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ABSTRACT 

Memory Specificity and Generalization through Neural Replay during Sleep 

Research on how sleep contributes to memory has blossomed in recent years. These studies have 

generally focused on whether or not sleep impacts various types of memory independently. An 

open question is whether sleep interactively influences different memory types. My research 

focuses on two types of memory—specificity and generalization. Whereas we forget many 

memories encoded during our day, sleep can help counteract some of that forgetting and protect 

specific memories. However, we don’t know whether sleep improves generalization at the cost 

of specificity or vice versa. Based on prior work, I hypothesized that specificity and 

generalization exhibit a trade-off such that remembering detailed specifics blocks generalization. 

Additionally, I hypothesized that when generalization occurs, the specifics of memories are lost. 

In this dissertation, I describe two experiments designed to address this question. Chapter 

three is composed of two studies where I showed participants videos of outdoor scenes that fall 

into three categories. After learning, participants were tested on recognizing old or new videos 

(specificity) of the terrains as well as identifying to which of three highly-confusable categories 

the video belonged (generalization). In the first study of chapter three, participants had either a 

12-hour delay that included sleep or was comprised of wake only. In the follow-up study we 

controlled circadian factors by having participants remain awake or nap for 90 minutes during 

the afternoon while we recorded brain activity. After the delay, they were once again tested on 

specificity and generalization. We did not find a significant difference between the sleep and 

wake groups in either of the experiments, but did find that forgetting of specific videos happened 

more rapidly than forgetting of categorization knowledge. Although these results did not provide 
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evidence for the hypothesized specificity-generalization tradeoff, they did provide support for the 

prototype theory of memory as opposed to exemplar theory. 

In chapter four, I focused on a period of afternoon sleep after participants attempted to 

memorize a set of paintings created by six different artists. I used targeted memory reactivation 

(TMR) with sounds associated with each artist in an attempt to modulate memory processing 

during sleep. The goal was to test whether memory reactivation alters trade-offs between 

memory specificity and generalization. I hypothesized that TMR cues would improve memory 

for generalization over remembering specific paintings. While cuing did not alter participants’ 

performance on generalization, it did impact memory for specific, studied paintings. Participants 

were worse at identifying cued paintings compared to uncued paintings after the nap, possibly 

because memory reactivation during sleep facilitated storage of generic aspects of paintings at 

the expense of some details. 

These experiments provide evidence for several ways in which different neural 

mechanisms operative during sleep support memory for specifics and generalization. The results 

show that memory for specifics is forgotten at a faster rate than generalization, and that directed 

replay during sleep can impact that rate. These findings should guide future research, particularly 

with regard to developing experimental designs that can independently assess the two memory 

types. The experiments shed light on the varying forgetting rates across different memory types 

and provide a springboard for future research into mechanisms that govern memory 

consolidation during sleep. 
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CHAPTER 1 
General Introduction 

Memory Research 

Unlike the hard drive of a computer, memory isn’t a simple filing system that precisely 

records everything as soon as it happens. How memories are integrated and stored in a 

retrievable fashion is an important question in memory research. Across the years, researchers 

have proposed several theories to explain how memories are stored, integrated, and retrieved. 

Memory consolidation refers to the process of stabilizing and integrating memories within the 

brain, although there is still disagreement on how this is achieved. 

Standard Memory Consolidation Theory 

In the case of declarative memory, one proposed mechanism of memory consolidation 

relies specifically on interactions between the hippocampus and neocortex (O’Reilly & Norman, 

2002). Memories initially encoded with the help of the hippocampus are replayed and 

communicated to the neocortex in order to create more permanent, stabilized forms of the 

memory. This theory is generally referred to as the standard memory consolidation theory. 

Importantly, this model implies that more recent memories would still retain neural connections 

to the hippocampus although this connection is not needed for retrieval after enough time has 

elapsed (Dagmar Zeithamova et al., 2012).  

More recent studies have expanded on this idea, demonstrating that the anterior and 

posterior regions of the hippocampus itself might relate to whether information stored within the 

hippocampus is highly detailed or more generalized (Moscovitch et al., 2016).  The anterior 

hippocampus is more connected with the ventromedial prefrontal cortex and is associated more 
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with pattern completion while the posterior portion of the hippocampus has more connections to 

the parietal lobe and is more associated with pattern separation. Regardless of the hippocampal 

region involved, the communication of information between the hippocampus and the neocortex 

is crucial for memory consolidation. However, another major competing theory also takes this 

hippocampal data into consideration. 

Multiple Trace Theory 

 Rather than conceiving of the hippocampus as a temporary component that is needed to 

reference cortical memories before they are stored long-term in the neocortex, some researchers 

fall into a different camp. Multiple trace theorists view the brain as akin to a wildlife path found 

in the woods. If a deer walks along a particular route once, there’s very little impact made on the 

grass and earth. But if that same deer (or multiple deer) continue to use that route, the grass will 

give way to dirt and the path will become more defined. In neural terms, multiple trace theory is 

a system where the hippocampus is always involved in memory recall (Nadel et al., 2000). Every 

time a memory is encoded, a memory trace between the hippocampus and the neocortex is laid 

down (Moscovitch et al., 2005).  In the case of multiple overlapping memories, a gist 

representation of the information is stored in the neocortex and doesn’t necessarily need the 

hippocampus. In this respect, both multiple trace theory and standard memory consolidation 

theory make the same prediction. If lots of overlapping representations occur then that gist-like 

generalization will no longer rely on the hippocampus. 

 My research interests regarding memory specificity and generalization do not make an 

argument for either of these models. Both models suggest a potential trade-off between 

generalized memory schemas and more detail-oriented memories. This is because both theories 

focus on the involvement of the hippocampus in memory over a long period of time. My work 
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investigating memory specificity and generalization did not address the hippocampus’ role and 

as such does not support one theory over the other. 

Source Theory 

 Source memory theory refers to how information is recalled (Banks, 2000; Glisky et al., 

1995). A source memory is one that is recalled along with other associated context such as when 

or where the information was learned. After a memory has been consolidated, retrieval isn’t 

always a perfect process. Sometimes a memory can be recalled, accompanied with a vague sense 

of familiarity. In the case of my dissertation projects, source memory would provide an example 

of memory specificity. When distinguishing between highly similar old and new stimuli, 

recalling the source of the original memory can help you make the correct selection. My 

proposed experiments rely heavily upon participants’ ability to recognize specific stimuli studied 

during the learning portion of the experiments. Thus, recalling the source information 

surrounding that particular stimuli will improve a participant’s accuracy although they are never 

asked to recall contextual information. Thus, my experiments didn’t directly address source 

memory. 

Prototype Theory 

 Memory generalization as defined thus far refers to multiple instances that overlap in 

some way as to create a gist representation. One could also describe this generalization as a form 

of category learning. There are two primary competing theories of categorization- prototype 

theory and exemplar theory. In the framework of prototype theory, categories are represented by 

prototypical gist constructions that are created from multiple, overlapping experiences with items 

of a category (Homa et al., 1979; Posner & Keele, 1968; Reed, 1972; Rosch & Mervis, 1975; 

Smith & Minda, 2002). New items are categorized by comparing them to the prototypes of 
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existing categories and determining which prototype that item most matches. This theory rests on 

maintaining an abstracted schema or gist, rather than requiring memory of specific instances 

within a category. 

Exemplar Theory 

 The second major theory to explain how categories are formed and how new 

items are compared against these categories is exemplar theory (Medin & Schaffer, 1978). 

Exemplar theory describes a process of comparing an item or object’s features to a set of 

categories such that the item’s category is decided by which category set of features it best 

matches (Medin & Smith, 1984). Exemplar theory, unlike prototype theory, is better at including 

items into categorical groups that can have very dissimilar items. For example, a penguin isn’t a 

prototypical example of a bird and thus might be misclassified by prototype theory. Exemplar 

theory’s use of shared multiple features within a category is much better equipped to deal with 

such irregularities (Nosofsky, 1991). However, at least one researcher studying category learning 

has argued that exemplar theory has been over-extended in its use in explaining human behavior, 

particularly when it comes to more abstract concepts (Murphy, 2016). 

Despite decades of work, distinguishing between exemplar theory and prototype theory in 

human cognition remains a difficult task. This is partially due to the task demands of different 

experimental designs. For example, categorization of a single category (A, not A) and sorting of 

two or more categories (A, B) were often described in similar terms but seem to rely on different 

processes (Casale & Ashby, 2008; Little & Thulborn, 2006; D. Zeithamova et al., 2008). The 

perceptual and memory processes needed for categorization extend far beyond prototype and 

exemplar theory (for a review, see Ashby & Maddox, 2011). 
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While it is important to recognize the contributions of both the prototype and the 

exemplar theory in understanding category learning and perhaps memory gist, the experiments 

described here don’t fully discriminate between the two. Only in chapter three do I provide weak 

evidence for the prototype theory over exemplar theory or other competing theories. This stands 

in opposition to the conceptualization that participants could improve on memory generalization 

because they have memorized enough specific exemplars to which they are comparing new 

items. Chapter three serves as the main evidence disambiguating these two possibilities and 

further discussion of these theories can be found there. 

Memory Consolidation and Sleep 

Memory Specificity and Abstraction 

While researchers often focus on how to improve memory, ‘good memory’ in itself is a 

value judgment based on the situation. In some cases, it’s useful to remember all the details 

surrounding an incident. If you’re cycling home one day and are almost hit by a car, it’s useful to 

remember every detail about the event in order to file a police report. But sometimes it’s actually 

more useful to combine multiple individual instances to create a generalized schema, such as 

recalling what factors to look out for when biking with cars (like someone parallel parking or 

turning right). You don’t need to remember every instance of a person turning right while you 

were passing, but you should recognize if a car is starting to turn so that you slow down for them 

to pass (and avoid the collision). 

Memory specificity requires that a person recalls a memory with precision and is able to 

correctly reject items that weren’t previously studied. One proposed neural mechanism for 

distinguishing highly similar stimuli is called pattern separation (Yassa & Stark, 2011). 
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According to this mechanism, correctly discriminating studied old items from similar items 

(sometimes called lures) is possible because of sparse encoding in the hippocampus which 

allows for similar items to be encoded in a non-overlapping manner (Bakker et al., 2008; 

O’Reilly & Norman, 2002). For any given stimulus, the hippocampus sparsely encodes the 

memory such that there is little to no overlap between the neurons used for one memory 

representation with other representations. This form of encoding allows for stimuli that are 

extremely similar to still be differentiated, assuming the sparse encodings (i.e., patterns) are 

separated and don’t overlap- hence the name pattern separation. If engagement of the 

hippocampus through sparse encoding leads to increased accuracy on distinguishing highly 

similar memories, then memory specificity might be maintained through these neural patterns. 

While much research has focused on how sleep boosts memory in terms of overall 

strength or maintaining specificity, less is currently known about how memory for 

generalizations or abstract knowledge is processed during sleep (Hanert et al., 2017; Marshall & 

Born, 2007; Saletin et al., 2016). One study examining sleep deprivation found that differences 

in the structures of hippocampal subfields was associated with a participants’ quality of non-

REM sleep (Saletin et al., 2016). Furthermore, the quality of non-REM sleep was linked with 

later successful recall of a previous memory task and thus demonstrates the importance, and 

individual variability, of sleep on memory. Another popular method of studying sleep’s 

contribution to memory is to compare between two groups, sleep and wake, after a delay. A 

more recent study using this design tested pattern separation and found that participants who 

slept were better able to discriminate among highly similar items while those who remained 

awake declined in performance (Hanert et al., 2017). 
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Sleep provides one potential period during which communication between the 

hippocampus and neocortex can occur, thus allowing for generalization (Inostroza & Born, 

2013). Through repetitive neural reactivations, sleep might allow for abstraction of underlying 

rules particularly across longer periods of time (Graveline & Wamsley, 2017a; Lutz et al., 2017). 

Researchers used the dot pattern classification task to test participants’ category knowledge and 

recognition of old or new patterns after a 12-hour delay that included either sleep or wake 

(Graveline & Wamsley, 2017a). They found that the sleep group maintained better performance 

for old exemplars, new exemplars, and recognized prototypes that these patterns were abstracted 

from better than the wake group. Another 12-hour delay experiment used a visual version of the 

DRM paradigm to test participants’ gist memory and their ability to recognize studied shapes 

(Lutz et al., 2017). While this study didn’t show any differences between the sleep and wake 

groups after a 12-hour delay, a follow-up a year later showed a difference between the two 

groups such that the sleep group showed better gist memory than the wake group. Both of these 

experiments demonstrate that while generalization can be an outcome of a sleep period, the time 

scale of this generalization isn’t well understood.  

 Spreading activation across the neocortex could be another explanation for how 

generalized memories are created. Spreading neural activity might allow for physically distant 

networks to interact and thus allow for reorganization of memory traces such as demonstrated in 

a 2009 experiment using the remote associates task (Cai et al., 2009). The researchers found 

increased performance on the task only after sleep compared to an equally long period of 

incubation and argue that this demonstrates that interactions between different neural networks 

during sleep, REM in particular, allows for this reorganization. During REM sleep, levels of 

acetylcholine are high in the hippocampus, which suppresses feedback from the hippocampus to 
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the neocortex, while decreased levels of acetylcholine in the neocortex could promote spreading 

activation without hippocampal input (Hasselmo, 1999). Researchers argue that this process is 

why REM sleep in particular has been shown to increase creative problem solving; spreading 

activation helps the brain create an abstract memory representation though new connections 

between distant cortical regions (Boyce et al., 2017; Cai et al., 2009; Kim et al., 2017). 

Endogenous memory replay during sleep 

 Memory replay was first recognized in rat models when researchers observed neural 

replay of place cells activated during a previous maze task (Pavlides & Winson, 1989). A later 

study found the same pattern of hippocampal place cells that were active in exploring rats during 

wake also fired in the same pattern during subsequent sleep at an increased rate (Wilson & 

McNaughton, 1994). Place cells that were inactive during the exploring period prior to sleep 

didn’t show this increased replay, indicating that the replay of the related place cells is tied to 

memory consolidation of that exploration. More recent research has demonstrated this replay 

during sleep is specific to place cells that were previously activated during a maze exploration 

task and that this activity includes communication between the hippocampus and neocortex (Ji & 

Wilson, 2007). This initial animal research laid the groundwork for exploring memory replay 

and reactivation in humans. 

 The active system consolidation hypothesis is one of the more influential theories to 

explain memory replay during sleep (Diekelmann & Born, 2010). Some proponents of the active 

system consolidation model argue that memories are consolidated in a two-part process, 

dependent on two different stages of sleep. During the initial slow-wave sleep (SWS) that 
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dominates the first part of the night, neural patterns are reactivated and representations that are 

important are tagged for later consolidation during the later stage of REM sleep. 

However, sleep is composed of more stages and physiological events than the general 

dichotomy of SWS and REM sleep. Within the slow oscillations (less than 1 Hz) that give slow-

wave sleep its name, there are nested oscillations of thalamocortical sleep spindles (11-16 Hz) 

and sharp-wave ripples that facilitate communication between the hippocampus, thalamus, and 

neocortex. The communication among these regions is thought to explain how memories are 

redistributed from the hippocampus to more permanent neocortical storage sites. 

In more recent years, researchers posit that specific neural oscillations facilitate memory 

consolidation, although this literature isn’t clear as to which oscillations are most important 

(Antony, Cheng, Brooks, Paller, & Norman, 2018; Cairney, Ashton, Roshchupkina, & Sobczak, 

2015; Mölle, Bergmann, Marshall, & Born, 2011). For example in one sleep cueing study, beta 

power (16-30 Hz) after a cue predicted later forgetting while sigma power (11-16 Hz) predicted 

better retention after sleep (Antony, Cheng, et al., 2018). Other work has found that spindles 

after a sleep cue is associated with improved memory performance after sleep (Cairney et al., 

2015). And a third study recording EEG with a high-density array in Germany found that 

specifically fast sleep spindles that occur during slow oscillation up-states are correlated with 

later memory performance (Mölle et al., 2011). 

Slow-wave sleep 

In order to better understand sleep consolidation, we can examine the frequencies, 

amplitudes, and duration of neural oscillations through electroencephalography (EEG) and how 

those states relate to later memory performance. Early research on memory and sleep focused on 

the contrast between SWS and REM sleep (for a review, see Stickgold & Walker, 2005). Slow-
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wave sleep measures such as delta power, time spent in SWS, and percentage of total sleep time 

spent in SWS have been linked to increases in declarative memory and spatial memory in 

particular (Gais & Born, 2004; Hanert et al., 2017; Marshall & Born, 2007; Tamminen et al., 

2010).  

I hypothesize that SWS is important not just for memory consolidation, but also for 

forming generalizations across multiple memories. Slow wave oscillations are created by many 

neurons across the cortex firing and going quiet at approximately the same time. This could lead 

to activation of multiple, overlapping memory traces at the same time and allow for generalized 

rules or schemas to form. In a recent experiment, researchers found that participants who had 

SWS after a challenging videogame were more likely to solve the puzzles in the game than those 

who did not get SWS (Beijamini et al., 2014). This could be due to SWS creating overlapping 

representations of the participants’ experience in a way that allowed them to realize the correct 

solution that they missed prior to the nap. Other studies have also found improved problem 

solving after a night of sleep, although these studies often don’t include EEG monitoring and so 

we can’t be certain of SWS’s contribution (Ellenbogen, Payne, et al., 2006; Lau et al., 2011; Sio 

et al., 2013). 

And in some cases, SWS might allow memories to generalize so much that important 

details are lost. If the overlapping memories create a generalized schema without unique details, 

it could lead a participant to assume other categorically-related items were studied and thus cause 

false recollections. In a 2009 experiment, Payne and fellow researchers tested how false 

memories change across wake or sleep. They tested both a short nap delay as well as an 

overnight design. In both studies of this experiment, the researchers found that more time spent 

in SWS correlated with decreased recall which could be interpreted as the participants’ memory 
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becoming more generalized and thus less able to recall specific items from the list (Payne et al., 

2009). 

If there is a trade-off between memory specificity and generalization, that should entail a 

unidirectional relationship that details about a memory to fade while a gist representation 

remains. Researchers using Chinese characters as stimuli found that trade-off in a 2011 study 

(Lau et al., 2011). Comparing across sleep and wake, Lau and colleagues found that the sleep 

group performed worse at identifying old characters they’d studied. However, the sleep group 

was better than the wake group at identifying the meaning of radicals (a part of the Chinese 

character that refers to a general concept) and guessing the meaning of new characters that 

included radicals that they’d studied. This seems to indicate that a trade-off could exist, although 

this study didn’t record sleep physiology and cannot make arguments directly about SWS. And if 

it were true that SWS leads to a more generalized memory representation, how are we able to 

retain memory specificity after a night’s sleep. One possible candidate is sleep spindles. 

Sleep spindles 

Sleep spindles are rapid bursts of neural activity at 11-16 Hz, and are correlated with 

improved performance on memory tasks (Cairney et al., 2015; Mednick et al., 2013; Molle, 

2006). Sleep spindles are traditionally split into fast spindles that are located centro-parietally 

and slow spindles that are fronto-central (Mölle et al., 2011).  Because spindles tend to occur 

during slow-wave sleep, previous research has focused on how sleep spindles relate to 

declarative memory (Cox et al., 2012; Schabus et al., 2004). Rodent research has shown that 

sleep spindles often serve as envelopes for high frequency sharp-wave ripples (SWR) from the 

hippocampus (Molle, 2006). The SWRs imbedded in sleep spindles (that tend to ride on slow 
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wave activity) provide a framework for communication between distant brain regions and 

therefore may promote memory consolidation. 

In one 2013 experiment, researchers used click sounds in an attempt to enhance slow 

oscillations that also increased the number of both fast and slow sleep spindles. The researchers 

found that the number of induced sleep spindles was correlated with memory performance on a 

word pair task (Ngo et al., 2013). In a more recent iteration of this experiment, the researchers 

used transcranial alternating current stimulation (tACS) to boost sleep spindles. They found that 

memory improved in the stimulation condition and was correlated with sleep spindles, but not 

slow oscillations (Lustenberger et al., 2016). 

As previously mentioned, sleep spindles can be differentiated into fast and slow spindles 

with many recent experiments pointing particularly to the importance of fast spindles. Some 

researchers posit that fast and slow spindles have different neural generators, occur at different 

points during slow oscillations, and that fast spindles are linked to memory consolidation (Mölle 

et al., 2011). In a sleep cueing experiment, the researchers found that the number of fast spindles 

predicted later explicit recall and improved reaction time for a motor task (Cousins et al., 2014). 

Fast sleep spindles during the up-state of slow oscillations also correlated with better 

performance on remembering word-scene pairs (Cairney et al., 2018). This evidence points to the 

possibility that fast spindles, which potentially have hippocampal sharp-wave ripples nested 

within, help protect memory consolidation and memory specificity in particular. 

REM Sleep 

Compared to SWS and associated sleep spindles, REM sleep has typically benefitted 

motor and emotional memory (Nishida et al., 2009; van der Helm et al., 2011). In the 2009 

study, participants studied a collection of emotional and neutral pictures and then either had an 
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afternoon nap or remained awake (Nishida et al., 2009). As might be expected, the sleep group 

showed better overall memory for both categories of images. When the researchers looked at the 

sleep physiology, they found that improved memory for the emotionally salient images was 

correlated with the amount of time spent in REM sleep across the nap. Other researchers 

investigating amygdala activity with regards to emotional stimuli also found that time spent in 

REM sleep was associated with later decreased amygdala activity and reduced subjective 

emotionality the next day (van der Helm et al., 2011). Motor learning tasks such as the serial 

reaction time task have also shown greater brain activity using PET during REM sleep in those 

who were trained on the task than participants who weren’t trained (Maquet et al., 2000). 

This classic view of REM sleep has shifted in recent years, with some creativity 

researchers positing that REM might not benefit a type of memory but rather a type of memory 

process. Researchers studying insight and creative problem solving have found REM to be 

correlated with making more insights and participants becoming explicitly aware of implicit 

rules (Alger & Payne, 2016; Kirov, Kolev, Verleger, & Yordanova, 2015; Stickgold, Scott, 

Rittenhouse, & Hobson, 1999; Tamminen, Lambon Ralph, & Lewis, 2017). One example of 

REM-related insight was a 2016 study where participants encoded AB and BC pairings of 

images (Alger & Payne, 2016). Participants were tested on their inferential knowledge (AC) after 

a nap and the researchers found that time spent in REM sleep correlated with better performance 

on these inferences. REM sleep also appears to be important in rule learning as an experiment 

using the serial reaction time task revealed that the more REM-NREM transitions during sleep 

correlated with more explicit knowledge of the hidden rule (Kirov et al., 2015). 

So instead of stating that REM helps consolidate a type of memory, REM might actually 

be processing memories in a different way that allows for novel connections with existing 
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knowledge and general reorganization of information (Boyce et al., 2017; Hasselmo, 1999). 

Additionally, REM sleep might also provide a period of secure memory storage, as has been 

suggested in at least one study (Batterink, Westerberg, & Paller, 2017). In this experiment, 

participants learned a set of new vocabulary words, half of which were cued during SWS. While 

there was no direct relationship between cueing and later performance, participants with greater 

amounts of REM showed a significant benefit for cued relative to uncued words. However, those 

who had little or no REM showed the opposite effect such that uncued words were better 

remembered than the cued ones. The researchers explain that their findings indicate that REM 

after SWS may be necessary for consolidating highly integrated memories. 

REM sleep is unique among sleep stages not only because of definitional rapid eye 

movements, but also because it is a period of heightened autonomic nervous system (ANS) 

arousal (Whitehurst et al., 2016). Mednick and several other researchers argue that this ANS 

activity is linked to sleep consolidation. In an experiment using the remote associates task 

(RAT), Whitehurst and colleagues (2016) found that heart rate variability, which is a biological 

marker of ANS arousal, during REM sleep predicted improved post-sleep performance. This 

study, and a subsequent study using the RAT and a word analogy task both promote the 

importance of REM sleep for memory consolidation that leads to improved creativity and thus 

performance on these tasks (Cai et al., 2009). 

While REM might be important for memory consolidation, at least one experiment has 

found that just a few minutes of REM doesn’t benefit later memory performance (Schapiro, 

McDevitt, et al., 2017). In these two experiments, participants learned three categories of satellite 

images. In the first experiment, researchers found that sleep compared to wake preserved both 

the specifics of previously-studied satellites and generalization of identifying the correct 
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category for never-studied satellites. However, because participants either learned early in the 

morning or late in the evening, there were large circadian effects that muddied the results. The 

researchers then ran a second experiment where participants began the task at the same time of 

day and either napped or stayed awake in order to avoid these circadian influences. In this study, 

the nap group’s memory improvement for low-frequency shared features (infrequent 

generalizable features) on the satellites was correlated with REM sleep. However, only 

participants who experienced a large amount of REM sleep showed this benefit. Thus, the story 

on REM’s contribution to memory specificity and generalization remains murky at best. While 

we will investigate REM’s role in memory consolidation in these proposed experiments, it is not 

the main focus of our investigation. This is because longer periods of uninterrupted REM tend to 

occur in the second half of nighttime sleep, but most afternoon nap studies consist of mostly 

SWS sleep stage. Thus, while we have some data to speak to this question, the proposed 

experiments weren’t meant to test REM sleep specifically. 

Targeted Memory Reactivation 

Although memory replay can occur during wake or sleep, the unique neural 

circumstances of sleep allow replay to occur without competing with other on-going mental 

processes. Memory replay occurs endogenously during sleep, but can be directed using targeted 

memory reactivation (TMR): an experimental tool that allows researchers to harness replay for 

specific items during sleep. During a learning phase, participants are exposed to an external 

stimulus such as an odor or sound. Across the course of learning, the participant associates the 

stimulus with an individual item or set of items so that when the person is re-exposed to the 

stimulus during sleep, it will reactivate that memory trace (Oudiette & Paller, 2013; Schouten, 
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Pereira, Tops, & Louzada, 2017). Although sound cues can be administered during at any point 

during sleep, early work demonstrated that SWS is a more effective time for spatial memory 

reactivation than REM sleep (Rasch, Buchel, Gais, & Born, 2007). Further research 

demonstrated that timing of the sound cues in regards to ongoing oscillations or sleep spindles 

also affects the cue’s efficacy (Antony, Piloto, et al., 2018; Batterink et al., 2016). Prior TMR 

studies have often not taken into account ongoing slow oscillations when the cues are presented. 

In one experiment, the researchers found that cues played during the up-states of the slow 

oscillations showed a larger effect than those played during the down-states (Batterink et al., 

2016). In more recent work, the timing of sleep spindles after a cue have also found to impact 

later memory performance. When looking at a period of three to six seconds after a sleep spindle 

has occurred, researchers found that cues presented just after this refractory period were 

associated with better memory consolidation than cues played during the spindle itself (Antony, 

Piloto, et al., 2018). 

Using sounds as memory cues presents an added benefit over odors in that they are easier 

to administer and are easier to end if a sleep participant starts to awaken. Each unique sound can 

then be tested individually for improvement between encoding and the post-sleep test (Rudoy et 

al., 2009). Because multiple sound cues can be used within a single experiment, researchers can 

choose to cue half of the items and withhold the other half such that each participants’ uncued 

items act as a control. This allows for a stronger experimental design with within-subjects 

comparisons. 

 The type of memory replay elicited by TMR has previously centered on hippocampal-

based memory required for spatial tasks. However, other experimental designs have been 
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employed to examine a broader array of memory types including motor, sensory, and language 

learning (Cousins et al., 2014; Honma et al., 2016; Schreiner, Göldi, et al., 2015). 

Memory precision and integration in TMR	

One of the more interesting uses of TMR is to employ sleep-cues to improve foreign 

language learning. In fact, several experiments have tested TMR for exactly this use. A prior 

experiment based on vocabulary learning of Dutch words by German speakers found TMR 

improved recall but not recognition for individual words (Schreiner, Göldi, et al., 2015; 

Schreiner & Rasch, 2015). The researchers played the Dutch words during non-REM (stage 2 

and SWS) and measured later performance. They found that cueing improved later memory for 

the German translation of that word; and that an increased number of frontal slow waves 

correlated with these results. These findings could indicate that slow oscillations are important 

for consolidating within semantic language networks in the brain. 

Unlike experiments in learning foreign language words, real-world language learning 

requires both vocabulary and grammar. One TMR study dealing with grammatical structure for 

language learning did find a positive effect for cueing, but only if the nap period also included 

REM sleep (Batterink et al., 2017). In a language labeling experiment, participants were required 

to learn made-up names for either familiar or totally unfamiliar objects. The researchers found 

that only the familiar objects with made-up names benefitted from TMR, while the unfamiliar 

objects showed no cueing benefit (Groch et al., 2017).  

In terms of memory integration, some researchers have used olfactory TMR cues played 

during SWS to examine brain activity after a fear-learning condition and a nap. The researchers 



28	
	
found less engagement of the hippocampus during test, perhaps indicating that cueing causes 

memories to be less dependent on the hippocampus (Hauner et al., 2013).  

TMR memory consolidation and REM sleep 

Some researchers have hypothesized that TMR cues during SWS are only half the story. 

In a 2017 experiment, participants learned a set of new words and their meanings which were 

then cued during SWS. After the nap, researchers found that TMR didn’t affect later memory 

performance, but that the number of minutes spent in REM did correlate with competition 

between cued and uncued words (Tamminen et al., 2017). The researchers found that while sleep 

protected against forgetting words in general, REM sleep correlated with increased lexical 

competition between cued words and similar sounding non-words. The researchers explained 

these findings as evidence that SWS might be ‘tagging memories’ for consolidation which are 

later integrated during REM sleep. Indeed, researchers studying rats have found that there is 

neural replay of place cells during cued SWS, but there is also replay occurring during REM 

(Bendor & Wilson, 2012). 

Thus, researchers are not arguing that REM sleep alone is enough to consolidate memory. 

More accurately, some researchers hypothesize that there is a two-part system where cueing 

during SWS allows for general consolidation while REM sleep is important for integration and 

the formation of unexpected connections between existing memory (Lewis et al., 2018). Such a 

model would predict that SWS would improve memory specificity, that cueing would enhance 

this process, and that REM sleep would improve memory generalization. While this is a 

plausible theory, the field still hasn’t addressed the open question of how cueing might 

differently affect gist-based memory as compared to memory specificity. For a full review of 

TMR’s role in memory specificity and generalization, see chapter two. 
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Completed Studies 

 In order to test sleep’s contribution to memory specificity and generalization, I used two 

core experiments in an attempt to provide converging evidence. In the first experiment, I 

contrasted equally long periods of sleep and wake between participants that were trained on a 

series of outdoor scenes. Because of circadian effects, I followed-up this design with a second 

design where all participants came to the lab at the same time of day. They were then either 

randomly selected for an afternoon nap or were asked to remain awake and listen to a podcast 

while we recorded brain activity. I hypothesized that the sleep group would generally outperform 

the wake group after the delay in both studies. Furthermore, I hypothesized that specific sleep 

physiology measured during the second study would correlate with later performance such that 

fast spindles would be associated with better memory specificity while slow oscillations would 

be associated with better generalization. 

In my second study, I used TMR on participants while they took an afternoon nap after 

learning a series of paintings created by six different artists. My aim was to test whether TMR 

altered sleep consolidation tradeoffs between memory specificity and generalization. I 

hypothesized that TMR would improve both memory for generalization as well as memory for 

specific paintings. Additionally, I hypothesized that the cueing effect for generalization would be 

larger than that for remembering specific paintings. 
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CHAPTER 2 

Examining sleep’s role in memory generalization and specificity through the lends of 

targeted memory reactivation 

Two vital memory functions — remembering specific experiences and generalizing across many 

experiences — are in tension with each other. In the complementary-learning-systems model, the 

hippocampus allows for fast learning of unique episodic memories while the cortex slowly 

extracts regularities from overlapping representations. Whereas episodic memories undergo 

consolidation over protracted time periods, many questions remain about how memory 

generalization evolves over time. Sleep’s role in consolidating individual memories has been 

convincingly demonstrated using targeted memory reactivation, a method whereby memories 

can be selectively strengthened through the unobtrusive presentation of learning-related stimuli 

during sleep. In this review, we argue that targeted memory reactivation can help advance 

understanding of memory transformation and the contrast between specificity and generalization. 

Introduction 

Declarative memory encompasses the ability to remember specific experiences and to 

generalize across multiple experiences (i.e. event and fact learning). For example, if you went to 

an aquarium you would spot an unusually shaped ocean sunfish and commit its specific, unique 

features to memory. Yet, perhaps you have seen many kinds of sea creatures while scuba diving, 

so the sunfish could strike you as similar, but not quite identical, to a filefish. A complementary-

learning-systems orientation (McClelland & O’Reilly, 1995; O’Reilly & Norman, 2002) would 

posit that the hippocampus quickly encodes individual memories (a specific sighting of a unique 

sea creature) whereas the cortex slowly extracts regularities from overlapping representations 
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(generalizing based on cumulative experiences with many sea creatures). Does sleep similarly 

impact these two memory functions, or are specificity and memory generalization afforded 

special and distinct processing during sleep? 

Memory consolidation refers to the process of stabilizing and integrating memories 

within the brain. Consolidation may largely depend on the reactivation of previously acquired 

memories (Paller et al., 2020). Although memory reactivation can occur during wake or sleep, 

the unique circumstances of sleep may be advantageous in allowing reactivation to occur with 

minimal competition from other information processing. Additionally, some researchers argue 

that sleep provides an opportunity for communication between the hippocampus and the 

neocortex to allow for decontextualization in conjunction with a transfer of information to 

extrahippocampal regions (Inostroza & Born, 2013). Generalization could be considered a 

consequence of transformation whereby memories become less hippocampal-dependent and rely 

more on distributed traces across the neocortex. Others argue that the reactivation of overlapping 

memories during sleep strengthens the shared features and leads to generalization (Lewis & 

Durrant, 2011). 

Considering the current models of sleep’s role in memory, it is unclear if detailed 

memory representations are in direct conflict with generalized gist representations or whether the 

two coexist (Figure 2.1). Strengthening of overlapping memory traces may result in a loss of 

unique detailed features. Alternatively, generalization and memory for specifics could coexist 

such that shared features across representations are strengthened to create a new network without 

losing unique features of episodic memories. 



32	
	

 

Figure 2.1 Memory consolidation for specific details and generalization over sleep. This 
diagram provides a schematic illustration of how memory consolidation may occur over 
sleep. (a) In this example, a person sees a set of different fish. (b) Memory of the experience 
evolves over time in two ways. In generalization (top), shared features among the fish contribute 
to a gist representation or abstracted prototype (represented in red). Memory for unique features 
of each fish (represented in blue) may also be consolidated to support specific remembering 
(bottom). Generalization and specificity may both be influenced by memory consolidation during 
sleep. (c) One hypothesis is that memory consolidation could help generalization over sleep 
(schematized as increasing size of red prototype), at the cost of memory for specifics 
(schematized as decreasing size of blue specifics), or vice-versa (d) Alternatively, sleep 
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consolidation could preserve memory for specifics and generalized memories independently of 
each other. 
 

Sleep’s impact on declarative memory for specifics 

Sleep’s protective role against forgetting has been recognized as far back as the 1920s 

(Jenkins & Dallenbach, 1924), but this idea did not catch on quickly in memory research. Recent 

emphasis on the period of sleep known as slow-wave sleep (SWS) coincided with a surge of 

interest in this topic (Gais & Born, 2004). A landmark observation was that rodent hippocampal 

place cells display firing patterns during sleep that recapitulate those in previous wake 

exploration (Foster, 2017; Pavlides & Winson, 1989). In particular, replay in the rodent 

hippocampus was shown to be temporally coordinated with memory reactivation in the visual 

cortex during SWS (Ji & Wilson, 2007). 

Research into human memory also supports the idea that sleep, and SWS in particular, is 

important for memory for specifics. This form of memory can be considered in relation to the 

neural process of pattern separation, whereby memory representations can be distinctive when 

they overlap minimally with each other (Yassa & Stark, 2011). Distinct representations allow for 

the successful retrieval of specific details and discriminating between similar representations in 

the face of potential interference. To study pattern separation, many researchers employ the 

mnemonic-similarity task, in which participants are first exposed to a series of objects and 

categorize them as either indoor or outdoor objects, followed by a recognition test with novel 

objects, old objects, and highly similar objects (Bakker et al., 2008; Doxey et al., 2018; Hanert et 

al., 2017; Stark et al., 2013). Accurate recognition of old objects with low false-alarm rates, 

particularly for the highly similar objects, is indicative of high memory specificity, due 
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presumably to effective pattern separation. Using such a task, researchers compared a 12-

hour delay including either sleep or wake (Doxey et al., 2018). They found that sleep preserved 

memory specificity more than when participants remained awake. 

These findings were corroborated by results from another study with a 9-hour retention 

interval during the day or overnight with electroencephalographic (EEG) monitoring (Hanert et 

al., 2017). Hanert et al. found that high specificity in recognition was positively correlated with 

two sleep physiology signals, slow oscillations (0.5 - 1 Hz) and sleep spindles. Sleep spindles are 

rapid bursts of neural activity at 11-16 Hz, which can be observed during SWS (Cox et al., 2012; 

Schabus et al., 2004) and are correlated with improved performance on declarative memory tasks 

(Antony, Schönauer, et al., 2018; Cairney et al., 2015; Mednick et al., 2013). These 

electrophysiological findings were taken as evidence for sleeps’ ability to improve hippocampal 

representations and enhance performance on highly specific memory tasks. 

Memory generalization during sleep 

There are many ways to study the process of generalization (Lerner & Gluck, 2019). For 

example, investigators have used procedures in which participants gradually learned to extract 

relationships among various abstract stimuli, to solve a puzzle based on repeated mathematical 

procedures, to produce a word that fits multiple constraints, or various other language tasks. 

In a 2007 experiment, Ellenbogen et al. presented participants with pairs of abstract 

images that fit into a complex hierarchical structure, followed by a memory test with new pairs 

(Ellenbogen et al., 2007). Relational knowledge was assessed by determining whether 

participants inferred A > C (where ‘>’ means ‘should be selected over’) after learning of A > B 

and B > C, with no prior exposure to the A/C pair. This generalized knowledge for the 



35	
	
underlying structure of stimuli (also known as transitive inference) was stronger after a period of 

sleep compared to a period of being awake. However, measures of sleep or sleep-stage were not 

available, so it was unclear which aspects of sleep may have improved generalization. 

A more recent study tested how sleep could improve insight for a hidden rule (Verleger 

et al., 2013). The researchers used the number-reduction task, which can be solved either by a 

sequence of simple math operations or by using a faster, hidden rule. The study replicated an 

earlier finding (Wagner et al., 2004) that those who slept were more likely to discover the rule. 

Also, beta power (17 - 25 Hz) predicted which participants would discover the rule, but only 

during SWS. 

Although this study implicates SWS in memory generalization, in other relevant studies 

SWS has not consistently been the most important sleep stage. Rapid eye movement (REM) 

sleep, which tends to be more prevalent in the second half of the night, has been associated with 

integrating unassociated information for creative problem solving (Robert Stickgold & Walker, 

2004). Using the remote-associates task, where participants see three cue words and must 

identify a fourth word linked with all three (i.e. crab, pie, and pine are all linked by apple), 

researchers compared wake participants with sleep groups that either did or did not enter REM 

sleep during an afternoon nap (Cai et al., 2009). Only the REM sleep group improved on the task 

by integrating unassociated information to find solutions. Although the authors concluded that 

REM sleep is important for integration, there may have been confounding factors that led some 

subjects to have more REM. Also, other studies have not always found REM sleep correlated 

with problem solving (Beijamini et al., 2014). In fact, a recent experiment using magic tricks and 
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classic insight problems found no effect of sleep on problem solving at all (Schönauer et al., 

2018). 

Contrasting specificity and generalization during sleep 

The experiments described thus far examined either memory for specifics or 

generalization. It could be advantageous to analyze both types of memory in tandem. This tactic 

was utilized in a study where learning of Chinese characters was followed by a 90-min afternoon 

nap or wake period (Lau et al., 2011). Recalling the meaning of studied characters was relatively 

worse after a delay with sleep compared to wake, but generalization was improved, 

operationalized in this study as the ability to recognize common symbols shared across 

characters (i.e. the symbol for woman is included in the characters for maid, princess, and nurse). 

In another study also supporting the idea that sleep is preferentially beneficial for 

generalization (Schapiro, McDevitt, et al., 2017), participants viewed artificial images composed 

of shared features (defining categories) and unique features (identifiers for individuals). Sleep 

was associated with relatively better memory only for the former. 

Researchers have also tested 15-month-olds’ generalization abilities through exposure to 

triplets of spoken words in an artificial language with hidden dependencies between the first and 

final words (Gómez et al., 2006). Infants either napped or stayed awake for a 4-hour delay before 

a subsequent test. Whereas memory for the previously heard strings was evident in the wake 

group, an ability to abstract the grammatical relation and apply it to new strings of nonsense 

words was significant only in the sleep group. Together, these studies indicate that even a short 

period of sleep may preferentially influence generalized memory over memory for specifics. 
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In another study comparing sleep and wake groups across a 12-hour delay, participants 

completed a dot-pattern-classification task, where they categorized constellation-like images 

(Graveline & Wamsley, 2017a). Researchers found that overnight sleep improved categorization 

of new stimuli but had no effect on recognition of old stimuli. 

In a longer-delay study that tested generalization in a visual-categorization paradigm, 

researchers tested participants after a 10-hour period containing sleep or wake, and then again 

1 year later (Lutz et al., 2017). Participants who slept after learning were relatively better at 

recognition specificity at the 10-hour delay, but there was no difference between the groups on 

generalization. However, after a year delay, only the sleep group showed gist knowledge in their 

categorization performance, even though specific items were not remembered in either group. 

A reasonable inference based on this evidence is that generalized memory and memory 

for specific details can be in competition with each other, with sleep enhancing memory 

generalization but not specific memories. However, this hypothesis is challenged by numerous 

studies showing that sleep improves memory for specifics (Doxey et al., 2018; Jegou et al., 

2019). There are at least three possible explanations for this apparent conflict. First, the 

experimental designs above may have emphasized general features to the detriment of specifics 

during learning. Second, perhaps these paradigms lacked sufficient sensitivity to specificity 

effects. Finally, maybe both memory types benefit from sleep, depending on different sleep 

stages or sleep physiology. 

All the above studies compared memory following wake versus sleep, sometimes 

emphasizing different sleep stages. However, these sleep and wake conditions vary in many 

ways, including alertness, degree of interference, and circadian factors. Accordingly, results from 
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sleep-versus-wake designs are subject to interpretive limitations such that sleep’s role in 

promoting memory generalization and specificity has remained equivocal. However, alternative 

experimental strategies that avoid these shortcomings could be employed. 

Future prospects using targeted memory reactivation 

Memory reactivation during sleep can be biased using targeted memory reactivation 

(TMR), an experimental tool that allows researchers to direct reactivation for specific items 

during sleep. The procedure typically starts with a learning session including one or more special 

stimuli that are linked with aspects of learning. The same stimuli can then be presented during 

sleep — carefully to avoid producing arousal — in an attempt to reactivate memories (Oudiette 

& Paller, 2013; Schouten et al., 2017). A recent meta-analysis of the TMR literature to date 

demonstrated that such cues were effective during SWS and stage-2 sleep (Hu et al., 2020). 

Many early studies using TMR focused on spatial memory where individual items are 

associated with cues and a specific location on a grid (Rasch et al., 2007; Rudoy et al., 2009). 

These designs are particularly powerful for detecting small, specific changes between cued and 

noncued items, as measured by error between an item’s studied location and the location recalled 

by the participant at test. TMR has been applied to investigate memory consolidation for a broad 

array of memory types (Cousins et al., 2014; Honma et al., 2016; Schreiner, Göldi, et al., 2015). 

Though most studies using TMR have focused on its impact on the specific aspects of 

remembering, TMR offers advantages for investigating sleep’s role in both memory 

generalization and specificity. Relying on within-subject comparisons between cued and 

noncued information, for example, avoids confounds with differential alertness, time of day, 

demand characteristics, and potential interference from waking experience. Although some 
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evidence suggests that TMR-induced consolidation may differ in some respects from 

spontaneous reactivation (Klinzing et al., 2018), it remains a useful tool for understanding 

memory transformation over sleep. 

One recent TMR experiment explored sleep’s contribution to generalization by using 

lexical competition between words and nonwords (Tamminen et al., 2017). The researchers 

hypothesized that cueing during sleep would lead to better lexical integration of artificial words. 

Results showed no direct effect of TMR. However, for cued words, REM sleep was correlated 

with better integration of new information within existing knowledge. That is, participants took 

longer to make judgments for stimuli confusable with cued relative to the noncued words when 

they spent more time in REM sleep, indicating that TMR facilitated the extent to which words 

were embedded in the lexicon. While touching on generalization, this study does not reveal what 

aspect of generalization leads to competition nor does it test for specificity. 

Rather than focusing on competition between specific words, researchers in another 

study used TMR to test grammatical rule abstraction (Batterink & Paller, 2017). Participants 

learned grammatical rules through a language task and then participated in a second, unrelated 

task. During an afternoon nap, participants were cued for either the grammar task or the 

unrelated task, and those who were exposed to the language phrases during sleep showed a 

relative gain in grammar learning. Whereas these findings reinforce the notion that memory 

reactivation can impact generalization, the performance criteria at learning were such that it was 

not straightforward to assess memory for specific phrases at test. 

Insofar as sleep’s role in the consolidation process for specific episodic memories and 

gist is not well understood, manipulating reactivation via TMR provides a suitable tool for 
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seeking answers to these questions. Future TMR experiments should be designed with a variety 

of learning materials and procedures to test both integrated knowledge as well as specifics of the 

items studied. Ideally, these two features can be examined in parallel such that researchers can 

identify if they rely on different processes or represent a trade-off whereby specificity declines as 

generalized knowledge is gained (or vice-versa). 

For example, analogical problem solving could be used to put generalization and 

memory specificity in opposition (Monaghan et al., 2015). Participants could attempt to solve a 

series of word problems with distinct features, half of which would be cued during sleep. Upon 

waking, participants would attempt to solve an analogous problem with different details, testing 

both for problem solving (generalization of the underlying structure) and details of the specific 

problems. 

Additionally, better understanding of how TMR cues bias consolidation during sleep and 

whether reactivation is specific to the item or applies to a general context will improve 

experimental design for all studies going forward (Schechtman et al., 2019). Harnessing TMR to 

causally affect memory consolidation may prove crucial in teasing apart hypotheses regarding 

sleep’s role in generalization and the possible trade-off between generalized and specific 

memories. We might discover that different sleep-physiology signals relate to how brain 

networks are engaged to preferentially yield either generalization or maintenance of details. 

Further studies might find that sleep promotes generalization at the expense of memory for 

specifics. Alternately, as schematized in Figure 2.1, sleep may both promote the integration of 

specific memories into broader schemas while also protecting the specific of those memories. 

Experimental approaches that take into account the dual role of consolidation in facilitating 
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memory for specifics as well as generalization are crucial to improving our understanding of 

sleep’s role in memory. 
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CHAPTER 3 

Experiment 1: Comparing sleep versus wake groups on memory for individual stimuli and 

categories of confusable terrains 

Studies across a broad set of experiments have highlighted sleep as important not just for 

memory consolidation of specific instances, but also generalization (Stickgold & Walker, 2013). 

In one influential paper, the authors argued that memory consolidation processes during sleep 

might gradually cause memories to lose specific details such that long-term representations 

become more gist-like (Inostroza & Born, 2013). Although such gist extraction might be 

important for rule learning or generalizing behavior across similar circumstances, it remains 

unclear whether such abstraction occurs primarily during sleep or simply across extended periods 

of time. Additionally, researchers have yet to conclusively tackle whether abstraction, either 

across time or sleep, comes at the cost of specific memory. 

 Generalization across many instances to form a categorical representation has been 

studied in various ways, but one of the earliest variants is the prototype distortion task (Posner & 

Keele, 1968). In this experimental design, the stimuli are composed of dot patterns from a 

prototypical image where the resulting categorical exemplars are creating by jittering the dot 

locations from the original prototype. Although the design is rather straightforward, results from 

prototype distortion studies have been used to argue for both the exemplar and prototype models 

of categorization (Homa et al., 1979; Minda & Smith, 2002; Nosofsky, 1991). 

Supporters of the exemplar theory argue that categorization is achieved by comparing a 

stimulus to previously seen specific, stored examples and determining which examples most 

closely match the new stimulus (Busemeyer et al., 1984; Medin & Schaffer, 1978). On the other 
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hand, those who endorse the prototype theory contend that categorization is achieved by 

maintaining a gist memory representation abstracted from previous experiences (Homa et al., 

1979; Minda & Smith, 2002; Posner & Keele, 1968). These two theories both account for aspects 

of categorization and occur during sleep or wake, but make different predictions about memory 

for specific instances. A prototype model would maintain categorization even if there was 

forgetting of specific stimuli while the exemplar model would expect categorization to drop if 

there was forgetting of specific instances. 

 One recent study used the prototype distortion task to compare between participants that 

either slept or remained awake over a 12-hour delay. The researchers found that sleep benefitted 

both studied and new exemplars compared to the wake group (Graveline & Wamsley, 2017b). 

The sleep group did not show a significant improvement on categorizing exemplars or 

identifying whether a dot pattern was new or old after a 12-hour delay. However, the sleep group 

did maintain performance on these measures while the wake group showed a significant decline 

in all measures of performance (categorizing and recognizing old or new exemplars) after the 12-

hour delay. This study would seem to indicate that sleep consolidation follows the exemplar 

theory trajectory where both specifics and categorization are protected from significant 

forgetting. 

Similarly, a more recent study used a satellite-identification task to again compare 

between twelve hours of daytime wakefulness compared to overnight sleep. The researchers 

showed that overnight sleep protected both memory for unique features of a ‘satellite’ image and 

improved memory for shared features across similar satellites while both measures declined over 

a day of wakefulness (Schapiro, McDevitt, et al., 2017). 
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However, other research has found the predicted tradeoffs between recognizing old 

stimuli and generalizing to new knowledge as would be expected in a prototype model. In a 

study where participants learned the meaning of Chinese characters, sleep during a 90-minute 

afternoon nap decreased their ability to recall the meaning of characters they had previously 

studied compared to the wake group. But the sleep group was better than the wake group at 

guessing the meaning of new, similar characters after the 90-minute delay (Lau et al., 2011). 

However, this study was conducted over a much shorter time period than the two described 

previously. 

In fact, the time course for forgetting of specific instances compared to memory 

necessary for categorization have not been adequately addressed. Regardless of sleep, only a few 

studies have examined how memory changes over time. One early report examined category 

learning both immediately after learning and at a one-week follow up (Homa et al., 1981). The 

researchers found that the exemplar theory better explained performance at the immediate test 

but that the prototype theory was better supported at the longer delay. This could indicate that 

different memory systems drive behavior, depending how much the memory tests are separated 

in time. At least one functional MRI study supports this idea, finding neural evidence for a two-

phase learning process across a distributed network (Little & Thulborn, 2006). 

As of yet, there is no conclusive answer as to whether sleep protects or improves both 

memories for specifics as well as generalization in the form of categorization. Nor is it known 

how these two memory representations might change across time. Prior studies have relied on 

rather simplistic stimuli, limiting their explanatory value because they may not represent 

experiences in the natural world. In the current set of experiments, we trained participants on 

three categories of short videos of outdoor scenes and then tested performance on memory 
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specificity and categorical knowledge after a delay containing either sleep or wake. In study 1, 

participants were split into either sleep or wake groups and were tested at 9am and 9pm 

respectively. In study 2, all participants arrived to the lab in the afternoon and after the learning 

phase were split into either the nap or wake group. This allowed us to compare specificity and 

categorization across long and short delays containing either sleep or wakefulness. 

METHOD 

Participants 

A total of 90 members of the Northwestern University community who had no known history of 

neurological or sleep disorders participated. Participants either earned class credit or were paid 

for their time. We recruited 49 participants (30 female, 19 male) for the first study, but excluded 

the results from 9 of these participants: 5 did not complete the full experiment and 4 were 

consistently below chance (~33%) for the last third of the learning phase. Of the 40 participants 

included in the final sample 20 participants were randomized into the overnight sleep condition 

(2 left-handed, mean age = 21.8 yrs) while the remaining were placed in the wake condition (1 

left-handed, mean age = 20.1 yrs). 

Forty-one participants (26 female, 2 non-binary, 13 male) were recruited for the second 

study, but 4 participants were excluded because they were consistently below chance (~33%) for 

the last third of the learning phase. Thus, our final sample consisted of 37 participants who were 

all asked to go to bed later than usual the night before the study, wake up one hour earlier than 

usual in the morning, and to avoid caffeine the day of the experiment. Eighteen participants were 

randomized into the sleep group (all right-handed, mean age = 20.9 yrs) and 19 participants (all 
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right-handed, mean age = 21 yrs) remained awake. The Northwestern University Institutional 

Review Board approved this procedure and informed consent was obtained from all participants. 

Stimuli 

Figure	3.1.	Still	image	examples	of	the	three	video	categories	with	accompanying	labels.	

Using Unity game engine software, we rendered 60 video clips of outdoor scenes. Each 4-second 

clip was shot from the first-person perspective and depicted forward movement in a backwards 

“S” trajectory through each scene. Video clips varied based on 4 environmental dimensions (i.e. 

weather, time of day, hilliness, and amount of vegetation) that could be controlled during the 

rendering process. Each environmental dimension could vary in increments of 0.1 on a scale 

from 0 to 1. For example, values closer to 1 for the “Hilliness” dimension would render flat 

terrains, while values closer to 0 would render steeper terrains. For the “Time of Day” 

dimension, values close to 0 depicted sky and illumination features of morning, while values 

closer to 1 depicted sky and illumination features of sunset and nighttime.  
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Figure 3.2. Representation of the three categories of terrain in a 3-dimensional space based on three of the 
four variables for producing the environment (time-of-day variable not shown here).  The red dots 
represent the prototypes of each category while the points clustered around them represent the stimuli 
generated such that each video is equidistant from the prototype and none of the categories overlap. Alpha 
videos are represented as blue triangles, bravo videos are represented as green circles, and charlie videos 
are represented as yellow squares. 

A “Prototypes-Exemplar” algorithm determined the chosen settings for each video clip 

by first plotting 3 “category prototype” point coordinates equidistant from one another in 4-

dimensional space with each axis corresponding to an environment dimension scale, similar to 

selection of stimuli for the dot paradigm (Graveline & Wamsley, 2017b; Homa et al., 1979; 

Posner & Keele, 1968). Each “category prototype” point defined the exemplar category 

memberships to “Alpha”, “Bravo” and “Charlie” terrain types. Then, 20 exemplar point 

coordinates were generated to be a given distance from their respective category prototype point 

coordinate. The algorithmically chosen 4-D exemplar coordinates were then used to render each 

of the environmental dimensions of the video clip according to the specified values of each 

coordinate. Each generated video clip in a given category was equidistant in 4-D space from the 
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initial prototype. This process ensured maximal balance between the similarity of exemplars in 

the same category membership and the necessity of maintaining uniqueness across all video 

clips. Participants were never exposed to video clips rendered from the prototype coordinates.  

Procedure 

Each participant gave written consent before beginning the experiment. In the first experiment, 

participants arrived for their first session at either 9am or 9pm, depending on whether they were 

randomly selected to participate in the sleep or wake group and were asked to complete the 

Morningness-Eveningness Questionnaire (MEQ) to determine their preferred circadian time. 

Additionally, during both visits participants completed the Stanford Sleepiness Scale (SSS) to 

record their drowsiness at the time of testing. These two measures were used to verify that group 

differences weren’t due to drowsiness at test or individual differences according to circadian 

preference. Lastly, after the experiment was completed during the second session 12 hours after 

the initial session, participants filled out a general questionnaire to ask how they determined the 

categories for stimuli and to ask about general habits like caffeine consumption that have been 

known to affect circadian performance. 

 In the second experiment, participants arrived between noon and 2pm to begin the study. 

They also completed the MEQ before learning began, and answered the SSS both before and 

after the nap/wake delay. The procedure was identical to that of the 12-hour delay experiment 

except participants did not leave the lab between the two testing sessions. Instead, researchers 

took approximately 30 minutes to apply the Neuroscan electroencephalograph (EEG) cap before 

the participants were told in which group (nap versus wake) they had been randomly placed. The 

nap group slept in the testing chamber, with the futon armchair converted into a twin bed. The 
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wake group remained seated in the testing chamber and listened to a 90-minute podcast from 

Gimlet Media’s Reply All (episode #102, Long Distance). 

EEG was recorded only during the 90-minute wake or nap phase from 21 scalp locations 

from the 10–20 system (Fpz, Fp1, Fp2, Cz, C3, C4, F3, F4, F7, F8, Pz, P3, P4, T3, T4, T5, T6, 

Oz, O1, O2) and both mastoids. Additional electrodes were placed on the face for recording 

vertical and horizontal electro-oculogram (EOG) and chin electromyogram (EMG). Electrodes 

were referenced to the left mastoid electrode and re-referenced offline to the average of the two 

mastoids. Impedances were brought down to 5 kΩ and voltage was sampled at 1000 Hz. 

Learning. Participants were instructed that they would be viewing clips of outdoor 

scenes and that they were to determine to which category each clip belonged. Specifically, they 

were instructed, 

“You will be presented with short video feeds and asked to choose one of three possible 

categories identifying how the terrain differs, 'Alpha', 'Bravo', and 'Charlie'. 

Once you choose the terrain type, your computer will inform you if you were correct. 

If the selected terrain type was correct, a green 'Thumbs Up' will appear. 

If the selected terrain type was incorrect, a red 'Thumbs Down' with the name of the 

correct terrain type will appear. 

Note that if you aren't sure of which method to choose, please guess. In addition, the 

correct identification of terrain type depends on multiple features- ie, do not rely solely 

on the hilliness or cloud coverage alone. 

If you feel 'Alpha' is the correct method, press the key marked 'A'. 

If you feel 'Bravo' is the correct method, press the key marked 'B'. 

If you feel 'Charlie' is the correct method, press the key marked 'C'. 
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You will be able to take a break after each set of 30 video feeds. You will see a total of 

30 videos each 9 times. All of this will be followed by a memory test over these specific 

videos so try to remember them as best you can. We know this is a very difficult task but 

do your best!” 

After each 4-second clip, participants pressed “A,” “B,” or “C” to indicate whether the 

video was an Alpha, Bravo or Charlie. Participants had to respond within 5 seconds and were 

then provided feedback on whether they selected correctly and the correct category for the video 

if they selected the wrong category, lasting 2 seconds. Participants viewed 30 clips per round 

with 10 videos per category. The order of these clips was then randomized and displayed again. 

The 30 videos were repeatedly displayed for a total of 9 blocks (270 clip presentations) and were 

presented in a randomized order for each of the blocks. Participants did not know that there were 

only 30 unique videos shown during the learning portion. Participants took approximately 35 

minutes to complete the learning portion.  

Test 1 (T1). Directly after the learning session, participants were tested on their 

knowledge of both categorical information and whether they had seen a clip before (called 

“old/new”). Participants were instructed that they would see 60 total clips comprised of 30 

videos repeated twice. Videos were tested twice in order to increase the number of stimuli 

without increasing the number of videos seen during learning. Half of the videos (15) were new, 

meaning they weren’t studied during the learning portion, and half were old, indicating they were 

seen during learning. After each 4-second video, participants had to make an old/new judgment 

within 5 seconds, followed by a confidence rating (on a 1-3 scale) within 5 seconds. After which, 

participants were asked to identify if the clip was an Alpha, Bravo, or Charlie (5 second trial) 

and gave a confidence rating for that judgment (5 second trial). Participants had to respond to 
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each question within 5 seconds and the entire pre-delay test section lasted approximately 10 

minutes. 

Test 2 (T2). The post-delay test was identical to the Test 1 but used a combination of the 

remaining 15 untested old videos as well as 15 totally new videos. Once again, the clips were 

each tested twice, meaning participants saw a total of 60 clips. This test lasted approximately 10 

minutes occurred either 12 hours (study 1) or 2 hours (study 2) after Test 1 with either sleep or 

wakefulness over the intervening time. 

Analyses 

Behavioral Data. The primary measure of interest was how memory changed over time 

between the sleep and wake groups in both experiments. We used a two-way repeated measure 

ANOVA to compare the main effects of group and test session as well as the interaction between 

them. Group included two levels (sleep, wake) and test sessions consisted of two levels (T1, T2). 

The two-way repeated measure ANOVA was completed twice, once for the categorical test and 

once for the old/new specificity test. Post-hoc tests were used to determine whether results were 

due to time-of-day confounding factors rather than the group assignment. Specifically, we used a 

t-test to compare SSS scores between the sleep and wake groups to determine whether one group 

was drowsier during testing than that other. We also compared MEQ scores between the two 

groups using a t-test to ensure time-of-day preference didn’t vary between the groups. 

Sleep Physiology in Study 2. Continuous EEG data were down-sampled to 128 Hz and 

filtered at 0.5–50 Hz using an infinite impulse response Butterworth filter. Sleep stages were 

formally identified using standard sleep scoring criteria. Wake EEG was also formally checked 

to verify that the wake participants remained alert for the duration of the 90-minute delay. 
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For the nap group, standard analyses of sleep oscillations were computed focusing on two 

clusters of interest (frontal using Fpz, Fp1, Fp2; central-parietal using Cz, Pz, C3, C4, P3, P4). A 

fast Fourier transform using a Hanning function and 5-s intervals was performed on NREM sleep 

epochs. We extracted mean power for delta (1–4 Hz) and sigma (12–15 Hz) bands. For slow-

oscillation analyses, EEG was low-pass filtered at 3.5 Hz. Slow oscillations were detected by 

finding adjacent points in which the EEG signal voltage changed from positive to negative that 

were 0.5–2.0 s apart from each other, and when the maximum peak-to-peak amplitude between 

the two points was greater than 75 µV. Sleep spindles were automatically detected (Mölle et al., 

2011) by first filtering EEG data between 11 and 16 Hz and calculating root mean squared 

(RMS) voltage using a sliding 200-ms window. A spindle was counted if the RMS crossed a 

threshold of 1.5 standard deviations of the signal and remained above the threshold for 0.5–3.0 s. 

We separately analyzed fast (> 13.5 Hz) and slow spindles (< 13.5 Hz) because they show 

different topographies, with fast spindles predominant at parietal and central locations and slow 

spindles at frontal locations. 

Post Hoc Analyses Examining Group and Individual-Differences 

Machine Learning. In order to verify if there were any differences between the sleep 

and wake groups, we ran a principal components analysis on participants’ behavioral measures 

(such as confidence ratings, recognition accuracy, categorization, etc.) and selected 10 

components from both the study 1 participants (n = 40) and the full set of participants of both 

studies (n = 77). These were used as input for a support vector machine (SVM) in python. We 

trained the SVM on all data except data from one subject that was held out, and tested whether 

we could correctly identify that one as belonging to either the sleep or wake group. We repeated 

this process, iterating though each participant before summarizing the results. We didn’t find any 
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components that reliably identified group membership above chance. We later attempted the 

same process using 20 components, but the SVM still wasn’t able to identify group membership 

with any reliability and so those results aren’t included here. 

Explicit Categorization Rule Learning in Study 1. After completing the second test in 

Study 1, we asked participants to complete a general questionnaire including questions about 

caffeine consumption and their thoughts on the experiment. One of the questions asked was, 

‘How did you decide between the Alpha, Bravo, and Charlie categories?’ We computed the 

number of rules that participants listed based on prior work from Brooke Feinstein in the Reber 

lab. Rules were defined as a combination of both a specific category name and a specific feature. 

For example, “Bravo looked like a sunset” would count as a rule while “I guessed” or “I used the 

camera angle” were not considered rules. Using numeric scores for each participant’s rule count, 

we analyzed whether those with more rules performed differently on the task than those with 

fewer or no rules. We did not find any significant differences and so those results are not 

reported here. 

STUDY 1 RESULTS AND DISCUSSION 

Sleepiness survey and circadian preference. The sleepiness score from the SSS assessment did 

not differ between the sleep and wake conditions for T1 (mean sleep = 2.65; mean wake = 2.70; 

t[38] = 0.14, p = 0.89), but did differ at T2 (mean sleep = 2.65; mean wake = 1.85; t[38] = -2.43, 

p = 0.02), meaning the wake group was more alert at T2. This suggests that there were no 

alertness differences between the groups during the learning portion (T1) due to time of day, but 

differences did emerge after the delay. Additionally, the MEQ scores did not differ between the 

two groups (mean sleep = 41.95 i.e., no strong preference; mean wake = 42.95 i.e., no strong 
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preference; t[38] = 0.46, p = 0.64), suggesting that there were no differences in circadian 

preference between the two. 

Training. Participants acquired category knowledge over a series of 9 blocks, as shown in Figure 

3.3. Collapsing across the last three blocks, average performance across all participants was 

73.09% (SD = 16.49%). Due to a computer error, some data were missing in later blocks and 

have been removed from training analyses. We found there were no differences in learning 

between the two groups on any block, though most importantly they weren’t significantly 

different at the final block as shown in figure 3.3 (mean sleep = 72.16%; mean wake = 75.21%; 

t[38] = -0.11, p = 0.91). 

	

Figure 3.3. Line graph of average learning curves across the 9 training blocks for both the sleep and wake 
groups separately. The x-axis denotes the training block and the y-axis denotes the average percent 
correct for that block. The dashed line represents chance (33.33%). 
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Memory Specificity. On average, participants correctly selected whether the video was old or 

new with 57.31% accuracy (SD = 8.43%) and rated their confidence an average of 1.97 (on a 1 

to 3 scale; SD = .32). Examining just items called new, participants on average were correct (hit 

rate) for 55.91% of the trials and false alarmed (called an old video new) on 29.83% of the trials, 

resulting in a d-prime of .75 at T1 (z-scored hit rate = .17, z-scored false alarm = -.60). After the 

delay, the average hit rate was 47.50% (z-scored value = -.06) and average false alarm of 41.17% 

(z-scored value =  -.24), resulting in a d-prime of .17at T2. We found no difference in 

performance between the sleep and wake groups at T1 for recognition of whether a video was 

old or new (mean sleep = 62.75%; mean wake = 62.67%; t[38] = -0.4, p = .97). Upon further 

breaking this down, the sleep and wake groups weren’t significantly different at recognizing only 

new videos (p = .90) or only old (p = .89). Finally, we analyzed participants’ confidence at T1 

and found no difference between the groups (p = .63). 

 To assess the change in recognition accuracy from T1 to T2, we used a two-way repeated 

measure ANOVA with group (sleep or wake) and session (T1, T2) as between-subject variables 

(see figure 3.4 a). There was a main effect of session, with participants performing better at T1 

(62.71% correct) compared to T2 (52.96% correct) as shown in figure 3.4a (F[1,38] = 62.32, p < 

.001). There was no interaction between group and session (F[1,38] = .66, p = .42). These results 

suggest overnight sleep was not beneficial in protecting memory of specific videos more than 

remaining awake. Rather, participants generally only got worse during the intervening time. 
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Figure 3.4 The graph on the left (a) represents participants’ summed percent correct answers for both old 
and new videos between the two sessions (T1, T2) and between groups (wake, sleep). The black dashed 
line marks chance performance (50%). The graph on the right (b) represents participants’ reported 
confidence between the two sessions (T1, T2) and between groups (wake, sleep). Higher values on the 
confidence scale represent higher confidence. 

 

We also tested whether confidence ratings differed between the two groups using an 

ANOVA (see figure 3.4b), but only found a main effect of session (F[1,38] = 8.52, p = .037) and 

no interaction between the groups and sessions (F[1,38] = .046, p = .83). The results from the 

confidence measure indicate that participants’ confidence reports generally matched their 

performance level. 

To verify that our findings weren’t a result of low-confidence trials increasing noise in 

our measure, we removed all lowest-confidence trials. The two-way repeated ANOVA showed a 

main effect of session (p < .001), but no interaction between groups and sessions (p = .45). The 

results mirror our earlier analysis with all trials and so we can conclude that low confidence trials 

weren’t driving the effects.  
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Because T1 specificity accuracy hovered around chance (50%), we additionally wanted 

to confirm that our effects weren’t due to noise induced by non-learners. We used a median split 

on both the sleep and wake groups and conducted an additional ANOVA using the top-half 

scorers on the specificity test (mean = 67.83%). The results mirrored those of the prior test (see 

figure 3.4a) in that we found a significant effect of session (p < .001) but no interaction between 

groups and sessions (p = .28). Thus, we concluded the lack of differences between the groups 

wasn’t due to non-learners.  

Categorization. On average, participants correctly selected the category of a video with 73.98% 

accuracy (SD = 15.34%). This is comparable to the average performance of 73.03% accuracy 

(SD = 16.49%) on the last three blocks of the training. Participants also rated their confidence for 

categorizing videos at 1.29 (SD = .45) on average. 

We then conducted a two-way repeated measure ANOVA with group (sleep or wake) and 

session (T1, T2) as between-subject variables. We found no difference in performance between 

the sleep and wake groups at T1 for categorization of both old or new videos into the three 

categories (mean nap = 74.91%; mean wake = 72.81%; t[35] = 0.34, p = .73). Furthermore, the 

groups were not significantly different in identifying Alpha (p = .80), Bravo (p = .38), or Charlie 

(p = .77). Confidence ratings of categorization were not significant between the groups at T1 (p 

= .76), indicating that the sleep and wake groups were equally matched before the delay. 

 To assess the change in categorization accuracy from T1 to T2, we used a two-way 

repeated measure ANOVA that included group (sleep or wake), session (T1, T2), and item type 

(old or new video). There was a main effect of session (see figure 3.5a), with participants 

performing better at T1 compared to T2 (F[1,38] = 29.68, p < .001) and a main effect of item 

(F[1,38] = 5.76, p = .02) with participants performing better on the categorization of old videos 
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more than new. There was no interaction between group and session (p = .79). There was an 

interaction between session and item (F[1,38] = 10.40, p = .002) such that participants’ 

categorization of new videos dropped across the delay while categorization of old videos stayed 

relatively stable. The three-way interaction between group, session, and item was nearly 

significant (F[1,38] = 3.26, p = .07). These results show that neither sleep nor wake was 

beneficial to protecting memory for categorization as a whole, but that old videos were better 

categorized than new, especially so after the delay. 
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Figure 3.5 The top graph (a) represents participants’ summed percent correct answers for categorization 
between the two sessions (T1, T2) and between groups (wake, sleep). Items are additionally split between 
old and new videos and marked with either bold (new) or pastel (old) coloring. The black dashed line 
marks chance performance (33.33%). The bottom graph (b) represents participants’ reported confidence 
between the two sessions (T1, T2) and between groups (wake, sleep) for categorization. Higher values on 
the confidence scale represent higher confidence. 
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We also tested whether confidence ratings differed between the two groups across 

sessions and item types using an ANOVA. We did not find a main effect of session (p = .14), but 

did find a main effect of item type (F[1,38] = 14.11, p < .001) such that participants felt more 

confident on old rather than new videos. There were two significant 2-way interactions. First, the 

interaction between group and item type (F[1,38] = 8.19, p = .006) was significant, reflecting 

that the wake group rated their confidence about the same as the sleep group on new videos but 

were more confident on old videos, as shown in Figure 3.5b. Second, the interaction between 

session and item type (F[1,38] = 14.11, p = .0006) was significant, meaning participants felt less 

confident on new items at T2 but maintained their confidence on old items across the delay. 

Finally, there was a significant three-way interaction between group, session, and item (F[1,38] 

= 8.19, p = .007). 

Summary of Study 1. The overall picture from Study 1 is after 9 blocks of training, participants 

were sufficiently able to distinguish both between old and new videos as well as recognize the 

videos’ categories. We found that after either nighttime sleep or a period of wake over the day, 

both groups showed forgetting to barely above chance. There was also no significant interaction 

between the groups on categorization, though participants on average became worse at 

categorizing new videos after the delay and maintained categorization performance on old 

videos. 

Participants’ pattern of ratings of their confidence generally matched their actual 

performance. There were two exceptions to this, both on categorization. First, confidence on 

categorization generally didn’t drop from T1 to T2, regardless of group. This is interesting as 

confidence for memory specificity did drop across time, as did actual performance. This may 

reflect that the training was solely based on categorization where participants received consistent 
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feedback and thus felt more confident on the categorization tests. Secondly, there was an 

interaction such that the wake group rated their confidence higher for old items than the sleep 

group. This was not expected and doesn’t have an obvious explanation. 

 Because performance on the specificity task essentially dropped to chance after the 12-

hour delay, we hypothesized that a shorter delay would help protect against such catastrophic 

forgetting. Additionally, we were concerned that circadian factors could be influencing the 

results. Although the groups were matched for circadian preference and alertness at training, 

after the 12-hour delay they showed differences in alertness (as measured with the SSS) between 

the groups. Because of these concerns, we next ran an afternoon nap versus afternoon awake 

variant of this paradigm with EEG, allowing us to explore whether specific sleep features affect 

memory performance in this task. Additionally, this secondary design matched the time of day 

between groups, eliminating any potential circadian effects.  

STUDY 2 RESULTS AND DISCUSSION 

Sleepiness survey and circadian preference. The SSS scores did not differ between the nap and 

wake conditions for T1 (mean nap = 3.22; mean wake = 3.26; t[35] = -0.12, p = 0.91) or T2 

(mean nap = ; mean wake = ; t[24] = 1.76, p = 0.09). Although it should be noted that 11 

participants didn’t complete a second SSS questionnaire (5 from the nap group and 6 from the 

wake). This suggests that there were no alertness differences between the groups, as would be 

expected because all participants began the study within the same time window. Additionally, 

the MEQ scores did not differ between the two groups (mean nap = 48.06; mean wake = 43.26; 

t[35] = 1.81, p = 0.07), suggesting that there were no differences in circadian preference between 

the two. 
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Training. In the second study, we were able to address the computer lag that wasn’t recording 

button presses. Collapsing across the last three blocks, average performance across all 

participants was 67.60% (SD = 18.20%). As shown in figure 3.6, we found there were no 

differences in learning between the two groups on any block. Most importantly the two groups 

weren’t significantly different at the final block (mean nap = 70.55%; mean wake = 68.77%; 

t[35] =, p = 0.75), meaning their learning was equally matched. 

	

Figure 3.6. Line graph of average learning curves across the 9 training blocks for both the nap and wake 
groups separately. The x-axis denotes the training block and the y-axis denotes the average percent 
correct for that block. The dashed line represents chance (33.33%). 

Memory Specificity. On average, participants correctly selected whether the video was old or 

new with 57.07% accuracy (SD = 6.21%), which is nearly identical to performance on study 1 

(57.31% accuracy). On average, participants’ confidence for specificity in this study was 2.20 

(SD = .28). Examining just items called new, participants on average were correct (hit rate) for 

52.61% of the trials and false alarmed (called a old video new) on 30.18% of the trials, resulting 

in a d-prime of .61 at T1 (z-scored hit rate = .07, z-scored false alarm = -.54). After the delay, the 
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average hit rate was 49.28% (z-scored value = -.02) and average false alarm of 41.53% (z-scored 

value =  -.23), resulting in a d-prime of .21 at T2. Although participants were randomly placed in 

each group, we did find a difference in performance between the nap and wake groups at T1 for 

recognition of whether a video was old or new (mean sleep = 62.96%; mean wake = 58.51%; 

t[35] = 2.07, p = .045). We further broke this test down by examining only old or new items and 

found the nap and wake groups weren’t significantly different at recognizing only new videos (p 

= .35) or only old (p = .44). These T1 differences were unexpected as all participants began the 

experiment around the same time and were randomized into the two groups. Finally, we analyzed 

participants’ confidence at T1 and found no difference between the groups (p = .97). 

To assess the change in recognition accuracy from T1 to T2, we used a two-way repeated 

measure ANOVA with group (nap or wake) and session (T1, T2) as between-subject variables. 

As shown in figure 3.7, there was a main effect of session with participants performing better at 

T1 compared to T2 (F[1,35] = 36.79, p < .001). There was nearly a significant interaction 

between the nap and wake groups and session (F[1,35] = 3.04, p = .089). While these results 

might seem to indicate that the nap group saw an improvement over the delay compared to wake, 

this interaction isn’t reliable and thus we cannot make any conclusive statements.  



64	
	

	

Figure 3.7 The graph on the left (a) represents participants’ summed percent correct answers for both old 
and new videos between the two sessions (T1, T2) and identifies groups by color (red = wake, blue = 
nap). The black dashed line marks chance performance (50%). The graph on the right (b) represents 
participants’ reported confidence between the two sessions (T1, T2) and between groups (wake, sleep).  

We also tested whether confidence ratings differed between the two groups using an 

ANOVA, but only found a main effect of session (F[1,35] = 14.20, p = .0006) and no interaction 

between the groups and sessions (F[1,35] = 1.04, p = .31). Although the nap group was better at 

identifying old or new videos during T1, this did not translate to increased confidence for that 

test session. Confidence measures only seemed to track the decline in performance across the 

delay. 

Similar to study 1, we wanted to verify that our findings weren’t a result of low-

confidence trials increasing noise in our measure. Hence, we removed all lowest-confidence 

trials (where confidence was rated as 1 for specificity). The two-way repeated ANOVA showed 

a main effect of session (p < .001), but no significant interaction between groups and sessions (p 

= .06). The results mirror our earlier analysis with all trials and so we can conclude that low 

confidence trials weren’t driving the effects. 
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Lastly, we noted that T1 specificity accuracy was lower on this experiment compared to 

study 1 so we wanted to confirm that our effects weren’t due to noise induced by non-learners. 

We used a median split on both the sleep and wake groups and conducted an additional ANOVA 

using the top-half scorers on the specificity test (mean = 65.42%). The results mirrored those of 

the prior test (see figure 3.7a), in that we found a significant effect of session (p < .001) but no 

interaction between groups and sessions (p = .64). Thus, we concluded the lack of differences 

between the groups wasn’t due to non-learners.  

Categorization. There were no differences in performance between nap and wake groups during 

T1 (mean nap = 75.83%; mean wake = 78.08%; t[38] = 0.44, p = .65). Furthermore, the groups 

were not significantly different in identifying Alpha (p = .14), Bravo (p = .66), or Charlie (p = 

.39). Unlike the specificity test, confidence ratings of categorization at T1 were not significantly 

different between the groups (p = .31), indicating that the nap and wake groups were matched 

before the delay. 

Once again, we used a two-way repeated-measures ANOVA to assess the change in 

categorization accuracy from T1 to T2. This ANOVA included three factors: group (nap or 

wake), session (T1, T2), and item type (old or new video). There was a main effect of session, 

with participants performing better at T1 compared to T2 (F[1,35] = 324.28, p = .01) and a main 

effect of item (F[1,35] = 11.86, p = .001) with participants performing better on the 

categorization of old videos more than new. There was no interaction between the nap and wake 

groups and session (p = .69). There was an interaction between session and item (F[1,35] = 

13.90, p = .0006) such that participants’ categorization of new videos dropped across the delay 

while categorization of old videos stayed relatively stable. According to these results, neither nap 
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nor wake was beneficial to protecting memory for categorization as a whole. Rather, old videos 

were better categorized than new videos and this was especially noticeable after the delay. 

							

	

Figure 3.8 Top graph (a) represents participants’ summed percent correct answers for categorization 
between the two sessions (T1, T2) and between groups (red = wake, blue = sleep). Items are additionally 
split between old and new videos and marked with either bold (new) or pastel (old) coloring. The black 
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dashed line marks chance performance (33.33%). The bottom graph (b) represents participants’ reported 
confidence between the two sessions (T1, T2) and between groups (wake, sleep) for categorization.  

Finally, we used an ANOVA with identical factors to those above (nap v. wake, T1 v. T2, 

old v. new stimuli) to examine confidence measures on categorization. The results showed a 

different pattern than the actual performance of participants on categorization. Like actual 

performance there was a main effect of item (F[1,35] = 11.89, p = .001) and there was an 

interaction between session and item (F[1,35] = 7.81, p = .008) such that participants’ 

confidence rating of their categorization for new videos dropped across the delay while 

categorization for old videos stayed relatively stable. However confidence differed from 

performance in that there was no main effect of session (p = .28). These results show that while 

confidence ratings generally match actual performance, participants did not feel that their 

performance dropped between T1 and T2 when it actually did. 

Electrophysiological Results. To test whether specific aspects of sleep influenced performance 

within the nap group (n = 18), we ran correlation analyses looking at time spent in sleep stages as 

well as sleep spindle factors (i.e. density and total number of fast and slow spindles). Our 

behavioral measures of interest were change in specificity memory (T2-T1), change in 

categorization memory, and change in confidence ratings for both specificity and generalization. 

Although we had expected to see a relationship between these sleep measures and behavior 

based on prior work, none of these measures significantly correlated with any of the sleep 

features. 

	

Table 3.1 Moving from left to right, the first 5 full columns in this table represent the average number of 
minutes spent in sleep stages (and standard deviation).  The next 3 columns represent the average spindle 
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densities (number of spindles per minute in N2 or SWS) that are also divided between fast (13.5-15 Hz) 
and slow (12-13.5 Hz) spindles. Slow oscillation density in column 9 is defined as the number of 0.5-1 Hz 
oscillations per minute during SWS. Finally, the last column represents delta power (0.5-2 Hz) during N1, 
N2 and SWS. 

We then reviewed other potential correlates between sleep and memory measures in an 

exploratory manner. Although these relationships were statistically significant on first glance, 

these correlations did not remain significant after correcting for multiple comparisons. We found 

a correlation between T2 specificity scores and slow spindle density (r = 0.459, p = 0.048) and 

all spindle densities (r = 0.469, p = 0.043), meaning nap participants who had more spindles (and 

slow spindles in particular) during sleep were better at recognizing old and new videos at T2. 

Relatedly, we found that T2 confidence ratings on the specificity task negatively correlated with 

minutes of SWS (r = -0.542, p = 0.016) meaning that participants who spent less time in SWS 

were more likely to rate their confidence more highly for the specificity task.  

Summary of Study 2. Similar to study 1, participants learned across the 9 training blocks and 

were significantly above chance on categorization by the end of training. During T1, participants 

on average were above chance for categorization and recognition on the old/new video test. 

 On the memory specificity (i.e., recognition) test, the nap and wake groups performed 

significantly different at T1 with the wake group doing better. This was unexpected as 

participants were randomized into the two groups. We tried analyzing just the top-half 

performers, which did even out the T1 performance, but we found no interaction between groups 

across the delay. Similar to study 1, confidence measures on memory specificity mirrored actual 

performance. 

 The ANOVA results of the categorization task were matched those seen in study 1. 

Accuracy for this task dropped across the two sessions, though performance on new videos 
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showed a greater decline than categorization of old videos. Once again, reported confidence 

matched these findings. 

 Finally, we found no sleep physiology signatures that significantly correlated with change 

in performance or confidence on either of the tests. We only found two correlations of note 

regarding memory specificity. Namely, participants who had higher spindle density, specifically 

of slow spindles, had better recognition memory at T2. We also found that participants who 

spent more time in SWS were less confident of their recognition memory at T2. 

GENERAL DISCUSSION 

 We were interested in testing two major questions. First, whether a period of sleep as 

compared to wakefulness protected or improved memory for detailed recognition, categorization, 

or both. And secondly, whether forgetting or memory decay across time might impact these two 

forms of memory. In study 1, we showed that memory for specifics declines across a 12-hour 

delay, regardless of whether that period included wake or nighttime sleep. Additionally, we saw 

categorization declined over the delay regardless of group although to a lesser extent than 

recognition. We did find that participants were worse at categorizing the new videos compared to 

old, studied videos. To remove potential circadian confounds and reduce forgetting with a 

shorter delay we ran study 2. We once again showed forgetting on both recognition and 

categorization tests, regardless of group. And once again, forgetting was less catastrophic for 

categorization than memory for specific clips. In this section we consider the implications of 

these results for our understanding of memory changes across delays and whether highly 

confusable stimuli are the best choice for tackling these questions. 
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 Dissociation between categorization and recognition indicates use of prototype-

based memory. Although we saw a decrease in memory performance across the board, not all 

forms of memory were equally impacted. In both studies, we found that recognition memory 

dropped more than categorization performance. This is rather surprising as we exposed 

participants to the old videos 9 times each, which should have strengthened their memory for 

those particular exemplars. This finding supports the claim that participants were relying on a 

prototype memory representation to make decisions for categorization. 

 If participants were relying on specific examples they saw during learning, then their 

categorization should have decreased in a matching manner to what was observed on the old-new 

recognition test. Therefore, recognition of specific video clips was likely not driving their 

categorization performance old or new clips. This finding aligns with a previous study where 

participants had repeated exposure to training stimuli that should have benefitted exemplar-based 

decision-making, but actually supported the prototype theory (Minda & Smith, 2002).  

 There are a few caveats that should be recognized, but don’t invalidate this argument. 

One potential push-back on this assertion is that high performance on prototype distortion tasks 

can be due to perceptual memory rather than a generalized prototype (Casale & Ashby, 2008; 

Little & Thulborn, 2006). However, perceptual tuning of the visual cortex would require static 

images like the dot paradigm and the stimuli used here were short video clips and so this cannot 

be a case of perceptual memory. Another concern is that the T1 performance was not matched 

between categorization and recognition for either study. Across the two studies, recognition of 

specific videos was an average of 61.72% while categorization was 75.41% correct at T1, and 

this was probably partially due to the training method used. Participants received feedback on 

categorization during the learning portion, but never got feedback on recognition memory. That 
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said, across groups (sleep and wake) and studies (1 and 2), categorization only dropped an 

average of 4.97% while recognition of specific videos decreased 8.51%. Since categorization at 

T1 was generally quite good, we should expect participants to have further to drop but this 

wasn’t the case. Thus, we conclude that this explanation doesn’t fully account for differences in 

recognition and categorization. Instead, the available evidence indicates that forgetting of 

specific clips (i.e., exemplars) occurred within two hours but categorization performance 

decayed much more slowly and this pattern of results supports the prototype theory of 

categorization.  

Categorization performance differs between old and new videos. In neither 

experiment did we observe differences between sleep and wake groups in categorization. We had 

originally hypothesized, in line with other theories, sleep would allow for transformation of 

memory such that categorization should improve after sleep (Inostroza & Born, 2013). However, 

we found that categorization performance dropped (to a lesser extent than recognition memory) 

after the delay, whether the delay included sleep or wake. This result is best explained by the 

amount of experience participants had with old videos compared to new. Participants saw each 

old video nine times across learning and practiced recognizing which category that video 

belonged to. Hence, it isn’t surprising that participants were better able to categorize old videos. 

 No clear physiological markers for memory during sleep. Based on prior work, we 

were interested in two hypotheses regarding sleep and categorization in study 2. The first, based 

on several prior studies that looked at how information is reorganized during sleep (Beijamini et 

al., 2014; Monaghan et al., 2015; Verleger et al., 2013; Wagner et al., 2004), was that minutes of 

SWS would correlate with an improved performance on categorization. We did not find any 

evidence of this being the case. The second hypothesis was that minutes of REM sleep would 
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correlate with improved categorization, similar to a previous study using the remote associates 

task (Cai et al., 2009). We did not find any evidence that minutes spent in REM correlated with 

any behavioral changes in either recognition or categorization. 

 We did find that recognition performance at T2 was positively correlated with slow 

spindle density. This is tempered by the fact that we didn’t see a relationship between change in 

recognition (T2-T1) and any physiological markers from table 3.1. We can’t be certain if slow 

spindles are a physiological marker for maintaining specificity or if people who generally have 

more slow spindles during sleep also tend to better differentiate between old and new videos. We 

are faced with a similar problem in interpreting the negative correlation between confidence at 

T2 for recognition memory and minutes of SWS. We once again found no relationship between 

change in confidence and SWS or any other sleep stages. Thus, we can’t draw any strong 

conclusions regarding these two correlations. 

 Conclusion. Overall, our results suggest that sleep does not have a different effect on 

highly confusable video stimuli compared with wake. While previous research has found 

differences between sleep and wake over both short and 12-hour long delays (Graveline & 

Wamsley, 2017b; Hanert et al., 2017; Lau et al., 2011), a more recently published study also 

failed to find a difference between sleep and wake (Bailes et al., 2020; Tucker et al., 2020). 

Future studies should carefully select stimuli and training programs such that performance is 

well above chance on all tests. Training to a high level of performance will avoid interpretation 

problems, to prevent performance from declining to chance.  

We also did not find a difference in categorization between sleep and wake, although 

there was a difference in performance between old and new videos. While participants were 
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engaged with the visually rich content of the videos, future studies might want to use more 

differentiable stimuli.  

The pattern of results between the categorization and recognition tests supported the 

prototype theory of memory categorization. Participants, on average, forgot specific videos more 

quickly than the decrease in identifying the correct category. Because they did not recall specific 

instances, they could not be relying on exemplars to determine categorization and thus were most 

likely relying on an abstracted prototype. We believe our results, which while they do add to the 

sleep and memory literature, are most impactful in distinguishing between the exemplar and 

prototype theories for forgetting across time. 
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CHAPTER 4 

Experiment 2: Does memory reactivation affect specificity and generalization?1 

 Memory serves many functions in our daily lives. Two of those are recalling specific 

events and generalizing across many instances to form an abstract knowledge. For example, a 

scuba diver may recall a very specific memory of visiting the Great Barrier Reef and spotting a 

highly venomous stonefish resting on the reef’s floor. This would be an example a specific, 

highly detailed memory. On the other hand, that same diver may visit the Solomon Islands, 

recognize a similar fish, and know that it’s a midget stonefish, smaller but equally venomous. 

Memory researchers have long understood that these types of memories exist in parallel. Endel 

Tulving categorized them as semantic and episodic memory in his conceptualization of memory 

(Tulving, 1972). However, it’s still an open question as to whether episodic and semantic 

memory are in opposition. 

 The complementary-learning-systems approach tackles this question by integrating the 

two forms of memories through different brain circuits (McClelland & O’Reilly, 1995; O’Reilly 

& Norman, 2002; Schapiro, Turk-Browne, et al., 2017). In the CLS model, the hippocampus 

rapidly encodes unique, individual memories and maintains the separation between the memories 

via pattern separation through sparse encoding (Bakker et al., 2008; Yassa & Stark, 2011). Then, 

over longer periods of time the cortex extracts shared features and generates a generalized, 

abstract transformed memory. Several researchers have argued that this process of extracting 

																																																													
1	I	would	like	to	recognize	my	collaborators	in	this	study,	as	they	will	be	listed	as	co-authors	once	this	chapter	is	
submitted	for	publication.	Sharon	Noh,	Ali	Preston,	and	Victoria	Lee	have	put	in	significant	work	in	assisting	with	
designing	the	stimuli,	running	participants,	and	providing	critical	advice	all	throughout	the	process.	



75	
	
regularities and generating a generalized concept can occur throughout the day, but may 

especially be prevalent during sleep (Ellenbogen, Hulbert, et al., 2006; Norman et al., 2005). 

 The process of stabilizing and integrating memories is referred to as memory 

consolidation. In the animal literature, memory consolidation is measured through the 

reactivation of firing patterns from cells that were involved those particular memories (Pavlides 

& Winson, 1989; Wilson & McNaughton, 1994). In human research it can be difficult to record 

neural activity at the cellular level and as such, most work in human memory consolidation relies 

in measuring behavioral and EEG correlates (Paller et al., 2020). Research into memory 

consolidation has focused heavily on sleep, namely because sleep seems to have the unique 

characteristic of lessened interference from external sources. Depending on the type of memory 

being studied, researchers have found that sleep, as compared to wake, is beneficial for memory. 

For example, sleep can protect specific memories (Hanert et al., 2017; Marshall & Born, 2007), 

and enhance generalization across memories to create schemas (Beijamini et al., 2014; Inostroza 

& Born, 2013). In some cases where researchers reported both specific and generalized memory, 

participants showed a trade-off between the two such that memory for specifics declined while 

generalization improved  (Lau et al., 2011). 

 Rather than relying on studies that compare periods of sleep and wake, and thus contend 

with circadian and group differences, manipulating sleep through targeted memory reactivation 

(TMR) avoids such problems. Targeted memory reactivation is an experimental tool that allows 

researchers to direct endogenous memory reactivation and impact consolidation. During 

learning, participants are exposed to an auditory or olfactory cue simultaneously to the 

presentation of information they are meant to learn, such as the location of an item on a grid. 

That cue is then presented again during sleep, carefully to prevent rousing the participant to 
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wakefulness, and it reactivates the memory such that the participant has better recall for the cued 

items compared to uncued. 

 Some of the earliest studies that established common methodology for using TMR 

focused on spatial memory (for review see Oudiette & Paller, 2013; Rasch et al., 2007; Rudoy et 

al., 2009).  However, a recent meta-analysis of TMR studies found that spatial memory is one of 

many types of memory affected by sleep cueing (Hu et al., 2020). While the meta-analysis 

revealed that TMR has a consistent effect on spatial memory, other types of memory are affected 

as well. One way to view the spatial TMR findings is that they represent detailed, specific 

memory because higher accuracy requires detailed recall of the exact location.  

 Targeted memory reactivation can also be used to study generalization memory effects. 

For example, researchers in a 2016 study instructed participants to learn associations between 

ambiguous pictures and either positively or negatively valenced words before overnight sleep 

with half of the words cued. They found that cueing increased memory for recall of both the 

positive and negative learned associations such that participants remembered which word went 

with each picture. Cuing impacted how participants interpreted new picture-word pairings. If the 

participant was cued with negative words, they interpreted new negative words as less of a fit for 

the new image to which it was paired, but this pattern was reversed for new positive word-image 

pairings (Groch et al., 2016). This study indicates that sleep with cueing might also affect 

generalization. 

Lexical competition, where a newly learned word competes with existing vocabulary, is 

another experimental design that hints at generalization. In one such experiment using lexical 

competition between words and non-words, the researchers hypothesized that TMR would lead 

to better lexical integration of the studied non-words. They did not find a direct effect of TMR on 
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participants’ response choices. However, they found that cueing when combined with a period of 

REM sleep was correlated with better integration of new information within existing knowledge, 

as measured by a slower reaction time for cued words compared to uncued words (Tamminen et 

al., 2017). In other words, participants were faster for uncued words and slower for cued words 

because the cued words were more confusable and they took longer to make a judgement. The 

authors argued that activation of words cued during SWS were then integrated during REM sleep 

such that participants took longer to respond to new non-words that shared phonetic attributes 

with the cued words. Together, these two studies hint that TMR may affect memory for 

generalized constructs as well as specifics. However, to date there have been no TMR 

experiments directly comparing cuing of generalization and specific memories. 

In the present study, we used a set of landscape paintings by six relatively unknown 

artists to test both types of memory such that we could examine the influence of memory 

reactivation on them both. We intended to evaluate whether cueing an artist led to improved 

memory specificity on previously seen paintings, improved generalization memory for an artist’s 

style in new paintings at the cost of specificity, or improved both. Participants studied a set of 

paintings and were tested both on memory for specific paintings and on generalized knowledge 

of each artists’ style with respect to new paintings. We administered TMR during the nap and 

cued half of the artists and then again tested participants after wake. To ensure that participants 

were cued during slow-wave sleep (SWS), we recorded electroencephalography (EEG) 

throughout the nap. 

There are several advantages of examining memory for paintings. First, the paintings 

could be used to test memory for specifics in a straightforward way. We arranged a multiple-

choice recognition test with foils that were very similar to paintings seen during the learning 
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phase of the experiment. Second, the paintings could also be used to test generalization memory, 

following the procedures used by Kornell and colleagues (2008) as stimuli because several of the 

selected artists have been reliably used to demonstrate generalization across an artists’ style 

(Kornell et al., 2010; Kornell & Bjork, 2008). In the learning phase, participants gradually 

learned to identify the artist who had painted a set of paintings, such that they could identify the 

paintings of six different artists. Participants then used that knowledge in the generalization test 

when they attempted to identify the artist who had painted a set of new paintings.  Additionally, 

the artists and paintings were selected to minimize the influence of prior knowledge, such that 

performance reflected information acquired during the learning phase. We selected four artists 

from the 2008 experiment (Judy Hawkins, Philip Juras, Ron Schlorff, George Wexler) and added 

an additional two (Richard McKinley & Jamie Grossman) from a more recent studies (Noh et al., 

2020). 

We hypothesized that generalization and memory specificity wouldn’t be affected by 

TMR in the same way. Rather, we hypothesized that there would be a trade-off between the two 

memory types (Witkowski et al., 2020). We expected that memory consolidation, spurred on by 

TMR, would result in a more cortically-based memory that would protect generalization but 

harm memory specificity. Alternatively, though less expected, we thought that specificity might 

be protected such that generalization would be impaired. 

Sleep Physiology 

We were interested in several aspects of sleep physiology that have been previously 

associated with later memory performance. At the most basic level, the amount of time spent in 

various sleep stages has been associated with better memory, whether that be SWS or REM sleep 
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(Cairney, Durrant, Hulleman, & Lewis, 2014; Cairney, Lindsay, Sobczak, Paller, & Gaskell, 

2016; Tamminen et al., 2017). One experiment found that rather than total time spent in a given 

stage, the number of times participants transitioned between REM and non-REM correlated with 

improved explicit awareness of sequences on a serial reaction time task (Kirov et al., 2015). The 

result demonstrates that SWS alone isn’t enough to recognize a sequence hidden in the serial 

reaction time task, and that REM might play an important role. The importance of REM as well 

as non-REM in the 2015 study closely mirrors a 2017 experiment that found curing during SWS 

that was followed by REM sleep showed a cueing effect (Batterink, Westerberg, & Paller, 2017). 

Thus, we might expect that minutes spent in REM sleep lead to improved generalization while 

more SWS will improve recognition of old items (memory specificity), with cueing improving 

both only if REM sleep occurs over the course of the nap. 

  Moving past classic sleep stage scoring, researchers have found analyzing specific EEG 

frequencies explains more of the changes seen memory performance over sleep. Several 

experiments have found increased theta band power is related to improved memory performance 

after sleep with cueing (Antony, Cheng, et al., 2018; Farthouat et al., 2017; Schreiner & Rasch, 

2015). Unfortunately, these studies didn’t differentiate between memory specificity and 

generalization so the question of whether theta is a general indicator of improved memory or 

only relates to specific kinds of memory is still an open question. For example, increased theta 

power after a sleep cue could improve memory specificity, but not generalization. We analyzed 

both time spent in various sleep stages and theta power to see whether they correlated with 

behavior. 
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METHOD 

Participants 

We enrolled a total of 36 participants who were undergraduate students at Northwestern 

University or local Evanston community members. Seven participants were excluded from the 

final analyses; two did not sufficiently learn the material, one participant reported having 

insomnia, one reporting hearing the sound cues during the nap, and three were not cued because 

they never reached SWS. All included participants reported no history of neurological or sleep 

disorders. The final 29 participants (21 female, 1 non-binary, 7 male; 1 left-handed; mean age 

21.07 yrs) were requested to wake up 2 hours earlier than their usual wake time and to abstain 

from caffeine on the day of the experiment. The Northwestern University Institutional Review 

Board approved this procedure and informed consent was obtained from all participants and 

everyone was paid for their participation. 

Stimuli 

The stimuli consisted of 108 paintings by 6 different artists (18 paintings each). Four of these 

artists were from the study by Kornell and Bjork (2008) and two were from the study by Noh et 

al. (2020). The paintings depicted landscapes or skyscapes that were cropped to remove the 

artists’ names (i.e., McKinley, Schlorff, Hawkins, Wexler, Juras, Grossman). Using paintings by 

these relatively unknown artists avoided the potential complication of prior knowledge. All but 

one participant were naive to the artists’ names and all were naive to the selected paintings. For 

the learning and recognition portions, 72 paintings (12 by each artist) were divided vertically into 

3 equal-sized portions, called ‘slices’ here.  
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								 In addition, we used six auditory stimuli, each lasting 500 ms (hoot, meow, thunder, 

applause, cricket, bell). Each sound was assigned to an artist, without any clear relationships 

between the sounds, artists’ names, or paintings. 

	

Figure 4.1 Flowchart representing the steps of the experiment and approximate amounts of time spent on each step. 

Procedure 

Participants arrived at the lab between noon and 2pm, consented to participate, and completed a 

Stanford Sleepiness Scale. They then began the eight-part study. 

         Sound-Name Association Training. During this phase of the experiment, participants 

were instructed to learn the sound-name pairings for a later test. Participants heard each sound 

cue, followed by a 500 ms delay before they saw the associated artist’s name on the screen. The 

name remained on the screen for an additional 500 ms before the “next” button appeared on the 

screen and participants could advance to the next pairing. The list of six pairings was presented 

three times, each time in a different randomized order. 

         Sound-Name Association Test. One of the six sound cues was played through the 

speakers and participants attempted to select the paired artist name from a list of all the names. 

After selecting their answer, the participant was shown the correct name before moving to the 

next trial. The list of six pairings was tested twice and there was no time constraint on their 

selection. 

         Learning. On each learning trial, a painting slice appeared in the center of the screen (see 

Figure 4.2a). Participants had 10 s to select the artist for the painting slice from a list of the six 
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artist names. After the participant responded, they were shown the correct name and the 

associated sound was played before advancing to the next painting. There were 30 trials within 

each block. Each block included six paintings, each by a different artist. The set of paintings 

were displayed five times, each time in a different random order. There were a total of six 

blocks. Paintings weren’t repeated across blocks, such that participants studied a total of six 

paintings by each artist. 

Sound-Name Association Re-test. To verify that participants learned the sound-name 

associations, they were tested again. The procedure was the same, except the list of six pairings 

was tested once. 

	

Figure 4.2 Examples of the three main portions of the task. Part a exemplifies the learning phase where participants saw a slice of 
the original painting and had to respond with the correct artist’s name. Part b shows the generalization test where participants 
were shown a new, full painting and had to select the artist who painted it. Part c shows the specificity test where participants saw 
six slices (three from each painting) and had to select the exact slice they viewed during learning. 

 Pre-sleep Memory Tests. In order to test both memory specificity and abstraction, this 

phase consisted of two parts (see Figure 4.2bc). The generalization test included 18 paintings (3 

by each artist) that were never seen during the learning phase. Each new painting was displayed 

individually per trial at the center of the screen, in a random order. Participants were instructed to 

select the artist they thought created the painting. They had 10 s to respond and were not given 

feedback. 
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         In the memory specificity test, participants were tested on the painting slices from the 

learning phase. On each trial, participants saw an array of six slices in two rows. Each row 

contained three slices, ordered from left to right such that participants could see the full original 

paintings. The same artist created both paintings, which were similar, but one had never been 

seen before (lure). Participants attempted to select the slice from the learning phase within 10 s 

and weren’t given feedback after their selection. There were 18 trials during the specificity test, 3 

trials per artist, shown in a random order. 

EEG Procedure. EEG was recorded using a Neuroscan EEG system, with a sampling 

rate of 250 Hz and a bandpass of 0.1 – 100 Hz. Electrodes in a cap were located at 21 scalp 

locations from the 10-20 system (Cz, C3, C4, Fpz, Fp1, Fp2, Fz, F3, F4, F7, F8, Pz, P3, P4, T3, 

T4, T5, T6, Oz, O1, O2, and two mastoids). Additionally, two electrodes were placed on the 

face, one lateral to the right eye and one below the left eye, for the electro-oculogram. One 

electrode was placed on the chin for the electromyogram. Impedance was lowered below 5 kΩ 

for all electrodes. EEG preprocessing was completed using the EEGlab package (Delorme & 

Makeig, 2004) for Matlab (The Mathworks, Munich, Germany). Data were re-referenced to the 

averaged mastoids and any noisy scalp channels were interpolated using the spherical 

interpolation method in EEGlab. 

         Nap. The participant’s futon was converted from a chair to a bed position and covered 

with sheets, a pillow, and a blanket. White noise quietly played through the speakers (around 35-

40 dB) and participants were told they would have a 90-min nap opportunity. Sleep physiology 

was monitored online and when the participant reached SWS for at least two 30-s epochs, half of 

the sound cues were presented in random order. Each sound cue was 500 ms in duration with a 

3500-ms interstimulus interval between the end of the previous cue and the start of the next. 
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Sounds were played continuously while the participant was in SWS. If there was an arousal 

during SWS, cuing was paused and did not resume until at least two 30-s epochs of SWS 

occured. After the 90 min ended, participants were awakened if they weren’t already awake. If 

the participant was still in SWS, the experimenter waited up to 15 min so that the participant 

could be woken from lighter sleep. 

         Post-sleep Memory Tests. After waking, participants were given a short break to get 

water or use the restroom before beginning the post-sleep tests. The tests were identical to the 

pre-sleep tests, but with different stimuli. Participants were tested on 18 new paintings for 

generalization that weren’t seen during learning or the pre-sleep test. The memory specificity test 

was composed of the 18 painting slices from learning that they weren’t tested on pre-sleep, 

paired with 18 never-before-seen painting slices by the matching artist. Additionally, participants 

completed the sound-name association test a final time. All participants correctly identified at 

least five of the six artists. 

         Debriefing. Participants were asked whether they heard any disturbances during the nap 

period. If they reported hearing a sound, they were asked to specify if it was one of the sound 

cues or another disruption.  

Analyses 

 Behavioral. The main measure in this study was the percent change between pre- and 

post-sleep test scores. To examine the effect of TMR on memory, we conducted two-way 

ANOVAs with factors cuing (Cued, Uncued) and time (Pre-Sleep, Post-Sleep). Separate 

ANOVAs were conducted for the generalization and memory specificity tests. All tests were 

two-tailed (alpha = 0.05). 



85	
	

Sleep staging. Naps were scored offline using the sleep SMG package in Matlab 

(http://sleepsmg.sourceforge.net). The 90-min nap was scored in 30-s epochs using scalp 

electrodes (C3, Fz, Fp1, P4, Oz) and labeled as wake, stage 1, stage 2, SWS, or REM. In order to 

ensure accurate sleep scoring, the rater had no knowledge of when sounds were presented. Each 

sleep stage was then correlated with behavior and the TMR effect. 

RESULTS 

Behavioral 

Sleepiness survey and circadian preference. Participants reported an average sleepiness rating of 

3.21 (SD = 0.83) on the Stanford Sleepiness Scale, where the scale ranges from 1-7 and smaller 

values indicate greater wakefulness. Participants also completed the Morningness-Eveningness 

Questionnaire after the post-sleep test and reported an average score of 42.82 (SD = 10.03), 

indicating neither a preference for the morning nor evening. 

Sound-name association accuracy.  Participants were highly accurate at identifying the sound 

cues that matched each artist’s name. Because there were 6 alternatives, chance was 16.67%. On 

the first sound-name association test, accuracy was 91.09% (SD = 28.52%). On the second 

sound-name association test, accuracy was 96.55% (SD = 18.30%). On the final test, accuracy 

remained at 96.55% (SD = 18.30%). By the last test, 26 out of the 29 participants were 100% 

accurate for recognizing the sound-artist association. 

Generalization performance. Participants correctly identified the artists of novel paintings with 

57.85% accuracy (SD = 16.42%, range = 22.22% - 94.44%) during the pre-sleep memory test. 

Again, because there were 6 alternatives, chance was 16.67%. 
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Figure 4.3 Graph represents average percent correct performance on the generalization test for cued (blue) and uncued (red) 
artists for both before (pre-nap) and after (post-nap) TMR. The dashed line represents chance performance (16.67%).   

Next, we assessed the change in generalization accuracy from before to after sleep and the effect 

of TMR. We found no difference between the scores before and after sleep (F[1, 27] = 0.25, p = 

0.62). We found no difference between the cued and uncued conditions (F[1, 27] = 0.42, p = 

0.52), nor did it interact with sessions (F[1, 27] = 0.01, p = 0.93). These results indicate that 

cuing during sleep did not affect participants’ ability to correctly identify the artist of a new 

painting. 

Specificity performance. On the specificity test, participants correctly identified the artist during 

the pre-sleep memory test with 60.73% accuracy (SD = 13.90%, range = 38.89% - 88.89%). As 

in the generalization test, chance performance was 16.67%. If participants could rule out three of 
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the choices by remembering the correct painting but not the correct slice, they would perform at 

33.33% accuracy. Yet, pre-sleep accuracy was always higher. 

	

Figure 4.4 This graph represents average percent correct on the memory specificity test for cued (blue) and uncued (red) artists 
for both before (pre-nap) and after (post-nap) TMR. The dashed line represents chance performance (16.67%).   

We then assessed the change in specificity accuracy from before to after sleep as well as the 

effect of TMR. Accuracy declined after sleep (F[1, 27] = 32.55, p < 0.001). We found no 

difference between the cued and uncued conditions (F[1, 27] = 3.68, p = 0.07). There was an 

interaction effect such that performance declined to a different degree for cued and uncued 

conditions (F[1, 27] = 5.77, p = 0.02). Follow-up testing showed no difference between cued and 

uncued conditions before the nap (t[28] = 0.31, p = 0.75), but there was a difference between the 

conditions after the nap (t[28] = -2.18, p = 0.03). Thus, cuing produced worse performance for 

the cued artists compared to the uncued artists. 
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Reaction Times. We also included an analysis to determine if TMR influenced speed of response. 

Overall, response times averaged 4.07 s (SD = 1.01) on the generalization test and 5.39 s (SD = 

1.17) on the specificity test. 

	

Figure 4.5 This graph represents the average reaction times for both tests (dark colors are generalization, light colors are 
specificity). The cued artists are depicted in shades of blue while the uncued artists are depicted in shades of red. Note that while 
analyses were conducted after RTs were z-scored by participant, this graph depicts raw values for ease of interpretability. 

Reaction times were z-scored by each participant to reduce individual variation for 

analyses. For generalization, responses were faster before the nap than afterwards (F[1, 27] = 

9.74, p < 0.005). For specificity, responses were faster in the cued condition than the uncued 

condition (F[1, 27] = 4.34, p = 0.046). Neither the generalization nor the specificity test reaction 

times showed a significant interaction between session and cuing. Notably, assignment of artists 

to cued and uncued conditions was made to balance accuracy but not reaction time across 
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conditions. Given that reaction time differences were apparent in the specificity test before sleep, 

they could not have been produced by the cueing manipulation. 

Physiological Correlates of Behavioral Change 

Theta Power. Previous research using TMR has found a relationship between theta power and 

memory in that increased theta power during cued sleep was positively correlated with later 

memory specificity (Farthouat et al., 2017; Schreiner & Rasch, 2015). In this experiment, we did 

not see an increase in theta power after cuing, and thus those results are not reported here.  

 

Wake 
(min) N1 (min) N2 (min) 

SWS 
(min) 

REM 
(min) 

Average 21.66 15.78 29.6 21.21 3.86 
SD ±14.25 ±10.56 ±11.38 ±11.31 ±5.00 

Table 4.1 This table includes the average number of minutes (and standard deviation) spent in each stage of sleep by participants.  

Sleep Stages. We also hypothesized that time spent in various sleep stages would relate to later 

memory performance. For example, based on one study where participants who reached REM 

during their nap displayed increased memory abstraction, we expected minutes of REM to 

correlate with performance on the generalization task (Tamminen et al., 2017). While minutes in 

REM did not correlate with improvement for participant’s generalization accuracy, time spent in 

REM was negatively correlated with the reaction time of the generalization cuing benefit (p = 

0.03, r =  -0.39). Cuing benefit was calculated as the subtraction of cued artists (post nap minus 

pre) minus uncued artists. This correlation shows that more time spent in REM sleep correlates 

with a larger improvement on the cuing benefit of reaction time for generalization. However, 

only 15 participants entered REM sleep during the study. When we repeated this analysis 

excluding participants who did not get REM sleep, the correlation was no longer significant (p = 

0.21). 

Results from Testing after a Longer Delay 
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         Participants were contacted several months after their initial visit and asked if they were 

willing to return for a third memory test (mean = 105.71 days, SD = 28 days). This memory test 

was identical to the previous tests, except that it differed in the number and type of stimuli. 

Participants were tested on 17 new paintings for generalization that weren’t seen ever before. 

Because we were unable to find enough stimuli by one artist (Ron Schlorff), we re-used one 

generalization painting from before the nap to give us a full set of 18 generalization paintings. 

         The memory specificity test included 36 pairs of paintings displayed in an identical 

manner to the two previous tests. Because we had already tested the memory for all painting 

slices from the learning portion, we decided to re-test everyone’s memory for all of the paintings 

rather than only select a few. Participants were not tested on the sound-artist associations for this 

test, but were asked to name the sounds associated with each artist as best they could from 

memory. Twenty-one participants (72% of original sample) returned to complete this additional 

memory test (13 female, 1 non-binary, 7 male; 1 left-handed; mean age of 20.76 yrs
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Figure 4.6 This figure is composed of three graphs. Graph A represents performance on the recognition (specificity) test for 
selecting the correct painting, but not the correct slice on the test. The x-axis spans across the three test points (before sleep, after 
sleep, several months later) for both cued (blue line) and uncued (red line) conditions. The y-axis represents the percent correct 
for a participant on average. The x- and y-axis and color-coding are identical across all three graphs. Graph B represents 
performance on the recognition (specificity) test for selecting the correct slice. Finally, graph C represents performance on the 
generalization test.   

After this long of a delay, we did not find a significant difference between cued and uncued 

artists for generalization or specificity. 

DISCUSSION 

 In this study, we sought to test targeted memory reactivation’s impact on generalization 

and memory specificity using paintings by relatively unknown artists. Results showed that while 
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generalization of artists’ styles was not affected by targeted memory reactivation, memory for 

specific paintings was made worse by cuing. We then conducted a follow-up test several months 

later (average of 105.71 days) to see whether this pattern of results changed. After the long 

delay, all cuing effects were abolished and accuracy on both memory measures dropped 

precipitously (31.14% accuracy for recognition, 21.91% accuracy for generalization). 

We did not find a correlation among participants who had REM sleep between minutes of 

REM and a cuing benefit for either generalization or memory specificity, although this may be 

due to the low number of participants who reached REM sleep during the nap. Additionally, we 

did not find the amount of time spent in SWS or lighter sleep (N1 & N2) correlated with a 

change in performance. 

 We were surprised to find that TMR of artists led to poorer performance on the 

recognition task that served as our specificity measure without the expected commensurate 

improvement in generalization. However, we should note that previous studies using TMR on 

spatial tasks don’t show a direct improvement on cued items (Cairney et al., 2016; Creery et al., 

2015; Rudoy et al., 2009; van Dongen et al., 2012). Rather, prior research has found that cuing 

protects memories from forgetting and does not necessarily provide an additional boost above 

the pre-sleep baseline. Because generalization performance didn’t decrease after the nap for 

either cued or uncued artists, it’s difficult to know whether later forgetting would affect the 

uncued artists more than the cued ones. We did try to examine this question by conducting a 

follow-up test, but this was not initially part of our design. Participants returned an average of 

105.71 days after learning and were able to recall very little from the prior session 

(approximately 4 paintings were correctly identified on average, 3 out of the 18 paintings would 

place a participant at chance performance). While it is tempting to argue a follow-up session a 
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few days to a week later might’ve shown an effect of cueing, further research is needed to 

confirm whether this kind of generalization learning is indeed affected by TMR. 

 On the specificity recognition test, we did find a cuing effect such that accuracy of cued 

artists decreased after the nap. In the case of previous studies that failed to find a TMR effect, 

this was due to the timing of the cues being played too close together (Farthouat et al., 2017; 

Schreiner, Lehmann, et al., 2015). The study reported here avoided such a confound by playing 

each cue a full 1500ms after the end of the presentation of the previous cue, thus avoiding 

potential interference with ongoing memory processing. 

 So far, only a single published study has found TMR to negatively impact memory for 

the cued items (Göldi & Rasch, 2019). In an at-home application of TMR, the authors found that 

when TMR decreased memory accuracy when it woke participants or disrupted their sleep based 

on self-report. While we did not formally record how rested participants felt post-nap, we can 

look at the electrophysiological recordings to see whether cues disrupted participants sleep. 

Previous research in the lab has found that when TMR cues disrupt sleep, the number of minutes 

spent in SWS correlates with the cuing decrement (cued- uncued) (Whitmore et al., under 

review). We did not find a significant correlation between participant’s minutes in SWS and 

cuing effect in this study (p = 0.47). 

Additionally, we wanted to test if cuing specifically affected selecting the wrong slice or 

led participants to select a painting slice from the lure painting on the recognition test. We did 

not find an interaction between cuing and session (F[1, 27] = 0.11, p < 0.74), mean cuing did not 

make participants more likely to select a slice from the lure painting. Targeted memory 

reactivation only impacted memory at the ‘slice-level’ rather than between the two paintings. 



94	
	
 One potential explanation could be that TMR led to an increase in boundary extension. 

When observers are asked to recall a picture or scene, they will often include more imagery than 

was presented and this is called boundary extension (Hubbard et al., 2010). For example, if you 

saw a photo of part of Chicago’s skyline you would most likely report seeing more of the city. 

Boundary extension tends to occur more for scene-oriented images like landscapes as opposed to 

object-centered images (Bainbridge & Baker, 2020), and occurs even if participants are warned 

ahead of time (Intraub & Bodamer, 1993). This fits well with the design of our study. 

Participants viewed landscapes that were indeed truncated from the original paintings and while 

they were warned of later memory tests, this would not necessarily ablate boundary extension. 

 However, this potential explanation isn’t totally satisfactory. Boundary extension occurs 

with milliseconds after exposure, and is generally regarded as a part of online integration 

(Dickinson & Intraub, 2008). No work has been done to test whether sleep affects boundary 

extension, let alone TMR. To test whether cuing led to boundary extension, we conducted an 

analysis on studied painting slices that were either at the far left or far right of the original 

painting (excluding the studied center slices). We then counted the number of slices away 

participants were from the studied image. We tested whether there was a difference between 

cued and uncued artists on this error measurement, with the expectation that if cuing led to 

boundary extension then those participants would likely only be a single slice removed from the 

true image. We did not find a difference between the errors in cued and uncued artists, but this 

could be because there were so few test items in this analysis. 

 Our preferred explanation for these findings is that there was a tradeoff between memory 

specificity and generalization due to TMR. The decrease in recognition memory could be an 

example of losing unnecessary specificity (ie., participants get the correct painting but not the 
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correct slice) in order to help generalization. Unfortunately, TMR effects are generally only 

revealed when there is significant forgetting, which we didn’t have for the generalization test. 

Future studies would benefit from a more appropriately timed follow-up test that would show 

some forgetting on the generalization task, without their performance falling to near chance. 

Additionally, this study was somewhat limited in the number of artists and paintings that were 

used which limited the strength of analyses like our examination of TMR-induced boundary 

extension. Future studies should consider using a greater number of stimuli to increase the power 

of their findings. Overall, this study expands our knowledge of memory consolidation through 

targeted memory reactivation. We conclude that TMR does not impact all forms of memory 

identically, and further work is needed to understand how cuing modifies memory consolidation 

during sleep. 
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CHAPTER 5 

Future Directions and Conclusion 

Summary 

The dissertation studies on the whole contribute novel information to the scientific 

literature on sleep and memory. In these studies, I found memory for specific instances and 

generalization across multiple instances are forgotten across different time scales and are 

differently impacted by TMR. In chapter two, I lay out why TMR is a particularly powerful tool 

for examining consolidation with respect to memory specificity and generalization. Then in 

chapter three, I describe results from testing memory for videos of movement through 

naturalistic outdoor environments demonstrating that memory for categorization fades much 

more slowly than recognition memory. Finally, in chapter four I use sounds during sleep to bias 

memory consolidation and alter memory for specific paintings but not performance on 

generalization. 

In the two studies included in chapter three, I used scenes that belonged to three 

categories to test both categorical knowledge as well as recognition of specific scenes (i.e., 

identified old or new) after a delay including sleep or wakefulness. Based on previous work, I 

expected that sleep would play a protective role and memory would be better after sleep 

compared to wake (Friedrich et al., 2020; Graveline & Wamsley, 2017a; Hanert et al., 2017). 

While I was surprised to find no difference between the sleep and wake groups, regardless of the 

delay, there was a significant difference between the two types of memory. This may have been 

due to the unique stimuli we used; namely, the videos showed moving though naturalistic 

outdoor environments that have never been used for a study like this before. Regardless of group, 
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memory for specifics declined noticeably over the delay (either 12 hours or 2 hours), whereas 

categorization stayed relatively high. This pattern matches the pattern of results seen in chapter 

four. Even using a totally different stimuli set and a different training paradigm, there was still a 

significant drop on memory specificity but not generalization. It was only at the long delay of 

several months in chapter four that there was a significant drop in generalization. The findings in 

both chapters three and four provide additional support for the prior claim that generalization and 

memory for specifics rely on different memory mechanisms. 

In fact, the TMR results of chapter four additionally support this assertion. After a nap 

with TMR of half the studied artists, only memory for specific paintings was affected. There was 

no difference in generalization performance between cued and uncued artists. On the specificity 

test, cuing artists led to participants performing worse on recognizing the specific paintings by 

those artists at test. This was quite unexpected as most TMR studies find that cuing improves 

memory for some specific measures like distance on the spatial task (Creery et al., 2015; Hu et 

al., 2020; Rudoy et al., 2009). Because there was not a significant decrease in performance on 

generalization, it’s possible that the effect of TMR wasn’t measurable for that test. Targeted 

memory reactivation usually manifests as a protection against forgetting rather than a direct 

increase in performance (Hu et al., 2020). If there isn’t enough forgetting or enough variance in a 

test, perhaps TMR still operates on those stimuli but the effect isn’t large enough to be measured. 

As a feature of the design added later or something, I attempted to collect data on participants’ 

performance after a longer time period with the expectation that there would be enough 

forgetting in the generalization task to differentiate between cued and uncued artists. 

Unfortunately, collecting responses after an average of 105 days meant that we had too long a 

delay and performance dropped to barely above chance. In the next section, I will outline three 
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additional follow-up experiments to better address the issues of: 1) time delay on memory, 2) 

how sleep physiology during TMR affects the cuing results, and 3) a follow-up experiment to 

answer whether the TMR-specificity effect can be explained by boundary extension. 

Future Directions 

Time delays. In chapter four, we attempted to bring back the majority of the participants 

for testing their memory at a delay. However, because data collection was initially completed in 

the fall, by the time the students (a majority of our sample) returned to campus it had been a 

minimum of 2 months since they initially participated. Perhaps it should then be unsurprising 

that participants struggled on both memory tests. Even using identical stimuli and design, it 

would have been much more appropriate to complete the follow-up test at a 2-week delay. Prior 

work using paintings by Sharon Noh (Noh and others, personal communication) has shown that 

associative memory can still be reliably measured two weeks after learning. Unfortunately, there 

are no published studies tracking the forgetting curve for memory specificity and generalization 

on matched tests. Ideally, a large set of additional participants could be recruited for the learning 

phase, with different subsets of the participants brought in at various time points from a day after 

learning up to a month after learning to plot the forgetting curve and make a data-driven decision 

for the timing of the follow-up test. However, such a study would require a heavy investment of 

time and resources that would exceed the value of such a pilot. 

 Spindle and slow-oscillation coupling. As previously discussed in this thesis, SWS often 

appears in correlational analyses as a significant predictor for later memory performance. During 

SWS (and stage 2), fast bursts of neural activity, called sleep spindles, often occur. Spindles are 

usually broken into slow spindles with a mean frequency of 11-13.5 Hz, and fast spindles with a 
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mean frequency of 13.5-16 Hz (Mölle et al., 2011). In fact, sleep spindles and the cross-

frequency coupling of those sleep spindles with slow oscillations during SWS have been 

previously linked with cued memory consolidation improvements (Batterink et al., 2016; 

Cairney et al., 2014; Cousins et al., 2014; Farthouat et al., 2017; Groch et al., 2017; Schreiner, 

Göldi, et al., 2015).  

The phase of slow oscillations during sleep has influenced memory consolidation in prior 

studies (Batterink et al., 2016), but only recently have researchers focused on the endogenous 

frequency coupling of sleep spindles and slow oscillations (Canolty & Knight, 2010). Some 

researchers have argued that brain regions communicate with each other through the 

coordination of fast oscillations (like sleep spindles) by slow oscillations, thus creating unified 

representations of memory (Düzel et al., 2010). In this case, the slower oscillations serve as long 

range connections between brain regions while the faster oscillations represent local processing 

(Varela et al., 2001). Memory representations require many different brain regions to orchestrate 

the retrieval of any given memory and cross-frequency coupling provides a mechanism to 

achieve this need.  

In addition to the analyses for chapter four, we could examine whether cross-frequency 

coupling between sleep spindles and slow oscillations predicts later memory performance. I am 

currently working with sleep researcher Daniela Grimaldi, MD, PhD to verify the sleep staging 

for participants. After all participants have been sleep scored a second time, we anticipate 

examining two aspects of their sleep. First, we will look at when cues were played during SWS 

and how that relates to the phase of the underlying oscillation. In other words, we will test 

whether the timing of cues in relation to the slow oscillations impacts the cuing effect. Secondly, 

we will examine the cross-frequency coupling of sleep spindles and slow oscillations during 
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SWS. Based on previous research, we expect that participants who have more consistent 

coupling between the frequencies will show a larger TMR effect after sleep than those who had 

less consistent coupling. 

Boundary extension follow-up study. The results of chapter four hinted at an interesting 

possibility not previously addressed by the literature- whether TMR can affect boundary 

extension of visual stimuli. When cued during sleep, participants were worse at correctly 

identifying which painting slice by the cued artist they saw at learning. But cuing did not make 

participants more likely to select a slice from the lure painting, perhaps indicating that 

participants’ errors were due to boundary extension. If cuing led to increased boundary 

extension, one would expect to see more errors towards neighboring slices and not an increase in 

errors made by selecting slices from the lure painting. 

 

	

Figure 5.5 On the left is an example of a painting by Juras that could be used in a new experiment to examine boundary 
extension. Participants could be tested for their recognition of the boundaries either through a) a sliding scale where they try to 
match the image as precisely as possible, or b) select the studied image from an array of six choices. 
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One way to verify that this was the case would be to re-design the stimuli for the memory 

specificity test. Rather than having participants choose from multiple painting slices, stimuli 

could be generated by ‘zooming in’ at different levels from the initial painting and then 

presenting all images as the same size at test as shown in Figure 5.1. Boundary extension makes 

the claim that people report having seen more information in the peripheral areas of a scene than 

they actually saw (Hubbard et al., 2010). Thus, one might expect that in this new design, cuing 

would lead participants to select an image that includes more information than what they actually 

studied (i.e., a more zoomed out image). In order to maintain some balance between the 

generalization and specificity tests, six versions of each painting could be generated in this 

manner (ex., 17%, 32%, 49%, 64%, 81%, and 100% the original size) with one of the versions 

randomly selected for inclusion in the learning phase (shown in Figure 5.1a). Alternatively, if the 

focus is completely on boundary extension then it might be better to allow participants to 

respond using a sliding scale (shown in Figure 5.1b). Rather than limiting responses to a one-in-

six forced choice, a sliding scale would allow for more variance and could be a stronger tool for 

addressing this unanswered question. 

Conclusion 

 Despite a long history of investigating the differences between types of memory, there 

remain gaps in our knowledge with particular regard to how sleep affects consolidation of these 

different memory types. Researchers have established that sleep is important for consolidation of 

a wide array of memory types. However, little work has been done to determine how detail-

specific memory and generalization might relate to each other antagonistically, and how that 

relationship might be affected by sleep consolidation. Through the experiments described in this 
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dissertation, I have provided evidence that the time course of consolidation is different for 

generalization and memory specificity. I showed that the rate of forgetting differs between the 

two memory types, and targeted memory reactivation may not affect both in either the same way 

or to the same degree. My work has demonstrated the benefits and detriments of experimental 

design choices when investigating different memory types and provides a guide for future work 

on this topic. 
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