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ABSTRACT 

Instantiating two learning systems in the brain: cognitive modeling and fMRI analyses of visual 

category learning 

 

Emi Marie Nomura 

 The set of experiments described here test the hypothesis that the declarative memory 

system supported by the medial temporal lobe and habit/procedural memory supported by the 

basal ganglia are recruited when learning novel category representations.  The theory guiding 

specific hypotheses about these neural systems and their operation in category learning are 

incorporated into a new cognitive model of category learning called PINNACLE (Parallel 

Interactive Neural Networks Active in Category LEarning).  PINNACLE contains two 

competitive learning systems that simulate a fronto-MTL circuit that supports declarative 

memory and executive attention and cortico-striatal loops through the posterior caudate that 

support procedural learning.  Chapter 1 reviews the relevant background literature on visual 

category learning including the hypothesized role of independent memory systems.  This 

background includes recent behavioral, neuroimaging and neuropsychological studies examining 

the MTL and the caudate of the basal ganglia in learning visual categories either by verbalizeable 

rules or without awareness.  Chapter 2 discusses two fMRI studies that preferentially engage 

either the MTL or caudate according to the learning strategy employed, demonstrating the 

capability of both of these systems in visual category learning.  Chapter 3 describes the 

mathematical implementation of PINNACLE and some preliminary modeling results applied to 

fMRI data.  Chapter 4 lays out the theoretical basis of the PINNACLE model, establishing the 
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framework for the implementation of the theory into a neuro-cognitive model.  The fifth chapter 

discusses the application of PINNACLE in enhancing and extending conventionally accepted 

fMRI data analysis techniques.  The results of PINNACLE-based trial sorting both reinforce the 

original fMRI dissociation and demonstrate the benefit of combining these two methodologies.  

Finally, in the last chapter, several potential modifications to the mechanisms of the RB and II 

systems are suggested along with examples of the application of PINNACLE to other learning 

behaviors. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Categorization can be defined broadly as the act of responding differently to objects and 

events in the environment based on their belonging to separate classes or groups.  Objects within 

a category typically share certain behavioral characteristics or physical features.  Category 

learning, then, refers to the cognitive process(es) that extract similar features from a collection of 

stimuli to accurately categorize novel stimuli.  This ability reduces the need for a separate 

response to each object in the world, making behavior more economical.  Given the important 

role of categorization in everyday life, it is not surprising that there is a long history of study on 

the underlying cognitive operations that mediate this skill.   

Investigations into category learning extend both across and within disciplines, reflecting 

the multi-faceted complexity of this skill.  The first section here briefly outlines the prominent 

theories of categorization and the accompanying paradigms used to test these theories.  In the 

second section, one cognitive theory of category learning is described that draws primarily from 

neuropsychological evidence, yet makes a number of specific behavioral predictions.  The third 

section outlines recent evidence from neuroimaging, neuropsychology and experimental 

psychology that support the multiple systems view of category learning.  Finally, existing 

mathematical and computational models that hypothesize different information processing 

mechanisms for category learning are discussed. 
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1.2 Theories and tests of category learning behavior 

A number of theories exist that attempt to account for the collection of behaviors grouped 

together as categorization.  In most cases, these theories are put forth in the form of a 

computational model that is then used to fit existing data.  The advantage of this approach is that 

it allows for an evaluation of different theories in a formalized, mathematical manner.  Decision-

bound, exemplar and prototype theories represent three of the most successful approaches to 

explaining categorization behavior in the literature.  While described briefly here, there is a long 

and rich literature devoted to each of these theories.   

The process of creating a representation of category structure can be described as 

partitioning perceptual space and assigning category labels or motor responses to regions that 

encompass a collection of similar stimuli.  One formulation of this process is decision-bound 

theory (DBT) of category learning first proposed by Ashby and Gott (Ashby and Gott, 1988).   

Under DBT, when presented with a to-be-categorized stimulus, subjects determine in 

what region the stimulus has fallen and produce the associated response.  The response regions 

are divided by a decision boundary.  In this approach, learning the categories amounts to 

identifying the decision-boundary that separates the categories in the perceptual space. 

A number of reports support DBT as an effective description of visual category learning (Ashby 

and Gott, 1988; Ashby and Maddox, 1990, 1992).   Typically, the stimuli in these experiments 

vary on 2 dimensions.  For example, in one task, subjects are asked to categorize rectangular 

stimuli that vary in either the length or the width (Figure 1.1A).  In another task, the stimuli are 

circles of different diameters that have an internal line that varies in orientation (Figure 1.1B).  

The stimuli can also be perceptually more complex, such as sine wave gratings (Figure 1.1C).  

All of these examples can come from the same category structure, with the only difference being 
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the stimulus dimensions.  The two-dimensional perceptual space is partitioned into 2 (or more) 

categories by decision boundaries that can be linear or non-linear.  A non-linear boundary 

requires a more complex representation, but even linear boundaries can vary in the demands 

placed on the category learner. 

Exemplar models of categorization (Medin and Schaffer, 1978; Hintzman, 1986; 

Nosofsky, 1986) posit that people represent categories by storing individual exemplars of the 

category in memory.  In one of the most well known exemplar models, Nosofsky’s generalized 

context model (GCM), exemplars located near each other in representational space are more 

similar than those far from each other.  Both recognition and categorization of a novel stimulus 

then depend on its similarity to the representations of previously seen exemplars.  While 

recognition depends on similarity to a specific exemplar, categorization relies on a summed 

similarity to previously seen exemplars. 

A single system that is responsible for both categorization and recognition is difficult to 

reconcile with the observation of intact category learning in amnesic patients (Knowlton and 

Squire, 1993; Knowlton et al., 1994; Filoteo et al., 2001a) but a mathematical model that 

attempts to do this has been described (Nosofsky and Zaki, 1999).  If a hypothesis for how the 

model proposed by Nosofsky & Zaki (Nosofsky and Zaki, 1999) could be instantiated in the 

brain, it may be possible to distinguish between that type of “single system” model with the two- 

system models of categorization (Reber et al., 2003).  

Prototype models (Posner and Keele, 1968; Reed, 1972; Smith et al., 1997) maintain that 

a category representation consists of a prototype of the trained exemplars.  In this case, a 

prototype corresponds to the central tendency of the experienced stimuli.  Novel stimuli are 

categorized according to their similarity to this prototype.  This differs from the exemplar models 
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in that one maintains separate representations of individual instances of experienced stimuli 

for recognition and the prototype representation for categorization.  

1.3 Category learning paradigms 

When studying category learning, it is important to remove the potentially confounding 

effect of experience that may be present with naturally occurring categories (i.e. tools, faces, 

animals).  Creating artificial categories not only ensures that the participant is forming new 

representations, but also allows the experimenter to control the underlying category structure.  

Much recent evidence suggests that the information structure of the category may determine 

what neural system will support learning (Ashby and Ell, 2001; Maddox et al., 2003).  In the 

following fMRI experiments (Chapter 2), we took advantage of this observation to study the 

operation of different neural systems in category learning. 

There are a number of different types of category learning tasks that are used frequently 

in the literature.  They can be grouped broadly into 4 different types: rule-based tasks, 

information-integration tasks, prototype distortion tasks and probabilistic learning (weather 

prediction) tasks.  Depending on the particular task demands, people employ different cognitive 

strategies that rely on the operation of distinct neural systems.  Different theories of 

categorization have relied on these tasks to compare the predictions of the models to human 

behavior.  

1.3.1 Rule-based and information-integration tasks 

In DBT, a linear boundary that segments the perceptual space along one dimension (e.g., 

a horizontal or vertical boundary) creates 2 categories that can be easily described by a verbal 

rule.  In contrast, a linear decision boundary that does not fall along a cardinal orientation 
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requires the learner to integrate information across the 2 dimensions in order to determine 

category membership.  In the first case, the category structure is considered rule-based (RB) in 

that a simple rule describes the categories.  In the second case, determining the category structure 

requires information-integration (II) and cannot be accomplished using a simple rule.  In RB 

category structures, participants tend to use an explicit reasoning process consisting of one or 

more verbalizable rules to learn the category (Ashby et al., 1998).  Typically, only one of several 

stimulus features is relevant, so participants can systematically test the different features to 

discover a rule that will allow for accurate categorization.  For example, in Figure 1.2A the 

optimal decision boundary is a uni-dimensional rule that only depends on the frequency of the 

stimuli.  In II tasks, category membership is best determined by integrating two or more stimulus 

dimensions before making a category judgment (Ashby et al., 1998).  An important characteristic 

of the II task is that the optimal strategy is very difficult to verbalize.  As you can see in Figure 

1.2B, accurate categorization can only be achieved by incorporating both frequency and 

orientation information.  

1.3.2 Prototype distortion task 

In the prototype distortion task, which has been used largely to test the prototype theory, 

a prototype category member is defined (traditionally, as a pattern of 9 dots), and then randomly 

distorted to create category members (Posner and Keele, 1968).  During training in this task, 

participants are instructed to point at the center dot and are not informed that there is an 

underlying category (although in an explicit version of this task, participants were informed 

before training to pay attention to the category members; (Reber et al., 2003)).  At test, 

participants endorse new category members at a level greater than chance without necessarily 
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being aware of or even having seen the underlying prototype.  Various degrees of distortion 

from the prototype can create different levels of category members, and participants are sensitive 

to this variation.  If the degree of distortion is high, the exemplar stimuli are less similar to the 

prototype and with low distortion, the stimuli are more similar to the prototype.  Categorization 

performance is best for the prototype followed by low and then high distortions of the prototype. 

1.3.3 Probabilistic learning task 

The weather prediction task is one of the most popular probabilistic learning paradigms 

first used by Knowlton and colleagues (Knowlton et al., 1994) to test the category learning 

abilities of amnesic patients.  On each trial, subjects are shown cards with different combinations 

of geometric patterns and asked to predict the outcome (rain or sun).  Following the subjects’ 

decision, they receive feedback, which allows them to learn the relationships over time.  The 

feedback is probabilistically associated with different cards such that perfect accuracy is not 

possible.  The probabilistic nature of the task is a feature designed to discourage explicit 

memorization of the cards. 

 

1.4 COVIS: A Neurocognitive theory of category learning 

 The COVIS theory (COmpetition between Verbal and Implicit Systems) proposed by 

Ashby (Ashby et al., 1998) describes a neurobiologically inspired instantiation of DBT with 

specific predictions about the neural systems supporting two separate types of category learning 

(RB and II).  In this theory, 2 learning systems compete to provide the output response: an 

explicit, rule-based system dependent upon working memory and attention; and an implicit, 

procedural learning system. 



 17 

 While the COVIS theory is based on the connections and computational properties of 

cortico-striatal and frontal circuits, the parallels between the multiple neural systems theory of 

categorization and multiple memory systems of the brain is of note.  Studies of memory dating to 

Scoville and Milner (Scoville and Milner, 1957; Squire, 1992) have established an important 

difference between conscious, declarative memory based on the medial temporal lobe (MTL) 

and a collection of heterogeneous nondeclarative memory systems.  Studies of nondeclarative 

memory have shown the importance of the basal ganglia for some nondeclarative memory tasks, 

including category learning tasks (Knowlton et al., 1996a).  Integrating these two conceptual 

frameworks is a fairly straightforward process that should provide additional organizing 

principles to the model as a whole.  The hypothesized organization of the neural circuits 

supporting RB and II category learning is shown in Figure 1.3.  This schematic is adapted from 

the COVIS theory of Ashby et al. (Ashby et al., 1998) but emphasizes the role of the MTL in 

supporting RB category learning as predicted by memory systems research. 

1.4.1 RB system in COVIS 

Under the COVIS theory, the RB system learns through a conscious process of rule 

generation and testing, cognitive functions normally subserved by the frontal lobes.  

Neuroimaging of RB tasks has shown consistent activity in the prefrontal cortex (PFC), anterior 

cingulate cortex (ACC) and head of the caudate (Rao et al., 1997; Lombardi et al., 1999; Rogers 

et al., 2000), all areas implicated in working memory and executive attention.  COVIS theory 

assumes that potential rules are stored in working memory while being tested, and depending on 

the feedback, the rule is either discarded or retained.  One prediction from this idea is that the 
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presence of a concurrent task should preferentially impact learning in the RB system as it 

would interfere with working memory function. 

Memory systems research emphasizes the critical role of the MTL is both acquisition and 

retrieval of conscious, declarative long-term knowledge that contributes to rule-based processing.  

We hypothesize that the role of the MTL is to store the specific rule and/or referent for the 

decision boundary that distinguishes the categories.  Consistent with this idea, COVIS has been 

updated recently to include this structure within the RB category learning network (Ashby and 

Valentin, 2005; Ashby and Ennis, 2006).  Because the MTL is hypothesized to be exclusively 

involved in declarative memory supporting RB categorization, it is a crucial brain region for 

differentiating between the neural correlates of RB and II category learning. 

1.4.2 II system in COVIS 

The II category learning system in COVIS is hypothesized to depend upon the posterior 

body and tail of the caudate nucleus and its interconnections with posterior visual cortical areas.  

A core element of the COVIS theory is that this system is non-verbal and implicit.  From a 

memory systems perspective, the II category learning element of COVIS describes a specific 

hypothesis about the structure and function of the type of nondeclarative memory that supports 

category learning.  This system is hypothesized to depend on several important neurobiological 

properties of the caudate which may make this structure ideal for visual category learning.  The 

many-to-one projections of the visual cortical neurons in TE (inferotemporal cortex) onto the 

spiny neurons of the tail of the caudate means that thousands of cortical neurons synapse on 

individual spiny neurons (Wilson, 1995).  This massive convergence allows a wide variety of 

complex information to be reduced (compressed) to its most basic representation, which is 



 19 

precisely the type of process that is necessary for categorization.  This lower resolution 

representation can then be used to categorize novel stimuli.   

Another neurobiological property of the caudate that facilitates this type of learning is the 

existence of cortico-striatal loops that project from specific cortical regions to the basal ganglia 

and back to these same cortical regions (Middleton and Strick, 2000; Kelly and Strick, 2004; 

Houk, 2005).  Just such a loop from inferotemporal-cortical areas through the posterior portion 

of the basal ganglia and back (Yeterian and Pandya, 1995) could be particularly important for 

visual category learning.  

The final property of the caudate that is relevant for this implicit category learning system 

is the availability of a dopamine-based reward signal within the tail of the caudate.  Several 

different forms of evidence indicate that feedback is an important component of this learning 

process.  Animal work has demonstrated that the gluatamatergic projections from visual cortex 

and the dopaminergic projections from substantia nigra both synapse on the dendritic spines of 

caudate medium spiny cells (Difiglia et al., 1978; Freund et al., 1984; Smiley et al., 1994; 

Maddox and Ashby, 2004).  Thus, when the system receives an unexpected reward, dopamine is 

released from the substantia nigra onto medium spiny cells in the caudate and the most recently 

active synapses responsible for the correct response are strengthened (Wickens, 1990; Schultz, 

1992).  Given the important role of feedback in this II system, any manipulation of feedback 

should affect II but not RB learning. 
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1.5 System interaction 

The aforementioned behavioral, neuropsychological and neuroimaging evidence make a 

strong argument for the functional and anatomical independence of these systems, but more 

recently investigators have begun to examine the potential forms of interaction between these 

systems.  In the PINNACLE model we assume that the nature of this interaction is competitive, 

such that the dominant system suppresses the activity of the opposing system. 

1.5.1 Competitive learning systems 

Evidence from neuropsychology seems to indicate differential and independent roles for 

the MTL- and caudate-based memory systems.  That is, damage to one system does not 

necessarily interfere with or facilitate the function of the remaining intact system.  There is 

evidence from animal studies as well as human neuroimaging experiments, however, for the 

existence of a competitive interaction between memory systems.  From an evolutionary 

standpoint, it seems reasonable that multiple learning systems would arise from the variety of 

different learning demands in the environment.  At the most basic level, one requires a system 

capable of learning specific features and a system capable of learning invariant attributes across 

events.  It would seem that the MTL and striatum are ideally specialized to meet these disparate 

learning requirements.  Competition between the systems should result in a selection of the 

system that is most suited to learn in a given situation while suppressing the activity of the non-

advantageous system.  

1.5.1.1 Animal studies 

One route to testing this alleged competitive interaction is to systematically inactivate the 

operation of one of the systems and allow learning to proceed in the other system.  Under 
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different learning demands, a facilitation in performance would reveal the conditions in which 

learning in the intact system is enhanced without the competitive influence of the non-optimal 

system. 

In one of the first studies to find a double dissociation between the behavioral effects of 

hippocampal and caudate-lesioned animals (Packard et al., 1989), Packard and colleagues found 

evidence that these systems may be in direct competition.  Rats with bilateral lesions of the 

caudate or fimbria-fornix (impairs hippocampal function) were tested in two varieties of a radial 

maze designed to favor either hippocampal or caudate-based memory.  In the ‘win-shift’ 

paradigm (Olton and Samuelson, 1976), no single stimulus is consistently paired with the correct 

response.  The rat must learn to only search those arms of the maze that it has not previously 

visited.  Learning in this task has been shown to be hippocampal-dependent.  In the ‘win-stay’ 

task, a single stimulus was consistently paired with the correct response so that acquisition 

involved learning to approach a specific sensory cue over a number of repeated trials.  This task 

is hypothesized to depend on the operation of the caudate nucleus.  As expected, lesions of the 

fimbria-fornix impaired learning of the win-shift task and lesions of the caudate impaired 

learning of the win-stay task.  Interestingly, when compared to control animals, there was an 

observed facilitation of learning in the fimbria-fornix lesioned animals on the win-stay task.  The 

facilitative effect of fornix lesions in this study suggests that the hippocampal and caudate 

systems were in competition and when the hippocampal system was removed, the caudate 

system was able to learn more efficiently.  In a similar study where lesions were made after 

training, inactivation of the hippocampal system was still shown to enhance caudate-based 

response learning (Schroeder et al., 2002).  Thus, the competitive interference between these 

systems may occur both during task performance as well as during the consolidation period. 
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In addition to demonstrating the competitive influence of one memory system on 

another, researchers have observed a natural shift between system operation in the untreated rat.  

Packard (Packard and McGaugh, 1996) trained rats for 14 days to approach a consistently baited 

arm in a cross-maze starting from the same initial position.  Their memory was probed on the 8th 

and the 16th day by placing them in a different starting box and observing which arm of the maze 

they entered.  If they entered the same maze arm that had previously been baited, they were 

designated as ‘place learners’.  If they entered the unbaited maze arm, which meant recalling the 

series of learned motor patterns (i.e. always turning to the left), they were designated as 

‘response learners’.  Rats that had been treated with saline displayed place learning on the first 

probe trial and response learning on the second probe trial, which indicates a natural shift in 

learning mechanism to guide behavior.  That is, early in learning, rats relied on hippocampal-

based mechanisms to recall the specific location of the food, whereas later in learning they 

seemed to rely on a more automatic, habit-like learning supported by the caudate-based system.  

Rats that were given a lidocaine injection (a local anaesthetic that produces neural inactivation) 

into the hippocampus showed no preference for place or response learning on the first probe trial, 

but displayed response learning on the second probe trial.  The time course of this shift was 

sensitive to manipulation by preferentially enhancing one or the other system through infusions 

of glutamate into either the hippocampus or caudate (Packard, 1999).  Glutamate is an excitatory 

neurotransmitter that in previous studies has been shown to enhance memory (Packard and 

Teather, 1999).  Hippocampal glutamate injections strengthened the place learning 

representation, effectively blocking the shift to response learning in the second probe trial and 

caudate injections accelerated the shift to response learning such that it was detected in the first 

probe trial.  Post-training injections of glutamate were thus shown to modulate the relative 
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engagement of the hippocampus and caudate by enhancing the normal shift from one system 

to another. 

While we cannot necessarily relate maze-learning in rats directly to a more complex skill 

such as category learning in humans, an understanding of the basic operation of these memory 

systems is essential to developing theories and models of memory.  Based on the animal data 

here, there is some evidence that in certain learning environments, hippocampal- and caudate-

based memory systems compete to provide the output response. 

1.5.1.2 Neuroimaging studies 

Neuroimaging of a number of different skill learning paradigms support a competitive 

interaction between the MTL and caudate-based memory systems.  This data suggests a general 

pattern of interaction across learning paradigms, which bolsters our confidence that PINNACLE 

is implementing the appropriate neural mechanisms for interaction between these systems in 

category learning. 

In one of the first neuroimaging studies to put forth evidence for competitive MTL and 

caudate-based memory systems, Poldrack and colleagues (Poldrack et al., 1999) demonstrated 

that the caudate activated and the MTL deactivated during a weather prediction task.  The 

involvement of the caudate was expected, based on the poor performance on this task by patients 

with Parkinson’s and Huntington’s disease (Knowlton et al., 1996a; Knowlton et al., 1996b).  

The observed deactivation in the MTL, however, was not expected and an analysis of the time 

course of activity showed that the negative signal change became more pronounced up to a point, 

and then disappeared later in learning.  The authors interpreted this decrease in deactivation as 

the MTL coming on-line towards the end of the task, which was consistent with the observation 



 24 

that amnesic patients are impaired on this task late in training (Knowlton et al., 1994).  When 

this activity was compared to that during another version of the task that relied on observational 

learning, the MTL deactivation was shown to be specific to the original feedback-based 

paradigm.  Further, a correlational analysis using the task-evoked signal in the MTL determined 

that activity in the caudate nucleus was negatively correlated with the MTL signal (Poldrack et 

al., 2001).  When Parkinson’s patients were scanned while learning this same task, they 

demonstrated more activity in the hippocampus and less activity in the basal ganglia than control 

subjects (Moody et al., 2004) suggesting that a lack of competitive suppression allowed the 

explicit memory system to participate when it normally would not.  Based on this result, the 

authors hypothesized that healthy participants may utilize an explicit strategy early on, but 

eventually abandon it (or it is competitively suppressed) as the striatal system proves to be more 

successful at learning the probabilistic feedback contingencies.  A contrary interpretation of the 

PD finding is that in disease, the functional system will always take over, so it was not that the 

explicit system was released from competitive suppression, but that it was simply the only 

operational system in the brain for the task. 

The apparent competitive interaction between the MTL and basal ganglia has also been 

observed in a number of other neuroimaging studies that did not use the probabilistic category 

learning task.  In a task that focused more on rule learning with no probabilistic component, 

fMRI revealed a similar pattern of opposing activity in the caudate and MTL (Seger and 

Cincotta, 2006).  Participants were asked to acquire a particular rule that required attending to 

different features of the letter stimuli.  Using the feedback after each trial, they eventually 

discovered the rule and then applied it to the subsequent stimuli.  Rule learning relied upon 

activity in a wide network of frontostriatal areas coupled with a decline in hippocampal activity 
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whereas in rule application, there was a rise in hippocampal activity.  The authors suggest that 

the antagonism between the striatum and MTL may have facilitated the transition between 

acquisition and application of a rule.   

A recent fMRI study supporting a competitive form of interaction between declarative 

and habit learning systems found that the presence of a distracting task modulated the degree to 

which the subject engaged the striatum (habit learning) or the hippocampus (declarative 

memory) (Foerde et al., 2006).  Furthermore, the resulting information that was available after 

learning depended on the conditions under which it was acquired.  When learning in the presence 

of distraction, later expression of knowledge was less flexible and reliant on the information 

acquired by the striatal system.  Under non-distracting conditions, both the MTL and striatal 

systems were active, yet later knowledge was more flexible.  

In both motor skill learning (Jenkins et al., 1994) and perceptual skill learning (Poldrack 

and Gabrieli, 2001), increasing activation was observed in the striatum accompanied by a 

deactivation in the MTL.  We also observed a similar pattern of activity within our own data 

using a visual category learning paradigm (Nomura et al., 2007).  Taken together, these separate 

observations seem consistent with a competitive interaction between these memory systems.  

However, there is also an important caveat associated with observed deactivations in 

neuroimaging studies.  Little is known about the neurophysiological mechanism behind these 

deactivations, and it is not clear if inhibitory synaptic activity is associated with an increase or a 

decrease of fMRI signal.  
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1.5.2 Other modes of system interaction 

1.5.2.1 Parallel independent learning systems 

Despite the numerous forms of evidence in favor of competitive MTL- and caudate-based 

memory systems, there is also evidence that these systems may exist in relative isolation, 

operating in parallel as they each contribute toward learning a particular task that is suited to that 

system.  In this framework, learning in one system may not necessarily help or hurt learning in 

the other system.  If both systems are simultaneously acquiring information about the categories, 

damage or interference with one system should not affect the representation in the other system.   

Perhaps the most conspicuous evidence for independent learning systems comes from 

neuropsychological double dissociations of MTL and caudate-based memory.  For example, 

amnesic patients are impaired at recognition memory but exhibit normal motor skill learning 

(Tranel et al., 1994) and Parkinson’s patients show the opposite pattern of impairment (Heindel 

et al., 1989).  Similarly, in rats that have received reversible lesions to the hippocampus or 

caudate, learning progresses normally, presumably relying on the operation of the preserved 

system (Packard and McGaugh, 1996; White and McDonald, 2002).  Using a radial arm maze 

task in which learning can be supported by either system, pre-training lesions to the hippocampal 

or the caudate system did not affect the rat’s ability to acquire the task (McDonald and White, 

1994).  Only when simultaneous lesions were made to both systems was learning impaired.   

A similar observation was made in humans combining neuropsycholgy and neuroimaging 

(Voermans et al., 2004).  Patients with Huntington’s disease were scanned during a route 

recognition paradigm and found to rely on the hippocampus to maintain normal behavior.  This 

stands in contrast to healthy subjects who use both the MTL and caudate during this task.  This 



 27 

suggests that in a healthy brain, both systems play a role in acquiring different sorts of 

information, the hippocampal system may create a map-like representation and the caudate 

system a more route-like representation.  Either system may be capable of supporting accurate 

performance, and in the situation where one representation is missing (i.e. in Huntington’s 

disease), the other system can compensate.  This compensation may not be bidirectional, though, 

and further studies are needed to address this question.  From this study, it seems that 

hippocampal-based memory can supplement caudate-based memory, but there is little evidence 

for the opposite phenomenon. 

While evidence suggests that both the hippocampal- and caudate-based systems can be 

active simultaneously, the system that is most relevant to a given task ultimately comes to 

dominate behavior.  This does not necessarily imply competitive systems, as the information in 

the non-dominant system may still be accessible.  In the same cross-maze task discussed earlier 

(Packard and McGaugh, 1996), rats that were given a lidocaine injection (a local anaesthetic that 

produces neural inactivation) into the hippocampus showed no preference for place or response 

learning on the first probe trial, but displayed response learning on the second probe trial.  In 

contrast, rats that were given a lidocaine injection into the caudate displayed place learning on 

both probe trials.  Together, these results indicate that in a task where these two systems are each 

capable of supporting learning, a neurochemical inactivation of one system does not interfere 

with the ability of the remaining system to acquire the information.   

1.5.2.2 Multiple modes of interaction 

Another potential scenario of system interaction is that early in learning, the systems 

participate in one form of interaction, and at later stages of learning or perhaps at the point of 
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expertise, this interaction changes.  For example, it could be the case that the systems compete 

to learn the task in initial stages of acquisition, and as it becomes apparent that one system is 

better suited to learn, there is no longer a need for this competition.   

It is also possible, as suggested by Mcdonald and White (McDonald and White, 1995), 

that certain learning situations engage different types of interactions amongst the different 

memory systems.  In the context of rat maze-learning, when the information processing demands 

are such that either system could acquire the representation necessary to produce accurate 

performance, the systems would be acting cooperatively.  In contrast, in cases where the 

information acquired by one system interferes with the accurate performance guided by the other 

system, competition between the systems needs to be resolved.  This will often result in the need 

for a larger number of training trials (McDonald and White, 1993; White and McDonald, 1993) 

to accurately perform the task.  

1.5.3 Mediators between the RB and II systems 

There are a number of different potential mechanisms for system mediation between the 

RB and II systems based mainly on animal research.  The first is through direct anatomical 

connections between the MTL and striatum.  In rats, there is evidence for direct projections from 

the entorhinal cortex to the dorsal striatum (Sorensen and Witter, 1983) that are inhibitory in 

nature (Finch, 1996).  Similar projections from the striatum to the MTL have been difficult to 

demonstrate in primates, but caudate stimulation in cats induces a theta rhythm in the 

hippocampus (La Grutta and Sabatino, 1988) effectively disrupting natural spiking activity in 

that area.  This dampening of activity in the hippocampus may be mediated by cholinergic 

activity as administration of an anti-cholinergic agent attenuates the effect.  This could be one 



 29 

potential mechanism for the frequent deactivation observed in the MTL in functional imaging 

data, although the anatomical connections need to be established. 

A more likely possibility is that a separate region is mediating the interaction between the 

MTL and striatum.  The best candidate for the mediating factor between the hippocampal- and 

caudate-based memory systems is the PFC, based on its known role in executive control 

functions.  Under this hypothesis, learning progresses independently in the MTL and striatal-

based memory systems, but the PFC’s role is at the level of response selection.  Evidence for the 

mechanism of this hypothesized interaction comes again from experiments with rats.  

Hippocampal gluatamatergic projections have been shown to synapse on PFC neurons, forming a 

transcortical network that mediates cognitive processes such as working memory (Gabbott et al., 

2002).  When these afferents are stimulated, it can evoke both excitatory and inhibitory 

responses in PFC neurons (Lewis and O'Donnell, 2000).  In rats, there exist direct inputs from 

MTL and striatum that converge on common PFC regions, suggesting a possible site of 

interaction of these systems (Floresco and Grace, 2003).  When the mediodorsal (MD) thalamus 

(output region of the basal ganglia) was stimulated while the hippocampal-PFC circuit was 

concurrently stimulated, the PFC firing was inhibited.  Similarly, when hippocampal inputs were 

stimulated, the PFC response to MD stimulation was inhibited.  It remains to be determined if the 

neurons within the MD thalamus received striatal input in this particular study, although this 

nucleus is included in known limbic corticostriatal loops (Joel and Weiner, 2000).  

While we are developing a model with specific assumptions of interactive mechanisms to 

address the question of system interaction in humans, analyses of fMRI data that attempt to 

assess the connectivity between neural structures provide an alternative method to test the same 

idea.  Using the fMRI data discussed previously (Poldrack et al., 2001), the authors conducted a 
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path analysis based on the time series data extracted from eight brain regions active in the task 

(Poldrack and Rodriguez, 2004).  The idea behind this method is to calculate the path 

coefficients between regions to determine the index of causal influence between those variables.  

In addition to the MTL and striatum (dorsal and ventral), they also examined the connectivity 

between the ACC, dorsolateral PFC (DLPFC), midbrain (substantia nigra/ventral tegmnetal 

area), fusiform gyrus and superior parietal cortex.  When they restricted the analysis to only 

those connections that were neuroanatomically plausible, the results argued strongly for 

prefrontal mediation of memory system interactions and against direct interactions between the 

striatum and MTL.  Specifically, Poldrack (Poldrack and Rodriguez, 2004) observed negative 

reciprocal paths between MTL and PFC and positive paths between the striatum and both the 

MTL and PFC. 

While there exists evidence for a number of different potential mediating mechanisms 

between the RB and II systems, in PINNACLE we assume it is the PFC that resolves the 

competition between systems.  As discussed in Chapter 5, these assumptions can be tested 

formally by combining the model predictions with fMRI data.  If the model that includes this 

PFC mechanism for resolving competition between the systems is used to examine the fMRI 

data, we can test whether or not activity in the PFC is actually associated with instances of 

model-identified competitive interaction.  

1.6 Evidence for independent systems supporting category learning 

1.6.1 Neuropsychological studies of category learning 

Category learning was originally shown to be dissociable from declarative memory in 

amnesic patients who exhibited normal learning of dot-pattern categories (Knowlton and Squire, 
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1993), artificial grammar (Knowlton et al., 1992), and a probabilistic classification task 

(Knowlton et al., 1994; Reber et al., 1996).  In each case, patients with severe impairments in 

declarative memory for previously seen stimuli exhibited unimpaired category learning.  It is 

important to note that although Knowlton and colleagues (Knowlton et al., 1994) observed 

normal learning by amnesic patients in the probabilistic classification task, in the later trials, the 

participants were impaired relative to controls.  In another experiment using this same task, 

amnesics with focal bilateral hippocampal damage were impaired throughout the experiment 

(Hopkins et al., 2004), suggesting a specific role of the hippocampus in this task.  However, 

across these studies of amnesic patients, it appears that nondeclarative memory in some cases 

can contribute toward category acquisition when declarative memory is impaired.   

The focus on the caudate in the COVIS model has meant that the majority of studies 

using RB and II tasks have examined the performance of patients with dysfunction of the basal 

ganglia (e.g., Parkinson’s and Huntington’s disease; PD and HD respectively).  While the typical 

symptoms of these syndromes are motor-related, cognitive deficits are also observed, one being 

category learning.  There is, however, some disagreement in the literature as to the specific 

category learning deficit in PD patients.  PD patient performance on a perceptual categorization 

task with simple line stimuli varying in horizontal and vertical length was impaired only with 

non-linear II decision boundaries but was no different from controls with a linear RB decision 

bound (Maddox and Filoteo, 2001).  Similarly, HD patients showed a selective impairment in II 

categorization (Filoteo et al., 2001b). 

Conversely, in several additional studies, PD patients showed impairments in RB 

learning using geometric figures (Ashby et al., 2003b) and with stimuli of varying line lengths 

(Maddox et al., 2005a; Ell et al., 2006), but showed no impairment in II category learning.  
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These conflicting results can be resolved by considering the difficulty of the tasks.  The simple 

line stimuli used in the II category learning task may not have been difficult enough to challenge 

the patients.  That is, patients could have used a sub-optimal RB strategy in the II condition, 

perhaps relying on the intact operation of a frontal/MTL network.  In a follow-up study, Filoteo 

and colleagues (Filoteo et al., 2005) examined II category learning in greater detail in PD 

patients using linear and non-linear II category structures.  The complexity of the II task affected 

PD patients in that they were impaired relative to controls in the non-linear version of the task.  

Computational modeling of this data identified participants who used an II approach, and out of 

these, PD patients showed a specific impairment in non-linear category learning compared to 

controls as observed previously (Maddox and Filoteo, 2001). 

The question of the RB category learning deficit that is present in some (Ashby et al., 

2003b; Maddox et al., 2005a; Ell et al., 2006) but absent in other studies (Maddox and Filoteo, 

2001) can be resolved by taking into account the number of irrelevant dimensions present in the 

task.  A greater number of irrelevant dimensions require more selective attention to direct focus 

to the relevant dimension(s).  Those studies that observed a deficit in PD patients’ ability to learn 

RB categories all had a higher number of irrelevant stimulus dimensions than those that did not 

observe a deficit.  In a recent study (Filoteo et al., in press), this issue was addressed by 

systematically manipulating the selective attention requirements during RB category learning.  

As predicted, PD patients were found to be impaired at learning RB categories when selective 

attention demands were greatest.  One well documented impairment in PD patients is in their 

ability to switch between relevant dimensions or rules, such as in the Wisconsin Card Sorting 

Task (Brown and Marsden, 1988).  Thus, the RB deficits seen in these studies may be due to the 

patients’ inability to switch between rules and not necessarily in rule acquisition. 
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From the aforementioned patient data we can conclude that the intact basal ganglia is 

required for non-linear, II category learning under low selective attention demands.  With 

increasing task complexity, the dissociation between RB and II category learning becomes less 

evident.  The RB learning deficit seen in these patients may have been due to their difficulty with 

selective attention that was not relevant in the more simple tasks. 

Given the hypothesized role for the MTL in RB category learning, one would expect that 

damage to the MTL in amnesic patients should also produce impairments on tasks that rely on an 

RB strategy.  However, several studies have reported that amnesic patients perform normally in 

simple RB category learning (Leng and Parkin, 1988; Janowsky et al., 1989).  This suggests that 

when the rule is simple enough to be held in working memory (intact in amnesia), the damage in 

the MTL does not affect their ability to categorize.  With a more complex category structure, 

amnesics are impaired at retaining verbalizeable rules (Kitchener and Squire, 2000) although 

they can learn some complex categorization tasks implicitly (Reed et al., 1999).  From the 

perspective of the dual-system COVIS model, it may be that the intact II system is capable in 

some cases of supporting learning when the MTL is damaged.  It follows then that amnesic 

patients could perform normally on II category learning as long as explicit memorization is not 

an alternative strategy that gives control subjects an undue advantage (Filoteo et al., 2001a). 

The complexity of category learning and the involvement of the basal ganglia in both II 

category learning and RB category learning (via dopaminergic support of the PFC and working 

memory) means that clear double dissociations in the neuropsychological literature have not 

been observed with II and RB tasks.  However, the overall pattern of impairments across patient 

groups does suggest that distinct neural systems are involved in RB and II category learning.  
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1.6.2 Review of RB and II behavioral experiments 

A series of behavioral experiments have demonstrated dissociations between RB and II 

category learning systems.  Based on the hypothesized properties of the RB and II systems in the 

COVIS theory, these experiments focus on 4 main manipulations: the presence of a concurrent 

task, the nature and timing of the feedback, mapping of the response keys and discontinuous 

categories.  Behavioral differences created by these manipulations suggest that there are 

fundamental differences in the operating characteristics of RB and II category learning.   

The RB system in COVIS is hypothesized to depend on maintaining rules (and/or 

boundary reference information) in working memory during learning.  The concurrent presence 

of a working memory task should thus preferentially impair RB but not II learning.  This 

prediction was tested with a numerical analog of the Stroop task (Waldron and Ashby, 2001) and 

with a sequential memory scanning task (Maddox et al., 2004c).  Both studies found that RB 

learning was disrupted whereas II learning was insensitive to a working memory load. A 

criticism of these studies is again that the number of relevant stimulus dimensions differed 

between the RB and II conditions.  However, even when the number of relevant dimensions was 

held constant, the working memory task still disrupted RB more than II learning (Zeithamova 

and Maddox, 2006).  In an indirect manipulation of working memory, Maddox and colleagues 

(Maddox et al., 2004b) demonstrated that RB but not II learning was impaired when learning 

four (rather than two) categories.  Together, these behavioral manipulations of working memory 

strongly argue for its important role in RB but not II learning. 

Another prediction from COVIS based on the important role of working memory and 

executive attention in the RB system is that this should allow for the possibility of a delayed 

feedback signal (since the relevant category information is maintained over time in working 
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memory).  This is not a property shared by the procedural learning system that is hypothesized 

to support II learning.  The nature and timing of the feedback should be more critical for the II 

learning system to allow for dopaminergic signals to support learning in the cortico-striatal loop 

through the tail of the caudate.  In one of the first of a series of experiments examining the role 

of feedback in RB and II learning, Ashby and colleagues (Ashby and Waldron, 1999) found that 

the mere presence or absence of feedback differentially affects learning.  When subjects were 

asked to learn II category structures without feedback, they typically used unidimensional rules 

(Ashby et al., 1999) whereas when given feedback, they were able to learn unidimensional and 

complex decision bounds that lack a simple verbal description (Ashby and Maddox, 1992).  This 

suggests that in situations where II learning is necessary, feedback is required for learning to 

progress, whereas in the absence of feedback, the default strategy is to utilize a verbalizable RB 

strategy. 

Because the integration of feedback in II category learning is thought to depend on the 

availability of dopamine signals within the caudate, the ability to use feedback should be 

constrained by the temporal availability of this signal.  A delay in feedback following the 

presentation of the stimuli, would selectively impair II learning because of the inability to 

maintain information across the delay via working or long-term memory (which are exclusively 

involved in RB category learning).  Maddox and colleagues manipulated the delay between 

stimulus response and visual feedback in both RB and II subject groups with both two (Maddox 

et al., 2003) and four categories (Maddox and Ing, 2005).  Using two categories of sine wave 

grating stimuli, they found that II but not RB learning was disrupted when feedback was delayed 

by 2.5 seconds or more.  This finding was replicated in an experiment that manipulated the 

feedback delay with four equally discriminable categories (Maddox and Ing, 2005).  With four 
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categories, the number of relevant stimulus dimensions and requisite attentional demands were 

equal between groups (as opposed to two categories where RB learning only required attending 

to one relevant dimension).  The timing of feedback is thus an important quality of the II 

category learning system irrespective of the number of categories being learned, further 

supporting the hypothesis that II learning depends on a procedural learning-based system that 

requires a tight temporal correlation between the motor response and the feedback.  In contrast, 

RB learning was demonstrated to be insensitive to manipulations in feedback timing, supporting 

the hypothesis that the RB system relies on the ability to sustain information over longer times 

via working or long-term memory. 

If a procedural learning-based system is responsible for the acquisition of II category 

structures, the same characteristics observed in other types of procedural learning tasks should 

apply to II learning.  Motor learning tasks are commonly used to demonstrate procedural 

learning where a particular motor pattern is associated with external stimuli (Willingham, 1998).  

One characteristic of procedural learning that was demonstrated in the serial reaction time (SRT) 

task, is that changing the location of the response keys interferes with learning but changing the 

sequence of finger movements does not (Willingham et al., 2000).   

Applying this observation to category learning, Ashby and colleagues (Ashby et al., 

2003a) found that RB and II category learning were differentially affected by a change in the 

location of the response keys.  In this experiment, subjects learned either RB or II category 

structures under 3 different conditions.  In the control condition, they pressed the ‘A’ button with 

their left hand and the ‘B’ button with their right hand.  In the hand-switch condition, their hands 

were crossed during training so the button assigned to category A was pressed with the right 

hand and category B with the left hand.  During the transfer test, they uncrossed their hands.  In 
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the button-switch condition, training was the same as the control condition except at transfer, 

the button assignments were remapped such that the left hand was now pressing category B and 

the right category A.  RB category learning was found to be insensitive to hand- and button-

switch manipulations, but II category learning was disrupted only in the condition where the 

buttons were switched at transfer.  That is, the manipulation that required a re-mapping of the 

response location selectively disrupted II category learning.   

In an extension of this study (Maddox et al., 2004a), subjects were asked to learn 

categories ‘A’ and ‘B’ and make responses in one of 2 configurations.  In the consistent 

stimulus-response mapping group, they responded with button A in the left hand and button B in 

the right hand.  In the variable stimulus-response mapping group, they were asked to respond to 

the question “Is this an A?” or “Is this a B?” with a ‘yes’ button in the left hand or a ‘no’ button 

in the right hand which meant that the categories required inconsistent motor responses to learn.  

They found that changing the response keys interfered with II not RB performance.  The 

similarity of these results to Willingham’s (Willingham et al., 2000) SRT results supports the 

claim that II category learning relies on a procedural learning-based system that is highly 

sensitive to the mapping between the stimulus and response position. 

Together, the data from motor-response manipulations suggests that II category learning 

is mediated by a procedural-learning based system that learns to associate a category label with a 

response location.  This stands in contrast to the RB category learning system that is 

hypothesized to acquire abstract category labels that are insensitive to motor-response 

manipulations. 

The fourth dissociation between RB and II category learning predicted by COVIS was 

observed by manipulating the distribution of stimuli within the categories (Maddox et al., 
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2005b).  Studies in both humans and animals indicate that procedural learning systems are 

dependent upon stimulus similarity and coherence (Cohen et al., 1997), so discontinuous clusters 

within a category should disrupt II but not RB categorization.  RB category learning should be 

insensitive to experimentally imposed discontinuities in the category structure as learning 

depends on more abstract verbalizable rules—the rule could be applied regardless of the 

participant’s experience with the particular region in stimulus space.  When the continuity of the 

categories was manipulated (Maddox and Ing, 2005), assigning discontinuous clusters of stimuli 

to the same category label led to poor II category learning but had no effect on RB learning.  To 

address the potential confound of difficulty due to mismatched dimensions, a follow-up study 

(Maddox et al., 2007) found that with discontinuous RB and II category structures with 

equivalent numbers of relevant dimensions, II and not RB learning was still impaired.   

As shown here, the COVIS theory successfully predicted a number of behavioral 

dissociations between RB and II categorization.  While these dissociations demonstrate that the 

operating characteristics of RB and II category learning differ such that they are differentially 

sensitive to a variety of manipulations, they cannot directly address the question of neural 

structures engaged nor neurobiological mechanisms responsible for learning.  Experimental 

techniques from cognitive neuroscience, i.e., neuropsychology and neuroimaging, are necessary 

to bridge from empirical cognitive psychology to neurobiology.  

1.6.3 Neuroimaging category learning 

Collecting functional neuroimaging data while subjects are undergoing category learning 

allows us to test hypotheses about the proposed involvement of various cognitive processes in 

theoretical models of categorization.  Recently, a number of neuroimaging studies have 



 39 

investigated the neural correlates of category learning using a variety of different tasks.  In 

general, the data suggest that there exist multiple neural systems that can support category 

learning, but the system engaged depends on the task demands.  The areas that have been 

identified consistently across these different tasks (basal ganglia, MTL and extrastriate visual 

cortex) are also those implicated in cognitive models of categorization such as COVIS.  

Neuroimaging of the weather prediction task has consistently demonstrated the 

involvement of the basal ganglia (caudate nucleus) in category learning (Rao et al., 1997; Rauch 

et al., 1997; Lombardi et al., 1999; Poldrack et al., 1999; Rogers et al., 2000; Seger and Cincotta, 

2005).  The MTL has also shown to be involved in probabilistic learning, with activity present 

early in the training session followed by deactivation as training progresses (Poldrack et al., 

1999; Poldrack et al., 2001).  The authors interpreted this pattern of opposing activity in the 

MTL and caudate late in training as some of the first evidence for competition between memory 

systems.  That is, early on in the task, the MTL is perhaps mediating explicit memorization, but 

later in learning, the MTL activity is suppressed as the caudate-based system comes online.  

When Parkinson’s patients were scanned while learning this same task, they showed activation in 

the hippocampus and less activity in the basal ganglia than control subjects (Moody et al., 2004) 

suggesting that a lack of competitive suppression allowed the explicit memory system to 

participate when it normally would not.  Based on this idea, healthy participants may utilize an 

explicit strategy early on, but eventually abandon it as the striatal system proves to be more 

successful at learning the probabilistic feedback contingencies.  A challenge to this idea, 

however, comes from the finding of late learning deficits in amnesic patients performing the 

weather prediction task (Knowlton et al., 1994).  Healthy subjects maintained an advantage over 
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amnesics late in learning (after 50 trials) presumably by utilizing an additional MTL-based 

explicit memory strategy. 

In a neuroimaging study of the dot pattern prototype distortion task, a dissociation 

between learning systems was observed in the MTL and visual association cortex (Reber et al., 

2003) depending on whether categories were acquired explicitly or implicitly.  Subjects were 

either told that the patterns were all members of the same category before the experiment began 

(explicit group) or were asked to simply observe the patterns and were told later that they came 

from the same category (implicit group).  Both groups received a subsequent categorization test 

in which they saw category members and non-members.  Scanning during this post-test revealed 

group differences in activity in the hippocampus and posterior visual cortex.  When participants 

acquired the dot pattern categories explicitly, activity was observed in the left hippocampus 

greater for categorical than non-categorical trials (Reber et al., 2003).  In contrast, decreased 

activity in the right posterior occipital cortex for categorical more than non-categorical trials 

suggested that the categorical patterns were processed more fluently. 

Finally, in a recent fMRI study of RB and II visual category learning (see Chapter 2), we 

observed the preferential recruitment of the MTL during RB categorization and the posterior 

caudate during II categorization (Nomura et al., 2007).  These groups were matched in difficulty, 

contained stimuli that were highly similar, yet participants learned to discriminate between 

categories successfully over experience with 320 trials.  When the appropriate learning strategy 

was successfully applied, the MTL and the caudate were differentially engaged in RB and II 

learning, respectively. 

Neuroimaging of a variety of categorization paradigms strengthens the claim that there 

are distinct neural structures capable of supporting category learning depending on the particular 
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type of learning required.  A declarative, RB neural network, which includes at least the MTL, 

can support explicit learning of associations or memorization of categorical patterns.  There also 

exist at least 2 different types of implicit memory that rely on either the caudate or the posterior 

occipital cortex depending on whether the learning is incremental and feedback-driven or 

involves some form of perceptual fluency.  

1.7 Computational models of categorization 

A number of computational models exist that have successfully captured human category 

learning behavior.  While these models often are able to predict the same behavior, the basic 

tenets differ considerably from model to model, particularly in the degree to which the model’s 

mechanisms can be plausibly mapped onto specific neural structures in the brain.  It is often the 

case, such as in exemplar or prototype models, that no claims were made about the neural 

plausibility at the outset, so it is not always fair to compare these models to ones such as the 

striatal pattern classifier (Ashby and Waldron, 1999) that was purposefully instantiating a 

neurobiologically plausible mechanism.  However, by comparing the operating characteristics of 

these disparate models, one can isolate the particular contributions of each model to our 

understanding of the cognitive processes that support categorization behavior. 

1.7.1 Connectionist implementation of COVIS 

While the previous section described the theory underlying COVIS, there is also a 

computational version of the theory that has been used to fit the existing data (Ashby et al., 

1998).  The model is composed of a network of connected structures (see Figure 1.3) that is 

constructed in a traditional connectionist architecture.  It contains separate verbal and implicit 

systems that compete on each trial to acquire categorical information.  The implicit system 
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implements a decision bound model of categorization similar to the DBT models described 

previously.  The verbal system consists of a rule selection mechanism containing a weighted 

value that emphasizes more salient rules.  Rule switching is mediated by a different mechanism 

that assesses how probable the selected rule is versus the alternative rules.  Perceptual noise is 

included in the model by adding a random number to the stimulus representation on every trial.  

Feedback in this model returns to both systems and when a system is incorrect, the network 

weights are adjusted accordingly.  There are additional parameters of momentum and learning 

rate annealing that are incorporated into the learning rules of the systems.  The basic idea is that 

these parameters reduce large changes in the system’s representations after negative feedback. 

The COVIS computational model successfully fit a large set of experimental behavioral 

data and made predictions that fit a number of neuropsychological disorders.  However, the large 

number of included parameters makes it difficult to assess the neurobiological plausibility of the 

model.  In the later discussion of the newly developed model (PINNACLE), we take a similar 

approach as this COVIS model, but limit the number of parameters to only those that can be 

directly related to particular psychological constructs. 

1.7.2 SPEED model of automaticity 

 Ashby and colleagues (Ashby et al., 2007) recently described a new model of 

categorization that accounts for the result of overtraining in information-integration category 

learning.  SPEED (Subcortical Pathways Enable Expertise Development) is considered to be a 

model of expertise as it captures the automaticity of performance that occurs over extensive 

experience.  This biologically detailed computational model is intended to be an extension of the 

procedural learning system within COVIS.  The theory is that in initial stages of learning an II 
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category structure, one utilizes the basal ganglia-based procedural learning system, but 

gradually with much experience, control is passed to cortico-cortical connections between 

sensory association areas and premotor cortex. 

 Quantitative predictions of SPEED were examined in several different types of 

categorization experiments.  In a single-cell recording experiment in non-human primates, 

SPEED accurately predicted the pattern of firing within the premotor cortex after extensive 

practice on a tactile categorization paradigm.  SPEED also accurately predicted the decline in 

striatal cell firing rate in rats that had received extended training in pressing a lever after hearing 

a tone.  Finally, in a simulation of human category learning, SPEED accurately learned two 

categories as accurately and with the same decrease in RT as human subjects. 

1.7.3 Striatal Pattern Classifier 

There exist a number of computational models of categorization that have been applied 

specifically to RB and II category learning.  As previously mentioned, Ashby’s COVIS theory 

makes strong behavioral predictions for RB and II category learning based on the properties of 

the hypothesized learning systems.  Another model associated with COVIS that attempts to 

better account for the implicit/procedural learning system is the striatal pattern classifier (SPC) 

proposed by Ashby and Waldron (Ashby and Waldron, 1999).  In this model, learning depends 

on associating response labels with different regions of perceptual space.  The response region 

boundaries are not learned directly (as in COVIS), but rather emerge as a consequence of 

labeling space.  The SPC model contains a variable number of striatal units that are responsible 

for learning a low-resolution map of perceptual space.  Through experience with the stimuli (and 

feedback), each unit becomes associated with one of the category labels.  These striatal units are 
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meant to represent the role of the striatum in learning to associate a category label (and 

associated motor plan) with a group of cells in the visual cortex.  While the ‘striatal units’ are not 

necessarily meant to emulate striatal medium spiny cells, they are intended to be a hypothetical 

substrate that simulates the neural architecture of the caudate for the purpose of computational 

modeling.  The SPC model has had some success in capturing the subject data from several 

categorization paradigms. 

In a recent study (Maddox et al., 2007), different versions of the SPC model were fit to 

the data from a four-category learning task, where the number of striatal units used to represent a 

single category varied across model versions.  The number of free parameters assigned to each 

version of the SPC model increased with increasing numbers of striatal units.  That is, the SPC-1 

model, which assumed 1 striatal unit for each category, had 5 free parameters that determined the 

location of the units and 1 free parameter that represented the noise associated with the 

placement of the units.  Similarly, the SPC-2 model (2 units per category) had 13 parameters, the 

SPC-4 had 29 parameters, and so on.  In modeling, the greater the number of free parameters the 

better the model is at accounting for the variability in the data, but the cost is that there is less of 

a chance that each individual parameter has some cognitive reality.  Comparing fit values across 

models requires a calculation that takes into account the number of parameters (e.g. Akaike’s 

Information Criterion).   

Maddox and colleagues (Maddox et al., 2007) applied these SPC models as well as a 

hypothesis-testing model to data where subjects were learning discontinuous categories.  In these 

category structures, distinct clusters of perceptually dissimilar stimuli must be associated with a 

single category label, and were thus hypothesized to disrupt II learning.  Not only were subjects 

able to learn these discontinuous II category structures (albeit at a lower accuracy rate than the 
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RB discontinuous categories), but the model fits revealed a bias toward the SPC models rather 

than the RB model.  Furthermore, the participants with the most accurate performance also 

demonstrated better fits with the SPC models with more striatal units.  The authors interpreted 

this as suggesting that the improvements in some subjects’ behavior correspond to a recruitment 

of more cells and thus provide greater information processing capabilities.  Importantly, the use 

of a neurobiologically-inspired model here highlights the ability of cognitive computational 

models not only to better characterize behavior, but also to lend some insight into the processing 

characteristics of the system that is being modeled. 

1.7.4 SUSTAIN 

The SUSTAIN (Supervised and Unsupervised Stratified Adaptive Incremental Network) 

model (Love et al., 2004) is designed to capture human category learning behavior by recruiting 

clusters in response to surprising/new events.  Newly recruited clusters are then available to 

apply to future events and can eventually become prototypes or rules that define the categories.  

A major strength of SUSTAIN is that it can flexibly acquire a wide variety of behavioral data 

across distinct paradigms. 

There are five basic principles of SUSTAIN.  The first is that SUSTAIN is initially 

directed toward simple solutions.  Given a subset of potential outcomes, it selects the most 

parsimonious option.  Practically, this means it begins with a single cluster and adds additional 

clusters as more complexity is required.  The second principle is that perceptually similar 

category members tend to be grouped together.  This similarity-based grouping is advantageous 

because it removes the need for separate traces to be stored for each individual item.  This aspect 

of SUSTAIN is comparable to the formation of a prototype that reflects the central tendency of a 
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group of similar items.  The third principle in SUSTAIN is that it is able to learn in the 

presence or absence of feedback.  When feedback is present and indicates an item is incorrectly 

grouped with an existing cluster, a new cluster is formed.  In the case of unsupervised learning, 

new clusters are recruited whenever the similarity of the item is too distant from any of the 

existing clusters.  The fourth principle of SUSTAIN is that the pattern of feedback affects cluster 

recruitment.  As mentioned previously, when the model receives disconfirming feedback, a new 

cluster is formed, so depending on the nature of the feedback the model will develop differing 

representations.  The final principle is that clusters are in competition with each other.  If several 

clusters have been created that are highly similar to each other, the strength of the dominant 

cluster will be weakened if the input stimulus is more similar to the non-dominant clusters. 

SUSTAIN shares some conceptual characteristics with the SPC model.  While the SPC 

model uses the term ‘striatal unit’, the idea of labeling regions of stimulus space according to 

experience is similar to creating clusters in SUSTAIN.  With experience, participants learn to 

associate particular category labels with striatal units in different regions of stimulus space.  A 

major difference, though, is that the location of striatal units is fixed, whereas clusters in 

SUSTAIN are created according to experience in a more flexible fashion. 

1.7.5 Rational Model 

Anderson’s rational model (Anderson, 1991) is a Bayesian clustering model that attempts 

to capture statistical regularities in the environment.  In this model, internal subcategories or 

partitions are created by probabilistically grouping objects that share certain features, similar to a 

prototype.  Several partitions can then represent a single category in the world.  When 

encountering a new object, the model calculates the probability of classifying that object as a 
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member of a category.  The similarity of the object to the central tendency of the category is 

then weighted by how likely the category label is associated with other objects in that partition. 

The rational model is conceptually similar to SUSTAIN in that it begins with a single 

cluster and adds additional clusters as needed.  The difference lies in the goal of the model.  

SUSTAIN is concerned with recruiting clusters based on prediction failures or surprise events 

whereas the rational model attempts to determine the statistical structure of the world 

independent of the task at hand.  

1.7.6 Comparing computational models of categorization 

While SUSTAIN and Anderson’s rational model have had a great deal of success at 

accounting for a wide variety of behavioral data, these are purely cognitive models that make no 

claims about neurobiological reality.  This stands in contrast to the COVIS-based SPC model, 

which is motivated by the neurobiological properties of the basal ganglia.  A major advantage to 

using neurobiology to constrain cognitive models is that it prevents one from building 

computational components into the model not supported by the neurobiology of the system.  In 

addition, a consideration of the neurobiological plausibility can help differentiate between 

models that are able to account for the same pattern of results, but make different processing 

assumptions.   

In Chapters 4-5, a new multi-system model of category learning that attempts to 

instantiate the cognitive operations active during learning is assessed with behavioral and 

imaging data of a category learning task thought to recruit the action of both RB and II systems.  

The advantage of this new model over existing models of RB and II categorization are that it 
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attempts to account for the interaction between these learning systems and the modules of the 

model are intended to correspond to particular neural structures in the brain. 
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 CHAPTER 2: NEURAL CORRELATES OF CATEGORY LEARNING 

2.1 Overview 

While neuropsychological and experimental behavioral work supports the notion that 

multiple memory systems are engaged in different types of category learning, fMRI provides a 

window into the functioning of a normal healthy brain during the learning process.  Two fMRI 

studies of RB and II category learning that directly address the predictions made from the 

multiple memory systems theory are discussed below.  In short, we observed a dissociation 

between the MTL and caudate in both studies when subjects were successfully utilizing an RB or 

II strategy, respectively.  

2.1 fMRI Experiment 1: Testing COVIS with fMRI 

2.1.1 Background 

Previous neuroimaging studies have demonstrated the involvement of multiple neural 

systems in category learning, but no study had attempted to directly compare the neural 

correlates of RB and II learning strategies.  Specifically, a clean dissociation between the RB and 

II systems had not been demonstrated.  In a recent study (Nomura et al., 2007), we implemented 

the RB/II categorization task (Maddox et al., 2003) in a 3.0 Tesla scanner.  In this study, 

participants learned two categories of sine wave gratings with the categories structured to 

encourage either a RB or II strategy.  Gratings varied in spatial frequency (thickness of lines) and 

orientation (tilt of lines) according to the underlying category structure.  In both groups, 

participants had to differentiate between two categories that were defined by a boundary line.  

This boundary was such that category membership in the RB group was defined only by the 
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frequency of the lines (Figure 1.2A), but in the II group, frequency and orientation information 

needed to be combined in order to determine category membership (Figure 1.2B).  In these 

figures, each point represents a distinct sine-wave stimulus and the colors indicate the different 

categories.  Examples of category members are also shown.  The consequence of these differing 

category structures is that successful RB categorization is done most effectively with a 

verbalizable, explicit strategy and II categorization with a non-verbalizable, implicit strategy.  

2.1.2 Methods 

2.1.2.1 Participants 

Thirty-four healthy, native English-speaking, right-handed adults (15 males, 19 females) 

of mean age 23 (range 18 – 30) were recruited from the Northwestern University community for 

participation in this study.  All participants gave informed consent according to procedures 

approved by the Northwestern University Institutional Review Board and were compensated for 

their time.  Participants were randomly assigned to either the RB (N=17) or II (N=17) group.  

One RB participant was eliminated due to poor quality EPI data and 8 (4 RB, 4 II) were 

eliminated due to an inability to learn the categories (failing to meet a performance criterion of 

60% correct on the final block). 

2.1.2.2 Materials 

Stimuli were circular sine wave gratings (Gabor patches; see Figure 1.2) that varied in 

spatial frequency (thickness of lines) and orientation (tilt of lines) as in Maddox et al. (Maddox 

et al., 2003).  Participants were instructed to place each stimulus into one of two categories and 

to try to learn these categories over time based on the feedback given after each trial.  The only 
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difference between the RB and II groups was in the boundary that defined the categories.  The 

stimulus space for both the RB and II groups can be thought of in 2 dimensions, spatial 

frequency on the x-axis and orientation on the y-axis.  For the RB group, the stimuli were 

divided into categories based on a vertical decision boundary such that category membership 

depended only on the spatial frequency of the sine wave grating (Figure 1.2A).  For the II group, 

the categories were defined by a diagonal decision boundary that required integration of spatial 

frequency and orientation information (Figure 1.2B). 

2.1.2.3 Procedure 

On each trial, a fixation cross was presented for 750ms followed by a single stimulus that 

was presented for 2 sec and during this time, participants indicated to which category they 

judged the stimulus belonged.  Stimulus offset was followed by a 500 ms visual mask and 

feedback for the participant’s choice (“Right”, “Wrong”) was shown for 750 ms. Participants 

were warned (“Time”) if they had not made a response during the 2 sec the stimulus was on the 

screen (see Figure 1.2C).  A total of 320 categorization trials were performed by each participant 

divided amongst 4 80-trial blocks.  An equal number of fixation-only trials were pseudo-

randomly interspersed between stimulus trials to maximize the separability of the measured 

hemodynamic response. 

2.1.2.4 MRI acquisition 

fMRI data were collected using a Siemens TRIO 3.0 T MRI scanner equipped with a 

transit/receive head coil while participants performed the categorization task.  Whole-brain, 

gradient-recalled EPI (35 axial 3 mm slices, 0 gap) were collected every 2 sec (TR=2000; TE= 

25 ms; flip angle = 78°; 22 cm FOV; 64x64 acquisition matrix; resulting voxel size = 3.44 x 3.44 
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x 3 mm) for 330 volumes in each of 4 scans.  For anatomical localization, high-resolution, 3D 

MP-RAGE T1-weighted scans (voxel size = 0.859 mm x 0.859 x 1 mm; 160 axial slices) were 

collected for each participant following the functional runs. 

2.1.2.5 Data Analysis 

The functional images were first co-registered through time to correct for motion using a 

3D alignment algorithm (Cox, 1996).  Voxels with low signal (Cox, 1996) or excessive sudden 

signal change were eliminated (>30% in 2 sec) and the EPI data were smoothed (6.9 mm FWHM 

Gaussian kernel).  Data were transformed to standard stereotactic space (MNI 305; (Collins et 

al., 1994)). Estimates of trial-locked evoked activity were made for the period of 4-12 seconds 

after stimulus onset to account for hemodynamic delay with overlapping responses deconvolved 

via a general linear model.  Brain regions in which activity was associated with successful 

categorization were identified by comparing activity during correct and incorrect trials for each 

participant.  Within each group, brain regions that exhibited consistently greater activity during 

successful categorization was identified by a second-pass random effects analysis.  Monte Carlo 

simulation identified a reliability threshold of t>4.5 (p<.01 uncorrected) for all voxels in clusters 

of at least 300 mm3.  This method estimates the false positive rate for the study by creating 

random noise data that matches the mean and standard deviation of each voxel for each 

participant, maintaining the spatial structure of the data.  The noise data is then subjected to 

exactly the same analysis as the real data (including spatial smoothing and the two-pass random 

effects model) and a statistical threshold is identified for which fewer than .05 false positive 

clusters are identified anywhere in the brain for the study. 
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In addition to the whole-brain analysis, the ability to identify anatomical boundaries for 

two critical regions hypothesized a priori to be important for category memory enabled a 

specific region of interest (ROI) analysis in the hippocampus and the caudate.  For each 

participant, ROIs were drawn following anatomical boundaries that are visible on structural 

MRI.  The MTL ROIs were drawn using boundaries that are described elsewhere (Insausti et al., 

1998; Reber et al., 2002).  The caudate ROIs were drawn according to known neuroanatomical 

boundaries separating the caudate from the surrounding white matter and ventricles.  Each 

individual’s ROIs were then aligned using the ROI alignment (Reber et al., 2002) method 

described in Stark and Okada (Stark and Okada, 2003).  This method optimizes regional 

alignment at the expense of whole-brain alignment allowing for more precise localization and 

enhanced statistical power. Of particular interest was to test whether these two regions play 

different roles in RB and II categorization, i.e., whether there was significantly different activity 

associated with successful categorization in the RB and II groups.  Separate reliability thresholds 

for contrasts between the participant groups within the ROIs were identified by additional Monte 

Carlo simulations (the MTL ROI volume was 21,500 mm3, the caudate ROI was 11,000 mm3; 

note that this method matches the shape as well as providing a “small volume” correction for the 

ROI volumes).  Within the targeted ROIs, an alpha level of .05 is met by requiring clusters for 

which each voxel exhibited t (24)>2.0 to be at least 700 mm3 in volume for the MTL, 600 mm3 

for the caudate. 
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2.1.3 Results 

2.1.3.1 Behavioral performance 

For both groups of participants who learned the task, performance was above chance in 

all runs, and the groups demonstrated similar learning curves (Figure 2.1).  Learning across runs 

was reflected in a significant linear trend (F (1,23) = 111.6, p < 0.05).  Mean accuracy averaged 

across all 4 runs for the RB group was 70.8% (SE = 1.83) and for the II group was 74.9% (SE = 

3.03).  RB and II accuracy was not significantly different across all 4 runs (F (1,23) = 1.25, n.s.), 

thus one cannot attribute differences observed in functional activity to task difficulty.  Reaction-

time also did not differ significantly between the groups (F (1, 23) = 3.162, n.s.) across all 4 

runs. 

2.1.3.2 Neuroimaging 

2.1.3.2.1 Whole brain Analysis 

In Figure 2.2, activity evoked by correct categorization was compared to that evoked by 

incorrect categorization to identify brain areas associated with successful categorization.  The 

normalized atlas coordinates of the center of each of these clusters for the RB and II groups are 

listed in Table 1.  In the RB group (Figure 2.2, top) successful categorization was associated with 

activity bilaterally in the MTL, body of the right caudate, anterior cingulate and medial frontal 

gyrus.  In the II group (Figure 2.2, bottom), activity was observed bilaterally in the body and tail 

of the caudate for successful categorization. 

There was a great deal of common activity between the groups that performed RB and II 

categorization.  No differences were observed in total trial-locked activity (for all trials) between 
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the groups, nor were there any global differences in total activity for correct categorization 

trials alone at a corrected threshold across the whole brain.  

2.1.3.2.2 Region-of-interest analysis 

 The involvement of the MTL and caudate in RB and II categorization was examined with 

targeted anatomical ROI analysis to improve sensitivity to group differences in these crucial 

regions in which we had prior hypotheses about differential activity.  Within the MTL ROI, the 

effect of successful categorization was significantly larger for the RB than the II group in the left 

anterior hippocampus.  Correct RB responses evoked relatively greater activity than incorrect RB 

responses while the II responses did not vary with success.  It should be noted that the general 

profile of activity in the anterior hippocampus was a negative deflection that occurred for all 

stimuli (see Figure 2.3C), whether the trial reflected correct or incorrect categorization.  The RB 

success effect was an increase that effectively reduced the size of this deactivation.  This type of 

trial-locked deactivation has been reported previously and interpreted as a familiarity signal 

during recognition memory (Henson et al., 2003) or as an indication that MTL activity may be 

elevated during “easy” or rest baseline conditions (Law et al., 2005), e.g., during the fixation 

periods interspersed among trials here.  While it is tempting to suggest that assessing the 

familiarity of stimuli is involved in RB categorization, the size of this deactivation was not 

reliably different for RB and II categorization (although success did not affect MTL activity for 

II categorization) and further speculation should await a better understanding of the conditions 

under which trial-locked deactivations occur during memory tasks in the MTL.  Regardless of 

the reason for the deactivation, the MTL activity was correlated with RB success, implying a role 

for the MTL memory system during the RB task. 
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In contrast, successful II categorization was associated with greater differential activity 

in the right body of the caudate compared with successful RB categorization (Figure 2.3B).  In 

this region, increased activity was identified on all trials (Figure 2.3D), particularly correct trials, 

but the differential activity to successful categorization was reliably larger for II participants, 

suggesting that caudate activity is correlated with successful II categorization.  Both targeted 

ROIs exhibit some commonality in the overall pattern of activity, possibly reflecting the 

competition between two simultaneously active categorization systems.  However, the difference 

between activity on correct and incorrect trials indicates that the MTL activity is associated with 

successful RB categorization while the body of the caudate is associated with successful II 

categorization. 

2.1.4 Discussion 

Neuropsychological data has not provided a clear dissociation between the two types of 

category learning, likely due to interactions between these systems either through overlapping 

brain areas (e.g., the head of the caudate) or competition between the systems.  However, 

functional neuroimaging provides strong support for the dissociation between the RB and II 

category learning systems.  Several studies using fMRI to examine category learning have 

supported the idea that the basal ganglia, particularly the caudate, play a crucial role in category 

learning (Seger and Cincotta, 2005, 2006).  Comparison of success-correlated evoked activity 

during category learning here (Nomura et al., 2007) shows that the roles of the MTL and the 

caudate can be doubly dissociated for RB and II category learning.  This result was obtained 

using an alignment technique (ROI-AL) in the MTL and caudate that was previously only 

utilized in the MTL (Stark and Okada, 2003), which perhaps explains the lack of such an activity 
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pattern in these areas previously.  These findings all support the principle claims of COVIS 

that these two types of category learning are supported by separate neural systems with different 

operating characteristics.  

It is notable that the peri-stimulus time course (Figure 2.3C) of evoked activity in the 

MTL cluster reflects a downward deflection for all trials.  Unlike previous studies in which MTL 

deactivation was interpreted as reflecting competition with the basal ganglia, we observed 

deactivation in the MTL in conjunction with a success effect (relatively more activity for 

successful RB judgments than unsuccessful ones).  An alternate interpretation for the 

deactivation in the MTL is that it is a familiarity signal as has been observed in a number of 

studies of old/new recognition memory (Henson et al., 2003).  In our categorization tasks, the 

sine-wave stimuli are strikingly similar to each other both between and within categories, so the 

stimuli may seem familiar after just a few trials.   

Observed deactivations often raise questions about the relationship of metabolism 

(measured by fMRI) and neural activity.  However, in a recent study of epileptic patients prior to 

surgical resection, researchers recorded from neurons in the hippocampus and surrounding cortex 

while participants were responding to either novel or familiar stimuli (Viskontas et al., 2006) and 

found that familiar stimuli induced decreased firing rates such that activity was deflected below 

baseline.  This observation provides strong evidence that the downward deflection seen in the 

hippocampus in fMRI studies can arise from an inhibitory mechanism for familiar items at the 

neural circuit level.  

Although both types of category learning appear to evoke this familiarity signal, 

successful RB categorization seems to induce an additional relative increase in activity, creating 

a greater separation between correct and incorrect trial evoked activity.  Overall, the pattern of 
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activity in the MTL suggests the operation of two opposing processes.  There is a tonic 

deactivation to each trial reflecting familiarity; and an increase in activity for successful trials, 

possibly reflecting successful recollection.  The reduced deactivation for the II condition 

suggests one of two things: either the familiarity effect is attenuated for II or that the process 

associated with increased the activity for successful RB is active on all II trials regardless of the 

feedback.    

For the II group there was greater differential activation in the right posterior caudate 

body than in the RB group (Figure 2.3B).  The peri-stimulus time course (Figure 2.3D) shows 

that activity in the caudate increases on each trial, but the difference between correct than 

incorrect trials is greater in the II group.  Despite the differential activity seen here between the 

MTL and caudate ROIs for the RB and II conditions, the similarity in the overall pattern of peri-

stimulus time course activity observed suggests that both types of learning may be active 

simultaneously in both conditions, but that the one better suited to learning the category is more 

involved in successful performance.  This may in part explain the lack of hypothesized 

differential activity in frontal cortex.  It should also be noted that this subtle difference is one that 

is unlikely to be detected by a typical whole- brain voxel-based analysis, hence the need for the 

ROI analysis.  

The results here indicate that successful RB category learning is associated with 

increased activity in the MTL, reflecting explicit knowledge of the category.  In contrast, 

successful II categorization is associated with increased activity in the posterior caudate, 

reflecting the critical role of this area in feedback-oriented implicit category learning.  While this 

study revealed a dissociation between components of two different types of memory, it was 
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unable to reveal additional components of the hypothesized RB and II category learning 

networks proposed in the COVIS model. 

2.2 fMRI Experiment 2: Increased within-category variance 

2.2.1 Background 

The dissociation between the MTL and caudate observed in Experiment 1 provides strong 

support for the multiple systems view of categorization.  The aim of the second fMRI experiment 

was to address an alternative explanation for this dissociation.  Namely, in experiment 1, the 

inter-category variability was purposefully mismatched between the RB and II groups, to ensure 

similar group performance.  That is, the RB stimuli were closer to the category boundary line 

(less discriminable) than the II stimuli, making the tasks equally difficult.  It could be argued 

then, that the activation differences observed for RB and II category learning were due to the 

degree of discriminability of the stimuli rather than differences in learning strategy.  Specifically, 

since the RB stimulus set had more similar category members, it may have required a stronger, 

more specific representation than the highly discriminable II stimulus set, and this representation 

difference was responsible for the dissociation in activity between the MTL and the caudate.  

The purpose of Experiment 2 was to address this alternate hypothesis by matching the within-

category variance between groups.  The increased variance within the RB and II category 

structures also enabled analyses of trial activity close and far from the decision boundary to 

assess the effects of distance both on reaction time and functional activity.   

Experiment 2 followed the same basic paradigm as Experiment 1 with an additional 

manipulation of the stimuli in both the RB and II conditions so they receive both “low-

discriminable” (close) and “high-discriminable” (far) stimuli.  Close stimuli were added to the 
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previous II stimulus set and far stimuli to the previous RB stimulus set (Figure 2.4).  This 

manipulation enabled us to replicate the findings of Experiment 1 by analyzing the activity 

associated with the close RB stimuli and the far II stimuli (we expected to see MTL and caudate 

activity respectively).  Further, we can extend these findings by examining the activity associated 

with the new far RB and close II stimuli.  Specific contrasts compare the close and far stimuli 

within the groups, so any difference in activation pattern can be attributed to the difference in 

discriminability. 

If discriminability serves to distinguish between the systems, in both groups, we would 

expect that the close stimuli would be associated with MTL activity and the far stimuli with 

caudate activity.  However, if the degree of discriminability has no affect on the categorization 

process (as we predict), all stimuli should result in activation of the MTL in the RB group and 

the caudate in the II group.  In the behavioral data, because the far stimuli in the RB structure 

represent more salient examples of category membership than those close to the boundary, we 

expect RB performance to exceed II performance.  In contrast, the close stimuli provide no more 

information to the II group, thus performance should be the same as in Experiment 1.   

Even with this predicted change in performance, we expect similar activation consistent 

with our hypothesis that the MTL supports RB categorization and the caudate supports II 

categorization.  Since Experiment 1 and 2 share some common features, we can directly compare 

these overlapping conditions to look for important changes.  Specifically, by comparing the 

activation to close stimuli in the RB group to the previous RB group results and the activation to 

far stimuli in the II group to the previous II group results, we will be able to determine whether 

the pattern of activation changed with this new design, reflecting a possible strategy change.  

Since the hypothesis is that the learning strategy is based on the category structure rather than the 
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discriminability of the stimuli, we expect to replicate the results of Experiment 1.  That is to 

say, the presence of far stimuli in the RB group and close stimuli in the II group should not affect 

the process by which the categories are learned. 

2.2.2 Methods 

2.2.2.1 Participants 

Thirty-three healthy, native English-speaking, right-handed adults (10 males, 23 females) 

were recruited from the Northwestern University community for participation in this study.  All 

participants gave informed consent according to procedures approved by the Northwestern 

University Institutional Review Board and were compensated for their time.  Participants were 

randomly assigned to either the RB (N=11) or II (N=22) group.  Two II participants were 

eliminated due to poor quality EPI data (due to subject movement).  We recruited twice as many 

II subjects because initial modeling analyses revealed a sub-set of II subjects using an RB 

strategy (discussed in Chapter 3). 

2.2.2.2 Materials 

The task here was the same as in Experiment 1.  Again, there was an RB and an II group 

that observed sine wave gratings that varied in frequency and orientation.  In both groups, the 

stimuli came from 2 different categories, where the category boundary was the only thing that 

differed between the groups.  The RB stimuli were defined by a vertical boundary where 

category membership depended only on frequency, and the II stimuli were defined by a diagonal 

boundary that required an integration of frequency and orientation information.  There was an 

additional modification of both stimulus sets in that there were high-discriminable (far) stimuli 
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added to the existing low-discriminable RB set and low-discriminable (close) stimuli added to 

the existing high-discriminable II set (Figure 2.4).  Far stimuli were defined as being far from the 

category-bound, and were thus easily differentiated from the other category.  Close stimuli were 

more proximal to the category-bound, making the category membership more difficult to discern.  

Mathematically, the division between ‘far and ‘close’ was determined based on the mean 

frequency and orientation values of the category.  These values were determined for both 

categories of each individual’s category structure, and the trials were marked accordingly. 

2.2.2.3 Procedure 

As in Experiment 1, participants were placed in a 3.0 Tesla GE MRI scanner and 

observed images on a rear-projection screen via a mirror mounted above their eyes.  Before 

beginning, all participants regardless of group were instructed that they should categorize the 

stimuli while still on the screen by pressing one of the buttons they held in their hands.  In this 

event-related design, fixation trials were pseudo-randomly interspersed between the trials to 

maximize the separability of the hemodynamic response to stimulus trials.  On fixation trials, 

participants were instructed to fixate on the crosses without making a response.  On the stimulus 

trials, they made a response by pressing either the left or right button indicating one or another 

category, and then received feedback.  The procedure was the same for both the RB and II 

groups, the only difference was in the category boundary between groups.  All participants were 

instructed to make a category judgment while the stimulus was on the screen by pressing a hand-

held button in either their right or left hand.  There were 4 functional runs, each run consisting of 

80 trials and 80 blank fixations.  The anatomical localization scan followed the functional runs. 
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2.2.2.4 MRI acquisition 

fMRI data were collected using a GE 3.0 T MRI scanner equipped with a transit/receive 

head coil while participants performed the categorization task.  Whole-brain, gradient-recalled 

EPI (40 axial 3 mm slices, 0 gap) were collected every 2 sec (TR=2000; TE= 25 ms; flip angle = 

78°; 22 cm FOV; 64x64 acquisition matrix; resulting voxel size = 3.44 x 3.44 x 3 mm) for 326 

volumes in each of 4 scans.  For anatomical localization, high-resolution, 3D MP-RAGE T1-

weighted scans (voxel size = 0.859 mm x 0.859 x 1 mm; 160 axial slices) were collected for each 

participant following the functional runs. 

2.2.2.5 Data analysis 

Preprocessing and statistical analysis of the data were performed with a collection of 

software based on AFNI (Cox, 1996) as in Experiment 1.  The functional images were co-

registered through time to correct for motion, normalized to MNI stereotactic space, and spatially 

smoothed.  For each participant, voxels were fit to a general linear model function that is based 

on blocking stimuli to track activity that changes as a result of processing specific types of trials.  

We then created separate vectors marking the different trial types—correct, incorrect, close, far.  

In addition to looking at the differential activation to correct as compared to incorrect trials in 

both the RB and II groups, we also looked at the difference in activation to close and far trials 

both within and between groups.  This allowed us to draw conclusions about the effect of 

discriminability of the stimuli on the neural correlates of RB and II category learning. 

Based on a priori hypotheses about specific neuroanatomical areas, we also used a region 

of interest (ROI) analysis in the hippocampus/parahippocampal gyrus and the caudate nucleus of 

the basal ganglia.  These ROIs were hand-drawn in each subject using anatomical boundaries 
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visible on a structural MRI scan (as in Experiment 1).  The boundaries used to draw the 

hippocampal ROIs are discussed elsewhere (Insausti et al., 1998; Reber et al., 2002).  The 

boundaries used to draw the caudate ROIs were based on known neuroanatomical boundaries of 

the surrounding ventricles and white matter.  These ROIs were drawn independent of the 

location of functional activity. 

2.2.3 Results 

2.2.3.1 Behavioral performance 

For both groups of participants, performance was above chance in all runs, and the 

groups demonstrated similar learning curves (Figure 2.5).  Learning across runs was reflected in 

a significant linear trend (F (1, 29) = 24.716, p < 0.05).  Mean accuracy averaged across all 4 

runs for the RB group was 77.3% (SE = 0.034) and for the II group was 66.6% (SE = 0.055).  

The RB group accuracy was significantly greater than the II accuracy across all 4 runs (F (1,29) 

= 12.5, p< 0.05). 

2.2.3.1.1 Distance analysis 

 The accuracy of the subject groups differed as a function of distance of the stimuli from 

the decision bound (Figure 2.6).  The mean accuracy for close trials was 63.7% (SE=0.011) and 

for far trials was 77.5% (SE=0.02).  This difference was significant (F=67.948, p<0.01).  On 

close trials, RB subjects were 66.6% (SE=0.018) accurate and II subjects were 60.8% 

(SE=0.013) accurate.  On far trials, RB subjects were 80.3% (SE=0.032) accurate and II subjects 

were 74.7% (SE=0.024) accurate.  This distance effect was significant within both the RB and II 

subject groups, so the interaction was not significant (F=0.005, n.s.). 
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2.2.3.1.2 Reaction Time analysis 

There were reaction time (RT) differences between the groups as well as within the 

different trial types (Figure 2.7A).  The mean RT for RB subjects was 1.115 sec (SE=0.028) and 

for II subjects was 1.159 sec (SE=.021).  Overall, RB subjects were significantly faster than II 

subjects (F (1,29)=4.523, p<.05).  When the trials are broken down based on whether they were 

correct or incorrect, for the RB subjects, the mean RT for correct trials was 1.039 sec (SE=.031) 

and incorrect trials was 1.191 sec (SE=.027).  For II subjects, the mean correct RT was 1.126 sec 

(SE=.023) and incorrect RT was 1.191 sec (SE=.02).  For correct trials, the RB group was 

significantly faster than the II group (F (1,29)=4.945, p<0.05), but on incorrect trials, the groups 

did not differ (F (1,29)=0, n.s.).  There was a significant interaction between the groups (F 

(1,29)=14.094, p<0.05). 

When trials were separated based on distance to the boundary, there were RT differences 

between ‘close’ and ‘far’ trials (Figure 2.7B) within and between groups.  In the RB group, far 

trials were faster than close trials (F (1,20)=3.4, p<0.05).  The II group did not have any RT 

differences between close and far trials (F (1,38)=0.596, n.s.).  There was a significant within-

subject interaction between distance and group (F (1,29)=14.396, p<0.05).  There was also a 

significant between-subject interaction across group (F (1,29)=5.26, p<0.05). 

2.2.3.2 Neuroimaging 

2.2.3.2.1 Whole-brain analysis 

In Figure 2.8, activity evoked by correct categorization was compared to that evoked by 

incorrect categorization across all 4 runs to identify brain areas associated with successful 

categorization.  In the RB group, the significant regions of activity were all greater for incorrect 
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than correct trials (Figure 2.8A).  Specifically, the insula was active bilaterally and regions in 

the right frontal cortex were also more active during incorrect than correct trials.  In the II group 

(Figure 2.8B), activity in the body and tail of the caudate was greater for correct than incorrect 

trials.  Also, the right PFC was more active for incorrect than correct trials in II subjects.  When 

the successful categorization activity was compared directly between the groups, there were no 

observed significant differences across all 4 runs. 

 The designation of close and far stimuli allowed for additional contrasts of activity.  

Within the RB group, the contrast of correct and incorrect close trials revealed a number of 

significant regions of activity (Figure 2.9 and Table 2.2).  The majority of activation in this 

group was greater for incorrect than correct trials with the exception of the cuneus and right 

parietal cortex.  Bilateral activation in the insula and the frontal cortex was observed greater for 

incorrect close trials.  There were also medial frontal and some posterior parietal lobule 

activations.  During the far trials, there was less activation overall, but those areas that were 

significantly different were in the insula, frontal and parietal cortices.  Numerically, there were 

fewer incorrect far trials in the RB group, so it may not be fair to compare to the close trial 

activation maps.  Additional clusters of activity are listed in Table 2.2. 

 Within the II group, significant differences between correct and incorrect trials were only 

observed for close but not far trials (Figure 2.10).  As in the RB group, the insula and frontal 

cortices were more active for incorrect than correct close trials.  The body of the caudate and 

right parietal cortex were more active for correct than incorrect close trials in the II subject 

group.  Additional clusters of activity are listed in Table 2.3. 
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2.2.3.2.2 Region-of-interest analysis 

 The involvement of the MTL and caudate in RB and II categorization was examined 

using a targeted anatomical ROI analysis of these structures to improve sensitivity to group 

differences in these crucial regions in which we had prior hypotheses about differential activity.  

We observed a slightly different activity pattern than that seen in Experiment 1 where RB 

successful categorization activity was greater in the left anterior MTL and II was greater in the 

posterior body of the caudate.  Here, both the RB and II subject groups demonstrated successful 

categorization differences within the MTL, in slightly different regions.  In the RB subject group, 

successful categorization activity was greatest in the left anterior MTL (Figure 2.11A), but was 

also present in the right anterior MTL.  The II group showed a similar successful categorization 

difference within the left anterior MTL, but the cluster was smaller than that in the RB group 

(Figure 2.11C) and extended more laterally.  There were no significant regions of activity within 

the MTL ROI for the double subtraction between the RB and II subject groups, presumably due 

to the presence of similar activity in the single group subtractions.  In the caudate ROI, however, 

there were significant differences between the RB and II subject successful categorization 

activity.  In Figure 2.12 (bottom), three significant clusters of activity were detected in this 

double subtraction.  The top portion of Figure 2.12 shows the single group caudate ROI 

differences for successful categorization to demonstrate the difference in direction of the 

activation between groups.  The RB group was more active in these regions during incorrect than 

correct trials, whereas the II group was more active for correct than incorrect trials.  The double 

subtraction reveals the greatest difference in categorization success in the bilateral body of the 

caudate (Figure 2.12 bottom). 
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We also examined activity associated with perceptual discriminability within the ROIs 

to determine whether the close and far trials elicited differential engagement of the MTL and 

caudate.  As predicted, there was no difference between close and far successful categorization-

associated activity within the MTL and caudate.  For the II subjects, a cluster reflecting the 

difference between correct close and incorrect close trials was observed in anterior MTL (Figure 

2.13 bottom left) and this same area was also revealed in the contrast between far correct and far 

incorrect trials (Figure 2.13 bottom right).  For the RB subjects, the successful categorization 

difference was evident in close trials, but not in far trials (Figure 2.13 top).  However, the 

relative lack of incorrect far trials may have precluded an appropriate subtraction here.  In the 

caudate ROI, the distance to the bound had no effect on activity in posterior caudate (Figure 

2.14) in either the RB or II group.  

2.2.4 Discussion 

The data from the second fMRI experiment both replicated the findings of Experiment 1 

and provided some evidence that the dissociation between the RB and II systems was related to 

strategic differences rather than to the specificity of the category representation.  The reaction-

time (RT) differences between the RB and II groups suggest that the differences in the 

construction of the categories placed different cognitive demands on the subjects.  The task 

appeared much easier for the RB than the II group here, as their RTs were faster and accuracy 

was higher overall than in the II group.  When the trial types were separated into ‘close’ and 

‘far’, for the RB group, those stimuli located close to the category boundary were more difficult 

and elicited slower RTs than those that were far from the bound.  For the II group, however, 
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there was no RT difference between trial types, suggesting that the distance from the category 

boundary was not correlated with ease of categorization for the II stimuli.  

Due to this change in stimulus distributions, as predicted, the RB group learned more 

quickly and reached a higher level of accuracy than the II group.  The presence of category 

members located far from the category bound provided the subjects with a clear indication of the 

relevant stimulus feature (frequency).  The presence of far stimuli did not equivalently affect 

performance in the II group, as their performance was overall lower than the RB group.  This 

performance difference was predicted, and a necessary result of matching the within-category 

variance.  In the previous study (Nomura et al., 2007), performance was matched by reducing the 

distance of the RB stimuli from the boundary. 

 The fMRI data revealed a similar pattern of activity in the focused region-of-interest 

analysis to that in Experiment 1.  That is, successful RB categorization was associated with 

greater activity in the MTL than II categorization and II categorization elicited greater activity in 

the posterior caudate than RB categorization (Figure 2.12).  An additional observation in 

Experiment 2 was the presence of successful RB categorization activity in the MTL for II 

subjects.  While the utilization of an RB strategy is not optimal for acquiring an II category 

structure, the difficulty of the task may have encouraged the adoption of a non-optimal strategy 

in some II subjects.  The model-fitting techniques discussed in later sections (Chapters 3-6) have 

demonstrated that this is the case. 

 Within these MTL and caudate clusters of activity, there were several important 

differences between experiments in the peri-stimulus timecourses.  In the MTL (Figure 2.11B), 

the RB group activity, as a whole was less negative than the II group activity yet the difference 

between correct and incorrect trial activity was larger in the RB than the II group.  In Experiment 
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1, the opposite effect was observed where RB trials were more negative than the II trials 

(Figure 2.3 C).  This finding is puzzling, yet may be explained by the involvement of the RB 

system in II subjects.  The difficulty of the II learning task in Experiment 2 may have led a 

number of the II subjects to adopt an RB strategy and thus recruited the operation of the MTL.  

Mathematical models fit to these II subject runs (Chapter 3) supports this interpretation. 

 In the caudate, the double subtraction between successful categorization in RB and II 

subject groups reveals a number of significant clusters of activity.  The activity contributing to 

these clusters differs from that observed in Experiment 1.  Here, the incorrect trials serve to drive 

the group differences.  In all clusters, incorrect trials in the RB group elicit greater activity than 

incorrect trials in the II group.  The correct trial activity in both groups does not differ.  The 

apparent increase in activity for incorrect trials in the RB group and reduced activity for incorrect 

trials in the II group suggests that negative feedback is being processed differently in these 

subjects. 

In the whole brain activity, there was less consistency between the studies, but there are a 

number of reasons that could account for this.  As mentioned previously, the category structures 

differed in an important and deliberate manner between the two experiments.  Here we matched 

the mean distance of the stimuli from the bound between the RB and II groups whereas in 

Experiment 1, the RB categories were less discriminable than II.  Consequently, the groups 

differed in accuracy.  This discriminability difference may also have changed the cognitive 

strategy employed by participants, particularly in the II group. 

Consistent with our hypothesis, we observed similar patterns of activity for stimuli 

‘close’ and ‘far’ from the category boundary within the anatomical ROIs.  For the RB group 

those stimuli located closer to the category bound elicited similar MTL activity to those trials 
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that were farther from the bound, regardless of whether the response was correct or incorrect.  

Similarly, in the II group, caudate activity was observed for both close and far trials.  In addition 

to replicating the effects observed in Experiment 1, here we have demonstrated that 

discriminability of the stimuli cannot account for the differential activity observed during RB 

and II category learning.  Rather, the different learning processes required for RB and II 

categorization preferentially recruits the MTL and caudate-based memory systems. 
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CHAPTER 3: MATHEMATICAL MODELING OF RB AND II STRATEGY USE 

3.1 Overview 

Mathematical modeling can provide an alternative method for identifying strategy-use 

rather than the more typical accuracy-based analyses such as those utilized in Chapter 2.  

Particularly in tasks such as those used in the previously described fMRI studies, category 

structures that can be described with a mathematical formula (e.g. linear decision bound of a 

particular frequency value) are well suited to this approach.  

In the fMRI data discussed in Chapter 2, all analyses compared correct to incorrect trial 

activity to isolate areas associated with successful category learning.  While this was effective 

for the group analysis, the mathematical models here successfully identified blocks of trials in 

individual subject data that were fit best by either a RB or II strategy independent of the stimulus 

distribution assigned to those subjects.  This re-grouping allowed for the isolation of activity 

associated specifically with RB or II category learning.  For example, those blocks of trials better 

fit with an RB than an II model were associated with activity in the PFC and ACC and likewise, 

best fit II blocks were associated with extrastriate visual cortex activity.    

Mathematical models that objectively characterize the behavior of the subject are able to 

identify strategy use independent of accuracy assessments.  This approach proved particularly 

useful here as we did not explicitly instruct participants toward using one strategy over another.  

Indeed, modeling of the data from both Experiment 1 and 2 revealed that a number of II subjects 

were using an RB strategy early in learning and transitioned to II learning as they successfully 

acquired the category representation.  Using the model-based analyses to isolate participants 

employing different strategies provides a more rigorous window in to potential brain activation 
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and performance differences.  The following chapter discusses 2 mathematical models (RB 

and II) that were used to fit the behavioral data collected in the previously discussed fMRI 

studies.  Functional activity during the model-identified ‘best fitting’ runs is examined and 

discussed in the context of the COVIS theory. 

3.2 Methods 

3.2.1 RB and II model parameters 

Here we have instantiated RB and II decision-bound models derived from general 

recognition theory (GRT; (Ashby and Townsend, 1986)), which is a multivariate generalization 

of signal-detection theory.  On each trial, it is assumed that the percept can be represented as a 

point in multidimensional psychological space.  Decision bound theory then assumes that each 

participant partitions the perceptual space into response regions by constructing a decision 

boundary.  On each trial, the participant determines which region the percept is in, and produces 

the associated response.  Despite this deterministic decision rule, decision bound models predict 

probabilistic responding because of trial-by-trial perceptual and criterial noise (Ashby, 1992).  

Following previous work (Maddox et al., 2004b), both the RB and II models were fit 

separately to the behavioral data (for Exp 1 and 2) for each of the four 80-trial blocks for each 

participant.  In both the RB and II models, 2 parameters were used to fit the data.  The first was 

an intercept that reflected the location of the decision boundary in stimulus space.  The second 

was a perceptual shaping parameter that reflects the distinctiveness of the categories within the 

stimulus space.  When this parameter value is high, it represents the difficulty in discriminating 

two perceptually similar stimuli, but when the value is low, the category representation is more 
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precise.  With learning, the magnitude of this parameter should decrease, reflecting an 

increased ‘sharpness’ of the representation of the categories, a defining feature of perceptual 

learning.  

The RB model assumes a vertical decision boundary (in stimulus space) reflecting the use 

of a rule dependent on a single stimulus dimension (e.g. frequency).  The II model assumes a 

decision boundary with slope equal to 1.0 (i.e. a diagonal line reflecting integration of both 

dimensions).  Thus, both the RB and II models have two free parameters (x-intercept and 

perceptual shaping parameter for RB and y-intercept and perceptual shaping parameter for II), 

which allows for a direct comparison of fit value between models.  Each block of 80 trials was fit 

separately with both the RB and II model to identify the decision bound and perceptual shaping 

parameter that best accounted for the observed data. 

3.1.2 Model fitting 

Best fitting parameter values were identified by a downhill simplex method (Press et al., 

1992).  These RB and II models were fit to each run of each subject in order to identify the 

subject runs that were ‘best fit’ by a particular strategy.  After sorting all model fits from high to 

low, only the top third from both RB and II model fits were included in the resulting fMRI 

analyses.  In some cases, subjects contributed more than one run to the analysis.  This 

classification of 80-trial blocks was used to organize the fMRI data collected previously 

(Experiment 1 and 2) and examine whether the model-identified periods of best strategy 

expression clearly identified additional elements of the neural networks for RB and II category 

learning.  The increased within-category variance in Experiment 2 was intended to enhance the 

efficacy of modeling this data.  
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3.3 Results 

3.3.1 Experiment 1 data 

3.3.1.1 Mathematical models fit to behavioral data  

Out of 25 subjects (4 blocks each), there were 95 useable blocks of data to model (lost 5 

blocks due to noisy fMRI data), 44 in the RB group and 51 in the II group.  A color-coded 

schematic of the best fitting model per run is shown in Figure 3.1.  The blocks in red, magenta 

and pink represent the top, middle and low RB model fits, respectively.  The blocks in navy, blue 

and light blue represent the top, middle and low II model fits, respectively.   

Within the RB group, 38 out of 44 runs were best fit with the RB model.  Within the II 

group, 39 out of 51 runs were best fit with the II model.  There were a number of subjects that 

used a non-optimal strategy, particularly in the II group (e.g. II subj #12). 

3.3.1.2 Mathematical model-driven reorganization of fMRI data  

Figure 3.2 contrasts the top 15 subject runs that were best fit by the RB model with the 

top 15 runs best fit by the II model for correct trials only.  The activity during correct trials was 

used because the well-fit runs tended to be those runs where there was a high degree of accuracy 

and few incorrect trials.   The results of this analysis showed that in the right PFC, activity was 

greater for RB than II fit runs.  In a right visual cortical region, greater activity was observed 

during well fit II than RB runs.  

From the model-based fMRI analysis, we isolated two regions in the whole-brain activity 

that were not present in previous analyses.  The model-identified mixture of RB and II strategy 

use within the RB and II groups may have masked the dissociation in these areas, highlighting 
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the effectiveness of using these mathematical models to separate categorization behavior and 

corresponding functional activity.  These results are consistent with COVIS’s prediction the PFC 

is involved when one is correctly utilizing an RB strategy and the occipital cortex is involved 

when one is correctly utilizing an II strategy. 

3.3.2 Experiment 2 data 

3.3.2.1 Mathematical models fit to behavioral data  

Out of 31 subjects, there were 120 useable blocks of data to model (lost 4 blocks due to 

due to noisy fMRI data), 43 in the RB group and 77 in the II group.  A color-coded schematic of 

the best fitting model per run is shown in Figure 3.3.  Thirty-seven out of the 43 RB subject runs 

were fit best with the RB model and 34 out of 77 II subject runs were best fit with the II model.  

Thirty-three out of 77 II subject runs were fit better with the RB than the II model.  The 

remaining II subjects were fit better with the RB model on some runs and better with the II 

model on others, suggesting these subjects were particularly prone to strategy switching 

behavior.  

3.3.2.2 Mathematical model-driven reorganization of fMRI data  

The performance in Experiment 2 was lower overall than that in Experiment 1, so it was 

possible to contrast correct and incorrect trial activity.  Figure 3.4A shows the result of this 

successful categorization subtraction within the top 26 subject runs that were best fit by the RB 

model.  Areas associated with correct trial activity were the left anterior MTL, left superior 

frontal cortex, right parietal cortex and posterior cingulate.  Similar MTL activity was also seen 

in the ROI analysis using the original experimental grouping of subjects (Figure 2.11A).  That 
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the same area was revealed in this modeling-based analysis of the same data suggests that the 

best fit RB runs here may have been driving the effect seen in the ROI. 

There were also some areas that were more active during incorrect trials, particularly in 

PFC and medial frontal cortex.  The pattern of activity related to correct and incorrect trials 

suggest that these trial types are being processed differently.  One interpretation is that the MTL 

and frontal cortices are involved with maintaining the appropriate rule, whereas the inferior and 

medial PFC are involved when one receives disconfirming information.  COVIS maintains that 

the RB system relies upon hypothesis testing, and it follows that incorrect feedback should be 

particularly important for updating the decision boundary.  

This is one example where fMRI analysis can inform models of categorization. Given 

two models that make different predictions about feedback processing, the evidence shown here 

would support a model that assigns the processing of positive and negative feedback to different 

neural structures.  Chapter 5 examines this hypothesis in more detail. 

Figure 3.4B contrasts the activity associated with correct and incorrect trials within the 

top 14 subject runs that were best fit by the II model.  During correct trials, there was activity in 

the left body of the caudate as well as in the left visual association cortex and parietal cortices.  

While the caudate involvement was expected, the visual cortical area was not present in the 

previous fMRI analysis.  By only including subject runs that, based on their behavioral profile, 

were utilizing an II strategy, we’ve identified an additional component of the II categorization 

network.  This area fits in with the COVIS theory of II learning where the visual association 

cortex acts to acquire a category representation in association with the posterior caudate.  This 

region was also identified in the model-based analysis of Experiment 1, which suggests that the 
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components of the II categorization network are similarly active despite the differences in 

stimulus sets between studies. 

A specific example of the efficacy of the model in identifying the learning strategy 

independent of the imposed category structure is shown in Figure 3.5.  This data comes from a 

single II subject run that was best fit with the RB model.  This subject, despite receiving 

disconfirming feedback, persisted in using an RB strategy.  The pattern of functional activity 

observed during this run is similar to that of the group of RB-modeled subjects (Figure 3.4A).  

Specifically, there is MTL and frontal activity for correct trials and inferior PFC activity for 

incorrect trials.  The functional activity for a number of II subjects that showed this profile of RB 

strategy-use shows an overall pattern of activity that is much closer to the ‘RB network’ than the 

‘II network’ (Figure 3.6A).  Further, the presence of success-related MTL activity (Figure 3.6B) 

in these subject runs suggests that these particular II subjects may be contributing toward the 

activation seen in the MTL ROI in Figure 2.11C.  Without a model-based trial sorting 

methodology, activity for these II subjects that are using an MTL-based RB strategy would be 

grouped in with that of the II subjects that are utilizing an II strategy. 

3.4 Discussion 

Functional neuroimaging provides an effective tool for testing predictions of neurally-

inspired models of cognitive function such as COVIS.  This tool can be made even more 

effective by incorporating DBT-based mathematical models that more effectively characterize 

strategy-use.  As seen above, DBT provides a mechanism for examining the detailed behavioral 

data produced by a participant and conjecturing about the participant’s mental state (e.g., 

whether the participant is depending on an RB or II strategy).  Using this analysis to guide fMRI 
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data analysis can test predictions of the COVIS theory.  Comparing the participants who best 

exhibited an RB strategy with the best exhibited II strategy indicated additional areas of 

dissociation in frontal and occipital cortical areas, as predicted by COVIS.  Note that because 

COVIS is a hypothesis about how DBT can be accomplished in the brain, there is no circularity 

here.  If PFC areas had been associated with II category learning (or posterior areas with RB), 

the predictions of COVIS would have been contradicted.   The successful utilization of the 

model-fitting technique shown here to isolate the most effective applications of RB and II 

strategies suggests that this method in combination with fMRI can be used to further identify the 

brain networks supporting these processes. 
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 CHAPTER 4: PINNACLE: A NEW MODEL OF CATEGORY LEARNING 

4.1 Overview 

The observed dissociation between RB and II category learning in the MTL and the 

posterior caudate (Nomura et al., 2007) lends support to the notion that there are multiple 

systems in the brain capable of creating novel visual category representations.  While we can 

speculate as to the specific role of each of these systems in category learning based on the known 

neurophysiology and operating characteristics of the MTL and caudate in other contexts, 

neuroimaging alone cannot address the question of what mechanism(s) drive learning in both 

these networks.  Furthermore, the nature of interaction between the systems is unknown, and 

cannot be deduced from dissociations in fMRI data.  The development of a model that 

instantiates a cognitive theory of RB and II category learning systems allows us to test more 

specific hypotheses about how the brain is able to acquire these relatively simple category 

structures.  Using the model to make predictions in behavioral and fMRI data provides 

opportunities to test the theory in a specific, systematic manner. 

The following chapter describes our theory of RB and II category learning, which stems 

from the COVIS theory, but is articulated through a cognitive model called PINNACLE (Parallel 

Interactive Neural Networks Active in Category LEarning).  PINNACLE differs from the 

computational implementation of COVIS in a number of important ways, but the biggest 

difference is in the number of free parameters.  Our approach to building this model was to start 

with the minimum number of parameters and to add additional ones when the model could not 

account for the observed behavior.  
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4.2 Background 

The DBT model of categorization is a relatively simple method for describing boundaries 

in perceptual space that lead to visual category representations.  It has typically been used in 

paradigms in which the experimental stimuli can be described in a small number of dimensions 

(usually 2).  However, these models are limited in the sense that they say very little about the 

hypothesized cognitive operations necessary for RB and II category learning to co-exist within 

the brain.  In contrast, sophisticated cognitive models contain strong hypotheses about 

representational structures but do not typically indicate how these structures are represented in 

neural systems.  For example, it is not immediately clear how SUSTAIN or Anderson’s rational 

categorization model proposes to implement cluster representations in the brain or how these 

change with experience. 

The PINNACLE model aims to represent the cognitive state of the participant on every 

trial including the current best estimate of the RB system representation, the II system 

representation and the decision structure that adjudicates competition between the systems.  The 

resulting model trial-by-trial predictions have the potential to enhance the analysis of functional 

neuroimaging data by identifying individual trials that are particularly clear examples of specific 

strategy use.   

As the model becomes more detailed and specific, it also provides an opportunity to test 

its psychological reality by examining whether specific parameters have real neural correlates.  

An important goal in constructing PINNACLE was that every parameter and component be 

associated with a particular cognitive process.  In those cases where a parameter is identified that 

cannot be mapped onto a cognitive or neural process, comparing the relative fit value of the data 
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to that generated by a version without the parameter in question can evaluate its necessity.  In 

this way we hope to avoid the danger of over-fitting the data with extraneous parameters. 

4.3 Cognitive processes modeled in PINNACLE 

The hypothesized organization of the neural circuits supporting RB and II category 

learning in Ashby’s COVIS theory is outlined in Figure 1.3 and was discussed previously.  

While the PINNACLE theory is adapted from COVIS and thus implicates many of the same 

neural structures, the role of the MTL in supporting RB category learning and the posterior 

region of the caudate in supporting II category learning are emphasized in the PINNACLE 

model.  Accordingly, the representation of the category structure in the RB system here is 

designed specifically to mimic the operation of the MTL.  We hypothesize that RB 

categorization as a whole, though, depends on learning within a network consisting of the PFC, 

MTL, head of the caudate, and the ACC.  In contrast, II categorization is thought to depend on 

learning in posterior cortico-striatal circuits between extrastriate visual cortex and the body/tail 

of the caudate.  Both systems feed information to the PFC to guide motor responses about 

category membership. 

4.3.1 RB system 

The role of the RB system in the model is to represent the current decision bound of the 

participant.  Since the category structures utilized here were based on linear decision boundaries, 

similar to the mathematical models discussed previously, the current model uses a vertical line to 

track the RB system’s representation of the category structure.  This line can be conceptualized 

as a verbalizable rule that shifts according to the current state of learning in the participant. 
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In terms of functionality, the RB system requires enough flexibility to enable switching 

amongst different verbalizable rules in accordance with feedback information.  This requires the 

involvement of both attention and working memory processes in the PFC to not only hold the 

most recent rule in mind, but to compare the previously seen examples of a particular category to 

the current stimulus.  Explicit memory processes should support this latter function in particular, 

facilitated by reciprocal connections between the MTL and PFC.  

4.3.2 II system 

Learning in the II system is highly sensitive to feedback information.  As discussed 

previously, the nature and timing of feedback is essential to the operation of the II system.  We 

hypothesize that learning in the II system is mediated by cortico-striatal loops through the 

posterior portions of the caudate of the basal ganglia to visual association cortex (Yeterian and 

Pandya, 1995).  These loops have been considered by others (Houk et al., 2007) to be 

computationally powerful processing modules that allow for action selection.  The projections 

from posterior visual cortices to PFC provide a pathway by which the category representation 

becomes associated with a particular verbal label.  The dompaminergic input comes from 

neurons within the substantia nigra, and through a process similar to reinforcement learning, the 

most recently active synapses responsible for the correct response are strengthened (Wickens, 

1990; Schultz, 1992). 

4.4 Implementing PINNACLE theory into a cognitive computational model 

The theory guiding the construction of PINNACLE assumes two learning systems that 

rely on MTL- and caudate-based memory compete on each trial to drive behavior.  In this 

section, the mathematical operations that make up the RB and II systems of PINNACLE as well 
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as the model fitting methodology are described.  The category representations within the RB 

and II systems of PINNACLE can be thought of as analogous to the DBT-style mathematical 

models discussed in Chapter 3.  What is novel about PINNACLE is that both systems are 

available to contribute to learning on every trial just as a healthy human is capable of using all 

available resources in a given learning task. 

The process of evaluating the operation of PINNACLE involves several steps.  The first 

is to demonstrate its ability to generate learning curves similar to those observed in the RB and II 

groups in Experiments 1 and 2.  This step is important in establishing that the mechanics of the 

model not only enable learning, but that the progression of learning is similar to that of actual 

subjects.  In the next step, we evaluate whether PINNACLE is capable of fitting individual 

subject behavior on a trial-by-trial basis.  This means finding a set of parameters for each subject 

that produce the best account of that subject’s response profile.   

Through the model-fitting process, details about the model’s structure regarding the 

number of free parameters of the model, the mechanism of interaction between systems and the 

appropriate feedback mechanism were addressed.  In all these cases, model simulations applied 

to the available behavioral data provided a manner of testing competing hypotheses.   

4.5 Model structure 

The structure of the model is based on the hypotheses put forth by the COVIS theory of 

category learning.  That is, similar to COVIS, the PINNACLE model contains 2 learning systems 

that compete on each trial to provide the output response.  Based on feedback after each trial, the 

system that provided the most recent response updates its representation.  A schematic of the 

model is shown in Figure 4.1.  Where PINNACLE differs from COVIS is on the specific 
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emphasis on the MTL and the caudate and the incorporation of neurobiologically plausible 

mechanisms for implementing the theory. 

Our general approach in building this model was to constrain the number of parameters to 

those that we could relate to a specific psychological construct.  One consequence of this bottom-

up approach is that there are relatively few free parameters.  Throughout the development of the 

model, we’ve added additional parameters in those cases where the existing parameters were not 

sufficiently capturing the behavior, but the over-arching goal was to maintain an understanding 

of the purpose of each parameter. 

4.5.1 Free parameters 

4.5.1.1 Learning rate of the model (P1) 

The learning rate parameter reflects the rate at which the model adjusts the category 

representations over the course of the experiment.  It can also be thought of as the rate at which a 

participant in the experiment updates their learning rule or response pattern throughout the 

experiment.  A high value for this parameter evokes large updates to the category representations 

after feedback. 

4.5.1.2 Starting perceptual shaping value (P2) 

The perceptual shaping parameter is the same parameter that was discussed in the 

mathematical models described previously (Chapter 3).  This parameter reflects the initial state 

of the model’s ability to discriminate category members in stimulus space (Figure 4.2).  Because 

the model (just like a naïve subject) has no prior knowledge of the category structure, this 

parameter is initially set at a relatively high value (eg. 10,000).  In Figure 4.2, the probability of 
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responding ‘A’ (p(A)) as a function of distance from the boundary is graphed for different 

values of the perceptual shaping parameter.  One consequence of DBT that is shown in this 

graph is that the greater the distance from the boundary, the more confident the responses (p(A) 

is closer to 0 or 1).  This is true for all values of the perceptual shaping parameter, and as this 

parameter decreases in magnitude, the category representation is considered to be sharper. 

4.5.1.3 Learning rate of the perceptual shaping parameter (P3) 

Similar to the learning rate of the model, this parameter determines the rate at which the 

magnitude of perceptual shaping changes.  Since we’re hypothesizing that this is a different 

process than the one that governs the overall learning of the model, we designate a separate 

parameter for this learning rate.  For example, it’s possible that one could have a high learning 

rate for the model, but a low learning rate of the perceptual shaping parameter.  This would fit a 

behavioral profile of someone who makes large adjustments in response to feedback, but is 

slower to incorporate this feedback information into their perceptual processing system. 

4.5.1.4 Standard deviation of the Gaussian decision noise distribution (P4) 

This parameter was necessary because there was no perceptual noise built into this 

model.  Without some external source of noise, the model would be completely deterministic, 

thus we added this ‘decision noise’ to the model to emulate human variability in performance.  

The noise was added to the model by selecting a random number out of a Gaussian distribution 

with the standard deviation specified by this parameter.  A large standard deviation of the 

Gaussian distribution implies a greater probability of selecting a large random number, which 

consequently will lead to increased variability in performance. 
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4.5.2 RB and II system calculations 

4.5.2.1 Distance and probability calculations 

The model receives input in the form of the frequency and orientation (or x- and y-

coordinates in stimulus space) of a sine wave grating stimulus.  The output is a categorical 

judgment as to whether the stimulus belongs in category ‘A’ or ‘B’.  Just like a naïve subject, at 

the beginning of the experiment, the model has no initial concept of the underlying category 

structure.  At the beginning of the first run, a starting position for both an RB and II decision 

boundary is randomly generated by selecting a number within the range of the x- and y-

coordinates, respectively. 

On each trial, both the RB and II systems separately calculate the probability that the 

input stimulus is an ‘A’ (and by default the probability that the stimulus is a ‘B’).  This 

calculation incorporates both the distance of the current stimulus from the decision boundary and 

the perceptual shaping parameter, both of which get updated on each trial.  The series of 

calculations that result in the estimation of the probability that a stimulus is in category A (p(A)) 

begin first with the calculation of the mathematical distance from the input stimulus to the 

decision bound (Equation 4.1).  The distance value (distRB or distII) and perceptual shaping (PS) 

value are then utilized in the probability calculation (Equation 4.2) (Ashby, 1992).  The resulting 

probability (prob) is equal to the probability that the stimulus was in category A.  The probability 

that the stimulus is in category B (p(B)) is equal to 1-p(A). 

 

Equation 4.1: distance calculations 

 distRB = xi-RBbound,  
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 where RBbound=current vertical RB decision bound, xi=current x-coordinate 

 distII = (√2/2)*(xi- yi+int),  

where xi=current x-coordinate, yi=current y-coordinate, int=current y-intercept of II 

bound 

 

Equation 4.2: probability calculation 

 

 ztemp = -(dist/(√(PS))) 

 zneg = 0 

 if ztemp < 0: 

  zneg = 1 

 if zneg = = 1: 

  ztemp = -ztemp 

 

 tt = (-.5*(ztemp)*(ztemp)) 

 

 if tt < -50: 

  tt = -50 

 

 fx = (1/√(2*π))*(ett) 

 

 t = 1/(1+(.33267*ztemp)) 

 prob1 = (0.4361836*t)+(-.1201676*t*t)+(.937298*t*t*t) 
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 if zneg = = 0: 

 prob = 1 - (fx*prob1) 

 elif zneg = = 1: 

 prob = (fx*prob1) 

  

  

 This probability calculation effectively gauges the psychological distance of the stimulus 

from the decision bound scaled by the perceptual shaping parameter.  The RB system, as in the 

mathematical models, consists of a vertical line in stimulus space that can vary in one dimension 

(frequency here).  The decision boundary in the II system is also a linear bound with a slope 

fixed at 1.0 that is allowed to vary in its y-intercept.   

 

4.5.2.2 Decision module: selecting a system 

The confidence of each system is used to adjudicate between the systems.  Here, the 

confidence of a system is equal to the maximum value of p(A) or p(B).  That is, if p(A) > p(B), 

confidence is equal to p(A) and vice versa.  We then calculate the odds that either system would 

be chosen based on the RB and II system confidence values (Equation 4.3). 

 

Equation 4.3: Odds calculation 

  OddsRB = conRB/(1.0 – confRB) 

  OddsII=confII/(1.0 – confII) 
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Since the model is designed to have competitive RB and II systems, the more confident 

system should always be selected.  However, because we are modeling human behavior, the 

model needs to have the capability of making the less confident (low probability) choice.  This 

source of noise takes the form of a Gaussian distribution of a variable standard deviation (see P4 

above).  If the random number selected from the Gaussian distribution with the standard 

deviation specified by P4 is less than OddsRB - OddsII, the RB system is selected.  If the random 

number is greater than the difference of the odds, the II system is selected.  The rationale for this 

system assignment is that a large random number is fairly unlikely to be selected, so only rarely 

will the system selection deviate from the most confident choice.  However, on occasion, when 

the random number is large enough to overcome the difference of the odds values, the less 

confident system will be selected.  This is an important aspect of the model that allows for 

strategy shifting.  A deterministic model would not be able to account for human response 

patterns that are susceptible to internal and external sources of noise.  By introducing noise into 

the model we hope to simulate this human-like property. 

Another component to the decision module that attempts to account for human behavior 

is the ability to engage in probability matching.  Even if a person is highly confident that a 

particular stimulus is an A, every so often they will still call that item a B.  This type of 

inconsistent response profile can be modeled by allowing the selected system to make the low 

probability response a fraction of the time in proportion to the probability of that trial.  For 

example, if the probability that a stimulus is an A is 90%, 90% of the time that stimulus will be 

called an A, but 10% of the time it will be called a B.  
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4.5.2.3 Feedback: evaluation of the selected system’s response 

After either the RB or II system is selected, its chosen response is evaluated and feedback 

returns to the same system that made the response.  If the feedback is positive (system response 

was correct), no changes are made to the internal representation of the decision bound, but the 

perceptual shaping parameter is updated (decreased according to its learning rate).  The system 

that was not selected retains the same decision bound and parameter set as the previous trial.  

Negative feedback leads to the system updating its decision bound in a specific way depending 

on the location of the incorrect response.  For example, if the RB system incorrectly called an 

‘A’ a ‘B’, this indicates that its decision bound is located too close to the A stimulus space.  The 

new decision bound shifts in the rightward direction in proportion to the learning rate of the 

model proportional to the distance of the error.  In addition, the perceptual shaping parameter 

increases in response to negative feedback to reflect the poor representation of categories in 

stimulus space.  An identical updating mechanism is used when the II system responds 

incorrectly. 

The feedback evaluation is complicated slightly when the model relied upon probability 

matching to make its response.  That is, if the stimulus was most probably an ‘A’, yet the model 

incorrectly responded ‘B’, the internal representation that led to the original ‘A’ evaluation 

should not receive negative feedback.  If you consider the analogous thought process going on in 

a subject, if one is exploring the space by making a response contrary to expectation and this 

choice leads to negative feedback, this should not change the original hypothesis.  On these types 

of trials, the model receives positive feedback that endorses the high probability choice.  The 

opposite situation could also occur, where the model utilized probability matching and the low-

probability response was correct.  This indicates that the original high-probability representation 
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needs to be updated because without probability matching it would have selected an incorrect 

response.  Thus on these sort of trials, the model receives negative feedback despite the fact that 

the actual system response was correct.  

4.6 Model fitting 

Evaluating the performance of PINNACLE in fitting the available behavioral data was a 

multi-step process.  The first step was to verify that the model produced learning curves similar 

to the human subjects in the experiment.  This meant matching the model’s accuracy across 4 80-

trial blocks to the RB and II group accuracy (in both Experiments 1 and 2). 

The next step was to use the model to make predictions of individual subject performance 

on a trial-by-trial basis.  This step required that the model find the optimal set of parameters that 

generate a behavioral profile that most closely matches each subject.  Importantly, the model 

does not ‘know’ whether a subject is receiving an RB or II category structure.  It merely finds the 

best fitting parameters that can account for the set of category decisions the person happened to 

make.  

4.6.1 Verifying PINNACLE behavior matches average group data 

This first evaluation of PINNACLE can be conceptualized as demonstrating that the 

model structure produces learning that resembles human performance.  Practically, this means 

verifying that the model is capable of generating accuracy levels across subject groups that 

approximate those of the actual RB and II subject groups in both Experiment 1 and 2.   

To simulate the RB and II experimental groups, PINNACLE received both RB and II 

category structures in the same trial orders as the human subjects.  On each trial, the model 

generated a prediction of category membership based on its internal representation of the 
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category structure (described previously).  After all subjects had been simulated, the average 

accuracy and standard deviation per block of the RB and II model-simulated groups was 

compared to these actual subject values observed in the experiment.   

The ‘fit value’ of a single pass through the stimuli was based on the sum of squares 

difference between the model-based accuracy and standard deviation and the subject accuracy 

and standard deviation.  Depending on this fit value, the search algorithm adjusted the 

parameters and repeated the entire process working to minimize this value.  The results of this 

minimization procedure identified the optimal parameter set that produced performance that best 

accounted for the actual subject group behavior.  The relative importance of fitting the accuracy 

levels over that of fitting the standard deviations meant that we weighted the fit calculation in 

favor of the accuracies (Equation 4.4). 

  

Equation 4.4: Group model fit calculation 

RB acc fit = ∑(RBmodaccn - RBsubjaccn)2 where n = 1 through 4 

II acc fit = ∑(IImodaccn - IIsubjaccn)2 where n = 1 through 4 

RB st dev fit = ∑(RBmodstdevn - RBsubjstdevn)2 where n = 1 through 4 

II st dev fit = ∑(IImodstdevn - IIsubjstdevn)2 where n = 1 through 4 

Fit value = [(RB acc fit) + (II acc fit)] + [(RB st dev fit) + (II st dev fit)]/1000 

 

Since PINNACLE is intended to be a model of categorization behavior, the particular 

stimulus sets or trial orders should not affect the operation of the model.  Rather than fit the data 

from Experiment 1 and 2 separately, we chose to fit the model to the combined dataset of both 

experiments together.  Not only does this provide a variety of trial orders, but also stimuli from 
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different parts of perceptual space.  The resulting best fitting parameters should thus have the 

most accurate correspondence with reality. 

4.6.1.1 Amoeba simplex search algorithm 

The search algorithm used to find the optimal set of parameters was an amoeba simplex 

search method (Press et al., 1992).  Based on the number of starting parameters (N), amoeba 

generates a ‘simplex’ which is a list of N+ 1 starting parameter sets.  The model generates a fit 

value for each of these starting parameter sets, and the direction of the search within parameter 

space is determined by the lowest of these fit values.  As amoeba iterates through the parameter 

sets, it changes the parameters in such a way as to move in the direction of the lowest fit values.  

A benefit to this search algorithm is that it naturally gravitates toward low regions of parameter 

space, making the search faster and more efficient than other so-called ‘brute force’ approaches. 

4.6.1.2 Group data fits: 4 parameter model 

Using the amoeba simplex downhill search algorithm, we identified the set of 4 

parameters that minimized the difference between the group averages and the model outputs.  

These model fits were evaluated for 12 different feedback models as a way of testing 

assumptions about feedback processing (see section 4.6.2.2).  However, with only 4 parameters, 

the search algorithm could not find a good fit to the data (Figure 4.3) in any of the different 

feedback models.   

4.6.1.3 Group data fits: 5 parameter model 

One of the assumptions with the 4-parameter model is that there is a single learning rate 

for the model, which applies similarly to the RB and II systems.  In light of the hypothesized 
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processing differences between these systems and the inability of the 4-parameter model to 

find a good fit to the data, we surmised that the systems may require independent learning rates.  

Thus, we added a fifth parameter to the model so now the algorithm was searching for the best fit 

with an RB learning rate, II learning rate, learning rate of the perceptual shaping parameter, 

initial perceptual shaping value and standard deviation of the decision noise.  

When separate RB and II learning rates were incorporated into the model, the 5-

parameter model returned a much lower optimal fit value than with the 4-parameter model 

(Figure 4.4).  This suggested that rather than having a single learning rate, learning in the RB and 

II systems may require independent processing capabilities.  

4.6.2 Model assumptions 

When constructing a model of human behavior, a number of practical issues inevitably 

arise that can only be resolved by making certain assumptions.  Being aware of these 

assumptions is important as they can guide the interpretation of the results of the model behavior 

as well as provide points for improvement in future versions.  The operation of PINNACLE 

relies upon a number of important initial assumptions, which are discussed briefly here and are 

laid out in Table 4.1.  

4.6.2.1 Testing feedback processing and system interaction in PINNACLE  

Constructing a first version of PINNACLE meant making certain assumptions, and 

testing these assumptions is an important step in increasing our confidence that the model is 

capturing some cognitive reality.  A number of these initial assumptions are related to the 

feedback processing of the model as well as the system dynamics.  By comparing different 

versions of PINNACLE that instantiate different mechanisms of feedback and system 
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interaction, we can determine the model that best accounts for the data.  These feedback 

models fall into two general categories that are described below. 

4.6.2.1.1 RB and II system interaction 

The goal of PINNACLE is to model two interactive learning systems (RB and II), but this 

does not rule out the possibility that there are more than two systems in the brain available to 

acquire categorical information.  By narrowing the range of possibilities, we hope to understand 

the underlying mechanisms of these two learning systems, and as the model becomes more 

specific and complex, additional capabilities can be added.  For example, a number of pieces of 

evidence support the idea that there is a posterior circuit involving sensory cortex that is 

important for perceptual learning processes in categorization (Reber et al., 2003).  The current 

version of PINNACLE does not attempt to account for this third ‘category learning system’. 

The nature of the interaction between the RB and II systems is assumed to be 

competitive, in that the more successful system will maintain an advantage over the less 

successful system.  This assumption was based on evidence from animal work as well as 

neuroimaging of humans in different learning situations, but the evidence does not definitively 

support the competitive systems hypothesis.  As discussed in Chapter 1, there are several other 

types of interaction that are also plausible: cooperative interactive systems, parallel independent 

systems and a combination of different modes of interaction.  Any of these described methods of 

system interaction are potentially relevant to our model of category learning.  To address these 

possibilities, additional versions of the model that manipulate the interactive relationship of the 

RB and II systems are competitively assessed.  The degree to which the model fits the data 
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guides us toward the type of interaction that most closely reflects reality in the context of the 

model’s framework. 

To test the idea that the systems learn simultaneously in parallel, feedback is allowed to 

return to both systems, regardless of the system that made the response (see Model 2 in Table 

4.2).  This feedback will potentially influence the systems differently according to the prediction 

of the system.  The most confident system will still dictate the overt response, but each system 

will be allowed to update accordingly.  The appropriate system for the task should still be the one 

that is most likely responsible for the category decisions, but the difference from this and the 

competitive model is that the alternate system would simultaneously develop an appropriate 

category representation.   

Other variations of this idea are captured in Models 4 and 5 in Table 4.2.  In Model 4, the 

RB system receives feedback regardless of the system that was active on that trial, but the II 

system only receives feedback on trials where it was active.  The converse of this mechanism is 

represented in Model 5.  

4.6.2.1.2 Positive vs. negative feedback 

 In learning, feedback is a critical feature that helps shape behavior.  Feedback generally 

comes in two varieties: positive and negative.  Positive feedback endorses the most recent 

behavioral response and negative feedback indicates that an error has occurred.  In the context of 

the PINNACLE model, learning in the RB and II systems is assumed to occur similarly with the 

incorporation of negative feedback.  It is only on these erroneous trials that the category 

representation is updated.  On positive feedback trials the current category representation is 

endorsed such that the noise associated with the decision bound is reduced, but no changes are 
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made to the representation itself.  There is some evidence, however, that positive and negative 

feedback differentially affect learning depending on the task demands. 

 In a set of early rule-based category learning tasks, participants faced with a two-choice 

response task exhibited more effective learning with negative rather than positive feedback 

(Meyer and Offenbach, 1962).  In this case, negative feedback was considered to be more 

informative than positive feedback because it both signaled the participant that his or her 

hypothesis was incorrect and also signaled which was the correct response.  As discussed 

previously (Chapter 1), RB learning progresses even in the absence of any type of feedback, 

which has not been the case for II learning (Ashby et al., 2002).  In one study of II category 

learning, the presence of feedback was deemed necessary for learning to occur, but they did not 

differentiate between positive and negative feedback (Ashby et al., 1999).  More recently, a 

study of II category learning under different feedback conditions found that both positive and 

negative feedback signals are critical for learning (Ashby and O'Brien, 2007).  In this study, 

participants were asked to learn II category structures either with only positive feedback, only 

negative feedback, or full-feedback (both positive and negative).  Model-based analyses of these 

different groups revealed that positive or negative feedback alone leads to inappropriate RB 

strategy application and only the full-feedback condition fostered II strategy use.  

 Based on these results, one might predict that positive and negative feedback should 

differentially mediate learning in the RB and II systems of PINNACLE.  Again using different 

versions of PINNACLE that manipulate the feedback processing within and between the RB and 

II systems can address these questions.  Model 6 (Table 4.2) instantiates the hypothesis that the 

RB system only receives negative feedback whereas the II system receives both positive and 
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negative feedback.  In contrast, Model 7 assumes that the II system only receives negative 

feedback and the RB system receives both kinds of feedback information. 

 In Model 1, both the RB and II system representations are updated similarly in response 

to negative feedback (the standard model).  Model 3 instantiates the idea that it is only negative 

feedback that changes the category representation whereas Model 12 instantiates the idea that 

learning only occurs with positive feedback.  Models 10 and 11 are similar to the aforementioned 

models, but they also restrict the feedback information to the system that was assigned to that 

particular trial.  In Models 8 and 9, the idea that the RB and II systems benefit from different 

types of feedback is instantiated.  In Model 8, if the RB system is selected, it will only receive 

positive feedback whereas if the II system is selected it will only receive negative feedback.  

Model 9 represents the opposite situation where the RB system receives negative feedback and 

the II system positive feedback.  

4.6.2.2 Feedback models 

 A verbal description of each version of the model is laid out in table 4.2.  The initial 

version of the PINNACLE model is described under the label ‘Model 1’.  The other 11 model 

versions contain different hypotheses about system interaction and feedback as described above.  

To determine the optimal feedback/system interaction model, we fit the available data with each 

of these models.  As an additional test, these models were tested both with the 4- and 5-

parameter versions of PINNACLE. 

 Out of the 4-parameter model fits, Model 6 returned the minimum fit value (Table 4.3A).  

Out of the 5-parameter model fits, Model 2 returned the minimum fit value (Table 4.3B).  A 

comparison of the 4- and 5- parameter models revealed that the 5-parameter models are superior 
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on the whole.  That is, for each version of the model, the 5-parameter version returned a 

lower fit than the 4-parameter version.  Since Model 2 returned the minimum fit value out of all 

the different model versions, the hypothesis that the RB and II systems are competitive may not 

be appropriate (although Model 1 returned the second lowest fit value). 

 From this competitive feedback modeling and group data fitting come three important 

results.  The first is that the 5-parameter version of PINNACLE is superior to the 4-parameter 

version.  The best account of the behavioral data occurs with a model that is capable of applying 

distinct learning rates to the RB and II systems.  The second is that no matter which system was 

assigned to a particular trial, feedback should return to both systems.  This interaction is more in 

line with parallel processing ideas discussed in Chapter 1.  The third result is the identification of 

the best fitting Gaussian sigma parameter value for the 5-parameter model using feedback model 

#2.  This parameter value (1.204) defines the standard deviation of the noise distribution for the 

individual subject fits discussed in section 4.6.3.  

4.6.3 Model fitting to individual subject data 

The next step after determining that PINNACLE successfully accounted for the average 

group data was to use the model to fit individual subject behavior.  This step represented one 

important goal of the model, which was to identify RB and II system engagement on a trial-by-

trial basis.  That is, rather than testing whether the model could match human behavior when 

presented with the real category structures, we minimized the model fit to the subject’s actual 

responses.  This meant that overall accuracy was no longer the important measure, rather it was 

the minimization of the difference between the model behavior and actual subject behavior (good 

or bad).  
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As with the group model fits, on each trial both the RB and II systems generated p(A) 

given the stimulus input and the current state of the RB and II decision boundaries.  Based on the 

subject’s actual response (A or B), the system that was more likely to have generated that same 

response was assigned to that particular trial.  If both systems generated the same response (i.e. 

both systems said ‘A’), PINNACLE selected the one that had higher confidence.  Since the 

actual subject responses were used here, the decision noise parameter was no longer necessary, 

but the confidence prediction was still an important component of the systems.  Feedback 

returned to both systems since this was the best fitting feedback version in the group data fitting 

procedure.  The idea here, again, was that we were trying to find the best set of trial-by-trial 

model outputs that account for the subjects’ responses. 

To identify the set of parameters that best account for the subject’s data, we used the 

Maximum Likelihood Estimation (Ashby, 1992).  The method of evaluation of the fit value for a 

particular set of parameters for an individual subject was slightly different from the previously 

described fit value calculation for the group data.  Instead of calculating the sum of squares 

difference between the model block averages and the subject block averages, on each trial we 

calculate the odds of the model producing the same response as the subject.  If the model with 

that particular set of input parameters was very unlikely to have produced the same response as 

the subject, that trial contributes a bad fit value (high number) to the total fit.  This process is 

repeated throughout the entire 320 trials.  The fit value reflects the sum of the odds on each trial, 

and the goal of the search algorithm is to minimize this value. 

The output of the model is a vector that contains a prediction on each trial as to whether 

the RB or II system was active in producing the behavioral response of the subject.  An example 

of an RB and II subject profile is shown in Figure 4.5.  In general, the RB system is more 
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confident over time (produces values that are closer to 0 or 1) than the II system in the RB 

subject and vice versa for the II subject.  These trial-by-trial predictions are utilized in the fMRI 

data analyses discussed in Chapter 5.  

4.6.3.1 Simulation 1: Experiment 1 data 

 The PINNACLE model was used to fit the behavioral data from Experiment 1.  To 

evaluate the overall pattern of results, we aggregated the data over the four blocks for each group 

of subjects.  In Figure 4.7A, the graph shows the average number of RB and II trials in the RB 

subject group within each of the 4 blocks.  Figure 4.7B shows a similar graph for the average 

number of model identified trials in the II groups.  The individual subject characterization across 

blocks is also shown in Figure 4.6B.  For comparison purposes, the schematic for the 

mathematical models is shown in Figure 4.6A.  The averaged trial-by-trial predictions are highly 

similar to the mathematical model characterization of the data on a block-level.  This comparison 

reveals that PINNACLE is appropriately identifying RB and II strategy-use in a way that is 

consistent with the simpler DBT models.  

4.6.3.2 Simulation 2: Experiment 2 data 

 PINNACLE was used to fit the behavioral data from Experiment 2.  To evaluate the 

overall pattern of results, we aggregated the data over the four blocks for each group of subjects.  

In Figure 4.9A, the graph shows the average number of RB and II trials in the RB subject group 

within each of the 4 blocks.  Figure 4.9B shows a similar graph for the average number of model 

identified trials in the II groups.  The individual subject characterization across blocks is also 

shown in Figure 4.8B.  For comparison purposes, the schematic for the mathematical models is 

shown in Figure 4.8A.  As in Experiment 1, there was a high degree of similarity between the 
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DBT-based mathematical model fits and PINNACLE’s averaged trial-by-trial predictions 

over an 80-trial block.  Also similar to the mathematical model results, PINNACLE revealed a 

greater amount of strategy-switching within the RB and II subject groups than observed in 

Experiment 1.  This was true particularly in the II group who were frequently utilizing an 

inappropriate RB strategy.  

4.7 Discussion 

PINNACLE represents the implementation of the hypothesized cognitive processes 

underlying RB and II category learning systems.  This cognitive model builds upon the results 

from the mathematical characterization of behavior over 80 trial blocks.  Shifting from static 

DBT models to a dynamic trial-by-trial model required a number of important changes that 

ultimately better reflect our hypotheses of the operation of these systems in the brain.  Namely, a 

healthy human has the capacity to utilize both the RB and II systems on any given learning task.  

By allowing these systems to interact within PINNACLE, we hoped to emulate the processing 

that occurs during the acquisition of these sine-wave stimuli categories.    

Simulations of the behavioral data from fMRI experiments 1 and 2 provided PINNACLE 

with a variety of performance profiles as well as stimulus distributions to work with.  By 

comparing the minimum fit value of different versions of PINNACLE, we could test different 

assumptions about the model’s operation.  As a result of this process, a number of aspects of the 

model changed, including the number of free parameters, the feedback structure and the type of 

system interaction.  Each step in the evaluation process contributed toward the ultimate goal of 

developing a model that was capable of trial-by-trial predictions of RB and II strategy-use in 

individual subjects. 
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The subject fits using the DBT-style mathematical models (Chapter 3) serve as a point 

of comparison to PINNACLE’s predictions.  In general we expected to see that the block-level 

strategy use was preserved between the two styles of models.  That is, the dominant strategy 

utilized in a block of 80-trials in PINNACLE should largely agree with the static DBT 

assessment of strategy-use.  Inspection of PINNACLE’s block-level predictions confirms that the 

course assessment of strategy-use is consistent between the models in both Experiment 1 (Figure 

4.6) and Experiment 2 (Figure 4.8). 

The more detailed trial-by-trial predictions of system engagement become important 

when considering the event-related fMRI data.  PINNACLE provides an alternative to more 

traditional fMRI analysis techniques, and the incorporation of functional activity allows us to test 

more specific hypotheses about the structure of the model.  Chapter 5 discusses this idea in 

detail, but similar to the process of model fitting, assessments of the model behavior with fMRI 

data allows us to examine the assumptions we’ve made in building this model. 
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CHAPTER 5: TESTING PINNACLE PREDICTIONS WITH FMRI DATA 

5.1 Overview 

Functional neuroimaging acts as an effective bridge to connect sophisticated cognitive 

models with the operation of the underlying neural structures.  In the section on mathematical 

models (Chapter 3), model-guided fMRI data analysis revealed several additional components of 

the RB and II category learning networks.  As PINNACLE is a more sophisticated model that 

accounts for the trial by trial interaction between these systems, PINNACLE’s predictions of 

behavior should facilitate a cleaner separation between RB and II trial types.  Applying a similar 

trial-sorting method to the fMRI data enhances the specificity of the contrasts that rely on this 

separation.  Further, the incorporation of fMRI data can provide opportunities to test the 

underlying assumptions guiding the model.  

5.2 PINNACLE model fitting enhances fMRI data analysis 

In traditional data analysis methodology, behavioral criteria such as accuracy or stimulus 

type are typically used to segregate trial activity in event-related fMRI paradigms.  PINNACLE 

provides us with another method by which to group trial activity that is based on the model’s 

prediction of which system was active on any given trial.  The data discussed here demonstrates 

the effectiveness of this PINNACLE-based trial sorting in identifying regions of activity 

associated with RB and II category learning.   

5.2.1 Methods 

The PINNACLE model of category learning was used to fit each subject’s behavior in 

both fMRI experiments in order to estimate strategy use on a single trial basis (see Chapter 4).  
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The resulting vectors were used to organize the data in a way that isolated activity during RB 

trials from that during II trials.  The comparison of correct to incorrect categorization (as defined 

in Chapter 2 as successful categorization) was also used here to identify regions of activity 

associated with RB and II learning. 

5.2.2 fMRI Experiment 1 

5.2.2.1 Results 

5.2.2.1.1 Behavioral observations 

 One initial assessment of PINNACLE is the accuracy of the RB and II subject groups on 

both RB and II trials.  In general, one would expect that the correct trials for RB subjects should 

coincide with assignment to the RB system and similarly, correct trials for II subjects should 

coincide with assignment to the II system.  For the RB group, across all runs the accuracy on RB 

trials was 84.3% (SE=0.019) and on II trials was 39.8% (SE=0.031).  For the II group, across all 

runs the accuracy on RB trials was 47.9% (SE=0.03) and on II trials was 89.2% (SE=0.014).  

The accuracy per run for both the RB and II groups is shown in Figure 5.1.  

5.2.2.1.1 Whole-brain activity 

5.2.2.1.1.1 All blocks 

 On trials where PINNACLE predicted the RB system was active, a contrast of correct 

and incorrect activity within the RB subject group revealed activity in the anterior cingulate, 

parietal and frontal cortices (Figure 5.2A).  A similar contrast in the II subject group 

demonstrated strong bilateral caudate activity (Figure 5.2B).  On trials where PINNACLE 

predicted the II system was active, in RB subjects the left anterior MTL was more active for 
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correct than incorrect trials (Figure 5.3A).  In II subjects, the left posterior body of the 

caudate as well as posterior cingulate and occipital cortex were more active for correct than 

incorrect trials (Figure 5.3B).   

5.2.2.1.1.2 Best fitting blocks 

 When correct trial activity was restricted only to those blocks that were best fit by 

PINNACLE (Figure 5.4), we observed significant regions of activation in right PFC greater for 

RB than II trials and in right posterior visual association cortex greater for II than RB trials.  This 

pattern of activity is highly similar to that observed in the DBT-based block sorting in Figure 3.2.  

This observation supports the effectiveness of PINNACLE-based trial sorting in isolating 

additional regions of the RB and II networks not found with traditional fMRI data analysis 

methods. 

5.2.2.1.2 Region-of interest analysis 

 Similar contrasts to those done in the whole-brain were repeated within the MTL and 

caudate ROIs to determine whether PINNACLE-based trial sorting could identify activity 

differences not observed in less sensitive subtractions.  Similar to the original fMRI analysis that 

did not include model predictions (Figure 2.3), within the MTL ROI (Figure 5.5), successful 

categorization activity during RB trials elicited activity in the left anterior MTL for RB subjects.   

The II subjects also showed a successful categorization difference bilaterally in the MTL ROI 

(Figure 5.5) during RB trials.  During II trials, bilateral anterior MTL activity was observed for 

RB subjects and left anterior MTL activity for II subjects.  It is worth noting that the strongest 

activity occurred during RB trials, regardless of the subject grouping.   
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 In the caudate ROI (Figure 5.6), successful categorization activity was observed 

during RB trials in the bilateral head of the caudate in the RB subject group and the bilateral 

head and body of the caudate in the II subject group.  During II trials, the RB subjects had no 

significant regions of activity in the caudate, but the II subjects had successful categorization 

activity in the bilateral head and body of the caudate. 

5.2.2.2 Discussion 

 The first goal of PINNACLE-based trial sorting was to identify additional components of 

the RB and II category learning neural networks.  The best analysis to address this goal was to 

restrict the trial activity to only that which corresponds to the active system.  That is, to visualize 

the RB categorization network, within the RB subject group, isolate activity associated with 

trials that PINNACLE designated as corresponding to the RB system.  Then, within these trials, 

contrasting the correct and incorrect trial activity should illuminate the RB and II network 

activity.  The previous whole-brain analysis of RB and II network activation that did not depend 

on PINNACLE’s assessment of system involvement on each trial (see Chapter 2) can serve as a 

comparison here. 

 In the RB subjects in the first fMRI experiment, PINNACLE-based trial sorting revealed 

a network of regions throughout the brain that are active during successful RB category learning.  

The anterior cingulate cortex, left medial frontal gyrus and cuneus were more active for correct 

than incorrect RB trials.  This same network of regions was also active in the original fMRI 

analysis (Figure 2.2A) with the noteworthy absence of the MTL activation (discussed below).   

 The only II categorization activity in the original fMRI analysis (Figure 2.2B) in the II 

subject group was observed in the body of the caudate.  As shown in Figure 5.3B, PINNACLE-
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identified II trials in II subjects isolated a corresponding region in left posterior body of the 

caudate that was more active for correct than incorrect II trials.  Two additional regions of 

activity were observed in the posterior cingulate cortex and visual association cortex.  These 

regions were not observed to be active in the original II subject successful categorization 

network, yet the COVIS theory of category learning predicts the presence of posterior visual 

regions in association with caudate activity.   

 A more restricted analysis of only the best fitting blocks of 80 trials identified a number 

of regions of activity similar to those found with DBT-based modeling.  Within the blocks that 

were best fit with PINNACLE, we contrasted activity associated with correct RB trials and 

correct II trials.  That is, trials in which PINNACLE predicted the RB system was successfully 

engaged in learning were compared to trials where the II system was successfully learning.  A 

region in the right PFC was more active during correct RB than II trials.  The opposite effect was 

observed in right posterior visual association cortex where activity was greater during correct II 

than RB trials.  These regions were also identified in the DBT model-based analysis of the best 

fitting blocks of RB and II strategy use and are consistent with initial hypotheses of the 

involvement of these regions in RB and II learning. 

 In addition to examining the RB and II group activity during RB and II trials, the inverse 

of this analysis has the potential to identify activity associated with the non-optimal strategy.  

Simply, what regions in RB subjects were more active during successful II category learning and 

what regions in II subjects were more active during successful RB category learning?   

Given that we are studying healthy human behavior here, and PINNACLE presumes that 

there are 2 interactive category learning systems in the brain, it is tempting to interpret the RB 

and II trial activity within each subject group (or as a larger single group) as representing the 
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network of RB and II category learning systems.  However, one of the limitations of 

PINNACLE is its tendency to assign incorrect responses to the non-dominant system.  The 

accuracy of PINNACLE’s trial-by-trial predictions is summarized in Figure 5.1, and 

demonstrates the point that the majority of incorrect responses in RB subjects are attributed to 

the II system and the incorrect II subject responses are attributed to the RB system.  Thus, a 

caveat to interpreting the non-dominant system activity is that it may be weighted by incorrect 

trial activity. 

An examination of RB trial activity in II subjects shows strong bilateral body and head of 

the caudate activation.  In these II subjects, PINNACLE has indicated that the RB system is 

engaged, yet we do not see the ‘typical’ RB categorization regions.  Similarly, II trial activity in 

RB subjects does not reveal the typical II categorization network.  Instead, the left anterior MTL 

is more active for correct than incorrect II trials.  The distribution of incorrect trials may provide 

a potential explanation for this surprising result.  Since the successful categorization contrast 

depends on the difference between correct and incorrect trials and the non-dominant system 

contains the bulk of the incorrect trials, the resulting regions of activity are more consistent with 

the dominant system.  For example, the MTL activity found in the RB subjects during the 

supposed II trials may simply reflect the fact that the MTL was more engaged (here, more 

deactivated) during the incorrect II trials, but these trials were mis-labeled by PINNACLE.  

Similarly, the lack of MTL activity in the RB subjects during RB trials may be due to the lack of 

incorrect RB trials that were designated as incorrect II trials. 

Given the important role of both the MTL and caudate in RB and II category learning, the 

same PINNACLE-based fMRI analyses as were done in the whole brain were done in the MTL 

and caudate ROIs.  In the MTL, the hypothesis was that RB trial activity would be greater than 
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that of II trial activity in both the RB and II subject groups.  This pattern was generally 

observed, although there was also evidence of II trial activity in RB subjects (Figure 5.3, top 

right panel).  As discussed previously, these clusters of MTL activity associated with II trials in 

RB subjects may be attributable to the inappropriate assignment of incorrect trials to the II 

system. 

In the caudate ROI, as predicted, in II subjects the body is active bilaterally during II 

trials.  This is also true during RB trials, but is not true in RB subjects during RB trials.  Rather, 

the head of the caudate is more active during RB trials in both RB and II subjects.  The head of 

the caudate is thought to be involved in hypothesis testing and switching amongst strategies, so 

this pattern of activity could support this hypothesis.  

5.2.3 fMRI Experiment 2 

5.2.3.1 Results 

5.2.3.1.1 Behavioral observations 

 For all subjects, accuracy rates were aggregated across RB and II trials according to 

PINNACLE’s predictions.  For the RB group, across all runs the accuracy on RB trials was 

85.7% (SE=0.02) and on II trials was 53.2% (SE=0.03).  For the II group, across all runs the 

accuracy on RB trials was 54.3% (SE=0.015) and on II trials was 78.9% (SE=0.015).  The 

accuracy per run for both the RB and II groups is shown in Figure 5.7. 

 The increased variance in the stimuli in Experiment 2 also allowed for an analysis of 

trials based on perceptual distance from the category boundary (Figure 5.8).  On RB trials the 

close trial accuracy was 65.7% (SE=0.019) and the far trial accuracy was 77.4% (SE=0.031).  On 
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II trials the close trial accuracy was 61.6% (SE=0.014) and the far trial accuracy was 77.6% 

(SE=0.026).  There was a significant interaction between the close and far trial accuracy between 

the RB and II trials (F=4.916, p<0.05) in RB and II subjects.  

5.2.3.1.2 Whole-brain activity 

5.2.3.1.2.1 All blocks 

 On trials where PINNACLE predicted the RB system was active, a contrast of correct 

and incorrect activity within the RB subject group revealed activity in the left frontal and parietal 

cortex greater for correct than incorrect trials and anterior cingulate, insula and cuneus greater 

for incorrect than correct trials (Figure 5.9A).  A similar contrast in the II subject group 

identified activity in the left caudate body and occipital cortex greater for correct than incorrect 

trials and bilateral insula and anterior cingulate greater for incorrect than correct trials (Figure 

5.9B).  On trials where PINNACLE predicted the II system was active, in RB subjects the frontal 

cortex, anterior cingulate and cuneus were more active during incorrect than correct trials (Figure 

5.10A).  In II subjects, the insula and frontal cortices were more active during incorrect than 

correct trials (Figure 5.10B).  

5.2.3.1.2.2 Best fitting blocks 

 When trial activity was restricted only to those blocks that were best fit by PINNACLE  

(Figure 5.11), we observed significant regions of activation in medial PFC greater for RB than II 

trials and in right posterior visual association cortex greater for II than RB trials.  Only the 

correct trials were used in this contrast as there were relatively few incorrect trials in the best 

fitting blocks.  This pattern of activity is highly similar to that observed in the DBT-based block 

sorting in Figure 3.2.  It further supports the effectiveness of PINNACLE-based trial sorting in 
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isolating additional regions of the RB and II networks not found with traditional fMRI data 

analysis methods. 

 

5.2.3.2.2 Region-of interest analysis 

 Similar contrasts to those done in the whole-brain were repeated within the MTL and 

caudate ROIs to determine whether PINNACLE-based trial sorting could identify activation 

differences not observed in less sensitive subtractions.  Within the MTL ROI (Figure 5.12), 

successful categorization activity during RB trials elicited activity in bilateral anterior MTL for 

RB and II subjects.  During II trials, no activity was observed for RB subjects, but II subjects 

showed left anterior MTL activity. 

 In the caudate ROI (Figure 5.13), successful categorization activity was observed during 

RB trials in the bilateral head and body of the caudate in II subjects, but no significant clusters of 

activity were observed in the RB subjects.  During II trials, both RB and II subjects sustained 

activity in the right head/body of the caudate greater for incorrect than correct trials.  In contrast, 

only the II subjects had activity in the posterior body of the caudate for correct greater than 

incorrect trials.  

5.2.3.2 Discussion 

As with the data from Experiment 1, PINNACLE-based trial sorting was used to identify 

regions of functional activity associated with RB and II trials.  In the RB subject group, the 

cuneus and left IFG were more active for correct than incorrect RB trials.  Bilateral insula and 

ACC were more active for incorrect than correct RB trials in the RB subject group.  A 

comparison to the original fMRI analysis (Figure 2.8A) shows that the insular regions were 
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similarly identified as eliciting greater activity during incorrect than correct trials.  The 

difference in stimuli and degree of difficulty between Experiment 1 and 2 may have contributed 

toward the greater evoked activity for incorrect than correct trials in the RB subjects. 

The II subject group also displayed primarily greater activity for incorrect than correct 

trials, both during RB and II trials.  In addition to bilateral insular regions, the right medial 

frontal gyrus was more active for incorrect than correct II trials.  This is the same region as that 

found in the non-model based analysis (Figure 2.8 B).  There were several small regions 

identified in posterior caudate that exhibited successful categorization activity during II trials, 

but not to the same extent as seen in the original analysis. 

Within the II subjects, an examination of the non-dominant system activity reveals a 

similar phenomenon to that seen in Experiment 1.  Namely, the regions of activity found in the II 

subjects during PINNACLE-identified RB trials are consistent with typical II categorization 

areas.  The body of the caudate and regions in the posterior visual association cortex are more 

active for correct than incorrect RB trials in II subjects.  Again, this paradoxical effect may 

represent PINNACLE mis-labeling the incorrect II trials as RB trials.  

While the PINNACLE-identified RB and II trial analysis did identify a number of regions 

of activity not observed in the accuracy-based fMRI analysis, restricting the trial activity to only 

those blocks that were best fit with PINNACLE allowed for a more sensitive contrast of activity.  

Specifically, the best examples of RB and II strategy use across an 80-trial block isolated 

functional activity in regions consistent with our initial hypothesized RB and II networks.  

Activation in the PFC and posterior visual association cortex was also observed in Experiment 1 

using a similar restricted analysis, further supporting the important roles of these regions in RB 

and II learning, respectively. 
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The activity observed in the MTL ROI is very similar to that seen in Experiment 1.  

Both the RB and II subjects demonstrated MTL activity during RB trials yet this activity was 

greater in the RB subjects.  There was a small region in left anterior MTL in the II subjects 

during II trials, which again may be attributable to these incorrect RB trials being mis-labeled.  

In the RB subjects, however, there was no evidence of MTL activity during the II trials either in 

the whole brain or the anatomical ROI.  The aforementioned performance difference between the 

RB subjects in Experiment 1 and 2 may contribute to this difference in the MTL activity.  

Because there were relatively few incorrect trials in the RB subject group in Experiment 2, it is 

possible that they did not provide a sufficient contrast to the more abundant correct trials. 

 Within the caudate ROI, the II trials elicited significantly more activity during correct 

than incorrect trials in II but not RB subjects in posterior caudate.  The II subjects also 

demonstrated a positive successful categorization difference during RB trials throughout the 

body of the caudate.  The only difference within the RB subjects in this ROI was in the right 

anterior body of the caudate.  This region was significantly more active during incorrect than 

correct II trials both in the RB and II subjects suggesting some common mechanism between 

these two groups.  

5.3 Using PINNACLE-based trial sorting to test model assumptions 

 An important goal of developing a model such as PINNACLE was not only to enhance 

existing data analysis techniques, but also to provide the tools with which to challenge the 

assumptions of the model.  The following analyses demonstrate such potential applications of 

PINNACLE using the existing fMRI data.  These examples are the first attempts at addressing 

the assumptions underlying PINNACLE using a model-based trial sorting technique. 
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5.3.1 Identifying decision module competition-related fMRI activity 

5.3.1.1 Background and motivation 

A major component of PINNACLE is the ‘decision module’ that serves to adjudicate 

competition between the RB and II systems.  We hypothesize that the region of the brain most 

likely to support this role is the PFC.  While the animal and neuroimaging data discussed in 

Chapter 1 does implicate the PFC in this role, PINNACLE-based trial sorting provides an 

opportunity to test this assumption. 

In the following analysis, PINNACLE-based predictions were used to analyze the 

behavioral data acquired in Experiments 1 and 2 to identify instances of peak competition 

between the RB and II systems.  The rationale behind this analysis is that the DM should be 

active on every trial, but more active on trials that require a more difficult decision between the 

systems.  The most difficult decision between the RB and II systems should occur when both 

systems are highly confident.  Instances of competition between systems only make up a fraction 

of the total number of trials (Figure 5.12A).  The remainder of the trials can be divided into two 

types: non-competitive and undefined trials.  Trials on which one system is highly confident 

while the other system is not confident make up the ‘non-competitive’ trials.  The rest of the 

trials that we are calling ‘undefined’ are those in which both systems exhibit low confidence, and 

the corresponding activity may not be particularly informative regarding questions of system 

interaction.   

After identifying a number of these instances within subjects, averaging the functional 

activity associated with these trials should reveal the neural structures actively involved in this 
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system mediation.  Due to the fact that there are relatively few trials that fit this ‘competition’ 

profile, it was technically difficult to construct the fMRI contrast in a statistically optimal 

manner.  The best way to address this question would be to design a new study specifically 

aimed at fostering situations of high competition between systems.  Numerous instances of 

competitive interactions could then contribute toward the fMRI data analysis. 

With the current datasets, however, it is still possible to examine this question of 

competition-related activity.  Since the DM is hypothesized to be active on every trial, we can 

isolate the search space to only those regions that are consistently active to all trial types.  A 

functional ROI based on this ‘all events’ contrast can then be used as a mask within which we 

search for competition-related activity.  Should PFC activity be correlated with these model-

identified instances of competitive interaction, we will have greater confidence that the current 

structure, which was intended to emulate the PFC and its interconnections with MTL and basal 

ganglia memory systems, is an appropriate neural framework for this cognitive module. 

5.3.1.2 Methods 

In all subjects in both Experiment 1 and 2, trials were marked as exhibiting competition 

(C), non-competition (NC) or undefined interaction (U).  In the C trials, both the RB and II 

system confidence was required to be greater than 75%.  In the NC trials, either the RB or II 

system confidence must have been greater than 75% while the other system must have been less 

than 75% confident.  In the U trials, both system confidence levels must have been less than 

75%. 

The fMRI data analysis utilized in Experiment 1 and 2 was identical.  In both cases, the 

peak-to-baseline contrast of trial-evoked activity across all trials and all subjects provided the set 
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of voxels within which we utilized PINNACLE-based trial sorting.  This smaller volume 

allowed for greater sensitivity than is afforded when searching the entire brain for trial-evoked 

activity.  The grouped functional ROI was used to mask each individual subject’s contrast of 

competition-related activation.  The resulting t-test then used these masked functional datasets to 

isolate significant clusters of activity throughout the whole brain.  

5.3.1.3 Results 

 In Experiment 1, the average number of C trials per run was 19, NC trials was 28 and U 

trials was 33 (Figure 5.12A, left).  The accuracy on these different trial types is shown in Figure 

5.12B (left).  On C trials the average accuracy per run was 84.7%, on NC trials was 80.7% and 

on U trials was 68.25%.   

 In Experiment 2, the average number of C trials was 21, NC trials was 34 and U trials 

was 24 (Figure 5.12A, right).  The accuracy on these different trial types is shown in Figure 

5.12B (right). On C trials the average accuracy per run was 83.2%, on NC trials was 76% and on 

U trials was 62.4%. 

Figure 5.12C shows the contrast of C versus NC trial activity in both Experiment 1 and 2.  

The right DLPFC and bilateral motor cortex are more active during C than NC trials.  In 

Experiment 1 there is an additional region active in the posterior parietal cortex. 

5.3.1.4 Discussion 

PINNACLE assumes that the brain has at least 2 category learning systems that are both 

subject to mediation by the DM.  This means that on each trial, both the RB and II systems may 

develop a prediction of category membership, but only one system is allowed to influence the 
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subsequent motor response.  The role of the DM is to adjudicate the assignment of the RB or 

the II system to a particular trial. 

The analysis here was aimed at isolating functional activity during moments where the 

DM was posed with a particularly difficult challenge.  When both the RB and II systems are 

highly confident in their response it should be more difficult for the DM than a situation where 

one system is much more confident than the other.  As hypothesized, a region in right DLPFC 

exhibits competition-related activation in both Experiment 1 and 2.  The specific action of the 

DM/DLPFC on these trials may be to actively inhibit one system so that the other system can 

send activation to the motor system to make the appropriate motor plan.  This type of inhibitory 

role of the DLPFC has been observed using fMRI with task-switching paradigms where one 

task-response needs to be inhibited to allow the other to progress (Sylvester et al., 2003; Yeung 

et al., 2006).  

5.3.2 Identifying off-system activity with PINNACLE 

5.3.2.1 Background and motivation 

 On each trial, PINNACLE assigns either the RB or II system to the behavioral response.  

However, in the model both systems generate an independent prediction.  There is a confidence 

associated with each system’s best guess for the behavioral response given the current internal 

decision boundary.  In the previously described analysis of RB and II trial activity (section 5.1), 

only the dominant system (or ‘on-system’) is used to define the functional activity.  Given that 

the non-dominant system (or ‘off-system’) receives feedback under the current feedback 

mechanism, this analysis is aimed at examining the incorporation of the feedback in the off-

system.  It is important to note here that the feedback may have different effects on the on- and 
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off-systems.  Even if the on-system was incorrect, if the off-system made the correct 

prediction, the system does not treat the feedback as negative.  It will endorse its current system 

representation as if it had received correct feedback.  Similarly, if the off-system made an 

incorrect prediction it will update its representation accordingly even if the feedback to the on-

system was correct.  For this reason, an analysis of the off-system activity here may provide 

converging evidence in support of the best fitting feedback mechanism arrived at through 

competitive model fitting (Chapter 4).  The prediction here is that when the II system is the off-

system there will be an increase in activity in the caudate.  Similarly, when the RB system is the 

off-system there will be an increase in activity in the MTL. 

5.3.2.2 Methods 

 The purpose of this analysis is to sort the trials in Experiment 1 and 2 based on the 

accuracy of the off-system and to use this sorting to examine corresponding functional activity in 

both the MTL and caudate ROIs.  Toward this end, trials in Experiment 1 and 2 were defined 

based on whether the off-system was correct or incorrect regardless of the actual feedback 

delivered to the subject.  The off-system is always defined as the system that was not assigned to 

the trial.  For example, if an ‘A’ stimulus was evaluated by both the RB and II systems and the 

RB system judged it to be a ‘B’ and the II system judged it to be an ‘A’, the overt feedback to the 

subject would have been ‘incorrect’.  If the RB system was assigned to this particular trial, the 

off-system (II here) would have been correct and the on-system (RB here) incorrect.  All trials 

for all subjects in both experiments were processed similarly.  
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5.3.2.3 Results 

 In Experiment 1, there was no evidence of off-system activity either in the MTL or the 

caudate for II or RB subjects, respectively.  In Experiment 2, there was evidence of off-system II 

activity only in the caudate ROI for RB subjects (Figure 5.13B).  The accuracy and number of 

trials of the off-system responses is shown in Figure 5.13A.  In general, the off-system was more 

accurate when it was associated with the appropriate subject group.  In the RB group, when the 

RB system was the off-system, those trials were more accurate than when the II system was the 

off-system.  The converse was true for the II group.  

 Given that we sorted the trials based on the II system prediction rather than the overt 

feedback given to the subject, there was a question of mis-match between internal and external 

feedback.  Namely, how often did the correct feedback correspond to the II system’s correct 

response and how often was the overt feedback inconsistent with the II system’s prediction.  The 

average number of overlapping trials for the RB subjects included in this analysis was 55% (SE 

= 0.024).  That is, on average, the II system was receiving the same feedback as the RB system 

during only 55% of the trials.  The other 45% of the trials were those in which the II system 

prediction was different from the RB system and the corresponding feedback differed from that 

given to the subject.  The characterization of trials based on the off-system prediction differed in 

such a way as to illuminate functional activity within the caudate that was not observed in the 

previously described analysis of II system activity in RB subjects (see Figure 5.11). 

5.3.2.4 Discussion 

 Pairing the predictions from a cognitive model such as PINNACLE with fMRI data here 

presents an opportunity to test assumptions about system interaction and feedback incorporation.  
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There are multiple forms of evidence implicating the caudate in II category learning, 

including the previously discussed fMRI data showing caudate activation in participants actively 

learning an II category structure (Nomura et al., 2007).  Similarly, the MTL is more active when 

participants are acquiring an RB category structure.  The MTL, then, can be considered to be a 

neural correlate of the on-system in RB subjects and the caudate the on-system in II subjects.  

This does raise the question, though, of what the off-system is doing when the on-system is 

actively acquiring a category representation. 

 The feedback structure of PINNACLE assumes that both the RB and II system generate 

predictions and incorporate feedback on each trial regardless of the system that was active on 

that trial.  This means that the off-system is capable of developing a category representation 

while the on-system develops an independent representation.  The capability of both systems to 

acquire the category representation may serve as a redundant mechanism in healthy humans, but 

when there is a challenge to one system, such as in a diseased state, the intact system could 

potentially operate alone.   

 The current analysis was designed to examine the incorporation of feedback by the off-

system independent of the feedback to the on-system.  The data from the RB subjects in 

Experiment 2 supports the idea that the II system, while not overtly responsible for behavior, is 

not only active in these subjects, but appears to be utilizing the feedback to update its category 

representation.  The posterior regions of the body of the caudate that were more active for correct 

than incorrect off-system trials in these subjects are identical to the regions typically active 

during successful on-system II category learning.  Thus, despite the success of the RB system in 

these subjects (and corresponding MTL activity), the II system appears to be operating in parallel 

through activity in the posterior caudate body.   
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 While a similar result was not observed in the MTL when the RB system was the off-

system in II subjects, this does not rule out the notion that both the RB and II systems are capable 

of learning simultaneously.  Perhaps with a study designed specifically to test this idea of 

simultaneous learning systems, it would be possible to detect this off-system activity in the MTL.  

Regardless, the caudate activity observed in the off-system does serve as a form of convergent 

evidence that PINNACLE’s mechanism of feedback returning to both systems may have some 

neural reality. 
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 CHAPTER 6: IMPROVEMENTS TO PINNACLE AND FUTURE DIRECTIONS 

6.1 Overview 

 In this section, the potential application of model-based fMRI analysis is discussed along 

with several mechanistic improvements to the RB and II systems within PINNACLE that would 

better reflect the neurobiological properties of the MTL and caudate.  While these improvements 

are not currently part of PINNACLE, future work will depend on this type of conceptual 

framework.  

6.2 Re-implementation of the RB system 

One potential benefit of greater incorporation of brain imaging data in theories of 

category learning is that the additional constraints provided by neuroscience data may help unify 

the different cognitive modeling approaches.  While there are many ways to computationally 

instantiate these models, there may be fewer ways to instantiate these models in a manner that 

captures the constraints from neuroimaging and neuropsychology.  The involvement of the MTL 

and the caudate in particular will constrain theories of how the brain accomplishes category 

learning.  The roles of these brain regions in memory research are very well-studied and they are 

among the most investigated brain regions at a neurobiological level. 

The PINNACLE theory as currently implemented in a computational model has several 

demonstrated flaws.  In future versions of the model, changes to the implementation of the 

PINNACLE theory should better equip the model to address hypotheses about these interactive 

brain systems.  The major suggested modifications target the representational mechanisms by 

which the RB and II systems acquire and retain category information. 
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The neuroimaging results presented previously (fMRI Exp 1 and 2) support the idea 

that there are two learning processes that contribute to category learning that depend separately 

on the MTL and the caudate.  While these results are interpreted in the context of the COVIS 

theory, that cognitive model does not make specific computational predictions about the 

representations inherent in the RB and II subsystems.  With the suggested modifications to the 

PINNACLE model here, the cognitive processes described in the theory could be instantiated in 

such a way that would allow for more direct tests of the underlying hypotheses. 

The RB system is currently set up to select a linear decision boundary, adjust it according 

to a particular learning rate, and with enough training, arrive at the optimal boundary (or 

matched to subject behavior).  While this mechanism does serve to capture the behavior of the 

subjects in both Experiment 1 and 2, it may not be the best cognitive model of this system’s 

operation.  It seems particularly implausible that participants are actually manipulating a vertical 

line in their mind when learning these categories.  Rather, a more realistic model is one in which 

exemplar stimuli close to the optimal category boundary are held in a memory buffer.  A new 

stimulus is compared to this memorized exemplar and placed in either the same or the other 

category.  The rule for categorization would then be something like: ‘if stimulus X is less striped 

than the exemplar, it’s an A, if it is more striped, it is a B’.  The neuroimaging data suggests that 

this type of model may have neural reality based on the involvement of the MTL in the RB task.  

Declarative memory is known to depend materially on the structures within the MTL, and could 

be involved in the process of holding a particular stimulus in mind and/or recalling this stimulus 

for comparison purposes. 

Implementing this modification to the RB system should be fairly straightforward.  

Rather than allowing the model to begin with a vertical line of some arbitrary frequency that is 
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shifted according to negative feedback, a better model may be one that holds the frequency 

value of the most recent stimulus that is closest to category ‘B’ while still belonging to the ‘A’ 

category.  As the model processes more stimuli, the exemplar will be discarded and replaced 

with a better example of the category.  In effect, this boundary stimulus will be conceptually 

similar to the previous RB system, but will better reflect our notion of what the RB system is 

actually doing in this task.  

6.3 Re-implementation of the II system 

Currently, the II learning system represents the category structure by altering the 

intercept of a linear decision boundary.  As in the RB system, it is similarly implausible here that 

the subject is internally manipulating a linear boundary.  A better mechanism for the II learning 

system may be a clustering learning algorithm similar to the Striatal Pattern Classifier (SPC) 

model (Ashby and Waldron, 1999).  This is an example of a model in which regions of 

perceptual space are labeled by II category learning, a process hypothesized to involve cortico-

striatal circuits through the posterior regions of the caudate. 

To implement something like the SPC in the II system of the current PINNACLE model 

would require a number of structural changes.  First and most importantly, the linear decision 

bound would no longer be used to track the internal representation of category structure.  Instead, 

striatal units in stimulus space learn to associate particular stimuli with an output response given 

the model’s experience.  Categorization behavior should emerge from this structure as the model 

learns in the form of a 3-dimensional topographical ‘map’ of the space (an example is shown in 

Figure 6.1).  In Figure 6.1A, the stimulus space shows an example of a representation that is 

early in learning.  Each cluster is fairly small and the boundary between the categories is not 
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clear.  Later in learning, these clusters grow in size (Figure 6.1B) presumably due to the 

positive feedback associated with learning.  From this arrangement of clusters, the category 

boundary becomes more apparent. 

Instantiating this type of II system would involve implementing an ‘attractor network’ 

that has previously been shown to be successful in models of language learning (Maddox et al., 

2002) and vision research (Marr and Poggio, 1976).  The specifics of the attractor networks are 

described elsewhere (Zemel and Mozer, 2001).  The basic idea of an attractor network is that an 

input pattern is drawn toward the node (or striatal units in the SPC model) in stimulus space that 

is closest in proximity.  The shape of the stimulus space is determined by experience, so the 

model does not need any prior knowledge of the structure.  With each incoming stimulus and 

accompanying feedback information, its similarity to previously experienced stimuli will either 

be drawn toward an existing node or will create a new node.  Over many trials, the shape of the 

category space should reflect the learning that has occurred in a manner similar to the perceptual 

shaping curve in Figure 4.2.  Areas of stimulus space that have been repeatedly endorsed as 

belonging to the same category will grow and encapsulate other areas that require the same 

motor response.  In this manner, II category learning will be represented as something closer to 

perceptual learning rather than a linear decision boundary. 

6.4 Potential extrapolations of PINNACLE 

Neuroimaging of RB and II category learning successfully identified two dissociable 

neural networks supporting these cognitive activities.  We can hypothesize about the 

mechanism(s) by which this learning takes place in these systems, but it is difficult to examine 

them with fMRI alone.  Computational and mathematical modeling, in contrast, are constrained 
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by specific hypotheses about the underlying mechanisms supporting cognitive operations.  

Applying the known biological constraints of the neural systems in question to models of 

cognition has the potential to advance our understanding beyond the level of dissociating neural 

activity with fMRI. 

The potential changes to the RB and II systems outlined here better reflect our current 

understanding about the underlying cognitive and neural mechanisms guiding this behavior.  The 

fact that the changes differ substantially between the systems is also a deliberate choice that 

supports the notion that these systems represent very different learning processes.  Further, the 

development and improvements to PINNACLE opens up the possibility of extending the 

framework to other types of paradigms both within categorization and to other kinds of learning.  

Because the model is based on the basic notion of modeling 2 learning systems, it should be 

flexible enough to learn in other types of skill learning paradigms that may rely on similar neural 

machinery, for example, the SRT task, weather prediction task, or route navigation tasks. 

The SRT task has been shown to recruit different cortical and sub-cortical regions during 

motor skill learning depending on whether the learning is accompanied by awareness 

(Willingham et al., 2002).  Neuroimaging of route navigation suggests the involvement of both 

the MTL and caudate depending on the type of learning strategy employed (Iaria et al., 2003).  

Similarly, neuroimaging of the weather prediction task has demonstrated a reliance on the 

operation of both the MTL and the caudate of the basal ganglia depending on the cognitive 

strategy employed by the subject.  When relying on the probabilistic feedback, there was 

increased involvement of the caudate, whereas an explicit memorization strategy elicited MTL 

activity (Poldrack et al., 2001).  Based on the similarity in neural systems engaged across these 
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different tasks, it seems plausible that PINNACLE would eventually be able to make 

predictions of trial-by-trial system participation based on these data.  

The weather prediction task may be the most feasible option for application to 

PINNACLE.  In this task, a series of cues are probabilistically associated with one of two 

outcomes.  Based on the cues that appear on each trial, the participant must guess which outcome 

is predicted.  As discussed previously, amnesic patients are able to learn these associations 

normally (presumably relying upon their intact basal ganglia system) while patients with damage 

to the striatum are impaired.  Patients with a milder form of Parkinson’s disease, however, have 

shown the ability to learn this task almost as well as healthy control subjects.  Further, functional 

imaging of patients with mild Parkinson’s disease revealed activity in the MTL, in contrast to 

control subjects who showed activity in the striatum (Moody et al., 2004).  Given the apparent 

interchangeability of the MTL- and basal ganglia-driven learning during this task, the current 

implementation of PINNACLE is well suited to model this task.  A prediction of this potential 

application is that early in learning the weather prediction task the RB system would dominate 

learning.  That is, participants would explicitly attempt to memorize specific examples or arrive 

at a rule that maximized their accuracy in the task.  Over extended training, however, the 

operation of the II system would eventually come online as it incorporated the feedback 

information.  The overall behavioral profile of a participant in the weather prediction task would 

thus look similar to that of a person learning an II category structure.  PINNACLE could also be 

used to fit data obtained from neuropsychological populations.  For example, should PINNACLE 

find that the MTL-based RB system dominated trials in mild PD patients, this would provide 

convergent evidence that the intact declarative memory system was driving their learning in this 

task. 
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Should this model prove flexible enough to learn other types of categorization or skill 

learning paradigms, it would be interesting to extrapolate to other types of cognitive phenomena 

above and beyond learning.  For example, can the model account for the development of 

expertise?  Some suggest that during learning, a particular network is in operation, but once a 

task has been learned up to the point of exhibiting expert behavior, this network drops out and 

another ‘expertise’ network comes online.  By overtraining participants in the sine-wave grating 

paradigm here, and scanning both at the beginning of training and after the categories are 

extremely well learned, one could test this hypothesis.  If true, the RB system would be highly 

active as the participant works to figure out the rule that defines the categories.  As the category 

division becomes increasingly obvious, the responses should rely less on feedback.  At some 

level of high performance, the RB system is no longer necessary and a more automatic, efficient 

processing loop is responsible for guiding responses.  This function may be subserved by the 

posterior II circuitry or perhaps through direct cortico-cortico connections from PFC to motor 

cortex.  The SPEED model of automaticity (Ashby et al., 2007) is one recent example of such a 

model, but unlike PINNACLE, this model does not attempt to account for the multi-system 

competition that may occur early in learning. 

6.5 Conclusions 

 Observed dissociations amongst patient groups challenged with different learning tasks 

initially established the neuroanatomical independence of the MTL- and basal ganglia-based 

memory systems (Chapter 1).  Behavioral data and evidence from animal studies bolstered this 

claim and more recently, neuroimaging has provided a method for visualizing the functional 

operation of these networks in healthy people.  Studying the brain activity of healthy individuals 
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is complicated by the fact that it is difficult to control the way in which people learn.  That is, 

people presented with a learning task, even when given explicit instructions, are capable of using 

all the cognitive resources they have available.  Under the multiple memory systems hypothesis, 

different types of memory and the corresponding neural networks can be engaged on any 

learning task.  The challenge then is to dissociate these learning systems in the brain. 

 In the two neuroimaging experiments described in Chapter 2, we demonstrated a 

dissociation between successful RB and II category learning activity in the MTL and caudate 

respectively.  The involvement of these neural structures is consistent with our understanding of 

the cognitive function of each of these regions and with the predictions of the COVIS theory of 

category learning.  The data here thus provide one of the first demonstrations of the utility of 

coupling fMRI with cognitive models of categorization.   

 Neuroimaging subtractions typically rely on the classification of behavior, usually via 

accuracy or some objective measure of performance.  As such, an inherent assumption in the 

accuracy-based analysis of these data is that learning in the RB subjects depended upon the 

consistent application of an RB strategy and learning in the II subjects on an II strategy.  Yet as 

we demonstrated with both the mathematical DBT-models (Chapter 3) and PINNACLE trial-by-

trial predictions (Chapter 4), both subject groups exhibited a mixture of strategies throughout 

learning. 

 Using model-based predictions to organize neuroimaging data can thus improve upon the 

existing analysis techniques by isolating activity associated with strategy-specific behavior.  

Rather than grouping activity based on the imposed category structure, a mathematical 

characterization of strategy-use can expose subjects who are using an inappropriate strategy or 

assess how well the appropriate strategy is being utilized.  Using this block-sorting technique, in 
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the mathematical model-driven organization of fMRI data, we identified a number of regions 

not observed in the accuracy-based fMRI analysis.  Specifically, PFC and visual association 

cortex activity was associated with blocks that were best fit with RB and II strategies, 

respectively.  These regions are thought to function in conjunction with the operation of the MTL 

and posterior body of the caudate in RB and II learning as described initially in COVIS.  The 

visualization of these additional regions would not have been possible without the application of 

these models to the fMRI data. 

 The shift from static DBT-style RB and II models to a more sophisticated model of 

category learning that allows both systems to interact was motivated by the hope that the 

sensitivity of trial-by-trial strategy predictions would improve the specificity of the resulting 

fMRI contrasts.  The framework of PINNACLE (Chapter 4) depends on the notion that there are 

2 systems active in the normal healthy brain; an RB system dependent upon the MTL and an II 

system dependent upon the reciprocal loops through posterior regions of the caudate and visual 

association cortex.  Mediation between these systems is assumed to rely on a decision module 

situated in the PFC.  Neuroimaging analyses aimed at identifying activation associated with this 

component of PINNACLE has provided convergent evidence that the PFC is involved in this 

system mediation (Chapter 5). 

  From the group and individual subject modeling analyses, we’ve demonstrated both the 

validity of PINNACLE as a model of 2 interactive learning systems in the brain as well as its 

ability to account for the data in 2 different categorization studies.  In this stage of assessing the 

model’s behavior, a number of assumptions were called into question.  Through competitive 

model fitting of different versions of PINNACLE, we determined that the RB and II systems 

require distinct learning rates and that the data is best accounted for with a feedback mechanism 
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that provides both systems with positive and negative feedback (Chapter 4).  This feedback 

structure is in line with the notion that the RB and II systems operate simultaneously, yet does 

not rule out the possibility that one system can inhibit the other or one system can enhance the 

confidence of the other.  Although, some evidence for the reality of this feedback mechanism 

comes from an examination of off-system activity in RB subjects.  Despite the successful 

utilization of an RB strategy in these subjects, the posterior regions of the caudate were active in 

conjunction with PINNACLE-identified II off-system success (Chapter 5).  

 Together, the collection of neuroimaging and modeling data discussed here demonstrate 

the utility of combining these two methodologies.  The symbiotic relationship between model 

development and fMRI data analysis has advanced our understanding of RB and II category 

learning systems in the brain. 
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CHAPTER 1 FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: examples of stimuli in category learning paradigms 
(A) Rectangular stimuli that vary in width and length (B) Circular stimuli that vary in diameter 
and line orientation (C) Sine wave stimuli that vary in frequency and orientation. 
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Figure 1.2: Exp.1 sine wave stimuli 
RB (A) and II stimuli (B).  Each point represents a distinct Gabor patch (sine-wave) stimulus 
defined by orientation (tilt) and frequency (thickness of lines).  In both stimulus sets, there are 2 
categories (red and blue points). RB categories are defined by a vertical boundary (only 
frequency is relevant for categorization) whereas II categories are defined by a diagonal 
boundary (both orientation and frequency are relevant).  In both RB and II stimuli there are 
examples of a stimulus from each category. (C) Schematic of a single trial.  A fixation point is 
followed by the to-be-categorized-stimulus (either RB or II depending on the subject), then a 
short visual mask that is followed by the feedback.  The subject responded ‘category A’ or 
‘category B’ during the 2 seconds the stimulus was on the screen using hand-held buttons.  The 
length of the inter-trial interval (ITI) was pseudorandom and based on between zero and five 4-s 
“fixation-only” trial periods arranged to maximize the separability of the measured 
hemodynamic response to stimulus trials. 
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Figure 1.3: Adapted COVIS schematic 
Schematic of COVIS model adapted from Ashby, Alfonso-Reese et al. (Ashby et al., 1998) to 
incorporate reciprocal connections between the PFC and MTL (reflecting interactions found in 
research on declarative memory) as well as between extrastriate visual cortex and posterior 
regions of the caudate.  RB category learning is hypothesized to depend on connections between 
the head of the caudate, PFC, the MTL and the ACC.  II category learning is hypothesized to 
depend on changes within extrastriate cortex supported by the body/tail (posterior) regions of the 
caudate.  Dotted lines represent dopaminergic projections for incorporating feedback in learning.  
ACC (anterior cingulate cortex); NAC (nucleus accumbens); SN (substantia nigra); VTA 
(ventral tegmental area). 
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CHAPTER 2 FIGURES 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Exp. 1 learning curves 
Experiment 1.  Accuracy of RB and II “learners” across 4 runs.  Both groups performed above 
chance in all runs and average accuracy did not differ between groups (F(1,24) = 1.25, n.s.).  RB 
mean performance across runs was 70.8% (SE =1.83) and II was 74.9% (SE = 3.03). 
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Figure 2.2: Exp. 1 whole-brain fMRI data 
Experiment 1.  (top) A portion of the successful RB categorization network featuring the MTL 
(t(11) > 4.5, cluster > 300 mm3).  Sagittal views are of the right hemisphere. (bottom) A portion 
of the successful II categorization network featuring the body of the caudate. (t(12) > 4.5, cluster 
> 300 mm3). 

 



 139 

Table 2.1: Exp. 1 RB and II correct/incorrect differences 
Experiment 1: Volume-thresholded clusters of areas that activated differentially to correct versus 
incorrect categorization trials for the RB and II groups.  T>4.5, cluster>300mm3 
 
 
Brain Region 

Brodmann’s 
Area 

Talairach 
Coordinates (x, y, z) 

Cluster 
size (mm3) 

RB group:    
Correct > Incorrect    
Left anterior hippocampus  -18, -8, -12 2172 
Right anterior hippocampus  16, -5, -10 1781 
Left superior frontal gyrus 8 -20, 17, 53 1688 
Left medial frontal gyrus 10 -8, 53, 19 1203 
Left transverse temporal gyrus 41 -59, -21, 10 1109 
Right caudate body  18, -26, 28 1094 
Left paracentral lobule 5 -8, -41, 56 1078 
Right superior temporal gyrus 22 59, -8, -2 578 
Left posterior cingulate 30 -11, -58, 17 531 
Right precuneus 7 13, -47, 60 453 
Right paracentral lobule 6 4, -34, 58 406 
Right superior frontal gyrus 6 2, 2, 62 406 
Incorrect > Correct    
Right cuneus 18 2, -78, 5 719 
Right supramargninal gyrus 40 55, -55, 37 578 
    
II group:    
Correct > Incorrect    
Left caudate body  -20, -14, 29 2766 
Left lentiform nucleus  24, -7, 3 1656 
Right caudate body  17, -11, 28 969 
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Figure 2.3: Exp. 1 ROI fMRI data 
Experiment 1.  (A) RB categorization > II categorization in the left MTL (t (24) > 2.0, cluster > 
700 mm3).  (B) II categorization > RB categorization in the right body of the caudate (t (24) > 
2.0, cluster > 600 mm3).  ROI-AL methodology (Stark and Okada, 2003) was used to align 
regions of interest in both A and B.  Note that cross-subject ROI alignment was improved at the 
cost of whole-brain alignment.  (C) Peri-stimulus time (PST) course for the left MTL ROI.  (D) 
PST course for the right caudate ROI. 
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Figure 2.4: Exp. 2 stimuli 
Experiment 2.  (A) RB and (B) II stimuli. Each point represents a distinct Gabor patch (sine-
wave) stimulus defined by orientation and frequency (thickness of lines). In both stimulus sets, 
there are 2 categories (red and blue points). RB categories are defined by a vertical boundary 
(only frequency is relevant for categorization) whereas II categories are defined by a diagonal 
boundary (both dimensions are relevant). In both RB and II stimuli there are examples of a 
stimulus from each category. 
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Figure 2.5: Exp. 2 learning curves 
Experiment 2. Accuracy of RB and II “learners” across 4 runs.  Learning across runs was 
reflected in a significant linear trend (F (1, 29) = 24.716, p < 0.05).  Mean accuracy averaged 
across all 4 runs for the RB group was 77.3% (SE = 0.034) and for the II group was 66.6% (SE = 
0.055).  The RB group accuracy was significantly greater than the II accuracy across all 4 runs (F 
(1,29) = 12.5, p< 0.05). 
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Figure 2.6: Exp. 2 accuracy vs. distance 
Accuracy of RB and II “learners” across 4 runs as a function of distance of the stimuli from the 
bound.  The same pattern is observed in both RB and II subjects that far stimuli are more 
accurate than close stimuli. 
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Figure 2.7: Exp. 2 RT differences within trial types and between groups 
(A) RT differences between RB and II groups for correct and incorrect trials.  (B) RT differences 
between RB and II groups for close and far trials. 
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Figure 2.8: Exp. 2 whole-brain fMRI data, RB and II group subtraction 
(A) RB and (B) II group correct vs. incorrect activity differences across all 4 runs in Experiment 
2. 
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Figure 2.9: Exp. 2 close and far trial activity in the RB subject group 
Correct vs. incorrect trials in RB subjects for (left) close and (right) far trials in Experiment 2. 
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Table 2.2: Exp. 2 RB correct/incorrect differences within close and far trial types 
Experiment 2: Volume thresholded clusters of areas that activated differentially to correct versus 
incorrect close and far categorization trials for the RB and II groups (all runs). T>4, 
cluster>350mm3 
 

 
Brain Region 

Brodmann’s 
Area 

Talairach 
Coordinates (x, y, z) 

Cluster 
size (mm3) 

RB group (close trials):    
Correct > Incorrect    
Right precentral gyrus 44 14, 29, 60 3578 
Right middle occipital gyrus 19 36, -82, 10 875 
    
Incorrect > Correct    
Right middle frontal gyrus 9 46, 19, 30 8297 
Right precentral gyrus 44 42, 15, 7 4141 
Left inferior parietal lobule 40 -37, -42, 42 3547 
Right medial frontal gyrus 6 5, 29, 36 3250 
Left insula 13 -32, 20, 4 3250 
Right inferior parietal lobule 40 40, -56, 46 3016 
Left middle frontal gyrus 9 -36, 16, 30 1391 
Right superior frontal gyrus 6 9, 21, 56 859 
Right superior frontal gyrus 9 28, 45, 30 500 
Right inferior parietal lobule 40 59, -58, 41 484 
Left superior occipital gyrus 19 -38, -85, 25 391 
    
RB group (far trials)::    
Incorrect > Correct    
Right insula 13 40, 9, 6 1125 
Right superior frontal gyrus 6 7, 12, 50 1031 
Right cingulate 32 9, 23, 32 750 
Left insula 13 -35, 14, -1 594 
Left lingual gyrus 18 -16, -68, 3 406 
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Figure 2.10: Exp. 2 Close correct vs. incorrect trials in II subjects 
Correct vs. incorrect trials in II subjects for close trials.  No successful categorization activation 
differences were observed in II subjects for the far trials. 
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Table 2.3: Exp. 2 II correct/incorrect differences within close and far trial types 
Experiment 2: Volume thresholded clusters of areas that activated differentially to correct versus 
incorrect close and far categorization trials for the RB and II groups (all runs). T>4, 
cluster>350mm3 
 

 
Brain Region 

Brodmann’s 
Area 

Talairach 
Coordinates (x, y, z) 

Cluster 
size (mm3) 

Correct > Incorrect    
Left insula 13 -25, -28, 24 6406 
Right superior frontal gyrus 8 4, 19, 49 6078 
Right precentral gyrus 6 26, -18, 68 2359 
Left caudate body  -18, 20, 17 2031 
Right cingulate gyrus  25, -8, 31 1828 
Right posterior caudate  22, -44, 18 1750 
Right middle occipital gyrus 18 38, -85, 13 1609 
Right paracentral gyrus  10, -32, 53 1609 
Left superior frontal gyrus 8 -19, 27, 47 1203 
Right anterior cingulate gyrus  22, 21, 18 1062 
Left cingulate gyrus 31 -1, -38, 36 625 
Left precentral gyrus 6 -25, -15, 68 625 
Right postcentral gyrus 2 53, -26, 55 562 
Right inferior parietal lobule  29, 36, 39 562 
Left middle occipital gyrus 19 -25, -88, 21 547 
Right precentral gyrus  36, -25, 57 484 
Right caudate  2, -3, 16 391 
    
Incorrect > Correct    
Right superior frontal gyrus 9 27, 50, 28 3438 
Right inferior parietal lobule 40 56, -51, 39 2297 
Left insula 13 -34, 18, 5 1766 
Right inferior frontal gyrus  50, 31, -2 547 
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Figure 2.11: Exp. 2 MTL ROI fMRI data 
Correct vs. incorrect trial activity in the MTL ROI (A) in RB subjects and (C) II subjects. The 
peri-stimulus time (PST) course for the left MTL cluster in (B) RB and (C) II subjects. 
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Figure 2.12: Exp. 2 Caudate ROI fMRI data 
Correct vs. incorrect trial activity in the caudate ROI (A) in RB subjects and (B) II subjects.  The 
double subtraction of RB and II subject groups is shown at the bottom.  The corresponding peri-
stimulus time  course for three significant clusters of activity are shown below the double 
subtraction images. 
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Figure 2.13: Exp. 2 MTL ROI 
Correct vs. incorrect trials in the MTL ROI for close and far trials.  There does not appear to be a 
difference in activity between the close and far trials in the II subject group.  The far trials in RB 
subjects do not show any successful categorization difference, but incorrect far trials are 
relatively scarce in this subtraction. 
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Figure 2.14: Exp. 2 Caudate ROI 
Correct vs. incorrect trials in the caudate ROI for close and far trials.  The difference between 
correct and incorrect trials is similar for the II group both in close and far trial types.  In the RB 
group, far trials seem to elicit differential activity in the posterior region of the caudate whereas 
close trials are associated with a cluster in anterior caudate body.  This difference is greater for 
incorrect than correct trials. 
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CHAPTER 3 FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Exp. 1 Mathematical model fits for RB and II subjects 
Experiment 1 model fits for RB (top) and II subjects (bottom). Fit values were separated into 
thirds with increasing hue indicating better fit. RB fits are in warm and II fits in cool colors. The 
darkest hues were included in the fMRI analysis in Figure 3.2. 
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Figure 3.2: Exp. 1 model-identified best RB and II fMRI activity 
Experiment 1. Correct trial activity for model-identified best strategy use and the corresponding 
peri-stimulus time courses of activity within significant clusters.  (A) Best RB fit runs evoked 
greater activity than best II fit runs in right PFC.  (B) Best II fit runs evoked greater activity than 
best RB fit runs in right occipital cortex.  For this analysis, the statistical threshold was t(30) > 4, 
in a contiguous cluster of greater than 350mm3. 
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Figure 3.3: Exp. 2 model fits for RB and II subjects 
Experiment 2: model fits for RB (top) and II subjects (bottom).  Fit values were separated into 
thirds with increasing hue indicating better fit. RB fits are in warm and II fits in cool colors.  The 
darkest hues were included in the fMRI analysis in Figure 3.4. 
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Figure 3.4: Exp. 2 model-identified best RB and II fMRI activity  
Experiment 2:  Correct vs. incorrect trial activity for (A) best RB model fit runs (C) best II model 
fit runs. All images were thresholded at T>3, cluster>350mm3. 
 

A) 

B) 
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Figure 3.5: example of modeling in an individual subject 
One II subject run that was best fit with the RB model (left) and the corresponding contrast of 
correct vs. incorrect trial activity (right). Plus signs indicate the category membership of the 
stimuli whereas the circles show the pattern of subject responses.  Instances where the colors 
agree indicate correct responses and all others are incorrect.  The dotted line indicates the 
optimal decision boundary and the solid line the best fitting account of the data according to the 
RB model.  The corresponding functional activity resembles that of the best fit RB run group 
activity. 
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Figure 3.6: best fitting RB runs in II subjects 
(A) Similar to the analysis in Figure 3.5, correct vs. incorrect trial activity is contrasted here from 
the best fitting RB runs that occurred within II subjects.  (B) MTL ROI analysis of II subject 
correct vs. incorrect trial activity for RB fit runs (top) and II fit runs (bottom). 
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CHAPTER 4 FIGURES 

 

Figure 4.1: Schematic structure of PINNACLE 
Schematic of the PINNACLE computational model and the accompanying free parameters.  
Stimulus information is fed into the RB and II systems and evaluated separately.  A categorical 
decision is made within each system, but the decision node adjudicates between the systems 
according to their relative confidence levels.  After a response is made, feedback returns to the 
system that made the response, and in the case of negative feedback, the representation is 
updated. 
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Figure 4.2: perceptual shaping parameter 
Effect of the distance to the boundary on p(A) for different values of the perceptual shaping 
parameter.  A higher perceptual shaping parameter means that the discrimination between the 
categories becomes more distinct, as reflected in the large degree of difference between p(A) 
values as a function of distance. 

 

 

 

 



 162 

A) 

 RUN1 RUN2 RUN3 RUN4 
RB model 63.31 71.45 76.49 81.19 
RB subj 64.39 73.74 79.82 81.16 
II model 65.62 74.03 77.09 75.53 
II subj 64.17 68.17 75.43 76.06 

 

B) 

 

 

 

 

 

 

 

 

 

Figure 4.3: 4 parameter model fit 
(A) Table of the accuracy of the model and the subjects on each run.  (B) Best fitting 4 parameter 
model out of 12 different feedback models.  Model accuracy versus RB and II subject group 
accuracy.  Feedback model = 6.  Fit value = 57.16 
 

 

 



 163 

A) 

 RUN1 RUN2 RUN3 RUN4 
RB model 65.89 76.05 79.59 80.26 
RB subj 64.39 73.74 79.82 81.16 
II model 65.54 69.42 73.81 76.01 
II subj 64.17 68.17 75.43 76.06 

B) 

 

 

 

 

 

 

 

 

 

Figure 4.4: 5 parameter model fit 
(A) Table of the accuracy of the model and the subjects on each run.  (B) Best fitting 5 parameter 
model out of 12 different feedback models.  Model accuracy versus RB and II subject group 
accuracy.  Feedback model = 2.  Fit value = 14.47 
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Figure 4.5: Individual subject PINNACLE trial fits 
RB and II system confidence across 320 trials in an (A) RB subject and (B) II subject. 
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Figure 4.6: Exp. 1 avg RB and II fit trials 
Experiment 1.  (A) Block model run characterization (B) PINNACLE system engagement per 
block.  Of note here is the similarity between the mathematical models and PINNACLE on a 
block level. 
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Figure 4.7: Exp. 1 avg RB and II fit trials 
Experiment 1.  (A) RB and  (B) II subject group average strategy use per block.  In general RB 
trials dominate RB subjects and II trials dominate II subjects. 
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Figure 4.8: Exp. 2 avg RB and II fit trials 
Experiment 2.  (A) Block model run characterization (B) PINNACLE strategy predictions 
averaged over 80-trial blocks. Of note here is the similarity between the mathematical models 
and PINNACLE on a block level. 
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Figure 4.9: Exp. 2 avg RB and II fit trials 
Experiment 2.  (A) RB and (B) II subject group average strategy-use per block according to 
PINNACLE.  Compared to Experiment 1, the II group in Experiment 2 more frequently appears 
to adopt a mixture of strategies. 
 



 169 

 Table 4.1: Assumptions of the PINNACLE model 
Assumptions made in the construction of the PINNACLE model.   
 
1 There are only 2 systems: RB and II 
2 The RB system is subserved by an explicit memory process (MTL) in concert with 

working memory and attention (PFC and ACC) 
3 The II system relies on perceptual learning within the tail of the caudate in 

communication with cortical visual association areas 
4 The systems interact competitively (rather than cooperatively or in parallel with no 

interaction) 
5 Feedback only returns to the system that made the response. 
6 The category representation is only adjusted on incorrect trials. 
7 Competition is resolved by the PFC through top-down modulation of both the RB and 

II systems 
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Table 4.2: Different feedback mechanisms for the PINNACLE model   
 

Model 
Number 

Description 

1 If the RB system is selected, the RB system gets feedback.  If the II system is 
selected, the II system gets the feedback.  This is true on both correct and incorrect 

trials. 
2 Both systems get feedback on every trial. 
3 Feedback only occurs on correct trials and goes to both systems. 
4 Both systems get feedback on every incorrect trial. 
5 If the RB system is selected, both systems get feedback.  If the II system is 

selected, only the II system gets feedback. 
6 If the II system is selected, both systems get feedback.  If the RB system is 

selected, only the RB system gets feedback. 
7 If the RB system is selected on an incorrect trial, both systems get feedback.  Only 

the II system gets feedback on every other trial. 
8 If the II system is selected on an incorrect trial, both systems get feedback.  Only 

the RB system gets feedback on every other trial. 
9 If the RB system is selected on a correct trial, it receives feedback.  If the II system 

is selected on an incorrect trial it receives feedback. 
10 If the II system is selected on a correct trial, it receives feedback.  If the RB system 

is selected on an incorrect trial, it receives feedback. 
11 Feedback only occurs on correct trials and goes to the system that was assigned to 

the response. 
12 Feedback only occurs on incorrect trials and goes to the system that was assigned 

to the response. 
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Table 4.3: Comparison of feedback models (A) 4 parameter model fits (B) 5 parameter 
model fits  

In the following tables, the data is sorted according to fit value, with increasing values indicating 
worse fits to the data.  The version of the feedback model corresponds to the model number in 
Table 4.2.  The result of the minimization procedure was a set of parameters: lrmodel (learning 
rate of the model; for the 4-parameter model), lrRB (learning rate of the RB system; for the 5-
parameter model), lrII (learning rate of the II system; for the 5-parameter model), lrPS (learning 
rate of the perceptual shaping parameter), PS (starting perceptual shaping parameter) and Gauss 
sigma (standard deviation of the Gaussian noise distribution parameter). 
A)  

Feedback Fit value lrmodel lrPS PS Gauss sigma 
6 57.1645 0.0409 0.0321 455 16.7240 
3 89.6892 0.4507 0.4062 236791 18.6294 
2 131.2210 0.0469 0.1295 52565 7.4734 
8 138.3309 0.0317 0.0829 251 4.8517 
11 138.9801 3.4206 0.4750 506774 9.8050 
4 182.1173 0.1098 0.0994 5571 0.3713 
1 189.5899 0.0702 0.2123 45444 17.9382 
12 260.5065 0.5638 0.1321 11906 0.9196 
9 295.0172 0.5714 0.1681 110351 0.4685 
7 342.8350 0.0385 0.0033 1057 6.6598 
5 453.7860 0.0341 0.0553 6128 15.1179 
10 1141.1859 0.3371 0.1887 150762 34.4861 

B) 

Feedback Fit value lrRB lrII lrPS PS Gauss sigma 
2 14.6242 0.1703 0.0288 0.5382 145932 1.2043 
1 29.0467 0.5203 0.0357 0.3689 99857 7.1001 
6 44.4372 0.0601 0.3661 0.5796 156153 15.5632 
3 50.3389 0.9612 0.3996 0.3906 172913 3.4329 
5 84.9332 0.5259 0.0169 0.2025 176041 7.2375 
4 160.0943 0.8720 0.1061 0.1186 64529 0.2630 

12 178.4442 0.7514 0.1754 0.2840 56990 6.6114 
8 213.5469 0.0408 0.1129 0.3195 119288 31.2168 

11 263.6949 0.9084 1.0447 0.3700 210546 18.4908 
9 305.5924 0.7797 1.3193 0.4274 201687 43.6479 
7 809.5260 1.5725 0.0318 0.5911 163536 20.0740 

10 1102.3731 0.9352 0.4984 0.4274 209661 38.9850 
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CHAPTER 5 FIGURES 

A)  

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

Figure 5.1: Exp. 1 PINNACLE trial accuracy in (A) RB subjects and (B) II subjects 
PINNACLE designated every trial according to whether the RB or II system was active.  When 
trials were grouped according to this designation between RB and II subjects there were 
differences in accuracy.  RB trials were more accurate in RB subjects and II trials were more 
accurate in II subjects. 
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Figure 5.2: Exp. 1 Correct – incorrect RB fit trials in (A) RB subjects and (B) II subjects 
PINNACLE-based trial sorting reveals whole-brain activity associated with categorization 
success on RB trials.  This activity differs between the RB and II subject groups, with one 
common area of activity in the parietal lobe.  
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Figure 5.3: Exp. 1 Correct – incorrect II fit trials in (A) RB subjects and (B) II subjects 
PINNACLE-based trial sorting reveals whole-brain activity associated with categorization 
success on II trials.  This activity differs between the RB and II subject groups.  
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Figure 5.4: Exp. 1 Best fitting RB blocks versus best fitting II blocks in correct trials. 
PINNACLE-based trial sorting reveals whole-brain activity associated with best fitting RB 
blocks compared to that during best fitting II blocks.  This analysis is restricted to activity 
associated with correct trials as these best fitting blocks contain few incorrect trials.  A region in 
right PFC is more active for best fitting RB blocks and a region in right posterior visual 
association cortex is more active for best fitting II blocks.  
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Figure 5.5: Exp. 1 MTL ROI RB and II fit trials 
Within the MTL ROI, PINNACLE-based trial sorting reveals differences in successful 
categorization activity for RB and II trials in both the RB and II subject groups.  The most robust 
differences occur within both subject groups in PINNACLE-identified RB trials. 
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Figure 5.6: Exp. 1 Caudate ROI RB and II fit trials 
Within the caudate ROI, PINNACLE-based trial sorting reveals differences in successful 
categorization activity for RB and II trials in both the RB and II subject groups.  During RB trials 
the II subject group shows bilateral caudate activity but the RB group only shows head of the 
caudate activation.  Only the II subject groups shows bilateral caudate activity during II trials. 
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Figure 5.7: Exp. 2 PINNACLE accuracy in (A) RB and (B) II subjects. 
PINNACLE designated every trial according to whether the RB or II system was active.  When 
trials were grouped according to this designation between RB and II subjects there were 
differences in accuracy.  RB trials were more accurate in RB subjects and II trials were more 
accurate in II subjects. 
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Figure 5.8: Exp. 2 Accuracy vs. Distance within RB and II fit trials in RB subjects 
The increased variance in the stimuli in Experiment 2 allowed for a separation of close and far 
trial types.  Within these sub-groups RB and II trials showed a similar pattern that far trials were 
more accurate than close trials in both RB and II subjects. 
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Figure 5.9: Exp. 2 Correct - incorrect RB fit trials in (A) RB and (B) II subjects. 
PINNACLE-based trial sorting reveals whole-brain activity associated with categorization 
success on RB trials. 
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Figure 5.10: Exp. 2 Correct - incorrect II fit trials in (A) RB and (B) II subjects. 
PINNACLE-based trial sorting reveals whole-brain activity associated with categorization 
success on II trials. 
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Figure 5.11: Exp. 2 Best fitting RB blocks versus best fitting II blocks in correct trials. 
PINNACLE-based trial sorting reveals whole-brain activity associated with best fitting RB 
blocks compared to that during best fitting II blocks.  This analysis is restricted to activity 
associated with correct trials as these best fitting blocks contain few incorrect trials.  A region in 
medial PFC is more active for best fitting RB blocks (left) and a region in right posterior visual 
association cortex is more active for best fitting II blocks (right).  
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Figure 5.12: Exp. 2 MTL ROI RB and II fit trials 
Within the MTL ROI, PINNACLE-based trial sorting reveals differences in successful 
categorization activity for RB and II trials in both the RB and II subject groups.  The most robust 
differences occur within both subject groups in PINNACLE-identified RB trials.  The II subjects 
also show left anterior MTL activity during II trials. 
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Figure 5.13: Exp. 2 Caudate ROI RB and II fit trials 
Within the caudate ROI, PINNACLE-based trial sorting reveals differences in successful 
categorization activity for RB and II trials in both the RB and II subject groups.  During RB trials 
only the II subject group shows bilateral caudate activity.  Only the II subject group shows right 
posterior caudate activity during II trials.  Both the RB and II groups have similar negative 
activity in anterior caudate during II trials. 
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   Experiment 1      Experiment 2 

A) 

 

 

 

 

B) 

 

 

 

 

C)  

 

 

 

 

Figure 5.14: Competition-related activity 
(A) Average number of Competition, Non-competition and Undefined trial types in Experiment 
1 (left) and Experiment 2 (right). (B) Average accuracy of Competition, Non-competition and 
Undefined trial types in Experiment 1 (left) and Experiment 2 (right). (C) fMRI contrast of C vs. 
NC trial types in Experiment 1 (left) and Experiment 2 (right).  The consistent regions of activity 
across studies occurs in the right DLPFC which we hypothesize corresponds to the operation of 
the decision module on these trials. 
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Figure 5.15: Off system activity in RB subjects 
In the RB subject group in Experiment 2, trials were marked as correct or incorrect according to 
the predictions of the II system when PINNACLE predicted the RB system was active.  A) The 
average number of trials in each subject group (left) and the accuracy of the ‘on system’ RB 
trials contrasted with the ‘off system’ II trials (right).  C) The functional activity in the caudate 
ROI of RB subjects during II trials when the II system was not selected.  The correct and 
incorrect designations are based on the II system’s predictions, not the overt feedback given to 
the subject.  These posterior caudate regions are consistent with the hypothesized ‘II network’, so 
the observation of activity here suggests that the II system is operating simultaneously with the 
RB system in these subjects. 
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CHAPTER 6 FIGURES 
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Figure 6.1: Simulation of II system clustering representation 
(A) Hypothetical representation of a subject acquiring an II category structure by recruiting 
nodes within the stimulus space.  Initially the clusters are small.  (B) After some amount of 
experience the representation becomes stronger and more specific for each region that has been 
consistently endorsed.  
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