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ABSTRACT

Complex Patterns in Oscillatory Systems

Jessica Maral Conway

Motivated by the rich variety of complex patterns observed on the surface of fluid layers

that are vibrated at multiple frequencies, we investigate the effect of such resonant forc-

ing on systems undergoing a Hopf bifurcation to spatially homogeneous oscillations. We

use an extension of the complex Ginzburg-Landau equation (CGLE) that systematically

captures weak forcing functions with a spectrum consisting of frequencies close to the

1:1-, 2:1-, and 3:1-resonance. We first examine the case where the multi-resonant forcing

is unmodulated in time. Our third-order, weakly nonlinear analysis shows that for small

amplitudes only stripe patterns or hexagons (up and down) are linearly stable; for larger

amplitudes rectangles and super-hexagons (or super-triangles) may become stable. The

larger-amplitude super-hexagons arise in a transcritical bifurcation because of the qua-

dratic interaction introduced by the 3:1-forcing, and are linearly stable only on the upper

branch. Numerical simulations show, however, that in the latter regime the third-order

analysis is insufficient: super-hexagons are unstable. Instead large-amplitude hexagons

can arise and be bistable with the weakly nonlinear hexagons.
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By slowly modulating the amplitude of the 2:1-forcing component we render the bifur-

cation to subharmonic patterns subcritical despite the quadratic interaction introduced

by the 3:1-forcing, so there is always a range in which the weakly nonlinear analysis with

cubic truncation is valid. Our weakly nonlinear analysis shows that quite generally the

forcing function can be tuned such that resonant triad interactions with weakly damped

modes stabilize subharmonic patterns comprised of four or five Fourier modes, similar

to quasi-patterns exhibiting elements with 4-fold and 5-fold rotational symmetry, respec-

tively. Using direct simulations of the extended CGLE we confirm our weakly nonlinear

analysis. In simulations domains of different complex patterns compete with each other

on a slow time scale. As expected from energy arguments, with increasing strength of the

triad interaction the more complex patterns eventually win out against the simpler pat-

terns. We characterize these ordering dynamics using the spectral entropy of the patterns.

For system parameters reported for experiments on the oscillatory Belousov-Zhabotinsky

reaction we explicitly show that the forcing parameters can be tuned such that 4-mode

patterns are the preferred patterns.
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CHAPTER 1

Introduction

1.1. Motivation

Spontaneous pattern formation is a phenomenon that has been observed in physical,

biological, and chemical non-equilibrium systems in many forms, from wind-driven sand

ripples [1], to fluid convection [2]. Understanding spatio-temporal order in open systems

kept far from equilibrium has been the objective of much theoretical and experimental

research [3,4]. The objective of this dissertation is to show stability of complex patterns

in oscillatory systems, a particular class of non-equilibrium system, which we will meet

by using tools developed in the study of complex patterns in Faraday wave systems.

Stripe, square, and hexagon patterns constitute simple patterns, and can be thought

of as tiling the plane with a single element. These patterns can be constructed by the

superposition of one, two, or three appropriately-oriented standing waves, respectively.

Specifically, square patterns arise from the interaction of perpendicular standing waves,

and hexagon patterns arise from the interaction of standing waves 60◦ degrees apart.

The complex patterns that we have in mind can be constructed from a more elaborate

combination of standing waves.

We consider two types of complex patterns, superlattice patterns and quasi-patterns.

Superlattice patterns are ordered and spatially periodic patterns; they are distinct from

simple planar patterns in that they are characterized by two length scales. For example,
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(a) (b)

Figure 1.1. 10-fold quasi-pattern - decagonal girih pattern above an arched
doorway in the Darb-i Imam shrine, Isfahan, Iran (1453 C.E.). (A) Photo-
graph of the spandrel. (B) Reconstruction of the smaller-scale pattern using
girih tiles, which helps clarify the quasi-pattern aspect of the tile pattern.
Note the local 10-fold rotational symmetry, but the lack of translational
symmetry. Figures from [6]. Reprinted with permission from AAAS.

there may be some smaller spatial structure on one length scale and spatial periodicity on

the other. Quasi-patterns are patterns that possess the same spatial symmetries as quasi-

crystals obtained in metal alloys at thermodynamic equilibrium [5]. The essential spatial

features of quasi-patterns are beautifully illustrated in Fig.1.1 which shows a tiling pattern,

constructed from five tile shapes, on a spandrel at the Darb-i Imam shrine, Isfahan, Iran

(1453 C.E.) [6]. Quasi-patterns are aperiodic, lacking the translational symmetry of the

superlattice or simple planar patterns. However, the Fourier spectrum of a quasi-pattern

has discrete rotational symmetry. This is reflected in the pattern itself by elements of

local rotational symmetry and preferred orientation. The latter appears in Fig.1.1 in the

alignment of the large, blue circles.

Complex patterns have been observed in a variety of non-equilibrium systems, for

example on the surface of ferrofluids driven by time-periodic magnetic fields, where they

are due to spatial period-doubling [7]. In particular, various kinds of superlattice patterns
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and quasi-patterns have been found experimentally in Faraday systems - in which a layer

of fluid is vertically vibrated [8] - depending on the frequency content of the forcing

function [9–17].

In this dissertation, motivated by the richness of patterns observed in the Faraday

system, we investigate whether such complex spatio-temporal patterns are also accessible

in systems undergoing a Hopf bifurcation to spatially homogeneous oscillations. These

systems constitute a class that differs from those in which quasi-patterns have been ob-

served previously and they may offer the potential for additional complexity through the

interaction between the spontaneous oscillations arising from the Hopf bifurcation and the

external forcing. Chemical oscillations like those observed in the Belousov-Zhabotinsky

reaction are a classic example of such a system.

In the absence of any temporal forcing, the Hopf bifurcations we have in mind lead to

spatially homogeneous oscillations or long-wave traveling waves, which may break up to

form spirals or more complex chaotic states (e.g. [18–22]). With temporal forcing, which

in the case of the Belousov-Zhabotinsky reaction can be achieved by time-dependent

illumination to exploit the photosensitivity of the reaction, the oscillations can become

locked to the forcing and - depending on the ratio between the Hopf frequency and the

forcing frequency - different types of patterns can arise [23–28]. Forcing near twice

the Hopf frequency can lead to competition between two types of domains differing in

their temporal phase or to labyrinthine patterns. For a frequency ratio of 1:3, spiral

patterns or competing domains have been observed. So far, ordered patterns with multiple

length scales have been observed experimentally in chemical systems only when a spatially
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periodic illumination mask was applied to initialize the pattern [29,30]. We focus on the

case of spatially uniform illumination.

The temporal aspect of the forcing greatly increases the diversity of patterns accessi-

ble in non-equilibrium systems. And while stable quasi-patterns have been shown with

single-frequency forcing [16,31], experiments and analysis of Faraday waves employing si-

multaneous forcing at multiple frequencies have been much more fruitful. Specifically the

ability to control in detail the temporal wave form of the vibration’s forcing contributes to

the great variety of complex patterns observed in the Faraday system [11,13,15,32,33].

This allows extensive tuning of the interaction between plane waves of different orienta-

tion, which can in turn stabilize superlattice patterns and quasi-patterns. Two main sta-

bilization mechanisms have been identified, both of which exploit the presence of weakly

damped resonating modes. The idea comes from the study of quasi-crystals in ther-

modynamic equilibrium, where the significance of damped, resonating modes has been

recognized for the stabilization [34–36].

In the first mechanism, the competition between plane-wave modes of different orien-

tation is suppressed for a relatively narrow range in the angle subtended by the competing

modes [32,33,37–40]. Fourier modes between which the competition is suppressed can

stably co-exist in the same pattern. Since suppression is only in a narrow range in the

angle, control over this range allows the selection of modes that will co-exist in a stable

pattern. In the second mechanism the damping self-coupling of each mode is strongly

enhanced, rendering the competitive coupling between the modes effectively weak over a

considerable range in the angle [31,39–45] and allowing patterns comprised of multiple

modes to become stable [35]. The latter mechanism captures qualitatively the scenario
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envisioned for the stabilization of ‘turbulent crystals’ [36]. Both mechanisms have been

used to stabilize a variety of superlattice patterns and quasi-patterns in Faraday waves

(cf. [15]). We will use both mechanisms in the context of oscillatory systems, and in

particular exploit the second to stabilize complex patterns.

The results presented in this dissertation are in an oscillatory system but below the

onset of oscillations. In this regime, resonant forcing can still induce instabilities to spatial

perturbations and produce ordered patterns. By manipulation of the temporal wave form

of the forcing function, mimicking the approach and mechanisms used in Faraday waves

to produce complex patterns, we will demonstrate the stability of patterns similar to

quasi-patterns exhibiting elements with 4- and 5-fold rotational symmetry.

1.2. Organization of dissertation

The organization of this dissertation is as follows. We begin in Chapter 2 with a review

of oscillatory systems in the context of chemical oscillators. Our focus is on the historical

development of the study of such non-equilibrium systems, and on understanding the

pattern-forming instabilities that lead to dissipative spatial structures in that context.

In Part 1, we examine the case of an oscillatory system just below the onset of sponta-

neous oscillations, the Hopf bifurcation point, forced near the 1:1, 2:1, and 3:1 resonances.

This work has been published [46]. In Chapter 3, we first extend the complex Ginzburg-

Landau equation (CGLE) to include the terms that describe the external forcing. The

CGLE is the equation that generically models systems near a Hopf bifurcation. In Chap-

ter 4, we perform a linear stability analysis of the zero-solution of the CGLE to find the

onset of instability. We perform a weakly nonlinear analysis about that point to obtain



19

amplitude equations for rectangle, hexagon, and super-hexagon patterns. Using the am-

plitude equations, we calculate the linear stability of these patterns in different regimes

of CGLE parameters, and verify the stability predictions through numerical simulation of

the CGLE. Chapter 5 contains conclusions from Part 1.

Part 2 begins with Chapter 6 in which we extend the complex Ginzburg-Landau equa-

tion (CGLE) to include the terms that describe the external forcing at various frequencies

including modulation of the forcing near twice resonance. This inclusion is inspired by our

results from Part 1. The derivation of this equation for the Brusselator, which is a simple

model for chemical oscillations, is sketched in the Appendix. A brief account of this work

has been published [47], and a more detailed account submitted for publication [48]. In

Chapter 7, we present a linear stability analysis of the equation to find the onset of stand-

ing waves that are phase-locked to the driving. In particular, we focus on the vicinity

of the codimension-2 point at which the subharmonic and the harmonic standing waves

bifurcate simultaneously. To determine the stability of the desired subharmonic patterns,

we derive in Chapter 8 the corresponding amplitude equations by performing a weakly

nonlinear analysis of the CGLE, and then use energy arguments to guide us in terms of

the relative stability of various pattern comprised of different numbers of modes. In order

to confirm our predictions for the pattern selection, we perform in Chapter 9 numerical

simulations of the CGLE in small and large domains, and characterize the temporal evo-

lution of patterns by using a spectral pattern entropy. Chapter 10 contains conclusions

from Part 2, and discusses possible extensions of this work.
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CHAPTER 2

Oscillatory Systems Background

This dissertation centers on the resonant excitation of complex spatial patterns in

media that naturally oscillate in time. Though the results we will present apply to any

systems that undergo a Hopf bifurcation to spatially homogeneous oscillations, we will

focus on chemical oscillator systems. In this chapter we offer an overview of chemical os-

cillators, paying special attention to pattern formation and the effects of forcing at a single

resonant frequency in nonlinear chemical dynamics. Comprehensive reviews can be found

in [49–52]. As will be discussed, chemical oscillations are a non-equilibrium phenomenon,

and the field of non-equilibrium dynamics was developed because of irrefutable evidence

of chemical oscillations. A thorough review of pattern formation outside of equilibrium

can be found in [3].

This chapter is organized as follows. In Section 2.1 we give an overview of the history

of oscillatory chemical reactions. We discuss in Section 2.2 the Turing instability and both

analytic and experimental results of the resulting periodic structures, including complex

patterns. Then in Section 2.3 we discuss the effects of resonant forcing on the system

above the onset of spontaneous oscillations. Finally in Section 2.4 we summarize the

main points of this chapter.
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2.1. Beginnings - reactions can be oscillatory?

In 1828 Fechner described oscillating current in an electro-chemical cell in Schweigg

J. as reported in [49,50]; this constitutes the first published instance of oscillations in a

chemical system. Then in 1899 Wilhelm Ostwald reported in Phys. Z. a periodic increase

and decrease in the rate of chromium dissolution in acid (cited in [50]). In both these

instances the chemical oscillations arise through an inhomogeneous reaction, in which

reactants are in different phases (solid, liquid, or gaseous). For the better part of a

century it was thought that oscillations in homogeneous reactions, in which reactants are

in the same phase, were not possible.

The first report of a periodic reaction in a homogeneous solution was made in 1921 by

Bray [53], and followed up with his student Liebhafsky in 1931 [54]. They described the

reaction of iodate, iodine, and hydrogen peroxide: the hydrogen peroxide decomposes into

oxygen and water. The rate of evolution of the concentrations of oxygen O2 and iodine I2

vary periodically [53,54]. Bray’s conclusion, that the reaction in a homogeneous solution

was indeed periodic, was believed to be false: chemists assumed that this periodicity

was an artifact of some unreported inhomogeneity, like dust or bubbles [49, 50]. His

results were not believed until the 1970s, after the phenomenon of chemical oscillations

was accepted [55].

The belief in the impossibility of oscillations in a homogeneous chemical reaction

stemmed from a misinterpretation of how the oscillations occur. Specifically it was be-

lieved that these oscillations violate the second law of thermodynamics, that in an isolated

system a process can only occur if it increases the total entropy of the system. In other

words spontaneous chemical reactions can only occur if they decrease the free energy
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of the system. It was thought that oscillations in a chemical reaction indicate that the

reaction passes through its equilibrium point, and that as it oscillates, free energy is con-

tinually increasing and decreasing, violating the second law of thermodynamics. The flaw

in this logic is that chemical oscillations are a far-from-equilibrium phenomenon and that

at no point in a period of oscillation does an oscillatory reaction pass through equilib-

rium [49,50].

The scientific community finally became convinced that these oscillations are possible

through work done on the Belousov-Zhabotinsky (B-Z) reaction. Belousov, a Russian

chemist, came across chemical oscillations in 1950 while investigating an inorganic version

of the Krebs cycle. The Krebs cycle, also known as the citric acid cycle, is a key metabolic

process in cellular respiration that uses citric acid as an intermediary. He was studying a

reaction mixture of bromate, citric acid, and ceric ions (Ce+4). His expectation was that

as the reaction progressed the solution would undergo a monotonic change from yellow

to clear as the Ce+4 ions (which make the solution yellow) are reduced to Ce+3. Instead

of the anticipated monotonic transition, the solution periodically changed from yellow to

clear to yellow again, indicating that at some point in the reaction Ce+3 is oxidized, losing

an electron to become Ce+4. Belousov noted that in an unstirred graduated cylinder the

solution showed yellow traveling waves. He submitted his results for publication in 1951

but they were rejected - skeptics believed that the oscillations violated the second law of

thermodynamics. He finally published them in unrefereed conference proceedings [49,50].

Beginning a decade later, Zhabotinsky picked up where Belousov left off. He replaced

the citric acid with malonic acid, which has become the standard B-Z reagent [49]. The

use of a different redox indicator that doubles as a catalyst allowed him (with Zaikin) to
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study unstirred solutions in thin layers [49,56]. Zaikin and Zhabotinsky then found spatial

concentration waves in a thin layer, experimentally demonstrating spatial order in addition

to temporal order in the B-Z reaction [56]. Fig.2.1 shows the experiment, snapshots

taken one minute apart. Initially the catalyst is completely reduced (1); the subsequent

snapshots show oxidation beginning at certain points called ‘leading centers,’ from which

circular oxidation waves propagate. The interaction between different concentration waves

depends on the frequency of the leading centers from which the concentration waves

originate. Eventually fronts break and spatial disorganization takes place (snapshots 12-

16) as the reaction reaches equilibrium. Thus, Zaikin and Zhabotinsky demonstrated

experimentally the spontaneous appearance of temporal and spatial order, in the form of

travelling waves, in a homogeneous system using the B-Z reaction [56].

A new theory was required to apply thermodynamics to systems far from equilibrium,

which became non-equilibrium thermodynamics. Among those involved in the develop-

ment of this theory was Prigogine and his group in Brussels who focused on chemical

systems, working concurrently with Zhabotinsky’s group in the USSR. They pointed out

that a system could organize (which would decrease its entropy) so long as the net en-

tropy of the universe increases monotonically. In a chemical system, the concentrations of

intermediate reactants could oscillate as the overall entropy is increased by the conversion

of high-energy reactants into low-energy products [50]. Oscillations in a closed system

are a transient behavior in the reaction’s approach to equilibrium.

Prigogine and his group demonstrated that oscillations can be sustained in a dissipative

chemical system if the system is open and kept in its non-equilibrium state by feeding the

system with reagents and removing the waste products of any chemical reaction [57,58].
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Figure 2.1. Concentration wave propagation in a two-dimensional self-
oscillatory chemical system, the B-Z reaction [56]. Ring diameter 10cm,
snapshots taken 1 minute apart. Experimental conditions in [56]. Figure
reprinted from [56] by permission from MacMillan Publishers Ltd.

The group developed the first chemically plausible mechanism for oscillating reactions, the

‘Brusselator’ [58], first presented in 1968. Subsequently Field, Körös, and Noyes developed

a mechanism describing the Belousov-Zhabotinsky in the early 1970s by combining kinetic

and thermodynamic approaches. They later presented a simplified version, isolating a few

key components, called the ‘Oregonator.’ This mechanism is commonly used to describe

oscillatory reactions [49,59,60].

In 1972, Winfree published his results concerning the breakup of the circular prop-

agation waves observed by Zaikin and Zhabotinsky [61]. Winfree modified Zaikin and

Zhabotinsky’s reagents to suppress bulk oscillation while retaining propagation excitabil-

ity in order to isolate propagation fronts and study the emergence of spiral waves. He



25

then induced spiral waves by tipping the thin-layer reaction dish which results in fluid

flow in the reacting solution. A flow component parallel to the wave front has no effect,

but inducing a flow component perpendicular to the wave front mixes phases. As a result

segments of the wave front disappear, and each free end becomes a center around which

each remaining concentration wave propagates, winding into spirals. Winfree went on to

use geometric arguments to describe these spirals and show that wave breakup results in

the appearance of pairs of spiral waves and that the spiral waves persist eventually to the

exclusion of all concentric ring waves.

In spite of its shaky beginnings, early research in chemical oscillations and nonlin-

ear chemical dynamics yielded interesting results and spurred the development of non-

equilibrium thermodynamics. For his work in that development, Prigogine was awarded

the Nobel prize in chemistry in 1977, and for discovering chemical oscillations in the reac-

tion that bears their names, Belousov and Zhabotinsky were awarded the order of Lenin

in 1980 (though the latter was sadly after Belousov’s death in 1970).

2.2. Turing regime - periodic structures

Pattern formation in non-equilibrium systems and, in particular, chemical systems,

has quickly become a field of considerable interest and work. For reviews see [3,51]. Es-

sentially all chemical systems are reaction-diffusion systems; in this section we discuss a

pattern-forming instability particular to reaction-diffusion systems: the Turing instability.

Through this instability, spatially-periodic patterns arise from a spatially homogeneous

state. In contrast to the spatio-temporal target wave [56] and spiral [61] patterns de-

scribed above, the spatially-periodic patterns that arise from a Turing instability are
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stationary. Experimental results presented in this section were obtained far away from

any Hopf bifurcation.

2.2.1. The Turing instability

Turing published “The chemical basis of morphogenesis” in 1952 [62], describing the

possibility to create (‘genesis’) shapes (‘morfi’) in a homogeneous mixture of chemical

reactants. Turing proposed that homogeneity in such a mixture may, when some param-

eter threshold is crossed, become unstable to stationary spatially-periodic patterns in the

concentration of the reactants. The instability is described in the context of a system

of reaction-diffusion equations, which describe the chemical reactions. For N chemical

species with concentrations xi these equations take the form

∂xi

∂t
= Fi(x) +Di∇2xi, i = 1, ..., N. (2.1)

The reactions are given by Fi(x), and the Di denote the diffusion coefficients.

In terms of the chemical kinetics, the reactions involve inhibitory processes and acti-

vator species. The diffusion of the different reactants must be such that the inhibitory

effects are transported over a larger spatial region than the activator effects. This allows

for local growth through the activator mechanism, whose spread is limited by the overall

inhibitor processes, leading to stationary spatial structures [49,50,62,63]. Note that it

is difficult to attain a regime where the diffusion coefficients of the activator and inhibitor

species differ sufficiently in an aqueous solution; for example, computations on the B-Z

reaction predict pattern formation through a Turing instability only in an unphysical

regime [64].
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2.2.2. Early experimental results

The first experimentally-obtained Turing structures were reported in a chemical reaction,

in 1990 by De Kepper’s group in Castets et al [64]. The chemical reaction that they used

was the chlorite-iodide-malonic acid (CIMA) reaction, first proposed by De Kepper et al.

in 1982 [65], in a gel. A gel was used because it binds key species and thus creates the

necessary difference in effective diffusion coefficients [49,66] for the Turing instability to

give rise to spatially periodic structures. The gel reactor is fed by reservoirs of reactants

to keep the reaction from reaching its equilibrium state (to see the experimental set up

see Fig.2.2a) and the control parameter is the concentration of those different reactants.

Initially they observed a stripe pattern. The stripe pattern could be a Turing structure,

or it could be an artifact of the experimental set up as the stripe orientation respects

the symmetry imposed by the feeding reservoirs. However they showed for a well-defined

range of the malonic-acid concentration in one of the reservoirs, the stripe patterns break

up into spots, see Fig.2.2c. This breakup constitutes a symmetry breaking phenomenon,

transverse to the imposed gradient. They observed that the experimentally-obtained

pattern seemed to be indefinitely sustainable and the wavelength seemed to be based on

properties of the reaction, rather than being based on strictly geometric properties of the

experimental setup. Castets et al supported their result with the remark that similar lines

of spots parallel to the main front were found in numerical studies of the Brusselator. This

in combination with the spontaneous symmetry breaking, stationary nature, and intrinsic

wavelength of the experimentally-obtained patterns strongly support the interpretation

of these results as the first Turing structures [49,64]. The following year, Ouyang and

Swinney reported more intricate Turing patterns in the CIMA reaction [67]. By varying
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Figure 2.2. The first experimentally-obtained Turing structures: a sus-
tained chemical pattern in a gel strip reactor [64]. (a) Sketch of the reactor:
gel strip is squeezed between flat plates 1mm apart, reactants fed through
the well-mixed reservoirs A and B. (b) Snapshot of the reactor, clear and
dark regions represent different reaction states. (c) Zoom into region with
Turing pattern. Experimental conditions in [64]. Figure reprinted from [64]
with permission. Copyright c©1990 by the American Physical Society.

both temperature and reactant concentration they showed stable stripe, hexagon, and

mixed patterns arising from a homogeneous state. For a snapshot of the results see Fig.2.3.

Again they show an intrinsic pattern wavelength, spontaneous symmetry-breaking, and

stationary nature of the patterns. Their experiments also show good qualitative agreement

with numerical simulations of the Brusselator and other two-species reaction-diffusion

models [67].

In 1991, Lengyel and Epstein developed a model of Turing structures in the CIMA

reaction [66], a system of reaction-diffusion equations now called the Lengyel-Epstein

equations. A variant of the model to include the effects of illumination was presented in

1999 [68]. These are often used to study Turing structures in both the CIMA reaction

and the chlorine dioxide-iodine-malonic acid (CDIMA) reaction. The CDIMA reaction

was derived from the CIMA by Lengyel and Epstein [69], who observed that in the CIMA

reaction the chlorite and iodide ions are quickly consumed and that the major species are
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Figure 2.3. Chemical Turing patterns in a continuously-fed CIMA reaction
[67]. (a),(b) Hexagon patterns. (c) Stripe pattern. (d) Mixed state. Bar
next to each snapshot represent 1mm; reactor diameter is 25mm. Other
experimental conditions in [67]. Figure reprinted from [67] by permission
from MacMillan Publishers Ltd.

chlorine dioxide, iodine, and malonic acid. These then are the principle reactants used in

the CDIMA reaction.

2.2.3. Superlattice patterns in the CDIMA reaction

In 1999, Muñuzuri et al. reported that the dynamics of the CDIMA reaction can be

controlled by visible light [70]. Specifically they noted that visible light suppresses oscil-

lations and shifts the steady state to a lower concentration iodide ions, of one of the prin-

ciple reactants. They proposed a mechanism explaining this effect (cf. [70]). Technically

speaking, the concentrations of atomic iodine and chlorite increase through photodissoci-

ation of molecular iodine - which initiates a redox reaction, reducing chlorine dioxide to

chlorite and oxidizing iodine ions to atomic iodine. The change in concentrations with

illumination intensity gradually decreases the amplitude of oscillations (conditions are



30

such that the reaction is closer to the Hopf bifurcation) until, with large enough intensity,

the oscillations stop altogether (conditions are such that the reaction is below the Hopf

bifurcation). Muñuzuri et al. went on to suggest that illumination may be employed

to control Turing structures in experiments. Then Horváth et al. showed that spatially

uniform illumination of Turing structures (that arose without illumination, controlled by

other experimental constraints like temperature) affects the pattern characteristics [68].

In particular, they showed that large intensity light could in fact suppress Turing

structures, and that temporally periodic illumination more efficiently suppresses the Tur-

ing structures than temporally uniform oscillation with the same average light intensity.

Fastest suppression was observed at frequencies near the natural frequency of the corre-

sponding well-stirred system. Their numerical simulations of the L-E equations, modified

to include illumination, showed good agreement with their experimental results. In 2001,

again in the same group, Dolnik et al. demonstrated that spatially periodic, temporally

constant illumination can be used to remove defects in pre-existing Turing structures.

Their investigation focused on the role of illumination intensity and wavelength of the

spatially periodic forcing on a hexagonal Turing structure, with defects. Ultimately they

found through experiment and numerical simulation in the L-E equations that forcing

at wavelengths slightly larger than the pattern is most effective at removing defects and

producing an ordered symmetric hexagon pattern.

Motivated by these early results, the same group explored the possibility of stabilizing

superlattice patterns using spatially periodic illumination [30,71]. Their approach was to

apply spatially periodic illumination patterns with carefully chosen wavelengths and to

compare their experimental results with numerical simulations using the L-E equations.
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Some of their experimental results are shown in Fig.2.4. In a regime where, without

Figure 2.4. Experimental results, using spatially periodic illumination on
the CDIMA reaction in a regime where the system without illumina-
tion exhibits labyrinthine patterns [30]. (I) Hexagonal superlattice pat-
terns obtained using a mask with transparent circles in a hexagonal array;
(a),(b),(c),(d) correspond to masks of different radii. (II) Square superlat-
tice patterns obtained using a a mask with transparent circles in a square
array; (a),(b),(c),(d) correspond to masks of different radii. In both (I) and
(II), the first column shows the pattern after illumination is turned off, the
second column shows the pattern 60 min later, and the third the Fourier
transform of the pattern in the second column. Experimental conditions
in [30]. Figures reprinted from [30] with permission. Copyright c©2003 by
the American Physical Society.

illumination, labyrinthine patterns would arise, spatially periodic illumination of either a

hexagonal or square pattern is imposed. The spatially periodic illumination was achieved

by placing a mask, with circular holes arranged in either hexagonal or square alignments,

between the reactor an the light source. The spatial period of the forcing imposed by

the mask is an integer multiple of the spatial period of the unforced pattern. After
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some time, the mask was removed (t=0 min in Fig.2.4). Subsequently the corresponding

superlattice forms and persists for some time (t=60 min in Fig.2.4). They get good

agreement with results from numerical simulations of the corresponding L-E equations.

In this manner, [30,71] show superlattice Turing structures in a non-equilibrium chemical

system, the CDIMA reaction.

2.3. Periodically Forced Oscillations

Zaikin and Zhabotinsky [56], and Winfree [61] noted interesting spatio-temporal dy-

namics in the B-Z reaction in the oscillatory regime. Coullet and Emilsson [23] used an

analytic framework to study such non-equilibrium, spatially extended systems as a system

of continuous, spatially distributed oscillators. They focused on the impact of strongly

resonant forcing on symmetry-breaking and pattern formation and showed that forcing

near one resonant frequency can lead to the formation of a variety of spatial patterns.

Subsequent experiments, numerical simulations, and further analytic studies confirm the

predictions made by Coullet and Emilsson.

They began by reviewing the unforced state and considered the case of oscillations

in a steady system arising through a Hopf bifurcation, which breaks the time-translation

symmetry. Near the onset of oscillations, measurable quantities, such as chemical con-

centrations C in the case of chemical oscillations, have time dependence of the form

C = C(Aeiω0t, Āe−iω0t), where ω0 is the frequency of oscillation and A represents the

complex envelope of the oscillations. The original system possesses a time translation

symmetry, with action on the amplitude A → Aeiω0∆t. Taking into account this action,

which eliminates quadratic terms and most cubic terms, the normal form of the equation
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for the amplitude of the envelope of oscillations A taken to cubic order is:

∂A

∂t
= µA+ (1 + iβ)∇2A− (1 + iα)A|A|2. (2.2)

Here the Laplacian ∇2 is assumed to be on the same scale as the growth rate µ. Eq.(2.2)

is called the complex Ginzburg-Landau equation (CGLE) and its derivation will be dis-

cussed in detail in Chapters 3 and 6. This equation admits the continuous family of

spatially homogeneous, temporally periodic solutions of the form A0 =
√
µe−iαµt+iφ. Lin-

ear stability calculations show that for 1 + αβ > 0 this solution is stable with respect

to phase perturbations; defects result in spiral waves which can organize themselves in

a cell-like structure. Fig.2.5(I) shows a zoomed-in snapshot of a single spiral within a

cell-like structure in a B-Z reaction experiment. For 1 + αβ < 0 the periodic solution is

unstable to phase perturbations. This instability can lead to spatio-temporal turbulence

characterized by the spontaneous appearance and annihilation of defect pairs.

Coullet and Emilsson discussed the impact of external spatially-uniform, temporally-

periodic forcing with frequency ωf = (n/m)(ω0 + ν), for n/m an irreducible fraction and

ν the detuning, in the spatially-extended oscillatory systems [23]. The forcing breaks the

continuous time translation symmetry, and the resulting extended CGLE is

∂A

∂t
= (µ+ iν)A+ (1 + iβ)∇2A− (1 + iα)A|A|2 + γnĀ

n−1. (2.3)

Here γn is proportional to |fn|m with |fn| being the forcing strength. We have in mind

the case m = 1 which because forcing with frequencies such that m = 1 has the strongest

effect. By letting A = R0e
iφ0 and examining the stationary states of (2.3), they showed

the existence of frequency-locked states: for n:1-frequency forcing the solution can lock
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into one of n possible stationary phases, depending on the initial condition, separated by

2π/n. Because it is the phase of the solution that becomes locked, these states are also

commonly called phase-locked.

Phase-locked states can be obtained over a range of forcing frequencies and intensities,

depending on particular system parameters; resonance regions form tongues in intensity-

frequency space. In the two-dimensional case, captured experimentally by making the

reactor a thin layer, many qualitatively different solutions, from irregularly-shaped do-

mains or labyrinthine-like stripe patterns, are possible in the phase-locked regime. An

example of the resulting phase-locked tongues experimentally obtained for a B-Z reaction

in a thin layer is given in Fig.2.5(II); the tongues are similar to Arnol’d tongues, which

describe resonance regions for a single oscillator [72,73], but also capture different spatial

patterns. Pattern selection depends on system parameters and in particular on forcing

intensities. Below we briefly discuss a few of the different patterns that can arise.

2.3.1. Forcing near 2:1 resonance: Bloch and Ising fronts

In general in the strong forcing limit γn ≫ µ, ν, α, β in (2.3), spatially homogeneous

phase-locked solutions are always linearly stable to amplitude perturbations and, for n:1

forcing with n < 4, have amplitude R0 ∝ γ
1/(4−n)
n [23]. n < 4 corresponds to the strongly

resonant forcing we have in mind; in the strong forcing limit with n ≥ 4, the terms in

(2.3) would scale differently, yielding a different spatially-homogeneous amplitude. For

2:1 forcing the two phase-locked states - associated with phases 0 and π - are separated

by a stationary Ising front. Fig.2.6(I), left panel, shows an experimental snapshot of the

B-Z reaction forced near 2:1 resonance, demonstrating two phase-locked states separated
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(I) (II)

Figure 2.5. (I) Experimentally-obtained spiral in unforced system [73]. (II)
Largest m : n phase-locking tongues in the phase-intensity (ff/f0-I) plane
in the spatially-extended B-Z reaction with same system parameters as
in (I) [73]. ff is the forcing phase, f0 the homogeneous frequency. System
with parameters at points in each tongue respond subharmonically with the
forcing frequency. Figures reprinted from [73] with permission. Copyright
c©2004 by the American Physical Society.

by an Ising front. Along an Ising front the complex amplitude remains real as its phase

jumps from 0 to π and vice-versa, as shown in the complex plane in Fig.2.6(I), right panel.

Symmetry requires that this front is stationary. The velocity of the front connecting the

state with phase 0 to the state with phase π is opposite and equal in magnitude to that of

the reverse front from π to 0. Since the CGLE is equivariant under the reflection A→ −A,

which transforms these two fronts into each other, they both must be stationary.

As the forcing strength γ2 decreases from the strong forcing limit, while staying in the

phase locking regime, a qualitatively different solution appears: near-resonant, rotating,

2-armed spirals [23], also observed experimentally [73]. Fig.2.7(I) shows snapshots of

these solutions in experiment and their corresponding phase-space diagrams. This results
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(I) (II)

Figure 2.6. Standing wave patterns, phases phase-locked to the resonant
forcing. Left panel: experiment snapshot. Right panel: complex plane;
the complex amplitude of oscillations A is plotted in the complex plane
for each pixel from camera data (which generated the snapshot). (I) With
2:1 resonant forcing [72], (II) with 3:1 resonant forcing [73]. (I) Figure
reprinted from [72] with permission. Copyright c©2000 by the American
Physical Society. (II) Figure reprinted from [73] with permission. Copyright
c©2004 by the American Physical Society.

from a non-equilibrium Ising Bloch (NIB) bifurcation [74], through which a single station-

ary Ising front becomes unstable to Bloch fronts. The behaviour of the complex amplitude

as its phase shifts between two different phase-locked domains changes through the NIB

bifurcation. In the Ising regime above the NIB bifurcation point the complex amplitude

remains real through the transition between phase-locked states; beyond the NIB bifur-

cation point the complex amplitude rotates in the complex plane as its phase changes, as

shown in the complex plane in Fig.2.7(I). In this regime the Bloch wall between 0 and

π domains breaks the chiral symmetry, as the change in complex amplitude associated

with the phase shift between domains can now have two rotational directions, left or

right. Bloch fronts of opposite chirality counter-propagate. Thus, the NIB bifurcation is

a pitchfork bifurcation of a stationary Ising front to two counter-propagating Bloch fronts.

When a two-dimensional Ising front becomes unstable to Bloch fronts, different sections

can have opposite chirality. Their counter-propagating motion leads to the formation of
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two-armed spiral, as shown in Fig.2.7(I) (see, for example, [23,74,75]). The two-armed

spirals are called “near-resonant” solutions because they are travelling patterns [73].

2.3.2. n:1-resonant forcing for n ≥ 3

For n odd, the parity symmetry A→ −A is broken. Symmetry does not require then that

the fronts between phase-locked states be stationary, so in general they are expected to be

traveling. Low-intensity n:1-resonant forcing, within the phase-locked regime, results in

near-resonant, rotating n-armed spirals [23], also observed experimentally [73]. Fig.2.7(II-

V) shows snapshots of these solutions in experiment and their corresponding phase-space

diagrams. As with the Bloch fronts the complex amplitude does not go through zero

along the fronts connecting the different phase-locked states.

In experiments it has been observed that for stronger forcing the patterns are station-

ary or nearly stationary, in spite of the broken parity-symmetry which suggests that the

fronts move. In this case the phase-locked states can form standing patterns in irregularly-

shaped domains. Fig.2.6(II) shows an example of the B-Z reaction strongly forced near

3:1 resonance with three irregularly-shaped phase-locked phase states. The correspond-

ing phase diagram shows the complex amplitude passing through zero between the phase

states, which reflects the stationary character of the pattern (it is similar to the phase

diagram for the Ising case). The experimentally-observed stationary patterns are not well

understood, though it is thought the observed near-stationary patterns - propagating on

a time scale orders of magnitude larger than the unforced spiral period - could evolve to

other patterns such as large, slowly rotating, three-phase spiral waves [28], which can be

understood using the CGLE.
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(III)

(II)(I)

(IV)

(V)

Figure 2.7. Near-resonant Bloch-front spiral waves in the B-Z reaction for
different resonant forcings, [73]. All chemical parameters are the same as
for the m : n tongues given in Fig.2.5, unforced state is a spiral wave.
Left: experiment snapshot. Right: complex plane; the complex amplitude
of oscillations A is plotted in the complex plane for each pixel from cam-
era data (which generated the snapshot). (I) With 2:1 resonant forcing,
(II) with 3:1 resonant forcing, (II) with 4:1 resonant forcing, (III) with 4:1
resonant forcing, (IV) with 5:1 resonant forcing, and (V) with 6:1 resonant
forcing. Figures reprinted from [73] with permission. Copyright c©2004 by
the American Physical Society.
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2.3.3. Interaction between forcing and the Benjamin-Feir instability

In [23] Coullet and Emilsson also discussed the interplay between the Benjamin-Feir insta-

bility, for 1+αβ < 0, that results in defect mediated turbulence in the unforced case (2.2)

and the stabilizing influence of the resonant forcing. Using a phase approximation they

show that the competition between the phase instability and the forcing leads eventually

to the formation of periodic structures such as stripes (in one or two dimensions) and

hexagonal structures (in two dimensions). Specifically Coullet and Emilsson anticipated

that, in two dimensions, as γn decreases the locked states become unstable to hexagons

in a weakly transcritical bifurcation, and that there can also be a transition to stripe

patterns and a ‘turbulent’ complex spatio-temporal state [23].

Stripe solutions under 1:1-resonant are investigated in [76,77]; using a phase approx-

imation and the resulting phase equation they derive an analytic solution for the stripe

state. They use the analytic solution to show that stripes arise through an instability of

the homogeneous steady state through a supercritical bifurcation as the forcing strength

γ1 is decreased, and to understand stability boundaries of the homogeneous and stripe

states.

The hexagons, stripes, and turbulence predicted by Coullet and Emilsson were found in

a numerical simulation of the Brusselator with 2:1-resonant forcing by Zhang et al. in [78];

Fig.2.8 shows snapshots from these simulations. Interestingly to obtain the different states

shown in Fig.2.8 they varied only the frequency across the 2:1-resonant tongue (see for

example Fig.2.5), except for the case of turbulence, which was obtained by decreasing

2:1-forcing strength γ2 so the simulation is outside of the phase-locking regime. Zhang

et al. showed by reducing the Brusselator to a CGLE (2.3) for the oscillation amplitude
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Figure 2.8. Numerical simulations of the Brusselator with forcing in the 2:1
resonant band [78] with parameters a = 2, b = 5.3, and γ = 1.2, showing
pattern formation through interaction between the phase instability and
external forcing as described in [23]. (I) Stationary Ising fronts for ω = 4.18,
(II) isolated hexagons for ω = 4.24, (III) hexagon standing-wave pattern
for ω = 4.28, (IV) hexagon-stripe transition for ω = 4.34, (V) labyrinthine
standing-wave pattern for ω = 4.40, and (VI) turbulent pattern for γ = 0.3
and ω = 4.40. Figure reprinted with permission from the author.

that the hexagons arise from a dispersive instability [24] of non-zero, homogeneous steady

states.

2.3.4. Other instabilities in the 2:1 resonant forcing regime

Petrov, Ouyang, and Swinney [25] showed a variety of spatial behaviors in the B-Z reaction

when the oscillations are phase-locked with different m:n-resonant forcings, including an

unforced spiral pattern coexisting with labyrinthine patterns in the 2:1-resonant forcing

regime. The stability of the spiral pattern in the unforced state indicates that there is no

Benjamin-Feir instability in the unforced system (1+αβ > 0) and that the stripe patterns

creating the labyrinth do not arise from an instability due to the competition between the

forcing and the phase instability, as described in the previous subsection. Instead they

arise out of other mechanisms.

In the case of 2:1 resonant forcing two other pattern-forming mechanisms have been

identified, through which a homogeneous oscillating state transforms to a standing-wave
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labyrinthine pattern. Both occur near the boundary where phase-locked solutions become

stable; Fig.2.9 shows the bifurcations in (γ2, ν) parameter space, away from the NIB

bifurcation line. The first mechanism is the transverse front instability which sets in at

Figure 2.9. Parameter space diagram of (2.3) for n = 2 corresponding to 2:1
resonant forcing, with parameters µ = 1, α = 0, and β = 0.5 [79]. Note that
in this plot γ corresponds to γ2 in our notation. In (a) the solid line γ = ν
represents the transition from unlocked oscillations (γ < ν) to phase-locked
states (γ > ν), and the dashed line γ = γNIB represents the transition
from near-resonant Bloch fronts (ν < γ < γNIB) to stationary Ising fronts
(γ = γNIB). In (b), a close-up of the rectangular region in (a), shows regions
of instabilities that lead to labyrinthine patterns. For γ < γN the dominant
pattern are unlocked oscillations, γN < γ < ν labyrinthine patterns arise
from stripe nucleation (see Fig.2.10b), ν < γ < γT labyrinthine patterns
arise from a transverse instability (see Fig.2.10a), and γ > γT the dominant
pattern is irregularly-shaped standing wave domains. The boundaries γNIB

and γT were calculated numerically from the CGLE. Figures reprinted from
[79] with permission. Copyright c©2002 Society for Industrial and Applied
Mathematics.

γ2 = γT , inside the phase-locking region (γ2 > ν) [79]. For γ2 > γT the Ising fronts

are stable; for ν < γ < γT the Ising fronts are unstable to transverse perturbations.

Perturbations along the front grow into fingers, which can change orientation and split.

Fig.2.10a shows the development of a labyrinthine pattern due to this instability in a

numerical simulation of the CGLE (2.3) [79]. A labyrinthine pattern can also arise through
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(a)

(b)

Figure 2.10. Eq.(2.3) for n = 2 corresponding to 2:1 resonant forcing, with
parameters µ = 1, α = 0, β = 0.5, and ν = 2.0 [79]. Blue and yellow regions
represent phases separated by π (Ising fronts). (a) γ = 2.02 (ν < γ < γT ),
labyrinthine pattern arising out of a transverse front instability. (b) γ =
1.98 (γN < γ < ν), labyrinthine pattern arising from stripe nucleation.
Figures reprinted from [79] with permission. Copyright c©2002 Society for
Industrial and Applied Mathematics.

the nucleation of stripes in the regime of unlocked oscillations, below the phase-locking

limit. Yochelis et al. in [79] showed that the stability of these labyrinthine patterns can be

explained by the coupling of a oscillating, zero-wave number mode B0, and a stationary,

finite-wave number mode Bk in a Turing/Hopf bifurcation at γ = ν/
√

1 + β2, below γ = ν

where the phase-locked states become unstable to unlocked oscillations. The pure mode

solutions (either B0 = 0 or Bk = 0) are bistable near and below the γ = ν boundary.

Thus the labyrinthine patterns can arise from the nucleation of stripes (see Fig.2.9b),

γN computed numerically. Fig.2.10b shows snapshots from a numerical simulation of 2.3

demonstrating a labyrinthine pattern arising from the nucleation of stripes [79].
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2.4. Conclusion

We have given an overview of the development of non-equilibrium thermodynamics

and theory of dissipative systems in the context of nonlinear chemical oscillators. The

development of the theory was spurred on by Belousov’s initial experiments, Zaikin and

Zhabotinsky’s experiments showing concentric travelling waves [56], and Winfree’s work

on spiral patterns [61], in the B-Z reaction in a thin layer. These constitute the first

experimentally-observed dissipative structures.

We reviewed the Turing instability [62] and spatially periodic patterns in oscillatory

systems below the Hopf bifurcation, including the first experimental evidence of Turing

structures in any system [64, 67]. We also reviewed experimental and analytic results

concerning oscillatory systems with single-frequency resonant forcing. Interaction between

the forcing and the natural dynamics of the system causes a variety of symmetry-breaking

bifurcations to a wealth of spatial patterns phase-locked to the forcing, including near-

resonant Bloch spirals, labyrinthine patterns, and hexagon patterns [67,73,79]. We have

discussed the Hopf and the Turing bifurcations separately. Additional richness is available

through the interaction between the Hopf and Turing bifurcation [51].

In this dissertation we seek to stabilize complex stationary patterns like superlattice

patterns and quasi-patterns in an oscillating system below, but near, the Hopf bifurcation.

We model the system using the CGLE as described in Section 2.3 but consider µ < 0 and

apply resonant forcing near multiple resonant frequencies. The desired patterns arise in a

bifurcation from a homogeneous, non-oscillating state. In Part 1 presented next we show

our first efforts, forcing the system near twice and three times the Hopf frequency.
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Part 1

Pattern selection in oscillatory systems with

periodic resonant forcing
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CHAPTER 3

The Complex Ginzburg-Landau Equation

We are interested in the formation of complex patterns in systems that undergo a

Hopf bifurcation at vanishing wave number and that are forced at frequencies near integer

multiples of the Hopf frequency ω. Near the Hopf bifurcation and for weak forcing such

systems can be described by a suitably extended complex Ginzburg-Landau equation

(CGLE), the form of which can be derived using symmetry arguments.

In the absence of forcing the complex amplitude A(t) satisfies the usual CGLE,

∂A

∂t
= a2A+ a3∆A+ a4A|A|2, (3.1)

where ai ∈ C, i = 2 . . . 4 and ∆ = ∂xx + ∂yy is the Laplacian in two dimensions [21]. The

CGLE exhibits the normal-form symmetry Tτ : A→ Aeiωτ reflecting the invariance of the

original system under translations of the time t̃ by an arbitrary amount τ , Tτ : t̃→ t̃+ τ .

Here ω is the Hopf frequency. The slow time t is given by t = δ2t̃ and the slow spatial

scale is given by (x, y) = δ(x̃, ỹ), 0 < δ ≪ 1.

The extension of the CGLE that describes strongly resonant multi-frequency forcing

of the form F = f1e
iωt̃ +f2e

2iωt̃ +f3e
3iωt̃ +c.c. can be obtained by considering the multiple

scale analysis [80] of the extended dynamical system in which the forcing amplitudes f1,

f2, and f3 are considered as dynamical variables that vary on the slow time scale t. Under

time translations Tτ they transform as f1 → f1e
iωτ , f2 → f2e

2iωτ , f3 → f3e
3iωτ (e.g. [81]).



46

For general periodic time dependence of fj the overall forcing is quasi-periodic. We focus

here on choices for fj corresponding to periodic forcing. To cubic order in A the most

general equation that is equivariant under Tτ is then given by

∂A

∂t
= a1 + a2A+ a3∆A+ a4A|A|2 + a5Ā+ a6Ā

2. (3.2)

To ensure all forcing terms appear in the leading order equation we employ the scaling

A(t) = O(δ), f1 = O(δ3), f2 = O(δ2), and f3 = O(δ). Then a1 = b11f1 + b12f̄2f3,

a2 = b21 + b22|f3|2, a5 = b51f2, a6 = b61f3. The bij are O(1) complex coefficients. Spatial

coordinates are scaled as (x, y) = δ(x̃, ỹ), where (x̃, ỹ) are the original spatial coordinates

of the system.

The forcing terms fj satisfy decoupled evolution equations on their own. In the sim-

plest case this evolution expresses a detuning νj of the forcing fj from the respective

resonance and the fj satisfy

dfj

dt
= iνjfj, j = 1 . . . 3. (3.3)

In general, the detuning introduces time dependence into (3.2).

We simplify (3.2) by absorbing the time dependence of f2, e
iν2t, into A through the

transformation A → Aeiν2t/2. Further, we write a3 = 1 + iβ by rescaling the spatial

coordinates and a4 = −(1 + iα) by rescaling A. We focus on the case of a supercritical

Hopf bifurcation and choose the real part of a4 to be negative. We now introduce a

restriction on the forcing fj to make the coefficients of the CGLE time-independent in

order to simplify the analysis, at the expense of some generality. To remove the time

dependence from the inhomogeneous term a1 and the Ā2 term we choose the detuning of
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the 1:1-forcing ν1 to be half that of the 2:1-forcing, ν1 = ν2/2, and the detuning of the

3:1-forcing ν3 to be three halves that of the 2:1-forcing, ν3 = 3ν2/2. This yields

∂A

∂t
= (µ+ iσ)A+ (1 + iβ)∆A− (1 + iα)A|A|2 + γĀ+ ηĀ2 + ζ. (3.4)

Since f3 is O(δ), both µ and σ are modified by the forcing function |f3|2. The coefficient

σ is a linear function of the detuning ν2, η is a complex linear function of |f3|, and ζ is

a complex linear function of |f1|. The parameters ζ, γ, and η characterize the strength

and phase of the forcing near 1:1, 2:1, and 3:1, respectively. Note that γ can be chosen

real without loss of generality as the argument φ of γ can be absorbed into A through

a transformation A → Aeiφ/2 (modifying the phases of η and ζ). This is the extended

version of the CGLE we will use in the next chapter to study pattern selection in a forced

Hopf bifurcation. In this dissertation we stay below the Hopf bifurcation and focus on

the case µ < 0. Without forcing there are then no oscillations; the only solution is the

basic state A = 0 as in the Faraday system.
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CHAPTER 4

Pattern Selection

In this chapter we investigate spatial patterns in a forced Hopf bifurcation induced by

forcing near twice and three times the Hopf frequency ω. As is apparent from (3.4), the

forced Hopf bifurcation is described by an equation that is very similar to a two-component

reaction-diffusion equation. The only and significant difference is the term involving β

which characterizes the dispersion of unforced traveling wave solutions, which would be

absent in the reaction-diffusion context. It plays, however, an essential role in exciting

patterns with a characteristic wavenumber [24] and cannot be omitted. Pattern selection

in a general two-component reaction-diffusion system has been studied in detail by Judd

and Silber [82], who find that in principle not only stripe and hexagon patterns can be

stable in such systems, but also super-square and super-hexagon patterns. They show

that despite the large number of parameters characterizing these systems surprisingly

few, very special combinations of the parameters enter the equations determining the

pattern selection. We show an identical parameter collapse in the CGLE (3.4) motivating

our use of the special combinations to study pattern selection in a system undergoing a

Hopf bifurcation to spatially homogeneous oscillations, forced near twice and three times

the Hopf frequency ω. We remind the reader that in this investigation we stay below the

Hopf bifurcation taking µ < 0. Thus, as in Faraday systems, in the absence of forcing, no

oscillations arise.
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4.1. Amplitude Equations

To investigate the weakly nonlinear stable standing wave patterns possible in (3.4)

we derive amplitude equations for spatially periodic planforms. The linear stability of

the state A = 0 is easily obtained by splitting the equation and the amplitude A into

real and imaginary parts (A ≡ Ar + iAi). The usual Fourier ansatz Ar,i ∝ eikx yields

then the neutral stability curve γn(k) with the basic state being unstable for γ > γn(k).

The minimum γc(k) of the neutral curve is found to be at k2
c = (µ + νβ)/(1 + β2),

γ2
c = (ν − µβ)2/(1 + β2). Since µ < 0, the condition k2

c > 0 implies that spatial patterns

arise only if the detuning of the forcing relative to the Hopf frequency is such that waves

with non-zero k are closer to resonance than homogeneous oscillations with k = 0 [24].

A typical neutral curve is illustrated in Fig.4.1 for µ = −1, ν = 4, β = 3 and ζ = 0.

The weakly nonlinear analysis presented in this paper is valid for values of γ near γc. An

upper bound for the range of validity is given by γn(k = 0) where spatially homogeneous

oscillations are excited by the forcing, which interact with the standing-wave modes with

wavenumber kc.
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Figure 4.1. Neutral stability curve for (3.4) with µ = −1, β = 3, ν = 4 and

ζ = 0, resulting in kc =
√

11/10, γc = 7/
√

10.
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To determine the stability of the various planforms we first determine the amplitude

equations for rectangle patterns, which are comprised of two modes separated by an angle

θ in Fourier space. We expand (Ar, Ai) as







Ar

Ai






= ǫ

∑

j=1,θ

Zj(T )eikj ·r







v1

v2






+ c.c.+ O(ǫ2), (4.1)

where 0 < ǫ≪ 1 and the complex amplitudes Z1(T ) and Zθ(T ) depend on the slow time

T = ǫ2t. The wave vectors are given by k1 = (kc, 0) and kθ = (kc cos(θ), kc sin(θ)). We

also expand γ as γ = γc + ǫ2γ2. The eigenvector v = (v1, v2)
T is normalized so that

‖v‖2 = 1.

The usual expansion leads to the amplitude equations for (Z1, Zθ),

dZ1

dT
= λ(γ − γc)Z1 −

(

b0|Z1|2 + b1(θ)|Zθ|2
)

Z1, (4.2)

dZθ

dT
= λ(γ − γc)Zθ −

(

b1(θ)|Z1|2 + b0|Zθ|2
)

Zθ. (4.3)

If θ = nπ
3

, n ∈ Z, the quadratic nonlinearity induces a secular term and the expansion

has to include three modes rotated by 120◦ relative to each other. The parameters can be

chosen such that a single solvability condition arises at cubic order (cf.(4.4) below, with

Z4,5,6 = 0).

More complex patterns can be described by combining these two analyses. For ex-

ample, a super-hexagon pattern comprised of two hexagon patterns {Z1, Z2, Z3} and

{Z4, Z5, Z6} that are rotated relative to each other by an angle θSH is described by the
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amplitude equation

dZ1

dT
=λ(γ − γc)Z1 + σZ̄2Z̄3−

−
(

b0|Z1|2 + b2
(

|Z2|2 + |Z3|2
))

Z1

−
2
∑

j=0

b1(θSH + j
2π

3
)|Z4+j|2Z1 (4.4)

and corresponding equations for Zj, j = 2, . . . , 6. These patterns are periodic for a discrete

set of angles θSH [82].

The coefficients of the amplitude equations can be written in a simple form, setting

η ≡ ηr + iηi:

λ =

√

1 + β2

|β| , σ =
2
√

1 + β2(aηr + ηi)

β
√

1 + a2
, (4.5)

b0 = 3ψ +
76

9
χ, b2 = 6ψ + 10χ+ φ, (4.6)

b1(θ) = 6ψ + 8f(θ)χ, (4.7)

with

ψ = 1 − α

β
, χ =

−β(ν − µβ)

2(µ+ νβ)
σ2, (4.8)

φ = − 2(1 + β2)

aβ(ν − µβ)

(

2
√

1 + β2η2
i −

(a+ β)ηi√
1 + a2

σ

)

(4.9)

f(θ) =
3 + 16 cos4 θ

(4 cos2 θ − 1)2
. (4.10)

Here a =
√

1 + β2 + β.
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4.2. Pattern Selection

4.2.1. σ = 0 Regime

As shown by Judd and Silber [82] for general two-component reaction-diffusion systems,

at the point of degeneracy at which the quadratic coefficient σ vanishes not only stripe

patterns but also hexagon or triangle patterns can be stable. We show that this is also

true in the CGLE. The conditions for hexagons (or triangles) to be stable are

φ < 0, −2φ/15 < ψ < −φ/3. (4.11)

For ψ > −2φ/15 the bifurcation to hexagons (triangles) is a supercritical pitchfork, while

it is a subcritical pitchfork otherwise. For ψ > −φ/3, the hexagons (triangles) are unstable

to stripes. Whether hexagon or triangle patterns are stable depends on higher-order terms

in the amplitude equations [83], which are not considered here.

Comparing the conditions (4.11) with expressions (4.8,4.9) shows that over a wide

range of the system parameters α and β stripe or hexagon patterns can be made stable

by a suitable choice of the forcing function. Specifically, (4.9) shows that φ is always

negative at the degeneracy σ = 0 since β(ν − µβ) > 0, which follows from µ < 0 and

the condition k2
c > 0. The surfaces ψ = −2φ/15 and ψ = −φ/3 are shown in Fig.4.2 for

µ = −1, ν = −1, and σ = 0. These results do not depend qualitatively on the choice of µ

and ν as long as µ < 0 and k2
c > 0. For experiments on the Belousov-Zhabotinsky reaction

values for α and β have been reported near the point marked by the vertical line (α = 0.4,

β = −1.4) [84]. Thus forcing should provide a robust mechanism to induce transitions

from stripes to supercritical and subcritical hexagons. A distinguishing feature of these



53

Figure 4.2. Surfaces ψ = −2φ/15 and ψ = −φ/3 for σ = 0, marking the
boundaries of stability between supercritical stripes, supercritical hexagons,
and subcritical hexagons, for system parameters α and β with µ = −1,
ν = −1.

hexagon patterns is that both ‘up’- and ‘down’-hexagons are simultaneously stable and are

likely to form competing domains. Fig.4.3 shows an example of the competition between

‘up’- and ‘down’-hexagons in a numerical simulation of (3.4).

4.2.2. 0 < |σ| ≪ 1 Regime

Unfolding the degeneracy, i.e. taking 0 < |σ| ≪ 1, the transition to hexagons becomes

transcritical and hexagons are stable to stripes for a γ−range given by

γc −
σ2

4λ(b0 + 2b2)
< γ < γc +

σ2(2b0 + b2)

λ(b2 − b0)2
≡ γHS. (4.12)
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Figure 4.3. Competing domains of up- and down-hexagon domains obtained
from random initial conditions with linear parameters as in Fig.4.1 and
nonlinear parameters α = −1, ηr = 0.4 and ηi = −0.4(

√
10 + 3). ηr, ηi

chosen so that σ = 0.

Note that γHS > γc, even if (4.11) are not satisfied, since stripes do not exist for γ < γc.

The instability of hexagons at γHS only arises if b2 > b0, that is, if 3ψ + 14χ/9 + φ > 0.

With σ 6= 0 the up-down symmetry of the hexagon amplitude equations is broken and

either up- or down-hexagons are preferred.

Turning to other planforms, Judd and Silber found that rectangular planforms cannot

be stable at or near the degeneracy point [82]. Interestingly, however, they find that while

super-hexagons cannot be stable at the degeneracy point, they can arise in a very small

parameter regime in its vicinity if the conditions

φ > 0, −φ/21 < ψ < φ/3 (4.13)

are met. They then can be bistable with hexagons. We find that in our system this is not

the case within the cubic truncation (4.4). (4.9) shows that - for small |σ| - φ can be made

positive only by making ηi small as well (ηi = O(σ)). Even then φ can only be slightly

positive, φ = O(σ), requiring that ψ = O(σ) in order to satisfy the second condition in
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(4.13). Under these conditions all cubic coefficients in (4.6,4.7) would become of O(σ)

and without knowledge of the next-order coefficients no stability predictions can be made.

4.2.3. σ = O(1) Regime

Often weakly nonlinear analysis gives qualitatively useful information beyond its formal

regime of validity. We therefore also consider the case σ = O(1). Considering super-

hexagons it should be noted that for σ = O(1) the inequalities (4.13) are not the correct

stability conditions, since they were derived assuming 0 < σ ≪ 1 and so ignore the

angle dependence of the cubic coefficients, which is O(σ). We use (4.13) therefore only

as a guide to locate parameter regimes in which super-hexagons may be expected to be

stable and then determine the eigenvalues that govern their stability directly from the

linearization of (4.4) about the equal-amplitude solution |Zj| = |Z|, j = 1, . . . , 6. We find

that indeed there are parameters for which all super-hexagon eigenvalues are negative,

suggesting that super-hexagons are stable; for example, one such parameter set is given

by the linear parameters used in Fig.4.1 with α = −1 and η =
√

2eiπ/4. We will test this

weakly nonlinear prediction through numerical simulation.

4.2.4. Numerical Simulation Results

Using direct numerical simulations of the forced complex Ginzburg-Landau equation (3.4)

we have studied to what extent the predictions of the weakly nonlinear analysis are borne

out. We employed a pseudo-spectral method with Crank-Nicolson-Adams-Bashforth time

stepping, using periodic boundary conditions. We ran the simulations in a large system of

linear size L = 10(2π/kc), representing 10 wavelengths. Because we are only interested in
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the relative stability between hexagon and stripe patterns we used a rectangular grid such

that Lx = 2L and Ly = 4L/
√

3; thus, all participating modes lie exactly on the critical

circle. Finally to capture higher order harmonics we used 64 modes and their complex

conjugates in Fourier space, and for the purposes of accuracy we used a small time-step

size ∆t = 0.001.

In the degenerate case σ = 0, enforced by setting ηi = −aηr, we find, as predicted,

either stripes or hexagons to be stable depending on the values of α and |η|. To test

the stability boundary ψ = −φ/3 in (4.11) we vary the 3:1 forcing strength |η| with the

remaining parameters in (3.4) fixed at γ = 2.25 and α = 0 and the linear parameters as

given for Fig.4.1 and start the simulations with random initial conditions. The simulations

agree with the weakly nonlinear prediction to within 5%. Fig.4.3 shows a typical hexagonal

pattern obtained from random initial conditions exhibiting competing domains of up- and

down-hexagons.

The stability limit ψ = −2φ/15 in (4.11) marks the point at which the pitchfork

bifurcation to hexagons becomes subcritical. Extracting the cubic coefficient b0 + 2b2

from transient hexagon patterns (cf. Fig.4.5 below) for varying values of |η| with all

other parameters as well as σ = 0 fixed we find agreement between the weakly nonlinear

result and the simulations to within 1%. Fig.4.4 presents a bifurcation diagram in the

supercritical regime but close to the tricritical point (ψ only slightly above −2φ/15). While

the weakly nonlinear analysis agrees very well in the immediate vicinity of the bifurcation

point, the deviations become significant already for values of γ only 0.5% above γc. Most

surprisingly, however, as γ is further increased the small-amplitude hexagons undergo

a saddle-node bifurcation and in the simulations the solution jumps to large-amplitude
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hexagons. Both small- and large-amplitude hexagons are simultaneously stable over a

range in γ. With increasing |η| the saddle-node bifurcation at which the large-amplitude

hexagons come into existence is shifted towards smaller values of γ < γc. We have not

investigated to what extent the existence of the large-amplitude hexagons depends on the

parameters α and β of the unforced system.
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Figure 4.4. Numerically obtained hexagon amplitudes for linear param-
eters as in Fig.4.1 and nonlinear parameters α = 0, ηi = 2.38 and
ηr = −2.38/(

√
10 + 3). ηr, ηi chosen so that σ = 0.

Away from the degeneracy, σ = O(1), the validity of the weakly nonlinear analysis can

be severely restricted by the fact that the amplitudes of all stable branches are O(1), which

formally suggests the significance of higher-order terms in the expansion. Indeed, in and

near the parameter regimes for which the weakly nonlinear analysis predicts stable super-

hexagon patterns we do not find any indication of their stability. To assess explicitly the

significance of the higher-order terms in the amplitude equations for σ = O(1) we extract

them directly from numerical simulations of transients for the case of hexagon patterns.

Fig.4.5 shows for γ = γc the numerically determined dependence of |Z|−2 d|Z|/dt on the

hexagon amplitude |Z| = |Zj|, j = 1, 2, 3. For very small |Z| it agrees well with the
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weakly nonlinear result σ− (b0 + 2b2)|Z|, which yields the straight dashed line. However,

even for γ = γc the fixed point FP3 obtained from the hexagon amplitude equations

deviates from the numerically obtained fixed point FPn by 30%. A fit of |Z|−2 d|Z|/dt

to a higher-order polynomial shows that in the amplitude equation the magnitude of the

quartic and quintic terms reach values of 15% and of 20% of the cubic term, respectively.

This supports our interpretation that in this regime the cubic amplitude equation does

not allow quantitative predictions.
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Figure 4.5. Extracting the nonlinear coefficients for hexagons from tran-
sients (inset) for µ = −1, ν = 4, β = 3, α = −1, η =

√
2eiπ/4 (so

σ = 2.4187). FPn corresponds to the fixed point obtained from numeri-
cal simulation, FP3 to that obtained from the weakly nonlinear calculation
to cubic order.
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CHAPTER 5

Conclusion for Part 1

We have investigated the regular spatial planforms that can be stably excited in a sys-

tem undergoing a Hopf bifurcation by applying a periodic forcing function that resonates

with the second and third harmonic of the Hopf frequency. We have done so within the

weakly nonlinear regime by deriving from the complex Ginzburg-Landau equation (3.4)

the appropriate amplitude equations describing the selection between various planforms.

By tuning the phase of the forcing close to 3ω, three times the Hopf frequency, one can

always reach the point of degeneracy at which no quadratic terms arise in the amplitude

equations, despite the quadratic interaction in the underlying complex Ginzburg-Landau

equation. Over a wide range of the parameters of the unforced system hexagon or stripe

patterns can be stabilized depending on the forcing function. In the former case compet-

ing domains of up- and down-hexagons are found in numerical simulations when starting

from random initial conditions. Hexagons can arise from either a supercritical or subcrit-

ical pitchfork bifurcation, which we have shown analytically and confirmed numerically.

Moreover, numerical simulations have shown the existence of hexagons with much larger

amplitude, which can be bistable with the supercritical hexagons.

Surprisingly, despite the extensive control afforded by the two forcing terms, no square,

rectangle, or super-hexagon patterns are stable in the vicinity of the degeneracy σ = 0,

irrespective of the parameters of the unforced system. While in the regime in which
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hexagons arise in a strongly transcritical bifurcation the weakly nonlinear theory sug-

gests the possibility of stable super-hexagons, direct numerical simulations of the complex

Ginzburg-Landau equation indicate no such stability and we show that terms of higher

order in the amplitudes are relevant.

By introducing a further forcing frequency, which is also close to the 2:1-resonance,

the transcritical bifurcation to hexagons can be avoided. As we show in a the next part,

the corresponding, more elaborate weakly nonlinear theory correctly predicts stable quasi-

patterns comprised of four, five, or more modes.
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Part 2

Pattern selection in oscillatory systems with

modulated resonant forcing
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CHAPTER 6

The Complex Ginzburg-Landau Equation

In Chapter 4 and in [46] we investigated the extended CGLE (3.4) with constant

coefficients, made time-independent by the transformation A → Aeiν2t/2. For that case

we found that the possibly stable superhexagon pattern, a superlattice pattern, arises in

a transcritical bifurcation. We showed that the amplitudes on the upper branch of the

transcritical bifurcation are O(1) and that therefore a weakly nonlinear analysis taken

to cubic order is insufficient to describe these patterns. The bifurcation is transcritical

because the quadratic term in the CGLE introduces also a quadratic term in the amplitude

equations describing the competing Fourier modes. To eliminate the latter quadratic term

without losing the resonant triad interaction we choose in the following the forcing near

twice the Hopf frequency to be quasi-periodic,

f2 = f21 + f22 with
df21

dt
= iν21f21,

df22

dt
= iν22f22. (6.1)

The difference between the two detunings ν21 and ν22 introduces then a periodic time

dependence in (3.2). To obtain the desired patterns, we exploit the spatio-temporal

resonances induced by the time dependence and focus on patterns that are subharmonic

in time. The quadratic interaction of two subharmonic modes induces a harmonic mode

and does not generate a quadratic term in the amplitude equation for the subharmonic

mode. Consequently, we expect a pitchfork bifurcation.



63

Considering the quasi-periodic forcing (6.1) we simplify (3.2) by absorbing the time

dependence of f21, e
iν21t, into A through the transformation A → Aeiν21t/2. Further, we

write a3 = 1 + iβ by rescaling the spatial coordinates and a4 = −(1 + iα) by rescaling A.

We focus on the case of a supercritical Hopf bifurcation and choose the real part of a4 to

be negative. We now introduce restrictions on the forcing fj for the purpose of making the

analysis manageable at the expense of some generality. To eliminate the inhomogeneous

term a1 we choose b11f1 = −b12(f̄21 + f̄22)f3. To remove the time dependence from the

Ā2 term we choose ν3 = 3ν21/2. This yields

∂A

∂t
= (µ+ iσ)A+ (1 + iβ)∆A− (1 + iα)A|A|2 + (γ1 + γ2e

i(ν22−ν21)t)Ā+ ηĀ2. (6.2)

Here again, as in Chapter 3, since f3 is O(δ), both µ and σ are modified by the forcing

function |f3|2, the coefficient σ is a linear function of the detuning ν21, and η is a complex

linear function of |f3|. We rewrite η in magnitude and phase, η = ρeiΦ, and write γ1 =

γ cos(χ) and γ2 = γ sin(χ) with χ characterizing the relative forcing strengths. Finally we

set ν ≡ ν22 − ν21, to get the version of the complex Ginzburg-Landau equation (CGLE)

that we will investigate in the rest of this dissertation,

∂A

∂t
= (µ+ iσ)A+(1+ iβ)∆A− (1+ iα)A|A|2 +γ

(

cos(χ) + sin(χ)eiνt
)

Ā+ρeiΦĀ2. (6.3)

In the appendix we show that this same equation can be derived directly from a model

of chemical oscillations, the Brusselator.

We remind the reader that we stay below the Hopf bifurcation and focus on the case

µ < 0. Again as in Chapter 3, and similarly to the Faraday case, in the absence of forcing,

the only solution is then the basic state A = 0.
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CHAPTER 7

Linear Stability Analysis

In order to study the onset of complex patterns in the vicinity of a forced Hopf

bifurcation described by Eq.(6.3), we begin by examining the linear stability of the A = 0

solution. In contrast to Eq.(3.4) studied in Chapter 4, Eq.(6.3) has a periodic, time-

dependent coefficient with frequency ν. Therefore, we use Floquet theory [85] to identify

values of the forcing γ and corresponding wave number k for the onset of oscillating

standing waves that oscillate harmonically (with period 2π/ν) and subharmonically (with

period 4π/ν).

Our goal is to find neutral stability curves such that the primary instability is sub-

harmonic with wave number k
(S)
c and a harmonic mode with wave number k

(H)
c is weakly

damped such that k
(H)
c /k

(S)
c = K for a given K. We will exploit this regime through

resonant three-wave interaction [37,42] to stabilize complex patterns in Chapter 8.

7.1. Neutral Stability Curves

To obtain the onset of standing waves that are phase-locked to the driving we consider

the stability of the solution A = 0 of (6.3) [24]. As in Section 4.1 we split (6.3) into the

real and imaginary parts by setting A = Ar + iAi and linearize about (Ar, Ai) = (0, 0)

to obtain linear partial differential equations for Ar and Ai. In this case, however, the

equations are time-periodic with period 2π/ν, so we use Floquet theory in the same way
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as described in [86]. The solutions to the linear problem in Floquet form are







Ar

Ai






= e(δ̂+iζ̂)νt

∞
∑

n=−∞







Xn

Yn






einνt+ikx + c.c. (7.1)

Here (δ̂+ iζ̂) is the Floquet exponent and e(δ̂+iζ̂)2π/ν is the Floquet multiplier. We restrict

ζ̂ to two values corresponding to a harmonic response (ζ̂ = 0) or to a subharmonic

response (ζ̂ = 1/2). To obtain the neutral curve for the standing waves, the ansatz (7.1)

is substituted into the linearized system with δ̂ = 0, yielding the infinite-dimensional

system of equations

∞
∑

n=−∞

ei(n+ζ̂)νt

















µ− k2 + γ(k) cos(χ) − i(n+ ζ̂)ν −σ + βk2

σ − βk2 µ− k2 − γ(k) cos(χ) − i(n+ ζ̂)ν













Xn

Yn







(7.2)

+
γ(k) sin(χ)

2













1 i

i 1












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





= 0,

which can be written as a matrix equation:

M(ζ̂)v = γ(k)Lv, (7.3)

where

v = (... Xn−1 Yn−1 Xn Yn Xn+1 Yn+1 ...)
T .

Here M is block-diagonal and L couples adjacent modes (Xn, Yn) and (Xn±1, Yn±1). Equa-

tion (7.3) is a generalized eigenvalue problem for the eigenvalue γ(k), which represents
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Figure 7.1. Harmonic (green, diamonds) and subharmonic (blue, circles)
neutral stability curves for µ = −1, σ = 4, β = 3. The parameters χ and ν
are tuned to obtain the desired K. (a) For K = 1.857, χ = 0.4883189 and
ν = 3.824884. (b) For K = 2, χ = 0.4767180 and ν = 4.2.

the forcing amplitude at the onset of the instability for a given k. In our formulation

of the linear problem γ is assumed to be real; complex eigenvalues therefore do not cor-

respond to solutions of the original problem. To solve for the eigenvalues for a given

value of the wave number k, we truncate the sum in (7.3) at some N and calculate the

eigenvalues. We test for convergence by requiring that for the real eigenvalues γ
(N)
i the

total change in all eigenvalues when N is increased by 1 is smaller than a tolerance ∆,

∑

(γ
(N+1)
i − γ

(N)
i )2 ≤ ∆ = 10−10. We find that generally N = 10 is sufficient. Repeating

this process over a range of k we construct the neutral stability curves γ(H)(k) for the

harmonic mode (ζ̂ = 0) and γ(S)(k) for the subharmonic mode (ζ̂ = 1/2). The global

minimum of these curves yields the respective critical values (k
(H)
c , γ

(H)
c ) and (k

(S)
c , γ

(S)
c ).

The weakly nonlinear analysis presented in the next chapter shows that weakly damped

harmonic modes have a strong impact on the selection of subharmonic patterns via res-

onant triad interactions. Our aim is to exploit this sensitivity to stabilize complex pat-

terns like superlattice patterns. We therefore focus here on parameters for which the

minimum of the harmonic mode is only slightly above that of the subharmonic mode;
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we use γ
(H)
c − γ

(S)
c = 0.01. The resonant triads rely on spatio-temporal resonances that

depend decisively on the wave number ratio K ≡ k
(H)
c /k

(S)
c . We consider the two cases

K = 2 cos(tan−1(2/5)) = 1.857 and K = 2 and show in Fig.7.1 the corresponding neutral

stability curves for γ
(H)
c − γ

(S)
c = 0.01. In the next section we discuss how the different

parameters affect this codimension-2 point.

7.2. Codimension-2 point for changing parameters

Varying the parameter χ characterizing the ratio of forcing strengths near the 2:1-

resonance shifts the critical forcing parameters γ
(H)
c and γ

(S)
c relative to each other, while

varying the parameter ν characterizing the detuning difference shifts the critical wave

numbers k
(H)
c and k

(S)
c . Requiring γ

(H)
c − γ

(S)
0 = 0.01 for a fixed value of K defines a

codimension-2 point that determines both χ and ν. For fixed K = 2 their dependence on

the dispersion β and the damping µ is illustrated in Fig.7.2 along with the corresponding

values of γ
(S)
c and k

(S)
c . Since Ā satisfies the CGLE with the opposite signs of the imaginary

parts of the equation, only positive values of β need to be considered.

For χ = 0 the critical wave number is given by k2
c = (µ+ νβ)/(1 + β2) corresponding

to a critical forcing γ2
c = (ν − µβ)2/(1 + β2) [24]. Thus, kc has a local maximum and

k2
c ∼ 1/β for large β; qualitatively the same behaviour is found at the codimension-2

point, as illustrated in Fig.7.2d. Fig.7.2c confirms that the amount of forcing necessary

to generate patterns increases as one goes further below the Hopf bifurcation, i.e. as µ

becomes more negative.
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Figure 7.2. Linear parameters at the codimension-2 point K = 2 and γ
(H)
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γ
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0 = 0.01 for detuning σ = 4 as a function of the dispersion β and the
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c , and (d) critical wave number k
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c
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CHAPTER 8

Weakly Nonlinear Analysis and Pattern Selection

To determine the stability of the desired subharmonic patterns we derive the corre-

sponding amplitude equations by performing a weakly nonlinear analysis of (6.3). We

then use energy arguments to guide us in terms of the relative stability of the various

pattern comprised of different numbers of modes. We are in particular interested in the

stability of patterns comprising three or more modes.

8.1. Amplitude Equations

Splitting the CGLE (6.3) again into real and imaginary parts, we obtain a system of

real partial differential equations. For a subharmonic pattern with N modes, we expand

(Ar, Ai) about (0, 0) as







Ar

Ai






=ǫ











N
∑

m=1

Zm(T )







∞
∑

n=−∞







Xn

Yn






ei(n+ 1

2
)νt






eikm·x + c.c.











+ ǫ2







A
(2)
r

A
(2)
i






+ ǫ3







A
(3)
r

A
(3)
i






+ . . . , |km| = kc (8.1)

where 0 < ǫ ≪ 1 and the complex amplitudes Zm(T ) depend on the slow time T = ǫ2t.

The corresponding wave vectors are denoted by km. We also expand γ as γ = γc + ǫ2γ2.

A standard but lengthy calculation yields amplitude equations for the Zj(T ) describing

the N−mode pattern:
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dZi

dT
= λγ2Zi −

(

b0|Zi|2 +
N
∑

j=1,j 6=i

b(θij)|Zj|2
)

Zi, i = 1 . . . N, (8.2)

where θij corresponds to the angle between the wave vectors ki and kj. To verify our

calculations we compared the resulting amplitude equation coefficients with those obtained

through our previous calculations presented in Chapter 4, for the special cases χ = 0 and

χ = π/2 where such comparison is possible, for several parameter sets. We found that

the coefficient values agree within machine precision. Note that there are no quadratic

terms in (8.2), because these amplitude equations correspond to subharmonic patterns

and must therefore be equivariant under the symmetry Zj → −Zj.

In order to have stable complex patterns made up of many modes, the competition

between modes needs to be sufficiently weak. Since in the amplitude equations (8.2) only

pairwise mode interactions arise, a minimal condition for complex patterns to be stable

is the stability of rectangle patterns, which are comprised of 2 modes at some angle θr,

with respect to stripes. This requires |b(θr)/b0| < 1.

The self- and cross-coupling coefficients, b0 and b(θij), respectively, can be strongly

influenced by resonant triad interactions as illustrated in Fig.8.1. There the black circles

represent the subharmonic critical circle and the red circle the wave vector of the most

weakly damped harmonic mode for a given choice of critical forcing γ. At quadratic order

resonant triad interaction takes place through two mechanisms, each feeding into the

coefficients at cubic order. The first mechanism is through the interaction of two different

wave vectors (k1 +k2 in Fig.8.1a) separated by an angle θr: the cross-coupling coefficient

b(θ) is strongly impacted near θ = θr if the mode excited at quadratic order through

the interaction of these two wave vectors is weakly damped [32,33,37,39]. The angle
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Figure 8.1. Resonant triad interaction. Inner circle represents critical cir-

cle at k
(S)
c , outer circle represents weakly damped mode at (a) K =

2 tan−1(2/5), (b) K = 2. The wave vector k1 + k2 is relevant for b(θ)
while 2k1 affects b0 (cf. eq.(8.2)).

θr is a function of the wavenumber ratio K, θr = 2 cos−1(K/2). The second mechanism

is through the interaction of a wave vector with itself (2k1 in Fig.8.1b): in this case, if

the harmonic mode at 2kc is weakly damped, the self-coupling coefficient b0 is strongly

influenced [31,39,42]. The |k| = 0 mode is also driven at quadratic order, but is strongly

damped. In Fig.8.1a K < 2 (θr 6= 0), so the mode excited by the vector k1 +k2 is weakly

damped and the mode excited by the 2k1 vector is strongly damped. In Fig.8.1b K = 2

(θr = 0), so the opposite is true.

Fig.8.2 shows the effect of the resonant triad interactions on the self-coupling coefficient

b0, by plotting b0 as a function of the 3:1 forcing phase Φ for different values of the 3:1

forcing strength ρ. Notice that the self-coupling coefficient b0 exhibits sinusoidal behaviour

with period π in Φ. This is because the quadratic term Ā2 in (6.3) has the coefficient

ρeiΦ. The particular solution of (6.3) at quadratic order in ǫ, (A
(2)
r , A

(2)
i )T in (8.1), is
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Figure 8.2. Self-coupling coefficient b0 plotted against the 3:1 forcing phase
Φ for various values of the 3:1-forcing strength ρ with α = −1. (a)
K = 2 cos(tan−1(2/5), other parameters as in Fig.7.1a; (b) K = 2, other
parameters as in Fig.7.1b.

therefore proportional to eiΦ. At cubic order that particular solution interacts with the

linear solution also through ρeiΦĀ2, generating a term proportional to ρ2e2iΦ. Thus both

the self- and cross-coupling coefficients b0 and b(θ) in (8.2) are linear functions of of

ρ2sin(2(Φ − Φ0)) where the phase shift Φ0 seen in Fig.8.2 results from the projection

of the cubic term onto the complex left-eigenvector. Fig.8.2a corresponds to the case

illustrated in Fig.8.1a with K = 2 cos(tan−1(2/5)); with this choice of K the resonance

angle θr ≡ 2 tan−1(2/5) is near π/4 and the associated Fourier modes fall on a regular

grid [87] for later comparison with numerical simulation. In Fig.8.2b K = 2 and the effect

of the resonant triad on b0 is greatly enhanced - note the difference in scale compared to

Fig.8.2a - and even quite weak forcing ρ can change the sign of b0 and with it the direction

of the bifurcation to stripes. In the following we restrict ourselves to values of the phase

Φ for which b0 > 0 and the stripes bifurcate supercritically.

To assess the mode competition for K = 2, Fig.8.3 shows the dependence of the cross-

coupling coefficient ratio b(θ)/b0 on θ. To enhance the stability of patterns comprised of

multiple modes by maximizing the range of weak competition we maximize the damping



73

0
o

30
o

60
o

90
o

Angle Between Modes θ
0

0.5

1

1.5

2

C
ro

ss
 C

ou
pl

in
g 

b(
θ)

/b
0

ρ=0
ρ=0.5
ρ=1
ρ=1.5
ρ=2
ρ=2.5
ρ=3

Figure 8.3. Coupling coefficient ratio b(θ)/b0 for K = 2 with Φ = 3π/4
with linear parameters as in Fig.7.1b and nonlinear dispersion α = −1 for
different strengths of 3:1-forcing ρ. Rectangles are stable for |b(θ)/b0| < 1.

b0 and choose Φ = 3π/4 (cf. Fig.8.2). Since K = 2, the self-coupling b0 is enhanced by

the resonant triad, while away from θ = θr ≡ 0 the cross-coupling b(θ) is only weakly

affected. Thus, as expected, for ρ ≥ 1 the ratio b(θ)/b0 is strongly reduced away from

θ = 0 allowing for rectangle patterns corresponding to angles as small as θ = θc ∼ 30◦

and smaller to be stable with respect to stripes. Consequently, patterns comprised of four

or possibly even more modes are expected to be stable, as discussed in Section 8.2.

The mode interaction also depends on the linear dispersion β and the nonlinear disper-

sion parameter α. These two parameters are system parameters that may not be tunable

in experiments. It is therefore of interest to assess over what range in these parameters

complex patterns are to be expected and to what extent the forcing parameters can be

adjusted so as to reach the regions of interest for given system parameters.

The effect of the nonlinear dispersion parameter α on the ratio b(θ)/b0 is shown in

Fig.8.4a for ρ = 1. Somewhat similar to the dependence on ρ, with increasing α the ratio

b(θ)/b0 decreases and the range of θ for which rectangle patterns are stable increases. For

more positive values of α even small forcing amplitudes ρ reduce the mode interaction
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Figure 8.4. Coupling coefficient ratio b(θ)/b0 (a) and self-coupling b0 (b) for
K = 2 and Φ = 3π/4 with parameters as in Fig.7.1b for 3:1 forcing strength
ρ = 1 and different values of the nonlinear dispersion parameter α.

significantly, but as ρ is increased the ratio b(θ)/b0 saturates at values that are not much

smaller than shown in Fig.8.3 for α = −1. In the simulations discussed in the next chapter

we use a moderate value of α = −1. For 2 : 1-forcing it was found that the self-coupling

coefficient b0 changes sign for α = β, rendering the bifurcation subcritical for α > β [24].

With the addition of 3 : 1-forcing the sign of b0 depends also on the forcing strength ρ and,

in fact, even for α = β the bifurcation to stripes can be made supercritical by increasing

the forcing strength, cf.(4.6). This situation persists when the 2 : 1 forcing is modulated,

illustrated in Fig.8.4b where b0 is shown as a function of ρ for different values of α near

β = 3.

To assess the dependence of the mode interaction on the linear dispersion coefficient

β we do not perform a scan in β but rather focus on one other value, β = 1.4, which

corresponds to the value found experimentally for the Belousov-Zhabotinsky reaction [84].

We adjust the forcing parameters χ and ν to stay at the codimension-2 point K = 2 and

γ
(H)
c −γ(S)

0 = 0.01. The nonlinear dispersion coefficient was found in the experiments to be

α = −0.4. Since the functional form of the angle dependence of b(θ) does not change much
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Figure 8.5. Belousov-Zhabotinsky case. Minimal angle θc for which rect-
angles are stable to stripes (b(θc)/b0 = 1) as a function of the 3:1-forcing
strength ρ for different values of the detuning σ. Parameters µ = −1,
α = −0.4, β = 1.4 with χ and ν tuned to the codimension-2 point K = 2

and γ
(H)
c − γ

(S)
0 = 0.01. .

with the parameters we use the minimal angle θc for which rectangles are still stable with

respect to stripes as a proxy for the strength of the mode competition. Thus b(θc)/b0 = 1.

In Fig.8.5 we show θc as a function of the forcing strength ρ for various values of the overall

detuning σ. Clearly, even for these experimentally relevant parameters the resonant triad

interaction can be exploited to make the mode competition sufficiently weak to stabilize

rectangle patterns over a wide range of angles. This suggests that multi-mode patterns

should become stable for moderate values of the forcing parameters, which is confirmed

below.

ForK = 2 cos(tan−1(2/5)) the resonant triad affects mostly b(θ) rather than b0. Fig.8.6

shows the resulting ratio b(θ)/b0 as a function of the angle θ. To ensure b0 > 0 we use again

Φ = 3π/4. As expected b(θ)/b0 exhibits a prominent peak near θ = θr = 2 tan−1(2/5). As

in Fig.8.3 the enhancement is increased with ρ (Fig.8.6a), and as α becomes more positive

(Fig.8.6b). We also see from these plots that the range for which b(θ)/b0 < 1, that is, the
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Figure 8.6. Coupling coefficient ratios for K = 2 cos(tan−1(2/5)) and Φ =
3π/4 with parameters as in Fig.7.1a for (a) nonlinear dispersion parameter
α = −1 and different strengths of 3:1-forcing ρ and (b) 3:1 forcing strength
ρ = 1 and different values of the nonlinear dispersion parameter α.

range of stable rectangles, is limited to 60◦ . θ < 90◦. Thus, we anticipate only stripe,

square or hexagon patterns to be stable in this regime.

For K = 2 cos(tan−1(2/5)) the competition between modes subtending an angle near

θr is strongly enhanced for values of the 3:1-forcing phase near Φ = 3π/4 resulting in a

suppression of θr−rectangles. For the same K but Φ = π/4, we expect correspondingly

a selective enhancement of the θr−rectangles as long as ρ is sufficiently small so that

b0 > 0 (see Fig.8.2). This is shown in Fig.8.7, which depicts the behavior of the cubic

coupling coefficient ratio as a function of the angle θ for different values of the 3:1-forcing

strength ρ and of the nonlinear dispersion α in this regime. As the 3:1-forcing strength

ρ is increased, and as the nonlinear dispersion α becomes more positive, the dip with

minimum at θ = θr = 2 tan−1(2/5) becomes more and more pronounced. In parallel the

range in θ of stable rectangle patterns increases around θr. Due to the narrowness of the

dip we expect at most stripe and θr-rectangle patterns to be stable. For values of ρ and α

such that b(θ)/b0 < −1 the corresponding rectangles pattern become subcritical and our
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Figure 8.7. Coupling coefficient ratios for K = 2 cos(tan−1(2/5)) and Φ =
π/4 with parameters as in Fig.7.1a for (a) nonlinear dispersion parameter
α = −1 and different strengths of 3:1-forcing ρ and (b) 3:1 forcing strength
ρ = 1 and different values of the nonlinear dispersion parameter α.

weakly nonlinear analysis to cubic order is insufficient to make predictions about pattern

selection involving those modes.

8.2. Competition between complex patterns

If multiple patterns are simultaneously linearly stable they can coexist and compete in

sufficiently large systems. Typically they then form domains and the competition involves

the motion of walls separating the domains. If the system allows a Lyapunov function

that function can serve as an energy and this competition can be characterized in terms

of the difference between the energies associated with the respective patterns. Unless the

domain walls become pinned by the underlying pattern [88,89], it is expected that the

final state arising from random initial conditions consists of the pattern with minimal

energy [45,90].



78

Because b(θij) = b(θji), (8.2) can indeed be derived from a Lyapunov function F , such

that
dZj

dT
= − ∂F

∂Z̄
j

with

F =
N
∑

n=1

[

−λ(γ − γc)|Zn|2 +
1

2
(b0|Zn|4 +

N
∑

m=1,m6=n

b(θmn)|Zn|2|Zm|2)
]

(8.3)

for a pattern with N modes. The Lyapunov function gives the energy FN for an equal-

amplitude N−mode pattern, which we rescale to obtain F̂N ,

F̂N ≡ FN

(γ − γc)2
=

−(N/2)λ2

b0 +
∑N

n=1,n6=j b(θjn)
, (8.4)

for some j ∈ [1, N ]. The sum in the denominator represents the sum of all cubic coefficients

in (8.2). Since the modes are evenly spaced, the choice of j in (8.4) is arbitrary. We use

the energy FN as a guide to predict which N -mode pattern will ultimately emerge.

Figs.8.8-8.11 show how the energies F̂N vary with ρ, the strength of forcing near 3:1

resonance, for different patterns with N modes evenly spaced in Fourier space. Since

the energy depends smoothly on the angles θjn (cf. (8.4)) little change in the energy is

expected if the modes are not quite evenly spaced.

For K = 2 and α = −1 the energies of the patterns with more than 3 modes are

very close to each other, as seen in Fig.8.8a. For clarity we show therefore in Fig.8.8b

the difference F̂N − F̂4. As one increases ρ, first stripe patterns (N = 1), then square

patterns (N = 2), then hexagons (N = 3), and eventually supersquares (N = 4) have the

lowest energy. For the respective parameter values, these are therefore the patterns we

expect eventually to arise from noisy initial conditions. Also indicated in Figs.8.8a,b is

the linear stability of these patterns. Here we determine the linear stability of an N -mode



79

(a)
0 0.5 1 1.5 2 2.5 3

1:3 Forcing Strength ρ
-0.08

-0.06

-0.04

-0.02

0
L

ya
pu

no
v 

E
ne

rg
y 

F N

^

N=1: Stripe Pattern
N=2: Square Pattern
N=3: Hexagon Pattern
N=4: 4 Mode Quasipattern
N=5: 5 Mode Quasipattern
N=6: 6 Mode Quasipattern

(b)
0 0.5 1 1.5 2 2.5 3

1:3 Forcing Strength ρ
-0.003

-0.002

-0.001

0

0.001

0.002

0.003

E
ne

rg
y 

D
if

fe
re

nc
e 

(F
N

^
-F

4

^
)

N=1
N=2
N=3
N=4
N=5
N=6

Figure 8.8. (a) Rescaled energies F̂N for evenly spaced modes in the case
K = 2. Parameters as in Fig.7.1b with α = −1 and Φ = 3π/4. Solid
(dashed) lines denote linearly stable (unstable) patterns. (b) Energy differ-

ence F̂N − F̂4 for the same data as shown in (a). The 4-mode pattern is
preferred for ρ > 1.2.

pattern by calculating the linear stability of that pattern within the space spanned by the

N evenly spaced modes and an additional mode rotated an arbitrary angle ψ with respect

to the k1-mode in Fourier space. For larger ρ patterns comprised of 5 and 6 modes are

linearly stable but do not have the lowest energy, though for ρ > 2 the energies of the

patterns with 4 and 5 modes are very close.

In Section 8.1 we showed that for a more positive α relatively small values of the

3:1-forcing strength ρ are sufficient to stabilize rectangle patterns over a wide range of

θ (cf. Fig. 8.4a). As a result we expect that the resonant triad can stabilize patterns

comprised of more modes than was possible in the case α = −1 depicted above. Fig.8.9b

shows that this is indeed the case. Increasing α to α = 2.5 reduces for ρ > 1 the energy

of the 5-mode patterns below that of the 4-mode pattern and renders it the pattern with

the lowest energy among the patterns with equally spaced modes. We therefore expect

that in numerical simulations 5-mode patterns would arise over a large range in ρ.
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Figure 8.9. Rescaled energies F̂N for evenly spaced modes in the case K =
2. Parameters as in Fig.7.1b with α = 2.5 and Φ = 3π/4. 5-mode pattern
preferred for ρ > 1.

For the parameter set that is relevant for the Belousov-Zhabotinsky reaction [84] we

found that the mode competition is also sufficiently reduced to suggest the stability of

multi-mode patterns (cf. Fig.8.5). This is confirmed in Fig.8.10, which shows the energies

for α = −0.4 and β = 1.4. While for σ = 4 the 4-mode pattern has an energy that is only

barely below that of the hexagons and reaches those lower values only for large forcing

strengths ρ (Fig.8.10), increasing σ to σ = 6 pushes the energy of the 4-mode pattern well

below that of the hexagons (Fig.8.10b). We therefore expect that the complex patterns

we discuss in this paper are accessible in this experimental system.

ForK = 2 cos(tan−1(2/5)) with Φ = 3π/4 (Fig.8.11a), stripes are again stable for small

ρ. As ρ is increased stripes lose stability and square patterns (N = 2) become linearly

stable and have the lowest energy beyond ρ ≈ 1.6. Hexagon patterns (N = 3) become

linearly stable at ρ = 2.7, but do not have lower energy than the square patterns. Patterns

with more than 3 modes are linearly unstable, which is consistent with the predictions

based on the coupling coefficient shown in Fig.8.6a: Fourier modes subtending angles

smaller than π/3 compete strongly and therefore do not coexist stably. In simulations
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Figure 8.10. Pattern selection for Belousov-Zhabotinsky parameters [84].

Rescaled energy difference F̂N − F̂4 for N evenly spaced modes. Here α =
−0.4, β = 1.4 , σ = 4 (a) and σ = 6 (b).
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Figure 8.11. Rescaled energies F̂N for evenly spaced modes in the case
K = 2 cos(tan−1(2/5)). Parameters as in Fig.7.1a with α = −1 and (a)
Φ = 3π/4 (cf. Fig.8.6), (b) Φ = π/4 (cf. Fig.8.7). In (a), solid (dashed)
lines denote linearly stable (unstable) patterns.

starting from random initial conditions, we therefore expect either stripe patterns (for

ρ < 1.6) or square patterns to arise. For Φ = π/4, shown in Fig.8.11b, stripes again are

stable and have the lowest energy for small ρ. For ρ = 0.28 they become unstable to

rectangle patterns spanned by modes subtending an angle of θ = θr ≡ 2 tan−1(2/5). As

ρ is increased to ρ = 0.46 this rectangle pattern becomes subcritical (cf. Fig.8.7) and

the weakly nonlinear analysis taken to cubic order and the associated energy arguments
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are not sufficient to make predictions about pattern selection. For ρ > 0.28 none of the

patterns with equally spaced modes has lower energy than the rectangle pattern selected

by the resonant triad. Note that in the cubic truncation (8.4) the energy for a pattern

diverges when the respective bifurcation changes direction.
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CHAPTER 9

Numerical Simulations

To confirm our predictions for the pattern selection, we perform numerical simulations

of the complex Ginzburg-Landau equation (6.3). Being interested in the formation of

complex patterns comprised of 3 or more modes, we focus on the case K = 2. The linear

parameters are as in Fig.7.1a with nonlinear parameters α = −1, Φ = 3π/4, and various

values of ρ. We use periodic boundary conditions and employ a pseudo-spectral method

with Crank-Nicolson-Adams-Bashforth time stepping. To capture higher order harmonics

we use 128 modes and their complex conjugates in Fourier space, and for the purposes of

accuracy we use 256 time steps per period T = 4π/nu.

9.1. Simulations in a small domain

To test the weakly nonlinear analysis we focus on the regime where both hexagons and

4-mode patterns are linearly stable (Fig.8.8) and run numerical simulations in domains

of minimal size for each pattern. Thus, all participating modes lie exactly on the critical

circle. Since the 4-mode pattern with evenly spaced modes does not lie on a regular

Fourier grid we approximate it by modes spaced at θ1 = 2 tan−1(1/2) ≈ 53◦ and θ2 =

π/2−2 tan−1(1/2) ≈ 37◦ apart. Due to the smooth dependence of the energy on the angles

θjn (cf. Eq.(8.4)) little change in the energy is expected if the modes are not quite evenly

spaced. From Fig.8.8b, for a 3:1-forcing strength ρ = 1 hexagons and 4-mode patterns are

both linearly stable to stripes and the 4-mode patterns are also linearly stable to square
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(a) (b)

Figure 9.1. Small-system numerical simulations of (6.3) for 3:1 forcing

strength ρ = 1. (a) Hexagon pattern in rectangular domain, Lx = 4π/k
(S)
c ≈

23.49, Ly = Lx/
√

3 ≈ 13.56. (b) Supersquare pattern in square domain,

L = 2π/(cos(tan−1(1/2))k
(S)
c ≈ 13.13. Parameters as in Fig.7.1b (case

K = 2) with α = −1, Φ = 3π/4.

patterns. The numerical simulations confirm these stability predictions. Starting with

a noisy initial condition generated from a uniform distribution with amplitude 0.05 we

get as expected hexagons (Fig.9.1a) and supersquares (Fig.9.1b). Fig.9.1 also illustrates

the slight difference in the domain sizes used in the simulations, which are required to

accommodate the patterns.

9.2. Simulations in a large domain

To investigate the competition between N -mode patterns with different values of N

in the same computational domain we perform simulations in a large system of linear size

Lx = Ly ≡ L, given below, representing 40 wavelengths. Fig.8.8b shows that near ρ = 1

hexagons and 4-mode patterns are both linearly stable, but the pattern with minimal

energy depends on ρ. In order to investigate the competition between these planforms
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we start each simulation with the same noisy initial condition, generated from a uniform

distribution with amplitude 0.01, and vary only ρ. Moreover, in order to clearly identify

the nonlinear competition between hexagons and 4-mode patterns and its dependence on

ρ, we choose L such that the Fourier modes with θ = π/3 and θ = π/4 have the same

growth rates. This is achieved by taking L = 40(2π/(k
(S)
c − d)) ≈ 473.39 for which the

modes for the hexagons and the 4-mode patterns are at an equal distance d = 0.004159

on opposite sides of the critical circle.

To visualize the competition between the modes near the critical circle, Fig.9.2 shows

the temporal evolution of the magnitude of the Fourier modes inside a narrow annulus

around the critical circle, divided into bins with an angular width of 2◦ plotted stro-

boscopically at multiples of the period 4π/ν. For ρ = 0.8, based on energy arguments

and the linear stability illustrated in Fig.8.8b, we anticipate the final state to consist of a

stripe pattern. This is confirmed by the numerical simulation. While in the Fourier trans-

form Fig.9.2a initially three modes come up, reflecting the linear stability of hexagons for

ρ = 0.8, ultimately the pattern with lower energy, stripes, dominates and only a single

mode remains. The splitting of the peak into two modes reflects a slight undulation of the

resulting pattern, which is apparent in the snapshot of part of the final solution shown

in Fig.9.3a. The competition can also be seen in in TimeEvolutionMovie rhoIs0p8.mov

(available in [48], and at [91]), which shows the temporal evolution of the full pattern

strobed with period 4π/ν. More careful inspection shows that the middle peak, which

seems weaker, actually consists of two modes of lesser strength that are slowly converging

to a single strong peak.
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Figure 9.2. Strobed time dependence of the power spectrum in an annulus
around the critical circle for varying 3:1 forcing strengths ρ. Parameters as
in Fig.7.1b with α = −1 and Φ = 3π/4. All simulations use the same noisy
initial condition. (a) ρ = 0.8, (b) ρ = 1, (c) ρ = 1.2, (d) ρ = 2, (e) ρ = 3.

Fig.9.2b shows the evolution of the Fourier transform for ρ = 1 corresponding to the

time evolution of the full pattern shown in TimeEvolutionMovie rhoIs1.mov (available

in [48], and at [91]). As with the ρ = 0.8 case, initially the amplitudes of three modes

grow. In contrast to the ρ = 0.8 case, however, for ρ = 1 stripes are unstable to hexagons,

and hexagons have the lowest energy. Correspondingly the three modes persist resulting in



87

the hexagon patterns shown in Fig.9.3b. Note that the hexagon patterns are comprised of

domains of up- and down-hexagons characterized by white and black centers, respectively.

This reflects the fact that the amplitude equations (8.2) for these subharmonic patterns

have no quadratic term, so neither the up- nor the down-hexagons are preferred. Whether

eventually one of the two types wins out over the other depends on the interaction between

the fronts connecting the domains.

For ρ = 1.2 we anticipate from Fig.8.8b that the resulting solution will be a 4-mode

pattern. Indeed, Fig.9.2c shows 4 modes in the Fourier transform, though they are not

quite equally spaced. The corresponding pattern evolution is shown in TimeEvolution-

Movie rhoIs1p2.mov (available in [48], and at [91]); Fig.9.3c shows the final state, char-

acterized by supersquare (dash-dotted, blue circle) and antisquare (dashed, yellow circles)

elements with approximate 4-fold rotational symmetry [92], as well as approximate 8-fold

symmetric elements (solid, white circle).

From Fig.8.8b a 4-mode pattern is also anticipated for ρ = 2, but the numerical

simulation actually results in a 5-mode pattern as shown in Fig.9.2d. The energies for

evenly-spaced 4- and 5-mode patterns are very close for this forcing strength. Therefore

changes in the energies that result from an uneven distribution of the modes may render

the 5-mode pattern energetically lower. The corresponding pattern features elements with

approximately 5- and 10-fold rotational symmetry (dashed,yellow and solid, white circles,

respectively, in Fig.9.3d). For ρ = 3 even more modes persist for a long time and at the

final time shown, 4πt/ν = 5 · 104, the pattern has not settled into its final state yet. The
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(a) (b) (c)

(d) (e)

Figure 9.3. Zoom view (0.25L×0.25L) of final state at time 4πt/ν = 5 ·104

for varying values of 3:1 forcing ρ with L = 40(2π/(k
(S)
c − d)) ≈ 473.39.

Other parameters as in Fig.7.1b (case K = 2) with α = −1, Φ = 3π/4. The
circles mark characteristic features of the patterns. (a) ρ = 0.8, (b) ρ = 1,
(c) ρ = 1.2, (d) ρ = 2, (e) ρ = 3.

temporal evolution of the full patterns for ρ = 2 and ρ = 3 are shown in TimeEvolution-

Movie rhoIs2.mov and TimeEvolutionMovie rhoIs3.mov, respectively (available in [48],

and at [91]).

To characterize the ordering process taking place in the evolution of the patterns

we calculate the spectral pattern entropy S =
∑

i,j pij ln pij, where pij = p̃ij/(
∑

i,j p̃ij)

is the normalized power in the Fourier mode with amplitude p̃ij and the sum includes

all modes within the critical annulus binned into 10◦ segments. The entropy allows an

estimate of the effective number of Fourier modes eS contributing to the pattern. Using

this spectral pattern entropy rather than counting modes in a pattern’s Fourier transform

at a given time step allows us to understand trends and tendencies as a pattern evolves in

time. Fig.9.4 illustrates the temporal evolution of eS for different values of the 3:1 forcing
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Figure 9.4. Effective number of Fourier modes eS plotted as a function of
time for different values of the 3:1 forcing strength ρ. Data taken from
numerical simulations of (6.3) for parameters as in Fig.7.1b (case K = 2)
with α = −1, Φ = 3π/4.

strength ρ. The number of significant modes increases with ρ, although not monotonically

for all times: for example, the curves corresponding to ρ = 1 and ρ = 1.2 cross several

times, near dimensionless times νt/4π = 12 × 103, 17 × 103, 35 × 103, before beginning

to converge smoothly to eS ≈ 3 and 4, respectively. While the decrease in the effective

number of Fourier modes with time in the transients is monotonic it occurs in spurts.

For ρ = 3, for instance, there is a sudden dip near dimensionless time νt/4π = 45 × 103.

These dips are related to the sudden disappearance of modes that is apparent in the time

evolution plots Fig.9.2a-e.

The complex Ginzburg-Landau equation (6.3) describes the evolution of the oscilla-

tion amplitude on a slow time. The full time evolution of the underlying system in-

volves also the Hopf frequency. To illustrate the full time dependence the movie Simula-

tionOver2Periods withFastOscs.mov (available in [48]) shows the evolution of the pattern

over two forcing periods obtained for ρ = 2 as one might see it in an experiment. Fig.9.5
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Figure 9.5. Temporal evolution of the real and imaginary parts of one of
the spatial Fourier modes of the pattern shown in Fig.9.3e and in the movie
SimulationOver2Periods withFastOscs.mov (available in [48]).

shows the corresponding temporal evolution of the real and imaginary parts of one of the

spatial Fourier modes. The beating reflects the quasi-periodic forcing of the system. De-

tails about the quantity shown in the movie SimulationOver2Periods withFastOscs.mov

(available in [48]) and in Fig.9.5 are given in the Appendix.
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CHAPTER 10

Conclusion

10.1. Conclusion for Part 2

We have demonstrated analytically and confirmed numerically that in systems near a

Hopf bifurcation to spatially uniform oscillations, forcing with judiciously chosen wave-

forms can stabilize complex periodic and quasi-periodic patterns comprised of up to 4 and

5 Fourier modes. Essential for the success of this approach was the use of a quasi-periodic

forcing function in which the frequency content near twice the Hopf frequency consists

of two frequencies; thus, the forcing is slowly modulated in time. The choice of forcing

function was motivated by Part 1. There we showed that, according to the cubic-order

weakly nonlinear description, super-hexagon patterns are stable on the upper branch of

a transcritical bifurcation. But through numerical simulations we showed that, on that

upper branch, the amplitudes are too large and so the weakly nonlinear analysis taken to

cubic order is not sufficient to describe the resulting patterns. With forcing modulated

in time, since the investigated complex patterns are subharmonic in time with respect

to that modulation, they arise in a pitchfork bifurcation and are amenable to a weakly

nonlinear analysis. The stabilization of the complex patterns was achieved by exploit-

ing resonant triad interactions that result from an additional forcing component with a

frequency close to three times the Hopf frequency.
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As expected from investigations in the context of the Faraday system [32,38,41–43,

45], our weakly nonlinear analysis showed that the resonant triad interaction can signif-

icantly modify the competition between Fourier modes of different orientation through

the excitation of weakly damped modes as shown in Fig.7.1. This damping is controlled

by the differences in frequency and by the amplitude of the two forcing components near

twice the Hopf frequency. Excitation of the weakly damped modes is controlled by the

3 : 1-forcing ρeiΦ. For sufficiently small damping the phase Φ can be chosen such that the

self-coupling of the modes is significantly enhanced, which effectively reduces the compe-

tition between modes over a quite wide range of angles subtended by those modes. As

in the Faraday system, this stabilizes complex patterns in the forced oscillatory systems

investigated here. Alternatively, the forcing can be chosen to either suppress or enhance,

depending on the phase Φ, the competition between modes differing in their orientation

by a quite specific angle θr, which can be tuned over quite some range. In the Fara-

day system this approach, with suppression of competition between modes, can also lead

to complex 4-mode patterns, which effectively consist of the combination of two square

patterns that are rotated by an angle close to θr. In the forced oscillatory systems inves-

tigated here this mechanism alone does not yield complex patterns since in the unforced

system squares are never stable, while in the Faraday system square patterns are stable

for low viscosity [12, 31, 41]. Thus, in the present context this mechanism only leads

to the stabilization of rectangle patterns. For sufficiently strong forcing their bifurcation

can even be made subcritical, even though the stripe patterns (and the Hopf bifurcation

itself) are supercritical.
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We have complemented the weakly nonlinear analysis by direct simulations of the

extended complex Ginzburg-Landau equation in large domains to study the competition

between different, linearly stable, complex patterns. As expected from the variational

character of the amplitude equations and the relationship between the energy of the

various patterns and the forcing strength ρ, we find that as the resonant triad interaction

is increased more complex patterns dominate over simpler patterns. For the parameters

chosen in the numerical simulations we find patterns with 4-fold symmetric elements

reminiscent of super-squares and anti-squares [92] as well as 5-fold symmetric elements.

The weakly nonlinear analysis (see Fig.8.3b) suggests that for other system parameters

patterns comprised of yet more modes could be stable.

It should be noted that we reached the regime in which complex patterns are stable by

tuning the amplitudes and phases of the forcing function, which constitute external forcing

parameters. Therefore we expect that the complex patterns should be accessible quite

generally in forced oscillatory systems, in particular also in chemical oscillators [25,28,79].

Specifically, our weakly nonlinear analysis indicates that the dependence of the patterns

on the nonlinear dispersion coefficient α of the unforced system can be compensated by the

strength of the forcing close to three times the Hopf frequency (cf. Fig.8.3b). Moreover,

for the parameters determined experimentally in the oscillatory Belousov-Zhabotinsky

reaction [84] we have shown explicitly that moderate forcing strengths are sufficient to

stabilize 4-mode patterns. It should be noted, however, that the complex patterns possibly

arise only very close to onset. Therefore the application of our results to experiments may

require systems with relatively large aspect ratios and a very careful tuning of the forcing

parameters.
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To characterize the temporal evolution of the patterns starting from random initial

conditions and to distinguish the resulting patterns quantitatively we used the spectral

entropy of the patterns, which quantifies the effective number of Fourier modes of the

patterns. It allowed a clear distinction between patterns with three, four, or more sig-

nificant modes. However a more detailed quantitative characterization of the transients

that captures also the competition between multi-mode structures like super-squares and

anti-squares, which have the same number of participating modes, is still an open problem

(cf. [93]). The long-time scaling of the ordering process of such complex structures and

a comparison with the ordering in stripe [94,95] or hexagon patterns [96] may also be

interesting to study. Most likely, the number of different types of defects and their mutual

interaction may play an important role. However, for the subharmonic patterns discussed

here the amplitude equations do not contain any terms of even order. Therefore, the

strong interaction between defects that is associated with those terms and that should

make their dynamics in particular interesting in the case of 5-mode patterns [97] will not

be present here.

10.2. Future Directions

We foresee many possible extensions of the work presented in this dissertation. First,

to obtain the results we discussed restrictions were placed on the forcing. Specifically we

fixed the tuning of the 3:1-resonant forcing to remove the time-dependence in the CGLE

from the Ā2 term and we set the 1:1-resonant forcing so that the CGLE has no inho-

mogeneous terms (see Chaps.3,6). Relaxing these restrictions may result in different and

interesting behaviour. In particular relaxing the restriction on the 1:1-resonant forcing
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Figure 10.1. Steady state solutions exhibiting bistability. (a) Possible
steady state solution to the CGLE for general 1:1 resonant forcing, A = 0 is
no longer a solution. (b) Steady state solution to for the Fitzhugh-Nagumo
equation in [98] exhibiting simultaneous Turing instabilities of the both
stable states, where u represents the solution amplitude, a is the control
parameter, and aT

l and aT
u represent the onset of the Turing instability of

the lower and upper branches respectively.

changes the steady state in a fundamental way - the solution A = 0 is not a solution

to the CGLE with inhomogeneous terms. Instead the steady state’s dependence on the

forcing may look like Fig.10.1a, for A = R0e
iφ [23] with stable states appearing and disap-

pearing in saddle node bifurcations. In this case there may be bistability of stable states

if the upper and lower branches represent the stable branches, which leads to hysteresis

between the states. Further, in [98,99], Dewel et al. discuss the formation of patterns

in a reaction-diffusion system with similar bistable steady state through simultaneous or

nearby Turing instabilities off the lower and upper branches, see Fig.10.1b. The simulta-

neous instabilities create two different length scales and thus generate resonant rhombic

patterns [99], superlattice patterns, or quasi-patterns [98,99]. It may be that complex

patterns may similarly arise in the CGLE with an inhomogeneous term and a bistable

steady state, through simultaneous or nearby dispersive-type instabilities [24].
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We considered the case where the detunings ν21 and ν22 of the 2:1-forcing have the

same sign. It would also be interesting to consider the case where their signs are opposite,

so that one of the detunings is just above the Hopf frequency, and the other just below.

Then only one of the two forcing terms will yield a pattern-forming instability [24], while

the other term will induce a phase-locking of spatially homogeneous oscillations. The

result of the interaction between these two instabilities is not known.

We also did not explore the subcritical cases b0 < 0 or b(θ)/b0 < −1. The weakly

nonlinear analysis to cubic order is insufficient to make predictions about pattern selection

in these cases. Fig.8.6, suggests that for K = 2 cos(tan−1(2/5)) large-amplitude rectangle

patterns with θ close to θr = tan−1(2/5) could be stabilized by the forcing.

We achieved the stabilization of complex patterns by exploiting a single weakly damped

spatial mode. As Fig.7.1 shows there is a sequence of local minima indicating instabilities

to a harmonic mode, given by the linear stability analysis. It would be interesting to

try to tune parameters so that there are two or more weakly damped harmonic modes.

A wider variety of complex patterns may then be possible, by suppressing competition

for specific ranges in the angle, as has been done in Faraday wave systems by employing

multi-frequency forcing [100].

In a similar vein, it may be possible to tune parameters so that a spatially homogeneous

mode is weakly damped at the onset of instability to a symmetry-breaking subharmonic

mode with wave number k
(S)
c . Increasing the forcing strength γ so that both these modes

are excited could lead to qualitatively different solutions than those shown here. This

situation is addressed in [101]. They show that, in the case where the original system

has up-down symmetry (so the pattern amplitude equations have no quadratic terms),
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coupling between a symmetry-breaking mode and the zero mode leads to stable mixed

states made up of hexagons, stripes, and a spatially homogeneous mode. In the case

where the up-down symmetry is broken, the coupling can also lead to stable reentrant

hexagons. For the modulated forcing presented in Part 2 of this dissertation, the spatially

homogeneous mode can oscillate either subharmonically or harmonically; any coupling

between the zero mode and a symmetry-breaking subharmonic mode depends on the

nature of the zero mode. Thus, in the regime where a zero mode is weakly damped at the

onset of instability to a symmetry-breaking subharmonic mode, simultaneously exciting

both modes may lead to mixed states similar to those presented in [101], or patterns with

more or less complexity dictated by the interaction between the oscillating modes.

Finally, here our focus was on systems below the Hopf bifurcation (µ < 0). It would be

interesting to pursue a similar study above the Hopf bifurcation. There the spontaneous

oscillations, which do not arise in the Faraday system, and their competition with phase-

locked patterns driven by the forcing may lead to additional complexity. For single-

frequency forcing near 2:1 resonance labyrinthine stripe patterns are found to arise from

the oscillations through front instabilities and stripe nucleation away in the parameter

regime where, without forcing, there is no Benjamin-Feir instability [79]. If there is

a Benjamin-Feir instability, which in the unforced regime can lead to defect-mediated

turbulence, its interaction with the stabilizing influence of the forcing may give rise to

labyrinthine stripe patterns or hexagon patterns [23,78]. It is unknown what happens if

the stripes or hexagons are unstable to the more complex patterns discussed here.

We performed a few preliminary numerical simulations above the Hopf bifurcation

with modulated 2:1-resonant forcing and varying 3:1-resonant forcing strength to get a
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t = 0 t ≈ T/4 t ≈ T/2 t ≈ 3T/4 t ≈ T

Figure 10.2. Small-system numerical simulations of (6.3) in a square do-
main, L = 2π/(cos(tan−1(1/2))k(SH) ≈ 13.13, with µ = 0.1 for 3:1 forcing
strength ρ = 0. Snapshots taken over one period T = 4π/ν. Other param-
eters as in Fig.7.1b (case K = 2) with α = −1, Φ = 3π/4.

preview of what may happen. We used the minimal domain size for a 4-mode pattern

as described in Section 9.1 and simulation parameters are the same as those used in

Chapter 9 except for the distance from the Hopf bifurcation µ for which we chose µ = 0.1.

Figs.10.2, 10.3, and 10.4 show snapshots from these simulations and the corresponding

Fourier transform for increasing values of 3:1-forcing ρ, ρ = 0, 1, 2 respectively.

We observe after some transient behaviour interesting breathing patterns, which per-

sist from t = 100 to the end of our simulations at t = 500; these patterns could represent

a slowly-varying transient or an unstable solution. Specifically, for ρ = 0 in Fig.10.2 the

columns of white dots appear to move back and forth horizontally, adjacent rows moving

in opposite directions, as indicated by the yellow arrows for t = 0 and t ≈ T/4. For ρ = 1

in Fig.10.3, the diagonal rows of black dots move back and forth in a direction perpendic-

ular to the rows, again with adjacent rows moving in opposite directions, as indicated by

the yellow arrows for t = 0 and t ≈ T/4. And for ρ = 2 in Fig.10.4 the black dots seen for
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t = 0 t ≈ T/4 t ≈ T/2 t ≈ 3T/4 t ≈ T

Figure 10.3. Small-system numerical simulations of (6.3) in a square do-
main, L = 2π/(cos(tan−1(1/2))k(SH) ≈ 13.13, with µ = 0.1 for 3:1 forcing
strength ρ = 1. Snapshots taken over one period T = 4π/ν. Other param-
eters as in Fig.7.1b (case K = 2) with α = −1, Φ = 3π/4.

t = 0 t ≈ T/4 t ≈ T/2 t ≈ 3T/4 t ≈ T

Figure 10.4. Small-system numerical simulations of (6.3) in a square do-
main, L = 2π/(cos(tan−1(1/2))k(SH) ≈ 13.13, with µ = 0.1 for 3:1 forcing
strength ρ = 2. Snapshots taken over one period T = 4π/ν. Other param-
eters as in Fig.7.1b (case K = 2) with α = −1, Φ = 3π/4.

t = 0, split and move apart in a direction perpendicular to the row as seen for t ≈ T/4,

and join with a split off dot from the adjacent row to form a new black dot as seen for
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t ≈ T/2; that dot then splits again. The period of this breathing behaviour is approxi-

mately T = 4π/ν, suggesting a subharmonic response to the modulation of the forcing.

The time-dependent behaviour is also apparent in the corresponding Fourier transforms in

Figs.10.2, 10.3, and 10.4: the amplitudes of Fourier modes increase and decrease through-

out the period. As with our results presented in Chaps.8 and 9 complexity of the patterns

seems to increase with ρ. Notice for ρ = 0 in Fig.10.2, the Fourier transform shows 3

nonzero modes and their complex conjugates with increasing and decreasing amplitude.

For ρ = 1 in Fig.10.3 the Fourier transform shows 3 nonzero modes and their complex

conjugates with increasing and decreasing amplitude in the same relative orientation as

the 3 nonzero modes for ρ = 0, with a few additional modes that appear and disappear.

For ρ = 2 in Fig.10.4 the Fourier transform shows 4, not 3, modes and their complex

conjugates with increasing and decreasing amplitude, and a few additional modes that

appear and disappear. These intriguing test simulations suggest that further study in the

regime above the Hopf bifurcation could yield some very interesting results.
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[43] W. Zhang and J. Viñals. Pattern formation in weakly damped parametric surface
waves driven by two frequency components. Journal of Fluid Mechanics, 341:225,
1997.
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APPENDIX

Deriving the CGLE from the Brusselator

In Section 6 we derived the form of the extended CGLE (6.3) based on symmetry

arguments. To illustrate that the additional terms arise from a general forcing function in a

natural way we derive the coefficients of the equation here for the Brusselator, which often

has served as a simple model for chemical oscillations [27]. With the forcing included, it

can be written as

∂u

∂t̃
= 1 − (1 +B)u+Du∆u+

(

1 + f1 sin((1 + ν1)t̃) + f3 sin((3 + ν3)t) (.1)

+f2(cos(χ) sin((2 + ν21)t̃) + sin(χ) sin((2 + ν22)t̃))
)

u2v,

∂v

∂t̃
= Bu+Dv∆v − u2v, (.2)

where u and v represent two reacting and diffusing chemical species. In the formulation

(.1,.2), which differs slightly from the form presented in [27] in the coefficients of the linear

terms, the Hopf bifurcation occurs at B = 2 and the Hopf frequency is given by ω = 1. The

forcing near the Hopf frequency is given by f1 sin((1 + ν1)t̃)u
2v, the modulated forcing

near twice the Hopf frequency by f2(cos(χ) sin((2 + ν21)t̃) + sin(χ) sin((2 + ν22)t̃))u
2v,

and the forcing near three times the Hopf frequency by f3 sin((3 + ν3)t)u
2v. The small

parameters νj = O(δ2), δ ≪ 1, represent the detuning (cf. eqs.(3.3,6.1)), the parameters

f1 ≡ δ3f̂1, f2 ≡ δf̂2, and f3 ≡ δf̂3 represent the small 1:1-, 1:2-, and 1:3 forcing strengths

with f̂j = O(1), and the parameters Du and Dv are the diffusion coefficients. To derive



110

the extended CGLE (6.3) we expand (.1,.2) near the Hopf bifurcation about the basic

state (u, v) = (1, B) as







u

v






=







1

B






+δ













(−1 − i)/2

1






C(x̃, ỹ, t)eiωt̃ +







(−1 − 3i)/4

1/2






f̂3e

3iωt̃ + c.c.






+O(δ2).

To obtain the equation for the complex amplitude A we extract the frequency ν21 and

write

C =
√

2/3ei(tan−1(1/8)+ν21t)/2A. (.3)

After rescaling the spatial coordinates as (x, y) =
√

(Du +Dv)/2(x̃, ỹ) we arrive at

Eq.(6.3) with the coefficients given by

µ = b/2 + 15|f̂3|2/8, (.4)

σ = −(ν21/2 + 33|f̂3|2/8), (.5)

γ = 6f̂2/
√

65, (.6)

ρ = |f̂3|
√

205/24, (.7)

φ = tan−1(14/3) + arg(f̂3). (.8)

As before ν = ν22 − ν21 and η = ρeiφ.

To give an impression of the temporal evolution of the patterns as they may be seen

in experiments we show in (SimulationOver2Periods withFastOscs.mov) (see also Fig.9.5)

a movie of the u-component of the Brusselator. More precisely, we show only the spa-

tial dependence associated with the wavevectors on the critical circle. In terms of the

expansion (8.1) the corresponding amplitudes can be written as
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Here Z represents the steady-state amplitude of the Fourier mode given by the fixed-

point solution of Eq.8.2.


