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ABSTRACT

Mechanics-informed Diagnosis and Treatment Planning: Application to Esophageal

Disorders

Sourav Halder

The esophagus plays a crucial role in the functioning of the gastrointestinal tract and

esophageal disorders are associated with reduced quality of life. Several studies have re-

ported that there is a high worldwide prevalence of esophageal disorders. Esophageal dis-

orders are related to the mechanical properties and function of the esophageal wall. There-

fore, to understand the underlying fundamental mechanisms behind various esophageal

disorders, it is crucial to map mechanical behavior of the esophageal wall to altered bo-

lus transit and increased intrabolus pressure. This thesis demonstrates how mechanics

can be used for better diagnosis of esophageal disorders, improved treatment planning,

and identifying the unique mechanical characteristics of various esophageal disorders.

To begin with, an in silico model is presented to estimate the optimal parameters of

an esophageal surgery called myotomy to reduce the risk of formation of a complication

called blown-out myotomy (BOM). Furthermore, two frameworks are described that work

with the esophageal diagnostic tests: fluoroscopy and magnetic resonance imaging (MRI),
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to estimate the mechanical “health” of the esophagus through a set of mechanics-based

parameters such as esophageal wall stiffness and active relaxation. These frameworks not

only provide valuable information about the underlying wall mechanics behind the mea-

surements of the diagnostic devices but also increase the capabilities of these diagnostic

technologies either by adding automation or by increasing the resolution of the images

generated by them. Finally, a framework called mechanics-informed variational autoen-

coder (MI-VAE) is described which generates a mechanics-based parameter space called

virtual disease landscape (VDL). Clusters of various esophageal disorders and normal

function form within the VDL which help capture similarities and dissimilarities between

various diseases. This also helps in identifying mechanical physiomarkers that distinguish

the various esophageal disorders. In addition, the VDL helps in estimating the effective-

ness of treatments and tracking patient condition over time. Together, these frameworks

provide a formal approach by which mechanics can be meaningfully used for diagnosis

and treatment planning.
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CHAPTER 1

Introduction

The esophagus is a multi-layered muscular tube that transports food from the pharynx

to the stomach with the help of neurally activated peristaltic contractions. Esophageal

disorders can cause disruption of the process of swallowing, and a variety of symptoms

including dysphagia, chest pain, and heartburn. Some of these disorders are gastroe-

sophageal reflux disease (GERD), achalasia and eosinophilic esophagitis (EoE). There is

a high worldwide prevalence of esophageal diseases exemplified by studies [1, 2] reporting

that gastro-esophageal reflux disease (GERD) has a prevalence of 18.1%−27.8% in North

America alone with an increase across all age groups. Another study [3] reported that dys-

phagia (swallowing difficulty) affects 1 in 25 adults annually in the United States. Hence,

it is necessary to understand the underlying causes of the various esophageal diseases

for better treatment practices. In addition, there is a also a need for more quantitative

approaches for diagnosing esophageal diseases to increase the precision of current diag-

nostic techniques. This thesis aims to provide a novel direction (and a few steps in that

direction) towards esophageal diagnosis and treatment planning using mechanics.

The effects of various esophageal diseases are manifested in different scales ranging

from cellular to organ level. For example, EoE exhibits cellular structural changes in the

mucosal layer (inner-most layer) as well as increase the overall stiffness and appearance

of the tissue at macroscopic tissue level. Esophageal motility disorders such as acha-

lasia display abnormal/absent contractions of the esophageal wall and unrelaxed lower
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esophageal sphincter (LES) tone due to abnormal muscles activation. Irrespective of

the scale at which the disorders originate, the final stage at which they are manifested

(through dysphagic symptoms) is the macroscopic tissue/organ scale. This is because

the primary function of the esophagus is to physically transport the swallowed bolus and

empty it into the stomach. Thus, any form of dysphagia is directly related to the this

transport and emptying process to varying extent. This is why some of the most popu-

lar diagnostic technologies such as high resolution manometry (HRM), functional lumen

imaging probe (FLIP), barium esophagram and endoscopy test the state and function of

the esophagus at this scale. Mechanics plays a very dominant and crucial role at this scale

of esophageal function since the transport of any swallowed bolus and the deformation of

the esophageal walls must follow the physical laws of mass and momentum conservation.

Thus, any esophageal disorder that manifests itself at the tissue level must also reveal

its unique characteristic through mechanics-based parameters such as the esophageal wall

material properties and active stretches in the muscle fibers due to neural activation.

Hence, understanding the biomechanics of esophageal transport can provide important

insights into the nature of these disorders as well as the physiology of esophageal func-

tioning. Our main research involves the bio-physiologic modeling of the esophagus using

mechanics and deep learning, and can be categorized into three focus areas: fundamental

research, patient-specific analysis and virtual disease landscape (VDL) as shown by the

pictorial description in Figure 1.1.
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Figure 1.1. Main focus areas of this thesis.

1.1. Fundamental research: vEsophagus

The main goal of this focus area is to develop a fully-resolved model of the esophagus

[4, 5] to describe various mechanics based physiological processes involved in the func-

tioning of the esophagus and the pathophysiology of various esophageal disorders that can

be explained using mechanics. This model forms the basis of applying well-established

knowledge of the anatomical components of the esophagus such as the fiber architecture

of the wall muscles, orientation of the different layers, and the activation of the mus-

cle fibers, to understand their relative imapct on verious esophageal diseases. Using the

vEsophagus, we have performed simulations to identify the factors that play a major role

in the formation an esophageal disorder called blown-out myotomy (BOM) or pseudodi-

verticulum, which often accompanies an esophageal surgery called myotomy used to treat
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patients suffering from achalasia as described in chapter 2. This might be helpful in guid-

ing and establishing myotomy procedures that would reduce the risk of the formation of

an esophageal BOM.

1.2. Patient-specific analysis: FluoroMech and MRI-MECH

Some of the common tests for diagnosing esophageal disorders are barium esophagram

using fluoroscopy, high resolution manometry (HRM) [6, 7, 8, 9, 10], and functional

lumen imaging probe (FLIP) [11, 12]. An esophagram is non-invasive test wherein a

patient swallows a radiopaque material, usually dilute barium, and fluoroscopic imaging

is used to visualize the esophageal lumen. HRM and FLIP are more invasive procedures

where a catheter with sensors is inserted into the esophagus to quantitatively assess the

esophageal contractility. Measurements made by HRM and FLIP are physical quantities

such as the pressure developed within the esophagus when a fluid is swallowed and/or the

cross-sectional area variation along the esophageal length. These physical quantities serve

as surrogates for fundamental physiomarkers such as tissue integrity and neuromuscular

function that define the health of an organ. In fact, since the fundamental physiomarkers

are often unknown or unmeasurable, clinical decisions often need to be based on these

physical quantities. However, such measurements never precisely track the relevant phys-

iomarkers and this can lead to discrepancies. For example, the widely used Chicago

Classification v4.0 (CCv4.0) [13] classifies esophageal disorders based on a set of param-

eters derived from pressure measurements made with HRM. Since luminal pressure and

cross-sectional area, which occur at a tissue level, are the physical quantities commonly

measured by HRM, FLIP, or esophagram, the first stage of quantifying the fundamental
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physiomarkers of esophageal function are at the tissue level. In this context, the mechan-

ical properties of the esophageal wall as well as its dynamic behavior related to active

contraction and relaxation could be important physiomarkers. Thus, mechanics-based

analysis provide valuable mechanistic insight regarding esophageal function.

Previous mechanics-based studies on the esophagus have been done both experimen-

tally and computationally. Experimental studies [14, 15, 16, 17, 18] focused on the

mechanical properties of the esophageal walls in-vitro. In-silico modeling of the esopha-

gus have been performed both in the context of pure fluid mechanics [19, 20, 21, 22, 23]

to understand the nature of bolus transport as well as fully resolved fluid-structure inter-

action models to understand how the esophageal muscle architecture influences esophageal

transport as well as the stresses developed in the esophageal walls during bolus transport

[4, 5]. The continuum mechanics based fully-resolved model discussed above explains

some very fundamental behavior of esophageal transport, but suffers from two major

drawbacks: 1) its works on a simple cylindrical model with well-defined structured behav-

ior and material properties, and fails to capture the variability observed in reality, and

2) it takes a long time to run each simulation, and therefore, is not feasible to apply in

patient-specific scenarios. For patient-specific analysis of esophageal transport, we have

developed two models: 1) FluoroMech and 2) MRI-MECH that can process physio-

logic data from patients, and predict the state and functioning of the esophagus. These

models read radiographic images from fluoroscopy and MRI, and transform them using

deep learning so that they can be used by mechanics-based models to predict potential

physio-markers. Therefore, these models bridge the gap between clinical observations
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and mechanics based analysis. FluoroMech and MRI-MECH are described in detail in

chapters 3 and 4, respectively.

1.3. Virtual disease landscape

The hybrid models, FluoroMech and MRI-MECH, can estimate the state and func-

tion of the esophagus through a set of mechanics-based parameters. We have developed

another hybrid framework called mechanics-informed variational autoencoder (MI-VAE)

that uses these mechanics-based parameters to identify the underlying physics of various

esophageal disorders (motility disorders, eosinophilic esophagitis, reflux disease, sclero-

derma esophagus) and maps them onto a parameter space which we call the virtual disease

landscape (VDL). A modified version of FluoroMech processes the output from the func-

tional lumen imaging probe (FLIP) to estimate the mechanical “health” of the esophagus

by predicting a set of mechanics-based parameters such as esophageal wall stiffness, mus-

cle contraction pattern and active relaxation of esophageal walls. The mechanics-based

parameters were then used to train a variational autoencoder that generated a latent

space. The latent vectors along with a set of discrete mechanics-based parameters define

the VDL and formed clusters corresponding to specific esophageal disorders. The VDL

not only distinguishes among disorders but also displayed disease progression over time.

Finally, we demonstrated the clinical applicability of this framework for estimating the

effectiveness of a treatment and tracking patients’ condition after a treatment. MI-VAE

is descrived in detail on chapter 5.
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CHAPTER 2

Myotomy technique and esophageal contractility impact

blown-out myotomy formation in achalasia: an in-silico

investigation

Achalasia is an esophageal motility disorder characterized by impaired esophagogas-

tric junction (EGJ) relaxation and absent peristalsis. The Chicago Classification [24, 13]

categorizes achalasia into subtypes I, II and III based on pressure topography patterns

observed with high resolution manometry (HRM). A recent study [25] showed that the

incidence and prevalence of achalasia diagnosed using high resolution manometry is at

least 2- to 3-fold greater than previous estimates with an incidence in the range of 2-

3/100,000 and a steadily rising prevalence as newly diagnosed cases accumulate. The

standard surgical treatment of achalasia is laparoscopic Heller myotomy (LHM) during

which the circular muscle fibers of the distal esophagus and lower esophageal sphincter

(LES) are disrupted. Figure 2.1 (A) shows three sequential time points during a LHM

procedure. The myotomy extends for a variable length onto the distal esophagus and gas-

tric cardia [26]. Because myotomy can lead to uncontrolled reflux, it is usually combined

with a partial fundoplication [27], wherein the gastric fundus is mobilized and partially

wrapped around the LES to reduce the severity of post-procedure reflux.

Another potential complication of myotomy is the formation of a blown out myotomy

(BOM) in the distal esophagus [28, 29]. A BOM is a pseudodiverticulum in the distal
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esophagus that can progressively enlarge and compromise esophageal emptying, poten-

tially mandating further surgery (Figure 2.1(B)). BOM is characterized by an outward

protrusion of the mucosa through the defect in the muscle layers resultant from the my-

otomy. BOM formation can be attributed to a complex combination of physical and

biological factors such as strength of the esophageal wall after myotomy, elastic and plas-

tic behavior of the esophagus wall, remodeling and neural-activated peristaltic contraction

strength. In this work, we investigated the underlying physics potentially leading to the

formation of BOM using a fully coupled three-dimensional in-silico model called virtual

esophagus (vEsophagus). A previous study using a computational model of the esopha-

gus analyzed the effect of anatomical asymmetry, tissue anisotropy, and the LES in the

formation of epiphrenic diverticula [30]. We used a similar model to understand the im-

pact of the dimensions of myotomy in the formation of BOMs. Furthermore, although

myotomy obliterates the LES, there is some residual tone at the esophagogastric junction

(EGJ) attributable to the crural diaphragm, the remains of the esophageal wall at the

myotomy site, and the associated partial fundoplication. The impact of this collective

tone at the EGJ in the formation of BOM was also investigated and described in the

following sections.

2.1. vEsophagus: In-silico model of the esophagus

The vEsophagus was modeled as a multilayered axisymmetric cylindrical tube as

shown in Figure 2.1(C). It is a computational model that captures the fluid-structure

interaction between the esophageal walls and the swallowed bolus using the immersed
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Figure 2.1. A) Laparoscopic Heller Myotomy. The top of the figures shows
the diaphragmatic crus arcing over the esophagus. Figures (a) – (c) show
three times during the myotomy. The dashed yellow ellipses show the
enlarging area of bared mucosa with progression of the myotomy. (B)

Esophagram of a blown out myotomy (BOM). Barium is retained inside
the pseudodiverticulum, almost filling it. (C) vEsophagus model used in
our simulations with 3 layers: LM, CM and mucosa. The weakened region

from the myotomy is shown as an ellipse at the distal end.
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boundary (IB). This model was based on a previous work [5] and the mathematical de-

tails of the IB method are provided in the Appendix A. Due to the use of IB method, the

vEsophagus wall has a viscoelastic nature, which is also observed in reality [31, 32].

The dimensions of the vEsophagus were based on a typical LHM video, a few instants

of which are shown in Figure 2.1(A). The maximum extension of the opened grasper is

2 cm. Using that as a scale, we estimated the average outer diameter of the collapsed

esophagus to be 1.6 cm. The vEsophagus wall was composed of three main layers: mucosa

(which includes both mucosa and submucosa), circular muscle (CM), and longitudinal

muscles (LM). The approximate thickness of each layer was estimated experimentally in

a previous study [33]. Using the same relative ratios of the layers, we calculated the CM

and LM thickness to be approximately 1 mm each and mucosal thickness to be 5.5 mm.

For our simulations, we assumed the total length of the esophagus including the upper

esophageal sphincter (UES) and LES to be 24 cm. The UES and LES were assumed 3

cm each. The UES opens for a brief interval during a swallow to allow bolus entry into

the esophagus and then closes for the duration of the sequence [34, 35]. Hence, in our

simulations we eliminated the UES by assuming the proximal end of the vEsophagus to

be fixed and only considered the esophagus distal to the UES.

2.1.1. Esophageal wall material properties

The wall of the vEsophagus was modeled as a composite of hyperelastic materials with

each layer composed of fibers embedded in a matrix [16, 36]. The hyperelastic behavior

of the vEsophagus wall layers was defined in other in-silico models [5, 37, 38, 15] and
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discussed below. The material model used for the mucosal layer is as follows:

ψmucosa = ψmucosa
matrix + ψmucosa

fiber ,(2.1)

ψmucosa
matrix =

Co

2
(I1 − 1) ,(2.2)

ψmucosa
fiber =

C1

2

(√
Imucosa
4 − 1

)2
,(2.3)

where I1 = tr(C), Imucosa
4 = C : (amucosa ⊗ amucosa), and amucosa is the unit vector along

the axial direction. ψmucosa, ψmucosa
matrix , and ψmucosa

fiber are the total, matrix, and fiber strain

energy function of the mucosa, respectively. The matrix is modeled as a Neo-Hookean

material, and the fibers are modelled as a bilinear model. C is the right Cauchy-Green

tensor. In this model, Co = 0.004 kPa and C1 = 0.04 kPa. The material model used for

the muscle layers are as follows:

ψmuscle = ψmuscle
muscle + ψmuscle

fiber ,(2.4)

ψmuscle
matrix =

C2

2
(I1 − 1) ,(2.5)

ψmuscle
fiber =

C3

2

(√
Imuscle
4

λ
− 1

)2

,(2.6)

where Imuscle
4 = C : (amuscle ⊗ amuscle), and amuscle unit vector along the circumferential

and axial direction for circular muscles (CM) and longitudinal muscles (LM), respectively.

ψmuscle, ψmuscle
matrix, and ψ

muscle
fiber are the total, matrix, and fiber strain energy function of the

muscle layers, respectively. The parameter λ induces a contraction in the muscle fibers

when λ < 1. λ lies between 0 and 1, with a smaller value indicating a tighter contraction.

The CM and LM are significantly stiffer than the mucosal layer. In this model, C2 = 0.4
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kPa and C3 = 40 kPa. Although we used the same strength for the longitudinal and

circular muscles fibers (C3), the net strength of each muscle layer depends on both the

strength of the fibers and their orientation (as specified by amuscle).

2.1.2. Contraction patterns

Based on the contractile behavior of the esophagus, it is possible to distinguish different

esophageal motility disorders. A normal subject exhibits normal peristalsis. Type I acha-

lasia patients do not show any prominent contractile behavior. Type II achalasia patients

experience pan-esophageal pressurization. Type III achalasia patients have a huge vari-

ability in the contraction pattern, but typically they exhibit a combination of peristalsis

in the proximal esophagus and spasm in the distal esophagus. In order simulations, the

contraction is implemented by specifying λ. The mathematical details of the different

contraction patterns discussed in the three simulation sets are described below.

2.1.2.1. Peristaltic contraction.

λperistalsis =


1 for t ≤ L−z

c
,

1− λoe
−0.5(z−ct)2/w2

for L−z
c
< t < L−z

c
+ ∆L

c

1 for t ≥ L−z
c
< t < L−z

c
+ ∆L

c
,

(2.7)

wherein z = 0 at the distal end of the esophagus and z = L at the proximal end, L is

the length of the esophagus, c is the speed of the peristaltic contraction, ∆L is the length

of the contracting segment, λo is the amplitude of the activation parameter, and w is a

parameter that specifies the width of the Gaussian function that controls the nature of
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the contraction. In our simulations, we used λo = 0.4, c = 200 mm/s, ∆L = 60 mm, and

w = 15 mm.

2.1.2.2. Panesophageal pressurization.

λpanesophageal =



1 for Z < 0,

1− γ(t)λo

[
1− cos

(
2πZ
l1

)]
for 0 < Z < l1

2
,

1− 2γ(t)λo for l1
2
≤ Z < l1

2
+ l2,

1− γ(t)λo

[
1− cos

(
2π(Z− l1

2
−l2)

l2

)]
for l1

2
+ l2 ≤ Z < l1

2
+ l2 +

l3
2
,

1 for Z ≥ l1
2
+ l2 +

l3
2
,

(2.8)

wherein Z = L− z, 0 < γ(t) < 1 is the parameter that determines the speed at which the

pressurization occurs. l1 and l3 are the length segments at the proximal and distal ends of

the esophagus where the maximal amplitude of the contraction strength reduces to zero at

the two ends. l2 is the length segment at the center of the esophagus where the maximum

pressurization acts. λo is the amplitude of the contraction, and in our simulations, we

used λo = 0.85.

2.1.2.3. Proximal peristalsis with distal spasm. To implement this contraction, we

enforce λperistal to the proximal half of the esophagus with a reduction in strength at the

transition between the proximal and distal portions of the esophagus. In the distal half

of the esophagus, the value of λ is specified as follows:

λspasm = αλpanesophageal(2.9)
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wherein α = 1
4

[
3 + sin

(
2nπzd
Ld

)]
, Ld is the length of the distal half of the esophagus, zd is

the coordinate along the length of the esophagus starting from the middle of the esophagus

to its distal end, and n is the number of high spastic zones. In our simulations, we have

used n = 3. The maximum amplitude of spasm in the distal esophagus was λo = 0.75.

2.2. Simulation details

We performed three sets of simulations to investigate the effect of myotomy on the

pressure stresses that can potentially lead to the formation of a BOM. First, we did a

parametric study with 5 cases with different myotomy dimensions, specifically the length

and width of the weakened section. Table 2.1 shows the details of different cases simulated.

In all cases, we assumed the extreme case wherein the LES remained occluded. This helped

to quantify the effect of myotomy as a set of baseline cases that were not influenced by

other physiological factors. Since we assumed the EGJ to be fully occluded in these

first simulations, we eliminated the LES in the vEsophagus, leaving 18 cm of esophagus

between the UES and LES, fixed at both ends. The lengths of the myotomies specified in

Table 2.1 are considered from the proximal end of the LES. Thus, the total lengths of the

myotomies were 3 cm more than shown in Table 2.1. The contraction pattern was kept

the same for all 5 cases (pan-esophageal pressurization) for comparison.

Second, we investigated the effect of four different physiologically motivated esophageal

muscle contraction patterns that can potentially lead to the formation of a BOM: nor-

mal peristalsis, minimal/no contraction as observed in achalasia type I, pan-esophageal

contraction as observed in achalasia type II, and peristalsis transitioned into distal spasm
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Table 2.1. Dimensions of the elliptical LHM section in simulation set 1

Case number 1/2 Major axis Minor axis

1 60.0 mm 7.0 mm

2 90.0 mm 7.0 mm

3 30.0 mm 7.0 mm

4 60.0 mm 4.0 mm

5 60.0 mm 10.0 mm

i.e., spasm in the distal half of the esophagus which predominantly contains smooth mus-

cles, as observed in achalasia type III. These contraction patterns are neurally controlled

manifest by the circumferential contraction of the CM and the longitudinal shortening

of the LM [39, 40]. The details of these cases are given in Table 2.2. All these cases

model EGJ outflow obstruction (EGJOO) by a closed distal end. We performed two sets

of this simulation, one with the standard reference length of 6, and the other with a short

myotomy length of 2 cm to describe the difference in outcome of myotomy length.

Third, we investigated the effect of EGJ tone and remnant musculature at the my-

otomy site on pressure stresses that can potentially lead to the formation of a BOM by

considering two groups with six cases for group I and one case of group II as detailed in

Table 2.3. Since the LES is obliterated by the myotomy, the EGJ tone can be contributed

to external anatomical features such as the hiatus as well as a fundoplication. This EGJ

tone was modeled as increased stiffness at a short section of the distal esophagus. This is

reasonable as the effective impact of the EGJ tone in HRM and FLIP appears as a region

of higher stiffness by providing more resistance to opening compared to the remainder of

the esophagus. Although the muscle fibers are damaged at the myotomy site, the wall

stiffness at that site might not necessarily be equal to the strength of the mucosa. This is
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Table 2.2. Contraction types for simulation set 2

Case
number

Contraction type Details

1 Peristalsis (Normal),
standard myotomy

Contraction width: 6 cm, speed: 2 cm/s,
EGJOO, Myotomy length: 6 cm

2 Very weak contraction
(Achalasia I), stan-
dard myotomy

Stationary over the entire esophageal length,
EGJOO, Myotomy length: 6 cm

3 Pan-esophageal con-
traction (Achalasia
II), standard my-
otomy

Stationary over the entire esophageal length
with weak irregularities in strength along the
length, EGJOO, Myotomy length: 6 cm

4 Proximal peristalsis
transitions with distal
spasm (Achalasia III),
standard myotomy

Peristalsis in the proximal half of the esoph-
agus that merges with spasm (3 stationary
peaks) in the distal half, EGJOO, Myotomy
length: 6 cm

5 Peristalsis (Normal),
short myotomy

Contraction width: 6 cm, speed: 2 cm/s,
EGJOO, Myotomy length: 2 cm

6 Very weak contraction
(Achalasia I), short
myotomy

Stationary over the entire esophageal length,
EGJOO, Myotomy length: 2 cm

7 Pan-esophageal con-
traction (Achalasia
II), short myotomy

Stationary over the entire esophageal length
with weak irregularities in strength along the
length, EGJOO, Myotomy length: 2 cm

8 Proximal peristalsis
transitions with distal
spasm (Achalasia III),
short myotomy

Peristalsis in the proximal half of the esoph-
agus that merges with spasm (3 stationary
peaks) in the distal half, EGJOO, Myotomy
length: 2 cm

because some remnant muscle fibers might be present after myotomy. Additionally, the

myotomy site might heal or scar to some extent with time, which can raise the stiffness

of the wall at the myotomy site. The total length of the esophagus in these cases was 21

cm since the LES was included and the lower end of the esophagus was free to move.



41

Table 2.3. Details of simulation set 3

Group I

Case
number

Details

1 Standard myotomy length (6 cm); no EGJ tone; my-
otomy affected zone walled by mucosa only; contraction
type: normal peristalsis

2 Standard myotomy length (6 cm); with an EGJ tone;
myotomy affected zone walled by mucosa only; contrac-
tion type: normal peristalsis

3 Standard myotomy length (6 cm); with an EGJ tone;
myotomy affected zone walled by mucosa as well as
weakened muscle layers (the strength of the muscle fibers
were reduced by 99% but the matrix of the muscle lay-
ers were intact at the myotomy site); contraction type:
normal peristalsis

4 Short myotomy length (3 cm); no EGJ tone; myotomy
affected zone walled by mucosa only; contraction type:
normal peristalsis

5 Short myotomy length (3 cm); with an EGJ tone; my-
otomy affected zone walled by mucosa only; contraction
type: normal peristalsis

6 Short myotomy length (3 cm); with an EGJ tone; my-
otomy affected zone walled by mucosa as well as weak-
ened muscle layers (the strength of the muscle fibers
were reduced by 99% but the matrix of the muscle lay-
ers were intact at the myotomy site); contraction type:
normal peristalsis

Group II

POEM length: 12 cm; LM intact at the myotomy site while CM
fibers were broken, and CM matrix strength reduced 100-fold; with
an EGJ tone; contraction type: normal peristalsis

In reality, the factors discussed above (myotomy dimensions, contraction pattern, and

EGJ tone) work together making it impossible to investigate their individual impact. The
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L: 60 mm
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L: 60 mm
W: 10 mm

L: 90 mm
W: 7 mm

L: 30 mm
W: 7 mm

L: 60 mm
W: 4 mm

(a) (b) (c) (d) (e)

Figure 2.2. Panel (a): Length 60 mm, max width 7 mm; Panel (b):
Length 90 mm, max width 7 mm; Panel (c): Length 30 mm, max width 7
mm; Panel (d): Length 60 mm, max width 4 mm; Panel (e): Length 60
mm, max width 10 mm; Panels (a) – (e) shows the deformed shape of the

esophagus for cases 1 – 5, respectively at the same time instant.

simulation sets described above addresses this problem by systematically investigating the

impact of varying each factor independently while holding the others constant. The nu-

merical simulations were performed using the immersed boundary method adaptive mesh

refinement (IBAMR) software infrastructure [41]. For post-processing and visualization

of the simulation results, we used an open-source visualization software VisIt [42].
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2.3. Simulation set 1: parametric study of the effect of myotomy with fully

occluded EGJ

The deformation of the esophagus during bolus transport for the cases detailed in

Table 1 is shown in Figure 2.2 for the same time instant. Case 1 used the dimensions of

the weakened section estimated from the LHM video as shown by Figure 2.1(A) and is the

used as a reference for comparison with the other cases. Physiologically, the conditions for

this simulation set are similar to an incomplete myotomy or tight fundoplication performed

on a Type II achalasia patient. Cases 1, 2, and 3 had a maximum outward displacement

at the myotomy site of 9.5 mm, 9.2 mm, and 9.3 mm, respectively. Thus, although both

increasing and decreasing the length of myotomy from the reference case 1, reduced the

degree of deformation, the difference in the magnitude of maximum outward displacement

was minimal. The percentage volume of fluid accumulated in the myotomy affect region

with respect to the total bolus volume for cases 1, 2, and 3 were found to be 48.6%, 67.6%,

and 28.7%, respectively. Thus, the volume of fluid that accumulated inside the myotomy

was proportional to the length of myotomy. Cases 1, 4 and 5 had varying minor axes and

the maximum displacements were 9.5 mm, 9.6 mm, and 9.7 mm, respectively. Like the

cases with varied myotomy length, the differences were minimal. The percentage volume

of fluid accumulated in the myotomy affect region with respect to the total bolus volume

for cases 1, 4, and 5 were found to be 48.6%, 48.8%, and 48.4%, respectively. Thus, the

volume of fluid which accumulated inside the myotomy site was also very similar as can

be seen in Figure 2.2.
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2.4. Simulation set 2: effect of muscle contraction

The maximal deformation at the myotomy site associated with the four different pat-

terns of esophageal contraction detailed in Table 2 are shown in Figure 2.3. The maximum

outward displacement at the standard myotomy site for cases 1-4 were found to be 18.0

mm, 0.4 mm, 5.9 mm, and 7.4 mm, respectively. The percentage volume of fluid ac-

cumulated at the myotomy affected regions with respect to the total bolus volume for

these cases were 95.1%, 29.9%, 46.5%, and 81.7%, respectively. The maximum outward

displacement at the short myotomy site for cases 5-8 are 9.4 mm, 0.4 mm, 7.5 mm, and

12.8 mm, respectively. The percentage volume of fluid accumulated at the short myotomy

affected regions with respect to the total bolus volume for cases 5 - 8 were 87.7%, 0.33%,

16.2%, and 57.2%, respectively. Thus, the volume of fluid accumulated at the myotomy

site for short myotomy was less compared to that for a longer myotomy. On compar-

ing these cases, we observed that the maximum outward displacement at the myotomy

occurred with normal peristalsis. Additionally, the peristaltic contraction passed over

the weakened section without collapsing the outward protrusion, but rather, increased

its outward displacement, and aided the deformation at the myotomy site as shown in

Figure 2.3A (a) and 3B (a). No prominent deformation at the myotomy site was observed

for cases 2 and 6. The pan-esophageal pressurization of cases 3 and 7 does not lead to

efficient transport of the bolus from the proximal to the distal esophagus as evident by

the remnant fluid at the proximal esophagus. The BOMs formed in these cases had lesser

volumes compared to cases 1, 4, 5, and case 8. Cases 4 and 8 shows that proximal nor-

mal peristalsis which transitioned into distal spasms resulted in volumes accumulated at

the myotomy site less than case 1 and 4, but greater than the other cases. The effect



45

of distal spasm in shorter myotomy was more prominent compared to that observed for

longer myotomy as observed by comparing the shape of the bolus in Figure 2.3A (d) and

fig-sim2B (d). Due to the lack of contractions, there was no prominent deformation at

the myotomy site for case 6 just like case 2.

2.5. Simulation set 3 (Group I): effect of EGJ tone and musculature at the

myotomy site

The effect of varied EGJ tone and remnant muscle fibers at the myotomy site on

deformation at the myotomy affected zone was investigated by comparing 6 cases as

detailed in Table 3. Figure 2.4 shows bolus transport through an esophagus with a

standard size myotomy (panels a-c), and with a short myotomy (panels d-f). Comparing

cases 1 and 2, we see that without EGJ tone the peristaltic contraction successfully

emptied the esophagus in case 1, but due to the presence of the EGJ tone in case 2,

a prominent deformation at the myotomy site was observed. But, as we see in Figure

2.4A (c), even with the presence of the EGJ tone, the esophagus with a stronger wall at

the myotomy site was able to empty with the help of a peristaltic contraction without

a prominent deformation at the myotomy location. Additionally, Figure 2.4B (a)-(c)

illustrate the bolus emptying in cases 1 and 3 by the high fluid velocity at the distal end

of the esophagus, and the negligible emptying of case 2 by almost no fluid flow at the

distal end and the accumulated fluid at the myotomy location. Figures 2.4C (a) and (b)

show that the intrabolus pressure reached a higher value for case 2 compared to case 1 and

led to a prominent deformation at the myotomy site in case 2. The intrabolus pressure

was significantly higher in case 3 compared to cases 1 and 2 but did not lead to large
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Figure 2.3. Effect of muscle contraction (A) Standard myotomy (= 6 cm).
(B) Short myotomy (= 3 cm).
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deformation at the myotomy site. Figures 2.4A (d)-(f) show that shorter myotomy length

always resulted in adequate emptying. The velocity field at the distal end of the esophagus

as shown in Figures 2.4B (d)-(f) demonstrates the emptying process. Additionally, Figures

2.4C (d)-(f) show that the intrabolus pressure in cases 4-6 was higher compared to that

observed in cases 1 and 2. As shown in Figure 2.4A, the volume of the bolus accumulated

inside the esophagus at the end of the simulation for cases 1 - 6 were 37.9%, 98.1%, 15.0%,

15.9%, 13.3%, and 11.5% of the initial bolus volume, respectively. For the time instant

shown in Figure 2.4C, the average intrabolus pressure in case 2 was 33% higher than case

1. Cases 3 - 6 had significantly higher intrabolus pressure compared to cases 1 and 2. We

found that the average intrabolus pressure of cases 3 - 6 were 7.3, 7.4, 8.1, and 8.9 times

that of case 1, respectively.

2.6. Simulation set 3 (Group II): effect of POEM at the myotomy site

Cases 3 and 6 of group I demonstrated that the esophagus with greater stiffness at the

myotomy site compared to the other cases resisted deformation at the myotomy site and

aided in bolus emptying. In LHM both CM and LM fibers are obliterated resulting in a

very weak esophageal wall at the myotomy site. Peroral endoscopic myotomy (POEM),

on the other hand, only obliterates the CM fibers and leaves the LM intact increasing the

wall strength at the myotomy site compared to that seen with LHM. Group II simulation

investigates the impact of POEM on BOM formation and bolus emptying. Figure 2.5 (a)

shows the final configuration of the vEsophagus after bolus transport. The high velocity

field at one instant, as shown by Figure 2.5b) describes how the bolus empties out of the

esophagus by the peristaltic contraction. The high intrabolus pressure (shown by Figure
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Figure 2.4. (A) Panels (a) – (f) show the myotomy deformation associated
with cases 1 - 6, respectively. (B) Non-dimensional velocity distribution
within the esophagus with a myotomy at the same time instant. Panels
(a) – (f) illustrate cases 1 – 6, respectively. (C) Non-dimensional pressure

distribution within the esophagus with a myotomy at the same time
instant. Panels (a) – (f) illustrate cases 1 - 6, respectively.
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Figure 2.5. Panel (a) shows the final configuration of the esophagus
undergone with POEM. No prominent deformation observed at the

myotomy site. Panels (b) and (c) show the velocity and pressure fields
inside the esophagus at a time instant when the EGJ opens due to the

intrabolus pressure, and the bolus empties out of the esophagus. The IBP
in this case is 5.3 times that of case 1 of group I (which was used as a

reference).

2.5 (c)) drives the fluid out of the esophagus. The intrabolus pressure in this case was 5.3

times higher than that of case 1 of group I (which was used as a reference for the other

simulations in simulation set 3).
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2.7. Implications and future directions

In practice, only the myotomy length is controlled while the width depends on the

myotomy length. In general, a longer myotomy leads to the formation of a wider weak

section. Since the effect of width on the volume accumulated inside the deformed my-

otomy site is negligible, our study validates the current practice of controlling only the

length of myotomy to control the formation of a BOM. Identifying the LES during a

myotomy procedure can be challenging. Therefore, a longer myotomy might appear to

be safer choice to make sure EGJOO is no longer present. Additionally, myotomies are

accompanied by fundoplication, which increase the overall EGJ tone. But our simula-

tions show that this combination of long myotomy with a strong EGJ tone possibly due

to fundoplication maximizes the risk of BOM formation. Instead, effort should be made

to have shorter myotomies focused at the LES and try to avoid fundoplication to min-

imize the chances of BOM formation. This is consistent with the initial description of

BOM [28] that showed that BOM was not found in patients undergoing pneumatic dila-

tion (essentially a short myotomy despite not being complete) but occurred frequently in

patients treated with LHM and Dor fundoplasty. Our simulations show that even with

fundoplication that raises EGJ tone, shorter myotomies lead to proper bolus outflow as

well as decrease the chances of BOM formation. This is because smaller myotomy af-

fected regions have a higher overall esophageal wall stiffness compared to larger myotomy

affected zone. Stiffer walls lead to increased intrabolus pressure which opens the EGJ

while weaker walls deform easily without raising the bolus pressure, and thus, the EGJ

does not open, and the bolus gets retained at the myotomy site. For the same reason, as

shown by simulation set 3, if the myotomy was not transmural or continued to have some
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muscle fibers at the myotomy site, then the chances of BOM formation are reduced. Thus,

myotomy procedures such as POEM have an advantage over LHM since it may target

only the CM and leaves the LM relatively intact as described by group II of simulation set

3. POEMs are especially useful for Type III achalasia patients and patients with distal

esophageal spasm where the myotomy length needs to be sufficient to include the spastic

region. Hence, POEMs can go upwards of 10 cm but still be successful in retaining the

myotomy wall strength sufficient to resist large deformation and aid in bolus emptying.

Additionally, a real time tailored myotomy as possible with intraoperative FLIP to obtain

targeted values of distensibility at the myotomy affected zone as well as at the EGJ might

help in performing myotomies with lower chances of forming BOM. Different contraction

patterns as observed in different achalasia types have different effects on the deformation

at the myotomy site. Additionally, it has been observed that some achalasia patients have

evidence of partial peristalsis after myotomy likely due to it becoming more evident in the

less dilated esophagus post-treatment [43]. Due to the absence of contraction in achala-

sia I, the chances of BOM formation are minimal irrespective of the myotomy length and

EGJ tone after fundoplication. But, based on our simulations, patients with EGJOO with

normal peristalsis and patients suffering from achalasia III have a higher risk of forming

BOM with longer myotomy length and strong EGJ tone. Therefore, it might be beneficial

to aim for shorter myotomy without fundoplication for such patients. Longer myotomies

performed on achalasia III patients can sometimes weaken the spastic contractions at the

distal segment of the esophagus. This would reduce the chances of forming a BOM. But,

on the other hand, if the myotomy is partially through the spastic segment with remnant

spasm forcing bolus into the distal esophagus, it might aid in the formation of a BOM.
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Thus, the myotomy length should be determined in a patient-specific manner with the

help of diagnostic devices such as HRM as well as physics-based simulations [44] that

work with HRM data.

2.8. Limitations

BOM was qualitatively defined in Triggs et al. [28], but there is a lack of quanti-

tative definition of BOM in the literature. BOMs form due to tissue remodeling over a

long timeline compared to the single swallows used in our modeling. Our simulations do

not account for tissue remodeling. Thus, the deformation at the myotomy site seen in

our simulations is not a BOM, but rather the repetitive strain that would be exerted on

the myotomy. This is a limitation of the vEsophagus model. With our simulations, we

can only hypothesize that factors leading to maximum deformation at the myotomy site

will also impact in the formation of a BOM over a longer period. The material proper-

ties used in the vEsophagus were motivated from experimental observations of porcine

esophagus due to the lack of experimental data on human esophagus. Additionally, due

to the presence of the surrounding organs, the effective distensibility of the esophagus

varies along its length. These complexities were not considered in our model and future

work will focus on adding these components with higher level material property data from

esophagectomy specimens. Additionally, the vEsophagus focuses just on the esophagus

without considering the stomach. Adding a stomach to the model would increase the

stiffness at distal end of the esophagus and the intragastric pressure will require higher

intrabolus pressure to empty out the bolus. Considering these factors would increase the
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computation time significantly without any significant additions to our current observa-

tions. Another significant limitation of this study is that we have investigated only a

few types of contraction patterns as typically might be observed. In reality, the nature

of contraction varies significantly swallow to swallow, particularly for achalasia II and

III. Additionally, the fully closed EGJ in simulation sets 1 and 2 are idealized scenarios.

Simulating the actual physiological conditions of the wide variety of contraction patterns

and EGJ tone is too computationally complex and costly to be practical. The observa-

tions from our simulations are still applicable to a wide variety of contraction patterns,

but it might be worthwhile to investigate the impact of contractions on BOM formation

which are significantly different from what we discussed in this study. Finally, we did

not consider gravity in our simulations although it is a factor in generating intrabolus

pressure. Unfortunately, introducing gravity significantly increases the complexity of the

simulations putting it beyond the scope of this work and making it a limitation of this

work.

2.9. Conclusion

In conclusion, we performed in-silico simulations to investigate the impact of different

biomechanical factors that lead to the formation of a BOM such as dimensions of the

myotomy, esophageal contraction pattern, EGJ tone and residual state of muscle fibers at

myotomy location. We found that long myotomies with greater EGJ tone and preserved

peristalsis maximize the chances for BOM formation. Our simulations show that the best

possible myotomy to minimize the chances of BOM formation is a short myotomy spanning

only the length of the LES that is not transmural and has some structural architecture
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intact. This should be the approach in Type II achalasia or EGJOO with propagating

peristalsis that may be observed in patients with achalasia in evolution. Type I achalasia

will likely not develop a BOM. Type III achalasia will most likely develop a BOM if the

myotomy is partially through the spastic segment with remnant spasm forcing bolus into

the distal esophagus. Although the final decision on the dimensions and modality of the

myotomy will depend on multiple factors such as the type and severity of achalasia and

fundoplication, our simulations using vEsophagus should be helpful in guiding the surgical

plan.
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CHAPTER 3

FluoroMech: Mechanics-informed fluororscopy of esophageal

transport

Popular methods for evaluating esophageal disorders are the barium swallow esopha-

gram, video fluoroscopy swallowing exam (VFSE), and high-resolution manometry (HRM).

Both the esophagram and VFSE are radiographic tests that examine the dynamic function

of the esophagus. In a barium swallow, barium is used as a contrast material to clearly

delineate the esophageal lumen on an X-ray. This can reveal structural abnormalities

of the esophagus and stomach such as hiatal hernia, diverticula, dilatation, etc. Video

fluoroscopy uses the same concept, but creates a real-time X-ray movie of bolus transport.

In HRM, a catheter is passed transnasally through the esophagus into the stomach (see

Figure 3.1(a)). The catheter incorporates pressure sensors along its length that quantify

the intraluminal pressure along the length of the esophagus as the patient swallows fluid

or food. HRM provides information about the strength and velocity of peristaltic contrac-

tions as well as the tone of the upper and lower esophageal sphincters. Barium swallow

and VFSE are non-invasive but provide only qualitative information about esophageal

transport. On the other hand, HRM is invasive, but provides precise quantitative infor-

mation about esophageal contractility. In this work, we present a method to partially

bridge the gap between these methods. We have developed a method called mechanics

informed fluoroscopy (FluoroMech) that can be used along with VFSE to predict the flow
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Figure 3.1. Example of an image from VFSE performed jointly with HRM
on a normal subject in supine position. (a) Original esophagram image.
The bolus is the dark region inside the red box. The dashed curve is the
HRM catheter passing through the esophagus. The pressure sensors in the
catheter can be seen as the black dashes which are separated by gaps of 1
cm. The diameter of the catheter is 4.2 mm, and is used to define the

scale shown in the figure. (b) Label image showing the bolus in white and
the remainder as black. The original and label images were used to train

the CNN

rate, pressure and esophagus wall state, thereby providing quantitative information about

bolus transport and esophageal contractility.

Previous studies have used data from fluoroscopy and manometry for the analysis

with fluid mechanics [21, 22] and provided important insights into esophageal transport

and mechanisms of a variety of disorders. However, a drawback of these techniques is

that substantial time and effort is required to manually obtain the shape of the bolus

from the fluoroscopy images and then perform an analysis based on that geometry. Since

the geometry varies from patient to patient as well as for different swallows in the same

patient, this entire analysis has to be repeated for every test sequence. Hence, these
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methods are not practical for clinical applications. FluoroMech uses deep learning to

perform automatic segmentation of image sequences from fluoroscopy. This eliminates the

tedious manual process of segmenting the fluoroscopy images, thereby making the process

significantly faster and much more convenient. These segmented images delineate the

outline of the bolus which then becomes input to a one-dimensional model that predicts

the fluid flow rate and pressure. We also present a method to predict the regional stiffness

of the esophageal walls and the active relaxation at the locus of the bolus using the

pressure predicted from the one-dimensional model and the shape of the bolus. Our

analysis requires minimal input from the user and requires minimal computational time.

Hence, FluoroMech can be used in clinical applications, particularly to aid in making

VFSE a more powerful non-invasive diagnosis tool.

3.1. Extracting the bolus geometry

The volumetric quantification of fluid inside the esophagus can be approximated from

two-dimensional images of the bolus in fluoroscopy. Figure 3.1(a) shows an example of a

single image from a sequence of images generated from a VFSE of a normal subject per-

formed with the subject in supine position. In general, a single VFSE generates 100 – 500

images depending on the time taken for each swallow sequence to complete. Hence, it is

not feasible to manually outline the boundary of the barium bolus repetitively throughout

the transport process. Rather, an automated technique is desirable to perform segmen-

tation of the image sequences. There are several methods available in the literature for

image segmentation such as thresholding [45], region growing [46], clustering [47], edge
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Figure 3.2. Segmentation of image frames of a VFSE. (a)-(e) Bolus
transported from the proximal to the distal end of the esophagus and
emptying into the stomach, (f)-(j) corresponding image segmentation,
(k)-(o) corresponding outline of the esophageal lumen for analysis

detection [48], artificial neural networks [49, 50, 51, 52, 53]. Surveys of the various im-

age segmentation techniques used in medical applications were performed by [53, 54]. In

this work, we used a convolutional neural network architecture (CNN) called TernausNet

[51] to perform image segmentation. TernausNet is a modified form of the classical UNet

[50] which consists of an encoder and decoder path with skip connections that combine

feature maps from the encoder and decoder paths leading to precise localization. Ter-

nausNet takes advantage of transfer learning by replacing the encoder part of U-Net with
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VGG11/VGG16 network pretrained on ImageNet dataset, which consists of millions of

images. Therefore, the low-level features learned from a huge dataset can be efficiently

utilized and the total number of parameters to be learned is reduced significantly. The

details of the neural network and its training is provided in Appendix B. Figure 3.2 shows

the results after image segmentation.

3.2. Mathematical formulation

3.2.1. Governing equations

An important aspect of patient-specific analysis of esophageal transport is obtaining the

flow rate and pressure field inside the esophagus with reasonable accuracy using limited

computational resources and time. To that extent, we have used the formulation of a

one-dimensional flow through a flexible tube [55, 56, 57, 58] in FluoroMech to model

the transport process. The mass and momentum conservation equations in one-dimension

are follows:

∂A

∂t
+
∂Q

∂x
= 0,(3.1)

∂Q

∂t
+

∂

∂x

(
4

3

Q2

A

)
+
A

ρ

∂P

∂x
+

8πµQ

ρA
= 0,(3.2)

where ρ is the density of the fluid, µ is viscosity of the fluid, A is the cross-sectional area

of the esophagus, Q is the flow rate, P is the pressure, t is the time and x is the spatial

coordinate along the length of the esophagus with its positive direction defined as moving

from the pharynx to the stomach. In our analysis, we only consider VFSE performed on

subjects in supine position. Therefore, we do not have a gravity term in the momentum
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equation. To apply our analysis on VFSE performed on subjects in upright position, it

is necessary to introduce a gravity term in Equation 3.2. The factor 4/3 in Equation 3.2

comes from assuming a parabolic velocity profile perpendicular to the direction of flow.

As reported in [59], the fluid pressure developed within the esophagus is directly

proportional to the cross-sectional area of the esophageal lumen. Hence, the pressure can

be estimated using a tube-law of the form:

P = Po +K

(
A

θAo

− 1

)
,(3.3)

where K is the stiffness of the esophageal wall, θ is the active relaxation factor and

Po is the intrathoracic pressure. The pressure tube law is used to estimate esophageal

wall stiffness and active relaxation in Section 3.2.6. Note that K in Equation 3.3 is an

average estimate of the esophageal stiffness and assumed to be constant along the length

of the esophagus. The variation of the bolus shape along the esophagus length is due

the variation of θ. If there is relaxation then θ > 1, which effectively reduces the overall

pressure developed inside the bolus.

Equations 3.1 and 3.2 are non-dimensionalized to the following form:

∂α

∂τ
+
∂q

∂χ
= 0,(3.4)

∂q

∂τ
+

∂

∂χ

(
4q2

3α

)
+ α

∂p

∂χ
+ ψ

q

α
= 0,(3.5)

where, χ = x/L, α = A/Ao, p = P/(ρc2), q = Q/(Aoc), τ = ct/L and ψ = 8πµL/(ρcAo).

Here L is the length of the esophagus visible in the esophagram, Ao is the relaxed cross-

sectional area of the esophageal lumen, and c is the average velocity of the center of the
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bolus. The center of the bolus (xb) was located at each time instant using the following

relation:

xb =

∫ L

0
x(A− Ao)dx∫ L

0
(A− Ao)dx

.(3.6)

Similarly, the tube law can be non-dimensionalized and written as follows:

p = po + k
(α
θ
− 1
)
,(3.7)

where k = K/ρc2, p = P/ρc2, and po = Po/ρc
2.

In this instance, L = 11.86 cm, Ao = 59.04 mm2 and c = 3.5 cm/s. We assumed the

properties of water (at STP) for the swallowed fluid, i.e ρ = 1000 kg/m3, µ = 8.9× 10−4

Pa. s. Using these values, we get ψ = 2.413. The total time required for bolus to be

transported through the esophagus was 5.1 seconds.

3.2.2. Initial and Boundary Conditions

The boundary conditions imposed on the FluoroMech model depend on the behavior of the

upper and lower esophageal sphincters at the proximal and distal ends of the esophagus,

respectively. The upper esophageal sphincter (UES) is located at the distal end of the

pharynx and remains closed [35] in order to prevent the entry of air into the esophagus

during breathing and reflux of the bolus from the esophagus back into the pharynx [60]. It

relaxes for 0.32 - 0.5 seconds [34] in order to allow the bolus to enter the esophagus. The

esophageal pressure topography in Figure 3.3 illustrates this behavior of the UES. The

horizontal high-pressure zone at the top marks the location of the UES, which remains

contracted on the HRM catheter. It opens only to allow the bolus to enter the esophagus,
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Figure 3.3. Esophageal pressure topography generated from pressure
sensors on the HRM catheter. The horizontal axis represents time, and

the vertical axis represents the length along the esophagus. The
rectangular box shows the location of the EPT corresponding to the
fluoroscopy. The horizontal high-pressure band (in red) at the top and
bottom show the UES and LES tone, respectively. The peristaltic

contraction is shown by the oblique high-pressure band that travels from
the UES to the LES to push the bolus through the esophagus

which is visible as the break in the continuous high-pressure zone due to relaxation. The

oblique band of pressure represents the peristaltic contraction which propels the bolus

along the esophagus. Hence, the location of the proximal end of the bolus can be roughly

identified to be just distal to the contraction. The lower esophageal sphincter (LES) is

marked by the lower horizontal high-pressure zone. There is a break in high pressure in

this location soon after the bolus enters the esophagus. This represents the relaxation

of the LES to facilitate the bolus emptying into the stomach. In our analysis, the bolus

is already inside the esophagus, and so the UES is closed. Hence, there is no flow at

the entry, i.e. q(χ = 0, τ) = 0. Additionally, we assume that there was no initial flow
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inside the esophagus, i.e. q(χ, τ = 0) = 0. Since Equation 3.5, contains a first-order

derivative form for pressure, we have specified a reference value for the pressure (p) at the

distal end equal to the intragastric pressure which in this scenario is 21.4 mmHg. This

is a reasonable assumption because the LES relaxes immediately at the beginning of a

swallow, and the distal end of the esophagus experiences the intragastric pressure.

3.2.3. Enforcing volume conservation

The fluoroscopy images show only a two-dimensional projection of the esophagus. Assum-

ing a circular cross-section, we calculated the total volume of fluid inside the esophagus

(as shown in Figure 3.4a). The volume V is non-dimensionalized using the product of the

non-distended cross-sectional area and the length of the esophagus, i.e. V ∗ = V/(AoL).

In terms of the volume of fluid inside the esophagus, the bolus transport is categorized

into two parts: pure transport (no flow at χ = 1) and emptying. From the VFSE image

sequences we have observed that the transport without emptying occurs until τ = 0.5,

and then the volume within the esophagus decreases continuously. Since we have no flow

boundary condition at the proximal end, the volume within the esophagus can never ex-

ceed the total volume at τ = 0. However, during pure transport at τ < 0.5, there are some

fluctuations in the calculated volume within the esophagus. This can be attributed to our

calculation of volume assuming the esophagus is always perfectly circular in cross-section.

Since we have no information about the actual shape of the cross-section at τ = 0, we can

neither use the calculated volume at τ = 0, nor the maximum calculated volume during

the whole transport in order to enforce volume conservation.
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(a) Non-dimensional volume (V ∗) inside the esophagus. The blue line shows the total volume
of fluid inside the esophagus calculated assuming a bolus with a circular cross-section with
diameter obtained from the bolus width observed in the segmented images. The red dashed
line shows the total volume inside the esophagus after volume correction using the fact that

the swallowed bolus is 5 mL

(b) Ratio of the initially assumed circular cross-sectional area (A) and the corrected
cross-sectional area (A∗). The oblique band of high cross-sectional area correction shows that
the correction is performed only inside the bolus, and not in the relaxed parts of the esophagus

where A/A∗ = 1

Figure 3.4. Enforcing volume conservation
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In reality, the shape of the esophagus cross-section is approximately elliptical [61],

with the major axis being observed in the fluoroscopy images. Additionally, due contact

with the surrounding organs, the esophagus cross-section might take irregular shapes.

Hence, the volume of the bolus calculated assuming a perfectly circular cross-section does

not match the volume of fluid swallowed during every test, i.e. Vo = 5 mL. Therefore,

it is necessary to perform a volume correction so that our analysis uses the calculated

volume that is consistent with the actual swallowed volume. Since fluoroscopy images

do not contain any information about the three-dimensional geometry of the bolus, the

only alternative is to perform a volume correction using the two-dimensional shape of the

bolus. This was done by scaling the initially assumed circular cross-sectional areas as

shown below:

A∗ = Ao + β (A− Ao) ; β =
Vo∫ L

0
(A− Ao) dx

,(3.8)

where A∗ is the scaled cross-sectional area to conserve volume and β is the scaling factor.

This method scales the cross-section of the esophagus at the bolus location only and does

not change the relaxed sections.

We enforced a constant volume during pure transport (as shown by the red dashed

line in Figure 3.4a) until τ = 0.5. However, during emptying (τ > 0.5), the volume

within the esophagus begins to decrease, so, we cannot scale the volume using a reference

value. Therefore, the volume is scaled using β calculated at the beginning of the emptying

process (τ = 0.5). In general, the shape of the esophageal cross-section varies along its

length, and the shape it takes when distended depends upon the material properties of

the wall. The β calculated at each time step during pure transport gives a measure of the
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shape of the cross-section. As the bolus is transported through the esophagus, the β takes

on different values, thereby estimating the shape in finite segments along the length. At

the beginning of emptying, the distal end of the bolus has already reached the end of the

esophagus. After this, the length of the bolus progressively decreases without moving any

forward. Therefore, the β calculated at τ = 0.5 is a reasonable scaling for volume during

emptying.

During emptying, the volume within the esophagus must decrease. Therefore, if at

any instant, the calculated volume inside the bolus is greater than it was in the previous

time instant, we force the volume at the current instant to be equal to that of the previous

instant. The effect of the bolus volume correction is shown in Figure 3.4a. The ratio of the

initially assumed circular cross-sectional area (A) and the scaled cross-sectional area (A∗)

is shown in Figure 3.4b. We see that the cross-sectional area scaling occurs only at the

location of the bolus since A/A∗ remains equal to 1 for the remainder of the esophagus.

Comparing Figure 3.4a and 3.4b, we see that the maximum scaling occurs before τ = 0.2

when the difference between the reference volume and the calculated volume is maximal.

It has been observed in fluoroscopy studies that sometimes the bolus gets split into

two segments during transport in the upper esophagus. In such a scenario, our analysis

can be applicable with some modifications. The two segments of the bolus have to be

treated independently, and volume correction needs to be done separately using the ref-

erence volumes of the corresponding segments calculated at the instant when the bolus

completely splits. The proximal segment continues to be in a state of pure transport, and

the distal segment moves on from a state of pure transport to emptying. Although this
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Figure 3.5. Staggered meshing of the domain. The cell boundaries and
centers are shown in red and green, respectively

method works in principle, the implementation is significantly involved and is beyond the

scope of this thesis.

3.2.4. Numerical solution

Using the cross-sectional areas α obtained after enforcing volume conservation, we solved

for q and p in Equations 3.4 and 3.5 using the finite volume method. The flow rate (q) was

calculated by solving Equation 3.4. A staggered grid was used to discretize the domain as

shown in Figure 3.5. The flow rate q was calculated at the cell boundaries and pressure

p was calculated at the cell centers. The cross-sectional area α was known for both the

cell boundaries and centers. The quantities specified at the cell centers have subscripts in

upper case, and those at the cell boundaries in lower case. The superscript o represents

the value of a quantity in the previous time instant. Equation 3.4 was solved using a

fully-implicit method with the following discretized form:

qi = qi−1 +
∆χ

∆τ

(
αI−1 − αo

I−1

)
,(3.9)

where, N is the total number of cells, i, I = 2, 3, ..., N, (N + 1). Using the calculated

values of q and the known values of α, we calculated the values of p at the cell centers
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Figure 3.6. Volume inside the esophagus from 0 up to χ. The blue line
shows the volume distribution at time instant τ1, and the red dotted line
shows the same as the bolus has progressed in time at τ2. Before the

beginning of the bolus bi(τ), there is no fluid inside the esophagus, and
the volume is 0. The volume inside the esophagus rises from bi(τ) to the

total volume swallowed (Vo = 5 mL) at the end of the bolus bf (τ)

using the following discretized form:

pI =pI+1 +

(
∆χ

αi

)
qi+1 − qoi+1

∆τ
+ ψ

qi+1∆χ

α2
i+1

− 1

3αi+1

[
(qi+2 + qi+1)

2

αI+1

− (qi + qi+1)
2

αI

]
,(3.10)

where i, I = 1, 2, ..., (N − 1). In this simulation, the total number of time steps and the

total number of cells used were 510 and 171, respectively. Using these values, ∆τ and ∆χ

was calculated as 0.003 and 0.006, respectively. The above mentioned numerical solution

was implemented using MATLAB ver. R2018b.

3.2.5. Pressure variation with the shape and speed of the bolus

The intrabolus pressure during pure transport (before emptying) can be used to calculate

the esophageal wall stiffness and active relaxation. Therefore, it is necessary to identify
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and estimate the factors that lead to pressure variations. The flow rate can be calculated

by integrating Equation 3.4 with respect to χ as follows:

q = − ∂

∂τ

∫ χ

0

αdχ = − ∂

∂τ

∫ χ

0

(α′ + 1) dχ = −∂Vχ
∂τ

,(3.11)

where the cross-sectional area α is decomposed into the non-distended cross-section area

(which is equal to 1 in non-dimensional form) and the extra volume present only inside

the bolus (α′). Vχ is the volume inside the bolus calculated by integrating α′ from 0 to χ.

The variation of Vχ is shown in Figure 3.6, where bi and bf represent the location of the

proximal and distal end of the bolus, respectively. Since the total volume Vo is conserved

within the esophagus prior to the start of emptying, Vχ = 0 for χ < bi and Vχ = Vo for

χ > bf . Therefore, using Equation 3.11, we get q = 0 for χ < bi and χ > bf .

The effect of fluid viscosity is captured by the term ψ q
α
in Equation 3.5. For a fluid with

viscosity similar to water, we have observed that the viscous term is negligible compared

to the other terms of Equation 3.5. Therefore, we assume the flow to be inviscid and with

a flat velocity profile, and write Equation 3.5 as follows:

∂

∂τ

( q
α

)
+

∂

∂χ

[
1

2

( q
α

)2]
+
∂p

∂χ
= 0.(3.12)

On integrating Equation 3.12 with respect to χ from the distal end and using Equation

3.11, we get

p = p1 +
1

2α2
1

q21 −
1

2α2

(
∂Vχ
∂τ

)2

+
∂

∂τ

∫ χ

1

1

α

∂Vχ
∂τ

dχ,(3.13)
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where the subscript χ indicates the location at which each of the quantities are calculated,

and p1, q1 and α1 are the pressure, flow rate and cross-sectional area at χ = 1, respectively.

Before emptying begins, q1 = 0 so, the second term of Equation 3.13 becomes equal to

0. Since q = 0 for χ < bi and χ > bf , Equation 3.12 implies ∂p/∂χ = 0 at these points.

Therefore, p = p1 for all χ > bf and p = pi for all χ < bi wherein pi is the pressure at

χ = bi. Our results showed that the maximum and minimum values of p are observed at

χ = bi, so pi was used as the upper and lower bound of the pressure variation for each

time step. At χ = bi, Vχ = 0 so, the third term of Equation 3.13 becomes equal to 0. On

applying these arguments to Equation 3.13, we get

pi = p1 +
∂

∂τ

∫ bf

bi

q

α
dχ.(3.14)

We define an average estimate of the bulk velocity of the bolus, ub for every time

instant as follows

ub =
1

Lb

∫ bf

bi

q

α
dχ,(3.15)

where, Lb = bf − bi, is the length of the bolus at each instant of time. Using Equation

3.14 and 3.15, we get

pi = p1 + ub
∂Lb

∂τ
+ Lb

∂ub
∂τ

.(3.16)

From Equation 3.16, we see that the pressure variation between its maximum and mini-

mum can be attributed to the variation of the bulk velocity of the bolus and the change

in length of the bolus during transport through the esophagus.
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(a) Bolus shape with active relaxation in a
finite segment distal to the contraction. A

prominent bulge is formed in the presence of
localized active relaxation

(b) Bolus shape without localized active
relaxation. Typically, there is no prominent

bulge in the absence of localized active
relaxation

Figure 3.7. Effect of active relaxation on the shape of the bolus

Figure 3.8. The variation of cross-sectional area shows the bolus moving
in the positive χ direction. The transition from blue to the red line shows
the movement of the bolus with time (also indicated by the arrow). The
bulge at the bolus is due to localized active relaxation. The cross-sectional
area distal to the localized bulge is α1, and this part of the esophagus does

not experience active relaxation

3.2.6. Estimating the stiffness and active relaxation of esophageal wall

The schematic diagram in Figure 3.7a shows the localized nature of active relaxation

that leads to the formation of an ellipsoidal bolus. Without localized active relaxation,

the shape of the bolus would typically be as shown in Figure 3.7b. In localized active

relaxation as shown in Figure 3.7a, θ > 1 inside the bolus and θ = 1 distal to the bolus.

The difference between the total pressure inside the bolus and distal to the bolus using
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Equation 3.7, leads to the following form for θ after some mathematical manipulations:

θ =
α

∆p
k
+ α1

,(3.17)

where ∆p is the pressure difference between the fluid inside the bolus and distal to the

bolus, and α and α1 are the cross-sectional areas inside the bolus and distal to the bolus,

respectively. Figure 3.8 shows the variation of cross-sectional area in a typical bolus

transport. In the above equation, α1 > 1, and due to negligible viscous losses, ∆p << k.

With these assumptions, the active relaxation in Eq, 3.17 can be approximated without

significant errors as follows:

θ ≈ α

α1

.(3.18)

Sometimes it might be difficult to visualize the esophageal lumen distal to the bolus

in fluoroscopy images. In such scenarios, it is impossible to accurately calculate active

relaxation using this formulation. Since the minimum value of α1 is 1, Equation 3.18 can

be used to set bounds on the magnitude of θ as follows:

1 < θ < α.(3.19)

A simple mathematical manipulation of Equation 3.7 gives the following relation:

p− po
α− 1

=
k

θ

[
1− θ − 1

α− 1

]
.(3.20)
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Figure 3.9. Flow rate within the esophagus. The high flow rate at τ = 0.5
marks the start of emptying

Since α, θ > 1 and θ > α, the above equation leads to the following inequality:

k

θ
>
p− po
α− 1

.(3.21)

The left-hand side of the above equation represents the effective stiffness of the esophageal

walls with the presence of active relaxation. The right-hand side represents the lower

bound of this effective stiffness. The esophageal stiffness experienced by the bolus is

lower than the actual stiffness of esophagus wall due to active relaxation. Therefore, the

lower bound of k/θ provides an estimate of the in-vivo stiffness of the esophageal walls at

the location of the bolus.

3.3. Predictions of pressure and flow rate

The variation of flow rate and pressure with non-dimensional time and distance along

the length of the esophagus is shown in Figure 3.9 and 3.10, respectively. There is no
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Figure 3.10. Fluid pressure within the esophagus. The high pressure
gradient near τ = 0.5 shows the LES requires a high pressure gradient to

allow fluid to pass through it. The dynamic pressure variations are
significantly small compared to the static pressure inside the esophagus

flow at χ = 1 for τ < 0.5, which indicates pure transport without emptying. The flow

rate is non-zero only at the location of the bolus. This matches our observation from

the fluoroscopy where the bolus is transported without emptying into the stomach. The

variations of area with χ and τ lead to fluctuations in pressure (see Figure 3.10). As we

stated in Section 3.2.5, we observe in Figure 3.10 that the maximum pressure variations

can be estimated from the pressure at the proximal end of the bolus. According to

Equation 3.16, these fluctuations in pressure is estimated from the variation of the bulk

speed ub and length Lb of the bolus as shown in Figures 3.11a and 3.11b, respectively.

Although p is calculated over the whole domain, the fluid pressure within the bolus is

the most accurate description of the actual transport process. This is because the VFSE

provides information only about the shape of the bolus. Therefore, we have ignored the

calculated pressure proximal to the bolus and replaced with a reference value of zero.
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Additionally, the peristaltic contraction at the proximal end of the bolus, where the

diameter is significantly less, cannot be observed in the fluoroscopy, and is fully occluded

most of the time, thereby dividing the fluid domain into two parts. Our FluoroMech

model does not incorporate this contraction zone, and instead treat this zone the same

as the remainder of the non-bolus domain. Consequently, we do not see a high-pressure

zone at the proximal end of the bolus as seen in the Figure 3.3. The calculated fluid

pressure is the sum of the contributions from the static and dynamic fluid pressures

inside the bolus. In this particular scenario, the static pressure is the intragastric pressure

specified as a boundary condition at the distal end of the esophagus and is equal to 21.4

mmHg. The static pressure is independent of the flow and remains constant throughout

the fluid domain. On the other hand, the dynamic pressure depends only on the fluid

flow and is shown as the pressure variations in Figure 3.10. From the magnitude of

the fluid pressure variations, we see that the dynamic pressure is 2 orders of magnitude

smaller than the static pressure. The total pressure inside the bolus is therefore mainly

due to the static pressure. The difference between the static pressure inside the bolus

and the intrathoracic pressure (8 - 12 mmHg in this case) is balanced by the stresses

developed in the esophagus walls due to elastic deformation. The dynamic pressure in

the bolus accelerates or decelerates the bolus fluid and balances the viscous drag on

the fluid at the esophagus walls. The low values of dynamic pressure compared to the

static pressure indicate that the effect of viscosity and fluid acceleration/deceleration

on the total fluid pressure in this case is significantly lower compared to the effect of

elastic deformation of the esophagus walls in pressurizing the bolus fluid. The manometer

readings of fluid pressure inside the bolus mainly represent the static pressure, and in
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(a) Bulk speed of the bolus (b) Length of the bolus

Figure 3.11. Variation of bolus speed and length before emptying. The
rate of change of the product of bulk bolus speed and length of the bolus
with respect to time quantifies the dynamic pressure variations shown in
the previous figure. The variation of bulk bolus speed and its length
provide physical intuition of the sources of pressure fluctuations

this case, the measured intrabolus pressure lies between 20 - 25 mmHg. The dynamic

pressure variations are too small to be accurately measured by manometry, and so cannot

be validated with manometry data. The magnitude of pressure from manometry at the

contraction is 50-110 mmHg (shown in Fig. 3.3). Therefore, the contraction pressure

is roughly 3 orders of magnitude greater than the dynamic fluid pressure predicted by

FluoroMech. Emptying begins at τ = 0.5, which corresponds to q > 0 at χ = 1. This

continues until all fluid is emptied into the stomach. From Figure 3.9 and 3.10 we see

that during emptying, a high flow rate corresponds to a high intrabolus pressure. In our

model, the reference intragastric pressure is specified at χ = 1, so, a high flow rate at

χ = 1 requires a higher pressure to be developed inside the esophagus to drive the fluid

out. This high pressure inside the bolus indicates the presence of the LES and shows how

it behaves differently from the remainder of the esophagus. During normal esophageal
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transport, the walls distend to accommodate the incoming bolus, and contract back to

their relaxed state once the bolus has passed. However, the LES does not distend like the

rest of the esophagus, hence a greater pressure inside the bolus is required for the fluid

to traverse it.

It is difficult to identify the sources of the dynamic pressure fluctuations as shown in

Figure 3.10 from the two-dimensional fluoroscopy study. Although our analysis is based on

VFSE performed with the subject in supine position, internally the esophagus is never fully

horizontal and might have many undulations with varying extents. These undulations can

be thought of as small hills and valleys along the length of the esophagus. When the bolus

moves up an undulation, it slows down locally and when it moves down an undulation, it

locally accelerates. These local acceleration and deceleration lead to fluctuations in the

calculated pressure. The esophagus might deform as well due to contact with surrounding

organs, which in turn vary with time due to the heart beating, vasculature pulsating,

respiration, and overall body movement leading to variations in cross-sectional areas and

consequently the pressure.

3.4. Predictions of stiffness and active relaxation

The esophageal wall stiffness and active relaxation predicted by the FluoroMech model

depends on the cross-sectional area only at the bolus. The variation of cross-sectional area

during pure transport is shown in Fig. 3.12. In this figure, we see that the bolus cross-

sectional area varies from 2 to 3.5. As described in Section 3.2.6, our model predicts the

minimum stiffness of the esophageal walls which occurs at location of the bolus. The wall

stiffness at the bolus is smaller than the rest of the esophagus due to active relaxation.
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Figure 3.12. Variation of non-dimensional cross-sectional area with χ and
τ during bolus transport without emptying. At τ = 0, α is higher but the
bolus has a shorter length. Towards the end of the transport, the bolus

elongates but α decreases due to conserved volume during pure transport.
The white horizontal dashed lines (at χ = 0.15 and 0.7) mark the length
of the esophagus that displays a prominent bolus that can be used to

estimate stiffness and active relaxation of the esophageal walls

Additionally, the cross-sectional areas are known most accurately at the bolus since that

is the only part of the esophagus observed in fluoroscopy. Therefore, in order to calculate

stiffness and active relaxation, we consider cross-sectional areas inside the bolus only as

indicated by the two horizontal white dashed lines in Figure 3.12. The intrathoracic pres-

sure po can also be observed from the EPT in Figure 3.3 as the pressure readings proximal

to the peristaltic contraction. In this case, the intrathoracic pressure is approximately

8 - 12 mmHg. Using the pressure predicted by our model, and intrathoracic pressure

observed from EPT, we calculated the lower bound of esophageal stiffness according to
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Figure 3.13. Variation of minimum stiffness (in mmHg) along the length
of the esophagus. The x-axis represents the length of the esophagus

marked by the dashed horizontal lines in Figure 3.12. This measure of
stiffness incorporates the effect of active relaxation, therefore, its low
values correspond to the high values of cross-sectional areas. The

predicted high stiffness at χ = 0.15 and 0.7 is due to the influence of the
peristaltic contraction and the LES, respectively

Equation 3.21. This estimate of stiffness refers to lowest stiffness that the bolus encoun-

ters and captures the effect of active relaxation. Figure 3.13 shows the variation of the

minimum value of k/θ along the length of the esophagus lying between the white dash

lines in Figure 3.12. These values of stiffness correspond to the maximum cross-sectional

area at any point along the length of the esophagus. In this plot, we have considered the

mean of the range of values for intrathoracic pressure, i.e. 10 mmHg. The plot shows the

variation of esophageal wall stiffness to be approximately 4.5 - 12.0 mmHg. On compar-

ing Figures 3.12 and 3.13, we see that the minimum stiffness correspond to the maximum

cross-sectional areas and vice-versa, which is consistent with the tube-law in Equation 3.7.
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Figure 3.14. Variation of the maximum active relaxation factor. The
x-axis represents the length of the esophagus marked by the dashed

horizontal lines in Figure 3.12. The high values of θmax correspond to the
low values of stiffness. The low values of θmax at the χ = 0.15 and 0.7 are

due to the influence of the peristaltic contraction and the LES,
respectively

It should be noted that the values of the calculated stiffness have a contribution from the

surrounding organs as well. Some locations of the esophagus experience indentations from

surrounding organs, and that appears in form of a prediction of relatively high stiffness.

Since the stiffness is predicted using fluid pressure, there is no way to distinguish the ef-

fect of the surrounding organs from the actual stiffness of the esophagus walls. In Figure

3.13 we see that the stiffness values are higher towards the two ends of the x-axis. At

the left end, the peristaltic contraction collapses the esophagus, and therefore, our model

captures this behavior by predicting a higher stiffness near this region. At the right end,

the LES does not distend like the rest of the esophagus. This behavior is manifested
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through a higher predicted stiffness at the right end. Therefore, we hypothesize that the

lower values of predicted stiffness are closer to reality.

The in-vivo mechanical properties of human esophagus are reported in [62, 63, 59].

In these studies, a probe with a balloon/FLIP (functional lumen imaging probe) was

inserted into the esophagus and the balloon/FLIP was filled with water to distend the

esophagus. The sensors in the probe measure the cross-sectional areas and pressure inside

the esophagus. [62] reported the data of 13 healthy subjects (9 male; age range, 20-27

years), [63] reported data of 11 healthy subjects (5 male; age range, 22-39 years), and [59]

reported data of 15 healthy subjects (6 male; age range, 21-68 years). These studies show

a linear relationship between pressure and cross-sectional area, and were the motivation

for the use of a linear tube-law in Equation 3.7. The slopes of their reported plots give

an estimate of the quantity Ao/K, where Ao is the relaxed cross-sectional area of the

esophagus, and K is the stiffness of the esophagus walls. The Ao/K from [62] and [59]

were approximately 11.6 mm2/mmHg and 9.1 mm2/mmHg, respectively. [63] reported the

relation between pressure and cross-sectional areas at different regions of the esophagus.

The Ao/K in these regions lies in the range 9.5 - 11.5 mm2/mmHg. Using the relaxed

cross-sectional area in our analysis, we calculated Ao/K to be 4.9 - 13.1 mm2/mmHg for

the subject analyzed. The relaxed cross-sectional area of the esophagus is reported in

[61] as 7−59mm2. Using this range for cross-sectional areas, the stiffness from [62], [63],

and [59] results to 0.6 - 5.0 mmHg, 0.6 - 6.2 mmHg, and 0.8 - 6.5 mmHg, respectively.

Therefore, the stiffness of the esophagus of the subject in our analysis is of the same

order and close to the range of values reported in literature. An accurate measure of the

intrathoracic pressure would increase our accuracy for prediction of esophageal stiffness.
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Figure 3.14 shows the variation of the maximum active relaxation along the length of

the esophagus lying between the white dashed lines in Figure 3.12 according to Equation

3.18. Since it is difficult to visualize the esophagus lumen distal to the bolus in the

fluoroscopy images used for this analysis, we assume α1 = 1, which correspond to the

upper bound of active relaxation according to Equation 3.19. We see that the maximum

value of the active relaxation lies between 2 and 3.5. On comparing Figures 3.13 and 3.14,

we observe that the maximum relaxation occurs at the locations of minimum stiffness.

Although the FluoroMech model provides a simple non-invasive technique to predict

esophageal wall stiffness and active relaxation, the fluoroscopy images that are used as in-

put to the model, impose certain limitations to the capability of FluoroMech. Due to the

inherent lack of information about the three-dimensional geometry of the bolus, we make

some assumptions about the esophageal cross-sectional areas by enforcing volume conser-

vation of the bolus so that the transport follows the physical laws. The cross-sectional

areas obtained after volume conservation might not be exactly the same as in reality, and

might lead some inaccuracies in our predictions. The dynamic pressure variations due to

the unnecessary variations in cross-sectional areas are negligible compared to the static

pressure inside the bolus. Therefore, the effect of minor inaccuracies in extracting cross-

sectional areas from fluoroscopy images in the prediction of esophageal wall stiffness and

active relaxation is mitigated to a reasonable extent. The stiffness predicted by the model

can be higher than the actual stiffness at some locations due to the surrounding organs

pressing against the esophagus. The prediction of esophageal wall stiffness and active re-

laxation is sensitive to the relaxed lumen cross-sectional area and the cross-sectional area
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distal to the bolus, respectively. Identifying these cross-sectional areas in fluoroscopy im-

ages is sometimes difficult due to the lack of barium lining the esophageal lumen in such

locations. This might add to some inaccuracies in our prediction. FluoroMech can be very

easily applied to other imaging techniques such as computed tomography (CT) or mag-

netic resonance (MR) imaging that can provide a better imaging of the three-dimensional

bolus, relaxed lumen cross-section and identify locations where the surrounding organs

press against the esophagus, and hence predict wall stiffness and active relaxation more

accurately. Additionally, the esophageal wall stiffness prediction is dependent on the accu-

rate measurement of the intragastric and intrathoracic pressure. Therefore, FluoroMech

used along with manometry (as described in this work) leads to better prediction of wall

stiffness.

3.5. Conclusion

We have presented FluoroMech, a technique for analyzing fluoroscopy image data

using deep learning and computational fluid dynamics. The image sequence from fluo-

roscopy was segmented using a Convolutional Neural Network to obtain the outline of

the bolus as it transits the esophagus. This bolus outline then becomes the input to a

computational model that solves the one-dimensional mass and momentum conservation

equations to obtain the fluid flow rate and pressure. Since fluoroscopy provides infor-

mation only about the shape of the bolus in a single two-dimensional plane, we made

approximations regarding the esophageal cross-sectional areas to conserve the volume of

swallowed fluid. We observed that the static pressure inside the bolus is significantly

greater than the dynamic pressure. This indicates that the effect of elastic deformation is
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significantly greater than combined effect of the viscous drag at the esophageal walls and

local acceleration or deceleration of the bolus fluid in pressurizing the bolus fluid. Based

on our mechanistic study, we have categorized the esophageal transport into four zones:

contraction zone behind the bolus, active relaxation zone at the bolus, stiff zone at the

LES and a baseline zone for the remainder of the esophagus.

Using the shape of the bolus and the pressure predicted from this model, we have

presented a method to estimate the esophageal wall stiffness. We concluded that the

lower values of the predicted stiffness reflect the actual stiffness of the walls since contact

with surrounding organs can lead to a higher predicted stiffness. The stiffness predicted

by FluoroMech was of the same order and close to the range of values reported in other

studies. We also presented a method to estimate active relaxation of the esophagus walls

at the bolus using a relaxation factor. Since the dynamic pressure variations are negli-

gible compared to the static pressure inside the bolus, the stiffness and active relaxation

estimated by our model are not sensitive to minor inaccuracies in cross-sectional areas

extracted from fluoroscopy images. Thus, FluoroMech reliably predicts the state and

functioning of the esophagus.
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CHAPTER 4

MRI-MECH: Mechanics-informed MRI to estimate esophgeal

health

Dynamic magnetic resonance imaging (MRI) is a popular medical imaging technique

to generate image sequences of the flow of a contrast material inside tissues and organs.

However, its application to imaging bolus movement through the esophagus has only been

demonstrated in few feasibility studies and is relatively unexplored. In chapter 3, we in-

troduced a framework called FluoroMech applied to fluoroscopy images to estimate the

mechanical health of the esophagus. FluoroMech enhances the capability of fluoroscopy

by adding quantitative predictions to fluoroscopy data which is inherently qualitative in

nature. In this chapter, we present a framework called MRI-MECH which uses dynamic

MRI as input to estimate esophageal health. Both FluoroMech and MRI-MECH uti-

lize the input of esophageal cross-sectional area varying as a function of time and length

along the esophagus. However, there are some key differences in their approach that can

be classified into two categories. The first category pertains to differences between fluo-

roscopy and dynamic MRI. Fluoroscopy is an older and simpler approach wherein X-ray

imaging is used to visualize a swallowed bolus passing through the esophagus resulting

in a video with high temporal resolution, but only a two-dimensional projection of the

bolus. Hence, the three-dimensional geometry of the bolus is unknown. Fluoroscopy is

a well established clinical test. Dynamic MR imaging, on the other hand, is a relatively
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complicated and evolving technology. In its current state, dynamic MRI images have

significantly lower temporal resolution but very detailed three-dimensional representation

of the bolus. However, dynamic MR imaging is currently not a standard practice for

evaluating esophageal disorders offering a vast potential for improvement. The second

category of differences between FluoroMech and MRI-MECH lie in the implementations

of the frameworks. FluoroMech uses the finite volume method to predict esophageal wall

stiffness and active relaxation with the variation of cross-sectional area as input. It is com-

putationally fast (less than a minute) and requires very limited computational resources

but requires a complete dataset of the variation of cross-sectional area. Assumptions are

required regarding the 3-D shape of the bolus based on the volume of fluid swallowed

and since model predictions are sensitive to cross-sectional area variation, inaccuracies in

measurements reflect on the predictions as well. MRI-MECH, on the other hand, uses a

physics-informed neural network (PINN) [64] to make predictions and is much compu-

tationally demanding (takes approximately one hour to run) requiring better hardware,

especially the GPU, to train the PINN. However, MRI-MECH is not sensitive to missing

or imperfect measurements. Additionally, it does not require assumptions regarding the

esophageal lumen cross-sectional shape because MRI provides three-dimensional geom-

etry of the esophageal lumen. In the following sections, we describe the MRI-MECH

framework in detail along with its application to a dynamic MRI sequence.
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Figure 4.1. One instant of a dynamic MRI of a normal subject as seen in
three perpendicular planes. The planes (from left to right to bottom) are
coronal, sagittal and axial, respectively. The bolus can be seen as the
bright region inside the red boxes. Concentrated pineapple juice was

swallowed as a contrast agent.

4.1. Accelerated dynamic MRI

Imaging was performed at 1.5 T (Aera, Siemens, Germany) using a 3D MR angiogra-

phy sequence (TWIST, Siemens, Germany) designed for contrast-enhanced cardiac imag-

ing applications which was adapted to be used for esophageal imaging using pineapple

juice as an oral contrast agent. Sequence parameters included (3.25 mm)3 spatial / 1.17
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s temporal resolution, (416 mm)2× 143 mm coronal field of view, 0.78 ms echo time, 2.36

ms repetition time, 29o tip angle, 620 Hz/pixel bandwidth, 6/8 partial Fourier acquisi-

tion, R=2 GRAPPA acceleration, 8% central size / 10% outer density view sharing. A

4-channel cardiac coil was used for image acquisition, placed on the upper torso surface.

To improve image conspicuity of the juice bolus, pineapple juice (100%, Costa Rica) was

reduced to a volume factor of 0.48 (i.e. 52% volume removed) through gradual heating

without boiling. By doing so, the T1 of the juice at 1.5 T was reduced from 265 ms (raw /

non-volume reduced juice) to 76 ms (volume-reduced juice), as measured by variable flip

angle signal fit. A healthy volunteer (37 year old male) was given 20 ml of the volume-

reduced pineapple juice to swallow during image acquisition. The juice was administered

via a plastic tube and syringe controlled by the scan subject. The subject was instructed

to swallow by voice command from the scan operator, given 10 seconds after the start of

image acquisition, with 75 seconds of imaging performed to capture complete esophageal

transit. To visualize the bolus transport, maximum intensity projections were created.

Figure 4.1 shows an instant during bolus transport on three perpendicular slices.

4.2. Extraction of bolus geometry

The MRI output consisted of a cuboid wherein voxels in a Cartesian coordinate system

had different magnitudes of intensity. The temporal resolution of the dynamic MRI (1.17

second) determined the number of images with the bolus seen within the esophagus; 7 time

instants in this study. The typical length of an adult esophagus is 18 - 25 cm [65]. The

average velocity of a normal peristalsis is approximately 3.3 cm/s [66]. Thus, an average

swallow sequence usually takes 5 - 8 seconds. Therefore, temporal resolutions similar to
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Figure 4.2. Segmentation of MR images. (A) The bolus is shown in the
coronal plane at four time instants (progressing from left to right). The
bolus is seen as the bright region inside the red boxes. The bolus volume

decreased with time as it was emptied into the stomach. (B) The
corresponding 3D segmented bolus shapes for the four time instants.

Bolus size has been magnified for visualization.

what we used in our analysis typically result in 5 - 8 images. Although this temporal

resolution is not comparable to fluoroscopy, the detailed three-dimensional geometry of

the bolus in MRI leads to better prediction of velocity and intrabolus pressure resulting

in better prediction of esophageal wall properties. The bolus was manually segmented for

the 7 time instants, a few of which are shown in Figure 4.2. The segmentation assigned

a value of 1 and 0 to each voxel that lay inside and outside the bolus, respectively. The

image segmentation was performed using the open-source software ITK-SNAP [67]. With

improved MR imaging and better temporal resolution, manual image segmentation might
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not be feasible and more sophisticated automated segmentation techniques [68] might be

necessary.

MRI-MECH modeled the esophagus as a one-dimensional flexible tube. For such

one-dimensional analysis, the variation of cross-sectional areas at different points along

the length of the esophagus and different time instants had to be extracted from the

three-dimensional bolus obtained from segmentation. This was done in two steps. The

first step was to generate a center line along the length of the esophagus. The bolus

shapes observed at different time instants were superimposed and then cross-sections of

the superimposed shape at different horizontal planes from the proximal to the distal end

of the superimposed shape were generated. The centroids of these cross-sections were

connected to form the center line. The length of the center line in this case was 9.65 cm.

The second step, after extracting the center line, was to generate planes perpendicular

to the centerline as shown in Figure 4.3. The segmented voxels marked 1 which lay near

these perpendicular planes were projected onto these planes. These projected points were

connected using Delaunay triangulation as shown in Figure 4.3. The cross-sectional area

at each point along the center line was then calculated as the sum of the triangles in the

Delaunay triangulated geometries.

4.3. MRI-MECH formulation

4.3.1. Governing equations

Transport through the esophagus was modeled as one-dimensional fluid flow through a

flexible tube. The mass and momentum conservation equations in one dimension [55, 58,
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Figure 4.3. Extraction of cross-sectional areas from dynamic MR images.
The segmented bolus geometry at one time instant is shown by the red

points in the scatter plot. The generated center line is shown by the black
curve inside. A few planes are shown which are perpendicular to the

center line and on which the cross-sectional areas were calculated. The
points on the planes were meshed using Delaunay triangulation and the
triangulated shapes approximate the cross-sectional areas at those planes.

57, 56] (with slight modification from Equations 3.1 and 3.2) are as follows:
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where A is the cross-sectional area of the esophageal lumen, U and P are the velocity

and pressure in the bolus fluid, respectively. x represents the distance along the length of

the esophagus from the mouth to the stomach and t represents time. The total time for

bolus transport in our analysis was 6.95 seconds. ρ and µ are the density and dynamic

viscosity of the transported fluid, respectively. Pineapple juice was the swallowed fluid

whose density and viscosity were 1.06 g/cm3 and 0.003 Pa.s [69], respectively.

As described in chapter 3, the fluid pressure developed inside the esophagus is linearly

proportional to the cross-sectional area of the esophageal lumen [62, 59] in the absence

of any neuromuscular activation. Using this information, we used the same pressure tube

law as described by Equation 3.3. In this case, the inactive cross-sectional area Ao was

27mm2. The activation parameter θ takes the value of 1 in the inactive state of the

esophagus. It can be seen from Equation 3.3 that in the inactive state, when the cross-

sectional area of the esophageal lumen is equal to Ao, the pressure inside the esophagus is

equal to Po. Due to the lack of information about the thoracic pressure, we assume that

Po = 0 mmHg. An activation is induced when θ < 1 raising the pressure locally. On the

other hand, θ > 1 decreases the bolus pressure and estimates the active relaxation of the

esophageal wall. Thus, the parameter θ captures the effect of the esophageal motility.

Due to the low resolution of the dynamic MRI, it was necessary to interpolate the

MRI data to smaller temporal and spatial scale. The measured volume Vm of the bolus

from the proximal end (x = 0) to any point x > 0 was calculated as follows:

Vm =

∫ x

0

Amdx,(4.3)
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where Am is the measured cross-sectional area of the esophageal lumen at a coarse x and t.

The volume Vm was interpolated using piecewise cubic Hermite interpolating polynomial

to a smaller temporal and spatial scale to obtain V . Vo was known at 7 time instants and

59 points along x. The interpolated V was calculated at 100 time instants and 100 points

along x. Using Equations 4.1 and 4.3, the cross-sectional areas and velocities at finer t

and x were calculated as follows:

A =
∂V

∂x
,(4.4)

U = − 1

A

∂V

∂t
.(4.5)

The values of A and U were then used to solve for P in Equation 4.2. Equations 4.1 and

4.2 were non-dimensionalized as follows:

∂α

∂τ
+
∂(αu)

∂χ
= 0,(4.6)

∂u

∂τ
+

∂

∂χ

(
u2

2

)
+
∂p

∂χ
+ φ

u

α
= 0,(4.7)

where α = A/As, u = U/c, χ = x/
√
As, τ = ct/

√
As, p = P/(ρc2), φ = (8πµ)/(ρc

√
As),

As = max(A), and c = 5 cm/s is a reference speed of peristalsis. In this work, As = 197.73

mm2. Using the properties of the swallowed fluid and the scales for A and U , we found

φ = 0.101. The non-dimensional form of the pressure tube law remains the same as

described by Equation 3.7. This non-dimensionalization ensures that the magnitudes of

α, u, and p lie between -1 and 1, which is essential for good prediction by the PINN as

described later.
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Figure 4.4. The lower esophageal sphincter (LES) identified at a single
time instant outlined in red with a diameter of approximately 7.89 mm
and a length of approximately 2.78 cm. The stomach can be seen to the
right of the LES with the accumulated pineapple juice shown in bright

white. The esophageal body cannot be seen in this slice because this plane
does not intersect the esophagus.

4.3.2. Initial and boundary conditions

The boundary conditions of this problem were specified to capture the physiological con-

ditions of normal esophageal transport. The upper esophageal sphincter (UES) at the

proximal end of the esophagus opens to allow the bolus into the esophagus, closes once

the fluid has passed through it, remains closed thereafter. Hence, we specified zero ve-

locity at x = 0 for all time instants. This condition also ensures that Vm = 0 at x = 0

at all time instants and is consistent with Equations 4.3 and 4.5. The distal end of the
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esophagus, on the other hand, remains open to allow emptying into the stomach. Since

the pressure term in Equation 4.2 consists of a single derivative with respect to x, it is

necessary to specify only one boundary condition for P . The boundary pressure was spec-

ified at the distal end which was equal to a typical value of gastric pressure (7 mmHg).

Finally, for initial condition, we had zero velocity at all points along x at t = 0.

4.3.3. Cross-sectional area of the lower esophageal sphincter

The low spatial resolution of the dynamic MRI poses a problem of accurately identifying

the lower esophageal sphincter (LES) cross-section. This is because the LES opening is

narrower compared to the esophageal body and does not distend very much because of

the greater wall stiffness at the esophagogastric junction (EGJ). Although this could be

improved by focusing the MRI only at the LES, the state of the esophagus proximal to the

LES cannot be estimated in such a scenario. The LES can be identified in only one or two

time instants when the LES has greatly distended due to a bolus flow through it. Figure

4.4 shows the LES at one such time instant. The LES cross-sectional area measured at

this time instant can act as a valuable reference to identify the bolus behavior proximal

to the LES.

As specified in the previous section, since pressure is specified as a Dirichlet boundary

condition at the distal end of the esophagus, the intrabolus pressure prediction depends

on the accurate measurement of the LES cross-sectional area. Figure 4.5 shows the in-

trabolus pressure calculated using the numerical approach described in Halder et al. [44]

with different LES cross-sectional areas. The pressure shown is non-dimensional and the

pressure at the distal end was specified zero as a reference in this case. The total length of
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Figure 4.5. The effect of LES cross-sectional area on the prediction of
intrabolus pressure. The proximal end of the LES is marked by the

vertical dashed line. The inserted legend shows the LES cross-sectional
areas used for this simulation. Equations 4.6 and 4.7 were solved using the
method described in FluoroMech to calculate the intrabolus pressure. The
input for the model was the variation of α observed from the MRI with
four reference LES cross-sectional areas. The variation of pressure is

shown at a single time instant to illustrate the impact of LES
cross-sectional area on pressure prediction.

the esophagus considered here is the sum of the centerline length (9.65 cm) and the LES

length (2.78 cm). Thus, the proximal and distal location of the bolus were 9.65 cm and

12.43 cm, respectively. In non-dimensional form, the proximal and distal locations were

χp = 6.87 and χL = 8.81, respectively. The quantities χp and χL were important locations

as described in the next section. As shown in Figure 4.5, the intrabolus pressure prox-

imal to the LES depends on the LES cross-sectional area, so, assuming a constant LES

cross-sectional area (measured at one time instant) would lead to an incorrect prediction,
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Figure 4.6. Problem definition for the physics informed neural network
(PINN) framework. (A) Schematic for the variation of cross-sectional area
and pressure at the time instant when the LES cross-section was known.
The dashed lines in the pressure variation show what intrabolus pressure
would be at other time instants assuming constant LES cross-sectional

area. (B) Workflow for the prediction of LES cross-sectional area at other
time instants.

making it important to know the instantaneous LES cross-sectional area to accurately

predict intrabolus as well as to understand LES functioning during emptying.

4.3.4. Physics-informed neural network

The problem of missing data for the LES cross-sectional area (and consequently obtaining

accurate intrabolus pressure values) was solved using a physics-informed neural network

(PINN) [64]. The problem description is schematically shown in Figure 4.6. The final
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interpolated volume V (x, t) was used to calculate A(x, t) and U(x, t) using Equations 4.4

and 4.5, and after non-dimensionalization, α(χ, τ) and u(χ, τ), respectively. These values

of α(χ, τ) and u(χ, τ) were then used to calculate p(χr, τr) at the specific time instant

when the LES cross-section was visible by solving Equation 4.7 using the finite volume

method described in Halder et al. [44]. The non-dimensional time τr corresponds to

the time instant when the LES was visible in MRI. The point χr was selected near the

proximal end of the LES. This point was selected because the pressure at points proximal

to χr are of similar magnitude as p(χr, τ) as shown in Figure 4.5. Additionally, χr was very

close to the LES and hence the effect of active relaxation as observed in the esophageal

body was minimal. Note that this was an assumption that we made regarding the active

relaxation, and its usefulness will be explained shortly. The values of χr and τr were 6.76

and 8.57, respectively. The pressure p(χr, τr) was the correct estimate of the intrabolus

pressure since the LES cross-sectional area was accurately known. We call this pressure

the reference pressure, pr = p(χr, τr). Using the tube law in Equation 3.7, the stiffness

(kr) at χr was calculated as follows:

kr =
pr(

α(χr,τr)
αo

− 1
) .(4.8)

Note that there is no θ in Equation 4.8 since we assumed that θ = 1 at χr. With the

stiffness at χr known, we calculated the pressure pt = p(χr, τ) at other times with the

tube law according to Equation 3.7 as follows:

pt = kr

(
α(χr, τr)

αo

− 1

)
.(4.9)
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Figure 4.7. Details of the physics-informed neural network (PINN). The
input and output of the PINN along with the details of the hidden layers
are shown at the top. Automatic differentiation was used to calculate the
derivative terms for the residuals. The schematic of the domain is shown
below. The schematic describes where the different losses were specified.

The LES cross-sectional area (Ales) was calculated using PINN so that the pressure pre-

dicted at χr matches pt for all times. An additional constraint is necessary to ensure an

unique solution for Ales as follows:

∂αles

∂χ
= 0,(4.10)

where αles = Ales/As is the non-dimensional cross-sectional area of the LES. Equation 4.10

implies that there was no significant variation of LES cross-sectional area along χ. This

is physically meaningful since the variation of αles along χ is quite negligible compared to

the esophageal body and can be observed in Figure 4.4 as well.
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4.3.4.1. Network architecture. The schematic in Figure 4.7 shows the architecture of

the PINN. It takes χ and τ as input and predicts α, u, and p. Since the inputs are χ

and τ , automatic differentiation can be used effectively to calculate ∂α
∂τ
, ∂α

∂χ
, ∂u

∂τ
, ∂u

∂χ
, and

∂p
∂χ

which were used for calculating the terms in Equations 4.6 and 4.7. Aside from the

input and the output layers, the PINN consisted of 7 hidden layers with 100 hidden units

in each layer. We used tanh activation function for every layer.

4.3.4.2. Losses. The losses for the PINN consisted of a combination of measurement

losses and residuals of the mass and momentum conservation equations. Minimizing

the measurement losses ensures that the solutions are consistent with the measurements,

and minimizing the residuals ensures that the governing physics behind the problem is

followed. Figure 4.7 shows the locations and time instant at which the different measure-

ment losses and residuals were calculated. As already mentioned in the work-flow, α and

u were known at all points proximal to the bolus (marked in red) for all time instants.

The measurement losses for α and u for χ < χp and 0 ≤ τ ≤ τT were as follows:

lα =
1

N1

N1∑
i=1

(
αi − αi

m

)2
,(4.11)

lu =
1

N1

N1∑
i=1

(
ui − uim

)2
,(4.12)

wherein the quantities with subscript m represent measured quantities. χp is the proximal

end of the LES and τT is the total time (non-dimensional) of bolus transport. Each

point i was taken from a Cartesian grid of 99 nodes along τ and 100 nodes along χ,

which leads to N1 = 9900. Note that we are calling um as a measured quantity for

the PINN although we calculate it along with α through the interpolated volume V as
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described in the Section 4.1. This is because the PINN minimizes the square of the

difference between prediction of α and u from the network with their already known

values (which are analogous to measurements for being already known quantities for the

PINN). Additionally, the LES cross-sectional area was known at τ = τr for χp < χ ≤ χL

and the corresponding measurement loss was as follows:

llesα =
1

N2

N2∑
i=1

(
αi
les − αi

les,m

)2
,(4.13)

wherein χL is the non-dimensional coordinate of the distal end. The points i were taken

from a uniform mesh of N2 = 28 points along χ at τr. The measurement loss for pressure

was calculated at χ = χr for τ ≥ 0 and was defined as follows:

lp =
1

N3

N3∑
i=1

(
pi − pit

)2
,(4.14)

wherein the points i were selected from a uniform mesh of N3 = 98 along τ at χ = χr.

Additionally, the Dirichlet pressure boundary condition was enforced at χ = χL for τ ≥ 0

through the following loss:

lbcp =
1

N4

N4∑
i=1

(
pi − pibc

)2
,(4.15)

wherein pbc is the pressure specified at the distal end of the esophagus and N4 = 99 with

i selected from a uniform grid along τ . The residual losses were calculated in the entire
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domain for 0 ≤ χ ≤ χL and τ ≥ 0 according to Equations 4.6 and 4.7 as shown below:

rα =
1

N5

N5∑
i=1

[
∂αi

∂τ
+
∂ (αiui)

∂χ

]
,(4.16)

ru =
1

N5

N5∑
i=1

[
∂ui

∂τ
+

∂

∂χ

(
(ui)2

2

)
+
∂pi

∂χ
+ φ

ui

αi

]
,(4.17)

wherein i was randomly sampled from a uniform distribution of points in the entire domain

with N5 = 50688. Finally, the constraint as described in Equation 4.10 led to the following

residual:

rlesα =
1

N6

N6∑
i=1

∂αi
les

∂χ
= 0,(4.18)

wherein i was randomly sampled from a uniform distribution of points in the domain

[χp, χL] and [0, τT ] with N6 = 5544. The total loss for the PINN was the sum of all the

measurement losses and residuals as follows:

L = lα + lu + llesα + lp + lbcp + rα + ru + rlesα .(4.19)

To train the network, the inputs χ and τ were normalized with their mean and standard

deviation as follows:

χ′ =
χ− µχ

σχ
,(4.20)

τ ′ =
τ − µτ

στ
,(4.21)
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Figure 4.8. Measurement losses and residuals along with the total loss.
All loss functions were minimized at different rates. The total loss is

depicted in red while the other losses are in blue.

wherein µ and σ are the corresponding mean and standard deviations, respectively for χ

and τ . Hence, the derivatives with respect to χ and τ gets modified as follows:

∂

∂χ
(·) = 1

σχ

∂

∂χ′ (·) ,(4.22)

∂

∂τ
(·) = 1

στ

∂

∂τ ′
(·) .(4.23)
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4.3.4.3. Training. The network was trained using Tensorflow [70] for 100000 epochs.

We used an Adam [71] optimizer to minimize the losses. A piecewise constant decayed

learning rate was used to minimize the losses efficiently. The learning rate was 0.001 for

the first 10000 epochs, 0.0001 for the next 20000 epochs, and 0.00003 for the last 70000

epochs. The final values for lα, lu, l
les
α , lp, l

bc
p , rα, ru, r

les
α were 5.9 × 10−5, 9.8 × 10−7,

5.3 × 10−5, 4.0 × 10−7, 2.7 × 10−7, 2.9 × 10−5, 7.2 × 10−5, and 3.8 × 10−6, respectively.

Figure 4.8 shows the learning curves for the various loss functions. The final total loss

was 2.2× 10−4.

4.4. Flow variables

The PINN predicts the non-dimensional cross-sectional area, fluid velocity, and fluid

pressure by minimizing a set of measurement losses as well as ensuring that the physics

of the fluid flow problem is followed throughout. The variation of the predicted cross-

sectional area (in its dimensional form) is shown in Figure 4.9a for all values of x and t.

The values of the cross-sectional areas inside the bolus proximal to the LES were obtained

from measurements and their prediction was based on the minimization the measurement

loss as described by Equation 4.11.

The cross-sectional areas proximal to the bolus cannot be visualized in MRI because

the fluid contrast media was completely displaced by the peristaltic contraction and the

dynamic MR imaging cannot distinguish the esophagus from surrounding tissue. Hence,

we assigned the inactive cross-sectional area Ao to the esophagus proximal to the bolus.

We found that this assignment does not impact the prediction of any of the physical
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(a) (b)

Figure 4.9. Variation of cross-sectional area as predicted by the PINN. (a)
Variation of A as a function of x and t. The dashed white line indicates
the proximal end of the LES. The cross-sectional area above the dashed

line was known from the MRI and its prediction by the PINN was ensured
by minimizing Equation 4.11. There is no variation of A along x within

the LES due to the constraint described by Equation 4.10, (b) Variation of
the LES cross-sectional area as a function of time. It had the greatest

magnitude near the instant that the LES was visible in the MRI.

quantities using PINN. This is because the velocity (and flow rate) proximal to the bo-

lus is automatically predicted as zero (as shown in Figures 4.10a and 4.10b) with this

assignment, and since the pressure boundary condition is specified at the distal end, the

pressure calculation inside the domain does not depend on the behavior proximal to the

bolus. The variation of LES cross-sectional area can be seen below the dashed line in

Figure 4.9a. The LES cross-sectional area does not vary along x and only varies along t.

This is because we enforced the constraint as described in Equation 4.10.

The variation of the LES cross-sectional area is shown more clearly in Figure 4.9b.

The prediction of Ales depends on the reference LES cross-sectional area observed at a

single time instant, the conservation laws, and the reference pressure prediction at χr.
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(a) (b)

Figure 4.10. Variation of velocity and flow rate. (a) Variation of U as
predicted by the PINN. There are two high velocity zones: one at x 6 cm,
t = 2 s and the other at the LES for t > 2 s. These high velocity zones
match the regions of low cross-sectional areas: (b) Variation of the mean
flow rate calculated as Q = AU . The high flow rate matches the high

velocity zones, but there is a smoother transition of Q at the proximal end
of the LES compared to U .

Ales has the greatest magnitude near the instant when the LES cross-sectional area was

observed in the MRI and has lesser values farther away from that instant. This matches

our observation from the MRI images that the LES could not be visualized most of the

time. Hence, since the effectiveness of esophageal transport essentially depends on how

effectively the esophagus empties, the LES cross-sectional area is an important phys-

iomarker of esophageal function. Greater LES cross-sectional area facilitates esophageal

emptying while it is becomes unnecessary for the LES to have large cross-sectional area

when the bolus has almost completely emptied. Similar LES behavior is evident in Figure

4.9b where it was greater during the emptying process and minimal when bolus emptying

was nearly complete.
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The variation of bolus fluid velocity and flow rate are shown in Figures 4.10a and

4.10b, respectively. It can be seen that there are two major high-velocity zones. The first

high-velocity zone is near x = 6 cm and t = 2 sec. Comparing this region with the Figure

4.9a it is evident that the cross-sectional area at that location and time was less than at

its adjacent regions. The second high-velocity zone was in the LES. This corresponds to

low cross-sectional area as well. Thus, the velocities are greater at lower cross-sectional

areas which is intuitive for low viscosity fluids. The flow rate is the rate at which the bolus

is emptied out of the esophagus and zones with high flow rate are similar to those with

high-velocity. However, there is a smoother transition of flow rate from the esophageal

body to the LES compared to the velocity field. This is because the LES cross-sectional

area was much smaller than that of the esophageal body requiring that the fluid velocity

needed to increase more to maintain the same flow rate.

The variation of fluid pressure is shown in Figure 4.11. The pressure gradients along

x drives the fluid through the esophagus. On comparing Figures 4.10a and 4.11, we

can see that the high-pressure gradients match the high-velocity zones. This is because

the high-pressure gradients locally accelerate the fluid. Note that the pressure variations

are minimal compared to the magnitudes of the pressure. An intragastric pressure of 7

mmHg was used as a boundary condition for pressure at the distal end which is in the

normal range for a healthy subject. The thoracic pressure was assumed to be 0 mmHg.

Thus, the intrabolus pressure must be greater than the intragastric pressure to empty into

the stomach. The major portion of this pressure (∼7 mmHg) is developed by the elastic

distention of the esophageal walls. A small portion of the total intrabolus pressure (∼0.01

mmHg) is attributable to the local acceleration or deceleration of the bolus fluid. Since
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Figure 4.11. Variation of pressure as a function of x and t. Two major
high-pressure zones can be identified wherein the fluid locally accelerates,
making the corresponding fluid velocity greater in those regions. Note

that the magnitude of dynamic pressure variations are minimal compared
to the total pressure.

the MRI shows only the movement within an already distended esophagus, the calculated

pressure variations are minimal and correspond to local acceleration or deceleration of

the fluid. This observation regarding dynamic pressure variations was also observed in

mechanics-based analysis of fluoroscopy [44].

The total intrabolus pressure as shown in Figure 4.11 is within the normal range

according to CCv4.0, leading us to conclude that our specifications of the intragastric

pressure and thoracic pressure were valid. The prediction of Ales depends on the pressure

gradients and not the actual magnitude of pressure. Therefore, the prediction of Ales

remains the same irrespective of the boundary condition chosen for P . Figures 4.9b,

4.10a, 4.10b, and 4.11 also point at an important feature of the LES. The greatest LES
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Figure 4.12. Variation of the minimum esophageal wall stiffness along the
length of the esophagus. This measure of stiffness accounts for active

relaxation and captures the wall characteristics when the esophagus was
distended. The stiffness is shown only for the esophageal body proximal to

the LES.

cross-sectional area (at approximately 1.8 s) neither match the greatest pressure nor the

greatest velocity (or flow rate) across the LES. This demonstrates that the LES opening is

not governed passively by intrabolus pressure. If the LES was passively opened by elastic

distention due to the intrabolus pressure, then the maximum LES cross-sectional area

would coincide with the maximum pressure gradient. Since that is not observed, it can

be concluded that the LES cross-sectional area also involves neuromuscular relaxation.

4.5. Wall stiffness and active relaxation

The esophageal wall stiffness and active relaxation were calculated as described in

chapter 3. Esophageal wall stiffness (along with the effect of active relaxation) was esti-

mated by the parameter K/θ, which the dimensional form of the quantity k/θ described
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by Equation 3.21, where K = ρc2k. The minimum value of K/θ corresponds to the

lower bound of the effective stiffness of the esophageal walls when distended. Since the

cross-sectional area of the esophagus is not visible in MRI, any prediction regarding the

stiffness at those locations would be inaccurate. Hence, predictions of wall stiffness can

only be made at regions where the esophagus is distended i.e., at the location of the bolus.

However, the distended esophageal walls also undergo active relaxation to accommodate

an incoming bolus as well as minimize intrabolus pressure. The combined behavior of the

passive elastic distention of the esophageal walls and active relaxation is captured by the

parameter K/θ. Since K/θ estimates the lower bound of the effective esophageal stiffness,

the most accurate estimate of K/θ occurs when the esophageal walls are most distended.

The maximum distension corresponds to the minimum value of K/θ, which is shown in

Figure 4.12. The minimum K/θ at each x was calculated for all values of t. Note that the

high value of (K/θ)min near x = 6 cm in Figure 4.12 matches with the low cross-sectional

area region in Figure 4.9a. This makes sense because the esophagus would distend less at

locations of greater stiffness. It should be noted that although the stiffness appears high

at x = 6 cm, it is does not necessarily mean that the esophageal tissue is stiffer at that

location. When the esophageal wall comes in contact with surrounding organs, it appears

stiffer due to the effect of those organs on the esophagus. Since, all calculations are made

using only bolus geometry, it is impossible to distinguish the effect of other organs outside

the esophagus. Hence, we hypothesize that the lower values of (K/θ)min estimate the true

stiffness of the esophageal walls and the greater value of (K/θ)min near x = 2 cm is likely

a composite measure partly attributable to extrinsic compression. Close to the advancing

peristaltic contraction, θ < 1 so, (K/θ)min takes a greater value and the esophagus seems
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to be locally stiffer. Also, note that we have not included the EGJ in Figure 4.12. This

is because we did not define the problem with the tube law applied at the EGJ because

applying the tube law at the EGJ would not result in a unique solution. The mechanical

properties of the esophageal walls have been estimated experimentally in Orvar et al.

[62], Patel and Rao [63], and Kwiatek et al. [59]. In those studies, the esophagus was

distended and the cross-sectional area and the pressure developed inside were recorded.

A straight line was fitted to quantify the linear relationship between cross-sectional area

and pressure in an inactive esophagus. The slope of the line measured the quantity Ao/K

which was in the range 9.1-11.6 mm2/mmHg. Using the typical range of Ao as described

in Xia et al. [61], i.e. 7− 59 mm2, the stiffness of the esophageal walls was found to lie in

the range 0.6−6.5 mmHg. The effective stiffness as shown in Figure 4.12 lay in the range

1− 7 mmHg, which is of the same order of magnitude as observed in the other studies.

The parameter θ quantifies the amount of active relaxation of the esophageal walls to

facilitate distention, and consequently, decrease the local intrabolus pressure and increase

the flow rate. The variation of the active relaxation parameter θ is shown in Figure 4.13.

As described by Equation 3.18 and comparing Figure 4.13 and 4.9a, it is evident that the

locations of the high values of θ match the location of the high values of A, and, similarly

lower values of θ match the lower values of A. Note that θ quantifies the active relaxation

in the esophageal body and not the LES. Comparing Figures 4.12 and 4.13 shows that

locations of greater stiffness correspond to locations of lower active relaxation and vice-

versa. Similar to (K/θ)min as described above, the impact of tissues and organs outside

the esophagus impacts the prediction of θ as well. Hence, the low value of θ near x = 6

cm does not necessarily mean a lack of active relaxation, but most likely the influence of
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Figure 4.13. Variation of active relaxation as a function of x and t. The
dashed line corresponds to the proximal end of the LES. Since the tube
law was not specified at the LES, the active relaxation is meaningful only

in the esophageal body (above the dashed line).

structures outside the esophagus. Hence, we hypothesize that the greater values of active

relaxation are closer to the actual active relaxation of the esophageal walls.

Although MRI-MECH provides valuable insights about the nature of transport and

the mechanical state of the esophagus, it has limitations. Currently, manual segmentation

of the bolus geometry is more accurate and is reasonable for a low temporal resolution

of the dynamic MRI, but can become tedious with improved temporal resolution. Auto-

matic segmentation using deep learning techniques might be helpful in that aspect, but

also increases the risk of inaccurate segmentation without a large training dataset. Bolus

transport as visualized in MRI provides no information proximal to the bolus (a similar

problem occurs in fluoroscopy as well). Hence, the MRI-MECH cannot predict anything

meaningful proximal to the bolus. Thus, MRI-MECH cannot be used to estimate the
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contraction strength, for which other diagnostic techniques should be used such as HRM

or FLIP. The esophageal wall properties and neurally-activated relaxation were estimated

solely through the bolus shape and movement. But the bolus shape and movement de-

pend not only on the esophageal walls but also on the impact of organs surrounding the

esophagus. This is a limitation of the MRI-MECH framework in the predicting the state

and functioning of the esophagus due to lack of information about the impact of the sur-

rounding organs. Finally, the prediction of intrabolus pressure and the esophageal wall

stiffness depends on the specification of the correct intragastric pressure. This becomes a

limitation for MRI-MECH since the intragastric pressure is not known in the MRI, and

so, we used a reference value from literature. Accurate measurement of the intragastric

pressure through other diagnostic techniques such as HRM will increase the accuracy of

the MRI-MECH predictions of intrabolus pressure and wall stiffness.

4.6. Conclusion

We presented a framework called MRI-MECH that uses dynamic MRI of a swallowed

fluid to quantitatively estimate the mechanical health of the esophagus. The bolus geom-

etry, which tracks the inner cross-section of the esophagus, was extracted through manual

segmentation of the MR image sequence and was used as input to the MRI-MECH frame-

work. MRI-MECH modeled the esophagus as a one-dimensional flexible tube and used a

physics-informed neural network (PINN) to predict the fluid velocity, intrabolus pressure,

esophageal wall stiffness, and active relaxation. The PINN minimized a set of measure-

ment losses to ensure that the predicted quantities matched the measured quantities,

and a set of residuals to ensure that the physics of the fluid flow problem was followed,
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specifically, the mass and momentum conservation equation in one-dimension. The LES

cross-sectional area is very difficult to visualize in MRI because it is significantly smaller

than the cross-sectional area at the esophageal body. In this regard, MRI-MECH en-

hances the capability of the dynamic MRI by calculating the LES cross-sectional area

during the esophageal emptying. We found that our predictions of the intrabolus pres-

sure and the esophageal wall stiffness match those reported in other experimental studies.

Additionally, we showed that the dynamic pressure variations that occur because of lo-

cal acceleration/deceleration of the fluid were negligible compared to the total intrabolus

pressure, whose main contribution was the elastic deformation of the esophageal walls.

The mechanics-based analysis with detailed three-dimensional visualization of the bolus

in MRI leads to significantly better prediction of the state of the esophagus compared to

two-dimensional X-ray imaging such as esophagram and fluoroscopy, and can be easily

extended to other medical imaging techniques such as computerized tomography (CT).

Thus, MRI-MECH provides a new direction in mechanics-based non-invasive diagnostics

that can potentially lead to improved clinical diagnosis.
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CHAPTER 5

Virtual disease landscape using mechanics-informed variational

autoencoder: application to esophageal disorders

High resolution manometry (HRM) widely used test for evaluating esophageal dys-

phagia is high-resolution manometry [6, 7, 9, 8, 10]. HRM measures swallow-induced

pressures at multiple sites within the esophageal lumen including the esophagogastric

junction (EGJ) to make clinical diagnoses according to the Chicago Classification v4.0

(CCv4.0) [13], the current worldwide standard classification of esophageal motility disor-

ders. A newer technology for investigating esophageal motility is the functional luminal

imaging probe (FLIP) [11, 12] which assesses the response of the esophagus to disten-

tion. Figure 5.1 is a schematic diagram of the FLIP probe incorporating 16 impedance

planimetry sensors to measure esophageal luminal cross-sectional area and a pressure sen-

sor at its distal end. The sensors are housed within a compliant bag that is incrementally

filled with saline. During measurements, the FLIP probe is passed trans-orally and po-

sitioned across the EGJ. Distending the esophagus with the FLIP bag normally induces

a contractile response including periods of repetitive antegrade contractions (RACs), but

alternative patterns (or no contractile response) can be seen in patients with esophageal

motility disorders or other disease states [14]. Compared to HRM, which evaluates pri-

mary peristalsis, FLIP evaluates secondary peristalsis which is physiologically different.

Carlson et al. [72] have shown that subjects with normal esophageal motility on HRM
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Figure 5.1. Schematic diagram of the FLIP probe. The secondary
peristaltic contraction and EGJ tone are evident inside the blue boxes.

EGJ tone results from a complex interaction between the lower esophageal
sphincter and the crural diaphragm.

exhibit abnormal EGJ opening with FLIP. Other studies [62, 59] have also shown that,

unlike other diagnostic tests, FLIP can be used to estimate the in-vivo mechanical proper-

ties of the esophageal wall. Savarino et al. [73] and Carlson [74] have published reviews of

the clinical applicability of FLIP. Additionally, FLIP has been shown to be used intraop-

eratively [75, 76] during endoscopic or laparoscopic myotomy to calibrate the procedure.

In this chapter, we present a framework that works with FLIP measurements to charac-

terize esophageal function. We used the pressure and diameter data obtained from FLIP to

calculate mechanics-based parameters such as esophageal wall properties, muscle contrac-

tion strength, EGJ tone, and active relaxation of the esophageal musculature. Esophageal
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biomechanics have been extensively studied using both experimental [14, 16, 18, 15, 36]

and computational [23, 19, 22, 4, 5, 44, 20, 21, 36, 77] approaches. For this analysis,

we used the mathematical framework as described in Halder et. al. [44] to calculate the

mechanics-based parameters since it worked with clinical fluoroscopy data obtained from

the esophagus and makes rapid predictions with limited computational resources.

The mechanics-based parameters estimate the mechanical “health” of the esophagus

in a patient-specific manner. However, identifying unique patterns in these parameters for

specific esophageal disorders is challenging, especially with parameters that are functions

of both time and location along the esophagus. It is also important that the method-

ology adjust to errors in the FLIP device operation such as probe positioning and po-

tential discrepancies introduced by human input such as manually specifying values for

mechanics-based parameters. This is analogous to manually identifying landmarks on

pressure topography plots during the interpretation of HRM studies. This challenging

task is tackled using machine learning which has been widely applied in medical diag-

nosis [78, 79, 80, 81, 82, 83, 84, 85, 86]. Machine learning techniques have been

used both for medical image analysis and raw patient data analysis. In gastroenterology,

machine learning has been used mainly for image segmentation and classification tasks

[87, 87, 88, 89]. The exception is a recent study [90] demonstrating the use of a vari-

ational autoencoder (VAE) [91] to identify contractility patterns from raw HRM data.

The clusters generated in the latent space of the VAE categorized the raw HRM data into

patient groups corresponding to specific motility disorders. However, although the data

clusters were beneficial for diagnosis, they do not have a discrete physical meaning. In this

work, we present a novel framework, called mechanics-informed variational autoencoder
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(MI-VAE), which forms clusters in a parameter space corresponding to specific esophageal

disorders and these clusters do have physical meaning because they were generated from

mechanics-based parameters. We call this parameter space the Virtual Disease Landscape

(VDL).

5.1. Mechanics model

Distention of the FLIP probe usually elicits esophageal contractions that its sensors

characterize by variations of cross-sectional area along the distal 10-13 cm of the esophagus

(including the EGJ) and pressure within the probe measured at its distal end. Using these

outputs, we estimated the mechanical “health” of the esophagus and identified patterns of

output observed with esophageal motility disorders and other esophageal diseases. This

was done in two steps: 1) using an inverse model to estimate the mechanical “health” of

the esophagus by calculating parameters such as esophageal wall properties, contraction

strength, and active relaxation and 2) using the calculated mechanics-based parameters

as input to a VAE which generates the VDL in the form of its latent space. The next two

sections discuss these steps in details.

Figure 5.2 illustrates output from a normal FLIP study during a period of RACs as

the distention volume is incrementally increased at about 30 second intervals. With a

RAC pattern, repetitive antegrade contractions are observed at a frequency of 6±3 per

minute. Each antegrade contraction leads to a rise in bag pressure (red tracing in Figure

5.2a). Output from the 16 impedance planimetry sensors are displayed as an iso-area

topography plot in Figure 5.2b by interpolating data between sensors. The deep red band
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Figure 5.2. Example of graphical output from a normal FLIP study. (a)
Bag volume and pressure in the FLIP probe. The pressure variations are
caused by antegrade contractions. The black circles indicate minimum

distal pressure at each fill volume. These low-pressure points are assumed
to correspond to θ ∼ 1, (b) Iso-area contour plot of cross-sectional area
data for the time interval delineated by the dashed lines in (a). The EGJ
is located between the dashed white lines. It is seen to distend as the

contraction moves from the proximal to the distal end of the FLIP probe.

in Figure 5.2b is an antegrade contraction which is associated with an increase in cross-

sectional area at the EGJ shown by the blue region near the distal end. Note that since

FLIP output is of cross-sectional area there is no information regarding the actual three-

dimensional geometry of the esophageal lumen. Hence, for simplicity and to conserve

computational resources we modeled the FLIP as a one-dimensional flexible tube.

5.1.1. Governing equations

The flow inside the FLIP (modeled as a one-dimensional flexible tube) followed the mass

and momentum conservation equation as described by Equations 4.1 and 4.2, respectively.

We also used the pressure tube law described by Equation 3.3 since the fluid pressure

inside the esophagus has been found to be linearly proportional to its cross-sectional area
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[62, 59]. Equations 4.1 and 4.2 were non-dimensionalized as follows:

∂α

∂τ
+
∂q

∂χ
= 0,(5.1)

∂q
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+
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(
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θ

)
+ φ

q

α
= 0,(5.2)

wherein χ = x/L, τ = ct/L, q = Q/Asc, p = P/K, As = ρc2Ao/K, and φ = 8πµLK/ρ2c3Ao.

Equation 3.3 was used to replace P in Equation 4.2 and non-dimensionalized to obtain

Equation 5.2. The velocity scale c was taken to be 3 cm /s which is typically the speed of

a peristaltic contraction. The ratio K/Ao can be considered as a measure of the stiffness

of the esophageal walls.

Since the FLIP is closed at its two ends, it is necessary to enforce zero flow rate

boundary conditions at χ = 0 and χ = 1. Since Equation 5.1 requires only one boundary

condition for q, we differentiate it with respect to χ to obtain a second order form as

follows:

∂2α

∂τ∂χ
+
∂2q

∂χ2
= 0.(5.3)

We do the same for Equation 5.2 to specify a Dirichlet boundary condition for pressure

at the distal end (as measured by the pressure sensor) and zero pressure gradient at the

proximal end as typically observed in practice. Equation 5.2 takes the following form

after differentiating with respect to χ:
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)
= 0.(5.4)
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Equations 5.3 and 5.4 are solved using the finite volume method as described in chapter

2 to solve for q and α/θ. Note that α and θ were grouped here for simplicity. Onceα/θ

is known, calculating θ is straightforward with the known values of α. During operation,

the FLIP probe is a flexible tube closed at both ends. Since Equations 5.3 and 5.4 are

second-order in χ, we need two boundary conditions for q and α/θ at χ = 0 and χ = 1.

Additionally, we need one initial condition for q since Equation 5.4 is first-order in τ . At

τ = 0, we specified q = 0 for all χ. Since the two ends of the FLIP bag are closed, q = 0

at χ = 0 and χ = 1. Additionally, with the distal pressure (Pd), P = Pd(t) at χ = 1.

Therefore at χ = 1, the corresponding value of α/θ is (Pd − (Po −K))/(ρc2). At χ = 0,

we specified ∂
∂χ

(
α
θ

)
= 0. This follows directly from Equation 5.2 since q = 0 at χ = 0 for

all values of τ .

5.1.2. Calculation of mechanics-based parameters

Solving Equations 5.3 and 5.4 requires the knowledge of the parameters K/Ao and Po−K

in a patient-specific manner. They were calculated using the approach as described in

Acharya et al. [77]. As described in Equation 3.3, P and A are linearly proportional

to each other. Thus, in a scenario where the esophagus is inactive (which corresponds

to θ = 1) and distended, a plot of P vs. A should be a straight line with its slope and

intercept as K/Ao and Po−K, respectively. This inactive but distended esophagus would

take the shape of a cylinder with a reference cross-sectional area Ar as follows:

Ar =
V

L
,(5.5)
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Figure 5.3. Mechanics-based parameters. (a) The variation FLIP pressure
with the reference cross-sectional area. The slope and y-intercept of the
fitted line yield K/Ao and Po −K, respectively. (b) Variation of the

activation parameter corresponding to the cross-sectional area variation
shown in Figure 5.2(b).

wherein V is the FLIP bag volume and L is the length of the FLIP. Ar is the cross-sectional

area of the FLIP bag when it takes the shape of a perfect cylinder. However, identifying

the corresponding pressure inside the esophagus may not be as straightforward. Usually,

the time instants at which the distal pressure (Pd) readings are the lowest values for

every bag volume, correspond to the time instants when it is reasonable to assume θ ∼ 1

as shown in Figure 5.2(a). We selected these pressures readings and the corresponding

reference cross-sectional areas Ar and fitted a straight line between them, and the slope

and intercept of this line estimated K/Ao and Po −K, respectively as shown by Figure

5.3(a). Note that there is only one value for Ar for each bag volume but multiple pressure

readings based on the time instant at which the pressure was considered. This is why there

is a vertical spread of data in Figure 5.3(a) for each value of Ar. With K/Ao known, we
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calculated the scaling cross-sectional area As and the viscosity parameter φ in Equation

5.4. With (Po −K) known, and Pd known at the distal end, we calculated the boundary

condition for α/θ as described above.

5.1.3. Physical significance of the mechanics-based parameters

In summary, there are seven primary mechanics-based parameters: a measure of stiffness

(K/Ao), an estimate of the external pressure (Po − K), the maximum distal pressure

recorded during the selected time interval of interest (Pmax), the time duration of mea-

suremet at constant volumetric distention (T ), FLIP bag volume (V ), and the contraction

and relaxation pattern described through the activation parameter (θ(x, t)). The parame-

ters K/Ao and Po−K were calculated in a patient-specific manner and had a single value

for each patient, while the other parameters had different values for each patient based

on the time interval of data considered. The parameter K/Ao estimates the mechanical

properties of the esophagus and helps in identifying the relation between the wall prop-

erties with the esophageal function. The parameter Po −K quantifies the state outside

the esophagus. The maximum distal pressure Pmax is the net effect of the contraction

strength and EGJ tone, and hence is an important parameter in estimating esophageal

motility. The parameter T indirectly estimates the repetitive nature of antegrade contrac-

tions since the number of antegrade contractions will be lower for low T and vice-versa,

thus estimating an important feature of the esophageal function. The bag volume V

controls the extent to which the esophagus is distended which impacts on the passive

behavior of the esophageal walls. The activation parameter estimates the contraction

strength and pattern, the EGJ tone, and the active relaxation of the esophageal walls.
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The activation parameter essentially drives the mechanics of esophageal transport and in

the context of the FLIP, it helps estimate esophageal contractility. Active relaxation can

be estimated through the maximum value of θ, θmax, which was considered as another

primary mechanics-based parameter because active relaxation aids in bolus transport and

EGJ relaxation. We call these parameters primary since they completely define the me-

chanical state of the esophagus, and other mechanics-based parameters can be calculated

using combinations of them.

5.2. Mechanics-informed variational autoencoder

The mechanics-based parameters calculated by the 1D inverse model yield a quanti-

tative estimate of the mechanical “health” of the esophagus through the wall mechanical

properties and esophageal contractility. Identifying similarities and dissimilarities of these

parameters across patient groups is a crucial step in the development of the VDL. This

was done in an unsupervised manner with the help of a VAE. Since this neural network

works entirely on the mechanics-based parameters, we call it the mechanics informed

variational autoencoder (MI-VAE).

5.2.1. Network Architecture

The mechanics-based parameters are as follows: θ(x, t), K/Ao, Po −K, Pmax, T , V , and

θmax. These are all scalar values except θ, which varies with x and t so simple statistics

can be used to identify patterns of these quantities. However, identifying patterns quan-

titatively with the activation parameter θ, which describes the esophageal contractility,

requires a different approach. Since the variation of θ takes the form of a matrix, as shown
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Figure 5.4. Network architecture of the mechanics-informed variational
autoencoder. The numbers on the top of the boxes represent the number
of channels; the numbers and the output size are represented on the side.

in Figure 5.3b, we used a convolutional neural network-based VAE to identify the unique

patterns of disordered contractility through the generated latent space.

We used a latent space of 40 dimensions in order to generate the input with reasonable

accuracy. We used ReLU as the activation function for all layers of the MI-VAE. Addi-

tionally, we merged a 6-dimensional vector consisting of a set of discrete parameters to

the 40-dimensional vectors generated in the latent space. Combined, these 46-dimensional

vectors populate a parameter space that forms the VDL. The details of the network ar-

chitecture are shown in Figure 5.4.

5.2.2. Data

FLIP data used to train the MI-VAE were collected from a cohort of 740 volunteer subjects

and patients, the details of which are provided in Table 1. 721 of these subjects underwent

both FLIP and manometry. These subjects were classified into 4 groups according to the

FLIP-based classification [92] which are normal, weak, obstruction, and spastic-reactive
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Table 5.1. Details of subjects used to train the MI-VAE

FLIP motility classification

Category Number of subjects

Normal 221

Weak 51

Obstruction 245

Spastic-reactive 77

Inconclusive 146

Chicago classification v4.0

Category Number of subjects

Type I achalasia 55

Type II achalasia 129

Type III achalasia 40

EGJ outflow obstruction (EGJOO) 19

Hypercontractile esophagus (HC) 13

Distal esophageal spasm (DES) 12

Ineffective esophageal motility (IEM) 50

Absent contractility (AC) 135

Normal 251

Inconclusive 135

based on the contractile response and EGJ opening. The normal group exhibits distinct

antegrade contractions (ideally ≥ 6 consecutive antegrade contractions per minute) and

normal EGJ opening. The weak group exhibits non-distinct antegrade contractions or

absent contractile activity and normal EGJ opening while the obstruction group exhibit

non-distinct antegrade contractions or absent contractile activity and reduced EGJ open-

ing. Spastic-reactive is a broad group that exhibits sustained occluding contractions or
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Figure 5.5. Examples of the variation of the activation parameter θ for
each of the four groups according to FLIP-based motility classification:

normal, weak, obstruction, and spastic-reactive.

sustained LES contractions or repetitive retrograde contractions. Figure 5.5 shows a typ-

ical example for each of the four groups. The distribution of the subjects in each of the 4

FLIP-based classification groups is shown in Table 5.1. The distribution of these subjects

according to the Chicago Classification based on the manometry tests is also shown in

Table 2. This set of FLIP data was used in the mechanics-based analysis for 50 ml and 60

ml FLIP distension and the corresponding calculated mechanics-based parameters were

used for training the MI-VAE. Within this cohort, there were 24 achalasia patients with



128

Figure 5.6. Box plots showing the distribution of the 3 mechanics-based
parameters: K/Ao, Pmax, and θmax.

data available before and after treatment with pneumatic dilation [93, 94, 95], laparo-

scopic Heller myotomy (LHM) [96, 97] or peroral endoscopic myotomy (POEM) [98, 99].

Additionally, there was one achalasia patient for whom post-POEM data were available

for tracking (years 1, 2, 4, and 7).

The distributions 3 important scalar mechanics-based parameters according to the

FLIP-based motility classification is shown in Figure 5.6. The patient cohort generated a

total dataset of size 1480 since two FLIP bag volumes were used for measurements (50ml

and 60ml). This was augmented to generate a larger dataset of 112,480. The parameters

K/Ao, Po − K, and Pd were augmented by multiplying with a factor f calculated as

follows:

f = 1 + 0.05N ,(5.6)
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Table 5.2. Augmentation details for cross-sectional area

Augmentation type Albumentations parameters

Grid distortion p=0.9, num steps=4, distort limit = (-0.2,0.2)
Elastic transformation p=0.8, alpha=5.0, sigma=100, alpha affine = 2.0
Motion blur p=0.7, blur limit = (3,6)

wherein N is a random sampling from a normal distribution with its magnitude less than

2. The raw cross-sectional area variation A(x, t) was augmented using a combination

of grid distortional, elastic transformation, and motion blur available in the opensource

Python library Albumentations [100], the details of which are provided in Table 5.2.

Using the augmented cross-sectional areas and the augmented values for K/Ao, Po −K,

Pd and T , we solved equations 5.3 and 5.4 to obtain θ(χ, τ). Finally, the corresponding

Pmax and θmax were calculated by taking the maximum of Pd and θ, respectively.

5.2.3. Training and prediction

The final form of the loss function used for the MI-VAE is as follows:

L :=
1

2M

M∑
i

[
1 + log σ2

q,i − σ2
q,i − µ2

q,i

]
+
β

N

N∑
j

(
θj − θ̂j

)2
,(5.7)

wherein i represents each component of the latent space and j represents each component

of the matrices θ and θ̂. M is the dimension of the latent space and N is the product of

the two spatial dimensions of the input and generated output. In this case, M = 40 and

N=512. The first term is the Kullback-Leibler divergence (KLD), and the second term

is the reconstruction loss. Here q(z|θ) is the approximate posterior distribution which is

a Gaussian distribution with a mean and standard deviation of µq and σq, respectively.

The details of the derivation of the KLD term are provided in the Appendix C. β is a



130

scaling parameter used to balance the magnitudes of the reconstruction loss and the KLD

for proper training of the MI-VAE. We found that β = 1000 resulted in a good balance

between the two losses. The loss function shown in Equation 5.7 is described for each

input. While training, we defined the total loss as the mean of L calculated over the

mini-batch dataset. The input of the MI-VAE i.e., θ, was scaled to lie between 0 and 1,

and then subtracted from 1 so that the lesser values at the contraction zones would have

greater values instead. Thus, the MI-VAE focusses on minimizing the reconstruction error

at the contraction zones since they have the most impact in the variation of θ. Of the

112,480 mechanics-based parameters, 112,392 were used for training and the remainder

for testing. MI-VAE was trained for 250 epochs. We used a learning rate of 1 × 10−4

for the first 180 epochs and 3.3 × 10−5 for the final 70 epochs. Adam [71] was used as

the optimizer. The network achieved an average mean-squared error between input and

generated output as 1.77 × 10−3 and a KLD loss of 1.52. We used TensorFlow [70] to

train the MI-VAE.

5.2.4. Post-processing

The 46-dimensional VDL was reduced to 3 dimensions for visualization. This dimensional

reduction was done using linear discriminant analysis (LDA). This dimensional reduction

was done using two methods: linear discriminant analysis (LDA) and principal component

analysis (PCA). LDA is a supervised approach whereby the FLIP-based classification was

used. LDA minimizes the distance between VDL points with the same four FLIP groups

and maximizes the distance between points with different diagnoses. This was done by

finding directions in the high-dimensional space that most effectively separated the data
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into groups. Alternatively, PCA is an unsupervised approach that reduces dimensions by

projecting the 46-dimensional VDL vectors onto 3 vectors with the greatest variances in

data. We used an open source Python library Scikit-learn [101] to perform dimension

reduction using LDA and PCA. Note that when we used LDA for the dimension reduction,

we did not use the ‘inconclusive’ label for training, but only the conclusive diagnoses on

FLIP. Thus, the inconclusive data labels did not add noise to our analysis.

LDA and PCA are both based on linear models to find optimal projection from high-

dimensional space to low-dimensional space, in which the former aims to maximize the

cross-class variation constrained by in-class variation, and the latter aims to maximize

the variation without class information (i.e., unsupervised). Singular value decomposition

(SVD) on covariance matrix will be identical to PCA. Compared with other techniques

such as t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold ap-

proximation and projection (UMAP), which involve nonlinear projection (or dimension

reduction), LDA and PCA are simpler and more easily explained. Moreover, the current

projection starts from latent space after data transformation by encoder model. The

entire transformation from raw data to projected space is actual a composite mapping,

consisting of an encoder mapping followed by projection mapping. With a well-trained

sophisticated encoder model, nonlinear transformation, by t-SNE or UMAP is unneces-

sary, although they may be more useful when directly projecting the raw data. Also,

t-SNE and UMAP creates a low-dimensional visualization of the high-dimensional data

through a process of iteration. This leads to not only a general increase in computa-

tional time, but also necessitates the search and selection of the maximum number of

iterations. These two methods have additional parameters including perplexity (in the
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case of t-SNE) and number of neighbors (UMAP), which require interpretation by the

user and tuning. The resulting visualizations may differ based on the parameters. It is

also worth noting that the initialization of t-SNE is random, causing potential issues with

robustness/repeatability. Last but not the least, we used LDA and PCA just to have a

simple visualization tool after the latent space is generated using the MI-VAE. The actual

VDL and its application is in the higher dimension of 46 and does not change based on

how the data are visualized.

5.3. Virtual disease landscape in reduced dimensions

The VDL was populated with points corresponding to the original dataset rather than

the augmented data since only their diagnoses were known. Figure 5.7 shows the dimen-

sion reduced VDL generated by LDA and PCA. The patient groups clustered into different

regions of the VDL, but these clusters also overlapped. As shown in Figure 5.7a with the

dimension reduced VDL using LDA (ldaVDL), most of the normal subjects lay on the

right side of the VDL, whereas the patients with EGJ obstruction lay on the left side.

The other two groups were distributed between the extremes. The overlap and separation

among groups mirrored the similarity of their contractile responses on FLIP testing. For

instance, normal subjects usually have FLIP patterns exhibiting antegrade contractions

and normal EGJ opening. On the other hand, patients with obstruction at EGJ show no

antegrade contractions and reduced EGJ opening. The other patient groups exhibit varied

contractile behavior ranging from weak antegrade contractions to an irregular contractile

response along with normal or borderline EGJ opening. Similar behavior was observed

in the dimension reduced VDL using PCA (pcaVDL) shown in Figure 5.7b. However,
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Figure 5.7. Dimension-reduced VDL using a) LDA and b) PCA. The four
patient groups are shown with different colors.

the overlap among patient groups in pcaVDL was greater compared to that of ldaVDL.

This is visualized more quantitatively in the distance matrix heatmaps of Figure 5.8.

An element in the i-th row and j-th column of the distance matrix is the median distance

between the points of the j-th cluster and the centroid of the i-th cluster. Thus, for a good

separation between clusters, the diagonal elements should have lesser values compared to

the off-diagonal elements. As shown in Figure 5.8, the diagonal elements of distance ma-

trix for ldaVDL were less than those of pcaVDL. Also, the off-diagonal elements of the

distance matrix for ldaVDL were greater compared to those of pcaVDL. Hence, the LDA

better segregated the patient groups consistent with it being based on a supervised ap-

proach of labeling points. However, it should be noted that the 46-dimensional VDL was

generated in an unsupervised manner. This high-dimensional VDL captures the similar

and dissimilar features of the input corresponding to the patient groups. Thus, dimension
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Figure 5.8. Distance matrix showing the median distance between points
of each patient group specified by columns with the centroid of disease
cluster specified by the rows. Each row has been normalized to represent

distances as percentage and so each row adds up to 100.

reduction based on the variance of the data in an unsupervised manner as done in PCA

provides insight into the structure of the 46-dimensional VDL. The clusters still observ-

able after PCA demonstrated that the VDL successfully identified features distinguishing

among these esophageal disorders. The choice between ldaVDL and pcaVDL depends

on the application; pcaVDL should be chosen if there is low confidence in diagnostic

distinctions within the data.

The availability of the data for the various disease groups determined the simple sizes.

The main purpose for the MI-VAE is to generate the VDL and not predictive analysis.

Thus, the diseases with smaller sample sizes appear as smaller clusters on the VDL and

their location with respect to the other groups is determined by their contraction pattern.

Additionally, the most distinct responses to FLIP distention occurs for normal subjects

and obstruction groups. Both groups are of comparable sizes (normal: 221, obstruction:
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Figure 5.9. Variation of θ corresponding to the extreme points from the
four groups on the ldaVDL.

245). Rest of the diseases lie somewhere between these two groups and often have very

similar FLIP responses in terms of their contraction pattern as shown in Figure5.7. Since

no labels were used in training the MI-VAE, this proves the accurate representation of

the diseases through the VDL by the MI-VAE. Augmenting the dataset also makes the

MI-VAE more generalizable. Thus, a high training and validation accuracy (or low values

of losses) ensures that all the diseases are accurately represented on the VDL (through

the MI-VAE’s latent space).

Figure 5.9 shows the contraction patterns corresponding to four points chosen from

the extremes of the 4 clusters on the VDL to add intuition of the four cluster distribu-

tion on the VDL. Indeed, the contraction patterns are significantly different from each

other, thus providing further insight into the nature of clustering. These four contraction

patterns capture the distinctive signature of the 4 groups. The normal contraction pat-

tern shows regular RACs, weak contraction pattern shows almost not contraction with
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Figure 5.10. The continuous behavior of the VDL is shown through points
selected from its two extremes: Normal subjects and obstruction patients.
(a) and (b) show the characteristics of typical obstruction patients with no
contraction at the esophageal body and a strong tone at the EGJ marked
by the horizontal red zone. (d) and (e) show a typical contraction pattern
in normal subjects with strong antegrade contractions and relaxed EGJ.

(c) VDL represents of the contraction patterns 1-4.

EGJ relaxation, obstruction shows a strong unrelaxed EGJ tone with no contraction,

and spastic-reactive contraction contractile pattern shows retrograde/spastic contractile

response.

5.4. Properties of the VDL

5.4.1. Continuous behavior of the VDL

The ability of the VDL to identify the similarities and dissimilarities among patient groups

is further illustrated in Figure 5.10. Two points in close proximity were selected from

the extreme right end of the normal subjects and two from the extreme left end of the
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Figure 5.11. Example to describe the generative nature of the VDL.
Points 1 and 5 are chosen at the extremes of obstruction patients and

normal subjects , respectively. Points 2-4 are equi-spaced along the vector
joining 1 and 5. The θ variations generated for 2-4 show the transition

from obstruction to normal characteristics.

obstruction patients. The normal subjects both showed normal antegrade contractions

(oblique red bands) and a relaxed EGJ (blue region ahead of the contraction). Similarly,

the two points of obstruction showed similar variation of the activation parameter; both

exhibited no contraction and the EGJ remained closed as evident by the horizontal red

band at the distal esophagus. The large separation between points 1 and 2 from points 3

and 4 indicates that they displayed completely different behavior.

5.4.2. Generative property of the MI-VAE

An important feature of the MI-VAE is its generative capability. Due to the continuous

nature of the VDL, new vectors from the VDL i.e., those which were not present in the
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training set can generate meaningful representations of the mechanics-based parameters.

Figure 5.11 illustrates the transition from a point at the extreme of the obstruction co-

hort to another point at the extreme of normal. A 46-dimensional vector was calculated

between these points and 3 equispaced intermediate points along this vector. Thus, the 2

endpoints were known but the 3 intermediate points were new and generated mechanics-

based parameters not known before. As the transition occurs between the extremes, we

see that the antegrade contraction progressively strengthens and EGJ tone relaxes. Note

that the vector (or line) shown in Figure 5.11 does not represent an actual case, but a

hypothetical one to demonstrate the capability of the VDL. In an actual scenario, the

disease progression or motility improvement won’t necessarily be linear as suggested in

Figure 5.11. However, if the disease remains stable or progresses or improves in an ir-

regular manner, we can still use the VDL to extrapolate to the likely future ‘mechanical’

state in an average sense based on the pattern of past data.

Additionally, we can retrieve the other mechanics-based parameters apart from the θ

variation, i.e., K/Ao, Pmax, T , and θmax. This was the main reason for choosing mechanics-

based parameters as the input of the MI-VAE rather than the raw distal pressure and

cross-sectional area variations. The generated parameters reflect on the mechanical health

of the organ unlike the raw data generated from FLIP. Additionally, with the application

of mechanics, the two distributed measurements (cross-sectional area, A(x, t), and dis-

tal pressure Pd(t)) were combined into one activation parameter θ(x, t), which not only

simplified application of the MI-VAE, but also has physical meaning since it estimates

esophageal muscle contraction.



139

5.5. Comparison with HRM

The VDL offers a unique framework for comparing HRM and FLIP response among

patients with motility disorders and normal subjects. Figure 5.12 shows the distribution

of the HRM diagnosis on the ldaVDL based on FLIP response. To clarify, the positions

of the points in the VDL is the same as Figure 5.12 (generated through LDA on 46-

dimensional VDL using FLIP classification labels), but the colors are assigned based on

manometry diagnosis. There is a clear clustering of the HRM groups with abnormal EGJ

opening (Type I, II, III achalasia and EGJOO) and those related to contractile patterns

but better EGJ opening (normal, absent contractility, ineffective esophageal motility, and

distal esophageal spasm). This is seen more quantitatively through the distance matrix

in Figure 5.12. Two clear blocks can be seen. From rows 1-4, we see that type I, II,

III achalasia, and EGJOO have relatively similar values but much lower than the other

groups. The same trend can be seen for normal, absent contractility, ineffective esophageal

motility, and distal esophageal spasm in rows 6-9. This indicates that these two subgroups

cluster separately and have different FLIP response compared to each other.

An important feature of LDA is that it not only serves as a dimension reduction frame-

work, but also a classifier. Thus, every point on the ldaVDL has an associated probability

for the four FLIP classification groups. This feature can be used as well to compare CCv4.0

with the FLIP motility classification. The box plots in Figure 5.13 show how the various

CCv4.0 diagnosis is distributed over the four FLIP classification groups. Type I, II acha-

lasia and EGJOO very clearly appear as obstruction on FLIP due to their strong EGJ

tone and lack of any contractile behavior. Normal on HRM also appear mostly normal on

FLIP but has a huge variability. Type III achalasia and hypercontractile esophagus are
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Figure 5.12. Comparison of FLIP-based classification with HRM based
CCv4.0 using the ldaVDL and distance matrix.

distributed almost equally between obstruction and spastic-reactive. Absent contractil-

ity, which exhibit EGJ relaxation but poor contractile response, are distributed between

weak and normal by FLIP classification. IEM and DES are distributed between normal

and obstruction groups on FLIP (DES more so than IEM). This is mainly because they

both exhibit contractile response but without effective transport. Since DES has a much

smaller sample size in the dataset, the trends do not provide a strong consolidation of

comparison between HRM and FLIP as IEM does.

Note that this is not just a comparison of the classification schemes based on HRM and

FLIP or even a comparison between the two modalities of estimating esophageal function.

The physiological response to HRM and FLIP is very different. HRM is associated with

primary peristalsis which is triggered when the upper esophageal sphincter (UES) opens

to allow the swallowed bolus to enter the esophagus. FLIP, on the other hand, measures

the response of the esophagus to distension which leads to secondary peristalsis. Unlike

primary peristalsis, secondary peristalsis do not get triggered by UES opening, but by
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Figure 5.13. Comparison of FLIP-based classification with HRM using the
probabilities assigned by the fitted LDA classifier on every point on the

ldaVDL.

distention. In addition, the sustained distention by FLIP leads to a unique secondary

peristaltic response called repetitive antegrade contractions (RACs) which is completely

different from primary peristalsis. FLIP has been shown to identify various esophageal dis-

orders in some cases that appeared normal on HRM and other diagnostic tests. Therefore,

this comparison of HRM with FLIP using the VDL, provides a formal approach towards

a complete picture of esophageal function under all scenarios. Additionally, it also points
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out the limitations of each of the two modalities and their classification capabilities on a

finer level, thus aiding in future reclassification approaches.

5.6. Estimating effectiveness of treatment

Treatment strategy varies depending on the mechanical ‘health’ of the esophagus. For

example, achalasia shows a θ variation with a strong tone (low values of θ) at the EGJ

that does not relax, and the severity of the scenario is greater with progressively lower

values of θ. Less ‘potent’ treatment with pneumatic dilation could suffice for less severe

cases while using laparoscopic Heller myotomy (LHM) myotomy, or peroral endoscopic

myotomy (POEM) for severe cases. We hypothesize that our framework could be used to

guide the need for treatment by quantifying the severity as well as aid in early discovery of

the disorders. FLIP studies can be obtained before and after these procedures to evaluate

the effectiveness of a treatment as well as for tracking the esophageal condition for years

after treatment. In the next two subsections, we discuss two such scenarios where the

MI-VAE framework can be applied to aid FLIP diagnosis.

5.6.1. Pre- and post-treatment state of the esophagus in achalasia patients

With a myotomy, the circular muscle fibers of the lower esophageal sphincter are cut

to weaken the inherent tone at the EGJ making it easier for swallowed food and fluid

to empty from the esophagus. POEM is an endoscopic myotomy wherein the circular

muscle fibers of the lower esophageal sphincter ± the distal esophagus are cut. Using the

MI-VAE framework, we present a quantitative approach for assessing the effectiveness of

a POEM procedure. We tested this on three achalasia patients, one for each achalasia
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Figure 5.14. Estimating the effectiveness of a POEM procedure on
achalasia patients using MI-VAE. (a)-(c) show the θ variation before and

after treatment in achalasia types I, II, and III, respectively.
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subtype. Figure 5.14 illustrates the contraction patterns before and after POEM along

with their placement on the VDL. We selected the “typical” θ variation for each case by

identifying the most effective contraction and the least EGJ tone observed at the same

50 mL FLIP bag volume. In Figure 5.14a, it is evident that after POEM, the EGJ tone

had decreased significantly with improvement in contraction strength and pattern. On

the VDL, this corresponded to the movement from the right end of the obstruction zone

toward the normal subjects near the weak group. For the type II patient shown in Figure

5.14b, lower esophageal sphincter tone was clearly diminished by treatment but there

was minimal recovery of the esophageal contraction and movement on the VDL is toward

the weak contraction group. In Figure 5.14c, we see that for the type III patient, the

contraction strength improved significantly after POEM (albeit not antegrade) and EGJ

tone was reduced such that the corresponding point in the VDL lay more in the normal

cohort zone moving from the spastic-reactive zone. The improvement after treatment

can be estimated quantitatively by the magnitude of the vector drawn from the initial

to the final point in the VDL. The direction of the vector quantitatively estimates the

direction of improvement. This vector corresponds not only to the θ variation, but also

to the discrete mechanics-based parameters adding physical meaning to the quantitative

assessment to treatment effectiveness.

5.6.2. Post-treatment tracking

After treatment, it is often necessary to periodically re-evaluate patients over time. We

tested our MI-VAE framework by tracking the condition of one patient who had under-

gone POEM and had FLIP data was available for years 1, 2, 4, and 7 after POEM. The
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Figure 5.15. Tracking the state and motility of the esophagus after POEM
for 7 years. Four θ variations are shown as observed in the 1st, 2nd, 4th,

and 7th year after POEM.

θ variations for each of these four years are shown in Figure 5.15 and a gradual improve-

ment can be seen over the years that has settled at a specific location on the VDL.The

improvement can be seen specifically with the contraction strength and pattern, and more

quantitatively through the VDL. This example shows how the MI-VAE framework can

be used for post-POEM tracking of patient condition but can be applied very easily to

other treatment procedures as well.

5.7. Limitations

The MI-VAE framework provides a technique to map esophageal disorders onto a pa-

rameter space called the VDL based on their mechanical characteristics estimating the

mechanical ‘health’ of the esophagus thereby aiding in diagnosis and directing treatment.
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However, the VDL also has limitations. First, the FLIP device has some technical limita-

tions. It has an upper measurement limit for diameter which corresponds to the maximum

distension of the FLIP bag. Strong contractions might sometimes lead to the bag distend-

ing greater that this upper limit and cause incorrect readings. It also has a lower limit for

its measurements owing to the catheter diameter onto which the bag is mounted. Again,

strong contractions might cause full collapse of the FLIP bag on the catheter leading to

incorrect readings. Additionally, it is sometimes observed that the bag volume calculated

using the diameter readings might not be equal to the actual recorded bag volume. These

factors might cause errors in the prediction of MI-VAE. Second, all esophageal disorders

are not well represented in the dataset and there is a wide range of sample sizes. The

characteristics of the disorders represented by a smaller dataset (like DES and HC) might

not be learned properly by the MI-VAE. Therefore, the relative placement of the points

on the VDL through LDA might not be as accurate as the disorders represented by a

larger dataset. Third, reduction of the VDL dimensions using LDA and PCA for visual-

ization might lead to loss to important features that define the state and functioning of

the esophagus. Fifth, as described earlier, the labels used for dimension reduction using

LDA is patient-specific, and not specific to the mechanics-based parameters. For instance,

some θ variations of normal subjects might not exhibit RACs. This might introduce some

errors in the prediction of MI-VAE.

5.8. Conclusion

In this work, we presented a framework called mechanics-informed variational au-

toencoder (MI-VAE) that quantitatively identified and distinguished among esophageal
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disorders based on their physical characteristics through a parameter space called the

virtual disease landscape (VDL). The physical characteristics were estimated through a

set of physical parameters such as esophageal wall stiffness, contraction pattern, active

relaxation of the esophageal wall muscles, and work metrics estimating EGJ behavior.

These parameters were solved in a patient-specific manner from FLIP data using a one-

dimensional mechanics-based inverse model. The VDL identified similarities and dissimi-

larities among the esophageal disorders as well as classified them based on their contractile

characteristics. We also described how the generative property of the MI-VAE gives it the

capability to predict disease progression in time. Furthermore, we demonstrated through

clinical applications that the MI-VAE can estimate the effectiveness and stability of a

treatment over time. Finally, since the MI-VAE framework uses mechanics-based pre-

dictions of physiomarkers to develop a VDL, it can be extended to be used with other

diagnostic technologies (and organs) as long as mechanics-based physiomarkers can be de-

rived with them. For instance, a similar MI-VAE can be developed using high resolution

impedance manometry (HRIM) data using the same governing equations with pressure

and cross-sectional area measured from the HRIM catheter. Additionally, mechanics-

based analysis has been shown to be applied to fluoroscopy [44] to predict physiomarkers

which can also be used as described in this chapter.
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CHAPTER 6

Concluding remarks and future scope

In the last four chapters, we have seen how mechanics can be used in unique ways

for esophageal diagnosis and treatment planning. In chapter 2, we have discussed the

application of an in-silico model of the esophagus (vEsophagus) to understand the im-

pact of various myotomy parameters in the formation of a complication called blown-out

myotomy (BOM). With this analysis, we were able to identify the safest approaches for

myotomy the minimizes the risk for BOM formation. In chapter 3 and 4, we have dis-

cussed how important physiomarkers can be estimated in a patient-specific manner using

measurements from fluoroscopy and MRI, respectively. These frameworks not only in-

crease the capabilities of the diagnostic technologies, but also predict underlying factors

associated with various esophageal diseases. Finally, in chapter 5, we have described

how the mechanics-based physiomarkers can be mapped onto a parameter space called

virtual disease landscape (VDL) to identify the underlying similarities between various

esophageal diseases based on their mechanical behavior.

Although these frameworks quantify unique and specific characteristics of esophageal

state and function, they are not independent of each other. Together, they provide a uni-

fied approach for using mechanics in a meaningful and structured manner for esophageal

research that has the potential for significant impact. Figure 6.1 shows the connections be-

tween these frameworks and how they fit into the current picture of medical diagnosis. At

the very center, the current steps for medical diagnosis and treatment planning is shown
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Figure 6.1. Relationships between the various focus areas.

in orange boxes and connected by black arrows. As described above, trends in the physical

variables such as pressure and cross-sectional areas are directly used for clinical predic-

tions following which treatment planning is performed. In this current picture, mechanics

provides two pathways. The first path is using forward model, such as the vEsophagus,

to investigate the impact of different anatomical components and changes made to them

during surgery to predict post-surgery outcomes and thus, help in treatment planning.

This pathway is not patient-specific but uses general information about the esophagus

for a parametric study of the impact of various surgery parameters. The second path is

the use of inverse models, such as FluoroMech and MRI-MECH, to estimate esophageal

state and function in a patient-specific manner through mechanics-based physiomarkers

such as wall stiffness and contraction pattern. These physiomarkers potentially lead to a

more accurate clinical diagnosis. The physio-markers predicted by the inverse models are

also used by the MI-VAE to identify the similarities and differences between the various
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esophageal diseases by generating the virtual disease landscape (VDL). The clinical diag-

nosis is also used for identifying clusters on the VDL. The MI-VAE also has generative

property by which new contraction patterns can be generated to help in better treatment

planning.

The approaches described in this thesis provide an overview of how mechanics can be

applied in various aspects of esophageal diagnosis and treatment planning. But this work

is far from the complete scope of the application of mechanics to esophageal research.

There is a huge potential for extending the application of this work to other organs.

Several improvements can also be made in the frameworks discussed in this thesis to

increase their scope and accuracy. Some of the avenues of future research are as follows.

The material properties used in the vEsophagus simulations were taken from experi-

mental studies on porcine esophagus. The accuracy of the vEsophagus predictions can be

potentially improved with material constants calculated through experiments performed

on human esophagus. Furthermore, there is a necessity to map the wall stiffness predicted

by the inverse models using data from FLIP, HRM and fluoroscopy to the hyperelastic

material constants of the vEsophagus. This would increase the scope of the vEsophagus to

be applied for treatment planning such as bariatric surgeries in a patient-specific manner.

The inverse models work with various diagnostic technologies for patient-specific analy-

sis of esophageal transport and predict mechanics-based parameters that estimate esophageal

health. But the measurements of various esophageal diagnostic devices are largely differ-

ent. For instance, HRM measures primary peristalsis whereas FLIP measures secondary

peristalsis. Fluoroscopy provides only a two-dimensional visualization of the esophageal

lumen and is primarily used to estimate bolus clearance and identify irregularities in the
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esophageal cross-section such as diverticulum. These differences in each of these technolo-

gies require the development of the inverse model specific to each of the diagnostic tests.

In order to obtain a complete understanding of the source of an esophageal disorder, it is

necessary to develop a unified framework that takes into consideration the measurements

from a variety of these diagnostic tests and uses the physical laws of mass and momentum

conservation to estimate the complete health of the esophagus.

The MI-VAE provides a novel framework to estimate the differences between various

esophageal diseases based on their mechanical behavior using the virtual disease landscape

(VDL). As discussed in chapter 5, the VDL can be used for tracking the patient condition

over time. This idea can be extended very easily to identify how various disease progress

from early to late stages. This was not possible to accomplish in this thesis because of

the lack of availability of time-series patient data. In the future, if patient data becomes

available with disease progression, then the VDL can be immediately applied, without

any major modification, to understand how various diseases progress over time. This has

an immense potential for treatment planning. In chapter 5, we have compared the FLIP-

based motility classification with the Chicago Classification v4.0 using the VDL generated

from FLIP data. Although this revealed important characteristics of esophageal response

in terms of primary and secondary peristalsis, more insights can potentially be obtained

if a new VDL is also created with HRM data. This would allow direct comparison of the

two important physiological responses (primary and secondary peristalsis) through the

VDL. There is also a huge scope of using the VDL for development of mechanics-based

physiomarkers. Recall that the axes of the VDL are abstract quantities and have no

physical meaning. But they do have an important characteristic which is to identify the
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differences between various esophageal diseases purely based on the wall mechanics. Thus,

any novel mechanics-based metrics need to correlate well with the axes of the VDL which

separate certain diseases well. Therefore, the VDL works as a great testing and validation

framework for the development of novel mechanics-based physiomarkers for esophageal

diseases. Finally, there has also been active cardiovascular [102] and respiratory [103]

research to develop physiomarkers for quantifying the course of diseases such as aortic

aneurysms through wall shear stress, or the effectiveness of drug delivery in the lungs

[104]. These mechanics-based physiomarkers could be used to develop a VDL for these

organs.
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APPENDIX A

Immersed boundary method for the vEsophagus

The vEsophagus was modeled as a fluid-structure interaction system using Immersed

boundary (IB) method. In this method, the structure (esophagus) is represented using

Lagrangian coordinates, and the fluid is represented using Eulerian coordinates. The

governing equations are as follows:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ f ,(A.1)

∇ · u = 0,(A.2)

f(x, t) =

∫
Γ

F (s, t)δ (x−X(s, t)) ds,(A.3) ∫
Γ

F (s, t) · V (s)ds = −
∫
Γ

P : ∇sV (s)ds,∀V (s),(A.4)

U(x, t) =

∫
Ω

u(x, t)δ (x−X(s, t)) dx,(A.5) ∫
Γ

∂X(s, t)

∂t
· V (s)ds = −

∫
Γ

U(s, t) · V (s)ds,∀V (s),(A.6)

P = P [X(·, t)] ,(A.7)

wherein Equations A.1 and A.2 are the momentum and mass conservation equations for

an incompressible fluid-structure system in Eulerian description. u and p are the Eulerian

velocity and pressure, respectively. ρ and µ are the density and viscosity of the entire

system. In this case, fluid was assumed to be Newtonian and had a density and viscosity
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of 1000 kg/m3 and 10 cP, respectively. The esophageal wall was assumed to have the same

density and viscosity as the fluid to avoid buoyancy effect in the IB method. Equations A.3

- A.6 are the IB fluid-structure equations, where f and F are the Eulerian and Lagrangian

elastic force density, respectively. U , X and P are the structure velocity, position, and

first Piola-Kirchhoff stress, respectively. Equation A.7 is a generic form representing the

relation between P and the hyperelastic strain energy function that define the elastic

behavior of the structure.

In IB method, the whole vEsophagus model is immersed in a fluid box that include

the fluid bolus inside the esophagus. The proximal end of the vEsophagus is fixed with

zero outflow to account for the closed UES once the bolus is inside the esophagus. For

simulation set 1 and 2, the lower end of the esophagus is also fixed to model the extreme

scenario of fully occluded EGJ. For simulation set 3, the lower end of the esophagus is free

to move. In all these simulations, the sides of the esophagus do not have any constraint

and are free to move. We have imposed zero velocity boundary condition at the upper

surface of the fluid domain. The same boundary condition was also imposed at the lower

surface for simulation set 1 and 2. For simulation set 3, the lower fluid surface has free

outflow boundary condition. The other 4 outer surfaces of the fluid domain for all these

simulations have free outflow boundary condition enforced.
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APPENDIX B

Image segmentation of fluoroscopy

A convolutional neural network architecture (CNN) called TernausNet [51] was used

to perform image segmentation. TernausNet is a modified form of the classical UNet

[50] which consists of an encoder and decoder path with skip connections that combine

feature maps from the encoder and decoder paths leading to precise localization. Ter-

nausNet takes advantage of transfer learning by replacing the encoder part of U-Net with

VGG11/VGG16 network pretrained on ImageNet dataset, which consists of millions of

images. Therefore, the low-level features learned from a huge dataset can be efficiently

utilized and the total number of parameters to be learned is reduced significantly. In

this work, the encoder part consists of VGG16. The decoder path is similar to that of

the original TernausNet with the slight modification of having two sets of Conv 3 × 3

and ReLU at each level instead of one. The full network architecture is shown in Figure

B.1. In order to prevent over-fitting, we have also introduced batch normalization after

every convolution layer in the decoder section. The whole network consists of 36,319,201

parameters, of which 28,676,001 were pre-trained and 7,643,200 were trained.

To train the CNN, it is necessary to have a dataset of esophagram images that show

the bolus at various locations along the length of the esophagus in different shapes and

sizes. We used 136 esophagram images collected from a total of 99 different swallows from

14 different subjects that include both normal controls and patients. The sole purpose of

the CNN is to identify the bolus from the background, and for that, it does not require
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Figure B.1. Neural network architecture (based on TernausNet). The
feature maps marked in yellow represents the VGG16 encoder pre-trained
with the ImageNet dataset. The feature maps in red represent the decoder

which is trained using the fluoroscopy images

to be trained with fluoroscopy images from a large cohort of subjects that include both

normal controls and patients with a large variety of esophageal disorders. The 136 images

along with augmentations contained enough variability and were large enough to train and

validate the CNN to identify the bolus in any fluoroscopy image irrespective of the state

of the esophagus. Each of these images has a size of 576× 576 pixels. We obtained these

images from VFSE done in association with HRM recordings (hence, the presence of the

catheter in Figure 3.1(a)). These images were manually segmented for labeling as shown

in Figure 3.1(b). Since the training dataset is very small, it makes sense to take advantage
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Table B.1. Details of data augmentations for fluoroscopy images

Augmentation type Range
min max

Rotation −10.0o 10.0o

Width shift −10% 10%
Height shift −10% 10%
Brightness 50% 150%
Shear −5o 5o

Zoom 80% 120%
Piecewise affine 0 0.03

of transfer learning through the pre-trained encoder to prevent over-fitting. In addition to

that, we have also implemented various image augmentations such as rotation, height and

width shifts, varying brightness, shearing, piecewise affine and scaling. This was done to

prevent overfitting due to the lack of a huge dataset and to introduce generalizability into

the model. These augmentations were applied randomly to varying extents, the range of

which is provided in Table B.1.

The dataset of 136 images was divided into two parts: 112 images for training and

24 images for validation. This is a semantic segmentation problem, wherein each pixel

belongs to one of the two classes: 1 for bolus and 0 for the background. We used a sum

of binary crossentropy (BCE) and negative Intersection over Union (IOU) loss functions

as the total loss (L) defined as follows:

BCE = − 1

N

N∑
i=1

[yilog (ŷi) + (1− yi) log (1− ŷi)] ,(B.1)

IOU =
1

N

N∑
i=1

yiŷi + ϵ

yi + ŷi − yiŷi + ϵ
,(B.2)

L = BCE − IOU,(B.3)
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where N is the total number of pixels in the output, yi and ŷi are the target binary

value and predicted value of the i-th pixel, respectively. The ϵ added in the numerator

and denominator of IOU is a small number (= 10−7), which is introduced to calculate

IOU over both the classes: bolus and background. To evaluate the performance of the

model, the predicted images were converted to their binary forms using various thresholds

between 0.5 and 1.0, and IOU were calculated for each of them and then averaged.

The model was trained for 200 epochs with batches of 2 images using Keras, a high-

level neural network API [105], which runs on top of TensorFlow [70], to train the net-

work. The training was performed using RMSProp optimization algorithm with a learning

rate of 0.001. The Intersection over Union for the validation set obtained at the end of

the training was 0.75, which was good enough for our analysis, and show that the trained

CNN is generalized to predict on a large variety of fluoroscopy images. The segmented

output images were converted to binary form using a threshold of 0.5 for the final out-

put. Some of the image frames for a sequence of images generated from a VFSE and the

predicted segmentation of those images after thresholding are shown in Figure 3.2(a)-(j).

The sharp interface between the white and dark regions of the segmented images marks

the outline of the bolus. It gives the shape of the inner mucosal surface of the esophagus

at the location of the bolus, but no information about regions of esophageal contraction or

relaxation. The diameter of the catheter (dashed curve in Figure 3.1(a)) is approximately

4.2 mm. We used this as the scale for mapping the pixel data to length. In some image

frames, the relaxed diameter of the esophagus can be identified at some locations along the

length due to remnant barium lining the lumen. To simplify our analysis, we assumed that

this diameter is the relaxed diameter of the esophagus throughout its length, although,
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in reality, the esophagus may be collapsed or the inner diameter may vary along the

length [61]. The semantic segmentation performed on the esophagram images basically

assigns each pixel to one of the two classes: bolus (white region) and the remainder

(dark region). The resulting segmented images do not show a smooth boundary for the

bolus and is irregular at the scale of the resolution of the original image. Also, since the

segmentation is done on each of the images separately, the continuity between the images

at consecutive time frames is broken. Therefore, the pixel data were smoothed both in

space and time without the loss of bolus geometry detail. The smoothing is performed by

Gaussian weighted moving average over a window of 10 and 30 points in space and time,

respectively.
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APPENDIX C

Kullback–Leibler divergence for mechanics-informed VAE

(MI-VAE)

The MI-VAE learns to model an input dataset as a distribution, p(θ) such that the

input variable θ is generated from a likelihood distribution p(θ|z), where z is the latent

variable. This distribution p(θ) is parameterized by the weights of the neural network.

The decoder yields the likelihood distribution p(θ, z), i.e., it takes z as input and outputs

θ. The encoder should ideally yield the posterior distribution p(z|θ). Unfortunately, p(z|θ)

is computationally intractable in general. So, in practice, the encoder yields a conditional

distribution q(z|θ) which approximates p(z|θ). The Kullback-Leibler divergence (KLD)

provides a measure of the difference between the two distributions q(z|θ) and p(z|θ), and

leads to the following relation:

DKL [q (z|θ) ∥p (z|θ)] = −
∫
q (z|θ) [log p (θ|z) + log p(z)− log q (z|θ)] dz + log p(θ).

(C.1)

Since KLD is always positive, the right-hand side of the above expression can be written

as follows:

p(θ) ≥
∫
q (z|θ) [log p (θ|z) + log p(z)− log q (z|θ)] dz.(C.2)

The above equation can be re-written in terms of a new KLD form as follows:
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p(θ) ≥ −DKL [q(z|θ)∥p(z)] + Ez∼q(z|θ) [log p(θ|z)] ,(C.3)

where Ez∼q(z|θ) [log p(θ|z)] is the joint log-likelihood of the input θ and the latent vari-

able z. The right-hand side is called the Evidence Lower bound (ELBO) and is named so

since it estimates the lower bound of the likelihood of the data. Thus, maximizing ELBO

maximizes the likelihood of the data. The KLD term works like a regulariser and forces

the approximate posterior q(z|θ) to be as close to the prior p(z) as possible. This term

causes the posterior q(z|θ) to enforce a high probability to z values that can generate the

point θ without collapsing to a single point like an autoencoder. This gives a continuous

behavior to the latent space so that meaningful generations are possible from points in

the latent space which are not related to any input in the training dataset. The second

term of Equation C.3 is the reconstruction error between in the input and the generated

output of the entire network. It is possible to derive a closed form solution for the KLD

term if we choose the approximate posterior q(z|θ) to have a Gaussian distribution and

choose the prior p(z) to have a standard normal distribution as shown below:

−DKL [q(z|θ)∥p(z)] =
1

2

[
1 + log σ2

q − σ2
q − µ2

q

]
.(C.4)

The encoder, as shown in Figure 5.4, outputs µ2
q and log σ2

q . Although we have an ana-

lytical form for the KLD term of Equation C.3, the reconstruction error requires to be

estimated by sampling. Sampling z from q(z|θ) directly leads to a problem in implement-

ing backpropagation since the network would have a random node at the input of decoder.

This problem can be tackled by a reparameterization trick where z is sampled from the
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mean and log variance parameters of q(z|θ) as estimated by the encoder shown as follows:

z = µq + ε · exp
(
1

2
log σ2

q

)
,(C.5)

where ε is a random number generated from a standard normal distribution. This step

makes it possible to backpropagate in a deterministic manner by considering ε as an extra

input. Since ε is sampled from a different distribution which is not a function of any

variables with respect to which derivatives might be required, stochasticity is introduced

in the network without affecting backpropagation. The final form of the loss function

used for the MI-VAE is as follows:

L :=
1

2M

M∑
i

[
1 + log σ2

q,i − σ2
q,i − µ2

q,i

]
+
β

N

N∑
j

(
θj − θ̂j

)2
,(C.6)

where M is the dimension of the latent space, N is the product of the two spatial dimen-

sions of the input and generated output. In this case, M = 24 and N = 256. The first

term is the KLD and the second term is the reconstruction loss. β is a scaling parameter

used to balance the magnitudes of the reconstruction loss and the KLD for proper training

of MI-VAE.
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