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ABSTRACT

Phenomenology of Light Sterile Neutrinos and Neutrino Dipole Moments

Giancarlo Jusino Sánchez

This thesis focuses on exploring the explanatory and discovery potential of the four-

neutrino and enhanced neutrino magnetic and electric dipole moments hypotheses when

applied to the NOvA/T2K discrepancy and the XENON1T anomaly, respectively. Firstly,

we study the effect of a very light (sub eV) sterile neutrino on the NOvA/T2K anom-

aly. We find that for some regions of the parameter space the four-neutrino hypothe-

sis is preferred with moderate significance. Secondly, we study the parameter space of

the neutrino dipole moment matrix given Majorana or Dirac neutrinos. We discuss the

XENON1T anomaly given the recent XENOXnT measurement. We also study how the

potential physics reach of future experiments depends on the nature of neutrinos. We find

that a next-generation experiment two orders of magnitude more sensitive to the neutrino

dipole moments via muon-neutrino elastic scattering could discover that neutrino electro-

magnetic moments are nonzero if neutrinos are Dirac fermions. Instead, if neutrinos are

Majorana fermions, such a discovery is excluded by existing solar neutrino data, unless

there are more than three light neutrinos.
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CHAPTER 1

Introduction

Our observations of the behavior of neutrinos have shown us that the Standard Model

of Particle Physics (SM) is not complete. While the SM assumes neutrinos are massless,

all evidence points to neutrinos having mass. This evidence is that we have observed

neutrinos to change flavor from that at the point of production to where they are detected.

We call this phenomenon flavor oscillation and it is best described by mixing the neutrino

flavor states with mass states via a unitary matrix. We can describe this oscillation by

time-evolving the Hamiltonian of the system. Neutrino masses and flavor oscillations open

the field to many questions, including Beyond the Standard Model (BSM) queries, such

as:

• How do neutrinos get their mass?

• Are neutrinos their own antiparticle?

• Are there sterile neutrinos?

• What is the mass ordering of the neutrino mass eigenstates?

But we can ask an even more immediate question: What are the entries of the afore-

mentioned mixing matrix? In the last decades a monumental amount of effort has been

expended towards the goal of measuring these entries and trying to answer some of these

questions. We have gone from positing and observing the phenomena [5, 6, 7, 8, 9,
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10, 11, 12, 13], to making groundbreaking measurements and an era of precision mea-

surements [14, 15, 16, 17, 18], and continuing our efforts with the next generation of

experiments [19, 20, 21]. Nevertheless, along the way we have made measurements that

have left us with lingering and uncomfortable discrepancies and anomalies. This thesis

aims to, at this particular point in time, explore some of these anomalies by consider-

ing some of the aforementioned questions as hypotheses. Furthermore, we will comment

on the role that these future high precision experiments can play with regards to these

anomalies and questions.

1.1. Flavor Oscillations & Interactions

1.1.1. Vacuum

Neutrinos are created via the weak interactions as distinct flavor eigenstates |να〉 with α

denoting the flavor corresponding to the charged leptons: electrons e, muons µ, and tauons

τ . Neutrinos then propagate as mass eigenstates |νi〉 with i = 1, 2, 3... corresponding to

the number of neutrino states. Neutrinos are detected via weak interactions though W

boson (Charged Current) or Z boson (Neutral Current) exchange. We can measure the

probability of neutrinos being detected as the initial flavor eigenstate Pαα or of it changing

to a different final state Pαβ. We also expect to conserve probability, so
∑

β Pαβ = 1. We

will briefly discuss the standard derivation of neutrino oscillations probabilities in vacuum

to have a working base for Chapter 2 and Chapter 3.

Neutrino flavor eigenstates can be written as a weighted sum of the mass eigenstates.

(1.1.1) |να〉 =
∑
i

U∗
αi |νi〉 ,
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where U is a complex unitary matrix, to conserve probability, that maps the flavor

eigenstates to the mass eigenstates. In the three neutrino picture, the matrix can be

parametrized by three mixing angles θ12, θ13, and θ23 usually referred to as the solar,

reactor, and atmospheric mixing angles, respectively. These monikers come from the phe-

nomena that dominated the oscillation when first trying to measure these parameters.

In the case of Dirac neutrinos, there is also one physical complex Charge Parity (CP)

violating phase δ13 = δCP called the Dirac phase.

(1.1.2) U3×3 =


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




cos θ13 0 sin θ13e
−iδCP

0 1 0

− sin θ13e
iδCP 0 cos θ13




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

 .

In the three-neutrino picture, U in Eq. (1.1.2) is usually called the Pontecorvoo-Maki-

Nakagawa-Sakata (PMNS) matrix. For Majorana neutrinos U becomes UUM where UM

is a diagonal unitary matrix with two physical phases.∗ We are interested in the probability

Pαβ for an initial neutrino flavor eigenstate να to a final flavor eigenstate νβ. To calculate

this we time-evolve |να〉 so we can project 〈νβ| unto it to get the transition amplitude.

The time evolution is best described in the mass basis because the mass states |νk〉 are

the eigenstates of the free-particle (propagation) Hamiltonian H,

(1.1.3) H |νk〉 = Ek |νk〉 .

∗We omit these additional Majorana phases because they do not contribute to the oscillation probability
Eq. (1.1.8). Furthermore, in Chapter 3, they can be absorbed into the off-diagonal magnetic moment
matrix phases for Majorana neutrinos.
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Where the Ek are the energy eigenvalues. With these we can write the plane wave solutions

to the time-dependent Schrödinger equation H |νk(t)〉 = i d
dt
|νk(t)〉,

(1.1.4) |νk(t)〉 = e−iEkt |νk(0)〉 , where |νk(t = 0)〉 = |νk〉 .

Using this solution, Eq. (1.1.1), and its inversion, we can write out the time-evolution of

the initial state |να(0)〉 in the flavor basis,

(1.1.5) |να(t)〉 =
∑
β

∑
k

U∗
αkUβke

−iEkt |νβ〉 .

Given that neutrinos have small masses and they travel close to the speed of light, it is

beneficial to take the ultrarelativistic approximation. The energy eigenvalues become

(1.1.6) EK =
√

~p2 +m2
k ' Eν +

m2
k

2Eν

,

where we neglect the neutrino mass from the neutrino energy Eν = |~p|. The transition

amplitude is given by,

(1.1.7) Aαβ(t) = 〈νβ|να(t)〉 .

Usually, the distance L between the source and detector is known rather the oscillation

time t so we approximate t = L. We can evaluate the transition probability of a neutrino

with initial flavor state α to be detected some time later as a flavor state β to be,

(1.1.8) Pαβ(L,Eν) = | 〈νβ|να(L)〉 |2 =
∑
k

∑
j

U∗
αkUβkUαjU

∗
βje

−i(Ek−Ej)L.
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We can see that the oscillation depends on the difference of the eigenvalues. From

Eq. (1.1.6) this difference is approximately Ek − Ej ' ∆m2
kj

2Eν
with ∆m2

kj = m2
k − m2

j .

From this relation it is clear that neutrino flavor oscillation probabilities are only sensi-

tive to neutrino mass squared differences. In the three-neutrino picture this implies two

mass squared differences for three massive states. These splitting can be arranged in two

ways,

(1.1.9)
m1 < m2 < m3 Normal Ordering (NO)

m3 < m1 < m2 Inverted Ordering (IO),

giving rise to the mass ordering question, hinted at before.

We can also write these transition probabilities in matrix form,

(1.1.10) Ψα = (Aαe, Aαµ, Aατ ), i
d
dt

Ψα = HFΨα,

where HF is the Hamiltonian in the flavor basis. In the mass basis, the Hamiltonian

becomes diagonal with entries proportional to each mass-squared value. Addition or

subtraction of terms proportional to the identity matrix leave the transition probability

unchanged, allowing us to write:

(1.1.11) HF = UMU † = U


0 0 0

0
∆m2

21

2Eν
0

0 0
∆m2

31

2Eν

U †.

It is instructive to consider the two-neutrino vacuum oscillation case that can be charac-

terized by a 2×2 unitary matrix U parametrized by θ and a single mass-squared splitting
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∆m2.

(1.1.12) U2×2 =

cos θ − sin θ

sin θ cos θ

 .

Eq. (1.1.8) would take the form,

(1.1.13) Pνα→νβ(L,Eν) = sin2 2θ sin2

(
∆m2L

4Eν

)

where Eν is the neutrino energy and L is the distance of propagation. We see that the

amplitude of the oscillation depends on the mixing parameters while the frequency is

driven by the mass-squared splitting and neutrino energy. In our analysis, we will work

with neutrinos with energies in the GeV range and baselines of the order of hundreds of

km, so it is useful to rewrite the oscillation argument in Eq. (1.1.13) as

(1.1.14) 1.27
∆m2[eV2]L[km]

Eν [GeV]
.

The oscillations of interest in Chapter 2 feature the three-neutrino and four-neutrino

pictures. The analytical functions of the transition and survival probabilities are cumber-

some, so instead we elect to show plots of the oscillations where pertinent.

1.1.2. Matter

The interactions via the weak force of neutrinos with the matter they propagate through

are critical in our description of solar and accelerator neutrinos. The intervening matter

is composed of electrons e−, protons p, and neutrons n. As neutrinos propagate in matter

they predominantly interact with electrons via the Charged Current (CC) through W
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W

νe e−

e−νe

W

ν̄e

e− e−

ν̄e

Z

(−)
να

(−)
να

e−, p, ne−, p, n

Figure 1.1. Feynman diagrams that contribute to coherent forward elastic
scattering as neutrinos or anti-neutrinos propagate through matter. The
two leftmost diagrams contribute to the Charged Current potential VCC for
scattering with electrons in the media. The rightmost diagram contributes
to the Neutral Current potential VNC as the (anti)-neutrinos scatter with
all of the components of the media.

exchange. The neutrinos also interact with the intervening e−, p, n via the Neutral

Current (NC) through Z exchange. The diagrams contributing to these interactions are

shown in Fig. 1.1. Of concern to us are interactions where neutrinos reach the detector

and leave the intervening matter unchanged – this is coherent forward elastic scattering.

In the CC case, we can take neutrinos to be traveling in a homogeneous static gas of

electrons characterized by electron density Ne. We can modify HF in the flavor-basis

from Eq. (1.1.11) to include these contributions as effective potential terms,

(1.1.15) HF = UMU † +HCC +HNC.

The CC effective potential contribution is given by,

(1.1.16) HCC
αβ = VCCδαe =

√
2GFNeδαe,
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where GF is the Fermi constant. The NC interactions include contributions from electrons,

protons, and neutrons. For ordinary matter we assume electrical neutrality, meaning an

equal number of electrons and protons. The electron and proton NC effective potential

contributions are equal in magnitude but differ by a sign, so the only net contribution to

HNC is that of neutrons.

(1.1.17) HNC
αβ = VNCδαβ =

√
2/2GFNnδαβ,

where Nn is the density of neutrons in matter. For anti-neutrinos, the matter potentials

VCC and VNC gain a negative sign. A useful fact is that the NC contribution to the

Hamiltonian is proportional to the identity matrix; since we can add or subtract terms

proportional to the identity matrix at the level of the Hamiltonian we can ignore the

NC contribution in the three-neutrino picture. Nevertheless, this will not be the case in

Chapter 2 where we consider sterile neutrinos that, by definition, do not interact via Z

exchange. The simplest case, which for our purposes applies to the intervening matter

in accelerator experiments, has the effective matter potentials depend only on constant

Ne or Nn. With this in mind we can diagonalize HF and re-parameterize in terms of an

effective matter mixing matrix UM as the eigenvector matrix and HM as the diagonalized

eigenvalue matrix, such that

(1.1.18) UT
MHFUM = HM.

We can then substitute these effective matter objects into Eq. (1.1.8) to calculate the

probability of neutrino oscillations given a constant matter profile. In the two-neutrino

framework, the survival probability of an electron-neutrino νe in matter of constant density
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is given by

(1.1.19) Pνe→νe(L,Eν) = sin2 2θM sin2

(
∆m2

ML

4Eν

)
,

where θM and ∆m2
M follow from UM and HM. In Chapter 3 we also consider neutrinos

that are created in the Sun and are detected at Earth. The propagation of these neu-

trinos follow three regions of interest: from their point of creation in the Sun until they

reach space, from the edge of the Sun to Earth, and any intervening matter between the

point of terrestrial ingress and where the detector is located. The solar region does not

feature a constant matter profile, but at the low energies of interest we can apply the

adiabatic approximation. As calculated in [22], for solar neutrinos with low energy we

can approximate their behavior by taking

(1.1.20) θ12 → θ
(i)
M .

θ
(i)
M is the effective solar mixing angle of the solar neutrinos at their point of production

in the Sun. The survival probability will be of use in Chapter 3 when we discuss the solar

effective neutrino magnetic moment.
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1.1.3. Electromagnetic Interactions

Massive neutrinos gain a coupling to the photon when we include loop level effects. We

are concerned with the effective vertex in Fig. 1.2 between initial and final neutrino mass

states νi and νf . As discussed in [22], the effective vertex Λif (q) depends only on the

γ(q) Λif

νi(pi)

νf (pf )

Figure 1.2. Effective coupling of neutrinos to the electromagnetic field given
one photon. Transitions between different initial νi and final νf state neu-
trinos are mediated by the effective vertex Λif .

four-momentum transferred to the photon. It can be expressed as a linear combination

of six Lorentz invariant form factors. In the real photon case where q2 = 0, these form

factors reduce to qif ,µif , εif , and aif . These are the neutrino charge, magnetic dipole

moment, electric dipole moment, and anapole moment, respectively. We focus our atten-

tion to the well studied magnetic and electric dipole moments. Within the framework of

the minimally extended Standard Model, the one-loop contributions to the neutrino one

photon coupling are shown in Fig. 1.3.
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W

ll

νfνi

γ

l

WW

νfνi

γ

Figure 1.3. Feynman diagrams contributing to the one-loop coupling be-
tween neutrinos and one photon in the minimally extended Standard Model.
There is an implied sum over all leptons l = e, µ, τ .

For Majorana neutrinos, only transition moments are allowed. As discussed in [22]

the SM expectation has been calculated to be

(1.1.21)

µMaj
kj ' − 3ieGF

16
√
2π2

(mk +mj)
∑
l

Im[U∗
lkUlj]

m2
l

m2
W

,

iεMaj
kj ' − 3eGF

16
√
2π2

(mk −mj)
∑
l

Re[U∗
lkUlj]

m2
l

m2
W

,

for kj = 1, 2, 3 and l = e, µ, τ . It follows that only the transition elements f 6= i are non-

vanishing. Furthermore, we can see that the moments are proportional to the neutrino

masses and the ratio of the charged lepton masses with the W mass. These two factors lead

to very small magnetic and electric dipole moments – outside the reach of any currently

conceivable experimental endeavour.

The picture does not change if we instead consider a minimally extended SM with

massive Dirac neutrinos. As discussed in [22] the SM expectation is

(1.1.22)

µDir
kj ' 3eGF

16
√
2π2

(mk +mj)

(
δkj −

1

2

∑
l

U∗
lkUlj

m2
l

m2
W

)
,

iεDir
kj ' 3eGF

16
√
2π2

(mk −mj)

(
δkj −

1

2

∑
l

U∗
lkUlj

m2
l

m2
W

)
.
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The Dirac case allows for diagonal magnetic and electric moments, but we see a similar

issue with the transition moments depending on the neutrino masses and being further

suppressed by the W mass. Of particular interest is the diagonal case, where the magnetic

and electric moments are no longer suppressed by m2
l /m

2
W ,

(1.1.23) µkk '
3eGF

8
√
2π2

mk ' 3.2× 10−19 µB,

where µB = 1/(2me) is the Bohr magneton. In the SM, this renders the diagonal elements

of the Dirac neutrino magnetic and electric dipole moments to be much larger than the

transition elements. Nevertheless, these are also too small and inaccessible to current or

proposed future experiments. Therefore, any enterprise that aims to measure neutrino

magnetic moments with current sensitivities will be looking for larger enhanced moments

where the effective vertex in Fig 1.2 includes Beyond the Standard Model (BSM) contri-

butions. These BSM enhanced magnetic moments will have to be much larger, within the

reach of current experiments.

Of particular interest to us is elastic scattering between any incoming neutrino state

and an electron. The electromagnetic contribution has the convenient feature that it can

be added incoherently to the SM neutrino-electron scattering cross-section. This is due to

the fact that weak interactions seek to preserve helicity while electromagnetic interactions

seek to change it. This allows us to write

(1.1.24) dσνle−

dTe

=

(
dσνle−

dTe

)
SM

+

(
dσνle−

dTe

)
mag

,
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where Te is the kinetic energy of the recoil electron – what the detector is able to measure.

The electromagnetic contribution is given by

(1.1.25)
(
dσνle−

dTe

)
mag

=
µ2
νl

µ2
B

πα2

m2
e

(
1

Te

− 1

Eν

)
.

Where me is the mass of the electron, α is the fine structure constant, and µνl is the

effective neutrino magnetic moment relevant to the experiment in consideration. This

effective magnetic moment is characteristic of the flavor composition of the incoming

neutrino flux.

If we consider an effective magnetic moment µ2
νl

, we are concerned with the neutrinos

detected some space-time distance away from from the scattering interaction. This will

be a sum of the final states of the form,

(1.1.26) µ2
νl
=
∑
j

∣∣∣∣∣∑
k

U∗
lke

−i∆m2
kj

L
2Eν (µjk − iεjk)

∣∣∣∣∣
2

.

We will explore the fundamental neutrino magnetic moments in the mass basis with

greater detail in Chapter 3, but we can make some additional simplifications. For all the

cases considered in this thesis, the oscillation term ∆m2
kj

L
2Eν

in Eq. (1.1.26) is too small,

allowing us to neglect the oscillation term. Furthermore, µjk and εjk are general complex

(anti-symmetric in the case of Majorana neutrinos) matrices. We cannot distinguish

between the electric and magnetic moments in the general BSM scenario, so henceforth

we refer to the magnetic moment µjk as

(1.1.27) µjk = µjk − iεjk.
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With these tools we are now primed to tackle the anomalies.

1.2. Anomalies

Since the discovery of neutrino flavor oscillations we have come across several anom-

alies, some of the more interesting ones being [23, 24, 25, 26, 27]. We want to address

two such anomalies: One is the discrepancy between the measurements of oscillation pa-

rameters by the NOvA and T2K experiments. The other is an excess of events, potentially

from solar neutrinos, in the XENON1T experiment [2]. For the former we explore the

possibility of a very light sterile neutrino assuaging the discrepancy. For the latter we ex-

plore BSM magnetic moments as a possible solution – with an eye towards the Majorana

and Dirac nature of neutrinos.

1.2.1. NOvA & T2K Discrepancy

The NOvA and T2K experiments are both long-baseline accelerator experiments intended

to measure muon-neutrino to electron-neutrino conversion. They have improved our mea-

surements of θ23 and ideally have something to say about the CP violating phase δCP . The

discrepancy has two manifestations: Firstly, as shown in Fig. 1.4, the preferred regions of

the experiments are in mild tension (1.7σ [28]) under the NO. Secondly, individually, both

experiments prefer the NO. Nevertheless, the combination of both experiments prefers the

IO. If this discrepancy persists, it can become a window to BSM Physics such as neutrino

NSIs and sterile neutrinos.
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Figure 1.4. The 68% and 90% confidence level contours in sin θ23
2 vs. δCP

in the (a) normal mass ordering and (b) inverted mass ordering.The cross
denotes the NOvA best fit point and colored areas depict the 90% and 68%
allowed regions. Overlaid black solid-line and dashed-line contours depict
allowed regions reported by T2K. [1]

The key difference between these experiments is the importance of matter effects. We

are sensitive to BSM hypotheses that are affected by the matter interactions as the neu-

trinos propagate from the source to the detectors. In this thesis, we want to leverage these

facts and this discrepancy to explore whether a very light sterile neutrino meaningfully

softens this tension.
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1.2.2. XENON1(n)T Excess (Measurement)

The XENON1T experiment was one of the premier dark matter search enterprises. In

their search, came upon an excess of electron recoil events at low energies. This anoma-

lous excess could be explained by an as-of-yet unmeasured amount of Tritium in the

detector. Nevertheless, we can also suppose that this excess is due to new Physics. Two

other exciting hypotheses that can explain the excess are Solar axions and new neutrino

properties leading to a large neutrino magnetic moment. The data and interpretations of

the XENON1T collaboration are shown in Fig. 1.5. In this thesis, we will focus on the

BSM neutrino magnetic moment solution in the presence of both Majorana and Dirac

neutrinos.

We stand to learn regardless of whether this excess can be explained by an unknown

Tritium background or BSM neutrino magnetic moments. For the former, we would have

stronger bounds on the Solar effective neutrino magnetic moments, and for the latter

we would open a window into new Physics to explain this larger-than-expected neutrino

magnetic moment. Of particular interest to us is how this measurement fits in the grander

scheme of direct measurements of neutrino magnetic moments. In particular, we are

interested in the neutrino magnetic moment bounds of reactor, accelerator, and Solar

neutrino sources when considering Majorana or Dirac neutrinos. We also take an interest

in discussing the role future experiments can have in differentiating whether neutrinos are

Majorana or Dirac particles.

Recently, the XENON collaboration released results for the XENONnT measurement.

These results show no hint of the aforementioned excess [29]. In Chapter 3 we will discuss

how the XENONnT results all but rule out this anomaly.
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(c) Neutrino magnetic moment
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(d) Solar axion vs. tritium background
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Figure 1.5. Fits to the data under various hypotheses. The null and al-
ternative hypotheses in each scenario are denoted by gray (solid) and red
(solid) lines, respectively. For the tritium (a), solar axion (b), and neu-
trino magnetic moment (c) searches, the null hypothesis is the background
model B0 and the alternative hypothesis is B0 plus the respective signal.
Contributions from selected components in each alternative hypothesis are
illustrated by dashed lines. Panel (d) shows the best fits for an additional
statistical test on the solar axion hypothesis, where an unconstrained tri-
tium component is included in both null and alternative hypotheses. This
tritium component contributes significantly to the null hypothesis, but its
best-fit rate is negligible in the alternative hypothesis, which is illustrated
by the orange dashed line in the same panel. [2]

1.3. In This Dissertation

As noted before, the aim of this thesis is to explore these anomalies and study the

role future experiments can play. The first anomaly of interest discussed in Chapter 2
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is the tension between the results of the NOvA and T2K experiments when interpreted

through the three-neutrino framework. We test whether the addition of a very light

sterile neutrino meaningfully softens this discrepancy. Particular care is taken to address

statistical pathologies arising from fitting an alternate hypothesis with more degrees of

freedom than the null. The second anomaly we consider in Chapter 3 is the XENON1T

low energy event excess. We briefly discuss the interpretation of this excess as due to

a measurement of non-standard neutrino magnetic moments. We show how the recent

XENONnT measurement all but eliminates this possibility. This discussion is done for

both cases where neutrinos are either Majorana and Dirac particles. We examine the

bounds placed by other experiments such as BOREXINO, LSND, and GEMMA and find

that the discovery potential of future experiments depend on the Majorana or Dirac nature

of neutrinos. Chapter 4 offers concluding remarks.

This thesis is based on the following works:

• “Very light sterile neutrinos at NOvA and T2K,” André de Gouvêa, Gi-

ancarlo Jusino Sánchez, and Kevin J. Kelly, Phys. Rev. D 106 055025 (2022).

arXiv:2204.09130

• “Majorana versus Dirac Constraints on the Neutrino Dipole Moments,”

André de Gouvêa, Giancarlo Jusino Sánchez, Pedro A.N. Machado, and Zahra

Tabrizi, arXiv:2209.03373. Submitted for publication in Physical Review D.
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CHAPTER 2

Very Light Sterile Neutrinos at NOvA and T2K

2.1. Introduction

Long-baseline neutrino oscillation experiments aim at studying the phenomenon of

neutrino oscillations by taking advantage of the known neutrino oscillation lengths, pro-

portional to (the inverse of) the mass-squared differences ∆m2
21 ≡ m2

2 − m2
1 or ∆m2

31 ≡

m3
2 −m2

1, where m1,2,3 are the masses of the neutrino mass eigenstates ν1,2,3, respectively.

The neutrino masses are labelled such that m2
2 > m2

1 and |∆m2
31| > ∆m2

21. With this defi-

nition, the sign of ∆m2
31 is an observable and captures the neutrino-mass ordering: normal

ordering (NO) when ∆m2
31 is positive, inverted ordering (IO) when ∆m2

31 is negative.

Among the objectives of long-baseline experiments is testing the standard-three-massive-

neutrinos paradigm, which states that there are three neutrino mass eigenstates and that

these interact via neutral-current and charged-current weak interactions. As far as the

charged-current weak interactions are concerned, three orthogonal linear combinations of

ν1,2,3 couple to the W -boson and the charged leptons `α (α = e, µ, τ). In more detail,

να = Uαiνi (i = 1, 2, 3) couples to `α and the W -boson, and Uαi are the elements of the

unitary leptonic mixing matrix. On the other hand, assuming the standard-three-massive-

neutrinos paradigm is correct, long-baseline experiments are capable of measuring, some-

times with great precision, the neutrino oscillation parameters – the parameters which
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define Uαi and the mass-squared differences. One way to test the standard-three-massive-

neutrinos paradigm is to assume it is correct; measure the oscillation parameters using

different oscillation processes or different experimental setups; and compare the results.

If different measurements of the same quantity disagree at a high confidence level, we

would claim the underlying formalism – in this case the standard three-massive-neutrinos

paradigm – is deficient.

Among the current generation of long-baseline experiments are the Tokai to Kamioka

experiment (T2K) [17, 3], in Japan, and the NuMI Off-axis νe Appearance (NOvA) ex-

periment [18, 1], in the United States. They are sensitive to several of the neutrino

oscillation parameters, including some that are, at present, virtually unknown: the neu-

trino mass-ordering and the CP-odd parameter δCP that governs whether and how much

CP-invariance is violated in the lepton sector. Data from T2K and NOvA have been

analyzed assuming the standard-three-massive-neutrinos paradigm and have led to inter-

esting measurements of the oscillation parameters. Just as interesting, perhaps, is the

fact that there is some tension between T2K and NOvA data.

The tension, which was first demonstrated by Refs. [30, 31], has been quantified

and examined critically in the three-neutrino framework by various authors [32, 28, 33,

34]. In a little more detail, both T2K and NOvA measure electron-like and muon-like

events associated to a pion decay-in-flight neutrino source (π → µνµ). Measurements are

performed at both near and far detectors and the detectors are exposed to both “neutrino”

and “antineutrino” beams. With all this information, they can infer the νµ and νµ survival

probabilities P (νµ → νµ) and P (νµ → νµ), respectively, and the νe and νe appearance

probabilities P (νµ → νe) and P (νµ → νe), respectively. At T2K, typical neutrino energies
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are around 600 MeV and the baseline is 295 km. Typical NOvA energies are around 2 GeV

and the baseline is 810 km.

Assuming the standard-three-massive-neutrinos paradigm, the T2K and NOvA disap-

pearance data are consistent but the appearance data, for both neutrinos and antineutri-

nos, are in disagreement when analyzed within the NO. If the mass ordering is NO, T2K

prefers δCP values close to 3π/2.∗ In contrast, when analyzed under the NO, NOvA data

have no strong preference for any particular value of δCP, however, they disfavor the com-

bination of δCP and the mixing angle sin2 θ23 preferred by T2K at roughly 2σ confidence.

This tension may be addressed by instead considering the IO, where both experiments pre-

fer δCP ≈ 3π/2 [32, 3, 1]. However, global fits to all neutrino oscillation data [28, 33, 34]

(particularly including those from reactor antineutrino experiments [35, 36, 37]), as well

as comparisons with cosmological observations [38, 39], prefer NO at ∼2 − 3σ, leaving

the T2K-NOvA tension unaddressed.

Whether the tension can be alleviated by the presence of physics beyond the standard-

three-massive-neutrinos paradigm has also been the subject of intense exploration (see,

for example, Refs. [40, 41, 42, 43, 44, 45, 46]). Here, we would like to explore, in some

detail, whether the tension between T2K and NOvA can be interpreted as evidence for new

light neutrino states. This issue has been discussed before [42], assuming the new neutrino

state ν4 with mass m4 is relatively heavy: |∆m2
41| � |∆m2

31|. Instead, here we concentrate

on |∆m2
41| values that are O(|∆m2

31|) or smaller, down to O(∆m2
21), and explore the full

parameter space associated with the fourth neutrino. In Sec. 2.2, we describe the four-

neutrino oscillation formalism of interest. We also discuss how the existence of a light

∗We will use the convention that CP-violating phases are defined over [0, 2π].
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fourth neutrino may help alleviate the T2K–NOvA tension. In Sec. 2.3 we present our

simulations of NOvA and T2K data and discuss how these are used, in Sec. 2.4, to compare

the standard-three-massive-neutrinos paradigm and the fourth-neutrino hypothesis. We

present some concluding remarks in Sec. 2.7. Some results are included in appendices:

Appendix A.1 includes detailed numerical results from our analyses, Chapter 2.5 presents

an alternate, extremely-light sterile neutrino analysis, and Chapter 2.6 discusses some

Monte Carlo studies of T2K, NOvA, and their combination in light of the sterile neutrino

analyses.

2.2. Four-Flavor Neutrino Oscillations

We assume there are four neutrino mass eigenstates ν1,2,3,4, and that these are related

to the four interaction eigenstates νe,µ,τ and νs (where we assume the νs state does not

participate in the weak interactions) via a 4× 4 unitary mixing matrix:

(2.2.1) U = R(θ34)R(θ24, δ24)R(θ14, δ14)R(θ23)R(θ13, δ13)R(θ12),

where R are 4 × 4 rotation matrices in the ij-plane associated with a rotation angle θij.

The nontrivial entries of the different R in Eq. (2.2.1) are given by

R(θij) =

 cij sij

−sij cij

 R(θij, δij) =

 cij sije
−δij

−sije
δij cij

 ,

where cij = cos θij and sij = sin θij. This extension to the standard-three-massive-

neutrinos paradigm includes one more independent mass-squared difference and five new

mixing parameters: three mixing angles (θ14, θ24, θ34) and two complex phases (δ14, δ24).
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The 4 × 4 mixing matrix is defined in such a way that, in the limit θ14, θ24, θ34 → 0,

ν4 = νs and ν1,2,3 are linear superpositions of only the active states νe,µ,τ . In this limit, we

recover the standard-three-massive-neutrinos paradigm. We will be interested in the case

where θ14, θ24, θ34 are relatively small and will refer to ν1,2,3 as the mostly active states.

The mostly active states will be defined in the usual way, including the ordering of their

masses, which is either “normal” (NO) or “inverted” (IO), as discussed in Sec. 2.1. With

this in mind, we define

(2.2.2) ∆m2
4l ≡


m2

4 −m2
1, if m1 < m3 (NO)

m2
4 −m2

3, if m3 < m1 (IO)
.

In order to allow for all different relevant orderings of the four masses, we allow for

both the NO and IO of the mostly active states and for both positive and negative values

of ∆m2
4l. The four qualitatively different mass orderings are depicted in Fig. 2.1. As far
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Figure 2.1. Definition, including the sign convention, of ∆m2
4l given the NO

or IO for the mostly active states.
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as the magnitude of ∆m2
4l, we will restrict our analyses to (10−5 < |∆m2

4l| < 10−1) eV2.

Inside this range, we expect nontrivial oscillation effects to manifest themselves in the far

detectors of T2K and NOvA but not in the corresponding near detectors. When |∆m2
4l|

is smaller than 10−5 eV2, the new oscillation length associated to ∆m2
4l is too long and

outside the reach of T2K and NOvA. Instead, when |∆m2
4l| is larger than 10−1 eV2, we

expect very fast oscillations in the far detectors of T2K and NOvA and nontrivial effects

in the corresponding near detectors. This region of parameter space was explored in

Ref. [42].

The active neutrinos interact with the medium as they propagate from the source to the

far detector. These interactions modify the equations that govern the flavor evolution of

the neutrino states via effective potentials for forward charged-current (CC) and neutral-

current (NC) scattering. The neutrino flavor evolution equation can be written as a

Schrödinger-like equation with an effective Hamiltonian given by, in the flavor basis,

HF = 1/(2Eν)(UM2U † + A), where

(2.2.3) M2 =



0 0 0 0

0 ∆m2
21 0 0

0 0 ∆m2
31 0

0 0 0 ∆m2
41


, A =



2EνVCC 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −2EνVNC


.

For neutrinos, VCC = −2VNC = 3.8 × 10−5 (eV2/ GeV)ρ[ g
cm3 ] are the CC and NC matter

potentials, respectively. The CC and NC matter potentials arise from active-neutrino

interactions with electrons and all matter particles, respectively – because the NC inter-

action is identical for all active neutrinos but absent for the sterile neutrino, it appears
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with a negative sign in the “sterile-sterile” element of Eq. (2.2.3), Ass = −2EνVNC. For

antineutrinos, the matter potentials have the opposite sign. ρ is the density – assumed

to be constant – of the medium, assumed to be neutral. When neutrality is assumed,

VNC is half as large as VCC and negative. For the NOvA and T2K experiments, we fix

the baselines to be LNOvA = 810 km and LT2K = 295 km, respectively, while the near-far

detector average matter densities are taken to be, respectively, ρNOvA = 2.8 g/cm3 [1] and

ρT2K = 2.6 g/cm3 [3].

We are interested in improving the quality of fits to the combined T2K and NOvA

data, particularly in the νe and νe appearance channels. If allowing for a fourth neutrino,

with |∆m2
4l| ≈ 10−2 eV2, then the oscillation probability P (νµ → νe) will change signifi-

cantly for the baseline lengths and energies of interest for the two experiments. To try to

understand this potential fit improvement, we show in Fig. 2.2 the oscillation probabili-

ties for (anti)neutrinos at T2K and NOvA under the best-fit three-neutrino hypothesis,

with parameters given in the 3ν IO column of Table 2.1 and obtained with the analyses

described below. Similarly, we also present the best-fit oscillation probabilities at these

energies under the four-neutrino hypothesis for the best fit we obtain, with oscillation

parameters also given in the 4ν IO column of Table 2.1. We also allow sin2 θ34 to vary

beyond the nominal value of 0.56 in Table 2.1, in order to demonstrate that it has a no-

ticeable impact (despite not appearing in the vacuum-calculated oscillation probabilities),

especially at NOvA. Upon inspection of Fig. 2.2, we highlight two main reasons that the

effects at T2K and NOvA may be different. One is that the dominant values of L/E,

keeping in mind that both beams have a narrow energy profile, are not identical for the
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two experiments. This means that for relatively “fast” ∆m2
4l the value of the new oscil-

lation phase will not be the same for the two experiments. The other is that the matter

effects are more pronounced at NOvA relative to T2K. These allow the effective oscillation

frequencies and mixing parameters to be distinct at the two experimental setups.
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Figure 2.2. Appearance oscillation probabilities at T2K (top, blue) and
NOvA (bottom, purple) comparing three-neutrino oscillation probabili-
ties (solid lines, parameters from Table 2.1, column 2 “3ν IO”) against
four-neutrino ones (non-solid lines, parameters from Table 2.1, column 4
“4ν IO”). Left panels show probabilities for neutrino oscillation, whereas
right ones show antineutrino oscillation. For the four-neutrino probabili-
ties, three choices of sin2 θ34 are used for illustrative purposes: dashed/dot-
dashed/dotted lines correspond to sin2 θ34 = 0/0.4/0.8.
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In vacuum, P (νµ → νe) does not depend on θ34; this is not the case in matter. An

easy way to see this is to express the propagation Hamiltonian in the mass basis. In

the absence of matter effects, the dependency on the mixing parameters is encoded in

the initial and final interaction eigenstates and since neither νe nor νµ, when expressed as

linear superpositions of the mass eigenstates, depend on θ34, then neither can P (νµ → νe).

Instead, when the matter effects are present, the matter potential in the mass basis

depends on θ34. Hence we expect P (νµ → νe) to also depend on θ34 as long as matter

effects are relevant. The dependency on θ34 can be seen in Fig. 2.2. As expected, it

is rather small at T2K and larger at NOvA, where matter effects are relatively more

pronounced.

Another nontrivial aspect of four-neutrino oscillations for T2K and NOvA is the sterile-

sterile component of the matter potential, Ass. As discussed above, for a sterile neutrino,

Ass = −2EνVNC, but a fourth active neutrino would have Ass = 0, or equivalently, VNC =

0. Fig. 2.3 depicts the ratio of the appearance probabilities in matter relative to what

those would be in vacuum. We show this comparison for the three-neutrino hypothesis

(solid lines) as well as the four-neutrino one, where we compare the two hypotheses, VNC =

−1/2VCC (a sterile neutrino) and 0 (an active one). Here, we see that the “sterileness” of

the fourth neutrino has an observable impact on the oscillation probabilities at both T2K

and especially NOvA. We emphasize however that all of the analyses below make the more

theoretically-robust assumption that the fourth neutrino is sterile and VNC = −1/2VCC.
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Figure 2.3. Ratio of appearance oscillation probabilities in matter to those
in vacuum at T2K (left) and NOvA (right). Solid lines correspond to the
three-neutrino oscillation probabilities. Dashed and dot-dashed lines corre-
spond to a fourth neutrino that is sterile or active, respectively. Parameters
are taken from columns 2 and 4 from Table 2.1 corresponding to the three-
neutrino and four-neutrino cases, respectively.

2.3. Simulating Data from NOvA and T2K

As discussed earlier, both NOvA and T2K operate with beams with a flux of predom-

inantly νµ (νµ) when operating in (anti)neutrino mode. Both experiments’ far detectors

are designed to study the disappearance of νµ and νµ, as well as the appearance of νe

and νe. Using the most recent publications from NOvA [1] and T2K [3], and building off

the simulations of Refs. [47, 48, 32], we perform simulations to determine the expected

event rates in the disappearance and appearance channels of both experiments given a set

of three- or four-neutrino oscillation parameters. We then compare these expected event

rates against the experiments’ published event rates and construct a test statistic using

Poissonian bin expectations.

In the remainder of this section, we briefly explain the process by which we simulate

the expected event rates, as well as the number of data points for each experiment that



45

Table 2.1. Oscillation parameters assumed when depicting oscillation prob-
abilities and expected event rates. The four columns correspond to the
three-neutrino (3ν) and four-neutrino (4ν) hypotheses, as well as whether
the three mostly-active neutrinos follow the normal (NO) or inverted (IO)
mass ordering.

Parameter 3ν NO 3ν IO 4ν NO 4ν IO
sin2 θ12 0.307 0.307 0.321 0.314
sin2 θ13 0.022 0.022 0.023 0.023
sin2 θ23 0.57 0.57 0.43 0.45
∆m2

21/10
−5 eV2 7.53 7.53 7.53 7.53

∆m2
31/10

−3 eV2 2.51 -2.41 2.49 -2.39
δCP 3.66 4.71 4.09 4.46
sin2 θ14 — — 0.043 0.021
sin2 θ24 — — 0.060 0.053
sin2 θ34 — — 0.37 0.56
∆m2

41/eV2 — — 1.1× 10−2 −1.1× 10−2

δ14 — — 0.01 4.88
δ24 — — 1.82 5.89

enter our test statistic. To center our discussion, we will rely on several benchmark

sets of oscillation parameters with which we calculate the expected observables at NOvA

and T2K. We adopt two benchmark sets each for the 3ν and 4ν assumptions, listed in

Table 2.1, allowing for the mostly-active neutrinos to follow either the normal (NO) or

inverted (IO) orderings. As we will discuss in Section 2.4, these parameters are the best-

fit points obtained by our fit to the combination of T2K and NOvA under the different

hypotheses.

NOvA — Our simulation of NOvA, designed to match the results of Ref. [1], includes

the disappearance channels of neutrino and antineutrino mode (19 bins each, with neutrino

energies ranging from 0 to 5 GeV) as well as event rate measurements of the appearance
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channels†, totaling 40 data points. This simulation corresponds to a total exposure of

13.6× 1020 (12.5× 1020) protons on target (POT) in (anti)neutrino mode.
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Figure 2.4. Expected and observed event rates in NOvA’s νµ disappearance
(left), νµ disappearance (center), and νe/νe appearance (right) channels.
We compare the prediction under the 3ν (solid/dashed lines) and 4ν (faint
lines/regions) hypotheses, with parameters from Table 2.1, with the ob-
served data (black). Purple curves correspond to the mostly-active neutri-
nos following the normal mass ordering (NO), where green ones correspond
to the inverted mass ordering (IO). In the right panel, the CP-violating
phases are allowed to vary in the predicted rates. Data points from Ref. [1].

Fig. 2.4 shows the expected event rates in NOvA for neutrino mode νµ disappearance

(left), antineutrino mode νµ disappearance‡ (center), and a joint comparison of neutrino

(x-axis) and antineutrino (y-axis) mode νµ → νe (or νµ → νe) appearance (right panel).

We compare the NOvA benchmark oscillation predictions, using the parameters in Ta-

ble 2.1 (purple histograms/curves§ for NO, green for IO, and dark curves for 3ν, faint ones

†For simplicity, we sum the expected event rate for the entire neutrino energy range and compare it
against the observed 82 (33) appearance events of operation in (anti)neutrino mode. We have compared
this approach to one that includes the spectral information of the appearance channels and find no
qualitative impact on our results.
‡In contrast to Ref. [1], our disappearance channel panels depict the event rate per bin as opposed to
event rate per unit energy, causing our higher-energy bins (with larger bin width) to appear exaggerated.
§Where the faint curves are not visible in the left/center panels, the four-neutrino hypothesis predicts
the same rate as the three-neutrino one(s).
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for 4ν), to the observed event rates from the experiment (black). Error bars here are only

statistical. In the left and center panels, all oscillation parameters are fixed according to

Table 2.1. In contrast, the right panel allows δCP to vary for the 3ν curves, and all three

CP-violating phases to vary in the 4ν case. This allows for a set of ellipses in this bi-event

parameter space instead of a single one. In the right panel, stars indicate the predicted

event rates when the CP-violating phases are fixed to their values in Table 2.1.

T2K — We simulate T2K in much the same spirit as NOvA, with the goal of matching

the results presented in Ref. [3]. In the case of T2K, the disappearance channels each

consist of 30 bins – 100 MeV in width from 0 to 2.9 GeV, and one bin corresponding

to neutrino energies above 2.9 GeV. For the appearance channel, we take advantage of

the expected neutrino-energy spectrum with bins of 125 MeV width from 0 to 1.25 GeV

in each channel.¶ This yields 80 data points in our T2K analysis. Our T2K simulation

corresponds to an exposure of 14.94 × 1020 (16.35 × 1020) POT in (anti)neutrino mode

operation.

Similar to Fig. 2.4, we show in Fig. 2.5 our expected event rates in the different T2K

channels – the left panel is for νµ disappearance, center for νµ disappearance, and the

right panel is the combined νe and νe appearance. For clarity of display, we sum the total

expected event rates in the νe and νe channels in the right panel. Here, the oscillation

parameters correspond to those given in Table 2.1 and, in the right panel, the CP-violating

phases are allowed to vary.

Test Statistic — We take the expected and observed event rates in NOvA (40 data

points), T2K (80), or a combination of them (120) and construct a test statistic using

¶Refs. [47, 48], however, have demonstrated that total-rate measurements of T2K’s appearance channel
result in similar parameter estimation to the collaboration’s results.
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Figure 2.5. Expected and observed event rates in T2K’s νµ disappearance
(left), νµ disappearance (center), and νe/νe appearance (right) channels.
We compare the prediction under the 3ν (solid/dashed lines) and 4ν (faint
lines/regions) hypotheses, with parameters from Table 2.1, with the ob-
served data (black). Purple curves correspond to the mostly-active neutri-
nos following the normal mass ordering (NO), where green ones correspond
to the inverted mass ordering (IO). In the right panel, the CP-violating
phases are allowed to vary in the predicted rates. Data points from Ref. [3].

Poisson statistics for the log-likelihood (matching a χ2 function in the limit of large event

rates):

(2.3.1) χ2 =
∑

i ∈ bins

−2

(
−λi + xi + xi log

(
λi

xi

))
,

where λi (xi) represents the expected (observed) event rate in bin i for a given experi-

ment/channel.

We will be interested in several pieces of information from the test statistic in Eq. (2.3.1).

When performing parameter estimations, we will use contours of ∆χ2 about its minimum

to represent preferred regions/intervals of parameter space. When comparing best-fit

points under different hypotheses, i.e., comparing preference for the 4ν scenario over the
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3ν one, we will compare the minimum χ2 when varying over oscillation parameters, taking

into account the number of degrees of freedom in such a fit.

Analysis & Priors — The main focus of this work is on the long-baseline experiments

NOvA and T2K, which are sensitive to oscillation effects associated with mass-squared

differences of order of 10−3 eV2. On the other hand, the solar mass-squared difference has

been well-measured by solar neutrino [49, 50] and reactor antineutrino [51] experiments

to be ∆m2
21 = 7.53 × 10−5 eV2 while the associated mixing angle is measured to be

sin2 θ12 = 0.307, both at the few percent level. Due to the lack of sensitivity to these

quantities at NOvA/T2K, we fix them‖ in our analyses. While NOvA and T2K are

sensitive to sin2 θ13 through their appearance channels, their measurement capability is

significantly weaker than that of Daya Bay [35], RENO [36], and Double Chooz [37]

reactor antineutrino experiments. In our fits, we include Daya Bay’s measurement as a

Gaussian prior on the quantity 4|Ue3|2(1 − |Ue3|2) = 0.0856 ± 0.0029, which is sin2(2θ13)

when considering the three-neutrino hypothesis [35].

2.4. Results

This section details the results of our analyses. First, in Section 2.4.1, we summarize

the results of fits of our NOvA and T2K simulations and their combination under the

three-neutrino hypothesis. Then, Section 2.4.2 discusses the results of these fits under the

four-neutrino hypothesis, including a comparison of the three-neutrino and four-neutrino

hypotheses.

‖Specifically, we fix the matrix-element-squared |Ue2|2, which is equal to sin2 θ12 cos
2 θ13 cos

2 θ14 in the
four-neutrino framework, to its best-fit value of 0.300. This causes sin2 θ12 to vary for large θ14.
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2.4.1. Three-Neutrino Results

Our first three-neutrino analysis is focused on finding the best-fit points of each experi-

mental analysis (T2K, NOvA, and a combined fit). For this, we perform two fits for each

experiment/combination, one assuming that neutrinos follow the normal mass ordering

(NO, ∆m2
31 > 0) and one assuming that they follow the inverted one (IO, ∆m2

31 < 0).

Recent results have demonstrated that, under the three-neutrino hypothesis, T2K and

NOvA each exhibit mild preference for the NO over the IO, but their combination has a

mild preference for the IO [32, 28, 33, 34]. When combined with all reactor antineutrino

data and other experimental results, the global preference is for the NO at relatively low

significance.

We find a result consistent with these previous results, summarized in Table 2.2. As

in all of our analyses, ∆m2
21 and sin2 θ12 are fixed, and a prior is included from the results

of Daya Bay on sin2(2θ13). We present both the overall test statistic at this best-fit point

for each analysis as well as the preference for the NO over the IO in the right-most column

(positive values indicate preference for NO, negative for IO). We note here that all of the

best-fit χ2 obtained are comparable to (and in the case of T2K and the joint fit, less than)

the number of degrees of freedom, implying that these are all good fits to their respective

data sets. Finally, we see that the joint-fit χ2 under the NO hypothesis is around five units

of χ2 larger than the sum of the two individual fits whereas, under the IO hypothesis, it

is roughly the same – this highlights the so-called NOvA/T2K tension, where the results

disagree under the NO hypothesis but not under the IO one. The values from the “Joint”

fit in Table 2.2 correspond to the benchmark values we adopted in the three-neutrino case

in Table 2.1.
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Table 2.2. Best-fit parameters of our analyses of T2K, NOvA, and a com-
bined analysis of the two under the three-neutrino hypothesis. We deter-
mine the best-fit point under the normal (NO) and inverted (IO) mass-
ordering hypotheses, as well as the overall preference for the NO over IO,
∆χ2

NO,IO, for each analysis. In each, a prior on sin2(2θ13) from Daya Bay
is included, and sin2 θ12 = 0.307 and ∆m2

21 = 7.53 × 10−5 eV2 are fixed to
their best-fit points from other experimental results.

3ν sin2 θ13 sin2 θ23 ∆m2
31/10

−3 eV2 δCP χ2 ∆χ2
NO,IO

T2K NO 0.022 0.56 2.52 4.58 66.82
1.48IO 0.022 0.56 −2.41 4.71 68.19

NOvA NO 0.022 0.58 2.52 2.34 43.40
0.14IO 0.022 0.57 −2.41 4.78 43.55

Joint NO 0.022 0.57 2.51 3.67 115.58 −3.76IO 0.022 0.57 −2.41 4.72 111.82

We also perform a parameter estimation under the three-neutrino hypothesis, both

to prepare our expectations for the four-neutrino analyses and to validate our results

compared against the official results of the experimental collaborations. The free/fixed

parameters and test statistic are identical to those when determining the best-fit points.

For simplicity, we perform an analysis of the parameters sin2 θ13, sin2 θ23, ∆m2
31, and δCP

and marginalize over sin2 θ13 and ∆m2
31 (including both the NO and IO hypotheses), and

present the joint measurement of sin2 θ23 and δCP.

Fig. 2.6 presents the results of this analysis at 2σ (dashed, filled contours) and 3σ (solid

lines) CL for T2K (blue), NOvA (purple), and the joint fit (green). Stars of each color

represent the best-fit points obtained in Table 2.2. Once the mass ordering is marginalized,

NOvA has no sensitivity to δCP, and constrains sin2 θ23 to be between roughly 0.37 and

0.65 at 3σ CL. In the NO, NOvA can take on nearly any value of δCP , however it disfavors

the combination δCP = 3π/2, sin2 θ23 > 1/2 at relatively high significance. Under the IO,
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Figure 2.6. Parameter estimation of δCP and sin2 θ23 from T2K (blue),
NOvA (purple), and their combination (green) at 2σ (dashed lines) and
3σ (solid lines) CL.

NOvA prefers this combination. Regardless of the mass ordering, T2K prefers δCP = 3π/2

and constrains sin2 θ23 to be in a similar range as NOvA. When the two are combined,

the preferred regions are very similar to those obtained in the fit to T2K data alone.

2.4.2. Four-Neutrino Results

We begin our four-neutrino analyses by repeating the process that led to Table 2.2 – we

determine the best-fit points under the four-neutrino hypothesis for T2K, NOvA, and

their combination. Now that we are considering four-neutrino oscillations, we allow for

all four mass orderings discussed in Sec. 2.2 (see Fig. 2.1). This amounts to dividing the

analysis based on the signs of ∆m2
31 and ∆m2

4l, where l represents m1 in the NO and m3

in the IO, the lightest of the mostly-active neutrinos.
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Table 2.3 summarizes these twelve analyses (four each for NOvA, T2K, and their

Joint fit), giving the best-fit parameters as well as the overall χ2 of each fit in the four-

neutrino hypothesis. Near the bottom we give the preferred ordering of masses from each

experiment/combination – T2K and the Joint fit both prefer m4 < m3 < m1 < m2, where

NOvA prefers m1 < m2 < m3 < m4. The preference for the sign of ∆m2
4l is small in

all cases – individual fit results for all four mass orderings and all three experimental

combinations are provided for completeness in Appendix A.1. When allowing for a fourth

neutrino, neither T2K nor NOvA have a strong preference for the sign of ∆m2
31. T2K

prefers ∆m2
31 < 0 at ∆χ2 = 0.1, where NOvA prefers ∆m2

31 > 0 at ∆χ2 = 0.02. However,

the combined fit prefers ∆m2
31 < 0 at ∆χ2 = 4.6 an even stronger preference for negative

∆m2
31 than when data are analyzed under the three-neutrino hypothesis.

The bottom row of Table 2.3 presents the improvement in each experimental analysis

(as well as the combined one) compared to the results of the three-neutrino analysis. We

find that the fits to both the T2K∗ and NOvA data improve by roughly five units in χ2,

and the combined fit improves by nearly nine units. However, we note two very important

caveats here:

(1) The results of the three-neutrino fit in Table 2.2 demonstrate that, relative to

the number of degrees of freedom, good fits have been achieved. So, when com-

paring the three-neutrino fit – four parameters – to the four-neutrino one – ten

parameters – one must take into account the fact that this minimization is being

performed over an additional six parameters.

∗This result is consistent with what the T2K collaboration reported in Ref. [52], which found an im-
provement of ∆χ2 = 4.7.
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Table 2.3. Best-fit parameters of the four-neutrino analyses of T2K, NOvA,
and their combination. We allow for all possible orderings of the neutrino
mass eigenstates, hence ∆m2

31 and ∆m2
4l can each be negative. In each

analysis, a prior on |Ue3|2(1−|Ue3|2) from Daya Bay is included, and |Ue2|2 =
0.300 and ∆m2

21 = 7.53 × 10−5 eV2 are fixed to their best-fit points from
other experimental results.

4ν T2K NOvA Joint
sin2 θ13 0.024 0.022 0.023
sin2 θ23 0.43 0.44 0.43
∆m2

31/10
−3 eV2 −2.39 2.43 −2.39

δCP 4.41 0.00 4.46

sin2 θ14 7.8× 10−2 6.9× 10−3 4.3× 10−2

sin2 θ24 4.1× 10−2 1.2× 10−1 6.0× 10−2

sin2 θ34 0.78 0.29 0.37
∆m2

4l/eV2 −8.5× 10−3 1.0× 10−2 −8.5× 10−3

δ14 1.82 3.51 4.88
δ24 2.64 3.15 5.89

χ2
4ν 61.95 38.10 102.83

Ordering m4 < m3 < m1 < m2 m1 < m2 < m3 < m4 m4 < m3 < m1 < m2

χ2
3ν − χ2

4ν 4.87 5.30 8.99

(2) When determining the statistical significance, the comparison of χ2
3ν−χ2

4ν must be

scrutinized to see whether these test statistics follow a χ2 distribution. We have

performed some basic Monte Carlo studies of our T2K and NOvA simulations (see

Chapter 2.6) and found that, when statistical fluctuations are considered, one will

often find best-fit points with ∆m2
4l ≈ 10−2 eV2 that improve each experiment’s

fit by a couple of units of χ2. This is likely driven by the sizes of the energy

bins (around 100 MeV) used in the T2K and NOvA analyses – at T2K/NOvA

baselines/energies, a new oscillation driven by a mass-squared splitting of 10−2
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eV2 will evolve significantly† over the span of a single bin. This new fast oscillation

can “absorb” individual bins’ statistical fluctuations and lead to an artificial

improvement in the test statistic. This is validated by the results of Ref. [52],

which found that an improvement of ∆χ2 = 4.7 at T2K (between the three-

neutrino and four-neutrino hypotheses) corresponds to only ∼1.0σ preference

for a fourth neutrino, in contrast with the preference derived assuming Wilks’

theorem [53] holds, ∼1.7σ.

When considering the results of Table 2.3 (and that the best-fit points are close to

|∆m2
4l| ≈ 10−2 eV2) in light of these two caveats, we find that, while a very light sterile

neutrino improves the “tension” between T2K and NOvA, there is not strong evidence in

favor of a four-neutrino hypothesis over the three-neutrino one.

In order to determine whether the sterile neutrino solution to the NOvA/T2K tension

persists in light of caveat 2 above, we also perform an alternate analysis in Chapter 2.5

where we restrict ∆m2
21 . |∆m2

4l| < 10−3 eV2. This allows us to avoid fast oscillations in

the T2K/NOvA far detectors and any statistical pathologies that may arise. We find that

there remains a preference for four neutrinos over three neutrinos at a level of ∆χ2 = 4.1.

While this is smaller than what we observed for |∆m2
4l| ≈ 10−2 eV2, it is nevertheless

comparable to the preference for non-standard interactions as a solution to this tension

found in Refs. [40, 43] at the level of ∆χ2 ≈ 4.4− 4.5.

We generalize this best-fit procedure by, instead of minimizing over all parameters

(including ∆m2
4l), scanning over ∆m2

4l values. We again allow for both positive and

negative values of this new mass-squared difference and for both the normal and inverted
†For this ∆m2, the argument of the term sin2(∆m2L/4Eν) that enters the oscillation probabilities changes
by an appreciable fraction of π.
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Figure 2.7. Best-fit χ2 obtained using our analysis of T2K (top, blue),
NOvA (middle, purple), and a joint fit of the two (bottom, green) as a func-
tion of different values of ∆m2

4l. Different tones within each panel indicate
different mass orderings (the signs of ∆m2

31 and ∆m2
4l). The minimization

has been performed across all other oscillation parameters except for θ12
and ∆m2

21, which are fixed.
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mass orderings for the three mostly active states. Fig. 2.7 presents the results of this

approach. The top panels (blue lines) show the results for T2K, middle panels (purple)

for NOvA, and bottom panels (green) for the combined analysis. In each row, the left

(right) panel corresponds to negative (positive) values of ∆m2
4l. Dark (light) lines in each

case correspond to the NO (IO) among the mostly-active neutrinos. Dashed lines in each

panel indicate the best-fit χ2 under the three-neutrino hypothesis presented in Table 2.2.

Stars indicate the overall best-fit point of each analysis (when considering all different

mass orderings), and lines are made bold if they constitute the minimum χ2 for a given

experimental analysis for all of these choices of mass orderings.

The findings of Table 2.3 (and the corresponding tables in Appendix A.1) are borne

out in Fig. 2.7, showing that the fits prefer |∆m2
4l| ∼ 10−2 eV2 in all cases, with moderate

improvements relative to the three-neutrino fits. Above, we discussed the possibility that

this preference has to do with the energy resolution and binning of the experiments and the

statistical significance when interpreting confidence levels from ∆χ2 may be overstated.

If we restrict ourselves to |∆m2
4l| . 10−3 eV2 to avoid this concern, we still find moderate

preference for a fourth neutrino – see Chapter 2.5 for further discussion.

Moving on from best-fit determinations, we now construct constraints on the new pa-

rameters, specifically sin2 θ24 and ∆m2
4l (the ones to which these experiments have the

greatest sensitivity). In order to present constraints at a particular confidence level and

compare against other literature results, we assume for this exercise that Wilks’ theo-

rem holds [53]. After marginalizing over the remaining oscillation parameters (still fixing

|Ue2|2 and ∆m2
21), we present 2σ CL constraints from T2K (blue) and NOvA (purple)

in Fig. 2.8. In generating these constraints, we have marginalized over the signs of both



58

10−3 10−2 10−1 100

sin2 θ24

10−4

10−3

10−2

10−1

∣ ∣ ∆
m

2 4l

∣ ∣ [
eV

2 ]

2σ CL

T2K

NOvA

M
IN

O
S
/M

IN
O

S
+

90
%

C
L

Joint
1σ/90% CL

Figure 2.8. Constraints on sin2 θ24 vs. ∆m2
4l at 2σ CL from T2K (blue)

and NOvA (purple) after marginalizing over all other parameters (except
for |Ue2|2 and ∆m2

21, which are fixed and a prior from Daya Bay on |Ue3|2
– see text), including the signs of ∆m2

31 and ∆m2
4l. The green region in-

dicates the preferred region from a combined analysis at 1σ (dashed) and
90% (solid) CL, and the grey, dashed line shows the 90% CL constraint from
MINOS/MINOS+ [4]. All confidence levels presented here are derived as-
suming Wilks’ theorem holds.

∆m2
31 and ∆m2

4l. Colored stars indicate the best-fit point in (sin2 θ24, |∆m2
4l|) of the given

fits. In Fig. 2.8 we also compare against the 90% CL constraint from the MINOS/MI-

NOS+ experiment [4] as a faint grey line.‡ Finally, we also present in green the preferred

region at 1σ/90% CL§ (∆χ2 = 2.3, 4.61 assuming Wilks’ theorem for two parameters)

by our combined T2K and NOvA analysis. This result is in tension with that of the

MINOS/MINOS+ result, however, our preferred region has not been Feldman-Cousins
‡This result assumed ∆m2

31 and ∆m2
41 to both be positive, however, due to the lack of mass-ordering

sensitivity at MINOS, the result likely does not depend strongly on this choice.
§We choose 90% CL for clarity (the 2σ CL region spans the entire range of

∣∣∆m2
4l

∣∣ of the figure and a
comparable region of sin2 θ24) and for a direct comparison against the MINOS/MINOS+ result.
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corrected, and the results would likely agree if a higher confidence level were assumed.

T2K has reported constraints in the sin2 θ24 vs. ∆m2
41 parameter space in Ref. [52] –

we find comparable results here despite the simplified assumptions we have made in our

analysis and the slightly larger data set considered in this work.

While Fig. 2.8 compares constraints and preferred regions in the parameter space

sin2 θ24 vs. |∆m2
4l|, it is also important to consider the parameters that have been

marginalized in this construction. For concreteness, we focus on the preferred region

(green) from the combined T2K/NOvA analysis that we have performed. The best-fit

point, at |∆m2
4l| = 8.5× 10−3 eV2, corresponds to mixing angles

(2.4.1)
{
sin2 θ14, sin2 θ24, sin2 θ34

}
=
{
4.3× 10−2, 6.0× 10−2, 0.37

}
,

or mixing-matrix elements

(2.4.2)
{
|Ue4|2 , |Uµ4|2 , |Uτ4|2

}
=
{
4.3× 10−2, 5.7× 10−2, 0.33

}
.

For these low values of |∆m2
4l|, the strongest constraints on |Ue4|2 come from reactor

antineutrino oscillation experiments such as Daya Bay [54] and Bugey-3 [55]. A combined

analysis [56] constrains sin2 θ14 . 4×10−3 at 90% CL, in significant tension with the value

found in Eq. (2.4.1).

Constraints on |Uτ4|2 are more difficult to extract, as they often arise in tandem

with |Uµ4|2 and depend strongly on ∆m2
41 [57]. While specific constraints in this re-

gion of |∆m2
4l| have not been explicitly derived, |Uτ4|2 = 0.33 is possibly in tension

with existing results from neutrino experiments. T2K, which analyzed its neutral-current

data in addition to the data sets considered here, has constrained |Uτ4|2 . 0.5 for both
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∆m2
41 = 3 × 10−3 eV2 and 0.1 eV2 at 90% CL [52]. Atmospheric neutrino experiments,

including Super-Kamiokande [58] and IceCube [59] have constrained |Uτ4|2 . 0.2 at high

confidence, however, these analyses are restricted to ∆m2
41 & 0.1 eV2 where the fourth-

neutrino-driven oscillations are averaged out. A more thorough investigation of this 10−2

eV2 regime would prove useful if this hint persists in future NOvA/T2K data.

Lastly, we also note that for such large |Uα4|2 and small m4, this fourth neutrino would

thermalize with the SM in the early universe and remain relativistic and in thermal equi-

librium throughout much of the universe’s evolution. Such thermalized light species are in

tension with cosmological observations surrounding the Cosmic Microwave Background

and Big-Bang Nucleosynthesis – we refer the reader to Ref. [60] for further discussion

on these effects. Regardless, if such a light sterile neutrino truly is behind any tension

between NOvA and T2K, additional work is necessary to resolve tension between this

terrestrial solution and cosmological observations.

When discussing Fig. 2.7, we considered the possibility of analyzing only the region

|∆m2
4l| . 10−3 eV2, in part to avoid concerns regarding energy resolution and bin widths.

We noted that in that region, a solution to the NOvA/T2K tension persists with a prefer-

ence of ∆χ2 ≈ 4.1. This regime has the added benefit that constraints from MINOS/MI-

NOS+ (as seen in Fig. 2.8), Daya Bay/Bugey-3/others, and Super-Kamiokande/IceCube

are considerably weaker. Such an extremely-light sterile neutrino, as we discuss in Chap-

ter 2.5, with |∆m2
4l| ≈ 7×10−4 eV2 should be paid particular attention as more data from

T2K and NOvA are unveiled, especially if any tension between the two persists.

T2K and NOvA will continue collecting data – if a very light sterile neutrino does in

fact exist with |∆m2
4l| ≈ 10−2 eV2, more data will continue to shed light and potentially
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lead to a discovery. In the next generation, the Deep Underground Neutrino Experiment

(DUNE) [19] and Hyper-Kamiokande (HK) [20] experiments will have sensitivity to light

sterile neutrinos in the same region of |∆m4l|2 given that they operate in a similar L/Eν

as NOvA and T2K. The two experiments, and any combined analysis, will have excellent

sensitivity to test this solution to the T2K/NOvA tension [61, 62].

2.5. Alternative Analyses with Very Small Mass-Squared Difference

We find, in Section 2.4, a solution to the NOvA/T2K tension with a new, light sterile

neutrino with a mass-squared difference |∆m2
4l| ≈ 10−2 eV2. However, there are technical

challenges associated with this relatively large mass-squared difference for the NOvA/T2K

analyses, also as discussed in Section 2.4. For those reasons, we choose to pursue a different

version of the analyses from the main text, this time restricting ourselves to |∆m2
4l| ≤ 10−3

eV2. As with the analyses in the main text, we fix ∆m2
21 to its best-fit value (7.53× 10−5

eV2).

First, we illustrate how the oscillation probabilities P (νµ → νe) and P (νµ → νe) at

T2K/NOvA energies and baselines behave for a very light sterile neutrino, similar to the

discussion in Section 2.2 (see Fig. 2.2). Instead of a relatively large |∆m2
4l| ≈ 10−2 eV2,

Fig. 2.9 depicts the impact of a new mass-squared difference ∆m2
4l = −3.4 × 10−4 eV2

(and an inverted mass ordering for the three mostly-active neutrinos). The remaining

oscillation parameters we use are from the “Joint” column in Table 2.4, corresponding to

the best-fit parameters of the combined T2K and NOvA analysis when the new mass-

squared difference is restricted to be |∆m2
4l| ≤ 10−3 eV2.
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Figure 2.9. Oscillation probabilities at T2K (top) and NOvA (bottom) com-
paring three-neutrino oscillation probabilities (solid lines, parameters from
Table 2.1) against four-neutrino ones (non-solid lines, parameters from the
“Joint” column in Table 2.4). Left panels show probabilities for neutrino
oscillation, whereas right ones show antineutrino oscillation. For the four-
neutrino probabilities, three choices of sin2 θ34 are used for demonstration:
dashed/dot-dashed/dotted lines correspond to sin2 θ34 = 0, 0.4, 0.8.

The top panels of Fig. 2.9 show oscillation probabilities at T2K, and the bottom panels

at NOvA; the left (right) panels correspond to neutrino (antineutrino) oscillations. As

with Fig. 2.2, we allow sin2 θ34 to vary to demonstrate its nontrivial impact on these

oscillation probabilities – the dashed/dot-dashed/dotted lines correspond to sin2 θ34 =

0, 0.4, 0.8, respectively. Compared with Fig. 2.2, here the “new” oscillation length

driven by ∆m2
21 < |∆m2

4l| < |∆m2
31| is relatively long as a function of the neutrino energy,

leading at zeroth order to an overall shift in normalization relative to the three-neutrino
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oscillation probabilities. Across the energies of interest for T2K and NOvA, this leads to

larger values of P (νµ → νe) and smaller values of P (νµ → νe). As in Fig. 2.2, the impact

of nonzero sin2 θ34 is more prevalent for NOvA, with its longer baseline, than for T2K.

Fig. 2.10 depicts the impact of matter effects for this relatively smaller value of ∆m2
4l and

is to be compared to Fig. 2.3.
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Figure 2.10. Ratio of oscillation probabilities, similar to Fig. 2.3, consider-
ing an extremely light sterile neutrino with ∆m2

4l = −3.4 × 10−4 eV2 and
oscillation parameters as given in Table 2.4.

The best-fit points obtained from this low-∆m2
4l fit to T2K data, NOvA data, and

the combined data sets are listed in Table 2.4. As in the result discussed in the main

text, NOvA favors NO for the mostly active states while T2K and the Joint fits favor the

IO for the mostly active states. All fits point to m4 as the lightest neutrino mass. The

improvement relative to the three-neutrinos scenario is largest for the Joint fit – a little

over four units of χ2 – but rather modest. In summary, the data do not significantly favor

the four-neutrino hypothesis over the three-neutrino one.

Fig. 2.11 depicts the region of the |∆m2
4l| × sin2 θ24 parameter space that is allowed

by the combination of T2K and NOvA data at the one-sigma level, including all possible

four-neutrino mass orderings (see Fig. 2.1) and assuming |∆m2
4l| is less than 10−3 eV2,
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along with the 2σ constraints from NOvA (purple) and T2K (blue). The stars indicate

the best-fit points and the dashed line existing bounds from MINOS/MINOS+. Unlike

the result discussed in the main text, here the best fit point is not in tension with existing

neutrino oscillation bounds thanks to the more limited sensitivity of MINOS/MINOS+

and reactor antineutrino experiments to new mass-squared differences less than 10−3 eV2.

Like the results discussed in the main text, here, the best-fit points in Table 2.4

all prefer large values of sin2 θ34, i.e., they suggest that ν4 has an O(1) ντ component.

As discussed in Section 2.4, while large sin2 θ34 are excluded by existing data, relevant

constraints were obtained only for relatively large |∆m2
4l| & 0.1 eV2.

Table 2.4. Best-fit parameters of our 4ν analyses when restricted to
|∆m2

4l| ≤ 10−3 eV2. Other details identical to Table 2.3.

4ν T2K NOvA Joint

sin2 θ13 0.025 0.022 0.026
sin2 θ23 0.41 0.63 0.53
∆m2

31/10
−3 eV2 −2.37 2.44 −2.39

δCP 4.05 2.98 4.21

sin2 θ14 0.13 6.2× 10−3 0.14
sin2 θ24 8.2× 10−2 6.1× 10−2 7.6× 10−2

sin2 θ34 0.63 0.79 0.48
∆m2

4l/eV2 −3.5× 10−4 −1.0× 10−3 −3.4× 10−4

δ14 4.66 2.77 5.34
δ24 5.04 3.21 5.39

χ2
4ν 64.20 41.50 5.39

Ordering m4 < m3 < m1 < m2 m4 < m1 < m2 < m3 m4 < m3 < m1 < m2

χ2
3ν − χ2

4nu 2.62 1.90 4.11
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Figure 2.11. Similar to Fig. 2.8 but under the analysis assumption that
|∆m2

4l| < 10−3 eV2.

2.6. Test Statistic Studies and Pseudoexperiments

Section 2.4 demonstrated that all three fits, those to the T2K and NOvA data indi-

vidually as well as their combination, prefer the four-neutrino hypothesis over the three-

neutrino one to some degree of confidence. This is expected, as the three-neutrino hy-

pothesis is a subset of the four-neutrino one – what is more difficult to predict is the level

at which this preference is found. Specifically, we found that the best-fit-point to the data

under the four-neutrino hypothesis compared to that of the three-neutrino hypothesis for

T2K, NOvA, and the joint fit exhibited a preference at the level of ∆χ2 = 4.87, 5.30, and

8.99, respectively. Also in Section 2.4, we discussed the fact that these three fits tend to

favor |∆m2
4l| ≈ 10−2 eV2 and opined on whether this is a coincidence due to the binning

used by T2K and NOvA or a real, physical effect.
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In this chapter, we attempt to quantify some of these observed challenges – how

significant these preferences are, and whether the preferred new mass-squared splitting is

spurious. To do so, we perform a number of pseudoexperiments corresponding to each

analysis. We simulate data for each experiment assuming the three-neutrino hypothesis

is true, assuming sin2 θ12 = 0.304, sin2 θ13 = 0.0212, sin2 θ23 = 0.532, ∆m2
21 = 7.53× 10−5

eV2, ∆m2
31 = 2.45× 10−3 eV2, and δCP = 4.39 (given as reference values in Ref. [3]). For

each pseudoexperiment, we include Poissonian fluctuations on the expected data according

to this hypothesis. Then, using the same analysis strategies as in the main text, we obtain

the best-fit-points and χ2 values for the three-neutrino and four-neutrino hypotheses.

The normalized distribution of ∆χ2 ≡ χ2
3ν − χ2

4ν is shown in Fig. 2.12. We show

the histograms obtained by performing pseudoexperiments of the three different analy-

ses in solid, colored lines, compared against the ∆χ2 obtained when analyzing the data

as vertical, dashed lines. We also display the χ2 distribution assuming six degrees of

freedom (corresponding to the difference between the number of parameters in the two

analysis hypotheses) as a grey line, which seems to track the distribution of the joint-fit

pseudoexperiments well. As a result of this procedure, we can determine the statistical

significances of the three preferences – the p-values of the observed data at T2K, NOvA,

and their combination are 0.53, 0.21, and 0.22, respectively. These values correspond to

preference for the four-neutrino hypothesis at the level of 0.58σ, 1.26σ, and 1.22σ – none

of which corresponds to a significant preference.

Finally, we determine whether the best-fit points obtained when analyzing data, all

with |∆m2
4l| ≈ 10−2 eV2 are expected when including Poissonian fluctuations of simulated

three-neutrino data. We determine, for each pseudoexperiment, the best-fit values of
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Figure 2.12. Preference for the four-neutrino hypothesis over the three-
neutrino one as indicated by pseudoexperiments simulating T2K (blue),
NOvA (purple), and their combination (green). We also display the PDF of
the chi-squared distribution assuming six degrees of freedom (grey), as well
as the preferences indicated when analyzing the actual data sets (dashed lines).

sin2 θ24 and |∆m2
4l| obtained when analyzing the pseudodata under the four-neutrino

hypothesis, displaying the distributions of these best-fit values in Fig. 2.13. Here, the dark

regions indicate where the fits prefer the combination of parameters most frequently, and

the white stars show the best-fit parameters obtained in each analysis from Section 2.4.

For all three analyses, the best-fit obtained when analyzing the data is nearly exactly

consistent with the most likely points obtained by these procedures. This indicates that

such fit values of |∆m2
4l| are to be expected due to the construction of the test statistic

and the experimental particulars, furthering the evidence that the results obtained in the

main text are due to statistical fluctuations instead of the actual presence of a fourth,

very light neutrino.
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Figure 2.13. Best-fit values of sin2 θ24 and |∆m2
4l| obtained when perform-

ing pseudoexperiments of T2K (left), NOvA (center), and their combina-
tion (right). White stars in each panel indicate the best-fit values of these
parameters when analyzing the corresponding data set. In the colored dis-
tributions, darker (lighter) colors indicate regions where the fit prefers the
values more (less) frequently.

2.7. Concluding Remarks

As more data from neutrino oscillation experiments are collected, we are able to test

the standard-three-massive-neutrinos paradigm with better precision. Concurrently, there

is always the possibility that disagreements arise, especially when data from multiple ex-

periments are analyzed. In these instances, exploring different explanations of such ten-

sions is invaluable, whether they are related to statistical fluctuations, deeper systematic

issues, or new physics beyond the standard-three-massive-neutrinos paradigm.

Such a tension has been noted when comparing the latest data from the Tokai to

Kamioka (T2K) and NuMI Off-axis νe Appearance (NOvA) experiments. These measure

the (dis)appearance of νe (νµ) in a νµ beam at relatively long baselines. When analyzed

under the three-neutrino hypothesis, their results disagree at around the 90% confidence

level. Previous studies of combination T2K and NOvA data have highlighted that this
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tension is reduced when, for instance, the inverted neutrino mass ordering is considered

instead of the normal ordering [32, 28, 33, 34], or when additional, beyond-the-Standard-

Model neutrino/matter interactions are included in the analyses [40, 43].

We have demonstrated here that an alternative approach can remedy this tension –

the addition of a fourth, very light, sterile neutrino. This very light new neutrino would

be associated to a mass-squared difference, relative to the lightest mostly-active neutrino,

of order 10−2 eV2. We have studied the four-neutrino hypothesis when applied to the

T2K and NOvA data independently, as well as their combination. For the combined

data, we find that the four-neutrino hypothesis is preferred over the three-neutrino one

at the level of ∆χ2 ≈ 9. When interpreting this in terms of statistical significance,

two difficulties arise: first, the number of additional parameters in the four-neutrino

hypothesis relative to the three-neutrino one (six additional parameters). Second, the

oscillations associated with a new mass-squared difference on the order of 10−2 eV2 are

significant within individual bins in these long-baseline experiments, which leads to an

artificial preference for sterile neutrinos due to statistical fluctuations.

Due to the second challenge, in order to avoid relatively fast oscillations, we also

explored an alternative extremely-light sterile neutrino analysis where the fourth neutrino

is fixed to be associated to a mass-squared difference smaller (in magnitude) than 10−3 eV2.

In this context, we find moderate improvement relative to the three-neutrino hypothesis,

at the level of ∆χ2 ≈ 4. While this is less significant, it is comparable to the improvement

offered by non-standard neutrino interactions and merits further investigation.

NOvA and T2K are still collecting and analyzing data. As they progress, the ex-

periments and combined analyses thereof will allow for deeper testing of these different,
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interesting regimes of four-neutrino oscillations with a very light or extremely light fourth

neutrino. If they confirm the existence of such a new, light fermion state, then future

experiments (including the spiritual successors DUNE and Hyper-Kamiokande) will be

able to probe the new particle’s properties with even greater precision.
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CHAPTER 3

Majorana versus Dirac Constraints on the Neutrino Dipole

Moments

3.1. Introduction

While the neutrino charge is zero, massive neutrinos are guaranteed to have a nonzero

electromagnetic dipole moment. In the absence of new interactions, the neutrino magnetic

dipole moment is generated at the one loop level and is of order 10−20(mν/0.1 eV)µB

[63, 64, 65], where µB is the Bohr magneton. This is several orders of magnitude beyond

the sensitivity of current and near future experimental probes. The measurement of a

nonzero neutrino electromagnetic dipole moment would imply more new physics in the

neutrino sector.

The nature of the neutrino dipole moment depends on whether neutrinos are Ma-

jorana fermions or Dirac fermions. It is well known that diagonal dipole moments for

Majorana fermions are forbidden and hence these only have transition dipole moments.

Dirac fermions, instead, are allowed to have both diagonal and transition dipole moments.

We review this carefully in Section 3.2, concentrating on the differences between Dirac

and Majorana neutrinos. We also discuss how Majorana neutrinos can “mimic” Dirac

neutrinos in the presence of new light neutral fermions.

Nonzero neutrino electromagnetic dipole moments contribute to neutrino–matter scat-

tering, as we discuss in more detail in Section 3.3. Precision measurements of neutrino
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scattering, therefore, allow one to constrain their magnitudes. Experiments with reactor

antineutrinos and solar neutrinos, for example, exclude effective dipole moments larger

than a few times 10−11µB [66, 67]. In Section 3.4 we list the current laboratory con-

straints. In the near and intermediate future, better laboratory sensitivity is expected (see,

for example, [68, 69, 70, 71, 72]). There are also indirect constraints on the neutrino

electromagnetic dipole moments from astrophysical processes [73, 74, 75, 76]. We com-

ment on those briefly in Section 3.4. Here, we concentrate on laboratory constraints,

which we view as complementary to the indirect astrophysical bounds.

Since there are at least three different neutrino flavors, a more careful examination of

the experimental data is required. Different experiments constrain different combinations

of the neutrino dipole moments. This implies that (a) some combinations of dipole mo-

ments are less constrained and (b) one can obtain qualitatively different bounds on the

neutrino dipole moments by combining information from different experiments. The in-

terplay of the different data sets also depends on whether neutrinos are Dirac or Majorana

fermions. Here we estimate the current bounds on all neutrino dipole moments, taking

all possible correlations into account, for both Dirac neutrinos and Majorana neutrinos.

We also discuss expectations for future experimental searches. We find, in particular,

that expectations depend strongly on whether neutrinos are Majorana or Dirac fermions.

These results are presented and discussed in Sec 3.6.

The constraints reported by the experiments are in the form of upper limits on the

magnitude of some effective magnetic moment |µeff | (see Section 3.3). These constraints

can be translated into the fundamental electromagnetic dipole moments. In recent years,
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there have been many efforts connecting these constraints to the parameters of the La-

grangian (see, for example, [77, 78, 79, 80, 81, 68, 69, 82, 83, 84, 85, 86, 87]). In

most of these studies, special attention was dedicated to the Majorana-neutrino hypothe-

sis. In this case, relative to the Dirac-neutrino hypothesis, there are fewer parameters and

the analysis is computationally simpler. For the Dirac-neutrino hypothesis, it is often the

case that only constraints on the diagonal magnetic moments are considered in the litera-

ture. Here, we present the results of a comprehensive analysis, treating all the parameters

as independent from one another. We also discuss is some detail what information is, in

principle, experimentally accessible. We make use the experimental data of current solar,

reactor and accelerator experiments, including the most recent results from XENONnT

[29] (also discussed, very recently, in [86, 87]), and speculate on the impact of a future

accelerator experiment capable of constraining the neutrino dipole moment using a νµ

“beam.” We find that such a future experiment has the potential to make a discovery

even when its sensitivity is significantly weaker than the current solar constraints. How-

ever, this statement is only true, assuming there are no new light particles, if the neutrinos

are Dirac fermions.

The fact that electromagnetic dipole moments and masses are correlated – both re-

quire chirality violation – also allows one to estimate how large the neutrino dipole mo-

ments could be. In a nutshell, generic new physics that induces nonzero neutrino dipole

moments will also contribute to the neutrino masses. If one assumes the new-physics

contribution to the neutrino masses is not much larger than the known values, one can

place mostly model-independent bounds on the neutrino dipole moments [88, 89]. In
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[88], Bell and collaborators argued that, modulo fine-tuning among different contribu-

tions to the neutrino masses, neutrino dipole moments are guaranteed to be less than,

roughly, 10−15(mν/0.1 eV)µB if the neutrinos are Dirac fermions. The equivalent upper

bound on Majorana neutrinos is a lot weaker. For example, if there is new physics at

the weak scale, it is possible to identify scenarios that saturate the current experimental

constraints (see, e.g., [89] and references therein and [90] for a more recent discussion).

We return to these issues in Section 3.7, where we also summarize our results and offer

other concluding remarks.

3.2. The Electronmagnetic Dipole Moment Matrix

Given two left-handed Weyl fermions χa and χb with zero electric charge, one can write

down the following gauge and Lorentz invariant dimension-five operator that couples the

fermions to the electromagnetic field strength F µν :

(3.2.1) O =
1

Λ
(χa)

β
[
(σµ)βα̇(σ̄ν)

α̇α − (σν)βα̇(σ̄µ)
α̇α
]
(χb)αF

µν ,

making use of the standard α, α̇ = 1, 2 notation for Weyl fermions, along with the εαβ =

−εβα metric for raising and lowering spinor indices (there is an equivalent metric for dotted

indices), the four-vector σµ, σ̄µ 2× 2–matrices, while Λ denotes an arbitrary energy scale.

It is easy to show that, now omitting spinor indices, χaσµσ̄νχb = χbσν σ̄µχa so Eq. (3.2.1)

is antisymmetric upon the exchange a ↔ b. This means that Eq. (3.2.1) for a = b vanishes

exactly.

If neutrinos are Majorana fermions, each neutrino mass eigenstate νi (with mass mi,

i = 1, 2, . . . , N , and N is the number of neutrinos) can be represented as a two-component
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left-handed Weyl fermion and the following Lagrangian describes the neutrino–photon

interactions at dimension five:

(3.2.2) LM =
1

2
µijνiσµννjF

µν +H.c.,

where 4σµν ≡ σµσ̄ν − σν σ̄µ. Here, µij = −µji are complex constants that define the neu-

trino electromagnetic dipole moment matrix. There are (N2−N)/2 complex, independent

µij. In the case of three neutrinos, the dipole moment matrix is parameterized by 6 real

parameters: µij = |µij|eiξij , ij = 12, 13, 23.

If neutrinos are Dirac fermions, each neutrino mass eigenstate can be represented as

a pair of two-component left-handed Weyl fermions, νi, and νc
i . In our notation, νi have

lepton number +1 and are referred to as the left-handed neutrino fields while νc
i have

lepton number −1 and are referred to as the left-handed antineutrino fields. Note that

while νi couples to weak gauge bosons, νc
i does not. When it comes to writing down the

electromagnetic dipole moments, terms proportional to νiσµννj and νc
i σµνν

c
j violate lepton

number and are hence forbidden. We are left with

(3.2.3) LD = µD
ijν

c
i σµννjF

µν +H.c..

Note that we do not include interactions of the type νiσµνν
c
j . These are accounted for

since, as already mentioned earlier, νiσµνν
c
j = −νc

jσµννi. With this in mind, µD
ij define

a generic, N × N complex matrix, parameterized by N2 complex numbers. In the case

of three neutrinos, the dipole moment matrix is parameterized by 18 real parameters,

µD
ij = |µD

ij |eiξij , ij = 11, 12, 13, 21, 22, 23, 31, 32, 33.
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There is a useful way to visually compare the Majorana and Dirac dipole moment

matrices. In the Majorana case,

(3.2.4)

LM =
1

2

(
ν1 ν2 . . . νN

)
σµν



0 µ12 . . . µ1N

−µ12 0 . . . µ2N

... ... . . . ...

−µ1N −µ2N . . . 0





ν1

ν2

...

νN


F µν +H.c.,

while in the Dirac case, making use of νiσµνν
c
j = −νc

jσµννi, we can rewrite Eq. (3.2.3) in
a more “symmetric” way, so that it looks very much like the Majorana case:
(3.2.5)

LD =
1

2

(
νc
1 . . . νc

N ν1 . . . νN

)
σµν



0 . . . 0 µD
11 . . . µD

1N

...
. . .

...
...

. . .
...

0 . . . 0 µD
N1 . . . µD

NN

−µD
11 . . . −µD

N1 0 . . . 0

...
. . .

...
...

. . .
...

−µD
1N . . . −µD

NN 0 . . . 0





νc
1

...

νc
N

ν1

...

νN


Fµν+H.c..

For the same number of neutrino species N , the Dirac dipole moment matrix is bigger:

(2N × 2N) versus (N × N). On the other hand, the Dirac dipole moment matrix has

a larger fraction of zero entries; in fact, only 1/4 of the entries in the Dirac case are

independent and nontrivial.

It is easy to see that if the number of neutrinos, here defined to be very light neutral

fermions, is three, the Dirac case has many more independent dipole moments (18 real

parameters) than the Majorana case (6 real parameters). Therefore, if the neutrinos are

Majorana fermions, the dipole moment matrix can be over-constrained after one obtains
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7 independent bits of information. On the other hand, 19 independent bits are required

in order to over-constrain the dipole moment matrix in the Dirac case.∗ In Section 3.6,

this will translate into the fact that the neutrino electromagnetic dipole moments are less

constrained if the neutrinos are Dirac fermions.

One is tempted to conclude that, by performing enough measurements of the neu-

trino dipole moments, it is possible to establish the nature of the neutrinos, Majorana

fermions versus Dirac fermions. This is not necessarily the case. If the neutrinos are

Majorana fermions, one can mimic the Dirac case by adding more neutrino mass eigen-

states. For example, by doubling the number of mass eigenstates, the dimensions of the

two dipole moment matrices can be made the same. In this case, in fact, there are more

independent dipole moments if the neutrinos are Majorana fermions. Concretely, for six

Majorana neutrinos, there are 15 complex dipole moments, compared to the 9 complex

dipole moments for three Dirac neutrinos. Five Majorana neutrinos, as a matter of fact,

are a better “match” to three Dirac neutrinos: 10 versus 9 complex parameters. As an

aside, the number of independent dipole moments first coincides for 1 Dirac neutrino and

2 Majorana neutrinos, followed by 6 Dirac neutrinos and 9 Majorana neutrinos. The next

combinations are 35 Dirac neutrinos versus 50 Majorana neutrinos, followed by 204 Dirac

neutrinos versus 289 Majorana neutrinos. We did not find other pairings with less than

1000 Dirac neutrinos.

∗Whether these “bits of information” are accessible in principle or in practice will be further discussed in
the next sections.
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3.3. Observing Neutrino Electromagnetic Dipole Moments

A non-zero neutrino electromagnetic dipole moment modifies elastic neutrino–electron,

neutrino–nucleon, and neutrino–nucleus scattering. For all processes of interest, the

chirality-flipping nature of the magnetic moment, combined with the chirality-conserving

nature of the weak interactions and the tiny neutrino masses implies that the contribu-

tion from photon-exchange between the neutrino and the charged-fermion of interest will

add incoherently to the weak cross section. For νi + e → νj + e elastic scattering, the

dipole-moment contribution to the cross section is

dσij

dER

=
|µji|2

µ2
B

πα2

m2
e

[
1

ER

− 1

Eν

]
,(3.3.1)

where Eν is the energy of the incoming neutrino, ER is the electron recoil kinetic energy, α

is the fine-structure constant, me is the electron mass, and µB ≡ e/2me is the Bohr mag-

neton. The signature of the dipole moment in neutrino–electron scattering experiments is

an excess of recoil electrons that peaks at small recoil kinetic energies. For coherent elas-

tic scattering on nuclei, the cross section is given by Eq. (3.3.1) multiplied by Z2F 2(q2),

where Z is the atomic number of the target, F (q2) is the nuclear from factor, and q2 is

the four-momentum transfer [91].

Since neutrino masses are negligibly small and the daughter neutrinos cannot, for

all practical purposes, be observed directly or indirectly, σij is not really an observ-

able. Instead, upon detecting the recoil charged particle, one measures σi ≡
∑

j σij. For

neutrino–electron scattering,

dσi

dER

=
|µeff

i |2

µ2
B

πα2

m2
e

[
1

ER

− 1

Eν

]
,(3.3.2)
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where

(3.3.3) |µeff
i |2 ≡

∑
j

|µji|2,

is the magnitude squared of the effective magnetic moment associated to an incoming νi.

The effective magnetic moments µeff
i are directly constrained by solar neutrino experiments

since these are best described as incoherent mixtures of the neutrinos with well defined

masses, ν1, ν2, ν3, etc.

Neutrinos that are both produced and detected on Earth are best described as coherent

linear superpositions of the neutrino mass eigenstates – the neutrino flavor eigenstates,

να = Uαiνi, α = e, µ, τ , where Uαi are the elements of the unitary lepton mixing matrix.

It is simple to define the neutrino electromagnetic moment matrix in the flavor-eigenstate

basis. If the neutrinos are Majorana fermions,

(3.3.4) LM =
1

2
µijU

∗
αiνασµνU

∗
βjνβF

µν +H.c. =
1

2
µαβνασµννβF

µν +H.c.,

where

(3.3.5) µαβ ≡ U∗
αiU

∗
βjµij.

Instead, if the neutrinos are Dirac fermions,

(3.3.6) LD = µD
ijV

∗
αiν

c
ασµνU

∗
βjνβF

µν +H.c. = µD
αβν

c
ασµννβF

µν +H.c.

where we introduce a matrix V that relates the left-handed antineutrinos in the mass

eigenstate basis to those in the flavor-eigenstate basis. Since there are no weak interactions
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for the left-handed antineutrinos, their flavor-eigenstate basis is undetermined and Vαi are

not physical. We can take advantage of this and choose Vαi = Uαi so, for Dirac neutrinos,

the electromagnetic dipole moment matrix in the flavor-eigenstate basis is also given by

Eq. (3.3.5), with the addition of the superscript D (for Dirac).

Similar to σij, the neutrino dipole contribution to the να + e → νβ + e cross section

σαβ is proportional to |µβα|2. Summing over the flavors of the final-state netrinos,

dσα

dER

=
|µeff

α |2

µ2
B

πα2

m2
e

[
1

ER

− 1

Eν

]
,(3.3.7)

where

(3.3.8) |µeff
α |2 ≡

∑
β

|µβα|2.

Note that one is not obliged to work in the flavor-eigenstate basis even when the

incoming state is a flavor eigenstate. In the mass-eigenstate basis, the incoming neutrino

is a linear superposition of mass eigenstates so the amplitude for να → νi is Aαi ∝ Uαjµij.

Summing over all possible final-states (assuming again these are impossible to measure

or “tag” in either flavor or mass eigenstates) σα ∝
∑

i |Uαjµij|2. It is easy to show that∑
i |Uαjµij|2 =

∑
β |µβα|2 = |µeff

α |2.

There remains the possibility of producing a neutrino flavor-eigenstate να and detect-

ing it via elastic scattering some distance L away from the neutrino source. In this case,

the incoming neutrino state is the “oscillated να,” a different linear superposition of mass-

eigenstates (see, for example, [77]). Given what is known about the neutrino mass-squared
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differences, oscillation effects are irrelevant to all Earth-bound experimental constraints

of interest.

3.4. Summary of Experimental Constraints

As discussed earlier, we will concentrate on bounds that come from the scattering of

solar neutrinos or Earth-bound (anti)neutrinos.† In the case of Earth-bound neutrinos,

different sources have been used in order to search for a nonzero neutrino electromagnetic

moment, including neutrinos from nuclear reactors and neutrinos from pion decay. In

both cases, the strongest bounds are obtained from precise analyses of neutrino–electron

scattering so we will concentrate on those. In the case of neutrinos from pion decay at rest,

coherent elastic neutrino–nucleus scattering (CEvNS) data has also been used to search for

nonzero neutrino dipole moments. Current estimates, obtained from data made available

by the COHERENT Collaboration [92], are not yet competitive (for recent analyses see

[84, 85]). From the CEvNS measurement in CsI, constraints down to few ×10−9 µB

can be obtained with 90% C.L, while the future detector materials of the COHERENT

experiment, e.g. Ge, can generally perform better by a factor of a few [68, 70, 69].

There are also interesting results from the DONUT experiment, which obtains an

upper bound of |µeff
ντ | < 3.9× 10−7 µB with 90% C.L. [93]. It makes use of neutrinos from

meson decays in flight, including a nonzero sample of ντ -initiated scattering events. We

will comment on these bounds in Sec. 3.6.

One can also obtain constraints down to |µν | ∼ few × 10−12 µB from stellar cool-

ing [74]. These constraints are less robust and somewhat model dependent (for an earlier

detailed discussion, see, for example, [73]). It has also been argued that new physics can
†We will, in general, use ‘neutrinos’ to refer to neutrinos or antineutrinos.
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weaken such bounds significantly. For example, in so-called “chameleon” models [94],

these bounds are virtually absent. The observation of neutrinos from Supernova 1987A

can also be used to constrain the neutrino magnetic moment. Early estimates pointed to

|µν | ∼ few × 10−13 µB [75, 76]. More recently, however, these bounds were called into

question [95], and it was argued that they may not be valid at all. Henceforth, we do not

consider indirect astrophysical bounds in our analyses.

Finally, unless otherwise noted, we assume henceforth there are only three light neu-

trino states.

3.4.1. Solar Experiments

Neutrinos from the Sun arrive at the Earth as incoherent mixtures of the mass eigen-

states: ν1 with probability P1, ν2 with probability P2, ν3 with probability P3 (for a recent,

detailed overview, see, for example, [96]). Given what is currently known about neutrino-

oscillation parameters‡, for all solar neutrino energies, P3 = |Ue3|2 ∼ 0.02, while P1 and

P2 depend on the neutrino energy. Here we ignore the impact of the nonzero neutrino

magnetic moments on the flavor evolution of the neutrinos inside the Sun.

The measurement of solar neutrinos scattering on electrons, for a fixed neutrino energy,

is sensitive to

(3.4.1) |µ|2solar = P1|µeff
1 |2 + P2|µeff

2 |2 + P3|µeff
3 |2.

The best published solar neutrino constraints are from the Borexino experiment. Us-

ing solar neutrino data taken in 1291.5 days during its second phase, Borexino set an
‡In our analyses, we use the results presented in [28], NuFIT5.1 (2021). See also http://www.nu-fit.org.
Concretely, we use sin2 θ12 = 0.304, sin2 θ13 = 0.02220, sin2 θ23 = 0.573.

http://www.nu-fit.org
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upper bound of |µ|solar < 2.8 × 10−11 µB at 90% C.L. for predominantly 7Be neutrinos

(monochromatic, Eν = 862 keV). For 7Be neutrino energies, matter effects inside the Sun

are small and P1 = |Ue1|2 ∼ 0.7 and P2 = |Ue2|2 ∼ 0.3 to a good approximation.

The XENON experiments, while searching for dark matter, are also sensitive to neu-

trinos from the Sun. When it comes to nonzero magnetic moments, the dominant contri-

bution is from pp solar neutrinos (most abundant, lowest energy). For pp-solar neutrinos,

matter effects inside the Sun are negligible and P1 = |Ue1|2 ∼ 0.7 and P2 = |Ue2|2 ∼ 0.3

is an excellent approximation. The excess of electron recoil events reported by the

XENON1T collaboration [2] can be explained by a nonzero neutrino electromagnetic

moment (µν = 5.7×10−11 is the quoted best-fit value [97]). However, the observed excess

can also be interpreted as evidence for some unaccounted-for background, e.g., tritium

decays [2]. Given all the uncertainty, we do not include the XENON1T results in our

analysis. Furthermore, very recently, first results on the low-energy electron-recoil data

of the XENONnT collaboration were made public [29]. The XENONnT collaboration

reports an upper bound of |µ|solar < 6.3 × 10−12 µB (90% C.L.) that is almost five times

stronger than the Borexino upper bound. This bound supersedes the XENON1T hint by

almost an order of magnitude and is included in our analysis.

Future dark matter direct-detection experiments will also be sensitive to the pp solar

neutrinos. These should be sensitive to effective magnetic moments of order 10−12µB [72],

almost an order of magnitude smaller than the recently reported XENONnT bound.

There are also constraints from the scattering of 8B neutrinos on electrons [98]. 8B

neutrinos have energies between 5 MeV and 10 MeV and are strongly impacted by solar

matter effects. For 8B neutrinos, P1 ∼ 0.1 and P2 ∼ 0.9, with some energy dependency.
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Dipole moment constraints from 8B neutrinos are not competitive with those from Borex-

ino or XENONnT and will not be included in our results.

3.4.2. Reactor Experiments

Nuclear reactors are intense sources of electron antineutrinos. The GEMMA experi-

ment [66] sets the strongest bound on the neutrino electromagnetic moment among the

reactor neutrino experiments. Using a total of 22, 621 hours of data taking, they set

the upper bound µeff
ē < 2.9 × 10−11 µB at 90% C.L. (the bar indicates an incoming

ν̄e). The TEXONO collaboration also measured elastic neutrino–electron scattering for

electron antineutrinos coming from the Kuo-Sheng Nuclear reactor [99] and constrained

µeff
ē < 2.2 × 10−10 µB at 90% C.L.. This is an order of magnitude weaker than the

GEMMA bound and hence we ignore it here. More recently, the CONUS collaboration,

using candidate neutrino–electron scattering events, also reported a bound on the the

effective electron antineutrino magnetic moment, µeff
ē < 7.5×10−11 µB at 90% C.L. [100].

Since it is two and half times weaker than the published GEMMA bounds, we do not

include the CONUS constraints in our analyses.

3.4.3. Accelerator Experiments

The LSND experiment measured neutrino–electron scattering using neutrinos produced in

π+ and µ+ decay at rest [101]. Pion decay produces mostly νµ while muon decay produces

both νe and ν̄µ. LSND data are analyzed and the collaboration reports a constraint on a

mixture of |µeff
e |2 and |µeff

µ |2: |µeff
e |2 + 2.4|µeff

µ |2 < 1.1× 10−18 µ2
B at 90% C.L. [101]. They

assume |µeff
µ |2 = |µeff

µ̄ |2.
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In the future, the DUNE experiment is expected to be sensitive to |µeff
µ | > 3.2 ×

10−10 µB at 90% C.L. after seven years data taking in both the neutrino and antineutrino

modes [71]. Because of the GeV energy range of DUNE and the dependence of the

electromagnetic cross section on the inverse of the neutrino energy, DUNE is not the

best place to get competitive constraints on µeff
µ , despite its unprecedented neutrino flux

and large detector mass. The J-PARC Sterile Neutrino Search at J-PARC Spallation

Neutron Source (JSNS2) experiment [102], including its proposed upgrade [103], might

ultimately have better sensitivity since it makes use of neutrinos from meson and muon

decay at rest, similar to LSND. Finally, as already discussed, future measurements of

CEvNS and neutrino–electron scattering using neutrinos from pion decay at rest may

ultimately provide better sensitivity to |µeff
µ |.

To illustrate the impact a measurement of |µeff
µ | could have on the experimental land-

scape, in Sec. 3.6 we will assume that results from a future experiment sensitive to

|µeff
µ | > 2 × 10−11µB are available. This sensitivity is comparable to that of Borexino

and does not compete with expectations from future solar experiments. Nonetheless, we

will argue that the impact of such an experiment may be, under the right circumstances,

very significant.

3.4.4. Statistical Treatment of Experimental Constraints

All experiments report upper bounds on some effective electromagnetic moment |µeff |exp

(in general a different effective magnetic moment for each experiment of interest). When

computing upper bounds on the different |µij|, presented and discussed in Sec. 3.6, we

treat these upper bounds as quadratic χ2 functions of |µeff |2 and assume the best-fit values
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associated to all experimental results are equal to zero:

(3.4.2) χ2
exp =

(|µeff |2)2

σ2
exp

,

where σexp is extracted from the reported 90% C.L. upper bounds quoted by the different

collaborations, µeff
90%:

(3.4.3) σexp =
(µeff

90%)
2

Φ−1
90%

.

Where Φ−1
90% = 1.645 is the quantile of the standard Gaussian corresponding to the 90%

C.L.. The reason for this assumption is that the number of dipole-moment-mediated

events at any experiment is linearly proportional to |µeff |2 as can be seen, for example, in

Eqs. (3.3.2) and (3.3.7). Note that, traditionally, one quotes upper bounds on |µeff |. In

order to combine results from different experiments, we assume the total χ2 to be the sum

of all the relevant χ2
exp. While this may be an oversimplification, as we are assuming the

best fits to be null and neglecting correlations (e.g. in solar neutrino fluxes), we find this

approach to be suitable to make our point on the interplay between magnetic moment

measurements and the nature of neutrinos.

3.5. Fate of XENON1T

The XENON1T results can be interpreted as being due to a magnetic moment with

magnitude µν ∈ (1.4, 2.9) × 10−11 µB (90% C.L.) [2]. Statistically, we treat this range

as a Gaussian measurement and build a test statistic by modifying Eq. (3.4.2) with a

non-zero central value µeff
exp ' 2.3 × 10−11 µB and σexp extracted from the reported 90%
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Figure 3.1. 90% allowed regions for solar experiments for Majorana neu-
trinos extracted from current data. We show the allowed region contours
(meshed) for Borexino and XENONnT. The XENON1T measurement al-
lowed region is shown as a filled shape.

C.L. values. The Gaussian approximation is not perfect, but it is good enough to show

that the XENONnT measurement all but excludes the XENON1T hint.

First, we take a look at the case where we interpret the XENON1T excess as being due

to Majorana BSM neutrino magnetic moments. Using Eq. (3.6.1), we can view the the

90% C.L. preferred regions of the Borexino (orange), XENON1T (filled light cyan), and

XENONnT (gray) results in Fig. 3.1. The XENON1T measurement region is comfortably

inside the parameter space allowed by the Borexino contour. We can also see that the

XENONnT measurement is sensitive enough to almost exclude the entire XENON1T

preferred region. This would not be as trivial to see in a two-parameter plane, for if the
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Figure 3.2. 90% allowed regions for solar experiments for Dirac neutrinos
extracted from current data. We show the allowed region contours (meshed)
for Borexino and XENONnT. The XENON1T measurement allowed region
is shown as a filled shape. See Section 3.6.2 for more details on µeff

1 , µeff
2 , and µeff

3 .

third magnitude of the moment is marginalized over, the entire ‘shape’ would collapse to

show everything below the upper contour of the XENON1T preferred region as allowed.

Secondly, we interpret the results assuming Dirac neutrinos. For this we will use

Eq. (3.6.3). As will be discussed in Sec. 3.6, in the solar case, we can completely describe

the parameter space with three effective fundamental magnetic moments. Fig. 3.2 shows

the 90% C.L. preferred regions for the Dirac case for the Borexino (organge), XENON1T

(light cyan), and XENONnT (gray) results. The Dirac case depends on 9 magnitudes,
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but as will be discussed later on, we can completely describe the parameter space with

the three fundamental effective solar moments µeff
1 , µeff

2 , and µeff
3 . Again, it is clear that

the XENONnT results exclude the XENON1T region. Nevertheless, we can appreciate

how the sensitivity to the moments associated with Ue3 weakens drastically. Furthermore,

we can appreciate that the XENON1T measurement, or more generally any solar mea-

surement, does not individually aid our ability to distinguish between Majorana or Dirac

neutrinos. Taking this into account, we will look at other neutrino sources and experi-

ments to better understand the discovery potential when looked through the Majorana

or Dirac lens.

3.6. Results: Present and Future

Here we present and discuss the current constraints on all |µij| for both Majorana

and Dirac neutrinos. We present all results in the neutrino mass-eigenstate basis; when

convenient, we make use of the flavor-eigenstate basis in order to discuss specific results.

Our ultimate goal is to combine all constraints from the different neutrino sources and

experiments and discuss the impact of future experimental efforts. We comment on in-

dividual constraints when it is illuminating. Comparisons between Dirac neutrinos and

Majorana neutrinos are presented in the ‘Dirac Neutrinos’ subsection.

All upper bounds and exclusion curves are quoted at 90% C.L., for the relevant number

of degrees of freedom.
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3.6.1. Majorana Neutrinos

If neutrinos are Majorana fermions, assuming there are no new light fermions, there are

three independent complex neutrino electromagnetic dipole moments: µ12, µ13, µ23. We

will concentrate on the existing constraints on |µ12|, |µ13|, |µ23|, keeping in mind the com-

plex phases in µ12, µ13, µ23 are unconstrained. Unless otherwise noted, when presenting

constraints on |µ12|, |µ13|, |µ23|, we marginalize over all unreported parameters.

As discussed in Sec. 3.3, to a good approximation, the solar neutrino experiments of

interest are sensitive to

(3.6.1) |µ|2solar = |Ue1|2
(
|µ12|2 + |µ13|2

)
+ |Ue2|2

(
|µ12|2 + |µ23|2

)
+ |Ue3|2

(
|µ13|2 + |µ23|2

)
,

and hence insensitive to the relative phases among the different dipole moments. Con-

straints from Borexino and XENONnT in the different |µij|× |µjk| planes (i, j, k = 1, 2, 3)

are depicted in Fig. 3.3 (orange and grey lines, respectively). Since all terms in Eq. (3.6.1)

are positive-definite, it is possible to marginalize over all-but-one of the elements of the

electromagnetic dipole matrix and constrain each |µij| independently. The 90% C.L. up-

per bounds we obtain from the Borexino and XENONnT bounds are listed in Table 3.1.

Throughout, we kept the neutrino oscillation parameters fixed at their best-fit values,

except for the CP-odd parameter δCP, which we allow to float in the fits. Note that the

CP-odd phase is irrelevant for the solar neutrino constraints. Had we allowed the mixing

angles to also float in the fits, we would have obtained slightly weaker bounds (roughly

five to ten percent), given the current uncertainties on the relevant mixing parameters.
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Figure 3.3. Majorana neutrinos. 90% C.L. allowed regions in the |µ12| ×
|µ13|-plane (left), |µ12| × |µ23|-plane (center), |µ13| × |µ23|-plane (right),
extracted from different subsets of existing and hypothetical future data.
‘BOREXINO (Combined)’ stands for data from Borexino, GEMMA, and
LSND. ‘XENONnT (Combined)’ stands for data from XENONnT, Borex-
ino, GEMMA, and LSND. ‘|µeff

µ | < 2 × 10−11 µB’ stands for data from a
future experiment that constraints |µeff

µ | < 2 × 10−11 µB. See Section 3.4
for details.

Table 3.1 reveals that the constraints from solar data on |µ12|, |µ13|, |µ23| are relatively

similar, within less than a factor of two (a factor a little over three for |µij|2). The reason

is that, for Majorana neutrinos, µij = −µji. Even though |Ue3|2 � |U2
e1|, |Ue2|2, the

coefficients behind the different |µij|2 are relatively similar, ranging from |Ue2|2+ |Ue3|2 ∼

0.3 to |Ue1|2 + |Ue2|2 ∼ 1.

The situation is different for experiments that constrain |µeff
α |2, α = e, µ, τ , includ-

ing reactor experiments. Constraints from GEMMA on |µeff
ē |2 translate into the green

contours in Fig. 3.3 while the sensitivity of a hypothetical future experiment that can

see a nonzero |µeff
µ |2 if it is larger than 2 × 10−11µB is depicted in purple (dashed line).

In both these cases, there is a clear “flat direction” in the different |µij| × |µjk|-planes
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Table 3.1. 90% C.L. upper bounds on the magnitudes of the different entries
of the neutrino electromagnetic moment matrix, for Majorana neutrinos,
extracted from different subsets of existing and hypothetical future data.
‘Future νµ’ stands for a future experiment capable of constraining |µeff

µ | <
2× 10−11 µB. See Section 3.4 for details.

Experiment |µ12| (10−11µB) |µ13| (10−11µB) |µ23| (10−11µB)

LSND 90 84 79
Borexino 2.8 3.3 5.0
Borexino & LSND & GEMMA 2.4 3.0 4.4
XENONnT 0.64 0.75 1.1
All Combined 0.64 0.75 1.1
All Combined & Future νµ 0.64 0.75 1.1

[104, 69]. This implies, for example, one cannot obtain bounds on any of the |µij| that

is independent from the other parameters that define the dipole moment matrix.

The reason for the flat direction is easy to understand. In the flavor-eigenstate basis,

(3.6.2) |µeff
e |2 = |µeµ|2 + |µeτ |2.

It is easy to see that |µeff
e |2 depends only on the magnitudes of two out of the three

µαβ (α, β = e, µ, τ); it does not depend on µµτ at all. Since the three µαβ (and µij)

are, in general, independent, there is a combination of |µij| – indeed, µµτ – that remains

unconstrained. This translates into the cuspy contours observed in Fig. 3.3. The same

argument holds for |µeff
µ |2, |µeff

τ |2.

Flat directions are lifted if one combines constraints on different |µeff
α |2. Bounds from

the LSND experiments, depicted in brown in Fig. 3.3, illustrate this, since, as discussed

in Section 3.4, LSND constrains a weighted sum of |µeff
µ |2 and |µeff

e |2. For this reason, we

can compute the LSND bounds on the different |µij| after one marginalizes over all other
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dipole moment observables. These are listed in Table 3.1. The LSND bounds are much

weaker than the solar bounds.

Combinations of solar data with reactor or accelerator data are also free from flat

directions and one can obtain constraints on all µij, marginalizing over all other dipole

moment observables, from all current experiments combined. These are listed in Table 3.1

and depicted in Fig. 3.3 (dot-dashed blue contour for Borexino combined with LSND

and GEMMA, grey for XENONnT combined with all other existing data). The bounds

from solar experiments dominate those from Earth-bound experiments. The XENONnT

constraints are strong enough that the impact of combining them with all other data

is negligible. We also combine all existing constraints with a future experiment that

excludes, at the 90% C.L., |µeff
µ | < 2×10−11µB. These are listed in Table 3.1. The impact

of the future experiment is negligible relative to that of XENONnT.

More generally, if the neutrinos are Majorana fermions and there are no extra neutrino

degrees of freedom, expectations are that next-generation experiment sensitive to |µeff
µ |2 >

2 × 10−11µB will not see the effects of nonzero neutrino electromagnetic moments. The

solar bounds preclude it. This is depicted in Fig. 3.3. The sensitivity region of the

future |µeff
µ |2 is well inside the region of parameters space ruled out by the XENONnT

experiment.

3.6.2. Dirac Neutrinos

If neutrinos are Dirac fermions, assuming there are no new light fermions, there are

nine independent complex neutrino electromagnetic dipole moments: µD
11, µD

12, µD
13, µD

21,

µD
22, µD

23, µD
31, µD

32, µD
33. Like in the Majorana neutrino case, we will concentrate on the
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existing constraints on the magnitudes of the different electromagnetic moments |µD
ij |

(i, j = 1, 2, 3), keeping in mind the complex phases of the different µD
ij are unconstrained.

Unless otherwise noted, when presenting constraints, we marginalize over all unreported

parameters.

As discussed in Sec. 3.3, to a good approximation, the solar neutrino experiments of

interest are sensitive to

|µ|2solar = |Ue1|2|µeff
1 |2 + |Ue2|2|µeff

2 |2 + |Ue3|2|µeff
3 |2,(3.6.3)

= |Ue1|2
(
|µD

11|2 + |µD
21|2 + |µD

31|2
)
+ |Ue2|2

(
|µD

12|2 + |µD
22|2 + |µD

32|2
)
+

+|Ue3|2
(
|µD

13|2 + |µD
33|2 + |µD

33|2
)
,(3.6.4)

and hence insensitive to the relative phases among the different dipole moments. While

all nine |µD
ij | are constrained by solar data, it is clear that the bounds are correlated.

After marginalizing over all other |µD
ij |, the bounds on, for example, |µD

11| and |µD
21| are

identical. Hence, as far as solar data are concerned, it is sufficient to extract bounds on

|µeff
i |, i = 1, 2, 3, defined in Eq. (3.3.3); these apply to all |µD

ij | (for fixed i, j = 1, 2, 3).

90% C.L. Constraints from Borexino and XENONnT in the different |µeff
i | × |µeff

j | planes

(i, j = 1, 2, 3) are depicted in Fig. 3.4 in orange and grey, respectively. Since all terms

in Eq. (3.6.3) are positive-definite, it is possible to marginalize over all-but-one of the

effective electromagnetic dipole moments and constrain each |µeff
i | independently. The

90% C.L. upper bounds we obtain from the Borexino and XENONnT bounds are listed

in Table 3.2. Throughout, we kept the neutrino oscillation parameters fixed at their

best-fit values, except for the CP-odd parameter δCP, which we allow to float in the fits.
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Figure 3.4. Dirac neutrinos. 90% C.L. allowed regions in the |µeff
1 | × |µeff

2 |-
plane (left), |µeff

1 |×|µeff
3 |-plane (center), |µeff

2 |×|µeff
3 |-plane (right), extracted

from different subsets of existing and hypothetical future data. ‘|µeff
µ | < 2×

10−11 µB’ stands for data from a future experiment that constraints |µeff
µ | <

2×10−11 µB. See Section 3.4 for details. In the case of the future experiment
sensitive to |µeff

µ | (dashed, purple curves), we assume only µD
11, µ

D
22, µ

D
33 6= 0.

Note that the CP-odd phase is irrelevant for the solar neutrino constraints. Had we

allowed the mixing angles to also float in the fits, we would have obtained slightly weaker

bounds (roughly five to ten percent), given the current uncertainties on the relevant mixing

parameters.

Table 3.2 reveals that |µeff
3 | is significantly less constrained – one order of magnitude

– by solar data than |µeff
1,2|. The reason is that, for Dirac neutrinos, the different |µeff

i | are

independent and |Ue3|2 � |Ue1|2, |Ue2|2. This is to be contrasted to the Majorana case,

where all independent |µij| are similarly constrained by solar data. In the Dirac case, if

|Ue3|2 were zero, the bound on |µeff
3 | would disappear. In the Majorana case, the solar

bounds presented in Table 3.1 would be almost identical to what one would have obtained

if |Ue3|2 were zero.
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Table 3.2. 90% C.L. upper bounds on the magnitudes of the different en-
tries of the neutrino electromagnetic moment matrix, for Dirac neutri-
nos, extracted from different subsets of existing and hypothetical future
data. ‘Future νµ’ stands for a future experiment capable of constraining
|µeff

µ | < 2× 10−11 µB. See Section 3.4 for details.

|µD
ij | (10−11µB)

Experiment ij = 11, 21, 31 ij = 12, 22, 32 ij = 13, 23, 33
Borexino 3.4 5.1 19
Borexino & GEMMA & LSND 3.2 4.8 18
XENONnT 0.76 1.2 4.2
All Combined 0.76 1.2 4.2
All Combined & Future νµ 0.76 1.2 2.8

Experimental results that translate into an upper bound on a single |µeff
α |, α = e, µ, τ ,

do not translate into bounds on individual µD
ij , similar to the Majorana case. Also here,

there are flat directions, i.e., linear combinations of |µD
ij |2 that are unconstrained. In fact,

in the Dirac case, there are many more flat directions relative to the Majorana case. This

is simplest to see in the flavor-eigenstate basis. For example,

(3.6.5) |µeff
e |2 = |µD

ee|2 + |µD
µe|2 + |µD

τe|2,

clearly independent from six of the nine |µD
αβ|, α, β = e, µ, τ .

Unlike the Majorana case, constraints from LSND are also plagued by flat directions in

the Dirac case. Using the flavor-eigenstate basis, the effective dipole moment constrained

by LSND is independent from |µeτ |2, |µµτ |2, |µττ |2. In the case of Dirac neutrinos, a

collection of Earth-bound experiments capable of fully constraining all independent |µD
ij |
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should also include a ντ -initiated scattering sample.∗ For example, data from GEMMA,

LSND, and DONUT can constrain all µD
ij , independent from exact flat directions.

Combinations of solar data with those from Earth-bound experiments are not, of

course, plagued by flat directions. Furthermore, Earth-bound experiments provide infor-

mation on the |µD
ij | beyond |µeff

i |2. We return to these momentarily but, for now, it is

enough to state that all such combinations still translate into identical bounds on the

elements of the “triplets” (|µD
11|, |µD

21|, |µD
31|), (|µD

12|, |µD
22|, |µD

32|), or (|µD
13|, |µD

23|, |µD
33|). In

practice, given that constraints from Borexino and, especially, XENONnT are stronger

than those from nuclear reactor and accelerator neutrinos, the consequences of adding, to

the solar data, the Earth-bound data, are quantitatively quite small. Combined results

are listed in Table 3.2. As in the Majorana case, the XENONnT constraints are strong

enough that the impact of combining them with all other data is negligible.

Future data could, in principle, lead to a less trivial picture and more information.

Constraints from an experiment that rules out, at the 90% C.L., |µeff
µ |2 > 2 × 10−11µB,

combined with current XENONnT data, are also listed in Table 3.2. While the impact on

the |µi1| and |µi2| (i = 1, 2, 3) elements is negligible, the impact on the |µi3| elements is

quite significant. This is due to the fact that |Ue3| � |Uµ3|. More important than placing

more stringent bounds, if the neutrinos are Dirac fermions, a future experiment more

sensitive to |µeff
µ |2 than LSND may potentially observe the effect of a nonzero neutrino

electromagnetic even if there are no extra neutrino states. Fig. 3.4 depicts the sensitivity

of a hypothetical future experiment that can see a nonzero |µeff
µ |2 if it is larger than

∗Another option is an “oscillated” scattering sample, i.e, a well-defined flavor eigenstate detected via the
electromagnetic dipole-moment interaction a long distance L away.
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2× 10−11µB in purple (dashed), assuming only the diagonal µD
ij are nonzero.† The figure

reveals that the sensitivity of such an experiment reaches beyond current constraints

on |µeff
3 |. This is qualitatively different from what was observed in the Majorana case,

Fig. 3.3. There, an experiment sensitive to |µeff
µ |2 > 2 × 10−11µB is unable to make a

discovery unless there are light fermionic states other than the known neutrinos.

We now turn to the details of the experimental sensitivity of scattering experiments to

|µD
ij |. In the mass-eigenstate basis, reorganizing the terms in the summations, indicated

here explicitly,

(3.6.6) |µeff
α |2 =

∑
j,k

(∑
i

UαjU
∗
αkµ

D
ijµ

D∗
ik

)
≡
∑
j,k

Aα
jkSjk.

Here, Aα
jk ≡ UαjU

∗
αk depend only on the elements of the mixing matrix,‡ independent

from the values of the electromagnetic moments. Instead, Sjk ≡
∑

i µ
D
ijµ

D∗
ik depend only

on (products of) the electromagnetic dipole moments. Eq. (3.6.6) also holds for incoming

neutrinos that are incoherent superpositions of the mass eigenstates, like the solar neutri-

nos. In theses cases, Ajk = Pjδjk, where Pj is the probability that an incoming νj “hits”

the target of interest.

Any combination of measurements of |µeff
α |2 and |µeff

i |2 is capable of measuring, or

constraining, at most, the different Sjk, not necessarily the nine individual |µD
ij |. When

it comes to information on the different |µD
ij |, this has interesting consequences related to

the fact that Sjk ≡
∑

i µ
D
ijµ

D∗
ik , for fixed j, k, is invariant under relabeling the “i” index.

†The flat directions, discussed earlier, are the reason for restricting here the 18-dimensional parameter
space to this much smaller subspace. Otherwise, defining the sensitivity of the future νµ experiment
would be both cumbersome and opaque.
‡This discussion can be trivially generalized to the “oscillated να.”
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In other words, all permutations of the “i” indices lead to the same Sjk and hence the

same µeff
α for all α.

Some consequences of this symmetry are important for discussing upper bounds on the

different µD
ij . For example, if one marginalizes any collection of upper bounds (expressed,

for concreteness, as a χ2-function) relative to all but one |µD
ij | one will obtain the same

reduced χ2 for all values of i and fixed value of j. Hence, the upper bounds one obtains

for |µD
1j|, |µD

2j|, |µD
3j| are the same for each value of j. This is trivial to see in the solar data,

as discussed earlier.

Generalizing, if the same collection of bounds is marginalized over all but a specific

pair |µD
ij |, |µD

i′k|, the same reduced χ2 is expected for all pairs i, i′ related by different

permutations of the i, i′ indices. For i = i′, j = k, for example, we recover the result

mentioned above, that the bounds on |µD
1j|, |µD

2j|, |µD
3j| are the same for each value of j.

For i = i′, j 6= k, constraints in the |µD
1j| × |µD

1k|, |µD
2j| × |µD

2k|, |µD
3j| × |µD

3k| planes are all

the same. Finally, for i 6= i′and fixed j, k, constraints in the |µD
1j| × |µD

2k|, |µD
2j| × |µD

1k|,

|µD
1j| × |µD

3k|, |µD
3j| × |µD

1k|, |µD
2j| × |µD

3k|, |µD
3j| × |µD

2k| planes are all the same. When j = k,

only half of these are independent since, for example, the |µD
12| × |µD

32| and |µD
32| × |µD

12|

planes are the same.

Therefore, when it comes to depicting constraints in the planes defined by pairs of

µD
ij , instead of 36 independent such constraints, all accessible information can be depicted

in 9 independent planes. Explicitely, these are (the ‘=’ signs here mean that, in all the

“equal” planes the constraints are identical.)
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• |µD
ij | × |µD

i′j|, j = 1, 2, 3:

|µD
11| × |µD

21| = |µD
11| × |µD

31| = |µD
21| × |µD

31|,

|µD
12| × |µD

22| = |µD
12| × |µD

32| = |µD
22| × |µD

32|,

|µD
13| × |µD

23| = |µD
13| × |µD

33| = |µD
23| × |µD

33|.

• |µD
ij | × |µD

ik|, j 6= k. The distinguishable {j, k} pairs are {1, 2}, {1, 3}, {2, 3}:

|µD
11| × |µD

12| = |µD
21| × |µD

22| = |µD
31| × |µD

32|,

|µD
11| × |µD

13| = |µD
21| × |µD

23| = |µD
31| × |µD

33|,

|µD
12| × |µD

13| = |µD
22| × |µD

23| = |µD
32| × |µD

33|.

• |µD
ij |×|µD

i′k|, i 6= i′, j 6= k. The distinguishable (j, k) pairs are {1, 2}, {1, 3}, {2, 3}:

|µD
11| × |µD

22| = |µD
11| × |µD

32| = |µD
21| × |µD

12| = |µD
21| × |µD

32| = |µD
31| × |µD

12| = |µD
31| × |µD

22|,

|µD
11| × |µD

23| = |µD
11| × |µD

33| = |µD
21| × |µD

13| = |µD
21| × |µD

33| = |µD
31| × |µD

13| = |µD
31| × |µD

23|,

|µD
12| × |µD

23| = |µD
12| × |µD

33| = |µD
22| × |µD

13| = |µD
22| × |µD

33| = |µD
32| × |µD

13| = |µD
32| × |µD

23|.

Fig. 3.5 depicts the constraints on all distinguishable (in principle) pairs of |µD
ij |, |µD

i′k|,

in the corresponding |µD
ij | × |µD

i′k|-planes. The different curves correspond to the con-

straints imposed by Borexino (orange contour), Borexino data combined with LSND and

GEMMA (blue, dot-dashed contour), and XENONnT combined with Borexino, LSND,
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and GEMMA (grey contour). The dashed, purple line, corresponds to a hypothetical fu-

ture bound, obtained by combining the existing XENONnT data with a future experiment

that constrains |µeff
µ | < 2× 10−11 µB at the 90% C.L.

When it comes to existing constraints on |µD
ij |, |µD

i′k| pairs, as expected, the constraints

from solar data also overwhelm those of all Earth-bound experiments, especially once

one considers the very recent results reported by XENONnT. The situation is different

once one includes future constraints from an experiment sensitive to |µeff
µ |2. The impact

of these, already discussed in the context of upper bounds on individual |µD
ij | around

Table 3.2, can be clearly seen in Fig. 3.5, in the planes that involve the |µD
i3| elements.

In the far future, assuming experiments are restricted to measuring |µeff
α |2 and |µeff

i |2

(and even different versions of the “oscillated” |µeff
α |2), data will still only depend on the µD

ij

through Sjk. This means that there are several µD
ij “subsets” that are indistinguishable

from one another and from the most general case. To explore this further, we define

the complex 3-component vector ~vj = (µD
1j, µ

D
2j, µ

D
3j), j = 1, 2, 3, so Sjk = ~vj · ~v∗k. All

observables are proportional to the dot-products of the three different vectors ~v and

hence do not depend on rigid rotations in the (complex) space defined by the ~vj. This

rotational symmetry is the one we had been exploring above. Taking advantage of this

invariance, we can, for example, choose the 1-direction such that ~v1 = (µD?
11 , 0, 0) and the

2-direction such that ~v2 = (µD?
12 , µ

D?
22 , 0).§ There is no freedom to reduced the number

of components of the third vector, ~v3 = (µD?
13 , µ

D?
23 , µ

D?
33 ). The entire µD

ij parameter space

– 9 complex parameters – can be perfectly mimicked by a reduced parameter space – 6

complex parameters – where µD
21, µ

D
31, µ

D
32 vanish exactly. Hence, several (as many as we

§The ? is mean to indicate that these are not entries of a generic matrix but one where some of the
elements are known to vanish.
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Figure 3.5. Dirac neutrinos. 90% C.L. allowed regions in all |µD
ij | × |µD

i′k|-
planes, extracted from different subsets of existing and hypothetical future
data. ‘BOREXINO (Combined)’ stands for data from Borexino, GEMMA,
and LSND. ‘XENONnT (Combined)’ stands for data from XENONnT,
Borexino, GEMMA, and LSND. ‘|µeff

µ | < 2× 10−11 µB (Combined)’ stands
for data from a future experiment that constraints |µeff

µ | < 2×10−11 µB. See
Section 3.4 for details. In all panels, i, i′ = 1, 2, 3, along with the constraint
in the top right-hand corner.
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can imagine) idealized measurements of |µeff
α |2 and |µeff

i |2 may well be able to establish

that neutrinos have a magnetic moment, but they cannot reveal whether, for example,

some of them vanish.

3.7. Conclusions

Massive neutrinos are guaranteed to have nonzero electromagnetic moments. The

sizes of these dipole moments are functions of all neutrino interactions with known and

unknown particles and depend on the nature of the neutrino – Majorana fermion versus

Dirac fermion.

Since there are at least three neutrino families, the neutrino dipole moments define

a matrix. The number of independent electromagnetic moments depends on the number

of neutrino families and the nature of the neutrinos. Here, we estimated the current

upper bounds on all independent neutrino electromagnetic moments, concentrating on

Earth-bound experiments and measurements with solar neutrinos. We considered the

hypotheses that neutrinos are Majorana fermions or Dirac fermions. Our results, obtained

after marginalizing over all other dipole-moment observables (magnitudes and phases),

are listed in Tables 3.1 and 3.2. We included the very recent results reported by the

XENONnT experiment, sensitive to pp-solar neutrinos. Right now, XENONnT data

provide the most stringent bounds on all elements of the neutrino electromagnetic moment

matrix, independent from the nature of the neutrinos. This was already true of published

solar neutrino data from the Borexino experiment, which makes use of the scattering of

7Be solar neutrinos.
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For the same number of neutrino families, there are more independent neutrino elec-

tromagnetic dipole moments if neutrinos are Dirac fermions. This translates into weaker

bounds on the magnitudes of the elements of the dipole moment matrix relative to those

obtained if neutrinos are Majorana fermions. As a concrete example, for Dirac neutrinos,

if |Ue3|2 were zero, solar data would be unable to constrain the magnitudes of three of the

nine independent elements of the electromagnetic moment matrix. The situation is very

different for Majorana neutrinos. In this case, the dependence on |Ue3|2 of existing solar

bounds is almost negligible.

Another consequence of the Majorana fermion versus Dirac fermion distinction is that

the potential physics reach of next-generation experiments depends on the nature of the

neutrino. Here, we concentrated on a next-generation experiment that is sensitive to the

neutrino electromagnetic moments via νµ elastic scattering. An experiment sensitive to

|µeff
µ | > 2×10−11µB may discover that the neutrino electromagnetic moments are nonzero

if neutrinos are Dirac fermions. Instead, if neutrinos are Majorana fermions, such a

discovery is ruled out by existing solar neutrino data, unless there are more than three

light neutrinos.

The Majorana fermion versus Dirac fermion distinction can be effectively erased if

there are more than three light neutrinos. For example, five Majorana neutrinos (e.g.,

three mostly active and two mostly sterile) allow for ten complex electromagnetic dipole

moments, a good match (with one dipole moment to spare) to the nine complex electro-

magnetic dipole moments required to describe the couplings of three Dirac neutrinos. It

is not clear whether these two scenarios can be disentangled, even if one assumes a large

collection of very precise future experiments, including measurements of |µeff
e,µ,τ |2 from the
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elastic scattering of all three flavor eigenstates along with different linear combinations of

|µeff
1,2,3,...|2 from the scattering of solar neutrinos of different energies.

We explored in great detail what information can be acquired, in principle, on the neu-

trino electromagnetic moments if neutrinos are Dirac fermions. Unlike the Majorana case,

in the Dirac case the parameter space is very large – 9 complex parameters. Nonetheless,

if all future information comes from measurements of |µeff
1,2,3,...|2 and |µeff

e,µ,τ |2, the amount

of information one can extract is much more limited than naively anticipated. For ex-

ample, in the absence of a discovery, for a fixed value of j = 1, 2, or 3, upper limits on

|µD
ij | are identical for all i = 1, 2, 3. Similarly, excluded regions in several µij × µi′k planes

are also identical, and the argument persists for “higher-dimensional” allowed regions in

µij × . . . × µi′k spaces. In the case of the reduced two-dimensional µij × µi′k spaces, we

showed there are only nine independent excluded regions. All other 27 are related to those

nine.

The situation would be qualitatively different if the scattered neutrinos from the de-

tection process were also, somehow, measured. This requires experimental capabilities

that are way out of current reach. For example, one may consider the dipole-moment

mediated process να + e− → νβ + e−, α, β = e, µ, τ . Assuming a left-handed-helicity να

and neutrino energies much larger than the neutrino masses – guaranteed of all available

neutrino beams – the outgoing νβ would have right-handed helicity. If neutrinos are Dirac

fermions, the observation of the right-handed-helicity νβ requires chirality violation and

is hence very efficiently suppressed by the neutrino masses squared (in units of the neu-

trino energy). For all practical purposes, right-handed-helicity νβ are sterile neutrinos.

Instead, if neutrinos are Majorana fermions, the right-handed-helicity νβ would behave
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as what is casually referred to as a ν̄β and, if measured via charged-current weak inter-

actions, would lead to the production of an `+β . In the latter scenario, not only would

one be able to measure µαβ (as opposed to µeff
α ), but one would also have discovered that

lepton-number-symmetry is violated and that neutrinos are Majorana fermions.

The fact that experimental constraints on the neutrino electromagnetic moments are

weaker (and the discovery potential, in some sense, stronger) if neutrinos are Dirac

fermions is orthogonal to theoretical expectations that point to a strong correlation be-

tween potentially large neutrino electromagnetic moments and Majorana fermions [88,

89], highlighted in the Introduction. The discovery of neutrino electromagnetic moments

of order 10−11µB, coupled to knowledge that neutrinos are Dirac fermions, would indicate

that the robust assumptions made in [88, 89] do not apply and that the physics be-

hind nonzero neutrino masses is more puzzling and subtle than the community currently

suspects.
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CHAPTER 4

Conclusion

With the observation of neutrino flavor oscillations we have definitive evidence that

neutrinos have mass. This deviates from the predictions of the Standard Model, so neu-

trino masses and flavor oscillations offer a window into Beyond the Standard Model physics

and hypotheses. In this thesis, we explored how additional sterile neutrino states affect

the NOvA and T2K discrepancy. We also briefly explored the XENON1T anomaly, and

studied the parameter space of the fundamental magnetic moments to search for insights

and how we could distinguish between Majorana or Dirac neutrinos.

We explored the nature of the NOvA and T2K discrepancy in the presence of a sterile

neutrino. We developed simulations that replicate the results of the NOvA and T2K

experiments under the three-neutrino picture and allow us to test the four-neutrino hy-

pothesis. The four-neutrino hypothesis yields a better fit (∆χ2 ∼ 9) in the Inverted

Ordering mass scheme, but the fit suffers from several statistical issues: Firstly, the im-

provement is still comparable to the number of added degrees of freedom. Secondly, the

change in chi-squared ∆χ2 = χ2
3ν − χ2

4ν should follow a chi-squared distribution. We find

that our best-fit values are similar to those when random fluctuations are accounted for.

Succinctly, the new oscillation from the four-neutrino model can absorb the statistical

fluctuations from individual bins. Nevertheless, if we restrict the new sterile neutrino to

have a very small mass-squared splitting ∆m2
4l, and therefore avoid the aforementioned

statistical pathologies, there still remains a preference of (∆χ2 ∼ 4). Although less strong
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and smaller than the number of added degrees of freedom, the magnitude of this preference

is still comparable to that of other proposed solutions, such as non-standard interactions.

Looking forward, NOvA and T2K will continue to collect and analyze data. The contin-

ued persistence of this discrepancy or its dissipation will allow us to confirm the existence

of a new light fermion state or exclude a wide range of ∆m2
4l. In the case that such a light

fermion state is detected, the future experiments DUNE and Hyper-Kamiokande will be

poised to further study the properties of the new particle.

We briefly explored the XENON1T anomaly and XENONnT measurement to check

that the latter has excluded the former. Through this exploration, we saw that an indi-

vidual solar measurement of a neutrino magnetic moment is not enough to help determine

between the Majorana and Dirac hypotheses. Taking a survey of direct neutrino magnetic

moment measurements and bounds, we decided that XENONnT and Borexino, LSND,

and GEMMA offered the most competitive bounds in the solar, accelerator, and reactor

experiments, respectively. Navigating through issues with flat-directions and degenera-

cies, we show how a future accelerator νµ experiment could have nontrivial discovery

potential even with sensitivities an order of magnitude behind solar experiments. The

measurement of a neutrino magnetic moment by such a future νµ experiment would sug-

gest that neutrinos are either Dirac or that additional light fermionic states exist. This

is complimentary to the neutrinoless double beta decay search, which aims to show that

neutrinos are Majorana particles in the case that a measurment is made. Furthermore, we

studied the fundamental magnetic moment observables in the Dirac case in more detail to

tease out some degeneracies. We found that, for one-dimensional marginalization, there

are only three distinguishable moments µD
i1, µD

i2, and µD
i3. Furtheremore, when showing
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constraints for the planes correlating two moments µD
ij and µD

i′j, we find that instead of

the expected 36 planes there are only 9 unique such planes. These patterns hold even if

we construct experiments that could measure the outgoing neutrino from the scattering

event or if the experiment was sensitive to oscillations.

We have managed to inform the picture of possible new light fermionic states by exam-

ining the NOvA and T2K discrepancy and the now superseded XENON1T anomaly. We

have also explored the discovery potential for neutrino-electron scattering in future accel-

erator νµ experiments given BSM neutrino dipole moments. Possible topics to revisit in

this thesis include: Extending the analysis in Chapter 2 by performing the computation-

ally intensive Feldman-Cousins correction. This would allow us to more robustly rule-out

the additional very light sterile neutrino hypothesis. If a future νµ experiment were to

measure a large BSM neutrino magnetic moment, it would be important to revisit how

Majorana neutrinos with additional fermionic states can mimic the number of parame-

ters of the Dirac neutrino dipole matrix as discussed in Chapter 3. Specifically, studying

whether matching the number of parameters in the Majorana neutrino dipole matrix by

adding sterile states is truly enough to replicate the Dirac results. Furthermore, it would

be an opportunity to study what kind of mass and mixing properties these additional

fermionic states would have. The massive nature of neutrinos and our rich experimental

program give us an unprecedented window into nature and how to improve the SM. The

future of the field looks promising when we consider the subtle physics behind massive

neutrinos and future experimental pursuits such as DUNE and Hyper-Kamiokande.
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APPENDIX A

Appendix to chapter 2

A.1. Detailed Fit Results

In Section 2.4, we provided best-fit points of our analyses of T2K, NOvA, and their

combination under the three- and four-neutrino hypotheses. When discussing the best-

fit points under the four-neutrino hypothesis (Table 2.3), we showed the results of the

analysis (i.e. which signs of ∆m2
31 and ∆m2

4l) that provided the best overall fit to each

experimental data set. In this appendix, we provide the results to all four fits for each

experiment/combination. Table A.1 does so for our analyses of T2K and NOvA data

separately, and Table A.2 does so for their combination.
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Table A.1. Best-fit 4ν parameters of our four T2K (top) and NOvA (bot-
tom) analyses. See Section 2.4.2 for more detail.

4ν
T2K

NO IO

∆m2
4l > 0 < 0 > 0 < 0

sin2 θ13 0.024 0.024 0.024 0.024
sin2 θ23 0.44 0.44 0.44 0.43
∆m2

31/10
−3 eV2 2.49 2.48 −2.38 −2.39

δCP 4.94 4.89 4.45 4.42

sin2 θ14 7.1× 10−2 7.8× 10−2 8.0× 10−2 7.8× 10−2

sin2 θ24 4.2× 10−2 4.0× 10−2 4.1× 10−2 4.1× 10−2

sin2 θ34 5.2× 10−2 5.2× 10−2 5.6× 10−1 7.8× 10−1

∆m2
4l/eV2 1.1× 10−2 −9.0× 10−3 1.1× 10−2 −8.5× 10−3

δ14 3.51 3.14 2.08 1.83
δ24 6.10 5.89 2.72 2.64

χ2
4ν 62.07 62.63 62.80 61.95

Best-fit m4 < m3 < m1 < m2

χ2
3ν − χ2

4ν 4.87

NOvA
NO IO

∆m2
4l > 0 < 0 > 0 < 0

sin2 θ13 0.022 0.022 0.022 0.022
sin2 θ23 0.44 0.62 0.59 0.41
∆m2

31/10
−3 eV2 2.43 2.44 −2.32 −2.35

δCP 0.00 5.22 3.19 4.58

sin2 θ14 6.9× 10−3 1.6× 10−2 8.9× 10−3 1.4× 10−2

sin2 θ24 1.2× 10−1 1.2× 10−1 1.3× 10−1 1.1× 10−1

sin2 θ34 0.29 0.79 0.34 0.69
sin2 θ34 1.0× 10−2 −8.0× 10−3 1.0× 10−2 −8.1× 10−3

∆m2
4l/eV2 3.51 4.07 4.81 4.69

δ14 3.15 3.21 0.12 0.15

δ24 38.10 38.14 38.13 38.16
Best-fit m1 < m2 < m3 < m4

χ2
3ν − χ2

4ν 5.30
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Table A.2. Best-fit 4ν parameters of our four combined T2K+NOvA anal-
yses. See Section 2.4.2 for more detail.

4ν
Combined T2K and NOvA

NO IO

∆m2
4l > 0 < 0 > 0 < 0

sin2 θ13 0.023 0.025 0.023 0.023
sin2 θ23 0.45 0.45 0.44 0.43
∆m2

31/10
−3 eV2 2.49 2.51 −2.36 −2.39

δCP 4.09 3.88 1.72 4.47

sin2 θ14 2.1× 10−2 1.1× 10−1 3.4× 10−2 4.3× 10−2

sin2 θ24 5.3× 10−2 3.3× 10−2 5.3× 10−2 6.0× 10−2

sin2 θ34 0.56 0.21 1.1× 10−2 0.37
∆m2

4l/eV2 1.1× 10−2 −1.1× 10−2 1.2× 10−2 −8.5× 10−3

δ14 0.01 0.03 6.09 4.88
δ24 1.82 1.18 0.53 5.89

χ2
4ν 107.41 107.62 104.27 102.83

Best-fit m4 < m3 < m1 < m2

χ2
3ν − χ2

4ν 8.99
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