
NORTHWESTERN UNIVERSITY

VBOT: MOTIVATING COMPUTATIONAL AND COMPLEX SYSTEMS FLUENCIES

WITH CONSTRUCTIONIST VIRTUAL/PHYSICAL ROBOTICS

A DISSERTATION

SUBMITTED TO

THE GRADUATE SCHOOL OF

NORTHWESTERN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Learning Sciences

By

Matthew W. Berland

EVANSTON, ILLINOIS

June 2008

Chapter 1: Introduction

2

© Copyright by Matthew W. Berland 2008

All Rights Reserved

Chapter 1: Introduction

3

ABSTRACT

VBOT: MOTIVATING COMPUTATIONAL AND COMPLEX SYSTEMS FLUENCIES

WITH CONSTRUCTIONIST VIRTUAL/PHYSICAL ROBOTICS

by Matthew W. Berland

As scientists use the tools of computational and complex systems theory to broaden science

perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school

students broaden their perspectives using appropriate tools. The goals of this dissertation project

are to build, study, evaluate, and compare activities designed to foster both computational and

complex systems fluencies through collaborative constructionist virtual and physical robotics. In

these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow

students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory

simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students

collaborate by acting in a common space, teaching each other, and discussing content with one

another. As a result, the students improve both their computational fluency and their complex

systems fluency, where fluency is defined as the ability to both consume and produce relevant

content (DiSessa, 2000). To date, several systems have been designed to foster computational

and complex systems fluencies through computer programming and collaborative play (e.g.,

Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant

Chapter 1: Introduction

4

fluencies through collaborative play, they become mutually reinforcing. In this work, I will

present both the design of the VBOT virtual/physical constructionist robotics learning

environment and a comparative study of student interaction with the virtual and physical

environments across four middle-school classrooms, focusing on the contrast in systems

perspectives differently afforded by the two environments. In particular, I found that while

performance gains were similar overall, the physical environment supported agent perspectives

on aggregate behavior, and the virtual environment supported aggregate perspectives on agent

behavior.

The primary research questions are:

• What are the relative affordances of virtual and physical constructionist robotics systems

towards computational and complex systems fluencies?

• What can middle school students learn using computational/complex systems learning

environments in a collaborative setting?

• In what ways are these environments and activities effective in teaching students

computational and complex systems fluencies?

Chapter 1: Introduction

5

ACKNOWLEDGMENTS

My advisor, Uri Wilensky, provided the means, the impetus, the instruction, and the support for

this whole project. He encouraged me when I needed encouraging, he kept me on track when I

needed it, and his keen insights forced me to think more deeply about every tacit assumption

behind the project and its goals. This project stems, fundamentally, from my admiration of and

firm belief in his work and the work of his advisor, Seymour Papert.

The two other members of my committee, Bruce Sherin and Ian Horswill, provided invaluable

support and teaching throughout my graduate career. Both of them gracefully indulged my

tendency to discourse at length, always steering me back to intellectually stimulating

conversation.

Many thanks to the kind and brilliant people of the Center for Connected Learning and

Computer-Based Modeling at Northwestern. Just a few of the people there that contributed

immensely to my work and my sanity: Seth Tisue, Eric Betzold, Esther Verreau, Pratim

Sengupta, Dor Abrahamson, Sharona Levy, Bill Rand, Michelle Wilkerson, Josh Unterman,

Spiro Maroulis, Paulo Blikstein, Forrest Stonedahl, Matt Hellige, and Craig Brozefsky. The CCL

was an incredible place for bouncing ideas off of some of the smartest, nicest people in the field.

The CCL provided me with a meaningful critical research community without which the work

Chapter 1: Introduction

6

would be greatly impoverished. Particular thanks are due to Michelle and Josh, who acted as

primary co-facilitators in my deployments, and to Seth, whose advice was invaluable in building

robust versions of VBOT.

Thanks to the teachers, the middle-school students, the other subjects, the undergrad aides, the

Northwestern professors, and the many other people instrumental in getting this project working.

Thanks to professors at Brown and ISS for inspiring me and giving me direction, especially Bob

Cooper, Raoul Meyer, Leslie Kaelbling, Eugene Charniak, Len Tennenhouse, and Bob Scholes.

None of this would have been possible without the aid, support, and very hard work of my sister,

Nicole, my parents, Lincoln and Nancy, and my friends Ericka and Michael; every one of them

taught me much and helped me more. This text was read and reread ceaselessly by all of those

involved. In particular, I believe that I am already committed to edit Nicole’s first book. I owe all

of them more hours than I could possibly tally. Any errors are surely my own, and any

particularly clear passages are probably a result of my zealous editorial staff.

Finally, thanks to my wife, Leema, for everything always.

Chapter 1: Introduction

7

ABSTRACT... 3

ACKNOWLEDGMENTS ... 5

CHAPTER 1: INTRODUCTION ..10

1.1 PROLOGUE: STORY OF A STUDENT .. 10

1.2 ABSTRACT ..11

1.3 METHODS & DATA... 12

1.4 RESULTS & FINDINGS .. 13

1.5 CONTRIBUTIONS ... 15

1.6 THESIS INDEX ... 17

CHAPTER 2: THE STRUCTURE, SYNTAX, AND DESIGN OF VBOT ... 19

2.1 INTRODUCTION... 19

2.2 SYNTAX ..26

2.3 EXAMPLE PROGRAMS .. 34

2.4 VBOT USER INTERFACE ... 38

2.5 VBOT ACTIVITIES ... 41

2.6 PHYSICAL VBOT INTERFACE..46

2.7 RELATED ENVIRONMENTS ... 48

CHAPTER 3: RELATED LITERATURE... 62

3.1 DEFINING COMPUTATIONAL AND COMPLEX SYSTEMS FLUENCIES ... 62

3.2 LEARNING THEORIES FOR SUPPORTING COMPLEX SYSTEMS AND COMPUTATIONAL FLUENCY...................... 69

3.3 THE VIRTUAL AND THE PHYSICAL IN ROBOTICS ..75

3.4 OPEN QUESTIONS ... 76

CHAPTER 4: CONTEXT, METHODOLOGY, AND DATA COLLECTION ... 81

Chapter 1: Introduction

8
4.1 P1 – INITIAL PILOT... 82

4.2 P2 – SECOND PILOT ... 84

4.3 FI – FINAL IMPLEMENTATION ...92

4.4 PRE-TEST AND POST-TEST.. 104

CHAPTER 5: STUDENT TINKERING AND STUDENT SHARING ...109

5.1 TINKERING..111

5.2 SHARING ...117

5.3 TINKERING, SHARING, AND CIRCUIT QUALITY ..121

5.4 TEACHER, SCHOOLS, AND VBOT ...131

5.5 GENDER AND PERFORMANCE ..132

5.6 UNDERSTANDING SHARING, TINKERING, AND PERFORMANCE ...133

CHAPTER 6: THE VIRTUAL AND THE PHYSICAL ..136

6.1 HOW DID VIRTUAL AND PHYSICAL STUDENTS PLAY DIFFERENTLY?..137

6.2 A CIRCUIT PROGRESSION IN VIRTUAL AND PHYSICAL CLASSES AT OLD GROVE ..139

6.3 HOW DID VIRTUAL AND PHYSICAL STUDENTS PERFORM DIFFERENTLY? ...146

6.4 CONTRASTING COMPUTATIONAL AND COMPLEX SYSTEMS FLUENCIES IN VIRTUAL AND PHYSICAL CLASSES150

CHAPTER 7: DESIGN PRINCIPLES ...160

7.1 MOTIVATING COMPLEX SYSTEMS AND COMPUTATIONAL FLUENCIES ...160

7.2 EVALUATING DESIGN PRINCIPLES...163

7.3 DESIGN CONCLUSIONS...176

CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTIONS ...179

8.1 WHAT IS VBOT?..179

8.2 WHY WAS THIS STUDY NECESSARY? ...180

Chapter 1: Introduction

9
8.3 WHY DID WE USE THESE METHODS?..182

8.4 DID WE MEET OUR GOALS? ..183

8.5 WHAT DID WE FIND? ..184

8.6 HOW DID WE ADD TO THE FIELD? ..186

8.7 WHERE WERE THE PROBLEMS?..191

8.8 FUTURE DIRECTIONS ..192

8.9 IN SUMMARY ..194

REFERENCES..195

APPENDIX 1 – PHYSICAL VBOT ..209

APPENDIX 2 – ASSESMENT TOOLS ..212

Chapter 1: Introduction

10

Chapter 1: Introduction

1.1 Prologue: Story of a student

Alicia is a terrible student: if she continues at her current level of performance, she will fail 8th

grade. School is a necessary but unwelcome intrusion into her preferred lives in MySpace or

The Sims. Within her social network, Lisa is the least successful academically. Although

unhappy with her grades, her dislike of science precludes the enthusiasm necessary to improve

her work. Part of the problem is that she recently transferred into her current school that proved

more academically rigorous than her previous school. As her grades suffered, her self-

confidence has eroded.

When we entered the classroom with our robots on the first day of the experiment, she loudly

and uncomfortably giggled at the notion of piloting her own robots and was sheepish around the

computers. By day 3, she was loudly voicing her opinions on how to design the control program,

and, by day 5, her team, led mostly by her, won the bot soccer competition with a superior

program. Furthermore, she described an understanding in networks and systems that she could

not articulate previously. In Chapter 5, we will look at Alicia’s performance, and how she used

our environment to learn, what went right, and what went wrong.

This project is about stepping into the lives of students like Alicia and finding ways to use her

Chapter 1: Introduction

11

motivation, interest, and intelligence to enjoy learning by equipping her with the lenses of

complex systems and computer science. This project is designed to find the best ways to use

those lenses with a complex game through physical robotics or virtual robotics.

1.2 Abstract

As scientists use the tools of computational and complex systems theory to broaden science

perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school

students broaden their perspectives using appropriate tools. The goals of this dissertation project

are to build, study, evaluate, and compare activities designed to foster both computational and

complex systems fluencies through collaborative constructionist virtual and physical robotics. In

these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow

students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory

simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students

collaborate by acting in a common space, teaching each other, and discussing content with one

another. As a result, the students improve both their computational fluency and their complex

systems fluency, where fluency is defined as the ability to both consume and produce relevant

content (DiSessa, 2000). To date, several systems have been designed to foster computational

and complex systems fluencies through computer programming and collaborative play (e.g.,

Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant

fluencies through collaborative play, they become mutually reinforcing. In this work, I will

Chapter 1: Introduction

12

present both the design of the VBOT virtual/physical constructionist robotics learning

environment and a comparative study of student interaction with the virtual and physical

environments across four middle-school classrooms, focusing on the contrast in systems

perspectives differently afforded by the two environments. In particular, I found that while

performance gains were similar overall, the physical environment supported agent perspectives

on aggregate behavior, and the virtual environment supported aggregate perspectives on agent

behavior.

The primary research questions are:

• What are the relative affordances of virtual and physical constructionist robotics systems
towards computational and complex systems fluencies?

• What can middle school students learn using computational/complex systems learning
environments in a collaborative setting?

• In what ways are these environments and activities effective in teaching students
computational and complex systems fluencies?

1.3 Methods & Data

All of the studies that I will present in this dissertation took place in classes using the VBOT

constructionist virtual/physical robotics learning environment that I designed. In these classes,

students program within the VBOT environment to compete or collaborate with one another in

order to achieve larger gaming goals. Students in the classes used the VBOT system for one class

period a day for five days. In these classes, students would use the system for the majority of the

Chapter 1: Introduction

13

time, discuss the day, and conclude by recording their interpretations of the activity and

lessons on a questionnaire. These classes were videotaped, and log data was collected, including

all mouse/keyboard input to the system. Furthermore, interviews and written evaluations were

conducted before, during, and after the activities. The research presented in this dissertation was

conducted in classrooms using VBOT activities, described in Chapter 4, in two Chicago Public

Schools. The students participating in these studies were in the 8th grade. These studies were

conducted in the design research tradition (Edelson, 2002), in that the researchers were active

participants in a classroom, iterating active design, data collection, and analysis.

1.4 Results & Findings

The core results of this study suggest that reasonably equivalent virtual and physical

constructionist robotics environments support computational and complex systems fluencies

differently. However, students across contexts exhibited similar learning gains overall.

Moreover, gender, school, teacher, and previous performance did not have any appreciable effect

on performance; all students showed significant improvement in at least one measured aspect of

computational or complex systems fluencies. This finding builds on previous constructionist

findings in the individual fluencies, such as those in Papert (1980), Wilensky & Stroup (1999a),

DiSessa (2000), and Harel & Papert (1990), that suggest that students are better able to build

computational or complex systems fluency when supported by an active, social, constructionist

activity and environment. This work also provides a counterpoint to some previous negative

Chapter 1: Introduction

14

research. Negative research in complex systems fluency, such as that of Hmelo-Silver &

Pfeffer (2004) and Chi (2005), argue that middle-school students have trouble with the model-

building aspects of systems understanding. Negative research in computational fluency, such as

that of AAUW (2000) and Cuban (1985), suggest that thinking about problems computationally

or writing computer programs is inherently difficult for most middle-school students. The work

presented in this thesis presents data that are contrary to those negative claims.

As all groups of students exhibited learning gains, this research investigates the differences in

those gains that emerged when comparing the virtual and physical learning environments. Many

of these differences are contingent on differences of perspective. That is, students in virtual

robotics classes are more likely to understand agents in terms of the emergent properties of the

systems in which they participate, and students in physical robotics classes are more likely to

understand the emergent behavior of a system in terms of the agents of which it consists. As a

result, although students in the two sets of classes performed similarly overall, their different

perspectives created a different distributions of scores, circuits, and different system behavior.

For example, students in the virtual robotics contexts excelled at predicting and organizing the

behavior of the aggregate robot “swarm” while students in the physical robotics contexts

excelled at building individual behaviors which performed well in complex environments.

Chapters 5 and 6 explore why these cross-contextual differences emerged, and Chapters 7 and 8

discuss the ramifications of the differences for further learning environment design. Based on

this data, this work suggests that virtual and physical robotics provide effective learning

Chapter 1: Introduction

15

environments for targeting different aspects of computational and complex systems fluencies.

1.5 Contributions

The primary goal of this work is to determine how best to motivate complex systems and

computer science fluency using constructionist tools. In this section, I describe what readers

versed in various academic traditions might expect to gain by reading this dissertation.

Learning sciences researcher fluent with constructionism and complex systems research:

Through our findings, hopefully you can better understand how to use constructionism to teach

complexity science, both strengths and weaknesses. This work should be able to give concrete

recommendations towards how to optimize methods so as best design tools for teaching and

learning complex systems and computational fluency. This work addresses the question of

relative benefits and deficits of virtual and physical learning environments for both

constructionist and complex systems learning.

Learning sciences researcher fluent with constructionism but not complex systems:

This work fits into a history of constructionist work with complex systems done by Wilensky

(2001), Resnick (1994a), etc. It should provide you with a new horizon on which to understand

the ways in which constructionism can be used today to motivate learning. In this work, we

describe a novel constructionist learning environment, and our results can be reapplied towards

Chapter 1: Introduction

16

the design of a variety of learning environments for science and computational fluency. This

work has direct applications to constructionist debates about the relative value of virtual and

physical learning environments (see Resnick & Ocko, 1991, for one example).

Learning sciences researcher fluent with complex systems but not constructionism:

Complex systems methods and theory have been gaining prominence in scientific research, but

many have claimed that it can be hard to teach to younger students or even that one should not

try to teach it to non-researchers (Chi, 2005). This work presents significant evidence that it is

not only fruitful but also relatively easy to teach basic complex systems fluency. Presented are

both methods and evidence for the benefits and deficits of teaching complex systems concepts

with a variety of tools.

Learning sciences researcher fluent with design research but neither complex systems nor

constructionism research:

This work uses Wolfram (2002) and Bar-Yam (1997), among others, to frame the various ways

in which complex systems have changed that ways that people are doing science today. We are

hoping to leverage design research methods in this work to determine how best to teach students

to think and learning in novel environments. Papert (1980) motivates the need for constructionist

methods towards teaching students to handle the kinds of issues in the world today. In this thesis,

I argue that we can leverage constructionist and complex systems methods to best teach both,

rather than trying to teach the respective scientific content in a more traditional method.

Chapter 1: Introduction

17

Secondary school science or math teacher:

Both computational fluency and complex systems science fluency methods and tools are

described and explained in this work. Chapter 2 discusses the value of several free or

inexpensive tools to teach complex systems or computation fluency, and Chapter 3 explains what

you can expect to see students learning by using constructionist tools such as VBOT.

Furthermore, presented is a novel learning environment (VBOT) for teaching complex systems

and computational fluencies which can be used free of charge in any wired classroom. Included

in this work are detailed descriptions and instructions on how we used the tools and activities and

what students learned through the activities.

Computer science researcher fluent with artificial intelligence and robotics:

VBOT presents a new programming language and computational fluency learning environment

using behavior-based robotics. In this work we discuss the ways that beginning students can best

understand various potentially difficult computer science concepts through their use.

Furthermore, we address the relative value of virtual and physical robotics, although this

perspective does not necessarily evaluate any usefulness for researchers who do formal robotics.

1.6 Thesis Index

“Chapter 2: The Structure, Syntax, and Design of VBOT” presents an overview of the tools,

Chapter 1: Introduction

18

activities, and programming language that I designed for this project. It describes the VBOT

system, in both overhead design and method. This is the most technical chapter, but it is

necessary for understanding the rest of the project. In “Chapter 3: Related Literature”, there is an

overview of relevant literature as well as a discussion of how this project fits into existing

literature. Constructionism, complex systems research, design research, and learning sciences

research are discussed. In “Chapter 4: Context, Methodology, and Data Collection”, I describe

the environment in which we performed the studies, and the methods we used to gather data. I

describe the several pilots and studies performed, with descriptions of school settings and

teachers. “Chapter 5: Student Tinkering and Student Sharing” and “Chapter 6: The Virtual and

the Physical” describe our various quantitative and qualitative results. We present the data and

contextual data for understanding the data. Furthermore, I evaluate and analyze the results and

data. In “Chapter 7: Design Principles,” I describe the iterative design process and the various

incarnations of the VBOT system, with in-depth analysis of what we learned from each iteration,

how the design changed, with particular attention paid to how we changed the design. In

“Chapter 8: Conclusions and Future Directions,” I provide prescriptions for use of the findings

and suggestions for further work in the field.

Chapter 2: The Structure, Syntax, and Design of VBOT

19

Chapter 2: The Structure, Syntax, and Design
of VBOT

2.1 Introduction

Throughout the thesis, I will be making consistent reference to the VBOT programming

environment designed specifically for this project. It is a full featured networked participatory

simulation, and it connects to a NetLogo-based participatory simulation system called HubNet

(Wilensky & Stroup, 1999b). As described in Chapter 1, VBOT lets users program a simple real-

time interface to control a virtual robot (“vbot”) in a joint virtual space with other vbots (see

Chapter 2). Users follow the vbots on the associated NetLogo screen, while watching their vbot’s

behavior and history on their action panels. The action panel has three features: it shows the

position of the vbot on a radar-like display; it shows the positions of the other students’ vbots;

and it shows a tapering history trail for the associated vbot. At the most basic level, the vbot can

perform only one task: movement. The vbot “senses” information from the virtual world around

it and moves in programmatic reaction to that information. This chapter describes how to

program in VBOT to control that reaction, how to choose and mediate movement, and the

various ways in which one can manipulate the software to change the behavior of the vbot.

Furthermore, it describes the relationship between the VBOT software and the physical robots

used in the simulations and interventions discussed elsewhere in the thesis. This chapter is

designed to inform the reader of the structure, syntax, and usage of the VBOT system. There is

Chapter 2: The Structure, Syntax, and Design of VBOT

20

also a short tutorial on how to begin building VBOT programs. As with any programming

language, learning to program with VBOT can be a difficult process, so throughout this chapter,

basic understanding of computer programming is assumed.

Basics of VBOT Software

VBOT is built on top of the NetLogo multi-agent modeling environment (Wilensky, 1999) and

the HubNet networked learning architecture (Wilensky & Stroup, 1999b) used for participatory

simulations. In these simulations, participant-users interact in a social space (such as a

classroom) while virtual agents, that the participants control, interact in a virtual space, which is

typically in a shared virtual environment visible to all participants. A primary design goal

NetLogo/HubNet is to make multi-agent modeling and programming accessible to a wide

audience without sacrificing the ability to make detailed scientific models of complex systems.

VBOT uses this base to create an immersive collaborative robotics modeling and programming

environment designed primarily for use in middle school. VBOT consists of 1) an interface

through which users build the control system of their personal virtual robot (vbot) in real-time

(i.e. changes in the program are reflected immediately in the behavior of the vbot), 2) a shared

space in which virtual robots exist, and 3) activities for users using the social space.

As just described, the VBOT system is built on top of the NetLogo multi-agent modeling

environment (Wilensky, 1999) and the HubNet participatory simulation architecture (Wilensky

Chapter 2: The Structure, Syntax, and Design of VBOT

21

& Stroup, 1999b). HubNet is a system built on top of NetLogo called a “participatory

simulation environment” in which individual participants can each control an agent ("turtle") in a

NetLogo model. For instance, in the HubNet model Gridlock (Wilensky, 1997b; Wilensky &

Stroup, 1999a), many users each control a stoplight a virtual space consisting of a set of streets,

streetlights, and cars. Users change their lights to red or green in order to maximize the flow of

cars through the traffic lights. Using the language of agent modeling, each stoplight is an agent in

a complex system from which the flow of traffic in the city emerges. The complex system here is

one in which cars, lights, and roads interact to create a dynamic equilibrium.

Building upon the HubNet and NetLogo framework, the VBOT system enables each user to

control one agent in a model. Instead of controlling the agent directly, as one might do in a

HubNet simulation, or controlling the agents through general rules for classes of agents, as one

might do in a NetLogo model, each participant builds a “behavior circuit” which controls the

actions of his/her agent virtual robot. A behavior circuit consists of a set of navigation and

behavior rules designed in a format of a simple electronic circuit.

Chapter 2: The Structure, Syntax, and Design of VBOT

22

Figure 2-1: The VBOT client interface

In a VBOT activity, each student in a classroom uses the VBOT client interface (Figure 2-1) to

design circuits that control the behaviors of their virtual robots (vbots). These circuits are called

behavior circuits and consist of a set of navigation and behavior rules designed to follow the

metaphor of a simple electronic circuit. While building circuit-based programs has traditionally

been an undergraduate-level activity, recent studies have shown that high-school and middle-

school students can productively use such systems for learning systems-based thinking (see

Hancock, 2003). In the VBOT system, each student’s vbot corresponds to a virtual robot “agent”

Chapter 2: The Structure, Syntax, and Design of VBOT

23

in a shared virtual space (as seen in Chapter 2). During activities, students can build behavior

circuits, save behavior circuits, load ("run") or share behavior circuits that they have built, or

load behavior circuits that have been shared by others.

Beyond creating and manipulating the behavior circuits the client interface (or Action Panel)

supports users in monitoring their vbots’ progress through three features: it shows the position of

the user’s individual vbot on a radar-like display; it shows the positions of the other users’ vbots;

and it shows a tapering history trail for the associated vbot.

Computational Paradigm

This chapter discusses VBOT as a programming language and the syntax and structure of

programs ("circuits") written in the language. The fundamental metaphor of the language is

functional with some procedural elements. This section describes the basic structure of these

distinctions and how VBOT program flow follows and deviates from these structures.

Procedural languages, like C or Java, are sequences of statements that execute in a predefined

order, based on a given logic. For example, programs written in a procedural language often

follow logic similar to:

1. Execute instruction A

2. If user has selected interface element X, go to step 1

Chapter 2: The Structure, Syntax, and Design of VBOT

24

3. If user has selected interface element Z, go to step 5

4. Execute instruction C

5. Execute instruction D

6. Go to step 1.

The vast majority of programs written in the world today are written in a procedural language.

The most common structure of such programs involves a simple loop in which the set of

instructions is repeated as long as the program remains active. This loop can be seen in Step 6 of

the sample program, above.

Functional languages, such as LISP, present the most common competing program metaphor. In

a functional language, every statement is a function, much like a mathematical function (e.g., "y

= x2"). Each function returns a value, and these values provide the input to other functions.

Programs written in a function language might have a logic similar to this:

• f(x,y) = x * (y + 5)

• If user has selected interface element X, g() = 2; otherwise, g() = 3.

• Evaluate f(g(),g()))

In this simple example, f(g(),g()) would always evaluate to 14 or 24. The salient difference here

between a procedural and functional language is that program logic is not designed to be a

sequenced order of events. Rather, the functional metaphor fosters a need to consider the

evaluation and prerequisites of relevant functions.

Chapter 2: The Structure, Syntax, and Design of VBOT

25

VBOT presents users with a combination of these programming approaches. As with

functional languages, in VBOT, the run order is determined by data flow; the simulation

determines the exact order of execution. Each independent path from a sensor to a motor can be

considered to be a parallel circuit. Each operation, however, is run functionally. There are always

at least two functions in a VBOT circuit, the left motor (as in line 1, below) and the right motor.

Each motor is then evaluated as a function where "leaf operations" (usually a sensor or a

constant, below line 1c) evaluates to a number. Leaf operations consist of any operation in which

the static value is determined external to the program logic, either by the hardware or the user.

For instance, in Figure 2-2, the LM (left motor) function is evaluated by multiplying the constant

3 and the RL (right light) sensor (here evaluated in line 1a) :

1. fLM() = Multiply(fRL, 3)

2. fRL() = 90, determined externally

3. fLM() = Multiply(90 , 3)

4. fLM() = 270

The function fLM() is evaluated every tick, and evaluating the function requires recursive

traversal down the "function tree." That is, fLM() evaluates to the function Multiply(fRL(),3),

which in turn requires the evaluation of fRL(). This evaluation tree is similar to a function

program.

Chapter 2: The Structure, Syntax, and Design of VBOT

26

Figure 2-2: Addition in VBOT

2.2 Syntax

While VBOT’s programming paradigm might seem complex, it is important to note that this

paradigm is transformed into a visual programming environment when users work with it and

that they are largely unaware of the functional characteristics of the language. This

transformation to a visual language occurs through the building blocks (objects) of the VBOT

Chapter 2: The Structure, Syntax, and Design of VBOT

27

syntax. These building blocks include these fundamental building blocks (objects):

operations, wires, motors, sensors, and one breadboard. A circuit is defined as a mapping from

sensors to motors using wires and operations on a breadboard. Users add operations to the

breadboard; they connect those operations to motors with wires. In this way, users create

mathematical functions that take the numeric input from the sensors and produce a numerical

output for the motors. However, programs can get increasingly complicated with the addition of

more variables, sensors, branching logic, and rudimentary looping. The following sections

describe the syntax objects more carefully.

Breadboard

The breadboard is the space in which all of the motors, sensors, operations, and wires are

connected. Its metaphor is a real circuit breadboard. Solid-state electronics are, in general,

combinations of transistors, inputs, and outputs on a breadboard. For example, a digital watch is

a set of output LEDS connected to a simple time-keeping chip (made of solid state transistors).

In the same way, the VBOT motors (show below as LM and RM, at bottom) are the outputs,

which produce all movement and stopping of movement in the vbot. The vbot will simply drift

without impetus from the motors as an object in a minimally frictional space.

All connections between objects happen on the breadboard, and the breadboard itself works

through flow cycles (or "ticks"). During the course of each tick, the breadboard evaluates all

Chapter 2: The Structure, Syntax, and Design of VBOT

28

terminal operations and motors using recursive evaluation. Further explanation of recursive

evaluation and an example is given below in the section addressing flow in VBOT.

Motors

The motors impel movement for a given vbot. As described earlier, the metaphor of a vbot is a

small robot car with two rear wheels. Each wheel is powered by its own motor. The left rear

motor, if powered without the right rear motor, will turn the car right. The right rear motor

moves the car left. When both motors are powered equally, the car moves forward in a straight

line (see Section 2.3,

Chapter 2: The Structure, Syntax, and Design of VBOT

29

Example Programs, for more examples).

In middle-school implementations, the breadboard provided only two motors, left rear and right

rear. We did this to align the virtual programming experiences with the physical in which the

number of motors was limited by the physical structure of the robots. However, it is possible to

make any number of motors control any number of actions in VBOT. For instance, one could

create a VBOT extension in which a motor controls a grappling claw on the virtual robot.

Each motor has a numerical range from 0 to 100% (although there is no hard cap at 100). In our

experiments, 0% motors were brakes and the power scaled linearly to the movement of the motor

up to 100%; after 100%, there was a logarithmic power increase, as the vbots could become too

fast to see clearly if an incorrect circuit was built. The space past 100% could be thought of as

"overdrive," and users were taught that overdrive produces somewhat erratic behavior.

Wires & Flow

Wires create flow within a circuit in a manner similar to water pipes. For example, using the pipe

metaphor, supposing any segment of pipe can pass a maximum of 100 L per second of water

through at any given moment. Plumbers can connect the pipes however they wish, but all flow

through the pipes is directed. The water stems from a reservoir source and flows to an outlet (or

"sink," using flow terminology). VBOT wires are much like these pipes, where sensors provide

Chapter 2: The Structure, Syntax, and Design of VBOT

30

the source of the signal, and the motors provide a sink. The operations are mid-points in the

stream and provide both checkpoints for and modifications to the data. Using the water pipe

metaphor, the operations might represent a midway treatment plant, a water filter, a cooling

system, a pipe interchange, or anything that might reasonably affect the water flow midstream.

VBOT treats the signal from the sensors as a source of energy (like water).

In Figure 2-2, the left light sensor (LL) and a constant (here, 3) connect to a multiplication

operator ("*"). They provide the reservoir of "energy," which is then communicated to the

multiplication operator. There is, as reflected in the number, multiplication in that operator. This

multiplication is directed, meaning that the energy flow is always unidirectional; the output of

the multiplication operator is not used by the light sensor in any way. That is, the light sensor

provides the signal energy for the circuit, so it does not use energy from other operations. The

arrows on the wires show the direction of the flow.

The flow metaphor of programming has been used in many scenarios, as described in the

Chapter 3. The process of flow in VBOT presupposes a unidirectional current; it ends

somewhere other than its origin and is repeated many times on a fixed schedule. This is the

implicit logic of the vast majority of end-user computer programs.

Chapter 2: The Structure, Syntax, and Design of VBOT

31

Sensors (& Noise)

This section describes the sensors and the “noise” in the sensors’ readings. This dissertation

compares the experience of students programming physical and virtual robots. Thus far in this

chapter, we have focused on the client interface that is consistent across environments.

However, there exist distinct differences in how the virtual and physical sensors work, thus, we

describe these differences in this section.

A sensor is any operation that outputs a number corresponding to some input from the play space

(such as light or heat). In practice, there were 4 categories of sensors: light, “bot”, “bump”, and

“VAR.” Light sensors, for example, return a light reading between 1 and 100. The virtual light

sensor is defined as the measure of the “virtual light” at any given point in the “virtual space.”

The virtual “bot” sensor (LB and RB) outputs the percentage of vbots in proximity to the sensor.

The physical “bump” sensor registers any activation of the physical touch sensor on the physical

vbot. The “VAR” sensor outputs a given variable that is updated from the server, and it can

represent any value that the facilitator chooses.

It is not advantageous for the light sensor readings to be "perfect" (unerring) as that will often

create oscillatory behavior in simple circuits. Furthermore, since we are working with the

paradigm of physical robots as well, virtual circuits would not map appropriately to physical

behavior, as virtual circuits “over-trained” to perfect information do not translate to the physical

world. To that end, the virtual vbot sensors contain some randomness. A variable and normally

Chapter 2: The Structure, Syntax, and Design of VBOT

32

randomized amount of "nonsense" is added to any given sensor reading. The analysis in

Chapter 6 deals in part with the different reactions of different groups to perceived randomness

in physical and virtual robots.

Network Dynamic

The network layout of the VBOT system is client/server. A server, running both

NetLogo/HubNet and a VBOT NetLogo server extension, takes all input from each user’s client,

and then sends all updated information to all clients. In this way, all clients have synchronous

information with which to update the Action Panel. Although this creates unnecessary overhead,

the small amount of data transferred per client and the relatively small number of clients (less

than 50) makes this a viable network architecture. In our real world tests with up to 40 clients,

there was negligible network lag.

Operations

There are two categories of operations: numerical and logical. All operations are visible in the

buttons on Figure 2-1 such that most buttons correspond to an operation.

Numerical operations compute arithmetical outputs of several numerical inputs. The most

common operations are adding (heretofore "ADD" or "+"), subtracting ("SUB" or "-"), dividing

Chapter 2: The Structure, Syntax, and Design of VBOT

33

("DIV" or "/"), and multiplying ("MULT" or "*"). A constant, which is any user-defined

whole number, is a numerical operation in name only, as it represents a static whole number.

When using the VBOT system, numerical operations are taught first, and a typical use case for a

beginner would involve increasing the speed of a vbot by adding 10 to a given input and

connecting that ADD operation to the motors.

Logical operations compare two values to produce an output. An example of a logical operation

is the "IF A<B" operation. Similar to the last example, a typical beginner will build a circuit that

activates LM when sensor LL reads less than 50%. In this case, when sensor LL is less than

50%, the left motor (LM) will be activated at half power. Otherwise, it will remain inactive.

Several examples of numerical and logical operations provided in the sample programs that

follow.

Chapter 2: The Structure, Syntax, and Design of VBOT

34

2.3 Example Programs

Love (adapted from Braitenberg, 1984)

Description Code Interface
ACTION: Connect the left

light sensor to the right
motor.

EFFECT: The vbot will spin
in a circle, since only its right
motor is activated. The more
light that the left light sensor
receives, the faster the vbot

will turn.

RM=LL;

ACTION: Connect the right
light sensor to the left motor.

EFFECT: The vbot will seek
the light, turning towards it

whenever possible.

RM=LL;
LM=RL;

Chapter 2: The Structure, Syntax, and Design of VBOT

35

Fear / Explorer (from Braitenberg, 1984)

Description Code Interface
ACTION: Connect the left

light sensor to the left motor.

EFFECT: The vbot will spin
in a circle, as only the left

motor is activated.

LM=LL;

ACTION: Connect the right

light sensor to the right
motor.

EFFECT: The vbot will turn
away from the light
whenever possible.

LM=LL;
RM=RL;

Chapter 2: The Structure, Syntax, and Design of VBOT

36

Values / Knowledge (from Braitenberg, 1984)

Description Code Interface
ACTION: Create an ADD ("+")

operation box.
EFFECT: The vbot motors are
inactive, so the vbot will drift.

ADD = 0 ;

ACTION: Connect the left light

sensor to the ADD box.
EFFECT: The vbot motors are
inactive, so the vbot will drift.

ADD = LL + 0 ;

ACTION: Connect the left bot
sensor to the same ADD box.

EFFECT: The vbot motors are
inactive, so the vbot will drift.

ADD = LL + LB ;

 ACTION: Connect the ADD box to
the right motor.

EFFECT: The vbot will spin in a
circle in this case, as only the right

motor is activated.

RM = LL + LB ;

 ACTION: Repeat these steps for the
associated right sensors and left

motor.
EFFECT: The vbot turns towards

either light or other vbots.

RM = LL + LB ;
LM = RL + RB ;

Chapter 2: The Structure, Syntax, and Design of VBOT

37

Instincts (from Braitenberg, 1984)

Description Code Interface
ACTION: Create two ADD

operation boxes.

EFFECT: The vbot motors are
inactive, so the vbot will drift.

ADD1 = 0;
ADD2 = 0;

 ACTION: Connect both light
sensors to the first ADD box
(ADD1), connect both bot

sensors to the second ADD box
(ADD2).

EFFECT: The vbot motors are
inactive, so the vbot will drift.

ADD1 = LL+RL;
ADD2 = LB+RB;

ACTION: Create an "IF A>B"
operation box. Connect ADD1
to the A slot in the IF box, and
connect ADD2 to the B slot in

the IF box.
EFFECT: The vbot motors are
inactive, so the vbot will drift.

IF(ADD1>ADD2) = 0

ACTION: This is wired such
that each motor has its own IF
box to determine its numerical

input.
EFFECT: If the light sensors are

more active than the vbot
sensors, the vbot will turns
towards light. If the vbot

sensors are more active than the
light sensors, it will seek out

other vbots.

IF(ADD1>ADD2)
THEN

[LM = RL ;
RM = LL ;]

ELSE
[LM = RB ;
RM = LB ;]

Chapter 2: The Structure, Syntax, and Design of VBOT

38

2.4 VBOT User Interface

Graphs

The graph window records the value of a "box" on the breadboard (operation, motor, or sensor)

at every time-tick, and plots the data point in the rectangular window. Users can select which

“box” to graph and change the graph throughout the runtime. When the graph trails off the right

of the graph, it rescales the graph by roughly 20% to fit all data. It continues to rescale the graph

as such until the graphed "box" is changed or the graph is reset.

Using the PVBOT graphing system, users can watch the output of any given "box" on the

breadboard. For instance, they could watch a graph of the left light sensor's output to determine

the maximum and minimum values of light on a certain path in the world. Another use of the

graphs might be to determine when and how often logical operations (e.g., “IF A<B”) are

triggered to check program logic. If users have created a logical operation that is triggered

inappropriately, graphing the function can reveal the error quickly. The graphs were

underutilized by most users, as they are mostly useful for debugging or advanced use. Although

classroom interventions did not introduce the topic of formal debugging, a handful of students

used the graphing functions towards formal debugging.

Chapter 2: The Structure, Syntax, and Design of VBOT

39

Saving and loading

Users can both save and load ("run") their circuits as necessary. VBOT contains a "save/load"

panel in which users can see all of the circuits that they have saved on their own computer. To

save a file, users can either use the File menu (with key command, as normal on a given

Windows/Mac/Linux system) or the "save" button right in the save/load panel. Most students in

our implementations opted to use the quick buttons. To load a circuit, one can simply double-

click or click the file and the click the "load" button.

During a given activity, users have the opportunity to create and employ multiple circuits. They

can do this by saving the circuits with mnemonic names (such as "chaser" and "escape") and

double-clicking the circuits to switch when necessary.

Button Panel

The client interface also (shown on Figure 2-1) contains a Button Panel. The majority of these

buttons are used to place operations on the breadboard. Beyond these operations users have

access to “CLEAR ALL,” “START/STOP” and “role” buttons. The “CLEAR ALL” button

resets the breadboard. Since circuits are often small, users often used the clear all button in lieu

of destroying one wire or operation at a time.

Chapter 2: The Structure, Syntax, and Design of VBOT

40

The “START/STOP” button is the most utilized debugging feature for vbots. If a user wants to

immediately cease all operation of a virtual vbot in order to consider a circuit, this button stops

all client-side computation. This means that the vbot is frozen on the virtual shared space – until

the user selects the ‘START/STOP’ button again. Once stopped, the user can build and test the

behavior from a predetermined position by adjusting their breadboard and pressing

“START/STOP” again to resume action. Adults used this much more frequently than students.

The “role” button is a "catch all" button for the interface. In many vbot simulations, a user must

input a choice unrelated to circuit building, and this button facilitated user choice. For instance,

in one implementation of Moon-Tag (see below), students changed between the roles of doctor,

monster, or worker simply by clicking the role button. At the beginning of each run, a facilitator

identified the button’s role for the round (for instance, "1 = worker, 2 = monster, 3 = doctor")

and inputted that into the NetLogo simulation on the server. Then, throughout the round, students

would change roles as desired by selecting the “role” button. Another common use of the “role”

button in VBOT is simple polling, in which one VBOT-HubNet simulation monitors the value of

each user’s role button.

Error panel

It is impossible in this paradigm to create an illegal connection on the breadboard; any attempts

will result in the wire’s disappearance. The error is then added to the error panel. For instance, if

Chapter 2: The Structure, Syntax, and Design of VBOT

41

a user was to try to create a wire from a motor to a sensor (with the semantic being that the

output of the motor is fed into a sensor, which does not work in this paradigm), the wire would

disappear and the associated error message would read "sensor LL takes no inputs."

2.5 VBOT Activities

Orbit & Flocking Activity

In Orbit activity, the first instruction given to the group was "everybody move to the middle."

Students then build circuits designed to move the bot to the middle of the screen. For virtual

VBOT (VVBOT), the middle of the screen is marked by a "light source" which radiates “light”

outward from white to black (see Figure 2-3 below). In physical VBOT (PVBOT), the light

sources were simple lamps. In this case, a correct circuit is two crossed wires connecting each

light sensor to its opposite-side motor (the “Love” circuit described above). In the Love circuit,

the right light sensor causes the left motor to be activated (and vice-versa). The activity

progresses once all students complete this circuit. The Love circuit creates a crude “orbit” around

the light in both physical and virtual VBOT.

Once all students’ bots are near the light, the instruction is given for the students to “flock

together outside the light." This commences the Flocking activity. The goal of the Flocking

activity is to create a stable group (“flock”) of bots that travels together.

Chapter 2: The Structure, Syntax, and Design of VBOT

42

In VVBOT, creating a stable flock requires “bot sensors” (described above) to find the other

bots. Once the bots are flocked, they need to stay out of the light, of which there are several

viable strategies. One such strategy is to nominate certain students to avoid light and summarily

flock around those students. Another strategy is for each student-group to create a more complex

circuit that enables both light-avoidance and flocking. Over the course of our enactment, the

students designed many such strategies.

In PVBOT, the task is more difficult. It requires the students to self-organize navigation patterns,

as the sensors are unreliable. Over the course of the enactment, students designed several

strategies to deal with the situation. One particularly good strategy was to slow the robots upon

any outside bump, while simultaneously avoiding light. Another strategy was simpler, but

perhaps more novel: all students design a circuit that avoids light, but they also manipulate the

starting positions of the robots.

Simple-Tag Activity

This activity was only enacted in the virtual class. In Simple-Tag, the goal for the class was to

maximize total “tags”. A “tag” occurs when a “tagged” vbot was co-located with an “untagged”

vbot. The untagged vbot is then tagged. Tags are marked by a red dot attached to tagged vbot

that shows up on the shared screen. A good strategy is to create a vbot circuit that causes one’s

Chapter 2: The Structure, Syntax, and Design of VBOT

43

vbot to find other vbots more quickly than the rest of the classroom. The students designed

several circuits that accomplished this task.

Bot Soccer Activity

This activity was enacted only in the physical class. For Bot Soccer, the students are divided into

two teams. Each team, in this case, consisted of three robots, and the teams were allowed to talk

to each other to decide strategies. The two teams were placed facing each other, in a line, with

their “goal” being a light located behind the starting line. The goal is to drive the ball into the

other team’s light-goal. This engenders several interesting strategies. Some teams designed

complex strategies involving goalies and forwards. Other teams designed strategies that mostly

consisted of a forward-attack rush. The success of a team was primarily contingent on their

coordination. One team’s strategy is discussed further in Chapter 6.

Moon-Tag Activity

In Moon-Tag, the goal for the class was to collect “moon-rocks” from the edges of the screen

and deposit them in the center of the screen (see Figure 2-3). The students switched between

three roles (doctor, monster, and worker) using a button on their VBOT client. A doctor made

any other vbots in the vicinity “unsticky,” a monster made other bots sticky, and workers became

sticky or unsticky as they encountered doctors or monsters. As the agents traveled across the

Chapter 2: The Structure, Syntax, and Design of VBOT

44

shared virtual screen, they could pick up the moon-rocks only if they were “sticky,” and

dropped the moon rocks only when they were no longer sticky. As the goal of the activity was to

drop moon rocks in the middle of the screen, the goal for the class was to ensure a steady flow of

workers passing through the edges and the middle, becoming sticky on the edges to pick up

errant moon rocks and becoming unsticky in the middle of the screen in order to drop any rocks

that might have been picked up. Students could change roles freely. Students whose vbots were

in monster role gained points for making workers sticky near the edges of the screen, making

doctors unsticky near the middle, and causing workers to drop moon rocks near the middle. The

class, however, only got points for the moon-rocks collected in the middle of the screen (or the

sum of all worker-points).

Chapter 2: The Structure, Syntax, and Design of VBOT

45

Orange blocks
are “moon
rocks”

Blue worker
planes carry
moon rocks
when they are
sticky and drop
them when they
become
unsticky.

Yellow sticky-
machines make
worker planes
sticky.

This moon rock
has been
dropped near the
center by a
worker

“Light” (degree of
grey) emanating
from the center of
the screen space
helps orient the
vbots.

Yellow cleaners
(doctors) make
worker planes
unsticky

Each student uses a
VBOT client screen
to design behaviors
for his/her vbot

Lucy’s VBOT client

Sally’s VBOT client
Jimmy’s VBOT

client

Figure 2-3: Moon-Tag

Chapter 2: The Structure, Syntax, and Design of VBOT

46

2.6 Physical VBOT Interface

This dissertation compares the benefits and constraints of programming in physical and virtual

environments. This section provides more detailed information about the VBOT interface with

physical robots and the ways with which users interacted with these physical robots.

Physical Robots and the VBOT Software Interface

VBOT software works similarly with both virtual and physical robots. In general, physical

robots work by running uploaded program circuits that are written in VBOT, whereas virtual

robots run the current program circuit without explicit uploading. Thus, the major difference is

physical; you must attach a communications device (“USB tower”) to the computer in use, and

you must select "download to robot" from the tools menu.

This physical difference results in a difference in use. That is, unlike the virtual-robots that

automatically respond to programmatic changes, the physical robots must be told to download

the new program stopping the action. Moreover, since every program change takes at least 30

seconds to download, activate, and observe the robot, it is time-consuming to implement

incremental changes (as you might with virtual robots).

After users have built a circuit in VBOT, they can select the “Download to Robot” menu item (or

Chapter 2: The Structure, Syntax, and Design of VBOT

47

associated key command). This compiles the circuit and downloads it to the robot nearest to

the USB tower. The compilation stage translates the VBOT program into NQC code, and the

NQC program is called externally. NQC is an executable (written for Mac, Linux, and Windows)

that communicates with the physical vbots using a c-like programming language that includes

most of the functionality of the particular brand of physical robots we used (NQC, 2005). Thus,

the NQC programs are created as a translation of the students’ work in VBOT in order to

communicate with the physical robots; this was done in the background and students never

worked with NQC directly.

An additional difference exists in the sensors. The sensors in physical robots are both less

accurate and less precise than sensors in virtual robots. Sensors in a simulation can be perfect

(i.e. a light sensor can give the exact light level readings), but, in the physical world, perfect

information is impossible. This problem is compounded by the extra noise inherent in

inexpensive sensors. VBOT compensates for some of the noise by normalizing the data upon

program initialization, but this does not solve the problem because the sensors feed erratic data to

the program. As we discuss in the literature review section, however, noise can be useful to

teaching and learning about cybernetics, as many reactive systems can enter terminal loops

without any randomness in the system. That said, too much noise can undermine even the best-

written programs.

Chapter 2: The Structure, Syntax, and Design of VBOT

48

Physical VBOT Structure

A physical vbot is a Mindstorms RCX 1.0 robot (LEGO, 2002) built with a specific sensor and

motor array. We provided students with these robots for certain implementations of VBOT. The

physical vbot’s sensor array consists of two motors, two light sensors, and one "bump" sensor.

The bump sensor turn out to be significantly more valuable than a directional "bot" sensor for

playing soccer, as the students would want to test for a bump of the ball as well as other robots.

The Braitenberg (1984) metaphor of the simple wire-circuit car was used to construct the

physical robots (see Chapter 3 for more information on Braitenberg). In Appendix 1, we

illustrate the construction of a physical vbot and the final robot structure.

2.7 Related Environments

There exist no comprehensive studies of the relative affordances of comparative physical and

virtual environments in constructionist learning. This is one need that this work is intended to

address. However, several environments address complex systems and computational fluency

goals. This section examines similar, constructionist virtual and physical learning environments

and assesses design and design goal similarities so as to highlight the novel features of VBOT.

Chapter 2: The Structure, Syntax, and Design of VBOT

49

Virtual Robots as Learning Tools

We define “virtual robots” more broadly than a virtual instantiation of a physical robot. It is a

virtual autonomous agent or any object that self-determines behavior. Humans are autonomous

agents, as are paramecia, bacteria, and many robots. Autonomous action and autonomous

decision-making are often called “intelligence.” The simplest example of "autonomous

intelligence" is a thermostat; once it is set at a temperature, it determines when to turn the heater

on and off. To this simple model we can add memory, logic, and other functionality. Further

complicating the environment in which our thermostat with memory and logic might lead to a

mimic of the simplest forms of life. A simple organism machine might “know” how to find food

or reproduce when placed in a novel environment. Learning environments that use virtual

autonomous agents, or virtual robots, are often designed to teach younger students how to

program. The following section is both a review of these tools and a review of literature on

virtual robot learning environments.

Logo Environments

A Logo environment is one that uses the Logo paradigm of programming, characterized as “low

threshold, high ceiling” by Tisue & Wilensky (2008) and described in depth by Papert (1980).

The Logo language was originally designed as a learning programming language, and it has

engendered many variants, mostly designed as programming languages and modeling

environments in which programming is easier for novice users and creates immediate, graphical

Chapter 2: The Structure, Syntax, and Design of VBOT

50

effects. We describe NetLogo (Wilensky, 1999) and Flogo

(Hancock, 2003) as two modern Logo variants relevant to the

VBOT project. VBOT is based on HubNet and NetLogo, and, as

such, it is a Logo derivative at some level. Logo derivatives have

been mostly single-user learning environments, with the notable

exception of the HubNet features in NetLogo.

NetLogo (Wilensky, 1999) is a multi-agent Logo language created to enable modeling of

complex phenomena with little formal training. NetLogo is a Logo language in which a user can

program (and directly command) both a set of agents (“turtles”) and the environment in which

the agents reside (a grid of “patches”). NetLogo is designed such that a user can add complexity

to the environment using both the patches and the interrelationship between turtles and turtles

and patches. In this environment (shown in Figure 2-4), thousands of turtles simultaneously

interact in a virtual space. In contrast to the programming-by-example environments, NetLogo is

a text-based programming language more similar to traditional programming languages.

Included in the environment is a variety of example programs and working simulations (“sample

models”) that users can modify or extend. This environment is designed to be a general-purpose

useable programming environment rather than a targeted support for computer science learning,

although it has been used as such with success (Abrahamson & Wilensky, 2004a, 2004b;

Blikstein & Wilensky, 2004; Wilensky, 2001).

Figure 2-4: NetLogo

Chapter 2: The Structure, Syntax, and Design of VBOT

51

Figure 2-5: Flogo

Flogo (Hancock, 2001, 2003) is a virtual/physical robot programming language in which a

user designs a behavior for a virtual or physical robot using a circuit metaphor. Hancock (2001)

describes "the characteristic of Flogo on which our hopes are most pinned is 'liveness' —

meaning that instead of existing as an inert object that is first edited and later run, a Flogo

program can be active, and its activity visible, even as you are building or modifying it." That is,

users can modify their programs while they are running. In addition to this real time

programming, Flogo uses a live dataflow "pulse" metaphor, meaning that a user can visually

follow data as it is processed (see Figure 2-5). Hancock (2001, 2003) tested a Flogo physical

robotics system with students ranging in level from secondary school to graduate school. His

data suggest that this "temporal structure, Gibsonian learning, and tinkering friendly system[s]"

helped students build constructively and learn computer science content.

In both structure and use, Flogo shares features with VBOT. Indeed, Hancock’s work was

invaluable in the design of VBOT, and VBOT was redesigned to emphasize both “liveness” and

“tinkerability.” VBOT extends the Flogo work by basing the activity design on theories of

collaboration in learning, focusing on complex systems fluency and enabling using multiple

agents (similar to NetLogo). Chapter 7

covers the relationship of VBOT to Flogo

in more detail.

Chapter 2: The Structure, Syntax, and Design of VBOT

52

Programming by Example

 “Programming by example” refers to a type of computer programming in which a user writes

agent code by providing examples of desired behavior, rather than the more traditional method of

explicitly typing out instructions using a provided word-based language.

"Programming by example" refers to the way in which the users can command their agents on

the screen. To “teach” a character to move up on the screen when it is next to a rock, the user

places a rock one space to the right of the character, presses the "teach" button, and then moves

the character up using the mouse. This "example rule" is automatically added to the character.

The character repeats this action ("moving up") when, in the course of other actions, a rock is

one space to the right of the character. Figure 2-6 shows one such simulation: the program code

written by the user is at the bottom; the action window “worksheet” is in the top right; and a

graph of the characters’

positions is in the top left.

The given example was

generated in AgentSheets.

AgentSheets is a programming

environment in a user builds

simulations or games using the

Figure 2-6: AgentSheets

Chapter 2: The Structure, Syntax, and Design of VBOT

53

“programming by example” paradigm (Repenning, Ioannidou, & Zola, 2000). It is intended

primarily for primary school students. The simulations and games are programmed in a virtual

2D environment in which each element is active as an independent agent. For instance, in a

simulated outdoor environment, both a rock and a player character would be independent agents,

that the students could program. All graphics are either drawn in the program by the user or

provided with the program. The user is responsible for programming all of the behaviors for each

interactive element, or agent, of the simulation or game.

AgentSheets is a virtual robot simulator because users can “teach” robot-agents how to move

independently by building a set of example rules for robot-agents. As such, it is relatively easy

to create simulations in which, say, a character avoids other robot-agents that have been

programmed by the user. More complex scenarios can require hundreds of such rules. The

programming environment supports these complex scenarios by providing several scenarios that

students can modify or use for creating their own games or simulations.

A similar paradigm is used in ToonTalk. ToonTalk is an environment developed by Kahn (1996)

as a visual programming language also built on the constructionist “programming by example”

paradigm. However, unlike AgentSheets, it takes place in a 3D world in which every virtual

object is a program abstraction. In ToonTalk, users program “robots”. Each “robot” can hold a

variety of “memories” which are added to the robot abstraction by example. A memory is

equivalent to a line of program code. For example, users might teach the robot to “double

Chapter 2: The Structure, Syntax, and Design of VBOT

54

numbers” by showing the robot a “magic doubling wand” and having it “use the wand” on an

abstract box until the wand is used 10 times.

Social Agent Environments

Social agent environments are programming and learning environments in which the primary

medium is inherently collaborative or competitive. Programs written in social agent

environments are designed primarily to interact with multiple users. Second Life (2006) is a

commercial example of a social agent

environment; Second Life is a multiplayer

online game in which hundreds of thousands of

users interact with object-programs in a

persistent online space. MOOSE Crossing

(Bruckman, 1997) is presented as an example of

a social agent environment particularly relevant

to the VBOT project. Designed as an explicitly

constructionist environment, MOOSE Crossing

emphasizes social collaboration over the more

individual programming paradigms of the Logo

or Programming by Example environments

described above. Figure 2-8: Programming Pet Park

Figure 2-7: Pet Park

Chapter 2: The Structure, Syntax, and Design of VBOT

55

MOOSE Crossing (Bruckman, 1997) is a system with a MUD (“Multi-User Dungeon”)

architecture in which each user-designed character "lives" in a textual programmable discussion

space. Users engage in a textual "chat room" in which actions that change the environment of the

chat room can be made (see Figure 2-7). For example, a user could set an alarm for 10:30 PM;

any characters in the chat room at 10:30 PM will get the textual alarm "BRRNG! BRRNG!" By

programming the environment in which people can textually interact, the programming is

inherently social. Bruckman (1997) states that "the central claim [here] is that community and

construction activities are mutually reinforcing." Users can program characters to automatically

greet users upon entrance or to discuss short topics with other characters. Examples in

Bruckman’s (1997) work show that users can successfully create a vibrant community organized

around the programming features of the space.

The Pet Park system detailed by DeBonte (1998) is a graphical form of MOOSE Crossing, in

which the agents are persistent in the world (see Figure 2-7: 2-7 and Figure 2-8). DeBonte’s

work suggests that the persistence and graphics create a functionally different space. The design

of VBOT stems in part from the constructionist social collaboration work described above.

VBOT is real-time, social, and graphical, much like PetPark, although the design and learning

goals are different.

Chapter 2: The Structure, Syntax, and Design of VBOT

56

Physical Robots as Learning Tools

Physical robots have been used to teach computer science for over 20 years (Papert, 1980). More

recently, the LEGO Mindstorms robotics system has been released to wide acceptance and a

new, redesigned version ("NXT") was released in late 2006 by LEGO. It is used in hundreds of

classrooms to teach computer science, math, and core science. In this section, we describe the

prototype system for LEGO Mindstorms, the Programmable Brick, and the most common ways

in which physical robotics have been used for teaching and learning. As described above,

Physical VBOT uses LEGO Mindstorms robots. This section describes other uses of this system

and its relatives.

Chapter 2: The Structure, Syntax, and Design of VBOT

57

Figure 2-9: Lego Mindstorms Robot

The Programmable Brick

The Programmable Brick (Resnick, Martin, Sargent, & Silverman, 1996) is a physical robotics

system designed as a constructionist learning environment. Users attach simple sensors and

motors to a pre-built processor (“the brick”) and board (see Figur). The motors then move

according to a user-created program that uses the input from the sensors. The LEGO Mindstorms

system was designed using the programmable brick as a prototype, though there was ongoing

design of the brick into the late 1990's, after the LEGO Mindstorms kit had already been released

commercially. The LEGO Mindstorms system not only provides a research base on which we

build but is also the physical system with which our students work. Several groups have

evaluated Mindstorms (or a similar robotics system) for out-of-the-box public classroom

viability with positive results, although none of them are immediately relevant to this study as

they are more traditionally teacher-centered (see, for example, Lawhead, Duncan, Bland,

Goldweber, Schep, Barnes, & Hollingsworth, 2003; Klassner, 2002; Tribelhorn & Dodds, 2006).

Martin (1996a, 1996b) provides a constructionist study

of students learning to control LEGO Mindstorms

robots. The students in his study range in level from

primary school students to MIT undergraduates. The

study suggests that the embodied nature of the

programmable brick encourages elementary students to

Chapter 2: The Structure, Syntax, and Design of VBOT

58

make a wide variety of aesthetic and functional decisions. In one scenario, a group of young

students build a robot with a brush attached and program the brush-robot to “dance” in

concentric circles. The creativity was not limited to primary school art class. The aesthetic,

whimsical, and creative aspect of the robots appeared to motivate the undergraduate students

working with the system. These students reported that the creative aspects of the tasks retained

their interest long enough to become fluent with the technology. Although Martin felt that the

students that acquired fluency with the technology primarily learned only the technology itself

(as opposed to content that may be more obviously aligned with traditional curricular goals), he

suggests that this was a limitation of the crudeness of the early technology; the mechanical

engineering skills necessary to become fluent with the programmable brick were a significant

barrier to learning outside content using the bricks as a tool.

Martin (1996a) suggests that only by using unreliable physical sensor machines can students

independently distinguish "policies" and "plans". A policy is a set of behaviors that run as

triggered by certain criteria, rather than a list of ordered instructions. For instance, a policy

behavior might be written: “when the temperature is under 50 degrees, move toward the closest

heat source.” A policy would consist of many such behaviors, potentially triggering in parallel. A

plan, on the other hand, is a set of deterministic instructions. For example, a plan called

GO_TO_STORE might be written as such: "forward 5 m, turn left 90 degrees, forward 10 m,

right 90 degrees, forward 10 m, left 30 degrees, forward 2 m, right 10 degrees, forward 40 m."

Plans rarely achieve optimality in physical robotics due to the unreliability of sensors and

Chapter 2: The Structure, Syntax, and Design of VBOT

59

environmental noise; policies are often easier to understand and work more reliably in a

variety of environments (Arkin, 1998; Brooks, 1999; Jones, 2004). Martin (1996a, 1996b) found

that the programmable brick learning environment can motivate students to develop a more

flexible programming approach, moving between policies and plans depending on the

environment in which the robots operate.

Physical Robotics in the Classroom

Undergraduate engineering education

Undergraduate engineering and computer science education have been the most common uses of

robotics. I was first introduced to Papert and LEGO/Logo robotics during a robotics course with

Leslie Kaelbling at Brown University as an undergraduate. My experience was not uncommon.

Martin (1996a) describes some of the ways that he has analyzed the use of robotics for teaching

undergraduates, and a cursory search of major universities shows that many of the larger

computer science departments have a class in which LEGO Mindstorms robots are used.

High school and college robotics competitions

Robotics competitions are often used to motivate students in engineering or computer sciences

disciplines. These happen at several levels, ranging from middle school to undergraduate. For

example, Northwestern has such a competition, as does Brown and MIT. There are several such

Chapter 2: The Structure, Syntax, and Design of VBOT

60

competitions in the Chicago-land area. Two of the more well-known competitions are

RoboCup (1997) and FIRST (2006). Some of the robots that are built for these competitions are

impressive, but most are simply sequences of commands designed to traverse a pre-set course. In

other words, the robots might have a set of commands such as: turn left, forward 80 tire

rotations, turn right, forward 20 tire rotations, and then stop. Our work on VBOT works to

extend this work by enabling students to provide rules for their robots to follow rather than a

sequence of steps; VBOT uses “policies” where these robots use “plans.”

Primary school robotics

Granott has designed robots with an explicit focus on teaching students about logical thinking

and basic programming. Granott's "weird creatures" (1993) follow behavioral patterns hidden

from the user. A user then tries to determine the flow of programming for a given robot. Building

on this, Mioduser (1996) and Levy, Mioduser, & Talis (2001) have done work with primary

school children in which the students build and analyze "weird creatures" or "weird structures."

The robotics work in primary schools is relatively new, but groups like RoboCup Jr. (2006) are

using some of these techniques to appeal to younger students.

Constructionist projects in physical robotics

Resnick (1998) describes various physical robotics technologies that the media lab has used in

Chapter 2: The Structure, Syntax, and Design of VBOT

61

primary, middle, and secondary schools. One interesting project implements Hancock's (2001)

architecture for "communicating Crickets" – robots that work together to accomplish small tasks.

Hancock's work is further described below in the "Logo Environments" section. Resnick, Berg,

and Eisenberg (2000) found that " children, by teaching their creatures to communicate with one

another, can learn some general principles about communication." Resnick et al. (2000) further

describe many types of physical robotics projects possible with the Programmable Brick and

Crickets kits. The students designed robotic projects as complex as an automatic bird feeder, a

mini-golf machine, and a robotic flower that opens in the presence of light.

Chapter 3: Related Literature

62

Chapter 3: Related Literature

3.1 Defining Computational and Complex Systems Fluencies

Print literacy and print fluency have been mostly “invisible” throughout recorded history, in that

scholars did not study the differences between speaking a language and understanding its

rhetoric (Manguel, 1997). For Plato and the classic philosophers, reading was aloud, writing

existed only to record history as fact, and languages other than Greek or Latin were the exotic

forms of barbarians and usually not committed to paper. Although reading and writing were

understood to be different than speaking, the difference was generally understood to be at the

expense of the written word. For instance, Aristotle’s Poetics (as translated by Heath, 1996) was

posited as a guide to the forms of reason and argument as spoken, not as read. Fluency itself was

not a scholarly subject until the rise of philology during the Enlightenment (Cassirer, 1979),

although writing about the act of writing flourished during the Renaissance. Petrarch (trans. by

Cassirer, 1948) proposed that writing existed as a way to ties together existing memories and

understandings – a concept notably similar to Piaget’s (1972) description of constructivist

learning in children.

As a philosophical descendant of Piaget, DiSessa (2000) defines literacy as "a socially

widespread patterned deployment of skills and capabilities in a context of material support (that

is, an exercise of material intelligence) to achieve valued intellectual ends" (p. 19). That is,

Chapter 3: Related Literature

63

literacy is the ability to use a medium as a material, cognitive, and social tool. Defining

literacy in terms of these three facets highlights the complexity of literacy and the degree to

which true literacy can change the way individuals think and learn.

Print literacy, for example, requires material understanding of the mechanics of letters and

words, cognitive ability of how to consume and produce effective prose, and social

understanding of what written words are appropriate in a given situation and how best to

communicate using written language. Only by being able to make sense of each of these aspects

can one be said to be print literate. Moreover, being print literate makes available new ways of

making sense of and accessing the world of information. Just as print literacy opens a lens

through which we can look at the social world, so can other literacies change our perspectives.

Specifically, computational literacy opens a lens to the entire world of technology and

engineering (DiSessa, 2000), and complex systems literacy gives us new perspectives on a

variety of scientific phenomena (Jacobson & Wilensky, 2006).

In the following sections I will clarify each of the constructs in DiSessa’s framework (material,

cognitive and social literacies) by applying them to the VBOT architecture and corresponding

activities. I will then use these constructs to define complex systems literacy and the benefits of

developing this perspective. Henceforth, we will use the term "fluency" to mean a type of

literacy not rooted in print literacy.

Chapter 3: Related Literature

64

When used informally, fluency, as opposed to literacy, is rooted more in practical concerns

than in socio-political ones. Colloquially, one might say, “Alice is a very literate person.” This

would imply that Alice understands and uses context from history, literature, and the arts; Alice

can cross-apply this understanding. As a contrast, if one were to say, “Sam is a very fluent

person,” it implies only that Sam can speak and read the language well enough to have a

conversation. It is for the reason that the word “fluency” is used, as the thesis addresses issues

more related to practical understanding than deep contextual understanding.

Computational Fluency

The term “computational literacy” has often been used to describe the mastery of a few standard

computer applications. For example, as a secondary school teacher, I taught a class called

"computer literacy," which was designed to teach mastery of Microsoft Word, Excel, and

PowerPoint. Papert (1980) and DiSessa (2000) change this definition to argue that

“computational literacy” implies both the ability to use computer software and the ability to

create and manipulate computer software (or hardware) to communicate and disseminate ideas.

This definition of literacy parallels the generally understood meaning of print literacy; a print

literate individual can express oneself in writing. The expressive and authoring aspects of

computational fluency are largely ignored in the pre-collegiate curriculum. Moreover, we argue

that such computational fluency can greatly benefit citizens of our era, because computers shape

so much of our interaction and communication.

Chapter 3: Related Literature

65

DiSessa’s (2000) definition of literacy can unpack this more rich understanding of

“computational fluency.” As defined by Papert and DiSessa, computational literacy introduces

the possibility that computational literacy does more than enable work with end-user

programmers. Instead it changes how individuals think and learn. In the following we define the

social, cognitive and material aspects of computational fluency by identifying how our project

addresses each aspect.

Material computational fluency is the ability to use the material tools. This is the aspect that

most closely aligns with more common definitions of computer fluency. It encompasses both the

ability to use computer programs and knowledge of programming languages. For instance, any

use of VBOT requires some level of material computational fluency: students must learn the

VBOT circuit language to compete or collaborate with one another through the system.

Cognitive computational fluency describes the student's ability to think with the computer-as-

tool. Developing cognitive fluency requires that students adapt their thinking processes to align

with their tools (in this case, VBOT). This is, functionally, being able to think like a computer

programmer or a computer artist. Cognitive computational fluency allows the student to use the

computer as a tool to solve even those problems that do not require computers. Moreover, being

able to conceptualize what elements of given problems with which the computer can aid is

important to cognitive fluency. Students build computer programs and hopefully become familiar

Chapter 3: Related Literature

66

with the computer as a protean "tool to think with" (Papert, 1980) rather than as an inert tool.

For example much as student may use a pad of paper to solve a 10-digit division problem, so

they can use a computer to help work through a 1000-digit division problem.

To communicate in and around a computational environment, one must share certain technical

and socials means and goals; this is social computational fluency. As the photography-literate

discuss "light levels," so the computationally literate can discuss "efficiency" or "cleanliness."

Inherent to our project is communication between students and the trading of information and

resources. Students that can effectively communicate and trade will have an advantage, and, at

some point, every student will discuss the sharing and communication that they have with the

whole group.

Complex Systems Fluency

Complex systems fluency refers to an individual’s ability to negotiate the relationships between

“agents”, “aggregates”, and “levels thinking.” This terminology as used in this paper is derived

from Wilensky & Resnick (1999), who use the example of a traffic jam:

“Two high-school students were writing a computer program to

simulate the flow of traffic on a highway. They began by writing

some simple rules for each car: Each car would accelerate if it

didn’t see any other cars ahead of it, and it would slow down if it

Chapter 3: Related Literature

67

saw another car close ahead. They started the program running, and observed

the patterns of traffic flow. On the screen, a traffic jam formed.

They continued to watch and–much to their surprise–the jam

started drifting backward along the highway. ‘What’s going on?’

said one of the students. ‘The cars are going forward, how can the

jam be moving backward?’”

In this example, the agents are the cars in the traffic jam. A traffic jam consists of cars. The

traffic jam is a result that emerges from the aggregation of cars. Understanding the relationship

between the individual cars and the emergence of the aggregation of the cars is called levels

thinking. Levels thinking is not only the ability to think at both the level of the cars and the level

of the traffic jam, but also the ability to concretize the relationship between the two levels.

Complex systems research has become increasingly important for understanding scientific

phenomena (Holland, 1995; Wilensky & Resnick, 1999; Wolfram, 2002). Scientists use complex

systems methods to model phenomena in domains varying from physics (Bar-Yam, 1997) to

social interactions (Watts, 2003). Some have argued that complex systems theory is a new kind

of science, one posed to usurp the mantle of scientific explanation from traditional equation-

based science (Wolfram, 2002). Others have shown that modeling with complex systems is more

comprehensible to high school students than traditional equation-based science (Centola,

McKenzie, & Wilensky, 2000; Ioannidou, Rader, Repenning, Lewis, & Cherry, 2003; Jacobson

Chapter 3: Related Literature

68

& Wilensky, 2006; Wilensky, 1997a, 2001; Wilensky & Reisman, 1998, 2006).

We use DiSessa’s (2000) framework for computational literacy to describe complex systems

fluency. This framework breaks literacy into material, cognitive, and social fluencies. In this

section, we describe how these elements are addressed.

When working with complex systems, scientists use a diverse set of strategies and overlapping

tools. Therefore, material complex systems fluency concerns a range of tools. Within those

tools, there is an emphasis on computational tools for analyzing data and modeling phenomena.

Thus, material fluency in complex systems requires a level of both computational fluency and

scientific fluency. Students need to be able to produce theories and hypotheses, evaluate them,

and report on results. Furthermore, the students need to be able to build models, material or

computational, which produce interpretable results.

Cognitive complex systems fluency is the ability to think with and from complex systems

theories and models. Can students use multi-agent systems to consider a phenomenon? Can

students approach a problem from multiple levels, such as the agent-based and the emergent or

aggregate? As students become more familiar with the relationships between levels of complex

phenomena, they begin to use emergent and complex systems thinking as a tool with which to

think about everyday physical phenomena. Wilensky & Resnick (1999) call this "levels

thinking."

Chapter 3: Related Literature

69

As complex systems fluency is a form of scientific fluency, social fluency becomes a vital

element of complex systems fluency. The scientific community revolves around the

communication of results and hypotheses (Latour, 1987). Students becoming complex system

literate should learn the terminology of the complex systems scientist and an ability to

communicate about the various levels of a complex phenomenon. Students should be able to

describe phenomena from the agent-based, aggregate, and emergent perspectives. Scientific

findings are meaningless if not communicated and immersing oneself in a "new kind of science"

(as per Wolfram, 2002) requires a new kind of communication.

3.2 Learning Theories for Supporting Complex Systems and

Computational Fluency

Methods and theories of complex systems are largely absent from school curricula. Informal

conversations with teachers and principals suggest that they believe that there are two possible

reasons for this absence: 1) these concepts are too hard for students to grasp, and 2) the cost of

entry (training, resources) to introduce these concepts into school curricula must be prohibitively

high. Findings in VBOT pilot studies have suggested that both of those assumptions are

problematic (Berland, 2006; Berland & Wilensky, 2004, 2005).

Chapter 3: Related Literature

70

Research shows us that teaching students to use computer programming to do complex systems

science can make computational fluency and complex systems fluency mutually reinforcing

(Wilensky, 2001; Wilensky & Resnick, 1999). Our pilot studies contribute to this literature with

preliminary findings that there are correlations between complex systems and computational

fluency in students using VBOT (Berland & Wilensky, 2004, 2005). Moreover, we see robots as

a natural fit in complex systems research. Complex systems events involve many similar

elements doing simple tasks that, together, create some emergent phenomenon (Holland, 1995;

Wilensky, 2000). Similarly, it is common for robotics research to use several simple robots that

collaborate in the creation of a phenomenon (see Parker, Schneider, and Schultz, 2005, for a

variety of examples). Despite these parallels, and despite that robots are used to teach computer

and mathematics fluency (Resnick & Ocko, 1991), robotics, as a field, has only recently begun to

be addressed in complex systems research (Pollack, Lipson, Funes, & Hornby, 2001).

Furthermore, there is little research using robotics to address complex systems fluency.

Given the small research base of literature focused on fostering complex systems and

computational fluencies, we begin by identifying ways of learning that influence our work:

constructionism and play. We then move on to focus on the potential of programming and robots

for developing these fluencies.

Chapter 3: Related Literature

71

Constructionism

Constructionism postulates that one learns more about an object or a concept by participating in

the process of building the object or concept. “Learning by making” is a major component in

robotics education projects (Hancock, 2003; Portsmore, 1999; Resnick & Ocko, 1991). As

Wilensky (2000) notes, tools that utilize the individual components needed to complete the

aggregate can both help the student understand the final concept but also allow the investigator

to understand the process of learning. Wilensky differentiates “black box” projects in which

subjects begin in the middle of the process of creation with “glass box” projects in which

subjects can see the process of creation from start to finish.

The Logo computer language is an example of a "glass box" constructionist educational

programming environment. Users program a "turtle" (a virtual agent) with a simple, but full-

featured programming language, streamlined for beginners, in which all relevant program code is

visible to the user-programmer. The Logo computer language is discussed in more detail by

Papert (1980). Often Logo is used as a mathematics programming environment or a drawing

language. However, the Logo programming environment can have much more complex

applications; constructionism and Logo have been the focus of some encouraging studies of

computational fluency (such as those detailed in LCSI, 1999).

Chapter 3: Related Literature

72

Play and Collaboration

Commensurate with constructionism is the notion of play. Traditional school curricula rarely

involve significant "play" time, and efforts to raise standards for teaching and learning and

schools have neglected to target sources of student motivation. A considerable body of research,

however, has shown that play can be a powerful academic motivator (Dewey, 1913; Harel &

Papert, 1990; Kafai, 1995; Papert, 1980; Vygotsky, 1978). Additionally, there is convincing

evidence from both the social and cognitive streams of learning research indicating that learning

and transfer are more easily achieved when the students are motivated to work through activities

(e.g., Ames & Archer, 1988; Dweck & Elliot, 1983; Pintrich & Schunk, 1996). Schank & Cleary

(1994) also show that intrinsic motivation can lead to more personally relevant, stable knowledge

acquisition for many students.

There have been few studies using real-time games in constructionist learning environments.

Recent research has shown games to be effective teaching tools in several domains (Gee, 2004;

Squire, 2004; Steinkuehler, 2004). Gee (2003) discusses how and why games can be effective in

teaching fluencies. Constructionist research has long used games to teach mathematics (Kafai,

1995), and recent games research is making significant headway into the processes and

motivational aspects of how and why games are important for learning and teaching. Pilot

studies have shown that students regard VBOT as a game and interact with each other as if in a

game scenario (Berland & Wilensky, 2005). VBOT is designed, in part, so as to integrate

Chapter 3: Related Literature

73

findings from the field of game research; we will cover this relationship in more detail in

Chapter 7.

Studies have also shown that enabling social-help interactions leads to improved cognitive and

social functioning (Gutierrez, Rymes, and Larson, 1995; Vygotsky, 1978). Vygotsky (1978)

describes the Zone of Proximal Development (ZPD), which is the level at which children can

function in a social-help setting as opposed to an individualized one. Gutierrez et al. (1995) show

that often the most productive and thoughtful interactions occur in informal spaces within the

classroom, outside of the direct view and control of the teacher. This literature combines to

highlight the importance of individuals learning through playful collaboration.

Since the advent of the personal computer as a learning tool, collaborative programming has

been evaluated several times as learning method (e.g. Papert, 1980; Tiffin & Rajasingham,

1995). Recently, new programming methods, such as “extreme programming,” have been used in

collaborative programming research (Beck, 1999). Thus we view programming as a fruitful

environment for fostering the collaborative learning supported in this literature.

Even while constructionism, play and collaboration offer theoretical guidelines and hope for

fostering complex systems and computational fluencies, there have been few comprehensive

collaborative constructionist studies of complex systems fluencies. This study attempts to

address this need by creating just such a learning environment and then examining the learning

Chapter 3: Related Literature

74

that occurs therein.

VBOT was designed to use constructionism and play through the metaphor of virtual and

physical robotics. Towards that end, Braitenberg (1984) provides a virtual robotics starting point

for projects in art, philosophy, electrical engineering, cognitive science, and several other

disciplines, as seen through virtual, physical, and theoretical robotics. The book begins with

descriptions of how to build (as circuits, thought experiments, programs) a simple set of

autonomous robots that either “love” or “hate” light. To love light is to tend to travel towards it.

For instance, a “love” robot might be a small, two-wheeled artifact that orbits a lamp. A “love”

circuit could simply connect a light sensor to a motor attached to a wheel. As the light sensor

sees more light, the motor speeds up, spinning the wheel faster, and sends the robot towards the

lamp. For more detail on the technical detail of these circuits, consult Chapter 2.

By progressing through simple circuits, such as “love” circuits, which involve only light sensors,

motors, and wheels, Braitenberg prompts a difficult set of questions previously raised by

biology, computational, and philosophy. If simple circuits can create complex behaviors, what is

complexity? How does the complexity of the behavior relative to the complexity of the circuit

contribute to an understanding of how the brain works? Braitenberg’s work is remarkable in the

ease with which beginning students can reach understandings of his simple circuits, and of the

questions raised by the behaviors. Braitenberg shows that these circuits are valuable, motivating,

and interesting tools for raising and also answering a range of questions for any level of learner.

Chapter 3: Related Literature

75

It is from this work that much of the research in educational robotics has stemmed.

3.3 The Virtual and the Physical in Robotics

To describe the history of the rift between the virtual and the physical in the literature would be

presumptuous; works as monumental as Plato's Parmenides have mapped the boundaries of the

question. More recently, post-structuralism has attempted to dissolve the boundary between

dichotomies such as virtual and physical (see, for example, Haraway, 1991). This project’s goals

are more prosaic. To that end, we will address only work dealing specifically with virtual and

physical robotics. Indeed, there has been significant debate in the computer science literature

about the relationship of virtual to physical robots (see, as a reference, Jakobi, Husbands, &

Harvey, 1995; Wainer, Feil-Seifer, Shell, & Mataric, 2007). The vast majority of this literature

concerns the relevance of virtual robotics techniques to the use of physical robotics for real-

world tasks. The VBOT project has little in common with the world of real world physical

robotics. That is, the real world physical robots, such as the iRobot models used for research or

the robot arms used to build cars, have a different set of functionalities than the LEGO

Mindstorms robots used in the VBOT project.

Noise is the name given to perceptual and motive inaccuracy in robotics, and, in terms of

physical robotics, it has played a significant role. Without a large expenditure, it is fairly difficult

Chapter 3: Related Literature

76

to get sensors for simple robots that read light, elevation, temperature, or any number of

possible information sources with reliable precision and accuracy (Martin, 1996b). Furthermore,

the world that humans inhabit is "noisy" in that reliable information about objects or people is

often obscured or only partially available. To that end, modern robotics often uses sensors and

processes designed to minimize noise and use partial information (see, for example, Brooks,

2002).

Thus, one significant difference between physical and virtual robots is that it is mathematically

and conceptually difficult to simulate "real-world" noise in a virtual setting. It is not simply a

matter of preparing a virtual world with partially obscured information, but instead preparing a

virtual world with dynamic partial information that is constantly changing in a semi-random (but

rarely fully random) contingent noise (i.e. the world is fully interrelated). This difference will be

addressed again in Chapter 6 in which students' understanding of "noise" and physicality is

analyzed.

3.4 Open Questions

Although there have been many studies in computational and complex systems fluency, more

work is needed. In this section, we will describe the most salient open questions in the literature.

Chapter 3: Related Literature

77

There is no comprehensive study of the relative affordances of comparative physical and

virtual environments in constructionist learning. As discussed in Chapter 2, virtual and physical

environments have both been used to success in constructionist research and otherwise. Although

there have been several studies of the relative affordances of virtual and physical environments

(see Sharlin, Watson, Kitamura, Kishino, & Itoh, 2004 for a review of research on tangible

interfaces), that work has not been explicitly both constructionist and empirical. This study, in

comparing the virtual and physical environments empirically, has the advantage of comparing

them in the same situations and with the same subject pool.

As the field of complex systems is young, there have been few comprehensive collaborative

constructionist studies of complex systems fluency. Even though there is significant work using

constructionism to teach complex systems fluency (such as Wilensky & Resnick, 1999), the

field’s youth leaves many unaddressed topics. For instance, there has been relatively little

research concerning the use of physical systems in teaching complex systems fluency. While this

gap is being addressed by researchers such as Abrahamson, Blikstein, Lamberty, & Wilensky

(2005), there remains much work to be done in this field.

While some research has shown a relationship between computer and complex systems fluency,

there is little evidence that these fluencies are mutually beneficial. Research shows us that by

teaching students to use computer programming to do complex systems science, computational

fluency and complex systems fluency can be mutually reinforcing (Wilensky, 2001; Wilensky &

Chapter 3: Related Literature

78

Resnick, 1999).

There have been no comprehensive studies on the use of physical robots in teaching complex

systems fluency. Robots are a natural fit in complex systems research. Complex systems events

involve many similar elements doing simple tasks that, together, create some emergent

phenomenon (Holland, 1995; Wilensky, 2000). Similarly, it is common for robotics research to

use several simple robots that collaborate in the creation of a phenomenon (see Parker,

Schneider, and Schultz, 2005 for a variety of examples). Despite these parallels, and despite that

robotics are commonly used to teach computer and mathematics fluency (Resnick & Ocko,

1991), robotics, as a field, has only recently begun to be addressed in complex systems research

(Pollack, Lipson, Funes, & Hornby, 2001). Furthermore, there is little research using robotics to

address complex systems fluency.

There have been few studies using real-time games in constructionist learning environments.

Recent research has shown games to be effective teaching tools in several domains (Gee, 2004;

Squire, 2004; Steinkuehler, 2004). Gee (2003) discusses how and why games can be effective in

teaching fluencies. Constructionist research has long used games to teach mathematics (Kafai,

1995), and recent games research is making significant headway into the processes and

motivational aspects of how and why games are important for learning and teaching. Though

VBOT is not explicit designed as a game, it can exploit many of the same motivational tools

(Berland & Wilensky, 2005). The present study is therefore able to integrate findings from the

Chapter 3: Related Literature

79

field of game research.

There has been little research in understanding the spread and flow of information in

collaborative constructionist environments. Research on social networks has recently made

significant progress about transmission of information around small groups (Brown & Duguid,

2002; Watts, 2003). As of yet, few studies have applied it to constructionist learning

environments, even though constructionist learning often involves collaboration and the sharing

and distribution of information. The present study aims to demonstrate the value of collaborative

learning in small social learning networks research and constructionist research.

VBOT provides an untested model for collaborative programming environments. Since the

advent of the personal PC as a learning tool, collaborative programming has been evaluated

several times as learning method (Papert, 1980; Tiffin & Rajasingham, 1995). Recently, new

programming methods, such as “extreme programming,” have been used in collaborative

programming research (Beck, 1999). The present study provides a new framework for simple

collaborative programming in complex environments.

The above literature review has identified a number of questions that the current literature does

not yet address. This work is structured to fit into this literature by building on the existing

designs in which users program virtual and physical robots, extend these designs to align with

the theories of constructionism, and playful collaboration. We do this with the expectation of

Chapter 3: Related Literature

80

learning how collaborative constructionism can support students as they develop both

computational and complex systems fluencies. In Chapter 2, we focus on the design of VBOT

and how this literature influenced the technical design. Chapter 7 focuses on the design of the

VBOT activities and how those related to collaborative constructionism. We then move to study

the interactions and learning that occurs in this supportive environment.

Chapter 4: Context, Methodology, and Data Collection

81

Chapter 4: Context, Methodology, and Data
Collection

This work is the culmination of a series of three tests of the VBOT architecture, activities and

theory. This chapter discusses details of the methodology and context for each of these trials. It

is organized into descriptions of the methods and analyses of the pilots followed by a description

of methods and data collection for a controlled study performed in 4 middle-school classrooms.

Although each of these studies represents a change in focus, reflecting lessons learned from the

previous work, they follow a similar design research methodology. Design research (as described

in Collins, 1992; Edelson, 2002) can take myriad forms, from relatively uninflected social

anthropology to UI studies that are conceptually closer to traditional lab studies (such as Schank,

Fano, Bell, & Jona, 1993). This work tends more toward the classical UI study than a minimally

invasive social anthropology study. However, this study differs from UI studies in that we

privilege teacher practice and school context. In VBOT studies, we collaborate with teachers in

their common environments. In our research studies, we attempted to ensure that teachers could

teach and discuss with the technology, rather than teaching about the technology.

The data collected for each of the pilot studies were focused on the affordances of the tools, the

effectiveness of the lesson in teaching the target concepts, and the relative affordances of the

various lessons and tools. To that end, the data is both quantitative and qualitative. The

Chapter 4: Context, Methodology, and Data Collection

82

qualitative data collection is designed to facilitate analysis of students’ computational fluency,

complex systems fluency, and understanding of the target content. The qualitative data was

collected primarily through videotape data of the activities and interviews with the students.

Interviews were conducted immediately before the activity began, during the activity (in situ),

and immediately after the activity. The pre-activity and post-activity interviews were entirely

conducted by the author. Researchers videotaped the activity on hand specifically for data

collection and technical support. The quantitative survey and activity log data was collected in

the second and third of the three studies. The quantitative data collection was designed to

facilitate analysis of student practice, program design, and study design. In the following, we

provide more details about each of the trials, addressing how they differ in context and research

methodology.

4.1 P1 – Initial Pilot

The first VBOT pilot (P1) was designed to test the basic VBOT architecture and GUI. To that

end, it was conducted at Northwestern University, outside the school environment and was

entirely facilitated by a team of researchers, led by me.

The sample consisted of 3 girls and 6 boys (n = 9). All 6 boys and 2 of the girls were either 13 or

14 years old; one girl was 11 years old. Our sample was gathered in an informal manner; one of

Chapter 4: Context, Methodology, and Data Collection

83

the facilitators knew the parents of the various children socially. The self-selected group of

students was from two schools, one public middle school and one religiously-affiliated middle

school. The students were not reimbursed.

The first researcher facilitated the activities with help from 3 collaborating researchers. The other

researchers were instructed to help participants use the technology, remedy technical problems,

and collect data. None of the facilitators helped students with conceptual difficulties or content

issues. In fact, we were not often asked to help students solve problems. More often, we

mediated social issues and answered technology questions.

Data collection

All activities were videotaped using two handheld cameras. One camera was focused primarily

on group interaction by videotaping the classroom as a whole, while the other cameras focused

on specific student strategies and interactions. We also conducted pre- and post-interviews with

the students.

Activity

The classroom was arranged in a “V-shape” with students pointed at the center-front of the room

such that they could see one another, the screen in the middle of the classroom, and their

Chapter 4: Context, Methodology, and Data Collection

84

individual computers. We didn’t collect social network data in this study, but the table was

always active with student-talk, and all students could see each other over their screens. Students

used 13" Macintosh iBook G3 computers. Around minute 40, the experiment was interrupted by

a pizza lunch, our only participant payment. This allowed for significant social time, and the

participants ate and talked for about 15-20 minutes. The pilot ran around 90 minutes (not

including lunch). There were 4 activities provided by the facilitator, and the students were

allowed to vote twice between two sets of activities. All activities were done with a preliminary

version of virtual VBOT described in more detail in Berland & Wilensky (2004).

All activities were restricted to variations on the flocking activity described in Chapter 2. While

these activities were simple in both goal and process, they generated a range of discussion about

the types of circuits to build. The students modified their circuits while they were discussing

them in order to generate better results for the group.

Due to our relative success with leading group interaction and discussion using VBOT, this short

study suggested that a move into formal classrooms would be both practical and fruitful.

4.2 P2 – Second Pilot

P1 was our initial trial. While P1 was provisionally successful in teaching the students about

Chapter 4: Context, Methodology, and Data Collection

85

complex systems and computational fluencies (see Berland & Wilensky, 2004), it was most

helpful in highlighting the content and form of what we had missed. In that short session, we

found major problems both in methodology and design. Our software was too limiting, the

assessments weren't adequately effective for evaluating fluencies, and the activities did not

optimally exploit the content. Thus, the transition from P1 to P2 involved substantial

development over the following year. We redesigned the software and the assessments. Our

design philosophy and process is detailed in Chapter 7. Given these changes, P2 was designed to

test the new technologies and redesigned VBOT systems towards teaching complex systems and

computational fluencies. The research methodology changed considerably in the following ways:

1) we decided to focus more on the teacher-facilitator, 2) administer more comprehensive

questionnaires, and, most importantly, 3) log all contact with the VBOT system. It was difficult

to practically evaluate the actions of the students when we were limited to analyzing their actions

only on a shared space.

Description

P2 ran for three days (80 minutes / day) in a single 6th grade science classroom. The classroom in

which we worked was typically teacher-centered; the teacher led the class in both lecture and

discussion. This contrasted with the relatively open discussion and interaction that characterizes

the classroom when using VBOT. The VBOT activity was situated in class time usually

dedicated to astronomy. As such, the VBOT activities were designed around an astronomy

Chapter 4: Context, Methodology, and Data Collection

86

metaphor, the “Moon-Tag” activity described in Chapter 2 was contextualized in this

astronomy setting. This class only used virtual VBOT architecture because we wanted to focus

on testing the redesign of the architecture and activities from P1. We planned on using the

underlying structure provided by the architecture and activities to compare physical and virtual

environments in the final implementation. Our main research questions were:

• How did the class participation patterns differ between a baseline lesson and the VBOT
activity lessons?

• Did the target students show increased decentralized and non-deterministic thinking
during and after using VBOT?

• How can any observed changes in complex systems fluency or classroom patterns of
participation be accounted for?

How did new or improved aspects of the VBOT architecture support observed changes?

Participants

This study included 26 students, each of whom participated in the VBOT activity for 80 minutes

a day for 3 days. Three students missed one or more lessons. According to the teacher and

administrators, this class was a representative sampling of 6th grade students at the school. The

school was an urban public middle school (approximately 40% White (Non-Hispanic), 40%

Black, 20% Hispanic, 35% low income).

The students worked both individually and in pairs. Based on both Harel & Papert’s (1990) and

Kafai’s (1995) work in which they show the positive interaction effects of pairs work in

Chapter 4: Context, Methodology, and Data Collection

87

programming / learning activities, the VBOT activity was designed with students working in

pairs to maximize the interaction in the classroom. The class used the orbit, flocking, and Moon-

Tag activities described in Chapter 2.

Facilitation and Context

The teacher in this classroom was both supportive and excited. However, as a relatively new

teacher, she had not yet mastered whole-class discussions; students did not help each other out-

of-turn. There was some evidence of an IRE structure to coverage of formal scientific material.

However, the teacher was excited to learn how to create a more engaged and connected

classroom.

The author was primary facilitator of the VBOT activity. The teacher helped students with

technical issues, organized the classroom, and assisted in classroom management. In addition,

two of my fellow researchers aided the teacher and me by addressing technical issues and

organizing data collection.

Data Collection

Each student completed a pre-test and a post-test. The tests were designed to assess the students’

complex systems fluency and technical fluency. The pre-test and post-test were similar; they

Chapter 4: Context, Methodology, and Data Collection

88

consist of sections on robotics, complex phenomena, and flowcharts (meant to be roughly

analogous to the visual programming environment). The specific content of some sections was

changed slightly from pre-test to post-test to avoid identical responses. The post-test also

included VBOT behavior circuit building questions in which the students were required to draw

4 visual circuits on a piece of paper given contextual information and a local goal.

The social network data collection was designed to isolate and describe the interaction patterns

of the students. The social network links were recorded in two ways. On the baseline (non-

VBOT) days (Day 0), a researcher recorded every verbal interaction in the classroom during the

hour-long lesson through field-notes. These interactions were verified through video analysis.

The network included only bi-directional conversations, and did not include the teacher, who

lectured to the entire classroom and spoke to most of the students individually. This data was

collected to understand the interaction patterns in the classroom for further analysis; interaction

patterns are discussed in Chapter 6. On VBOT activity days (Day 2 and Day 3), the links were

recorded by the students themselves (in a daily questionnaire) and partially verified through

video analysis. The change in recording methods was because of the significantly higher volume

of student interactions during the VBOT lessons, compared to the baseline lessons.

Both during the activity and on the baseline (non-VBOT) days, the students left their seats only

at the beginning or end of the lesson, or to go to the bathroom. Furthermore, the seating

arrangement was not modified during the data collection. Thus, it was possible to base the social

Chapter 4: Context, Methodology, and Data Collection

89

network diagrams on this seating arrangement; the social network diagrams show students in

the same relative positions that they occupied in the classroom itself. All activities with VBOT

were logged on a central server and videotaped by a researcher. Two cameras were used at all

times, one of which was stationary, one of which captured activity in the classroom and

interviews of students. The interviews were designed to elicit information on students’ technical

and complex systems fluencies as they acted in the VBOT activities. In the interviews,

researchers ask students questions about both the technical process and the student’s reasons for

their actions.

At the end of each of the three lessons, students completed a short (~5 minute) questionnaire.

The daily questionnaire was designed to elicit information about the students’ social interactions,

evaluate the progress of the VBOT activity, and diagnose any material problems with the

activity. These questionnaires asked students to describe one element of the VBOT activity that

they had enjoyed and one they had disliked during the day. We also asked the student to list the

students with whom s/he had discussed VBOT and to list other students from whom s/he had

received technical help. Answers to this question were used to create the social network

diagrams discussed above. The final question focused on learning by asking students to describe

something that s/he had learned in the course of the VBOT activity.

Chapter 4: Context, Methodology, and Data Collection

90

Classroom patterns of participation in P2

Of particular interest in P2 was the change in classroom participation; this led us to try to

organize the social space similarly in the final implementation. In P2, there was a highly

significant difference in the type and count of verbal interactions in the classroom (n=21,

p<0.01). In the observations of the classes both before and after our implementation, the teacher

was the primary focus of the class. Students were encouraged to ask questions of each other, but

few did. The explicit teacher-driven goal of the students during these classes was to “take good

notes which will be graded later.” These notes would also provide the basis for a test that the

students were to take a week after the VBOT activities ended.

Figure 4-1: Day 0 Spatial Social Interaction Network

Chapter 4: Context, Methodology, and Data Collection

91

Figure 4-2: VBOT Day 2 Spatial Social Interaction Network

Figure 4-3: VBOT Day 3 Spatial Social Interaction Network

Figure 4-1 shows verbal activity classroom for the class the day before the students began the

VBOT activities (D0). Figure 4-2 shows verbal activity during the second day of VBOT

activities (D2). Figure 4-3 shows verbal activity on the third (and last) day of VBOT activities

(D3). Again, all of the links are two-way conversations.

Chapter 4: Context, Methodology, and Data Collection

92

The classroom dynamic changed in the two situations. In D0 situation, students asked

questions only of those students they judged to be “experts.” In the D2 and D3 situations,

students talked to many of their fellow students surrounding them. Table 4-1 shows the relative

density of links on the three days. A density of 1.0 would mean that every student talked to every

other student at least once. A density of 0.5 means that half of the possible links were made,

where a link is defined as at least one verbal interaction between two students. A density of 0

means that no student talked to another student.

Table 4-1: Relative Network Density

Unfortunately, we were not able to collect this data in the final implementation due to the

difference in scale. Surveying, identifying, and verifying social network data at this scale in the

final implementation would not have been feasible, as collecting it in this manner requires a ratio

of roughly 4 students per researcher to collect and verify conversation data over time.

Anecdotally, the patterns appeared similar in the final implementation.

4.3 FI – Final Implementation

The transition from P2 to the final implementation involved refinement of the assessments based

Day Density of Network
Day 0 0.03
VBOT Day 2 0.29
VBOT Day 3 0.37

Chapter 4: Context, Methodology, and Data Collection

93

on our data from P2, refinement of the virtual VBOT system, revision of VBOT activities,

and, most importantly, addition of the physical VBOT architecture and robots. We did several

brief tests at Northwestern with small numbers of graduate and college students on the physical

VBOT architecture, but the final implementation was its first exposure to the classroom. Unless

otherwise stated, data collection and assessment were unchanged between P2 and the final

implementation.

In this study, we used the VBOT system in two Chicago public schools with contrasting

contexts. We worked with two 8th grade classes from a neighborhood middle school on

Chicago’s northwest side, heretofore referred to as Old Grove. We also worked with two 8th

grade classes from a major public high school on Chicago’s southeast side, heretofore referred to

as Bayville. At each school, one class enacted the virtual VBOT and the other used physical

VBOT.

The two schools have significantly different atmospheres and makeup. We selected these schools

for their diversity to help demonstrate the applicability of this project to a variety of settings. In

this section, we will describe the two schools, the teachers at the two schools, and our data

collection methods in the two environments.

Chapter 4: Context, Methodology, and Data Collection

94

FI – Data Collection and Methodology

The primary instrument in this research was classroom implementations using the VBOT system.

A researcher co-taught the class with the regular teacher. Each of the four enactments lasted for 5

school days each. This was designed to be a complete weeklong drop-in unit for a middle school

science teacher. There were two schools, each of which had one class using the virtual VBOT

system and one class using the physical VBOT robotics system. One school had separate

teachers conducting the different classes, and the other school had only one teacher for both

classes. No students overlapped. Each class was made up of 20-30 8th grade students. Two of the

classes worked for one week on physical VBOT systems, and the other two spent the week on

virtual VBOT systems.

The students had taken pre-algebra before this pilot, because of the amount of mathematical

understanding required to successfully build VBOT circuits. No additional technological

expertise was needed or expected. The fill-in unit is designed to teach computational and

complex systems fluencies through the mediating subject matter, although no technological

changes were made. The teachers led discussions connecting the subject matter to the biological

systems content that they were otherwise teaching. Like print fluency, computational and

complex systems fluencies address a variety of content domains. Just the act of reading is distinct

from the content that is read, the present study does not require the content of the lesson to

reflect the apparatus.

Chapter 4: Context, Methodology, and Data Collection

95

Due to the heavy involvement of the research as facilitator of the activities, there was only

minimal teacher professional development prior to the enactments. Neither the teacher nor the

researchers explicitly taught students to build their robots, but rather helped them to understand

the techniques and explore possibilities. The teacher and researcher both worked to encourage as

much diversity as possible in building behaviors. The role of the teacher involved organization,

management, and facilitation of discussion and reflection. These tasks did not require extensive

training with the software, the methods of using VBOT, or leading the activities.

The data collected for this study consists of: 2 videotapes of each implementation day, full

activity logs, pre-tests, post-tests, daily questionnaires, pre-interviews of 4 students per class,

post-interviews of those same 4 students per class, pre-interviews of all teachers, post-interviews

of all teachers, and 3 sets of researcher field notes per class.

The interviews were conducted individually with four students from each class, both before and

after the activity. The students were selected to represent a range of gender, ethnicity, and

scholastic performance. With this in mind, one student in each class represented each quartile of

scholastic performance. The interviews were semi-clinical interviews. The interviewer,

proceeding from a set of questions (listed in Appendix 2), allowed the student to digress, but

only briefly. Each interview lasted between 20 and 30 minutes. Both pre-interviews and post-

interviews consisted of one question on computational fluency, one on complex systems fluency,

one on VBOT, and one on the relationship between these topics. In the pre-interview, the VBOT

Chapter 4: Context, Methodology, and Data Collection

96

question was adapted such that it is answerable without knowledge of the VBOT GUI.

The classroom enactments were videotaped using two cameras at all times. One camera focused

on the activity of the classroom as a whole, observing what is being discussed within the

classroom, which student is talking, and the actions of the teacher and facilitator. This is the

reference videotape. The other camera focused on one group of students at a time, recording the

behaviors and interactions of the students who are using the system in the activity. The second

camera was used to conduct "in situ interviews," in which a cameraperson asked students

individually to describe and narrate their actions as they participated in the activities. For

instance, when students used VBOT, the activity interviewer repeatedly prompted the student to

describe not only every action taken, but also the motivations for taking those actions. Through

the activity interview, one can glean some understanding of how the student is working. While

this method is useful, it is limited, because the questions may influence the students’ behaviors.

However, the information gained was valuable to decipher the other actions taken by the student

when examining the activity logs. Furthermore, activity interview data is often self-explanatory

to non-expert observers attempting to understand how students are working.

In addition to collecting data through videotaping, researchers took some field notes. These field

notes are used orient to the videotape and activity log data but are not a primary source data. Our

field note data is not as useful in these implementations because of the high volume of verbal and

technical information and the use of the camera and activity logs.

Chapter 4: Context, Methodology, and Data Collection

97

The last form of qualitative data collected was in the form of a daily questionnaire. The daily

questionnaire had several uses: collecting self-report data on student learning; self-report data on

conversations the students had with VBOT; potential bugs in the technology; and potential

problems with the lesson or facilitation. These daily questionnaires were similar to the

questionnaires used in P2. This questionnaire is provided in Appendix 2.

The majority of the quantitative data came in the form of activity logs. Every action taken with

the VBOT system was recorded and logged to a central server, where an action is defined as any

change the state of the student's vbot or VBOT GUI. The students were informed of the logging

of the data. The other quantitative data collected were the pre-activity tests and the post-activity

tests. As in the pre-activity and post-activity interviews, the questions maintained the same

content domain and structure between the pre-activity and post-activity test, although the actual

content of the questions differed. Every participating student took both tests. The tests were

about 20 minutes long.

FI – Daily Schedule

Each day of the enactments was held in a full classroom for an hour. In both the virtual and the

physical VBOT classrooms, we started the day with a short introduction (less than 5 minutes),

and then used the technology for the rest of the day. During the activities, students were allowed

Chapter 4: Context, Methodology, and Data Collection

98

to talk and interact to the limit of the discretion of the teacher. We list the daily schedules

below:

 Virtual Classes Physical Classes
Day
1

Single-user VBOT. We taught
familiarity with the system, basic
operation, and did a basic activity we
call “orbit.” In orbit, all students
programmed their vbots to
independently orbit a light source. The
students learned about light sensors,
motors, and mathematical operations.

Day
2

Multi-user orbit and flocking. We
started the networking features, and
students tied these into what they knew.
Students learned to orbit and flock as a
group by learning how to use the robot
sensors.

Single-user PVBOT. We taught
familiarity with the system, basic
operation, and did a basic activity we
call “orbit.” In orbit, all students
program their robot to independently
orbit a light source in the physical
world. The students learned about light
sensors, motors, and mathematical
operations.

Day
3

Simple tag. The students built several
circuits and used their vbots to play a
game called “simple tag.” In simple tag,
you get points for touching other robots,
as many as possible.

Multi-user orbit and flocking. Students
learned to orbit and flock as a group by
learning how to use the touch sensors
with the light sensors.

Day
4

Day
5

Moon tag. This is game described in
Chapter 2 in which students must
organize to move rocks from the outside
border to the center of the screen.

Bot soccer. This is game described in
Chapter 2 in which students must
organize to play bot soccer as a team.

Table 4-2: Syllabus overview

Chapter 4: Context, Methodology, and Data Collection

99

Context – Old Grove School

The research was conducted in two classes at Old Grove School, encompassing roughly 50 8th

graders between the two classes. One class used only the virtual VBOT environment, and the

other class used the physical VBOT robots. Old Grove exhibits strong international diversity.

According to the school’s website, 26 nationalities are represented in the middle school grades.

Among our participants, we had multiple students from every inhabited continent but Australia.

This reflects, in large part, the diversity of the northwest side of Chicago. The school is

approximately 50% White (Non-Hispanic) with 40% of middle school students classified as low

income. According to the principal, the school has risen from the bottom quartile in academic

performance of non-magnet middle schools in the city to the third quartile in the last few years.

The school is a small K-8 school with approximately 350 students. Both of the teachers that we

worked with had been at the school for more than 30 years and were considered leaders in the

school, according to informal discussions with the principal and other teachers.

The school serves grades K-8, and it has a warm feel. There is an overall T-shape to the entire

school, and everyone must pass through the junction to get from class to gym or lunch. Students

of all ages meet in the hallways in what appears to be a friendly and open atmosphere, however

open discussion in the halls was discouraged, as it could get congested and loud. The stem of the

T holds the gym, library, cafeteria, and science laboratories. One wing of the T holds the older

students and the front office, and the other wing holds the younger students. There is art created

by students on every open surface, and I had the opportunity to witness presentations by students

Chapter 4: Context, Methodology, and Data Collection

100

in the main area. Given the frequency with which these occurred during my short time in the

school, they appear to be a normal part of the school culture.

While we were there, there was another research group in the school from University of Chicago,

exploring “the most diverse” schools in the city. We had little contact with them, but the school

seemed to be research friendly.

Old Grove Class One (Virtual) – Mr. Wilson

Mr. Wilson taught the class that used the virtual VBOT system. He’s been a teacher at Old

Grove for more than 40 years, serving in almost the exact same position throughout his tenure.

He’s among the most senior teachers at the school, and has been friendly to research projects in

the past. In the pre-interview, he described a deep affection for both gadgets and educational

technology. He has some plans to retire soon, though he looked and acted younger than

retirement age.

One of our first observations about Mr. Wilson’s classes was the high frequency of student

discussion, sometimes appearing to nearly get out of control. His students were allowed to talk

freely, provided the talk was on topic. He rarely punished his students, but he discussed obvious

transgressions with them. Overall, his class seemed highly motivated, and they were excited by

the prospect of using robots and games in the classroom. Two students brought a robot of their

Chapter 4: Context, Methodology, and Data Collection

101

own to show me on the second day of the implementation, but it was confiscated after they

acted inappropriately with it, by running the robot during one of Mr. Wilson's later lectures.

The classroom had information everywhere. Often, a TV and computer were on, while posters

about 4 or 5 different domains, either created by students or commercially published, covered

every available space. During the implementation, posters fell off of the wall and onto our

cameras or camera-people more than once, although no data was lost. In non-VBOT classes,

students would occasionally consult a poster or a reference book, but more often, students would

hop out of their seats to check something on the computer (if Mr. Wilson was available to

supervise).

Old Grove Class Two (Physical) – Mr. Cleveland

Mr. Cleveland has also been a teacher at Old Grove Elementary for about 30 years. For 25 of

those years, he taught 3rd grade. He recently made the switch to 8th grade, but he teaches in a

manner more familiar to 3rd grade than 8th grade. His class is formal and orderly, and students do

not talk out of turn. However, the class also engages in whole class discussions mediated by Mr.

Cleveland. Mr. Cleveland considers himself pro-technology, and he spends time keeping up with

classroom technology, but I did not witness any use of computers. He liked to use video

demonstrations, and he played computer games on his laptop on free periods. Moreover, he had

people in his 3rd grade classroom work with educational robotics several years prior, and he had

Chapter 4: Context, Methodology, and Data Collection

102

enjoyed using them. He freely indicated that he was excited about VBOT coming into the

class.

Mr. Cleveland had a sparse, organized, focused classroom. There was little information on the

walls, in stark comparison to Mr. Wilson. From my observations, his students tended to be

engaged, although there were a few students who clearly bristled at the structure.

Like Mr. Wilson, Mr. Cleveland indicated his plan to retire within the next 10 years, and he was

also quite youthful appearing and quick to laugh and make jokes with fellow teachers. Mr.

Cleveland has a clear dichotomy in his persona – he’s tough but fair in the classroom, and he’s

easy going and funny with adults.

Context – Bayville School

Bayville School provided a contrasting environment to Old Grove. The school is a high school

rather than a middle school, and it encompasses grades 7 through 12. The school is situated in an

urban setting on the southeast side of Chicago. It is known in the city as a good non-magnet

school with solid academic performance. The school is approximately 95% African-American,

with 70% low income. Halls at Bayville are either lined by lockers or giant murals, though there

is an area in the middle school reserved for winners of an art contest. The school is large, even

by Chicago standards, with over 1000 students.

Chapter 4: Context, Methodology, and Data Collection

103

All doors are guarded by a metal detector and armed guards, though, by most accounts, there is

little violence. One of the students in our study was robbed during school hours inside the school,

but all students said this was rare. One of our classes was postponed as students gave depositions

to the police regarding this incident, but, by all accounts, this event was unusual.

Bayville Classes One and Two (Virtual and Physical) – Ms. Adams

Ms. Adams taught both the virtual VBOT class and the physical VBOT class at Bayville. She has

an unmistakable rapport with her students, who seem almost protective of her. She hasn't been

teaching as long as her colleagues, as she became a teacher after a mid-life career change; she

has teenaged children who attend the school. She appeared to represent a mentor to many of her

students. All of her classes were held in a traditional biology laboratory, with faucets, burners,

and lab tables. The room smelled faintly of formaldehyde, although no chemicals had been used

recently in the classroom.

She was excited about the possibilities of technology in her classroom. Ms. Adams had actually

used LEGO Mindstorms robots before in a summer class she had taught at Bayville. She “never

figured them out entirely” and didn’t feel entirely comfortable with them at first, although she

was pre-disposed to like them. She indicated that she was excited at the possibility of new ideas

for her classroom. Moreover, another learning sciences research group at Northwestern was also

Chapter 4: Context, Methodology, and Data Collection

104

working with her at the same time in another one of her classes. Classes that I observed

before our implementation felt much like a typical 11th grade biology classroom. Students had a

much material to cover, and were working diligently to complete it. The purpose of the class,

according to Ms. Adams, was to prepare students who would not otherwise be prepared for a

tough high school biology class anywhere in the city, including magnet schools. It appeared that

the discussions were at a relatively high level compared to the Old Grove classes, with much less

student interaction and discussion. I observed occasional labs, in which students measured a

physical or biological phenomenon and produced a rudimentary lab report.

4.4 Pre-test and Post-test

In a study of this small size, it is difficult to make claims regarding the statistical validity of

performance evaluations. Pre-/post-test measures are used to gain insight into individual

students’ learning and to find patterns in how those students interact with the VBOT system.

Chapter 5 investigates the results of these post-tests and Chapter 6 investigates these patterns. In

this section, we describe the pre- and post- test instruments. Moreover, as this study has learning

goals of computational and complex systems fluency, our instruments are designed to focus on

these areas individually and, as such, we do not aggregate the scores of the different questions.

Instead we look for patterns within and across questions. The full text of all questions can be

found in Appendix 2.

Chapter 4: Context, Methodology, and Data Collection

105

Question 1 (Agent/Aggregate Understanding)

Question 1 was designed as a basic complex systems competency question. The question was

designed by using Jacobson & Wilensky’s (2006) hierarchy of complex system understanding.

The question presents a picture of birds flying in a V-shape (see Figure 4-4); one of the birds as

an arrow pointing to it with the name "Shelby." The name Shelby was chosen because as a

gender-neutral name. The description of the picture in the question reads, "When birds fly south

for the winter, they often form a V-shape. You might have seen this in the sky. This is a picture

of flock of birds flying in V-shape."

The first question that follows the text (Q1.A.) reads, "How does Shelby, the bird, know where to

fly in the V-shape?" The use of the word "know" implies there's a conscious decision on the part

of Shelby the bird to fly in the V-shape; this is meant to be subtle discouragement from answers

such as: "s/he doesn't know", "it is instinct", or "s/he just does." Wilensky & Resnick (1999)

showed that most people respond to questions of biological

systems from a deterministic-centralized perspective; that is, they

posit that a leader controls the system.

Q1.B asks, " How do the birds know where to go when they are

flying in a V-shape?" Note the perspective difference between Figure 4-4: Shelby flocking

Chapter 4: Context, Methodology, and Data Collection

106

asking how Shelby flies and asking how birds fly; this question is designed to elicit answers

that consider that aggregation, distinct from the agent-based perspectives in Q1.A.

Q1.C asks, "Why do bird fly in V-shapes?" This question was designed to elicit students’

opinions on the value of aggregation to an individual agent. Levy & Wilensky (2008) describes

student understanding of the relative utility of acting as an agent in an aggregation. Her work

informs the design and assessment of this question by categorizing middle school student

understanding of the different facets of agent, aggregate, and “mid-level” understandings in

biological systems.

Question 2 (Flowcharting)

The VBOT system uses a flow metaphor towards circuit-based logic programming (as discussed

in Chapter 2). Toward that focus, Question 2 is a flowchart question in which students had to

both interpret and modify a simple flowchart. This question was designed to measure

competency with flow diagrams in general. Question 2 was designed to evaluate a students'

ability to do simple branching logic (see Chapter 2) and program logic. This question begins with

self-reportage by the student of whether s/he has ever "seen a flowchart before." We can

evaluate a students' perception of his or her competency along with his or her actual competence.

Question 2.B. asks the student to read the flowchart as a list. If the student understands

Chapter 4: Context, Methodology, and Data Collection

107

flowcharting, the problem is simple. Indeed, students either clearly succeeded or clearly

failed on this question. Less that 2% of answers were judged partially correct.

Question 2.C. asks the student to modify the flowchart and add one operation and one leaf to the

flowchart. This question is designed to determine a student's ability to modify flowcharts. To

complete the answer, a student can add one directional arrow and one hexagon. We

hypothesized that the different ways in which students incorrectly approached this problem

might lead us to better understand patterns of student interaction with the VBOT system. Again,

however, there was little ambiguity with less than 2% of answers receiving partial credit. The

vast majority of students either answered the question entirely right or entirely wrong. The

wrong answers mostly stemmed from an inability to connect the flowchart "wires" properly. This

is a skill directly addressed with VBOT.

Question 3 (Sensors & Motors)

Question 3 was designed to test student understanding of sensors and motors. However, due to

poor wording, the students’ answers proved unhelpful to test any competence or understanding.

Less than 10% of students’ answers mentioned sensors or motors in any way. It is included in the

Appendix 2 only for reference.

Chapter 4: Context, Methodology, and Data Collection

108

Question 4 (VBOT)

Question 4 requires students to build a VBOT circuit on a paper facsimile of an actual VBOT

circuit board. Question 4 describes four different scenarios and asks students to sketch out the

circuit they would build for those scenarios as seen in Appendix 2. The four questions were:

• 4.A. Wire up a vbot to go in a loop around the screen.
• 4.B. Wire up a vbot that would make a smaller loop.
• 4.C. Wire up a vbot that makes either loop using NO LIGHT SENSORS.
• 4.D. Wire up a vbot that makes either loop using NO VBOT/BUMP SENSORS.

Although the transition from the technical environment to the paper post-test is difficult, a

student who can program advanced circuits in VBOT should be able to answer all four questions.

On average, students answered two questions right and two questions wrong. In this question,

there was only limited partial credit available. Only one of two or three circuits would be correct

answers for each of these questions. If the answer corresponded to those circuits, students earned

credit; if not, they did not. On every answer that was non-standard (around 10% were neither

obviously right nor obviously wrong), the circuit was tested in VBOT. Only three of these

circuits earned partial credit.

Chapter 5: Student Tinkering and Student Sharing

109

Chapter 5: Student Tinkering and Student
Sharing

In this chapter, we examine the ways that tinkering and sharing are interrelated with performance

and activity in VBOT. Towards this end, we will examine four students in more depth, reviewing

the ways that the student shared or tinkered, and evaluating that relationship. There is a

fundamental argument that by sharing and tinkering, these students came to understand VBOT

better, came to succeed on post-test measures, and showed reliable understanding of the target

material.

The chapter is structured in the terms of computational fluency described in Chapter 3. In that

chapter, computational fluency is described as being cognitive, material, and social in nature.

Cognitive fluency is the ability to think computationally; material fluency is the ability to

manipulate computational artifacts; and social fluency is the ability to communicate effectively

about computation. Toward computational fluency, we evaluate students on their ability to build

circuits in VBOT (material fluency), to use VBOT understanding in disparate tasks (cognitive

fluency), and to communicate with both their teachers and fellow students about VBOT (social

fluency). Throughout the chapter, computational fluency will be specifically highlighted and

evaluated.

This chapter uses three main sources to evaluate claims of relative computational fluency:

Chapter 5: Student Tinkering and Student Sharing

110

student logs, interviews, and pre-/post-test data. Case studies are constructed from a

combination of interview data, log data, and supporting classroom video data. The case studies

are intended to highlight aspects of social fluency through communication and cognitive fluency

through process. Process data is generated by following the students’ thinking as they attempt to

solve tasks; this is used to describe the relevance to their cognitive fluency.

The four case studies represent particularly rich data sets in which tinkering or sharing is clearly

manifests. No argument can be made for the “typicality” of these students. Recall from Chapter 4

that we selected students to interview based on a range of teacher-perceived aptitude and gender.

In this chapter, we only discuss students from the middle and lower end of the teacher-perceived

aptitude. As this is a biased selection, we present statistics about all of the students in order to

show the relationship between these data and the remaining students. It is interesting to note that

we found little significant correlation between pre-test and post-test scores, and no correlation

between gender and performance.

The case studies should be read as exemplars of particular modes of using VBOT. The first case

study shows Patrick, who tinkers in VBOT. Patrick’s activity shows a path through the VBOT

activities that maximizes tinkering with technology in order to understand it. His methods of

using VBOT show the ways in which using VBOT can help one to think computationally.

Joshua, on the other hand, shares much more than he tinkers. Joshua’s case is an example of one

way that a student that is not normally very social might use VBOT as an apparatus to

Chapter 5: Student Tinkering and Student Sharing

111

disseminate and collect information, in turn gaining social computational fluency. Alicia and

Dania are then presented to show two relationships between tinkering and sharing and the ways

that tinkering might affect sharing and vice versa. In each section, statistics are presented to

show the correlations between tinkering, sharing, and performance for the classes.

The vast majority of students learned how to program in VBOT during the VBOT intervention.

No student knew how to program in VBOT on day 1, and only two students showed any

familiarity with even the most basic computer programming skills. By the final day, all of the

students could build functional circuits in VBOT. While the data presented demonstrate these

learning gains they do not necessarily suggest the causal argument that tinkering and sharing

increased performance. Instead, the data show the ways that tinkering and sharing are different

methods by which students exhibit and gain computational fluencies.

5.1 Tinkering

The term tinkering derives from Hancock (2003), who describes different methods in which

students use live-programming systems. This, in turn, is derived from Turkle & Papert (1991),

who detail a plurality of methods, such as bricolage, with which students can program

effectively. Turkle, Papert, and Hancock argue that the methods of tinkering and degree to which

students tinker reflects the manner in which they understand the task of programming. In that

Chapter 5: Student Tinkering and Student Sharing

112

way, by analyzing and measuring the tinkering of students, we are evaluating the cognitive

fluencies of those students, as described in Chapter 3.

We define tinkering as any manipulation of the circuit that results in a semantic change in the

circuit. A semantic change is any change that produces different behavior in a vbot. Since some

of the students spent far more time on task and built far more circuits (Avg. circuits built: 1127,

σ = 906), it was not appropriate to measure tinkering in terms of number of circuits built. Thus,

tinkering was measured in terms of the number of semantic changes divided by the number of

total interactions with the system. Measuring tinkering in this way illuminates the rate that

students were changing circuits over the entire time that they were using the system. That is, as

each group used the system differently and for different amounts of time, it was ineffective to

look at raw measures instead of averages.

However, looking at averages negated the value of "more free play." Unfortunately, the design of

the study prohibits any clear separation of "free play" and "directed play," as discussed in

Chapter 3. As such, raw time on task is factored out. To illuminate this point, consider that in

virtual class, one group produced over 4000 individual circuits over the course of the week,

while another produced only 1000. Both groups took part in all activities. The range of circuits

produced, and the amount of circuits produced varies widely. This tinkering metric averaged

0.97 tinkers per circuit, with a standard deviation of 0.18.

Chapter 5: Student Tinkering and Student Sharing

113

Patrick, Tinkerer – Virtual Class, Old Grove, Mr. Wilson

Patrick is used as an example of a student tinkerer. Patrick was a shy, curly-haired, short student

who smiled often and laughed quietly. He was one of the few white, American students in the

mostly international class. Patrick is slightly overweight, and every day of the activities, he wore

essentially the same outfit: jeans with a t-shirt with an open plaid button-down over the t-shirt.

His manner implied mischief, but he didn’t seem interested in attention, and he was enthusiastic

about our efforts. Patrick often grins in a knowing manner, but he was relatively reticent when

questioned directly. Patrick is one of the lowest achieving boys in the Mr. Wilson's class.

In response to pre-test question 2 (flowcharts), Patrick was the only student in his class to mark

that he did not have any experience but also correctly finish and modify the flowcharts. Unlike

Patrick, most students reported experience with flowcharts, but only correctly answered fewer

than half of the flowchart questions. This implies that while Patrick lacks confidence, he is

comfortable with the types of logic used in flowchart diagrams.

During the pre-interview, Patrick showed an aptitude for detail. His pre-interview task was

organized as such: Patrick received three yellow notecards marked "IF", "THEN", and "OR

ELSE," which corresponded with three blank blue notecards. He was then asked to teach a robot

how to spread out. His answer was "IF you are greater than or equal to 5 feet from any object,

then spread out, or else do not spread out." When I asked him how this hypothetical robot would

or would not spread out, he said that the robot "could move away from the object until it was 5

Chapter 5: Student Tinkering and Student Sharing

114

feet away from that object." His answer was among the most "programmatic" of all of the

pre-interviews, in that it gave a specific set of instructions to a robot that were triggered on a

discrete condition. His pre-interview and post-interview both show that he thought carefully

before answering each question. His answers were specific in a way that implied he was familiar

with computers, though he did not have any apparent background knowledge about robots or

programming.

Throughout the intervention, Patrick's group was unique in that they spent the first four days

tinkering with a few high level operations, exploring several unique circuits with each operation.

Out of the groups in his class, his had the second highest percentage of high-level operations per

circuit and the second lowest percentage of unique operations per circuit. Most of the operations

that he added to the board were high-level operations, and there were generally few operations

on the board at a given moment. That is, he would try out the more advanced operations, such as

IF, with only a few other operations on the board at the time. This implies that he was engaging

in a careful, controlled exploration of these operations, as he would create low-density circuits

that focused on testing out the use of an operation. These circuits would generally be less useful,

because high-level operations in general do not work independently; they are logical operations

that require other operations to be useful.

Across the students we generally see two types of tinkering; students either ‘accreted’ or ‘tested’

operations. When students accrete operations, they add them to an existing circuit. When

Chapter 5: Student Tinkering and Student Sharing

115

students test operations, they must use a nearly clear or newly wiped board (for more

explanation on this, see Chapter 2). Patrick's group tested operations repeatedly and rarely

accreted them. I'll further discuss these classifications of students in the next chapter.

Patrick improved the effectiveness of his tinkering by sharing his circuits. On the final two days

of the simulation, he began to share his ideas with his two sets of friends in the classroom, all of

whom were boys. The friends designed a set of behaviors together to solve a set of challenges

that were posed by the game. Working together, they came up with circuits that were both

appropriate for their local goals and included advanced VBOT operations and features. The

groups' circuits all changed together in similar ways while remaining independent and unique for

the majority of the lesson. Once another group, made up of girls, started doing well in the game,

Patrick went to them to ask how they designed their circuits. Showing good comprehension by

this point, Patrick followed their example in building a new type of circuit more targeted to the

lesson. Though the teams only communicated once about the design of their circuits, both

eventually mastered an ad hoc language in order to verbally communicate their circuit design.

Patrick did well on his post-test. He got 3 out of 4 VBOT questions correct, and he correctly

answered all of the flowchart questions. Even though he was regarded as a sub-par student, his

interest and the adaptability of the tool to his apparently natural tendency to “tinker” allowed him

to excel. On his post-interview, Patrick expressed that VBOT had been "really cool!"

Chapter 5: Student Tinkering and Student Sharing

116

Tinkering and performance

Using our specific tinkering metric, we found that tinkering was positively and significantly

correlated (n=33, p< .05, F=5.0) with post-test VBOT programming performance (question 4).

We performed a linear stepwise regression of post-test performance against pre-test performance,

the tinkering metric, classroom-effect, teacher-effect, and school-effect. In that case, only

tinkering was positively correlated. All 33 groups across the 4 classrooms were included in this

regression. Pre- and post-test performance were averaged by group.

Essentially, this implies that students who tinkered more were better at building VBOT circuits,

regardless of their teacher, classroom, school, or pre-test scores. This does not show that

tinkering caused these students to do better, but that there exists a more robust reason for how

and why they tinkered than a student's previous performance or the effect of the teacher. Indeed,

the standout students weren't necessarily the students who were identified as being "good

students." Patrick serves an example of this. Moreover, Patrick's example provides a possible

argument as to how tinkering might improve a student's computational fluency materially,

cognitively, and socially. Patrick improved materially: he did very well on the post-test, building

working circuits. His cognitive fluency was indicated by his scientific approach to the circuit

building, as seen in his testing out of complex operations in simple circuits. His social

computational fluency is exemplified by his improved communication with his fellow students

when describing and discussing circuits.

Chapter 5: Student Tinkering and Student Sharing

117

5.2 Sharing

Sharing in VBOT is defined as two groups building circuits with the same semantics, whether

intentionally or unintentionally. Our sharing metric measures how many of a student’s fellow

students in the class had a circuit with the same semantics. For instance, if student A created a

circuit in which the left motor was set equal to the right light sensor, and student B created a

circuit in which the left motor was set equal to the right light sensor plus zero, the two students

would have the same circuit, semantically, and they would be counted as “sharing.” However, it

was intractably difficult to measure how many students actually “shared” circuit by discussing

them or looking at other people’s circuits, in classrooms – the crosstalk of 30 students in a

classroom is indecipherable. Furthermore, even this analysis would overlook the number of

students who looked at each other’s screens. Without expensive and sophisticated equipment, no

“human” model of sharing was measurable. Thus, we use the computational analysis of

semantically identical circuits to analyze this.

Some educators might argue that this is “cheating” rather than “sharing”. To rebut this, we argue

that we encouraged the copying of circuits, if only because the nature of the activities was that

any two agents will need to have a different set of behaviors to do well in any of the tasks given.

Only on day one and part of day two would it be beneficial to have the same circuits as

everybody in the classroom. However, variations on circuits are consistently useful to the

students. To this end, sharing implies adoption of a circuit paradigm rather than a direct copy.

Chapter 5: Student Tinkering and Student Sharing

118

Joshua, Sharer – Physical Class, Old Grove, Mr. Cleveland

Joshua is a student who shared circuits extensively during his VBOT experience. His story

illustrates how sharing might organize the VBOT experience. Joshua is an athlete who often

wore basketball jerseys and spoke to the researchers of his experience on the middle school

basketball and baseball teams. Joshua is of middle-eastern descent, and he has curly hair. His

slight build and height makes him seem meek. During the VBOT intervention, he did not often

speak informally to his classmates, though he was consistently good-natured. During the

intervention, he endured constant teasing, often because he was the only student from his

religious minority in his class, which is a fact that he also mentioned in the interview. He

expressed feelings of alienation from both school and his peers, and was referred to as “a slower

student” by his teacher, who said that he got B’s by “trying really hard.” During the pre-

interview, he was reticent, and almost every answer he gave was a simple “yes” or “no.” As a

result, he did not successfully finish the IF/THEN question on the pre-test.

Joshua’s pre-test performance was poor; not only did he fail to complete the IF/THEN

programmatic question but he missed every flowchart question. This was likely reflective of his

attitude during the initial day and the pre-interview: he was hesitant, and when asked whether he

was enjoying himself, he indicated that he did not understand why we were using robots.

Joshua’s group was made up of students who did not appear to be his friends. They were a group

of the “odd” students in the class – two male students had long hair and another wore black t-

Chapter 5: Student Tinkering and Student Sharing

119

shirts with gruesome horror movie scenes on them. Joshua stood out from his group by

looking “normal.”

As such, it was notable that this group of “misfits” shared with other groups significantly more

than any other group. Not only did they share circuits, they often employed a rotating member to

talk to share ideas with other groups. This worked well in the physical robots classroom, as it

took more time to build a physical circuit, and students could discuss the circuits before

downloading them onto robots. On the third day, the students learned how to use IF, at which

point, they started testing out their own IF circuits. Joshua discussed the task with his group,

leading them to attempt a novel way of using separate IF statements for each of the two motors.

After learning this method, they then shared their progress with the group of “popular” girls

sitting across the room from them. The group of girls then learned how to use both constants and

sensors in their multiple IFs and relayed this information back to Joshua’s group.

Joshua excelled on the post-test. Every flowchart question was correct, and the following three

VBOT programming questions out of four were entirely correct: question 4A (light-following),

question 4B (about using the CONSTANT operation), and question 4D (creating a multi-tiered

circuit). All of the answers were canonical and appropriate. During his post-interview, he

expressed that the activity was "pretty fun." He built several correct circuits, and described them

in detail.

Chapter 5: Student Tinkering and Student Sharing

120

Sharing and performance

Joshua provides an example of a student that, through his motivation to share his circuits,

excelled in VBOT and on post-test performance measures. Although Joshua learned VBOT

through sharing, this was not necessarily the case for every student. There was no significant

correlation between sharing and performance given tinkering. We performed linear stepwise

regressions of post-test performance against pre-test performance, the tinkering metric, the

sharing metric, classroom-effect, teacher-effect, and school-effect. The effect of sharing was not

significant. However, tinkering and sharing were positively and significantly linearly correlated

across student groups (n=33, p<.01). As stated in the last section, tinkering was correlated with

post-test performance, but tinkering and sharing are correlated enough to make them effectively

co-linear when regressed against performance, so the sharing metric effectively did not factor in

post-test performance.

The implication here is that students that shared more, tinkered more and, hence, did better on

post-test evaluations. This has positive and negative implications: the positive implication is that

the activities stimulated learning these fluencies, which helped students excel; the possibly

negative implication is that it is a student-to-student finding and our findings possibly reflect

only those students most "interested" in the material. In truth, the data set is far too small to

resolve these positions adequately. In the next chapter, the relationship between sharing and

patterns of behavior will be explored in the context of virtual and physical robotics.

Chapter 5: Student Tinkering and Student Sharing

121

5.3 Tinkering, Sharing, and Circuit Quality

Relative material computational fluency can be understood in terms of the relative qualities of

students’ circuits. However, measuring the “quality” of a circuit that was built by a student is

problematic because it is necessarily extremely contextual. There is no way to judge whether a

circuit is the optimal circuit for a given task in an open task environment because there is no

acceptable way to determine a students’ local task. Thus, we measure quality in terms of whether

it successfully moved a vbot, the complexity of the wiring and number of operations in the

circuit.

Developing a unified “quality” metric is problematic, as there are infinite valid measures of the

“quality” of a circuit. To be more helpful in determining the actual expertise involved in the

circuits, several different metrics were used, each with a particular focus. They shared one

similar feature: they all only counted those circuits that successfully moved a vbot. In the VBOT

system, one builds many intermediary circuits while simultaneously building useful circuits,

which corresponds to the “tinkering” discussed earlier in this chapter.

“Density” (OP_DENSITY), which is the first quality metric that we use, is the number of wired

(i.e. working) operations on a vbot circuit board divided by the number of circuit boards. It is a

simple metric, but it gives us an idea of how “big” a circuit has been built. In the case of the

basic light-finding circuit described in Chapter 2 (“RM = LL ; LM = LR ;”), the operation

Chapter 5: Student Tinkering and Student Sharing

122

density is 4, as there are four wired operations on a working circuit. OP_DENSITY could

potentially provide insight into the manner in which a student creates a circuit. Very high-density

circuits (circuits with a high OP_DENSITY) are circuits that accrete operations over time out of

previously working circuits. It takes a relatively long time to build a dense circuit in VBOT; the

environment privileges smaller circuits in the UI (see Chapter 2 for more explanation).

Therefore, a student with high OP_DENSITY is building circuits in with a higher relative "time

per circuit." However, as the student’s median time is exactly 3.0 seconds per unchanged circuit,

there is no actual measure of "time per circuit." (The 90% trimmed mean is 6.70 seconds per

circuit, as there are a significant number of outliers.) This is because that "unchanged circuit"

metric only shows the time between any modifications of the board during play.

“Operation Difficulty” (OP_DIFF) measures the number and amount of the “high-level”

operations that a student uses per circuit. Logic operations (e.g., IF/THEN) are weighted double

that of arithmetic operations (e.g., ADD), which are weighted double that of sensors and motors.

Therefore, logic operations are four times more “difficult” than sensors or motors. OP_DIFF is a

metric designed to measure the "adventurousness" of a student. Students with a high OP_DIFF

are likely to have tried out all of the operations and used high-level operations frequently.

OP_DIFF could be a measure of the depth of material fluency with the project. Students with a

high OP_DIFF are using complicated circuits to achieve local goals. A student with a high

OP_DIFF and a high OP_DENSITY would likely be using several complicated operations

simultaneously. A student with a low OP_DIFF and a high OP_DENSITY is building a

Chapter 5: Student Tinkering and Student Sharing

123

complicated circuit out of simple components.

“Unique Operations” (OP_UNIQUE) is the number of unique operations per circuit. For

instance, a circuit with the left light sensor (LL) attached to the right motor (RM) through an

ADD would have an OP_UNIQUE of 3. A circuit that routed signal through two ADD

operations would still have an OP_UNIQUE of 3 (ADD = 1, LL = 1, RM = 1; 1+1+1=3).

OP_UNIQUE adds focus to OP_DIFF and OP_DENSITY. A student with a high OP_UNIQUE

and a high OP_DIFF is creating a complicated circuit. A student with a low OP_UNIQUE and a

high OP_DENSITY is creating a complicated circuit out of simple repeated elements.

These metrics help identify not only metrics of performance, but also patterns of student

behavior. In the following section, we will refer to each of these metrics and detail how they

relate to performance in the activities and on the post-test.

Alicia – Virtual Class, Bayville, Ms. Adams

Alicia is a quiet and polite student. She is short, mildly overweight, and African-American. She

dresses in muted colors, and she talks so quietly that it is hard to hear her speak in class. Only

one member of her class was not African-American. Alicia was so quiet that few teachers

noticed that she was failing all of her classes. Alicia’s teacher described her as “sometimes

getting near [to failing] but then pulling back, always getting a D.” This information fell in line

Chapter 5: Student Tinkering and Student Sharing

124

with her academic record, which was situated consistently in the D/F range. According to

her teacher, Alicia was at the bottom of her 8th grade science classes, and there was significant

concern that she would be required to repeat the grade or drop out of school.

Notably, she was both cheerful and interested in the robotics questions in her pre-interview. She

did not fit the traditional description of a failing student. In fact, she seemed interested, bright,

and thoughtful. She gave careful attention to every question, and she answered each of them

correctly. For example, her pre-test IF/THEN answers were not as programmatic as Patrick's, but

they were clear and showed an understanding of basic computer skills, though she missed every

flowchart question on the pre-test.

Alicia's experience presents a different model of tinkering that we have seen previously. On her

first questionnaire (see Chapter 4), she remarked that she had enjoyed the entire activity,

especially “creating the wires.” Indeed, early on, her group tested wires and operations that the

rest of the class had not yet investigated. Alicia much preferred playing with the value of the

CONSTANT operation in order to guide the vbot directly instead of creating a circuit in which

the vbot responded to sensor data programmatically. In VBOT, it is possible to change the value

of a CONSTANT operation on the fly. As such, a student can wire a CONSTANT to each motor

and change the value of the constants frequently to create the desired behavior. This, however, is

taxing and much slower that creating a programmatic circuit. Alicia’s group was the first group

to understand this change. At that point, this idea of creating programmatic circuits spread

Chapter 5: Student Tinkering and Student Sharing

125

around the classroom, and other people tried it. However, while most of the other teams

worked further on programmatic circuits, Alicia’s group returned to the CONSTANT method, on

subsequent days.

Alicia's group shared their circuits with their friends with some mutual benefit. After some time,

Alicia’s circuit was working well enough to convince her friend Tanisha to use a similar circuit,

and the two of them used this new circuit during the majority of day 3. Of particular interest on

day 3, during a game called “simple tag,” Alicia’s team performed poorly. In simple tag, one

vbot (V1) begins play tagged, and when V1 touches another vbot (V2), V1 gets a point, and V2

becomes tagged as well. At this point, both V1 and V2 attempt to tag more people. A goal of the

game is to be tagged early and then tag other people. Another team, led by a student named

Maple (not the team initially tagged), won the first game handily with a simple circuit. At that

point, Maple’s seating neighbors asked what circuit they used, and the circuit spread quickly

around the classroom, with various groups adding small modifications to their own circuits. At

the end, only Alicia and Tanisha were using an entirely different circuit, and Alicia’s team was

unable to excel. Alicia reflected on this in the post-interview as “confusing,” remarking that she

did not enjoy this game. Thus, in this case, we see a lack of sharing resulting in student

frustration.

During the last two days, Alicia’s team opted for an entirely different set of strategies. They

created simple circuits, involving only a MULTIPLY operation, a CONSTANT, and the sensors.

Chapter 5: Student Tinkering and Student Sharing

126

These circuits were relatively simple as they did not employ logical operations, many

simultaneous operations, or many wires. They did not again use an IF after being taught it, but

they ended up doing well in the sticky tag game, even winning a round. Again, she shared her

circuits with her friends and they did likewise. While she had initially only talked to her group-

mate and immediate neighbors, she actually communicated down the row of computers with the

more reticent groups during the final days of the study. In the end, she did not tinker much

beyond her two different circuit models, but only two other groups shared their circuits more

than hers, as she had shared so extensively on the final days of the study.

While Alicia’s post-test was uneven, she clearly distinguished herself as reasonably competent

and engaged. Her answers to flowchart questions were entirely correct, and she was able to build

the simple circuits in question 4. However, she had some problems with the difficult circuits. Her

post-interview was encouraging – she had done well, her mistakes were much more technical

than conceptual, and she was both animated and excited. She understood and was interested in

the assignments, but lacked the math fluency to excel on the tests. And, although it is probably

unrelated to this study, Alicia also managed to pass 8th grade.

Dania – Physical Class, Bayville, Ms. Adams

Dania provides another example of the complex relationship between tinkering, sharing, and

circuit qualities. Dania was a basketball player, and she claimed that as her primary identity. She

Chapter 5: Student Tinkering and Student Sharing

127

is tall and has a strong build. She's African-American, as was every other member of her

class. During the activities, she repeatedly made references to basketball and adopted an attitude

indicating that, though she may not know much about technology, she could easily beat anyone

on the basketball court. Indeed, she was tall and exuded an unmistakable athletic self-confidence.

Her teacher called her an "average-at-best student who does not try hard," and, despite her self-

confidence, Dania often tended to be overshadowed by her more boisterous class. She was keen

to unite the class and expressed disinterest in the "drama" of her classroom.

As such, Dania was the girl chosen to work in a group with two problematic boys and one high-

achieving boy. She was immediately designated "team leader," but she clearly vied for control

with the high-achieving boy, Abdul. Abdul and Dania often worked together and both took time

to explain the programming to their two group-mates, although the group-mates were generally

resistant.

Dania did poorly on the pre-test. She was one of only 3 people in her class who did not get any

part of the flowcharting question correct. From the pre-interview:

Interviewer: You can say 'IF something THEN something else OR ELSE something else'
and your goal is to create a spreading out robot, a robot that spreads out, what
would you tell it to do?

Student: Can this be more than one word?
Interviewer: Yeah, absolutely.
(10 second pause. Student is staring at the notecards.)
Interviewer: There's no right answer or anything. This is not a test… just think aloud for

me. What are you thinking of?
Student: It's kind of difficult trying to start with IF or even start with any of the words

because the only thing I can think of is 'If you're in a bunch, then…'

Chapter 5: Student Tinkering and Student Sharing

128

Interviewer: That's OK.
Student: But then it wouldn't make sense with THEN.
Interviewer: Why?
Student: Because I want to say 'If you're in a bunch, then…' .. Oh! OK. I could, I guess.
(She writes on the notecards: "IF you're in a bunch, THEN you have to move to an empty

space.")
Student: I do not need an OR ELSE.
Interviewer: OK.

From the pre-interview, we can see that she had some intuitive understanding of the nature of

branching logic, but that she did not have the correct terminology nor confidence in her

understanding.

Dania's tinkering stands in contrast to the other student groups in the class, as her group tinkered

mostly with basic, simple circuits. This tinkering was of a different sort than Patrick's or Alicia's

groups. The group would hone a small number of circuit paradigms and test them in various

scenarios. Furthermore, they would modulate a small number of circuits built around

CONSTANT operations (literal numbers) rather than sensors. Then they would tune those

numbers for the task at hand. In the final two days, in which we played competitive robotics

games, Dania's group switched back and forth between two basic circuits: one using two IF

operations and one using two CONSTANT operations. They did well in the competitions, even

winning one. Only on day 3, after Dania’s group experienced difficulty implementing the IF

operation, did Dania's group share her circuits with any other group. Unfortunately, Dania talked

to the members of the nearest group, who also failed to master the IF operation. Consequently,

both teams built incorrect IF statements for the remainder of day 3. On day 4, Dania and Abdul

Chapter 5: Student Tinkering and Student Sharing

129

worked out the IF operation together and were able to do well in the "Bot Soccer" activity

that they played on days 4 and 5. However, Dania's group did not share this information with

their neighbors, and the neighbor group did poorly in Bot Soccer. In this case, sharing was not

necessarily beneficial.

Dania's post-test scores were good. She did better than any of her group-mates on the

flowcharting questions, missing none despite being one of the only students who had missed

them entirely on the pre-test. She also did reasonably well on the VBOT programming questions

on the post-interview, getting two of the four questions entirely right: question 4A (light-

following) and question 4C (about advanced operations). She received partial credit on question

4B (about using the CONSTANT operation) and missed the question 4D entirely (creating a

multi-tiered circuit), though only two people in her class received any credit on the question 4D.

Oddly, in the post-interview, when asked to create a circuit with an "IF," she claimed that she did

not know what an "IF" operation was even though she had both used them extensively and

correctly answered the related question on the post-test. When asked simply to "try it out," she

exclaimed, "OH!" and proceeded to make a correct circuit with an "IF" operation. This hesitation

indicates that she was intimidated by the terminology more than the ideas (as she implied in the

pre-interview).

Chapter 5: Student Tinkering and Student Sharing

130

Circuits and performance

Tinkering was positively and significantly correlated with the sharing metric, post-test

performance , and OP_DIFF (n=33, p<.05, F=7.7), when regressed against post-test

performance, pre-test performance, school effect, teacher effect, class effect, sharing metric, the

average difficulty of the circuits (OP_DIFF), the use of many unique operations (OP_UNIQUE),

and the density of operations on the circuit board (OP_DENSITY).

The correlation of OP_DIFF and tinkering implies that students who attempted to use more

difficult operations also changed their circuits more in the process. Intuitively, this suggests that

there was a set of students who tinkered and tried to create difficult circuits, and, as a result, did

well on the post-test. This is unsurprising. What is, perhaps, more surprising is that these were

the same students who shared their circuits more, and that these circuits were more similar to

other people in the class. That is to say, one conclusion might be students who used VBOT do

not conform to the stereotype of the “solitary programmer” and that the environment supported

social computational fluency. This theory is strengthened by the finding that tinkering was a

more powerful predictor than sharing, as seen above. Another conclusion might be that students

who shared more learned more quickly, and that the learning motivated the tinkering. This is

seen in the case of Joshua above. In both of these scenarios, VBOT is encouraging either

tinkering or sharing toward post-test performance. It is important to note that, again, pre-test

performance was a poor predictor of post-test performance.

Chapter 5: Student Tinkering and Student Sharing

131

Post-test question 2 (flowcharting) was significantly correlated with both pre-test question 2

(n=78,p<0.05) and the OP_DENSITY (n=33, p<.01), in a linear stepwise regression with post-

test performance, pre-test performance, school effect, teacher effect, class effect, sharing metric,

OP_DIFF, OP_UNIQUE, and OP_DENSITY. The difference between the pre-test and the post-

test on Question 2 was highly significant (n=78, p <.00). The mean for the pre-test was 3.7, and

the median was 4 out of 6. The mean for the post-test was 4.8 and the median was the full 6

points out of 6.

These statistics are perhaps less suggestive than they might appear, as the median score for post-

test two was 100%. On the whole, students did very well on the post-test flowcharting question.

Post-test performance on flowcharting is the only instance in which pre-test performance is

correlated with post. The correlation with OP_DENSITY can be understood by considering that

more operations require more wires (see Chapter 2 for more details). Wires in VBOT are similar

to connector arrows in a flowchart. Hence, a student that used more wires was better at

connecting flowchart items.

5.4 Teacher, Schools, and VBOT

The statistics and examples presented here appear to hold true across contexts; there was no

measurable correlation of any metric of achievement between teachers or classrooms. In every

Chapter 5: Student Tinkering and Student Sharing

132

case where there was a linear correlation between teachers, it was accounted for by the

difference between the virtual and the physical classes. This held true for circuit metrics, post-

test metrics, and qualitative metrics. Statistically and qualitatively, most differences occurred

between virtual and physical implementations and not between teachers or schools. This is

notable due to the apparent differences between the school environments and teaching styles.

Bayville is a south-side Chicago school, 97% African-American, and designed to operate as a

high school. Old Grove is a north-side Chicago school with a hugely diverse international

population, which is designed to operate as a middle school. Furthermore, the same teacher

taught both of the Bayville classes, whereas two different teachers taught the two Old Grove

classes. Whether measured across teachers or classes, the differences in performance were not

measurable when the virtual/physical class distinction was taken into account.

5.5 Gender and Performance

Furthermore, the different student learning gains do not appear to be related to gender. There was

no significant difference between male and female students in general pre-test to post-test

performance measures (Avg. male post-test: 19.6, σ = 4.37; Avg. female post-test: 19.4, σ =

4.51). There were both good and bad male and female students.

In this work, the lack of gender differences may be partially attributed to the “newness” of the

Chapter 5: Student Tinkering and Student Sharing

133

experience for the students. Students do not necessarily require background knowledge or

background motivation to do well in VBOT. As is stated by several of the students in their

respective post-interviews, the experience was “different than [they] expected.” Only 2 of the

students across all four classrooms had had any meaningful contact with “robots” or

programming before.

Even on the pre-test of relevant content, there was not any significant difference between

genders or classrooms. The only question that showed a significant difference was Question 2A

(“Have you had prior experience with flowcharts?”) This question was weighted towards the

female students (who were more likely to claim familiarity, out of 4 degrees of familiarity

possible, female students avg.: 2.90; male students' avg. 2.58). That answer did not correlate with

student performance on the flowchart questions (pre-test or post-test, showing a slight negative

regression slope of –0.157, r2 = 0.003). As such, it has been discounted.

5.6 Understanding Sharing, Tinkering, and Performance

In this chapter, different cases were presented to highlight the ways that different students shared

and tinkered in VBOT, and these cases were compared to the performance of the entire

population of students. The relationship between sharing, tinkering, and performance appears to

be relatively robust. There are two salient conclusions that one might draw from these data: that

Chapter 5: Student Tinkering and Student Sharing

134

tinkering and sharing were causally related to performance, or that students predisposed to

tinkering and sharing were predisposed to perform better. Although this question cannot be

conclusively answered, there is significant evidence that the students who performed well in

VBOT were not those students who performed particularly well on the pre-test, pre-interview, or

in their science classes prior to VBOT.

Dewey (1897) notably suggested that common methods of schooling often privilege a certain

mode of thinking. This study further suggests that situating VBOT in a tinkering and sharing

frame privileges different students than traditional school often does, as we could not reliably

predict performance from any given measure. It appears that female students did not necessarily

share more and that male students did not necessarily show more technical interest or

performance. Teacher and school effect were effectively non-existent, and 100% of the students

learned at least basic programming fluency in the span of 5 days.

These data prompt one to ask why these factors were not particularly important in this study.

One significant possible reason is the simple “newness” of the material; students did not have

any background for the context that was given to them and they did not know how to position

themselves. A pessimistic response is that these data simply overlook some crucial factor, or that

our metrics were insufficient for evaluation. An optimistic reviewer might posit that students did

well because it was “a fun game.” While “fun” is notoriously hard to quantify (Csikszentmihalyi,

1990), the students were nearly constantly both competing and collaborating actively with

Chapter 5: Student Tinkering and Student Sharing

135

VBOT although they were not required to be active at all. In the next chapter, we begin to

address this question by discussing the relationship between the design of VBOT and the

experiences of the students, specifically focusing on the contrast between the virtual and the

physical VBOT systems.

The virtual-physical distinction was strong. The next chapter will address the relationship

between the virtual, the physical, and the social as they reflect the design of constructionist

learning environments. The experience of the classrooms was perhaps more different than was

expected, given that the study was designed to maximize parity. According to the pre- and post-

tests, the circuit metrics, and the sharing and tinkering metrics, the experience, even given the

same software and similar or identical tasks, appeared different, indicating that the different

media support different behavior and different comprehension. The theoretical framework of

computational and complex systems fluencies will be used highlight the different implications of

the media.

Chapter 6: The Virtual and the Physical

136

Chapter 6: The Virtual and the Physical

Though this study was designed to optimize parity between virtual and physical environments

and activities, the different sets of classes performed differently on the assessments, created

different types of circuits independently, and differently understood the relationship between the

agent and the aggregate. In this section, we will describe the ways in which the virtual and the

physical classes differed, give reasons as to why they might have differed, and describe their

contrasting patterns of behavior.

Virtuality and physicality engender different behaviors; it is difficult to interact with a physical

object as one interacts with a virtual world. As I have hands, feet, and eyes that usually exist in a

purely physical world, I am accustomed to use them in a purely physical way. Obviously, we can

learn to use computers, but industrial design has not yet reached a point where the keyboard feels

as natural as speech. While it is difficult to tease out exactly what minute perceptual and actual

differences exist between virtual and physical interactions, it is possible to measure the large-

scale differences in effect and action.

This chapter is designed to highlight salient differences in the use of VBOT by virtual and

physical students. Case studies, student use logs, and performance evaluations show very

different patterns of activity and performance in the two groups. Contrasting the virtual and

physical classes highlights the ways in which the two systems supported learning goals

Chapter 6: The Virtual and the Physical

137

differently. Comparing the two classes highlights the common benefits in teaching these

fluencies with constructionist robotics. The case studies provide insight into why the two systems

support the learning goals differently; the logs provide a backbone of those case studies and

provide a portrait of day-to-day patterns; and the performance evaluations highlight the aspects

supported and provide some evidence of progress towards learning goals.

6.1 How did virtual and physical students play differently?

The difference between the patterns of activity in a virtual and a physical classroom are

immediately apparent. Less than a minute of video would be sufficient for an informed observer

to distinguish the classes, even if no physical or virtual robots were immediately visible. In this

section, we will examine how students’ computational and complex systems fluencies were

supported in the classroom, highlighting those differences with particular attention to social

aspects of the fluencies, as described in Chapter 3.

The virtual classes are characterized by constant action on the computers punctuated by short

discussion. There is a constant low rumble of discussion between students at nearby computers.

The class feels traditionally teacher-oriented until the start of those activities in which everybody

looks at the common screen in the front of the classroom. At that moment, the class explodes in

yelling, movement, and students begin to tinker with their virtual vbots. The first comments

Chapter 6: The Virtual and the Physical

138

heard, usually, are “there I am!” as students locate their individual vbot on the projected,

shared screen. At particularly decisive points in the action (near the end, often), students often

analyze the actions of their fellow students: “Alice, move your bot! We need to cluster!”

The physical classes feel much less traditional. Mr. Cleveland’s classroom was the most

traditional classroom in both organization and teaching method. Despite his attempts to quell

noise, however, students walked to other tables to discuss the design of their physical vbot

behaviors. These actions result in an environment that feels more like that of an undergraduate

engineering laboratory than middle-school classroom. As described in Chapter 4, students work

on their circuits for a pre-determined amount of time (“Everybody gets 5 minutes to finish these

circuits!”), and each student subsequently downloads her circuit to her robot. The robots are then

collected in the center of the classroom and all students simultaneously activate their robots. The

beginning of this time for shared space is the quietest moment as people hush each other and

wait to observe the performance of their vbots. As the robots start to move, the class gets

progressively louder until the climax, at which point students cheer goals or particularly deft

moves of their teammates’ vbots.

The differences between virtual and physical classes show up clearly on the activity-by-minute

graphs (see Figure 6-2 below). Due to their constant work with the computers, the virtual classes

produce far more circuits than their physical compatriots. However, the activity in the physical

classrooms occurs in many short bursts, whereas the activity in the virtual classrooms resembles

Chapter 6: The Virtual and the Physical

139

a constant roar that peaks around three quarters of the way into class as the culminating

activity is reaching its end. The activity then tails off as students fix their circuits for the next day

or work on some final, smaller activity.

6.2 A circuit progression in virtual and physical Classes at

Old Grove

On the final day of the enactments, in both the virtual and physical classes, students competed in

a game-activity (“Moon-Tag,” described in Chapter 2) designed to test their fluency with VBOT

and their real-time programming skills. This section investigates a representative working circuit

from the two groups that accumulated the most points in their respective classes during Moon-

Tag; one group is from a virtual class and one is from a physical class. By comparing them, we

can highlight differences between the virtual and physical circuits that students typically created.

These differences highlight the ways that the cognitive (processing) aspects of the fluencies were

supported and how the material aspects of the fluencies developed.

Chapter 6: The Virtual and the Physical

140

Claudia’s Group, Physical Class, Old Grove

Day 1 –
This is the circuit with which we start
teaching VBOT. It turns toward the light,
making a direct path towards the light. The
first day of the PVBOT class is spent
inventing and investigating this circuit and
testing it on the physical robots. Both the
virtual and the physical classes start with
this circuit.

Day 2 –
This is a circuit that all students built in
order to determine the relative power of
their bots. This student's day 2 circuits
mostly involved various permutations of
constants and light sensors. She also
created a circuit identical to the day 2
circuit, substituting bump sensors for light
sensors. The circuit shown here is designed
to move the VBOT forward at full speed
with both motors working 100%. However,
due to the vagaries of physical robotics
(detailed in Chapter 2), each student’s
individual robot makes an arc rather than a
perfectly straight line, and the arc of the
path is contingent on the power of the
motors attached to it. The virtual robots do
not model this in any way. For the virtual
robots, this circuit would drive them
directly forward unerringly, and, as such, it
holds less interest.

Chapter 6: The Virtual and the Physical

141

Day 3 –
We played our first game activity on day 3.
This was a game of “tag,” detailed in
Chapter 2. Optimally, the robots would
swarm the light and knock other robots
away. Claudia’s circuit did this
exceptionally well. This circuit logic is as
such: move towards the light until bumped;
if bumped, move backwards away from the
light.

This is an extremely complicated and
complex circuit, though the circuit is
actually appropriate for the task that this
student was attempting. It is
indeterminable whether she understood the
implications of this circuit. Her later
circuits are not as complex, suggesting that
she might not have entirely understood the
concepts involved in this circuit.

This circuit is suited only to physical
robotics for two reasons:
Virtual robots have no mass and do not
“bump.”
The virtual world is seamless and toroidal,
and, as such, virtual robots rarely need to
“back up.”

Day 4 –
This circuit is notably simpler than the
circuit she created on day 3. It moves the
robot directly forward at half speed until
bumped. When bumped, the robot moves
forward at full speed. This circuit helped
determine the winner of a contest on day 4.
This circuit was designed to push away the
other students’ robots, and it does so
relatively successfully. In stark distinction
to the VVBOT activities, this “tackle”
design often enabled the team to win by
interrupting the opposing team’s “scoring”
circuits. In many ways, it functions like a

Chapter 6: The Virtual and the Physical

142

“pick” in basketball, and Claudia’s
teammate Sean mentioned this.

Day 5 –
This circuit is more similar to the day 4
circuit than it might appear. It follows the
light until bumped, at which point it moves
forward at full speed. This “tackler/scorer”
circuit effectively won the game for its
team by both pushing the ball towards the
opposing team’s goal-light and knocking
both the ball and the other robots away.

All of Claudia’s group’s later circuits would only have been effective in a physical robotics

setting. They all rely on notions of physicality, as they were designed to knock away other

robots. This strategy was effective, and it gave Claudia’s group significant confidence. Their

robot was repeatedly described as “tough,” and, indeed, they treated it as if it had a personality.

Maribel’s Group, Virtual Class, Old Grove

Day 1 –
This circuit does not make sense. As it is the
first day of the implementation, that is to be
expected. This was the culminating circuit
in a long chain of similarly incorrect
circuits, showing that Maribel’s group did
not yet understand the circuit logic. This
circuit compiles, although it always moves
the vbot directly forward, slowly, under any
circumstances. The existence of a circuit
wholly unrelated to any we had taught
shows that the group was tinkering and
testing more than mimicking the teacher’s
examples.

Chapter 6: The Virtual and the Physical

143

Day 2 –
This circuit was taught on day 2, and this
group tested it further. They returned to this
circuit several times, using it and tinkering
with variations. This circuit causes the vbot
to search out the light somewhat faster than
the crossed wires circuit described in
Chapter 2. Although the group produced
several circuits that day, day 2 marked few
innovations, and this circuit shows little
comprehension due to its conceptual and
technical similarity to those circuits
exhibited by the facilitators. This circuit
works similarly in both the virtual and
physical contexts.

Day 3 –
Again, day 3 exhibited circuits relatively
similar to the circuits that the facilitators
provided, given some tinkering with the
value of the constant. This circuit compares
the output of light sensors to a constant. As
such, the vbot follows the light only when
near the light and moves directly forward in
all other circumstances. Maribel's
modifications were technical and
conceptually good, but they show only
minor invention.

This is an example of a circuit that would
work much better in the virtual context. For
this circuit to work with a physical robot,
the constant would need to be tuned through
repeated trials, which would be both
relatively boring and subject to change in
different contexts (such as a contest with
other robots). The virtual robots can use this
circuit reliably in all contexts.

Chapter 6: The Virtual and the Physical

144

Day 4 –
This is the simple crossed-wires circuit
described in Chapter 2. It is notable,
however, that this circuit did well in the
context of the game activity that the students
were playing. Since the goal of the activity
was to tag students, Maribel's vbot stayed
near the light and tagged all the students that
passed by it (tagging automatically occurs
when to vbots touch). This circuit works
identically in virtual and physical contexts,
and it was used by all students in all classes
at some point.

Day 5 –
Day 5 provided further evidence that
Maribel’s group understood her circuits in
context. They saved the two circuits shown
at left and switched quickly between them
depending on the emerging action of their
classmates’ vbots. The circuits, respectively,
moved quickly towards the light and
towards other vbots. Few other students
used this combination of circuits on the final
day, and, although the circuits were
uncomplicated, they were effective. Her
effectiveness at using the circuits in context
suggests an understanding of the relative
value and logic of the two circuits.

These two circuits would work identically in
virtual or physical VBOT, but the ability to
switch between them quickly exists only in
VVBOT, as PVBOT students would have to
download the circuits, which takes time and
is effectively impossible during a game.

Chapter 6: The Virtual and the Physical

145

Comparing circuit progression of Maribel and Claudia’s groups

Day Claudia – Physical VBOT (PVBOT) Maribel – Virtual VBOT (VVBOT)

One Make a correct “crossed-wires” circuit
to move their bots towards the light.

Evidence of tinkering, but they produce
non-functional circuits.

Two Circuit designed to test physical
capabilities of the robot, to tune it and
move it directly forward.

Shows tinkering with working circuits
provided by facilitators. Little
innovation.

Three Very interesting, innovative circuit
designed to navigate the robot and
avoid other robots and obstacles.

Modification of another circuit provided
by the facilitators.

Four Simple “bouncer” circuit designed to
move forward and disorient other
robots.

Using simple circuits in context. The
first circuit taught was successfully
deployed in an activity.

Five Variation on day 4 and day 5 circuit
was innovative and appropriate.
Contextually well deployed.

Used a set of two circuits, switching
between them as appropriate. Both
circuits are relatively uninteresting, but
the novel use of them in context excels
in the activity.

Table 6-1: Comparing day-to-day circuit progressions

In this comparison, the VVBOT students tinkered and modified more frequently than the

PVBOT students. This was largely expected due to the constraints of the different environments.

We also see the PVBOT students making use of non-existent functionality in the virtual setting –

that is they are able to use their robots as physical entities with weight, pushing and tackling one

another. This shows awareness of the identification of the robot as a physical body in space. The

VVBOT students, on the other hand, were more likely to demonstrate awareness of the

relationship between the goal of the activity and their circuits. We see this awareness in the

above example when Maribel’s group created simple circuits to accomplish the project goals.

Chapter 6: The Virtual and the Physical

146

6.3 How did virtual and physical students perform

differently?

The difference in patterns of behavior emerged from the different ways that students built

circuits. As described in the last chapter, we evaluated a student-group's circuits on the basis of

"uniqueness" (OP_UNIQUE), "difficulty" (OP_DIFF), and "density" (OP_DENSITY).

Contrasted on day-by-day data, there existed significant differences between the virtual and the

physical classes in the number of unique operations per circuit (OP_UNIQUE, n=108, p<.01),

the difficulty of the operations (OP_DIFF, n=108, p<.01), and the density of the operations on

the breadboard (OP_DENSITY, n=108, p<.01). Below we can see how they differ.

Means OP_UNIQ** OP_DIFF** OP_DENSITY**
V 1.1181 1.9125 .2751
P 1.6261 2.7737 .4374

Table 6-2: Averaged day-by-day circuit metrics in virtual/physical classes

As shown in the above table, students in the physical classes typically create more unique,

difficult, and dense circuits than students in the virtual classes. These three metrics are not

necessarily correlated with positive performance, however. As seen in Figure 6-1, OP_UNIQUE

and OP_DENSITY decreased each day over the course of the activities in both virtual and

physical classes, while OP_DIFF (difficulty) stayed roughly the same across all days. Figure 6-1

shows the graphs of these three metrics plotted against normalized time. In this section, we will

Chapter 6: The Virtual and the Physical

147

investigate several explanations for this.

Figure 6-1: Day-by-day graphs of circuit metrics in each class

As seen above, as students understood the system better over the course of the days, their circuits

became more targeted and, often, simpler.

It appears that students also came to realize that they could not as easily control excessively

dense/unique circuits, due to the number of variables. Thus, as the activities became more fast-

paced and intricate, the circuits became simpler. That is not to say that all simple circuits were

good circuits, but in Maribel’s group above, we can see that optimal placement of a simple

circuit did better than the significantly more complex circuits elsewhere.

VP
Mean MULTIPLY ADD SUBTRACT DIVIDE

ABSOLUTE
 VALUE

CONSTANT
**

IF/ THEN
*

P .30 .18 .05 .02 .03 1.14 .29

V .47 .14 .04 .03 .02 .67 .21

Table 6-3: Mean # of circuit operations per circuit in virtual/physical classes

Chapter 6: The Virtual and the Physical

148

The physical classes were more likely to use constants and branching logic (IF’s). These

relatively difficult operations did help them in the post-test performance metric, in which they

did significantly better than their virtual class counterparts (post-test question 4.B., n=33,

p<0.05). However, the simplicity of the virtual class’s circuits ostensibly helped them perform

better on the slightly more difficult question 4.C. that addresses complex movement around the

shared space (post-test question 4.C., n=33, p<0.05). That is, performance on this complex test

question implies that the simplicity of the students’ circuits in the virtual classes seems to belie

the students’ understanding of the complex programmatic concepts they were learning.

VP
Mean TINKERING SHARING # of CIRCUITS**
P .8942 2.74 982.27
V 1.0075 2.73 1200.36

Table 6-4: Action metrics in virtual/physical classes

As we can see, the tinkering metric shows that the virtual class was tinkering slightly more

frequently than the physical class, but not significantly more. The sharing metric was remarkably

equivalent between classes; given the difference in the atmosphere of the two classes, and the

different ways in which they shared, this is particularly notable. Though the distribution is

different, the two sets of classes share almost exactly the same amount per circuit. The number of

circuits built varied widely; the only surprise was that they did not vary more. Virtual class

students spent the entire time at their desks building circuits – the physical classes spent only part

of their class time doing so. Nonetheless, the number of circuits built was only about 20% more,

Chapter 6: The Virtual and the Physical

149

on average.

Overall this creates the impression that the virtual class learned concepts physical class did not

and vice-versa. These differences are suggested by the profiles of students’ circuits, the specific

circuits that the groups built, and the differences in the post-test.

The physical class used their understandings of the robot as a physical object as this knowledge

as a basis for their primary mode of programming. Claudia’s group designed most of its circuits

for the specific goal of navigating and bumping other robots. The students' understandings of the

capabilities of a robot were mediated by the physical presence of the robot. As such, PVBOT

students used more CONSTANT operations and more IF/THEN operations, both of which are

more easily adaptable to sensor noise. Sensor noise, as a concept is, most likely, fundamentally

new to the students, and understanding this concept enhances both their material and cognitive

computational fluency skills, as discussed in Chapter 3. Virtual students, on the other hand,

worked more contextually. Students in VVBOT classes built more, simpler circuits that work

best in context. As shown, Maribel’s group took into consideration the roles that her fellow

students played and used those circuits that would be most appropriate. This implies significant

conceptual complex systems cognitive and social fluency – understanding the emergent nature of

the system and using simple agents to exploit the system rather than acting alone. As such, we

can see the ways that the different design decisions with PVBOT and VVBOT, close as they may

be, affect the behavior of the students using them.

Chapter 6: The Virtual and the Physical

150

6.4 Contrasting computational and complex systems

fluencies in virtual and physical classes

Virtual and physical students seemed, therefore, to group into distinct patterns reflecting the

relationships between computational fluency and complex systems fluency, both between classes

and within classes. We call these patterns “cross-levels,” after the “mid-levels” work by Levy &

Wilensky (2008), in which she describes the cognitive transitions implicit in complex systems

fluency. The “cross-level” patterns of the two fluencies can be categorized as such:

 Agent-based complex systems
fluency

Aggregate complex systems
fluency

Agent-based
computational
fluency

Unique agent understanding
e.g., Designing a single-user
computer application

Multi-agent systems
understanding
e.g., Designing an agent-based
ecology simulation such as Wolf-
Sheep Predation (Wilensky,
1997b; Wilensky & Reisman,
2006)

Aggregate
computational
fluency

Team-based systems
understanding
e.g., Concurrent systems or
swarm robotics (Bonabeau,
Dorigo, & Theraulaz, 1999)

Systems dynamics understanding
e.g., Designing formula-based
ecology simulations using systems
such as STELLA (2000)

Bolded cells define “agent-aggregate fluency”

Systems modeling work has often focused on unified mathematical models of a uniform set of

actors (e.g., Maani & Cavana, 2000), which we are calling “aggregate-aggregate fluency,”

Chapter 6: The Virtual and the Physical

151

meaning “aggregate systems fluency” and “aggregate computational fluency.” Computer

science training has traditionally foregrounded serial or single-agent work, which we are calling

“agent-agent fluency,” meaning “agent-based systems fluency” and “agent-based computational

fluency.” Our hypothesis is that P/VBOT teaches students to focus on the opposing cross-level

axis: multi-agent systems understanding and team-based systems understanding, which we are

calling “agent-aggregate fluency” (as seen in the table above). The corollary hypothesis is that

virtual robotics and physical robotics support agent-aggregate fluency differently. The following

sections describe the ways in which the data do and do not support these hypotheses.

These differences are primarily differences in perspective; students approached problem solving

differently in the virtual and physical classes. One way to understand these differences is in

terms of the relationship of an agent’s action to the aggregate and the relationship of an

aggregate’s action to the agent. In the case of a crowd of people leaving a stadium, each agent

(person leaving the stadium) is fundamentally constrained by the movement of the aggregate

crowd. An individual in the crowd cannot decide to change the direction of the crowd, nor can

that individual choose exactly where she moves. She can head towards a gate, but the salient

activity is that of the crowd itself. A group of officers directing the crowd, however, has the

converse situation: each action of each individual officer determines the movement of the

aggregate crowd.

Unique agent understanding is a fluency in the computational and systems aspects of dealing

Chapter 6: The Virtual and the Physical

152

with the actions of a single agent working independently. This can be thought of as the

actions of an unconstrained independent individual. A system can consist of an individual agent

if the system is internal to the agent. For example, human psychology can be described as a

complex system (see Minsky, 1985, for one example). Indeed, attempting to understand the

myriad connections internal to an agent is inherent to VBOT programming. A VBOT circuit

consists of a set of connected operations from which the semantics of the circuit emerge.

Independent operations are only marginally independent as agents, but the connections between

them create a complex system of meaning. VBOT, as deployed in both the virtual and physical

classes, did not address programming a solitary agent in significant depth, as the majority of both

programming and computational fluency work already focuses on programming as an

independent activity designed to create single-user programs (Cole, 1996; DiSessa, 2000).

Nonetheless, unique agent understanding is essential to computational fluency in the broader

sense. The post-test metric privileges unique agent understanding and material computational

fluency more than the activities did by asking students to draw circuits on paper in isolation,

rather than on a computer contemporaneously with the rest of the classroom. This was our intent,

as many computer scientists and physical scientists will recognize and understand the validity of

a metric based on unique agent understanding more readily than a systems-based metric due to

the nature of the field and historical precedent. Notable here is the contrast between, on one

hand, the relatively small disparities on the post-test overall between virtual and physical classes,

and, on the other hand, the disparities between their material unique agent skills as exhibited by

their behavior on the different problems on the post-test. As seen above, physical classes

Chapter 6: The Virtual and the Physical

153

performed better on question 4.B., which focused on unique agent understanding and

material computational fluency, but the classes performed similarly overall. This suggests that

the nature of the activity was sufficiently unique-agent-based for all students to be able to

perform at the baseline required for the post-test.

Team-based systems understanding is a fluency with the design and manipulation of targeted

aggregates. For instance, a baseball coach might be able to direct the flow of a team better than

the specific actions of each individual player. A bee-keeper might know how to deal with a

swarm of bees but have no idea how an individual bee behaves. A fluid dynamics research needs

to know less about the chemical properties of water than the aggregate properties of water flow

in certain conditions. From a computational fluency perspective, it manifests as an understanding

of ways to manipulate groups of agents toward a specific objective, regardless of the degree of

independence exhibited by each agent. Both virtual and physical classes were required to pursue

team-based understanding to an extent – the activities were designed to ask students to

collaborate towards team-based goals, thereby supporting social computational and complex

systems fluencies. However, the virtual and the physical classes did so differently and with

contrasting levels of success.

Although the physical curriculum was arguably more team-based (see the description of “Bot

Soccer” in Chapter 2), the virtual students worked more cohesively in teams. Maribel’s example

is one of many in which students would change roles in “Moon Tag” (see Chapter 2) in order to

Chapter 6: The Virtual and the Physical

154

manipulate the swarm or use the swarm to their advantage. This data is supported by the log

results that show simpler overall circuits, as simpler circuits often suggested a more contextual

approach to circuit programming, as seen above. The post-test results also support this claim, in

that the virtual students performed better on Question 4.C., which addressed the movement of an

individual vbot in and around a swarm of other vbots.

However, the physical students also performed team-based logic and communication. Although

the virtual students’ curriculum spent more time devoted to contextual strategies, the physical

students developed more formal strategies. In doing so, both the virtual class and the physical

class exhibited social aspects of computational and social complex fluencies. Claudia’s example

details her team’s strategies at Bot Soccer, and, indeed, the students in the physical class were

more likely to collaborate and communicate individual on planning strategies. This finding is

supported by other research with “robot soccer” in which students design explicit strategies (e.g.,

Sklar, Parsons, & Stone, 2003).

Systems dynamics understanding describes a fluency with aggregate understandings that is

notably backgrounded by VBOT activities. In the baseball metaphors above, this corresponds,

perhaps, to the designer of a stadium. This fluency describes the design of system-level

constraints and flow without necessary consideration of the action of any specific individual.

However, there was evidence that students came to understand certain aspects of aggregate

systems flow through the programming itself. Pre-/post-test question 3 (flowcharting) showed

Chapter 6: The Virtual and the Physical

155

significant improvement between the pre-test and the post-test in both the virtual and the

physical classes. As shown above, the difference was relatively large. The large difference

between the pre-test and post-test in all groups suggests that the VBOT program interface and

paradigm (common to all groups) is responsible to some extent, and that the students’ cognitive

complex systems fluency was effectively supported by the system. The VBOT circuit

programming method is a likely source of this improvement, as it is structurally analogous to a

flowchart (as seen in Chapter 2).

Multi-agent systems understanding is a fluency related to the methods of designing individual

agents to perform some emergent task. This corresponds most closely to the individual in the

crowd; each individual has agency, but the salient understanding comes from those aspects that

emerge from the system, not from the specific movement of any agent. Although this is closely

related to team-based systems understanding, the salient difference is the focus on the behavior

of the agent over the behavior of the aggregate. NetLogo (Wilensky, 1999), on which VBOT is

based (see Chapter 2), is a tool designed to foster complex systems understanding through the

use of agent-based systems. The relative value of team-based understanding and agent-based

understanding towards high-level complex systems fluency is still under debate (see Levy &

Wilensky, 2008). A canonical method of agent-based systems understanding is to frame more

traditionally aggregate systems problems in terms of their component agents, such as simulating

traffic flow in terms of the behavior of cars rather than aggregate traffic flow. This approach has

been usefully employed by a variety of academic disciplines, ranging from physicists (Bar-Yam,

Chapter 6: The Virtual and the Physical

156

1997) to economists (Axtell & Epstein, 1996).

Our results here appear surprising. Although virtual systems have been successfully used to teach

multi-agent systems, our data suggest that the physical students tended to understand the systems

from a more agent-based perspective. The virtual students, on the other hand, tended to

understand the systems from a more aggregate perspective. Evidence for this finding stems from

log data, video data, interaction patterns, and pre-test/post-test differenced.

The circuit-based log data explained above show that physical students created more complex

and more difficult circuits overall, though the virtual students created more circuits. This implies

that the physical students attempted to design circuit behaviors in which the robot would move

and act independently. The virtual students, on the other hand, created circuits to be contextually

relevant and often created these circuits quickly to respond to the actions of the other vbots.

This evidence is corroborated by the post-test results, which show that the physical students

performed significantly better on Question 4.B. (about directing agent behavior), while the

virtual students performed better on Question 4.C. (about the behavior of a vbot in the context of

other vbots). As stated earlier, both classes performed relatively similarly overall on Question 4

(programming vbots). These differences suggest that while both sets of classes were building

material fluencies, they did so differently.

Chapter 6: The Virtual and the Physical

157

The contrast between Maribel’s and Claudia’s experiences highlights the differences between

their multi-agent systems understanding. Maribel’s group worked with fellow groups as a

member of a swarm, determining appropriate behaviors contextually. As a contrast, Claudia’s

group worked to create an independent agent that worked on a team (as a “tackler”). These

strategies underscore the ways in which the students’ social computational and complex systems

fluencies related to their overall performance and perspectives.

Some of this difference is likely attributable to the different patterns of behavior in virtual and

physical classes. Figure 6-2 below shows all student board changes, minute to minute, in one

school on day 5 in that school’s virtual and physical classes.

Figure 6-2: Board changes per minute at Bayville, Day 5

The physical class is bi-modal, and the virtual class is multi-modal; note that the physical class

ends after 30 minutes, and the rest of the time was spent testing their creations together in

various contests. In the physical class, students would spend chunks of time working on their

Chapter 6: The Virtual and the Physical

158

robots, and then test them together en masse. Note that this behavior was not required by the

teacher or the setting, but rather, determined by the students; indeed, the teacher in these two

classes was the same teacher (see Chapter 4 for more details). The virtual class was constantly

and consistently changing their circuits. By working on their circuits individually and testing

them en masse, the physical students had more opportunity to hone the individual behaviors of

their robots. In contrast, the virtual students more often honed the contextual behavior of their

vbots.

Using cross-level fluencies to characterize the virtual and physical classes underscores the ways

in which the two classes exhibit different aspects of computational and complex systems

fluencies differently. While both virtual students and physical students exhibited significant

improvements in agent-aggregate fluency, the virtual classes did so from an agent-based

perspective, while the physical classes did so from an aggregate perspective. The tables below

summarize this difference and the ways that the fluencies affected virtual and physical classes

differently:

Physical

Virtual
 Cognitive

Enables aggregate thinking from an
agent-based perspective

Enables agent-based thinking from
an aggregate perspective

Social

Must communicate with group to
work out contextual plans

Motivates communication about
emergent patterns

Material

Programming an agent in a shared
space

Programming an agent in an
aggregate

Virtual/Physical Class Differences in Complex Systems Fluency

Chapter 6: The Virtual and the Physical

159

Physical

Virtual
 Cognitive

Enables aggregate logic from an
agent-based perspective

Enables agent logic from an
aggregate perspective

Social

Motivates communication about
strategies

Communication is more transparent
and intrinsic to activity

Material

Enables difficult circuit-building
skills

Enables contextual circuit-building
skills

Virtual/Physical Class Differences in Computational Fluency

This chapter highlighted the ways that virtual and physical students exhibited different aspects of

computational and complex systems fluencies. The differences emerged from both design

decisions and inherent features of the virtual and physical media. The next chapter explains how

specific design decisions affected student behavior and performance, and how well the project

achieved stated design goals.

Chapter 7: Design Principles

160

Chapter 7: Design Principles

In this chapter, we evaluate our work on the basis of proposed design principles and whether the

design goals and principles were met, given the results of the study. As discussed elsewhere

(Chapter 2), the design of VBOT stems from studies performed with NetLogo (Wilensky, 1999),

Flogo (Hancock, 2003), and Logo (Papert, 1980). These studies provide us with both baseline

design principles and contrasting material. The contrast illuminates the benefits and deficits of

both VBOT and the study design. Thus, we use this contrast and analysis to evaluate interface

design, language design, and relative learning gains in VBOT.

7.1 Motivating complex systems and computational fluencies

Chapter 3 evaluated sharing and tinkering as organizing principles for understanding complex

systems and computational fluencies. In this section, we describe the elements of the interface

designed to motivate complex systems and computational fluencies, and evaluate the design

elements for effectiveness. Based on Chapter 5's focus on the relationship of sharing and

tinkering to performance, this chapter will address the relationship of design to sharing and

tinkering. The questions to be addressed, then, are:

• In what ways did we intend the design to motivate sharing and tinkering?

• How well were sharing and tinkering motivated in the enactments?

Chapter 7: Design Principles

161

• What design goals other than sharing and tinkering affected complex systems and

computational fluencies?

Hancock (2003), Braitenberg (1984), and DiSessa (2000) make the argument that real-time

programming motivates both sharing and tinkering. This study is built on the belief that sharing

and tinkering arise naturally from a real-time game-like programming environment. This can be

seen from a different perspective on the recent serious games literature. For example, Gee (2004)

and Squire (2004) both argue that people involved in networked games not only engage

significantly with them as learning tools, but learn how argue and communicate about the games

themselves. In my study addressing complex systems fluency, communication and engagement

about complex systems material is essential for teaching social aspects of complex systems

fluency. Squire (2004) suggests that it is in the nature of a “good game” that people want to play

with it and communicate about it. Given the video-gaming literature, we hold that the degree to

which students tinkered and shared while working with VBOT is directly tied to the real-time

aspect of the system.

In addition to learning sharing and tinkering methods, students learned how to program in the

VBOT language. By the final day of the enactment, every group in every class could create

programs that showed understanding of the target objectives: every group played the game.

Moreover, 80.5% of the students created at least half of the circuits correctly on the post-test

evaluation.

Chapter 7: Design Principles

162

Complex systems are systems in which meaning emerges from networks of independent agents.

This concept is inherent to the design of the breadboard; a circuit is a system in which semantic

meaning emerges from a network of independent operations. As they were building circuits, the

students were simultaneously learning how to create complex networks of meaning to achieve

emergent goals. In other words, each student created networks of VBOT operations out of which

emerged a behavior for their vbot. Though several studies (Chi, 2005; Hmelo-Silver & Pfeffer,

2004) show that students have trouble correctly intuiting the emergent meaning of a network,

this study suggests that, provided that a network is comprehensible, the students can form robust

understandings of the emergent network. This understanding is borne out by the pre-test to post-

test performance on question 2 (flowcharts), as discussed in Chapter 4. Students, on average, did

19.0% better interpreting the static flowchart.

The complex system in VBOT is both at the circuit design level and at the agent collaboration

and competition level. The notion of “levels thinking” comes from Wilensky & Resnick (1999).

He argues that robust complex systems understanding must come from an understanding of the

different “grain sizes” of the phenomenon and their inter-relationship. Out of the aggregations of

agents in the VBOT shared space emerges a level of complexity above that of the circuit design,

much like the flock in pre-test question 2 emerges from aggregations of individual birds. This

complexity of the vbot "flock" is harder to predict and understand than that of the circuits

themselves. A shared virtual VBOT screen often shows more than ten individual agents, and a

Chapter 7: Design Principles

163

shared physical VBOT space (e.g., the floor) has multiple physical robots interacting in

constant motion. Students’ ability to understand the network of the relationships of the agents

shows up in the differences between their pre-test and post-test answers about agent-aggregate

interaction. As described in Chapter 4, question 1 is designed to test student understanding about

the flocking of individual birds. Students in the post-test change their answers about the

leadership of the birds only slightly (6.7% overall), but students are more likely to give answers

about the nature of individual bird understanding.

In our study, students used complex systems and computer science fluencies to effectively use

VBOT and to perform on the post-tests. We view this as a success. Students using physical and

virtual VBOT understood and could communicate their understandings differently. Therefore,

the design of the systems accounts for some of the differences in understanding. The sensitivity

of the learning gains to the difference in design is itself a notable result.

7.2 Evaluating Design Principles

Supporting programming in equivalent virtual and physical spaces

The system is built both as a virtual and physical environment, and students did not have a

choice as to whether they used virtual VBOT or physical VBOT. Virtual and physical spaces

were supported differently, attempting, but not necessarily attaining, equivalence. Although

VBOT and the supporting activities were designed to optimize equivalence, making all of the

Chapter 7: Design Principles

164

activities identical would have been to the detriment of both the virtual and physical

environments.

The virtual space was built first and tested more extensively in the pilot studies because it was

easier to implement. As a programmer, building a virtual system came more naturally to me.

Furthermore, I was initially more familiar with literature on virtual collaborative spaces than

physical ones, due to my work in the Center for Connected Learning and Computer-Based

Modeling (such as Berland, 2006). However, physical educational robotics has been studied

extensively, as detailed in part in Chapter 2. Many of these studies show that students were

engaged and motivated, and that the systems supported computational fluency. Conversely,

virtual robotics environments have not been tested as extensively, as described in Chapter 3.

Furthermore, all of the researchers had access to computers but no access to a bank of physical

robots. These factors conspired to make virtual VBOT the predecessor of physical VBOT. This

precedence might imply some favor towards virtual VBOT.

However, physical VBOT had the benefit of significant outside research and study design.

LEGO Mindstorms robots (2002) are relatively popular commercial toys, and they are used

around the world to teach about computers and programming. We used several well-tested

software/hardware packages to make the programming and design of physical VBOT easier to

implement. Furthermore, the study design for both virtual and physical VBOT was adapted from

study designs by Wilensky (1999) and other constructionist physical robotics studies (e.g.,

Chapter 7: Design Principles

165

Martin, 1996b). In that sense, the physical VBOT projects were more grounded than the

virtual projects.

The data show little overall difference in engagement or overall ability. As described in Chapter

6, virtual VBOT students did better on some questions, while physical VBOT students did better

on others. For the reasons described in Chapter 2, virtual VBOT students produced far more

circuits as they were constantly tinkering. As tinkering was correlated to performance, this would

seem to favor them. However, the physical students did just as much tinkering in the time that

they were working with the physical VBOT. Although they often had to download the circuits

and wait, they would repeatedly consider and tinker with circuits before downloading them to

their VBOT. Often they had to work faster because they had less time to complete their tasks,

given the amount of time dedicated to physically moving and using the robots.

If the activities were made absolutely equivalent by equalizing group size and activity structure,

it would have had the immediate effect of making physical VBOT much harder and more

expensive, while making virtual VBOT activities less engaging. For example, a requirement of

commercial physical robotics is the time taken to download programs to the physical robot. If we

paused the virtual robots to simulate a “download” before acting, it would seem both artificial

and boring. Furthermore, physical VBOT requires more people per group to handle the physical

and virtual aspects of the activity at any given time. While one student handles the downloading,

another student can set up the physical space for testing. In his physical robotics studies,

Chapter 7: Design Principles

166

Hancock (2003) uses groups of around 5 middle-school students. Similarly, Martin (1996b)

used groups of three or more students. Smaller student groups would have made the project

difficult to finish suitably in the allotted time. Similarly, raising the group size of the virtual

VBOT studies presents a problem, as one keyboard and monitor can only address a limited

number of people; four people per keyboard can interfere with cooperative behavior.

Physical and virtual simulations differ in real-world settings, as sensors and motors work very

differently in the two environments. Maes (1991) discusses the reasons for the inherent

difference, but they are mostly outside the scope of this project. For this project, the difference

can be reduced to the so-called “noise problem.” That is, physical sensors are “noisy” – they do

not produce reliable information. The positive aspect to “noise” is that programmers come to

understand feedback and logic much more reliably, making simpler, more targeted circuits

(Brandes & Wilensky, 1991; Papert, 1996; Wiener, 1948). Resnick & Ocko (1991) suggested

that many of the learning gains from educational robotics stem in part from coping with this

noise. An obviously negative aspect to noise is that it can make building robust circuits

intractably hard for middle-school students. Noise alone creates a need for different types of

activities to address sensors. As seen in Chapter 6, physical VBOT students often created more

robust circuits, while virtual students simply created more circuits.

This design goal of relative equivalence was met – it is inherent to the project, but the necessity

of equivalence between physical and virtual systems is debatable. The equivalence could be

Chapter 7: Design Principles

167

located in high-level program design (i.e., do students use the same program throughout?);

low-level program design (i.e., is the only difference between virtual and physical VBOT the

actual physical robots?); or activity design (i.e., do student have the same day-to-day

intermediate goals?). If the goal is equivalence in high-level design, then the project was an

unqualified success. If the goal is equivalence in low-level design, the project was, perhaps, a

qualified success; the students used much of the same mechanical knowledge, but the activities

were technologically different. If the goal is equivalence in activity design, the success is

tempered by the differences between the virtual and physical technologies. One result of this

study is that virtual/physical equivalence is not strictly possible at the moment in a real-world

school setting with a limited budget. Another result might be that these (forced) differences are

illuminating.

Supporting “low threshold, high ceiling” computation

Papert (1980) and Wilensky (1999) explicitly advocate a “low threshold, high ceiling” (LTHC)

philosophy; an environment must be easy to enter as a novice (“low threshold”), but deep enough

for expert users (“high ceiling”). Flogo (Hancock, 2003) is designed to be LTHC, as novice users

can use the graphical interface, segueing eventually to the high ceiling text-based interface to

create more complex programs.

None of the students in our settings had had any relevant programming experience. We

Chapter 7: Design Principles

168

supported these students by designing a program with an extremely low threshold, potentially

lower than either of the thresholds in NetLogo and Flogo. This low threshold came at the

expense of a high ceiling, specified by the LTHC philosophy. This means that every student was

able to successfully interact with the system but it does not easily support the more complex

programming tasks (as discussed above). The system was designed to respond to every input

with action, allow only limited input, not to allow explicit errors, and to make all action in the

system explicitly lead to a reaction in behavior. Our design decisions served to limit the ceiling

of the project. For instance, by making all possible actions immediately visible and labeled, the

number of them had to be limited by computer screen space. Flogo avoids this problem by

allowing the user to create new functions and describe them textually. Though VBOT allows

some flexibility of operations in each activity, the contextual operations are pre-defined for all

users of the activity, rather than individually as in Flogo. For instance, in VBOT a teacher could

decide that a new type of sensor is necessary. All students in the class would then be able to use

the new type of sensor. An individual student cannot create a new sensor independently.

The success that students experienced when working with VBOT (discussed in Chapter 5)

implies that our design successfully created a low threshold. The decision to lower the ceiling

grew out of the purpose of this program. While both Flogo and NetLogo are used in non-

research settings, VBOT was designed for this purpose. This success came at the expense of a

higher ceiling. This is not a novel finding, but it is an important one to reiterate. Perhaps a better

designer could have achieved such a low threshold without lowering the ceiling, but, as

Chapter 7: Design Principles

169

described here and in Chapter 6, the current set of programs designed at this target threshold

do not.

Designing a low barrier to entry

Scalability is extremely difficult; it is one of the most obvious failings of many otherwise good

learning environments. VBOT has not been tested at the large-scale implementation level.

However, whether or not VBOT is scalable, it is possible to deploy in public schools with

relatively little professional development. For virtual VBOT, nothing need be purchased. This is

of absolute import as the poorest schools are in greater need of this technology. Many schools

now feature computers, but they are used for little more than email and web surfing (Cuban,

1995). Perhaps by using more constructionist activities such as those in VBOT in these schools

would improve the quality of science education.

Physical VBOT requires the purchase of LEGO Mindstorms Robots. LEGO Mindstorms

Robotics Systems are already featured in many schools (LEGO, 2002), and the systems are

relatively inexpensive (a classroom can be outfitted for about the price of one computer). A

significant benefit using LEGO Mindstorms is the installed user base and many educational

users. Indeed, while none of the teachers had taught classes using LEGO Mindstorms, they had

all seen them before.

Chapter 7: Design Principles

170

Using groups of students makes it easier to deploy in crowded classrooms with limited

resources (Cuban, 1995). Although every class initially claimed to have sufficient resources to

accommodate each student on an individual computer, in every classroom, some of the

computers that were provided simply did not work. Hundreds of students using a limited bank of

computers every day results in broken computers. In one case, we had to borrow computers from

another computer lab, as more than half of the computers in the classroom were non-functional.

Thus, with caveats around professional development, we could claim that this program is

scalable, at least financially. However, questions about scaling the pedagogy remain difficult to

address, due to the size and scope of the studies performed. Another large-scale study is, at least,

possible to achieve with the current technology. That would be necessary to evaluate the

possibility of large-scale public school deployment. To be deployable with minimal professional

development and out-of-pocket cost has long been an important objective for learning

environments (see Cuban, 1986, for historical examples). The scalability problem is compounded

by the different resources necessary for design and deployment. Nonetheless, it remains

important to address it in the design, as teachers often ask about scalability issues in enactments.

Designing “game-like” programming

Real-time programming was considered a priority because of its relationship to engagement and

complexity. Gee (2004) and Hancock (2003) both show how real-time activity, or “liveness”,

Chapter 7: Design Principles

171

enhances a user’s feeling of engagement. Wilensky & Stroup (1999a) show how the

simulation of complex systems in real-time enhances students’ ability to comprehend the

systems.

Virtual VBOT is more specifically “real-time” than both NetLogo and Flogo. That is, all actions

have immediate effects in the shared space, which does not “pause” except at the end of

activities. Physical VBOT is not “real-time” in the same sense; students build circuits but must

download those circuits to their robots. Virtual VBOT is more similar to online video games than

other programming environments. In games such as World of Warcraft, every action has an

effect in a shared game world that is immediately seen by all other players in the spatial vicinity.

In fact, a few students made informal references to these games when using VBOT.

Virtual VBOT was effectively real-time, but physical VBOT was not. Although students using

physical VBOT could lightly tinker with circuits before downloading them, the action was not

effectively real-time. There are physical robotics systems, such as the Cricket system

(Hancock, 2001), that support real-time active physical robotics, but they are more expensive,

and they cannot be purchased from commercial retailers. An original design for physical VBOT

used the real-time robotics, but that plan was abandoned due to considerations about scalability,

cost, and expertise.

Chapter 7: Design Principles

172

Motivating programming as an aspect of both computational fluency and

complex systems fluency

Programming is, at its core, building; to learn by doing is not the same thing as learning to do.

These two points are sometimes conflated in constructivist literature, but in this study they are

not the same thing. One can learn to program without programming: a former colleague of mine

had been trained to program at a university that did not have a computer lab. One can also learn

to program by implementing a predetermined and prewritten set of programs. My personal

experience leads me to believe that those approaches tend to be both dull and ineffective.

Learning to program creatively by programming creatively is often the best option – this is a

tenet of constructionism (Papert, 1980).

But just as thinking about thinking is thinking about thinking about something (Husserl, 1913),

learning to program is learning to program about something. Every programming language

carries within it a metaphor for understanding computers. Boxer (DiSessa, 1997), Logo (Papert,

1980), NetLogo (Wilensky, 1999), and, indeed, Prolog (1972) all show us that when one is

programming, one is thinking and learning in that language specifically. Non-programmers often

think of programming as inherently “mathematical” or “logical”, but there is a vast distance

between considering programs as interactions between agents (NetLogo) and existence

predicates (Prolog). In the same way, programming in VBOT is considering networks of

Chapter 7: Design Principles

173

emergent meaning. This is emphasized by the content of the activities, which are also about

networks of emergent meaning and emergent paths to local or global goals.

Therefore, the question becomes: how well does the syntax of the language enable complex

systems and computational fluency? VBOT does not approach NetLogo in motivating complex

systems fluency, as would be expected. Standard NetLogo syntax addresses group of agents, and

nearly all commands are organized to enable users to design emergent systems from groups of

agents. VBOT, even at the level of basic syntax, is design in this way. VBOT syntax itself, is, as

described in this Chapter and in Chapter 2, an emergent network. However, a VBOT user could

theoretically program VBOT independently. The activity structure of VBOT, however, requires

groups of students collaborating and competing to fulfill goals. Similarly, VBOT cannot

approach Boxer in motivating computational fluency. Boxer provides a model metaphor for

understanding computation. VBOT provides only the simplest circuit metaphor for computation.

However, inherent to both systems is a novel syntax designed around targeted programming.

Towards both fluencies, the simplicity of VBOT is both its strength and weakness.

Motivating students toward intrinsic goals

This goal mediates the other goals. If I am a student, why should I use this system? “Teacher said

so” is a reliably problematic answer. It is a fundamental tenet of constructivism and

constructionism that people learn based on what they know (Piaget, 1972); people learn by

Chapter 7: Design Principles

174

mentally participating. A student who hates what she is doing will do little. These arguments

have been verified many times in many ways, from Dewey (1913) to Pintrich & Schunk (1996).

The question remains: how do we make learning environments and activities enjoyable and

usable? Gee (2004) provides several concepts on what makes a game usable and engaging.

Simplicity is fun. During the pilot studies, it became clear that we did not need so many buttons,

so many features, or so much clutter for this program. No student built an operating system in the

last half-hour of class, and we did not need to prepare a system in which that was possible. By

paring down the interface repeatedly, all elements existed on the same page at the same time.

This greatly enhanced both usability and comprehension. Lowering the threshold meant that

students could program immediately without hours of explicit training. Students reported that

they excelled at building circuits, and hence material computational and complex systems

fluencies, when they did not feel intimidated by the language or interface.

Complexity is fun. Why read a book if you already know an ending? The activities were made

increasingly complex to satisfy the students. When I first presented the final activity (“Moon-

Tag”) at a research presentation, many colleagues argued that it was too complex and too

involved for middle school students. One teacher argued that they would leave frustrated and

dejected after failing miserably. The opposite occurred. Students in every class could describe

the game to their fellow students within a matter of seconds; this provides some encouraging

evidence of students building social fluencies.

Chapter 7: Design Principles

175

Action is fun. It goes without saying that active play is fun. Sports are fun for some; video games

are fun for some; and painting is fun for some. All of those involve some form of active play. It

seems odd, then, that traditional school often includes so little active play. This is something that

we know that students enjoy and independently engage in, so we should exploit it as much as

possible. In Physical VBOT, the students had to stand up and walk to a central space for their

robots to compete.

Understanding is fun. A significant percentage of negative questionnaire comments concerned

the incomprehension or misunderstanding of an operation or circuit. Students like to understand;

building understanding is building cognitive fluencies. We have theorized (Berland, 2006) that

one reason academically poor students do well in HubNet and VBOT is that they feel like they

understand concepts at the class level – they are not “left behind.” Similarly, students liked the

circuits and games that they felt that they understood well. Simplicity and understanding are

synergistic; the simplicity of VBOT enabled students to understand the robots that they

controlled.

Having is fun. Possession of a vbot, whether physical or virtual, actively engages a student in

learning. Even the most sullen student identifies with a vbot bearing his or her name on the

screen or on the floor. Wilensky & Stroup (1999a) noted that in a HubNet activity, students

typically yell out potential actions for individual agents by name: “Bobby, move your vbot!” The

Chapter 7: Design Principles

176

same effect in VBOT motivated the students to take some interest in learning. Few of the

middle school students wanted to be the only student left out of an activity, and some of the

activities required all students to participate in order to reach an emergent goal. In those cases,

the students were almost forced to have fun, but the forcing came from their peers, rather than

from a teacher. It is rather novel to hear an 8th grade student remark that her compatriot needs to

“learn to program!” These statements are concrete indications of the ways that social

computational and complex systems fluencies are being supported by the system.

Being is fun. Papert (1980), Hancock (2003), and others argue that embodiment and body

syntonicity are essential for good constructionist design. They argue that more concrete activities

and metaphors are easier to understand. Inhabiting a space brings with it implications for

engagement and understanding that remain relatively unexplored (see Abrahamson, 2006), but

implies that students are building complex systems and computational cognitive fluencies. It was

rare to see a student trying to understand the movement of a vbot without some body contortion

simulating the movement of the individual’s vbot (Berland, 2005). Gesture and movement are

powerful comprehension tools (Goldin-Meadow, 2003), and using them gives us access to an

underused learning tool for the modern public school.

7.3 Design Conclusions

How well did VBOT design decisions address our design goals overall, how well did VBOT

Chapter 7: Design Principles

177

design decisions address our learning goals, and what principles can we draw from our

findings?

By design, a single student using VBOT cannot write a single circuit that satisfies an activity’s

global goal; all activities are designed for multiple actors, and the software is designed to enable

this. Students wrote simpler programs than those found in the work of Hancock (2003) or

Wilensky (1999). Hancock (2003) asks middle-school students to program robots to explicitly

search out and return specific objects to a predetermined location. Towards this end, Flogo

provides a separate, text-based interface to input more complex program code, providing a

wholly different program metaphor than the circuit-based interface. VBOT provides no such

facility, and it is impossible in VBOT to “delve” into the text-based program code for any

reason. Thus, while tasks such as the Flogo task are feasible in VBOT, they are difficult, and no

task of that complexity could have been undertaken in the classroom time allotted. In this sense,

the design of VBOT was starkly different from Flogo: our design foregrounds tinkering, sharing,

and “liveness” (from Hancock, 2003) over more complicated programming. In this way, the

design of VBOT promotes complex system fluency through computational fluency.

Wilensky & Stroup (1999a) discuss the benefits and deficits of using HubNet system in the

classroom. As described in Chapter 2, VBOT is a descendent of HubNet. HubNet, contrasting

with VBOT, requires no programming. HubNet is designed to support complex systems fluency

by allowing students to act as an agent in a participatory simulation. Compared to other HubNet

Chapter 7: Design Principles

178

simulations, VBOT foregrounds circuit building and programming over direct agent action as

a way for students to interact in a shared social space. In this way, the design of VBOT promotes

material and cognitive computational fluency through material and cognitive complex systems

fluency.

The data suggest that the computational and complex systems fluencies were mutually

reinforcing, and that the boundaries set on program complexity and agent interaction were

contextually fruitful. Student programming in this study did not approach the maximum

complexity of VBOT programs. Indeed, as seen in Figure 6-1, the relative difficulty of the

individual operations decreased by the last day of the activity. As the activities became more

complex, students created more targeted, simple circuits to achieve their goals. Hancock’s study

guides the students into an eventual goal of being able to program in traditional functional

languages, such as LISP; this study had no such goal. Hancock’s study was designed differently

and targeted differently, using volunteers with previous programming experience in after-school

programs. Our data suggest that even previously untrained middle-school students are capable of

creating relatively complex correct programs. 80.5% of the students created at least half of the

circuits correctly on the post-test evaluation. Students in the top 50% of post-test scores did not

have a higher average difficulty per circuit metric (OP_DIFF). This implies that material

computational fluency was not directly tied to building complex circuits. That is, the simplicity

of the circuit design appears to have been borne out of the activity design rather than student

abilities.

Chapter 8: Conclusions and Future Directions

179

Chapter 8: Conclusions and Future
Directions

VBOT is a fully integrated virtual/physical constructionist robotics-based learning environment

designed to teach complex systems and computational fluency to middle school students. Four

8th grade public school classes (2 virtual, 2 physical) at two schools used VBOT and showed

significant learning gains towards both fluencies. Furthermore, we examined several possible

explanations for those gains and investigated how a set of constructionist design principles

related to those gains. The most salient factors in those gains were tinkering and sharing, and

while students in both contexts demonstrated learning gains there were interesting differences

across them.

8.1 What is VBOT?

The VBOT language was shown to be a robust circuit-based robotics language. In VBOT, groups

of students compete and collaborate to build several virtual and/or physical robots. There are a

few salient differences between VBOT and other educational robotics packages: it is designed to

work equivalently for both virtual and physical robotics; it is inherently collaborative and multi-

user; behavior emerges from networks of connected operations; all virtual robotics is real-time;

and, as an architecture, it emphasizes tinkering and sharing.

Chapter 8: Conclusions and Future Directions

180

VBOT is based on the HubNet participatory simulation environment (Wilensky & Stroup,

1999b). In the virtual aspect of VBOT (called “virtual VBOT” or VVBOT), as in HubNet,

students (or pairs of students) each control a single avatar through a game-like interface. This

interface controls the actions of a single “vbot” avatar. The avatars of all of the students act in a

common, shared screen-space. The students look at this shared screen in the front of their

classroom to see their actions as well as the actions of their fellow students’ avatars. The

physical aspect of VBOT (“physical VBOT” or PVBOT) differs in that the students use their

interface to control an actual robot, which is a physical manifestation of the virtual avatar

described above. To control their robots, students must download their programs to the physical

robots. These robots (also called vbots) then act in a shared space, which is usually a ring marked

on the floor of the classroom. The physical robot used was the LEGO Mindstorms robot,

described in Chapter 2 and illustrated in Appendix 1.

8.2 Why was this study necessary?

This work rests on several fundamental assertions: that computational fluency is an important

goal; that complex systems fluency is an important goal; that the two fluencies are mutually

reinforcing; and that a constructionist robotics learning environment provides a fruitful path

toward that goal. The study with VBOT derives from a host of companion works. Papert (1980)

Chapter 8: Conclusions and Future Directions

181

described constructionism as a method for teaching and learning. This work is, if nothing

else, an argument for increased use of constructionist methods in the classroom. Wilensky (2001)

pioneered work on complex systems fluency. DiSessa (2000) pioneered work on computational

fluency. Hancock (2003) and Resnick & Ocko (1991) provided works on robotics in the

classroom that fundamentally informs the paths that this work follows.

 Chapter 3 explored the roots and justifications for complex systems fluency and computational

fluency. The call for complex systems fluency stems from the finding that American students

lack basic scientific fluency upon exiting high school (AAAS, 2007; TIMSS, 2003) and complex

systems fluency is posited as a novel, comprehensible mode for understanding scientific

phenomena. Teaching students about the elements of phenomena and the relationships between

those elements fosters understanding of some phenomena better than traditional equation-based

science (Wilensky & Stroup, 1999a). The need for computational fluency stems from the

growing role that computer technology is playing in the US. While more students may use

computers on a daily basis, there is little evidence that students better understand computation

(DiSessa, 2000).

Wilensky & Resnick (1999), Wolfram (2002), and others have long posited a strong connection

between computational fluency and complex systems fluency. Their studies suggest that complex

systems theory is more easily available as a mode for understanding science because of the

increasing prevalence of scientific computation and visualization. However, there are few studies

Chapter 8: Conclusions and Future Directions

182

that test learning environments for their applicability to complex systems fluency or examine

the relationship between computational fluency and complex systems fluency at the middle-

school level. Constructionist virtual and physical robotics provide a solid context for teaching

these fluencies because both have been individually tested before with good results, as described

in Chapter 2. However, there are few comparisons of constructionist virtual and physical robotics

with modern technology, however.

This work, in turn, fills several gaps in available research because it is: a comparison between

virtual and physical constructionist environments; an investigation into the relationship between

computational and complex systems fluencies; and a test of the effectiveness of different

learning environments toward teaching those fluencies.

8.3 Why did we use these methods?

As such, the study design is a traditional “2 by 2” factorial research study (as described in

Ericsson & Simon, 1984), using a VVBOT class and a PVBOT class each at two separate school,

totaling 4 classes. By comparing and contrasting schools, virtual classes, and physical classes,

we were able to more clearly see the differences that stem from teacher, student, class, and

learning environment interaction. The “2 by 2” study allows researchers to factor out specific

and individual differences on two axes. In a 2x2 study, the between-class and between-treatment

Chapter 8: Conclusions and Future Directions

183

differences often contrast if they exist.

Each of the four classes was an 8th grade, non-magnet public school classroom in a large

Midwestern city, and each used P/VBOT across roughly 5 days for an hour per day. During the

first three days, time was spent teaching students how to use VBOT operations. The majority of

each class days was spent in VBOT, with the exception of the time spent for rudimentary

instruction, discussion, and questionnaires. All mouse or keyboard activity in VBOT was logged

to a central server. We also collected videotape data of each class day on two cameras. In

addition, we administered a pre- and post-test for all students, daily questionnaires for all

students, and pre- and post-interviews with 4 students per classroom.

8.4 Did we meet our goals?

There are three questions the reader should be able to answer at this point:

1. What are the benefits and deficits of using physical or virtual robotics for learning
computer science or complex system concepts?

2. What aspects of design motivate this learning?
3. How well does this work?

This work succeeds to the degree that one can answer those questions from its reading.

Fundamentally, this work is a study of one system (VBOT) used to teach two intertwined

learning goals (complex systems and computational fluencies) to a specific population (middle-

school students). This study was situated in four middle school classrooms from two different

Chapter 8: Conclusions and Future Directions

184

Chicago public schools over the course of one week. From this perspective, this is an

enormous task – these students have no programming experience and many of them are doing

quite poorly in traditional academic settings. To teach these students about computer

programming and complex systems content simultaneously might seem too big, too fast, and too

much. However, students learned not only how to program in a proprietary system, but they did

so in a complex systems environment, in a way that shows remarkable understanding and

improvement. Our results led us to conclude that complex systems and computer science

fluencies are mutually reinforcing.

8.5 What did we find?

In short, we found that students in all classes learned as a result of being able to play relatively

freely with the system. The amount of time given by the individual teachers, the design of the

class material, and the school environments mattered far less than simply motivating students to

share and tinker with the system. Perhaps against common perception, boys did not perform

better than girls, higher SES did not perform better than lower SES, and the virtual classes did

not perform better than the physical classes. What we found was that students learned a great

deal across the board: a significant majority of students learned how to program in VBOT, they

could collaborate and compete in the classroom using VBOT, and they could take that

knowledge and apply it on the post-test evaluations.

Chapter 8: Conclusions and Future Directions

185

Complex systems and computational fluencies are mutually reinforcing.

We have noted the relative value of complex systems and computational fluencies several times

over the course of the work to gain lenses with which to understand science, math, and

computers. Many of these students entered the project with a mystifying view of robots as

Martian invaders and left the project believing that they knew how to program robots. Other

students came in assuming that every flock of birds had a pre-determined leader, and that every

anthill was “radio-controlled” by a hidden queen. These same students came to understand that

sometimes the only way to a common goal was an array of nearly identical simple agents. All of

the students became familiar with the concept of networks of meaning, both in computation and

in society.

Virtual and physical environments, even with equivalent activities,

engender different behaviors.

VVBOT and PVBOT students performed differently on post-test questions in the types and

numbers of circuits they built and in the ways that they built their circuits. Many of the statistical

measures we used were significantly different between VVBOT and PVBOT students. However,

neither group was significantly “better” on the post-test or in their circuit quality. Some

researchers might look to a work such as this one to judge the value of physical or virtual

Chapter 8: Conclusions and Future Directions

186

robotics for teaching and learning; we found that they both work well, albeit differently. To

an extent, the virtual environment favors agent-based modeling from an aggregate perspective,

and the physical environment favors aggregate modeling from an agent-based perspective.

Tinkering and sharing helps students learn complex systems and

computational fluencies.

Sharing, tinkering, and performance were strongly correlated. Our data showed that students who

tinkered and shared performed better on the post-test, regardless of pre-test performance.

Gender, race, teacher, and school were uncorrelated to performance. All of the students learned

how to create at least passable working VBOT circuits in the span of 5 days.

8.6 How did we add to the field?

VBOT is a new paradigm and language, built from previous successful systems – this is a

virtual/physical real-time robotics system that can be used and adapted further in the field. A

primary addition to the literature comes through the comparison of virtual and physical

constructionist environments. There are few studies that systematically compare virtual and

physical robotics in a constructionist frame. Among other findings, our data suggest that virtual

and physical students interpreted similar problems remarkably differently: VVBOT students

Chapter 8: Conclusions and Future Directions

187

tended to understand things in context, in a networked way, where PVBOT students came to

a more thorough understanding of the way that computation and logic works.

Another addition to the field comes through the local definitions and elucidation of complex

systems and computational fluencies. By breaking down these categories into material, cognitive,

and social, as per DiSessa (2000), we have broadened the definitions, so that can be used in other

studies. This is a new, adapted definition of complex systems fluency, but it has relevance

outside of this work. Furthermore, we have defined a set of design principles, which can be used

to teach complex systems and/or computational fluency. These design principles have been

verified both in practice and in data, and they should prove helpful for future designers building

with related goals.

Tinkering and sharing were shown to be significantly correlated with performance and activity

within the system. Male and female students were roughly equal on every measure; race, school,

and teacher effects were quite minor. This suggests that by emphasizing tinkering and sharing,

we are emphasizing learning. It could be argued that students tinkered and did better because

they were more motivated by the system, but this is not a negative finding: this simply shows

that the more fun a task is, the better the students perform.

Chapter 8: Conclusions and Future Directions

188

Prescriptions

The following section describes how to use the information in this work to design towards

complex systems and computational fluency. These prescriptions are positive, offering

suggestions for organizing classrooms and designing learning environments.

Making the classroom more constructionist

Constructionism has been repeatedly correlated with engagement, creativity, and robust learning

(see Bruckman, Edwards, Elliott, & Jensen, 2000). Essentially, constructionism means learning

through building both knowledge and artifacts. The concepts behind constructionism are both

deceptively simple and deceptively complex. What has been shown here, in Papert’s work

(1980), and countless other places (e.g., Harel & Papert, 1990) is that a designer can exploit

active building towards engagement in learning design. People like to make artifacts. People

learn better and care more about what they learn by interacting with and building artifacts than

they do by hearing about them. In my opinion, no gain observed in this study is independent of

constructionism.

Emphasizing computational fluency in your design

Computational fluency becomes more important every day. To be an informed citizen of the 21st

Century, we need not only a literary (suggested by Orwell, 1947) and scientific fluency (AAAS,

Chapter 8: Conclusions and Future Directions

189

2007), but a computational fluency as well. Computational fluency involves not only

familiarity with computers but also a fundamental understanding of how and why they work and

what they can and cannot effectively do (DiSessa, 2000). Computational fluency is difficult to

gain without actually programming computers or designing digital artifacts. Only by

programming a computer can a student understand why computers look and feel the way that

they do and that they are essentially simple machines.

In keeping with the constructionist philosophy, our work demonstrates that the best way to

emphasize computational fluency in research design is to engage students in tasks that require it.

The programming should stem from the task. Students using VBOT never questioned why we

were using computers to play with robots – they were too busy playing a game with VBOT to

grumble about having to learn it. From the students’ perspective, the games were driving the

medium; the medium was not driving the game.

Emphasizing complex systems fluency in your design

Arguing for science fluency is positive, but science fluency has not been taught effectively in this

country (TIMSS, 2003). One explanation is that traditionally taught science is both boring and

hard, though science itself is neither boring nor hard. It only seems boring and hard because it is

presented inappropriately; Students are rarely motivated by material that is packaged for

educators or scientists. VBOT students learned about complex systems science because it was

Chapter 8: Conclusions and Future Directions

190

necessary to play the game and because it simply flowed from the material. NetLogo (1999)

contains many examples of simulations in which phenomena are understandable through

complex systems methods that would be otherwise difficult or needlessly mathematical. When

approaching science content, it is necessary to approach it from ¸unique perspectives and

consider the elements that make up the phenomenon; it is necessary to ask why phenomena

happens, rather than simply how they happen.

Using robotics effectively

Robotics is a powerful learning tool. It is novel, even to the expert; it is futuristic, even to the

programmer; and artificial intelligence has significant depth. Robotics essentially offers low-cost

student engagement in a subject with significant depth. Better yet, it can be applied to a variety

of scientific and mathematical phenomena. Rather than programming a LEGO robot follow a

line, program it to act like a squirrel. Rather than building a robot to bring you a bagel, make a

robot phonograph. There are numerous works in which robotics is used in remarkably novel

ways, most of which are accessible even to the tech novice (e.g., AgentSheets, from Repenning,

Ioannidou, & Zola, 2000; Rusk, Berg, & Resnick, 2005).

Teaching students to share more effectively

Students share naturally; most middle-schools students, for instance, love to talk incessantly.

Chapter 8: Conclusions and Future Directions

191

Here is my prescription: let them talk. Let them talk off subject, but give them topics without

one right answer. There is no such thing as “cheating” in VBOT, and this helped make the

project run much more smoothly. In many of the activities, two students had to fill sufficiently

different roles in which talking helped both of them but copying helped neither. In a free market,

cheating rarely works– two companies that sell the exact same product will both sell half as

much of it. However, two companies that work in synchrony create more business for other

companies. To maximize sharing, students can be considered independent entities working in a

free market. Opportunities for synchrony lead to much better results than identical competition.

8.7 Where were the problems?

Many veteran teachers today have a reasonable dislike of classroom innovations due to the spotty

history of the novel classroom innovation (Tyack & Cuban, 1995). Our study was big enough to

get reasonable statistical significance, but small enough that there are obvious holes. There is no

way to assure that it will work everywhere. Nobody has attempted to deploy VBOT in a

classroom where I was not present. This remains a future goal, and it is discussed below.

A limitation of the study is that I was not able to collect and analyze the social network data

collected in the second pilot (as described in Section 4.2). Although there is reason to believe

that fruitful data exists in examining social networks over time, the researcher resources

Chapter 8: Conclusions and Future Directions

192

necessary to collect that data in a “real-time” simulation study makes that collection difficult

to do. As such, we were unable to do it in this study.

Like many design research studies, issues of transfer arose (as described by Perkins & Salomon,

1988). How does one know that the local learning translates to global learning? Will these

students be better at programming when they see it again? Do they show complex systems

fluency gains a year later? We attempted to design the pre-test and post-test to be meaningfully

different from the VBOT activity (see Appendix 2), but transfer can be notoriously difficult to

determine or understand.

8.8 Future directions

So where do we go from here? In keeping with the theme of this conclusion, our path can be

divided into two prongs: understanding fluencies and improving design.

The cognitive aspects of complex systems fluency are only beginning to be understood

(Goldstone & Wilensky, 2008). It is not yet know what cognitive processes people use to

understand complex systems, neither is it known how they translate that understanding into

material action. Work could be done within this system to address this topic. While it is difficult

to get speak-aloud data of step-by-step student understanding because of the real-time aspects of

Chapter 8: Conclusions and Future Directions

193

VBOT, it would be possible to more carefully consider one student’s experience in a VBOT

classroom. With an automated notation tool for individual students and individual cameras, it

might be possible to investigate all of the actions of a specific student to understand their

thought-processes more fully.

There is not much new research on assessment design in this study. Much more could be done by

spending research time and money on improving the automated and textual aspects of

assessment. Automatic assessments, individualized assessments, and reflective assessments

would be relatively easy to integrate into VBOT and would increase the value of the data

towards understanding fluencies. The approach to social network data tried in the second VBOT

pilot (P2, detailed in Section 4.2) provides a different and potentially very valuable perspective

on constructionist classrooms. Work in automatic and individualized assessments might provide

a way to collect and analyze this social network data with fewer necessary resources.

This research has several implications for design. Many of the findings and much of the data

suggest that students who play with the system more enjoy it more; those students then do better

on assessments and in the activities. As such, there is a wealth of new research on games and

learning that would be invaluable (e.g., Gee, 2003; Squire, 2003). There are many questions

about the relationship between tinkering, motivation, and performance that are unanswerable

with our design. Perhaps the most exciting next step would be to implement a set of targeted

“tinkering games” that could be tested in various scenarios. During the original design of the

Chapter 8: Conclusions and Future Directions

194

current iteration of VBOT, Ian Horswill and I discussed a VBOT-like massively multiplayer

online game (MMO) in which the data could be collected from players on the Internet. There are

few learning games that leverage the “liveness” or complexity aspects of VBOT, and our design

would likely benefit many users.

8.9 In Summary

Learning, playing, and sharing are complex activities. By tinkering, playing, and sharing,

students came to better understand a complex and complicated set of content in a short period of

time. There is a significant amount of research debating the difficulty of teaching computational

fluency to younger students (e.g., AAUW, 2000; Cuban, 1985; Pea, 1987), debating the

difficulty of teaching complex systems fluency to younger students (e.g., Hmelo-Silver &

Pfeffer, 2004; Levy, 2002), and, possibly as a result, little research on combining the two. In

using a “live” game-like simulation, our students were motivated, they met our learning goals,

and they improved on our assessments. The virtual VBOT students and the physical VBOT

students learned different things differently, but both sets learned content that few middle school

students are able to learn. In this study, context trumped content. Exciting concepts presented in

boring ways often seem difficult to learn; exciting concepts presented in exciting ways often

seem easy to learn.

195

REFERENCES

AAAS. (2007). Atlas of Science Literacy, Volume 2. Washington, DC: AAAS and National

Science Teachers Association.

AAUW. (2000). Tech-Savvy: Educating Girls in the Computer Age. Washington, DC:

American Association of University Women.

Abrahamson, D. (2006). The shape of things to come: The computational pictograph as a bridge

from combinatorial space to outcome distribution. International Journal of Computers

for Mathematics Learning, 11(1), 137-146.

Abrahamson, D., & Wilensky, U. (2004a). ProbLab: A computer-supported unit in probability

and statistics. In M.J. Hoines & A.B. Fuglestad (Eds.), Proceedings of the 28th Annual

Meeting of the International Group for the Psychology of Mathematics Education Vol. 1

(p. 369). Bergen: Bergen University College.

Abrahamson, D., & Wilensky, U. (2004b). SAMPLER: Collaborative interactive computer-

based statistics learning environment. Paper presented at the 10th International Congress

on Mathematical Education, Copenhagen, July 4 - 11, 2004.

Abrahamson, D., & Wilensky, U. (2005). Collaboration and equity in classroom activities using

Statistics As Multi-Participant Learning-Environment Resource (S.A.M.P.L.E.R.). The

annual meeting of the American Educational Research Association, Montreal, Canada,

April 11 - 15, 2005.

Abrahamson, D., Berland, M., Shapiro, R., Unterman, J., & Wilensky, U. (2006). Leveraging

epistemological diversity through computer-based argumentation in the domain of

probability. For the Learning of Mathematics, 26(3), 39-55.

Abrahamson, D., Blikstein, P., Lamberty, K. K., & Wilensky, U. (2005). Mixed-media learning

environments. Proceedings of the annual meeting of Interaction Design and Children

2005, Boulder, Colorado.

196

Ames, C., & Archer, J. (1988). Achievement goals in the classroom: Student learning

strategies and motivation processes. Journal of Educational Psychology, 80, 260-267.

Aristotle. (1996). Poetics. Malcolm Heath (Trans.) London: Penguin.

Arkin, R.C. (1998). Behavior-Based Robotics. Cambridge, MA: MIT Press.

Au, W.J. (2002). Triumph of the Mod. Retrieved May, 2002, from

http://archive.salon.com/tech/feature/2002/04/16/modding/

Babarasi, A. (2002). Linked: The New Science of Networks. Cambridge, MA: Perseus Press.

Bar-Yam, Y. (1997). Dynamics of Complex Systems. Cambridge, MA: Perseus Press.

Beck, K. (1999). Extreme Programming Explained. Boston, MA: Addison-Wesley.

Berland, M., & Wilensky, U. (2004). Virtual robotics in a collaborative constructionist learning

environment. The annual meeting of the American Educational Research Association,

San Diego, CA, April 12 - 16, 2004.

Berland, M., & Wilensky, U. (2005). Complex play systems -- Results from a classroom

implementation of VBOT. The annual meeting of the American Educational Research

Association, Montreal, Canada, April 11 - 15, 2005.

Berland, M. (2006). Constructionist collaborative engineering: Results from an Implementation

of PVBOT. Paper presented at the annual meeting of the American Educational Research

Association, San Francisco, CA.

Blikstein, P., & Wilensky, U. (2005). Less is more: Agent-based simulation as a powerful

learning tool in materials science. Paper presented at the 4th International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), Utrecht,

Netherlands.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From Natural to

Artificial Systems. Oxford: Oxford University Press.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. Cambridge, MA: MIT

Press.

197

Brandes, A., & Wilensky, U. (1991). Treasureworld: An Environment for the Study and

Exploration of Feedback. In I. Harel & S. Papert (Eds.), Constructionism. Norwood, MA:

Ablex Publishing.

Brooks, R. (1991). Artificial life and Real Robots, Proceedings of ECAL91, 3-10.

Brooks, R. (1999). Cambrian Intelligence. Cambridge, MA: The MIT Press.

Brooks, R. (2002). Flesh and Machines. New York: Pantheon Books.

Brooks, R., & Stein, L. (1994). Building brains for bodies. Autonomous Robots 1(1):7-25.

Brown, J.S., & Duguid, P. (2002). The Social Life of Information. Cambridge, MA: Harvard

Business School Press.

Bruckman, A. (1997). MOOSE crossing: Creating a learning culture. Thesis for the degree of

Doctor of Philosophy at MIT.

Bruckman, A., Edwards, E., Elliott, J., & Jensen, C. (2000). Uneven Achievement in a

Constructionist Learning Environment. Proceedings of ICLS 2000. Ann Arbor, MI.

Bruckman, A., Jensen, C., & DeBonte, A. (2002). Gender and Programming Achievement in a

CSCL Environment. Long talk, Proceedings of CSCL 2002, Boulder, CO.

Cassirer, E. (1979). Symbol, Myth, and Culture. Essays and Lectures of Ernst Cassirer 1935-

1945. New Haven, CT: Yale University Press.

Centola D., McKenzie E., & Wilensky, U. (2000). Survival of the Groupiest: Facilitating

Students' Understanding of Multi-level Evolution through Multi-Agent Modeling - The

EACH Project. The Fourth International Conference on Complex Systems. Nashua, NH:

New England Complex Systems Institute.

Chi, M.T.H. (2005). Commonsense conceptions of emergent processes: Why some

misconceptions are robust. Journal of the Learning Sciences, 14(2).

Chi, M.T.H., deLeeuw, N., Chiu, M., & LaVancher, C. (1994). Eliciting self-explanations

improves understanding. Cognitive Science, 18, 439-477.

198

Cole, M. (1996). Cultural psychology: A once and future discipline. Cambridge, MA:

Harvard University Press.

Collela, V. (2000). Participatory Simulations: Building Collaborative Understanding through

Immersive Dynamic Modeling. Journal of the Learning Sciences, 9(4), pp. 471-500.

Collins, A. (1992). Toward a design science of education. In E. Scanlon & T. O'Shea (Eds.), New

directions in educational technology (pp. 15 - 22). New York: Springer.

Csikszentmihalyi, M. (1990). Flow: the psychology of optimal experience. New York: Harper &

Row.

Cuban, L. (1986). Teachers and machines: The classroom use of technology since 1920. New

York: Teachers College Press.

Cypher, A., & Smith, D.C. (1995). KidSim: End User Programming of Simulations. CHI'95,

Denver.

DeBonte, A. (1998). Pet Park: a graphical constructionist community. Unpublished Master’s

Thesis, MIT, Cambridge, MA.

Dewey, J. (1897). My Pedagogic Creed. The School Journal, 3, 77-80.

Dewey, J. (1913). Interest and effort in education. Boston, MA: Houghton Mifflin Co.

Dewey, J. (1931/1985). Context and thought. In Jo Ann Boydston (Ed.), John Dewey: The later

works, Vol. 6 (pp. 3 - 21). Carbondale, IL: Southern Illinois University Press.

diSessa, A. (1997). Twenty reasons why your should use Boxer (instead of Logo). In M.

Turcsányi-Szabó (Ed.), Learning & Exploring with Logo: Proceedings of the Sixth

European Logo Conference, Budapest, Hungary

diSessa, A. (2000). Changing minds: Computers, language and literacy. Cambridge, MA: MIT

Press.

diSessa, A., & Abelson, H. (1986). Boxer: A reconstructible computational medium.

Communications of the ACM, 29(9)

199

Dodds, Z., & Tribelhorn, B. (2006). Erdos: Cost effective peripheral robotics for AI

education. In Proceedings, 2006 AAAI, pp. 1966-1967.

Druin, A., & Hendler, J., Eds, (2000). Robots for Kids: Exploring New Technologies for

Learning. San Francisco: Morgan Kaufmann Publishers.

Dweck, C.S., & Elliot, E.S. (1983). Achievement motivation. In P. H. Mussen & E. M.

Hetherington (Eds.), Handbook of child psychology (Volume IV: Social and personality

development, pp. 643-691). New York: Wiley.

Edelson, D.C. (2002). Design research: What we learn when we engage in design. Journal of the

Learning Sciences, (11)1, 105-122.

Elliott, J. & Bruckman, A. (2002). Design of a 3D Interactive Math Learning Environment.

Design of Interactive Systems, London, UK.

Elliott, J., Adams, L., & Bruckman, A. (2002). No Magic Bullet: 3D Video Games in Education.

Proceedings of ICLS, 2002.

Epstein, J.M., & Axtell, R. (1996). Growing artificial societies: social science from the bottom

up. Cambridge, MA: MIT Press.

Ericsson, K.A. & Simon, H.A. (1984). Protocol Analysis: Verbal reports as data. Cambridge,

MA: MIT Press.

FIRST Robotics. (2006). Retrieved April 4, 2008 from:

http://www.usfirst.org/what/frc/default.aspx?id=366

Gee, J. (2003). What video games have to teach us about learning and literacy. New York:

Palgrave.

Gee, J. (2004). Learning by Design: Games as Learning Machines. Game Developers

Conference, San Jose, CA.

Goldin-Meadow, S. (2003). Hearing gesture: How our hands help us think. Cambridge, MA:

Harvard University Press.

200

Goldstone, R. & Wilensky, U. (2008). Promoting transfer through complex systems

principles. Journal of the Learning Sciences (Manuscript in press).

Gutierrez, K., Rymes, B., & Larson, J. (1995). Script, Counterscript, and Underlife in the

Classroom: James Brown versus Brown v. Board of Education. Harvard Educational

Review, 65(3), 445-471.

Hancock, C. (2001). Children's Understanding of Process in the Construction of Robot

Behaviors. Paper presented at the symposium "Varieties of Programming Experience."

The Annual Meeting of the American Educational Research Association, 2001, Seattle.

Hancock, C. (2003). Real-time programming and the big ideas of computational literacy.

Unpublished doctoral dissertation, MIT.

Haraway, D. (1991). "A Cyborg Manifesto: Science, Technology, and Socialist-Feminism in the

Late Twentieth Century," in Simians, Cyborgs and Women: The Reinvention of Nature.

New York: Routledge.

Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive Learning

Environments, 1(1), 132.

Harvey, B. (1994). Is Programming Obsolete? Retrieved April, 2005 from

http://www.cs.berkeley.edu/~bh/obsolete.html

Heath, S. B. (1999). Imaginative actuality: learning in the arts during nonschool hours. In E. B.

E. Fiske & President's Committee on the Arts and the Humanities Washington DC. &

Arts Education Partnership Washington DC. (Eds.), Champions of Change: The Impact

of the Arts on Learning (pp. 115). District of Columbia.

Hmelo-Silver, C. & Pfeffer, M.G. (2004). Comparing expert and novice understanding of a

complex system from the perspective of structures, behaviors, and functions. Cognitive

Science, 28, 127-138.

Holland, J. (1995). Hidden Order: How Adaptation Builds Complexity. Reading, MA: Perseus

Books.

201

Husserl, E. (1913/1982). Ideas Pertaining to a Pure Phenomenology and to a

Phenomenological Philosophy -- First Book: General Introduction to a Pure

Phenomenology, trans. F. Kersten. The Hague: Nijhoff.

Ioannidou, A., Rader, C., Repenning, A., Lewis, C., & Cherry, G. (2003). Making

Constructionism Work in the Classroom. International Journal of Computers for

Mathematical Learning, 8(1), 63-108.

Jacobson, M. & Wilensky, U. (2006). Complex systems in education: Scientific and educational

importance and implications for the learning sciences. Journal of the Learning Sciences,

15(1), pp. 11-34.

Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the Reality Gap: The Use of Simulation

in Evolutionary Robotics. ECAL 1995: 704-720.

Jones, J. L. (2004). Robot programming: a practical guide to behavior-based robotics. New

York, London: McGraw-Hill.

Kafai, Y. (1995). Minds in play. Hillsdale, NJ: Lawrence Erlbaum Associates.

Kahn, K. (1996). ToonTalk - An animated programming environment for children. Journal of

Visual Languages and Computing, 7(2): 197-217.

Kauffman, S. (1995). At home in the universe: The search for the laws of self-organization and

complexity. Oxford: Oxford University Press.

Khoo, A. (2003). Implementing efficient joint beliefs on multi-robot teams. Unpublished PhD

Dissertation. Northwestern University Computer Science

Klassner, F. (2002). A case study of LEGO Mindstorms suitability for artificial intelligence and

robotics courses at the college level. In Proceedings of the 33rd SIGCSE Technical

Symposium on Computer Science Education, 8-12

Koda, T. & Maes, P. (1996). Agents with Faces: The Effects of Personification of Agents.

Proceedings of HCI, 1996.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society.

202

Cambridge, MA: Harvard University Press.

Lawhead, P., Duncan, M., Bland, C., Goldweber, M., Schep, M., Barnes, D., & R.

Hollingsworth. (2003). A Road Map for Teaching Introductory Programming Using

LEGO(c) Mindstorms Robots. ACM SIGCSE Bulletin 35(2).

LCSI (1999). Logo Philosophy and Implementation. Quebec: Logo Computer Systems Inc

LEGO Creator (2002). Retrieved April, 2005, from http://www.lego.com/creator/

Levy, S.T. (2002). Casting an anchor before floating off: The shift from simple to complex

reasoning. Paper presented at the 32nd Annual Meeting of the Jean Piaget Society,

Philadelphia, PA, USA.

Levy, S.T., & Wilensky, U. (2007). How do I get there... straight, oscillate or inch? High-school

students' exploration patterns of Connected Chemistry. Paper presented at the 2007

annual meeting of the American Educational Research Association, Chicago, IL.

Levy, S.T., & Wilensky, U. (2008). Inventing a "mid-level" to make ends meet: Reasoning

through the levels of complexity. Cognition & Instruction, 26(1), 1-47.

Levy, S.T., Mioduser, D., & Talis, V. (2001). Concrete-abstractions stage in kindergarten

children's perception and construction of robotic control rules. Paper presented at the

PATT-2001 conference: New Media in Technology Education, Haarlem Holland.

Maani, K., & Cavana, R. (2000). Systems thinking and modeling: Understanding change and

complexity. Auckland: Prentice Hall.

Maes, P. (1991). A Bottom-up Mechanism for Behavior Selection in an Artificial Creature,

Proceedings of the first International Conference on Simulation of Adaptive Behavior,

Meyer J.A. & Wilson S. (eds). MIT Press.

Mandinach, E. B., & Thorpe, E. T. (1987). The systems thinking and curriculum innovation

project: Technical report, part 1. (TR-87). Educational Technology Center. Harvard

Graduate School of Education. Nichols House, Appian Way. Cambridge MA 02138.

Manguel, A. (1997). A history of reading. London: Flamingo.

203

Martin, F. (1989). 6.270: The MIT LEGO Robot Design Project Competition. Retrieved

November, 2004, from http://fredm.www.media.mit.edu/people/fredm/projects/6270/.

Martin, F. (1996a). Ideal and Real Systems: A Study of Notions of Control in Undergraduates

Who Design Robots. In Y. Kafai, M. Resnick (Eds.), Constructionism in Practice.

Mahwah, NJ: Lawrence Erlbaum.

Martin, F. (1996b). Kids Learning Engineering Science using LEGO and the Programmable

Brick. In the Proceedings of the Annual Meeting of the American Educational Research

Association, April, 1996.

Martin, F. (2000). Robotic explorations: A hands-on introduction to engineering. Upper Saddle

River, NJ: Prentice Hall.

MindRover (2001). Retrieved June, 2003, from http://mindrover.com

National Research Council (2002). Scientific research in education. Washington, DC: National

Academy Press.

NQC (2005). Retrieved April 4, 2008, from http://bricxcc.sourceforge.net/nqc/

Orwell, G. (1947). The English People. London: Collins.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic

Books.

Papert, S. (1991). Situating Constructionism. In I. Harel and S. Papert. (Eds.), Constructionism.

Norwood, NJ: Ablex.

Papert, S. (1996). The Connected Family. Atlanta: Longstreet Publishing.

Parker, L.E., Schneider, F., & Schultz, A. (eds.), (2005). Multi-Robot Systems: From Swarms to

Intelligent Automata, Volume III. Berlin: Springer.

Parsons, S. & Sklar, E. (2004). Teaching AI using LEGO Mindstorms. AAAI Spring Symposium

2004 on Accessible Hands-on Artificial Intelligence and Robotics Education.

204

Pea, R. D. (1987). Programming and problem-solving: Children's experiences with Logo. In

T. O'Shea & E. Scanlon (Eds.), Educational computing (An Open University reader).

London: John Wiley & Sons.

Penner, D.E., (2001). Cognition, Computers and Synthetic Science: Building Knowledge and

Meaning Through Modeling. Review of Research in Education, 25: 1-36

Perkins, D.N., & Salomon, G. (1988). Teaching for transfer. Educational Leadership, 46(1), 22-

32.

Petrarch, F. (1948). The Renaissance Philosophy of Man, Eds. E. Cassirer, P.O. Kristeller, Jr.,

J.H. Randall. Chicago: University of Chicago Press.

Piaget, J. (1952). The child's conception of number. London: Routledge and Kegan Paul.

Piaget, J. (1972). Intellectual evolution from adolescence to adulthood. Human Development, 15,

1-12.

Pintrich, P.R., & Schunk, D.H. (1996). Motivation in education: Theory, research, and

applications. Englewood Cliffs, NJ: Prentice Hall.

Pollack J. B., Lipson H., Funes P., & Hornby G. (2001). Three Generations of Co-evolutionary

Robotics. Artificial Life, 7,3.

Portsmore, M. (1999). ROBOLAB: Intuitive Robotic Programming Software to Support Life

Long Learning. APPLE Learning Technology Review, Spring/Summer, 1999.

PROLOG (1972). Logic programming language.

Raymond, E. S. (1999). The Cathedral and the Bazaar. Sebastopol, CA: O'Reilly & Associates.

Repenning, A. (1993). Agentsheets: A Tool for Building Domain-Oriented Dynamic, Visual

Environments. PhD thesis, University of Colorado.

Repenning, A., Ioannidou, A., & Zola, J. (2000). AgentSheets: End-User Programmable

Simulation. Journal of Artificial Societies and Social Simulation, Vol. 3.

205

Resnick, M. (1994a). Turtles, termites and traffic jams: Explorations in massively parallel

microworlds. Cambridge, MA: MIT Press.

Resnick, M. (1994b). Learning about life. Artificial Life Journal, vol. 1, no. 1-2, pp. 229-241.

Resnick, M. (1998). Technologies for Lifelong Kindergarten. Educational Technology Research

and Development, vol. 46, no. 4.

Resnick, M., & Ocko, S. (1991). "LEGO/Logo: Learning Through and About Design." In (ed. by

I. Harel and S. Papert (Eds.), Constructionism. Norwood, NJ: Ablex.

Resnick, M., & Wilensky, U. (1998). Diving into Complexity: Developing Probabilistic

Decentralized Thinking through Role-Playing Activities. Journal of Learning Sciences,

7(2).

Resnick, M., Martin, F., Sargent, R., & Silverman, B. (1996). Programmable bricks: toys to

think with. IBM Systems Journal, 35(3&4), 443-452.

RoboCup (1997). Proceedings of RoboCup, 1997.

RoboLab. (2005). Software. Retrieved April 4, 2008, from

http://www.ceeo.tufts.edu/graphics/robolab.html

RobotWar. (1981). Software. Retrieved April 4, 2008, from http://www.the-

underdogs.org/game.php?name=RobotWar

Rocky's Boots. (1982). Software. Retrieved April 4, 2008, from

http://www.warrenrobinett.com/rockysboots/

Rusk, N., Berg, R. & Resnick, M. (2005). Rethinking Robotics: Engaging Girls in Creative

Engineering. Proposal to the National Science Foundation. Retrieved April 4, 2008, from

http://llk.media.mit.edu/projects.php?id=1942

Salomon, G., & Perkins, D.N. (1989). Rocky roads to transfer: Rethinking mechanisms of a

neglected phenomenon. Educational Psychologist, 24(2), 113-142.

Schank, R. & Cleary, C. (1994). Engines for education. Hillsdale, NJ: Lawrence Erlbaum

Associates.

206

Schank, R.C., Fano, A., Bell, B., & Jona, M. (1994). The design of goal based scenarios.

Journal of the Learning Sciences, 3(4), 305--346.

Second Life (2006). Retrieved April 4, 2008, from http://secondlife.com/

Sharlin, E., Watson, B.A. , Kitamura, Y., Kishino, F. & Itoh, Y. (2004). On humans, spatiality

and tangible user interfaces. Pervasive and Ubiquitous Computing, 8, 338-346. Theme

issue on Tangible Interfaces in Perspective.

Shaw, A. (1996). Social constructionism and the inner city: Designing environments for social

development and urban renewal. In Y. Kafai and M. Resnick (Eds.), Constructionism in

practice: Designing, thinking, and learning in a digital world (pp. 175-206). Mahwah,

NJ: Lawrence Erlbaum Publishers.

Sklar, E., Eguchi, A., & Johnson, J. (2002). Robocupjunior: Learning with educational robotics.

In Proceedings of the 6th RoboCup Symposium.

Sklar, E., Parsons, S., & Stone, P. (2003). Robocup in higher education: A preliminary report. In

Proceedings of the 7th RoboCup Symposium.

Squire, K. & Barab, S.A. (2004). Replaying history. International Conference of the Learning

Sciences (ICLS), Los Angeles, CA.

Squire, K. (2003). Video games in education. International Journal of Intelligent Simulations

and Gaming, (2) 1.

Squire, K. (2004). Sid Meier's Civilization III. Simulations and Gaming, 35(1): 135-140.

Stager, G. (1996). Laptops, Logo and Learning. Retrieved April 4, 2008, from

http://www.stager.org/articles/laptopsandlogo.html

Steinkuehler, C. A. (2004). Learning in massively multiplayer online games. International

Conference of the Learning Sciences (ICLS), Los Angeles CA.

STELLA v 6.0. (2000). Software. Hanover NH: High Performance Systems.

Tiffin, J., & Rajasingham, L. (1995). In search of the virtual class: Education in an information

society. London: Routledge.

207

TIMSS (2003). International Report on Achievement in the Mathematics Cognitive

Domains: Findings from a Developmental Project. Retrieved April 4, 2008, from

http://timss.bc.edu/timss2003.html

Tisue, S., & Wilensky, U. (2004). NetLogo: Design and Implementation of a Multi-Agent

Modeling Environment. Paper presented at the Agent2004 Conference, Chicago, IL.

Travers, M. (1988). Agar: An animal construction kit. MS thesis, MIT Media Laboratory.

Turkle, S., & Papert, S. (1991). Epistemological Pluralism and the Revaluation of the Concrete.

In I. Harel & S. Papert (Eds.), Constructionism. Norwood, NJ: Ablex.

Turkle, S. (1995). Life on the screen: Identity in the age of the Internet. New York: Simon and

Schuster.

Tyack, D., & Cuban, L. (1995). Tinkering Toward Utopia: A Century of Public School Reform.

Cambridge, MA: Harvard University Press.

Vygotsky, L.S. (1978). Mind in society. Cambridge, MA: Harvard University Press.

Wainer, J., Feil-Seifer, D., Shell, D., & Mataric, M. (2006). The role of physical embodiment in

human-robot interaction. In IEEE Proceedings of the International Workshop on Robot

and Human Interactive Communication (pp. 117-122). Hatfield, United Kingdom.

Watts, D.J. (2003). Six degrees: The science of a connected age. Cambridge, MA: W.W. Norton.

Wiener, N. (1948). Cybernetics, or Control and communication in the animal and the machine.

New York: Wiley.

Wilensky, U. (1997a). What is normal anyway? Therapy for epistemological anxiety.

Educational Studies in Mathematics, 33(2), 171-202.

Wilensky, U. (1997b). NetLogo Wolf Sheep Predation model.

http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation. Center for Connected

Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo. Center for Connected

Learning and Computer-Based Modeling. Northwestern University, Evanston, IL.

208

Wilensky, U. (2000). Modeling Emergent Phenomena with StarLogoT. Retrieved December,

2000, from CONCORD.org.

Wilensky, U. (2001). Modeling Nature's Emergent Patterns with Multi-agent Languages.

Proceedings of EuroLogo 2001. Linz, Austria.

Wilensky, U., & Reisman, K. (1998). Learning Biology through Constructing and Testing

Computational Theories -- an Embodied Modeling Approach (HTML). In Y. Bar-Yam

(Ed.), Proceedings of the Second International Conference on Complex Systems. Nashua,

NH: New England Complex Systems Institute.

Wilensky, U., & Reisman, K. (2006). Thinking Like a Wolf, a Sheep or a Firefly: Learning

Biology through Constructing and Testing Computational Theories -- an Embodied

Modeling Approach. Cognition & Instruction, 24(2), pp. 171-209.

Wilensky, U., & Resnick, M. (1999). Thinking in Levels: A Dynamic Systems Perspective to

Making Sense of the World. Journal of Science Education and Technology, 8(1).

Wilensky, U., & Stroup, W. (1999a). Learning through Participatory Simulations: Network-

Based Design for Systems Learning in Classrooms. Computer Supported Collaborative

Learning (CSCL'99). Stanford University: December 12 - 15, 1999.

Wilensky, U., & Stroup, W. (1999b). HubNet. http://ccl.northwestern.edu/netlogo/hubnet.html.

Center for Connected Learning and Computer-Based Modeling. Northwestern University,

Evanston, IL.

Wilensky, U., & Stroup, W. (1999c). NetLogo HubNet Gridlock model.

http://ccl.northwestern.edu/netlogo/models/HubNetGridlock. Center for Connected

Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.

209

APPENDIX 1 – PHYSICAL VBOT

Physical VBOT – Side view

Physical VBOT – Side view

Physical VBOT – Rear view

210

Physical VBOT – Front view

Physical VBOT – Light sensors

Physical VBOT – Light sensors

Physical VBOT – Bump sensor

211

Physical VBOT – Wheels and motors

Physical VBOT – Bottom view

212

APPENDIX 2 – ASSESMENT TOOLS

Pre-Questionnaire

Name:

Date:

Just write what you think! Answer each question with a
sentence or two.

Thank you!

213

Q1
When birds fly south for the winter, they often form a V-shape. You might have seen this in the
sky. This is a picture of flock of birds flying in V-shape:

How does Shelby, the bird, know where to fly in the V-shape?

How do the birds know where to go when they are flying in a V-shape?

Why do birds fly in V-shapes?

Shelby

214

Q2

Imagine that this “flowchart” describes your day at school. You can follow the flowchart by
answering questions about your day. Depending on your answers to the questions, it tells you
what to do next. Start at “START” (in the image above) and follow the arrows.

Have you ever seen a flowchart before? YES NO

Using the chart, list the things that happen during a day of school.

Change the flowchart so that if you are not at school, you read a book. (Draw on the picture
above.)

215

Q3
You are in a pitch-black square room
with heated walls. You can’t see
ANYTHING. In the center of the room,
there is a radio. If you touch the middle
of any wall you are about 5 feet from
the radio. You can hear the radio and
feel the heat from the wall to varying
amounts from anywhere in the room.

How would you walk all the way
around the radio at least once if you couldn’t see ANYTHING? You start walking at START
(on the right), and end at the same place (END). You can hear how far away you are from the
radio and you can feel how close you are to the wall because of the heat from the walls. Do not
touch the walls.

How would you make a path closer to the radio without touching the radio or the walls (if you
still can’t see anything)?

If the RADIO WERE TURNED OFF, how would you make a smaller loop around the radio
without touching it or the walls (if you still can’t see anything)?

If BOTH the RADIO and the HEAT FROM THE WALLS WERE TURNED OFF, how would
you make a loop around the radio without touching the radio or the walls (if you still can’t see
anything)?

E
ach student uses a VBOT client screen to design behaviors for his/her vbot

Sa
lly’s VBOT client

This moon rock
has been
dropped near the
center by a
worker

START /
END

216

Post-Questionnaire

Name:

Date:

Just write what you think! Answer each question with a
sentence or two.

Thank you!

217

Q1

When birds fly south for the winter, they often form a V-shape. You might have seen this in the
sky. This is a picture of flock of birds flying in V-shape:

How does Shelby, the bird, know where to fly in the V-shape?

How do the birds know where to go when they are flying in a V-shape?

Why do birds fly in V-shapes?

Shelby

218

Q2

Imagine that this “flowchart” describes a day at home. You can follow the flowchart by
answering questions about that day. Depending on your answers to the questions, it tells you
what to do next. Start at “START” (in the image above) and follow the arrows.

Using the chart, list the things that happen during this day at home.

Change the flowchart so that if you are not at home, you go home. (Draw on the picture above.)

219

Q3
You are in a pitch-black square room
with heated walls. You can’t see
ANYTHING. You can feel the heat
from the walls when you touch them,
and when you put your hand near them.
In the center of the room, there is a
radio. It is turned on. You can hear the
radio pretty well. If you touch the
middle of any wall you are about 5 feet
from the radio.

How would you walk one full loop around the room if you couldn’t see ANYTHING? You
start walking at START (on the right), and end at the same place (END). You can hear how far
away you are from the radio and you can feel how close you are to the wall because of the heat
from the walls. Do not touch the walls or the radio.

How would you make a path closer to the radio without touching the radio or the walls (if you
still can’t see anything)?

If the RADIO WERE TURNED OFF, how would you make a smaller loop around the radio
without touching it or the walls (if you still can’t see anything)?

If BOTH the RADIO and the HEAT FROM THE WALLS WERE TURNED OFF, how would
you make a loop around the radio without touching the radio or the walls (if you still can’t see
anything)?

Sa
lly’s VBOT client

 E
ach student uses a VBOT client screen to design behaviors for his/her vbot

START /
END

220

Q4

Your vbot is the airplane in the picture. The arrows in the middle are other people’s vbots, and
they are stopped in the middle of the screen. There is a light source in the middle of the screen.

4.A. Wire up a vbot to go in a loop around the screen.
(Use attached vbot breadboard. Circle Q 4.A. at the top of the sheet.)

4.B. Wire up a vbot that would make a smaller loop.
(Use attached vbot breadboard. Circle Q 4.B. at the top of the sheet.)

4.C. Wire up a vbot that makes either loop using NO LIGHT SENSORS (LL and LR)?
(Use attached vbot breadboard. Circle Q 4.C. at the top of the sheet.)

4.D. Wire up a vbot that makes either loop using NO VBOT SENSORS (LB and RB)?
(Use attached vbot breadboard. Circle Q 4.D. at the top of the sheet.)

221

Circle one:
Question 4.A.
Question 4.B.
Question 4.C.
Question 4.D.

222

Daily Questionnaire Name:
Circle one:
Monday Tuesday Wednesday Thursday Friday

Please list everybody in the class who you remember talking to during the VBOT lesson.

Please list everybody in the class who you remember working with during the VBOT lesson.

What was your favorite thing about today’s VBOT lesson?

What was your least favorite thing about today’s VBOT lesson?

In a couple of sentences, describe one thing you learned today.

