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ABSTRACT

Phonon-Defect Interactions in Thermoelectric Materials

Engineering heat transport in materials is essential for thermal management in a wide range

of technologies, from batteries to thermoelectrics. Materials host a wide spectrum of heat-carrying

phonons, which vary in their frequency, spatial extent, and degree of plane-wave character. This

diversity in phonon properties leads to complex behaviour, especially in materials with structural

complexity, defects, and internal strain sources. The study of thermal conductivity has benefited

from simple, physics-based models for over 70 years, as they are easily implemented, elucidate

underlying mechanisms, and can even help point to exotic physics when they fail to describe a

system. Their lasting relevance supports the argument for continued work on analytic, physical

expressions in emerging fields of materials science even as new techniques in simulation and materials

informatics become widespread. This thesis primarily focuses on the development of analytic theory

to describe the phonon interactions with structural defects. Special focus is given to the phonon

scattering e↵ects of point defects and low energy interfaces, which are composed of an underlying

array of interfacial dislocations.

We start by reviewing previous descriptions of phonon—point-defect interactions and presenting

a conceptually clear model of point defect scattering. We then apply this model to study the thermal

properties in multicomponent alloy systems for thermoelectrics. We additionally show an extension

of alloy scattering models for charge carriers to high dimensional alloy systems by drawing analogy

to the calculation of excess Gibbs free energy. Design rules are suggested based on this modelling

for when a reduction in thermal conductivity can be expected from multicomponent alloying.
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We end with a discussion of phonon-interface scattering and introduce our model of the thermal

boundary resistance RK of low-energy grain boundaries and interfaces. Our modelling of symmetric

tilt and twist grain boundaries as well as semicoherent heterointerfaces helps to address fundamental

questions about RK such as: How does the RK of a twist and tilt grain boundary compare? How does

RK relate to grain boundary angle and energy? How does the degree of misfit at a heterointerface

impact its RK?
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Notation Conventions

Physical Constants

Boltzmann constant kB = 1.38 ⇥ 1023 J/K

Planck constant ~ = 1.054 ⇥ 10�34 J·s

Electron charge e = 1.602 ⇥ 10�19 C

Electron mass me = 9.11 ⇥ 10�31 kg

Conventions

(1) Vector quantities will be indicated with a bold font. For example, the phonon wavevector

q = [qx, qy, qz]. The non-bold character indicates the magnitude of the vector (e.g. |q| =

q). Components of multidimensional tensor quantities will be signified with an ijk indices

typically referring to the Cartesian direction of each dimension of the tensor (e.g. strain

tensor component ✏ij is the j component of the gradient of the displacement in the i

direction).

(2) Variable quantities are italicized, whereas non-italic subscripts and superscripts tend to

indicate categorical labels.

(3) Phonon mode will often be designated with a combined notation qs, where q is the

wavevector and s is the branch index.

(4) Unless otherwise indicated, V tot will refer to the volume of the crystal, while V0 will refer

to the volume per atom.

(5) Phonon wavevectors are designated as q, while electronic wavevectors are designated as

k. For scattering problems, the scattering vector is designated as Q = q0 � q.
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CHAPTER 1

Introduction and Motivation

1.1. Thermal Engineering of Materials

In the United States, 67% of energy goes unutilized as waste heat due to losses in power

generation, transmission, and conversion [1]. Materials design principles for directing and controlling

heat conduction are therefore highly impactful across applications like thermoelectric conversion,

thermal barrier coatings, and heat management systems for power electronic and energy storage

devices. A common challenge in the discipline of thermal conductivity engineering is the heterogeneity

of heat carrying lattice vibrations, or phonons, within a single material. Most materials host a broad

spectrum of phonons with wavelengths ranging from Ångstroms to micrometers, which couple to

di↵erent types of structural defects and sources of internal strain within the material. Therefore,

understanding the heat carried by phonons, or the lattice thermal conductivity L, is inherently

a multiscale problem, requiring information about the bonding (atomistic), internal strain e↵ects

(nanoscale), and grain or pore structure (microscale).

Since functional thermal materials also tend to contain numerous structural defects, either

as a product of processing or to intentionally tailor material properties, understanding phonon-

defect interactions is crucial to thermal materials design. Demonstrations of engineering low, high,

or anisotropic thermal conductivity through defects exist for several technological applications.

Thermal barrier coatings (TBCs), for example, are thermal insulators used to coat components

exposed to high temperatures, such as the blades and vanes in gas turbines [2,3]. A state-of-the-art

TBC material is yttria-stabilized zirconia (YSZ), and introducing oxygen and cation vacancies is one

of the most common and e↵ective ways to further reduce the thermal conductivity of these materials

[2]. In thermoelectric applications, a focus of this thesis, engineering low thermal conductivity is
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required to maintain a temperature di↵erential across the thermoelectric module. Many of the

defect engineering strategies discussed here will be towards the goal of scattering phonons and

suppressing thermal transport.

In other instances, such as power electronic devices, heat dissipation away from the device

is required to prevent over-heating. Current nano-/micro-electronic devices, however, contain a

high density of interfaces, separating the package, substrate, channel, barrier layer, and electrodes.

Therefore, in order to achieve higher device densities and power densities, these interfaces should

be designed to be as thermally conductive as possible [4,5].

Finally, a unique approach to thermal dissipation involving linear defects, or dislocations,

was presented by Sun et al. [6]. As discussed in detail in Chapter 5, the phonons tend to

strongly interact with dislocation strain fields, which can lead to larger scattering for phonons

travelling perpendicular to the dislocation line. In their work, Sun et al. leveraged this e↵ect

to induce anisotropic thermal transport in the otherwise fairly isotropic material, wurtzite InN

using vertically-aligned threading dislocations. The engineered thermal anisotropy is proposed as a

mechanism to direct heat flow in thin film semiconductor devices such as power electronics or light

emitting diodes (LEDs) [6].

The impact of thermal engineering through material defects is therefore widespread. In the

following section, we will introduce the fundamentals of thermoelectric conversion, as this is the

technological focus of this thesis work.

1.2. Thermoelectric Conversion

Thermoelectric modules directly interconvert between a temperature gradient and electrical

power in a fully solid-state device. This profound ability to convert between a “lossy” form of energy,

excess heat, and a highly transferrable form of energy, electricity, a↵ords two major technologies that

can greatly promote sustainable energy harvesting and utilization. The first, thermoelectric power

generation, involves reclaiming rejected heat to produce clean, electrical power. A typical nuclear

fission reactor, for example, operates at 25-30% e�ciency, and therefore produces a steady supply
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of low-grade (200-277�C) waste heat. Recycling of this waste heat into electricity via thermoelectric

conversion not only improves the operating e�ciency, but also provides an environmentally-friendly

heat management strategy versus cooling water, which is released at very hot temperatures into

nearby waterways [7].

The second technology, thermoelectric cooling, stems from the reciprocal process and involves

driving a DC current through a thermoelectric module, allowing it to operate as a heat pump.

Solid-state cooling could provide an opportunity for personalized temperature control devices to

reduce the ⇠ 40% of building energy consumption currently devoted to heating, ventilation, and

air conditioning (HVAC) [8]. The coe�cient of performance (COP) for a thermoelectric cooler is

solely dependent on the hot and cold side temperatures, T c and T h (which are limited by the heat-

exchanger losses), as well as the device ZT , which is related to the thermoelectric materials selection.

The COP, labeled as �, is the heat removed Qc divided by the electrical power consumed W . The

thermodynamic limit of � is set by the Carnot e�ciency T c/(T h � T c), which in thermoelectric

modules is reduced by the parenthetical factor below, where �T = T h � T c and T is the average

temperature across the device:

(1.1) � =
T c

�T

 p
1 + ZT � T h/T cp

1 + ZT + 1

!

The coe�cient of performance for a thermoelectric cooler increases as �T decreases, and

existing thermoelectric coolers meet the U.S. EnergyStar certification at �T values of about 8�C

while being competitive with vapor compression cycle systems [9]. If rather than attempting to

cool large spaces, a distributed cooling approach was implemented with reduced �T values (e.g.

cooling car seats rather than air conditioning), thermoelectric coolers are a compact, quiet, and

reliable solution. However, to realize thermoelectric low-grade waste heat recovery or refrigeration

technologies with larger �T applications, ZT > 2 is required [7,10].

Realizing e�cient thermoelectric materials, which can fundamentally shift both waste heat

recovery and temperature control systems, directly addresses the exigent technological demands
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stated in the White House research priorities memorandum under Energy and Environmental

Leadership, which calls for investment in early-stage technology that can “harness American energy

resources safely and e�ciently” [11].

1.2.1. Thermoelectric Material Performance

In the previous section, we introduced the device ZT , a quantity related to the e�ciency of a

thermoelectric generator or cooler. ZT is an aggregate, macroscopic parameter, accounting for

a complete device, composed of both n- and p-type components, wired electrically in series and

thermally in parallel, and operating over a temperature gradient [12]. If we zoom into a microscopic,

finite element of a thermoelectric leg, we can define what is often referred to as the material zT ,

the combination of T-dependent material properties defined at a specific temperature T along the

temperature gradient:

(1.2) zT =
S

2
�


T.

The three main material properties which enter into the zT equation include the following:

• Seebeck coe�cient (S or ↵; V/K): The voltage produced by a temperature di↵erential

(�T ) is determined by the Seebeck coe�cient as V = ↵�T . The Seebeck coe�cient will

relate to the imbalance of electronic states around the Fermi level. As a result, it is related

to e↵ective mass derived from the density-of-states.

• Electrical conductivity (�; S/m): The electrical conductivity characterizes a material’s

ability to transport charge, and is related to the charge carrier density, lifetime, and inertial

e↵ective mass.

• Thermal conductivity (; W/m/K): The thermal conductivity is the ratio of the heat

flux to the temperature gradient across the system, and is a measure of a material’s ability

to transport heat. In semiconductors, the majority of heat is carried by free charge carriers
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Figure 1.1. zT Dependence on Doping Level The constituents of the figure-of-merit zT each have a
dependence on doping level, such that zT itself tends to be sharply peaked at an optimal doping level.
Therefore, without the assurance of optimal doping, zT is an inadequate metric of the true potential of a
thermoelectric material. In order to reliably compare literature values, doping-independent metrics such as
the transport function �E0 are therefore preferable.

and lattice vibrations. The total thermal conductivity is the sum of these electronic and

lattice contributions: tot = e + L.

Each quantity is dependent on the electron chemical potential, as shown in Figure 1.1 through

the mutual dependence on the reduced Fermi level (⌘). Also referred to here as the doping level, ⌘

is a function of e↵ective mass m
⇤ and the carrier concentration n, and is most easily manipulated

through doping. Note that even the lattice thermal conductivity is depicted with a soft dependence

on ⌘ because of phonon scattering o↵ of dopant atoms as well as potential charge carrier lattice

softening [13,14]. This mutual dependence on doping level is such that zT tends to peak at a specific

optimum doping level. This makes reports of zT di�cult to compare between di↵erent studies

without assurance that each material is optimally doped. Instead, utilizing doping-independent

metrics is a preferred method of benchmarking thermoelectric materials.
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To derive the doping-independent metrics, it is useful to first discuss the energy-dependent

transport function, �E, a measure of the “conductive quality” of carriers at energy E (note: the

same expression will be shown to apply to phonons in the phonon gas model; Section 2.3.1):

(1.3) �E = e
2hv2(E)i⌧(E)g(E),

where hv2(E)i is the directionally-averaged squared velocity, ⌧ is the carrier lifetime, and g is the

density of states. The three electronic components of the zT equation, namely, S, �, and e can

all be understood as convolutions of the electronic transport function �E and selection functions

which include the Fermi-Dirac distribution f(E) and the Fermi level EF [15]:

� =

ˆ
�E(E)

�@f

@E
dE

↵� =
1

e

ˆ
�E(E)

✓
E � EF

T

◆
�@f

@E
dE

e =
1

e2

ˆ
�E(E)

(E � EF)2

T

�@f

@E
dE � ↵

2
�T(1.4)

It is often possible to approximate the band edge as a parabolic dispersion to simplify the energy-

dependence of �E. In addition, in semiconductor materials, it is common for the carrier lifetime

to vary as 1/g(E). For example, this is the energy dependence expected for phonon scattering of

charge carriers, which is typically the dominant e↵ect. In this scenario, it is easy to show that

�E should vary linearly with energy inside the band, following the expression �E = �E0E with

the constant �E0 determining the slope. The electronic transport coe�cient �E0 can be thought

of as describing the conductive quality of the band. It can be fit to the S vs. � relation as each

transport coe�cient can be determined exclusively by �E0 and ⌘ via the Fermi integrals Fj , where

j represents the order [16]:
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� = �E0F0

↵ =
kB

e

✓
2F1

F0
� ⌘

◆
(1.5)

The �E0 is an energy-independent and ⌘-independent metric that is related to the maximum

achievable power factor ↵
2
� through optimal doping. The quality factor B, which is similarly

correlated to the maximum achievable zT through optimal doping is then proportional to �E0

divided by the lattice thermal conductivity L, another roughly doping-independent metric:

(1.6) B =

✓
kB

e

◆2
�E0

L
.

1.2.1.1. Attributes of a Good Thermoelectric Material. Designing materials with excellent

electronic transport and poor thermal transport is di�cult, since the two are often coupled. The

paradigm for thermoelectric material selection and design is referred to as the “phonon-gas electron-

crystal,” and numerous structure types and classes of semiconductors have been explored to reach

these properties. Most thermoelectric materials are degenerately-doped semiconductors, as this

places the Fermi level just inside the band, close to a band edge, where the Seebeck coe�cient

tends to peak [15]. One of the main trade-o↵s in thermoelectric materials is between e↵ective mass

and mobility. High e↵ective mass tends to indicate a large density-of-states near the Fermi level,

which promotes large Seebeck coe�cients, but also typically indicates heavy charge carriers with

low mobility [12]. Many excellent thermoelectric materials, including Bi2Te3, PbTe, and CoSb3,

balance this trade-o↵ through high band degeneracy. In this case, several electronic states with

high curvature and low inertial mass converge at the same energy, leading to a large total density

of states. High band degeneracy can be achieved through having band edge states at low symmetry

k-points of high symmetry materials, or by having several electronic states at di↵erent k-points

converged in energy at the band edge [17,18].
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Just like complexity of electronic structure with a large multiplicity of contributing electronic

bands, complexity of the lattice can lead to desirable thermal properties. Complex unit cell

materials carry a large amount of heat through flat, optical modes with low group velocities and

short lifetimes, and therefore exhibit low lattice thermal conductivity values [12, 19]. Further

disrupting the lattice through defects and disorder lead to reductions in L, a primary focus of this

thesis work.

1.3. Thesis Roadmap

In this thesis, we will first review fundamentals of lattice dynamics and thermal transport in

Chapter 2: Theoretical Background. Particular emphasis is placed on the relationship between

first-principles phonon descriptions and analytic transport theories, the latter of which are the

primary tool used in this thesis. Chapter 3 summarizes our work on analytic phonon–point-defect

scattering models. Here, we review implementations of point-defect scattering models to reveal

inconsistencies, which have overshadowed important di↵erences between the scattering strength

of point defects. We propose a formulation to resolve these discrepancies and demonstrate a

cancellation of errors, which may account for the robustness of analytic models. This chapter

draws from three publications, and materials are reproduced with permission from:

1) R. Gurunathan, R. Hanus, M. Dylla, A. Katre, and G.J. Snyder. Physical Review-

Applied, 13, 034011 (2020). Copyright 2020 by the American Physical Society [20].

2) R. Gurunathan, R. Hanus, and G.J. Snyder. Materials Horizons, 7, 1452-1456 (2020).

with permission from the Royal Society of Chemistry [13].

3) S. Anand, R. Gurunathan, T. Soldi, L. Borgsmiller, R. Orenstein and G.J. Snyder.

Journal of Materials Chemistry C, 8, 10174-10184 (2020). with permission from the Royal

Society of Chemistry [21]

Chapter 4 includes work completed as part of the “Accelerated Discovery of Compositionally

Complex Alloys for Direct Thermal Energy Conversion” DOE project DE-AC02-76SF00515. We

apply analytic alloy scattering models, whose functional form is inspired by excess Gibbs free
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energy models, to predict thermoelectric transport properties in multicomponent alloys formed

between three or more thermoelectric compounds. We then discuss when multicomponent alloying

is beneficial for the suppression of thermal conductivity. The content of the chapter heavily draws

from a manuscript in preparation.

Chapter 5 covers the topic of phonon scattering and thermal resistance at grain boundaries

and interfaces. This chapter includes a review of the thermal boundary or Kapitza resistance,

including the factors that influence its value and the analytic and simulation-based approaches to

estimating its value. Sections of this introduction are reproduced from R. Hanus, R. Gurunathan,

L. Lindsay, M.T. Agne, J. Shi, S. Graham, and G.J. Snyder. Thermal transport in defective

and disordered materials. Applied Physics Reviews, 8, 031311 (2021). [22] with the permission

of AIP Publishing. The chapter additionally discusses a general framework for calculating the

phonon scattering and thermal resistance of low-energy grain boundaries and interfaces, which can

be decomposed into arrays of interfacial dislocations. The periodic dislocation arrays produce a

unique type of phonon scattering, referred to as di↵ractive scattering. When combined with the

thermal resistance e↵ects stemming from the acoustic mismatch at the interface, this model captures

important trends between interfacial thermal resistance, structure, and strain energy. Sections

of this chapter are reproduced with permission from R. Gurunathan, R. Hanus, A. Garg, and

G.J. Snyder. Physical Review B, 103, 144302 (2021). Copyright 2021 by the American

Physical Society [23].
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CHAPTER 2

Theoretical Background

2.1. Lattice Dynamics and Phonons

Notation in this section primarily comes from Srivastava [24], Dove [25], and Born [26].

The total lattice energy will be a sum of kinetic and potentials energy terms (T + U). In turn,

the potential energy is commonly written as a Taylor series in terms of atomic displacements u.

The displacements are labelled by Cartesian indices (i.e. i) referring to the x, y, or z direction and

a lattice position (i.e. r), which combines both the location of the unit cell housing the atom and

the position of the atom within the unit cell [24,26]:

(2.1) U = U0 +
X

r

X

i

@U

@ui(r)

�����
u=0

ui(r) +
1

2

X

r,r0

X

i,j

@
2
U

@ui(r)@uj(r0)

������
u=0

ui(r)uj(r
0)+

1

3!

X

r,r0,r00

X

i,j,k

@
3
U

@ui(r)@uj(r0)@uj(r00)

������
u=0

ui(r)uj(r
0)uk(r

00) + · · ·

The partial derivatives of potential energy with respect to displacement are referred to as the

“force constants”. Their rank or order signifies the number of interacting bodies that they describe

energetically. The first term in the expansion U0 is the potential energy for a static lattice, and is

often ignored in lattice dynamical problems. The second term is essentially the total force on each

atom, and is equal to 0 at equilibrium [24,25].

In the harmonic approximation used to define normal phonon modes the third term, based

on the second order force constant, is the only one considered. For simplicity, we’ll use standard

convention to designate the second order force constant as:



21

(2.2) �ij(r, r
0) =

@
2
U

@ui(r)@uj(r0)

����
u=0

Writing the equations of motion, which are identical to the classical case of a harmonic oscillator:

F = Ma = �kx, we arrive at:

(2.3) Mrüi(r) = �
X

jr0

�ij(r
0)uj(r

0)

The solution for the displacement u for the atom at position r with mass M will be expressed

as a sum of travelling plane waves, each described by a wave vector and branch index qs, frequency

!qs, polarization vector eqs, and amplitude Aqs [26]:

(2.4) ui(r) =
1p
M

X

qs

eiqs(r)Aqsexp(i(q · r � !qst))

Substituting this solution into Equation 2.3, we get:

(2.5)
p

M

X

qs

!
2
qseiqs(r

0)Aq,sexp(i(q · rj � !qst)) = �
X

qs;r0

ejqs(r)Aq,sp
M 0

�ij(r
0)exp(i(q · r0 � !qst))

With some simplification, we can write this equation in the form of an eigenvalue problem:

(2.6) !
2
qseiqs(r) = Dij(q)eiqs(r).

Here, Dij(q) is referred to as the dynamical matrix and is equal to the mass-normalized Fourier

transform of the second order force constants: Dij(q) = 1p
M

p
M 0

P
r0 �ij(r, r0)exp(iq · r0).

Phonon dispersion relations (! vs. q relations) come directly from solving the equation above.

The eigenvalues !
2
qs indicate the phonon frequencies for each phonon mode. The mutually orthogonal
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eigenvectors eiqs are the polarization vectors, defining the direction of the atom displacement at site

r as the atom participates in the phonon mode indexed by qs. Two dispersion relation quantities

which will be referenced throughout this thesis are the group (vg) and phase velocity (vp). Noting

that phonons travel through a solid by forming wave packets, the group velocity refers to the

velocity of these wave packets and the phase velocity refers to the velocity of the phase fronts

within the wave packet. They are defined from the phonon frequency and wavevectors as follows:

vp,i = !/qi

vg(qs) = rq!(2.7)

Near the � point, the group and phase velocity should converge in value, however, they may

deviate slightly in terms of direction [27]. The group velocity indicates the direction of heat travel,

which may deviate from the wavefront propagation direction(see Section 5.4.2.2).

In the following subsections, we will first discuss common approximations made to the phonon

dispersion which facilitate the development of analytic models (Section 2.1.1). We will define two

additional quantities within the harmonic potential approximation: the density of states (Section

2.1.2) and the spectral heat capacity (Section 2.1.3). Finally, anharmonic terms in the potential

energy will be included as a perturbation to the phonons derived here, which will lead to interactions

between phonon modes (Section 2.2.1).

2.1.1. Phonon Dispersion Approximations

Analytic expressions for thermal transport properties, which are emphasized in this thesis, typically

require approximating the full phonon dispersion using a closed-form expression. Two of the most

common dispersion approximations are the Debye and Born von Karman models. The Debye,

or linear dispersion, uses the classical speed of sound (vs) as a proportionality constant between

frequency and wavevector. The maximum vector written in terms of the average atomic volume

would be equal to qmax = (6⇡2

V0
)1/3, and the maximum frequency (also referred to as the Debye
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frequency !D) is simply defined as !D = vskmax. Finally, the Debye temperature ✓D = ~!D/kB

is the temperature at which all phonon modes are excited. Successes of the Debye model have

included predicting the T
3 dependence of the low-temperature heat capacity [28]. Generally, it

is a more suitable model for low-frequency, long-wavelength phonons (those that dominate at low

T ), which coarsen over the atomistic structure of the material and propagate at the classical speed

of sound. Additional isotropic approximations are made such that phonons lose dependence on

crystallographic direction, and further, that phonons of di↵erent polarization have the same Debye

frequency [29].

The Debye approximation is a non-dispersive model, as the slope of the !-q relation is fixed

as the classical speed of sound (vs = d!/dq|q!0). In contrast, the Born von Karman (BvK), or

sinusoidal approximation, is a modification of the continuum Debye model to include dispersion

of the phonon modes [29]. The BvK model uses the expression ! = 2
⇡vsqmaxsin( ⇡q

2qmax
) with qmax

defined as before from the average atomic volume (V0). The group velocity is then vg = vscos( ⇡q
2qmax

)

[30].

Finally, it is common to approximate the flat, optical branch using the Einstein model, which

requires treating atoms as independent harmonic oscillators leading to a flat ! vs. q relation.

Here, heat is conducted di↵usively between atoms, which is captured by models for glass-like

conduction presented by Cahill [31], Clarke [32], and Agne [33]. Therefore, a final dispersion

approximation can be constructed by treating the acoustic branch using the Debye or Born von

Karman approximation and treating the optical branch as flat Einstein modes, which carry a

minimum thermal conductivity [19]. Each optical branch is described by a constant frequency

!, defined by the max frequency of the acoustic branch in an extended zone scheme: !(qmax)

for qmax = ( 6⇡2

nV0
)1/3 with n = (N � 1), (N � 2), . . . , 1. Figure 2.1 compares the three dispersion

approximations discussed (i.e. Debye, Born von Karman, and Debye + Einstein) to the full phonon

bandstructure for the half-Heusler compound, HfNiSn.
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Figure 2.1. Schematic of Dispersion Approximations Comparison of phonon dispersion approximations
for half-Heusler compound, HfNiSn. In comparison to the full phonon dispersion (a), the Debye model (b)
uses the constant classical speed of sound, which assigns a large phonon velocity even to relatively flat optical
modes. The Born von Karman dispersion (c) corrects for this by having the group velocity approach 0 at the
zone edge using a sinusoidal form. Finally, the hybrid Debye + Einstein model (d) uses separate functional
forms to treat the acoustic branch as propagating phonons and optical branches as localized Einstein modes,
which couple to one another. A Born von Karman + Einsten model can also be used to describe the acoustic
branch.

2.1.2. Phonon Density of States

The density of the normal mode states, or the number of states dN per frequency interval d!, is

a crucial quantity in lattice dynamics and thermal transport. Here, we will derive the 3D phonon

density-of-states, although we will show in latter sections that the 1D and 2D density-of-states also

play an important role in defect scattering problems. For a solid of dimensions L⇥L⇥L, each mode

q occupies a volume of (2⇡/L)3. If we can assume that phonon states fill up a sphere in q-space,

the resulting dependence of N on the magnitude of q is: N = (L/2⇡)3(4
3⇡q

3). The volumetric 3D

density of states is then given by the following expression, including a factor of 3 for the degeneracy

of each phonon mode:



25

g(!) = 3
1

L3

@N

@q

@q

@!

= 3
q
2

2⇡2

1

vg
=

3

2⇡2

!
2

v2
pvg

(2.8)

The 1D and 2D density of states can be derived using the same strategy, by viewing phonon modes

as filling up a line or circle in q-space, instead. As a result, the 1D density-of-states will be a

constant with respect to frequency and the 2D density-of-states will vary as !.

2.1.3. Heat Capacity

Within the harmonic approximation, the lattice does not experience thermal expansion and it is

natural to define the heat capacity in the constant volume approximation. The heat capacity is

the temperature derivative of the energy density at constant volume, resulting in the following

expression in terms of the phonon density-of-states (g(!)) and the Bose-Einstein distribution

(fBE = 1/(exp(~!/kBT ) � 1)):

C(!) = ~!g(!)
@

@T

1

e~!/kBT � 1

=
3!

4

2⇡2vg(!)v2
p(!)

~2

kBT 2

e~!/kBT

(e~!/kBT � 1)2
(2.9)

It is informative to then study the behavior of C at the low- and high-temperature limits, and,

to do so, it is common to define the variable x = ~!/kBT . Focusing first on the high-temperature

limit (T � ✓D and x ! 0), we can use the power series representation of ex in the limit of small x

to suggest that ex ⇡ 1+x. Through straightforward manipulation of Equation 2.9, we find that the

high-temperature spectral heat capacity is simply the density of states weighted by the Boltzmann

coe�cient:
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(2.10) CHT(!) = kBg(!).

The volumetric heat capacity at a given temperature T is then simply the integral of C(!) over

the full frequency spectrum. Since
´

g(!)d! = 3n, where n is volumetric density of atoms in the

system, we see that CV converges to 3nkB at high temperature, also known as the Dulong-Petit

limit.

For simplicity, we will discuss these low-temperature limit using the Debye approximation to

the phonon dispersion, introduced in Section 2.1.1. It is reasonable to do so because the Debye

model will match the true phonon dispersion for very low frequency phonons (which characterize

the low temperature limit). The integration of spectral heat capacity is shown here explicitly with

x = ~!/kBT as the integration variable:

(2.11) CV =
9kB

V0

✓
T

✓max

◆3 ˆ xmax

0

x
4ex

(ex � 1)2
dx

At very low temperature (T ⌧ ✓D and xD ! 1), the integral converges to a constant value:

4⇡
4
/15, yielding a heat capacity of [34]:

(2.12) CV =
12⇡

4

5

kB

V0

✓
T

✓D

◆3

The CV / T
3 relation at low temperatures has been verified experimentally, and was one of the

earliest successes of the Debye model.

Here, we have focused on phononic contributions to the heat capacity, and in this thesis, we

will use the expressions defined in this section when defining the heat capacity. However, there

are scenarios in which additional contributions to the heat capacity become highly important. One

of the most straightforward is the thermal expansion that occurs in any real (anharmonic) solid.
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However, there may additionally be contributions from free electrons and latent heat from phase

transformations [35].

2.1.4. Anharmonic Coe�cient: the Grüneisen Parameter

The final quantity commonly used in thermal transport is the Grüneisen parameter, which quantifies

anharmonic e↵ects in a solid. An unfortunate attribute of the Grüneisen parameter is that it is

presented in many di↵erent forms. Here, we will introduce the most generalized representation as

a tensor quantity, which captures the strain (✏ij) dependence of the frequency (!) for a specific

phonon mode indexed by qs:

(2.13) �ij(qs) = � 1

!

@!

@✏ij

Since the Grüneisen parameter describes the perturbation to phonon energies due to strain

or lattice distortions, it will be an important quantity in both phonon-strain and phonon-phonon

scattering interactions. The Grüneisen parameter can also be determined from the third order force

constants, often evaluated using density functional theory [36].

2.2. Phonon Scattering Theory

As discussed in the lattice dynamics section (Section 2.1), phonons are strictly defined within

the harmonic approximation, as the dynamical matrix is specified from the mass-normalized Fourier

transform of second order force constants. Any deviation to this periodic, harmonic model would

perturb the phonon states, leading to finite coherence length and lifetime.

In this section, we will discuss common lattice e↵ects which scatter phonons and lead to the

di↵usive heat transport commonly observed. First, there are a few key characteristics often used

to codify scattering events. The first major distinction is between harmonic and anharmonic

scattering. Anharmonic scattering essentially utilizes the 3rd order, anharmonic term in the Taylor

expanded interatomic potential. The perturbation Hamiltonian for anharmonic scattering will
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involve three displacement vectors (u), which can be dynamic in nature (phonons) or static (internal

strain) [37–39]. Anharmonic scattering will therefore primarily describe either phonon-phonon or

phonon-strain interactions. By contrast, the perturbation Hamiltonian for harmonic scattering

will involve only two displacement vectors u for the incident and final phonon state. Harmonic

scattering tends to emerge from perturbations to the 2nd order, harmonic potential energy term or

the kinetic term of the lattice energy. Static imperfections, such as mass defects, typically result

in harmonic scattering.

In contrast, the distinction between elastic and inelastic scattering has more to do with the

conserved quantities in the phonon scattering process. Inelastic scattering occurs when energy is

exchanged between the incident phonon and the scatterer, such that energy and momentum are not

conserved between the initial and final phonon states, which are requirements of elastic scattering.

For inelastic scattering to occur, the scatterer must contain the adequate dynamical degrees of

freedom to absorb or emit the energy of a phonon. Perhaps the most straightforward instance of

inelastic scattering is when the origin of the scattering is, itself, another phonon in the system. In

such phonon-phonon interactions, the anharmonicity of the lattice gives rise to this form of inelastic

scattering. However, the two need not always occur hand-in-hand. Scattering from a static strain

field (discussed in detail in Section 5.2) is an example of an anharmonic scattering potential, which

lacks dynamical degrees of freedom and leads to elastic scattering.

2.2.1. Phonon-Phonon Interactions

Before discussing the influence of lattice defects, it is important to describe the phonon scattering

e↵ects which limit thermal transport in a pristine, single crystal. Although the phonons derived

in Section 2.1 should be non-interacting normal modes, this picture breaks down in real materials

with interatomic potentials that are not fully harmonic. The higher order terms in the lattice

potential cause phonons to interact with one another, yielding thermally resistive scattering events.

Typically, scattering processes involving just three phonons (referred to as 3-phonon processes)

are su�cient to describe the thermal transport in a material. However, in certain cases 4-phonon
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processes have been shown to yield large scattering rates [40], which greatly influence the expected

thermal conductivity of a compound. A notable example is BAs, a compound with an unusually

large acoustic-optical bandgap. The energy distribution of phonon states is such that the number

of allowed 3-phonon interactions is very limited, but 4-phonon interactions are more prevalent than

in typical compound semiconductors [41–43].

Interactions involving three phonon modes should have one of two basic configurations: 1) a

decay process in which an incident phonon divides into two final phonon states or 2) a collision

process in which two incident phonons combine into a single final phonon state. Either case requires

a conservation of the total energy. For an example decay process, the energy conservation might

be:

(2.14) ~!1 = ~!2 + ~!3

Three-phonon interactions are further categorized as either normal (described as momentum-

conserving) and umklapp (described as non-momentum-conserving). It is common to consider

normal processes as non-resistive processes such that only the umklapp scattering should impact

the overall phonon lifetime. More specifically, the momentum conservation for a normal process is:

(2.15) q1 � q2 � q3 = 0,

while the momentum conservation for an umklapp process is:

(2.16) q1 � q2 � q3 = G,

where G is a reciprocal lattice vector. Therefore, the umklapp process involves an “exchange” of

crystal momentum (which emerges from the periodicity of the lattice) in units of G. However, as

noted by Maznev et al. [44], phonons, being defined from a periodic potential and obeying Bloch’s
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Figure 2.2. Lattice Thermal Conductivity Trends with Temperature Plot inset shows the log-log
trend to highlight temperature dependencies at the low- and high-temperature regimes. At the low-T limit,
L varies as T

3, stemming from the heat capacity. A rollover occurs, characterized by the onset of resistive
phonon-phonon scattering processes. Finally, beyond the Debye temperature, L / T

�1, stemming from the
phonon-phonon relaxation time.

theorem have a wavevector defined modulo G such that q is equivalent to q + G. The normal

vs. umklapp distinction, instead, mostly depends on whether the phonon interaction is contained

within a single primitive cell of the reciprocal lattice. The cut-o↵ between the two scattering types

is therefore not uniquely defined, as it depends on the choice of the primitive cell. Subsequent works

have shown that both interaction types are, in fact, important to modelling thermal conductivity.

Therefore, while we may use the distinction between normal and umklapp to highlight di↵erences

in conservation criteria, it is important to note the limits in the definition and that the more general

classification of “phonon-phonon scattering” is the most cleanly defined. At room temperature and

above, umklapp processes tend to dominate in thermoelectric materials, so in later sections, we will

only use the more general case in which an exchange of reciprocal lattice vector G is permitted in

the momentum conservation.

The analytic expression for lifetime in the case of phonon-phonon scattering depends on frequency

as !
2 and temperature as T

�1 (since phonon occupancy increases with temperature) [19,45,46].
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(2.17) ⌧pp =
(6⇡

2)1/3

2

Mv
3
s

kB!2V 1/3�2
exp(✓D/3T )T�1

The exponential term reflects the onset of umklapp processes, which tend to dominate once high

frequency phonons are excited in the vicinity of the Debye temperature. Equation 2.17 above

is defined within the Debye approximation, in which the phonon velocity is a constant, equal

to the classical speed of sound. The factor of !
2
/v

3
s in the inverse lifetime, or scattering rate,

is reminiscent of the 3D phonon density-of-states. In the more general derivation of the phonon-

phonon relaxation time (Appendix B.2), it is evident that this factor instead represents a 2-phonon,

or joint density-of-states, representing all the allowed phonon-transitions when the energy and

momentum conservation criteria listed above are satisfied [47].

2.2.2. Perturbation Theory of Phonon-Defect Scattering

The basis of the defect scattering theory discussed here is Fermi’s Golden Rule. To the first order

in perturbation theory, Fermi’s Golden Rule states that the scattering probability (Wq,q0) from

an initial state q to final state q0 is directly related to the squared scattering matrix element

hq| H 0 |q0i2, a measure of the overlap between the states, facilitated by the lattice perturbation.

Additionally, the momentum and energy conservation constraints are enforced separately, using

Dirac delta function conditions:

Wq,q0 =
2⇡

~2
| hq| H 0 |q0i |2�(!q � !q0).(2.18)

However, it is more straightforward to describe static lattice defects in real space, using defect

site fractions and real space displacement fields. The scattering potential defined from the real-

space lattice perturbation induced by the defect is denoted as V (r). In the Born approximation, the

scattering matrix element can be written in terms of a scattering vector Q = q0 � q, and requires

taking the Fourier transform of V (r). Here, we will consider a crystallite containing the defect,
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which has dimensions of Lx ⇥ Ly ⇥ Lz and a volume of V tot = LxLyLz. This choice of crystallite

dimensions will not, however, influence the final solutions, which will be based only on intensive

properties.

(2.19) hq| H 0 |q0i =
1

LxLyLz

˚
d

3
r V (r)eiQ·r =

1

LxLyLz
|Ṽ (Q)|

Substituting this expression for hq| H 0 |q0i into the scattering probability equation, we get the

following expression:

(2.20) Wq,q0 =
2⇡

~2

1

(V tot)2
|Ṽ (Q)|2�(!q � !q0).

The final derivation of a scattering, or inverse phonon lifetime ⌧
�1, requires integrating over

all possible final phonon states when restrictions in frequency and momentum conservation are

considered.

(2.21) ⌧
�1 =

V tot

(2⇡)3

˚
Wq,q0d

3q0

The final expression for the scattering rate is inversely related to the volume of the region containing

the defect, or put more simply, related to the spatial density of defects in the system. The expression

is additionally related to the phase space, or all final states available to scatter into once energy and

momentum conservation criteria have been satisfied. Given the restriction of �! = 0 for elastic

defect scattering, the phase space should relate to the phonon density of states at !.

Such physical insights into the defect scattering rate, allowed Hanus et al. [22] to introduce a

modified form of Fermi’s Golden Rule, which is more physically interpretable for defect scattering

problems, and is particularly instructive when comparing defects of di↵erent dimensionalities. Here,

the scattering rate �(q) for an incident phonon state q is:
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(2.22) �(q) = ⌧
�1(q) = nd|S|2g(!q),

where nd is the spatial density of defects, |S|2 is an averaged squared scattering matrix element, and

g(!q) is the phase space available to scatter into once necessary energy and momentum conservation

constraints have been met. |S|2 is then defined by taking the integral over Ṽ (Q) for all final

phonon trajectories. The weighting factor (1�q̂·q̂0) suppresses any non-resistive forward scattering

processes which should not contribute to the scattering rate. Finally, A is a numerical prefactor

that varies slightly depending on the defect geometry [22].

(2.23) |S|2 = A

˚
d⌦0|Ṽ (Q)|2(1 � q · q0)

The frequency-dependence of the relaxation time, which is often used as a signature of the

dominant scattering e↵ects, mainly comes from the |S|2 and g(!) terms. Figure 2.3 summarizes the

frequency contributions for mass defects (i.e. change in the atomic mass) with di↵erent dimensionalities

(i.e. point, line, or planar defects). The phase space term changes for each defect dimensionality

shown. In point defect scattering, only phonon frequency is conserved, such that an incident phonon

with frequency ! may scatter into the 3D phonon density of states (g3d(!)). A one-dimensional

line defect additionally conserves a component of the momentum along the sense vector, yielding

a phase space term equal to the 2D density of states. Finally, the planar defect conserves two

components of momentum, which span the plane, such that the phase space is equal to the 1D

phonon density of states.

2.2.3. Matthiessen’s Rule

The thermal and electronic transport properties discussed in this work will heavily leverage Matthiessen’s

rule to combine di↵erent scattering e↵ects. Matthiessen’s rule states that total scattering rate can

be written as the sum of scattering rates due to di↵erent lattice perturbations, including phonons,
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Figure 2.3. Defect Dimensionality and Fermi’s Golden Rule The main components of Fermi’s Golden
Rule for defects are the number density of defects (nd), the volume containing the defect (Vd), the squared
scattering matrix element (|H 0|), and the phase space for the scattering transitions (g(!)). The last two
terms contribute frequency dependencies. The defect dimensionality influences the momentum conservation
and thus the available phase space. In contrast, the squared matrix element is expected to be proportional
to !

2 for any defect dimensionality.

impurities, or boundaries. This rule carries the assumption that these various scattering e↵ects act

independently of one another, i.e. their scattering probabilities are not conditionally dependent. For

example, a typical thermal model of a defective, anharmonic system will include the following terms

in the total scattering rate: 1) phonon—phonon, 2) phonon–point-defect, 3) phonon–dislocation,

and 4)phonon–grain-boundary interactions. Combined using Matthiessen’s rule, this yields:

(2.24) ⌧
�1 = ⌧

�1
pp + ⌧

�1
PD + ⌧

�1
disl + ⌧

�1
GB + · · ·
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2.3. Calculating Transport Coe�cients

2.3.1. Phonon Gas Model

Within the phonon gas model framework, phonons are treated like gas molecules which carry

energy of ~!. Thermal transport coe�cients can then be derived by drawing inspiration from

the kinetic theory of gases [48, 49]. We should note that more formal descriptions of thermal

conductivity, derived from the phonon Boltzmann Transport Equation, all converge to the kinetic

theory expression (see derivation in Appendix A) [45,46,50].

We can start with Fick’s first law, describing isothermal particle di↵usion, where the driving

force for particle flux comes from a gradient in the concentration (n).

(2.25) J = �Drn

If in this system, particles travel ballistically with a well-defined velocity v over an average distance

equal to the mean-free-path l between collisions. Taking the isotropic approximation (i.e. travel in

any direction is equally likely) the di↵usivity in this system is then equal to:

(2.26) D =
1

3
vl.

By analogy, one can write a phenomenological law for thermal transport based on the gradient in

energy density (u) [48]. For simplicity, we’ll use the one-dimensional form for a heat flux and energy

density gradient along the x direction, relating the energy density gradient then to the temperature

gradient across the sample:

(2.27) Jx = �Dxx
du

dx
= �Dxx

�u

�T

�T

�x
.
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The value of �u
�T is simply the heat capacity C (Section 2.1.3). Fourier’s law of heat conduction then

states that the heat flux is proportional to the negative temperature gradient, where the constant

of proportionality is the thermal conductivity :

(2.28) Jx = �L,xx
dT

dx
.

Relating this expression to its chemical analogue, Fick’s law (Equation 2.27), the thermal conductivity

must equal:

(2.29) L,xx =
1

3
Cvg,xlx =

1

3
Cv

2
g,xx⌧,

where the mean-free-path can, alternatively, be defined as the phonon velocity times the lifetime

⌧ . It is common to express the L,xx as an integral over all phonon frequencies ! hosted by the

lattice, of the spectral quantities for C, v, ⌧ as shown in Figure 2.4. Intuitively, the components of

the thermal conductivity include the amount of heat carried by phonon in the frequency integral

d! (as captured by C(!)), how quickly they propagate through the lattice (v2
g(!)), and how long

they travel between scattering events (⌧(!)).

(2.30) L =
1

3

ˆ !max

0
C(!)v2

g(!)⌧(!)d!

A pitfall of this formalism is that it requires a well-defined phonon velocity, which flat, optical

modes tend to lack [51, 52]. In complex unit cell or amorphous materials, these flat, spatially

localized vibrational modes can predominate the thermal transport leading to significant breakdowns

of the phonon gas model. The spatial localization and lack of plane wave character of these

vibrational modes, leads them to be termed di↵usons rather than propagating phonons. More akin

to the Einstein model of lattice vibrations, these di↵uson modes may transport heat through the

random hopping mechanism. Vibrational modes that are so localized that they are tethered to an
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Figure 2.4. Phonon Gas Model Schematic In the phonon gas model, the thermal conductivity can be
written as an integral over the phonon spectrum, where the heat carried by the phonons in each frequency
integral is determined by the amount of heat they carry (spectral heat capacity; C(!)), the velocity of the
phonons (spectral group velocity; vg(!)), and the time the phonon travels between scattering events (spectral
lifetime; ⌧(!)).

atom site and do not transport heat at all are instead termed locons. There has been a great deal

of recent focus in the development of a di↵usion coe�cient expression based on quantum particle

attributes that are still well-defined in this regime, including frequency and even lifetime. Agne et

al. developed such an expression from the standpoint of random walk theory:

(2.31) D(!) = ↵
2 N

t
,

where ↵ is the jump distance (usually the interatomic distance) and N/t is then number of jumps

per unit time. Einstein suggested that each oscillator makes two jump attempts per period, such

that N/t = 2!
2⇡ P with P representing the probability of a successful jump. In Section 3.5, we will
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discuss di↵uson transport in the context of highly disordered materials and its role in estimates of

the minimum thermal conductivity supported by a material.

In this thesis, we focus on lattice thermal conductivity frameworks from the standpoint of lattice

dynamics, with the requisite phonon properties C, vg, and ⌧ defined either for a given phonon mode

q or for a given frequency interval d! from a phonon dispersion, be it DFT-derived or from an

approximation discussed in Section 2.1.1. An alternative approach is molecular dynamics, in which

real-space atom displacements and velocities are used to define the heat transport. The heat flux

(first derived by Hardy [53]) in a simulation defined by pairwise potentials will be equal to [54]:

(2.32) j =
1

V

X

i

✏ivi +
X

i,j 6=i

(Fi,j · vj)rij ,

where ✏i is the total energy (kinetic and potential) of atom i, vi is the velocity of atom i, Fij is

the interatomic force and rij is the separation between atoms i and j. The Green-Kubo formalism

is based on the fluctuation-dissipation theorem and relates the lattice thermal conductivity to the

time correlation of the heat fluxes:

(2.33)  =
1

V kBT

ˆ 1

0
hj(0) · j(t)i dt.

This time-correlation approach can have major benefits over the phonon gas model when phonon

velocities are ill-defined, such as in highly disordered materials and complex unit cell materials,

common in the field of thermoelectrics [51]. However, interpreting these simulations can become

a challenge since post processing or controlled wave packet simulations [55] must be performed

to extract mode specific properties. We will discuss the Green Kubo formalism in the context of

specific phonon scattering problems, such as the calculation of a thermal boundary resistance in

Section 5.3.2.
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CHAPTER 3

Phonon–Point-Defect Scattering

3.1. Introduction: Approaches to Point Defect-Phonon Scattering

Point defects are ubiquitous in the engineering of materials, often as a route to tailor properties

like strength or charge carrier concentration. These point defects are known to scatter vibrational

modes and impact the thermal conductivity, which can be especially important in thermoelectrics,

microelectronics, and thermal barrier coatings.

Klemens established a theory for vibrational mode scattering due to static imperfections in a

lattice, and provided closed-form expressions for thermal conductivity versus defect concentration

still utilized today [56–58]. These analytical expressions based on low order perturbation theory

are useful for routine interpretation of experimental results to determine the dominant phonon

scattering sources in a material. By calculating the relative contribution of independent scattering

mechanisms such as mass disorder and local strain e↵ects, one can determine the dominant mechanisms

of scattering in a defective system to guide the design of thermal materials [59–62].

First-principles techniques have been developed recently to compute the impact of point defects

on thermal transport. These simulations have shown very good quantitative agreement with

experiments for a range of materials and have provided useful insights regarding the mechanisms

of phonon-defect scattering [63,64]. However, multiple calculations are required to compute defect

structures, evaluate scattering strengths, and solve the Boltzmann transport equation for the

thermal conductivity [65–68]. Often, these techniques are too expensive and system dependent

for routine modelling used to determine the dominant scattering mechanisms in a system [69].

While the first-principles methods are essential to understanding vibrational mode properties, and

in many cases elucidate limitations of analytical phonon theories, the Klemens point defect model
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has proven to be highly descriptive across material systems and therefore continues to be widely

used [67,69–71].

The Klemens equations are defined within the ostensibly limiting approximation of a single

atom unit cell and the Debye model, or linear phonon dispersion (see Section 2.1.1). However, by

comparing to both first-principles results as well as experiment, the predictive quality of this model

is demonstrated even for complex unit cell materials.

This chapter provides a functional guide for understanding the influence of point defects on

phonon transport and applying the Klemens equations to model thermal conductivity data. We

start by presenting the lattice perturbation due to point defects using the framework presented in

Section 2.2.2 and deriving a phonon scattering rate due to point defect interactions. We then present

a more generalized and conceptually clear expression for the scattering strength due to point defects

in a multiatomic lattice. Section 3.3.1 resolves discrepancies between popular representations of the

mass di↵erence model, which have led to consistent errors in model inputs that may yield large factor

di↵erences in the predicted lattice thermal conductivity (L). This section also re-evaluates whether

these expressions are limited to the Debye model dispersion. A mechanism is demonstrated for how

the model’s sensitivity to dispersion relation is, in practice, lifted, justifying the use of the model in

systems with arbitrary dispersion relations. The previous literature discrepancies may obscure the

exceptional scattering strength of o↵-stoichiometric defects such as vacancy and interstitial sites,

which are discussed in Section 3.3.3. In Section 3.4 we highlight the impact that phonon-dopant

interactions have on the thermoelectric figure-of-merit using the full-Heusler VFe2Al as an example.

Finally, we revisit the breakdown of the phonon paradigm at the highly disordered limit in Section

3.5.

3.2. Lattice Perturbation Due to Point Defects

In this section, we will focus on a mass defect (following the convention of Klemens [56]), in

which the perturbation stems from an atom with a mass of M
0 = M0 + �M sitting at site R.

The perturbation due to force constant fluctuation and strain are similar in form. The real-space
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energy perturbation (E0(R)) to the lattice due to mass di↵erence comes in through the kinetic

energy term, where u̇(R) signifies the time derivative of the unit cell displacement.

(3.1) E
0(R) =

1

2
�M(R)u̇2(R)

The definition of u̇2(R) is written here as a a double sum over the normal modes supported by the

lattice (i.e. q and q0) of the normal mode amplitude Aq, the element of the polarization vector

corresponding to lattice site eq(R) (Note: the polarization vector, in this case, is not mass-weighted

as in the convention by Dove [25]), and the phase factor. The branch index s is suppressed here

for simplicity, and will not impact our overall conclusions.

(3.2) u̇2(R) = � 1

N

X

q,q0

AqAq0!q!q0 [eq(R) · eq0(R)]exp(i[(q + q0) · R � (!q + !q0)t])

In this double sum, terms q = �q0 produce a shift in phonon frequencies, resulting in the following

change in vibrational energy per lattice site, where N is the number of sites in the lattice:

(3.3) �E =
1

2N

�M

M
E

In the original work by Klemens, terms of this form were neglected because they did not describe

transitions between di↵erent phonon modes. However, following the approach described in Section

2.2.2, �E determines the scattering potential, which for a point defect, should be centered on the

defect site. Therefore V (R) should have the following form (see Figure 2.3):

(3.4) V (R) =
V0

2

�M

M
~!�(R)

Here, V0 is the volume per atom such that the V0�(R) is unitless and therefore V (R) has appropriate

units of energy [22]. The calculation of eV (Q) is trivial because the Fourier transform of �(r) simply
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goes to 1 in this case. In order to calculate the phonon lifetime, we then need to calculate the squared

scattering matrix element using Equation 2.23 and compute the scattering probability Wq,q0 using

Equation 2.20.

(3.5) Wq,q0 =
2⇡

~2

1

Vtot

V0

Vtot

V0

4

✓
�M

M

◆2

~2
!

2
�(�!)

Here, V0/V tot yields a factor of the spatial density of point defects nd. Finally, we must apply

Equation 2.21 to calculate the scattering rate by integrating over all possible final phonon states q0.

Assuming an isotropic phonon distribution and noting that the scattering probability lacks angular

dependence, this spherical surface integral is evaluated noting that: (1) d
3q0 = q

02sin⇥dqd⇥d�, (2)

!q = !q0 = vp(!)q0, (3)
´

sin⇥dqd⇥d� = 4⇡, and (4) �(�!) = �(�k)/vg(!).

(3.6) ⌧
�1
PD =

ndV0

4⇡

✓
�M

M

◆2
!

4

v2
p(!)vg(!)

The relaxation time has a clear signature of the 3D phonon density-of-states g3d, which is expected

given the discussion in Section 2.2.2.

(3.7) ⌧PD
�1 =

ndV0⇡

6

✓
�M

M

◆2

!
2
g(!)

The equation above exactly matches those derived in the models of Klemens (Equation 17 of

Ref. [56]) and Tamura (Equation 19 of Ref. [72]). See Appendix Chapter B for full derivation by

Klemens [56].

3.3. Callaway-Klemens Model of Point-Defect Scattering

The thermal conductivity reduction caused by point defects can be understood as a result

of the perturbation of the kinetic energy (1
2Mv

2 for each atom) or potential energy (1
2K�r

2 for

each bond) of the lattice (Figure 3.1). The mass di↵erence on the defect site (�M) results in
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Figure 3.1. Schematic of Point Defect Perturbations The lattice perturbation mechanisms of a point
defect include a mass di↵erence (�M), harmonic force constant di↵erence (�K), and strain scattering from
site radius di↵erence (�R). Each contribution perturbs the lattice Hamiltonian (E) through a di↵erent
term. T is the kinetic energy of the lattice, and U2 and U3 are the harmonic and anharmonic contributions
to the lattice potential energy.

the kinetic energy perturbation, while the potential energy distortion is due to both the harmonic

force constant di↵erence (�K) and a the structural distortion of nearest neighbors around the

defect introduced by a site radius di↵erence (�R) (see Figure 3.1). It is often the case that mass

di↵erence is the dominant e↵ect, since large volume di↵erences are energetically unfavorable for

substitutional defects. For simplicity, the remaining equations in this section will be defined first

for mass di↵erence scattering alone (�M) with potential energy terms discussed at the end.

The Klemens analytic model predicts the ratio of the defective solid’s lattice thermal conductivity

to that of a reference pure solid without defects (L/0)(Figure 3.2). This ratio is a function of

the disorder parameter u which depends on properties of the pure material: its lattice thermal

conductivity (0), elastic properties through its average speed of sound (vs)
1, the average volume

per atom (V0), as well as a scattering parameter to capture the influence of point defects (� =

�M + �K),

1
Here, the speed of sound acts as a proxy for the Debye frequency. The equation: !D = (6⇡2/V )

1/3vs can be used

to interconvert between the two, where V is the average volume per atom and vs is the average speed of sound, or

vs =

⇣
1
3

h
1
v3
L
+

2
v3
T

i⌘�1/3
in terms of the transverse and longitudinal speeds of sound.
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Figure 3.2. Klemens Model Comparisons to Simulation and Experiment Thermal conductivity
reductions due to point defect scattering for two systems at 300 K: (a) Si based on DFT dispersions and
T matrix scattering theory (points) and the Klemens model (lines) and (b) Mg2Sn1–xSix from experiment
(points), T matrix theory (dotted), and Klemens model (solid) [65,73,74]

L

0
=

tan�1
u

u
u

2 =
(6⇡

5
V

2
0 )1/3

2kBvs
0�.(3.8)

The �M parameter is the average mass variance in the system (h�M2i) normalized by the

squared average atomic mass (hMi2) [60,75–77]. Note that in the notation below, site averages

are denoted by a bar while stoichiometric averages are denoted by angular brackets (hi).

�M =
h�M2i
hMi2

.(3.9)

In a compound, these averaged quantities are most easily calculated by treating each component

of the compound separately. For example, a generic compound can be expressed with the formula

unit: A1c1A2c2A3c3 ...Ancn (e.g. CaZn2Sb2), where An refers to the n
th component (e.g. Ca, Zn,

or Sb) and cn refers to the stoichiometry of that component (e.g. 1, 2, or 2).

For each site n in the compound, Equation 3.10 gives the average mass variance (�M2
n) and

average atomic mass (Mn) specifically for that site, which can be occupied by a set of atomic species

i, including the host atom and any substitutional defects.
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�M2
n =

X

i

fi,n(Mi,n � Mn)2 Mn =
X

i

fi,nMi,n(3.10)

�M2
n is defined by a sum over i of the species site fraction (fi,n) multiplied by the mass variance

at each defect site, defined from the species mass Mi,n and site average atomic mass Mn [78]. In

vacancy scattering, where the perturbation emerges from both missing mass (Mvac) and missing

bonds to nearest neighbors, a virial theorem derivation (see Section 3.3.3) suggests that the mass

di↵erence at the vacancy site should be Mi,n � Mn = �Mvac � 2hMi. Finally, to derive the mass

di↵erence scattering parameter �M, the stoichiometric averages of the �M2
n and Mn values are

taken (Equation 3.9) [78].

h�M2i =

P
n cn�M2

nP
n cn

hMi =

P
n cnMnP

n cn
(3.11)

We must then consider the bonding changes and size e↵ects at the defect site. The full

perturbation Hamiltonian including mass, bonding, and size e↵ects is:

(3.12) H
0 =

1

2
�M

✓
du(r)

dt

◆2

+
X

n

[
1

2
�Kbn + �⌘(�R)][u(r) � u(r � bn)]2.

The potential energy perturbation is expanded into the change in harmonic force constant (�K)

and an anharmonic term with the anharmonic coe�cient � (related to the third order force constant)

times the static strain due to a change in site radius (⌘(�R)). Here, u(r) is the displacement at

atom site r through participation in phonon modes. The combined scattering parameter then has

the final form below, where Q represents the number of distorted bonds around a point defect,

equalling 4.2 for a cubic lattice with a strain field that decays with distance cubed,
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(3.13) �n =
X

i

fi

 
�M

2

hMi2
+ 2

✓
�K

hKi
� 2Q�

�R

hRi

◆2
!

� = h�ni

Abeles, noting observations in covalent crystal systems that elastic constants varied only with

atomic volume, assumed a proportionality between �K and �R. Therefore, since �K is not an

intuitive input value, the force constant di↵erence and local strain terms are combined, and both are

expressed through the average variance in atomic radius, defined analogously to the mass scattering

parameter in Equation 3.10 and Equation 3.9. As before, the atomic radius variance on the n
th

site is defined from the atomic radius of the i
th species which may occupy that site Ri,n and the

average atomic radius of the site Rn. Since the relationships between force constants and atomic

volumes are system dependent, these e↵ects are captured in a phenomenological fitting parameter

✏, which can vary in value between 1-500 in order to fit to experimental data.

(3.14) � =
h�M2i
hMi2

+ ✏
h�R2i
hRi2

h�R
2i =

⌦X

i

fi(Ri,n � Rn)2
↵

In summary, the model of focus here predicts lattice thermal conductivity trends with defect

concentration by capturing the perturbative e↵ects of point defects in the scattering parameter �.

3.3.1. Origin of Discrepancy: Atomic Site versus Unit Cell Basis

In a phonon-based approach to thermal conductivity, one would ideally utilize the real Brillouin

zone of the crystalline material. However, in e↵orts to create generalizable, analytic models,

the Klemens model makes approximations to avoid inputs that depend highly on wave vector

or atom position within the unit cell. Specifically, the monatomic lattice approximation and Debye

approximation are invoked. Although these approximations are ostensibly limiting, this section

demonstrates cancellations of error, which allow for a reasonable thermal conductivity prediction

for many materials of interest.
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Within in the monatomic lattice approximation (MLA), all the atoms of the primitive unit

cell are combined into a single vibrating mass. In this scenario, the relevant Brillouin zone is

confined by the volume of the primitive unit cell. As such, the original work of Klemens and other

numerous works define the real space volume V0 in Equation 3.8 as the volume of the primitive unit

cell. Conceptually, this approximation is equivalent to ignoring the optical modes in the dispersion

relation (as depicted in the schematic in Figure 3.3). To extend this idea fully, we treat the base

unit of a primitive unit cell as a microstate of the system. Therefore, the scattering strength of

the system is the ensemble average of the microstates which compose it. The unit cell model mass

scattering parameter (�uc
M) can be calculated from the fraction (Pc) of unit cells with a mass of Mc

and their deviation from the average unit cell mass (M). Finally, the mass di↵erences are summed

over all possible microstates in the lattice:

(3.15) �uc
M =

X

c

Pc

✓
Mc � M

M

◆2

.

While most model inputs are well-defined, it is not immediately clear what the fraction of

unit cells (Pc) should be. When there is a random distribution of defects in the lattice, the

fraction or probability of finding a unit cell of mass Mc can be determined from a binomial

distribution function. In other instances, where defect complexes are likely, certain microstates

could be weighted accordingly. A schematic of possible unit cells (microstates) for a 2-atom unit

cell are shown in Figure 3.4.

However, for the case in which the defects are randomly dispersed and the binomial distribution

treatment is suitable, the treatment in Equation 3.15 directly collapses into the virtual crystal

approximation (VCA). Under the VCA, each atom in the material has the average mass and

average volume of all the atoms in the system. Here, the relevant Brillouin zone is specified by the

volume per atom, resulting in a larger Brillouin zone and larger acoustic branch that includes the

phonon states previously included in the optical branch (Figure 3.3). Here, the V0 in Equation 3.9

should then correspond to the volume per atom.
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Figure 3.3. Phonon Dispersion Diagrams Implied by the Virtual Crystal and Monatomic Lattice
Approximations The MLA and VCA represented in a 1D diatomic chain. In the MLA, the primitive unit
cell is unaltered, but the atoms contained within are summed into a single, vibrating mass. As a result,
there is no optical branch. In the VCA, the primitive unit cell is reduced to one atom, causing a tupling
of the Brillouin zone. The large acoustic branch in this case includes the phonon states previously in the
optical branch.

Figure 3.4. Unit Cell Basis: Schematic of Microstates with Di↵ering Scattering Strengths In an
example 2-atom primitive unit cell (shown in dotted line), three possible microstates exist, containing 0,1,
or 2 impurity atoms. In the unit cell basis, each microstate would contribute a term to the overall scattering
parameter (�).

The averaging scheme for the scattering strength implied by the VCA results in Equation 3.9.

Due to the conflicting model representations in the literature, numerous sources use the VCA-based
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expression (Equation 3.9), but define V0 as the volume of the unit cell, as implied by the MLA.

As a result, the disorder scaling parameter (u) is over-approximated by the number of atoms in

the primitive unit cell. In thermoelectrics, where complex unit cells with 10-20 atoms are often

favored, the resulting over-estimation is significant. The next section on vacancies and interstitials

(Section 3.3.3) discusses a large majority of these over-estimated cases and a cancellation of errors

which has routinely occurred.

The second approximation made is that of the Debye model, which drastically simplifies the

phonon dispersion into a linear ! vs. q relation. However, the examples depicted of Si isotope

scattering and Mg2Si1–xSnx shown in Figure 3.2 both show excellent correspondence between the

first principles methods and the Klemens model. Since both materials exhibit complex dispersions,

which disagree with the Debye model dispersion implicitly assumed in Klemens theory, the suitability

is surprising [33,79].

Previous studies have explicitly compared the L predictions of the Klemens model using various

approximations of the phonon dispersion relation [69,80]. For example, in a study of two Half-

Heusler systems, three di↵erent approximations were used to describe the phonon structure of the

two materials—the Debye model, a truncated Debye model, and a cubic polynomial fit of the full

dispersion relation. The predicted L versus defect concentration curve was plotted for each case

and compared to experimental results. The study showed that the prediction of the pure thermal

conductivity (0) depended on the choice of dispersion. However, the ratio L/0 was shown to be

independent of the dispersion relation choice, suggesting that while full features of the dispersion

relation are required to model the thermal conductivity of pure solids, the suppression of L due

to point defects can be described more generally [69].

The dispersion relation dependence enters into the Klemens model through the factors of

density of states and the frequency-dependent phonon velocities. In Equation 3.16 for lattice

thermal conductivity, the relaxation times are re-written to isolate the density of states contribution

(⌧PD
�1 = a g(!)!4

, ⌧U
�1 = b g(!) !

2) with coe�cients a and b combining any physical and material

constants. The factor of g(!) cancels in each of the relaxation times as well as the heat capacity,
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softening the dispersion dependence of the expression.

L = kB

ˆ !m

0
v

2
g(!)g(!)!2 (1/b g(!))!2

1 + a g(!)!2/b g(!)
d! =

kB

b

ˆ !m

0
v

2
g(!)

1

1 + a!2/b
d! .(3.16)

At this point, the factor of v
2
g remains as a dispersion relation quantity in the model. Therefore,

the dispersion dependence is not eliminated from the model, but softened given the cancellation in

factors of density of states. Therefore, in the scenarios where phonon-phonon interactions are not

largely impacted by symmetry constraints or large phonon band gaps, the ratio of point-defective

to pure thermal conductivity can be well-described within Klemens theory.

3.3.2. Comparison to the Tamura Model

The mass di↵erence model proposed by Tamura preserves the dependence of the phonon relaxation

times on polarization vector and the spatial anisotropy of atomic sites within the primitive unit

cell, and is frequently implemented in numerical Boltzmann transport equation solvers for thermal

conductivity [47,65,67,70–72,77,81–83]. The mass di↵erence parameter in the Tamura model

(�T
M) involves performing a sum over all the atom sites s in a simulation cell, where i again labels

the species that may occupy site s, including the host and substitutional atoms. In a similar fashion

to previous expressions, Mi,s and Ms indicate the i
th species mass and the average mass on atomic

site s, respectively. In this case, however, the mass di↵erence term is weighted by the eigenvector

components corresponding to atom s in the incident (eq(s)) and final (eq0(s)) vibrational mode.

(3.17) �T
M =

X

s

X

i

fi,s(
Mi,s � Ms

Ms
)2|(eq(s) · eq0(s))|2

The eigenvectors are composed of the displacement vectors (u(q, s)) of each atomic site as

it participates in a vibrational mode, weighted by the square root of the atomic mass (eq =

[
p

M1u(q, 1) . . .
p

Msu(q, s)]), and are finally normalized such that |eq|2 = 1. These eigenvectors

can be calculated from the DFT (Density Functional Theory) force constant matrix [52]. The

description of mass di↵erence scattering here is general enough in its formalism that it could be
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used to describe the perturbation induced to a vibrational mode regardless of its spatial extent.

Therefore, in addition to plane wave phonons, the vibrational modes of di↵usons, locons, and

propagons within the Allen and Feldman formalism could be treated under the same point defect

scattering theory [49,84] (see Section 3.5).

Point defect scattering has been studied with first principles techniques by applying DFT to

compute the full vibrational spectrum, using T-matrix scattering theory and the Tamura model

to compute point defect scattering rates, and finally solving the linearized Boltzmann transport

equation to get L [64–67,84,85]. In several reported materials systems, an excellent correspondence

is shown between the results attained from first principles methods described above and the

analytical Klemens model (Figure 3.2) [65, 86]. It is important to remember that the Klemens

model is fit to the end member thermal conductivity values, but still adequately predicts the

suppression in thermal conductivity with compositional variation.

The Tamura model mass variance term converges to the analytic expression at the low frequency

limit. The assumption made here is that the displacement (u) of each atom in a low-frequency mode

is roughly equal in magnitude; therefore, the magnitude of an eigenvector element is proportional to

the square root of the atomic mass (|e(q, s)| /
p

Ms). This suggests that the squared polarization

vector dot product (|(eq(s) · eq0(s))|2) weights the mass di↵erence on a site depending on its mass

relative to the other atoms in the formula unit, or an approximate factor of (Ms
2
/hMi2). This

treatment results in Equation 3 and 4 suggested in the Introduction, as depicted below.

(3.18) �lf
M =

1

hMi2

P
n cn(Mn)2

P
i fi(1 � Mi,n/Mn)2P

n cn
=

h�M2i
hMi2

3.3.3. O↵-stoichiometric Point Defects

The Klemens/Callaway model is best defined for randomly dispersed substitutional defects. However,

initial work on other o↵-stoichiometric defects, including vacancies and interstitials, have shown

large phonon scattering e↵ects and warrant further investigation.
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Several investigations of thermoelectric compounds show large thermal conductivity reductions

due to vacancy scattering [30,87–93]. In several of these cases, the reduction in L is attributed

to mass di↵erence scattering alone. However, we identified that the volume in Equation 3.6 was

incorrectly defined as the volume of the unit cell rather than the volume per atom, leading to an

over-prediction of the thermal conductivity change [59,88–90,93].

However, the large perturbation e↵ects of vacancies are still well-described using Klemens theory

[94,95]. In this case, the lattice energy perturbation comes from missing kinetic energy (T 0) related

to the mass of the removed atom and missing potential energy related to the removed bond between

two atoms, or double the potential energy per atom (2U
0). Within the harmonic approximation

(E = T + U2nd), the kinetic and potential energy perturbations of a single atom should be equal

(T 0 = U
0) according to the virial theorem, allowing one to relate the potential energy perturbation

to the average atomic mass in the lattice (
⌦
M
↵
). In the calculation of �, the perturbation at a

vacancy site can be represented by the mass di↵erence Mi,n � Mn = �Mvac � 2
⌦
M
↵

in Equation

3.11 and Equation 3.17, where Mvac is the mass of the vacant atom [94,95].

This simple treatment of vacancy scattering performs well in many defective solids, some of

which are reproduced in Figure 3.5a. The experimental data shown would not be described by

standard mass di↵erence alone and requires the perturbation induced by a missing bond. The

Appendix Section C compares results for the mass di↵erence only curve versus the full inclusion of

the broken bonds term, and depicts how an incorrect definition of volume can lead to a cancellation

of errors.

The suitability of the vacancy model suggests, then, that interstitial atoms may be describable

with an identical treatment. Interstitial or filler atoms represent the reverse situation, where

an extra mass (M int) is added onto a site and a new bond forms between the interstitial atom

and a neighbor; therefore, a perturbation of T
0 + 2U

0 should apply, yielding essentially the same

mass di↵erence as before (Mi,n � Mn = M int + 2
⌦
M
↵
). It should be noted that the interstitial

atom sites have a stoichiometry corresponding to the ratio of interstitial to lattice sites. While
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Figure 3.5. O↵-stoichiometric Defect Scattering Model Applied to Literature Data Both vacancy
and interstitial scattering data from literature (points) can be described using a simple treatment of broken
(or added) bonds based on the virial theorem (line). Normalized thermal conductivity reductions for systems
with (a) stoichiometric vacancies, where [] represents a vacancy [88,89,91] and (b) stoichiometric interstitial
atoms [59,96]

interstitial scattering requires more detailed study across additional materials systems, the initial

data represented in Figure 3.5b, supports the application of the virial theorem treatment.

3.4. Lattice thermal conductivity versus n Trends in zT Predictions

In Section 1.2.1, we discuss the relationship between the thermoelectric figure-of-merit zT and

the carrier concentration. Curves such as the one shown in Figure 1.1a are used to identify

the optimal dopant concentration for a thermoelectric material. While dopants are assumed to

primarily contribute charge carriers without greatly perturbing other transport properties, in several

cases, this assumption breaks down. For example, several high-performance materials in the Heusler

structure type are doped at high dopant concentrations [97–100], and the primary motive in doing

so may be to reduce the thermal transport rather than seek improvements in electronic properties.

Here, we discuss this point using the full-Heusler VFe2Al as an example [21]. This relatively

sti↵ material has a large pristine lattice thermal conductivity of about 28 W/m/K. However, the

mass and strain scattering introduced by dopants can cause 80% reductions in thermal conductivity

as shown in Figure 3.6 below. Factors like doping e�ciency, or the charge carriers contributed per

dopant atom, tend to dictate dopant choice. However, the variability in point defect scattering
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Figure 3.6. VFe2Al: Lattice Thermal Conductivity Trends with Composition and Temperature
L trends with changes in composition are well described by analytic alloy scattering models. (a) L versus
composition curves from the literature [101–103] are modelled using the Klemens alloy scattering model.
(b) L versus temperature curves with varying Co dopant concentrations from Lu et al. [104] are modelled
using point-defect and umklapp scattering theory fit with a single Grüneisen parameter of 2.78.

strength for various dopants can also be significant for a given compound, as depicted in Figure

3.6a.

Next, we plot the zT versus carrier concentration for full-Heusler VFe2Al. This compound is a

very narrow bandgap semiconductor (Eg ⇡ 0.01 eV) and is both n- and p-type dopable. We use a

2-band e↵ective mass model to model the conduction and valence bands, with weighted mobility

and Seebeck e↵ective mass values fit to experimental S-� and S-n relations, respectively. The

two zT curves plotted in Figure 3.7 di↵er only in terms of their handling of the lattice thermal

conductivity L. The orange curve treats L as a constant value equal to the pristine compound’s

lattice thermal conductivity. In contrast, the blue curve incorporates the alloy scattering of phonons

through the use of the Klemens model curves. The point defect scattering strength of a Ge dopant

is chosen for the n-type side, and an Re dopant is chosen for the p-type side because these are

the dopants with the highest reported zT values. Experimental zT values (scatter points) show a

good correspondence to the 2-band model, which includes the impact of alloy scattering on L. By

comparing both models, it is clear that including the n-dependence of L is important for predicting

the correct magnitude of zT as well as identifying the optimal carrier concentration.
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Figure 3.7. E↵ect of L on zT Trends with Carrier Concentration n The zT versus carrier
concentration (n) curves at 300 K from a two-band model for the valence and conduction band usiing a
bandgap value of Eg = 0.02 eV. The blue curve includes the n-dependence of L is included using the
point defect scattering strength of Ge for n-type and Re for p-type. In contrast, the orange curve uses the
constant pristine L value of 28 W/m/K. Finally, we compare to experimental zT scatter points for both the
Ge-doped [101] and Re-doped [103], which show good correspondence with the two-band model combined
with the Klemens alloy scattering model for L. Here, we emphasize that including the n-dependence of L

is important both for modelling the correct magnitude of zT , but also the correct n values at which it is
optimized. The shift in optimal n value is signified by the dotted gray lines.

3.5. Beyond the Phonon Limit: Di↵usons and Scattering Theory

Finally, we would like to acknowledge and comment on recent discussions on the suitability

of the Klemens model and similar VCA-approaches to the topic of phonon scattering in alloys.

The heart of the issue is that in constructing the virtual crystal, the plane-wave character of the

phonon modes considered remains in tact. The mass and force constant disorder is then treated as

a perturbation to these virtual crystal phonons. However, molecular dynamics (MD) simulations,

which do not require assumptions about the lattice dynamics and form of the vibrational modes,

have since showed that plane wave character (measured by an eigenvector periodicity parameter)

rapidly decreases as compositional disorder is introduced into a solid [84]. In fact, Allen et al. [49]



56

famously ascribed a new nomenclature for vibrations in a disordered solid: propagons, di↵usons,

and locons. Propagons are extended modes that are phonon-like, meaning here that they have a

well-described wave vector. Like phonons, propagons transfer heat ballistically between scattering

events over a distance equal, on average, to the mean-free-path. Di↵usons, are more localized and

lack a well-defined wave vector but are still able to transfer heat through the lattice, di↵usively.

Finally, locons are high localized and do not contribute to heat transport as they remain essentially

tethered to a specific lattice site. Given this observed breakdown in phonon character, the suitability

of the virtual crystal and perturbation theory approach may be surprising.

However, as noted in this thesis section and in Seyf et al.(See Figure 1 of [84]), VCA approaches

such as the Klemens and Tamura models have been shown on numerous occasions to correspond

well with experimental and MD results [63–66,81]. There are a few clear examples of breakdowns

in the VCA defect scattering model, which are often easiest to observe in the  vs. T relation.

Since the point-defect scattering rates derived in this chapter are temperature-independent, the

T -dependence would be expected to simply follow that of phonon-phonon scattering (see Figure

2.2). In some materials, often with thermal conductivity values close to the minimum thermal

conductivity limits, L will be roughly constant with temperature. In these cases, which can

include complex unit cell materials without compositional disorder, di↵usons are likely to be the

primary heat carrier, and the di↵usive models described in Section 2.3.1 based on Einstein-like

modes are more appropriate [33,105].

However, the reason for the widespread suitability of the VCA models in regions of high

compositional disorder and low “plane-wave” character of vibrational modes remains an open

question. While we do not resolve this discrepancy in this section, the point can be elucidated

further in the context of recent publications. Recent works by Simoncelli, Isaeva, and Hanus follow

on from work by Allen and Feldman on harmonic disordered solids, which showed that the slightly

o↵-diagonal terms in the heat flux operator (see Section 2.3.1), which describe the coupling between

two normal modes, account for di↵uson transport. Therefore, for a more unified description of the
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thermal transport, the following equation for thermal conductivity is proposed, di↵ering from the

phonon gas model by instead requiring a double sum over normal modes n and m.

(3.19) nm =
X

nm

Cnmv
i
nmv

j
nm⌧nm

Here, ⌧nm is written in terms of the normal mode linewidths �n (or spread in frequency). For the

on-diagonal terms of the heat flux operator, which fit the phonon gas model, �n is simply inversely

related to the normal mode scattering rate �n = ⌧
�1
nn . The form of ⌧nm is instead:

(3.20) ⌧nm =
�n + �m

(�n + �m)2 + (!n � !m)2
.

The Lorentzian from of ⌧nm is such that o↵-diagonal terms n 6= m are only significant if the normal

modes are close in frequency (small !m �!n) and have su�ciently large linewidth (large �m +�n).

In simpler terms, o↵-diagonal terms are related to the frequency overlap of normal modes once

they have broadened due to anharmonic e↵ects or disorder. In the context of this framework, the

observed suitability of the VCA suggests that in many alloys and solid solutions, the disorder mainly

causes a diminishing of diagonal terms of the heat current matrix without appreciable production

of non-zero o↵-diagonal terms. Perhaps, instead, thermal conductivity lacks sensitivity to these

changes in the heat current matrix because the majority of heat is carried by low-to-mid frequency

acoustic branches, which are spaced out in frequency and tend to show a highly diagonal heat

current matrix.

3.6. Conclusions

Analytic models of phonon–point-defect scattering have stood the test of time because of their

straightforward inputs and, at times, surprising descriptiveness. Our deep dive into the expressions

used in the literature and the physics they imply has led to the following insights:
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• Conflicting descriptions of point defect scattering, the monatomic lattice and virtual

crystal approximations have led to a common mishandlings of the V0 parameter, the

essential volume of the defect. These model discrepancies have obscured the magnified

scattering of o↵-stoichiometric defects such as vacancies and interstitials.

• We present a general formalism for calculating scattering parameter �, suitable for multiatomic

lattices with an arbitrary number of defects occupying each sublattice.

• The widespread suitability of the analytic alloy model suggests that it is fairly dispersion

relation independent. This reduced sensitivity to dispersion can be understood through

a partial cancellation of the density of states in the phonon relaxation times and heat

capacity.

• Phonon-dopant scattering e↵ects should be considered when evaluating the optimum

doping level for thermoelectric materials.
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CHAPTER 4

Thermoelectric Transport in Multicomponent Alloys

4.1. Motivation: Unexplored Phase Space for Thermoelectric Materials

High entropy alloy systems with multiple principal elements are considered attractive for thermoelectric

materials because the mass and strain fluctuations introduced into the lattice can e↵ectively

scatter phonons and suppress the lattice thermal conductivity. Additionally, the multicomponent

alloy space comprises a largely uncharted compositional territory for thermoelectric materials.

Several recent reviews discuss the potential benefits of these multinary alloys to thermoelectric

performance given their potential for unique, entropy-enabled characteristics [106–108]. For

example, in addition to the substantial lattice distortions mentioned previously, entropy-stabilization

also favors high crystal symmetry, which can lead to high electronic band degeneracy, and regions of

extended solubility to facilitate doping. Some recent experimental investigations of multinary alloys

have given way to highly alloyed phases which substantially out-perform end-member compounds.

Androulakis et al. [109] demonstrated that the large lattice mismatch and strain e↵ects in Pb1–xSnxTe-

PbS alloys leads to phase separation which introduce phase boundaries with nanoscale separation

that scatter phonons and induces an over 70% reduction in lattice thermal conductivity relative to

PbTe. In other instances, large electronic bandstructure changes in the multinary alloy space can

produce peaks in thermoelectric performance [110,111].

However, both charge carriers and heat-carrying phonons are known to experience scattering due

to alloying e↵ects. Here, we apply analytic transport models, based on perturbation and e↵ective

medium theories, to predict how alloy scattering will a↵ect the thermal and electronic transport

across the full compositional range of pseudo-ternary and pseudo-quaternary alloy systems. For

carrier mobility, the work of Makowski and Glicksman provides a straightforward expression for
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alloy e↵ects in a binary system, however, an extension to higher-order systems has not been

presented. We develop a multicomponent extension to the alloy mobility model, based on straightforward

materials inputs by applying computational thermodynamics techniques used to calculate excess

Gibbs energy, namely the Redlich-Kister polynomial and Muggianu model. In these thermodynamic

expressions, higher dimensional activity coe�cients, describing the interactions between three of

more alloying elements, can be expressed as a sum over binary, pairwise interaction terms. We show

that within the virtual crystal approximations used in analytic alloy models, the same relationships

exists, such that the excess resistivity in multinary alloys can be computed from the alloy scattering

parameters fit to the binary systems.

In the case of thermal transport, a recent reformulation of the Klemens alloy model [13] (see

Section 3.3) provides a straightforward route to compute the lattice thermal conductivity (L)

of multicomponent alloys. From our calculations, we find that the thermal conductivity is most

frequently minimized along the binary system with the largest mass contrast such that adding

additional alloying elements is not necessarily beneficial from the standpoint of alloy scattering.

Therefore, the only way to reduce the L when entering a multinary alloy space is to rely on

a introducing a scattering mechanism that acts orthogonally or independently of mass defect

scattering such as dislocation strain or boundary scattering.

4.2. Theoretical Background

4.2.1. Electronic Transport Function

As introduced in Section 1.2.1, the electronic transport coe�cient is correlated to the maximum

achievable thermoelectric power factor (S2
�) for an optimally-doped sample. The electronic transport

function (�E0) can be fit directly to the Seebeck coe�cient S versus conductivity � relation (Jonker

plot), using the following relationship [112]

(4.1) �E0 = �

2

4
exp

h
|S|

kB/e � 2
i

1 + exp
h
�5( |S|

kB/e � 1)
i +

3
⇡2

|S|
kB/e

1 + exp
h
5( |S|

kB/e � 1)
i

3

5 .
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It is advisable to fit a single �E0 coe�cient to a series of S-� pairs, measured at various carrier

concentrations. Otherwise, computing the �E0 from a the S-� pair of an optimally doped sample

(maximized S
2
�) is also suitable.

The Bardeen-Shockley equation predicts the carrier mobility by applying deformation potential

theory, which considers the e↵ect of phonon scattering on charge carriers. By treating phonons as

a source of dilatational strain and calculating the shift in conduction band or valence band energies

in response to this strain (neglecting higher order e↵ects like the change in e↵ective mass), the

deformation potential ⌅ is calculated in units of eV [113]. The expression for p
�E0 based on

deformation potential theory of phonon scattering is given as:

(4.2) p
�E0 =

2~ELNve
2

3⇡mI
⇤⌅2

,

where EL is the longitudinal elastic constant (often the bulk modulus is used), Nv is the valley

degeneracy, and mI
⇤ is the inertial e↵ective mass. Here we designate this coe�cient with a

superscript “p” to indicate that this is the value for the pure compound, prior to any alloying.

Depending on whether the n-type or p-type p
�E0 is desired, the band properties of either the

conduction or valence band are applied.

In our implementation of a �E0 alloy model, we assume that the end-member compounds in

the alloy systems are described by Equation 4.2. Alloy compositions will then have additional

mobility e↵ects due to alloy scattering of charge carriers. The alloying elements will be assumed to

be isovalent substitutions and therefore uncharged. The scattering potential, in this case, will be

determined solely from changes in the lattice potential at the defect site.

4.2.2. Alloy Scattering Potential for Charge Carriers

This work assumes that alloying produces a pure potential scattering, meaning no significant

spin disorder. Here we will invoke the virtual crystal approximation once more, by comparing

the disordered lattice to a reference, periodic lattice with the averaged lattice properties of the
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alloy components. The coherent potential approximation (CPA) is also frequently applied to this

problem, and involves self-consistently determining the self-energy of electronic states in an alloy

to determine their scattering rates. In the limit of small perturbations (low defect concentration or

low site energy change), the CPA also reduces down to the virtual crystal approximation [114]. It

is common to evaluate the CPA correction to virtual crystal band energies, and if it is determined

to be small, the virtual crystal approximation is appropriate to use for determining alloy scattering

rates [115].

Unlike the previous section on phonon–point-defect scattering (see Section 3.3), in which the

variance is atomic mass and radius defined the scattering strength, the lattice quantity defining

the scattering strength in this case is U , the on-site potential in a tight-binding representation.

The practical definition of U has been a source of discrepancy. The original work of Makowski and

Glicksman [116] on III-IV zinc-blende compounds used the bandgap to define U , while subsequent

work by Harrison and Hauser [117] defined U as the electron a�nity, or the conduction band

edge position relative to the vacuum level. However, neither definition has shown a very robust

correspondence to binary alloy data, and so, in practice, the value of �U between two components

is fit to the mobility data of binary alloy systems.

We will first show the relaxation time due to alloy scattering strength, and then discuss

the expression �E0, which combines both phonon and alloy scattering of charge carriers using

Matthiessen’s rule.

Analogous to the previous case of the mass defect (Section 3.2), we can write the real-space

scattering potential at a defect site with a change in lattice potential �U :

(4.3) V (r) = V0�U�(r).

Following the procedure used previously, the alloy scattering rate includes the site fraction of

point defects (nd) and the 3D electronic density of states (g(✏)) [118]:
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⌧
�1
alloy =

2⇡

~ ndV0(�U)2g(✏)

=
2
p

2

⇡~4
V0(�U)2m⇤3/2(kbT )1/2

✏
1/2(4.4)

As in the mass di↵erence case, when this factor is generalized to multiple defects indexed by i

with site fraction xi and site potential Ui, it can be written as the average U variance compared

to the virtual crystal site potential hUi =
P

i xiUi. Note that here we will use angular brackets

hi to signify configurational averages over the component site potentials. A rearrangement of the

average U variance puts it into a form particularly convenient for the charge carrier alloy scattering

problem since �Uij = Ui � Uj values between two components are nearly always fit to binary alloy

data. The scattering parameter for the multicomponent alloy is written as a sum over “binary”

terms, involving just two components in the alloy.

h�U
2ic = h(U � hUi)2i

= hU2i � h2UhUii + hUi2

= hU2i � 2hUi2 + hUi2

= hU2i � hUi2

=
X

i,j 6=i

xixj(�Uij)
2

(4.5)

In Wang et al., the following expression for �E0 is derived by including the e↵ects of deformation

potential phonon scattering and alloy scattering, combined using Matthiessen’s rule. The resulting

expression is then a modification of the reference pure p
�E0 value shown in Equation 4.2. Note that

p
�E0 represents the properties of the virtual crystal, and is defined as the Vegard’s law interpolation

between end-member values (similar to 0 in Equation 3.8).
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(4.6) �E0 = p
�E0/

0

@1 + A

X

i,j 6=i

xixj(�Uij)
2

1

A , where A =
3⇡

2
ELV at

⌅28kBT

In the coe�cient A, quantities such as the longitudinal elastic constant EL and average volume per

atom V at also vary according to Vegard’s law between end-member values. Finally, to relate this

problem back to the previous case on point defect scattering of phonons, let us define the electronic

alloy scattering strength �el as:

(4.7) �el =
X

i,j 6=i

xixj(�Uij)
2

In contrast to previous expressions presented by Makowski and Glicksman [116], Harrison and

Hauser [117], and Mehrotra [119], Equation 4.6 is generalizable to multiple alloying elements. We

additionally note that the final form of Equation 4.5 is similar to those used for excess Gibbs energy

calculations in a multicomponent solution.

In the following section, we present an extrapolation scheme from binary alloy data to higher

order systems based on the Muggianu model. A benefit of this extrapolation scheme is that it

preserves the relationship between �E0 and alloy composition shown in Equation 4.6 even if �Uij ,

itself, is allowed to vary with composition. In thermodynamic terms, an activity coe�cient with

composition dependence represents a subregular solution model used first by Hardy to model certain

binary metallic systems [120, 121]. In scattering terms, �Uij values may vary in the terminal

regions of the alloy if there are significant di↵erences in bandstructure and host lattice properties

between endmembers. So, rather than adopting a fixed �Uij values over the entire alloy range,

it maybe preferable to allow this alloy scattering potential to vary with alloy composition. The

compositional variation in alloy scattering potential has only been rigorously investigated via first-

principles for Si1–xGex alloys, where changes in �U with respect to x, determined through DFT

or tight-binding bandstructures, were fit to polynomial expressions. In this particular example,
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only a light dependence on composition was observed such that the assumption of a uniform alloy

scattering potential provided an adequate fit of mobility data [115,119].

4.3. Excess Thermodynamic Quantity Estimations: Redlich-Kister Polynomial and

Muggianu Model

The Redlich-Kister polynomial is a simple change of variables that allows for the analytic

calculation of excess Gibbs free energy (GE) in a ternary, or higher order, alloy system. The

method is especially useful in a subregular solution model, in which the interaction parameter

(Aij) between two components i and j is allowed to vary with composition. Here, we’ll adapt the

notation and convention of Hillert [120,122]. The standard regular solution model for G
E is shown

below for constant binary interaction parameters:

(4.8) G
E =

X

i,j 6=i

xixjAij

As shown, higher order systems can continue to be written in as a sum of binary terms of the

form xixjAij within the regular solution model. However, once Aij is permitted to vary with

composition, this relationship no longer holds true, largely because the symmetry of the problem

is not maintained 1 � xi 6= xj . To address this, in an example ternary composition (x1, x2,

x3 = 1 � x1 � x2), we can define a new set of parameters using a simple change of variables:

v12 = (1 + x1 � x2)/2(4.9)

v21 = (1 + x2 � x1)/2.(4.10)

In a binary system (where x1 + x2 = 1) these parameters reduce to simply x1 and x2, but they

retain the relationship v1 + v2 = 1 even for higher order systems. The interaction term Aij can

then be written as the following power series up to any arbitrary power n:



66

A

B C
Figure 4.1. Schematic of Muggianu Model The geometric Muggianu model provides a method to
determine a ternary excess quantity (multicolored center composition) from a weighted sum of corresponding
binary excess quantities. Binary compositions are shown along binary systems as red, blue, and green scatter
points.

(4.11) Aij =
nX

k=0

k
Cijv

n�k
ij v

k
ji

As before, the excess Gibbs energy can be described using Equation 4.8, using this more generalized

form of Aij :

(4.12) G
E =

X

i,j 6=i

xixj

nX

k=0

k
Cijv

n�k
ij v

k
ji.

To further simplify the model, we can apply the Muggianu method, referred to as a geometric

model because it relies on the geometric construction illustrated in Figure 4.1, in which ternary

excess quantities are a weighted sum of corresponding excess quantities along the binaries. Since

each binary alloy system is well-defined by Equation 4.6, the Muggianu method provides the most

straightforward extrapolation into the higher order space, even for composition-dependent alloy
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scattering potentials. The Muggianu method defines high-dimensional (h.d.) excess alloy properties

as:

(4.13) G
E

h.d. =
X

i,j 6=i

xixj

vivj
G

E(vi, vj)

In thermodynamic models for G
E, ternary interaction terms of the form xixjxkAijk, which

involve three di↵erent components of the alloy, may also be used. In scattering problems, these

terms would represent multiple scattering events present at clusters of defects. In our applications

of the Redlich-Kister polynomial, these ternary interaction terms are neglected. Therefore, all terms

in the scattering potential contain the site fractions and lattice properties of just two components

in the alloy.

The Muggianu method reproduces the Redlich-Kister polynomial terms up to any power [120,

122]. Relating this expression back to the problem at hand, the working formula for the higher

order extension of the electronic alloy scattering strength (Equation 4.7) is:

(4.14) �el(x1, x2, . . . , xn) =
nX

i

X

j 6=i

4xixj

(1 + xi � xj)(1 + xj � xi)
�ij

el(
1 + xi � xj

2
,
1 + xj � xi

2
).

Since the point defect scattering strength for phonons �ph has the same form, we can apply the

Muggianu method in the same fashion. If, perhaps, the strain scattering parameter ✏ (see Equation

3.14) describing the sensitivity of the force constants to strain varies over the alloy compositional

range, the Muggianu method can be applied to perform the extrapolation to multicomponent alloys.

In Section 4.4.2, we will discuss a quaternary reciprocal IV-VI semiconductor system in which the

Redlich-Kister polynomials and Muggianu extrapolation are required to adequately describe the

experimental data.
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4.4. Results and Discussion

4.4.1. Pseudo-ternary half-Heusler Alloys

Half-Heusler compounds represent a large class of semiconducting, thermoelectric materials, which

tend to be limited in their performance by relatively high L values. As a result, alloying strategies

to impede phonon transport are heavily sought after. We have investigated several pseudoternary

half-Heusler systems with alloying on a single sublattice, including: (Ti,Zr,Hf)NiSn, (Ti,Zr,Hf)CoSb,

(V,Nb,Ta)FeSb, and (V,Nb,Ta)CoSn. For simplicity, we will also label the alloying site as X. The

methods described in Section 4.2 were applied to map out the transport function �E0, lattice thermal

conductivity L, and thermoelectric quality factor B over the full pseudoternary compositional

space. These models require that the transport coe�cients, elastic properties, and electronic

bandstructure properties are well-defined for the end-member compounds, and literature values

are used (see Appendix Section D).

Inspection of the L maps for the four half-Heusler compound families shows that the lattice

thermal conductivity is not, in fact, minimized at the center of the ternary, where maximal atomic

disorder would be expected. Instead, L is minimized along the pseudobinary with the greatest

mass di↵erence between components located along the right edge of each pseudoternary diagram

shown. In fact, additional alloying with the intermediate mass component tends to reduce the

overall point defect scattering.

These L mappings suggest that multicomponent alloying does not by necessity lead to suppressed

thermal conductivity, a result corroborated by recent first-principles thermal conductivity calculations.

The XNiSn L heatmap has been presented twice before from the standpoint of ab initio density

functional theory (DFT) [123, 124]. Notably, these DFT studies continue to make the virtual

crystal approximation when evaluating the alloy phonon bandstructures, using the compositional

average of the atomic masses, harmonic, and anhamornic force constants. However, in contrast

to the analytic expression here, the DFT-derived density-of-states, group velocities, anharmonic

coe�cients, and polarization vectors enter into the L calculation. We observe good correspondence

between our model prediction and the DFT studies. Contour lines from the work of Eliassen et
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a.

b.

c. 3.1*

<4.3*

*contour lines reproduced from Eliassen [121]

Figure 4.2. Thermoelectric Transport Properties for (Ti, Zr, Hf)NiSn System Alloy model
predictions for the (a) electronic transport function �E0, (b) lattice thermal conductivity L, and (c) quality
factor B for the (Ti,Zr,Hf)NiSn system. Experimental scatter points are overlaid, and in cases where a
composition was measured multiple times, the median value is plotted here. Contour lines from the DFT
investigation by Eliassen et al. [123] are reproduced in panel (b) for comparison purposes. See Appendix
Section D for full data.

al. [123] are reproduced in Figure 4.2c to highlight the minimized L region. Both their work and

our predictions (heatmap) show a wide basin of minimum thermal conductivity values centered

around the binary alloy Ti0.5H0.5NiSn, with L values < 4 W/m/K for a Ti content ranging

from about 20 to 80% [123]. Additionally, deviating from the (Ti,Hf)NiSn pseudobinary through

the addition of Zr only results in an increase of L values. The same L motif is shown in the

computational work of Caro et al. [125], who used non-equilibrium molecular dynamics and the

Green-Kubo method to evaluate the thermal conductivity of Lennard-Jones alloys between fictitious

elements A, B, C and D, which are assigned distinct atomic mass, radius, and cohesive energy [125].
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A benefit of this model is that it does not require any assumptions about the phonon bandstructure

or the scattering mechanisms. The thermal conductivity mapping of the quaternary alloy still,

however, shows the lowest L along the binary with highest mass and radius contrast. Thus, there

is strong evidence that increased compositional disorder does not, by necessity, yield a L reduction.

In each of the half-Heusler alloy systems investigated, mass di↵erence scattering alone appeared

to adequately fit the experimental data, and the fitted value for the strain parameter ✏ was

essentially equal to 0. This low strain scattering e↵ect is compatible with conventional understanding

of formation rules for multicomponent alloys. Large atomic size di↵erences lead to insu�ciently

negative enthalpy of formation values and poor miscibility [126].

Despite the similarity in motif for the lattice thermal conductivity heatmaps, the quality

factor plots for the four pseudoternary families (Figures 4.2 and 4.3) show di↵erent regions of

high performance materials, arising from the trade-o↵ between thermal and electronic transport

coe�cients. The magnitude of the quality factor predictions are similar between the four families,

except for the XFeSb system, with B values about a factor of 3⇥ higher than the other systems

stemming from both high �E0 and low thermal conductivity, particularly along the (Nb,Ta)FeSb

pseudobinary (Figure 4.3(a-c)).

4.4.2. Quaternary Chalcogenide System: Pb(Sn)Te(Se)

We additionally apply this alloy model to the experimental mapping of thermoelectric transport

properties performed by Ortiz et al. [111] of the quaternary p-type PbTe-PbSe-SnTe-SnSe system.

Although several previous works have investigated the 6 pseudobinary systems involving all pairs of

these IV-VI compounds, this study is unique in that it reports on the multicomponent alloy space,

and therefore lacks the data sparsity problem of the previous section. In our analysis, we exclude

values in the vicinity of SnSe, which were shown in the original work to be the Pnma rather than

the Fm3m phase [111].

To perform the lattice thermal conductivity analysis, we first fit the Klemens alloy scattering

model (Equation 3.8) to each of the pseudobinaries. The fit strain scattering parameters ✏ vary
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Figure 4.3. Summary of Thermoelectric Modelling and Data for Remaining Compound Families
Alloy model predictions with overlaid experimental scatter points for three compound families: XFeSb,
XCoSn, and XCoSb. For each system, the electronic transport function �E0, lattice thermal conductivity
L, and quality factor B are shown. Although each compound family has the same motif for lattice thermal
conductivity, with L minimized along the binary with highest mass contrast, the B factor plots show very
di↵erent patterns of high and low performance regions. This speaks to the trade-o↵ between thermal and
electronic property variation with alloying.

greatly, ranging from ✏ = 1 for the SnTe-SnSe system to ✏ = 84 for the PbTe-SnTe system.

This implies that the anharmonic and elastic properties of the lattice vary too greatly over the

compositional range for a single value of ✏ to be suitable and it should instead vary with composition.
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a. b.

c.

d.

Figure 4.4. Lattice Thermal Conductivity of IV-VI Reciprocal System Lattice thermal conductivity
heatmap in the quaternary IV-VI semiconductor system. Both the experimental measurements (a) and alloy
model (b) show the thermal conductivity minimized near the equiatomic Pb0.5Sn0.5Te0.5Se0.5 composition.
In this system, substitution on both the cation and anion site yields a peak mass and strain contrast (c,d)
near the center of the compositional space.

In order to adequately fit the experimental data, it was important to use the Muggianu model to

extrapolate the force constant scattering strength �K from the pseudobinary to the pseudoquaternary

space.

In doing so, we predict that the minimized lattice thermal conductivity L occurs near the

equiatomic Pb0.5Sn0.5Te0.5Se0.5 composition, correlating as expected with the region of maximal

compositional disorder. In contrast to the previous half-Heusler examples, this reduction is achieved

by alloying on di↵erent sublattices, in this case the cation and anion sites. The form of the Klemens

model suggests that point defect substitutions on di↵erent sublattices should scatter independently

such that an improvement from combining these orthogonal e↵ects could be expected. In Section

4.5 we will expound upon the multi-sublattice substitution strategy and possible justifications for

the improvement observed.
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We additionally applied an alloy scattering model to the Hall mobility data for this p-type

material. Visual inspection of the experimental data, alone, suggests that bandstructure changes

independent of alloy scattering are likely at play. Rather following the expected U-shaped curve

behavior predicted by Nordheim’s rule, there is a maintenance of relatively high mobility up to about

50% Sn content, after which there is an abrupt reduction in mobility that roughly corresponds

in location to a documented band inversion along the PbTe-SnTe binary [111, 127]. The alloy

scattering potential is, therefore, expected to change in the vicinity of di↵erent end-members. In

the alloy scattering model fit to the data along the pseudobinaries, we allow the alloy scattering

potential �U to vary with alloy composition as a Redlich-Kister polynomial up to the degree n = 2

in order to adequately describe the experimental data. The Muggianu method is then applied to

extrapolate from the pseudobinary to pseudoquaternary space. In Figure 4.5c, we plot the deviation

between the experimental and modelled mobility data. The correspondence is within 100 cm2/V/s

except in the vicinity of PbSe, where the alloy model drastically underestimates the mobility. The

deviation “hotspot” shown in Figure 4.5c may then be the result of large reductions in band mass

that cannot be captured by an alloy scattering potential.

a. b. c.

Figure 4.5. Hall Hole Mobility of IV-VI Reciprocal System Hall mobility heatmap in p-type
quaternary PbTe-PbSe-SnTe-SnSe alloy system. The experimental data (a) is reproduced from Ortiz et

al. [111] and is compared to the alloy mobility model extrapolated using the Muggianu method (b). Finally,
we plot deviation between the experiment and mobility |µexp � µalloy|, which helps to isolate the e↵ect of
density-of-states variations (�g) across the alloy range.
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Figure 4.6. Orthogonal Point Defect Scattering Strategies Multicomponent alloy design strategies for
reduced thermal conductivity due to point defect scattering should take advantage of orthogonal scattering
e↵ects. (a) Schematic of lattice with 2-atom primitive unit cell basis (encircled by dotted line). (b) Alloy
elements, labelled 1 and 2, substitute on di↵erent sublattices. (c) Alloy element 1 contributes significant
mass contrast while alloy element 2 contributes significant strain contrast.

4.5. Multicomponent Alloy Design Rules

The point defect perturbation theory approach to alloy thermal conductivity points to scenarios

in which multicomponent alloying can be beneficial over a simple binary alloy. As demonstrated

in several of the pseudoternary half-Heusler alloy systems, increasing configurational entropy by

forming equiatomic multicomponent alloys is not always an e↵ective strategy to reduce the thermal

conductivity. In fact, introducing an alloy element of intermediate atomic mass and radius can

reduce the overall mass and strain contrast scattering.

Instead, the additional alloy element should introduce an orthogonal scattering e↵ect, i.e. a

scattering e↵ect that, to first order, acts independently of the ones already at play in the lower

dimensional alloy system. Within the realm of point defect scattering, the following strategies exist:

(1) Alloy on di↵erent sublattices of the compound(e.g. Pb1–xSnxTe1–ySey)

(2) Use separate alloy elements to introduce mass and strain contrast into the system

The first strategy is demonstrated in the quaternary chalcogenide system discussed earlier,

where the cation and anion site are both alloyed, and the minimum thermal conductivity occurs

at the equiatomic Pb0.5Sn0.5Te0.5Se0.5 composition. This strategy suggests that the scattering

along di↵erent sublattices should be uncorrelated, and confirms the importance of sublattice-

specific models for phonon–point-defect scattering. The original proposed picture by Klemens of a
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monatomic lattice, where the atoms in the primitive unit cell are treated as a single, large vibrating

mass, is then notably misleading. The point-defect scattering expression of Tamura (Equation 3.17;

reproduced below) provides insight into why individual sublattices are decoupled from standpoint

of phonon scattering. Here, once again, s = 1, 2, ...N indexes the atom sites in the primitive unit

cell while i indexes the the atomic species that can occupy that site, including the host atom and

any impurity atoms.

�T
M =

X

s

X

i

fi,s(
Mi,s � Ms

Ms
)2|(eq(s) · eq0(s))|2

The mass contrast term is weighted by the dot product of the polarization eigenvectors of site

s as it participates in the incident and final phonon mode. The monatomic lattice expression, in

contrast, has no polarization vector dependence. This weighting by eigenvector overlap (related

to vibrational amplitudes) causes there to be a frequency window for each sublattice in which

point defect scattering is most e↵ective. It is these unique frequency windows that can account for

the decoupling (although not complete orthogonality) of the sublattices. As mentioned in Section

3.3.2, the eigenvector overlap factor approaches the squared sublattice mass (Ms
2
) at the low-

frequency limit. Therefore, compounds with low mass contrast between sublattices will behave

more like monatomic lattices and the orthogonality of sublattices will likely diminish. To illustrate

this decoupling, the phonon bandstructure of NaCl is shown in colored by the eigenvector overlap

factor �q(s) = 1
N

P
q0 |eq(s) ·eq0(s)|2, for s = the Na site. The plot for s = the Cl site is exactly the

opposite heatmap �q(s = Cl) = 1��q(s = Na). As shown, the frequency windows for scattering on

the sublattice (indicated by a larger �q(s) weighting) are separated such that the heavier element

tends to dominate the lower frequency range.

The second alloying strategy of using separate alloying elements to introduce mass and strain

contrast is likely more exotic, since atomic mass and size are often correlated within the same

coordination environment. However, if mass and strain contrast are each maximized along di↵erent

n-nary alloy systems, it is likely that entering an n + 1-nary system will lead to a region of further

suppressed thermal conductivity. Figure 4.8 shows a simple demonstration of this phenomenon
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Г X W Г L
Figure 4.7. Example Phonon Bandstructure Colored by Tamura Model Weighting Term The
phonon bandstructure of NaCl, in which phonon states are colored by the eigenvector overlap factor �q(s),
which weights the mass di↵erence scattering term in the Tamura model. In this case, the bandstructure is
colored by the �q(s = Na) term, and as the lighter element, Na follows the expected behavior by showing
higher participation in the higher frequency range. The s = Cl case is the exact negative of the heatmap
shown, such that the scattering frequency window is in the lower frequency range.

in a toy alloy model. Here, we will consider a fictitious alloy with components A, B, and C.

Each component has an equivalent pristine lattice thermal conductivity, speed of sound, and lattice

parameter. The relationship between their atomic mass is: A < B = (A + C)/2 < C, such that

the highest mass contrast exists between the A � C binary. While the relationship between atomic

radius is: B < C = (A + B)/2 < A, such that the highest strain contrast exists between the A � B

binary. As such. the total scattering parameter � is maximized near the equiatomic position, and

a further reduction in thermal conductivity is achieved by entering the ternary alloy space.

However, beyond point defect scattering, additional phonon scattering e↵ects can be modulated

through alloying. Dislocation-point defect interactions have been shown to explain the high thermoelectric

performance in numerous materials, as the lattice strain produced from high dislocation densities
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Figure 4.8. Decoupled Mass and Strain Scattering in Multicomponent Alloy Example ternary alloy
in which the mass contrast (�M) and strain contrast (�R) are maximized along di↵erent binary systems. The
total scattering parameter � is then peaked in the middle of the ternary alloy space, such that the minimum
thermal conductivity region (encircled) is also centered around the equiatomic composition.

will lead to strong lattice softening and phonon scattering e↵ects. Alloying elements can immobilize

dislocations, preventing dislocation glide and annihilation, in order to maintain higher dislocation

densities [128–131]. Since the perturbation to elastic constants in addition to the elastic strain

around the defect is primarily responsible for this dislocation pinning, point defects with a high �R

parameter would be most e↵ective for this strategy. In the case of PbTe, co-doping with Na and Eu

appears to best maintain a high dislocation density even when dislocations become more mobile at

elevated temperatures, performing better than samples with just a single dopant [128,129]. This

suggests, then, that multiple defects may better preserve dislocation strain.

Finally, alloying to achieve microstructural changes, through the formation of grain boundaries

or even secondary phases can be an e↵ective route to reduced thermal conductivity [132, 133].

For example, introducing MnTe into the PbTe SrTe alloy was shown to produce low-angle grain

boundaries which scattered phonons via interfacial dislocation arrays [134].



78

4.5.1. Physics-informed Gaussian Process Regression

The alloy scattering analytic methods will predict smooth variations of transport properties with

increasing disorder. However, experimentally, we can occasionally observe discontinuous changes in

properties, resulting from abrupt transitions due to electronic band convergence or phase separation.

In order to retain these experimental insights, we combine the physical models described above with

the statistical Gaussian Process Regression (GPR) method. A Gaussian process can be thought of

as an infinite set of joint normal distributions, each describing some observable y that is indexed by

a continuous variable x. Alternatively, a Gaussian process GP can be understood as a distribution

of continuous functions f(x), which can be sampled from to fit a set of observations [135]. A

Gaussian process is specified by a mean function µ(x), defining the mean value of the GP for each

value of x as well as a covariance function k(x, x
0), describing the relationship between all possible

pairs (x,x0).

In Gaussian process regression, Bayesian optimization is used to identify the function most

likely to describe the observed data D as well as the variance in the prediction at each data point,

through the use of Bayes Rule:

(4.15) p(GP (µ, k)|D) = p(D|GP (µ⇤
, k

⇤))p(GP (µ, k))

Here, p(GP (µ, k)) is the prior or “initial guess” for the Gaussian process. The likelihood

p(D|GP (µ, k)) is the probability that the observed data D is described by the Gaussian process.

As a final result, we get a final probability distribution for the Gaussian process with a mean and

covariance function refined by the observed data provided (D).

It is most common to specify the prior means as simply 0 or some other constant. In this

scenario, the only specified prior information is the functional form for the covariance, and the

posterior probabilities only come from the refinement of the covariance matrix [136]. In this

physics-informed Gaussian process regression (GPR), the transport models are used to specify

the prior means of the Gaussian process. Especially in regions where no data is provided, the
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Figure 4.9. Physics-Informed Gaussian Process Regression Transport Function Model (a)
Prediction values and (b) their associated standard deviations from the physics-informed Gaussian process
regression model for �E0. The Ti-rich region with high �E0 is reported to be the result of an increase
in Seebeck e↵ective mass [137]. This high-performance region is not captured by the physics-based alloy
scattering models alone.

GPR refinement will rely heavily on the prior mean function. For the covariance function, we use

the Matèrn kernel, as it allows for relatively discontinuous changes over shorter length scales in

compositional space. Bayesian inference is then used to update the posterior distribution (which

determines the prediction mean and variance) using all the available experimental data. As a

result, we can acquire both predicted values and their associated uncertainties, informed both

by the physics-based functional form of alloy scattering and the full corpus of experimental data

available.

Figure 4.9 shows the �E0 predictions and uncertainties (reported as the standard deviation) from

the physics-informed GPR model. Figure 4.9a shows a region of high �E0 in the vicinity of TiNiSn,

which fits the measurement reported in Kim et al. [137] to be the result of an increase in the Seebeck

e↵ective mass. This region of large �E0 is not, however, recovered in the alloy scattering model alone.

The standard deviation heatmap in Figure 4.9b is straightforward to interpret—regions without

experimental data exhibit higher uncertainties. Gaussian Process regression was implemented using

the gpcam package in Python [136].
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4.6. Conclusions

Multicomponent alloys formed between three or more thermoelectric compounds are an uncharted

territory of high interest, primarily because of the large degrees of compositional disorder which

should be e↵ective in scattering heat-carrying phonons. Here, we show an extension of alloy

scattering models for both charge carriers and phonons to higher order alloy systems. Our mapping

of thermoelectric properties using analytic alloy scattering models has led to the following insights:

• Models of electronic and thermal conduction rely on the virtual crystal approximation

to define a scattering parameter based o↵ of the variance in lattice properties. In both

cases, the scattering parameter can be written as a sum over “binary terms,” those which

depend only on two components in the system. Their functional form mimics that of excess

Gibbs free energy, allowing for an analogy to be made to computational thermodynamics

literature. We are therefore able to apply the Redlich-Kister polynomial and Muggianu

method to extrapolate alloy scattering models to higher dimensions.

• Additional alloying and introduction of configurational entropy does not, by necessity,

reduce the thermal conductivity. To produce a thermal conductivity reduction through

multicomponent alloying, the additional alloying element should introduce an orthogonal

form of scattering. Within the realm of point defect scattering, this may include combining

alloy elements that occupy di↵erent sublattices or using separate alloy elements to introduce

mass and strain contrast into the system.

• Analytic alloy models will predict smooth changes in transport properties with respect

to changes in composition. To capture more information from experimental data, we use

a physics-informed Gaussian Process Regression (GPR) methodology, in which the alloy

models specify the prior means in the Gaussian Process. The combined methodology

preserves discontinuous changes in properties observed experimentally, which may emerge

from phase separation or changes in band structure.
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CHAPTER 5

Thermal Resistance of Grain Boundaries and Interfaces

5.1. Motivation: Thermal Management in Semiconductor Devices

Self-heating is considered a major roadblock in the reliable implementation of high power nano-

and microelectronic devices [5, 138]. As transistor sizes approach the few-nanometer range and

the power density of integrated circuits continues to increase, thermal management issues become

increasingly critical. These same semiconductor devices tend to contain a high density of grain

boundaries and interfaces. Therefore, understanding how to design thermally conductive interfaces

to adequately dissipate heat is of major interest. In a device-level model of GaN bonded to di↵erent

substrates, a SiC substrate leads to a ⇠1.5⇥ increase in thermal boundary conductance versus

a classic Si substrate, resulting in a > 2⇥ increase in the power density for a fixed maximum

temperature of 250� across the device [4].

In contrast, thermoelectric materials benefit from suppressing heat transport, and intentionally

introducing thermally resistive interfaces can be a materials design strategy. This concept is the

basis of the “nanostructuring paradigm,” which suggests achieving high thermoelectric performance

by designing nanoscale structural features such as nanoprecipitate phases or nanograins to scatter

phonons, which additionally should not greatly disrupt charge carrier transport. In fact, major

quality factor improvements have been achieved in already well-studied thermoelectric materials

like bismuth antimony telluride [130,139], lead chalcogenides [140], and CoSb3 skutterudite [141]

through the addition of low-angle interfaces composed of dislocations with nanometer-spacing.

While these two applications are opposite in terms of their material requirements, they both

motivate the development of an integrated computational materials engineering (ICME) approach

to thermal properties; part of which will require physical and scalable methods for modelling
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interfacial thermal resistance. At the most basic level, the origin of interfacial thermal resistance

stems from the atomic inhomogeneities at the interface and the mismatch in bulk, lattice properties

between the materials on either side of the interface. In our work, we strive to forge an analytic

link between interface type, structure, energy, and thermal resistance.

The organization of this section is as follows: Section 5.2 provides background into the definition

of Kapitza or thermal boundary conductance, further details into the factors which a↵ect its

value, and an assessment of the long mean-free-path phonons we would expect to interact with

interfaces. Section 5.3 reviews previous strategies used to predict Kapitza resistance based on

interface properties. Section 5.4 outlines our proposed model for the thermal resistance at low-

energy interfaces, which are composed of interfacial dislocations arrays and produce a form of

phonon scattering that will be referred to as di↵ractive scattering. Finally, Section 5.5 reviews and

attempts to quantify additional dislocation scattering e↵ects not included in the results generated

using the di↵ractive scattering model, such as dislocation core and fluttering dislocation scattering.

5.2. Phonon-Boundary Scattering Background

5.2.1. Landauer-Büttiker Formalism

It is natural to describe phonon-interface scattering through a transmission coe�cient ↵ij(!),

defining the fraction of phonons of frequency ! that transmit from side i to side j of the interface.

The Landauer-Büttiker formalism then relates the heat flux qij to the transmission coe�cients

of the incident phonons. The Landauer formalism is intended to be applied to strong, localized

scatterers such as interfaces, in which the applied field is spatially concentrated at the scattering

site. Here, there is a breakdown of the homogeneous Boltzmann transport equation assumptions

of a uniform applied field and momentum distribution phonons throughout the specimen. The

specular reflection of quantum particles at an interface was one of the earliest applications of the

Landauer approach [142].

In this formulation, a given phonon mode will be described by a set of parameters: incident

side (i), incident solid angle (✓, �), frequency (!), and branch (b). The heat flux can be computed
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by integrating over the incident hemisphere at the interface, where the integrand is the product of:

1) the modal intensity ⌘ in terms of the phonon energy, group velocity vg, and density of states g

as: ⌘ = ~!vg(!, b)cos✓g(!, b), 2) the mode occupancy described by a Bose-Einstein factor f , and

3) the transmission coe�cient ↵ij from i to side j of the interface [143]:

(5.1) qij =
X

p

˚
✓,�,!

⌘ifi↵ij �sin✓d✓d�d!.

The thermal boundary or Kapitza conductance (hK = 1/RK) is then defined at an interface

using a thermal Ohm’s law, relating the temperature drop at the interface (�T) to the heat flux

across it:

(5.2) q = �hK�T

To calculate the Kapitza conductance as a linear response coe�cient (hK = �q/�(�T )), we can

assume the limit of a small temperature drop at the interface as �T ! 0. Then, hK is equal to

the temperature-derivative of the heat flux, resulting in the following dependence on heat capacity

CV:

hK =
@q

@T
=
X

p

˚
✓,�,!

✓
~! @f

@T

◆
vgcos✓↵ij �sin✓d✓d�d!.

=
X

p

˚
✓,�,!

CVvgcos✓↵ij �sin✓d✓d�d!.(5.3)

Finally, in the isotropic approximation, we can simplify this expression to an integral over spectral

quantities:

(5.4) 1/RK =
1

4

ˆ !m

0
Ci(!)vgi(!)↵ij(!)d!.
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Of note, in this low �T limit, we can analyze hK from the perspective of either side of the interface

(i.e. the i and j indices can be flipped). Lastly, the current form of Equation 5.4 is subject to

what’s known as the Kapitza paradox, where the ↵12 = 1 condition still yields a non-zero resistance.

This can be resolved by considering the change in local equilibrium temperature of the incident

and outgoing phonons [142–146]. Modifying the expression such that ↵(!) is replaced by ↵12(!)
1�↵(!) ,

where ↵(!) = (↵12(!) + ↵21(!))/2, addresses this issue. This modification is especially important

for interfaces with high transmissivities, as the two expression deviate considerably when ↵ ! 1.

Therefore, our working expression for RK is:

(5.5) 1/RK =
1

4

ˆ !m

0
C1(!)vg1(!)

✓
↵12(!)

1 � ↵(!)

◆
d!.

However, in the interface perturbation approach taken in this work, we compute a phonon-interface

scattering rate that modifies the overall phonon lifetime (⌧(!)) from the standpoint of the Peierls-

Boltzmann Transport Equation (PBTE) for steady state transport in a system with a homogeneous

temperature gradient (see red profile in Figure 5.1) [147,148]. To relate the two descriptions (i.e.

Landauer and homogeneous PBTE), let’s consider a specimen with an average distance between

interfaces of Lx (see Figure 5.1). The following expression relating ↵(!) and ⌧(!) can be derived

by equating (!) from the phonon gas model and LxhK(!) [146]:

(5.6) ↵12 =
vg1⌧

3
4Lx + vg1⌧

.

This represents an approximate solution, ignoring the potential temperature dependence of ↵ and

the e↵ect of the �T at the interface. In Section 5.4.2.2, we compare the transmission coe�cients

from a direct acoustic mismatch model, routed in Landuaer theory to that computed from Fermi’s

Golden Rule for the scattering rate, which is then converted to a transmission coe�cient using

Equation 5.6. We show that the two are consistent within a 5% di↵erence up to an acoustic

velocity mismatch of 50% at the interface.
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Figure 5.1. Temperature Profiles for Landauer Transmissivity and Scattering Transport
Theories Temperature profiles in a sample with an average grain size Lx. In the scattering model, the
interface perturbation modifies the overall phonon lifetime and maintains a uniform temperature gradient
across the sample. Landauer theory allows for spatial variation of the applied field and supports temperature
drops spaitally localized at the interfaces.

5.2.2. Phonon Scattering Sources at an Interface

The discussion of phonon scattering at grain boundaries and interfaces tends to be di�cult to

define in a self-contained way, in part, because of the complexity of the defect structures and the

numerous scattering e↵ects that may be at play [22]. Here, we summarize the various scattering

e↵ects which may be present at internal boundaries. The scattering e↵ects are separated into two

major categories: elastic and inelastic processes. The elastic scattering processes treat the interface

and its associated strain fields as a static defect which lacks the dynamical degrees of freedom to

absorb or emit a phonon [56]. As such, the total momentum and energy of the incident phonon

will be conserved across the interface. The inelastic scattering processes, by contrast, allow the

incident phonon to absorb or emit energy at the interface by interacting with localized, interfacial

vibrational modes or mobile interfacial defects.

Elastic Scattering Sources:
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• Change in acoustic medium (i.e. acoustic impedance mismatch) [143,149,150]

• Interfacial Dislocations (strain fields or core scattering) [23,38,39,56,130,151,152]

• Coherency Strain [153]

• Compositional or Structural Disorder (point defects, interface roughness, alloying/amorphous

layer with unique elastic properties) [154–156]

Inelastic Scattering Sources:

• Phonon coupling to interfacial vibrational modes [157,158]

• Interactions with mobile dislocations (i.e. phonon-mediated dislocation drag) [159,160]

5.2.3. Heat Carried By Long Mean-Free-Path Phonons

If the phonon mean free path is less than the average grain size in a material, boundary scattering

would have a limited e↵ect on thermal transport. Therefore, understanding the heat carried by long

mean-free-path phonons is very relevant to the topic of boundary scattering. Cumulative thermal

curves (CTCs) are typically used to quantify and understand how the distribution of phonons in

a material contribute to thermal transport. While we often refer to the frequency distribution

of phonons, phonons can also be codified in terms of the mean free path (⇤) when only phonon-

phonon interactions are present in a bulk, pristine crystal. Phonons with a mean free path greater

than or equal to the average grain size L (⇤ � L) will be a↵ected by boundary scattering, while

the impact of grain boundaries and interfaces should be largely negligible when L � ⇤ [22,161].

The two regimes are portrayed in Figure 5.2 adapted from Aketo et al. [161]. Within the Debye

model, Umklapp phonon-phonon interactions result in a ⇤ / !
�1, such that long ⇤ phonons are

also low frequency, or long wavelength phonons. To predict whether nanostructuring will impact

the thermal conductivity of a material, it is important to understand and quantify the heat carried

by low-frequency phonons close to the � point.

Near the � point, we would expect the phonon dispersion to be fairly linear, described by a

constant speed of sound as in the Debye model. By reviewing the frequency dependencies of the

components of thermal conductivity, we see that (!) should approach a non-zero constant value
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in the limit of ! ! 0: 1) CV / !
2, 2) vs / !

0, and 3) ⌧ / !
�2. In summary, near � point phonons

carry very little heat, but have long lifetimes, such that theory predicts a non-zero spectral thermal

conductivity at this frequency range. Using a Debye model and an analytic expression for the

phonon-phonon interactions, the following expression for the spectral thermal conductivity can be

derived, and, as expected, is a constant with respect to frequency:

(5.7) U(!) =
(6⇡

2)2/3

8⇡3

Mv
2
s

TV 1/3�2

However, because of the divergence of the phonon lifetime at the � point, most DFT-based

thermal conductivity codes apply a special handling at the � point to enforce that the thermal

conductivity equals 0 [47, 162]. This involves artificially setting the phonon velocity or even

the lifetime to equal 0 at �, perhaps neglecting important heat contributions of phonons in this

range. Additionally, most thermal conductivity codes calculate spectral quantities by performing

a Brillouin zone integration over a uniform q-mesh. As a result, high mesh densities are required

to sample near the � point.

Experimental investigations instead show that a significant portion of heat is carried by very

long-wavelength phonons. The harmonic and anharmonic properties of sub-terahertz phonons can

be studied experimentally using inelastic X-ray and neutron scattering as well as pump-probe

femtosecond laser methods. For example, measurements of sub-terahertz acoustic phonons in GaN

show that 10% of heat is carried by phonons under 2 THz (about 6% of the maximum frequency)

[163–165].

Here, we briefly analyze the � point handling in the open-sourced phono3py package for

calculating thermal conductivity from DFT phonon bandstructures [47,166]. The spectral thermal

conductivity and its components (i.e. spectral heat capacity CV, squared group velocity v
2
g, and

scattering rate �) were calculated for Si using an 11 ⇥ 11 ⇥ 11 uniform q-point mesh and the

tetrahedron method for Brillouin zone integration. The tetrahedron method provided much more

reasonable spectral curves in comparison to Gaussian smearing, with better performance around
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Λlong
Λshort

Figure 5.2. Schematic of long and short mean-free-path phonons in a polycrystalline material
[modeled o↵ of Figure 1 in Ref. [161] ]. Short mean-free-path phonons will be scattered by mechanisms
within the grain (phonon-phonon interactions, point defects) and will, therefore, not interact with grain
boundaries and interfaces.

sharp features like van Hove singularities [167]. Figure 5.3 shows the computed spectral curves.

Only the xx components are shown for v
2
g and , which will be equal to the other principal

components yy and zz in Si. Additionally, the analytic fitted trends expected near � are shown in

red, and there is an observed correspondence between the DFT spectral curves and analytic trends

for all spectral properties except for v
2
g. The curve generated through phono3py is enforced to be

0 at the � point, while the analytic prediction would converge to a constant, equal to the squared

average acoustic velocity. The � point (!) calculated from these fit analytic curves is additionally

shown, and indicates  approaching a constant value of 4.95 W/m/K/THz. This value corresponds

well with that calculated using Equation 5.7.

If we then modify the spectral thermal conductivity to approach a value of 4.95 W/m/K/THz,

we see the expected change in the CTC curve near �. Phonon frequencies under 2 THz are shown

to contribute additional heat, which is also reflected in an increased overall thermal conductivity,

closer to the converged value achieved at higher k-point mesh densities.

We wish to emphasize the importance of developing accurate spectral thermal conductivity

curves in the low-frequency range in the development of nanostructuring strategies for low thermal
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ω2

v2=3702 THz2/Å2

4.95 W/m/K/THz

ω2

Figure 5.3. Spectral Thermal Quantities Extrapolated to the � Point Spectral thermal quantities
(CV, v

2
g,xx, ⌧

�1 = �) for Si are calculated using the tetrahedron method on an (11,11,11) mesh. The red
curves near the � point reflect the frequency-dependencies based on a Debye model and umklapp phonon-
phonon scattering. While the value for v

2
g,xx is computed from DFT acoustic velocities at the � point, the

red curves for CV and ⌧
�1 are fit. An extrapolated value for lim!!0 xx is then computed using the phonon

gas model. The value of 4.95 W/m/K is close to that estimated using Equation 5.7 of 4.16 W/m/K.

conductivity materials. Analytic corrections such as the one discussed in this section may be a

route to adjust for current � point anomalies without adding computational cost.
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112

a. b.

Figure 5.4. Adjustment of Spectral Thermal Conductivity at � Point (a) Rather than approaching
zero at the � point, L is modified to converge to a value of 4.95 W/m/K/THz. (b) The impact of the
adjustment is shown in the cumulative thermal curve, which has a higher slope near � and a higher overall
thermal conductivity, closer to the converged  value attained using a higher mesh density.

5.3. Existing Approaches to Evaluating Phonon-Boundary Scattering

In this section, we will review existing theory and simulation-based approaches to calculate the

phonon transmission coe�cients ↵(!) at grain boundaries and interfaces, allowing for the prediction

of Kapitza resistance (RK).

5.3.1. Analytic Transmission Coe�cients: Acoustic and Di↵use Mismatch Models

A common, but highly simplified approach to phonon-boundary scattering is the “gray” approximation,

which suggests that the phonon mean free path is directly proportional to the average grain size (L).

This assumption lacks any frequency-dependence and enforces that all phonons in the spectrum

have the same mean free path. Some implementations may use a geometric factor as a constant of

proportionality, but the essential form of the scattering rate is:

(5.8) ⌧
�1 = vs/L
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Although this form is highly simplified, with no information about the interfacial structure or

mismatch in properties at the interface, several multiscale thermal models currently implement the

gray approximation because it is computationally cheap [168].

Two widely used formalisms to compute the transmission coe�cient, which include information

about the materials surrounding the interface, are the acoustic and di↵use mismatch models. They

are discussed as comprising lower and upper bounds to the transmission coe�cient [143, 155].

The acoustic mismatch model (AMM) implies a perfectly smooth interface, leading to a specular

reflection or transmission of phonons. In contrast, the di↵use mismatch model (DMM) assumes a

highly disordered interface, leading to completely di↵use scattering, in which only the energy of

the phonon mode is conserved across the interface.

The acoustic mismatch model (see Figure 5.5a) is a solution to continuum elasticity equations

at a smooth, abrupt junction between two di↵erent linear elastic solids. The transmission coe�cient

(Equation 5.3.1) is primarily defined from the mismatch in acoustic impedances across the interface,

where the acoustic impedance is the acoustic velocity times the mass density (⇢), as shown [143,

169]:

(5.9) ↵12(!)AMM =
Z1Z2

(Z1 + Z2)2
where Zi = ⇢ivicos✓i.

Here, the angles ✓1 and ✓2 describing the incident and outgoing phonon trajectories are related

through an acoustic Snell’s law, v2sin✓1 = v1sin✓2. The AMM notoriously underestimates thermal

resistance, and several modifications have been proposed to improve its predictive power, including

a “specularity coe�cient” to account for interfacial roughness [155].

The di↵use mismatch model (see Figure 5.5b) has more widespread use, however, the origin

of the scattering is not specified in this case, making it less interpretable. Instead, the scattering

probability is set only by the available phase space on either side of the interface (from perturbation
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Acoustic Mismatch Dislocation Strain Roughness/Disorder

a. b. c.

Landauer Transmissivity Approaches
Specular Diffractive Diffuse

Interfacial Mode Coupling

d.

Figure 5.5. Schematic of Interfacial Scattering Mechanisms and Implied Phonon Transitions (a)
The acoustic impedance mismatch across the interface can lead to a reflection or transmission probability in
analogy to Snell’s law. (b) Many low-energy interfaces can be decomposed into periodic arrays of dislocations,
which act as a di↵raction grating for phonons. The dislocation array can impart quantized momentum in
units of 2⇡/D, where D is the dislocation spacing. (c) Interfaces serve as a sink for point defects, leading
to additional roughness and compositional disorder. These e↵ects are often modeled as a source of di↵use
phonon scattering, in which only phonon energy is conserved at the interface. (d) Finally, if the vibrational
basis set includes the interfacial vibrational modes, such as the localized mode portrayed here, coupling
to interfacial modes can also enhance or diminish the interfacial thermal conductance through inelastic
processes.

theory considerations [149]), captured by the 3D phonon density of states g mismatch for the

incoming phonon frequency !, as shown [149,155]:

(5.10) ↵12(!)DMM =

P
j g2,j(!)v2,jP

j g1,j(!)v1,j +
P

j g2,j(!)v2,j
.

5.3.2. Atomistic Thermal Simulations

In this section we will discuss two common atomistic simulation approaches to thermal boundary

conductance. Molecular dynamics, a real-space representation of heat transport, and the atomistic

Green’s function, a reciprocal space approach.

5.3.2.1. Molecular Dynamics. Molecular dynamics (MD) simulations use classical mechanics

to update atom positions and velocities in each time step of the simulation. Unlike the scattering

frameworks described previously, individual scattering contributions do not have to be separately

modelled or understood in an MD simulation, as they will be naturally captured as long as the
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harmonic and anharmonic properties of the lattice are well-described by the MD interatomic

potentials. Molecular dynamics (MD) simulations can be used to compute a Kapitza resistance RK

directly from the simulation temperature profile once steady state has been established. Much of

the currently available data used to understand RK trends between grain boundary type, angle, and

orientation stem from MD investigations [170,171]. Several similar strategies exist for extracting

the Kapitza resistance from MD simulations [171, 172]. One common approach described by

Schelling et al. [171], involves adding and subtracting energy �✏ from a thin slab of atoms on

either side of the boundary, which fixes the thermal current. Then, the temperature discontinuity

at the interface is computed from the temperature profile (�T ) such that the RK can be solved for

using Equation 5.2.

MD simulations o↵er many advantages through being a real-space, time-domain technique.

For example, using the Green-Kubo modal analysis method, the modal contributions to the atom

positions and velocities can be determined, allowing one to then evaluate the modal contributions

to the Hardy heat flux operator (j) [51–53]. The Green-Kubo formalism can then be applied to

evaluate the thermal conductivity from the time correlation of the heat fluxes as

(5.11)  =
1

V kBT

ˆ 1

0
hj(0) · j(t)i dt.

This time-correlation approach can have major benefits over the phonon gas model when phonon

velocities are ill-defined, which tends to occur in highly disordered materials and complex unit cell

materials, common in the field of thermoelectrics [51]. However, interpreting these simulation

can become a challenge since post processing or controlled wave packet simulations [55] must be

performed to extract mode specific properties.

A similar modal analysis technique has been developed by Gordiz and Henry specifically for

interface conductance, and is referred to as ICMA (interface conductance modal analysis) [173–

175]. This technique has revealed that, in certain cases, a new set of vibrational eigenmodes,

unique to the interface, must be included in the analysis to fully describe the heat flow across the
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interface. In the case of a Si-Ge heterointerface, the interfacial modes were shown to contribute to

heat transfer, increasing the hB relative to the model that excluded these modes [175]. A more

comprehensive survey of interfaces between di↵erent materials has since suggested that interfacial

mode coupling may be a unique feature of interfaces between certain structure types, like the

diamond cubic lattices of Si and Ge [158].

5.3.2.2. Atomistic Green’s Function. An increasingly popular alternative simulation approach

is the atomistic Green’s function (AGF). As with lattice dynamics (Section 2.1), AGF is a reciprocal

space approach and is useful for studying the spectral dependence of phonon transmission at an

interface [55]. Physically, the Green’s function represents the response of the lattice dynamical

equations to an impulse perturbation. The AGF can be applied to the interface scattering problem

in a straightforward way by re-framing the system as two contact materials, each described by a

separate Green’s function, which are then coupled at the interface. The system’s dynamical response

to the perturbation caused by this coupling is captured by this approach and used to compute a

spectral phonon transmission coe�cient [176]. While this approach is known to perform e�ciently

in the ballistic regime, anharmonic scattering e↵ects have been notoriously di�cult to implement,

although developing anharmonic extensions to the AGF is a rapidly progressing initiative [177,178].

5.4. Model for Low Energy Grain Boundaries and Interfaces

As mentioned in the introduction to this section, the thermal resistance of an interface is

produced by both the change in atomic structure in the vicinity of the interface as well as the

mismatch in bulk properties between the materials surrounding the interface. In this section, we

will outline our model for phonon scattering at grain boundaries and interfaces with well-defined

underlying dislocation arrays, which result in a net misorientation at the boundary. We focus on

interface types which are described by the Read-Shockley model [179], an early success in the theory

of grain boundaries. They developed a quantitative description for the energies of low-angle grain

boundaries by suggesting that the interfacial energy per unit area came simply from the energies

of the periodically spaced dislocations located at the interface. The excellent correspondence to
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Figure 5.6. Interfaces Described by a Grid of Linear Defects (a) Schematic of a twist boundary with
misorientation angle ✓. The black lines indicate screw dislocations and the blue/green shading indicates
shear strain. (b) A semicoherent heterointerface between two materials with lattice constants a1 and a2.
The black lines indicate edge dislocations and the blue/green shading indicates hydrostatic strain.

measured grain boundary energies solidified the dislocation model for low-angle grain boundaries

and interfaces [179,180]. The following boundary types will be considered in this section: 1) the

symmetric tilt grain boundary, which is decomposed into a 1D array of edge dislocations, 2) the

symmetric twist grain boundary, which is decomposed into a 2D grid of screw dislocations, and 3)

the semicoherent heterointerface, which is decomposed into a 2D grid of misfit edge dislocations

(extra half plane oriented perpendicular to the interface). The dislocation structure of the twist

boundary and semicoherent heterointerface are diagrammed in Figure 5.6, and will be the focus of

this section, as they are united by their similar dislocation grid structure. The tilt boundary case

was studied in a previous work [181], but will be invoked here for comparison purposes.

Recent experimental work on grain boundaries and heterointerfaces suggests that insights

into the role of interfacial dislocation structure on thermal resistance will be highly impactful.

For example, the periodic dislocation structure present at low angle grain boundaries has been

associated with significant thermal conductivity reductions and improvements in the thermoelectric

performance of well-studied materials such as bismuth antimony telluride [130,139]. While several

experimental investigations exist for the ensemble average interface scattering in a polycrystal,

individual grain boundary types are di�cult to study. However, recent RK measurements using
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the 3! method on fabricated twist bicrystals of Si [182] and Al2O3 [183] point to evidence of

dislocation strain scattering as a dominant mechanism. For example, the thermal boundary

resistance RK of these twist boundaries is shown to depend on the grain boundary angle, or

equivalently, the dislocation spacing, in addition to the interfacial strain energy. In both the

Si and Al2O3 twist boundaries, TEM imaging has been used to verify the presence of dislocation

arrays at the interface [182, 183]. Additionally, heterointerfaces are often intentionally created

in thermal materials through a variety of nanostructural features including heterostructures, thin

film superlattices, and nanoprecipitate boundaries [184, 185]. Thus far, it has been di�cult to

experimentally determine the e↵ect of misfit dislocations—which can in some cases be controlled

through annealing and interlayer thickness—on thermal resistance. Our model, which quantifies

the relative importance of interfacial dislocation strain versus acoustic mismatch, can quantify the

degree of disregistry at an interface required to suppress phonon transmission.

There are two major interface scattering e↵ects described by this model: 1) the periodic strain

fields from interfacial dislocations and 2) the mismatch in acoustic medium at the interface. These

scattering contributions not only di↵er in terms of physical origin, but also in defect dimensionality,

allowed scattering transitions, phonon frequency dependence, and regions of the phonon spectrum

most impacted.

The first scattering e↵ect, acoustic mismatch, is the basis of the classical AMM (discussed

in Section 5.3.1), which comes from solving continuum elasticity equations at the abrupt junction

between elastic media. In contrast, our treatment handles this mismatch scattering within quantum

perturbation theory, and we show that the magnitude of the phonon transmission coe�cient agrees

well with the classical acoustic mismatch model. As in the classical case, the acoustic mismatch

potential results in a specular reflection or transmission. More specifically, the momentum transfer

parallel to the interface must be 0, since the acoustic mismatch potential does not include any

atomic variation or disorder along the interface plane. Long-wavelength, low-frequency phonons,

which remain agnostic to the underlying dislocation structure at this interface, will be scattered
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by the acoustic mismatch potential. Finally, since this scattering potential holds the geometry of

a planar defect, the phase space term is given by the 1D density of states (Section 2.2.2).

Phonons with wavelengths on the order of the dislocation spacing will interact with the periodic

dislocation strain at the interface. The periodic variation of these strain fields parallel to the

interface allows for momentum transfer in the direction of periodicity, but only in allowed increments

proportional to the dislocation spacing. We term this di↵ractive scattering. Di↵active scattering

stands as an intermediate step between specular and di↵usive scattering (see Figure 5.5) in terms of

available scattering phase space and, as a result, transmission coe�cient. In addition, the geometry

of this scattering e↵ect is an array of linear defects, and as such it contributes to the frequency-

dependent 2D density-of-states as the phase space term in the scattering rate.

To help understand these scattering contributions further, we show in Figure 5.7 the analytically

calculated dilatational component ✏yy of the strain tensor for a simplified heterointerface in which

there is lattice mismatch in one direction only and thus only one array of misfit dislocations.

The dilatation behaves asymptotically like a step function, but the large nonzero value of ✏yy as

|x| ! 1 is spurious, since it is being defined with reference to a fictitious average lattice. The

actual reference lattice di↵ers on the two sides of the interface. The true or physical strain, ✏e↵,

must be defined with respect to the true reference lattice, and is obtained by subtracting o↵ the

dilatation step function. This strain is much more localized to the vicinity of the interface. As

highlighted in Figure 5.7b, the physical strain scatters via the lattice anharmonicity, while the step

function change in lattice parameter and the harmonic properties of the lattice is treated as an

acoustic impedance mismatch. One benefit of our approach is the ease of separating the relative

scattering contributions of the acoustic mismatch and dislocation strain in each grain boundary

type.

In the following section, we first discuss the scattering kinematics for the periodic scattering

potential at the interface. Then, in Section 5.4.2 we describe the origins of the scattering potential

for both dislocation strain and the acoustic mismatch. Next, we apply the framework to analyze and

compare the scattering properties of Si-Si symmetric tilt and twist grain boundaries (Section 5.4.3).
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Figure 5.7. Two Interfacial Scattering E↵ects Addressed: Acoustic Mismatch and Dislocation
Strain Scattering at a semicoherent heterointerface stems from the periodic strain fields at a misfit
dislocation array as well as the step function change in acoustic impedance. (a) Analytic solution for the
dilatational strain field component ✏yy from an infinite array of misfit dislocations periodically spaced along
the y-axis [180, pp. 695-697]. (b) Cross-section of 3D dilatational strain field, showing an underlying step
function (dotted red line). This is indicating a change in lattice parameter (a) from material 1 to 2, rather
than long-range strain. We subtract o↵ the step function in strain, and instead treat this e↵ect with an
acoustic mismatch scattering term. This leaves the physical strain (✏e↵), which we treat with an anharmonic
strain scattering potential.

In addition, we predict the thermal resistance to the already well-studied Si-Ge heterointerface and

show a close correspondence between our results and those from first-principles methods.

5.4.1. Dislocation Array Scattering Kinematics

Both symmetric twist boundaries and semicoherent heterointerfaces are composed of two dislocation

arrays forming a cross-grid. In the twist boundary case, for example, two sets of screw dislocation

arrays each shear the crystal to induce a full rotation (see Figure 5.8) [186]. We adopt the

configuration in Figure 5.9a, with the x-direction normal to the interface, and two orthogonal

dislocation arrays with dislocation lines in the y and z direction. We will refer to the first dislocation

array as the YZ array, where the first label (y) indicates the direction of periodicity, and the second

label (z) indicates the direction of the dislocation line (see Figure 5.9a). The second array is likewise
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Figure 5.8. Dislocation Structure of a Symmetric Twist Grain Boundary Schematic of two
orthogonal screw dislocation arrays, with Burgers vectors b1 and b2, respectively, producing a twist
misorientation (✓) at an interface.

called the ZY array. The scattering potential of the cross-grid is given by summing over the single-

dislocation-line scattering potentials (V1; see Section 5.4.2.1) for each array and then combining

both:

(5.12) V (r) =
1X

n=�1
V1(x, y � nD) +

1X

m=�1
V1(x, z � mD).

Here, n and m can assume all integer values from �1 to +1. The infinite sums over n and m

can be obtained analytically for both the twist and heterointerface cases [180,187] and are shown

in Appendix E. The tilt boundary, instead, is composed of just a single array of edge dislocations,

in either the Y Z or ZY orientation.

For simplicity, we’ll focus on the contribution of the YZ array in the following steps, but

analogous expressions can be written for the ZY array, by instead enforcing periodicity in the

z-direction. The Fourier transform of this sum of dislocation scattering potentials is:

eV YZ(Qx, Qy) =

¨
dx dy

1X

n=�1
V1(x, y � nD)e�i(Qxx+Qyy)

=
1X

n=�1
e
�iQynD eV1(Qx, Qy).(5.13)

.
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We show the Fourier transform of the scattering potential (eV1) as a function of only Qx and Qy,

because the scattering vector along the line of the dislocation (Qz) is necessarily 0. The Poisson

summation formula is then applied to explicitly show the Dirac comb:

(5.14)
1X

n=�1
e
�iQynD =

2⇡

D

1X

n0=�1
�(Qy � Qn0),

⇣
Qn0 =

2⇡n
0

D

⌘
.

Hence, eV YZ can be written as:

eV YZ =
2⇡

D

1X

n0=�1
�(Qy � Qn0)eV1(Qx, Qy)(5.15)

=
2⇡

D

1X

n0=�1
�(Qy � Qn0)eV1(Qx, Qn0).(5.16)

As noted in Hanus et al. [181], this equation shows that phonon di↵raction peak conditions will

occur whenever the magnitude of the scattering wavevector component Qy equals 2⇡n
0
/D in an

infinite interface [188,189].

The full grid Fourier transformed scattering potential eV (Q) is then equal to:

(5.17) M(Q) = 2⇡�(Qz)eV YZ(Qx, Qy) + 2⇡�(Qy)eV ZY(Qx, Qz) .

As enforced by the �-functions, the scattering due to the YZ array is only non-zero when

Qz = 0, while scattering due to the ZY array is only non-zero when Qy = 0. As a result, except

when Qy = Qz = 0, the two dislocation arrays scatter independently (see Figure 5.9b). The

Van der Merwe method for calculating interfacial strain energies [187] makes a similar assertion,

namely that the energy of both arrays can be reasonably computed separately and then superposed.

Specifically analyzing the Qy = Qz = 0 condition reveals that this scenario must represent either a

non-resistive forward scattering case or a mirror-like reflection. The underlying, periodic structure

of the interface is washed out at this long-wavelength limit. We treat this scattering separately in
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terms of the acoustic impedance mismatch (see Section 5.4.2.2). The total scattering rate � is then

the sum of the rates due to the YZ and ZY array, as well as that due to acoustic mismatch (AM)

(see Equation 5.30):

(5.18) �tot = �YZ + �ZY + �AM.

Here, �YZ entails only |eV YZ|2, �ZY entails only |eV ZY|2, and �AM entails only |eV AM|2 (see Equations

5.24 and 5.30). To avoid misunderstanding, we note that the resemblance of Equation 5.18 to

Matthiessen’s Rule is superficial. The �AM component does not represent a separate scattering

channel but rather a completely independent kind of interface scattering, which is, in addition,

activated at a di↵erent frequency regime.

Finally, invoking Equations 2.22 and 2.23 from the Introduction Section 2.2.2, the scattering

rate �YZ due to periodic strain from the YZ array is:

(5.19) �YZ(q) =
nb

~2D2

1X

n0=�1

˚
d

3q0
�(Qz)�(!q � !q0)

���eV YZ(Qx, Qy)
���
2
(1 � q̂ · q̂0).

Here, nb is equal to 1/Lx, and represents the linear density of boundaries in the material. The

result for �ZY is similar.

The phase space term is implicitly enforced by the momentum and energy conservation laws

imposed by the �-functions. These conservation rules restrict this integral to a discrete set of

available q0 states. Equations S42 - S48 of Hanus et al. [181] re-express these �-functions explicitly

in terms of q0 to arrive at the final expression for �:

(5.20) �YZ(q) =
nD

~2vgD
2

1X

n0=�1

X

�=±

(q2
x ⌥ qx(q2

x + 2qyQn0 � Q
2
n0)1/2 + qyQn0)

q(q2
x + 2qyQn0 � Q

2
n0)1/2

���eV1(Qx,n0�, Qn0)
���
2
.

This is the working formula that we use for numerical calculation of scattering rate due to the YZ-

array of dislocations, and equivalently for the ZY-array by switching the y and the z components.
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Figure 5.9. Diagrams of Dislocation Grid and Associated Scattering Phase Space (a) Diagram of
orthogonal YZ and ZY arrays in dislocation cross-grid. In this case, equal D spacing is assumed for both.
(b) Phase space diagram portraying the independent scattering of the YZ and ZY dislocation array, which
overlap only at the Qk = 0 (n0 = m

0 = 0) condition.

Finally, to get the spectral relaxation time, we must average over the incident phonon wavevector

direction q̂. We compute ⌧(!) as the weighted orientational average of the inverse scattering rate,

(5.21) ⌧(!) =

˜
��1

q
2
xd⌦˜

q2
xd⌦

=
3

4⇡

¨
��1 q

2
x

q2
d⌦,

This section handled the scattering constraints imposed by defect geometry, and the final step

is to define scattering potentials from the interface properties. In the next section, we derive an

anharmonic scattering potential from the interfacial dislocation strain fields, as well as a scattering

potential from acoustic mismatch, which couples to phonons via harmonic elastic constants.

5.4.2. Scattering Potentials

5.4.2.1. Dislocation Strain Potential. The real-space strain scattering potential or lattice

energy perturbation is directly related to the induced internal strain ✏(r) at the interface via an

anharmonic coe�cient, which in this case is the Grüneisen parameter (� = (1/!)d!/d✏). A single

Grüneisen parameter approximation is made wherein � is frequency and mode-independent, so that

the change in phonon frequency due to internal strain is !�✏(r). This approximation may lead to

an underestimation of the phonon scattering, but trends with misorientation and comparisons of
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grain boundary geometry should still hold [56, 181]. The scattering potential due to the strain

from a single interfacial dislocation, ✏1(r), is:

(5.22) V1(r) = ~!�✏1(r).

We use the dislocation strain fields from continuum elasticity theory as given, for example, by

Hirth and Loethe [190, pp. 60, 76]. As discussed in the previous section, the sum over single-line-

dislocation potentials is facilitated in Fourier space, so all we require is the Fourier transformed

strain fields for a single screw and misfit-edge dislocation.

Starting with the symmetric twist boundary, we will maintain the geometry of the previous

section with the x-direction normal to the interface and dislocation arrays with sense vectors

oriented along the y and z directions. The strain state of a twist boundary is pure shear, such

that all components ✏ii are 0. Only two independent components of the strain tensor are non-zero

for each dislocation array. Table 5.1 lists the strain component Fourier transforms for a constituent

screw dislocation in either the YZ or ZY array:

Table 5.1. Twist Boundary Fourier Strain Field Components

YZ array ZY array

e✏13 =
ibQy

2(Q2
x +Q2

y)
e✏12 = � ibQz

2(Q2
x +Q2

z)

e✏23 = � ibQx

2(Q2
x +Q2

y)
e✏23 =

ibQx

2(Q2
x +Q2

z)

The semicoherent heterointerface will also be defined in the yz-plane with two interpenetrating

arrays of dislocations with misfit edge character [191]. As in the symmetric tilt boundary case

outlined in Ref. [181], the deformation tensor is broken down into dilatational strain (✏�), shear

strain (✏S), and rotation (✏R), which act as independent scattering sources. Table 5.2 lists the

Fourier strain components for a single misfit edge dislocation in both the YZ and ZY arrays.
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Table 5.2. Heterointerface Fourier Strain Field Components

YZ array ZY array

e✏� =
ib(1 � 2⌫)

(1 � ⌫)

Qx

(Q2
x +Q2

y)
e✏� =

ib(1 � 2⌫)

(1 � ⌫)

Qx

(Q2
x +Q2

z)

e✏S =
�ib

(1 � ⌫)

QyQ2
x

(Q2
x +Q2

y)
2

e✏S =
�ib

(1 � ⌫)

QzQ2
x

(Q2
x +Q2

z)
2

e✏R =
�2ibQy

(Q2
x +Q2

y)
e✏R =

�2ibQz

(Q2
x +Q2

z)

These strain fields are related to those of the tilt boundary by a simple rotation, which places

the extra half plane along the x-axis, perpendicular to the boundary. For example, a tilt boundary

perpendicular to the x-direction with dislocations spaced along the y-direction, could be described

by the YZ-array strain fields if Qx and Qy are exchanged.

Figure 5.7 shows a normal component of the strain field from a single misfit dislocation array,

and the cross-section reveals a step function change in the dilatation at the interface [180, pp.695-

697]. In fact, setting Qy = 0 in the YZ array or Qz = 0 in the zy array, yields e✏� / i/Qx, which

is precisely the Fourier transform of the Heaviside step function. This long range dilatational

strain e↵ect is artificial, since the reference lattice parameter di↵ers on either side of the interface.

Therefore, the dilatational strain at the long-wavelength limit is subtracted and treated via the

acoustic impedance mismatch term described by Equation 5.24.

Recently, Varnavides et al. introduced the strain mismatch model (SMM) [38], providing an ab

initio framework for inelastic phonon scattering due to an interfacial strain perturbation. The SMM

method is applied to treat a similar physical system, studying the dilatational strain scattering from

a misfit dislocation array. By following the treatment of Carruthers (Eq. 4.91 of Ref. [188]), the

derived scattering rate is found to be independent of the dislocation spacing, and as far as we can

interpret, neglects the periodic strain fields local to the interface, which we find to be important

in this work. Both previous works [38,188] additionally treat the step-change in dilatation at a
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misfit dislocation array as a source of anharmonic strain scattering, which di↵ers from the acoustic

mismatch approach taken here and described in the following section.

5.4.2.2. Acoustic Mismatch Scattering Potential. The origin of the acoustic mismatch di↵ers

between a hetero- and homointerface. In the case of the semicoherent heterointerface, the acoustic

impedance mismatch stems from the change in material, and resulting change in elastic tensor,

across the interface. In a tilt or twist boundary, the long-range rotational deformation induces

acoustic mismatch through the anisotropy of the acoustic properties. The rotation at a grain

boundary is described by a single misorientation angle ✓ (see Figure 5.8), which in the Read-

Shockley model, relates to the magnitude of the Burger’s vector (b) and the dislocation spacing

(D) as: 2tan(✓/2) = b/D [180, p. 688]. For a fixed phonon angle of incidence, the crystal rotation

can be interpreted as a change in the acoustic impedance stemming from the rotation of the sti↵ness

tensor.

For both grain boundaries and heterointerfaces, we can derive an acoustic mismatch scattering

potential in order to compute a squared scattering matrix element and scattering rate via Fermi’s

Golden Rule following the basic procedure outlined in Section 2.2.2. This scattering potential

is grounded in the same physics as the classical acoustic mismatch model (AMM; see Section

5.3.1) [171].

We define the scattering potential as the change in energy of a phonon as it traverses an

interface, which can be expressed in terms of the change in phonon phase velocity �vp and incident

phonon wavevector magnitude q,

(5.23) VAM(r) = ~�!(r) = ~�vp(r)q.

The spatial dependence of �vp(r) is taken as �v⇥(x) where �v = v2 � v1 is the magnitude of

the phonon velocity change from side 1 to side 2, and ⇥(x) is the Heaviside step function. Since
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its Fourier transform is e⇥(Qx) = i/(Qx),

(5.24) eV AM = ~�v q e⇥(Qx) = ~�v
iq

Qx
.

The magnitude of the velocity change �v depends on the phonon angle of incidence and the degree

of misorientation at a grain boundary or homointerface, and, at a heterointerface, the additional

change in elastic tensor. The Christo↵el equations relate the sti↵ness matrix to the direction-

dependent acoustic velocities in a material. The equation is essentially the classical limit of the

lattice dynamical matrix diagonalization. The Christo↵el matrix C is obtained from the rank 4

sti↵ness tensor cijkl for a unit vector n̂ denoting the phonon direction of propagation as follows [27]:

(5.25) Cij =
X

jk

njcijklnk.

From this, one can then evaluate the following eigenvalue problem to arrive at the phase velocity

vp of an acoustic phonon travelling in the direction n̂ with polarization vector ŝ:

(5.26)
X

ij

�
Cij � �ijvp

2
�
sj = 0.

By solving this equation for di↵erent n̂, it is possible to generate a slowness surface, or diagram

of the direction-dependent group (vg) or phase velocity (vp) of the acoustic phonons in a material.

As discussed in Jaeken et al. [27], the acoustic vg and vp di↵er slightly in terms of direction alone,

as described by the power flow angle  , where vp = vgcos . The group velocity direction indicates

the direction in which energy travels, which can deviate from the wavefront propagation direction

described by the phase velocity. Using the christoffel Python package [27], we compute the

group velocity slowness surfaces for the three phonon polarizations of Si (Figure 5.10).

From these direction-dependent velocities, we can calculate �v for an incoming phonon and

capture the acoustic mismatch due to any grain boundary misorientation or change in elastic
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Figure 5.10. Group velocity Slowness Plots for Silicon Direction dependence of the acoustic phonon
group velocities potted on a unit sphere. Fast/slow secondary correspond approximately to the two transverse
branches, and primary is approximately the longitudinal branch. Produced using the christoffel package
[27].

coe�cients, regardless of crystal symmetry. Our implementation lies within the continuum, long-

wavelength limit, and so V AM computed using the magnitude of either the group or the phase

velocity yields the same result given that the perturbation is set only by the change in phonon

frequency. The acoustic mismatch constitutes planar defect scattering and, as mentioned previously,

will produce a specular reflection. Since forward scattering does not contribute to the scattering

rate, Qx in Equation 5.24 will simplify to 2qx = 2|q|sin✓cos�.

As discussed in Section 5.2.1, the Kapitza resistance is a quantity defined through the Landauer

formalism, in which each heat-carrying phonon is assigned a transmission coe�cient at the interface.

As a result of this interfacial resistance, a heat flux across the interface will cause a proportional

temperature drop �T localized to the interface (blue temperature profile in Figure 5.11a). In

contrast, the perturbation potential derived in this section produces a scattering rate that influences

the overall phonon lifetime and a↵ects the thermal conductivity of the sample homogeneously (red

temperature profile in Figure 5.11a). Given these unique descriptions, it is worth comparing the

phonon transmission coe�cients produced by our perturbation theory treatment to that of the

classical acoustic mismatch model (described in Section 5.3.1). We first derive a scattering rate due

to the acoustic mismatch scattering potential (Equation 5.24). Note that the phase space term is

the phonon density of states on side 1 of the interface, since the incident phonon will reflect back

to the same side it originated from.
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⌧
�1(q) = nd|S|2g1(!q)

= [1/Lz]


i~ �v

cos✓sin�

�2  1

⇡v1

�

=
2�v

2

v1(cos✓sin�)2
(5.27)

Then, Equation 5.21 is used to arrive at the spectral scattering rate, yielding the expression:

(5.28) ⌧12(!) =
3

2
Lxv1�v

2
.

which is finally converted to a spectral transmission coe�cient using Equation 5.6 to yield the final

expression:

(5.29) tPert =
1

1
2

�
�v
v

�2
+ 1

.

This transmission coe�cient is compared to Equation 5.3.1 for the classical acoustic mismatch

model [143, 150] in Figure 5.11b. The two approaches di↵er by less than 5% up to fractional

acoustic velocity changes of |�v/v| = 0.5, which typically exceeds the acoustic mismatch present

at solid-solid interfaces.

Finally, the square of the Fourier space scattering potential must be taken in the calculation

of the matrix element (M). In the work of Brown [192], it was shown that symmetry constraints

in the cubic crystal enforce that strain and rotation contribute independently to the scattering

potential. We reach the same conclusion in our work by noting the distinct scattering physics of

strain (di↵ractive scattering) and rotation (specular reflection). As a result, there are no non-zero

cross-terms when we take the square and the full, squared scattering potential can be written as,
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Figure 5.11. Comparison between Acoustic Mismatch Perturbation Potential and Classical
Method. a) (copy of Figure 5.1) A schematic illustration of two common models used to describe heat
conduction in materials with interfaces. The blue line depicts the Landauer based model where a thermal
boundary resistance arising from the conduction channel having a interfacial transmission probability or
t(!) > 0, induces a sharply localized drop in temperature. The red line depicts a model based on phonon
scattering theory and Matthiessen’s rule, where each scattering mechanism contributes a scattering rate
(⌧(!)�1), and together modify the materials thermal conductivity homogeneously. b) A comparison between
the transmissivity calculated using classical acoustic mismatch (AMM) theory and the interface perturbation
theory, showing that the two cases di↵er by no more than 5% up to �v/v = 0.5.

(5.30) |eV (Q)|2 = |~!�e✏(Q)|2 + |~�ve⇥(x)q|2.

Our treatment agrees with the conceptual conclusions from the work of Brown [192], which

suggests that rotations of the crystal scatter phonons via harmonic elastic constants (e.g. vs) while

strain scatters via third order, anharmonic constants (e.g. �) [192].

5.4.3. Symmetric Tilt and Twist Grain Boundaries

The results discussed here describe Si-Si symmetric twist and tilt. boundaries with various twist

angles ✓, and were calculated using the Si parameters in Table E.1.
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The previous investigation of tilt grain boundaries showed a cross-over in the frequency-dependence

of the phonon lifetime from frequency-independent scattering at long wavelengths to ⌧ / !
�1 at

shorter wavelengths [181]. This frequency-dependence is in stark contrast to other classical theory

such as the grey model (see Section. 5.3.1), which suggests that the lifetime should be primarily

limited by the average grain size, and therefore frequency independent. However, the ⌧ / !
�1

relation was essential to explain the anomalous low-temperature thermal conductivity trend of

 / T
2 in polycrystalline materials (in contrast to the  / T

3 expected for single crystals or

!-independent scattering) [181,193–195].

Here, we show that the twist boundary exhibits the same cross-over in the frequency-dependence

of the relaxation time (⌧) [181]. Long-wavelength phonons view the boundary as a planar defect

defined by the rotational deformation, leading to the expected frequency-independent scattering.

Note the the phase space for planar defect scattering is the frequency-independent 1D density-

of-states (Figure 2.3). The relaxation time at this long wavelength, or low frequency, limit is

plotted versus grain boundary angle in Figure 5.13c and is seen to vary periodically with angle

✓. This periodic relationship has been predicted previously and is a result of the symmetry of

the Si acoustic properties [192]. Short wavelength phonons, however, interact with the underlying

periodic strain from the dislocation grid and pick up a phonon frequency dependence approaching

⌧ / !
�1 (Figure 5.13b). Again, note that dislocations, as linear defects, contribute a phase space

term to the scattering rate equal to the 2D density of states, which scales with frequency (Figure

2.3). At the short wavelength limit, the lifetime varies monotonically with misorientation angle. As

a net result, the overall thermal boundary resistance increases linearly with grain boundary angle

because of the increasing strain scattering e↵ects.

Figure 5.12 shows the phonon scattering rate plotted versus the incident angle of the incoming

phonon for a twist boundary. It provides a visual representation of the rotation versus strain

scattering e↵ects. At high frequency, the di↵raction e↵ects stemming from the periodic dislocation

array are visible as patterns in the directional plot of scattering rate. Whereas at low frequency,
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Figure 5.12. Relaxation Time versus Incident Phonon Direction Three-dimensional polar plots of
the scattering rate ⌧

�1(q) (in GHz) versus incident angle (✓i,�i) of an incoming phonon, holding phonon
frequency constant. The results shown correspond to a twist boundary with ✓ = 5� at the (a) long wavelength
limit (q = qmax/20), where acoustic mismatch scattering dominates and the (b) short wavelength limit
(q = (2/3)qmax), where the periodic strain field scattering e↵ect is picked up.
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Figure 5.13. Si Twist Boundary Phonon Lifetime Predictions (a) Spectral phonon lifetimes for a Si-Si
twist interface at various misorientation angles (b) The log-log plot of this relaxation time shows a power law
crossover from !-independent to ⇠!

�1, indicating a transition from planar-defect to linear-defect scattering.
(c) The long-wavelength limit of the relaxation time is plotted against grain boundary angle, revealing a
periodic variation stemming from the symmetry of the acoustic velocities.

there are more isolated and broad scattering “hot spots” corresponding to ranges in the phonon

angle of incidence which undergo large scattering due to an acoustic impedance mismatch.

In Figure 5.14, we compare the scattering properties from a twist and tilt grain boundary. In

both grain boundary types, the rotational scattering is calculated from Equation 5.24 using the grain

boundary angle ✓ to determine the phonon velocity change at the interface. It should be kept in

mind, however, that in the tilt case, the rotation is perpendicular to the plane of the interface. The

spectral ⌧ in both cases is approximately equal at the long-wavelength limit as a result of the cubic
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Figure 5.14. Comparison of Si Tilt and Twist Grain Boundary Scattering (a) The spectral relaxation
time (⌧) converges at the long-wavelength limit, but decreases faster in the frequency-dependent regime for
the twist boundary, when dislocation strain scattering is activated. (b) The twist boundary, therefore, is
predicted to have about 1.3⇥ the thermal boundary resistance (RK).

symmetry of the Si sti↵ness matrix and acoustic velocities (Figure 5.10). However, for the twist

boundary, the relaxation time decreases more rapidly with frequency in the dislocation scattering

regime (Figure 5.14a). In the work of Van der Merwe [187], a linear elasticity model for interfacial

stresses and energies is applied to a generic material with cubic or tetragonal symmetry, and shows

that for the same misorientation angle ✓, twist boundaries exhibit slightly higher strain energy than

tilt boundaries. The higher strain energy of the twist boundary can explain the reduced relaxation

times at high phonon frequency, which leads to about 1.3⇥ the thermal boundary resistance of the

tilt boundary (Figure 5.14b). Additionally, previous works comparing individual screw and edge

dislocation scattering show that screw dislocations have higher strain energy and are therefore more

thermally resistive [196].

The RK from the Si-Si twist boundary model (Equation 5.4) is close to, although consistently

lower than, previously reported molecular dynamics simulation results (see Table 5.3). We also

compare model predictions against RK measurements of Si-Si twist boundaries using the 3! method,

an AC technique suited for thermal conductivity measurements of films, reported in Xu et al [182].

In both cases, the magnitude of the thermal resistance depends on twist angle, and the RK ratio

between the 6.9� and 3.4� twist boundaries is similar. However, the measured thermal resistance
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is more than an order of magnitude larger than the model predictions. The model assumes a clean

interface, while the interface in the physical material serves as a sink for additional defects and

may contain roughness or oxidation e↵ects [197, 198]. In this particular experiment, a Si thin

film was bonded to a Si substrate at varying twist angles. TEM images revealed a nanometer-thick

disordered region at the boundary, which contributed additional thermal resistance [182,199,200].

A detailed modeling of these contributions is necessary to understand the experimental results.

A benefit of our approach is the ability to di↵erentiate between the scattering contributions of

the rotational deformation and the dislocation strain. The percentage contribution of the acoustic

mismatch e↵ect to RK is only about 4-5% for most symmetric twist boundaries, and dislocation

strain accounts for the rest of the scattering. This breakdown illustrates the significant role of the

interfacial dislocation structure in the thermal resistance, and may also help to explain the very low

RK values observed for twin boundaries both experimentally [201] and in non-equilibrium molecular

dynamics [202]. Twin boundaries are special coherent interfaces, which have a misorientation

without dislocations or disregistry. Based on the RK breakdown determined here, we might expect

twin boundaries to have just 5% of the RK exhibited by twist or tilt grain boundaries.

Table 5.3. Si Twist Boundary Thermal Boundary Resistance Thermal boundary resistance (RK;
m2K/GW) comparison to previous theoretical and experimental literature results for the Si-Si symmetric
twist boundary.

Literature RK This Study RK

T (K) Angle ✓ MD [171,203,204] Born von Karman
500 11.42� 0.61, 0.76, 1.1 0.30

Experimental [182]
300 6.9� 9.0 0.21
300 3.4� 6.7 0.13

300 RK(6.9�)
RK(3.4�) 1.3 1.6

Finally, experimental investigations of twist boundary RK show a correlation with the Read-

Shockley grain boundary energy [179], which captures the strain energy produced by the dislocation

structure at the grain boundary [182,183]. This observation corroborates the idea that dislocation



114

0 2 4 6 8 10 12

Twist Angle ✓ (degrees)

0.0

0.2

0.4

0.6

0.8

In
te

rf
ac

ia
l
E
ne

rg
y

(J
/m

2
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
K

(m
2
K

/G
W

)

Figure 5.15. Thermal Boundary Resistance correlates with Read-Shockley (R-S) Grain
Boundary Energy Twist boundary model predictions of the thermal boundary resistance (RK) are shown
as blue scatter points (mapped to right axis) and closely follow the Read-Shockley interfacial energy
(red line; mapped to left axis). Both additionally trend with misorientation angle ✓ for low angle grain
boundaries. Similar trends between RK, R-S energy, and ✓ have also been shown through experiment and
simulation [170,183].

strain is essential to understand the origins of interfacial thermal resistance. The Read-Shockley

grain boundary energy is given by:

(5.31) E =
Gb

4⇡(1 � ⌫)
✓(A � ln(✓)),

with dependencies on the misorientation angle ✓, Burgers vector b, bulk modulus G, and Poisson

ratio ⌫. The A factor captures the ratio between the dislocation core energy and strain energy

contributions at the grain boundary. We set A equal to 0.23, following the previous work of Tai et

al. [183], for the simple purposes of demonstrating the correlation with RK. As shown in Figure

5.15, RK from the twist boundary model closely trends with the Read-Shockley strain energy, as

expected.

5.4.4. Semicoherent Heterointerfaces

The calculations below are performed for a Si-Ge interface using the parameters found in the

Appendix Table E.1. As in the tilt and twist boundary examples, the heterointerface relaxation
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time crosses over between planar-defect and linear-defect scattering. However, as expected due

to the larger acoustic mismatch, the thermal resistance is significantly larger than in the twist

boundary case. The acoustic mismatch e↵ect alone, however, contributes only about 50% of the

full thermal boundary resistance (see Figure 5.16) predicted by the model, indicating a significant

contribution of misfit dislocation strain scattering to the thermal resistance.

Table 5.4 shows the thermal boundary resistance (RK) results of our method assuming a Born-

von Karman (BvK) model for the phonon dispersion. The results show good agreement with

previous calculations on Si-Ge heterojunctions using the di↵use mismatch model (DMM) and

molecular dynamics (MD) simulations [149]. In the di↵use mismatch model, the overlap in the

phonon density of states on either side of the interface determines the transmission probability.

In contrast, the molecular dynamics simulation uses no model or assumption about the phonon

scattering mechanism. We compare to the results from the largest simulation cell trialled in each of

the previous MD studies [205,206]. Our results are also in line with the atomistic Green’s function

(AGF) approach, which circumvents the lattice dynamical matrix equation, and instead studies the

impulse response of the system [65]. The AGF work additionally studied the influence of alloying

at the interface and observed that RK doubles with an alloy layer of just 1 nm. Finally, in the

scattering mismatch model (SMM) [38], phonon transmission coe�cients are evaluated through an

iterative solution of the phonon Boltzmann transport equation to predict RK. The SMM predicts a

larger RK, likely due to the first-principles anharmonicity treatment and di↵erences in the treatment

of the dilatation at the interface (see Section E.3).

The thermal boundary resistance RK of the Si-Ge interface has also been investigated experimentally.

The through-film thermal conductivity of superlattice films can be converted to a value for RK by

assuming that bulk phonon scattering is negligible [38], and the results for the largest reported

period L (i.e. thickness of interlayers) are summarized in Table 5.4. While the RK calculated here is

comparable to the superlattice measurements, it is important to note that its value is a↵ected by the

coherent phonon dynamics present in superlattices. Additionally, Wang et al. [154] measured the

RK of a Si film bonded to a Ge substrate using the 3 ! method, and report an order of magnitude
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Figure 5.16. Si-Ge Heterointerface Phonon Lifetime and Kapitza Resistance Predictions Si-
Ge heterointerface scattering using a Born-von Karman phonon dispersion (a) Spectral lifetime for a Si-
Ge heterointerface with a misfit dislocation spacing of 7 nm, comparing model with acoustic mismatch
and dislocation strain (solid) to the model with acoustic mismatch alone (dotted) (b) Thermal boundary
resistance predictions versus temperature from the heterointerface model with (solid) and without (dotted)
dislocation strain scattering. Dislocation strain accounts for 50% of the overall thermal resistance.

larger thermal boundary resistance. In their study, however, a ⇠3 nm alloy layer is shown to

form with additional interdi↵usion persisting for ⇠10 nm around the interface, and this alloying

e↵ect predominates the interfacial thermal resistance. Interface quality can therefore have order of

magnitude e↵ects on the thermal transport [207].

Table 5.4. Room temperature thermal boundary resistance (RK; m2K/GW) with comparison to theoretical
and experimental literature results for Si-Ge heterointerface

Computational or Theoretical
This work Ref. [150] Ref. [205] Ref. [206] Ref. [38] Ref. [208]
BvK AMM MD DMM MD DMM SMM AGF
3.75 1.8 2.83 2.40 3.00 3.71 5.22 3.36

Experimental (3 ! method)
Ref. [182] Ref. [209] Ref. [210]
Bonded Films Superlattice

(L = 14 nm)
Superlattice
(L = 15 nm)

Superlattice
(L = 27.5 nm)

31.4 2.14 3.62 6.28
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5.5. Additional Interfacial Dislocation Scattering E↵ects: Core Scattering and

Phonon Drag

5.5.1. Dislocation Core Scattering

Thus far, the discussion of dislocation scattering has focused only on the dislocation strain fields

present at the interface, neglecting the impact of the atomic disregistry at the center of the

dislocation, or the dislocation core. Original works by Klemens and Carruthers suggest that

dislocation core scattering at the interface is negligible, since dislocation strain scattering dominates

for most of the phonon frequency spectrum, except perhaps close to the Debye frequency, such that

the majority of phonons are scattered at some distance from the dislocation core [39,56,188]. To

verify that dislocation core scattering does not impact our model predictions, we compute the core

scattering potential for an interfacial dislocation array.

To calculate the scattering from a dislocation core, the core can be modelled as a line of vacancies

with mass contrast �M = 3M [56]. For a YZ array of dislocations (i.e. periodically spaced along

the y-direction and with sense vectors along the z direction) the scattering potential due to this

source of mass contrast would be:

(5.32) V1(x, y, !) =
1

2

�M

M
~!S0�(x)�(y) =

3

2
~!V

2/3
0 �(x)�(y � nD)

The perturbation potential takes the form of a Dirac comb with a period of D. By invoking the

Poisson summation formula just as before, we can show that the Fourier transform is also a Dirac

comb with a period of 2⇡
D :

(5.33) Ṽ YZ(Q) =
X

n0

�(Qy � 2⇡n
0

D
)
3

2
~!V

2/3
0

The scattering potential can then be input into Equation 5.19 to calculate the scattering rate

due to interaction with the array of dislocation cores.



118

10�2 10�1 100

!/!max

1

3

⌧
(n
s)

!�2

!�3

!0

0.0 0.2 0.4 0.6 0.8 1.0
k/kmax

0.0

0.5

1.0

1.5

2.0

2.5

⌧
�

1
(n
s�

1
)

a. b.

Figure 5.17. Di↵raction E↵ects and Dimensionality Crossover in Dislocation Core Arrays Phonon
lifetimes including the e↵ects of dislocation core and acoustic mismatch scattering for a 7� symmetric Si twist
boundary. (a) Scattering rate plot for a phonon of normal incidence to the interface. Di↵raction peaks occur
at intervals of |k| = 2⇡n/D, where there is a spike in the number of allowed phonon transitions. (b) The log-
log plot of the spectral relaxation time depicts smooth cross-over between !-independent scattering (signature
of planar acoustic mismatch scattering) and !

�3 scattering (signature of dislocation core scattering). An
intermediate regime with !

�2 scattering may also be present, in which long wavelength phonons view the
array of dislocation cores as a planar mass defect.

Just as before with the periodic dislocation strain problem, the array of dislocation cores can

exchange quantized amounts of momentum with incident phonons in the direction of periodicity,

yielding another case of di↵ractive scattering (Figure 5.17a).

Once again, we might anticipate a case of dimensionality crossover. Phonons with wavelengths

on the order of the dislocation spacing will resolve the individual dislocation cores, a case of linear

defect scattering, which scatters into the 2D phonon density of states. Longer wavelength phonons

would instead interact with the grid of dislocation cores as a planar mass contrast defect, which

scatter into the frequency-independent 1D density of states. Once Equation 5.33 is squared when

calculating the squared matrix element, we see that the matrix element term for this mass contrast

defect characteristically contributes a factor of !
2 to the scattering rate. After including the phase

space terms, we would anticipate a ⌧
�1 / !

3 dependence at the short-wavelength, linear-defect

scattering regime, and a ⌧
�1 / !

2 dependence at the long-wavelength, planar-defect scattering

regime. Stacking faults are an interruption in stacking order than can occur when a dislocation
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Figure 5.18. Dislocation Core versus Strain Scattering Comparison Comparison between the
dislocation core and dislocation strain scattering e↵ects in a 7� symmetric Si twist boundary. Phonon
lifetimes (a) and Kapitza resistance (b) are compared between 1) a model including dislocation core and
acoustic mismatch scattering (DC + AM) and 2) a model including dislocation strain and acoustic mismatch
scattering (DS + AM). The strain scattering is shown to be the dominant e↵ect at the interface, such that
the contribution from dislocation core scattering can be ignored.

splits into two partial dislocations with a plane of atoms forming the stacking fault in between. It

can similarly be discussed as a 2D mass imperfection, and is therefore expected to display ⌧
�1 / !

2

scattering behavior as with the plane of dislocation cores [24].

Figure 5.17b highlights the frequency dependence of the dislocation core array scattering. The

acoustic mismatch e↵ect is included, as this assures a finite scattering rate at ! = 0. The transition

is smooth from !-independent acoustic mismatch scattering to ⌧ / !
�3 dislocation core scattering.

However, there may be an intermediate region displaying the planar mass defect scattering signature

of ⌧ / !
�2, although a clear transition frequency is not visible.

We can then compare the dislocation core to dislocation strain scattering to check whether the

dislocation core plays a comparable role in the overall thermal resistance. The spectral relaxation

times are compared in Figure 5.18a for a 7� twist boundary (with both instances including acoustic

mismatch scattering), and the dislocation strain scattering is found to dominate over the full phonon

frequency such that the Kapitza resistance is approximately 10⇥ higher for dislocation strain versus

core scattering. Therefore, we confirm through this work that dislocation strain is the dominant

scattering e↵ect at grain boundaries and interfaces.
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5.5.2. Phonon Drag at Mobile Dislocations

Finally, we have focused thus far on the lattice perturbation of a stationary dislocation array,

resulting in a fully elastic scattering theory. However, dislocations additionally have dynamic

degrees of freedom, allowing them to absorb and re-radiate phonons. Typically, this has been

studied from the perspective of dislocation motion rather than thermal resistance, and the phonon

dissipation e↵ects are expected to impact dislocation glide through a viscous force, proportional

to the dislocation velocity and a drag coe�cient B [211]. These dissipative phonon processes

are typically referred to as “phonon drag” and are further codified into two major categories:

phonon wind [160, 211] and fluttering [212–214]. Phonon wind is similar to the anharmonic

strain scattering discussed in detail in this chapter, however it accounts for the impact of the

moving reference frame as dislocations glide. It has been shown the dislocation fluttering, or the

localized oscillations along the dislocation line, plays a more significant role in inelastic phonon

scattering [212].

The role of fluttering dislocation arrays in interfacial thermal resistance still remains an open

question. However, analytic expressions have thus far quantified the e↵ect in materials with “giant

plasticity” such as solid He, where dislocations are expected to be incredibly mobile. In this

case, unlike dislocation strain or core scattering, fluttering dislocation scattering is expected to

be frequency-independent where all phonons in the spectrum transfer momentum between the

vibrating dislocation lines. The scattering rate due to fluttering dislocations in a highly plastic

material is reported in Amrit et al. as [215]:

(5.34) ⌧fl
�1 =

(4.95 ⇥ 107)b2
vs

3

D2T 3

Given the temperature dependence of the scattering rate, the low-temperature thermal conductivity

signature for fluttering dislocation scattering would be  / T
6. If we directly use the parameters

for the 7� twist boundary used for comparison in the previous section, the scattering rate predicted

by this equation is about an order of magnitude higher at room temperature when compared to our
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model. These fluttering interactions may play a significant role in the interfacial thermal resistance,

and realistic values based on the plasticity of the material should be used to quantify this e↵ect.

5.6. Conclusions

To achieve device-level thermal modelling, scalable models, which contain the necessary physics

to capture experimentally-observed trends in Kapitza resistance RK, are required. We first review

the scattering sources at an interface as well as the analytic and simulation-based approaches to

evaluating Kapitza resistance. We then extend a previous model for scattering at a 1D array of edge

dislocations (basic structure of a symmetric tilt grain boundary) to present a consistent method for

modelling both symmetric tilt and twist grain boundaries as well as semicoherent heterointerfaces.

The two main scattering contributions addressed in this model are: 1) the acoustic mismatch

present at the interface, and 2) the periodic strain fields localized to the interface, which stem

from the interfacial dislocation structure. This model allows for RK comparisons between grain

boundary type, energy, and structure. The main outcomes of this analysis are as follows:

• Previous analytic models describe either fully specular (AMM) or fully di↵use (DMM)

scattering at an interface. The dislocation strain model lies in between these limits, the

dislocation array can impart quantized momentum, and so we refer to this phenomenon

as di↵ractive scattering. Di↵raction peaks are visible in plots of the scattering rate.

• Phonon lifetimes for all three types of interfaces show a cross-over in frequency dependence,

first reported on in Hanus et al. [181]. Low-frequency phonons show an !-independent

lifetime, indicative of planar defect scattering, while high-frequency phonons show a ⌧ /

!
�1 dependence indicative of linear defect scattering.

• Kapitza resistance in the Si symmetric twist and tilt grain boundaries correlated closely

with the Read-Shockley grain boundary energy. For a fixed grain boundary angle, Si twist

boundaries were calculated to be about 1.3⇥ more resistive than Si tilt boundaries.

• The Kapitza resistance of the Si-Ge heterointerface was about an order of magnitude

higher than that predicted for the Si grain boundaries. Additionally, our model showed a
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close correspondence to atomistic simulation results, performing better than the AMM or

DMM.

• Our Kapitza resistance model allows us to weight the relative contribution of acoustic

mismatch and dislocation strain to the overall resistance at the interface. This distinction

carries important implications in thermal engineering because the acoustic mismatch is

fixed for a given interface, while the dislocation strain can be tailored through annealing,

for example. Dislocation strain accounts for ⇠ 95% of the total RK in symmetric tilt and

twist grain boundaries, but only ⇠ 50% of the total RK in semicoherent heterointerfaces.

• Dislocation core scattering is often viewed as negligible, since dislocation strain is expected

to dominate for the majority of the frequency spectrum. We confirm this to be the case

in our dislocation array scattering model. The dislocation core scattering may also show

a frequency cross-over from ⌧ / !
�2 at low-frequency, a signature of a 2D mass contrast

defect, to ⌧ / !
�3, a signature of a 1D mass contrast defect (the common description of

individual dislocation core defects).
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CHAPTER 6

Conclusions and Future Directions: Bridging Atomistic and

Continuum Methods

The complexity of structure-property relations in thermoelectric materials is perhaps best

highlighted in the Process-Structure-Property-Performance (PSPP) diagram shown in Figure 6.1

[216]. Notably, even this transport-focused PSPP diagram is simplified because it omits other

pertinent information about thermoelectric performance such as mechanical properties like fracture

toughness and creep resistance or the temperature range of peak performance, which should be

tailored for a specific application. In an ideal integrated computational materials engineering

approach, each linkage in the PSPP diagram can be explained by a physical model, and so it

provides perspective on the role of this thesis work and the areas where progress is required.

Chapters 3 and 4 of this thesis primarily describe the e↵ects that dopant and alloying elements

have on the carrier mobility and the lattice thermal conductivity. Moving forward, better analytic

considerations for the deformation potential and alloy scattering potential are required for modelling

carrier mobility data. While these quantities can be computed rigorously via first-principles, as

a function of electron wavevector, these calculations are both expensive and di�cult to interpret.

Given the wealth of thermoelectric transport property data now housed in databases such as the

StarryData2 [217], it may be possible to develop machine learning models to evaluate “transport

relevant” deformation and alloy scattering potentials, which enter into the analytic expressions

discussed in Chapter 4.

Chapter 5 discusses the influence on thermal transport of grain boundary structures as well as

some nanoprecipitate interfaces, which can be described as semicoherent heterointerfaces. Specifically,
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Figure 6.1. Process-Structure-Properties-Performance Diagram for Thermoelectrics
Relationships between sample preparation, characteristics, properties, and performance are highlighted for
bulk thermoelectric compounds. In an integrated computational materials engineering (ICME) approach,
the linkages are described through analytic or simulation-based methods.

we highlight the role of interfacial dislocation strain on the thermal boundary resistance RK of low-

energy grain boundaries and interfaces. The interfacial dislocation strain scattering is shown to

have a dominant e↵ect, compared to the change in elastic medium at the interface, which is the

e↵ect treated by the standard acoustic mismatch model. More broadly, our approach to interface

scattering provides a route to address spatially varying perturbations, which can be di�cult to

handle in atomistic simulations that are limited by small simulation sizes and periodic boundary

conditions. The study of interface and dislocation-phonon scattering has perhaps the most room to

grow, as current microstructure design for thermal materials tends to use highly simplified models.

As a next step from this thesis work, the field may benefit from the development of semi-empirical

models, which continue to treat defect strain fields using continuum elasticity theory, but use DFT-

inputs to describe mode-dependent phonon properties, rather than the simplified Debye or Born

von-Karman dispersion models.

Another useful next step would be to understand how these RK trends with grain boundary

dislocation structure and degree of coherency may impact the microstructure design of thermal
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materials. For example, a recent work by Zhang and Minnich [218] has investigated the optimum

size distribution of Ge precipitates in polycrystalline Si for full spectrum phonon scattering, assuming

a fixed Ge volume fraction (a similar analysis is described in Mingo et al. [219]). In this analysis,

however, information about the interface surrounding the precipitate phase is neglected. For the Si

grain boundaries, the simple gray model relationship equating phonon mean-free-path to average

grain size is used. The Ge precipitates are then treated with a simple model that interpolates

between two regimes: short wavelength phonons exhibit a geometric scattering with a lifetime

phonon dependence of ⌧(!) / !
0, while long wavelength phonons with wavelengths on the order

of the precipitate size undergo Rayleigh scattering with a phonon lifetime dependence of ⌧(!) /

(�⇢/⇢)2!4. Here, �⇢ is the density mismatch between the particle and matrix phase. The ideal

particle distribution was determined to have discrete peaks at highly specific precipitate sizes instead

of a broad, continuous distribution similar to the phonon spectrum.

Our work, however, suggests that microstructure optimization can be better informed by

focusing on the interface around the precipitate. Connecting this back to the issue of precipitate

size distribution, particle size not only influences the interface density, but also its coherency.

Continuum elasticity theories and finite element method implementations show a critical radius of

a nanoprecipitate required for the formation of misfit dislocation arrays [220]. In our work, these

misfit dislocations are shown to be critical to scatter mid-frequency phonons with wavelengths on

the order of the dislocation spacing. In the Si-Ge interface example, the misfit dislocation strain

contributed about half of the interfacial thermal resistance. An additional variable to consider

is the chemical composition near the interface, as solute segregation is shown to be two times

greater at semicoherent versus coherent interfaces [221]. We anticipate that the consideration of

interface structure will greatly impact nano- and microstructure design of thermal materials. We

would expect an optimal microstructure for phonon scattering to maximize interface density while

allowing for the formation of misfit dislocation loops. Another potentially important consideration

is the relationship between misfit strain and phonon softening, or a reduction in elastic constants

and phonon velocity. Phonon softening, in addition to scattering, is a route to achieve low lattice
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thermal conductivity [222]. Therefore, in the context of thermal engineering, a trade-o↵ may exist

between misfit strain, which can promote phonon softening, and misfit dislocation formation, which

can scatter mid-frequency phonons.
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APPENDIX A

Phonon Boltzmann Transport Equation

The phonon Boltzmann Transport Equation (BTE) tracks spatiotemporal changes in the phonon
occupation (nqs; for an example phonon mode indexed as qs; See Section 2.1) in response to various
applied fields and scattering sources. The general form for the phonon BTE in the presence of a
temperature gradient is [24]:

(A.1) � vqs · rT
@nqs

@T
+

@nqs

@t

����
scatt

= 0

The RHS of the above equation summarizes total rate of change in phonon occupation nqs due
to di↵usion in the presence of the temperature gradient and scattering processes, and in steady
state heat flow, this total rate of change should vanish to 0. Here, we will primarily summarize
the common assumptions made in order to make the phonon BTE tractable. The section primarily
follows the texts by Srivastava [46], Ziman [29], and Kaviany [223].

Equation A.1 can generally not be solved as is, and requires some simplification. We first
assume that the deviation from the equilibrium distribution n

0
qs, the Bose-Einstein distribution in

this case, is small. In the presence of a finite temperature gradient, the temperature dependence
of the phonon occupation should not deviate significantly from @n

0
qs/@T , which we can substitute

into the first term. In the second term, related to the rate of change due to scattering, we can use
the linear term in the Taylor expansion around n

0
qs by replacing nqs with nqs �n

0
qs. The linearized

form is then given by:

(A.2) � vqs · rT
@n

0
qs

@T
+

@(nqs � n
0
qs)

@t

�����
scatt

= 0

The next approximation commonly made is the single mode relaxation time (SMRT) approximation.
While it is somewhat questionable in its premise, the SMRT performs well when evaluating thermal
conductivity and the influence of defects even under large non-equilibrium conditions [224]. In the
physical picture suggested by the SMRT, all phonon modes are at thermal equilibrium except a
single mode, which deviates slightly from n

0
qs. Here it is also assumed that the deviation from

equilibrium nqs � n
0
qs decays to 0 following a time constant, or relaxation time ⌧qs, which does not

itself depend on the non-equilibrium phonon distribution before or after the scattering event.

(A.3) nqs � n
0
qs = exp

✓
� t

⌧qs

◆
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As a result, the linearized BTE in the SMRT approximation simplifies to:

(A.4) � vqs · rT
@n

0
qs

@T
= �

nqs � n
0
qs

⌧qs

The heat flux is given by the expression below in terms of the phonon energy ~!qs, the group
velocity vqs, and the deviation from the equilibrium distribution n

0
qs = nqs � n

0
qs.

(A.5) j =
1

(2⇡)3

X

s

ˆ
~!qsvqsn

0
qsdq

Substituting the expression for n
0
qs, the heat current is then equal to:

(A.6) j =
rT

(2⇡)3

X

s

ˆ
~!qsvqsvqs⌧qs

@n
0
qs

@T
dq.

We can then substitute in the modal heat capacity Cqs = ~! @n0
qs

@T . Then, noting the relationship
between heat flux and thermal conductivity set by Fourier’s law, j = �rT , the thermal conductivity
equals the following sum over modal contributions, which follows the basic form of the phonon gas
model shown in Equation 2.29.

(A.7)  =
1

(2⇡)3

X

s

ˆ
Cqsvqsvqs⌧qsdq.

To convert this into an integral over spectral rather than modal quantities, a Brillouin zone
integration must be performed using a scheme like Gaussian smearing or the tetrahedron method
[167].
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APPENDIX B

Phonon Relaxation Time Derivations

The derivations here follow the work of Klemens and are primarily summaries of the following
three works: Klemens 1955 [56], Roufosse and Klemens 1976 [225], and Klemens 1958 [37].
These phonon lifetimes are determined from the standpoint of Fermi’s Golden Rule and first
order perturbation theory. Previous work has shown that higher order perturbation terms have a
negligible e↵ects on the lattice energy [72,81].

B.1. Mass Defect Scattering

As introduced in Section 2.2.2, Fermi’s Golden Rule relates the scattering rate of an incident
phonon qs to the perturbation matrix element, a measure of the overlap between two phonon states
due to a perturbation to the lattice energy. The perturbation matrix element in the derivation of
Klemens includes a coe�cient (C), which captures the physics of the perturbation induced by
the point defect, while a(qs) and a

⇤(q0
s
0) are creation and annihilation operators to represent

the change in occupation numbers of the qs and q0
s
0 states as a result of the phonon-impurity

interaction.

(B.1) hqs| H 0 |q0
s
0i = C(qs,q0

s
0)a(qs)a⇤(q0

s
0)

Substituting in the full form of the creation and annihilation operators gives the expression
below, where N refers to the number of phonons in a given state.

(B.2) | hqs| H 0 |q0
s
0i |2 =

~2

M2!2
C

2(qs,q0
s)[N(N 0 + 1) � N

0(N + 1)]

It has been shown that the term in the square brackets reduces to 1 in the integral over the
constant energy surface corresponding to final q0 states [56]. To calculate the value of C, it is useful
once more to look at the real space representation of the lattice perturbation. Equation 3.1 giving
the energy perturbation (E0) to the lattice due to mass di↵erence is reproduced here:

(B.3) E
0(R) =

1

2
�M(R)u̇2(R).

To evaluate | hq| H 0 |q0i |2 we must first take the Fourier transform of M(R) so that it is in terms
of the scattering vector Q = q0

s
0 � qs. Here, S refers to the number of sites in the lattice [72,77].

(B.4) �M̃(Q) =
1

S

X

R

�M(R)eiQR
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The expression for C
2 picks up a factor of �M̃(Q)�M̃(Q0), which is equal to:

(B.5) �M̃(Q)�M̃(Q0) =
1

S2

X

R,R0

�M(R)�M(R0)ei(Q0R0�QR)

If the approximation is made that the point defects are randomly distributed over the lattice,
the sum over lattice sites can instead be written as an average squared mass di↵erence (�M

2) times
the number of defect sites in the lattice (Si) [72,77], which yields a factor of defect site fraction fi.

�M̃(Q)�M̃(Q0) =
1

S

Si

S
�M

2 =
1

S
fi�M

2(B.6)

Next, the velocity squared u̇2(R) term can be written as before as a double sum over normal
modes—the full form of which is shown in Equation 3.2. However, in contrast to our scattering
potential derivation shown in Section 2.2.2, we will focus here on o↵-diagonal terms where q 6= q0, as
these indicate a phonon transition. Given the frequency conservation implied by elastic scattering,
!q = !q0 . Finally, the creation and annihilation operators are related to the displacement amplitudes
as: a(q) = Aqexp(i!q)t. The o↵-diagonal terms reduce to the following form:

(B.7) u̇2(qs,q0
s
0) = aqsa

⇤
q0s0!

2[eq(R) · eq0(R)]exp(i(qs + q0
s
0) · R)

For an isolated defect, the phase factor, exp(i(q+q0)·R), can be neglected, but it does e↵ect the
final scattering phase space in clusters of point defect. Finally, the annihilation/creation operator
factor (aqa

⇤
q0) can be dropped, since this is already accounted for in the simplified matrix element

shown in Equation B.2. Combining Equations B.6 and B.7, the final expression for C
2(Q) is then:

(B.8) C
2(Q) =

1

4S
fi(�M)2!4|eqs(R) · eq0s0(R)|2

Substituting this expression in for the transition probability Wq,q0 described by Fermi’s Golden
Rule (Equation 2.18), we get:

(B.9) Wq,q0 =
⇡

2S
fi
�M

2

M2
!

2
�(�!)|eqs(R) · eq0s0(R)|2

The remainder of the derivation follows the one provided in the main text (Section 3.2) closely.
We apply Equation 2.21 to calculate the scattering rate by integrating over all possible final phonon
states q0

s
0. Here, polarization dependence is preserved, so we must integrate over 3 surfaces defined

by ! = !
0, corresponding to the polarizations s

0. On average, the dot product of the polarization
vectors |eqs(R) · eq0s0(R)|2 will additionally yield a factor of 1/3. The resulting scattering rate is
then identical to Equation 3.6.

B.2. Phonon-Phonon Scattering

The umklapp scattering rate follows a similar derivation, however, the conservation rule is
more complicated since the process involves three phonon modes (q,q0

,q00) as well as momentum
exchange with the lattice via the addition or subtraction of a reciprocal lattice vector (b). The
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derivation here is adopted from the derivation by Klemens for strain scattering o↵ a point defect,
however in this case, the strain is produced by another phonon rather than a point imperfection [37].

(B.10) q + b = q0 + q00

The umklapp perturbation matrix element is similar in form to that of point defect scattering,
but now includes three creation or annihilation operators since the process involves the change in
occupation number for three phonon modes. Additionally, the coe�cient (CU) is dependent on the
anharmonicity of the lattice.

(B.11)

hi| H 0 |fi2 = [CU(q,q0
,q00)a(q)a⇤(q0)a⇤(q00)]2 =

~3

M3!!0!00CU
2(q,q0

,q00)[(N+1)(N 0+1)(N 00+1)�NN
0
N

00]

In Klemens, the phonon mode q
00 is treated as a Fourier strain component producing a perturbation

to the lattice energy. If a uniform dilatational strain (�) is assumed, the Fourier component can
be written as i!

00
/vp(!00)

p
S in the limit q

00 ! 0. The elastic strain impacts force constants, and
therefore induces a frequency shift captured by the Grüneisen model [37].

(B.12) !(q) = !0(q)[1 � �(q)�]

The coe�cient CU then represents the lattice energy change associated with a uniform dilatational
strain.

(B.13) CU(q,q0
,q00) =

�2ip
Svp(q00)

�M!!
0
!
00

The final component of the squared matrix element (shown in Equation B.11) is the term in
the square brackets, representing the di↵erence in occupation of phonon modes from the initial to
final state. At the high temperature limit, this term can be written in terms of the Bose-Einstein
distribution such that it reduces to: kBT!/~!0

!
00. The full form of the squared matrix element

simplifies to the form shown below.

(B.14) hi| H 0 |fi2 =
~2

M

4�
2
!

2

Svp
2(q00)

kBT

Just as before, the scattering probability is defined using Fermi’s Golden Rule (Equation 2.18),
where the initial and final states are now represented as |ii and |fi, for simplicity. As before, the
scattering rate is calculated by summing over Wi,f for all possible final states. This is achieved by
performing a sum over all q0 and b, which then fixes the value of q00 as a result of the conservation
condition (Equation B.10).

(B.15) ⌧U =
X

q0,b

Wi,f
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It is assumed that q0 is restricted to spheres of radius 1
2(q + b), which is suggested to be true

as long as the dispersion relation is not modified by the zone structure [225]. Therefore, the sum
can be once again replaced by a surface integral over this sphere, and picks up a volume factor of
V tot/(2⇡

3), where V tot is the volume of the crystal.

(B.16) ⌧U
�1 =

X

b

V tot

(2⇡)3

ˆ
Wi,fd

3k0

Following the same integral simplifications discussed in the derivation of ⌧PD, the scattering
rate due to umklapp processes is shown below.

(B.17) ⌧U
�1 =

V0⇡�
2
!

2

Mvp
2(!00)vg(!0)

X

b

(q + b)2

Finally, the approximation is made that q is small in magnitude in comparison to the reciprocal
lattice vector b = 2⇡/a, such that (q + b)2 = 4⇡

2
/a

2. For a cubic close-packed material with
a rhombohedral primitive unit cell, the volume per site V0 is a

3(
p

2)�1, and the scattering rate
reduces to the form shown below.

(B.18) ⌧U
�1 =

4⇡a�
2
TkBp

2M

!
2

vp
2(!00)vg(!0)
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APPENDIX C

Elaborated Example of Vacancy Scattering

This section provides a full example of the phonon-vacancy scattering model applied to literature
values. The thermal conductivity measurements from Wang et al. are utilized for La1–xCoO3–y with
La and O vacancies. The mass di↵erence scattering strength is given by the expression below, where
M1 is the average mass of the La site and M3 is the average mass of the O site. Here, the average
atomic mass in the compound hMi = (M1 + MCo + 3M3)/5.

(C.1) �M =
(1/5)(x(0 � M1)2 + (1 � x)(MLa � M1)2 + 3(y(0 � M3)2 + (1 � y)(MO � M3)2))

hMi2

In the original text, the full thermal conductivity reduction is explained using mass di↵erence
scattering alone, without the perturbation due to broken bonds. However, in this case, the volume
in Equation 12 of the text was incorrectly defined as the volume of the primitive unit cell when
defining the point defect relaxation, where it should have been defined as the volume per atom. This
error compensates for the missing broken bonds term, such that the curve reported in the paper
still adequately represents the data, and the main conclusions about the point defect scattering
strength hold. However, using the virial theorem treatment, the above equation can be adjusted
by tripling the mass di↵erence on both vacancy sites as shown below.

(C.2)

�M =
(1/5)(x(�MLa � 2hMi)2 + (1 � x)(MLa � M1)2 + 3(y(�MO � 2hMi)2 + (1 � y)(MO � M3)2))

hMi2

Figure C.1 includes: 1) the model in the original paper using the unit cell volume (V uc), 2) the
revised mass di↵erence only model where the volume per atom (V0) is used, and 3) the model with
the virial theorem treatment for broken bonds, where V0 is used. As in the original paper by Wang
et al., it is assumed that x = y in the defective chemical formula [88].
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Figure C.1. Phonon-Vacancy Scattering: Virial Theorem Model versus Experiment The mass
di↵erence model with the unit cell volume error (light blue) is compared to the mass di↵erence only model
described in this study (dark blue) as well as the vacancy model (dashed) with the virial treatment for broken
bonds, which best captures the L reduction [88].
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APPENDIX D

Pseudoternary half-Heusler Data Summary

Summary of literature data used in the alloy scattering models. Data collection was greatly
facilitated by the use of the StarryData2 database [217].

Table D.1. Experimental Transport Function (�E0) and Lattice Thermal Conductivity (L)
Values from Literature for the XNiSn System The �E0 values were calculated using the approach
described in Section 4.2.1 when S and � pairs were available for samples at multiple doping levels. The
L values were calculated by subtracting o↵ the electronic thermal conductivity term modeled using the
Wiedemann-Franz law.

x(TiNiSn) x(ZrNiSn) x(HfNiSn) �E0 (S/m) L (W/m/K) Dopant Source
0 0.25 0.75 70125 5.38 Sb [226]
0.3 0.35 0.35 3.88 Bi [132]
0.3 0.35 0.35 3.66 excess Ni [227]
0 0 1 6.38 [124]
0 1 0 6.74 [124]
1 0 0 3.85 [124]
0.5 0.5 0 3.31 [124]
0.5 0 0.5 2.45 [124]
0 0.5 0.5 2.3 [124]
0.5 0.25 0.25 2.83 [124]
0.5 0.25 0.25 60937 2.91 Sb [228]
0.25 0.75 0 3.07 [229]
0.5 0.5 0 2.42 [229]
0.75 0.25 0 3.73 [229]
1 0 0 3.18 [229]
0 1 0 3.49 [229]
0.25 0 0.75 2.87 [229]
0.5 0 0.5 2.75 [229]
0.75 0 0.25 2.48 [229]
0 0 1 3.46 [229]
0 0.75 0.25 4.13 [229]
1 0 0 84677 6.95 Sb [137]
0.95 0 0.05 116606 5.21 Sb [137]
0.8 0 0.2 76209 4.94 Sb [137]

Continued on next page
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Table D.1 – continued from previous page
x(TiNiSn) x(ZrNiSn) x(HfNiSn) �E0 (S/m) L (W/m/K) Dopant Source
0.3 0.35 0.35 3.58 [230]
0 1 0 12.72 [231]
0.3 0.7 0 7.39 [231]
0.5 0.5 0 5.30 [231]
0.5 0.5 0 4.67 [231]
0.33 0.33 0.33 5.67 [232]
0 0.5 0.5 2.81 [232]
0 0.5 0.5 4.16 [232]
0 0.5 0.5 3.99 [233]
0.2 0.4 0.4 3.74 [233]
0.3 0.35 0.35 3.09 [233]
0.5 0.25 0.25 158357 2.92 Sb [233]
0.7 0.15 0.15 3.3 [233]
0.5 0.25 0.25 3.3 [234]
0 0.75 0.25 3.61 [235]
0 0.4 0.6 85158 3.3 Sb [236]
0 0.3 0.7 72348 4 Sb [236]
0.5 0.5 0 63378 4 Sb [237]
0 0.9 0.1 107439 3.3 Sb [145]
0 0.2 0.8 93747 4.5 Sb [238]
0 0 1 85915 6.5 Sb [238]
0.5 0.25 0.25 43947 3.58 Sb [133]
0.43 0.28 0.29 35671 5.6 [239]
0.21 0.4 0.39 50008 9.1 [239]

Table D.2. Experimental Transport Function (�E0) and Lattice Thermal Conductivity (L)
Values from Literature for the XFeSb System All values are reported for samples with 20% Ti
doping. The L values were calculated by subtracting o↵ the electronic thermal conductivity term modeled
using the Wiedemann-Franz law.

x(VFeSb) x(NbFeSb) x(TaFeSb) �E0 (S/m) L (W/m/K) Dopant Source
0.05 0.95 0 120353 4.85 Ti [98]
0.1 0.9 0 129429 4.52 Ti [98]
0.25 0.75 0 115760 3.69 Ti [98]
0.4 0.6 0 97073 3.07 Ti [98]
0.55 0.45 0 92508 3.28 Ti [98]
0.7 0.3 0 81242 3.18 Ti [98]
0.85 0.15 0 76770 3.44 Ti [98]

Continued on next page
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Table D.2 – continued from previous page
x(VFeSb) x(NbFeSb) x(TaFeSb) �E0 (S/m) L (W/m/K) Dopant Source
1 0 0 47298 3.17 Ti [98]
0 1 0 130483 4.45 Ti [98]
0 0.96 0.04 666753 3.99 Ti [97]
0 0.88 0.12 540480 3.47 Ti [97]
0 0.8 0.2 550582 2.95 Ti [97]
0 0.76 0.24 651593 2.12 Ti [97]
0 0.68 0.32 572491 2.39 Ti [97]
0 0.64 0.36 548937 2.13 Ti [97]
0 0.6 0.4 538820 1.76 Ti [97]
0.05 0 0.95 138242 2.52 Ti [99]
0.1 0 0.9 177881 2.33 Ti [99]
0.15 0 0.85 247795 2.46 Ti [99]
0.1875 0 0.8125 74954 1.22 Ti unpublished
0.1 0.7 0.2 87960 0.95 Ti unpublished
0.63 0 0.37 53170 3.26 Ti unpublished
0.34125 0.325 0.33375 44879 2.03 Ti unpublished
0 0.8 0.2 121976 3.65 Ti unpublished
0 0.5 0.5 136446 3.64 Ti unpublished
0 0.2 0.8 82195 3.33 Ti unpublished
0.6 0.2 0.2 41556 2.54 Ti unpublished
0 0 1 151851 5.5 Ti unpublished
0 1 0 143928 7.42 Ti unpublished

Table D.3. Experimental Transport Function (�E0) and Lattice Thermal Conductivity (L)
Values from Literature for the XCoSb System The �E0 values were calculated using the approach
described in Section 4.2.1 when S and � pairs were available for samples at multiple doping levels. The
L values were calculated by subtracting o↵ the electronic thermal conductivity term modeled using the
Wiedemann-Franz law.

x(TiCoSb) x(ZrCoSb) x(HfCoSb) �E0 (S/m) L (W/m/K) Dopant Source
0 0 1 84928 4.39 Sb [240]
0 0.5 0.5 73550 2.64 Sb [240]
0.5 0 0.5 68372 2.33 Sb [240]
0.5 0.5 0 55161 4.08 Sb [240]
0 1 0 70354 4.39 Sb [240]
1 0 0 56680 6.46 Sb [240]
0.3 0.35 0.35 68706 2.4 Sb [241]
1 0 0 14.7 [242]

Continued on next page
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Table D.3 – continued from previous page
x(TiCoSb) x(ZrCoSb) x(HfCoSb) �E0 (S/m) L (W/m/K) Dopant Source
0.9 0.1 0 10.9 [242]
0.8 0.2 0 7.64 [242]
0.6 0.4 0 46205 6.97 Ni [242]
0.5 0.5 0 7.6 [242]
0 1 0 15.6 [243]
0 0 1 11.9 [244]

Table D.4. Experimental Transport Function (�E0) and Lattice Thermal Conductivity (L)
Values from Literature for the XCoSn System The �E0 values were calculated using the approach
described in Section 4.2.1 when S and � pairs were available for samples at multiple doping levels. The
L values were calculated by subtracting o↵ the electronic thermal conductivity term modeled using the
Wiedemann-Franz law.

x(VCoSn) x(NbCoSn) x(TaCoSn) �E0 (S/m) L (W/m/K) Dopant Source
0 0 1 38603 5.94 Sb [245]
0 1 0 91932 7.72 Sb [245]
0 0.4 0.6 56619 4.8 Sb [245]
1 0 0 16316 12.8 [246]
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APPENDIX E

Grain Boundary Scattering: Model Parameters and Strain Field

Descriptions

E.1. Model Parameters

The model parameters used in the Kapitza resistance calculations for the Si-Si tilt and twist
boundary and Si-Ge heterointerface described in Section 5.4 are listed in Table E.1 below. Across a
temperature range of 100- 800�C, the temperature dependence of the input parameters due to lattice
thermal expansion had a negligible impact on the phonon relaxation time predictions. However,
temperature dependent inputs could be determined from quasi-harmonic DFT calculations, for
example.

Table E.1. Parameters used in Model Table of material property inputs used in the thermal boundary
resistance model for the Si Si tilt and twist grain boundaries as well as the Si Ge heterointerface.

Properties Silicon Germanium
Speed of sound (vs; m/s) [19] 6084 5400

Atoms per unit cell (N) 2 2
Volume per atom (V ; Å3) [19] 19.7 22.7

Density (⇢, kg/m3) 2330 5323
Sti↵ness coe�cients (c11, c12, c44; GPa) [247,248] 165.6, 63.9, 79.5 126.0, 44.0, 67.7

Bulk Modulus (G; GPa) [247] 97.83
Grüneisen parameter (�) [181] 1

The most computationally demanding portion of the model is the calculation of the spectral
relaxation time, owing to the integrals over incident phonon direction and phonon frequency.
Running serially on a laptop, the calculation of each spectral relaxation time value ⌧(!) takes
2.16 minutes. We find that a spline of 50 spectral relaxation time ⌧(!) values are su�cient to
converge the thermal boundary resistance RK. Therefore, running serially on a laptop, each thermal
boundary resistance calculation takes approximately 2 hours.

E.2. Twist Boundary Strain Field Details

The displacement vector field for a screw dislocation has only one non-zero component oriented
along the line of the dislocation. Therefore, a dislocation with Burgers vector (b) parallel to ẑ has
the following displacement field [190, p. 60]:
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un = (0, 0, uz),(E.1)
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.

The displacement produces a pure shear state, with only two non-zero strain components:

✏xz = ✏zx =
1

2

@uz
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4⇡(x2 + y2)
,(E.2)

✏yz = ✏zy =
1

2

@uz

@y
=

bx

4⇡(x2 + y2)
.

Next, we will consider the YZ array of screw dislocations spaced by D along the y-axis in order
to model a low-angle twist boundary. The stress components from the dislocation array ✏

YZ
ij can

be determined from the following summation:

(E.3) ✏
YZ
ij =

1X

n=�1
✏ij(x, y � nD).

Analytic solutions to the above summation can be obtained, and are shown below [180, pp. 698-
700]:

✏
YZ
xz = � b

2D

✓
sin (2⇡y/D)

cosh (2⇡x/D) � cos (2⇡y/D)

◆
,(E.4)

✏
YZ
yz =

b

2D

✓
sinh (2⇡x/D)

cosh (2⇡x/D) � cos (2⇡y/D)

◆
.

One can then evaluate the limit as |x| ! 1:

lim
x!1

✏
YZ
xz = 0,(E.5)

lim
x!1

✏
YZ
yz = sgn(x)

b

2D
.

The ✏
YZ
yz shear strain component persists at the long-range limit, converging to a constant value.

This is energetically prohibitive for the twist boundary as a whole and shows the importance of
including the ZY array of dislocations with sense vector along the y-axis, periodically spaced on
the z-axis. The strain components from this array are the negative of Equation E.4 with y and z

swapped, and their long-range limits are,

lim
x!1

✏xz = 0,(E.6)

lim
x!1

✏yz = �sgn(x)
b

2D
,(E.7)

which exactly cancel the far-field strain of the first array if both share the same b/D ratio [180].
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E.3. Heterointerface Strain Field Details

As with the twist boundary, the heterointerface is taken to lie in the yz-plane with two
interpenetrating arrays of dislocations, but now with edge character. Therefore, the strain fields
are essentially equivalent to the tilt boundary case, requiring only a rotation such that the extra
half-plane points in the x direction. They are given below for one dislocation through the origin in
each of the two arrays. The notation follows Ref. [181].

Table E.2. Heterointerface Strain Field Components The real-space strain field components for both
the YZ and ZY arrays of a semicoherent heterointerface normal to the x direction. The dilatational ✏�,
shear or deviatoric ✏S , and rotational ✏R components are listed here.

YZ array ZY array

✏� =
�b(1 � 2⌫)

2⇡(1 � ⌫)

x

(x2 + y2)
✏� =

�b(1 � 2⌫)

2⇡(1 � ⌫)

x

(x2 + z2)

✏S =
b

4⇡(1 � ⌫)

y(y2 � x2)

(x2 + y2)2
✏S =

b

4⇡(1 � ⌫)

z(z2 � x2)

(x2 + z2)2

✏R =
b

⇡

y

x2 + y2
✏R =

b

⇡

z

x2 + z2

Again, considering the YZ array, analytic solutions exist for the real-space sum over the misfit
edge dislocations periodically-spaced by D. The analytic solutions for the three, independent non-
zero strain components ✏

YZ
ij in a Cartesian basis are [180, pp. 695-697] [187]:

✏
YZ
xx =

b

4(1 � ⌫)D


�2⌫SX(CX � cY ) + 2⇡X(CXcY � 1)

(CX � cY )2

�
,(E.8)

✏
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4(1 � ⌫)D


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✏
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b

2(1 � ⌫)D


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2⇡XSX � CX + cY

(CX � cY )2
)

�
,(E.10)

where X ⌘ x/D, Y ⌘ y/D, sY ⌘ sin2⇡Y , cY ⌘ cos2⇡Y , SX ⌘ sinh2⇡X, and CX ⌘ cosh2⇡X.
We can again evaluate the limit as |x| ! 1:

lim
x!1

✏
YZ
xx = sgn(x)

�b⌫

2(1 � ⌫)D
,(E.11)

lim
x!1

✏
YZ
yy = sgn(x)

b

D
,(E.12)

lim
x!1

✏
YZ
xz = 0.(E.13)
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Here, the dilatation strain components (✏YZ
xx and ✏

YZ
yy ) persist in the far field limit, while the shear

strain decays. Additionally, the far-field dilatational strain is not cancelled out by the ZY array.
However, as noted in the text, the nonzero dilatation in the far field is artificial since the reference
lattices are di↵erent on either side of the interface. We reiterate that this far-field dilatational strain
is subtracted and treated with an acoustic mismatch term capturing the step function change in
sti↵ness matrix at the interface.
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List of Figures

1.1 zT Dependence on Doping Level The constituents of the figure-of-merit zT

each have a dependence on doping level, such that zT itself tends to be sharply
peaked at an optimal doping level. Therefore, without the assurance of optimal
doping, zT is an inadequate metric of the true potential of a thermoelectric
material. In order to reliably compare literature values, doping-independent
metrics such as the transport function �E0 are therefore preferable. 15

2.1 Schematic of Dispersion Approximations Comparison of phonon
dispersion approximations for half-Heusler compound, HfNiSn. In comparison
to the full phonon dispersion (a), the Debye model (b) uses the constant
classical speed of sound, which assigns a large phonon velocity even to relatively
flat optical modes. The Born von Karman dispersion (c) corrects for this by
having the group velocity approach 0 at the zone edge using a sinusoidal form.
Finally, the hybrid Debye + Einstein model (d) uses separate functional forms
to treat the acoustic branch as propagating phonons and optical branches as
localized Einstein modes, which couple to one another. A Born von Karman +
Einsten model can also be used to describe the acoustic branch. 24

2.2 Lattice Thermal Conductivity Trends with Temperature Plot inset
shows the log-log trend to highlight temperature dependencies at the low- and
high-temperature regimes. At the low-T limit, L varies as T

3, stemming from
the heat capacity. A rollover occurs, characterized by the onset of resistive
phonon-phonon scattering processes. Finally, beyond the Debye temperature,
L / T

�1, stemming from the phonon-phonon relaxation time. 30

2.3 Defect Dimensionality and Fermi’s Golden Rule The main components
of Fermi’s Golden Rule for defects are the number density of defects (nd),
the volume containing the defect (Vd), the squared scattering matrix element
(|H 0|), and the phase space for the scattering transitions (g(!)). The last two
terms contribute frequency dependencies. The defect dimensionality influences
the momentum conservation and thus the available phase space. In contrast,
the squared matrix element is expected to be proportional to !

2 for any defect
dimensionality. 34

2.4 Phonon Gas Model Schematic In the phonon gas model, the thermal
conductivity can be written as an integral over the phonon spectrum, where
the heat carried by the phonons in each frequency integral is determined by
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the amount of heat they carry (spectral heat capacity; C(!)), the velocity of
the phonons (spectral group velocity; vg(!)), and the time the phonon travels
between scattering events (spectral lifetime; ⌧(!)). 37

3.1 Schematic of Point Defect Perturbations The lattice perturbation
mechanisms of a point defect include a mass di↵erence (�M), harmonic force
constant di↵erence (�K), and strain scattering from site radius di↵erence
(�R). Each contribution perturbs the lattice Hamiltonian (E) through a
di↵erent term. T is the kinetic energy of the lattice, and U2 and U3 are the
harmonic and anharmonic contributions to the lattice potential energy. 43

3.2 Klemens Model Comparisons to Simulation and Experiment Thermal
conductivity reductions due to point defect scattering for two systems at 300
K: (a) Si based on DFT dispersions and T matrix scattering theory (points)
and the Klemens model (lines) and (b) Mg2Sn1–xSix from experiment (points),
T matrix theory (dotted), and Klemens model (solid) [65,73,74] 44

3.3 Phonon Dispersion Diagrams Implied by the Virtual Crystal and
Monatomic Lattice Approximations The MLA and VCA represented in a
1D diatomic chain. In the MLA, the primitive unit cell is unaltered, but the
atoms contained within are summed into a single, vibrating mass. As a result,
there is no optical branch. In the VCA, the primitive unit cell is reduced to one
atom, causing a tupling of the Brillouin zone. The large acoustic branch in this
case includes the phonon states previously in the optical branch. 48

3.4 Unit Cell Basis: Schematic of Microstates with Di↵ering Scattering
Strengths In an example 2-atom primitive unit cell (shown in dotted line),
three possible microstates exist, containing 0,1, or 2 impurity atoms. In the
unit cell basis, each microstate would contribute a term to the overall scattering
parameter (�). 48

3.5 O↵-stoichiometric Defect Scattering Model Applied to Literature
Data Both vacancy and interstitial scattering data from literature (points) can
be described using a simple treatment of broken (or added) bonds based on the
virial theorem (line). Normalized thermal conductivity reductions for systems
with (a) stoichiometric vacancies, where [] represents a vacancy [88,89,91] and
(b) stoichiometric interstitial atoms [59,96] 53

3.6 VFe2Al: Lattice Thermal Conductivity Trends with Composition
and Temperature L trends with changes in composition are well described
by analytic alloy scattering models. (a) L versus composition curves from the
literature [101–103] are modelled using the Klemens alloy scattering model.
(b) L versus temperature curves with varying Co dopant concentrations from
Lu et al. [104] are modelled using point-defect and umklapp scattering theory
fit with a single Grüneisen parameter of 2.78. 54

3.7 E↵ect of L on zT Trends with Carrier Concentration n The zT

versus carrier concentration (n) curves at 300 K from a two-band model for
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the valence and conduction band usiing a bandgap value of Eg = 0.02 eV.
The blue curve includes the n-dependence of L is included using the point
defect scattering strength of Ge for n-type and Re for p-type. In contrast, the
orange curve uses the constant pristine L value of 28 W/m/K. Finally, we
compare to experimental zT scatter points for both the Ge-doped [101] and
Re-doped [103], which show good correspondence with the two-band model
combined with the Klemens alloy scattering model for L. Here, we emphasize
that including the n-dependence of L is important both for modelling the
correct magnitude of zT , but also the correct n values at which it is optimized.
The shift in optimal n value is signified by the dotted gray lines. 55

4.1 Schematic of Muggianu Model The geometric Muggianu model provides
a method to determine a ternary excess quantity (multicolored center
composition) from a weighted sum of corresponding binary excess quantities.
Binary compositions are shown along binary systems as red, blue, and green
scatter points. 66

4.2 Thermoelectric Transport Properties for (Ti, Zr, Hf)NiSn System
Alloy model predictions for the (a) electronic transport function �E0, (b) lattice
thermal conductivity L, and (c) quality factor B for the (Ti,Zr,Hf)NiSn system.
Experimental scatter points are overlaid, and in cases where a composition was
measured multiple times, the median value is plotted here. Contour lines from
the DFT investigation by Eliassen et al. [123] are reproduced in panel (b) for
comparison purposes. See Appendix Section D for full data. 69

4.3 Summary of Thermoelectric Modelling and Data for Remaining
Compound Families Alloy model predictions with overlaid experimental
scatter points for three compound families: XFeSb, XCoSn, and XCoSb. For
each system, the electronic transport function �E0, lattice thermal conductivity
L, and quality factor B are shown. Although each compound family has the
same motif for lattice thermal conductivity, with L minimized along the binary
with highest mass contrast, the B factor plots show very di↵erent patterns
of high and low performance regions. This speaks to the trade-o↵ between
thermal and electronic property variation with alloying. 71

4.4 Lattice Thermal Conductivity of IV-VI Reciprocal System Lattice
thermal conductivity heatmap in the quaternary IV-VI semiconductor system.
Both the experimental measurements (a) and alloy model (b) show the thermal
conductivity minimized near the equiatomic Pb0.5Sn0.5Te0.5Se0.5 composition.
In this system, substitution on both the cation and anion site yields a peak
mass and strain contrast (c,d) near the center of the compositional space. 72

4.5 Hall Hole Mobility of IV-VI Reciprocal System Hall mobility heatmap
in p-type quaternary PbTe-PbSe-SnTe-SnSe alloy system. The experimental
data (a) is reproduced from Ortiz et al. [111] and is compared to the alloy
mobility model extrapolated using the Muggianu method (b). Finally, we plot
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deviation between the experiment and mobility |µexp � µalloy|, which helps to
isolate the e↵ect of density-of-states variations (�g) across the alloy range. 73

4.6 Orthogonal Point Defect Scattering Strategies Multicomponent alloy
design strategies for reduced thermal conductivity due to point defect scattering
should take advantage of orthogonal scattering e↵ects. (a) Schematic of lattice
with 2-atom primitive unit cell basis (encircled by dotted line). (b) Alloy
elements, labelled 1 and 2, substitute on di↵erent sublattices. (c) Alloy element
1 contributes significant mass contrast while alloy element 2 contributes
significant strain contrast. 74

4.7 Example Phonon Bandstructure Colored by Tamura Model Weighting
Term The phonon bandstructure of NaCl, in which phonon states are colored
by the eigenvector overlap factor �q(s), which weights the mass di↵erence
scattering term in the Tamura model. In this case, the bandstructure is colored
by the �q(s = Na) term, and as the lighter element, Na follows the expected
behavior by showing higher participation in the higher frequency range. The
s = Cl case is the exact negative of the heatmap shown, such that the scattering
frequency window is in the lower frequency range. 76

4.8 Decoupled Mass and Strain Scattering in Multicomponent Alloy
Example ternary alloy in which the mass contrast (�M) and strain contrast (�R)
are maximized along di↵erent binary systems. The total scattering parameter �
is then peaked in the middle of the ternary alloy space, such that the minimum
thermal conductivity region (encircled) is also centered around the equiatomic
composition. 77

4.9 Physics-Informed Gaussian Process Regression Transport Function
Model (a) Prediction values and (b) their associated standard deviations from
the physics-informed Gaussian process regression model for �E0. The Ti-rich
region with high �E0 is reported to be the result of an increase in Seebeck
e↵ective mass [137]. This high-performance region is not captured by the
physics-based alloy scattering models alone. 79

5.1 Temperature Profiles for Landauer Transmissivity and Scattering
Transport Theories Temperature profiles in a sample with an average grain
size Lx. In the scattering model, the interface perturbation modifies the overall
phonon lifetime and maintains a uniform temperature gradient across the
sample. Landauer theory allows for spatial variation of the applied field and
supports temperature drops spaitally localized at the interfaces. 85

5.2 Schematic of long and short mean-free-path phonons in a
polycrystalline material [modeled o↵ of Figure 1 in Ref. [161] ]. Short
mean-free-path phonons will be scattered by mechanisms within the grain
(phonon-phonon interactions, point defects) and will, therefore, not interact
with grain boundaries and interfaces. 88
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5.3 Spectral Thermal Quantities Extrapolated to the � Point Spectral
thermal quantities (CV, v

2
g,xx, ⌧

�1 = �) for Si are calculated using the
tetrahedron method on an (11,11,11) mesh. The red curves near the � point
reflect the frequency-dependencies based on a Debye model and umklapp
phonon-phonon scattering. While the value for v

2
g,xx is computed from DFT

acoustic velocities at the � point, the red curves for CV and ⌧
�1 are fit. An

extrapolated value for lim!!0 xx is then computed using the phonon gas
model. The value of 4.95 W/m/K is close to that estimated using Equation 5.7
of 4.16 W/m/K. 89

5.4 Adjustment of Spectral Thermal Conductivity at � Point (a) Rather
than approaching zero at the � point, L is modified to converge to a value
of 4.95 W/m/K/THz. (b) The impact of the adjustment is shown in the
cumulative thermal curve, which has a higher slope near � and a higher overall
thermal conductivity, closer to the converged  value attained using a higher
mesh density. 90

5.5 Schematic of Interfacial Scattering Mechanisms and Implied Phonon
Transitions (a) The acoustic impedance mismatch across the interface can lead
to a reflection or transmission probability in analogy to Snell’s law. (b) Many
low-energy interfaces can be decomposed into periodic arrays of dislocations,
which act as a di↵raction grating for phonons. The dislocation array can impart
quantized momentum in units of 2⇡/D, where D is the dislocation spacing. (c)
Interfaces serve as a sink for point defects, leading to additional roughness and
compositional disorder. These e↵ects are often modeled as a source of di↵use
phonon scattering, in which only phonon energy is conserved at the interface.
(d) Finally, if the vibrational basis set includes the interfacial vibrational
modes, such as the localized mode portrayed here, coupling to interfacial modes
can also enhance or diminish the interfacial thermal conductance through
inelastic processes. 92

5.6 Interfaces Described by a Grid of Linear Defects (a) Schematic of
a twist boundary with misorientation angle ✓. The black lines indicate
screw dislocations and the blue/green shading indicates shear strain. (b) A
semicoherent heterointerface between two materials with lattice constants a1

and a2. The black lines indicate edge dislocations and the blue/green shading
indicates hydrostatic strain. 95

5.7 Two Interfacial Scattering E↵ects Addressed: Acoustic Mismatch and
Dislocation Strain Scattering at a semicoherent heterointerface stems from
the periodic strain fields at a misfit dislocation array as well as the step function
change in acoustic impedance. (a) Analytic solution for the dilatational strain
field component ✏yy from an infinite array of misfit dislocations periodically
spaced along the y-axis [180, pp. 695-697]. (b) Cross-section of 3D dilatational
strain field, showing an underlying step function (dotted red line). This is
indicating a change in lattice parameter (a) from material 1 to 2, rather than
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long-range strain. We subtract o↵ the step function in strain, and instead treat
this e↵ect with an acoustic mismatch scattering term. This leaves the physical
strain (✏e↵), which we treat with an anharmonic strain scattering potential. 98

5.8 Dislocation Structure of a Symmetric Twist Grain Boundary
Schematic of two orthogonal screw dislocation arrays, with Burgers vectors b1

and b2, respectively, producing a twist misorientation (✓) at an interface. 99

5.9 Diagrams of Dislocation Grid and Associated Scattering Phase Space
(a) Diagram of orthogonal YZ and ZY arrays in dislocation cross-grid. In this
case, equal D spacing is assumed for both. (b) Phase space diagram portraying
the independent scattering of the YZ and ZY dislocation array, which overlap
only at the Qk = 0 (n0 = m

0 = 0) condition. 102

5.10 Group velocity Slowness Plots for Silicon Direction dependence of the
acoustic phonon group velocities potted on a unit sphere. Fast/slow secondary
correspond approximately to the two transverse branches, and primary is
approximately the longitudinal branch. Produced using the christoffel
package [27]. 107

5.11 Comparison between Acoustic Mismatch Perturbation Potential and
Classical Method. a) (copy of Figure 5.1) A schematic illustration of two
common models used to describe heat conduction in materials with interfaces.
The blue line depicts the Landauer based model where a thermal boundary
resistance arising from the conduction channel having a interfacial transmission
probability or t(!) > 0, induces a sharply localized drop in temperature. The
red line depicts a model based on phonon scattering theory and Matthiessen’s
rule, where each scattering mechanism contributes a scattering rate (⌧(!)�1),
and together modify the materials thermal conductivity homogeneously. b)
A comparison between the transmissivity calculated using classical acoustic
mismatch (AMM) theory and the interface perturbation theory, showing that
the two cases di↵er by no more than 5% up to �v/v = 0.5. 109

5.12 Relaxation Time versus Incident Phonon Direction Three-dimensional
polar plots of the scattering rate ⌧

�1(q) (in GHz) versus incident angle (✓i,�i)
of an incoming phonon, holding phonon frequency constant. The results shown
correspond to a twist boundary with ✓ = 5� at the (a) long wavelength limit
(q = qmax/20), where acoustic mismatch scattering dominates and the (b) short
wavelength limit (q = (2/3)qmax), where the periodic strain field scattering
e↵ect is picked up. 111

5.13 Si Twist Boundary Phonon Lifetime Predictions (a) Spectral phonon
lifetimes for a Si-Si twist interface at various misorientation angles (b) The log-
log plot of this relaxation time shows a power law crossover from !-independent
to ⇠!

�1, indicating a transition from planar-defect to linear-defect scattering.
(c) The long-wavelength limit of the relaxation time is plotted against grain
boundary angle, revealing a periodic variation stemming from the symmetry of
the acoustic velocities. 111
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5.14 Comparison of Si Tilt and Twist Grain Boundary Scattering (a)
The spectral relaxation time (⌧) converges at the long-wavelength limit, but
decreases faster in the frequency-dependent regime for the twist boundary, when
dislocation strain scattering is activated. (b) The twist boundary, therefore, is
predicted to have about 1.3⇥ the thermal boundary resistance (RK). 112

5.15 Thermal Boundary Resistance correlates with Read-Shockley (R-S)
Grain Boundary Energy Twist boundary model predictions of the thermal
boundary resistance (RK) are shown as blue scatter points (mapped to right
axis) and closely follow the Read-Shockley interfacial energy (red line; mapped
to left axis). Both additionally trend with misorientation angle ✓ for low angle
grain boundaries. Similar trends between RK, R-S energy, and ✓ have also been
shown through experiment and simulation [170,183]. 114

5.16 Si-Ge Heterointerface Phonon Lifetime and Kapitza Resistance
Predictions Si-Ge heterointerface scattering using a Born-von Karman
phonon dispersion (a) Spectral lifetime for a Si-Ge heterointerface with a misfit
dislocation spacing of 7 nm, comparing model with acoustic mismatch and
dislocation strain (solid) to the model with acoustic mismatch alone (dotted)
(b) Thermal boundary resistance predictions versus temperature from the
heterointerface model with (solid) and without (dotted) dislocation strain
scattering. Dislocation strain accounts for 50% of the overall thermal resistance.116

5.17 Di↵raction E↵ects and Dimensionality Crossover in Dislocation Core
Arrays Phonon lifetimes including the e↵ects of dislocation core and acoustic
mismatch scattering for a 7� symmetric Si twist boundary. (a) Scattering rate
plot for a phonon of normal incidence to the interface. Di↵raction peaks occur
at intervals of |k| = 2⇡n/D, where there is a spike in the number of allowed
phonon transitions. (b) The log-log plot of the spectral relaxation time depicts
smooth cross-over between !-independent scattering (signature of planar
acoustic mismatch scattering) and !

�3 scattering (signature of dislocation core
scattering). An intermediate regime with !

�2 scattering may also be present, in
which long wavelength phonons view the array of dislocation cores as a planar
mass defect. 118

5.18 Dislocation Core versus Strain Scattering Comparison Comparison
between the dislocation core and dislocation strain scattering e↵ects in a 7�

symmetric Si twist boundary. Phonon lifetimes (a) and Kapitza resistance
(b) are compared between 1) a model including dislocation core and acoustic
mismatch scattering (DC + AM) and 2) a model including dislocation strain
and acoustic mismatch scattering (DS + AM). The strain scattering is shown
to be the dominant e↵ect at the interface, such that the contribution from
dislocation core scattering can be ignored. 119

6.1 Process-Structure-Properties-Performance Diagram for Thermoelectrics
Relationships between sample preparation, characteristics, properties, and
performance are highlighted for bulk thermoelectric compounds. In an
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integrated computational materials engineering (ICME) approach, the linkages
are described through analytic or simulation-based methods. 124

C.1 Phonon-Vacancy Scattering: Virial Theorem Model versus
Experiment The mass di↵erence model with the unit cell volume error (light
blue) is compared to the mass di↵erence only model described in this study
(dark blue) as well as the vacancy model (dashed) with the virial treatment for
broken bonds, which best captures the L reduction [88]. 155
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