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ABSTRACT 

VBOT: MOTIVATING COMPUTATIONAL AND COMPLEX SYSTEMS FLUENCIES 

WITH CONSTRUCTIONIST VIRTUAL/PHYSICAL ROBOTICS 

by Matthew W. Berland 

 

As scientists use the tools of computational and complex systems theory to broaden science 

perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school 

students broaden their perspectives using appropriate tools. The goals of this dissertation project 

are to build, study, evaluate, and compare activities designed to foster both computational and 

complex systems fluencies through collaborative constructionist virtual and physical robotics. In 

these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow 

students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory 

simulation environment (Wilensky & Stroup, 1999a).  In a participatory simulation, students 

collaborate by acting in a common space, teaching each other, and discussing content with one 

another. As a result, the students improve both their computational fluency and their complex 

systems fluency, where fluency is defined as the ability to both consume and produce relevant 

content (DiSessa, 2000). To date, several systems have been designed to foster computational 

and complex systems fluencies through computer programming and collaborative play (e.g., 

Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant 
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fluencies through collaborative play, they become mutually reinforcing. In this work, I will 

present both the design of the VBOT virtual/physical constructionist robotics learning 

environment and a comparative study of student interaction with the virtual and physical 

environments across four middle-school classrooms, focusing on the contrast in systems 

perspectives differently afforded by the two environments. In particular, I found that while 

performance gains were similar overall, the physical environment supported agent perspectives 

on aggregate behavior, and the virtual environment supported aggregate perspectives on agent 

behavior. 

 

The primary research questions are: 

• What are the relative affordances of virtual and physical constructionist robotics systems 

towards computational and complex systems fluencies? 

• What can middle school students learn using computational/complex systems learning 

environments in a collaborative setting?  

• In what ways are these environments and activities effective in teaching students 

computational and complex systems fluencies? 
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Chapter 1:  Introduction 

1.1 Prologue: Story of a student 

Alicia is a terrible student:  if she continues at her current level of performance, she will fail 8th 

grade.  School is a necessary but unwelcome intrusion into her preferred lives in MySpace or 

The Sims. Within her social network, Lisa is the least successful academically.  Although 

unhappy with her grades, her dislike of science precludes the enthusiasm necessary to improve 

her work. Part of the problem is that she recently transferred into her current school that proved 

more academically rigorous than her previous school.  As her grades suffered, her self-

confidence has eroded. 

 

When we entered the classroom with our robots on the first day of the experiment, she loudly 

and uncomfortably giggled at the notion of piloting her own robots and was sheepish around the 

computers. By day 3, she was loudly voicing her opinions on how to design the control program, 

and, by day 5, her team, led mostly by her, won the bot soccer competition with a superior 

program. Furthermore, she described an understanding in networks and systems that she could 

not articulate previously. In Chapter 5, we will look at Alicia’s performance, and how she used 

our environment to learn, what went right, and what went wrong. 

 

This project is about stepping into the lives of students like Alicia and finding ways to use her 
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motivation, interest, and intelligence to enjoy learning by equipping her with the lenses of 

complex systems and computer science. This project is designed to find the best ways to use 

those lenses with a complex game through physical robotics or virtual robotics.  

1.2 Abstract 

As scientists use the tools of computational and complex systems theory to broaden science 

perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school 

students broaden their perspectives using appropriate tools. The goals of this dissertation project 

are to build, study, evaluate, and compare activities designed to foster both computational and 

complex systems fluencies through collaborative constructionist virtual and physical robotics. In 

these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow 

students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory 

simulation environment (Wilensky & Stroup, 1999a).  In a participatory simulation, students 

collaborate by acting in a common space, teaching each other, and discussing content with one 

another. As a result, the students improve both their computational fluency and their complex 

systems fluency, where fluency is defined as the ability to both consume and produce relevant 

content (DiSessa, 2000). To date, several systems have been designed to foster computational 

and complex systems fluencies through computer programming and collaborative play (e.g., 

Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant 

fluencies through collaborative play, they become mutually reinforcing. In this work, I will 
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present both the design of the VBOT virtual/physical constructionist robotics learning 

environment and a comparative study of student interaction with the virtual and physical 

environments across four middle-school classrooms, focusing on the contrast in systems 

perspectives differently afforded by the two environments. In particular, I found that while 

performance gains were similar overall, the physical environment supported agent perspectives 

on aggregate behavior, and the virtual environment supported aggregate perspectives on agent 

behavior. 

 

The primary research questions are: 

• What are the relative affordances of virtual and physical constructionist robotics systems 
towards computational and complex systems fluencies? 

• What can middle school students learn using computational/complex systems learning 
environments in a collaborative setting?  

• In what ways are these environments and activities effective in teaching students 
computational and complex systems fluencies? 

 

1.3 Methods & Data 

All of the studies that I will present in this dissertation took place in classes using the VBOT 

constructionist virtual/physical robotics learning environment that I designed. In these classes, 

students program within the VBOT environment to compete or collaborate with one another in 

order to achieve larger gaming goals. Students in the classes used the VBOT system for one class 

period a day for five days. In these classes, students would use the system for the majority of the 
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time, discuss the day, and conclude by recording their interpretations of the activity and 

lessons on a questionnaire.  These classes were videotaped, and log data was collected, including 

all mouse/keyboard input to the system. Furthermore, interviews and written evaluations were 

conducted before, during, and after the activities. The research presented in this dissertation was 

conducted in classrooms using VBOT activities, described in Chapter 4, in two Chicago Public 

Schools. The students participating in these studies were in the 8th grade. These studies were 

conducted in the design research tradition (Edelson, 2002), in that the researchers were active 

participants in a classroom, iterating active design, data collection, and analysis.  

1.4 Results & Findings 

The core results of this study suggest that reasonably equivalent virtual and physical 

constructionist robotics environments support computational and complex systems fluencies 

differently. However, students across contexts exhibited similar learning gains overall.  

Moreover, gender, school, teacher, and previous performance did not have any appreciable effect 

on performance; all students showed significant improvement in at least one measured aspect of 

computational or complex systems fluencies. This finding builds on previous constructionist 

findings in the individual fluencies, such as those in Papert (1980), Wilensky & Stroup (1999a), 

DiSessa (2000), and Harel & Papert (1990), that suggest that students are better able to build 

computational or complex systems fluency when supported by an active, social, constructionist 

activity and environment. This work also provides a counterpoint to some previous negative 



    

Chapter 1: Introduction 

 

14 

research. Negative research in complex systems fluency, such as that of Hmelo-Silver & 

Pfeffer (2004) and Chi (2005), argue that middle-school students have trouble with the model-

building aspects of systems understanding. Negative research in computational fluency, such as 

that of AAUW (2000) and Cuban (1985), suggest that thinking about problems computationally 

or writing computer programs is inherently difficult for most middle-school students. The work 

presented in this thesis presents data that are contrary to those negative claims. 

 

As all groups of students exhibited learning gains, this research investigates the differences in 

those gains that emerged when comparing the virtual and physical learning environments. Many 

of these differences are contingent on differences of perspective. That is, students in virtual 

robotics classes are more likely to understand agents in terms of the emergent properties of the 

systems in which they participate, and students in physical robotics classes are more likely to 

understand the emergent behavior of a system in terms of the agents of which it consists. As a 

result, although students in the two sets of classes performed similarly overall, their different 

perspectives created a different distributions of scores, circuits, and different system behavior.  

For example, students in the virtual robotics contexts excelled at predicting and organizing the 

behavior of the aggregate robot “swarm” while students in the physical robotics contexts 

excelled at building individual behaviors which performed well in complex environments. 

Chapters 5 and 6 explore why these cross-contextual differences emerged, and Chapters 7 and 8 

discuss the ramifications of the differences for further learning environment design.  Based on 

this data, this work suggests that virtual and physical robotics provide effective learning 
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environments for targeting different aspects of computational and complex systems fluencies. 

1.5 Contributions 

The primary goal of this work is to determine how best to motivate complex systems and 

computer science fluency using constructionist tools. In this section, I describe what readers 

versed in various academic traditions might expect to gain by reading this dissertation. 

 

Learning sciences researcher fluent with constructionism and complex systems research: 

Through our findings, hopefully you can better understand how to use constructionism to teach 

complexity science, both strengths and weaknesses. This work should be able to give concrete 

recommendations towards how to optimize methods so as best design tools for teaching and 

learning complex systems and computational fluency. This work addresses the question of 

relative benefits and deficits of virtual and physical learning environments for both 

constructionist and complex systems learning.  

 

Learning sciences researcher fluent with constructionism but not complex systems: 

This work fits into a history of constructionist work with complex systems done by Wilensky 

(2001), Resnick (1994a), etc. It should provide you with a new horizon on which to understand 

the ways in which constructionism can be used today to motivate learning. In this work, we 

describe a novel constructionist learning environment, and our results can be reapplied towards 
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the design of a variety of learning environments for science and computational fluency. This 

work has direct applications to constructionist debates about the relative value of virtual and 

physical learning environments (see Resnick & Ocko, 1991, for one example). 

 

Learning sciences researcher fluent with complex systems but not constructionism: 

Complex systems methods and theory have been gaining prominence in scientific research, but 

many have claimed that it can be hard to teach to younger students or even that one should not 

try to teach it to non-researchers (Chi, 2005). This work presents significant evidence that it is 

not only fruitful but also relatively easy to teach basic complex systems fluency. Presented are 

both methods and evidence for the benefits and deficits of teaching complex systems concepts 

with a variety of tools. 

 

Learning sciences researcher fluent with design research but neither complex systems nor 

constructionism research: 

This work uses Wolfram (2002) and Bar-Yam (1997), among others, to frame the various ways 

in which complex systems have changed that ways that people are doing science today. We are 

hoping to leverage design research methods in this work to determine how best to teach students 

to think and learning in novel environments. Papert (1980) motivates the need for constructionist 

methods towards teaching students to handle the kinds of issues in the world today. In this thesis, 

I argue that we can leverage constructionist and complex systems methods to best teach both, 

rather than trying to teach the respective scientific content in a more traditional method. 
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Secondary school science or math teacher: 

Both computational fluency and complex systems science fluency methods and tools are 

described and explained in this work. Chapter 2 discusses the value of several free or 

inexpensive tools to teach complex systems or computation fluency, and Chapter 3 explains what 

you can expect to see students learning by using constructionist tools such as VBOT. 

Furthermore, presented is a novel learning environment (VBOT) for teaching complex systems 

and computational fluencies which can be used free of charge in any wired classroom. Included 

in this work are detailed descriptions and instructions on how we used the tools and activities and 

what students learned through the activities. 

 

Computer science researcher fluent with artificial intelligence and robotics: 

VBOT presents a new programming language and computational fluency learning environment 

using behavior-based robotics. In this work we discuss the ways that beginning students can best 

understand various potentially difficult computer science concepts through their use. 

Furthermore, we address the relative value of virtual and physical robotics, although this 

perspective does not necessarily evaluate any usefulness for researchers who do formal robotics.  

1.6 Thesis Index 

“Chapter 2: The Structure, Syntax, and Design of VBOT” presents an overview of the tools, 
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activities, and programming language that I designed for this project. It describes the VBOT 

system, in both overhead design and method. This is the most technical chapter, but it is 

necessary for understanding the rest of the project. In “Chapter 3: Related Literature”, there is an 

overview of relevant literature as well as a discussion of how this project fits into existing 

literature. Constructionism, complex systems research, design research, and learning sciences 

research are discussed. In “Chapter 4: Context, Methodology, and Data Collection”, I describe 

the environment in which we performed the studies, and the methods we used to gather data. I 

describe the several pilots and studies performed, with descriptions of school settings and 

teachers.  “Chapter 5: Student Tinkering and Student Sharing” and “Chapter 6: The Virtual and 

the Physical” describe our various quantitative and qualitative results. We present the data and 

contextual data for understanding the data. Furthermore, I evaluate and analyze the results and 

data. In “Chapter 7: Design Principles,” I describe the iterative design process and the various 

incarnations of the VBOT system, with in-depth analysis of what we learned from each iteration, 

how the design changed, with particular attention paid to how we changed the design. In 

“Chapter 8: Conclusions and Future Directions,” I provide prescriptions for use of the findings 

and suggestions for further work in the field. 
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Chapter 2:  The Structure, Syntax, and Design 
of VBOT 

2.1 Introduction 

Throughout the thesis, I will be making consistent reference to the VBOT programming 

environment designed specifically for this project. It is a full featured networked participatory 

simulation, and it connects to a NetLogo-based participatory simulation system called HubNet 

(Wilensky & Stroup, 1999b). As described in Chapter 1, VBOT lets users program a simple real-

time interface to control a virtual robot (“vbot”) in a joint virtual space with other vbots (see 

Chapter 2). Users follow the vbots on the associated NetLogo screen, while watching their vbot’s 

behavior and history on their action panels. The action panel has three features: it shows the 

position of the vbot on a radar-like display; it shows the positions of the other students’ vbots; 

and it shows a tapering history trail for the associated vbot. At the most basic level, the vbot can 

perform only one task: movement. The vbot “senses” information from the virtual world around 

it and moves in programmatic reaction to that information. This chapter describes how to 

program in VBOT to control that reaction, how to choose and mediate movement, and the 

various ways in which one can manipulate the software to change the behavior of the vbot. 

Furthermore, it describes the relationship between the VBOT software and the physical robots 

used in the simulations and interventions discussed elsewhere in the thesis. This chapter is 

designed to inform the reader of the structure, syntax, and usage of the VBOT system. There is 
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also a short tutorial on how to begin building VBOT programs. As with any programming 

language, learning to program with VBOT can be a difficult process, so throughout this chapter, 

basic understanding of computer programming is assumed. 

 

Basics of VBOT Software 

VBOT is built on top of the NetLogo multi-agent modeling environment (Wilensky, 1999) and 

the HubNet networked learning architecture (Wilensky & Stroup, 1999b) used for participatory 

simulations.  In these simulations, participant-users interact in a social space (such as a 

classroom) while virtual agents, that the participants control, interact in a virtual space, which is 

typically in a shared virtual environment visible to all participants. A primary design goal 

NetLogo/HubNet is to make multi-agent modeling and programming accessible to a wide 

audience without sacrificing the ability to make detailed scientific models of complex systems. 

VBOT uses this base to create an immersive collaborative robotics modeling and programming 

environment designed primarily for use in middle school. VBOT consists of 1) an interface 

through which users build the control system of their personal virtual robot (vbot) in real-time 

(i.e. changes in the program are reflected immediately in the behavior of the vbot), 2) a shared 

space in which virtual robots exist, and 3) activities for users using the social space.  

 

As just described, the VBOT system is built on top of the NetLogo multi-agent modeling 

environment (Wilensky, 1999) and the HubNet participatory simulation architecture (Wilensky 
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& Stroup, 1999b). HubNet is a system built on top of NetLogo called a “participatory 

simulation environment” in which individual participants can each control an agent ("turtle") in a 

NetLogo model. For instance, in the HubNet model Gridlock (Wilensky, 1997b; Wilensky & 

Stroup, 1999a), many users each control a stoplight a virtual space consisting of a set of streets, 

streetlights, and cars. Users change their lights to red or green in order to maximize the flow of 

cars through the traffic lights. Using the language of agent modeling, each stoplight is an agent in 

a complex system from which the flow of traffic in the city emerges. The complex system here is 

one in which cars, lights, and roads interact to create a dynamic equilibrium.  

 

Building upon the HubNet and NetLogo framework, the VBOT system enables each user to 

control one agent in a model. Instead of controlling the agent directly, as one might do in a 

HubNet simulation, or controlling the agents through general rules for classes of agents, as one 

might do in a NetLogo model, each participant builds a “behavior circuit” which controls the 

actions of his/her agent virtual robot. A behavior circuit consists of a set of navigation and 

behavior rules designed in a format of a simple electronic circuit.  



    

Chapter 2: The Structure, Syntax, and Design of VBOT 

 

22 

 

 

Figure 2-1: The VBOT client interface 

 

In a VBOT activity, each student in a classroom uses the VBOT client interface (Figure 2-1) to 

design circuits that control the behaviors of their virtual robots (vbots).  These circuits are called 

behavior circuits and consist of a set of navigation and behavior rules designed to follow the 

metaphor of a simple electronic circuit. While building circuit-based programs has traditionally 

been an undergraduate-level activity, recent studies have shown that high-school and middle-

school students can productively use such systems for learning systems-based thinking (see 

Hancock, 2003).  In the VBOT system, each student’s vbot corresponds to a virtual robot “agent” 
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in a shared virtual space (as seen in Chapter 2). During activities, students can build behavior 

circuits, save behavior circuits, load ("run") or share behavior circuits that they have built, or 

load behavior circuits that have been shared by others. 

 

Beyond creating and manipulating the behavior circuits the client interface (or Action Panel) 

supports users in monitoring their vbots’ progress through three features: it shows the position of 

the user’s individual vbot on a radar-like display; it shows the positions of the other users’ vbots; 

and it shows a tapering history trail for the associated vbot. 

 

Computational Paradigm 

This chapter discusses VBOT as a programming language and the syntax and structure of 

programs ("circuits") written in the language. The fundamental metaphor of the language is 

functional with some procedural elements. This section describes the basic structure of these 

distinctions and how VBOT program flow follows and deviates from these structures.  

 

Procedural languages, like C or Java, are sequences of statements that execute in a predefined 

order, based on a given logic. For example, programs written in a procedural language often 

follow logic similar to: 

1. Execute instruction A 

2. If user has selected interface element X, go to step 1 
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3. If user has selected interface element Z, go to step 5 

4. Execute instruction C 

5. Execute instruction D 

6. Go to step 1. 

The vast majority of programs written in the world today are written in a procedural language. 

The most common structure of such programs involves a simple loop in which the set of 

instructions is repeated as long as the program remains active.  This loop can be seen in Step 6 of 

the sample program, above. 

 

Functional languages, such as LISP, present the most common competing program metaphor. In 

a functional language, every statement is a function, much like a mathematical function (e.g., "y 

= x2"). Each function returns a value, and these values provide the input to other functions. 

Programs written in a function language might have a logic similar to this: 

• f(x,y) = x * (y + 5) 

• If user has selected interface element X, g() = 2; otherwise, g() = 3. 

• Evaluate f(g(),g()))  

In this simple example, f(g(),g()) would always evaluate to 14 or 24. The salient difference here 

between a procedural and functional language is that program logic is not designed to be a 

sequenced order of events. Rather, the functional metaphor fosters a need to consider the 

evaluation and prerequisites of relevant functions.   
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VBOT presents users with a combination of these programming approaches. As with 

functional languages, in VBOT, the run order is determined by data flow; the simulation 

determines the exact order of execution. Each independent path from a sensor to a motor can be 

considered to be a parallel circuit. Each operation, however, is run functionally. There are always 

at least two functions in a VBOT circuit, the left motor (as in line 1, below) and the right motor. 

Each motor is then evaluated as a function where "leaf operations" (usually a sensor or a 

constant, below line 1c) evaluates to a number. Leaf operations consist of any operation in which 

the static value is determined external to the program logic, either by the hardware or the user. 

For instance, in Figure 2-2, the LM (left motor) function is evaluated by multiplying the constant 

3 and the RL (right light) sensor (here evaluated in line 1a) : 

1. fLM() = Multiply(fRL, 3 ) 

2. fRL() = 90, determined externally 

3. fLM() = Multiply( 90 , 3 ) 

4. fLM() = 270 

The function fLM() is evaluated every tick, and evaluating the function requires recursive 

traversal down the "function tree." That is, fLM()  evaluates to the function Multiply(fRL(),3), 

which in turn requires the evaluation of fRL(). This evaluation tree is similar to a function 

program. 
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Figure 2-2:  Addition in VBOT 

 

2.2 Syntax 

While VBOT’s programming paradigm might seem complex, it is important to note that this 

paradigm is transformed into a visual programming environment when users work with it and 

that they are largely unaware of the functional characteristics of the language.  This 

transformation to a visual language occurs through the building blocks (objects) of the VBOT 
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syntax.  These building blocks include these fundamental building blocks (objects): 

operations, wires, motors, sensors, and one breadboard. A circuit is defined as a mapping from 

sensors to motors using wires and operations on a breadboard.  Users add operations to the 

breadboard; they connect those operations to motors with wires.  In this way, users create 

mathematical functions that take the numeric input from the sensors and produce a numerical 

output for the motors. However, programs can get increasingly complicated with the addition of 

more variables, sensors, branching logic, and rudimentary looping. The following sections 

describe the syntax objects more carefully. 

 

Breadboard 

The breadboard is the space in which all of the motors, sensors, operations, and wires are 

connected. Its metaphor is a real circuit breadboard. Solid-state electronics are, in general, 

combinations of transistors, inputs, and outputs on a breadboard. For example, a digital watch is 

a set of output LEDS connected to a simple time-keeping chip (made of solid state transistors). 

In the same way, the VBOT motors (show below as LM and RM, at bottom) are the outputs, 

which produce all movement and stopping of movement in the vbot. The vbot will simply drift 

without impetus from the motors as an object in a minimally frictional space.  

 

All connections between objects happen on the breadboard, and the breadboard itself works 

through flow cycles (or "ticks"). During the course of each tick, the breadboard evaluates all 
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terminal operations and motors using recursive evaluation. Further explanation of recursive 

evaluation and an example is given below in the section addressing flow in VBOT. 

 

Motors 

The motors impel movement for a given vbot. As described earlier, the metaphor of a vbot is a 

small robot car with two rear wheels. Each wheel is powered by its own motor. The left rear 

motor, if powered without the right rear motor, will turn the car right. The right rear motor 

moves the car left. When both motors are powered equally, the car moves forward in a straight 

line (see Section 2.3, 
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Example Programs, for more examples). 

 

In middle-school implementations, the breadboard provided only two motors, left rear and right 

rear. We did this to align the virtual programming experiences with the physical in which the 

number of motors was limited by the physical structure of the robots. However, it is possible to 

make any number of motors control any number of actions in VBOT. For instance, one could 

create a VBOT extension in which a motor controls a grappling claw on the virtual robot. 

 

Each motor has a numerical range from 0 to 100% (although there is no hard cap at 100). In our 

experiments, 0% motors were brakes and the power scaled linearly to the movement of the motor 

up to 100%; after 100%, there was a logarithmic power increase, as the vbots could become too 

fast to see clearly if an incorrect circuit was built. The space past 100% could be thought of as 

"overdrive," and users were taught that overdrive produces somewhat erratic behavior. 

 

Wires & Flow 

Wires create flow within a circuit in a manner similar to water pipes. For example, using the pipe 

metaphor, supposing any segment of pipe can pass a maximum of 100 L per second of water 

through at any given moment.  Plumbers can connect the pipes however they wish, but all flow 

through the pipes is directed. The water stems from a reservoir source and flows to an outlet (or 

"sink," using flow terminology).  VBOT wires are much like these pipes, where sensors provide 
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the source of the signal, and the motors provide a sink.  The operations are mid-points in the 

stream and provide both checkpoints for and modifications to the data. Using the water pipe 

metaphor, the operations might represent a midway treatment plant, a water filter, a cooling 

system, a pipe interchange, or anything that might reasonably affect the water flow midstream. 

VBOT treats the signal from the sensors as a source of energy (like water). 

 

In Figure 2-2, the left light sensor (LL) and a constant (here, 3) connect to a multiplication 

operator ("*"). They provide the reservoir of "energy," which is then communicated to the 

multiplication operator. There is, as reflected in the number, multiplication in that operator.  This 

multiplication is directed, meaning that the energy flow is always unidirectional; the output of 

the multiplication operator is not used by the light sensor in any way. That is, the light sensor 

provides the signal energy for the circuit, so it does not use energy from other operations. The 

arrows on the wires show the direction of the flow. 

 

The flow metaphor of programming has been used in many scenarios, as described in the 

Chapter 3. The process of flow in VBOT presupposes a unidirectional current; it ends 

somewhere other than its origin and is repeated many times on a fixed schedule. This is the 

implicit logic of the vast majority of end-user computer programs. 
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Sensors (& Noise) 

This section describes the sensors and the “noise” in the sensors’ readings. This dissertation 

compares the experience of students programming physical and virtual robots. Thus far in this 

chapter, we have focused on the client interface that is consistent across environments.  

However, there exist distinct differences in how the virtual and physical sensors work, thus, we 

describe these differences in this section. 

 

A sensor is any operation that outputs a number corresponding to some input from the play space 

(such as light or heat). In practice, there were 4 categories of sensors: light, “bot”, “bump”, and 

“VAR.” Light sensors, for example, return a light reading between 1 and 100. The virtual light 

sensor is defined as the measure of the “virtual light” at any given point in the “virtual space.” 

The virtual “bot” sensor (LB and RB) outputs the percentage of vbots in proximity to the sensor. 

The physical “bump” sensor registers any activation of the physical touch sensor on the physical 

vbot. The “VAR” sensor outputs a given variable that is updated from the server, and it can 

represent any value that the facilitator chooses. 

 

It is not advantageous for the light sensor readings to be "perfect" (unerring) as that will often 

create oscillatory behavior in simple circuits. Furthermore, since we are working with the 

paradigm of physical robots as well, virtual circuits would not map appropriately to physical 

behavior, as virtual circuits “over-trained” to perfect information do not translate to the physical 

world. To that end, the virtual vbot sensors contain some randomness. A variable and normally 
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randomized amount of "nonsense" is added to any given sensor reading. The analysis in 

Chapter 6 deals in part with the different reactions of different groups to perceived randomness 

in physical and virtual robots.  

 

Network Dynamic 

The network layout of the VBOT system is client/server. A server, running both 

NetLogo/HubNet and a VBOT NetLogo server extension, takes all input from each user’s client, 

and then sends all updated information to all clients. In this way, all clients have synchronous 

information with which to update the Action Panel. Although this creates unnecessary overhead, 

the small amount of data transferred per client and the relatively small number of clients (less 

than 50) makes this a viable network architecture. In our real world tests with up to 40 clients, 

there was negligible network lag. 

 

Operations 

There are two categories of operations: numerical and logical. All operations are visible in the 

buttons on Figure 2-1 such that most buttons correspond to an operation. 

 

Numerical operations compute arithmetical outputs of several numerical inputs. The most 

common operations are adding (heretofore "ADD" or "+"), subtracting ("SUB" or "-"), dividing 
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("DIV" or "/"), and multiplying ("MULT" or "*"). A constant, which is any user-defined 

whole number, is a numerical operation in name only, as it represents a static whole number. 

When using the VBOT system, numerical operations are taught first, and a typical use case for a 

beginner would involve increasing the speed of a vbot by adding 10 to a given input and 

connecting that ADD operation to the motors.   

 

Logical operations compare two values to produce an output. An example of a logical operation 

is the "IF A<B" operation. Similar to the last example, a typical beginner will build a circuit that 

activates LM when sensor LL reads less than 50%. In this case, when sensor LL is less than 

50%, the left motor (LM) will be activated at half power. Otherwise, it will remain inactive. 

 

Several examples of numerical and logical operations provided in the sample programs that 

follow. 
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2.3 Example Programs 

Love (adapted from Braitenberg, 1984) 

Description Code Interface 
ACTION: Connect the left 

light sensor to the right 
motor. 

EFFECT: The vbot will spin 
in a circle, since only its right 
motor is activated. The more 
light that the left light sensor 
receives, the faster the vbot 

will turn. 

RM=LL; 

 
ACTION: Connect the right 
light sensor to the left motor. 

EFFECT: The vbot will seek 
the light, turning towards it 

whenever possible. 

RM=LL; 
LM=RL; 
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Fear / Explorer (from Braitenberg, 1984) 

Description Code Interface 
ACTION: Connect the left 

light sensor to the left motor. 

EFFECT: The vbot will spin 
in a circle, as only the left 

motor is activated. 

LM=LL; 

 
ACTION: Connect the right 

light sensor to the right 
motor. 

EFFECT: The vbot will turn 
away from the light 
whenever possible. 

LM=LL; 
RM=RL; 
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Values / Knowledge (from Braitenberg, 1984) 

Description Code Interface 
ACTION: Create an ADD ("+") 

operation box. 
EFFECT: The vbot motors are 
inactive, so the vbot will drift. 

ADD = 0 ; 

 
ACTION: Connect the left light 

sensor to the ADD box. 
EFFECT: The vbot motors are 
inactive, so the vbot will drift. 

ADD = LL + 0 ; 

 
ACTION: Connect the left bot 
sensor to the same ADD box. 

EFFECT: The vbot motors are 
inactive, so the vbot will drift. 

ADD = LL + LB ; 

 ACTION: Connect the ADD box to 
the right motor. 

EFFECT: The vbot will spin in a 
circle in this case, as only the right 

motor is activated. 

RM = LL + LB ; 

 ACTION: Repeat these steps for the 
associated right sensors and left 

motor. 
EFFECT: The vbot turns towards 

either light or other vbots. 

RM = LL + LB ; 
LM = RL + RB ; 
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Instincts (from Braitenberg, 1984) 

Description Code Interface 
ACTION: Create two ADD 

operation boxes. 

EFFECT: The vbot motors are 
inactive, so the vbot will drift. 

ADD1 = 0; 
ADD2 = 0; 

 ACTION: Connect both light 
sensors to the first ADD box 
(ADD1), connect both bot 

sensors to the second ADD box 
(ADD2). 

EFFECT: The vbot motors are 
inactive, so the vbot will drift. 

ADD1 = LL+RL; 
ADD2 = LB+RB; 

 

ACTION: Create an "IF A>B" 
operation box. Connect ADD1 
to the A slot in the IF box, and 
connect ADD2 to the B slot in 

the IF box. 
EFFECT: The vbot motors are 
inactive, so the vbot will drift. 

IF(ADD1>ADD2) = 0 

 

ACTION: This is wired such 
that each motor has its own IF 
box to determine its numerical 

input. 
EFFECT: If the light sensors are 

more active than the vbot 
sensors, the vbot will turns 
towards light. If the vbot 

sensors are more active than the 
light sensors, it will seek out 

other vbots. 

IF(ADD1>ADD2) 
THEN 

[ LM = RL ; 
RM = LL ; ] 

ELSE 
[ LM = RB ; 
RM = LB ; ] 
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2.4 VBOT User Interface 

Graphs 

The graph window records the value of a "box" on the breadboard (operation, motor, or sensor) 

at every time-tick, and plots the data point in the rectangular window. Users can select which 

“box” to graph and change the graph throughout the runtime. When the graph trails off the right 

of the graph, it rescales the graph by roughly 20% to fit all data. It continues to rescale the graph 

as such until the graphed "box" is changed or the graph is reset. 

 

Using the PVBOT graphing system, users can watch the output of any given "box" on the 

breadboard. For instance, they could watch a graph of the left light sensor's output to determine 

the maximum and minimum values of light on a certain path in the world. Another use of the 

graphs might be to determine when and how often logical operations (e.g., “IF A<B”) are 

triggered to check program logic. If users have created a logical operation that is triggered 

inappropriately, graphing the function can reveal the error quickly. The graphs were 

underutilized by most users, as they are mostly useful for debugging or advanced use. Although 

classroom interventions did not introduce the topic of formal debugging, a handful of students 

used the graphing functions towards formal debugging.  
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Saving and loading 

Users can both save and load ("run") their circuits as necessary. VBOT contains a "save/load" 

panel in which users can see all of the circuits that they have saved on their own computer. To 

save a file, users can either use the File menu (with key command, as normal on a given 

Windows/Mac/Linux system) or the "save" button right in the save/load panel. Most students in 

our implementations opted to use the quick buttons. To load a circuit, one can simply double-

click or click the file and the click the "load" button. 

 

During a given activity, users have the opportunity to create and employ multiple circuits. They 

can do this by saving the circuits with mnemonic names (such as "chaser" and "escape") and 

double-clicking the circuits to switch when necessary. 

 

Button Panel 

The client interface also (shown on Figure 2-1) contains a Button Panel.  The majority of these 

buttons are used to place operations on the breadboard.  Beyond these operations users have 

access to  “CLEAR ALL,” “START/STOP” and “role” buttons. The “CLEAR ALL” button 

resets the breadboard. Since circuits are often small, users often used the clear all button in lieu 

of destroying one wire or operation at a time. 
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The “START/STOP” button is the most utilized debugging feature for vbots. If a user wants to 

immediately cease all operation of a virtual vbot in order to consider a circuit, this button stops 

all client-side computation. This means that the vbot is frozen on the virtual shared space – until 

the user selects the ‘START/STOP’ button again. Once stopped, the user can build and test the 

behavior from a predetermined position by adjusting their breadboard and pressing 

“START/STOP” again to resume action. Adults used this much more frequently than students. 

 

The “role” button is a "catch all" button for the interface. In many vbot simulations, a user must 

input a choice unrelated to circuit building, and this button facilitated user choice. For instance, 

in one implementation of Moon-Tag (see below), students changed between the roles of doctor, 

monster, or worker simply by clicking the role button. At the beginning of each run, a facilitator 

identified the button’s role for the round (for instance, "1 = worker, 2 = monster, 3 = doctor") 

and inputted that into the NetLogo simulation on the server. Then, throughout the round, students 

would change roles as desired by selecting the “role” button. Another common use of the “role” 

button in VBOT is simple polling, in which one VBOT-HubNet simulation monitors the value of 

each user’s role button.   

 

Error panel 

It is impossible in this paradigm to create an illegal connection on the breadboard; any attempts 

will result in the wire’s disappearance. The error is then added to the error panel. For instance, if 
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a user was to try to create a wire from a motor to a sensor (with the semantic being that the 

output of the motor is fed into a sensor, which does not work in this paradigm), the wire would 

disappear and the associated error message would read "sensor LL takes no inputs."  

 

2.5 VBOT Activities 

Orbit & Flocking Activity 

In Orbit activity, the first instruction given to the group was "everybody move to the middle."  

Students then build circuits designed to move the bot to the middle of the screen. For virtual 

VBOT (VVBOT), the middle of the screen is marked by a "light source" which radiates “light” 

outward from white to black (see Figure 2-3 below). In physical VBOT (PVBOT), the light 

sources were simple lamps. In this case, a correct circuit is two crossed wires connecting each 

light sensor to its opposite-side motor (the “Love” circuit described above). In the Love circuit, 

the right light sensor causes the left motor to be activated (and vice-versa). The activity 

progresses once all students complete this circuit. The Love circuit creates a crude “orbit” around 

the light in both physical and virtual VBOT. 

 

Once all students’ bots are near the light, the instruction is given for the students to “flock 

together outside the light." This commences the Flocking activity. The goal of the Flocking 

activity is to create a stable group (“flock”) of bots that travels together.  
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In VVBOT, creating a stable flock requires “bot sensors” (described above) to find the other 

bots. Once the bots are flocked, they need to stay out of the light, of which there are several 

viable strategies. One such strategy is to nominate certain students to avoid light and summarily 

flock around those students. Another strategy is for each student-group to create a more complex 

circuit that enables both light-avoidance and flocking. Over the course of our enactment, the 

students designed many such strategies. 

 

In PVBOT, the task is more difficult. It requires the students to self-organize navigation patterns, 

as the sensors are unreliable. Over the course of the enactment, students designed several 

strategies to deal with the situation. One particularly good strategy was to slow the robots upon 

any outside bump, while simultaneously avoiding light. Another strategy was simpler, but 

perhaps more novel: all students design a circuit that avoids light, but they also manipulate the 

starting positions of the robots.  

 

Simple-Tag Activity  

This activity was only enacted in the virtual class. In Simple-Tag, the goal for the class was to 

maximize total “tags”. A “tag” occurs when a “tagged” vbot was co-located with an  “untagged” 

vbot. The untagged vbot is then tagged. Tags are marked by a red dot attached to tagged vbot 

that shows up on the shared screen. A good strategy is to create a vbot circuit that causes one’s 
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vbot to find other vbots more quickly than the rest of the classroom. The students designed 

several circuits that accomplished this task.  

 

Bot Soccer Activity 

This activity was enacted only in the physical class. For Bot Soccer, the students are divided into 

two teams. Each team, in this case, consisted of three robots, and the teams were allowed to talk 

to each other to decide strategies. The two teams were placed facing each other, in a line, with 

their “goal” being a light located behind the starting line. The goal is to drive the ball into the 

other team’s light-goal. This engenders several interesting strategies. Some teams designed 

complex strategies involving goalies and forwards. Other teams designed strategies that mostly 

consisted of a forward-attack rush. The success of a team was primarily contingent on their 

coordination. One team’s strategy is discussed further in Chapter 6. 

 

Moon-Tag Activity 

In Moon-Tag, the goal for the class was to collect “moon-rocks” from the edges of the screen 

and deposit them in the center of the screen (see Figure 2-3). The students switched between 

three roles (doctor, monster, and worker) using a button on their VBOT client. A doctor made 

any other vbots in the vicinity “unsticky,” a monster made other bots sticky, and workers became 

sticky or unsticky as they encountered doctors or monsters. As the agents traveled across the 
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shared virtual screen, they could pick up the moon-rocks only if they were “sticky,” and 

dropped the moon rocks only when they were no longer sticky. As the goal of the activity was to 

drop moon rocks in the middle of the screen, the goal for the class was to ensure a steady flow of 

workers passing through the edges and the middle, becoming sticky on the edges to pick up 

errant moon rocks and becoming unsticky in the middle of the screen in order to drop any rocks 

that might have been picked up. Students could change roles freely. Students whose vbots were 

in monster role gained points for making workers sticky near the edges of the screen, making 

doctors unsticky near the middle, and causing workers to drop moon rocks near the middle. The 

class, however, only got points for the moon-rocks collected in the middle of the screen (or the 

sum of all worker-points). 
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Orange blocks 
are “moon 
rocks” 

Blue worker 
planes carry 
moon rocks 
when they are 
sticky and drop 
them when they 
become 
unsticky.  

Yellow sticky-
machines make 
worker planes 
sticky.  

This moon rock 
has been 
dropped near the 
center by a 
worker 

“Light” (degree of 
grey) emanating 
from the center of 
the screen space 
helps orient the 
vbots. 

Yellow cleaners 
(doctors) make 
worker planes 
unsticky 

Each student uses a 
VBOT client screen 
to design behaviors 
for his/her vbot 

Lucy’s VBOT client 

Sally’s VBOT client 
Jimmy’s VBOT 

client 

Figure 2-3: Moon-Tag 
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2.6 Physical VBOT Interface 

This dissertation compares the benefits and constraints of programming in physical and virtual 

environments.  This section provides more detailed information about the VBOT interface with 

physical robots and the ways with which users interacted with these physical robots.  

 

Physical Robots and the VBOT Software Interface 

VBOT software works similarly with both virtual and physical robots.  In general, physical 

robots work by running uploaded program circuits that are written in VBOT, whereas virtual 

robots run the current program circuit without explicit uploading.  Thus, the major difference is 

physical; you must attach a communications device (“USB tower”) to the computer in use, and 

you must select "download to robot" from the tools menu.  

 

This physical difference results in a difference in use.  That is, unlike the virtual-robots that 

automatically respond to programmatic changes, the physical robots must be told to download 

the new program stopping the action. Moreover, since every program change takes at least 30 

seconds to download, activate, and observe the robot, it is time-consuming to implement 

incremental changes (as you might with virtual robots). 

 

After users have built a circuit in VBOT, they can select the “Download to Robot” menu item (or 
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associated key command). This compiles the circuit and downloads it to the robot nearest to 

the USB tower. The compilation stage translates the VBOT program into NQC code, and the 

NQC program is called externally. NQC is an executable (written for Mac, Linux, and Windows) 

that communicates with the physical vbots using a c-like programming language that includes 

most of the functionality of the particular brand of physical robots we used (NQC, 2005). Thus, 

the NQC programs are created as a translation of the students’ work in VBOT in order to 

communicate with the physical robots; this was done in the background and students never 

worked with NQC directly.  

 

An additional difference exists in the sensors. The sensors in physical robots are both less 

accurate and less precise than sensors in virtual robots.  Sensors in a simulation can be perfect 

(i.e. a light sensor can give the exact light level readings), but, in the physical world, perfect 

information is impossible. This problem is compounded by the extra noise inherent in 

inexpensive sensors.  VBOT compensates for some of the noise by normalizing the data upon 

program initialization, but this does not solve the problem because the sensors feed erratic data to 

the program. As we discuss in the literature review section, however, noise can be useful to 

teaching and learning about cybernetics, as many reactive systems can enter terminal loops 

without any randomness in the system. That said, too much noise can undermine even the best-

written programs. 
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Physical VBOT Structure 

A physical vbot is a Mindstorms RCX 1.0 robot (LEGO, 2002) built with a specific sensor and 

motor array. We provided students with these robots for certain implementations of VBOT. The 

physical vbot’s sensor array consists of two motors, two light sensors, and one "bump" sensor. 

The bump sensor turn out to be significantly more valuable than a directional "bot" sensor for 

playing soccer, as the students would want to test for a bump of the ball as well as other robots. 

The Braitenberg (1984) metaphor of the simple wire-circuit car was used to construct the 

physical robots (see Chapter 3 for more information on Braitenberg). In Appendix 1, we 

illustrate the construction of a physical vbot and the final robot structure. 

 

2.7 Related Environments 

There exist no comprehensive studies of the relative affordances of comparative physical and 

virtual environments in constructionist learning. This is one need that this work is intended to 

address. However, several environments address complex systems and computational fluency 

goals. This section examines similar, constructionist virtual and physical learning environments 

and assesses design and design goal similarities so as to highlight the novel features of VBOT. 
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Virtual Robots as Learning Tools 

We define “virtual robots” more broadly than a virtual instantiation of a physical robot.  It is a 

virtual autonomous agent or any object that self-determines behavior. Humans are autonomous 

agents, as are paramecia, bacteria, and many robots. Autonomous action and autonomous 

decision-making are often called “intelligence.” The simplest example of "autonomous 

intelligence" is a thermostat; once it is set at a temperature, it determines when to turn the heater 

on and off. To this simple model we can add memory, logic, and other functionality.  Further 

complicating the environment in which our thermostat with memory and logic might lead to a 

mimic of the simplest forms of life. A simple organism machine might “know” how to find food 

or reproduce when placed in a novel environment. Learning environments that use virtual 

autonomous agents, or virtual robots, are often designed to teach younger students how to 

program. The following section is both a review of these tools and a review of literature on 

virtual robot learning environments.   

 

Logo Environments 

A Logo environment is one that uses the Logo paradigm of programming, characterized as “low 

threshold, high ceiling” by Tisue & Wilensky (2008) and described in depth by Papert (1980). 

The Logo language was originally designed as a learning programming language, and it has 

engendered many variants, mostly designed as programming languages and modeling 

environments in which programming is easier for novice users and creates immediate, graphical 
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effects. We describe NetLogo (Wilensky, 1999) and Flogo 

(Hancock, 2003) as two modern Logo variants relevant to the 

VBOT project. VBOT is based on HubNet and NetLogo, and, as 

such, it is a Logo derivative at some level. Logo derivatives have 

been mostly single-user learning environments, with the notable 

exception of the HubNet features in NetLogo. 

 

NetLogo (Wilensky, 1999) is a multi-agent Logo language created to enable modeling of 

complex phenomena with little formal training. NetLogo is a Logo language in which a user can 

program (and directly command) both a set of agents (“turtles”) and the environment in which 

the agents reside (a grid of “patches”). NetLogo is designed such that a user can add complexity 

to the environment using both the patches and the interrelationship between turtles and turtles 

and patches. In this environment (shown in Figure 2-4), thousands of turtles simultaneously 

interact in a virtual space. In contrast to the programming-by-example environments, NetLogo is 

a text-based programming language more similar to traditional programming languages. 

Included in the environment is a variety of example programs and working simulations (“sample 

models”) that users can modify or extend. This environment is designed to be a general-purpose 

useable programming environment rather than a targeted support for computer science learning, 

although it has been used as such with success (Abrahamson & Wilensky, 2004a, 2004b; 

Blikstein & Wilensky, 2004; Wilensky, 2001). 

 

Figure 2-4: NetLogo 
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Figure 2-5: Flogo 

Flogo (Hancock, 2001, 2003) is a virtual/physical robot programming language in which a 

user designs a behavior for a virtual or physical robot using a circuit metaphor.  Hancock (2001) 

describes "the characteristic of Flogo on which our hopes are most pinned is 'liveness' — 

meaning that instead of existing as an inert object that is first edited and later run, a Flogo 

program can be active, and its activity visible, even as you are building or modifying it."  That is, 

users can modify their programs while they are running. In addition to this real time 

programming, Flogo uses a live dataflow "pulse" metaphor, meaning that a user can visually 

follow data as it is processed (see Figure 2-5). Hancock (2001, 2003) tested a Flogo physical 

robotics system with students ranging in level from secondary school to graduate school. His 

data suggest that this "temporal structure, Gibsonian learning, and tinkering friendly system[s]" 

helped students build constructively and learn computer science content.  

 

In both structure and use, Flogo shares features with VBOT. Indeed, Hancock’s work was 

invaluable in the design of VBOT, and VBOT was redesigned to emphasize both “liveness” and 

“tinkerability.” VBOT extends the Flogo work by basing the activity design on theories of 

collaboration in learning, focusing on complex systems fluency and enabling using multiple 

agents (similar to NetLogo). Chapter 7 

covers the relationship of VBOT to Flogo 

in more detail. 
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Programming by Example 

 “Programming by example” refers to a type of computer programming in which a user writes 

agent code by providing examples of desired behavior, rather than the more traditional method of 

explicitly typing out instructions using a provided word-based language.   

 

"Programming by example" refers to the way in which the users can command their agents on 

the screen. To “teach” a character to move up on the screen when it is next to a rock, the user 

places a rock one space to the right of the character, presses the "teach" button, and then moves 

the character up using the mouse. This "example rule" is automatically added to the character. 

The character repeats this action ("moving up") when, in the course of other actions, a rock is 

one space to the right of the character. Figure 2-6 shows one such simulation: the program code 

written by the user is at the bottom; the action window “worksheet” is in the top right; and a 

graph of the characters’ 

positions is in the top left.  

 

The given example was 

generated in AgentSheets. 

AgentSheets is a programming 

environment in a user builds 

simulations or games using the 

Figure 2-6: AgentSheets 
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“programming by example” paradigm (Repenning, Ioannidou, & Zola, 2000). It is intended 

primarily for primary school students. The simulations and games are programmed in a virtual 

2D environment in which each element is active as an independent agent. For instance, in a 

simulated outdoor environment, both a rock and a player character would be independent agents, 

that the students could program. All graphics are either drawn in the program by the user or 

provided with the program. The user is responsible for programming all of the behaviors for each 

interactive element, or agent, of the simulation or game.  

 

AgentSheets is a virtual robot simulator because users can “teach” robot-agents how to move 

independently by building a set of example rules for robot-agents.  As such, it is relatively easy 

to create simulations in which, say, a character avoids other robot-agents that have been 

programmed by the user. More complex scenarios can require hundreds of such rules. The 

programming environment supports these complex scenarios by providing several scenarios that 

students can modify or use for creating their own games or simulations.   

 

A similar paradigm is used in ToonTalk. ToonTalk is an environment developed by Kahn (1996) 

as a visual programming language also built on the constructionist “programming by example” 

paradigm. However, unlike AgentSheets, it takes place in a 3D world in which every virtual 

object is a program abstraction. In ToonTalk, users program “robots”. Each “robot” can hold a 

variety of “memories” which are added to the robot abstraction by example. A memory is 

equivalent to a line of program code. For example, users might teach the robot to “double 
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numbers” by showing the robot a “magic doubling wand” and having it “use the wand” on an 

abstract box until the wand is used 10 times.  

 

Social Agent Environments 

Social agent environments are programming and learning environments in which the primary 

medium is inherently collaborative or competitive. Programs written in social agent 

environments are designed primarily to interact with multiple users.  Second Life (2006) is a 

commercial example of a social agent 

environment; Second Life is a multiplayer 

online game in which hundreds of thousands of 

users interact with object-programs in a 

persistent online space. MOOSE Crossing 

(Bruckman, 1997) is presented as an example of 

a social agent environment particularly relevant 

to the VBOT project. Designed as an explicitly 

constructionist environment, MOOSE Crossing 

emphasizes social collaboration over the more 

individual programming paradigms of the Logo 

or Programming by Example environments 

described above. Figure 2-8: Programming Pet Park 

Figure 2-7: Pet Park 
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MOOSE Crossing (Bruckman, 1997) is a system with a MUD (“Multi-User Dungeon”) 

architecture in which each user-designed character "lives" in a textual programmable discussion 

space. Users engage in a textual "chat room" in which actions that change the environment of the 

chat room can be made (see Figure 2-7). For example, a user could set an alarm for 10:30 PM; 

any characters in the chat room at 10:30 PM will get the textual alarm "BRRNG! BRRNG!" By 

programming the environment in which people can textually interact, the programming is 

inherently social. Bruckman (1997) states that "the central claim [here] is that community and 

construction activities are mutually reinforcing."  Users can program characters to automatically 

greet users upon entrance or to discuss short topics with other characters. Examples in 

Bruckman’s (1997) work show that users can successfully create a vibrant community organized 

around the programming features of the space.  

 

The Pet Park system detailed by DeBonte (1998) is a graphical form of MOOSE Crossing, in 

which the agents are persistent in the world (see Figure 2-7:  2-7 and Figure 2-8). DeBonte’s 

work suggests that the persistence and graphics create a functionally different space. The design 

of VBOT stems in part from the constructionist social collaboration work described above. 

VBOT is real-time, social, and graphical, much like PetPark, although the design and learning 

goals are different.  
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Physical Robots as Learning Tools 

Physical robots have been used to teach computer science for over 20 years (Papert, 1980). More 

recently, the LEGO Mindstorms robotics system has been released to wide acceptance and a 

new, redesigned version ("NXT") was released in late 2006 by LEGO. It is used in hundreds of 

classrooms to teach computer science, math, and core science. In this section, we describe the 

prototype system for LEGO Mindstorms, the Programmable Brick, and the most common ways 

in which physical robotics have been used for teaching and learning. As described above, 

Physical VBOT uses LEGO Mindstorms robots. This section describes other uses of this system 

and its relatives. 
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Figure 2-9: Lego Mindstorms Robot 

The Programmable Brick 

The Programmable Brick (Resnick, Martin, Sargent, & Silverman, 1996) is a physical robotics 

system designed as a constructionist learning environment. Users attach simple sensors and 

motors to a pre-built processor (“the brick”) and board (see Figur). The motors then move 

according to a user-created program that uses the input from the sensors. The LEGO Mindstorms 

system was designed using the programmable brick as a prototype, though there was ongoing 

design of the brick into the late 1990's, after the LEGO Mindstorms kit had already been released 

commercially. The LEGO Mindstorms system not only provides a research base on which we 

build but is also the physical system with which our students work. Several groups have 

evaluated Mindstorms (or a similar robotics system) for out-of-the-box public classroom 

viability with positive results, although none of them are immediately relevant to this study as 

they are more traditionally teacher-centered (see, for example, Lawhead, Duncan, Bland, 

Goldweber, Schep, Barnes, & Hollingsworth, 2003; Klassner, 2002; Tribelhorn & Dodds, 2006). 

 

Martin (1996a, 1996b) provides a constructionist study 

of students learning to control LEGO Mindstorms 

robots. The students in his study range in level from 

primary school students to MIT undergraduates. The 

study suggests that the embodied nature of the 

programmable brick encourages elementary students to 
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make a wide variety of aesthetic and functional decisions. In one scenario, a group of young 

students build a robot with a brush attached and program the brush-robot to “dance” in 

concentric circles. The creativity was not limited to primary school art class. The aesthetic, 

whimsical, and creative aspect of the robots appeared to motivate the undergraduate students 

working with the system. These students reported that the creative aspects of the tasks retained 

their interest long enough to become fluent with the technology. Although Martin felt that the 

students that acquired fluency with the technology primarily learned only the technology itself 

(as opposed to content that may be more obviously aligned with traditional curricular goals), he 

suggests that this was a limitation of the crudeness of the early technology; the mechanical 

engineering skills necessary to become fluent with the programmable brick were a significant 

barrier to learning outside content using the bricks as a tool. 

 

Martin (1996a) suggests that only by using unreliable physical sensor machines can students 

independently distinguish "policies" and "plans". A policy is a set of behaviors that run as 

triggered by certain criteria, rather than a list of ordered instructions. For instance, a policy 

behavior might be written: “when the temperature is under 50 degrees, move toward the closest 

heat source.” A policy would consist of many such behaviors, potentially triggering in parallel. A 

plan, on the other hand, is a set of deterministic instructions. For example, a plan called 

GO_TO_STORE might be written as such: "forward 5 m, turn left 90 degrees, forward 10 m, 

right 90 degrees, forward 10 m, left 30 degrees, forward 2 m, right 10 degrees, forward 40 m." 

Plans rarely achieve optimality in physical robotics due to the unreliability of sensors and 
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environmental noise; policies are often easier to understand and work more reliably in a 

variety of environments (Arkin, 1998; Brooks, 1999; Jones, 2004). Martin (1996a, 1996b) found 

that the programmable brick learning environment can motivate students to develop a more 

flexible programming approach, moving between policies and plans depending on the 

environment in which the robots operate. 

  

Physical Robotics in the Classroom 

Undergraduate engineering education 

Undergraduate engineering and computer science education have been the most common uses of 

robotics. I was first introduced to Papert and LEGO/Logo robotics during a robotics course with 

Leslie Kaelbling at Brown University as an undergraduate. My experience was not uncommon. 

Martin (1996a) describes some of the ways that he has analyzed the use of robotics for teaching 

undergraduates, and a cursory search of major universities shows that many of the larger 

computer science departments have a class in which LEGO Mindstorms robots are used. 

 

High school and college robotics competitions 

Robotics competitions are often used to motivate students in engineering or computer sciences 

disciplines. These happen at several levels, ranging from middle school to undergraduate. For 

example, Northwestern has such a competition, as does Brown and MIT. There are several such 
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competitions in the Chicago-land area. Two of the more well-known competitions are 

RoboCup (1997) and FIRST (2006). Some of the robots that are built for these competitions are 

impressive, but most are simply sequences of commands designed to traverse a pre-set course. In 

other words, the robots might have a set of commands such as: turn left, forward 80 tire 

rotations, turn right, forward 20 tire rotations, and then stop. Our work on VBOT works to 

extend this work by enabling students to provide rules for their robots to follow rather than a 

sequence of steps; VBOT uses “policies” where these robots use “plans.” 

 

Primary school robotics 

Granott has designed robots with an explicit focus on teaching students about logical thinking 

and basic programming.  Granott's "weird creatures" (1993) follow behavioral patterns hidden 

from the user. A user then tries to determine the flow of programming for a given robot. Building 

on this, Mioduser (1996) and Levy, Mioduser, & Talis (2001) have done work with primary 

school children in which the students build and analyze "weird creatures" or "weird structures." 

The robotics work in primary schools is relatively new, but groups like RoboCup Jr. (2006) are 

using some of these techniques to appeal to younger students. 

 

Constructionist projects in physical robotics 

Resnick (1998) describes various physical robotics technologies that the media lab has used in 
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primary, middle, and secondary schools. One interesting project implements Hancock's (2001) 

architecture for "communicating Crickets" – robots that work together to accomplish small tasks. 

Hancock's work is further described below in the "Logo Environments" section. Resnick, Berg, 

and Eisenberg (2000) found that " children, by teaching their creatures to communicate with one 

another, can learn some general principles about communication." Resnick et al. (2000) further 

describe many types of physical robotics projects possible with the Programmable Brick and 

Crickets kits. The students designed robotic projects as complex as an automatic bird feeder, a 

mini-golf machine, and a robotic flower that opens in the presence of light. 
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Chapter 3:  Related Literature 

3.1 Defining Computational and Complex Systems Fluencies 

Print literacy and print fluency have been mostly “invisible” throughout recorded history, in that 

scholars did not study the differences between speaking a language and understanding its 

rhetoric (Manguel, 1997). For Plato and the classic philosophers, reading was aloud, writing 

existed only to record history as fact, and languages other than Greek or Latin were the exotic 

forms of barbarians and usually not committed to paper. Although reading and writing were 

understood to be different than speaking, the difference was generally understood to be at the 

expense of the written word. For instance, Aristotle’s Poetics (as translated by Heath, 1996) was 

posited as a guide to the forms of reason and argument as spoken, not as read. Fluency itself was 

not a scholarly subject until the rise of philology during the Enlightenment (Cassirer, 1979), 

although writing about the act of writing flourished during the Renaissance. Petrarch (trans. by 

Cassirer, 1948) proposed that writing existed as a way to ties together existing memories and 

understandings – a concept notably similar to Piaget’s (1972) description of constructivist 

learning in children. 

 

As a philosophical descendant of Piaget, DiSessa (2000) defines literacy as "a socially 

widespread patterned deployment of skills and capabilities in a context of material support (that 

is, an exercise of material intelligence) to achieve valued intellectual ends" (p. 19). That is, 
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literacy is the ability to use a medium as a material, cognitive, and social tool. Defining 

literacy in terms of these three facets highlights the complexity of literacy and the degree to 

which true literacy can change the way individuals think and learn.  

 

Print literacy, for example, requires material understanding of the mechanics of letters and 

words, cognitive ability of how to consume and produce effective prose, and social 

understanding of what written words are appropriate in a given situation and how best to 

communicate using written language. Only by being able to make sense of each of these aspects 

can one be said to be print literate. Moreover, being print literate makes available new ways of 

making sense of and accessing the world of information.  Just as print literacy opens a lens 

through which we can look at the social world, so can other literacies change our perspectives. 

Specifically, computational literacy opens a lens to the entire world of technology and 

engineering (DiSessa, 2000), and complex systems literacy gives us new perspectives on a 

variety of scientific phenomena (Jacobson & Wilensky, 2006). 

 

In the following sections I will clarify each of the constructs in DiSessa’s framework (material, 

cognitive and social literacies) by applying them to the VBOT architecture and corresponding 

activities.  I will then use these constructs to define complex systems literacy and the benefits of 

developing this perspective.  Henceforth, we will use the term "fluency" to mean a type of 

literacy not rooted in print literacy.  
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When used informally, fluency, as opposed to literacy, is rooted more in practical concerns 

than in socio-political ones. Colloquially, one might say, “Alice is a very literate person.” This 

would imply that Alice understands and uses context from history, literature, and the arts; Alice 

can cross-apply this understanding. As a contrast, if one were to say, “Sam is a very fluent 

person,” it implies only that Sam can speak and read the language well enough to have a 

conversation. It is for the reason that the word “fluency” is used, as the thesis addresses issues 

more related to practical understanding than deep contextual understanding. 

 

Computational Fluency  

The term “computational literacy” has often been used to describe the mastery of a few standard 

computer applications. For example, as a secondary school teacher, I taught a class called 

"computer literacy," which was designed to teach mastery of Microsoft Word, Excel, and 

PowerPoint. Papert (1980) and DiSessa (2000) change this definition to argue that 

“computational literacy” implies both the ability to use computer software and the ability to 

create and manipulate computer software (or hardware) to communicate and disseminate ideas. 

This definition of literacy parallels the generally understood meaning of print literacy; a print 

literate individual can express oneself in writing.  The expressive and authoring aspects of 

computational fluency are largely ignored in the pre-collegiate curriculum. Moreover, we argue 

that such computational fluency can greatly benefit citizens of our era, because computers shape 

so much of our interaction and communication.  
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DiSessa’s (2000) definition of literacy can unpack this more rich understanding of 

“computational fluency.” As defined by Papert and DiSessa, computational literacy introduces 

the possibility that computational literacy does more than enable work with end-user 

programmers.  Instead it changes how individuals think and learn. In the following we define the 

social, cognitive and material aspects of computational fluency by identifying how our project 

addresses each aspect. 

 

Material computational fluency is the ability to use the material tools.  This is the aspect that 

most closely aligns with more common definitions of computer fluency.  It encompasses both the 

ability to use computer programs and knowledge of programming languages.  For instance, any 

use of VBOT requires some level of material computational fluency: students must learn the 

VBOT circuit language to compete or collaborate with one another through the system.   

 

Cognitive computational fluency describes the student's ability to think with the computer-as-

tool. Developing cognitive fluency requires that students adapt their thinking processes to align 

with their tools (in this case, VBOT). This is, functionally, being able to think like a computer 

programmer or a computer artist. Cognitive computational fluency allows the student to use the 

computer as a tool to solve even those problems that do not require computers. Moreover, being 

able to conceptualize what elements of given problems with which the computer can aid is 

important to cognitive fluency. Students build computer programs and hopefully become familiar 
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with the computer as a protean "tool to think with" (Papert, 1980) rather than as an inert tool. 

For example much as student may use a pad of paper to solve a 10-digit division problem, so 

they can use a computer to help work through a 1000-digit division problem.  

 

To communicate in and around a computational environment, one must share certain technical 

and socials means and goals; this is social computational fluency. As the photography-literate 

discuss "light levels," so the computationally literate can discuss "efficiency" or "cleanliness." 

Inherent to our project is communication between students and the trading of information and 

resources. Students that can effectively communicate and trade will have an advantage, and, at 

some point, every student will discuss the sharing and communication that they have with the 

whole group. 

 

Complex Systems Fluency  

Complex systems fluency refers to an individual’s ability to negotiate the relationships between 

“agents”, “aggregates”, and “levels thinking.” This terminology as used in this paper is derived 

from Wilensky & Resnick (1999), who use the example of a traffic jam: 

“Two high-school students were writing a computer program to 

simulate the flow of traffic on a highway. They began by writing 

some simple rules for each car: Each car would accelerate if it 

didn’t see any other cars ahead of it, and it would slow down if it 
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saw another car close ahead. They started the program running, and observed 

the patterns of traffic flow. On the screen, a traffic jam formed. 

They continued to watch and–much to their surprise–the jam 

started drifting backward along the highway. ‘What’s going on?’ 

said one of the students. ‘The cars are going forward, how can the 

jam be moving backward?’”  

 

In this example, the agents are the cars in the traffic jam. A traffic jam consists of cars. The 

traffic jam is a result that emerges from the aggregation of cars. Understanding the relationship 

between the individual cars and the emergence of the aggregation of the cars is called levels 

thinking. Levels thinking is not only the ability to think at both the level of the cars and the level 

of the traffic jam, but also the ability to concretize the relationship between the two levels. 

 

Complex systems research has become increasingly important for understanding scientific 

phenomena (Holland, 1995; Wilensky & Resnick, 1999; Wolfram, 2002). Scientists use complex 

systems methods to model phenomena in domains varying from physics (Bar-Yam, 1997) to 

social interactions (Watts, 2003). Some have argued that complex systems theory is a new kind 

of science, one posed to usurp the mantle of scientific explanation from traditional equation-

based science (Wolfram, 2002). Others have shown that modeling with complex systems is more 

comprehensible to high school students than traditional equation-based science (Centola, 

McKenzie, & Wilensky, 2000; Ioannidou, Rader, Repenning, Lewis, & Cherry, 2003; Jacobson 
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& Wilensky, 2006; Wilensky, 1997a, 2001; Wilensky & Reisman, 1998, 2006).  

 

We use DiSessa’s (2000) framework for computational literacy to describe complex systems 

fluency. This framework breaks literacy into material, cognitive, and social fluencies. In this 

section, we describe how these elements are addressed. 

 

When working with complex systems, scientists use a diverse set of strategies and overlapping 

tools.  Therefore, material complex systems fluency concerns a range of tools.  Within those 

tools, there is an emphasis on computational tools for analyzing data and modeling phenomena. 

Thus, material fluency in complex systems requires a level of both computational fluency and 

scientific fluency. Students need to be able to produce theories and hypotheses, evaluate them, 

and report on results. Furthermore, the students need to be able to build models, material or 

computational, which produce interpretable results.  

 

Cognitive complex systems fluency is the ability to think with and from complex systems 

theories and models. Can students use multi-agent systems to consider a phenomenon? Can 

students approach a problem from multiple levels, such as the agent-based and the emergent or 

aggregate? As students become more familiar with the relationships between levels of complex 

phenomena, they begin to use emergent and complex systems thinking as a tool with which to 

think about everyday physical phenomena. Wilensky & Resnick (1999) call this "levels 

thinking."  
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As complex systems fluency is a form of scientific fluency, social fluency becomes a vital 

element of complex systems fluency. The scientific community revolves around the 

communication of results and hypotheses (Latour, 1987). Students becoming complex system 

literate should learn the terminology of the complex systems scientist and an ability to 

communicate about the various levels of a complex phenomenon. Students should be able to 

describe phenomena from the agent-based, aggregate, and emergent perspectives. Scientific 

findings are meaningless if not communicated and immersing oneself in a "new kind of science" 

(as per Wolfram, 2002) requires a new kind of communication.  

 

3.2 Learning Theories for Supporting Complex Systems and 

Computational Fluency 

 

Methods and theories of complex systems are largely absent from school curricula. Informal 

conversations with teachers and principals suggest that they believe that there are two possible 

reasons for this absence: 1) these concepts are too hard for students to grasp, and 2) the cost of 

entry (training, resources) to introduce these concepts into school curricula must be prohibitively 

high. Findings in VBOT pilot studies have suggested that both of those assumptions are 

problematic (Berland, 2006; Berland & Wilensky, 2004, 2005). 
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Research shows us that teaching students to use computer programming to do complex systems 

science can make computational fluency and complex systems fluency mutually reinforcing 

(Wilensky, 2001; Wilensky & Resnick, 1999). Our pilot studies contribute to this literature with 

preliminary findings that there are correlations between complex systems and computational 

fluency in students using VBOT (Berland & Wilensky, 2004, 2005). Moreover, we see robots as 

a natural fit in complex systems research. Complex systems events involve many similar 

elements doing simple tasks that, together, create some emergent phenomenon (Holland, 1995; 

Wilensky, 2000). Similarly, it is common for robotics research to use several simple robots that 

collaborate in the creation of a phenomenon (see Parker, Schneider, and Schultz, 2005, for a 

variety of examples). Despite these parallels, and despite that robots are used to teach computer 

and mathematics fluency (Resnick & Ocko, 1991), robotics, as a field, has only recently begun to 

be addressed in complex systems research (Pollack, Lipson, Funes, & Hornby, 2001). 

Furthermore, there is little research using robotics to address complex systems fluency.  

 

Given the small research base of literature focused on fostering complex systems and 

computational fluencies, we begin by identifying ways of learning that influence our work: 

constructionism and play. We then move on to focus on the potential of programming and robots 

for developing these fluencies. 
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Constructionism 

Constructionism postulates that one learns more about an object or a concept by participating in 

the process of building the object or concept. “Learning by making” is a major component in 

robotics education projects (Hancock, 2003; Portsmore, 1999; Resnick & Ocko, 1991).  As 

Wilensky (2000) notes, tools that utilize the individual components needed to complete the 

aggregate can both help the student understand the final concept but also allow the investigator 

to understand the process of learning.  Wilensky differentiates “black box” projects in which 

subjects begin in the middle of the process of creation with “glass box” projects in which 

subjects can see the process of creation from start to finish.   

 

The Logo computer language is an example of a "glass box" constructionist educational 

programming environment. Users program a "turtle" (a virtual agent) with a simple, but full-

featured programming language, streamlined for beginners, in which all relevant program code is 

visible to the user-programmer. The Logo computer language is discussed in more detail by 

Papert (1980). Often Logo is used as a mathematics programming environment or a drawing 

language. However, the Logo programming environment can have much more complex 

applications; constructionism and Logo have been the focus of some encouraging studies of 

computational fluency (such as those detailed in LCSI, 1999). 
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Play and Collaboration  

Commensurate with constructionism is the notion of play. Traditional school curricula rarely 

involve significant "play" time, and efforts to raise standards for teaching and learning and 

schools have neglected to target sources of student motivation. A considerable body of research, 

however, has shown that play can be a powerful academic motivator (Dewey, 1913; Harel & 

Papert, 1990; Kafai, 1995; Papert, 1980; Vygotsky, 1978). Additionally, there is convincing 

evidence from both the social and cognitive streams of learning research indicating that learning 

and transfer are more easily achieved when the students are motivated to work through activities 

(e.g., Ames & Archer, 1988; Dweck & Elliot, 1983; Pintrich & Schunk, 1996). Schank & Cleary 

(1994) also show that intrinsic motivation can lead to more personally relevant, stable knowledge 

acquisition for many students.  

 

There have been few studies using real-time games in constructionist learning environments. 

Recent research has shown games to be effective teaching tools in several domains (Gee, 2004; 

Squire, 2004; Steinkuehler, 2004). Gee (2003) discusses how and why games can be effective in 

teaching fluencies. Constructionist research has long used games to teach mathematics (Kafai, 

1995), and recent games research is making significant headway into the processes and 

motivational aspects of how and why games are important for learning and teaching. Pilot 

studies have shown that students regard VBOT as a game and interact with each other as if in a 

game scenario (Berland & Wilensky, 2005).  VBOT is designed, in part, so as to integrate 
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findings from the field of game research; we will cover this relationship in more detail in 

Chapter 7. 

 

Studies have also shown that enabling social-help interactions leads to improved cognitive and 

social functioning (Gutierrez, Rymes, and Larson, 1995; Vygotsky, 1978). Vygotsky (1978) 

describes the Zone of Proximal Development (ZPD), which is the level at which children can 

function in a social-help setting as opposed to an individualized one. Gutierrez et al. (1995) show 

that often the most productive and thoughtful interactions occur in informal spaces within the 

classroom, outside of the direct view and control of the teacher. This literature combines to 

highlight the importance of individuals learning through playful collaboration. 

 

Since the advent of the personal computer as a learning tool, collaborative programming has 

been evaluated several times as learning method (e.g. Papert, 1980; Tiffin & Rajasingham, 

1995). Recently, new programming methods, such as “extreme programming,” have been used in 

collaborative programming research (Beck, 1999). Thus we view programming as a fruitful 

environment for fostering the collaborative learning supported in this literature. 

 

Even while constructionism, play and collaboration offer theoretical guidelines and hope for 

fostering complex systems and computational fluencies, there have been few comprehensive 

collaborative constructionist studies of complex systems fluencies.  This study attempts to 

address this need by creating just such a learning environment and then examining the learning 
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that occurs therein.  

 

VBOT was designed to use constructionism and play through the metaphor of virtual and 

physical robotics. Towards that end, Braitenberg (1984) provides a virtual robotics starting point 

for projects in art, philosophy, electrical engineering, cognitive science, and several other 

disciplines, as seen through virtual, physical, and theoretical robotics. The book begins with 

descriptions of how to build (as circuits, thought experiments, programs) a simple set of 

autonomous robots that either “love” or “hate” light. To love light is to tend to travel towards it. 

For instance, a “love” robot might be a small, two-wheeled artifact that orbits a lamp. A “love” 

circuit could simply connect a light sensor to a motor attached to a wheel. As the light sensor 

sees more light, the motor speeds up, spinning the wheel faster, and sends the robot towards the 

lamp.  For more detail on the technical detail of these circuits, consult Chapter 2. 

 

By progressing through simple circuits, such as “love” circuits, which involve only light sensors, 

motors, and wheels, Braitenberg prompts a difficult set of questions previously raised by 

biology, computational, and philosophy. If simple circuits can create complex behaviors, what is 

complexity? How does the complexity of the behavior relative to the complexity of the circuit 

contribute to an understanding of how the brain works? Braitenberg’s work is remarkable in the 

ease with which beginning students can reach understandings of his simple circuits, and of the 

questions raised by the behaviors. Braitenberg shows that these circuits are valuable, motivating, 

and interesting tools for raising and also answering a range of questions for any level of learner. 
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It is from this work that much of the research in educational robotics has stemmed. 

 

3.3 The Virtual and the Physical in Robotics 

To describe the history of the rift between the virtual and the physical in the literature would be 

presumptuous; works as monumental as Plato's Parmenides have mapped the boundaries of the 

question. More recently, post-structuralism has attempted to dissolve the boundary between 

dichotomies such as virtual and physical (see, for example, Haraway, 1991). This project’s goals 

are more prosaic. To that end, we will address only work dealing specifically with virtual and 

physical robotics. Indeed, there has been significant debate in the computer science literature 

about the relationship of virtual to physical robots (see, as a reference, Jakobi, Husbands, & 

Harvey, 1995; Wainer, Feil-Seifer, Shell, & Mataric, 2007). The vast majority of this literature 

concerns the relevance of virtual robotics techniques to the use of physical robotics for real-

world tasks.  The VBOT project has little in common with the world of real world physical 

robotics. That is, the real world physical robots, such as the iRobot models used for research or 

the robot arms used to build cars, have a different set of functionalities than the LEGO 

Mindstorms robots used in the VBOT project.  

 

Noise is the name given to perceptual and motive inaccuracy in robotics, and, in terms of 

physical robotics, it has played a significant role. Without a large expenditure, it is fairly difficult 
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to get sensors for simple robots that read light, elevation, temperature, or any number of 

possible information sources with reliable precision and accuracy (Martin, 1996b). Furthermore, 

the world that humans inhabit is "noisy" in that reliable information about objects or people is 

often obscured or only partially available. To that end, modern robotics often uses sensors and 

processes designed to minimize noise and use partial information (see, for example, Brooks, 

2002).  

 

Thus, one significant difference between physical and virtual robots is that it is mathematically 

and conceptually difficult to simulate "real-world" noise in a virtual setting. It is not simply a 

matter of preparing a virtual world with partially obscured information, but instead preparing a 

virtual world with dynamic partial information that is constantly changing in a semi-random (but 

rarely fully random) contingent noise (i.e. the world is fully interrelated). This difference will be 

addressed again in Chapter 6 in which students' understanding of "noise" and physicality is 

analyzed. 

 

3.4 Open Questions 

Although there have been many studies in computational and complex systems fluency, more 

work is needed. In this section, we will describe the most salient open questions in the literature. 
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There is no comprehensive study of the relative affordances of comparative physical and 

virtual environments in constructionist learning. As discussed in Chapter 2, virtual and physical 

environments have both been used to success in constructionist research and otherwise. Although 

there have been several studies of the relative affordances of virtual and physical environments 

(see Sharlin, Watson, Kitamura, Kishino, & Itoh, 2004 for a review of research on tangible 

interfaces), that work has not been explicitly both constructionist and empirical. This study, in 

comparing the virtual and physical environments empirically, has the advantage of comparing 

them in the same situations and with the same subject pool.  

 

As the field of complex systems is young, there have been few comprehensive collaborative 

constructionist studies of complex systems fluency. Even though there is significant work using 

constructionism to teach complex systems fluency (such as Wilensky & Resnick, 1999), the 

field’s youth leaves many unaddressed topics. For instance, there has been relatively little 

research concerning the use of physical systems in teaching complex systems fluency. While this 

gap is being addressed by researchers such as Abrahamson, Blikstein, Lamberty, & Wilensky 

(2005), there remains much work to be done in this field.  

 

While some research has shown a relationship between computer and complex systems fluency, 

there is little evidence that these fluencies are mutually beneficial. Research shows us that by 

teaching students to use computer programming to do complex systems science, computational 

fluency and complex systems fluency can be mutually reinforcing (Wilensky, 2001; Wilensky & 
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Resnick, 1999).  

 

There have been no comprehensive studies on the use of physical robots in teaching complex 

systems fluency. Robots are a natural fit in complex systems research. Complex systems events 

involve many similar elements doing simple tasks that, together, create some emergent 

phenomenon (Holland, 1995; Wilensky, 2000). Similarly, it is common for robotics research to 

use several simple robots that collaborate in the creation of a phenomenon (see Parker, 

Schneider, and Schultz, 2005 for a variety of examples). Despite these parallels, and despite that 

robotics are commonly used to teach computer and mathematics fluency (Resnick & Ocko, 

1991), robotics, as a field, has only recently begun to be addressed in complex systems research 

(Pollack, Lipson, Funes, & Hornby, 2001). Furthermore, there is little research using robotics to 

address complex systems fluency.  

 

There have been few studies using real-time games in constructionist learning environments. 

Recent research has shown games to be effective teaching tools in several domains (Gee, 2004; 

Squire, 2004; Steinkuehler, 2004). Gee (2003) discusses how and why games can be effective in 

teaching fluencies. Constructionist research has long used games to teach mathematics (Kafai, 

1995), and recent games research is making significant headway into the processes and 

motivational aspects of how and why games are important for learning and teaching. Though 

VBOT is not explicit designed as a game, it can exploit many of the same motivational tools 

(Berland & Wilensky, 2005).  The present study is therefore able to integrate findings from the 
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field of game research.  

 

There has been little research in understanding the spread and flow of information in 

collaborative constructionist environments. Research on social networks has recently made 

significant progress about transmission of information around small groups (Brown & Duguid, 

2002; Watts, 2003). As of yet, few studies have applied it to constructionist learning 

environments, even though constructionist learning often involves collaboration and the sharing 

and distribution of information. The present study aims to demonstrate the value of collaborative 

learning in small social learning networks research and constructionist research.  

 

VBOT provides an untested model for collaborative programming environments. Since the 

advent of the personal PC as a learning tool, collaborative programming has been evaluated 

several times as learning method (Papert, 1980; Tiffin & Rajasingham, 1995).  Recently, new 

programming methods, such as “extreme programming,” have been used in collaborative 

programming research (Beck, 1999). The present study provides a new framework for simple 

collaborative programming in complex environments.  

 

The above literature review has identified a number of questions that the current literature does 

not yet address. This work is structured to fit into this literature by building on the existing 

designs in which users program virtual and physical robots, extend these designs to align with 

the theories of constructionism, and playful collaboration.  We do this with the expectation of 
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learning how collaborative constructionism can support students as they develop both 

computational and complex systems fluencies. In Chapter 2, we focus on the design of VBOT 

and how this literature influenced the technical design. Chapter 7 focuses on the design of the 

VBOT activities and how those related to collaborative constructionism.  We then move to study 

the interactions and learning that occurs in this supportive environment. 
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Chapter 4:  Context, Methodology, and Data 
Collection 

This work is the culmination of a series of three tests of the VBOT architecture, activities and 

theory.  This chapter discusses details of the methodology and context for each of these trials. It 

is organized into descriptions of the methods and analyses of the pilots followed by a description 

of methods and data collection for a controlled study performed in 4 middle-school classrooms. 

 

Although each of these studies represents a change in focus, reflecting lessons learned from the 

previous work, they follow a similar design research methodology. Design research (as described 

in Collins, 1992; Edelson, 2002) can take myriad forms, from relatively uninflected social 

anthropology to UI studies that are conceptually closer to traditional lab studies (such as Schank, 

Fano, Bell, & Jona, 1993). This work tends more toward the classical UI study than a minimally 

invasive social anthropology study. However, this study differs from UI studies in that we 

privilege teacher practice and school context. In VBOT studies, we collaborate with teachers in 

their common environments. In our research studies, we attempted to ensure that teachers could 

teach and discuss with the technology, rather than teaching about the technology.  

 

The data collected for each of the pilot studies were focused on the affordances of the tools, the 

effectiveness of the lesson in teaching the target concepts, and the relative affordances of the 

various lessons and tools. To that end, the data is both quantitative and qualitative. The 
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qualitative data collection is designed to facilitate analysis of students’ computational fluency, 

complex systems fluency, and understanding of the target content. The qualitative data was 

collected primarily through videotape data of the activities and interviews with the students. 

Interviews were conducted immediately before the activity began, during the activity (in situ), 

and immediately after the activity. The pre-activity and post-activity interviews were entirely 

conducted by the author. Researchers videotaped the activity on hand specifically for data 

collection and technical support. The quantitative survey and activity log data was collected in 

the second and third of the three studies.  The quantitative data collection was designed to 

facilitate analysis of student practice, program design, and study design. In the following, we 

provide more details about each of the trials, addressing how they differ in context and research 

methodology. 

 

4.1 P1 – Initial Pilot 

The first VBOT pilot (P1) was designed to test the basic VBOT architecture and GUI.  To that 

end, it was conducted at Northwestern University, outside the school environment and was 

entirely facilitated by a team of researchers, led by me.  

 

The sample consisted of 3 girls and 6 boys (n = 9). All 6 boys and 2 of the girls were either 13 or 

14 years old; one girl was 11 years old. Our sample was gathered in an informal manner; one of 



    

Chapter 4: Context, Methodology, and Data Collection 

 

83 

the facilitators knew the parents of the various children socially. The self-selected group of 

students was from two schools, one public middle school and one religiously-affiliated middle 

school. The students were not reimbursed. 

 

The first researcher facilitated the activities with help from 3 collaborating researchers. The other 

researchers were instructed to help participants use the technology, remedy technical problems, 

and collect data. None of the facilitators helped students with conceptual difficulties or content 

issues. In fact, we were not often asked to help students solve problems. More often, we 

mediated social issues and answered technology questions.  

 

Data collection 

All activities were videotaped using two handheld cameras.  One camera was focused primarily 

on group interaction by videotaping the classroom as a whole, while the other cameras focused 

on specific student strategies and interactions. We also conducted pre- and post-interviews with 

the students. 

 

Activity 

The classroom was arranged in a “V-shape” with students pointed at the center-front of the room 

such that they could see one another, the screen in the middle of the classroom, and their 
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individual computers. We didn’t collect social network data in this study, but the table was 

always active with student-talk, and all students could see each other over their screens. Students 

used 13" Macintosh iBook G3 computers. Around minute 40, the experiment was interrupted by 

a pizza lunch, our only participant payment. This allowed for significant social time, and the 

participants ate and talked for about 15-20 minutes. The pilot ran around 90 minutes (not 

including lunch). There were 4 activities provided by the facilitator, and the students were 

allowed to vote twice between two sets of activities. All activities were done with a preliminary 

version of virtual VBOT described in more detail in Berland & Wilensky (2004).  

 

All activities were restricted to variations on the flocking activity described in Chapter 2. While 

these activities were simple in both goal and process, they generated a range of discussion about 

the types of circuits to build. The students modified their circuits while they were discussing 

them in order to generate better results for the group.  

 

Due to our relative success with leading group interaction and discussion using VBOT, this short 

study suggested that a move into formal classrooms would be both practical and fruitful.  

 

4.2 P2 – Second Pilot 

P1 was our initial trial. While P1 was provisionally successful in teaching the students about 
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complex systems and computational fluencies (see Berland & Wilensky, 2004), it was most 

helpful in highlighting the content and form of what we had missed. In that short session, we 

found major problems both in methodology and design. Our software was too limiting, the 

assessments weren't adequately effective for evaluating fluencies, and the activities did not 

optimally exploit the content. Thus, the transition from P1 to P2 involved substantial 

development over the following year. We redesigned the software and the assessments. Our 

design philosophy and process is detailed in Chapter 7. Given these changes, P2 was designed to 

test the new technologies and redesigned VBOT systems towards teaching complex systems and 

computational fluencies. The research methodology changed considerably in the following ways: 

1) we decided to focus more on the teacher-facilitator, 2) administer more comprehensive 

questionnaires, and, most importantly, 3) log all contact with the VBOT system. It was difficult 

to practically evaluate the actions of the students when we were limited to analyzing their actions 

only on a shared space.  

 

Description 

P2 ran for three days (80 minutes / day) in a single 6th grade science classroom. The classroom in 

which we worked was typically teacher-centered; the teacher led the class in both lecture and 

discussion. This contrasted with the relatively open discussion and interaction that characterizes 

the classroom when using VBOT. The VBOT activity was situated in class time usually 

dedicated to astronomy. As such, the VBOT activities were designed around an astronomy 
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metaphor, the “Moon-Tag” activity described in Chapter 2 was contextualized in this 

astronomy setting. This class only used virtual VBOT architecture because we wanted to focus 

on testing the redesign of the architecture and activities from P1. We planned on using the 

underlying structure provided by the architecture and activities to compare physical and virtual 

environments in the final implementation. Our main research questions were:  

 

• How did the class participation patterns differ between a baseline lesson and the VBOT 
activity lessons? 

• Did the target students show increased decentralized and non-deterministic thinking 
during and after using VBOT? 

• How can any observed changes in complex systems fluency or classroom patterns of 
participation be accounted for?  

 
How did new or improved aspects of the VBOT architecture support observed changes? 

 

Participants 

This study included 26 students, each of whom participated in the VBOT activity for 80 minutes 

a day for 3 days. Three students missed one or more lessons. According to the teacher and 

administrators, this class was a representative sampling of 6th grade students at the school. The 

school was an urban public middle school (approximately 40% White (Non-Hispanic), 40% 

Black, 20% Hispanic, 35% low income).  

 

The students worked both individually and in pairs. Based on both Harel & Papert’s (1990) and 

Kafai’s (1995) work in which they show the positive interaction effects of pairs work in 
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programming / learning activities, the VBOT activity was designed with students working in 

pairs to maximize the interaction in the classroom. The class used the orbit, flocking, and Moon-

Tag activities described in Chapter 2. 

 

Facilitation and Context 

The teacher in this classroom was both supportive and excited. However, as a relatively new 

teacher, she had not yet mastered whole-class discussions; students did not help each other out-

of-turn. There was some evidence of an IRE structure to coverage of formal scientific material. 

However, the teacher was excited to learn how to create a more engaged and connected 

classroom.  

 

The author was primary facilitator of the VBOT activity. The teacher helped students with 

technical issues, organized the classroom, and assisted in classroom management. In addition, 

two of my fellow researchers aided the teacher and me by addressing technical issues and 

organizing data collection. 

 

Data Collection 

Each student completed a pre-test and a post-test.  The tests were designed to assess the students’ 

complex systems fluency and technical fluency. The pre-test and post-test were similar; they 
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consist of sections on robotics, complex phenomena, and flowcharts (meant to be roughly 

analogous to the visual programming environment). The specific content of some sections was 

changed slightly from pre-test to post-test to avoid identical responses. The post-test also 

included VBOT behavior circuit building questions in which the students were required to draw 

4 visual circuits on a piece of paper given contextual information and a local goal.  

 

The social network data collection was designed to isolate and describe the interaction patterns 

of the students. The social network links were recorded in two ways. On the baseline (non-

VBOT) days (Day 0), a researcher recorded every verbal interaction in the classroom during the 

hour-long lesson through field-notes. These interactions were verified through video analysis. 

The network included only bi-directional conversations, and did not include the teacher, who 

lectured to the entire classroom and spoke to most of the students individually. This data was 

collected to understand the interaction patterns in the classroom for further analysis; interaction 

patterns are discussed in Chapter 6. On VBOT activity days (Day 2 and Day 3), the links were 

recorded by the students themselves (in a daily questionnaire) and partially verified through 

video analysis. The change in recording methods was because of the significantly higher volume 

of student interactions during the VBOT lessons, compared to the baseline lessons. 

 

Both during the activity and on the baseline (non-VBOT) days, the students left their seats only 

at the beginning or end of the lesson, or to go to the bathroom. Furthermore, the seating 

arrangement was not modified during the data collection. Thus, it was possible to base the social 
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network diagrams on this seating arrangement; the social network diagrams show students in 

the same relative positions that they occupied in the classroom itself. All activities with VBOT 

were logged on a central server and videotaped by a researcher. Two cameras were used at all 

times, one of which was stationary, one of which captured activity in the classroom and 

interviews of students. The interviews were designed to elicit information on students’ technical 

and complex systems fluencies as they acted in the VBOT activities. In the interviews, 

researchers ask students questions about both the technical process and the student’s reasons for 

their actions. 

 

At the end of each of the three lessons, students completed a short (~5 minute) questionnaire. 

The daily questionnaire was designed to elicit information about the students’ social interactions, 

evaluate the progress of the VBOT activity, and diagnose any material problems with the 

activity. These questionnaires asked students to describe one element of the VBOT activity that 

they had enjoyed and one they had disliked during the day. We also asked the student to list the 

students with whom s/he had discussed VBOT and to list other students from whom s/he had 

received technical help. Answers to this question were used to create the social network 

diagrams discussed above. The final question focused on learning by asking students to describe 

something that s/he had learned in the course of the VBOT activity. 
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Classroom patterns of participation in P2 

Of particular interest in P2 was the change in classroom participation; this led us to try to 

organize the social space similarly in the final implementation. In P2, there was a highly 

significant difference in the type and count of verbal interactions in the classroom (n=21, 

p<0.01). In the observations of the classes both before and after our implementation, the teacher 

was the primary focus of the class. Students were encouraged to ask questions of each other, but 

few did. The explicit teacher-driven goal of the students during these classes was to “take good 

notes which will be graded later.” These notes would also provide the basis for a test that the 

students were to take a week after the VBOT activities ended. 

 

Figure 4-1: Day 0 Spatial Social Interaction Network 
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Figure 4-2: VBOT Day 2 Spatial Social Interaction Network 

 

Figure 4-3: VBOT Day 3 Spatial Social Interaction Network 

 

 

Figure 4-1 shows verbal activity classroom for the class the day before the students began the 

VBOT activities (D0).  Figure 4-2 shows verbal activity during the second day of VBOT 

activities (D2). Figure 4-3 shows verbal activity on the third (and last) day of VBOT activities 

(D3). Again, all of the links are two-way conversations. 
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The classroom dynamic changed in the two situations. In D0 situation, students asked 

questions only of those students they judged to be “experts.” In the D2 and D3 situations, 

students talked to many of their fellow students surrounding them. Table 4-1 shows the relative 

density of links on the three days. A density of 1.0 would mean that every student talked to every 

other student at least once. A density of 0.5 means that half of the possible links were made, 

where a link is defined as at least one verbal interaction between two students. A density of 0 

means that no student talked to another student.  

 

Table 4-1: Relative Network Density 
 

Unfortunately, we were not able to collect this data in the final implementation due to the 

difference in scale. Surveying, identifying, and verifying social network data at this scale in the 

final implementation would not have been feasible, as collecting it in this manner requires a ratio 

of roughly 4 students per researcher to collect and verify conversation data over time. 

Anecdotally, the patterns appeared similar in the final implementation. 

 

4.3 FI – Final Implementation 

The transition from P2 to the final implementation involved refinement of the assessments based 

Day Density of Network 
Day 0 0.03 
VBOT Day 2 0.29 
VBOT Day 3 0.37  
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on our data from P2, refinement of the virtual VBOT system, revision of VBOT activities, 

and, most importantly, addition of the physical VBOT architecture and robots. We did several 

brief tests at Northwestern with small numbers of graduate and college students on the physical 

VBOT architecture, but the final implementation was its first exposure to the classroom. Unless 

otherwise stated, data collection and assessment were unchanged between P2 and the final 

implementation. 

 

In this study, we used the VBOT system in two Chicago public schools with contrasting 

contexts. We worked with two 8th grade classes from a neighborhood middle school on 

Chicago’s northwest side, heretofore referred to as Old Grove. We also worked with two 8th 

grade classes from a major public high school on Chicago’s southeast side, heretofore referred to 

as Bayville.  At each school, one class enacted the virtual VBOT and the other used physical 

VBOT. 

 

The two schools have significantly different atmospheres and makeup. We selected these schools 

for their diversity to help demonstrate the applicability of this project to a variety of settings. In 

this section, we will describe the two schools, the teachers at the two schools, and our data 

collection methods in the two environments. 
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FI – Data Collection and Methodology 

The primary instrument in this research was classroom implementations using the VBOT system. 

A researcher co-taught the class with the regular teacher. Each of the four enactments lasted for 5 

school days each. This was designed to be a complete weeklong drop-in unit for a middle school 

science teacher.  There were two schools, each of which had one class using the virtual VBOT 

system and one class using the physical VBOT robotics system. One school had separate 

teachers conducting the different classes, and the other school had only one teacher for both 

classes. No students overlapped. Each class was made up of 20-30 8th grade students. Two of the 

classes worked for one week on physical VBOT systems, and the other two spent the week on 

virtual VBOT systems.  

 

The students had taken pre-algebra before this pilot, because of the amount of mathematical 

understanding required to successfully build VBOT circuits. No additional technological 

expertise was needed or expected. The fill-in unit is designed to teach computational and 

complex systems fluencies through the mediating subject matter, although no technological 

changes were made. The teachers led discussions connecting the subject matter to the biological 

systems content that they were otherwise teaching. Like print fluency, computational and 

complex systems fluencies address a variety of content domains. Just the act of reading is distinct 

from the content that is read, the present study does not require the content of the lesson to 

reflect the apparatus.  
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Due to the heavy involvement of the research as facilitator of the activities, there was only 

minimal teacher professional development prior to the enactments. Neither the teacher nor the 

researchers explicitly taught students to build their robots, but rather helped them to understand 

the techniques and explore possibilities. The teacher and researcher both worked to encourage as 

much diversity as possible in building behaviors. The role of the teacher involved organization, 

management, and facilitation of discussion and reflection. These tasks did not require extensive 

training with the software, the methods of using VBOT, or leading the activities. 

 

The data collected for this study consists of: 2 videotapes of each implementation day, full 

activity logs, pre-tests, post-tests, daily questionnaires, pre-interviews of 4 students per class, 

post-interviews of those same 4 students per class, pre-interviews of all teachers, post-interviews 

of all teachers, and 3 sets of researcher field notes per class.  

 

The interviews were conducted individually with four students from each class, both before and 

after the activity. The students were selected to represent a range of gender, ethnicity, and 

scholastic performance. With this in mind, one student in each class represented each quartile of 

scholastic performance. The interviews were semi-clinical interviews. The interviewer, 

proceeding from a set of questions (listed in Appendix 2), allowed the student to digress, but 

only briefly. Each interview lasted between 20 and 30 minutes. Both pre-interviews and post-

interviews consisted of one question on computational fluency, one on complex systems fluency, 

one on VBOT, and one on the relationship between these topics. In the pre-interview, the VBOT 
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question was adapted such that it is answerable without knowledge of the VBOT GUI. 

 

The classroom enactments were videotaped using two cameras at all times.  One camera focused 

on the activity of the classroom as a whole, observing what is being discussed within the 

classroom, which student is talking, and the actions of the teacher and facilitator. This is the 

reference videotape. The other camera focused on one group of students at a time, recording the 

behaviors and interactions of the students who are using the system in the activity. The second 

camera was used to conduct "in situ interviews," in which a cameraperson asked students 

individually to describe and narrate their actions as they participated in the activities. For 

instance, when students used VBOT, the activity interviewer repeatedly prompted the student to 

describe not only every action taken, but also the motivations for taking those actions. Through 

the activity interview, one can glean some understanding of how the student is working. While 

this method is useful, it is limited, because the questions may influence the students’ behaviors. 

However, the information gained was valuable to decipher the other actions taken by the student 

when examining the activity logs. Furthermore, activity interview data is often self-explanatory 

to non-expert observers attempting to understand how students are working. 

 

In addition to collecting data through videotaping, researchers took some field notes. These field 

notes are used orient to the videotape and activity log data but are not a primary source data. Our 

field note data is not as useful in these implementations because of the high volume of verbal and 

technical information and the use of the camera and activity logs. 
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The last form of qualitative data collected was in the form of a daily questionnaire. The daily 

questionnaire had several uses: collecting self-report data on student learning; self-report data on 

conversations the students had with VBOT; potential bugs in the technology; and potential 

problems with the lesson or facilitation. These daily questionnaires were similar to the 

questionnaires used in P2. This questionnaire is provided in Appendix 2. 

 

The majority of the quantitative data came in the form of activity logs. Every action taken with 

the VBOT system was recorded and logged to a central server, where an action is defined as any 

change the state of the student's vbot or VBOT GUI. The students were informed of the logging 

of the data. The other quantitative data collected were the pre-activity tests and the post-activity 

tests. As in the pre-activity and post-activity interviews, the questions maintained the same 

content domain and structure between the pre-activity and post-activity test, although the actual 

content of the questions differed. Every participating student took both tests. The tests were 

about 20 minutes long. 

 

FI – Daily Schedule 

Each day of the enactments was held in a full classroom for an hour. In both the virtual and the 

physical VBOT classrooms, we started the day with a short introduction (less than 5 minutes), 

and then used the technology for the rest of the day. During the activities, students were allowed 
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to talk and interact to the limit of the discretion of the teacher. We list the daily schedules 

below: 

 Virtual Classes Physical Classes 
Day 
1 

Single-user VBOT. We taught 
familiarity with the system, basic 
operation, and did a basic activity we 
call “orbit.” In orbit, all students 
programmed their vbots to 
independently orbit a light source. The 
students learned about light sensors, 
motors, and mathematical operations. 

Day 
2 

Multi-user orbit and flocking. We 
started the networking features, and 
students tied these into what they knew. 
Students learned to orbit and flock as a 
group by learning how to use the robot 
sensors. 

Single-user PVBOT. We taught 
familiarity with the system, basic 
operation, and did a basic activity we 
call “orbit.” In orbit, all students 
program their robot to independently 
orbit a light source in the physical 
world. The students learned about light 
sensors, motors, and mathematical 
operations. 

Day 
3 

Simple tag. The students built several 
circuits and used their vbots to play a 
game called “simple tag.” In simple tag, 
you get points for touching other robots, 
as many as possible. 

Multi-user orbit and flocking. Students 
learned to orbit and flock as a group by 
learning how to use the touch sensors 
with the light sensors. 

Day 
4 

Day 
5 

Moon tag. This is game described in 
Chapter 2 in which students must 
organize to move rocks from the outside 
border to the center of the screen. 

Bot soccer. This is game described in 
Chapter 2 in which students must 
organize to play bot soccer as a team. 

Table 4-2: Syllabus overview 
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Context – Old Grove School 

The research was conducted in two classes at Old Grove School, encompassing roughly 50 8th 

graders between the two classes. One class used only the virtual VBOT environment, and the 

other class used the physical VBOT robots. Old Grove exhibits strong international diversity. 

According to the school’s website, 26 nationalities are represented in the middle school grades. 

Among our participants, we had multiple students from every inhabited continent but Australia. 

This reflects, in large part, the diversity of the northwest side of Chicago. The school is 

approximately 50% White (Non-Hispanic) with 40% of middle school students classified as low 

income. According to the principal, the school has risen from the bottom quartile in academic 

performance of non-magnet middle schools in the city to the third quartile in the last few years. 

The school is a small K-8 school with approximately 350 students. Both of the teachers that we 

worked with had been at the school for more than 30 years and were considered leaders in the 

school, according to informal discussions with the principal and other teachers. 

 

The school serves grades K-8, and it has a warm feel. There is an overall T-shape to the entire 

school, and everyone must pass through the junction to get from class to gym or lunch. Students 

of all ages meet in the hallways in what appears to be a friendly and open atmosphere, however 

open discussion in the halls was discouraged, as it could get congested and loud. The stem of the 

T holds the gym, library, cafeteria, and science laboratories. One wing of the T holds the older 

students and the front office, and the other wing holds the younger students. There is art created 

by students on every open surface, and I had the opportunity to witness presentations by students 
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in the main area. Given the frequency with which these occurred during my short time in the 

school, they appear to be a normal part of the school culture.  

 

While we were there, there was another research group in the school from University of Chicago, 

exploring “the most diverse” schools in the city. We had little contact with them, but the school 

seemed to be research friendly. 

 

Old Grove Class One (Virtual) – Mr. Wilson 

Mr. Wilson taught the class that used the virtual VBOT system. He’s been a teacher at Old 

Grove for more than 40 years, serving in almost the exact same position throughout his tenure. 

He’s among the most senior teachers at the school, and has been friendly to research projects in 

the past. In the pre-interview, he described a deep affection for both gadgets and educational 

technology. He has some plans to retire soon, though he looked and acted younger than 

retirement age. 

 

One of our first observations about Mr. Wilson’s classes was the high frequency of student 

discussion, sometimes appearing to nearly get out of control. His students were allowed to talk 

freely, provided the talk was on topic. He rarely punished his students, but he discussed obvious 

transgressions with them. Overall, his class seemed highly motivated, and they were excited by 

the prospect of using robots and games in the classroom. Two students brought a robot of their 
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own to show me on the second day of the implementation, but it was confiscated after they 

acted inappropriately with it, by running the robot during one of Mr. Wilson's later lectures. 

 

The classroom had information everywhere. Often, a TV and computer were on, while posters 

about 4 or 5 different domains, either created by students or commercially published, covered 

every available space. During the implementation, posters fell off of the wall and onto our 

cameras or camera-people more than once, although no data was lost. In non-VBOT classes, 

students would occasionally consult a poster or a reference book, but more often, students would 

hop out of their seats to check something on the computer (if Mr. Wilson was available to 

supervise). 

 

Old Grove Class Two (Physical) – Mr. Cleveland 

Mr. Cleveland has also been a teacher at Old Grove Elementary for about 30 years. For 25 of 

those years, he taught 3rd grade. He recently made the switch to 8th grade, but he teaches in a 

manner more familiar to 3rd grade than 8th grade. His class is formal and orderly, and students do 

not talk out of turn. However, the class also engages in whole class discussions mediated by Mr. 

Cleveland. Mr. Cleveland considers himself pro-technology, and he spends time keeping up with 

classroom technology, but I did not witness any use of computers. He liked to use video 

demonstrations, and he played computer games on his laptop on free periods. Moreover, he had 

people in his 3rd grade classroom work with educational robotics several years prior, and he had 
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enjoyed using them. He freely indicated that he was excited about VBOT coming into the 

class. 

 

Mr. Cleveland had a sparse, organized, focused classroom. There was little information on the 

walls, in stark comparison to Mr. Wilson. From my observations, his students tended to be 

engaged, although there were a few students who clearly bristled at the structure. 

 

Like Mr. Wilson, Mr. Cleveland indicated his plan to retire within the next 10 years, and he was 

also quite youthful appearing and quick to laugh and make jokes with fellow teachers. Mr. 

Cleveland has a clear dichotomy in his persona – he’s tough but fair in the classroom, and he’s 

easy going and funny with adults. 

 

Context – Bayville School 

Bayville School provided a contrasting environment to Old Grove. The school is a high school 

rather than a middle school, and it encompasses grades 7 through 12. The school is situated in an 

urban setting on the southeast side of Chicago. It is known in the city as a good non-magnet 

school with solid academic performance. The school is approximately 95% African-American, 

with 70% low income. Halls at Bayville are either lined by lockers or giant murals, though there 

is an area in the middle school reserved for winners of an art contest. The school is large, even 

by Chicago standards, with over 1000 students. 
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All doors are guarded by a metal detector and armed guards, though, by most accounts, there is 

little violence. One of the students in our study was robbed during school hours inside the school, 

but all students said this was rare. One of our classes was postponed as students gave depositions 

to the police regarding this incident, but, by all accounts, this event was unusual. 

 

Bayville Classes One and Two (Virtual and Physical) – Ms. Adams 

Ms. Adams taught both the virtual VBOT class and the physical VBOT class at Bayville. She has 

an unmistakable rapport with her students, who seem almost protective of her. She hasn't been 

teaching as long as her colleagues, as she became a teacher after a mid-life career change; she 

has teenaged children who attend the school.  She appeared to represent a mentor to many of her 

students. All of her classes were held in a traditional biology laboratory, with faucets, burners, 

and lab tables. The room smelled faintly of formaldehyde, although no chemicals had been used 

recently in the classroom. 

 

She was excited about the possibilities of technology in her classroom. Ms. Adams had actually 

used LEGO Mindstorms robots before in a summer class she had taught at Bayville. She “never 

figured them out entirely” and didn’t feel entirely comfortable with them at first, although she 

was pre-disposed to like them. She indicated that she was excited at the possibility of new ideas 

for her classroom. Moreover, another learning sciences research group at Northwestern was also 
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working with her at the same time in another one of her classes. Classes that I observed 

before our implementation felt much like a typical 11th grade biology classroom. Students had a 

much material to cover, and were working diligently to complete it. The purpose of the class, 

according to Ms. Adams, was to prepare students who would not otherwise be prepared for a 

tough high school biology class anywhere in the city, including magnet schools. It appeared that 

the discussions were at a relatively high level compared to the Old Grove classes, with much less 

student interaction and discussion. I observed occasional labs, in which students measured a 

physical or biological phenomenon and produced a rudimentary lab report. 

 

4.4 Pre-test and Post-test  

In a study of this small size, it is difficult to make claims regarding the statistical validity of 

performance evaluations. Pre-/post-test measures are used to gain insight into individual 

students’ learning and to find patterns in how those students interact with the VBOT system. 

Chapter 5 investigates the results of these post-tests and Chapter 6 investigates these patterns. In 

this section, we describe the pre- and post- test instruments. Moreover, as this study has learning 

goals of computational and complex systems fluency, our instruments are designed to focus on 

these areas individually and, as such, we do not aggregate the scores of the different questions. 

Instead we look for patterns within and across questions.  The full text of all questions can be 

found in Appendix 2. 
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Question 1 (Agent/Aggregate Understanding) 

Question 1 was designed as a basic complex systems competency question.  The question was 

designed by using Jacobson & Wilensky’s (2006) hierarchy of complex system understanding. 

The question presents a picture of birds flying in a V-shape (see Figure 4-4); one of the birds as 

an arrow pointing to it with the name "Shelby." The name Shelby was chosen because as a 

gender-neutral name. The description of the picture in the question reads, "When birds fly south 

for the winter, they often form a V-shape. You might have seen this in the sky. This is a picture 

of flock of birds flying in V-shape."  

 

The first question that follows the text (Q1.A.) reads, "How does Shelby, the bird, know where to 

fly in the V-shape?" The use of the word "know" implies there's a conscious decision on the part 

of Shelby the bird to fly in the V-shape; this is meant to be subtle discouragement from answers 

such as: "s/he doesn't know", "it is instinct", or "s/he just does." Wilensky & Resnick (1999) 

showed that most people respond to questions of biological 

systems from a deterministic-centralized perspective; that is, they 

posit that a leader controls the system.  

 

Q1.B asks, " How do the birds know where to go when they are 

flying in a V-shape?" Note the perspective difference between Figure 4-4: Shelby flocking 
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asking how Shelby flies and asking how birds fly; this question is designed to elicit answers 

that consider that aggregation, distinct from the agent-based perspectives in Q1.A. 

 

Q1.C asks, "Why do bird fly in V-shapes?" This question was designed to elicit students’ 

opinions on the value of aggregation to an individual agent. Levy & Wilensky (2008) describes 

student understanding of the relative utility of acting as an agent in an aggregation. Her work 

informs the design and assessment of this question by categorizing middle school student 

understanding of the different facets of agent, aggregate, and “mid-level” understandings in 

biological systems. 

 

Question 2 (Flowcharting) 

The VBOT system uses a flow metaphor towards circuit-based logic programming (as discussed 

in Chapter 2).  Toward that focus, Question 2 is a flowchart question in which students had to 

both interpret and modify a simple flowchart.  This question was designed to measure 

competency with flow diagrams in general. Question 2 was designed to evaluate a students' 

ability to do simple branching logic (see Chapter 2) and program logic. This question begins with 

self-reportage by the student of whether s/he has ever "seen a flowchart before."  We can 

evaluate a students' perception of his or her competency along with his or her actual competence. 

 

Question 2.B. asks the student to read the flowchart as a list.  If the student understands 
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flowcharting, the problem is simple.  Indeed, students either clearly succeeded or clearly 

failed on this question.  Less that 2% of answers were judged partially correct. 

 

Question 2.C. asks the student to modify the flowchart and add one operation and one leaf to the 

flowchart.  This question is designed to determine a student's ability to modify flowcharts.  To 

complete the answer, a student can add one directional arrow and one hexagon.  We 

hypothesized that the different ways in which students incorrectly approached this problem 

might lead us to better understand patterns of student interaction with the VBOT system. Again, 

however, there was little ambiguity with less than 2% of answers receiving partial credit. The 

vast majority of students either answered the question entirely right or entirely wrong. The 

wrong answers mostly stemmed from an inability to connect the flowchart "wires" properly. This 

is a skill directly addressed with VBOT. 

 

Question 3 (Sensors & Motors) 

Question 3 was designed to test student understanding of sensors and motors. However, due to 

poor wording, the students’ answers proved unhelpful to test any competence or understanding.  

Less than 10% of students’ answers mentioned sensors or motors in any way. It is included in the 

Appendix 2 only for reference.  
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Question 4 (VBOT) 

Question 4 requires students to build a VBOT circuit on a paper facsimile of an actual VBOT 

circuit board. Question 4 describes four different scenarios and asks students to sketch out the 

circuit they would build for those scenarios as seen in Appendix 2. The four questions were: 

• 4.A. Wire up a vbot to go in a loop around the screen. 
• 4.B. Wire up a vbot that would make a smaller loop. 
• 4.C. Wire up a vbot that makes either loop using NO LIGHT SENSORS. 
• 4.D. Wire up a vbot that makes either loop using NO VBOT/BUMP SENSORS. 

 

Although the transition from the technical environment to the paper post-test is difficult, a 

student who can program advanced circuits in VBOT should be able to answer all four questions. 

On average, students answered two questions right and two questions wrong. In this question, 

there was only limited partial credit available. Only one of two or three circuits would be correct 

answers for each of these questions. If the answer corresponded to those circuits, students earned 

credit; if not, they did not. On every answer that was non-standard (around 10% were neither 

obviously right nor obviously wrong), the circuit was tested in VBOT. Only three of these 

circuits earned partial credit.    
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Chapter 5:  Student Tinkering and Student 
Sharing 

In this chapter, we examine the ways that tinkering and sharing are interrelated with performance 

and activity in VBOT. Towards this end, we will examine four students in more depth, reviewing 

the ways that the student shared or tinkered, and evaluating that relationship. There is a 

fundamental argument that by sharing and tinkering, these students came to understand VBOT 

better, came to succeed on post-test measures, and showed reliable understanding of the target 

material. 

 

The chapter is structured in the terms of computational fluency described in Chapter 3. In that 

chapter, computational fluency is described as being cognitive, material, and social in nature. 

Cognitive fluency is the ability to think computationally; material fluency is the ability to 

manipulate computational artifacts; and social fluency is the ability to communicate effectively 

about computation. Toward computational fluency, we evaluate students on their ability to build 

circuits in VBOT (material fluency), to use VBOT understanding in disparate tasks (cognitive 

fluency), and to communicate with both their teachers and fellow students about VBOT (social 

fluency). Throughout the chapter, computational fluency will be specifically highlighted and 

evaluated.  

 

This chapter uses three main sources to evaluate claims of relative computational fluency: 
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student logs, interviews, and pre-/post-test data. Case studies are constructed from a 

combination of interview data, log data, and supporting classroom video data. The case studies 

are intended to highlight aspects of social fluency through communication and cognitive fluency 

through process. Process data is generated by following the students’ thinking as they attempt to 

solve tasks; this is used to describe the relevance to their cognitive fluency. 

 

The four case studies represent particularly rich data sets in which tinkering or sharing is clearly 

manifests. No argument can be made for the “typicality” of these students. Recall from Chapter 4 

that we selected students to interview based on a range of teacher-perceived aptitude and gender. 

In this chapter, we only discuss students from the middle and lower end of the teacher-perceived 

aptitude. As this is a biased selection, we present statistics about all of the students in order to 

show the relationship between these data and the remaining students. It is interesting to note that 

we found little significant correlation between pre-test and post-test scores, and no correlation 

between gender and performance.  

 

The case studies should be read as exemplars of particular modes of using VBOT. The first case 

study shows Patrick, who tinkers in VBOT. Patrick’s activity shows a path through the VBOT 

activities that maximizes tinkering with technology in order to understand it. His methods of 

using VBOT show the ways in which using VBOT can help one to think computationally. 

Joshua, on the other hand, shares much more than he tinkers. Joshua’s case is an example of one 

way that a student that is not normally very social might use VBOT as an apparatus to 
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disseminate and collect information, in turn gaining social computational fluency. Alicia and 

Dania are then presented to show two relationships between tinkering and sharing and the ways 

that tinkering might affect sharing and vice versa. In each section, statistics are presented to 

show the correlations between tinkering, sharing, and performance for the classes. 

 

The vast majority of students learned how to program in VBOT during the VBOT intervention. 

No student knew how to program in VBOT on day 1, and only two students showed any 

familiarity with even the most basic computer programming skills. By the final day, all of the 

students could build functional circuits in VBOT. While the data presented demonstrate these 

learning gains they do not necessarily suggest the causal argument that tinkering and sharing 

increased performance. Instead, the data show the ways that tinkering and sharing are different 

methods by which students exhibit and gain computational fluencies.  

 

5.1 Tinkering 

The term tinkering derives from Hancock (2003), who describes different methods in which 

students use live-programming systems. This, in turn, is derived from Turkle & Papert (1991), 

who detail a plurality of methods, such as bricolage, with which students can program 

effectively. Turkle, Papert, and Hancock argue that the methods of tinkering and degree to which 

students tinker reflects the manner in which they understand the task of programming. In that 
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way, by analyzing and measuring the tinkering of students, we are evaluating the cognitive 

fluencies of those students, as described in Chapter 3. 

 

We define tinkering as any manipulation of the circuit that results in a semantic change in the 

circuit. A semantic change is any change that produces different behavior in a vbot. Since some 

of the students spent far more time on task and built far more circuits (Avg. circuits built: 1127, 

σ = 906), it was not appropriate to measure tinkering in terms of number of circuits built. Thus, 

tinkering was measured in terms of the number of semantic changes divided by the number of 

total interactions with the system.  Measuring tinkering in this way illuminates the rate that 

students were changing circuits over the entire time that they were using the system. That is, as 

each group used the system differently and for different amounts of time, it was ineffective to 

look at raw measures instead of averages.  

 

However, looking at averages negated the value of "more free play." Unfortunately, the design of 

the study prohibits any clear separation of "free play" and "directed play," as discussed in 

Chapter 3. As such, raw time on task is factored out. To illuminate this point, consider that in 

virtual class, one group produced over 4000 individual circuits over the course of the week, 

while another produced only 1000. Both groups took part in all activities. The range of circuits 

produced, and the amount of circuits produced varies widely. This tinkering metric averaged 

0.97 tinkers per circuit, with a standard deviation of 0.18.  
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Patrick, Tinkerer – Virtual Class, Old Grove, Mr. Wilson 

Patrick is used as an example of a student tinkerer. Patrick was a shy, curly-haired, short student 

who smiled often and laughed quietly. He was one of the few white, American students in the 

mostly international class. Patrick is slightly overweight, and every day of the activities, he wore 

essentially the same outfit: jeans with a t-shirt with an open  plaid button-down over the t-shirt. 

His manner implied mischief, but he didn’t seem interested in attention, and he was enthusiastic 

about our efforts. Patrick often grins in a knowing manner, but he was relatively reticent when 

questioned directly. Patrick is one of the lowest achieving boys in the Mr. Wilson's class.  

 

In response to pre-test question 2 (flowcharts), Patrick was the only student in his class to mark 

that he did not have any experience but also correctly finish and modify the flowcharts. Unlike 

Patrick, most students reported experience with flowcharts, but only correctly answered fewer 

than half of the flowchart questions. This implies that while Patrick lacks confidence, he is 

comfortable with the types of logic used in flowchart diagrams. 

 

During the pre-interview, Patrick showed an aptitude for detail. His pre-interview task was 

organized as such: Patrick received three yellow notecards marked "IF", "THEN", and "OR 

ELSE," which corresponded with three blank blue notecards. He was then asked to teach a robot 

how to spread out. His answer was "IF you are greater than or equal to 5 feet from any object, 

then spread out, or else do not spread out." When I asked him how this hypothetical robot would 

or would not spread out, he said that the robot "could move away from the object until it was 5 
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feet away from that object." His answer was among the most "programmatic" of all of the 

pre-interviews, in that it gave a specific set of instructions to a robot that were triggered on a 

discrete condition. His pre-interview and post-interview both show that he thought carefully 

before answering each question. His answers were specific in a way that implied he was familiar 

with computers, though he did not have any apparent background knowledge about robots or 

programming.    

 

Throughout the intervention, Patrick's group was unique in that they spent the first four days 

tinkering with a few high level operations, exploring several unique circuits with each operation. 

Out of the groups in his class, his had the second highest percentage of high-level operations per 

circuit and the second lowest percentage of unique operations per circuit. Most of the operations 

that he added to the board were high-level operations, and there were generally few operations 

on the board at a given moment. That is, he would try out the more advanced operations, such as 

IF, with only a few other operations on the board at the time. This implies that he was engaging 

in a careful, controlled exploration of these operations, as he would create low-density circuits 

that focused on testing out the use of an operation. These circuits would generally be less useful, 

because high-level operations in general do not work independently; they are logical operations 

that require other operations to be useful. 

 

Across the students we generally see two types of tinkering; students either ‘accreted’ or ‘tested’ 

operations.  When students accrete operations, they add them to an existing circuit.  When 
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students test operations, they must use a nearly clear or newly wiped board (for more 

explanation on this, see Chapter 2). Patrick's group tested operations repeatedly and rarely 

accreted them. I'll further discuss these classifications of students in the next chapter. 

 

Patrick improved the effectiveness of his tinkering by sharing his circuits. On the final two days 

of the simulation, he began to share his ideas with his two sets of friends in the classroom, all of 

whom were boys. The friends designed a set of behaviors together to solve a set of challenges 

that were posed by the game. Working together, they came up with circuits that were both 

appropriate for their local goals and included advanced VBOT operations and features. The 

groups' circuits all changed together in similar ways while remaining independent and unique for 

the majority of the lesson. Once another group, made up of girls, started doing well in the game, 

Patrick went to them to ask how they designed their circuits.  Showing good comprehension by 

this point, Patrick followed their example in building a new type of circuit more targeted to the 

lesson. Though the teams only communicated once about the design of their circuits, both 

eventually mastered an ad hoc language in order to verbally communicate their circuit design. 

 

Patrick did well on his post-test. He got 3 out of 4 VBOT questions correct, and he correctly 

answered all of the flowchart questions. Even though he was regarded as a sub-par student, his 

interest and the adaptability of the tool to his apparently natural tendency to “tinker” allowed him 

to excel. On his post-interview, Patrick expressed that VBOT had been "really cool!"  
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Tinkering and performance 

Using our specific tinkering metric, we found that tinkering was positively and significantly 

correlated (n=33, p< .05, F=5.0) with post-test VBOT programming performance (question 4).  

We performed a linear stepwise regression of post-test performance against pre-test performance, 

the tinkering metric, classroom-effect, teacher-effect, and school-effect. In that case, only 

tinkering was positively correlated. All 33 groups across the 4 classrooms were included in this 

regression. Pre- and post-test performance were averaged by group.  

 

Essentially, this implies that students who tinkered more were better at building VBOT circuits, 

regardless of their teacher, classroom, school, or pre-test scores. This does not show that 

tinkering caused these students to do better, but that there exists a more robust reason for how 

and why they tinkered than a student's previous performance or the effect of the teacher. Indeed, 

the standout students weren't necessarily the students who were identified as being "good 

students." Patrick serves an example of this.  Moreover, Patrick's example provides a possible 

argument as to how tinkering might improve a student's computational fluency materially, 

cognitively, and socially. Patrick improved materially: he did very well on the post-test, building 

working circuits. His cognitive fluency was indicated by his scientific approach to the circuit 

building, as seen in his testing out of complex operations in simple circuits. His social 

computational fluency is exemplified by his improved communication with his fellow students 

when describing and discussing circuits. 
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5.2 Sharing  

Sharing in VBOT is defined as two groups building circuits with the same semantics, whether 

intentionally or unintentionally. Our sharing metric measures how many of a student’s fellow 

students in the class had a circuit with the same semantics. For instance, if student A created a 

circuit in which the left motor was set equal to the right light sensor, and student B created a 

circuit in which the left motor was set equal to the right light sensor plus zero, the two students 

would have the same circuit, semantically, and they would be counted as “sharing.” However, it 

was intractably difficult to measure how many students actually “shared” circuit by discussing 

them or looking at other people’s circuits, in classrooms – the crosstalk of 30 students in a 

classroom is indecipherable. Furthermore, even this analysis would overlook the number of 

students who looked at each other’s screens. Without expensive and sophisticated equipment, no 

“human” model of sharing was measurable. Thus, we use the computational analysis of 

semantically identical circuits to analyze this. 

 

Some educators might argue that this is “cheating” rather than “sharing”. To rebut this, we argue 

that we encouraged the copying of circuits, if only because the nature of the activities was that 

any two agents will need to have a different set of behaviors to do well in any of the tasks given. 

Only on day one and part of day two would it be beneficial to have the same circuits as 

everybody in the classroom. However, variations on circuits are consistently useful to the 

students. To this end, sharing implies adoption of a circuit paradigm rather than a direct copy.  



    

Chapter 5: Student Tinkering and Student Sharing 

 

118 

Joshua, Sharer – Physical Class, Old Grove, Mr. Cleveland 

Joshua is a student who shared circuits extensively during his VBOT experience. His story 

illustrates how sharing might organize the VBOT experience. Joshua is an athlete who often 

wore basketball jerseys and spoke to the researchers of his experience on the middle school 

basketball and baseball teams. Joshua is of middle-eastern descent, and he has curly hair. His 

slight build and height makes him seem meek. During the VBOT intervention, he did not often 

speak informally to his classmates, though he was consistently good-natured. During the 

intervention, he endured constant teasing, often because he was the only student from his 

religious minority in his class, which is a fact that he also mentioned in the interview. He 

expressed feelings of alienation from both school and his peers, and was referred to as “a slower 

student” by his teacher, who said that he got B’s by “trying really hard.” During the pre-

interview, he was reticent, and almost every answer he gave was a simple “yes” or “no.” As a 

result, he did not successfully finish the IF/THEN question on the pre-test. 

 

Joshua’s pre-test performance was poor; not only did he fail to complete the IF/THEN 

programmatic question but he missed every flowchart question. This was likely reflective of his 

attitude during the initial day and the pre-interview: he was hesitant, and when asked whether he 

was enjoying himself, he indicated that he did not understand why we were using robots.  

 

Joshua’s group was made up of students who did not appear to be his friends. They were a group 

of the “odd” students in the class – two male students had long hair and another wore black t-
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shirts with gruesome horror movie scenes on them. Joshua stood out from his group by 

looking “normal.” 

 

As such, it was notable that this group of “misfits” shared with other groups significantly more 

than any other group. Not only did they share circuits, they often employed a rotating member to 

talk to share ideas with other groups. This worked well in the physical robots classroom, as it 

took more time to build a physical circuit, and students could discuss the circuits before 

downloading them onto robots. On the third day, the students learned how to use IF, at which 

point, they started testing out their own IF circuits. Joshua discussed the task with his group, 

leading them to attempt a novel way of using separate IF statements for each of the two motors. 

After learning this method, they then shared their progress with the group of “popular” girls 

sitting across the room from them. The group of girls then learned how to use both constants and 

sensors in their multiple IFs and relayed this information back to Joshua’s group.  

 

Joshua excelled on the post-test. Every flowchart question was correct, and the following three 

VBOT programming questions out of four were entirely correct: question 4A (light-following), 

question 4B (about using the CONSTANT operation), and question 4D (creating a multi-tiered 

circuit). All of the answers were canonical and appropriate. During his post-interview, he 

expressed that the activity was "pretty fun." He built several correct circuits, and described them 

in detail. 
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Sharing and performance 

Joshua provides an example of a student that, through his motivation to share his circuits, 

excelled in VBOT and on post-test performance measures. Although Joshua learned VBOT 

through sharing, this was not necessarily the case for every student. There was no significant 

correlation between sharing and performance given tinkering. We performed linear stepwise 

regressions of post-test performance against pre-test performance, the tinkering metric, the 

sharing metric, classroom-effect, teacher-effect, and school-effect. The effect of sharing was not 

significant. However, tinkering and sharing were positively and significantly linearly correlated 

across student groups (n=33, p<.01).  As stated in the last section, tinkering was correlated with 

post-test performance, but tinkering and sharing are correlated enough to make them effectively 

co-linear when regressed against performance, so the sharing metric effectively did not factor in 

post-test performance. 

 

 

The implication here is that students that shared more, tinkered more and, hence, did better on 

post-test evaluations. This has positive and negative implications: the positive implication is that 

the activities stimulated learning these fluencies, which helped students excel; the possibly 

negative implication is that it is a student-to-student finding and our findings possibly reflect 

only those students most "interested" in the material. In truth, the data set is far too small to 

resolve these positions adequately. In the next chapter, the relationship between sharing and 

patterns of behavior will be explored in the context of virtual and physical robotics.  
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5.3 Tinkering, Sharing, and Circuit Quality 

Relative material computational fluency can be understood in terms of the relative qualities of 

students’ circuits. However, measuring the “quality” of a circuit that was built by a student is 

problematic because it is necessarily extremely contextual. There is no way to judge whether a 

circuit is the optimal circuit for a given task in an open task environment because there is no 

acceptable way to determine a students’ local task. Thus, we measure quality in terms of whether 

it successfully moved a vbot, the complexity of the wiring and number of operations in the 

circuit.   

 

Developing a unified “quality” metric is problematic, as there are infinite valid measures of the 

“quality” of a circuit. To be more helpful in determining the actual expertise involved in the 

circuits, several different metrics were used, each with a particular focus. They shared one 

similar feature: they all only counted those circuits that successfully moved a vbot. In the VBOT 

system, one builds many intermediary circuits while simultaneously building useful circuits, 

which corresponds to the “tinkering” discussed earlier in this chapter. 

 

“Density” (OP_DENSITY), which is the first quality metric that we use, is the number of wired 

(i.e. working) operations on a vbot circuit board divided by the number of circuit boards. It is a 

simple metric, but it gives us an idea of how “big” a circuit has been built. In the case of the 

basic light-finding circuit described in Chapter 2 (“RM = LL ; LM = LR ;”), the operation 
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density is 4, as there are four wired operations on a working circuit. OP_DENSITY could 

potentially provide insight into the manner in which a student creates a circuit. Very high-density 

circuits (circuits with a high OP_DENSITY) are circuits that accrete operations over time out of 

previously working circuits. It takes a relatively long time to build a dense circuit in VBOT; the 

environment privileges smaller circuits in the UI (see Chapter 2 for more explanation). 

Therefore, a student with high OP_DENSITY is building circuits in with a higher relative "time 

per circuit." However, as the student’s median time is exactly 3.0 seconds per unchanged circuit, 

there is no actual measure of "time per circuit." (The 90% trimmed mean is 6.70 seconds per 

circuit, as there are a significant number of outliers.) This is because that "unchanged circuit" 

metric only shows the time between any modifications of the board during play. 

 

“Operation Difficulty” (OP_DIFF) measures the number and amount of the “high-level” 

operations that a student uses per circuit. Logic operations (e.g., IF/THEN) are weighted double 

that of arithmetic operations (e.g., ADD), which are weighted double that of sensors and motors.  

Therefore, logic operations are four times more “difficult” than sensors or motors. OP_DIFF is a 

metric designed to measure the "adventurousness" of a student. Students with a high OP_DIFF 

are likely to have tried out all of the operations and used high-level operations frequently. 

OP_DIFF could be a measure of the depth of material fluency with the project. Students with a 

high OP_DIFF are using complicated circuits to achieve local goals. A student with a high 

OP_DIFF and a high OP_DENSITY would likely be using several complicated operations 

simultaneously. A student with a low OP_DIFF and a high OP_DENSITY is building a 
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complicated circuit out of simple components. 

 

“Unique Operations” (OP_UNIQUE) is the number of unique operations per circuit. For 

instance, a circuit with the left light sensor (LL) attached to the right motor (RM) through an 

ADD would have an OP_UNIQUE of 3. A circuit that routed signal through two ADD 

operations would still have an OP_UNIQUE of 3 (ADD = 1, LL = 1, RM = 1; 1+1+1=3).  

OP_UNIQUE adds focus to OP_DIFF and OP_DENSITY. A student with a high OP_UNIQUE 

and a high OP_DIFF is creating a complicated circuit. A student with a low OP_UNIQUE and a 

high OP_DENSITY is creating a complicated circuit out of simple repeated elements.  

 

These metrics help identify not only metrics of performance, but also patterns of student 

behavior. In the following section, we will refer to each of these metrics and detail how they 

relate to performance in the activities and on the post-test.  

 

Alicia – Virtual Class, Bayville, Ms. Adams 

Alicia is a quiet and polite student. She is short, mildly overweight, and African-American. She 

dresses in muted colors, and she talks so quietly that it is hard to hear her speak in class. Only 

one member of her class was not African-American. Alicia was so quiet that few teachers 

noticed that she was failing all of her classes. Alicia’s teacher described her as “sometimes 

getting near [to failing] but then pulling back, always getting a D.”  This information fell in line 
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with her academic record, which was situated consistently in the D/F range.  According to 

her teacher, Alicia was at the bottom of her 8th grade science classes, and there was significant 

concern that she would be required to repeat the grade or drop out of school. 

 

Notably, she was both cheerful and interested in the robotics questions in her pre-interview. She 

did not fit the traditional description of a failing student. In fact, she seemed interested, bright, 

and thoughtful. She gave careful attention to every question, and she answered each of them 

correctly. For example, her pre-test IF/THEN answers were not as programmatic as Patrick's, but 

they were clear and showed an understanding of basic computer skills, though she missed every 

flowchart question on the pre-test.  

 

Alicia's experience presents a different model of tinkering that we have seen previously. On her 

first questionnaire (see Chapter 4), she remarked that she had enjoyed the entire activity, 

especially “creating the wires.” Indeed, early on, her group tested wires and operations that the 

rest of the class had not yet investigated. Alicia much preferred playing with the value of the 

CONSTANT operation in order to guide the vbot directly instead of creating a circuit in which 

the vbot responded to sensor data programmatically. In VBOT, it is possible to change the value 

of a CONSTANT operation on the fly. As such, a student can wire a CONSTANT to each motor 

and change the value of the constants frequently to create the desired behavior. This, however, is 

taxing and much slower that creating a programmatic circuit. Alicia’s group was the first group 

to understand this change. At that point, this idea of creating programmatic circuits spread 
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around the classroom, and other people tried it. However, while most of the other teams 

worked further on programmatic circuits, Alicia’s group returned to the CONSTANT method, on 

subsequent days.  

 

Alicia's group shared their circuits with their friends with some mutual benefit. After some time, 

Alicia’s circuit was working well enough to convince her friend Tanisha to use a similar circuit, 

and the two of them used this new circuit during the majority of day 3. Of particular interest on 

day 3, during a game called “simple tag,” Alicia’s team performed poorly.  In simple tag, one 

vbot (V1) begins play tagged, and when V1 touches another vbot (V2), V1 gets a point, and V2 

becomes tagged as well. At this point, both V1 and V2 attempt to tag more people. A goal of the 

game is to be tagged early and then tag other people. Another team, led by a student named 

Maple (not the team initially tagged), won the first game handily with a simple circuit. At that 

point, Maple’s seating neighbors asked what circuit they used, and the circuit spread quickly 

around the classroom, with various groups adding small modifications to their own circuits. At 

the end, only Alicia and Tanisha were using an entirely different circuit, and Alicia’s team was 

unable to excel. Alicia reflected on this in the post-interview as “confusing,” remarking that she 

did not enjoy this game. Thus, in this case, we see a lack of sharing resulting in student 

frustration.  

 

During the last two days, Alicia’s team opted for an entirely different set of strategies. They 

created simple circuits, involving only a MULTIPLY operation, a CONSTANT, and the sensors. 
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These circuits were relatively simple as they did not employ logical operations, many 

simultaneous operations, or many wires. They did not again use an IF after being taught it, but 

they ended up doing well in the sticky tag game, even winning a round. Again, she shared her 

circuits with her friends and they did likewise. While she had initially only talked to her group-

mate and immediate neighbors, she actually communicated down the row of computers with the 

more reticent groups during the final days of the study. In the end, she did not tinker much 

beyond her two different circuit models, but only two other groups shared their circuits more 

than hers, as she had shared so extensively on the final days of the study. 

 

While Alicia’s post-test was uneven, she clearly distinguished herself as reasonably competent 

and engaged. Her answers to flowchart questions were entirely correct, and she was able to build 

the simple circuits in question 4. However, she had some problems with the difficult circuits. Her 

post-interview was encouraging – she had done well, her mistakes were much more technical 

than conceptual, and she was both animated and excited. She understood and was interested in 

the assignments, but lacked the math fluency to excel on the tests. And, although it is probably 

unrelated to this study, Alicia also managed to pass 8th grade. 

 

Dania – Physical Class, Bayville, Ms. Adams 

Dania provides another example of the complex relationship between tinkering, sharing, and 

circuit qualities. Dania was a basketball player, and she claimed that as her primary identity. She 
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is tall and has a strong build. She's African-American, as was every other member of her 

class. During the activities, she repeatedly made references to basketball and adopted an attitude 

indicating that, though she may not know much about technology, she could easily beat anyone 

on the basketball court. Indeed, she was tall and exuded an unmistakable athletic self-confidence. 

Her teacher called her an "average-at-best student who does not try hard," and, despite her self-

confidence, Dania often tended to be overshadowed by her more boisterous class. She was keen 

to unite the class and expressed disinterest in the "drama" of her classroom.  

 

As such, Dania was the girl chosen to work in a group with two problematic boys and one high-

achieving boy. She was immediately designated "team leader," but she clearly vied for control 

with the high-achieving boy, Abdul. Abdul and Dania often worked together and both took time 

to explain the programming to their two group-mates, although the group-mates were generally 

resistant.  

 

Dania did poorly on the pre-test. She was one of only 3 people in her class who did not get any 

part of the flowcharting question correct. From the pre-interview: 

Interviewer: You can say 'IF something THEN something else OR ELSE something else' 
and your goal is to create a spreading out robot, a robot that spreads out, what 
would you tell it to do? 

Student: Can this be more than one word? 
Interviewer: Yeah, absolutely.  
(10 second pause. Student is staring at the notecards.) 
Interviewer: There's no right answer or anything. This is not a test… just think aloud for 

me. What are you thinking of? 
Student:  It's kind of difficult trying to start with IF or even start with any of the words 

because the only thing I can think of is 'If you're in a bunch, then…' 
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Interviewer: That's OK. 
Student: But then it wouldn't make sense with THEN. 
Interviewer: Why? 
Student: Because I want to say 'If you're in a bunch, then…' .. Oh! OK. I could, I guess. 
(She writes on the notecards: "IF you're in a bunch, THEN you have to move to an empty 

space.") 
Student: I do not need an OR ELSE. 
Interviewer: OK. 

 

From the pre-interview, we can see that she had some intuitive understanding of the nature of 

branching logic, but that she did not have the correct terminology nor confidence in her 

understanding.  

 

Dania's tinkering stands in contrast to the other student groups in the class, as her group tinkered 

mostly with basic, simple circuits. This tinkering was of a different sort than Patrick's or Alicia's 

groups. The group would hone a small number of circuit paradigms and test them in various 

scenarios. Furthermore, they would modulate a small number of circuits built around 

CONSTANT operations (literal numbers) rather than sensors. Then they would tune those 

numbers for the task at hand. In the final two days, in which we played competitive robotics 

games, Dania's group switched back and forth between two basic circuits: one using two IF 

operations and one using two CONSTANT operations. They did well in the competitions, even 

winning one. Only on day 3, after Dania’s group experienced difficulty implementing the IF 

operation, did Dania's group share her circuits with any other group.  Unfortunately, Dania talked 

to the members of the nearest group, who also failed to master the IF operation.  Consequently, 

both teams built incorrect IF statements for the remainder of day 3. On day 4, Dania and Abdul 
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worked out the IF operation together and were able to do well in the "Bot Soccer" activity 

that they played on days 4 and 5. However, Dania's group did not share this information with 

their neighbors, and the neighbor group did poorly in Bot Soccer. In this case, sharing was not 

necessarily beneficial. 

 

Dania's post-test scores were good. She did better than any of her group-mates on the 

flowcharting questions, missing none despite being one of the only students who had missed 

them entirely on the pre-test. She also did reasonably well on the VBOT programming questions 

on the post-interview, getting two of the four questions entirely right: question 4A (light-

following) and question 4C (about advanced operations). She received partial credit on question 

4B (about using the CONSTANT operation) and missed the question 4D entirely (creating a 

multi-tiered circuit), though only two people in her class received any credit on the question 4D.  

 

Oddly, in the post-interview, when asked to create a circuit with an "IF," she claimed that she did 

not know what an "IF" operation was even though she had both used them extensively and 

correctly answered the related question on the post-test. When asked simply to "try it out," she 

exclaimed, "OH!" and proceeded to make a correct circuit with an "IF" operation. This hesitation 

indicates that she was intimidated by the terminology more than the ideas (as she implied in the 

pre-interview).  
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Circuits and performance 

Tinkering was positively and significantly correlated with the sharing metric, post-test 

performance , and OP_DIFF (n=33, p<.05, F=7.7), when regressed against post-test 

performance, pre-test performance, school effect, teacher effect, class effect, sharing metric, the 

average difficulty of the circuits (OP_DIFF), the use of many unique operations (OP_UNIQUE), 

and the density of operations on the circuit board (OP_DENSITY).  

 

The correlation of OP_DIFF and tinkering implies that students who attempted to use more 

difficult operations also changed their circuits more in the process. Intuitively, this suggests that 

there was a set of students who tinkered and tried to create difficult circuits, and, as a result, did 

well on the post-test. This is unsurprising.  What is, perhaps, more surprising is that these were 

the same students who shared their circuits more, and that these circuits were more similar to 

other people in the class. That is to say, one conclusion might be students who used VBOT do 

not conform to the stereotype of the “solitary programmer” and that the environment supported 

social computational fluency. This theory is strengthened by the finding that tinkering was a 

more powerful predictor than sharing, as seen above. Another conclusion might be that students 

who shared more learned more quickly, and that the learning motivated the tinkering. This is 

seen in the case of Joshua above. In both of these scenarios, VBOT is encouraging either 

tinkering or sharing toward post-test performance. It is important to note that, again, pre-test 

performance was a poor predictor of post-test performance. 
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Post-test question 2 (flowcharting) was significantly correlated with both pre-test question 2 

(n=78,p<0.05) and the OP_DENSITY (n=33, p<.01), in a linear stepwise regression with post-

test performance, pre-test performance, school effect, teacher effect, class effect, sharing metric, 

OP_DIFF, OP_UNIQUE, and OP_DENSITY. The difference between the pre-test and the post-

test on Question 2 was highly significant (n=78, p <.00). The mean for the pre-test was 3.7, and 

the median was 4 out of 6. The mean for the post-test was 4.8 and the median was the full 6 

points out of 6. 

 

These statistics are perhaps less suggestive than they might appear, as the median score for post-

test two was 100%. On the whole, students did very well on the post-test flowcharting question. 

Post-test performance on flowcharting is the only instance in which pre-test performance is 

correlated with post. The correlation with OP_DENSITY can be understood by considering that 

more operations require more wires (see Chapter 2 for more details). Wires in VBOT are similar 

to connector arrows in a flowchart. Hence, a student that used more wires was better at 

connecting flowchart items. 

 

5.4 Teacher, Schools, and VBOT 

The statistics and examples presented here appear to hold true across contexts; there was no 

measurable correlation of any metric of achievement between teachers or classrooms. In every 
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case where there was a linear correlation between teachers, it was accounted for by the 

difference between the virtual and the physical classes. This held true for circuit metrics, post-

test metrics, and qualitative metrics. Statistically and qualitatively, most differences occurred 

between virtual and physical implementations and not between teachers or schools. This is 

notable due to the apparent differences between the school environments and teaching styles. 

Bayville is a south-side Chicago school, 97% African-American, and designed to operate as a 

high school. Old Grove is a north-side Chicago school with a hugely diverse international 

population, which is designed to operate as a middle school. Furthermore, the same teacher 

taught both of the Bayville classes, whereas two different teachers taught the two Old Grove 

classes. Whether measured across teachers or classes, the differences in performance were not 

measurable when the virtual/physical class distinction was taken into account. 

 

5.5 Gender and Performance 

Furthermore, the different student learning gains do not appear to be related to gender. There was 

no significant difference between male and female students in general pre-test to post-test 

performance measures (Avg. male post-test: 19.6, σ = 4.37; Avg. female post-test: 19.4, σ = 

4.51). There were both good and bad male and female students.  

 

In this work, the lack of gender differences may be partially attributed to the “newness” of the 
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experience for the students. Students do not necessarily require background knowledge or 

background motivation to do well in VBOT. As is stated by several of the students in their 

respective post-interviews, the experience was “different than [they] expected.” Only 2 of the 

students across all four classrooms had had any meaningful contact with “robots” or 

programming before.  

 

Even on the pre-test of relevant content, there was not any significant difference between 

genders or classrooms. The only question that showed a significant difference was Question 2A 

(“Have you had prior experience with flowcharts?”) This question was weighted towards the 

female students (who were more likely to claim familiarity, out of 4 degrees of familiarity 

possible, female students avg.: 2.90; male students' avg. 2.58). That answer did not correlate with 

student performance on the flowchart questions (pre-test or post-test, showing a slight negative 

regression slope of –0.157, r2 = 0.003). As such, it has been discounted.  

 

5.6 Understanding Sharing, Tinkering, and Performance 

In this chapter, different cases were presented to highlight the ways that different students shared 

and tinkered in VBOT, and these cases were compared to the performance of the entire 

population of students. The relationship between sharing, tinkering, and performance appears to 

be relatively robust. There are two salient conclusions that one might draw from these data: that 
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tinkering and sharing were causally related to performance, or that students predisposed to 

tinkering and sharing were predisposed to perform better. Although this question cannot be 

conclusively answered, there is significant evidence that the students who performed well in 

VBOT were not those students who performed particularly well on the pre-test, pre-interview, or 

in their science classes prior to VBOT.  

 

Dewey (1897) notably suggested that common methods of schooling often privilege a certain 

mode of thinking. This study further suggests that situating VBOT in a tinkering and sharing 

frame privileges different students than traditional school often does, as we could not reliably 

predict performance from any given measure. It appears that female students did not necessarily 

share more and that male students did not necessarily show more technical interest or 

performance. Teacher and school effect were effectively non-existent, and 100% of the students 

learned at least basic programming fluency in the span of 5 days.  

 

These data prompt one to ask why these factors were not particularly important in this study. 

One significant possible reason is the simple “newness” of the material; students did not have 

any background for the context that was given to them and they did not know how to position 

themselves. A pessimistic response is that these data simply overlook some crucial factor, or that 

our metrics were insufficient for evaluation. An optimistic reviewer might posit that students did 

well because it was “a fun game.” While “fun” is notoriously hard to quantify (Csikszentmihalyi, 

1990), the students were nearly constantly both competing and collaborating actively with 
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VBOT although they were not required to be active at all. In the next chapter, we begin to 

address this question by discussing the relationship between the design of VBOT and the 

experiences of the students, specifically focusing on the contrast between the virtual and the 

physical VBOT systems. 

 

The virtual-physical distinction was strong. The next chapter will address the relationship 

between the virtual, the physical, and the social as they reflect the design of constructionist 

learning environments. The experience of the classrooms was perhaps more different than was 

expected, given that the study was designed to maximize parity. According to the pre- and post-

tests, the circuit metrics, and the sharing and tinkering metrics, the experience, even given the 

same software and similar or identical tasks, appeared different, indicating that the different 

media support different behavior and different comprehension. The theoretical framework of 

computational and complex systems fluencies will be used highlight the different implications of 

the media. 
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Chapter 6:  The Virtual and the Physical 

Though this study was designed to optimize parity between virtual and physical environments 

and activities, the different sets of classes performed differently on the assessments, created 

different types of circuits independently, and differently understood the relationship between the 

agent and the aggregate. In this section, we will describe the ways in which the virtual and the 

physical classes differed, give reasons as to why they might have differed, and describe their 

contrasting patterns of behavior. 

 

Virtuality and physicality engender different behaviors; it is difficult to interact with a physical 

object as one interacts with a virtual world. As I have hands, feet, and eyes that usually exist in a 

purely physical world, I am accustomed to use them in a purely physical way. Obviously, we can 

learn to use computers, but industrial design has not yet reached a point where the keyboard feels 

as natural as speech. While it is difficult to tease out exactly what minute perceptual and actual 

differences exist between virtual and physical interactions, it is possible to measure the large-

scale differences in effect and action. 

 

This chapter is designed to highlight salient differences in the use of VBOT by virtual and 

physical students. Case studies, student use logs, and performance evaluations show very 

different patterns of activity and performance in the two groups. Contrasting the virtual and 

physical classes highlights the ways in which the two systems supported learning goals 
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differently. Comparing the two classes highlights the common benefits in teaching these 

fluencies with constructionist robotics. The case studies provide insight into why the two systems 

support the learning goals differently; the logs provide a backbone of those case studies and 

provide a portrait of day-to-day patterns; and the performance evaluations highlight the aspects 

supported and provide some evidence of progress towards learning goals. 

 

6.1 How did virtual and physical students play differently? 

The difference between the patterns of activity in a virtual and a physical classroom are 

immediately apparent. Less than a minute of video would be sufficient for an informed observer 

to distinguish the classes, even if no physical or virtual robots were immediately visible. In this 

section, we will examine how students’ computational and complex systems fluencies were 

supported in the classroom, highlighting those differences with particular attention to social 

aspects of the fluencies, as described in Chapter 3. 

 

The virtual classes are characterized by constant action on the computers punctuated by short 

discussion.  There is a constant low rumble of discussion between students at nearby computers. 

The class feels traditionally teacher-oriented until the start of those activities in which everybody 

looks at the common screen in the front of the classroom. At that moment, the class explodes in 

yelling, movement, and students begin to tinker with their virtual vbots. The first comments 
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heard, usually, are “there I am!” as students locate their individual vbot on the projected, 

shared screen. At particularly decisive points in the action (near the end, often), students often 

analyze the actions of their fellow students: “Alice, move your bot! We need to cluster!” 

 

The physical classes feel much less traditional. Mr. Cleveland’s classroom was the most 

traditional classroom in both organization and teaching method. Despite his attempts to quell 

noise, however, students walked to other tables to discuss the design of their physical vbot 

behaviors. These actions result in an environment that feels more like that of an undergraduate 

engineering laboratory than middle-school classroom. As described in Chapter 4, students work 

on their circuits for a pre-determined amount of time (“Everybody gets 5 minutes to finish these 

circuits!”), and each student subsequently downloads her circuit to her robot. The robots are then 

collected in the center of the classroom and all students simultaneously activate their robots. The 

beginning of this time for shared space is the quietest moment as people hush each other and 

wait to observe the performance of their vbots. As the robots start to move, the class gets 

progressively louder until the climax, at which point students cheer goals or particularly deft 

moves of their teammates’ vbots. 

 

The differences between virtual and physical classes show up clearly on the activity-by-minute 

graphs (see Figure 6-2 below). Due to their constant work with the computers, the virtual classes 

produce far more circuits than their physical compatriots. However, the activity in the physical 

classrooms occurs in many short bursts, whereas the activity in the virtual classrooms resembles 
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a constant roar that peaks around three quarters of the way into class as the culminating 

activity is reaching its end. The activity then tails off as students fix their circuits for the next day 

or work on some final, smaller activity. 

 

6.2 A circuit progression in virtual and physical Classes at 

Old Grove 

On the final day of the enactments, in both the virtual and physical classes, students competed in 

a game-activity (“Moon-Tag,” described in Chapter 2) designed to test their fluency with VBOT 

and their real-time programming skills. This section investigates a representative working circuit 

from the two groups that accumulated the most points in their respective classes during Moon-

Tag; one group is from a virtual class and one is from a physical class. By comparing them, we 

can highlight differences between the virtual and physical circuits that students typically created. 

These differences highlight the ways that the cognitive (processing) aspects of the fluencies were 

supported and how the material aspects of the fluencies developed. 
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Claudia’s Group, Physical Class, Old Grove 

 

Day 1 – 
This is the circuit with which we start 
teaching VBOT. It turns toward the light, 
making a direct path towards the light. The 
first day of the PVBOT class is spent 
inventing and investigating this circuit and 
testing it on the physical robots. Both the 
virtual and the physical classes start with 
this circuit.  

 

Day 2 – 
This is a circuit that all students built in 
order to determine the relative power of 
their bots. This student's day 2 circuits 
mostly involved various permutations of 
constants and light sensors. She also 
created a circuit identical to the day 2 
circuit, substituting bump sensors for light 
sensors. The circuit shown here is designed 
to move the VBOT forward at full speed 
with both motors working 100%. However, 
due to the vagaries of physical robotics 
(detailed in Chapter 2), each student’s 
individual robot makes an arc rather than a 
perfectly straight line, and the arc of the 
path is contingent on the power of the 
motors attached to it. The virtual robots do 
not model this in any way. For the virtual 
robots, this circuit would drive them 
directly forward unerringly, and, as such, it 
holds less interest. 
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Day 3 –  
We played our first game activity on day 3. 
This was a game of “tag,” detailed in 
Chapter 2. Optimally, the robots would 
swarm the light and knock other robots 
away. Claudia’s circuit did this 
exceptionally well. This circuit logic is as 
such: move towards the light until bumped; 
if bumped, move backwards away from the 
light. 
 
This is an extremely complicated and 
complex circuit, though the circuit is 
actually appropriate for the task that this 
student was attempting. It is 
indeterminable whether she understood the 
implications of this circuit. Her later 
circuits are not as complex, suggesting that 
she might not have entirely understood the 
concepts involved in this circuit. 
 
This circuit is suited only to physical 
robotics for two reasons:  
Virtual robots have no mass and do not 
“bump.” 
The virtual world is seamless and toroidal, 
and, as such, virtual robots rarely need to 
“back up.” 

 

Day 4 – 
This circuit is notably simpler than the 
circuit she created on day 3. It moves the 
robot directly forward at half speed until 
bumped. When bumped, the robot moves 
forward at full speed. This circuit helped 
determine the winner of a contest on day 4. 
This circuit was designed to push away the 
other students’ robots, and it does so 
relatively successfully. In stark distinction 
to the VVBOT activities, this “tackle” 
design often enabled the team to win by 
interrupting the opposing team’s “scoring” 
circuits. In many ways, it functions like a 
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“pick” in basketball, and Claudia’s 
teammate Sean mentioned this.  

 

 

Day 5 – 
This circuit is more similar to the day 4 
circuit than it might appear. It follows the 
light until bumped, at which point it moves 
forward at full speed. This “tackler/scorer” 
circuit effectively won the game for its 
team by both pushing the ball towards the 
opposing team’s goal-light and knocking 
both the ball and the other robots away. 

 
All of Claudia’s group’s later circuits would only have been effective in a physical robotics 

setting. They all rely on notions of physicality, as they were designed to knock away other 

robots. This strategy was effective, and it gave Claudia’s group significant confidence. Their 

robot was repeatedly described as “tough,” and, indeed, they treated it as if it had a personality. 

 

Maribel’s Group, Virtual Class, Old Grove 

 

Day 1 – 
This circuit does not make sense. As it is the 
first day of the implementation, that is to be 
expected. This was the culminating circuit 
in a long chain of similarly incorrect 
circuits, showing that Maribel’s group did 
not yet understand the circuit logic.  This 
circuit compiles, although it always moves 
the vbot directly forward, slowly, under any 
circumstances. The existence of a circuit 
wholly unrelated to any we had taught 
shows that the group was tinkering and 
testing more than mimicking the teacher’s 
examples. 
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Day 2 – 
This circuit was taught on day 2, and this 
group tested it further. They returned to this 
circuit several times, using it and tinkering 
with variations. This circuit causes the vbot 
to search out the light somewhat faster than 
the crossed wires circuit described in 
Chapter 2. Although the group produced 
several circuits that day, day 2 marked few 
innovations, and this circuit shows little 
comprehension due to its conceptual and 
technical similarity to those circuits 
exhibited by the facilitators. This circuit 
works similarly in both the virtual and 
physical contexts. 

 

Day 3 – 
Again, day 3 exhibited circuits relatively 
similar to the circuits that the facilitators 
provided, given some tinkering with the 
value of the constant. This circuit compares 
the output of light sensors to a constant. As 
such, the vbot follows the light only when 
near the light and moves directly forward in 
all other circumstances. Maribel's 
modifications were technical and 
conceptually good, but they show only 
minor invention. 
 
This is an example of a circuit that would 
work much better in the virtual context. For 
this circuit to work with a physical robot, 
the constant would need to be tuned through 
repeated trials, which would be both 
relatively boring and subject to change in 
different contexts (such as a contest with 
other robots). The virtual robots can use this 
circuit reliably in all contexts. 
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Day 4 – 
This is the simple crossed-wires circuit 
described in Chapter 2. It is notable, 
however, that this circuit did well in the 
context of the game activity that the students 
were playing. Since the goal of the activity 
was to tag students, Maribel's vbot stayed 
near the light and tagged all the students that 
passed by it (tagging automatically occurs 
when to vbots touch). This circuit works 
identically in virtual and physical contexts, 
and it was used by all students in all classes 
at some point. 

 

 

Day 5 – 
Day 5 provided further evidence that 
Maribel’s group understood her circuits in 
context. They saved the two circuits shown 
at left and switched quickly between them 
depending on the emerging action of their 
classmates’ vbots. The circuits, respectively, 
moved quickly towards the light and 
towards other vbots. Few other students 
used this combination of circuits on the final 
day, and, although the circuits were 
uncomplicated, they were effective. Her 
effectiveness at using the circuits in context 
suggests an understanding of the relative 
value and logic of the two circuits.  
 
These two circuits would work identically in 
virtual or physical VBOT, but the ability to 
switch between them quickly exists only in 
VVBOT, as PVBOT students would have to 
download the circuits, which takes time and 
is effectively impossible during a game. 
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Comparing circuit progression of Maribel and Claudia’s groups 

Day Claudia – Physical VBOT (PVBOT) Maribel – Virtual VBOT (VVBOT) 

One Make a correct “crossed-wires” circuit 
to move their bots towards the light. 

Evidence of tinkering, but they produce 
non-functional circuits. 

Two Circuit designed to test physical 
capabilities of the robot, to tune it and 
move it directly forward. 

Shows tinkering with working circuits 
provided by facilitators. Little 
innovation. 

Three Very interesting, innovative circuit 
designed to navigate the robot and 
avoid other robots and obstacles. 

Modification of another circuit provided 
by the facilitators.  

Four Simple “bouncer” circuit designed to 
move forward and disorient other 
robots. 

Using simple circuits in context. The 
first circuit taught was successfully 
deployed in an activity. 

Five Variation on day 4 and day 5 circuit 
was innovative and appropriate. 
Contextually well deployed. 

Used a set of two circuits, switching 
between them as appropriate. Both 
circuits are relatively uninteresting, but 
the novel use of them in context excels 
in the activity. 

Table 6-1: Comparing day-to-day circuit progressions 

In this comparison, the VVBOT students tinkered and modified more frequently than the 

PVBOT students. This was largely expected due to the constraints of the different environments. 

We also see the PVBOT students making use of non-existent functionality in the virtual setting – 

that is they are able to use their robots as physical entities with weight, pushing and tackling one 

another.  This shows awareness of the identification of the robot as a physical body in space. The 

VVBOT students, on the other hand, were more likely to demonstrate awareness of the 

relationship between the goal of the activity and their circuits. We see this awareness in the 

above example when Maribel’s group created simple circuits to accomplish the project goals.  
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6.3 How did virtual and physical students perform 

differently? 

The difference in patterns of behavior emerged from the different ways that students built 

circuits. As described in the last chapter, we evaluated a student-group's circuits on the basis of 

"uniqueness" (OP_UNIQUE), "difficulty" (OP_DIFF), and "density" (OP_DENSITY). 

Contrasted on day-by-day data, there existed significant differences between the virtual and the 

physical classes in the number of unique operations per circuit (OP_UNIQUE, n=108, p<.01), 

the difficulty of the operations (OP_DIFF, n=108, p<.01), and the density of the operations on 

the breadboard (OP_DENSITY, n=108, p<.01). Below we can see how they differ. 

 

Means OP_UNIQ** OP_DIFF** OP_DENSITY** 
V 1.1181 1.9125 .2751 
P 1.6261 2.7737 .4374 

Table 6-2: Averaged day-by-day circuit metrics in virtual/physical classes 

 

As shown in the above table, students in the physical classes typically create more unique, 

difficult, and dense circuits than students in the virtual classes. These three metrics are not 

necessarily correlated with positive performance, however. As seen in Figure 6-1, OP_UNIQUE 

and OP_DENSITY decreased each day over the course of the activities in both virtual and 

physical classes, while OP_DIFF (difficulty) stayed roughly the same across all days. Figure 6-1 

shows the graphs of these three metrics plotted against normalized time. In this section, we will 
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investigate several explanations for this.   

 

 

Figure 6-1: Day-by-day graphs of circuit metrics in each class 

As seen above, as students understood the system better over the course of the days, their circuits 

became more targeted and, often, simpler. 

 

It appears that students also came to realize that they could not as easily control excessively 

dense/unique circuits, due to the number of variables. Thus, as the activities became more fast-

paced and intricate, the circuits became simpler. That is not to say that all simple circuits were 

good circuits, but in Maribel’s group above, we can see that optimal placement of a simple 

circuit did better than the significantly more complex circuits elsewhere. 

 

VP 
Mean MULTIPLY ADD SUBTRACT DIVIDE 

ABSOLUTE 
 VALUE 

CONSTANT 
**  

IF/ THEN 
* 

P .30 .18 .05 .02 .03 1.14 .29 

V .47 .14 .04 .03 .02 .67 .21 

Table 6-3: Mean # of circuit operations per circuit in virtual/physical classes 
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The physical classes were more likely to use constants and branching logic (IF’s). These 

relatively difficult operations did help them in the post-test performance metric, in which they 

did significantly better than their virtual class counterparts (post-test question 4.B., n=33, 

p<0.05). However, the simplicity of the virtual class’s circuits ostensibly helped them perform 

better on the slightly more difficult question 4.C. that addresses complex movement around the 

shared space (post-test question 4.C., n=33, p<0.05). That is, performance on this complex test 

question implies that the simplicity of the students’ circuits in the virtual classes seems to belie 

the students’ understanding of the complex programmatic concepts they were learning. 

 

VP 
Mean TINKERING SHARING # of CIRCUITS** 
P .8942 2.74 982.27 
V 1.0075 2.73 1200.36 

Table 6-4: Action metrics in virtual/physical classes 

As we can see, the tinkering metric shows that the virtual class was tinkering slightly more 

frequently than the physical class, but not significantly more. The sharing metric was remarkably 

equivalent between classes; given the difference in the atmosphere of the two classes, and the 

different ways in which they shared, this is particularly notable. Though the distribution is 

different, the two sets of classes share almost exactly the same amount per circuit. The number of 

circuits built varied widely; the only surprise was that they did not vary more. Virtual class 

students spent the entire time at their desks building circuits – the physical classes spent only part 

of their class time doing so. Nonetheless, the number of circuits built was only about 20% more, 
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on average.  

 

Overall this creates the impression that the virtual class learned concepts physical class did not 

and vice-versa. These differences are suggested by the profiles of students’ circuits, the specific 

circuits that the groups built, and the differences in the post-test.  

 

The physical class used their understandings of the robot as a physical object as this knowledge 

as a basis for their primary mode of programming. Claudia’s group designed most of its circuits 

for the specific goal of navigating and bumping other robots. The students' understandings of the 

capabilities of a robot were mediated by the physical presence of the robot. As such, PVBOT 

students used more CONSTANT operations and more IF/THEN operations, both of which are 

more easily adaptable to sensor noise. Sensor noise, as a concept is, most likely, fundamentally 

new to the students, and understanding this concept enhances both their material and cognitive 

computational fluency skills, as discussed in Chapter 3. Virtual students, on the other hand, 

worked more contextually. Students in VVBOT classes built more, simpler circuits that work 

best in context. As shown, Maribel’s group took into consideration the roles that her fellow 

students played and used those circuits that would be most appropriate. This implies significant 

conceptual complex systems cognitive and social fluency – understanding the emergent nature of 

the system and using simple agents to exploit the system rather than acting alone. As such, we 

can see the ways that the different design decisions with PVBOT and VVBOT, close as they may 

be, affect the behavior of the students using them. 
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6.4 Contrasting computational and complex systems 

fluencies in virtual and physical classes 

Virtual and physical students seemed, therefore, to group into distinct patterns reflecting the 

relationships between computational fluency and complex systems fluency, both between classes 

and within classes. We call these patterns “cross-levels,” after the “mid-levels” work by Levy & 

Wilensky (2008), in which she describes the cognitive transitions implicit in complex systems 

fluency. The “cross-level” patterns of the two fluencies can be categorized as such: 

 Agent-based complex systems 
fluency 

Aggregate complex systems 
fluency 

Agent-based 
computational 
fluency 

Unique agent understanding 
e.g., Designing a single-user 
computer application  

Multi-agent systems 
understanding 
e.g., Designing an agent-based 
ecology simulation such as Wolf-
Sheep Predation (Wilensky, 
1997b; Wilensky & Reisman, 
2006) 

Aggregate 
computational 
fluency 

Team-based systems 
understanding 
e.g., Concurrent systems or 
swarm robotics (Bonabeau, 
Dorigo, & Theraulaz, 1999) 

Systems dynamics understanding 
e.g., Designing formula-based 
ecology simulations using systems 
such as STELLA (2000) 

Bolded cells define “agent-aggregate fluency” 

 

Systems modeling work has often focused on unified mathematical models of a uniform set of 

actors (e.g., Maani & Cavana, 2000), which we are calling “aggregate-aggregate fluency,” 
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meaning “aggregate systems fluency” and “aggregate computational fluency.” Computer 

science training has traditionally foregrounded serial or single-agent work, which we are calling 

“agent-agent fluency,” meaning “agent-based systems fluency” and “agent-based computational 

fluency.” Our hypothesis is that P/VBOT teaches students to focus on the opposing cross-level 

axis: multi-agent systems understanding and team-based systems understanding, which we are 

calling “agent-aggregate fluency” (as seen in the table above).  The corollary hypothesis is that 

virtual robotics and physical robotics support agent-aggregate fluency differently. The following 

sections describe the ways in which the data do and do not support these hypotheses. 

 

These differences are primarily differences in perspective; students approached problem solving 

differently in the virtual and physical classes. One way to understand these differences is in 

terms of the relationship of an agent’s action to the aggregate and the relationship of an 

aggregate’s action to the agent. In the case of a crowd of people leaving a stadium, each agent 

(person leaving the stadium) is fundamentally constrained by the movement of the aggregate 

crowd. An individual in the crowd cannot decide to change the direction of the crowd, nor can 

that individual choose exactly where she moves. She can head towards a gate, but the salient 

activity is that of the crowd itself. A group of officers directing the crowd, however, has the 

converse situation: each action of each individual officer determines the movement of the 

aggregate crowd.  

 

Unique agent understanding is a fluency in the computational and systems aspects of dealing 
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with the actions of a single agent working independently. This can be thought of as the 

actions of an unconstrained independent individual. A system can consist of an individual agent 

if the system is internal to the agent. For example, human psychology can be described as a 

complex system (see Minsky, 1985, for one example). Indeed, attempting to understand the 

myriad connections internal to an agent is inherent to VBOT programming. A VBOT circuit 

consists of a set of connected operations from which the semantics of the circuit emerge. 

Independent operations are only marginally independent as agents, but the connections between 

them create a complex system of meaning. VBOT, as deployed in both the virtual and physical 

classes, did not address programming a solitary agent in significant depth, as the majority of both 

programming and computational fluency work already focuses on programming as an 

independent activity designed to create single-user programs (Cole, 1996; DiSessa, 2000). 

Nonetheless, unique agent understanding is essential to computational fluency in the broader 

sense. The post-test metric privileges unique agent understanding and material computational 

fluency more than the activities did by asking students to draw circuits on paper in isolation, 

rather than on a computer contemporaneously with the rest of the classroom. This was our intent, 

as many computer scientists and physical scientists will recognize and understand the validity of 

a metric based on unique agent understanding more readily than a systems-based metric due to 

the nature of the field and historical precedent. Notable here is the contrast between, on one 

hand, the relatively small disparities on the post-test overall between virtual and physical classes, 

and, on the other hand, the disparities between their material unique agent skills as exhibited by 

their behavior on the different problems on the post-test. As seen above, physical classes 
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performed better on question 4.B., which focused on unique agent understanding and 

material computational fluency, but the classes performed similarly overall. This suggests that 

the nature of the activity was sufficiently unique-agent-based for all students to be able to 

perform at the baseline required for the post-test. 

 

Team-based systems understanding is a fluency with the design and manipulation of targeted 

aggregates. For instance, a baseball coach might be able to direct the flow of a team better than 

the specific actions of each individual player. A bee-keeper might know how to deal with a 

swarm of bees but have no idea how an individual bee behaves. A fluid dynamics research needs 

to know less about the chemical properties of water than the aggregate properties of water flow 

in certain conditions. From a computational fluency perspective, it manifests as an understanding 

of ways to manipulate groups of agents toward a specific objective, regardless of the degree of 

independence exhibited by each agent. Both virtual and physical classes were required to pursue 

team-based understanding to an extent – the activities were designed to ask students to 

collaborate towards team-based goals, thereby supporting social computational and complex 

systems fluencies. However, the virtual and the physical classes did so differently and with 

contrasting levels of success.  

 

Although the physical curriculum was arguably more team-based (see the description of “Bot 

Soccer” in Chapter 2), the virtual students worked more cohesively in teams. Maribel’s example 

is one of many in which students would change roles in “Moon Tag” (see Chapter 2) in order to 
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manipulate the swarm or use the swarm to their advantage. This data is supported by the log 

results that show simpler overall circuits, as simpler circuits often suggested a more contextual 

approach to circuit programming, as seen above. The post-test results also support this claim, in 

that the virtual students performed better on Question 4.C., which addressed the movement of an 

individual vbot in and around a swarm of other vbots. 

 

However, the physical students also performed team-based logic and communication. Although 

the virtual students’ curriculum spent more time devoted to contextual strategies, the physical 

students developed more formal strategies. In doing so, both the virtual class and the physical 

class exhibited social aspects of computational and social complex fluencies. Claudia’s example 

details her team’s strategies at Bot Soccer, and, indeed, the students in the physical class were 

more likely to collaborate and communicate individual on planning strategies. This finding is 

supported by other research with “robot soccer” in which students design explicit strategies (e.g., 

Sklar, Parsons, & Stone, 2003). 

 

Systems dynamics understanding describes a fluency with aggregate understandings that is 

notably backgrounded by VBOT activities. In the baseball metaphors above, this corresponds, 

perhaps, to the designer of a stadium. This fluency describes the design of system-level 

constraints and flow without necessary consideration of the action of any specific individual. 

However, there was evidence that students came to understand certain aspects of aggregate 

systems flow through the programming itself. Pre-/post-test question 3 (flowcharting) showed 
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significant improvement between the pre-test and the post-test in both the virtual and the 

physical classes. As shown above, the difference was relatively large. The large difference 

between the pre-test and post-test in all groups suggests that the VBOT program interface and 

paradigm (common to all groups) is responsible to some extent, and that the students’ cognitive 

complex systems fluency was effectively supported by the system. The VBOT circuit 

programming method is a likely source of this improvement, as it is structurally analogous to a 

flowchart (as seen in Chapter 2). 

 

Multi-agent systems understanding is a fluency related to the methods of designing individual 

agents to perform some emergent task. This corresponds most closely to the individual in the 

crowd; each individual has agency, but the salient understanding comes from those aspects that 

emerge from the system, not from the specific movement of any agent. Although this is closely 

related to team-based systems understanding, the salient difference is the focus on the behavior 

of the agent over the behavior of the aggregate. NetLogo (Wilensky, 1999), on which VBOT is 

based (see Chapter 2), is a tool designed to foster complex systems understanding through the 

use of agent-based systems. The relative value of team-based understanding and agent-based 

understanding towards high-level complex systems fluency is still under debate (see Levy & 

Wilensky, 2008). A canonical method of agent-based systems understanding is to frame more 

traditionally aggregate systems problems in terms of their component agents, such as simulating 

traffic flow in terms of the behavior of cars rather than aggregate traffic flow. This approach has 

been usefully employed by a variety of academic disciplines, ranging from physicists (Bar-Yam, 
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1997) to economists (Axtell & Epstein, 1996).  

 

Our results here appear surprising. Although virtual systems have been successfully used to teach 

multi-agent systems, our data suggest that the physical students tended to understand the systems 

from a more agent-based perspective. The virtual students, on the other hand, tended to 

understand the systems from a more aggregate perspective. Evidence for this finding stems from 

log data, video data, interaction patterns, and pre-test/post-test differenced. 

 

The circuit-based log data explained above show that physical students created more complex 

and more difficult circuits overall, though the virtual students created more circuits. This implies 

that the physical students attempted to design circuit behaviors in which the robot would move 

and act independently. The virtual students, on the other hand, created circuits to be contextually 

relevant and often created these circuits quickly to respond to the actions of the other vbots.   

 

This evidence is corroborated by the post-test results, which show that the physical students 

performed significantly better on Question 4.B. (about directing agent behavior), while the 

virtual students performed better on Question 4.C. (about the behavior of a vbot in the context of 

other vbots). As stated earlier, both classes performed relatively similarly overall on Question 4 

(programming vbots). These differences suggest that while both sets of classes were building 

material fluencies, they did so differently. 
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The contrast between Maribel’s and Claudia’s experiences highlights the differences between 

their multi-agent systems understanding. Maribel’s group worked with fellow groups as a 

member of a swarm, determining appropriate behaviors contextually. As a contrast, Claudia’s 

group worked to create an independent agent that worked on a team (as a “tackler”). These 

strategies underscore the ways in which the students’ social computational and complex systems 

fluencies related to their overall performance and perspectives. 

 

Some of this difference is likely attributable to the different patterns of behavior in virtual and 

physical classes. Figure 6-2 below shows all student board changes, minute to minute, in one 

school on day 5 in that school’s virtual and physical classes.  

 

  

Figure 6-2: Board changes per minute at Bayville, Day 5 

 

The physical class is bi-modal, and the virtual class is multi-modal; note that the physical class 

ends after 30 minutes, and the rest of the time was spent testing their creations together in 

various contests. In the physical class, students would spend chunks of time working on their 
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robots, and then test them together en masse. Note that this behavior was not required by the 

teacher or the setting, but rather, determined by the students; indeed, the teacher in these two 

classes was the same teacher (see Chapter 4 for more details). The virtual class was constantly 

and consistently changing their circuits. By working on their circuits individually and testing 

them en masse, the physical students had more opportunity to hone the individual behaviors of 

their robots. In contrast, the virtual students more often honed the contextual behavior of their 

vbots. 

 

Using cross-level fluencies to characterize the virtual and physical classes underscores the ways 

in which the two classes exhibit different aspects of computational and complex systems 

fluencies differently. While both virtual students and physical students exhibited significant 

improvements in agent-aggregate fluency, the virtual classes did so from an agent-based 

perspective, while the physical classes did so from an aggregate perspective. The tables below 

summarize this difference and the ways that the fluencies affected virtual and physical classes 

differently: 

 
 

Physical 
 

Virtual 
 Cognitive 

 
Enables aggregate thinking from an 
agent-based perspective 
 

Enables agent-based thinking from 
an aggregate perspective 
 

Social 
 

Must communicate with group to 
work out contextual plans 
 

Motivates communication about 
emergent patterns 
 

Material 
 

Programming an agent in a shared 
space 
 

Programming an agent in an 
aggregate 
 

Virtual/Physical Class Differences in Complex Systems Fluency 
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Physical 
 

Virtual 
 Cognitive 

 
Enables aggregate logic from an 
agent-based perspective 
 

Enables agent logic from an 
aggregate perspective 
 

Social 
 

Motivates communication about 
strategies 
 

Communication is more transparent 
and intrinsic to activity 
 

Material 
 

Enables difficult circuit-building 
skills 
 

Enables contextual circuit-building 
skills 
 

Virtual/Physical Class Differences in Computational Fluency 

 

This chapter highlighted the ways that virtual and physical students exhibited different aspects of 

computational and complex systems fluencies. The differences emerged from both design 

decisions and inherent features of the virtual and physical media. The next chapter explains how 

specific design decisions affected student behavior and performance, and how well the project 

achieved stated design goals. 
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Chapter 7:  Design Principles 

In this chapter, we evaluate our work on the basis of proposed design principles and whether the 

design goals and principles were met, given the results of the study. As discussed elsewhere 

(Chapter 2), the design of VBOT stems from studies performed with NetLogo (Wilensky, 1999), 

Flogo (Hancock, 2003), and Logo (Papert, 1980). These studies provide us with both baseline 

design principles and contrasting material. The contrast illuminates the benefits and deficits of 

both VBOT and the study design. Thus, we use this contrast and analysis to evaluate interface 

design, language design, and relative learning gains in VBOT. 

 

7.1 Motivating complex systems and computational fluencies 

Chapter 3 evaluated sharing and tinkering as organizing principles for understanding complex 

systems and computational fluencies. In this section, we describe the elements of the interface 

designed to motivate complex systems and computational fluencies, and evaluate the design 

elements for effectiveness. Based on Chapter 5's focus on the relationship of sharing and 

tinkering to performance, this chapter will address the relationship of design to sharing and 

tinkering. The questions to be addressed, then, are: 

• In what ways did we intend the design to motivate sharing and tinkering? 

• How well were sharing and tinkering motivated in the enactments? 
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• What design goals other than sharing and tinkering affected complex systems and 

computational fluencies? 

 

Hancock (2003), Braitenberg (1984), and DiSessa (2000) make the argument that real-time 

programming motivates both sharing and tinkering. This study is built on the belief that sharing 

and tinkering arise naturally from a real-time game-like programming environment. This can be 

seen from a different perspective on the recent serious games literature. For example, Gee (2004) 

and Squire (2004) both argue that people involved in networked games not only engage 

significantly with them as learning tools, but learn how argue and communicate about the games 

themselves. In my study addressing complex systems fluency, communication and engagement 

about complex systems material is essential for teaching social aspects of complex systems 

fluency. Squire (2004) suggests that it is in the nature of a “good game” that people want to play 

with it and communicate about it. Given the video-gaming literature, we hold that the degree to 

which students tinkered and shared while working with VBOT is directly tied to the real-time 

aspect of the system. 

 

In addition to learning sharing and tinkering methods, students learned how to program in the 

VBOT language. By the final day of the enactment, every group in every class could create 

programs that showed understanding of the target objectives: every group played the game. 

Moreover, 80.5% of the students created at least half of the circuits correctly on the post-test 

evaluation.  
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Complex systems are systems in which meaning emerges from networks of independent agents. 

This concept is inherent to the design of the breadboard; a circuit is a system in which semantic 

meaning emerges from a network of independent operations. As they were building circuits, the 

students were simultaneously learning how to create complex networks of meaning to achieve 

emergent goals. In other words, each student created networks of VBOT operations out of which 

emerged a behavior for their vbot. Though several studies (Chi, 2005; Hmelo-Silver & Pfeffer, 

2004) show that students have trouble correctly intuiting the emergent meaning of a network, 

this study suggests that, provided that a network is comprehensible, the students can form robust 

understandings of the emergent network. This understanding is borne out by the pre-test to post-

test performance on question 2 (flowcharts), as discussed in Chapter 4. Students, on average, did 

19.0% better interpreting the static flowchart.  

 

The complex system in VBOT is both at the circuit design level and at the agent collaboration 

and competition level. The notion of “levels thinking” comes from Wilensky & Resnick (1999). 

He argues that robust complex systems understanding must come from an understanding of the 

different “grain sizes” of the phenomenon and their inter-relationship. Out of the aggregations of 

agents in the VBOT shared space emerges a level of complexity above that of the circuit design, 

much like the flock in pre-test question 2 emerges from aggregations of individual birds. This 

complexity of the vbot "flock" is harder to predict and understand than that of the circuits 

themselves. A shared virtual VBOT screen often shows more than ten individual agents, and a 
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shared physical VBOT space (e.g., the floor) has multiple physical robots interacting in 

constant motion. Students’ ability to understand the network of the relationships of the agents 

shows up in the differences between their pre-test and post-test answers about agent-aggregate 

interaction. As described in Chapter 4, question 1 is designed to test student understanding about 

the flocking of individual birds. Students in the post-test change their answers about the 

leadership of the birds only slightly (6.7% overall), but students are more likely to give answers 

about the nature of individual bird understanding.  

 

In our study, students used complex systems and computer science fluencies to effectively use 

VBOT and to perform on the post-tests. We view this as a success. Students using physical and 

virtual VBOT understood and could communicate their understandings differently. Therefore, 

the design of the systems accounts for some of the differences in understanding. The sensitivity 

of the learning gains to the difference in design is itself a notable result.  

7.2 Evaluating Design Principles 

Supporting programming in equivalent virtual and physical spaces 

The system is built both as a virtual and physical environment, and students did not have a 

choice as to whether they used virtual VBOT or physical VBOT. Virtual and physical spaces 

were supported differently, attempting, but not necessarily attaining, equivalence. Although 

VBOT and the supporting activities were designed to optimize equivalence, making all of the 
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activities identical would have been to the detriment of both the virtual and physical 

environments. 

 

The virtual space was built first and tested more extensively in the pilot studies because it was 

easier to implement.  As a programmer, building a virtual system came more naturally to me. 

Furthermore, I was initially more familiar with literature on virtual collaborative spaces than 

physical ones, due to my work in the Center for Connected Learning and Computer-Based 

Modeling (such as Berland, 2006).  However, physical educational robotics has been studied 

extensively, as detailed in part in Chapter 2. Many of these studies show that students were 

engaged and motivated, and that the systems supported computational fluency. Conversely, 

virtual robotics environments have not been tested as extensively, as described in Chapter 3. 

Furthermore, all of the researchers had access to computers but no access to a bank of physical 

robots. These factors conspired to make virtual VBOT the predecessor of physical VBOT.  This 

precedence might imply some favor towards virtual VBOT. 

 

However, physical VBOT had the benefit of significant outside research and study design. 

LEGO Mindstorms robots (2002) are relatively popular commercial toys, and they are used 

around the world to teach about computers and programming. We used several well-tested 

software/hardware packages to make the programming and design of physical VBOT easier to 

implement. Furthermore, the study design for both virtual and physical VBOT was adapted from 

study designs by Wilensky (1999) and other constructionist physical robotics studies (e.g., 
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Martin, 1996b). In that sense, the physical VBOT projects were more grounded than the 

virtual projects.  

 

The data show little overall difference in engagement or overall ability. As described in Chapter 

6, virtual VBOT students did better on some questions, while physical VBOT students did better 

on others. For the reasons described in Chapter 2, virtual VBOT students produced far more 

circuits as they were constantly tinkering. As tinkering was correlated to performance, this would 

seem to favor them. However, the physical students did just as much tinkering in the time that 

they were working with the physical VBOT. Although they often had to download the circuits 

and wait, they would repeatedly consider and tinker with circuits before downloading them to 

their VBOT. Often they had to work faster because they had less time to complete their tasks, 

given the amount of time dedicated to physically moving and using the robots. 

 

If the activities were made absolutely equivalent by equalizing group size and activity structure, 

it would have had the immediate effect of making physical VBOT much harder and more 

expensive, while making virtual VBOT activities less engaging. For example, a requirement of 

commercial physical robotics is the time taken to download programs to the physical robot. If we 

paused the virtual robots to simulate a “download” before acting, it would seem both artificial 

and boring. Furthermore, physical VBOT requires more people per group to handle the physical 

and virtual aspects of the activity at any given time. While one student handles the downloading, 

another student can set up the physical space for testing. In his physical robotics studies, 
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Hancock (2003) uses groups of around 5 middle-school students. Similarly, Martin (1996b) 

used groups of three or more students. Smaller student groups would have made the project 

difficult to finish suitably in the allotted time. Similarly, raising the group size of the virtual 

VBOT studies presents a problem, as one keyboard and monitor can only address a limited 

number of people; four people per keyboard can interfere with cooperative behavior. 

 

Physical and virtual simulations differ in real-world settings, as sensors and motors work very 

differently in the two environments. Maes (1991) discusses the reasons for the inherent 

difference, but they are mostly outside the scope of this project. For this project, the difference 

can be reduced to the so-called “noise problem.” That is, physical sensors are “noisy” – they do 

not produce reliable information. The positive aspect to “noise” is that programmers come to 

understand feedback and logic much more reliably, making simpler, more targeted circuits 

(Brandes & Wilensky, 1991; Papert, 1996; Wiener, 1948). Resnick & Ocko (1991) suggested 

that many of the learning gains from educational robotics stem in part from coping with this 

noise. An obviously negative aspect to noise is that it can make building robust circuits 

intractably hard for middle-school students. Noise alone creates a need for different types of 

activities to address sensors. As seen in Chapter 6, physical VBOT students often created more 

robust circuits, while virtual students simply created more circuits. 

 

This design goal of relative equivalence was met – it is inherent to the project, but the necessity 

of equivalence between physical and virtual systems is debatable. The equivalence could be 
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located in high-level program design (i.e., do students use the same program throughout?); 

low-level program design (i.e., is the only difference between virtual and physical VBOT the 

actual physical robots?); or activity design (i.e., do student have the same day-to-day 

intermediate goals?). If the goal is equivalence in high-level design, then the project was an 

unqualified success. If the goal is equivalence in low-level design, the project was, perhaps, a 

qualified success; the students used much of the same mechanical knowledge, but the activities 

were technologically different. If the goal is equivalence in activity design, the success is 

tempered by the differences between the virtual and physical technologies. One result of this 

study is that virtual/physical equivalence is not strictly possible at the moment in a real-world 

school setting with a limited budget. Another result might be that these (forced) differences are 

illuminating. 

 

Supporting “low threshold, high ceiling” computation 

Papert (1980) and Wilensky (1999) explicitly advocate a “low threshold, high ceiling” (LTHC) 

philosophy; an environment must be easy to enter as a novice (“low threshold”), but deep enough 

for expert users (“high ceiling”). Flogo (Hancock, 2003) is designed to be LTHC, as novice users 

can use the graphical interface, segueing eventually to the high ceiling text-based interface to 

create more complex programs.  

 

None of the students in our settings had had any relevant programming experience. We 
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supported these students by designing a program with an extremely low threshold, potentially 

lower than either of the thresholds in NetLogo and Flogo.  This low threshold came at the 

expense of a high ceiling, specified by the LTHC philosophy. This means that every student was 

able to successfully interact with the system but it does not easily support the more complex 

programming tasks (as discussed above). The system was designed to respond to every input 

with action, allow only limited input, not to allow explicit errors, and to make all action in the 

system explicitly lead to a reaction in behavior. Our design decisions served to limit the ceiling 

of the project. For instance, by making all possible actions immediately visible and labeled, the 

number of them had to be limited by computer screen space. Flogo avoids this problem by 

allowing the user to create new functions and describe them textually. Though VBOT allows 

some flexibility of operations in each activity, the contextual operations are pre-defined for all 

users of the activity, rather than individually as in Flogo. For instance, in VBOT a teacher could 

decide that a new type of sensor is necessary. All students in the class would then be able to use 

the new type of sensor. An individual student cannot create a new sensor independently.  

 

The success that students experienced when working with VBOT (discussed in Chapter 5) 

implies that our design successfully created a low threshold. The decision to lower the ceiling 

grew out of the purpose of this program.  While both Flogo and NetLogo are used in non-

research settings, VBOT was designed for this purpose. This success came at the expense of a 

higher ceiling. This is not a novel finding, but it is an important one to reiterate. Perhaps a better 

designer could have achieved such a low threshold without lowering the ceiling, but, as 
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described here and in Chapter 6, the current set of programs designed at this target threshold 

do not.  

 

Designing a low barrier to entry 

Scalability is extremely difficult; it is one of the most obvious failings of many otherwise good 

learning environments. VBOT has not been tested at the large-scale implementation level. 

However, whether or not VBOT is scalable, it is possible to deploy in public schools with 

relatively little professional development. For virtual VBOT, nothing need be purchased. This is 

of absolute import as the poorest schools are in greater need of this technology. Many schools 

now feature computers, but they are used for little more than email and web surfing (Cuban, 

1995). Perhaps by using more constructionist activities such as those in VBOT in these schools 

would improve the quality of science education. 

 

Physical VBOT requires the purchase of LEGO Mindstorms Robots. LEGO Mindstorms 

Robotics Systems are already featured in many schools (LEGO, 2002), and the systems are 

relatively inexpensive (a classroom can be outfitted for about the price of one computer). A 

significant benefit using LEGO Mindstorms is the installed user base and many educational 

users. Indeed, while none of the teachers had taught classes using LEGO Mindstorms, they had 

all seen them before. 
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Using groups of students makes it easier to deploy in crowded classrooms with limited 

resources (Cuban, 1995). Although every class initially claimed to have sufficient resources to 

accommodate each student on an individual computer, in every classroom, some of the 

computers that were provided simply did not work. Hundreds of students using a limited bank of 

computers every day results in broken computers. In one case, we had to borrow computers from 

another computer lab, as more than half of the computers in the classroom were non-functional. 

 

Thus, with caveats around professional development, we could claim that this program is 

scalable, at least financially. However, questions about scaling the pedagogy remain difficult to 

address, due to the size and scope of the studies performed.  Another large-scale study is, at least, 

possible to achieve with the current technology. That would be necessary to evaluate the 

possibility of large-scale public school deployment. To be deployable with minimal professional 

development and out-of-pocket cost has long been an important objective for learning 

environments (see Cuban, 1986, for historical examples). The scalability problem is compounded 

by the different resources necessary for design and deployment. Nonetheless, it remains 

important to address it in the design, as teachers often ask about scalability issues in enactments. 

 

Designing “game-like” programming 

Real-time programming was considered a priority because of its relationship to engagement and 

complexity. Gee (2004) and Hancock (2003) both show how real-time activity, or “liveness”, 
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enhances a user’s feeling of engagement. Wilensky & Stroup (1999a) show how the 

simulation of complex systems in real-time enhances students’ ability to comprehend the 

systems.  

 

Virtual VBOT is more specifically “real-time” than both NetLogo and Flogo. That is, all actions 

have immediate effects in the shared space, which does not “pause” except at the end of 

activities. Physical VBOT is not “real-time” in the same sense; students build circuits but must 

download those circuits to their robots. Virtual VBOT is more similar to online video games than 

other programming environments. In games such as World of Warcraft, every action has an 

effect in a shared game world that is immediately seen by all other players in the spatial vicinity. 

In fact, a few students made informal references to these games when using VBOT.   

 

Virtual VBOT was effectively real-time, but physical VBOT was not. Although students using 

physical VBOT could lightly tinker with circuits before downloading them, the action was not 

effectively real-time.    There are physical robotics systems, such as the Cricket system 

(Hancock, 2001), that support real-time active physical robotics, but they are more expensive, 

and they cannot be purchased from commercial retailers. An original design for physical VBOT 

used the real-time robotics, but that plan was abandoned due to considerations about scalability, 

cost, and expertise. 
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Motivating programming as an aspect of both computational fluency and 

complex systems fluency 

Programming is, at its core, building; to learn by doing is not the same thing as learning to do. 

These two points are sometimes conflated in constructivist literature, but in this study they are 

not the same thing. One can learn to program without programming: a former colleague of mine 

had been trained to program at a university that did not have a computer lab. One can also learn 

to program by implementing a predetermined and prewritten set of programs. My personal 

experience leads me to believe that those approaches tend to be both dull and ineffective. 

Learning to program creatively by programming creatively is often the best option – this is a 

tenet of constructionism (Papert, 1980).  

 

But just as thinking about thinking is thinking about thinking about something (Husserl, 1913), 

learning to program is learning to program about something. Every programming language 

carries within it a metaphor for understanding computers. Boxer (DiSessa, 1997), Logo (Papert, 

1980), NetLogo (Wilensky, 1999), and, indeed, Prolog (1972) all show us that when one is 

programming, one is thinking and learning in that language specifically. Non-programmers often 

think of programming as inherently “mathematical” or “logical”, but there is a vast distance 

between considering programs as interactions between agents (NetLogo) and existence 

predicates (Prolog). In the same way, programming in VBOT is considering networks of 
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emergent meaning. This is emphasized by the content of the activities, which are also about 

networks of emergent meaning and emergent paths to local or global goals.  

 

Therefore, the question becomes: how well does the syntax of the language enable complex 

systems and computational fluency? VBOT does not approach NetLogo in motivating complex 

systems fluency, as would be expected. Standard NetLogo syntax addresses group of agents, and 

nearly all commands are organized to enable users to design emergent systems from groups of 

agents. VBOT, even at the level of basic syntax, is design in this way. VBOT syntax itself, is, as 

described in this Chapter and in Chapter 2, an emergent network. However, a VBOT user could 

theoretically program VBOT independently. The activity structure of VBOT, however, requires 

groups of students collaborating and competing to fulfill goals. Similarly, VBOT cannot 

approach Boxer in motivating computational fluency. Boxer provides a model metaphor for 

understanding computation. VBOT provides only the simplest circuit metaphor for computation. 

However, inherent to both systems is a novel syntax designed around targeted programming. 

Towards both fluencies, the simplicity of VBOT is both its strength and weakness. 

 

Motivating students toward intrinsic goals 

This goal mediates the other goals. If I am a student, why should I use this system? “Teacher said 

so” is a reliably problematic answer. It is a fundamental tenet of constructivism and 

constructionism that people learn based on what they know (Piaget, 1972); people learn by 
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mentally participating. A student who hates what she is doing will do little. These arguments 

have been verified many times in many ways, from Dewey (1913) to Pintrich & Schunk (1996). 

The question remains: how do we make learning environments and activities enjoyable and 

usable? Gee (2004) provides several concepts on what makes a game usable and engaging.  

 

Simplicity is fun. During the pilot studies, it became clear that we did not need so many buttons, 

so many features, or so much clutter for this program. No student built an operating system in the 

last half-hour of class, and we did not need to prepare a system in which that was possible. By 

paring down the interface repeatedly, all elements existed on the same page at the same time. 

This greatly enhanced both usability and comprehension. Lowering the threshold meant that 

students could program immediately without hours of explicit training. Students reported that 

they excelled at building circuits, and hence material computational and complex systems 

fluencies, when they did not feel intimidated by the language or interface. 

 

Complexity is fun. Why read a book if you already know an ending? The activities were made 

increasingly complex to satisfy the students. When I first presented the final activity (“Moon-

Tag”) at a research presentation, many colleagues argued that it was too complex and too 

involved for middle school students. One teacher argued that they would leave frustrated and 

dejected after failing miserably. The opposite occurred. Students in every class could describe 

the game to their fellow students within a matter of seconds; this provides some encouraging 

evidence of students building social fluencies. 
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Action is fun. It goes without saying that active play is fun. Sports are fun for some; video games 

are fun for some; and painting is fun for some. All of those involve some form of active play. It 

seems odd, then, that traditional school often includes so little active play. This is something that 

we know that students enjoy and independently engage in, so we should exploit it as much as 

possible.  In Physical VBOT, the students had to stand up and walk to a central space for their 

robots to compete.  

 

Understanding is fun. A significant percentage of negative questionnaire comments concerned 

the incomprehension or misunderstanding of an operation or circuit. Students like to understand; 

building understanding is building cognitive fluencies. We have theorized (Berland, 2006) that 

one reason academically poor students do well in HubNet and VBOT is that they feel like they 

understand concepts at the class level – they are not “left behind.” Similarly, students liked the 

circuits and games that they felt that they understood well. Simplicity and understanding are 

synergistic; the simplicity of VBOT enabled students to understand the robots that they 

controlled.  

 

Having is fun. Possession of a vbot, whether physical or virtual, actively engages a student in 

learning. Even the most sullen student identifies with a vbot bearing his or her name on the 

screen or on the floor. Wilensky & Stroup (1999a) noted that in a HubNet activity, students 

typically yell out potential actions for individual agents by name: “Bobby, move your vbot!” The 
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same effect in VBOT motivated the students to take some interest in learning. Few of the 

middle school students wanted to be the only student left out of an activity, and some of the 

activities required all students to participate in order to reach an emergent goal. In those cases, 

the students were almost forced to have fun, but the forcing came from their peers, rather than 

from a teacher. It is rather novel to hear an 8th grade student remark that her compatriot needs to 

“learn to program!” These statements are concrete indications of the ways that social 

computational and complex systems fluencies are being supported by the system. 

 

Being is fun. Papert (1980), Hancock (2003), and others argue that embodiment and body 

syntonicity are essential for good constructionist design. They argue that more concrete activities 

and metaphors are easier to understand.  Inhabiting a space brings with it implications for 

engagement and understanding that remain relatively unexplored (see Abrahamson, 2006), but 

implies that students are building complex systems and computational cognitive fluencies. It was 

rare to see a student trying to understand the movement of a vbot without some body contortion 

simulating the movement of the individual’s vbot (Berland, 2005). Gesture and movement are 

powerful comprehension tools (Goldin-Meadow, 2003), and using them gives us access to an 

underused learning tool for the modern public school.  

7.3 Design Conclusions 

How well did VBOT design decisions address our design goals overall, how well did VBOT 
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design decisions address our learning goals, and what principles can we draw from our 

findings?  

 

By design, a single student using VBOT cannot write a single circuit that satisfies an activity’s 

global goal; all activities are designed for multiple actors, and the software is designed to enable 

this. Students wrote simpler programs than those found in the work of Hancock (2003) or 

Wilensky (1999). Hancock (2003) asks middle-school students to program robots to explicitly 

search out and return specific objects to a predetermined location. Towards this end, Flogo 

provides a separate, text-based interface to input more complex program code, providing a 

wholly different program metaphor than the circuit-based interface. VBOT provides no such 

facility, and it is impossible in VBOT to “delve” into the text-based program code for any 

reason. Thus, while tasks such as the Flogo task are feasible in VBOT, they are difficult, and no 

task of that complexity could have been undertaken in the classroom time allotted. In this sense, 

the design of VBOT was starkly different from Flogo: our design foregrounds tinkering, sharing, 

and “liveness” (from Hancock, 2003) over more complicated programming. In this way, the 

design of VBOT promotes complex system fluency through computational fluency.  

 

Wilensky & Stroup (1999a) discuss the benefits and deficits of using HubNet system in the 

classroom. As described in Chapter 2, VBOT is a descendent of HubNet. HubNet, contrasting 

with VBOT, requires no programming. HubNet is designed to support complex systems fluency 

by allowing students to act as an agent in a participatory simulation. Compared to other HubNet 
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simulations, VBOT foregrounds circuit building and programming over direct agent action as 

a way for students to interact in a shared social space. In this way, the design of VBOT promotes 

material and cognitive computational fluency through material and cognitive complex systems 

fluency. 

 

The data suggest that the computational and complex systems fluencies were mutually 

reinforcing, and that the boundaries set on program complexity and agent interaction were 

contextually fruitful. Student programming in this study did not approach the maximum 

complexity of VBOT programs. Indeed, as seen in Figure 6-1, the relative difficulty of the 

individual operations decreased by the last day of the activity. As the activities became more 

complex, students created more targeted, simple circuits to achieve their goals. Hancock’s study 

guides the students into an eventual goal of being able to program in traditional functional 

languages, such as LISP; this study had no such goal. Hancock’s study was designed differently 

and targeted differently, using volunteers with previous programming experience in after-school 

programs. Our data suggest that even previously untrained middle-school students are capable of 

creating relatively complex correct programs. 80.5% of the students created at least half of the 

circuits correctly on the post-test evaluation. Students in the top 50% of post-test scores did not 

have a higher average difficulty per circuit metric (OP_DIFF). This implies that material 

computational fluency was not directly tied to building complex circuits.  That is, the simplicity 

of the circuit design appears to have been borne out of the activity design rather than student 

abilities. 
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Chapter 8:  Conclusions and Future 
Directions 

VBOT is a fully integrated virtual/physical constructionist robotics-based learning environment 

designed to teach complex systems and computational fluency to middle school students. Four 

8th grade public school classes (2 virtual, 2 physical) at two schools used VBOT and showed 

significant learning gains towards both fluencies. Furthermore, we examined several possible 

explanations for those gains and investigated how a set of constructionist design principles 

related to those gains. The most salient factors in those gains were tinkering and sharing, and 

while students in both contexts demonstrated learning gains there were interesting differences 

across them.  

 

8.1 What is VBOT? 

The VBOT language was shown to be a robust circuit-based robotics language. In VBOT, groups 

of students compete and collaborate to build several virtual and/or physical robots. There are a 

few salient differences between VBOT and other educational robotics packages: it is designed to 

work equivalently for both virtual and physical robotics; it is inherently collaborative and multi-

user; behavior emerges from networks of connected operations; all virtual robotics is real-time; 

and, as an architecture, it emphasizes tinkering and sharing.  
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VBOT is based on the HubNet participatory simulation environment (Wilensky & Stroup, 

1999b). In the virtual aspect of VBOT (called “virtual VBOT” or VVBOT), as in HubNet, 

students (or pairs of students) each control a single avatar through a game-like interface. This 

interface controls the actions of a single “vbot” avatar.  The avatars of all of the students act in a 

common, shared screen-space. The students look at this shared screen in the front of their 

classroom to see their actions as well as the actions of their fellow students’ avatars. The 

physical aspect of VBOT (“physical VBOT” or PVBOT) differs in that the students use their 

interface to control an actual robot, which is a physical manifestation of the virtual avatar 

described above. To control their robots, students must download their programs to the physical 

robots. These robots (also called vbots) then act in a shared space, which is usually a ring marked 

on the floor of the classroom. The physical robot used was the LEGO Mindstorms robot, 

described in Chapter 2 and illustrated in Appendix 1.  

 

8.2 Why was this study necessary? 

This work rests on several fundamental assertions: that computational fluency is an important 

goal; that complex systems fluency is an important goal; that the two fluencies are mutually 

reinforcing; and that a constructionist robotics learning environment provides a fruitful path 

toward that goal. The study with VBOT derives from a host of companion works. Papert (1980) 
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described constructionism as a method for teaching and learning. This work is, if nothing 

else, an argument for increased use of constructionist methods in the classroom. Wilensky (2001) 

pioneered work on complex systems fluency. DiSessa (2000) pioneered work on computational 

fluency. Hancock (2003) and Resnick & Ocko (1991) provided works on robotics in the 

classroom that fundamentally informs the paths that this work follows. 

 

 Chapter 3 explored the roots and justifications for complex systems fluency and computational 

fluency. The call for complex systems fluency stems from the finding that American students 

lack basic scientific fluency upon exiting high school (AAAS, 2007; TIMSS, 2003) and complex 

systems fluency is posited as a novel, comprehensible mode for understanding scientific 

phenomena. Teaching students about the elements of phenomena and the relationships between 

those elements fosters understanding of some phenomena better than traditional equation-based 

science (Wilensky & Stroup, 1999a). The need for computational fluency stems from the 

growing role that computer technology is playing in the US. While more students may use 

computers on a daily basis, there is little evidence that students better understand computation 

(DiSessa, 2000). 

 

Wilensky & Resnick (1999), Wolfram (2002), and others have long posited a strong connection 

between computational fluency and complex systems fluency. Their studies suggest that complex 

systems theory is more easily available as a mode for understanding science because of the 

increasing prevalence of scientific computation and visualization. However, there are few studies 



    

Chapter 8: Conclusions and Future Directions 

 

182 

that test learning environments for their applicability to complex systems fluency or examine 

the relationship between computational fluency and complex systems fluency at the middle-

school level. Constructionist virtual and physical robotics provide a solid context for teaching 

these fluencies because both have been individually tested before with good results, as described 

in Chapter 2. However, there are few comparisons of constructionist virtual and physical robotics 

with modern technology, however.  

 

This work, in turn, fills several gaps in available research because it is: a comparison between 

virtual and physical constructionist environments; an investigation into the relationship between 

computational and complex systems fluencies; and a test of the effectiveness of different 

learning environments toward teaching those fluencies. 

 

8.3 Why did we use these methods? 

As such, the study design is a traditional “2 by 2” factorial research study (as described in 

Ericsson & Simon, 1984), using a VVBOT class and a PVBOT class each at two separate school, 

totaling 4 classes. By comparing and contrasting schools, virtual classes, and physical classes, 

we were able to more clearly see the differences that stem from teacher, student, class, and 

learning environment interaction. The “2 by 2” study allows researchers to factor out specific 

and individual differences on two axes. In a 2x2 study, the between-class and between-treatment 
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differences often contrast if they exist. 

 

Each of the four classes was an 8th grade, non-magnet public school classroom in a large 

Midwestern city, and each used P/VBOT across roughly 5 days for an hour per day. During the 

first three days, time was spent teaching students how to use VBOT operations. The majority of 

each class days was spent in VBOT, with the exception of the time spent for rudimentary 

instruction, discussion, and questionnaires. All mouse or keyboard activity in VBOT was logged 

to a central server. We also collected videotape data of each class day on two cameras. In 

addition, we administered a pre- and post-test for all students, daily questionnaires for all 

students, and pre- and post-interviews with 4 students per classroom. 

 

8.4 Did we meet our goals? 

There are three questions the reader should be able to answer at this point: 

1. What are the benefits and deficits of using physical or virtual robotics for learning 
computer science or complex system concepts? 

2. What aspects of design motivate this learning? 
3. How well does this work? 

 
This work succeeds to the degree that one can answer those questions from its reading. 

Fundamentally, this work is a study of one system (VBOT) used to teach two intertwined 

learning goals (complex systems and computational fluencies) to a specific population (middle-

school students). This study was situated in four middle school classrooms from two different 
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Chicago public schools over the course of one week. From this perspective, this is an 

enormous task – these students have no programming experience and many of them are doing 

quite poorly in traditional academic settings. To teach these students about computer 

programming and complex systems content simultaneously might seem too big, too fast, and too 

much. However, students learned not only how to program in a proprietary system, but they did 

so in a complex systems environment, in a way that shows remarkable understanding and 

improvement. Our results led us to conclude that complex systems and computer science 

fluencies are mutually reinforcing. 

 

8.5 What did we find? 

In short, we found that students in all classes learned as a result of being able to play relatively 

freely with the system. The amount of time given by the individual teachers, the design of the 

class material, and the school environments mattered far less than simply motivating students to 

share and tinker with the system. Perhaps against common perception, boys did not perform 

better than girls, higher SES did not perform better than lower SES, and the virtual classes did 

not perform better than the physical classes. What we found was that students learned a great 

deal across the board: a significant majority of students learned how to program in VBOT, they 

could collaborate and compete in the classroom using VBOT, and they could take that 

knowledge and apply it on the post-test evaluations.  
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Complex systems and computational fluencies are mutually reinforcing. 

We have noted the relative value of complex systems and computational fluencies several times 

over the course of the work to gain lenses with which to understand science, math, and 

computers. Many of these students entered the project with a mystifying view of robots as 

Martian invaders and left the project believing that they knew how to program robots. Other 

students came in assuming that every flock of birds had a pre-determined leader, and that every 

anthill was “radio-controlled” by a hidden queen. These same students came to understand that 

sometimes the only way to a common goal was an array of nearly identical simple agents. All of 

the students became familiar with the concept of networks of meaning, both in computation and 

in society. 

 

Virtual and physical environments, even with equivalent activities, 

engender different behaviors. 

VVBOT and PVBOT students performed differently on post-test questions in the types and 

numbers of circuits they built and in the ways that they built their circuits. Many of the statistical 

measures we used were significantly different between VVBOT and PVBOT students. However, 

neither group was significantly “better” on the post-test or in their circuit quality. Some 

researchers might look to a work such as this one to judge the value of physical or virtual 
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robotics for teaching and learning; we found that they both work well, albeit differently. To 

an extent, the virtual environment favors agent-based modeling from an aggregate perspective, 

and the physical environment favors aggregate modeling from an agent-based perspective. 

 

Tinkering and sharing helps students learn complex systems and 

computational fluencies. 

Sharing, tinkering, and performance were strongly correlated. Our data showed that students who 

tinkered and shared performed better on the post-test, regardless of pre-test performance. 

Gender, race, teacher, and school were uncorrelated to performance. All of the students learned 

how to create at least passable working VBOT circuits in the span of 5 days.  

 

8.6 How did we add to the field? 

VBOT is a new paradigm and language, built from previous successful systems – this is a 

virtual/physical real-time robotics system that can be used and adapted further in the field. A 

primary addition to the literature comes through the comparison of virtual and physical 

constructionist environments. There are few studies that systematically compare virtual and 

physical robotics in a constructionist frame. Among other findings, our data suggest that virtual 

and physical students interpreted similar problems remarkably differently: VVBOT students 
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tended to understand things in context, in a networked way, where PVBOT students came to 

a more thorough understanding of the way that computation and logic works. 

 

Another addition to the field comes through the local definitions and elucidation of complex 

systems and computational fluencies. By breaking down these categories into material, cognitive, 

and social, as per DiSessa (2000), we have broadened the definitions, so that can be used in other 

studies. This is a new, adapted definition of complex systems fluency, but it has relevance 

outside of this work. Furthermore, we have defined a set of design principles, which can be used 

to teach complex systems and/or computational fluency. These design principles have been 

verified both in practice and in data, and they should prove helpful for future designers building 

with related goals. 

 

Tinkering and sharing were shown to be significantly correlated with performance and activity 

within the system. Male and female students were roughly equal on every measure; race, school, 

and teacher effects were quite minor. This suggests that by emphasizing tinkering and sharing, 

we are emphasizing learning. It could be argued that students tinkered and did better because 

they were more motivated by the system, but this is not a negative finding: this simply shows 

that the more fun a task is, the better the students perform.  
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Prescriptions 

The following section describes how to use the information in this work to design towards 

complex systems and computational fluency. These prescriptions are positive, offering 

suggestions for organizing classrooms and designing learning environments. 

 

Making the classroom more constructionist 

Constructionism has been repeatedly correlated with engagement, creativity, and robust learning 

(see Bruckman, Edwards, Elliott, & Jensen, 2000). Essentially, constructionism means learning 

through building both knowledge and artifacts. The concepts behind constructionism are both 

deceptively simple and deceptively complex. What has been shown here, in Papert’s work 

(1980), and countless other places (e.g., Harel & Papert, 1990) is that a designer can exploit 

active building towards engagement in learning design. People like to make artifacts. People 

learn better and care more about what they learn by interacting with and building artifacts than 

they do by hearing about them. In my opinion, no gain observed in this study is independent of 

constructionism. 

 

Emphasizing computational fluency in your design 

Computational fluency becomes more important every day. To be an informed citizen of the 21st 

Century, we need not only a literary (suggested by Orwell, 1947) and scientific fluency (AAAS, 
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2007), but a computational fluency as well. Computational fluency involves not only 

familiarity with computers but also a fundamental understanding of how and why they work and 

what they can and cannot effectively do (DiSessa, 2000).  Computational fluency is difficult to 

gain without actually programming computers or designing digital artifacts. Only by 

programming a computer can a student understand why computers look and feel the way that 

they do and that they are essentially simple machines.  

 

In keeping with the constructionist philosophy, our work demonstrates that the best way to 

emphasize computational fluency in research design is to engage students in tasks that require it. 

The programming should stem from the task. Students using VBOT never questioned why we 

were using computers to play with robots – they were too busy playing a game with VBOT to 

grumble about having to learn it. From the students’ perspective, the games were driving the 

medium; the medium was not driving the game. 

 

Emphasizing complex systems fluency in your design 

Arguing for science fluency is positive, but science fluency has not been taught effectively in this 

country (TIMSS, 2003). One explanation is that traditionally taught science is both boring and 

hard, though science itself is neither boring nor hard. It only seems boring and hard because it is 

presented inappropriately; Students are rarely motivated by material that is packaged for 

educators or scientists. VBOT students learned about complex systems science because it was 
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necessary to play the game and because it simply flowed from the material. NetLogo (1999) 

contains many examples of simulations in which phenomena are understandable through 

complex systems methods that would be otherwise difficult or needlessly mathematical. When 

approaching science content, it is necessary to approach it from ¸unique perspectives and 

consider the elements that make up the phenomenon; it is necessary to ask why phenomena 

happens, rather than simply how they happen. 

 

Using robotics effectively 

Robotics is a powerful learning tool. It is novel, even to the expert; it is futuristic, even to the 

programmer; and artificial intelligence has significant depth. Robotics essentially offers low-cost 

student engagement in a subject with significant depth. Better yet, it can be applied to a variety 

of scientific and mathematical phenomena. Rather than programming a LEGO robot follow a 

line, program it to act like a squirrel. Rather than building a robot to bring you a bagel, make a 

robot phonograph. There are numerous works in which robotics is used in remarkably novel 

ways, most of which are accessible even to the tech novice (e.g., AgentSheets, from Repenning, 

Ioannidou, & Zola, 2000; Rusk, Berg, & Resnick, 2005). 

 

Teaching students to share more effectively 

Students share naturally; most middle-schools students, for instance, love to talk incessantly. 
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Here is my prescription: let them talk. Let them talk off subject, but give them topics without 

one right answer. There is no such thing as “cheating” in VBOT, and this helped make the 

project run much more smoothly. In many of the activities, two students had to fill sufficiently 

different roles in which talking helped both of them but copying helped neither. In a free market, 

cheating rarely works– two companies that sell the exact same product will both sell half as 

much of it. However, two companies that work in synchrony create more business for other 

companies. To maximize sharing, students can be considered independent entities working in a 

free market. Opportunities for synchrony lead to much better results than identical competition. 

 

8.7 Where were the problems?  

Many veteran teachers today have a reasonable dislike of classroom innovations due to the spotty 

history of the novel classroom innovation (Tyack & Cuban, 1995). Our study was big enough to 

get reasonable statistical significance, but small enough that there are obvious holes. There is no 

way to assure that it will work everywhere. Nobody has attempted to deploy VBOT in a 

classroom where I was not present. This remains a future goal, and it is discussed below.  

 

A limitation of the study is that I was not able to collect and analyze the social network data 

collected in the second pilot (as described in Section 4.2). Although there is reason to believe 

that fruitful data exists in examining social networks over time, the researcher resources 
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necessary to collect that data in a “real-time” simulation study makes that collection difficult 

to do. As such, we were unable to do it in this study. 

 

Like many design research studies, issues of transfer arose (as described by Perkins & Salomon, 

1988). How does one know that the local learning translates to global learning? Will these 

students be better at programming when they see it again? Do they show complex systems 

fluency gains a year later? We attempted to design the pre-test and post-test to be meaningfully 

different from the VBOT activity (see Appendix 2), but transfer can be notoriously difficult to 

determine or understand. 

 

8.8 Future directions 

So where do we go from here? In keeping with the theme of this conclusion, our path can be 

divided into two prongs: understanding fluencies and improving design.  

 

The cognitive aspects of complex systems fluency are only beginning to be understood 

(Goldstone & Wilensky, 2008). It is not yet know what cognitive processes people use to 

understand complex systems, neither is it known how they translate that understanding into 

material action. Work could be done within this system to address this topic. While it is difficult 

to get speak-aloud data of step-by-step student understanding because of the real-time aspects of 
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VBOT, it would be possible to more carefully consider one student’s experience in a VBOT 

classroom. With an automated notation tool for individual students and individual cameras, it 

might be possible to investigate all of the actions of a specific student to understand their 

thought-processes more fully. 

 

There is not much new research on assessment design in this study. Much more could be done by 

spending research time and money on improving the automated and textual aspects of 

assessment. Automatic assessments, individualized assessments, and reflective assessments 

would be relatively easy to integrate into VBOT and would increase the value of the data 

towards understanding fluencies. The approach to social network data tried in the second VBOT 

pilot (P2, detailed in Section 4.2) provides a different and potentially very valuable perspective 

on constructionist classrooms. Work in automatic and individualized assessments might provide 

a way to collect and analyze this social network data with fewer necessary resources. 

 

This research has several implications for design. Many of the findings and much of the data 

suggest that students who play with the system more enjoy it more; those students then do better 

on assessments and in the activities. As such, there is a wealth of new research on games and 

learning that would be invaluable (e.g., Gee, 2003; Squire, 2003). There are many questions 

about the relationship between tinkering, motivation, and performance that are unanswerable 

with our design. Perhaps the most exciting next step would be to implement a set of targeted 

“tinkering games” that could be tested in various scenarios. During the original design of the 
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current iteration of VBOT, Ian Horswill and I discussed a VBOT-like massively multiplayer 

online game (MMO) in which the data could be collected from players on the Internet.  There are 

few learning games that leverage the “liveness” or complexity aspects of VBOT, and our design 

would likely benefit many users. 

8.9 In Summary 

Learning, playing, and sharing are complex activities. By tinkering, playing, and sharing, 

students came to better understand a complex and complicated set of content in a short period of 

time. There is a significant amount of research debating the difficulty of teaching computational 

fluency to younger students (e.g., AAUW, 2000; Cuban, 1985; Pea, 1987), debating the 

difficulty of teaching complex systems fluency to younger students (e.g., Hmelo-Silver & 

Pfeffer, 2004; Levy, 2002), and, possibly as a result, little research on combining the two. In 

using a “live” game-like simulation, our students were motivated, they met our learning goals, 

and they improved on our assessments. The virtual VBOT students and the physical VBOT 

students learned different things differently, but both sets learned content that few middle school 

students are able to learn. In this study, context trumped content. Exciting concepts presented in 

boring ways often seem difficult to learn; exciting concepts presented in exciting ways often 

seem easy to learn. 
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APPENDIX 1 – PHYSICAL VBOT 
 

 

Physical VBOT – Side view  

 

Physical VBOT – Side view 
 
 

 

Physical VBOT – Rear view 
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Physical VBOT – Front view 

 

Physical VBOT – Light sensors 

 

Physical VBOT – Light sensors 

 

Physical VBOT – Bump sensor 
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Physical VBOT – Wheels and motors 

 

Physical VBOT – Bottom view 
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APPENDIX 2 – ASSESMENT TOOLS 

Pre-Questionnaire   
 
 
Name:  
 
 
 
 
 
Date: 
 
 
 
 
Just write what you think! Answer each question with a 
sentence or two. 
 
Thank you! 
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Q1 
When birds fly south for the winter, they often form a V-shape. You might have seen this in the 
sky. This is a picture of flock of birds flying in V-shape: 
 
How does Shelby, the bird, know where to fly in the V-shape? 
 
 
 
 
 
How do the birds know where to go when they are flying in a V-shape? 
 
 
 
 
 
 
Why do birds fly in V-shapes? 
 
 

 

Shelby 
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Q2 
 
Imagine that this “flowchart” describes your day at school. You can follow the flowchart by 
answering questions about your day. Depending on your answers to the questions, it tells you 
what to do next. Start at “START” (in the image above) and follow the arrows. 
 
Have you ever seen a flowchart before?  YES   NO 
 
Using the chart, list the things that happen during a day of school.  
 
 
 
 
 
 
Change the flowchart so that if you are not at school, you read a book. (Draw on the picture 
above.) 
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Q3  
You are in a pitch-black square room 
with heated walls. You can’t see 
ANYTHING. In the center of the room, 
there is a radio. If you touch the middle 
of any wall you are about 5 feet from 
the radio. You can hear the radio and 
feel the heat from the wall to varying 
amounts from anywhere in the room.  
 
 
 
 
 
 
How would you walk all the way 
around the radio at least once if you couldn’t see ANYTHING? You start walking at START 
(on the right), and end at the same place (END). You can hear how far away you are from the 
radio and you can feel how close you are to the wall because of the heat from the walls. Do not 
touch the walls. 
 
 
 
 
How would you make a path closer to the radio without touching the radio or the walls (if you 
still can’t see anything)? 
 
 
 
 
 
If the RADIO WERE TURNED OFF, how would you make a smaller loop around the radio 
without touching it or the walls (if you still can’t see anything)? 
 
 
 
If BOTH the RADIO and the HEAT FROM THE WALLS WERE TURNED OFF, how would 
you make a loop around the radio without touching the radio or the walls (if you still can’t see 
anything)? 
 

 

 

 

 
 

E
ach student uses a VBOT client screen to design behaviors for his/her vbot  

Sa
lly’s VBOT client 

This moon rock 
has been 
dropped near the 
center by a 
worker 

START / 
END 
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Post-Questionnaire   
 
 
Name:  
 
 
 
 
 
Date: 
 
 
 
 
 
 
Just write what you think! Answer each question with a 
sentence or two. 
 
Thank you! 
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Q1 
 

 
When birds fly south for the winter, they often form a V-shape. You might have seen this in the 
sky. This is a picture of flock of birds flying in V-shape: 
 
How does Shelby, the bird, know where to fly in the V-shape? 
 
 
 
 
 
How do the birds know where to go when they are flying in a V-shape? 
 
 
 
 
 
 
Why do birds fly in V-shapes? 
 
 
 

 

Shelby 
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Q2 
 
Imagine that this “flowchart” describes a day at home. You can follow the flowchart by 
answering questions about that day. Depending on your answers to the questions, it tells you 
what to do next. Start at “START” (in the image above) and follow the arrows. 
 
 
Using the chart, list the things that happen during this day at home.  
 
 
 
 
 
 
 
 
 
 
 
Change the flowchart so that if you are not at home, you go home. (Draw on the picture above.) 
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Q3  
You are in a pitch-black square room 
with heated walls. You can’t see 
ANYTHING. You can feel the heat 
from the walls when you touch them, 
and when you put your hand near them. 
In the center of the room, there is a 
radio. It is turned on. You can hear the 
radio pretty well. If you touch the 
middle of any wall you are about 5 feet 
from the radio.  
 
 
 
 
 
 
How would you walk one full loop around the room if you couldn’t see ANYTHING? You 
start walking at START (on the right), and end at the same place (END). You can hear how far 
away you are from the radio and you can feel how close you are to the wall because of the heat 
from the walls. Do not touch the walls or the radio. 
 
 
 
 
How would you make a path closer to the radio without touching the radio or the walls (if you 
still can’t see anything)? 
 
 
 
If the RADIO WERE TURNED OFF, how would you make a smaller loop around the radio 
without touching it or the walls (if you still can’t see anything)? 
 
 
 
 
If BOTH the RADIO and the HEAT FROM THE WALLS WERE TURNED OFF, how would 
you make a loop around the radio without touching the radio or the walls (if you still can’t see 
anything)? 

 

 

 

 

 

Sa
lly’s VBOT client 

 

 E
ach student uses a VBOT client screen to design behaviors for his/her vbot 

START / 
END 
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Q4 
 
Your vbot is the airplane in the picture. The arrows in the middle are other people’s vbots, and 
they are stopped in the middle of the screen. There is a light source in the middle of the screen. 
 
 
 
 
 
 
 
 
 
 
 
4.A. Wire up a vbot to go in a loop around the screen. 
(Use attached vbot breadboard. Circle Q 4.A. at the top of the sheet.) 
 
  
4.B. Wire up a vbot that would make a smaller loop. 
(Use attached vbot breadboard. Circle Q 4.B. at the top of the sheet.) 
 
 
4.C. Wire up a vbot that makes either loop using NO LIGHT SENSORS (LL and LR)?  
(Use attached vbot breadboard. Circle Q 4.C. at the top of the sheet.) 
 
 
4.D. Wire up a vbot that makes either loop using NO VBOT SENSORS (LB and RB)? 
(Use attached vbot breadboard. Circle Q 4.D. at the top of the sheet.) 
  



    

 

221 

Circle one:  
Question 4.A.   
Question 4.B.   
Question 4.C.   
Question 4.D. 
 

 
 

 

 



    

 

222 

Daily Questionnaire    Name:  
Circle one:  
Monday     Tuesday     Wednesday     Thursday     Friday 
 
Please list everybody in the class who you remember talking to during the VBOT lesson. 
 
 
 
 
 
 
Please list everybody in the class who you remember working with during the VBOT lesson. 
 
 
 
 
 
 
 
What was your favorite thing about today’s VBOT lesson? 
 
 
 
 
 
 
 
What was your least favorite thing about today’s VBOT lesson? 
 
 
 
 
 
 
In a couple of sentences, describe one thing you learned today. 
 


