0 were to be X and the inherited consumption rate was C−. Note that this

boundary condition is different from that in Kahl et al. [2003] because of the problem

context. So at t = T , we could use

V (h, d, T ) = V ∗(h∗(d, 0), d∗(d, 0), 0) = V ∗ (4.49)

where h∗(d, 0) and d∗(d, 0) denote optimal values determined using d as the inherited con-

sumption rate as a fraction of liquid wealth. This however, is problematic. We obviously

do not know the value V ∗ until we solve for the function V (h, d, t) by completing the

backward recursion, and we can not perform the backward recursion until we have the

terminal and boundary conditions. As it were, even the boundary conditions are reliant

on V ∗.

One option is an iterative procedure based on an initial guess of V ∗ and then updated

estimates based on the outcome of the backward recursion. But we prefer an alternative
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route to the solution. Let us consider N time periods of this problem, and assume that

we are dealing with the last one. Assuming that after the N th period is over, the investor

immediately consumes the left-over wealth. If so, for this time period, the terminal

condition is

J(X, H, C, C−, T ) =
Xγ

γ
(4.50)

and therefore

V (h, d, T ) = 1 (4.51)

Assuming we are able to then solve the nth period problem, then we can use V ∗
n , the

optimal value function for the nth period problem, as the terminal condition for the

(n − 1)th problem. Then, as n → ∞, the solution to the first period problem converges

to the solution to our problem.

The other complication in this process is the handling of the inherited consumption

rate in its various forms (C−, c−, d−). For the nth problem, when we are performing a

backward recursion there is obviously no way of knowing what the inherited consumption

rate is going to be. Luckily, d− is bounded below at 0 and above at the same bound that d

has, i.e. dmax. So we will solve the two-dimensional finite difference problem for different

values of d− and store the optimal solutions for each of these values at every n, essentially

introducing a third dimension into our problem, albeit without bringing it into the finite

difference grid. Then, when we solve the (n − 1)th problem, the consumption rate dn−1

we decide on will determine the terminal value of a certain amount of wealth, this value

being generated by an interpolation of the stored values of V ∗
n (d−).
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Now, we set up the boundary conditions for the generic nth problem with the terminal

condition

V (h, d, T ) = V ∗
n (4.52)

At tNt = T , we can use

V (hi, dj, tNt) = V ∗
n (4.53)

At d = d−, the consumption rate is c− and therefore

V (h, d−, t) =
∫ (T−t)

0
e−δscγ

−ds + e−δ(T−t)V ∗
n E

[(

X(T )
X(t)

)γ]

=
(

1−e−δ(T−t)

δ

)

(d−(1 − h))γ + e−δ(T−t)V ∗
n

E







1
X(t)γ







H(t)e(µH− 1
2
σ2

H)(T−t)+σH (WH(T )−WH(t))

+(X(t) − H(t))e(β̂(µS− 1
2
σ2

S)+(1−β̂)r)(T−t)+β̂σS(WS(T )−WS(t))







γ





where β̂ = β

1−h
. Note that this is an approximation that assumes that we will keep β̂

constant, but in reality we have β as a function of h, and h itself varies over time. However,

we expect this approximation to be quite close. Thus

V (h, d−, t) =
(

1−e−δ(T−t)

δ

)

(d−(1 − h))γ + e−δ(T−t)V ∗
n

E













h(t)e(µH− 1
2
σ2

H)(T−t)+σH (WH(T )−WH(t))

+(1 − h(t))e(β̂(µS− 1
2
σ2

S)+(1−β̂)r)(T−t)+β̂σS(WS(T )−WS(t))







γ





(4.54)
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which has to be evaluated numerically. So at d1 = d−, we can use

V (hi, d1, tk) =
(

1−e−δ(T−tk)

δ

)

(d1(1 − hi))
γ + e−δ(T−tk)V ∗

n

E













hi(tk)e
(µH− 1

2
σ2

H)(T−tk)+σH (WH(T )−WH(tk))

+(1 − hi(tk))e
(β̂(µS− 1

2
σ2

S)+(1−β̂)r)(T−tk)+β̂σS(WS(T )−WS(tk))







γ





(4.55)

At d = dmax, we use the facts that the consumption rate (as a fraction of wealth) is

at its maximum cmax = r
1−e−rT (1 − h) and β is 0 since all the liquid wealth is being used

to guarantee the consumption stream. Therefore

V (h, dmax, t) =

∫ (T−t)

0

e−δscγ
maxds + e−δ(T−t)V ∗

n E

[(

X(T )

X(t)

)γ]

=

(

r

1 − e−rT

)γ (
1 − e−δ(T−t)

δ

)

(1 − h)γ

+e−δ(T−t)V ∗
n E

[

hγ
(

e(µH− 1
2
σ2

H)(T−t)+σH (WH(T )−WH(t))
)γ]

Thus

V (h, dmax, t) =
(

r
1−e−rT

)γ
(

1−e−δ(T−t)

δ

)

(1 − h)γ

+e−δ(T−t)V ∗
n hγe(γµH− 1

2
γ(1−γ)σ2

H )(T−t)

(4.56)

So at dNd
= dmax, we can use

V (hi, dNd
, tk) =

(

r
1−e−rT

)γ
(

1−e−δ(T−tk)

δ

)

(1 − hi)
γ

+e−δ(T−tk)V ∗
n hγ

i e
(γµH− 1

2
γ(1−γ)σ2

H )(T−tk)

(4.57)
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At h = 0, the entire wealth of the investor is in the stock or the bond, and therefore

V (0, d, t) =

∫ (T−t)

0

e−δsdγds + e−δ(T−t)V ∗
n E

[(

X(T )

X(t)

)γ]

=

(

1 − e−δ(T−t)

δ

)

dγ

+e−δ(T−t)V ∗
n E

[(

e(r+β∗νS−d− 1
2
(β∗)2σ2

S)(T−t)+β∗σS(WS(T )−WS(t))
)γ]

Thus

V (0, d, t) =
(

1−e−δ(T−t)

δ

)

dγ

+e−δ(T−t)V ∗
n e(γ(r+β∗νS−d)− 1

2
γ(1−γ)(β∗)2σ2

S)(T−t)

(4.58)

So at h1 = 0, we can use

V (h1, dj, tk) =
(

1−e−δ(T−tk)

δ

)

dγ
j

+e−δ(T−tk)V ∗
n e(γ(r+β∗νS−dj)− 1

2
γ(1−γ)(β∗)2σ2

S)(T−tk)

(4.59)

At h = 1, the entire wealth is in the hedge fund, hence there is no liquid wealth that

can be consumed. Therefore

V (1, 0, t) = e−δ(T−t)V ∗
n e(γµH− 1

2
γ(1−γ)σ2

H )(T−t) (4.60)

So at hNh
= 1, we can use

V (hNh
, dj, tk) = e−δ(T−tk)V ∗

n e(γµH− 1
2
γ(1−γ)σ2

H )(T−tk) (4.61)
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4.3. Summary

We have analyzed the situation of an investor who is allowed to invest in a bond, a stock

or a hedge fund, with the bond and the stock being continuously tradeable and the hedge

fund requiring a lockup period of given duration. The investor wants to guarantee that

consumption is non-decreasing - an extreme form of habit formation. We have provided

a framework for obtaining the optimal consumption and investment policies under such

a scenario.

It is not expected that such a conservative restriction would ever be implemented.

However, by studying this scenario, we essentially have performed a worst-case analysis

in that weaker restrictions on consumption patterns would result in a decrease in value

relative to the classical case that is lower than that in the non-decreasing consumption

problem.

Pension funds and university endowments require steady payout streams and must try

and avoid major declines in these payouts. Moreover, their portfolios typically also include

significant exposure to alternative assets such as hedge funds. The major complication

that arises from the inclusion of hedge funds in the investor’s portfolio is that they often

have a lockup requirement, where the investor is restricted from withdrawing funds from

the hedge fund for a pre-specified duration of time. Consequently, the approach laid out

here is of immense importance to these institutional investors, whose portfolio structures

must account for more complications than ever before.
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CHAPTER 5

Summary

In Chapter 2, we have presented a solution method for the discrete-time consumption

and investment optimization problem where the consumption rate process is constrained

to be non-decreasing.

We first prove that the value function for our problem must have a specific form that

depends on an unknown function of a bounded state variable, and then use an iterative

procedure to complete the solution.

The structure of the solution is intuitive. Feasibility of the problem is easily checked -

does the agent have enough wealth to guarantee herself the current consumption rate by

putting all her wealth into the risk-free asset? Once we have feasibility, the agent achieves

an optimal outcome as follows:

• At each decision epoch, the agent decides on the current consumption rate based

on her current wealth and the consumption rate at the previous step.

• Next, the agent puts an amount in the risk-free asset that is equivalent to the

present value of a perpetuity stream with a payout at the current consumption

rate.

• Now, based on the current state of the system, a proportion of the remaining

wealth is put in the risky asset, with the rest going into the risk-free asset.
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The non-decreasing consumption constraint leads to a conservative approach being

adopted by the agent which offers significant downside protection without significant

losses in certainty-equivalent consumption. The impact of an increase in the time interval

between decision epochs (τ) is as expected - an increase in the length of the time interval is

seen to lower the ideal fraction of wealth consumed as well as decrease the net proportion

of wealth invested in the risky asset for any feasible state.

Continuous-time approximations do not work well for investments that only have

limited liquidity or for increased lengths of the time interval. This is also true of assets

that have negatively skewed leptokurtic risky return distributions. In such cases, the

ability of our methodology to work with any reasonable asset return distribution proves

very useful. This is especially of appeal to institutional investors in hedge funds that may

have both limited trading opportunities and non-normal returns.

We could consider some other form of habit formation but we anticipate results that

are very similar to those derived in this paper. Other restrictions that are implemented to

smooth consumption are not as conservative a strategy as non-decreasing consumption,

thereby the loss of utility from other methods of smoothing consumption can not be more

than that from forcing consumption to be non-decreasing. Thus, a broader implication

of this paper, when considered in conjunction with Rogers [2001], is that the limitations

on trading frequency can have a greater impact in utility terms than smoothing of con-

sumption.

In Chapter 3 we first provide a framework for the calculation of the hedge fund lockup

premium and an alternative measure that we refer to as the lockup penalty. Second, we

have studied the optimal structure for a portfolio consisting of a bond, a stock and a
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hedge fund under both terminal wealth and consumption utility considerations. These

two scenarios apply to different types of institutional investors, with fund of funds and

proprietary traders falling under the no-consumption setting and pension funds and uni-

versity endowments falling under the utility of consumption setting. Under both scenarios,

we account for the availability of equities as an alternative risky investment. While fund

of funds do not usually maintain equity positions, that is not a restriction imposed on

them due to the hedge fund lockup requirement. Consequently, in computing the lockup

premium it is appropriate to account for the presence of equities even if they are not part

of the investor’s portfolio.

Chapter 3 also introduces the concept of an information premium, as well as a frame-

work to calculate this premium and an alternative measure of the value of hedge fund

price information that we refer to as the information penalty. Often hedge fund share

prices are available only just before a decision has to be made on adjusting the position

in the hedge fund - our framework essentially allows the investor to determine the fair

value for obtaining access to the share price information on a continuous basis.

In Chapter 4 we combine the restrictions on consumption and liquidity from Chapters

2 and 3 and provide a framework for obtaining the optimal consumption and investment

policies under such a scenario.

Pension funds and university endowments require steady payout streams and must try

and avoid major declines in these payouts. Moreover, their portfolios typically also include

significant exposure to alternative assets such as hedge funds. The major complication

that arises from the inclusion of hedge funds in the investor’s portfolio is that they often

have a lockup requirement, where the investor is restricted from withdrawing funds from
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the hedge fund for a pre-specified duration of time. Consequently, the approach described

in Chapter 4 is of significant use to these institutional investors, whose portfolio structures

must account for more complications than ever before.
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APPENDIX A

Proofs of Results in Chapter 2

To prove Theorem 1, we first need to establish some required results. We will return to

this proof once we have done so. We continue to use γ∗, r∗, α and α̂ as a briefer notation

for γ∗(Wn, Cn−1), r∗(Wn, Cn−1), α(Wn, Cn−1) and α̂(Wn, Cn−1) respectively. These still

represent functions of the state variables and are not constants.

In some of the following lemmas, we will utilize results from Chapter 5 of Bertsekas

and Shreve [1978, reprinted 1996] as well as from Chapters 1 and 3 (Vol. II) of Bertsekas

[1995]. The results in these chapters are for a minimization problem - but the problem

can be interpreted as a minimization of the negative of its objective function, which is the

expected discounted present value of the utility stream. We use the prefix [BS5] to refer

to results obtained in Bertsekas and Shreve [1978, reprinted 1996] and the prefix [B1] and

[B3] for those obtained in Chapters 1 and 3 of Bertsekas [1995] respectively.

Lemma A-1. The value function V ∗(·) corresponding to the optimal solution to our

problem must satisfy the following optimality equation,

V (Wn, cn−1) = max
0≤αn≤1

cn≥cn−1

1−e−δτ

δ
u(cn)

+∆−1
ER̃

[

V (Wn[(1 − αn)R + αnR̃n] − cn

r
(R − 1), cn)

∣

∣Wn, cn−1

]

(A-1)

where u(·), ∆, R and R̃ are as defined before.
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Proof: The reward function in this case (written in the style of [BS5]) is

g([Wn, cn−1], [cn, αn], R̃) = −1 − e−δτ

δ
u(cn) = −1 − e−δτ

δ

1

γ
(cn)γ (A-2)

Thus, since the consumption cn will always be positive, g([Wn, cn−1], [cn, αn], R̃) is positive

(negative) if γ is negative (positive). Remember that γ < 1.

Assume for now that c0− > 0. Then, for all feasible states and actions, we have either

g([Wn, cn−1], [cn, αn], R̃) ≤ 0 ∀ n ≥ 0 if γ ≥ 0 (A-3)

or

g([Wn, cn−1], [cn, αn], R̃) ≥ 0 ∀ n ≥ 0 if γ < 0 (A-4)

Note that the above relationships hold for c0− = 0 in the limit.

By proposition ([BS5].5.12), if equation (A-3) holds, then assumptions ([BS5].D),

([BS5].D1) and ([BS5].D2) hold, with the scalar in ([BS5].D2) equal to ∆−1. Similarly,

if equation (A-4) holds, then assumptions ([BS5].I), ([BS5].I1) and ([BS5].I2) hold, with

the scalar in ([BS5].I2) equal to ∆−1. In either case, all results in ([BS5]) apply to our

problem.

Using either proposition ([BS5].5.2) (if γ < 0) or proposition ([BS5].5.3) (if γ ≥ 0),

there exists a function V ∗ that satisfies the optimality equation

V ∗ = T (V ∗) (A-5)
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where

T (V )([Wn, cn−1]) = max
0≤αn≤1

cn≥cn−1

H([Wn, cn−1], [cn, αn], V ) (A-6)

and in turn

H([Wn, cn−1], [cn, αn], V ) =ER̃ [g([Wn, cn−1], [cn, αn], R̃)

+ ∆−1V (Wn+1(cn, αn, R̃), cn)
∣

∣Wn, cn−1]

(A-7)

Note that the above equations incorporate the reversal from the minimization form of

[BS5] to our maximization form. Putting equations (A-2), (A-5), (A-6) and (A-7) to-

gether, we obtain

V ∗(Wn, cn−1) = max
0≤αn≤1

cn≥cn−1

ER̃







1−e−δτ

δ
u(cn)

+∆−1V ∗(Wn+1(cn, αn, R̃), cn)
∣

∣Wn, cn−1






(A-8)

Using the independence of u(cn) from the behavior of the risky asset during the (n + 1)th

time interval (as characterized by R̃), and the wealth dynamics in equation (2.11), we

conclude that the optimality equation (A-1) holds. �

Examining equation (A-1), we can expect that the optimal policies cn and αn will

be stationary - i.e., the history Hn ≡ {W0, c0, α0, W1, c1, α1, . . .Wn} impacts the optimal

policies only through the current states Wn and cn−1. However, since we are dealing with

uncountable state and action spaces and generalizations of dynamic programming results

are tricky in these settings, it is prudent to formalize this expected result.
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Once we have established the existence of a stationary solution in the following lemma,

we switch our notation to the stationary form as well - from here on, w, c, x, α will repre-

sent the current wealth, current consumption rate, current ratio and current investment

in risky asset respectively, and the suffixes + and − will be used to denote the next-step

and previous-step values of these variables. Note that our state variables are w, c− and

x, whereas c and α are our optimal stationary policies, should they exist.

Lemma A-2. There exists an optimal stationary policy [c(w, c−), α(w, c−)] defined

for all feasible states (w, c−). Moreover, the optimality equation (A-1) can be rewritten in

stationary form as

V (w, c−) = max
0≤α≤1

c≥c−







1−e−δτ

δ
u(c)

+∆−1
ER̃

[

V
(

w[(1 − α)R + αR̃] − c
r
(R − 1), c

)

∣

∣w, c−

]







(A-9)

where (w, c−) is any feasible state. The value function Vs(·) generated by the optimal

stationary policy satisfies the optimality equation (A-9) and consequently, also equation

(A-1). We therefore have Vs(·) = V ∗(·)

Proof: For all feasible states (w, c−), there is an optimal policy in the continuous-time

framework; with finite time intervals between decision epochs, we can only do worse. Also,

the action space is bounded. So for all feasible states, there exists an optimal policy. Hence

proposition [BS5].5.4 applies. When γ < 0, we know that assumptions ([BS5].I), ([BS5].I1)

and ([BS5].I2) hold and we can use proposition ([BS5].5.4) to state that some stationary

policy [c(w, c−), α(w, c−)] defined for all feasible states (w, c−) achieves optimality.
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An equivalent general result is not available under assumptions ([BS5].D), ([BS5].D1)

and ([BS5].D2). Fortunately, we need not get bogged down in the details, and a brief

explanation will suffice - in the equivalent general problem we would be minimizing un-

bounded negative rewards (or maximizing unbounded positive rewards, as is the case in

our problem for γ > 0) and counterexamples exist to show that an equivalent general

result proving the existence of optimal stationary solutions cannot be obtained. Conse-

quently, we need to obtain the desired result for our problem in a somewhat convoluted

manner.

The basic idea is to convert the problem from one that maximizes the discounted

sum of positive rewards to one that maximizes the discounted sum of negative rewards.

We know that the continuous-time solution would obtain a higher value for any state.

Therefore, if we define the discrete-time rewards as the excess over those in continuous-

time for any given state, we are now trying to maximize negative rewards.

To make this a little more formal, given state yn ≡ [Wn, cn−1], the continuous-time

value is Vc(yn). We look at each sample path ω that goes from time n to n + 1. If we

follow the continuous-time policy, suppose we earn rc(yn, ω) and land in state yc(yn, ω).

Let

r̄c(yn) = Eω

[

rc(yn, ω) + ∆−1[Vc(yc(yn, ω)) − Vc(yn+1

∣

∣yn, µ
∗
n)]
]

(A-10)

where µ∗
n is the optimal policy for the discrete-time problem at time n. We know that we

cannot do better than earning this reward in the discrete-time case before the next re-

balancing because, if we did, we would then exceed the continuous-time optimal value in

the limit. The discrete-time problem is equivalent to a problem to maximize V (y)−Vc(y).
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Now, the rewards are all negative, and we are trying to maximize their discounted sum.

Assumptions ([BS5].I), ([BS5].I1) and ([BS5].I2) now hold, and again we use proposition

([BS5].5.4) to state that some stationary policy [c(w, c−), α(w, c−)] defined for all feasible

states (w, c−) achieves optimality.

Thus, for both cases we have an optimal stationary policy - consequently, the value

function Vs(·) generated by this stationary policy must satisfy equation (A-1). Conse-

quently, Vs(·) = V ∗(·).

Finally, equation (A-9) is clearly the stationary form of the optimality equation (A-1)

and holds because of the existence of an optimal stationary policy. �

In general, it is not necessary that there will be a unique fixed point of the operator T

(see Example [B1].1.2), so we need to formally establish its uniqueness. This would allow

us to declare any stationary policy that generates a fixed point of the operator T to be

an optimal policy.

Lemma A-3. If the value function Vs(·) corresponding to an optimal stationary policy

is of the form Vs(c−, w) = Us(
c−
w

)wγ where Us(·) is a bounded function for all feasible

values of c−
w

, then Vs(·) is a unique solution of the optimality equation (A-9) - i.e., Vs(·) is

a unique fixed point of the operator T . Consequently, any stationary policy that generates

a value function that is of the above form and is a fixed point of T must be an optimal

stationary policy.

Proof: In lemma A-2 we have shown that the problem under assumptions ([BS5].D),

([BS5].D1) and ([BS5].D2) can be converted to a problem under assumptions ([BS5].I),
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([BS5].I1) and ([BS5].I2). Consequently, we only show the uniqueness of the solution V ∗(·)

when assumptions ([BS5].I), ([BS5].I1) and ([BS5].I2) hold.

In this case, proposition [B1].1.2.3 tells us that a stationary policy [c∗s, α
∗
s] is optimal

if and only if it solves TVs = T[c∗s ,α∗
s ]Vs where T[c∗s ,α∗

s ] is defined as

T[c∗s ,α∗
s ](V )([w, c−])

= ER̃







g([w, c−], [c∗s(w, c−), α∗
s(w, c−)], R̃)

+∆−1V (w+(c∗s(w, c−), α∗
s(w, c−), R̃), c(w, c−))

∣

∣w, c−







(A-11)

¿From lemma A-1, we know that a solution V ∗ to TV = V exists. We now need to show

that V ∗ is also the Vs that solves TV = T[c∗s ,α∗
s ]V . Suppose Vs(c−, w) = Us(

c−
w

)wγ, and we

have a solution V ∗(c−, w) = U∗( c−
w

)wγ = TV ∗ where U∗( c−
w

) is bounded. Now, we can

use Exercise [B3].3.5.

U∗ being bounded implies that there exists 0 < λ < ∞ such that Us(
c−
w

)+λ ≥ U∗( c−
w

).

Now, we also have

T
((

Us

(c−
w

)

+ λ
)

wγ
)

≥ T
(

U∗
(c−

w

)

wγ
)

= V ∗

where

T
((

Us

(c−
w

)

+ λ
)

wγ
)

= Vs + ∆−1λwγ

Doing this n times yields

Vs + ∆−nλwγ ≥ V ∗
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or, in the limit, Vs ≥ V ∗. Therefore, V ∗ = Vs. Consequently, T has a unique fixed point,

and if the value function generated by a stationary policy solves TV = V , then that

stationary policy must be optimal. �

Lemma A-4. V ∗(·) is continuous in the current state variables (w, c−) if the con-

sumption policy cn is continuous in (wn, cn−1).

Proof: The continuity of the function V ∗ follows from its representation as the ex-

pected discounted present value at decision epoch 0 of the utility stream under the optimal

policy

V ∗(w, c−) = E
µ∗

0

[ ∞
∑

n=0

(∆−1)nu (cn(wn, cn−1))

∣

∣

∣

∣

w0 = w, c−0 = c−

]

(A-12)

Clearly, if u(·) is continuous in cn and the consumption policy cn is itself continuous in

(wn, cn−1), we have that V ∗(·) is continuous in the current state variables (w, c−). �

Lemma A-5. The function V ∗ that solves (A-9) takes values in
(

1
δ

1
γ
(rw)γ, 0

)

if γ < 0

and in
(

1
δ

1
γ
(rw)γ,∞

)

if 0 ≤ γ < 1.

Proof: V ∗ is real valued. Given any feasible state, any policy that:

• produces a feasible consumption stream, and,

• for which one can explicitly calculate the value of the right hand side of the

optimality equation, (A-9)

immediately gives us a lower bound on the actual value of V ∗ for that state.

Given any feasible state (w, x) ∈ S, if the agent puts all her wealth into a consumption

perpetuity, then the resulting consumption stream of rw at every decision epoch is feasible;
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we can explicitly calculate the value of the right hand side of equation (A-9) as the present

value of the utility perpetuity, since that is the only source of value. This present value

is 1
δ
u(rw) = 1

δ
1
γ
(rw)γ. Therefore, 1

δ
1
γ
(rw)γ is a lower bound on the value function V ∗ for

any feasible state (w, x) ∈ S.

Moreover, this lower bound is not achievable if the risky asset is attractive enough -

the precise condition being µ > δ. To see this, consider the scenario where λ > 0 (small)

is put into the risky asset at the current decision epoch, and the rest is put into the

consumption perpetuity. At the next decision epoch, the entire wealth is moved into the

consumption perpetuity. Then, the value obtained from this strategy will be

Vλ(w, c−) =

(

1 − ∆−1

δ

)

(r(w − λ))γ

γ
+

∆−1

δ
ER̃





1

δ

(

r(λR̃ + w − λ)
)γ

γ





Then we have

∂Vλ(w,c−)
∂λ

= −
(

1−∆−1

δ

)

rγ(w − λ)γ−1

+∆−1

δ
rγ

ER̃

[

(R̃ − 1)
(

w + λ(R̃ − 1)
)γ−1

]

and, for λ close to 0

∂Vλ(w, c−)

∂λ
≈ −

(

1 − ∆−1

δ

)

rγwγ−1 +
∆−1

δ
rγ

ER̃

[

(R̃ − 1)wγ−1
]

For ∂Vλ(w,c−)
∂λ

to be positive (thereby implying increasing value with an increase in λ from

0), we end up with the simple condition that µ > δ. Intuitively, the risky asset needs

to have an expected return rate greater than the pure rate of time preference for it to

be attractive enough to warrant investment. We will assume this to be the case, since
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otherwise the problem is trivial and the optimal strategy is to put everything into the

consumption perpetuity.

Now we move to the upper bound - V ∗ represents the objective function of our opti-

mization problem, which is a discounted sum of utility obtained at each decision epoch.

If γ < 0 then the utility at each step will be negative, and consequently so will V ∗. This

automatically places an upper bound of 0 on V ∗. If 0 ≤ γ < 1 then the utility at each

step will be positive and the upper bound on V ∗ stays at +∞. Note that the lower bound

is also positive in this case. In either case, to achieve the upper bound, the consumption

rate will have to be infinite, which is infeasible given a finite initial wealth.

Therefore, given state (w, x) ∈ S, V ∗ must take some real value in
(

1
δ

1
γ
(rw)γ, 0

)

if

γ < 0 and in
(

1
δ

1
γ
(rw)γ,∞

)

if 0 ≤ γ < 1. �

Lemma A-6. The function

V c , α
γ∗ (w, c−) =

1

δ
u(c) +

r

δ

(

1

r∗
− 1

r

)1−γ∗

cγ

(

w

c
− 1

r

)γ∗

(A-13)

where γ∗ ∈ (γ, 1) is an appropriate form for the value function at any feasible state (w, c−)

given a stationary policy [c(w, c−), α(w, c−)].

Consequently, the function Vγ∗(w, c−) as defined in equation (2.19) is an appropriate

form of the value function for the policy defined in equations (2.21), (2.22), (2.24), (2.25)

and (2.26).

Proof: Given any stationary policy [c(w, c−), α(w, c−)], we know that every feasible

solution guarantees a consumption stream of at least c. This gives us an immediate
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lower bound on the value function as 1
δ
u(c), which is the first term in the definition of

V c , α
γ∗ (w, c−).

The only other source of value in our problem is the potential for an increase in the

guaranteed consumption amount. The contribution from this source can only be posi-

tive. It can easily be shown that the term r
δ

(

1
r∗

− 1
r

)1−γ∗

cγ
(

w
c
− 1

r

)γ∗

is always positive.

Moreover, for any value increment in (0,∞), we can find a γ∗ ∈ (γ, 1) such that this term

exactly matches the increment. Therefore, V c , α
γ∗ (w, c−) as defined in equation (A-13) is

a legitimate representation of the value function corresponding to any stationary policy

[c(w, c−), α(w, c−)].

The consumption is modeled in equations (2.24), (2.25) and (2.26) as a regulated

process. This is equivalent to the consumption rule

c = max(c−, r∗w) (A-14)

as utilized in the function Vγ∗(w, c−). Plugging in the above (equation (A-14)) consump-

tion policy into the definition of V c , α
γ∗ (w, c−) (equation (A-13)), we see that the function

Vγ∗(w, c−) as defined in equation (2.19) is an appropriate form of the value function for

the policy defined in equations (2.21), (2.22), (2.24), (2.25) and (2.26). �

Lemma A-7. The function Vγ∗(w, c−) as defined in equation (2.19) can be restated

in terms of the wealth w and a function Uγ∗(x) of the ratio state variable x.
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Proof: Rewriting equation (2.19), we see that

Vγ∗(w, c−) =wγu
(

max
(c−

w
, r∗
))

+wγ r

δ

(

1

r∗
− 1

r

)1−γ∗
(

max
(c−

w
, r∗
))γ

(

1

max
(

c−
w

, r∗
) − 1

r

)γ∗

Using equation (2.13), we have

Vγ∗(w, c−) = Vγ∗(w, x) = wγUγ∗(x) (A-15)

where

Uγ∗(x) =
1

δ
u (max (x, r∗))

+
r

δ

(

1

r∗
− 1

r

)1−γ∗

(max (x, r∗))γ

(

1

max (x, r∗)
− 1

r

)γ∗ (A-16)

�

Lemma A-8. For any given feasible state (w, c−) (or equivalently, (w, x) ∈ S), the

function Vγ∗(w, c−) as defined in equation (2.19) is monotonically decreasing in γ∗ for

γ∗ ∈ (γ, 1).

Proof: We know that we can rewrite Vγ∗(w, c−) as

Vγ∗(w, c−) = Vγ∗(w, x) = wγUγ∗(x)

where Uγ∗(x) is obtained from the definition (A-16). Assuming we started with the non-

trivial case of W0 > 0, we will have w > 0 and consequently wγ > 0 (constant, since

we are given a particular state). To show that Vγ∗(w, c−) is monotonic decreasing in γ∗
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for γ∗ ∈ [γ, 1], it is enough to show that this property holds for Uγ∗(x). We know that

x ∈ [0, r]. Consider the case where x ∈ [0, r∗]. Then

Uγ∗(x) =
1

δ

(r∗)γ

γ
+

r

δ

(

1

r∗
− 1

r

)1−γ∗

(r∗)γ

(

1

r∗
− 1

r

)γ∗

Using equation (2.20), we have

Uγ∗(x) =
1

δ

rγ

γ
(1 − γ)1−γγ∗(γ∗ − γ)γ−1

Taking the partial derivative of Uγ∗(x) with respect to γ∗, we obtain

∂Uγ∗(x)

∂γ∗ =
1

δ
rγ(1 − γ)1−γ(γ∗ − γ)γ−2(γ∗ − 1) (A-17)

which is strictly negative for γ∗ ∈ (γ, 1). Now consider the case where x ∈ (r∗, r]. Then

Uγ∗(x) =
1

δ

xγ

γ
+

r

δ

(

1

r∗
− 1

r

)1−γ∗

xγ

(

1

x
− 1

r

)γ∗

Using equation (2.20), we have

Uγ∗(x) =
1

δ
xγ

[

1

γ
+

(

1 − γ∗

γ∗ − γ

)1−γ∗
( r

x
− 1
)γ∗

]

Taking the partial derivative of Uγ∗(x) with respect to γ∗, we obtain

∂Uγ∗(x)

∂γ∗ =
1

δ
xγ

(

1 − γ∗

γ∗ − γ

)1−γ∗
( r

x
− 1
)γ∗

ln





(

r
x
− 1
)

(

1−γ∗

γ∗−γ

) e−( 1−γ
γ∗−γ )



 (A-18)
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Now, since x ∈ (r∗, r]

1

δ
xγ

(

1 − γ∗

γ∗ − γ

)1−γ∗
( r

x
− 1
)γ∗

is strictly positive for γ∗ ∈ (γ, 1), and

sup
x∈(r∗,r]

ln





(

r
x
− 1
)

(

1−γ∗

γ∗−γ

) e−( 1−γ
γ∗−γ )



 = ln





(

r
r∗

− 1
)

(

1−γ∗

γ∗−γ

) e−( 1−γ
γ∗−γ )



 = −
(

1 − γ

γ∗ − γ

)

which is strictly negative for γ∗ ∈ (γ, 1). Thus, for all x ∈ (r∗, r] we have
∂Uγ∗ (x)

∂γ∗ < 0 where

γ∗ ∈ (γ, 1) and consequently, both Uγ∗(x) and Vγ∗(w, c−) are monotonically decreasing in

γ∗ for γ∗ ∈ (γ, 1) �

Lemma A-9. If γ < 0, for any possible value of V ∗ in
(

1
δ

1
γ
(rw)γ, 0

)

, there is a unique

γ∗ ∈ (0, 1) such that the proposed form of the value function Vγ∗(w, c−) takes the same

value as V ∗.

If 0 ≤ γ < 1, for any possible value of V ∗ in
(

1
δ

1
γ
(rw)γ,∞

)

, there is a unique

γ∗ ∈ (γ, 1) such that the proposed form of the value function Vγ∗(w, c−) takes the same

value as V ∗.

Moreover, γ∗(w, c−) is continuous in the current state variables (w, c−).

Proof: ¿From equation (2.19), we can see that for a given feasible state (w, c−),

Vγ∗(w, c−) is continuous in γ∗ for γ∗ ∈ (γ, 1).

We have also shown (Lemma A-8) that for any feasible state (w, c−), Vγ∗(w, c−) is

monotonically decreasing in γ∗ for γ∗ ∈ (γ, 1).
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Finally, we have

lim
γ∗↓γ

Vγ∗(w, c−) = +∞ (A-19)

lim
γ∗↑1

Vγ∗(w, c−) =
1

δ

1

γ
(rw)γ (A-20)

and

lim
γ∗→0

Vγ∗(w, c−) = 0 (A-21)

These limits are the same as the bounds established on V ∗ in Lemma A-5 for the cases

0 ≤ γ < 1 and γ < 0.

The continuity and monotonicity of Vγ∗(w, c−) in γ∗ along with the above limits give

us the existence of a unique γ∗ that matches V ∗ and Vγ∗ for every possible value of V ∗.

The consumption rule (A-14) is in a continuous form. The continuity of γ∗(w, c−)

follows from the resulting continuity of V ∗(w, c−) (as shown in Lemma A-4), and the

continuity of Vγ∗ in γ∗. �

Proof of Theorem 1: In Lemma A-6, we have shown that Vγ∗(w, c−) is a legitimate

form of the value function. Lemma A-2 and Lemma A-9 together show the existence of a

function γ∗(·) that satisfies the Bellman equation (2.18). This specific form of the Bellman

equation is obtained in Lemma A-2. The range of values taken by γ∗(·) are established

in Lemma (A-9).
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As noted in Lemma A-6, the consumption is modeled in equations (2.24), (2.25) and

(2.26) as a regulated process. This is equivalent to the consumption rule,

cn = max(cn−1, r
∗Wn) (A-22)

as utilized in the value function. Once we have computed the γ∗(·) function, equations

(2.20) and (2.22) provides us with the equivalent r∗(·) and α̂(·) functions over the feasible

values of {Xn}, i.e., [0, r].

Given a particular value of Xn at a particular decision epoch, we can obtain the

appropriate values of γ∗, r∗ and α̂ for that decision epoch. Equation (2.21) then allows

to obtain the corresponding value of α.

Thus, the solution to the discrete-time problem (Problem 1) is of the form proposed

in Theorem 1. �

Proof of Theorem 2: Using equations (2.18) and (A-15), the Bellman equation can

be written as

wγUγ∗ (x) =
1

γ

1 − e−δτ

δ
(max(c−, r∗w))γ + ∆−1

ER̃

[

wγ
+Uγ∗(x+)

∣

∣w, x
]

Since w is known, dividing the above equation by wγ gives us

Uγ∗ (x) =
1

γ

1 − e−δτ

δ

(

max
(c−

w
, r∗
))γ

+ ∆−1
ER̃

[(w+

w

)γ

Uγ∗(x+)
∣

∣w, x
]

(A-23)

Also, from equation (2.11) and c = max(c−, r∗w) = wmax
(

c−
w

, r∗
)

, we obtain

w+

w
=
(

1 − max
(c−

w
, r∗
)) [

(1 − α)R + αR̃
]

(A-24)
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Putting equations (A-23) and (A-24) together and using x = c−
w

, we can write the Bellman

equation as

Uγ∗ (x) =
1

γ

1 − e−δτ

δ
(max(x, r∗))γ +

∆−1
ER̃

[(

(1 − max(x, r∗))
[

(1 − α)R + αR̃
])γ

Uγ∗(x+)
∣

∣w, x
]

(A-25)

Finally, we show that the dynamics of x are independent of the wealth w . Applying

equation (2.27) to the state (w, c−) we obtain

w+ =
(

w − c

r

) [

(1 − α̂(w, c−))R + α̂(w, c−)R̃
]

+
c

r
(A-26)

Dividing by c, and using c = max(c−, r∗w), x = c−
w

, we obtain

x+ =
1

(

1
max(x,r∗)

− 1
r

) [

(1 − α̂)R + α̂R̃
]

+ 1
r

(A-27)

We see that the Bellman equation can be stated purely in terms of x as in equation (A-25),

and the dynamics of x are independent of the wealth process. �
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