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Abstract

The Geography, Determinants, and Effects of Innovation

Enrico Berkes

Endogenous growth theory has long recognized innovation as one of the key dri-
vers of growth. Understanding what factors encourage or discourage innovative ac-
tivities and how, in turn, these affect our communities is therefore crucial to inspire
policies that promote inclusive growth. This dissertation tries to broaden our com-
prehension of the innovative process and its consequences. The first chapter shows
that knowledge intensive activities cause an increase in income segregation within
U.S. cities and proposes a framework that can be used to study how to mitigate
this effect. In the second chapter, we explore how population density is related to
the kind of innovation produced in a certain area. More densely populated places
tend to promote the creation of unconventional ideas. Finally, the third chapter
describes a newly developed data set of geographically referenced historical patents
that will allow researchers to get a long run perspective and better understanding of

the innovation process as a whole.
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Preface

The first chapter of this dissertation, which is joint work with Ruben Gaetani,
analyzes the effect of the rise of knowledge-based activities on spatial inequality
within U.S. cities, exploiting the network of patent citations to instrument for local
trends in innovation. We find that innovation intensity is responsible for 20% of the
overall increase in urban segregation between 1990 and 2010. This effect is mainly
driven by the clustering of employment and residence of workers in knowledge-based
occupations. We develop and estimate a spatial equilibrium model to quantify the
contribution of productivity and residential externalities in explaining the observed
patterns. Endogenous amenities account for two thirds of the overall effect. We
illustrate the relevance of the model for policy analysis by studying the impact of
four proposed projects for Amazon’s HQ2 on the structure of Chicago.

In the second chapter, we use a newly assembled dataset of U.S. patents to show
that innovation activities are far from being limited to densely populated urban
areas, but inventions based on atypical combinations of knowledge are indeed more
prevalent in high-density cities. To interpret this relation, we propose that informal
interactions in densely populated areas help knowledge flows between distant fields,
but are less relevant for flows between technologically close fields. We build a model

of innovation in a spatial economy that endogenously generates the pattern observed



in the data: specialized clusters emerge in low-density areas, whereas high-density
cities diversify and produce unconventional ideas.

In the last chapter, I describe a newly assembled data set of historical patents.
Patents are commonly used as the main source of data for empirical studies related
to innovation and technological change. The large amount of information about the
underlying innovative process contained in each patent has certainly contributed to
their popularity. Nevertheless, due to the lack of reliable data, historical analysis has
focused on relatively small time frames or on specific dimensions of patents data. The
goal of this paper is to fill this gap. I build and release a comprehensive time series of
the universe of U.S. patents. The data set contains all the variables commonly used
in the literature and, importantly, geolocates every inventor and assignee reported

in each grant over the period 1836-2016.
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CHAPTER 1

Income Segregation and Rise of the Knowledge Economy

with Ruben Gaetant

1.1. Introduction

The knowledge economy is a set of economic activities relying on non-manual and
non-routine technical skills, scientific knowledge, and intellectual creativity. Over the
past 40 years, these activities have become the main engine of economic prosperity
in advanced countries. Since 1975, the share of value added generated by knowledge-
intensive sectors in the United States has increased by almost 15 percentage points,
and the number of patents per capita issued by the United States Patent and Trade-
mark Office (USPTO) has doubled (Figure [A.1)). The same trend is observed when
considering several other measures of knowledge intensity, including educational at-
tainment, number of scientific publications, ratio of intangibles to assets, and share
of workers employed in R&D activities and creative sectors. The suggested expla-
nations for this structural shift include globalization, automation of routine jobs,
and the steady increase in the burden of knowledge that requires an ever-increasing
number of R&D workers to sustain a constant productivity growth (Jones, 2009).

This trend is believed to be associated with major social and cultural changes.

Individuals with different education levels, abilities, and social connections have been
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differentially exposed to the opportunities offered by this new economic landscape
and, as a result, have experienced diverging economic fortunes. Moretti (2012) ar-
gues that the geographical dimension is the most striking aspect of this divergence.
The rise of the creative class (Florida, 2002) has allowed and induced waves of gen-
trification and re-urbanization of metropolitan cores, as well as the development of
specialized innovation clusters in suburban areas. The reorganization of production
and consumption activities within cities, driven by supply factors (e.g., thick labor
markets and knowledge spillovers) as well as demand factors (e.g., preferences for lo-
cal amenities), appears to be correlated with the emergence of intellectually creative
jobs in many fast-growing local economies (Florida and Mellander, 2015).

One of the most evident signs of this reorganization of the urban structure is the
sharp increase in income segregation in U.S. cities. Our preferred measure of income
segregation, the cross Census tracts (CTs) within commuting zone (CZ) Gini index,
increased by 3 Gini points over the period 1990-2010, which corresponds to 70% of
the increase in overall inequality over the same period of time (Table . However,
the extent to which the rise in income segregation in U.S. metropolitan areas reflects
a causal effect of the expansion in knowledge-intensive activities remains an open
question. Theoretically, there are several reasons to believe that such effect exists.
First, innovation and other creative jobs crucially depend on knowledge transmission,
which has been shown to be strongly localized (e.g., Jaffe et al., 1993). An increase
in the returns to new ideas makes clustering in space with individuals who offer

high learning opportunities more convenient for creative people. Second, workers in
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the knowledge economy tend to be disproportionately sensitive to urban and social
dimension, such as quality of schooling and social relationships, which are often
strictly local in nature.

Uncovering the fundamental causes of the increase in urban segregation is of great
importance, as segregation has been shown to have a first-order impact on several
policy relevant outcomes, including schooling (Baum-Snow and Lutz, 2011), health
(Acevedo-Garcia et al., 2003; Alexander and Currie, 2017), and inter-generational
mobility (Chetty and Hendren, 2016). However, inferring the direct impact of an
expansion in creative jobs is problematic because of potential reverse causation and
the presence of unobservable factors affecting, at the same time, the explanatory and
dependent variables. Examples of these factors include financial or housing shocks,
that affect, at the same time, the urban environment and the ability of a geographical
area to develop innovation-based activities.

In this study, we address this challenge by adopting an instrumental variable ap-
proach, that exploits exogenous variation in knowledge intensity across U.S. cities.
Our analysis suggests that innovation intensity is responsible for 20% of the aggre-
gate trend in income segregation. The analysis further reveals that the effect we
measure can be explained only in part by diverging income paths of initially segre-
gated neighborhoods. A major part of the effect is, in fact, explained by an increase
in the geographical sorting of households along the income dimension.

To measure (and instrument for) the knowledge intensity of the local economy,

we use a newly assembled dataset of geo-referenced USPTO patents in the years
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1975-2014. By comparing citation patterns in the early period (1975-1994) with the
ones in the late period (1995-2014), we document the existence of a stable network
of knowledge diffusion across geographical areas and technological classes. This per-
sistence suggests that knowledge links established in the past are broadly orthogonal
to changes in the economic environment. Using the network in combination with
actual patenting in the period 1995-2004, we build a credible instrument for current
innovative activities at the local level. We run an extensive set of validation exercises
to address the remaining endogeneity concerns.

Our two-stage least squares (2SLS) results imply that a one standard deviation
increase in patenting between 1990 and 2010 leads to an increase in the measured
income segregation of 1.19 Gini points, equal to 39% of the overall increase in segre-
gation over the considered period. Educational and occupational segregation, which
is the extent to which residents of different educational backgrounds and occupations
sort themselves in the city, also surges. The estimated effect is stronger for high-
learning sectors (including IT and electronics) and even negative for low-learning
ones, such as textiles. The IV analysis reveals that the bias in the OLS estimates
is negative. This bias suggests that unobserved shocks affecting, at the same time,
segregation and innovation tend to operate on the two variables in opposite direc-
tions, overall. Financial shocks that generate widespread housing and neighborhood
dismantlement are possible examples.

These results can be explained as the outcome of two (related but) inherently dif-

ferent phenomena. On the one hand, an increase in inequality in a metropolitan area
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that is perfectly segregated induces a one-to-one increase in measured segregation
(we will refer to this case as the inequality effect). On the other hand, the measured
segregation increases even in the absence of any change in inequality when people
move closer to other people with a similar level of income (we will refer to this second
case as the sorting effect). The analysis strongly supports the sorting effect as the
primary cause of the increase in urban segregation resulting from the expansion of
innovation activities, with the inequality effect only explaining a limited portion of
it.

In the second part of the paper, we explore two possible mechanisms. We ar-
gue that innovation shocks increase the returns from local learning externalities and
generate incentives for firms to cluster in space to benefit from them. As a result,
high-education, high-salary workers move close to these areas to reduce commuting
costs, thereby affecting residential segregation. We provide evidence that employ-
ment in knowledge-intensive occupations becomes more geographically concentrated
in cities experiencing larger innovation shocks. We also propose that the endogenous
response of residential amenities plays an important role in amplifying this effect.
Consistent with this interpretation, we find that the impact is significantly stronger
in cities whose variation in residential amenities is not anchored to persistent or
natural amenities. The magnitudes of the estimated effects suggest that localized
knowledge spillovers and residential amenities play an important role in linking in-

novative activities to income segregation.
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To quantitatively disentangle the relative importance of these two forces in de-
termining the trends in segregation that we observe in the data, we build a gen-
eral equilibrium model of the city structure in the spirit of Ahlfeldt et al. (2015) —
ARSW hereafter — that embeds endogenous amenities and productivities. We extend
the model in ARSW by introducing heterogeneity in workers’ occupations: workers
in creative occupations enjoy local learning externalities that are directly affected
by a city-wide knowledge shock, whereas workers in non-creative occupations have
stagnant productivity that is unaffected by the surrounding economic activity. Both
types of workers perceive local residential externalities that are determined by the
density and background of their neighbors.

To estimate the strength of local externalities, we rely on the exogenous cross-city
variation in knowledge intensity inferred in the empirical analysis. To this end, we
impose that residual factors affecting the spatial distribution of economic activity
do not vary systematically with the predicted patenting growth. In particular, our
identifying assumption is that the within-city average of the change in the exogenous
components of productivity and residential amenities is independent of the value of
the knowledge shock. The structural estimation reveals the existence of steep, local-
ized residential externalities for agents in creative sectors. This finding confirms that
the endogenous response of residential amenities in neighborhoods where knowledge
workers concentrate is disproportionately valued by knowledge workers themselves,
and it operates as a powerful amplification channel in driving the increase in seg-

regation. This asymmetry accelerates the effect of an initial shock to geographical
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sorting in the city. The model suggests that about two thirds of the overall impact
on urban segregation can be explained through the endogenous response of localized,
occupation-specific residential amenities.

We illustrate the relevance of the model for policy analysis by running four coun-
terfactual exercises that analyze the impact of four Chicago-based bids for Ama-
zon’s new headquarters. Our simulations suggest that although some high-knowledge
workers relocate to the high-amenity neighborhoods by the lake in all scenarios, the
location of the campus has a sizable effect on the local development of the neighbor-
hoods around, as well as on the overall increase in income segregation. The impact
on segregation would be the smallest when the campus is located in the southern part
of the city, as it would attract high-salary workers where low-income neighborhoods
currently prevail.

Related Literature. This study contributes to the literature on the causes of in-
come segregation in cities in advanced countries in general, and the United States, in
particular. Jargowsky (1996) documents a steady increase in economic segregation in
U.S. metropolitan areas since 1970, and confronts this trend with the slow decline in
racial segregation. In more recent research, Reardon and Bischoff (2016) document
that the trend in residential segregation that started in the 1980s continued, to a
lesser extent, until very recently. They also show that residential segregation in cities
is correlated with the increase in income inequality. Income inequality at the city
level has been intensively analyzed by Baum-Snow and Pavan (2013), and Baum-

Snow, Freeman and Pavan (2016), who document a positive relationship between



22

city size and an increase in the dispersion of earnings; they interpret this relation
as evidence of a skill-biased change in agglomeration economies. Diamond (2016)
studies the geographical sorting of college graduates across U.S. cities between 1980
and 2010, whereas the current study focuses on the determinants of income and
occupational sorting within cities.

Income segregation has been widely studied, particularly in relation to the role
that neighborhood effects play in social and economic outcomes, such as education,
health, and inter-generational mobility. Education and segregation have a strong
two-way link, especially in countries (like the United States) where public spending
in schooling is very localized. For example, Baum-Snow and Lutz (2011) analyze the
response of white families in schooling enrollment (that took the form of migration
to the suburbs and private school enrollment) following the racial desegregation of
U.S. metropolitan areas in the 1960s and 1970s. Chetty and Hendren (2016) use tax
records in a quasi-experimental setting to measure the strength of neighborhood ef-
fects on children and their ability to explain differences in inter-generational mobility
ACross areas.

This study examines the distributional effects of innovation, but focuses specifi-
cally on the process of knowledge creation. A similar approach is adopted by Aghion
et al. (2015), who use cross-state variation and find that changes in innovation in-
tensity can explain the rise in top income inequality in the United States. Florida
and Mellander (2015) conduct a comprehensive study of urban segregation in U.S.

metro areas and link this increase to the emergence of the creative class and the
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expansion of jobs in the high-technology industry. In the present study, we provide
causal evidence that supports their interpretation.

On the theory side, we augment the model developed by Ahlfeldt et al. (2015)
by allowing for agents of different backgrounds (specifically workers in creative and
non-creative occupations). While their strategy uses cross-neighborhood exogenous
variation in the concentration of economic activity given by Berlin’s division and
reunification, our structural estimation relies on exogenous cross-city variation in

the intensity of knowledge spillovers for the innovative sector.

The rest of the paper is organized as follows. Section 1.2 introduces the data
and the measures of inequality, segregation, and knowledge intensity. Section 1.3
describes the empirical strategy and results. Section 1.4 introduces the model setting,
discusses the structural estimation, and presents the quantitative results. Section 1.5

concludes.

1.2. Data and Measurement

We combine data on innovation, captured by patenting activity, with social and
economic indicators from the Census and the American Community Survey (ACS).
For the purposes of our empirical analysis, we interpret Commuting Zones (CZs) as
cities and Census Tracts (CTs) as neighborhoods (and use the terms interchangeably
throughout the text). CZs are defined with respect to actual commuting flows in

the U.S. and, contrary to MSAs, constitute a complete partition of the countryE]

'We use the definition of 2000 Commuting Zones provided by Data.gov.
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Given that our objective is to assess how innovation shocks affect residential and
employment concentration within a local labor market, CZs are the natural unit of
geographical aggregation for our analysis.

We now proceed to describe the data sources and main variables in more details.

1.2.1. Patents data

Our preferred measure of knowledge intensity is patenting within a local labor mar-
ket. Patent data are collected from the United States Patents and Trademark Office
(USPTO). The USPTO has digitized the full text of all the patents issued from 1976
onwards, and made the files available for download. We download and parse all the
files up to March 2015 and construct a new dataset that includes, for each grant,
information on filing and issuing year, technological ClassE] forward and backward ci-
tations as well as residence (city and state) of its inventors. Grants are then assigned
to a CZ based on the location of their first inventor. From the publicly available doc-
uments, we identify a total of 5,030,264 patents out of which 2,634,606 are located

in the United States.

1.2.2. Segregation, Inequality and other economic outcomes

Our preferred measures of inequality and segregation in cities are based on the Gini

index which has the advantage of being widely used, and therefore offers a natural

2Although each patent is associated to multiple classes, the USPTO assigns a single main class
to each grant. This main class is available only in the US classification system, although in our
analysis we use the international patent classification. Since each grant is associated with several
IPC classes but only one main USPTO class, we build a many-to-one function that maps every
USPTO class to a single IPC class based on the associations that recur more often.
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reference point for our empirical analysis. Mathematically, the Gini index is defined
as twice the area between the Lorenz curve and the 45-degree line. More precisely,
letting {7}, be the set of basic units (e.g., individuals or households) in a CZ

ordered from the poorest to the richest, the Gini index of city cz is defined as:

Ne. 7
(1.1) Ineq., = 100 x |1 —2 x Z Z

i=1 /=1

€Ty

xCZ

where z; is the income of the basic unit i, whereas x., total city income. Equivalently,
we can construct a measure of income segregation in city cz, defined as inequality
of income across neighborhoods, where each unit in neighborhood ct is assigned the
average income of the neighborhood itself. In particular, letting {ct}i‘fjl be the set of

neighborhoods in a CZ, ordered from the poorest to the richest, we define segregation

in city cz as:

M, N ct x
(1.2) Segre, =100 x |1 —2 x § o ct
Ccz xCZ
ct=1 ct’/=1

where x is total neighborhood income and % is the population share of neighbor-
hood ¢t in city cz. In other words, Segr., measures the variation of income within
a CZ, once the variation within neighborhoods has been removedﬁ In the extreme

case in which average income of each neighborhood is the same, our measure takes

3In the implementation of we use a piecewise linear, instead of a step function, to approximate
the Lorenz curve. This guarantees that Segr., is always between zero and one. The empirical results
are robust to using the Theil index, that has the advantage of being decomposable into between
and within components of income dispersion, but it has the disadvantage that its upper bound is
determined by the size of total population. This makes it difficult to use this index to analyze the
evolution of inequality over time.
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value zero. On the other extreme, when households are perfectly sorted across neigh-
borhoods, Segr,. is equal to Ineq,..

Information on income is provided at the CT level by the National Historical
Geographic Information System (NHGIS)[] The NHGIS assembles data from the
Census and the American Community Survey (ACS) and aggregates them at various
geographical levels. Data at the CT level divide households into 15 income binsﬂ
To measure inequality and segregation, we need the income distribution (or its ap-
proximation). The problem arises from the fact that the top bin is unbounded, with
an average that potentially varies substantially across CTs. The literature has ap-
proached this issue in different ways, each with its own advantages and limitations.
Appendix[C.1.1.1]discusses them and provides a detailed description of the procedure
we use to approximate the income distribution.ﬁ

From the NHGIS, we also extract data at the CT level on population, education
and rents. These are used either as controls or in ancillary analyses throughout the
text. The structural estimation of the model requires data on the distribution of resi-
dence and employment by occupation in each CT, average earnings by occupation at

the CZ level, and measures of bilateral commuting times and commuting flows across

https: //www.nhgis.org/.

5The lower bounds of each income bracket are 0%, 10,000$, 15,0008, 20,000$, 25,0008, 30,000%,
35,0009, 40,000$, 45,0008, 50,0008, 60,0008, 75,000$, 100,000$, 125,000%, and 150,000%.

6To validate our procedure further, we compute segregation in using income per capita in each
CT provided by the NHGIS, that does not require to make assumptions on the distribution of the
top bin. The correlation between the two variables is 90% in 1990 and 91% in 2010 (see Figure

9.
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CTs. The distribution of residence by occupation is obtained by matching informa-
tion from the NHGIS and the Integrated Public Use Microdata Series (IPUMS) ﬂ The
distribution of employment by occupation is gathered from the National Establish-
ment Time Series (NETS). The NETS provides data on employment, geographical
location and industry for the universe of establishments over the period 1990—2015E|
Contrary to the County Business Pattern, this dataset has the advantage of also
including jobs in the public sector. Industry is then mapped into occupations by
using the crosswalks provided by the BLS. Average earnings by occupation in each
CZ are compiled from the IPUMS.

Bilateral commuting times across CTs are taken from the Open Source Rout-
ing Machine (OSRM)H This routing engine allows us to compute travel time by car
for each pair of coordinates. We collect data on commuting times for each pair of
neighborhoods within each city for a total of 16.2 million pairs.m Finally, bilat-
eral commuting flows are collected at the Census Block level from the Longitudinal

Employer-Household Dynamics (LEHD) dataset.H. Data at a block level are then

"https://www.ipums.org/

8In particular, the dataset includes about 10 million observations in 1990 and about 30 million
observations in 2010. The vast majority of the establishments can be univocally assigned to a CT.
The establishments for which we can only identify the ZIP code are proportionally distributed to the
corresponding CTs based on their area. We discard the establishment for which the geographical
information is only available at a State level. More details in Appendix
9http://project—osrm.org/

10The OSRM can be run locally and has therefore the advantage of not being subject to query limits.
However, real-time data on traffic are not available, as it is the case for more popular services such
as Google Maps. The commuting times collected this way are therefore to be interpreted as lower
bounds.

Uhttps://lehd.ces.census.gov/
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aggregated to obtain commuting flows at our preferred level of geographical aggre-
gation (CTs).
Appendix provides summary statistics and further details on the con-

struction the main variables.

1.2.3. Data Timeline

In this paper, we study the long-run impact of local innovation activities on income
segregation and inequality within U.S. cities. For most of the analysis we look at
changes in local labor market outcomes over a 20-year period, specifically, between
1990 and 2010. The structure of the data, schematized in Figure [A.2] is especially
suitable for this purpose.

Socio-economic outcomes at the CT level are available every ten years, whereas
patent data cover a 40-year period that can be conveniently divided into two 20-
year samples. The early sample (1976-1995) is used to infer knowledge links across
geographical and technological areas in the U.S. and to measure innovation for the
1990 observation. The late sample (1996-2014) is itself divided into two time peri-
ods. The first decade (1995-2004) is used in conjunction with the knowledge links
previously estimated to calculate the local shocks to innovation used as an instru-
ment. The second decade (2005-2014) is used to measure innovation for the 2010
observation. To avoid our results to be driven by transitory shocks to innovation,
we compute the patenting activity for each data point (1990 and 2010) as ten-year

averages (1985-1994 and 2005-2014, respectively).
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1.3. Empirical Analysis

The main question of this paper is whether CZs that experience an expansion
in innovation and knowledge activities also experience an increase in income seg-
regation, defined as variation of income across neighborhoods within the city. We
first identify a causal nexus between those phenomena and empirically investigate
its features. We then use a quantitative model to infer the relative importance of
economic forces behind our findings as well as some prevailing features of production
and consumption in a knowledge economy.

The empirical model studies the relationship between income segregation at the

city level and the size of local patenting activity:

(1.3) Yoot = ap + Ber + v log(1 + Patentse, ) + 0 Xeot + €cny

where Y,, is segregation, X., a set of controls for city cz, and ¢ € {1990,2010}.
Our instrument for patenting allows us to generate exogenous variation for the late
sample (t = 2010), while taking patents in the early sample (¢ = 1990) at their

observed level. This requires us to estimate the model in differences:

(1.4) AY., =a+vAlog(l+ Patents.,) + d A X, + €.,

and instrument for A log(1 + Patents.,) in the 2SLS analysis. Since we include the
logarithm of population in the set of controls, the results would be identical if patents

per capita are used instead. To avoid having to drop observations with zero patents
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either in 1990 or 2010, we adopt the convention of taking the logarithm of one plus
total patents.H For robustness, we also estimate (1.4) including the set of controls

at their 1990 level.

1.3.1. Correlations and OLS

Figure shows the unconditional correlation between the change in income seg-
regation and the growth rate of total patents between 1990 and 2010. The Figure
(like most of the regressions throughout the text) is weighted by total number of
households in the first period (1990). The R? of the weighted regression is 0.10 and
the coeflicient is statistically and economically significant. A one standard deviation
increase in patenting growth is associated with an increase of 31% of one standard
deviation in segregation in the cross-section of CZs.

In Table [B.2] we include a set of control variables that might naturally confound
this correlation. First, since the number of CTs changes substantially between 1990
and 2010, there might be the risk that a dimensionality bias in the construction
of our segregation measures leads us to mis-measure the increase in segregation in
cities where the number of CTs has grown more. To account for this possibility, in

column (2) we control for the growth in the number of CTs within the city.ﬂ In

12Gince all the regressions are weighted by total population in 1990 and zeros are concentrated in
scarcely populated areas, this strategy yields virtually identical results as alternative strategies used
in the literature (e.g. including dummies for zeros, taking growth rates through midpoint method).
Also note that, since we consider 10 year averages for patenting activity, only 25 commuting zones
have a patenting activity which is equal to 0 either in 1990 or in 2010. The total population of
these is about 208,000 people in 1990 (or 0.08% of the U.S. population).

131t is possible that controlling for the growth rate in the number of CTs is not enough to account
for the potential dimensionality bias in the construction of our segregation measures. To address
this concern, we run a set of simulations in which we reassign CTs to CZs under the constraints
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columns (3)-(4), we include the growth rate of population and income, respectively.
Local industry composition at the beginning of the sample could be a major con-
founding factor if aggregate shocks at the industry level (notably, trade shocks) had
an impact both on a location’s expansion in knowledge-intensive activities and on
other variables affecting the urban environment. Hence, in column (5) we control
for trade shocks using the measure of exposure to import from China developed by
Autor et al. (2013).@ Finally, the role of the public sector in providing at the same
time local services for residents and financial support to innovation activities may
generate a significant bias. In column (6), we control for the growth rate of local
public spending, provided by the Census at the County level[] Although some of
the controls attenuate the size, the coefficient for patent growth remains positive,
statistically significant and economically large[™

Table reports the results for the OLS regressions when the controls are in-
cluded in levels at their 1990 value, instead of growth rates. Results are virtually
unchanged. As shown in Appendix [B.I6] we uncover a similar pattern when we

consider segregation along an educational or occupational dimension. To measure

that (1) each CZ is assigned the same number of CTs as the original dataset, and (2) each CZ has
approximately the same population as the original dataset. This random assignment experiment
reveals that the pure dimensionality bias is zero for all practical purposes.

YThis measure is constructed at the CZ level as: ATPW,i = 3. i fujj’t AAgilt”', where L;; is 1990
employment in CZ ¢ and AM,.;; is the change in US import from China in industry j, between
1990 and 2007. Since the authors use 1990 CZs (instead of 2000 CZs), we construct a crosswalk
between the two partitions based on the intersection with the highest population.

5These data are available for download at http://www2.census.gov/pub/outgoing/govs/special60/.
6Data, for the last two controls is not available for all the commuting zones in our sample, so that
the number of observations is lower than 703. Data are mainly missing in low populated areas.
We exclude the last two controls in our benchmark specification, and in tables where full controls
are included but not reported. Results change to a negligible extent when these two variables are
included.
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educational segregation, we use a modified version of the Gini index, where individ-
uals are assigned 1 unit of “income” if they have a college degree and 0 otherwise.
As for occupational segregation, we use the classification of individuals into creative
and non-creative occupations, as outlined in Appendix [C.1.1 which constitutes the
basis for our structural model in Section [I.4, In this case, residents are assigned
1 unit of “income” if they are employed in a creative occupation, and 0 otherwise.

Both measures display a positive and significant correlation with patenting growth.

1.3.2. Instrumenting for patenting activity

The evidence discussed up to this point must be interpreted with caution. To claim
the existence and identify the strength of a causal relationship, we need to identify
variation in patenting that is orthogonal to unobserved factors that might affect at
the same time the expansion of a knowledge-based economy and urban segregation.
The range of such possible factors is large and the direction of the bias is ex-ante
ambiguous. Examples of unobserved factors include short-run phenomena such as
housing shocks and financial shocks, or long-run trends such as technological obso-
lescence of local industries, that have a direct impact on the urban context, as well
as potentially affecting patenting and other innovative activities. One might also
be worried about inverse causality, with income segregation being the cause, rather
than the consequence, of the emergence of the knowledge economy in U.S. local labor

markets.
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In this section, we propose an instrument for innovation activities at the local
level that can be used to tackle this identification challenge. The strategy we pro-
pose is general and can be applied to other contexts in which channels of knowledge
diffusion are observable and measurable. We use the observed network of patent ci-
tations to infer the existence of persistent diffusion links across technological classes
and geographical areas. Observing a patent that cites another invention reveals the
existence of an underlying link between the technological classes and the geograph-
ical areas of the two grants. The more citations we observe from and to the same
class-CZ pair, the stronger the underlying link. In the reminder of this section, we
provide details on the mathematics and intuition behind the instrument. Section
discusses conditions and evidence for its validity.
1.3.2.1. Construction of the instrument. The idea behind the instrument is
that local patenting is determined, at least partly, by ideas that are generated else-
where in the economy, and that transmit to local innovative activities through chan-
nels of knowledge transmission that are pre-determined, stable over time, and infer-
able from the network of patent citations. In order to be used to draw conclusions on
the causal effect of innovation on segregation and inequality, this instrument must
(1) have predictive power on actual patenting in 2005-2014 and (2) identify variation
in patenting that is uncorrelated (conditional on controls) with unobservable factors
that can affect at the same time innovation and the dependent variable. We exten-
sively discuss the first point in the next sub-section, where we show that the network

of diffusion inferred in the early sample is in fact persistent and can be used to predict
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innovation in the late sample. As for the second point, our identification assumptions
can be summarized in two main points: (1) Innovation shocks that occur in other
geographical areas do not have a direct impact on local outcomes (relative to the
aggregate impact), other than the effect that operates through knowledge diffusion,
and (2) there are not unobservable factors that affect at the same time the ability
to form knowledge links with specific areas in the past and local segregation and
inequality outcomes 20 years later. Section discusses the conditions for and the
evidence in support of the validity of the instrument.

Formally, we proceed in two steps. In the first step, we use the observed citation
patterns to isolate knowledge links across space, time and the technology spectrum.
For each patent of class u issued in CZ r at time ¢t — A, we first calculate the share of
citations that it receives from patents produced in other commuting zones at time ¢.
We then sum up over the time period that goes from 1985 to 1994 and, to account
for size effects in the citations distribution, we divide by the total number of patents
of class p issued in CZ r at time t — A. Mathematically, we calculate a coefficient of

diffusion as:

(1994

§ E Sp—(r,m,t—A)

t=1985 pc(SN,T)

T S
(1.5) dP9 = — ' for A € {1 10}
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where s, t—a) is the share of citations that a patent p € (S, N, T) (i.e., of class
v produced in CZ s at time t) gives to patents of class p produced in CZ r at time
t — A for all the s’s different from r. To reduce endogeneity concerns, we set the
coefficient to zero for links that start and end in the same CZ. The coefficient can be
interpreted as “how much” of a new patent in (v, s), the destination class-CZ pair,
is “induced” by a previous patent in (u7), the origin class-CZ pair, A years after
filing. The idea is that existing patents are perfectly substitutable building blocks
for future innovation. Note that since we use A € {1,...,10}, we need to use the
entire early sample (1975-1994) to compute the coefficients of diffusion. Note that
this approach implicitly assumes an input-output model for the production of ideas.
In particular, Dz’iﬁi is equivalent to an input-output matrix specific to each pair of
cities, (r, s)ﬂ and time lag, A. Each entry, dz’ifj‘,’ A, Of this matrix determines how
many patents of class p produced in CZ r are necessary to produce an extra patent
of class v in CZ s after A years. The main departure from a classic input-output
model of production is that in our case ideas are non-rival, non-excludable inputs.

As a result, the sum of all the inputs that appear in the production of new patents

can be larger than the overall amount of available inputs. H

1"Note that the network is not symetric in cities, so that DZ?ST?,%A #* Dzi:?_‘fA

1876 fix ideas, consider a world with two CZs (San Francisco and Detroit) that only produce two
types of patents (Vehicles and Computers) and that only exists between 1975 and 1978. Assume
that one patent of class Vehicles is filed in Detroit in 1975 and that San Francisco in 1976 produces
100 patents of class Computers that only cite the one patent filed in Detroit the year before. In this
case, our measure of knowledge diffusion between the pairs (Detroit, Vehicles) and (San Francisco,
Computers) at lag 1 would be:

dpr,sryvu,cpu,1 = 100.
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In the second step, the coefficients of diffusion constructed using the 1975-1994
sample are used to predict patenting in each class-CZ pair for the 2005-2014 period.
More precisely, to estimate the patenting activity in the destination CZ s in 2005, we
apply the adjacency matrix of the network with lag 1 to the actual patenting activity
of all the other (origin) CZs in 2004 and then add up the results. In a similar way,
we then apply the adjacency matrix with lag 2 to the actual patenting activity that
occurred in 2003, and so on until lag 10. To obtain the predicted patenting activity,

we sum the numbers we obtained at all lags. Mathematically,

10
- _ 75—94 \T
Pats 5005 = C2005 E E E (Dr,s,-,u,A) pat,  op05_na

A=1reS veN

where D> 'is a column of the adjacency matrix that contains the coefficients

of diffusion from CZ r to CZ s and class v. Each row in the vector represents
a technological class in the origin CZ. The vector pat, 55 contains the actual
number of patents for each class filed in CZ r in year 2005 — A. The term cogos5
is a rescaling term that makes sure that the total number of patents we estimate
nationwide is the same as the one we observe in the data. The prediction of the
patenting activity in the subsequent years follows the same strategy, with the only

exception that when predicting total patents for 2006, the network with lag 1 is

Now, further assume that in 1978 Detroit files another patent of class Vehicles that cites 30 of the
patents produced in San Francisco 2 years before. In this case, we would have,

d 1

SF,DT,CPUVH2 = 35

The intuition is that, from what we observe in the citations network, one single patent of class
Vehicles in Detroit produces enough ideas to “generate” 100 patents of class Computers in San
Francisco. On the contrary, we need 30 patents of class Computers in San Francisco to produce a

single patent of class Vehicles in Detroit.
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applied to predicted patents in 2005, instead of the actual ones (and similarly for all
the years between 2006 and 2014)H We do this to avoid endogeneity concerns that
might arise when using contemporaneous patenting activity. Table graphically
outlines the exact structure used to build the instrument. Predicted patents in the
second sub-period (2005-2014) are then averaged to obtain the instrument for the
t = 2010 observation.

Note that the network we build is a directed one. If a class-CZ pair is linked to
another pair, the opposite is not necessarily true. This contrasts with more com-
mon [V approaches used in the past in similar settings. For example, the Bartik
instrument relies on the mere geographical distribution of innovative activities in the
pre-sample period, and implicitly assumes that the coefficient of diffusion of ideas
from any origin class-CZ pair is given by the national share of patents of the same
class in the destination region. For our purposes, this approach carries some un-
desirable properties, most notably the inability to separate innovation shocks from
industry or technology-specific nationwide trends that ultimately affect innovation,
but also have an impact on the dependent variable. As we extensively discuss in
Section [1.3.2.2] our approach significantly dampens this concern. First, we exploit
the richness of the citation data to isolate directed technological linkages, includ-
ing across classes links, and use it to diffuse lagged innovation output (1995-2004),

rather than contemporaneous one (2005-2014). Second, our approach is robust to

19The role of o905 is now evident. We add it to our estimation to avoid that the predicted number
of patents in the later years is smaller just because predicted number of patents is used alongside
actual patenting activity.
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setting to zero the coefficient of diffusion not only for the citations coming from the
same region but also for those coming from the same technological class, reducing the
concern that predicted patenting growth simply reflects correlated industry trends.
Third, we can directly control for those nationwide trends by including a Bartik-like
variable directly into our set of controls.

1.3.2.2. First-stage results. One of the conditions for the instrument to be valid
is that the network of knowledge inferred from the citations patterns is determined
in the past but stable over time. This condition can be directly tested by comparing
the network in the early sample with its counterpart in the late sample. This is done
in three steps. First, we build the network of citations and compute the coefficients
of diffusion separately for the two samples (1975-1994 and 1995-2014). For each
A e {1, ..., 10}, we take the difference of the two adjacency matrices and calculate

its Frobenius norm as follow:

reals = DX - DY, =[S (DE - DE

T8, 1,V

Second, for each year between 1975 and 2014, we reshuffle all the patents filed
in that year under the constraint that after the reshuffling each commuting zone is

assigned the same amount of patents as in the real datasetm We repeat the same

20We also run the exercise under the constraint that each commuting zone is assigned the same
number of patents it started with for each technological class. The results are virtually the same.
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exercise performed in the first step for this new sample of patents and calculate,

~75-94  ~95-14 ~75-94  ~95-14\ 2
reshqu:HDA — D, H = Z (DA — D, )
2

78,1,V

04 ~95-14
and D,  are the citation networks built using the reshuffled patents.

where 57;_

Finally, we calculate the percentage difference between reshufa and reala for
each A. This number tells us how far the two real networks are compared to two
networks that, while maintaining the same structure and properties of the original
ones, are uninformative of each other. A positive value indicates that the two net-
works built using the actual data are more similar than the two reshuffled networks [
Figure plots the difference (in percentage) for all the values of A together with
the 95% confidence interval we obtained by repeating this procedure 50 times. The
difference of the reshuffled networks is around 26% higher than the one obtained
with the actual networks for the first lag and it gradually declines until it is indis-
tinguishable from zero at lags 9 and 10. The decline implies that the more years
pass after a new idea is generated the less citation patterns are distinguishable from
links that are generated at random. This result is quite intuitive. With time a new
technology becomes more and more public knowledge and is adopted or embedded
in patents produced in areas that do not have any direct link with the city where
the technology was originally produced.

Consistently with the results in the left-panel of Figure [A.4] the right-panel shows

a scatter plot of the first stage relationship between predicted and actual growth rate

2INote that this difference is only interpretable in relative terms.
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of patenting. We plot the residuals of a regression of patent growth on the full set
of controls. It is visually clear that the two variables are strongly but not perfectly
correlated. The residual R? is 0.24, while the coefficient of the regression is 0.57. The
Cragg-Donald Wald F statistics in the regression with full set of controls is 223.4,
which rules out weak instrument concerns.

Figure in Appendix visually compares actual and predicted patent growth
at the CZ level on a map of the United States, and can be useful to gain intuition
on the validity of the instrument. Areas that are anecdotally associated with a large
expansion of innovation and other knowledge-intensive activities (notably, Austin

TX and Durham-Raleigh NC) are properly captured by the instrument.

1.3.3. IV Results

Our identification strategy captures local changes in patenting that are due to knowl-
edge created in other geographical areas, linked to the original CZ through the chan-
nels of knowledge diffusion computed in ((1.5)). These channels are pre-determined
with respect to new ideas themselves. When new knowledge becomes available in a
city, innovation-intensive activities expand. In this section, we explore the effects of
such an expansion on income segregation.

Table shows the 25LS estimates of the relationship between innovation and
segregation, as depicted in . All regressions are weighted by total number of
households in 1990. The coefficient on patent growth is positive and statistically

significant. Columns (2)-(6) introduce the set of controls considered for the OLS
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estimates. The coefficient on income growth reveals that segregation has increased
more in areas with better economic performance. Columns (1)-(4) of Table in
Appendix report the results when controls are included at their 1990 values. The
coefficient on early sample population reveals that segregation has increased more in
larger cities (consistently with the findings in Baum-Snow and Pavan 2013). Contrary
to the OLS regressions, where the full set of controls had a significant dampening
effect on the size of the coefficient, the 2SLS estimates are not significantly affected
by the introduction of the controls.

A 10% increase in patenting between 1990 and 2010 is estimated to increase in-
come segregation by 0.17 — 0.23 Gini points, depending on the specification. Since
the (population weighted) average growth rate of patents is 16% and the average in-
crease in segregation 2.94, the effect is economically large. The effect is particularly
significant in accounting for the cross-sectional variation in changes in segregation.
Taking the specification with the basic set of controls in growth rates as a refer-
ence point, a one residual standard deviation increase in patenting growth increases
segregation by 56% of a residual standard deviation in segregation change.

The 2SLS estimates are more than twice as large as the ones in the OLS regres-
sions. This suggests that unobservable factors affecting at the same time innovation
and segregation tend to operate on the two variables in opposite directions. This is
hardly surprising. For example, financial shocks that generate widespread turmoil
on the urban structure are likely to increase segregation while having a dampening

effect on the local potential to develop a knowledge-based economy.
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Table in Appendix shows that a similar effect is observed for segregation de-
fined in terms of educational achievement and occupation type (as defined in Section
1.3.1)), instead of income level. Patent intensity appears to have a strong positive
impact on both measures. However, occupational segregation appears to be more
tightly connected with income segregation than its educational counterpart: a regres-
sion of the change in occupational segregation on the change in income segregation
yields an R? of 12%, whereas the corresponding figure for educational segregation is

only 1.5%.

1.3.4. Instrument validation: Exclusion restriction

The instrument used in the IV analysis is a composite one, as it combines a pre-
established network of knowledge links and a collection of innovation shocks that are
then diffused through it. Hence, it requires two main identifying assumptions. First,
the network of patent citations should not be capturing long-run trends in innovation
and segregation. Second, shocks that affect innovation in the origin commuting zones
should not be correlated with other shocks that affect innovation and segregation in
the destination commuting zone other than through the channel identified by our
instrument.

To address the first point, we run a number of falsification tests to verify to what
extent the growth rate of patenting predicted by our instrument reflects long-term
trends in innovation and segregation. We start by regressing predicted patenting

growth (1990-2010) on past changes in segregation (1980-1990). Figure and
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columns (1)-(2) of Table show the correlation between our instrument and the
pre-sample trend in segregation. This correlation is practically equal to OH Then,
we check whether the instrument is correlated with previous trends in innovation,
and to what extent this could affect our second stage results. Figure shows the
correlation between the residuals of regressions of predicted patenting growth and
past trends in patenting growth (1980-1990) on the basic set of controls. Although
the coefficient of the two variables have a slightly positive correlation (the coefficient
of the regression is 0.13 and is statistically significant), the R? of the regression is
just 0.03, reflecting a very weak correlation. Column (2) in Table shows the
2SLS regression with the basic set of controls once the past trend in innovation is
explicitly controlled for. The coefficient on patenting growth remains positive and
significant, and is slightly larger in magnitude. This suggests that the correlation
of the instrument with past trends in innovation is weak at best and is unlikely to
confound our estimated effects.

As for the second point, the main concern is that geographical areas that are
linked in the knowledge network have similar characteristics, such as a similar in-
dustry structure, geographical proximity, common regulation, or exposure to other
shocks that make it hard to disentangle the genuine effect of knowledge shocks from

the effect of other factors that have an impact on innovation in the origin CZ and

22The years we selected to calculate past changes in segregation are dictated by data availability
from the Census. Note that, in the 1980 Census, CTs were not covering the entirety of the United
States, but only the most densely populated areas. For this reason, not all the CZs are available for
our analysis. This is unlikely to affect our results significantly, since all our regressions are weighted
by the number of households. However, to make the two exercises readily comparable we re-run our
benchmark regressions only using the CZs available in 1980. Columns (3)-(4) of Table report
the results, which remain mainly unchanged.
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segregation in the destination CZ. To control for the effect of nationwide industry
or technology-specific shocks, we include a Bartik-like variable in the set of controls.
Namely, for each CZ r we define a vector Sp%° = {s]9% .. s{%} where 5192 denotes
the share of patents in the early sample that belong to technological class 1 and was
produced in CZ r. Then, for each class-CZ pair (u,r), we compute the growth rate
Gu,—r of the number of grants in that technological class, counting only patents pro-

duced outside r, between 1990 and 2010. We then compute the Bartik-like variable

m r as:

~ _E : 1990
gT - S,u,r 'g#afr'
HeEN

This prediction replicates the idea behind a Bartik shock, with the distribution of
patents across technological classes used in place of the distribution of employment
across industries. Column (3) in Table shows the 2SLS regression once the
Bartik shock is included in the set of controls. The coefficient on patenting growth
is robustly positive and larger in magnitude. Again, the inclusion of variables that
control directly for industry performance (via their correlation with the distribution
of innovation across classes) increases the size of the coefficient, confirming that
unobservable shocks tend to operate on income segregation and innovation output
in opposite directions.

To provide further evidence that our instrument is not capturing correlated in-
dustry trends across technologically linked CZs, column (4) of Table replicates
the main 2SLS, with a version of our instrument in , in which the coefficient of

diffusion is set to zero not only when the origin and destination CZs coincide, but
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also when the origin and destination technological classes are the same.@ This ver-
sion of the instrument displays a weaker correlation with observed patenting growth
(the R? of the first stage regression drops from 0.23 to 0.16) but the coefficient of
the IV regression is robustly positive and, again, larger in magnitude compared to
our benchmark regression.

Lastly, we address the concern of changes in legislation and other geographically
correlated unobservable factor by introducing state fixed effects in the 2SLS estima-
tion of E In this case, we are evaluating changes in segregation resulting from
an expansion in innovation activities only through within-state variation. The results
are reported in column (5) of Table [B.14] The estimated coefficient is smaller, but
the share of explained within-state variation is still sizable. One residual standard
deviation in patenting growth explains 42.6% of a residual standard deviation the
change in segregation. Column (6) reports the results when all the controls intro-
duced in this section are included in the IV regression. Also in this case the results

are robust.

1.3.5. Which technologies are driving the effect?

Our analysis can be disaggregated to investigate what types of technology are mainly
responsible for the estimated effect. This decomposition is possible because our
instrument delivers a separate predicted value for patenting in each technology class.

It is a widespread belief that segregation has increased more in areas that are intensive

2In other words, we set dzssfp?i A = 0 whenever either r = s or p = v.

24This implies that time fixed effects in 1| are state specific.
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in high-tech industries. The following quote is taken from Florida (2015): “Economic
segregation tends to be more intensive in high-tech, knowledge-based metros. It is
positively correlated with high-tech industry [...]”. By disaggregating the analysis at
a technology class level, we can test whether this observation can be interpreted as
causal.

The International Patent Classification (IPC) classifies patents into 8 main tech-
nological areas (each one divided into several technology sub-classes). We aggregate
patents from each technology sub-class into their respective main technological area
(which are labelled by letters from A to H). We then run a set of 8 separate 2SLS
regressions, analogous to the ones shown in Section [1.3.3] with the exception that
patenting growth is measured (and instrumented for) only within a given technolog-
ical area.

Results are shown in Table [B.4] The positive effect of patenting on segrega-
tion seems to be entirely driven by 4 out of 8 technological areas: class A (Human
Necessities), which include Medicine and Pharmaceuticals among the others; class
C (Chemistry); class G (Physics) which include all IT and Computer sectors; and
class H (Electricity) which includes all major electronics products. Class D (Textiles
and Paper), which is arguably the least knowledge intensive one in the IPC, has a
negative and significant coefficient.

These results are obtained with the full set of controls, including income growth,

so they are unlikely to capture exclusively differences in economic outcomes brought
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about by different types of jobs. However, the reason why knowledge intensive sec-
tors (like Medicine, Chemistry and Information Technology) have a disproportionate
effect on urban segregation, while less knowledge-intensive ones (like Textiles) have a
negative effect is not obvious. Two explanations are the most likely candidates. On
the one hand, learning-intensive sectors benefit more from learning spillovers and the
proximity that such spillovers require. This produces higher incentives to cluster in
space for people in areas where returns from learning are higher. On the other hand,
people employed in those sectors might be disproportionally sensible to residential
amenities, giving them a higher incentive to cluster in space. The spatial equilibrium
model in Section [1.4| will be used to disentangle the contribution of the two candidate

explanations to the observed effect.

1.3.6. Segregation and Inequality: Is it sorting?

Results up to this point show that an expansion of innovation activities has a positive
impact on measured segregation, that is, on the variation of income across neighbor-
hoods, within cities. Disregarding migration, there are two main phenomena that
can induce this.

On the one hand, starting from a city with positive segregation (i.e. a condition in
which the distribution of income is not the same in every neighborhood), a divergence
in household income (e.g. a spread in the income distribution of the city) leads to an
increase in measured segregation, even in the absence of any reallocation of residents

across neighborhoods in the city. We refer to this phenomenon as inequality effect. On
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the other hand, measured segregation can increase even if within-city inequality stays
the same, if residents choose to relocate across neighborhoods and sort themselves
along the income dimension. We refer to this case as sorting effect.

The two phenomena can be used to think about the link between segregation and
inequality in an intuitive way. The inequality effect allows us to connect changes in
inequality with changes in segregation in the case where initial segregation is complete
(e.g. where each household is the only resident in its neighborhood). In this case, it

is clear that the following identity holds:

A Ineq., = A Segre..

Since in reality initial segregation is never complete, in the absence of relocation an

increase in inequality will in general induce a smaller change in segregation:

A Ineq., > A Segre..

Hence, changes in inequality can always be interpreted as upper-bounds in terms of
the effects on measured segregation.

As for the sorting effect, segregation can increase, as a result of the relocation
of high (low) income households towards initially high (low) income neighborhoods,
even if A Ineq., = 0. In what follow, we discipline how much of the observed effect
can be due to inequality and how much to sorting effects.

In Table [B.5] we provide a comparison of the impact of patenting on segregation

and inequality within-city. Specifically, we estimate (|1.4]) using alternatively Segr..
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and Ineq.. as dependent variables. Innovation does have a positive impact on in-
equality. However, since the effect on segregation is larger than the one on within-CZ
inequality, the two regressions taken together imply that the sorting effect is con-
tributing significantly to the change in segregation.

In Column (3), we estimate ([1.4]) using ASegr., as dependent variable, and in-
cluding Alneq., as a control. The coefficient on Alneq., is 0.93, suggesting an
almost complete transmission of inequality to segregation. Moreover, the coeffi-
cient that measures the effect of patenting growth on ASegr., drops accordingly by
roughly one third, but remains positive and significant. This implies that roughly
two thirds of the impact of innovation shocks on segregation can be explained as a
sorting effect, whereas the remaining third as an inequality effect.

The impact of an innovation shock on within-neighborhood inequality is ex-ante
ambiguous, since the inequality and sorting effects operate on opposite directions.
On the one hand, the positive impact on A Ineq., implies that, if people were not
allowed to relocate, we would observe a positive effect on within-C'T inequality, as
Wellﬁ On the other hand, the sorting effect works to counteract the impact of within-
city on within-CT inequality. The last two columns of Table[B.5|report the parameter
estimates using average within-CT inequality as left-hand side variable. Patenting
growth has a small negative coefficient, that becomes statistically indistinguishable

from zero when we add the baseline controls to the regression. This suggests that the

251 the extreme case in which the income distribution for each CT is identical to the one in the city,
an increase in inequality at a city level would translate into a one-to-one increase of average within-
CT inequality. On the other hand, if people were perfectly sorted along the income dimension, an
increase in city-level inequality would have no impact on within-CT inequality.
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sorting effect completely offsets the increase in the dispersion of income within-CT

that stems from the inequality effect.

1.3.7. Exploration of the mechanism

In the previous subsections, we showed the existence of a strong, causal relationship
between the expansion of local knowledge-based activities and income segregation in
U.S. cities. We further showed that this effect is also visible along an educational
and occupational dimension and is mostly driven by technological fields with high
technological content and learning intensity such as Physics and Chemistry. This
result suggests that high returns from learning spillovers can increase incentives for
companies whose output has a high knowledge content to cluster in space to take ad-
vantage of highly localized learning opportunities, inducing a positive link between
innovation intensity and concentration of knowledge-intensive firms. In addition,
high-education, high-salary workers might optimally relocate in the surrounding ar-
eas to minimize their commuting costs. The endogenous response of residential
externalities (e.g. local services that are valued more by workers in the knowledge
economy, such as schools and organic grocery stores) can play an important role in
amplifying this effect.

The structural model presented in Section formalizes this mechanism. The
goal of this subsection is to provide suggestive reduced-form evidence in its sup-
port. First, we show that innovation shocks promote the geographical concentra-

tion of knowledge workers towards neighborhoods with high learning opportunities.
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Second, we show that the impact of innovation shocks is stronger in cities whose
neighborhoods are less anchored to natural (or persistent) amenities, highlighting
the potential role of endogenous residential externalities in driving the process.
1.3.7.1. Clustering of employment. One possible mechanism behind the re-
sults described in Section [1.3.3] is the change in the concentration of employment
of knowledge-intensive occupations that is induced by a knowledge shock. The fact
that knowledge spillovers are strongly localized has been confirmed by multiple stud-
ies, starting from Jaffe et al. (1993). When useful knowledge becomes available and
innovation opportunities emerge, incentives to cluster in space to benefit from them
are positively affected. This in turn has a direct effect on residential segregation,
provided that work location affects residential choices, (for example, if people are
averse to spending time commuting).

To confront this intuition, we first verify that in cities with high innovation shocks,
knowledge intensive employment moves towards neighborhoods with strong learning
opportunities. Our measure of knowledge spillovers at the neighborhood level is
adapted from Ahlfeldt et al. (2015), and is based on the structural model outlined
in Section [1.4.3] The index captures the concentration of knowledge workers sur-
rounding a given neighborhoodm Specifically, for each CT j in city cz, knowledge
externalities in 1990 are computed as:

ARk — Z 6—5,@1%
T & K

26See Appendix for details on the classification of occupations and the construction of the
distribution of residents by occupation at the neighborhood level.
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where S, is the set of neighborhoods in cz, 7; is the commuting time (in minutes)
between CTs j and [, W} is the number of knowledge workers employed in [ in 1990
and K is the area of [. The parameter d, controls the rate of decay of knowledge
externalities and is estimated in Section [L.4.6]

Our conjecture is that, in cities that receive strong knowledge shocks, knowledge
occupations will cluster into neighborhoods with high externalities. Letting 5?,&2 be
the percentage of knowledge workers in CT j € &, and letting rank;.. be the
percentile of j in the distribution of A** within cz in 1990, we estimate via 2SLS the

following equation:

(1.6) As"

7,cz

= (., + frankj ., +yrank;., x Alog(l + Patents.,) + €.

We cluster standard errors at the CZ-level and weight each CT by the total number
of workers in 1990. A positive sign for the coefficient of the interaction, ~, sug-
gests that neighborhoods with high learning opportunities in 1990, in cities where
the knowledge shock has been stronger, have experienced a more pronounced shift
towards knowledge-intensive occupations. The OLS and IV estimates of are dis-
played in Table B.6] The interaction term has a positive and significant coefficient,
that is meaningful in magnitude. Combining the estimates of § and 7, we can see
that in cities at the 95th percentile of the distribution of innovation shocks, CTs
at the top of the distribution of A** in 1990 experienced a shift in the composition
of employment towards knowledge occupations about 3.52 percentage points higher

than CTs at the bottom of the distribution of A** in 1990. The corresponding figure,
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in cities at the bth percentile of the distribution of innovation shocks, is significantly
smaller (1.40).

1.3.7.2. The role of residential amenities. As mentioned in the previous sub-
section, the fact that high-knowledge firms cluster in space might directly influence
residential choices of workers through commuting costs considerations. This pro-
cess could be amplified by the existence of endogenous residential spillovers that are
disproportionately valuable to high-education, high-salary workers. For example, a
high concentration of creative workers might attract amenities such as elite schools
or fitness centers, to which other types of workers might be less sensible.

To check whether residential amenities play a role in promoting the increase in
segregation observed in the data, we exploit the index of natural amenities assembled
by Lee and Lin (2017). The authors build an index based on the distance to natural
amenities (e.g., ocean coast) or the presence of steady features (e.g., fountains) for
each Census Tract contained in a Metropolitan Statistical Area (MSA). In their
paper, they show that MSAs where the index variance is higher are also MSAs
whose spatial income distribution has remained more persistent over time. Our idea
is that cities that incorporate residential amenities whose valuation is unlikely to be
altered by the surrounding distribution of residents, should also be cities where the
residential spillover channel is weaker. In other words, the presence of extremely
valuable amenities that are exogenous relative to the geography of the city should
have a dampening effect to the residential agglomeration forces documented in the

previous sections, since the endogenous spillovers would play a more marginal role.
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We first assign every CT contained in the Lee and Lin’s (2017) dataset to a
CZ and, following their methodology, we calculate the standard deviation of the
amenities index for each city’ We then introduce this term and its interaction with
patenting growth to our baseline regression model. A negative coefficient for the
interaction term indicates that cities whose variation in residential amenities is more
anchored to natural or persistent features, experience a less pronounced change in
income segregation following an innovation shock. Columns 2 and 4 of Table
report the OLS and IV results of such a regression. As expected, the parameter
associated with the interaction term is negative and statistically significant at a 10%
level. The magnitude of the coefficient is economically large. The point estimate
implies that cities ranked at the 95th percentile in their degree of persistent residential
amenities display a marginal effect of knowledge shocks on income segregation equal
to 0.84 Gini points, less than a quarter of the marginal impact in a city at the 5th
percentile of the distribution (2.96). This suggests that residential amenities play
indeed an important role in amplifying the effect of innovation shocks on income

segregation.

2"Note that since the MSAs do not cover the whole U.S. territory, for this exercise we are able to
use data from 337 cities only.
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1.3.8. Taking Stock

The empirical analysis shows a robust and economically meaningful causal relation-
ship between the expansion of innovation activities and the increase in income seg-
regation in U.S. cities between 1990 and 2010. This effect is stronger for learning-
intensive fields (Medicine, Chemistry, IT, Electronics) and weaker (or negative) for
less knowledge-intensive fields (Textiles). Less than 50% of this effect can be ex-
plained by an increase of income inequality, suggesting that knowledge intensity
generates incentives for people to sort in space along income, occupational and edu-
cational dimensions. As a potential mechanism, we provide evidence suggesting that
(1) innovation shocks induce an increase in the geographical concentration of em-
ployment of knowledge-intensive occupations, which can affect income segregation if
the location of employment is linked to residential choices, and (2) the endogenous
response of residential amenities can work as an important amplification channel.
In the next section, we propose a structural model of the internal structure of
cities that formalizes and quantifies such mechanism. We augment the model de-
veloped in ARSW to allow for a creative, knowledge-intensive sector and a residual
non-creative sector. The model features occupation-specific productivity and resi-
dential externalities, generating a variety of motives for job clustering and residential
sorting. The exogenous innovation shocks derived in the empirical analysis allow us
to structurally estimate the parameters controlling the strength of such externali-
ties. The model is successful in replicating the key empirical relationships, and can

be used to investigate the factors that drive them.
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1.4. Model

We consider an economy comprising a finite set of cities C. In what follows,
we present the model for an arbitrary city ¢ € C, and suppress the city index for
notational convenience. Our setting expands ARSW by allowing for multiple cities
and worker types. We refer to the original paper and its Appendix for some of the

derivations and details.

1.4.1. Demand

A city ¢ € C comprises a finite set of neighborhoods (CTs) S. Agents differ intrinsi-
cally by their background, or sector in which they operate. There is a creative sector
k and a residual sector n, to which each worker inelastically supplies one unit of
labor. The utility function of worker o of type = € {k, n}, living in neighborhood ¢

and working in j is given by

z N\ B x 1-3
Ziq Cs: hZ®.
1.7 U = 190 g ijo ijo
o Yo dy Z(ﬁ) (1—5)

where ¢;j, is a tradable consumption good (the numeraire), h;j, is consumption

of housing of price ¢;, BY

¥ represents residential amenities, and z;;, is a Frechet-

distributed random variable with shape parameter ¢ > 1. The term d;; = €
represents iceberg commuting costs, with 7;; denoting commuting times (in minutes)

from i to j, and k > 0 a parameter controlling the sensitivity to commuting. Every
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worker maximizes her utility subject to

X X X
Cijo T Qihijo < wy,

where wj is the wage that workers of type = receive when working in CT j. Utility

maximization yields

w*
h;, = (1—ﬁ)q—j, o = By

Using the two optimality conditions, we can write the indirect utility function as

(1.8) ul, = B d{wj (¢:)° "
1)

Upon moving to the city, each agent receives a collection of Frechet-distributed
independent draws, one for each (i, j) pair of residence and workplace neighborhoods,
and chooses the pair that delivers the highest utility. Using the indirect utility
function in and the properties of the Frechet distribution, we can calculate the
share of workers o of type x choosing to live in CT ¢ and work in CT j:

Brws)” (dija!™") N or.
(1.9) = (Brug) (4 =,

Y Brug) (dma ) ¥

I,meSXS
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Summing over the work locations, we get the share of people of type x who live
in neighborhood 1:

2%

T T €S
(1.10) T =Y mh =" o

jES

Similarly, the share of workers of type # who work in j can be expressed as

> e

B B 1€S
1€S

The probability of commuting to j conditional on living in ¢ is given by

(w /i)
(1.12) T e L
(wf /di)®

Therefore, the measure of people of type z who work in j, denoted by WY, is given

by

z/d,)*
(1.13) We = (/) iR,
1es Z (wi/ dim)

meS

where R” is the amount of residents of type z living in the city@

28Note that R* = 3, W# = 3. R, where R” is the mass of residents of type z in CT i.
VA ) i
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Using the conditional probability derived in (1.12]), we can calculate the expected

wage of type x conditional on living in neighborhood 1:

wk/dlk T
k:eZS Z s da)’ . ., Y

les
which is the average wage received by workers of type x in CT k weighted by the
probability of working there, conditional on living in .

The distribution of utilities of type x for each type in the city is given by

G* (u) = e ™"
To see this, note that the probability that the utility of an agent of type x chosen at
random in the city is higher than u, 1 — G* (u), is equal to the probability that her
utility is bigger or equal to u for at least one residence-workplace pair, or equivalently
to 1 minus the probability that her utility is smaller than u for all the residence-
workplace combinations:

1—G®(u) = H Gr

I,meSXS

where Gf; (u) = e~ %5 is the utility distribution of workers of type x living in i

and working in j. From here it is easy to see that

E[u] =T (1 - 1) ()V/*

3
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where I (+) is the Gamma function. The expected utility when deciding to move into

the city must be equal to the reservation utility U®, that is constant across cities.

1.4.2. Production

Each neighborhood j hosts a representative, perfectly competitive firm of each sector
x € {k, n}. The firm hires sector-specific labor and rents office space, and aggre-
gates them into a homogeneous final good according to a Cobb-Douglas production
function:

yr = A7 (H7) T (W)°

J

where y7 is output of firm z in CT j, AY is its total factor productivity, and HY is
total office space rented by the representative firm.
Profit maximization gives

we a H* 11—«
(1.14) (1 —a) 4] <H}) = qj, aAj (VVJQC) = wj.

J

Combining the FOCs with the zero profit condition yields

a/(1-a)
« —a
(1.15) ¢ =(1-a) (7) (Ar)e),

wj

1.4.3. Residential and productivity externalities

The terms B} and Af summarize the location’s residential and productivity charac-
teristics. We assume them to be geometric functions of the concentration of economic

activity around the relevant location. Elasticities are occupation-specific, so that the
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intensity of the externalities depend on the type of resident or worker who is gener-
ating and benefiting from them.
We define density of residents of type zo € {k, n} around residents of type
x1 € {k, n} in neighborhood i as
R/?
T1T2 __ —Px Til L
(1.16) Qrz =) e o
leS
where p,, is the rate of decay of residential externalities perceived by residents of

type x1, and K is the area in CT ZH Then, residential amenities for type x; in

location 7 are

(117) B = bt (O (e

Y

where w,,;, (We 4, ) represents the elasticitiy of residential externalities from residents
of type x5 (x7) to residents of type x1, and b;* is an exogenous term that captures the
component of residential amenities that is not affected by the surrounding economic
activity.

Similarly, we define the density of employment of type x around workers of type

k (creative occupations) in neighborhood j as

we
kx __ —0rT; l
(1.18) AJT = Zles R

29This functional form is consistent with the intuition given by Lucas and Rossi-Hansberg (2003)
on how knowledge spillovers are generated.
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where ¢, is the rate of decay of productivity externalities perceived by workers of

type x. Then, the productivitiy term for type k in location j is

(1.19) Ak — a;? (Afk)Akk (A‘];;n))\kn ,

J

where A\ (Agn) represents the elasticity of productivity externalities from workers

k

of type k (n) to workers of type k, and a;

is an exogenous term that captures
the component of productivity that is not affected by the surrounding economic
activity. In the structural estimation of Section , we allow A (the intensity of
local learning among workers in the creative sector) to depend on the city-specific
knowledge shocks that were estimated in the empirical analysis.

We maintain the assumption that the productivity terms for the non-creative
occupations, A7, are stagnant, and are not affected by local externalities, so that
A% = aj for all neighborhoods. This assumption is consistent with Davis and Dingel
(2016), in which only workers who select themselves in knowledge intensive occu-

pations benefit from the concentration of learning opportunities in large cities. As

discussed in Section [1.4.6] our quantitative results support this interpretation.

1.4.4. Equilibrium

We now have all the elements to define an equilibrium of the model.

Definition 1.4.1. Given quantities {Li, Ki, {af, b7} e n}} € (0, c0) and
" ies

1771

{Tij}ijesxs € (0, 0o) and reservation utilities {(_]k, U”}, an equilibrium is a set of
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quantity and prices {{7?}{21-, Ty, RE, WP wi, AT, Bf}$€{k7n} ; Qi} s’ so that, for each
(2

type x € {k, n}:

e Expected utility of moving into the city equals the reservation utility

B 1/e
(1.20) (1 - —) [Z 3 <dlm a) ﬁ) (Bfw;)e] _ e

€S meS
e The share of population living in ¢ is given by
e The share of population working in j is given by
e Land markets clear for each ¢ € S:
(1.21)
2 <—(1_®A_§>WW+(1—® S B

z€{k,n} di ze{kn} | l€S Z =/ dim)° i

meS

e Productivity and residential externalities are determined by ((1.17]) and ((1.19)),

respectively
e Factor prices satisfy (1.14]), so that firms make zero profits

e Labor markets clear:

T X X X i X
Rz’:ﬂ-Rz‘E Ry, VV]':WW]'§:VV17

leS les
R EZRf :ZVVZ =W
leS leS

The fact that residential amenities and productivities are subject to local external-

ities gives rise to the potential for multiple equilibria. As discussed by ARSW, the
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structure of the model allows to deal with this multiplicity directly by identifying a
unique set of location characteristics that is compatible with the data, so that only

the observed equilibrium is relevant for the estimation of the model’s parameters.

1.4.5. Recovering wages and location characteristics from data

The structure of the model allows us to recover unobserved location character-

istics starting from data on residents by sector, {Rf,R?}

.cg: Workers by sector,

{VVf, VV]”} and rental price of floor space, {¢;} bilateral commuting times,

JjeS’ i€S?
{7ij}i jes: and average wage by sector in the city, {wk, @}, given knowledge of the
parameters xk and e.. The equilibrium conditions can then be inverted to univo-
nd

cally identify wages by sector, {wéC , w?}je o residential amenities {Bf , Bf}ie 5 &

productivities {AgC , A7 }je -
We first discuss how we obtain an estimate for the city-specific parameter control-
ling the sensitivity to commuting, v, = .. We then discuss how to pin down local
wages by sector. Finally, we show how to recover the values of residential amenities
and productivities. The data sources used for this purpose are described in details
in Appendix
Estimating sensitivity to commuting times. We allow the parameter that controls

the sensitivity of the utility function to commuting times to vary by city. Taking

logs of ([1.9)) yields a gravity equation for commuting flows from CT ¢ to CT j:

(1.22) log (7f;) = o + ¢ + (7 + verij + 15



65

where v, = €., and ¢ and (j are residence and workplace fixed effects, respectively.
Since there are no comprehensive measures of commuting flows by occupation, we ap-
proximate a single gravity equation for commuting flows by estimating one equation

of the same form for each city:
(1.23) log (mi;) = a4+ i + § + veTij + mij.-

We show in the Appendix (Figure that an alternative method for estimating
V., based on replicating the observed share of residents commuting for less than 60
minutes from their workplace, yields very consistent results.

We estimate by OLS separately for each city using data on actual com-
muting flows from the Longitudinal Employer-Household Dynamics (LEHD) dataset.
The distribution of estimates of v, is illustrated in Figure [A.15 The median value
is —0.041, which implies that one additional minute of commuting time decreases
commuting probability by 4.1%

Recovering wages, residential amenities and productivities. For given values of
k and €., wages by sector in each location are uniquely (up to a normalization)
determined by the following system of 2 x |S| equations:

€
(w:{:) c /el/cTij
(1.24) We = L -R?,
T Yes (wp)™ [evem

30The results are consistent with the ones in ARSW, who estimate a value of —0.07 for the same
parameter.
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where {W, R},_g are observed in the data, and where an appropriate normalization
of the wages is chosen, so that the average wage in the city is equal to the observed
counterpart in the data, w?. We choose units so that the geometric mean of the

non-creative sector’s wage in the CZ with the first index (Memphis) is equal to
one ]

Given a value for o and knowing {¢;},.s and {wf, w}fb}jes, productivities {A?, A?}jes

can be recovered from equation (|1.15)). Then, given values for {dy, d,} and {Asz, }

r1,22€S

and observed areas {K;} the exogenous component of productivity {af, a;?}je S

1€S?

can be obtained by combining (|1.18)) and ((1.19).

Given values for €. and (3, observed data for {Rf, Ry, qi} and the equilibrium

€S’

wages {wf, w]”}je 5 combining (1.10) and (1.20) allows us to recover residential

amenities { Bf, Bl'},

c

R\ = I 1-8
) () G e k),

B A\r(i-2)) @
where W} =} (w? /dy;) . We choose units so that the geometric mean of residential
amenities for both types in the CZ with the first index (Memphis) is equal to one.

This choice of units allows us to recover the unobserved value of the reservation

utility U” and to evaluate (1.25) for the remaining cities[

319ee Lemma S.7 in the Supplement to ARSW for a proof that the system of equations in (1.24])
determine a unique (up to a normalization) vector of wages {w;”}je s
320ne additional normalization is required to define units in which floor space is denominated. We
normalize the price of floor space, g;, so that the geometric mean in Memphis is equal to one.
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1.4.6. Structural estimation

We follow ARSW and set a = 0.8, § = 0.75 and « = 0.01 in our calibration,
which implies e, = 1,/0.01] In order to estimate the remaining parameters (the
ones that control the strength of the agglomeration externalities) we exploit the
differential change in the concentration of economic activity in cities between 1990
and 2010 that results from differential changes in knowledge intensity, as recovered
in the empirical analysis. In particular, we rely on the orthogonality between the
inferred innovation shocks and other factors that affect the geographical distribution
of economic activity in the city. The model captures those residual factors as changes
in the exogenous components of productivity and residential amenities, aj and bj.
Our orthogonality condition imposes that changes in the average of the exogenous
components within a city are independent from the innovation shock the same city
receives.

To introduce innovation shocks, we assume that the elasticity of productivity

externalities for the creative sector Ay is identical across cities in 1990 (A)), but

varies in 2010 depending on the city-specific value of the knowledge shock:

(1.26) Aire = Ay + 0o + 01 - bin,

33Following Allen et al. (2017), we also estimated e, using a model generated instrument together
with the fixed effects obtained from the gravity equation . Although the confidence interval
includes values strictly greater than 1 for 96% of the commuting zones, the point estimate is smaller
than 1 in 20% of the cases, including in some major cities such as Los Angeles and New York. For this
reason, we use the ARSW estimates and set x = 0.01 for our analysis. Interestingly, the weighted
and unweighted mean of k. obtained through the procedure proposed by Allen et al. (2017) is very
close to this value. Details of the procedure and results are provided in the Appendix.



68

where 6y and 6, are estimated jointly with the remaining parameters, and bin,. is the
value of the knowledge shock for city ¢, as described below.
To make the orthogonality condition operational, we proceed in three steps. First,

we compute for each city the predicted patenting growth, as outlined in Section

I3.2.1¢
(1.27) ge = log pat,gs_14 — log patess_ou.

Second, we take the residuals of a regression of §. on the set of basic controls (number
of CTs, income and population growth). Third, we sort cities according to those
residuals (in ascending order) into 10 bins, so that the sum of the population of
all the cities in the bin is approximately equal for all the bins (and equal to %
of the total population). The resulting categorization determines the value of the
knowledge shock (bin.) introduced in ((1.26). The orthogonality condition can then
be expressed as

(1 28) Ecec,,, [A10790Ei686 log (a‘f)] = Ecec [A10790Ei€SC log (af)]

Ececyi, [A10-90Eies, log ()] = Ecec [A10-90Eses, log (b7)]
for all bin € {0, ..., 9} and = € {k, n}. In (1.28), all expectations are weighted
by total population in the neighborhood. For a fixed set of parameters, and given

observed data on residents, workers and price of housing (that also imply a unique

vector of wages through ((1.24])), residential and productivity fundamentals can be

recovered by combining ((1.25)) with (1.17)) and (1.15)) with ((1.19)), respectively.
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Condition (|1.28]) requires that cities with different knowledge shocks do not dis-
play systematic differences in the way residual fundamentals change between 1990
and 2010. Hence, the systematic difference in how the concentration of economic
activity changes must be due to the combination of the the change in the production
function of the creative sector induced by the knowledge shock, and the endogenous
agglomeration forces in the model.

The system in delivers 3 x 10 moment conditions for a set of 11 parameters

to estimate@

P = {pn7 Pk 5k7 Wnny Wk, Wkn, Wk, )\kna )\klm 007 91} .

Our estimation routine sets the value of the parameters, P*, in such a way as to

minimize the sum of the squares of the moment conditions:
P* = argminp.p m (P) Wm (P)'

where W is the optimal weighting matrix. Details on the estimation algorithm can
be found in Appendix [C.1.3]

The results of the estimation are displayed in the right panel of Table |[B.§] The
rates of decay of residential externalities (p, and py) are close to the corresponding
estimates in ARSW (0.55—0.90), and suggest that residential externalities are slightly

more localized for knowledge workers. The rate of decay of productivity spillovers for

34Note that since we assume Ap, = Apgp = 0, the moment conditions involving a do not identify
any relevant parameter.



70

knowledge workers (dy,) is lower than the estimate in ARSW (0.35 —0.92) and points
in the direction that learning externalities, albeit localized, have a larger geographical
span than other types of productivity spillovers.ﬁ The estimated value of §; implies
that a 10 minutes commuting time reduces the strength of the externality by roughly
42%.

Two additional considerations stand out. First, as suggested by the similar es-
timated values of w,, and w,;, residential externalities perceived by non-creative
workers are closer across the two types than externalities that knowledge workers
receive from neighbors of both types. These are very steep for knowledge workers
(wik 1s high), and significantly lower for residents of the opposite type (wg, is low).
This dichotomy suggests that, following an initial shock to the distribution of em-
ployment, the amplification effect of local amenities on the distribution of residents
can be large. Second, workers in the creative sector receive very steep productiv-
ity externalities from other knowledge workers, and less powerful externalities from

non-creative workers.

1.4.7. Quantitative Exploration

In this section, we first explore to what extent the estimated model can account
for the observed relationship between innovation and income segregation, and then
perform counterfactual experiments to shed light on the underlying mechanism.

35Incidentally, when productivity spillovers for n-workers are included in the estimation, the routine

delivers an explosive value of §,, roughly equal to 10, which implies that productivity spillovers for
non-creative workers are extremely localized, possibly limited to the firm’s boundaries.
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We proceed as follows. For each city in the sample, we first compute the model
equilibrium using data on residents and workers by type, and rental price of housing
in 1990. We then recover the exogenous component of productivity and residential
amenities, {a?, b7}, as described in Section In running the counterfactuals,
we keep the value of the location characteristics fixed at the inferred 1990 level,
and change exclusively the value of Ay in order to reflect the corresponding knowl-
edge shock, as in equation (|1.26|). The algorithm used to find the new equilibrium
(adapted from ARSW) can be found in Appendix . Note that the endogenous
agglomeration forces can give rise to multiple equilibria. The recursion used in the
following experiments looks for the equilibrium that is closer to the original one.

We present our results in bin scatter plots, so that each dot in the figure cor-
responds to the weighted average of the observations in the knowledge shock bin,
as defined in Section [1.4.6, The dotted line represents the predicted values in the

following weighted OLS regression:
AYC'ZO_m =+ bing, + €.,

where the left-hand-side variable varies according to the specification. Since the
model does not target the average change in segregation, we shift the resulting values
by a uniform factor, in such a way as to make the average for the first bin equal
to zero, and explore the ability of the model to explain the differential change in

segregation between cities with different knowledge shocks.
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Figure shows the model performance in replicating the empirical relationship
between the estimated knowledge shock (i.e. the predicted patenting growth, as in
(1.27))) and the change in segregation between 1990 and 2010. The model replicates
the empirical relationship closely: the slope of the regression line is 0.22 for the data,
and 0.27 for the model. A weighted regression of the change in segregation in the
data and in the model yields a coefficient of 0.13, which suggests a large correlation,
even if the only perturbance in the model is the change in Ay, prescribed by the bin.

The model is also successful in replicating the empirical relationship between
knowledge shocks and change in occupational segregation (Table . The model
coefficient (0.60) is not significantly different from the empirical one (0.51). Table
also clarifies that occupational segregation is one of the dimensions along which
knowledge shocks translate into higher income segregation. As shown in the right
columns of Table [B.9 when controlling for the change in occupational segregation,
the coefficients on income segregation drop by about a third in both the model and
the data regressions. Since occupational segregation does not depend on changes in
the level or the dispersion of income, this effect only translates into higher sorting,
and does not appear in the inequality effect.

The model also captures the relationship between knowledge shocks and clus-
tering of employment in knowledge intensive occupations. Table in Appendix
replicates the results in Table using the bin value of the knowledge shock for the
model counterfactuals (left column) and the data (right column). Neighborhoods

with strong learning externalities in 1990 experience a more pronounced increase in
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the share of knowledge workers in high-bin cities rather than in low-bin cities. The
coefficient of the interaction terms in the model regression is larger in magnitude
than the empirical counterpart, but is consistent in sign and statistical significance.
Notice that none of the quantities in Figure and Table and appear as
a target in the structural estimation.

Figure shows the baseline change in segregation in the model simulation (red
line) and the change in segregation that results exclusively from the reallocation of
workers across neighborhoods following the shocks, keeping the average income by
occupation for each neighborhood and occupation fixed at its original 1990 level. This
measure captures the portion of the sorting effect that realizes along the occupational
dimension, and translates in units of income segregation the occupational sorting
observed in Table . The slope of the blue line (0.11, compared to 0.27 for the red
line) can be interpreted as a lower bound for the contribution of the sorting effect to
the overall response of segregation to knowledge shocks.
1.4.7.1. Endogenous vs Exogenous Residential Amenities. Finally, we use
the model to isolate the role of learning externalities and evolving residential ameni-
ties in driving the response of income segregation to innovation shock. Disentangling
the relative importance of those two candidate factors is of crucial importance for the
design of policies aimed at attenuating the rise in segregation, from the improvement
of the transit system to changes in the provision of local public goods. As discussed
in Section [1.4.6] the estimated values for residential elasticities suggests that the en-

dogenous amenities generated by the concentration of residents in the creative sector
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are valued disproportionately more by residents of the same type. Emblematic ex-
amples may include high-quality schools, walkable areas, fitness centers or organic
grocery stores. Hence, an initial shock to the distribution of residence - generated,
for example, by a reshuffling of the distribution of employment - can be significantly
amplified by the endogenous response of residential amenities.

Figure shows the results of a counterfactual experiment, in which residential
amenities are exogenously given (in other words, Bf = bF). This is equivalent to
assume that the elasticities of residential externalities (w,,,) are equal to zero. The
resulting relationship is significantly flatter than the benchmark, suggesting that
the amplification mechanism can be quite large. The coefficient of the regression
in the counterfactual is 0.09, whereas the coefficient in the benchmark model is
equal to 0.27. Comparing the two coefficients, we conclude that two thirds (roughly
66%) of the overall estimated impact of knowledge shocks on income segregation
can be attributed to the amplifying effect of localized, occupation-specific residential
amenities Y
1.4.7.2. Chicago Bids for Amazon HQ2. At the beginning of September 2017,
Amazon announced its intention of adding a second North American headquarter to

the one already existing in Seattle. By the end of the month more than 50 cities

across the United States and Canada, including Chicago, had publicly considered to

36 Another implication is that the relationship between the change in segregation in the data and
in the model is flatter than in the model with endogenous amenities. A regression of the change
in segregation in the model with exogenous amenities and the data yields a coefficient of 0.03,
compared to the 0.13 of the full model.
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submit a bid, for a total of more than 100 projects.[ﬂ In this Section, we illustrate
how our model can be used for policy experiments by assessing the impact of each bid
on Chicago’s city structure. Six projects, each in a distinct location, were deposited
by city developers. The project located furthest north plans to redevelop the area
by the river that is now occupied by the former A. Finkl & Sons steel plant, which
was demolished in 2011. The second proposal for Amazon’s HQ2 would be located
a couple of miles South East towards the Loop, and it would be composed of four
new buildings overlooking the river in the property owned by Tribune Media at 700
W. Chicago Avenue. Three other projects were proposed just (South-)West of the
Loop: One in the Old Main Post Office; another plans to redevelop Union Station
in different stages; and the last one would be just be just South of the loop. Being
the 3 projects in a radius of less than one mile from each other, for the purpose of
our counterfactual analysis, we only consider the one in the Old Main Post Office
which lies in the middle of the two. The last project is the only one located in the
South Side and would be built over the Michael Reese Hospital which ceased activity
in 2009. Figure in the Appendix shows the exact location of the four projects
considered in this simulation.

For this analysis, we first estimate the equilibrium quantities in 2010, and we
then shock the exogenous term of productivities. The shock is calibrated to attract

about 50,000 high-knowledge workers in the considered neighborhood. This number

37« Amazon refuses Arizona’s cactus as bidders for HQ2 climb to 118,” The Seattle Times, September
19, 2017. Map updated October 19, 2017.
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matches the number of workers Amazon expects to employ in its second headquar-
ter. Figure shows the forecasted change in high-knowledge residents in the four
scenarios. The first panel considers the scenario in which the headquarter is located
on the premises of the former Michael Reese Hospital, the second panel the scenario
in which it is located in the Old Main Post Office, the third panel the Tribune Media
scenario, whereas the last panel the former A. Finkl & Sons steel plant. There are
two main trends that is possible to identify by comparing the four counterfactuals.
First, in all the considered scenarios high-skilled high-salary workers tend to move
in the high-amenities areas by the lake and downtown. Second, despite this general
trend, the location of the headquarter seems to matter a lot for local development.
On the one extreme, in the Michael Reese Hospital’s scenario, high-knowledge work-
ers start moving in the South Side. The areas around the University of Chicago and
along the coast seem to be the most attractive. On the other extreme, in the A.
Finkl & Sons steel plant’s project, the majority of the gains are concentrated in the
richer North Side. This is also reflected in the estimated changes in segregation: 1
Gini point in the former case, and 1.3 Gini points in the latter. According to our
simulations the city would experience the highest change in segregation (1.5 Gini
points) if the Amazon campus was located on the Tribune Media’s property. Figure
in the Appendix shows the change in high-knowledge workers in the four cases.

It is important to point out two caveats. First, some of these projects also include
an expansion of the public transportation system. This might reduce the overall

segregation, although it should not affect the local development results. Second, our
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model does not include a notion of migration. All the 50,000 high-knowledge workers
attracted by the new campus all come from the commuting zone of Chicago. Taking
migration into consideration might make the segregation effect worse, since rents in

high-demand neighborhoods would increase more than in our counterfactuals.

1.5. Conclusion

We have shown that the rise of an innovation based economy is causally linked
to the surge in income segregation experienced by U.S. cities in the last decades.
Our instrumental variable results imply that local innovation trends are responsible
for 56% of the cross-sectional variation, and 20% of the overall change in measured
segregation. We have further showed that the estimated effect is driven by innovation
in learning-intensive sectors (including IT and Electronics), and can be only partially
explained as a consequence of an increasing dispersion of income.

Our interpretation relies on the view that local knowledge shocks (e.g. the de-
velopment of new scientific insights that are relevant for local innovation) increase
the returns from localized learning externalities, providing incentives for companies
in knowledge-intensive sectors to cluster geographically. This in turn affects residen-
tial segregation, as workers in creative occupations relocate to live closer to their
place of employment. But therein lies a powerful amplification mechanism, as the
endogenous response of residential amenities, valued disproportionately by the cre-
ative class, makes the overall change in residential segregation more pronounced. A
quantitative model of the internal structure of cities, estimated using detailed neigh-

borhood level data on residence and employment in U.S. cities, predicts that as much
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as 66% of the overall effect can explained as the result of the endogenous evolution
of localized, occupation-specific residential amenities.

The rise of the knowledge economy is profoundly changing the way we live and
interact. The increasing economic divide in areas experiencing rapid growth in their
innovative sectors has often been cited as one of the main challenges that advanced
economies will need to face in their near future, as it brings about social unrest and
political instability. Understanding its causes is a crucial step in properly designing
policies aimed at confronting it, and making sure this secular shift happens in an
inclusive way. Those suggested policies include improvements in the public transit
system, supply of affordable housing, and change in the way public goods, such as
schooling, are provided. Our quantitative framework, which combines state-of-the-
art techniques from urban economics with newly constructed datasets on patenting
and on the geographical distribution of creative occupations in the universe of U.S.
cities, is especially suitable to study the effects of those policies. This is left for

future research.



79

CHAPTER 2

The Geography of Unconventional Innovation

with Ruben Gaetant

2.1. Introduction

The idea that informal interactions are central to innovation and knowledge dif-
fusion has become a cornerstone of recent theories of economic growth (Lucas, 1988).
If true, this idea implies that economic geography, by determining the extent of those
interactions, should play a first-order role in the creation and diffusion of knowledge.
A sizable literature has built on this intuition to emphasize the role of cities and ag-
glomeration in driving technological progress and growth (Glaeser et al., 1992; Black
and Henderson, 1999; Glaeser, 1999).

In this paper, we empirically examine the link between density and innovation
using narrowly geo-referenced information on patenting activity in the United States.
Our geographically disaggregated data show that the advantage of cities in produc-
ing innovation is more nuanced than commonly believed. While suburban areas are
responsible for a substantial share of overall innovation activity, high-density places
disproportionately generate innovation with a high degree of unconventionality. This
finding reconciles the intuition that density fosters creativity with the observation

that the origin of innovation in the U.S. is far from being limited to dense urban
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areas. We then propose a spatial theory of a knowledge-based economy that is con-
sistent with our findings. The theory highlights a novel rationale for why economic
activity agglomerates in places of different density and degree of diversification. This
rationale is grounded in the process of knowledge creation and reconciles the tension
between returns to local specialization (Marshall, 1890) and returns to diversity (Ja-
cobs, 1969), without relying on agents whose productivity is ex-ante heterogeneous.
While existing spatial theories of innovation and knowledge diffusion have focused on
explaining heterogeneity in size (Davis and Dingel 2016) or diversification (Duranton
and Puga 2001), our model can account simultaneously for both dimensions, as well
as their empirical relation, opening up novel insights for policy analysis. We show
that a system of place-based subsidies can have a significant impact on aggregate
welfare by changing both the intensity and composition of innovation activity.

The empirical analysis is based on the full-text record of all the patents granted
by the USPTO in the years 2002-2014, georeferenced at the County Sub-Division
(CSD, henceforth) level. At this narrow level of geographical disaggregation, the
concentration of innovation activities in high-density areas appears to be smaller
than commonly thought. Over 77% of the patents in our sample originate from
geographical units with density below 1,600 people per square kilometer.E] The rela-

tionship between patenting per capita and density of population is non-monotonic,

11n 2005, the density of population of San Jose-Palo Alto was 1,547 residents per square km. The
share of patents produced in CSDs with lower density is 63.4%. As a comparison, in 2005, density
of population is 26,407 in Manhattan; 7,175 in Boston; 6,514 in San Francisco; 5,588 in Chicago.
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peaking around the density of San Jose-Palo Alto and declining for higher levels of
density.

However, our disaggregated data reveal a more nuanced connection between den-
sity and innovation outcomes.

First, innovation produced in densely populated areas is more likely to be built
upon unconventional combinations of prior knowledge. To show this fact, we propose
a notion of technological distance, based on the observed network of patent citations,
that proxies for the intensity of idea flows between fields. We develop an algorithm
in the spirit of Uzzi et al. (2013) to evaluate the atypicality of the references listed
in each patent. Our measure compares the observed frequency of each pairwise
combination of citations with the frequency one would expect if references were
distributed at random. This procedure assigns an index of conventionality (c-score)
for each citation pair: combinations are conventional if their empirical frequency is
large compared to their random frequency. The c-score ranks inventions along a
dimension that is economically meaningful: Unconventional patents are significantly
more likely to be highly cited compared to conventional ones, and significantly less
likely to be produced by large, publicly traded firms. We find that unconventional
innovations tend to disproportionately originate from densely populated areas. This
relationship is statistically and economically significant, emerges both in patent-level
and CSD-level regressions and is robust to a wide variety of specifications.

Second, dense cities host a more diversified pool of learning opportunities. Com-

puting the technological distance between any pair of patents produced in each CSD,
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we find that pairwise combinations of inventions in high-density CSDs are more tech-
nologically distant than combinations in low-density ones. Therefore, inventors in
dense cities are more likely to be exposed to ideas from distant backgrounds. This
higher degree of local diversification can translate into a higher degree of unconven-
tionality, provided that the local pool of innovation is a predictor of the technologies
combined into new inventions. To get at this, we adopt a difference-in-difference
strategy and look at the patenting activity of pre-existing firms upon arrival in town
of companies in different technological fields. We find that such arrival significantly
biases the citation behavior of pre-existing entities toward the field of the arriving
firm. To the best of our knowledge, this paper is the first to provide direct evidence
of inter-sectoral localized knowledge spillovers operating through this channel.

The facts that we document suggest an alternative interpretation of how tech-
nological change interacts with economic geography. Overall, suburban areas play a
prominent role in the innovation process. Big innovative companies such as IBM or
Motorola tend to perform their research in large office parks located outside main
city centers. One possible interpretation is that these companies can organize knowl-
edge flows efficiently within the organization, and do not need to rely on casual
interactions in a dense environment. By contrast, informal interactions in dense
and diversified areas may become important in generating knowledge flows across
technologically distant fields, since specialized formal networks (e.g. firms, academic
departments or research labs) may not internalize them efficiently. As a result, inno-

vations originating in high-density areas will display more uncommon combinations
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of prior knowledge. This calls for a reassessment of the theoretical link between ge-
ography and innovation. In particular, a spatial model of innovation should be able
to account for the simultaneous emergence of specialized clusters in suburban areas
and diversified hubs in urban centers, while taking the heterogeneity of innovation
into account. In the second part of the paper, we propose such a model and study
its implications for place-based policy analysis.

In our setting, innovators are specialized in one out of a set of scientific fields.
They choose where to locate, balancing congestion costs and innovation opportu-
nities. New product lines are created by combining an unconventional idea, which
assembles diversified knowledge from multiple fields, with a conventional idea, that
embodies specialized knowledge from one single field. Innovators have an incentive to
cluster with people of similar background to benefit from intra-field spillovers that
increase their ability to develop ideas. However, developing unconventional ideas
demands interactions with inventors from different fields, which require additional
search through informal channels. This friction amplifies the benefits from agglomer-
ation in the form of inter-field spillovers, and implies that, in equilibrium, diversified
cities are more densely populated than specialized ones.

The model reproduces the geographical sorting of innovation activity observed in
the data. The complementarity between conventional and unconventional ideas leads
to the emergence of asymmetric sites, both in terms of density and specialization.
Densely populated cities diversify and generate unconventional innovation, whereas

specialized clusters emerge in low-density areas and produce conventional ideas. The
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equilibrium implies that composition and intensity of the innovative activity are
tightly related to the economic geography, and depend on the parameters of the
model in an intuitive way.

This unexplored link opens up novel possibilities for welfare improving place-
based transfers. Market forces produce wedges in the balance between the rate
of invention and urban congestion, and in the balance between the supply of con-
ventional and unconventional ideas. We study optimal policy in this setting, and
characterize conditions under which a planner would use place-based policies to in-
crease urbanization and boost unconventional innovation. We also show that welfare
gains from the optimal set of transfers are significantly larger when the planner has
the ability to affect the urban structure by creating new cities and reconverting the
nature of existing ones, compared to a planner who can only intervene by relocating

agents within the current urban structure.

This paper contributes to the empirical and theoretical literature on the role
of localized knowledge spillovers for innovation and growth. The importance of
localization and geography for the spreading of knowledge, which dates back to
Marshall (1890)E| has been the subject of extensive research in recent years since

Lucas (1988) and Krugman (1991) seminal papers on economic development and

geography.

2In Marshall’s famous words: “When an industry has thus chosen a locality for itself, it is likely to
stay there long: so great are the advantages which people following the same skilled trade get from
near neighborhood to one another. The mysteries of the trade become no mysteries; but are as it
were in the air, and children learn many of them unconsciously.”
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A sizable literature has provided empirical estimates of the size and properties of
local knowledge and productivity externalities. Jaffe et al. (1993) find that patent
citations display a significant bias towards patents that were produced in the same
state and metropolitan area. Greenstone et al. (2010) estimate significant agglomer-
ation spillovers on TFP by comparing winning and losing counties bidding to attract
large plants. Kerr and Kominers (2014) propose a theory of cluster formation based
on firm’s location and interaction choices, and confront its predictions using data
on patent citations by technology class, finding that the geographical properties of
innovation clusters are controlled by the spatial range of knowledge transmission,
which is specific to each technology class.

Another body of literature has investigated the implications of knowledge ex-
ternalities for the spatial concentration of innovation, and its interaction with the
geographical distribution of economic activities more broadly. Audretsch and Feld-
man (1996) find that, in State-level regressions, knowledge intensity in an industry
is positively related to its geographical concentration of innovation, after control-
ling for the concentration of production. Rosenthal and Strange (2001) find that
industry-level measures of knowledge spillovers have a significant effect on industry
agglomeration only at a very narrow geographical levels (specifically, ZIP codes).
Carlino et al. (2007) document a positive relationship between employment density
and patent intensity across MSAs. Agrawal et al. (2010) use patent citations to

shed light on the reason why, despite the well known advantages from innovating in
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dense and diverse cities, we observe the prevalence of large firms locating in “com-
pany towns”. The authors find that those companies tend to cite disproportionately
previous own inventions, suggesting a limited scope for them to have access to broad
and diversified learning opportunities. A number of studies have focused on the role
of specialization and diversity in cities in driving innovation and economic outcomes
(Glaeser et al. 1992; Florida and Gates 2001; Feldman and Audretsch 1999; Delgado,
Porter and Stern 2014). Our main finding is broadly consistent with Packalen and
Bhattacharya (2015), who find that over the last century newer concepts have been
implemented in inventions originating from high-density regionsﬂ A comprehensive
review of the existing literature on the geography of innovation can be found in
Carlino and Kerr (2015).

This paper also contributes to the theoretical literature on spatial equilibria in a
knowlege-based economy. Glaeser (1999) proposes one of the first models of knowl-
edge flows in a spatial setting. The coexistence of diversified and specialized cities
in an innovation economy was first analyzed by Duranton and Puga (2001). In their
model, young firms locate in diversified cities to experiment with different proto-
types, while established firms move to specialized sites where cost advantages are

stronger. Davis and Dingel (2016) develop a model in which productivity in cities is

3Packalen and Bhattacharya (2015) find that throughout the last century, patents produced in
more densely populated urban areas have made more intense use of newer concepts, identified as
new sequences of words. On the contrary, we look directly at combinations of ideas. The pattern of
geographical sorting that we document runs through a specific channel, namely, a more hybridized
composition of the knowledge base upon which new ideas are built. Packalen and Bhattacharya
(2015) also find that the advantage of dense cities is significantly weaker in the part of the sample
corresponding to the time period covered by this paper. This suggests that the sorting that we
document could be even stronger if an earlier sample of patents were used. This is left for future
research.
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fostered by informal interactions among people with heterogeneous abilities. In their
setting, the heterogeneity in city size is determined by the comparative advantage of
high-skilled individuals in an environment with high learning opportunities. Our set-
ting rationalizes heterogeneity in city size through the complementarity of different

forms of innovation, while maintaining homogeneity in agents’ productivity.

The remainder of the paper is organized as follows. Section 2.2 introduces the
dataset and presents new empirical facts about the geographical organization of the
innovative activity in the United States. Section 2.3 introduces the model, charac-
terizes its solution, highlights the mechanism, and studies its implications. Section
2.4 analyzes optimal place-based policies under fixed and flexible urban structure.

Section 2.5 concludes.

2.2. Empirical Analysis

The analysis is performed using the universe of patents granted by the US Patent
and Trademark Office (USPTO) between January 2002 and August 2014, and filed
between January 2000 and December 2010. Table reports the total number
of patents by filing year. There are several advantages to focusing on this recent
sample. First, the recent digitization of the patent archive has made it easier for
authors and reviewers to look for earlier patents to reference. Second, by focusing
on a short period, we minimize long-run changes in the propensity to patent and

the technological composition of the sample. Third, we can reliably link the location
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reported in the patent with socio-economic and demographic characteristics from the
Census and the American Community Survey.

Every patent is assigned to one of 107 International Patent Classification (IPC)
categoriesﬁ For each grant, we gather information on the identity and location of
the original assignee, the inventors, as well as on the full list of cited patents (up
to a maximum of 1,500 citations per patent). Every patent is geo-located following
a hierarchical rule: If the patent file reports the name of an institutional assignee
(e.g. a company, a research lab or an academic institution), we assign the patent to
the geographical coordinates of its location; if it does not report any assignee or its
address is missing or located outside the United States, we attempt to geotag the
grant according to the location of its first inventor, otherwise of its second inventor
and so on until we are able to assign a location to each patent. Note that we
choose to use the location of the assignee, whenever available, instead of the address
of the inventor. Most of the literature on the subject, since Jaffe et al. (1993)
uses the location of the inventor. Both alternatives raise a number of issues. For
example, when a patent lists multiple inventors whose locations are too far apart
to suggest any interaction through spatial proximity, the address of the institution
can represent a more accurate indication of the geographical origin of the invention.
Many companies issue patents under several addresses, corresponding to different

establishments or research facilities. The main concern with our approach is that

4Since each grant is associated with several IPC classes but only one main USPTO class, we build a
many-to-one function that maps every USPTO class to a single IPC class based on the associations
that recur more often.
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the address of the assignee sometimes represents the headquarters of the company
instead of the research facilityﬂ To address this concern, we run robustness checks
using two separate geotagging strategies: (1) the sub sample of patents assigned to
the address of the firm, only when it is in the same state of the address of at least one
of the inventors and (2) all the patents located at the address of the inventor. We
mention these checks several times throughout the text. We only consider patents
that reference at least two citations. The main analysis is performed on a final sample
of 1,058,999 patents filed over an 11-year period.

The analysis is conducted at a County Sub-Division (CSD) level. The CSD is
the finest geographical unit that we are able to identify uniquely by intersecting
the location information retrievable from the full-text of the patent and the data
available from the Census and the American Community Survey.ﬁ The CSD is finer
than a county. It typically coincides with city boundaries and, in a few cases (e.g.
New York City) a city can be partitioned in multiple CSDs. Since demographic
data at this level of disaggregation are only available every 10 years, we interpolate
the values of the demographic variables between 2000 and 2010 assuming a constant

growth rate throughout the years.

2.2.1. Low-density areas produce a substantial share of patents

The literature on the geography of innovation has long emphasized the importance

of density of population in determining innovation outcomes, and documented the

5Aghion et al. (2015) report a 92% correlation between the two locations at a State-level.
6The socio-economic and demographic indicators at a CSD level are available at https: //nhgis.org.
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concentration of innovation activities in densely populated regions. Most studies
have focused on large geographical units, such as States, Commuting Zones (CZs) or
Metropolitan Areas (Carlino et al. 2007; Abel et al. 2011). A visual inspection of the
geography of patenting in the U.S. confirms this intuition. The map in Figure
shows the distribution of continuously innovative CSDs, defined as locations that filed
at least one grant per year between 2000 and 2010E| There is a clear tendency for
innovative activity to concentrate around main urban areas, highlighting a pattern
that one would expect. For example, the East-Coast, the Chicago Area, the Texas
Triangle and the Bay Area, among others, are all highly innovative regions.

The left panel of Figure displays a bin-scatter plot of the CZ-level empirical
relationship between the logarithm of density of population (measured as residents
per square kilometer) and patenting intensity (measured as patents per capita)ﬂ in
the balanced panel of 742 U.S. CZs between 2000 and 2010f] At this level of dis-
aggregation, the common intuition that density is associated with higher innovation
intensity is confirmed. More densely populated CZs have higher patenting per capita,
and the relationship appears to be monotonically increasing even in the right portion

of the density distribution. The coefficient of the underlying regression implies that

"Note that CSDs are a partition of the US: the empty areas are CSDs where no patents were filed
between 2000 and 2010.

8We winsorize this variable at the 1% level. Table reports the summary statistics of the main
variables. We weight observations by total population, and include year fixed effects to control for
aggregate trends in patenting and density.

9To obtain the bin-scatter plot, we divide the variable on the z-axis into bins (typically 50
or 100 bins) - each containing the same weighted number of observations - and take the
mean of the y-variable across the observations falling in each bin. Chetty et al. (2013)
show that this methodology graphically captures the correlation between two variables. See
http://michaelstepner.com/binscatter/ for a discussion.
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doubling CZ-level density is associated with 0.10 more patents per 1000 residents.
The right panel of Figure shows the same correlation only for the subset of
the densest CZs that make up 50% of the U.S. population in 2005. The correlation
remains positive and significant, and the underlying coefficient implies that doubling
density is associated with 0.08 additional patents per 1000 residents.

The picture changes substantially when we narrow down the unit of observation to
the CSD-level. Figure shows the distribution of continuously innovative CSDs
in close-up maps of the four most densely populated metropolitan areas. Two less
obvious observations emerge. First, a substantial part of patenting activity occurs
away from main urban centers, often in low-density areas that are geographically
separated from major cities (notably, Armonk, NY and Schenectady, NY). Second,
even within major urban agglomerations, a big share of the innovative action takes
place in their suburban portion (e.g. Schaumburg, IL and Mountain View, CA).
Overall, low density regions seem to play a key role in the innovation process. About
77% of the patents filed between 2000 and 2010 originate from CSDs with 2005
density below 1,600 residents per square km (slightly above San Jose-Palo Alto),
and about 63% from CSDs with 2005 density below 1,500 (slightly below San Jose-
Palo Alto)[™]

The left panel of Figure shows the CSD-level empirical relationship between
the logarithm of density and patents per capital’| Patenting intensity is no longer

monotonically increasing in density, peaking at around 1,300 residents per square km

Y About 12.2% of all the grants in the dataset are assigned to the San Jose-Palo Alto CSD.
" Again, we winsorize this variable at the 1% level.
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(roughly the density of CSDs such as San Jose-Palo Alto, Austin and Raleigh) and
declining for CSDs with higher density. The right panel of Figure include only
the densest CSDs that make up 50% of the U.S. population in 2005. The relationship
is weak and, if anything, decreasing, with the underlying coefficient implying that
doubling density in the right portion of the distribution is associated with 0.02 less
patents per 1,000 residents, although the estimated coefficient is not statistically
different from zero.

2.2.1.1. Robustness. There are three major measurement concerns related to the
interpretation of Figure First, the choice of a narrow geographical unit of
analysis raises the possibility that commuting can confound local population density
as a proxy for personal interactions. Second, the choice of using density of population
can bias the empirical correlation if units with a high density of skill-rich employment
tend to have low overall density (as would be the case for places like Mountain View,
CA, and Armonk, NY). Third, the choice of locating the address of the firm whenever
possible raises the concern that a firm files for the patent in a location that is different
from the one of the research facility.

To address these concerns, we look at two extreme cases. In the first case, we
assume that all the relevant interactions only occur at the workplace. To attenuate
the possibility of incorrectly assigning patents at the firm’s headquarters instead of
the research facility, we consider only the subset of patents for which the assignee is
in the same state of at least one of the inventors. In this case, we would be correctly

assigning the location, but learning opportunities would be mismeasured, as density
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of workers should be used instead of density of residents. The top panel of Figure
reproduces the results of Figure by using density of workers and innovation
intensity for this subset of reliably geo-located patents. To measure density of em-
ployment, we use data from the National Establishment Time Series, that contains
close-to-universe information on establishments in the U.S.; including industry indi-
cators[? In the middle panel of Figure [A.32] we use density of knowledge-intensive
employment, which controls for the skill composition of the local labor force and
provides a more accurate measurement of the interactions that are relevant for in-
novation. Although the relationship between density and patenting intensity is now
tilted upwards compared to Figure[A.32] the qualitative patterns are preserved, with
patenting intensity peaking for intermediate levels of density and declining for places
in the right portion of the density distribution.

In the second case, we assume that all the relevant interactions only occur the
inventor’s residence and its surroundings. This time, learning opportunities would
be correctly measured by population density, but the patents issued to institutional
assignees would be wrongly geolocated. In the bottom panel of Figure we repli-
cate the analysis by geo-locating all the patents at the address of the first inventor.
The patterns appear even more pronounced than in Figure [A.32] with a significant

negative relationship emerging in the right panel.

12See the Appendix of Berkes and Gaetani (2018) for details on the geolocation of each estab-
lishment, on the crosswalk between industry and occupation, and on the definition of knowledge-
intensive occupations.
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2.2.2. Dense locations produce more unconventional innovation

Once we account for a narrow level of disaggregation to tell apart highly urbanized
centers of larger metropolitan areas from their suburban parts, the intuition that
learning opportunities offered by density should be strong enough to attract the
bulk of innovation receives weak support from the data: suburban regions take on a
relevant portion of aggregate patenting activity. Agglomeration positively correlates
with the rate of invention in low-density places, but not in high-density ones. A
possible explanation is that density catalyzes the flow of knowledge across fields that
are not fully connected through established networks, whereas formal organizations
are able to internalize knowledge flows efficiently within their own field without
relying on density-driven informal interactions. As a result, higher density eventually
does not translate into more intense patenting, but rather into a shift in the type of
innovation produced.

In this subsection, we show that innovation produced in high-density areas tends
to be constructed on a more diversified set of prior knowledge. To assess this fact,
we build a measure of atypicality of the knowledge base of each invention. We
use the distribution of citations across technological classes to infer the intensity of
knowledge flows between fields. The fact that a pair of patent classes is recurrently
referenced together indicates frequent knowledge flows between the two. Conversely,
the fact that a given pair of technologies is rarely referenced together denotes the

lack of frequent knowledge transmission between the two.
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2.2.2.1. Measurement. We now describe how we measure the degree of intercon-
nection between two technological classes. We adapt the methodology proposed by
Uzzi et al. (2013, UMSJ henceforth) who study atypical citation patterns in the
universe of academic papers. To the best of our knowledge, this paper is the first to
apply a similar algorithm to patents. The basic idea is to compare the frequency of a
bundle of classes in the observed network of citations with the frequency one would
obtain by assigning citations at random in a replicated network. In this process, the
structure of the network is kept constant. In other words, references in the repli-
cated network are randomly reshuffled under the constraint that the total number of
citations from each class A to each other class B is the same in the two networks [
The conventionality-score (or c-score) of the pair (A, B) is then defined as the ratio

between the observed frequency and the random frequency:

The interpretation of the c-score is straightforward: a high value of ¢ implies
that we observe classes A and B cited together relatively more often in the data

than what we would expect if citations were assigned pseudo-randomly. We refer

13This is a departure from UMSJ that only keep the total number of citations from and into
each class constant. We do this so that our measure does not depend on the size of a given class
relative to the whole sample. While aligning with the basic intuition in UMSJ, we differ from
their implementation in two additional dimensions. First, we do not consider the time dimension
explicitly in the replicated network: the total number of citations is kept constant across classes,
but not across years. Given that our time window (2000-2010) is relatively short, this simplification
is not likely to have a big impact on our estimates. Second, we assume that the number of nodes
is big enough such that the law of large numbers applies, which allows us to have an analytical
expression for the random frequency. This delivers an exact formula that can be computed without
simulating the replicas.
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to such a citation pair as “conventional” and infer that knowledge flows between
A and B are relatively frequent. On the other hand, a low ratio indicates that A
and B are observed in the data relatively less often than at random. In this case,
the combination is defined as “unconventional”. The details of the algorithm are
provided in Appendix A.

Figure shows a heat-map of the symmetric c-score matrix. Each pixel rep-
resents a citation pair and it is colored based on its c-score. For example, the pixels
on the diagonal represent the c-score of citation pairs of the form (A, A). We use
a chromatic scale in which brighter pixels denote more unconventional pairs. The
figure highlights two patterns that support the validity of the measure. First, combi-
nations on the diagonal tend to be more conventional than other citation pairs. This
is exactly what we would expect: once a patent cites a certain class, it is likely to cite
it again, since that class plays some role in the patent development. Second, around
the diagonal we observe some “clusters” of conventionality. This happens because
the IPC classification system assigns close labels to classes that are technologically
close. For example, classes in the top-left cluster group all the patents related to
human necessities. It is not surprising that a citation that falls in that group is likely

to appear with another citation in the same groupE

14However7 the c-score identifies technological proximity also between classes that belong to dif-
ferent IPC clusters. The following are some significant examples: Food (belonging to the Human
Necessities cluster) and Sugar (belonging to the Chemistry cluster) have a c-score of 1.17; Butchery
(Human Necessity) and Weapons (Metallurgy) have a c-score of 1.14; Decorative Arts (Printing)
and Photography (Instruments) have a c-score of 1.15; Knitting (Textiles) and Brushware (Human
Necessity) have a c-score of 1.84.
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We assign to each patent an entire distribution of c-scores, one for each pairwise
combination of references (hence, a grant with IV references is assigned (g ) possibly
identical scores). Two statistics of the distribution are of particular interest. The
10th percentile (or “tail-conventionality”) proxies for the most unconventional pair
of classes listed by the patentﬁ The median c-score (or “core-conventionality”)
proxies for how tightly grounded the patent is in prior knowledge. Figure plots
the cdf of the core and tail-conventionality in our final sample. Consistently with
the findings in UMSJ, it shows that the median patent is highly conventional at the
core (its core-conventionality is well above one).

Next, we show that having an unconventional tail is a powerful predictor of
technological impact. To show this, in the spirit of UMSJ, we define a hit patent as
an invention that received more citations than 95% of the other grants issued in the

same year and belonging to the same class. We estimate a logit model of the form:
(2.1) logit (Hitit) = a+ 6. + 0y + B X UTail;ey + 7 X Corej

where Hit;, is a dummy that takes value 1 if grant ¢ is a hit patent, UTail;, is a
dummy that takes value 1 if the tail-conventionality is below the median of class ¢
in year t, Core; is a set of 4 indicators denoting the core-conventionality quartile
(in class ¢ and year t), d. and §; are class and time fixed-effects respectively.ﬁ

151 this paper we follow USMJ and use the 10th percentile for tail-conventionality, but our results
are robust to using the minimum. We winsorize the c-score measure at the 1% level.

16We include time and class fixed effects to account for the fact that discreteness in defining the

top 5% of the citation distribution leads some classes/years to have a mechanically higher share of
hit patents. A linear probability model yields very similar results.
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Figure shows the joint marginal effects of the two variables on the prob-
ability of becoming a hit patent. The conditional probability ranges from 3.7% of
a patent with a conventional tail and an unconventional core to 6.2% of a patent
with an unconventional tail and a somewhat conventional core. By construction, the
unconditional probability is 5%. Having an unconventional tail increases this prob-
ability by about 1.7 percentage points. On the other hand, the core seems to have
a smaller impact. If anything, having an unconventional core decreases the chances
of being a hit patent. Our results are very similar to the ones obtained by UMSJ
for academic papers: scientific research with the highest impact appears strongly
rooted in existing knowledge and at the same time displays the intrusion of novel
combinations. This surprising similarity suggests that the process of innovation, no
matter if academic or applied, follows a somewhat universal patternm

The strong correlation between unconventionality and technological impact shows
that the c-score is ranking patents along a meaningful dimension. Motivated by this
result, in what follows we will use tail-conventionality as our reference measure.
2.2.2.2. Finding. Here we explore the hypothesis that density plays the decisive
role of catalyzing knowledge diffusion across unrelated fields. If this intuition is
correct, we should observe that patents from high-density regions display more un-

conventional references. By facilitating interactions, density allows people to gain

1"The fact that high-impact research is novel and, at the same time, tightly grounded, is explained
at least in part by UMSJ by the necessity to efficiently deliver an idea to an inertial audience.
For example - as mentioned in their paper - Charles Darwin’s On The Origin of Species does not
address the groundbreaking idea of natural selection until the second part of the work, the first part
being entirely dedicated to a much more uncontroversial subject: the selective breeding of cattle
and dogs.
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insights they cannot acquire through their formal network. This translates into new
ideas being obtained by assembling a more hybridized set of prior knowledge.

Table and Figure show several CSD-level correlations between (log)
density of population (or college educated workers) and the tail-conventionality of the
median patent filed in a given CSD/Year observation. For the purpose of this section,
we limit the sample to continuously innovative CSDs, which gives us a balanced
panel of 1,645 locations over 11 years, for a total of 18,095 observation. In all the
specifications, increasing density of population has a negative and significant impact
on the tail-conventionality of the median patent. In the baseline specification, an
increase in density of population equal to the weighted residual inter-quartile range
decreases tail-conventionality by 27% of its weighted residual inter-quartile range.

To study this relationship more in depth, we add to the specification various CSD
specific controls, including (log) median income, the percentage of people with a col-
lege degree, inequality (measured by the Gini index). The results are reported in
Table [B.20] The effect of density on tail-conventionality stays negative and statisti-
cally significant. The coefficient on median income is always positive and statistically
significant. This is probably driven by specialized high-income company towns. The
share of college graduates and the degree of inequality (Gini index) both have a
negative effect, but the coefficients are not statistically significant.

Table reports the marginal effects of (log) density on the probability that
the patent has an unconventional tail, obtained from a patent-level logit regression.

Consistently with the CSD-level results, the coefficient is positive and significant.
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This patent-level regression allows us to control for whether the patent is produced
by a publicly traded firm. The results show that traded firms produce conventional
innovation, which is consistent with the interpretation of unconventional innovation
as creative destruction events. This is an interesting fact per se and would deserve
further research.

2.2.2.3. Robustness. Table in Appendix shows that these results are not
driven by any of the four most densely populated urban centers (New York City,
Boston, San Francisco and Chicago). The bin-scatter plots in Figure repeat the
robustness checks mentioned in Section [2.2.1.1L The top panel shows the correlation
between tail conventionality and density of employment for the subset of patents in
which the assignee and at least one of the inventors coincide at the level of the state.
The middle panel reproduces the same result using density of knowledge-intensive
employment. The bottom panel uses all the patents located at the address of the
first inventor. All these alternative specifications yield consistent results.

Figures[A.22] and [A.24] show that density of population and innovation are indeed

tightly related. Density seems to be more powerful in affecting the type, rather than
the rate, of local innovation activities. This pattern of geographical sorting runs
through a previously unexplored channel, namely, a more hybridized composition of
the knowledge base upon which new ideas are built. In the next two subsections, we
show that (1) dense cities offer a more diversified pool of interaction opportunities

and (2) those interactions can be inferred by looking at innovation outcomes. These
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two findings together suggest that the geographical sorting that we document can be

explained as a result of the local interactions available in densely populated areas.

2.2.3. Dense locations are more technologically diversified

In this subsection, we show that dense cities tend to be more diverse in their inno-
vation output. In particular, we use the concept of the c-score to show that dense
cities host a diversified range of innovation activities spanning technologically dis-
connected fields, whereas low-density areas are specialized in a set of technologically
close fields.

2.2.3.1. Measurement. In addition to assessing the degree of unconventionality
of a single patent, the idea of the c-score can also be useful for evaluating the tech-
nological diversification of a given subset of inventions: a group of patents is highly
diversified if two items drawn at random from the group are likely to belong to
technologically distant fields. This idea can be applied to evaluate the degree of
technological diversification of a given region over a certain period.

Specifically, we consider all the pairwise combinations of patents filed in each
CSD/Year bin. Each of these combinations is assigned the c-score corresponding to
the pair of patent classes to which the two grants belong. For example, a CSD that
has produced N patents in a given year will be assigned (];[ ) c—scores We then

compute the median c-score of those combinations. This procedure delivers an index

18To clarify, in this case we are not evaluating the set of references of a given patent, but rather
the technological distance of the innovation output itself.
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of concentration for County Sub-Division C'SD in year ¢ defined as:
(2.2) Concentration (C'SD;) = median ({c (CLASS;, CLASS;)| (i, j) € CSD.}).

2.2.3.2. Finding. The bin-scatter plot in Figure shows the correlation be-
tween density of population and the concentration index defined in . High-
density regions are significantly more diversified than low-density ones. The mag-
nitude of this effect is economically meaningful: a regression of log-density on the
concentration index yields a coefficient of —2.7, which implies that an increase in
density of population equal to the weighted residual inter-quartile range increases
diversification by 30% of its weighted residual inter-quartile range.

2.2.3.3. Robustness. Since the measure in (2.2)) computes the median of a set
whose cardinality grows at a binomial rate with the number of local patents, a pos-
sible concern is that CSDs with a higher number of patents (as it is typically the
case with dense cities) mechanically have a low index of concentration. To address
this possibility, we conduct a placebo experiment in which we generate 50 datasets
identical to the original one in terms of total number of patents produced by each
CSD/Year bin, but reshuffling the geographical allocation of individual patents at
random. We then run 50 regressions of log-density on the simulated indexes of
concentration. The resulting coefficients are plotted in Figure [A.34] Although the
distribution of coefficients for the simulated datasets still has a slightly negative aver-
age, showing that the index in has indeed a dimensionality bias, the estimated

coefficients range between 0.04 and —0.099, with a mean of —0.037, two orders of
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magnitude smaller than the estimated coefficient on the original sample (2.7). This

illustrates that the correlation in is not explained by this bias.

2.2.4. The local pool of ideas predicts local inventions

The key implication of Figure is that, if local interactions are important in de-
termining the knowledge embedded into new inventions, people in densely populated
regions will have a more diversified pool of possible ideas to draw from and will,
as a result, have a higher chance of producing unconventional innovation. In the
extreme case in which local interactions are the only source of ideas, having access
to a local pool of innovators from remote fields will be a necessary condition for gen-
erating unconventional patents. In this subsection, we look at the citation behavior
of geographically close patenting firms to provide evidence of this class of cross-field
knowledge spillovers.

Inferring the existence of these externalities from the citation behavior of local
firms raises the obvious challenge that it is hard to disentangle knowledge spillovers
from endogenous locational choice. Places that produce (or are expected to produce)
significant knowledge flows between two fields can be endogenously populated by
firms belonging to those fields. For example, a company that aims to produce high-
tech wearable goods, might find it optimal to locate in a town hosting strong CPU
and apparel sectors.

To control for this possibility, we adopt a difference-in-difference approach and

follow the evolution of the citation behavior of pre-existing firms upon arrival in their



104

location of a company from a different industry. The assumption is that the location
of pre-existing firms is uncorrelated with the locational choice of incoming firms.
Pre-existing firms are all the companies that patent at least once in a given CSD at
the beginning of the sample (year 2000). Incoming firms are all the companies that
file the first patent in a given CSD in some year after 2000 (we run a robustness
exercise considering only firms entering from 2005 onwards). Each incoming firm is
assigned to the technology class corresponding to the most recurring class among its
patents. Then, for each class-CSD-year observation, we construct an arrival shock
as:

(2‘3) A Ztrzzool Rear

cdt —
Pd,2000

where R4 is the number of patents filed in year 7 by incoming firms of class ¢ in CSD
d and Py 2000 is the total number of patents filed in 2000 by pre-existing firms in the
same CSD. In other words, the numerator of A.; proxies for the cumulative inflow
of patents of class ¢, while the denominator normalizes by the size of potentially
affected firms.

The specification of the regression is the following:
(24) Scdt = 5ct + 5dc + BAcdt + €cat

where 0., and 4. are class-year and CSD-class fixed effects, respectively, that control
for aggregate trends in the importance of a given class, and for the time-invariant

relevance of a given class in the local innovation output. The dependent variable
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S.qt is the percentage of citations that class ¢ receives in patents filed by firms that
are pre-existing in place d and belong to a class different than c.ﬂ Its unconditional
average is ().43%.@ To estimate the parameter of interest, 5, we exploit the variation
in the increase in the propensity to cite class ¢ that results from a higher relative
inflow of firms of class ¢. The identifying assumption is that the citation shares
display parallel trends within the same class, across different CSDs. To see this
formally, consider the diff-in-diff representation of between year t and year t +r
for class ¢ in places d; and ds:

t+r t+r
ZT:t+1 Rcle . ZT:t+1 RcdzT
Pd1,2000 Pd2,2000

(Scdl(t—l—r) - Scdlt) - (Scdg(t—H") - Scdzt) =

If B > 0, it means that pre-existing firms producing, say, laptops in a town that has
received a high inflow of apparel firms (compared to its size) have disproportionately
shifted their citation behavior towards apparel. The results are shown in Table
[B.22] The estimates of 5 are always positive and statistically significant, as well as
economically meaningful: the arrival of a firm producing exactly as many patents as
P o000 results in an increase in S.q equal in size to its unconditional mean (column

3). We also report results where we construct the shocks only considering incoming

For example, how frequently patents that belong to any class different from C'PU reference items
in CPU.

20Given that we have 107 classes, if citations were distributed at random, every class should receive
a share of citations from other classes equal to ﬁ = 0.94% on average. The fact that the uncon-

ditional average is about half that number is simply telling us that on average half of the citations
go to items in the same class of the citing patent itself.
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firms that arrive in or after 2005 (column 4). The results are robust and larger in

magnitude ]

2.2.5. Discussion

We provided evidence that a significant share of innovation activity concentrates in
low-density CSDs, and, as a result, the relationship between density and patenting
is non-monotonic. Above a certain threshold higher density does not translate into
a higher rate of patenting. However, we show that it is possible to reconcile this
finding with the common wisdom that cities play a key role in fostering innovation.
In particular, we show that denser places produce innovation with a higher degree of
unconventionality, i.e. innovation that is built upon a more uncommon combination
of existing knowledge. We propose that the observed geographical pattern stems from
the fact that density is crucial in facilitating learning across distant fields, where ideas
are more efficiently transmitted through informal channels. However, this requires
dense cities to attract a diversified innovation pool, at the cost of weakening intra-field
externalities, which may result in a lower rate of invention. Finally, we show that the
local technological mix predicts the composition of the knowledge background upon
which new inventions are built, suggesting that local learning externalities across

fields are an important determinant of innovation outcomes.

2IThe fact that the estimated coefficient is larger in magnitude suggests, as one would expect, the
presence of a positive correlation between the class of firms arriving before and after 2005.
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In the next section, we develop a model of innovation in a spatial economy that
accounts for these empirical facts, and generates novel implications for place-based

subsidies and innovation policies.

2.3. Model

In this section, we explore the interaction between economic geography and com-
position of innovation in a general equilibrium model of a spatial economy, in which
the heterogeneity in innovation is explicitly taken into account. In its positive im-
plications, the model rationalizes the observed geographical patterns: specialized
clusters emerge in low-density areas and produce conventional innovation, while
high-density cities become diversified hubs and generate unconventional ideas. The
theory provides a novel rationale for the coexistence of heterogeneous cities (both
in terms of size and degree of diversification) without assuming agents whose ability
is ex-ante heterogeneous, differentiated products or intrinsic productivity differences
across different locations. In its normative implications, the model highlights pre-
viously unexplored room for the use of local policies, and shows that a system of
place-based subsidies can have sizable effects on welfare by affecting the intensity

and direction of innovation.
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2.3.1. Production and consumption

A representative household has access to a homogeneous final good that aggregates

a set X' of available, perfectly substitutable, varieties:

X

The economy is closed and there is no investment. Total consumption of the final
good is equal to total output. The representative household receives and consumes
a lump-sum transfer from the other agents in the economy (innovators, unskilled
workers, absentee landlords, city developers and absentee managers).

Active varieties are produced by firms whose production facilities are located
outside urban centers, in a congestion-free area where rent is zero. Firm producing
variety ¢ decides how much unskilled labor [; to hire in order to maximize:

(2.5) max m; = I — wl;

(3

where w is the wage of unskilled workers and g € (0,1). In order for product line i
to become active, one conventional and one unconventional idea directed to ¢ must
be combined. We denote by z the measure of active product lines (or, equivalently,
the innovation rate).

Labor demand for active varieties is equal to:

26) = (5
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while total labor demand in the production sector is equal to Lr = x . Firm’s profits

are equal to:
i
(2.7) T=7w 1-F

where v = (ﬂ% — Bﬁ) A fraction a € (0,1) of firm’s profits is appropriated
by the innovators responsible for discovering the corresponding variety, while the
remaining share 1 — a is appropriated by absentee managers. The parameter a
captures all the factors that contribute to the wedge between the social and the
private returns to innovation, such as limited intellectual property protection and
dynamic technological spillovers.

In equilibrium, labor demand is constant across firms, which implies that total

output (and total consumption) is equal to:
(2.8) C=a2"Lh,

from which it emerges that production depends positively on the innovation rate, x,
and the mass of workers employed in production, L.

For expositional simplicity, we assume that all the intermediate varieties in the
economy are high-tech devices (e.g. smartphones) that are obtained by combining a
software component (S) with a design blueprint (D). The model easily generalizes

to the case of multiple components or multiple sectors@ In order for a variety to

22The extension simply requires an additional equilibrium condition that pins down the optimal
degree of diversification of cities.
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become active, an unconventional idea (that mixes software and design) must be
combined with a conventional idea (either in the software or in the design). Conven-
tional and unconventional ideas are matched via undirected search: letting ¢ denote
the aggregate mass of unconventional, and v the aggregate mass of conventional
ideas, the resulting mass of active varieties is determined by the following matching

function:

(2.9) z =yt

where p € (0,1).

2.3.2. Economic Geography

Innovation takes place in a system of cities whose mass and size is endogenous.
2.3.2.1. Agents, Cities and Housing. The economy is populated by a measure
L of unskilled workers and a measure N = 1 of skilled innovators. Each innovator is
born either as a programmer (S) or a designer (D). For simplicity, we focus on the
symmetric case in which the mass of designers is equal to the mass of programmers,
so that Ng = Np = 1/2.

Skilled and unskilled agents are fully mobile. Skilled innovators live in cities
with positive rent. Unskilled workers live either in rural areas (close to production
facilities) or in the outskirts of cities, and do not pay rent. There is a large mass of
potential settlements. Each settlement has an area equal to 1, which implies that

we can think of local population and local density interchangeably. These sites are
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owned by absentee competitive landlords, and governed by city developersﬁ who
have the ability to tax and provide subsidies to the local economy. Developers have

three options for how to utilize their own site:

(1) They can establish a company town that provides research facilities for in-
novators to implement their ideas. Innovators living in a company town can
only interact with agents of their own type (e.g. at the workplace), but
cannot interact with innovators of the other type.

(2) They can establish a generic town that does not provide research facilities
directly but allows people of different types to potentially interact together.

(3) They can leave their site deserted.

In order to attract innovators, developers commit to provide type-specific subsidies,
Ts and Tp, to the research activity of local inventors. The subsidies are financed by
taxing the absentee landlords’ profits. City developers act to maximize profits (taxes
minus subsidies) and since option 3 leads to zero profits, a free-entry condition can
be used to pin down the active mass of sites of type 1 and 2. We denote by N* the
skilled population in town k and L* the local unskilled labor input.@ Each skilled
individual inelastically demands one unit of housing. Housing services are provided

by competitive landlords, who face a local housing production function:

(2.10) NF = (LF)®

23As in Becker and Henderson (2000).
24We denote skilled population of type S and D by N, § and NE. respectively.
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where the parameters o € (0, 1) controls the strength of the congestion force. The
rent paid by residents of city k£ is equal to the marginal cost of producing housing

services:

(2.11) RE =2 (NW) S
!

The entire landlord’s profit is taxed by the local developer, whose revenue is equal
to N*RF —wLF. To clarify, city developers are large agents at the local level but are
small from the point of view of the aggregate economy: they can affect local rents
but take all aggregate quantities and prices as given.

2.3.2.2. Innovation. Skilled agents are fully mobile and choose to live in the town
that offers them the best combination of rent and innovation opportunities, taking
into account the subsidies provided by city developers. The innovation process takes

place in three steps:

(1) Agents of type S living in a city with N innovators receives an idea with
probability (N §)¢, where ¢ > 0 controls the extent of the learning externali-
ties. Similarly, inventors of type D living in a city with NX peers receive idea
with probability (N%)d). Namely, individuals receive intra-field spillovers by
agents of the same type that live in the same location. Being surrounded

by a high number of “peers” increases the rate of arrival of ideas.ﬁ

25This source of agglomeration externality is akin to the cost-reduction externality considered by
Duranton and Puga (2001) in that it only affects agents of the same industry.
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(2) Upon receipt of an idea, the agent must either execute it conventionally,
through the local formal network, or search for an innovator of the other
type to execute the idea unconventionally:

(a) The first option (execute it conventionally) is only available to agents
living in company towns: in this case, the agent makes her conventional
idea available.

(b) The second option (execute it unconventionally) is only available to
agents living in generic towns: the programmer (or designer) starts
a search process in which he finds an innovator of the opposite type
with frequency N% (or N%). If search is unsuccessful, the idea is lost.
If search is successful, the innovator makes her unconventional idea
available.

(3) In order for a product line to become successfully active (we refer to this
case as a “successful innovation”), it must receive ideas from both an un-
conventional and a conventional innovator (of either type S or D). Letting
¢ denote the total mass of unconventional ideas in the economy, and 1 the
total mass of conventional ideas, a total mass of z = (*'™# is formed.
The resulting monetary value of the successful innovation is aw, where 7 is
defined as in equation . The monetary value is split between the two
innovators according to Nash bargaining, with the unconventional innovator
receiving a fraction b € (0, 1) of the profits, and the conventional innovator

receiving the remaining share 1—b. Note that this stage of the search process
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does not take place in cities, but rather on a decentralized, economy-wide

marketplace in which geographical factors are irrelevant.

Please note that the search process at point 2(b) is separated from the search pro-
cess at point 3. The former allows an innovator in a generic town to be matched
with an agent from the opposite background, and execute her idea unconventionally.
The latter allows an innovator (of any background) endowed with a conventional
idea to be matched with another innovator (of any background) endowed with an
unconventional idea. Importantly, the process at point 3 occurs in an economy-wide
marketplace that is unaffected by geography. If this matching process is successful,
a product line becomes active and the two matched innovators split the resulting
surplus (arm) according to the bargaining weight b.

It follows from the discussion that the probability that an unconventional (con-
ventional) idea is turned into a successful innovation positively (negatively) depends
on the ratio between the aggregate mass of conventional to unconventional ideas,
K= % In particular, the probability that an unconventional idea becomes an active
product line is equal to x!™#, whereas the probability that a conventional idea is
executed is equal to k7H.
2.3.2.3. Utility and innovation rates. To save on notation, in what follows we
conjecture that company towns will be fully specialized (i.e. they will host innovators
of only one background). This conjecture will be proven formally in Proposition
. Let K¢ denote the set of generic cities, and K§ (or KS) denote the set of

S-specialized (or D-specialized) company towns. The utility of an inventor of type
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S living in city k£ can be written as:

(1+75) (NE)® NEbams'» - R ke K¢
(2.12) Uk =

(1+7%) (N§)¢ (1=b)arrs*—RF kek§

with the one for type D being analogous, but with inverted indexes. In , the
utility of an innovator of type S in city k € K¢ is given by the frequency of idea
generation, (N §)¢, multiplied by the frequency of matching with a D-type agent,
NE, the frequency of finding a conventional idea on the economy-wide marketplace
(k'7#), and the resulting share of profits, bar, subsidized by the city developer at
gross rate (1 + T§), minus the local rental price of housing, R*. Analogously, the
utility of an innovator of type S in city k € K¢ is given by the frequency of idea
generation, (N §)¢, multiplied by the frequency of finding an unconventional idea on
the economy-wide marketplace (k7#), and the resulting share of profits, (1 — b) am,
subsidized by the city developer at gross rate (1 + T};), minus the local rental price
of housing, RF.

Once the spatial distribution of innovators is determined, the aggregate innova-

tion rates can be derived as:

(2.13) o= (N5 ak + /K (V) dw.
(2.14) C= | |G N+ (N5 NE]

KG
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In , the rate of unconventional innovation is given by the integral over all the
generic locations of the probability of arrival of ideas for S-type innovators, (N §)¢,
multiplied by the mass of S-type innovators in city k, N and multiplied by the fre-
quency of successful search for a D-type innovator, N&, plus the corresponding prod-
uct for D-type innovators. In , the aggregate rate of conventional innovation
is given by the probability of arrival of ideas for S-type innovators in S-specialized
company towns, plus the same rate for D-type company towns.

The following assumption, that will be maintained throughout, is necessary to
ensure that agglomeration externalities are not sufficiently strong to perpetually

dominate the congestion force:

Assumption 1: é > 24 ¢.

2.3.3. Equilibrium

In spatial equilibrium, agents of the same type must be indifferent across active
locations:

Uk =vt vk K ekCUK§
Uk =UE Yk K e KEUKS.

In what follows, we will focus on symmetric equilibria in which the contribution
to aggregate growth of designers and programmers is the same. This simply requires

ex-ante utility to be equalized also across types:

Uk =Uf vkek®UuKk§ K eK®uUks.
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A local developer’s revenues are equal to the total profit made by the competitive

landlord:

w (1 —a) (VH)*

«

Q=

RevF = RFNF —w LF =

Its expenses are equal to the total subsidies paid to the innovators:

’

[7‘"5“ (N§)¢ NE + 75 (N{%)¢ Nfs“] bark'™* kekY

Exp” = X (Ng)d) (1-=0b)arr™* ke K§ -

lel% (Ng)d) (I1-b)amk™* keK§

In equilibrium, free entry of city developers will drive their profits to zero:
RevF = ExpF Vk e K€ UK.

To save on notation, in deriving the equilibrium, we work with the returns on
unconventional ideas, V, and the unskilled wage rate, W, normalized by the expected

returns on conventional ideas:

(2.15) Y= = K

(2.16) W=

where Kk = %

The fact that the relative return on unconventional ideas V depends linearly

on x highlights a complementarity that is at the root of equilibrium existence and
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uniqueness. We now have all the ingredients to provide a definition of a symmetric

equilibrium for this economy.

Definition 2.3.1. A symmetric equilibrium is a set of company towns and generic
cities I = {ICC, ICG} a utility level U, aggregate innovation rates (, ¢ and x, profit
level 7, wage rate w, subsidies {Tg, Tg}kelc, local skilled populations {Ng, N{g}ke,c,

local rents {Rk local unskilled labor {Lk} heiC) firm’s labor demand [ and un-

}keIC’

skilled labor employed in production Lg such that:

1) City developers optimally choose 7%, 75, N& and NJ and make zero profits

(1)

(2) ¢, ¢ and z are defined as in ([2.14), and (2.9)), respectively

(3) U is defined as in and is equalized across types and active sites

(4) Firm’s labor demand [ and profits 7 are defined by and , respec-
tively, and total labor in production is given by Ly = xl

(5) L* and R* are defined as in (2.10)) and (2.11]

(6) Labor markets clear: [ N&+ Njdk= N and Ly = L — [, LF dk.

2.3.4. Characterization

We start by solving the city developer’s problem of determining the type, size and
composition of its location and the optimal subsidies. We can solve the problem of
a developer who aims to found a company and a generic town separately. The free-
entry condition will drive profits to zero and make the developer indifferent between

establishing any of the two categories of locations (and leave the site deserted).
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The problem of a city developer who chooses to establish a company town can be

written as:

wil-q (104_ @) (NE+ NE)

$+1

Q=

WAy ok Nk ok — 75 (NE)T —7h (Nh)

l1—a
a

subject to: (1 + 7%) (Nf;)d)— W (N&+ Nj) > U

11—«
[e%

> u

(1+75) (NE)” =2 (NE+ NE) = >
In this problem, the maximand represents the developer’s profits, while the con-
straints represent the level of utility the developer must guarantee to the inventors
to convince them to join the location. Notice that we have written the maximization
normalizing all terms by the expected returns on conventional ideas, (1 — ) aw m_”.@
As a consequence, the returns on conventional ideas that enter the developer’s cost
and the inventor’s utility are normalized to one.
The maximization of a city developer choosing to establish a diversified city is

W (1l-a)

MAXy ¢ v ok (NE+ NEY® — ok (NB)*H NEY — ok (NE)*T NEY

1—«
«

subject to : (1+7%) (Ng)d) NEY — % (NE + NE) > U

(1+75) (NB)* NEV =2 (NE+NE)= = U

The following proposition characterizes the solution to the developer’s problem

and the equilibrium system of cities.

26This includes normalizing inventor’s utility U = (1_}))#.
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Proposition 2.3.1. In a symmetric equilibrium, city developers in company

towns (C) and generic towns (G) set the optimal subsidy to:

(2.17) “=¢ 9=1+6.

The optimal population in the two types of locations is:

(=l

-1

NC — pC 1=

c..|

(2.18)

S

-1

NG = F@lby

0.‘|

where FC and FC are constants that only depend on the primitives of the model.
Company towns are perfectly specialized. Generic towns are perfectly diversified

(N§ = N§ = %) and are more densely populated than company towns.

PROOF. See Appendix. O

The city developer’s optimal strategy is derived for given equilibrium relative
prices V and W. In the Appendix, we show that, by substituting this optimal choice
into the remaining equilibrium conditions and the definitions in and , the
system reduces to one equation in one unknown (the relative supply of conventional
and unconventional innovation, k), that admits one and only one solution, and can
be solved analytically. Once the equilibrium value of x has been determined, backing

up the remaining variables becomes trivial. This leads to the following:
Proposition 2.3.2. A symmetric equilibrium exists and is unique.

PROOF. The proof is constructive. See Appendix. O
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2.3.5. Mechanism

Proposition [2.3.1] represents the model counterpart to Figures [A.24] and [A.25] that

show the empirical correlation between density and conventionality of patenting, and
concentration of the knowledge pool, respectively. The intuition behind Proposition
is that agents perceive an additional benefit from agglomerating in diversified
cities compared to specialized clusters, and this induces them to trade off additional
congestion costs and lower intra-field spillovers for the opportunity of having a higher
exposure to inter-field interactions. To see this, compare the elasticity of the local
externalities in a specialized company town with the elasticity in a diversified city. In
the former case, it is equal to ¢, that is, the elasticity of intra-field spillovers, whereas
in the latter case it is ¢+1, where the +1 results from the fact that joining a diversified
town also increases the matching frequency for inventors of the other field. The
developer internalizes this additional externality and, as a result, diversified towns
are more densely populated than specialized ones.

The developer’s optimal strategy maximizes the value of local output per person,
given the relative prices V and Wﬂ although at the aggregate level the equilibrium is
in general constrained-inefficient. The equilibrium configuration does not maximize
neither the rate of innovation, z, nor social welfare, C', that also depends on the mass
of unskilled labor employed in the production of the final good. Two immediate

sources of inefficiency are the fact that the equilibrium system of cities depends

2TThis property was named Henry George Theorem by Stiglitz (1977).
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on the bargaining weight b, that does not enter social welfare, and the lack of full
appropriability of the returns from innovation, captured by the parameter a.

The model unique symmetric equilibrium displays the coexistence of specialized
company towns that produce conventional ideas, and diversified high-density cities
that produce unconventional ideas. The coexistence of both types of cities is dictated
by the complementarity between the two forms of innovation, which is transmitted to
the equilibrium outcomes via the relative returns of unconventional to conventional
ideas, V. This relative value depends in turn on the relative supply of the two types
of ideas, k, and on the Nash bargaining weight of the unconventional innovator, b.
The parameter b encapsulates all the residual forces that control the relative returns
of unconventional to conventional ideas, such as the degree of competition and IP
legislation.

For a given value of the relative supply, the total rate of invention is determined
by the degree of agglomeration, characterized by the mass of active sites of each

type, |ICC} and ‘ICG , and their population density, N¢ and N©. These are in turn

determined by the interplay between the agglomeration and the congestion forces in
the model. The social cost of congestion is the increase in the demand of unskilled
labor that is needed to produce housing, at the expense of the mass of unskilled labor
employed in the production of the intermediate varieties (recall that, ultimately, only
tradable goods enter consumption and utility). The concavity in the production of
housing, controlled by the parameter «, implies that higher agglomeration leads to

lower unskilled labor in production. Higher agglomeration can either result from a
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more concentrated geography, i.e. a lower mass of active sites, each displaying higher
density, or, for a given mass of active sites ‘ICC‘ and |ICG|, from a higher share of
skilled labor in the most densely populated sites (of type G).

By substituting the equilibrium values of N¢ and N¢ into the expressions for )
and ( and it is easy to see that the relative mass of company towns to

diversified cities is a decreasing function of the parameter b:

M:F/C_l_b’

K| b
where FX is a simple function of the other model primitives. The following proposi-

tion shows that also the relative supply of conventional to unconventional ideas is in

fact a decreasing function of the the same parameter b.

Proposition 2.3.3. The equilibrium relative supply of conventional to unconven-
tional ideas, K, is a decreasing function of the bargaining weight of the unconventional

innovator, b.
PROOF. See Appendix. O

2.4. Welfare and Policy

We now turn to studying the optimality of the equilibrium. City developers
internalize knowledge externalities at the local level and the associated congestion
costs, but they do not internalize non-local externalities such as the pecuniary effect
on YV and W and the imperfect appropriability of innovation, a. The existence of

non-local externalities makes the equilibrium constrained inefficient. In this section,
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we analyze the optimal local policy of a constrained planner who can tax and provide
place-based subsidies to innovators.

Before turning to the study of optimal subsidies, we illustrate how the model
delivers a simple additive decomposition of welfare. Since there is no investment in
the model, consumption, production and welfare coincide. Using the definition of

total consumption in ([2.8)), we can decompose welfare additively as:

(2.19) log (C) = (1= B) (1 — p)log (v) + (1 — B) nlog (¢) + Blog (Lp).
Conv. rate Unconv. rate Congestion

The first term captures the contribution of the frequency of conventional inno-
vation, 1, on aggregate welfare. The second term identifies the contribution of the
frequency of unconventional innovation, {. Finally, the third term captures the ben-
efits from reducing congestion in cities and freeing up unskilled labor to be employed

in the production of tradable goods.

2.4.1. Fixed urban structure

We first consider the extreme case of an urban structure that is fixed as prescribed
by its decentralized equilibrium. Existing sites can neither be withdrawn by their
respective developers nor can their nature of generic/specialized location be changed.
Moreover, new locations cannot be created. In this case, the zero profit condition
of city developers does not need to hold. The mass of locations ’lCC| and ‘ICG’ is
fixed. The planner can only reallocate workers across the pre-existing sites. This can

be achieved through a simple system of lump-sum transfers {T§ T that are

}keIC
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technology and site specific, with the objective of shifting innovation activity away
or towards a given type of location.
The planner’s problem reduces to the choice of the share n € (0, 1) representing

the fraction of innovators living in diversified cities:

(2.20) max,e,1) (1 —038)(1—p)log () + (1 - B)plog(¢) + Blog (Lr)

P+1
subject to: ¢ = || (“EQ\N)

P+2
- | ()

1 1

Le = L-|K¢] ()" - k9] (G

with ’lCC’ and |ICG} (the mass of company and generic towns, respectively) given.
Differentiating the problem in with respect to n, and evaluating the first-

order condition at the equilibrium, it is easy to see that the planner chooses to

incentivize agglomeration and unconventional innovation if and only if the following

condition is satisfied:

(2.21) _A=B@+N-p (A=) (¢+2u +5810g(LF) -

1—n n on

Since Proposition implies that N© > N¢, and due to the concavity in the
housing production function, the third term of condition ([2.21)) is negative. Hence,
the planner can decide to pay additional congestion costs to increase the share of

skilled labor in diversified cities and the supply of unconventional ideas. The planner



126

will choose to do so if the benefit from increasing the supply of unconventional inno-

(1=8)(¢+2)p

vation, p , is large enough to outweigh the cost from the loss of conventional
innovation, —%, and the increase in congestion, (8 9log(Lr) logEfF ),

The bargaining weight b plays a central role in determining departures from
optimality in the case of a fixed urban structure. To see this, note that in equilibrium,
the share of skilled agents in company towns is proportional to:

1-b
b

1-b7
FI G + FGT

1—nx

from which it is immediate to see that it is a decreasing function of b.

The black line in the left panel of Figure displays the value of condition
for a simple parametrization of the mode]@ and for b spanning between 0
and 1. For sufficiently low values of b, the decentralized equilibrium supplies too
little unconventional ideas. The planner chooses to increase the share of agents in
diversified cities to increase the supply of unconventional ideas (red line), reduce the
supply of conventional ideas (blue line) and increase congestion costs (green line).
The opposite policy is implemented if b is sufficiently high, that is, the direction
of the market forces is such that the equilibrium supply of unconventional ideas is
above the socially optimal level.

The right panel of Figure displays the contribution of the components in
to the improvement of aggregate welfare for the same range of values of b.
BWe set a = 0.5, § = 0.3,y = 0.5, ¢ = 0.2 and & = 0.4. Note that the values of ¢ and a satisfy

Assumption 1. The qualitative pattern displayed in Figure [A:26 holds irrespectively from the value
of these parameters.
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When market forces favor inefficiently low supply of unconventional ideas (b low),
welfare gains emerge from increasing agglomeration and congestion costs, and re-
ducing the supply of conventional innovation. This kind of efficiency gain, which
originates from a tradeoff between congestion and aggregate innovation, is observa-
tionally equivalent to the gain that would emerge in a standard model of geography
and innovation, where social returns to innovation are not fully captured by innova-
tors and other local agents, and, as a result, the market outcome provides too little
agglomeration. On the other hand, when market forces push for an inefficiently high
supply of unconventional ideas, welfare gains emerge from a decrease in congestion
costs, and an increase in the supply of conventional ideas. Contrary to the first case,
this kind of efficiency gain originates from a reduction in agglomeration. Innovation
activities relocate from high-density to low-density areas, freeing up unskilled labor

for production, and simultaneously increasing the supply of conventional ideas.

2.4.2. Flexible urban structure

We now analyze optimal policy when the urban structure is not fixed. We consider
a planner whose policy tool consists of class-location specific transfers that multi-
plicatively subsidize innovation outcomes, financed through a lamp-sum tax. In this
case, the system of cities is not predetermined: new cities can be created, specialized
towns can be converted into diversified cities (or vice versa), and existing cities can

be shut down. For a given policy choice, the zero profit condition of city developers
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will work to determine the size and mass of active sites. This gives the planner some
flexibility in affecting the urban structure.

There are several possible interpretations of a setting in which policy is not con-
strained by a fixed urban structure, including a social planner who faces a sufficiently
mobile skilled labor force, adopts a sufficiently long-run perspective in its policy im-
plementation, or faces a geography in which the system of cities is not anchored to
the presence of natural or historical amenities.

The planner chooses net transfer rates {Tg, T{%} ke between —1 and +oco and pays
to successful innovators the corresponding transfer rate times the effective value of
the innovation. Assuming symmetry in the planner’s solution, the optimal system of
transfers reduces to a pair of net transfer rates {TG, TC} for diversified and special-
ized cities, respectively. Given this policy choice, the resulting equilibrium can be
found as in Proposition [2.3.1] with the inventor’s income now augmented with the
multiplicative transfer. For a given choice of transfers, the resulting geography has

the following solution:

C _ _

( ) NC 1+TG l C lbb K 1
C _

NG i-i-T G 1bb ol

Figure plots the contribution of the three components in (2.19)) to the welfare
gains resulting from the optimal system of transfers, for a range of values of the

parameter a (which controls the appropriability of the returns to innovation) and for
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two extreme values of the bargaining weight of the unconventional innovator (b = 0.2
and b = 0.8). Figure reveals two key patterns.

First, as the appropriability of the returns to innovation increases, the contri-
bution of conventional and unconventional ideas to overall welfare gains (left and
central panel) decreases, and the contribution of congestion (right panel) increases.
This pattern is not specific to a setting with heterogeneous innovation, as a similar
pattern would emerge in an analogous model that only allows for one type of ideas.
What is peculiar to our setting is that the contribution of congestion to overall wel-
fare gains becomes positive for sufficiently high (but still strictly lower than one)
values of a (namely, even with incomplete appropriability), provided that the bar-
gaining weight of the unconventional innovator b is sufficiently high (red line, right
panel). The intuition is that when the bargaining weight is sufficiently high, the de-
centralized equilibrium supplies an inefficiently high amount of unconventional ideas.
Reducing the supply of unconventional ideas requires relocating innovators towards
low-density company towns, which reduces congestion.

Second, for sufficiently low values of the appropriability parameter, the optimal
policy can increase welfare via a contemporaneous increase in both conventional and
unconventional ideas, at the cost of a corresponding increase in congestion. This
outcome is achieved by shrinking the mass of active sites, and increasing the density
of population in both specialized and diversified cities. An implication of this fact

is that when the margin of adjusting the urban structure is available, the tradeoff
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between the two types of ideas disappears, and composition and rate of innovation
can both be improved at the same time.

The welfare benefits from having access to this additional margin of adjustment
are potentially large. Figure compares the welfare gains from optimal policy
in the cases of fixed and flexible urban structures for a range of values of a and
for two extreme values of the bargaining weight (b = 0.2, left panel, and b = 0.8,
right panel). The welfare gains are significantly larger under a flexible structure.
Under the baseline parametrization (a = 0.5), the welfare gain from the optimal
policy under a fixed urban structure are equal to 5.7% of consumption, against
8.69% under a flexible structure when b = 0.2. The difference is even larger when
the bargaining weight of the unconventional innovator increases to b = 0.8, with the
gain under a flexible structure increasing to 15.2%, against 5.86% achievable under

a fixed structure.

2.5. Conclusion

Understanding the process through which creative ideas are generated is crucial
to fully exploit the comparative advantage of advanced economies in today’s world.
In this paper, we explore a specific aspect of this process, namely how the economic
geography shapes the creative content of innovation. We show that high-density
regions have an advantage in producing unconventional ideas. We do this by assem-
bling a new dataset of georeferenced patents and by assigning a measure of creativity
that is novel to the literature on the geography of innovation. Our empirical analysis

reveals that the combination of ideas embedded into inventions is determined by the
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local technology mix. This supports the hypothesis that knowledge spillovers across
fields resulting from informal interactions are a key component of the innovation pro-
cess. High-density areas promote diversification and facilitate informal interactions,
resulting in a higher degree of unconventionality in innovation. Our analysis recon-
ciles the fact that a big portion of innovative activity takes place outside cities with
the common wisdom, rooted in the literature, that density is an important catalyzer
of knowledge diffusion.

We integrate these findings into a model of heterogeneous innovation and spa-
tial sorting. In our setting, the choice between producing conventional and uncon-
ventional ideas depends on their relative price and, crucially, on the local degree of
density and diversification. In equilibrium, low-density specialized cities coexist with
high-density diversified ones. This asymmetry is dictated by the complementarity of
unconventional and conventional ideas in the innovation process and does not depend
on the existence of agents with ex-ante heterogeneous productivity. The composition
of innovation determines the balance between rate of innovation and congestion costs,
which in equilibrium is suboptimal. Our analysis reveals that whether the planner
has some flexibility in adjusting the urban structure makes a big difference in deter-
mining the welfare benefits from place-based policies. This supports the widespread
idea that a fully mobile skilled labor force can be an important accelerator for growth
in advanced economies. The archetypal geographical mobility of the U.S. labor force
was crucial in the development of some of the most innovative areas on the planet

(e.g. Silicon Valley, Research Triangle, etc. .. ) and can help explain why over the last
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decades the United States outperformed Europe in terms of technological leadership

and creativity. Future research will be devoted to exploring this nexus.
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CHAPTER 3

Comprehensive Universe of U.S. Patents (CUSP): Data and

Facts

3.1. Introduction

Patents have been the main source of data for empirical studies on innovation
and technological change. Despite being an imperfect proxy for technological input
and outputE] the fact that patent data are easily accessible, offer a wide range of
information about the invention content and the underlying innovation process, and
are available for a large number of developed countries has contributed to their
popularity in the literature. With some notable exceptions (e.g., Nicholas, 2010),
until recently, research papers on the topic have mostly focused on the past 50 years.
Similarly, historical analysis has concentrated on relatively small time frames (e.g.,
Moser, 2005) or on specific dimensions of patents data. The likely underlying reason
is the lack of a reliable source of data for historical patents. In fact, the U.S. Patent
and Trademark Office (USPTO) provides detailed data for all the patents issued
from 1976 on, and studies on innovative activities prior this year often required the

collection of data by hand.

For example, Moser (2005) uses data from two World’s Fairs at the end of the 19th century and
shows that inventors from countries without patent laws focused on sectors that relied more on
secrecy than patenting. This suggests that, at least in that period, patenting activity was skewed
towards a certain set of industries.
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More recently, thanks to the availability of increasingly reliable Optical Character
Recognition (OCR) software, cheap computational power, and the publication of
high-quality scan of historical patents by the USPTO various scholars started working
on historical patent data. Notable examples are Akcigit et al. (2017), Sarada et al.
(2017), Packalen and Bhattacharya (2015), and Petralia et al. (2016). The first
two match patents data to the recently released decennial Census data and therefore
mainly focus on the decades between 1880 and 1940. Packalen and Bhattacharya
(2015) study the importance of physical proximity for innovation throughout history.
To do so, they extract the name of the city, or county, from the text of each patent
and study how the tendency of using new ideas in inventions changes with population
density. Finally, Petralia et al. (2016) digitalize the images provided by the USPTO
and extract information about the county of residence of inventors and assignees.
The parsing of the text is supplemented with some machine learning techniques,
such as neural networks, that are used to measure the plausibility of the collected
data, as well as to infer the values of missing observations.

Despite the important contribution of these papers, different data sets contain
different sets of variables and cover different time frames. Moreover, not all the data
collected in these projects are readily available to other researchers. The aim of this
paper is to fill this gap. Three years ago, I started working on a newly assembled
data set of historical patent. The idea was to collect all the variables that are
commonly used in the innovation literature using a consistent methodology and data

sources and share the result with the rest of the community. Traditional sources, such
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as the USPTO and Google Patents, are complemented by newly digitalized patent
documents and an extensive use of fuzzy matching is employed to extract information
about the patent itself (e.g., technology classes, filing year, and backward citations),
as well as about inventors and assignees. Each inventor and assignee is geolocated at
the town level, the most disaggregated geographical level that is possible to identify
from the patent text. The outcome is what I called the Comprehensive Universe of
U.S. Patents (CUSP). It spans almost two centuries of patent data (1936-2015) and
contains the richest set of variables available so far. Various sanity checks show a
high degree of accuracy.

The first part of the paper describes in details the data sources and the techniques
used to extract the data. I also compare CUSP with HistPat (Petralia et al., 2016),
one of the most promising data sets of historical patents readily available on the
Harvard Dataverse. The analysis shows a broader coverage of CUSP and a similar
level of accuracy in terms of geolocation of the patents, the dimension that is most
stressed in HistPat. In the second part, I report some stylized facts. Some of these
are new and might point to interesting directions for future research. Some others
confirm well-known patterns already discussed in the literature (e.g., the upward
trend in the average number of inventors per patent is already described by Wuchty
et al., 2007). Nevertheless, this new data set offers for the first time a long-term
perspective and allows us not only to observe trends but also to pin down when the

trends started in history.
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The rest of this paper is structured as follows. Section 3.2 describes in details
the data contained in the CUSP and how they were assembled. Section 3.3 briefly
compares the CUSP with some other historical patent data sets. Section 3.4 provides
some stylized facts that might be source of inspiration for future research. Section

3.5 concludes.

3.2. Data

The data set collects a comprehensive set of variables for the entire universe of
patents issued by the USPTO between 1836 and 2015. To do this, I use five distinct

data sources:

(1) Patent text and information reported on the USPTO websitef]

(2) State-, or in one case city-, level databases. Such databases are usually
maintained either by universities or public libraries and contain all the in-
ventions a (not always) comprehensive list of the patents whose inventor was
resident in that state (or city). In many cases, these databases only cover
historical patents. I was able to identify seven local inventors databases:

a) Cincinnati Inventors Database

(
(b) Iowa Inventors Database
Nevada Inventors Database

(c
(d

Oklahoma Inventors Database
(e) South Carolina Inventors

)
)
)
)
)
)

(f) The Portal to Texas History

Zhttp://patft.uspto.gov/netahtml/PTO /search-adv.htm
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(g) Wyoming Inventors Database;

(3) High quality patent images digitalized with an OCR software;

(4) Google Patents;

(5) Patents issued after 1920 digitalized by Google and made available on the
USPTO website. This was the first attempt made by Google to OCR histor-
ical patents and the result is generally of poor quality. Nevertheless, these
data are used as a last resort in case it is not possible to extract the needed

information from the previous sources.

Using multiple sources reduces the probability that the information I am looking
for is not available in any of them, and allows me to select the most reliable one.
Given the peculiarities of each database in terms of the degree of accuracy and data
availability, the database of choice is based on the year in which the patent was
issued and the piece of information I am trying to collect. First, since the USPTO
makes readily available all the information for the patents issued after 1976, their
website is my preferred source for all the patents issued after that year. Additionally,
from there it is also possible to collect information about the technology classes for
all the grants going back to 1836. Second, I use the local inventor databases to
extract information about inventors and assignee and their town of residence for
all the patents listed there. These data have a limited coverage in terms of space
and time, but the information contained in the local databases is reliable and easy
to extract. Finally, I parse the patent text obtained from the three digitalization

processes (mine, Google Patents, and USPTO) for all the remaining variables and
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patents. It was not possible to extract all the pieces of information for the universe
of patents, but all the patents are listed in each table.
The rest of this section describes in more details the variables available in CUSP

and the strategy employed to extract them.

3.2.1. Issue and Filing Years

A patent’s issue year is readily available from the USPTO website for all the patents
ever granted. The same is not true for the year in which the patent was filed. This
piece of information is often missing for historical patents. However, filing years are
arguably a better indicator of when the invention was completed than issuing yearsﬂ
When not available from digital sources, it is possible to retrieve the date in which the
patent was filed directly from the patent text starting from patent number 137,279
and issued on April 1, 1873. The filing date appears in the patent header preceded
by “application filed on”. Figure shows the header of this patent. The parsing
process follows two increasingly less stringent steps. First, I look for sequences of
exactly four numbers preceded by the words “application”, “filed”, “tiled”, “fiied”, or
“ﬂedi’ﬁ and followed by a month or its abbreviation (e.g., january or jan)ﬂ Second,
if this procedure is not successful, I look for sequences of exactly four numbers that

are on the same line as the keywords listed above.

3Figure in Section 4 shows that the up until the 19th century the issue and filing years were
very close, with an issuance time of less than one year for the average patent. However, the two
kept diverging until the late 40s when on average a patent had to wait 4 years before being issued.
44tiled”, “filed” and “fledi” are common mistakes made by the OCR software when reading “filed”.

®Note that before this process, I substitute all the occurrences of “19” (“el” followed by a nine) and
“—9” with “19”. Similarly, for “I8” and “—8”.
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Since the likelihood of error is different for each of the two steps, each observation
in the data set is assigned a flag that will help researchers to understand how confident
we should be with the value reported. The flag is set equal to 1 if the filing year
comes from the USPTO (or Google Patents) website; 2 if the filing year was obtained
through the first round of parsing; 3 if it was obtained by searching for sequences of
four numbers appearing on the same line as the keywords “application” and “filed”
(and its variations). At the end of this process, the filing year of 8,178,429 patents
(or 93.2%) was obtained from an official source, 446,184 (or 5.1%) from the first
round of parsing and 88,270 (or 1.01%) from the second round[f

Finally, issue and filing years are checked for consistency. If the first two digits
are a 9 and a 1, respectively, I swap themﬂ if the issue year is outside the time frame
of the dataset (1790-2015), then I replace it with a missing value; if the filing year is
outside the time frame of the dataset, is larger than the issue year, or the difference
between issue and filing years is bigger than 30, then I set it to missing value. In the

end, issue and filing years are available for a total of 8,712,883 patents (or 99.3%).

3.2.2. Technological Classes

Technological classes are assigned to each patent by patent reviewers. The USPTO
regularly updates class definitions and corrects the classification of patents back-

wards. Each patent is associated with multiple technology classes according to three

6Note that the percentages here is calculated using 8,772,775 as denominator, that is the total
number of patents minus the number of patents for which the filing year is unknown since it is not
reported anywhere in the text (i.e., patents whose number is smaller than 137,279).

7vaatpping the first two digits is a relatively common typo in patent documents.
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different classification systems: the U.S. Patent Classification (USPC), the Coop-
erative Patent Classification (CPC) and International Patent Classification (IPC)
schemes. Technology classes are indicative of the pieces of knowledge embedded
in the invention patented. For example, a patent that describes an image process-
ing method for TVs might be classified under the US patent categories 382 (Image
Analysis) and 348 (Television). Documents classified in the USPC system are also
assigned one (and only one) principal class. The principal class captures the scope
of the invention as a whole or the main inventive concept using the claims as a guide
(USPTO, 2012). The CPC and the IPC do not specify any main technological cat-
egory. If a patent cannot be classified within the current classification system, or
its principal class is unclear at that point in time, then it is assigned a 1/1 as main
class. Since the USPTO reviews and updates its classification system every couple
of months, the total number of 1/1 patents is quite small (15,819 patents or 0.2% of
my sample).

In my data set, I collect technology classes for all the three classification schemes
directly from the USPTO websitef| Classes were collected in June 2016 and therefore
represent the classes assigned at that point in time. The data set contains two
tables that report the technology classes according to the USPC. The first contains
the classes as they were made available by the USPTO. In the second, I assign a

main class to the patents whose principal class is 1/1 based on the frequency of its

8See for example http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT 02
&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htmé&r=1&p=1&f=G&1=50&d=PALL
&S1=0137279.PN.&OS=PN/137279&RS=PN/137279 for patent number 137,279. The principal
class according to the USPC is in bold.
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secondary classes (at a three-digit level). When two or more secondary classes appear
with the same frequency, the one with the smallest number is selected. For example,
if a patent was assigned classes 1/1, 324/12, 324/121, 345/67, 345/87, then 1/1 is

substituted with 324/

3.2.3. Backward and Forward Citations

Backward and forward citations have been extensively used in the empirical literature
to understand knowledge flows across firms and inventors, as well as as a measure of
patent quality, the idea being that the more a patent is cited the more the invention
it describes is valuable.ﬂ That is why a patent data set would not be complete
without this piece of information. For each patent in the dataset, I collect the
patent number of all the U.S. patents referenced in the grant. Once the backward
citation matrix is populated, it is possible to obtain the list of forward citations,
that is the patent numbers of all the patents that cite a certain invention, simply
by “inverting” that matrix. Starting in 1947, all the patents issued by the USPTO
include a section that lists all the references citedE| Before that year, prior art upon
which the invention was built was reported on the file history which is not publicly
available. Nevertheless, some patents were directly referenced in the patent text
and it is therefore possible to get a sense, albeit noisy, of knowledge flows across

technology fields and regions.

9Note that even after this procedure some patents are assigned class 1/1. This is due to the fact
that they do not report any additional class making the frequentistic procedure impossible.
10Alcscer et al. (2009) discuss the merits and demerits of using citations in empirical work.

HThe first patent to include a “References Cited” section is Patent Nr. 2,415,068.
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The data collection strategy for backward citations crucially depends on when
the patent was issued. For patents issued after 1976, citations are directly collected
from the computerized patent information available on the USPTO’s website. For
patents issued between 1947 and 1975 I parse the text and extract the contents of
the section titled “References Cited” that lists the references to other patents or, in
some cases, scientific articles. From this section, I collect the number of all the U.S.
patents cited. Finally, for the patents issued before 1947, I look for references to other
patents directly in the patent text. In particular, I look for sentences that contain the
keywords “patent” or “patents” followed by “no”, “number”, “numb”, “num”, “nos”,
or “numbers” and get the patent number referenced afterwards. Figure shows
an extract of patent no. 46,101 in which the inventor describes how his patent differs
from a previously issued patent and states his claims. This strategy finds a total of
182,044 patents cited by patents issued before 1947. I apply the same strategy for
all the post-1947 patents that do not include a “References Cited” section.

The two tables that contain backward and forward citations are structured with
a long form. The first column contains the number of the citing patent, whereas
the second column the number of the patent cited. Each line correspond to a single
citation. A patent that cites multiple grants will appear on multiple lines. The
table containing backward citations has two additional columns. The first is a binary
variable that takes value 1 if the citations was added by the examiner, as reported by
Google Patents. The second column contains a flag that take value 1 if the citations

are collected from a digital source (i.e., either Google Patents or the USPTO website);
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value 10 and 11 if the citations are obtained from the “References Cited” section of
patents OCR’ed by the USPTO and by myself, respectively; value 5 if the citations

come from the main text of the patent as in Figure [A.39]

3.2.4. Inventors Name and Location

The collection of the inventors names and locations is the most challenging and
sensitive task. For this reason, particular attention was devoted to this phase of the
data collection. Fuzzy matching techniques are employed to overcome some of the
problems that occur due to the fact that the performance of OCR programs heavily
relies on the original image quality and sometimes the digitalized text displays various
typos. As for backward citations, use the information available on the USPTO
website to extract the name of the inventors and their residence for all the patents
issued after 1976/ The maximum number of inventors in a single patent in the
sample is 76. This is the number of inventors of grant number 7,581,231, a software
patent filed by Microsoft.

For patents whose patent number is smaller than 1,583,767, I use a three step
approach to collect the relevant information. First, I parse the end of the patent
and identify the inventors’ signatures (in print). Figure shows the very end
of patent number 580, a bee hive. The name of the inventor is reported in capital
letters together with the name of two witnesses. The fact that signatures are printed
12This step only uses the patents OCR’ed by myself since the quality of the text is generally superior.

13Note that the USPTO reports the details of some patents even before 1976. In this case, all the
details are collected from there.



144

in capital letters and with a larger font minimizes the amount of typos during the
digitalization process. Second, I parse the patent header (Figure looking for
the residence of the inventors identified at the end of the grant. The patent header is
characterized by the keywords “United States Patent Office” or “assignor” (and some
variations that take into account frequent typos), whereas the inventors’ location is
extracted by looking for keywords like “of” or checking weather the name of a state is
contained in the header string. Third, if the code is unable to extract the information
from the header (for example because none of the keywords listed above is present),
then I parse the beginning of the patent text (Figure . All the patents prior to
1,583,767 start with a formula similar to the one in the Figure: “To all whom it may
concern: Be it known that I, <inventor name>, residing at <name of city>, in the
county of <name of county> and State of <name of state>". By searching for this
pattern, it is possible to extract the city and state of residence of a certain inventor.
This technique is however left as last resort, since parsing the patents text is prone
to more typos than the header (which is written in a bigger capitalized font), and the
formula changes from time to time, making the pattern matching task more difficult.

The strategy used to extract inventors names and locations for the patents whose
number is between 1,583,767 (included) and 1,920,165 (excluded) is similar to the
one above, with the exception that the third step had to be dropped, since the
patent text does not contain information about the inventors anymore. This is the
same strategy employed to extract information for all the patents issued after patent

1,920,165. However, for these the parser needed to be modified to take into account
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the new structure of the header (e.g., the keywords used to identify the header are
different). Note that for the majority of patents issued starting from the end of the
19th century, the name of the inventors is readily available from Google Patents.
In that case, the name of the inventors is taken from there and the steps described
above are used for the sole purpose of getting information about their residence.

Possible typos in the location names are then fixed by using a frequentistic ap-
proach. First, I count how often a city/state pair appears in the data set. Second, I
iterate over all the inventors in the data set and compare the reported location with
those in the previously built dictionary. If the dictionary contains a city in the same
state with a Levenshtein distance of 2 or less that appears more frequently in the
original data set, then I assign that city to that inventor. Similarly, if the data set
contains a city/state pair with a Levenshtein distance of 1 or less for both the city
and state (e.g., Chicago, IL and Chicag, HI) and a higher frequency then I assign to
that inventor the more recurring pair.

Finally, when no location is reported for an inventor, I check in the previous and
if there is an inventor whose location is not missing with the same name and who
filed a patent one year before or after. If that is the case I assign the location of the

latter to the former.

3.2.5. Assignees Name and Location

Extracting the location and name of assignees from the patent documents is a more

straightforward task compared to extracting information about inventors, but also
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one that is prone to more mistakes. In fact, there is no redundancy in the documents:
details about the assignees appear one and only one place: the header of the patent.
Using the same procedure developed for inventors, I identify the header of each
patent and check for the presence or absence of the string “assign”. If this sequence
of characters is not contained in the header, then I conclude that the patent has no
assignees, otherwise I parse the rest of the line searching for the name and location of
the assignees. Unfortunately, their location is not always available: sometimes only
the assignee name is reported, while other times the assignee name is followed by “a
corporation of <name of state>" without any further detail. From a careful review of
a number of patents, it seems that the state reported there represents where the firm
is registered, and does not necessarily indicate the location of the branch where the
inventor WOI”kS.E For this reason, when either the location is missing or the assignee
name is followed by “a corporation of jname of state;” without any reference to the
city where the assignee is actually located, I assign the company to the same location
of the first inventors, when they are all reported to live in the same locationﬁ This
approach biases the distance between inventors and assignees towards zero. Some of
the facts reported in Section 4 should therefore be interpreted as a lower bound.
Similarly to what I did for the inventors, I fix possible typos using a frequentistic
approach and missing values looking at assignees with the same name one year before

and after the filing year of the patent.

Hpor example patent number 1,898,054 is assigned to the National Lead Company of New York,
N.Y., a corporation of New Jersey.

1511 the next iteration of the data set, I will flag these instances to allow researchers to drop them
for robustness checks.
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3.3. Validation and Comparison

An in-depth comparison with other data sets of historical patents is beyond the
scope of this paper. The interested reader is referred to Andrews (2017) who presents
a newly assembled data set of geo-referenced historical patents and, in doing so, he
compares it with other four existing data sets.m However, to give credibility and
motivate the data collection effort, it might be useful to contrast CUPS with HistPat,
a very renowned publicly available data set of historical patents described in Petralia
et al. (2016) and available on the Harvard’s Dataverse. Table schematically
shows the variables available in the two data setsE| Figure compares the
number of patents contained in the two data sets and the actual number of patents
reported by the USPTO by issue year. The dashed yellow line shows the official
number of patents issued by the USPTO in each year. The total number of patents
in CUSP almost perfectly match this seriesﬁ Since HistPat seems to only include
patents for which all the inventors and assignees are located in the U.S., the red
line shows the number of patent that satisfy this requirement in CUSP, whereas the
green line represents the number of patents in HistPat. The difference between the
two series is always relatively small except for the period between the two World
Wars when HistPat systematically covers less patents. Although CUSP contains a
6Unfortunately, it was not possible to gain access to the data (or their aggregate statistics) un-
derlying the work of Akcigit et al. (2017) and Packalen and Bhattacharya (2015). He therefore
excludes them from the analysis in the present version of the paper.

"The rows and first column of the table are taken from Andrews (2017) and reported here upon
the generous agreement of the author.

18Some minor differences are due to the fact that some patents were withdrawn after being issued.
Those patents are discarded from my data set.
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larger amount of variables and patents, Petralia et al. (2016) put a lot of intellectual
and computational effort in identifying the county of residence of each inventor and
assignee listed in the patent. The real test is therefore to compare the two data sets
along a geographical dimension.

When multiple inventors and assignees are reported on a patent, HistPat as-
signs to that grant multiple locations without giving any information about whose
residence is the one reported. For comparison purposes, I therefore extract all the
counties assigned to the assignees and inventors of a patent and compare them with
the ones listed in HistPat. If CUSP reports all the counties reported by HistPat for
a given patentHI count that as a success, otherwise the patent is categorized as a
non-match. The resulting matching rate is about 80%. The exercise includes all the
patents issued in the period 1836-1976 and available in both data sets. Figure
reports the share of non-matched patents by issue year. The share remains quite
stable around 20% over the whole period with a peak of about 35% in 1919-1920.
Analyzing by hand a random sample of the patents not matched shows mixed results.
Sometimes CUSP contains the right location of the assignee but the wrong location
of the inventor (or viceversa), whereas HistPat contains the wrong location of the
assignee but the right county of the inventor (or viceversa); sometimes CUSP is off
track and other times HistPat is off track Yl From time to time the mismatch is due

to the fact that while HistPat reports the county stated in the text, CUSP reports

Note that in some cases CUSP actually contains more entries than HistPat.

20Note that sometimes patents contain contradictory information. For example patent number 9
states in the header that the inventor is from New York, which is what is reported in CUSP, whereas
in the text the inventor is from Springfield, MA, which is what is reported in HistPat.
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the county that contained the town in 2000. For example, when patent number 48
was granted Portsmouth, VA was part of Norfolk County, whereas nowadays is an
independent city. I include in the data set a list of the patent numbers that, accord-
ing to the procedure described above, do not match in the two data sets. The list
will provide guidance on where to concentrate my efforts for the next iteration of the

data set.

3.4. Stylized Facts

3.4.1. Numbers

Fact 1.1: Patenting activity in the U.S. has steadily increased over time;
the growth started accelerating in the 80s. The number of patents filed at the
USPTO has experienced an important acceleration starting in the 80s. This trend
seems to be mainly driven by two factors. First, the number of U.S. patents that had
been decreasing since the 60s shows a dramatic reversal of the trend in that decade.
The change might be due to the growing importance of software patents. Second, the
number of foreign patents also accelerated in those years, although the upward trend
started already in the 50s. Figure plots the total number of patents issued by
the USPTO according to their filing year and country of residence of their inventors.
The blue line represents the total number of patents by filing year, whereas the red
and green lines show the patents whose inventors are foreign or a U.S. residents,
respectivelyEr] The graph highlights two additional interesting facts. First, the share

2INote that the graph excludes what in Fact 1.2 I define international collaborations, so the green
and red lines do not necessarily sum up to the blue line. However, as it is shown in Fact 1.2 the
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of foreign patents before the 60s was almost negligible. Second, in 2010 the number
of patents whose inventors are foreign residents passed the number of patents filed
by inventors whose residence is in the United States.

Fact 1.2: The share of patents resulting from international collabora-
tions started increasing in the 50s. An international collaboration is defined as
a patent for which at least one inventor is a U.S. resident and at least one other has
her residence outside the United States. The number of international collaborations
has importantly increased over the years with a steady growth that started in the
80s. Despite this, international collaborations still remain a small fraction of the total
number patents filed at the USPTO. Figure shows this pattern graphically. In
2010, less than 5% of the patents filed were the result of international collaborations.
Fact 1.3: The time needed to issue a patent was negligible in the 19th
century; it was on average 2-3 years in the 20th century. Since information
about the year in which the grant was filed is often absent in data sets of historical
patents data, it is common practice in the literature to proxy the filing year with the
year in which the patent was granted. Authors often argue that in the past the time
necessary to examine a patent was shorter due to the smaller amount of applications
and their relative simplicity (see for example, Akcigit et al., 2017). Figure
tests this hypothesis. The average issuance time for patents filed before 1900 was
indeed below one year, but it was already almost 2 years by 1915 and more than

2.5 years in the 1920s. The average issuance time experienced an important increase

share of foreign collaborations is small. The main patterns of the graph do not change if I used the
country of residence of the first inventor to classify patents into U.S. and foreign patents, instead.
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during WWII reaching 4 years in 1947 and gradually went back to about 2 years in
the period between the 1970s and the 2000s, when it started rising again to reach
another peak in 2005 when the average patent had to wait about 4 years before
being issued. The decrease at the end of the sample might be due to the decrease
in the number of applications received by the USPTO during and after the Great
Recession, or might be simply due to truncation problems (patents filed in 2010 with

an issuance time larger than 5 years do not appear in the sample).

3.4.2. Inventors

Fact 2.1: The share of single-authored patents was around 80% up until
1920 when it started declining. Single-authored patents have become increas-
ingly rare in the past century. Figure provides evidence for this fact from two
different angles. Panel a shows the share of patents filed by a single inventor, whereas
panel b the average team size by filing year. The share of patents filed by a single
inventor has steadily decreased over time since the end of the 1920s. In the 19th
century between 70% and 80% of the inventions patented were single-authored. By
2010, this share had decreased below 20%. Similarly, average team size remains sur-
prisingly stable, around 1.2 inventors per patent, up until the late 40s when it starts
a rapid increase. In 2010, the number of inventors for the average patents is about
2.7, more than double compared to 60 years before. Wuchty et al. (2007) document
this pattern for the period (1975-2000). Thanks to the larger time frame covered

by CUSP, it is possible to put this finding into a historical context and pin down
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the moment when the shift happens. Interestingly, de Solla Price (1963) documents
that the cost of research as a share of GDP did not increase before WWII when it
started and exponential growth. It would be interesting to understand what factors
have driven the decline of single-authored patents which started in the 1920s and
accelerated in the late 1940s, and if technology fields contributed differential to this
trend. This is left for future research.

Fact 2.2: Average and maximum distance among the inventors of the
median patent started an upward trend in the 50s; minimum distance
increased at first and then plateaued. An important idea in the innovation
literature is that the decline in communication costs have made the collaboration
with people living in other cities or countries less costly and hence proximity less
important. Consistently with this intuition, Packalen and Bhattacharya (2015) find
that inventors in more dense cities were adopting ideas faster throughout the 20th
century, but the advantage of living in a large city has disappeared more recently.
However, this insight appears to be in contrast with other observations, such as the
existence of large innovation hubs, or of seminars and conferences that allow scholars
to personally discuss with their peers.

A possible explanation to these two seemingly contradictory facts is that prox-
imity still matters at the very beginning of a project and for certain specific tasks.
For example, informal exchanges of ideas might play a crucial role in first stages of
a project and proximity might be important to, say, analyze and brainstorm about

the outcomes of lab experiments. If this was the case, I would expect to observe an
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increase in the geographical dispersion of teams of inventors over time. The inven-
tors who need to work on tasks that require proximity should be clustered in space,
but could potentially be geographically disconnected from the other members of the
team. Figure tries to shed some light on this by plotting the minimum, mean,
and maximum distance among the inventors of the median patent. More precisely, I
calculate the minimum, average, and maximum distance among the inventors of each
U.S. patent filed in a given year by two or more inventors@ The left panel of Figure
reports the median of these distribution. The graph shows a clear increase in
the three series between 1950 and 1970, when they started diverging. After 1970,
the minimum distance of the median patent stabilized around 10 kilometers, whereas
mean and maximum distances kept their growth and reached 30 and 40 kilometers,
respectively, in 2010. The right panel shows the share of patents for which at least
one inventor is reported to live at least 100 kilometers away from any other inven-
tor in the patent. This series shows two breaks. One between 1930 and 1940 that
brought the share of these patents from about 7% to about 22%, and one in the
1970s when a still ongoing upward trend started. In 2010, about 33% of the filed
patents had at least one inventor more than 100 kilometers apart. Figure shows
the share of patents for which at least two inventors live in the same City.lﬂ This
share has also experienced an important decline between 1930 and 1950, but it then

stabilized just below 40%.In future research, it could be interesting to study whether

22Note that these three statistics coincide when there are only two inventors and that solo patents
are discarded for this analysis.

23Note that this is not necessarily the specular image of Figure panel b, since a patent with
three inventors, two living in Chicago and one in Columbus, would contribute to both graphs.
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some technology fields have contributed differentially to this trends and also if they
are confirmed when keeping the team size constant. Since team size has also been
increasing over the same period of time, a null model in which inventors are added

in a pseudo-random way could be consistent with the pattern described in Figures

A48 and [A.49]

3.4.3. Assignees

Fact 3.1: The share of patents with an assignee has steadily increased
over time. Figure shows the share of patents whose rights were assigned, in
full or in part, to a third-party. A third-party could be an individual or a company
that commissioned or sponsored the development of the invention described in the
grant. The share of patents without assignee has been shrinking over time and has
been less than 20% for the past 40 years. The increasingly capital intensive nature
of R&D activities or a trend towards market concentration might be at the root of
this trend.

Fact 3.2: Average and maximum distance between inventors and assignees
of the median patent started an upward trend in the 50s; minimum dis-
tance increased at first and then plateaued. Similarly to what we did for
inventors, it is possible to analyze the distance between inventors and their assig-
ness. A priori it is not obvious what to expect. On the one hand, the advantage
in terms of resources of big firms and a tendency towards concentration (see for

example Grullon, 2017) should reduce the average distance between inventors and
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assignees. On the other hand, more outsourcing and the decline in communication
and transportation prices should work as a centrifugal force. Figure suggests
that centrifugal forces dominate centripetal ones. The left reports the evolution of
the minimum, average, and maximum distance between the inventors their assignees
for the median patent in the sampleE] The right panel shows the share of patents for
which the maximum distance between the inventors and their assignee is at least 100
kilometers. The graphs show a clear tendency towards decentralization, although the
minimum distance has remained constant since the 1980s. Similarly to what was ar-
gued for Fact 2.1, it might the case that R&D operations are directed by researchers

working for the assignee and some specific tasks are outsourced to other labs.

3.4.4. Citations

Fact 4.1: The average number of backward citations per patent has steadily
increased over time. The average number of patents cited by each patent has been
steadily increasing over time. Figure shows this trend over time. The left panel
shows the series for the years between 1836 and 1940, whereas the right panel for
the years after 1940. The data are split into two figures to take into account the
introduction of a mandatory section containing the list of references cited in 1947
that has importantly increased the number of citations successfully extracted from
the data. As it is possible to see in the left panel of Figure[A.52] the average number

of citations prior to the mandatory disclosure of the references is order of magnitudes

24Note that these three statistics coincide for solo authored patents with an assignee.
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smaller, but not negligible. Nevertheless, as the right panel of Figure[A.52 highlights,
the amount of references obtained in this way is probably only a small fraction of
the full list of prior art considered when examining the patentE]

Citations might have steadily increased over time for two main reasons. First,
digitalization have made it easier for inventors and reviewers to find inventions re-
lated to the one described in the patent. This would explain the acceleration in
the average number of citations after 1980. Second, the number of inventions upon
which newer inventions are built on has also increased over time. Inventions have
become increasingly complex and if in the past a new idea relied on basic knowledge,
nowadays it builds on a large number of previous discoveries (e.g., Jones, 2009). Such
an increase in complexity would translate in an increase in the number of references.
Fact 4.2: The share of patents without forward citations was around 90%
until 1910; it has then declined to 10% and remained mostly stable. The
share of patents without forward citations has dramatically decreased between 1910
and 1940, but was stable in the years before and after this period. Before 1910
about 90% of patents did not receive any citation since they were filed, whereas
after 1940 this share was around 10%. Figure reports this pattern over time.
The low share before the 20s might be related to the introduction of the mandatory
reference sector in 1947. More interesting is the extremely low share of patents
without forward citations in the second half of the 20th century. Three facts might

explain this trend. First, higher patenting costs might have contributed to attract

2Future research should investigate the informativeness of pre-1947 citations.
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more meaningful patents. Second, the second part of the 20th century witnessed
a significant increase in the number of foreign patents filed in the United States.
Because of the costs involved in the patenting process, it is usually believed that
grants filed to multiple patent offices are particularly valuable. Finally, there might
have been an increase in the amount of self-citations. As suggested by Jones et al.
(2007), an increase in the number of inventors per patent is likely to increase the
number of self-citations. It could be interesting to explore these explanations in
future research.

Fact 4.3: The average distance of citations received by the median patent
in the first 10 years after filing was 0 up to the 40s; it has been increasing
ever since. Figure analyzes the average distance of the citations received by
the median patent in the 10 years after being filed. More precisely, I calculate the
average distance between first inventors for each patent filed in each year. The figure
reports the median of this distribution. With the exception at the beginning of the
sample which is manly due to the small number of citations in the 19th century, the
series shows a clear upward trend that started in the mid-40s and is still ongoing.
This trend seems to support the idea that the decreasing cost of communication

facilitate the diffusion of knowledge across space.

3.4.5. Classes

Fact 5.1: In the past 200 years only 9 classes made it to the top 1% terms

of citations received per decade. Given the long time span provided by these
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data, we can ask what technologies were the most valuable in each decade. To do
so, I exploit a standard measure of patent relevance used in the literature, namely
the number of citations received by each grant. More precisely, I rank all the patents
filed in each decade by the number of citations received and I select those in the
top percentile. I define the most frequent principal class among the patents selected
as the leading technology for that decadem Table reports the results of this
procedure. The table highlights two interesting facts. First, despite its simplicity,
this methodology is able to capture the well-known technological waves in the United
States over the past two centuries. The industrial revolution at the beginning of the
twentieth century, the rise of medical science after the second world war with the
development of vaccines and antibiotics, and finally the digital revolution in the
second part of the 90s. Second, the length of the technological waves seems to have
increased over time. Although this might be due to the nature of the data that are
more noisy at the beginning of the sample, this fact might be explained by two other
observations. On the one hand, it might be that since innovation becomes more
complex in every field over time, it is more rare to have a breakthrough that moves
the center of gravity towards another technology. On the other hand, it might be
that the more recent waves enjoy more ideas to build upon and it takes longer to

exhaust their creative momentum.

26Using the top 5%, instead of the top percentile, leads to similar results. Berkes et al. (2018)
explore more refined definitions of leading technology exploiting the network structure of patent
citations.



159
3.5. Conclusion

Since Hall et al. (2001), patents have been the preferred measure of innovation
in the literature. The more than 3000 citations received by that paper alone in less
than 20 years testify the high-demand for high-quality data on the topic. Because
of the new opportunities offered by newly released or collected historical data, such
as the historical decennial Census of Population, researchers have started moving
their attention to pre-1976 data. In the past few years, the efforts to digitalize and
extract meaningful information from historical patents have multiplied. The lack of
a single data set that offers all the variables of interest collected with a consistent
methodology and the fact that these data are sometimes not share with the rest of
the community might constitute an important barrier for researchers who do not
have access to them. This paper fills this gap and describes a freely available newly
assembled data set of historical patents containing all the variables usually employed
in the literature. I anticipate that some issues might surface at the beginning when
using them for actual research, the same way I found and fixed some problems while
writing Section [3.4 Based on the feedback I will receive, I expect to make the data set
more reliable over time and potentially include additional variables. The comparison
with HistPat performed in Section validates the data at least from a coverage
and geographical points of view. Finally, some of the stylized facts presented in
Section show that the data are able to replicate some already well-known trends
in the literature and gives a novel historical perspective to them. Some other trends

described there are new and could spur ideas for future research.
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Figure A.1. The blue line is the contribution to U.S. GDP (value added)
of computer and electronic products, electrical equipment, appliances and
components, information, finance and insurance, professional and business
services, educational services, health care and social assistance, arts, enter-
tainment and recreation (data from the BEA). The dashed red line is the
number of patents per 1,000 people issued to U.S. inventors by the USPTO.
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Figure A.2. The ¢t = 0 observation corresponds to 1985-1994 data for
patenting, and the 1990 Census for economic and demographic variables.
The t = 1 observation corresponds to 2005-2014 data for patenting, and the
2008-2012 ACS for economic and demographic variables.
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Figure A.8. Change in high-knowledge residents in each census tract of
Chicago as a result of Amazon’s new headquarter locating in a specific
neighborhood (colored in green). Panel (a) considers the case in which
Amazon’s HQ2 is located on the old Michael Reese Hospital premises;
panel (b) when it is located in the Old Main Post Office; panel (c) in
the Tribune Media River Front property; panel (d) in the old A. Finkl &
Sons steel plant. For each counterfactual, the distribution of the change is
divided in 5 quantiles. The census tracts colored in bright red correspond
to the top quantile, the ones in bright blue to the bottom quantile.
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Figure A.14. Predicted (top map) and actual (bottom map) growth rate
of patents in U.S. commuting zones, 1990-2010.
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Figure A.15. Distribution of estimated values of v, in U.S. commuting zones
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Figure A.16. The bin scatter plot compares the value of v, estimated using
with the value of v, that minimizes the difference between the share of
people in city ¢ commuting for less than 60 minutes and the model generated
counterpart.
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Count

Figure A.17. The two histograms show the distribution of e. estimated
through a 2SLS procedure that uses a model-generated instrument. The left
histogram reports the entire distribution after dropping the top and bottom
5% of the values. The right panel reports the distribution for . > 1 only.
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Figure A.18. The two histograms report the distribution of k. for those
commuting zones with €. > 1. The left and right histograms show the
unweighted and weighted distribution of this variable, respectively.
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Figure A.19. Map of Chicago divided by census tract. The areas high-
lighted in black are the ones that were proposed as suitable places to host
the Amazon’s HQ2.



Figure A.20. Change in high-knowledge workers in each census tract of
Chicago as a result of Amazon’s new headquarter locating in a specific
neighborhood (colored in green). Panel (a) considers the case in which
Amazon’s HQ2 is located on the old Michael Reese Hospital premises;
panel (b) when it is located in the Old Main Post Office; panel (c) in
the Tribune Media River Front property; panel (d) in the old A. Finkl &
Sons steel plant. For each counterfactual, the distribution of the change is
divided in 5 quantiles. The census tracts colored in bright red correspond
to the top quantile, the ones in bright blue to the bottom quantile.
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Figure A.21. Bin-scatter plot of patents per capita and (log) population
density in all CZs (left) and densest CZs hosting 50% of the U.S. population.
The plot is weighted by total population and controls for year fixed effects.
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Figure A.22. Bin-scatter plot of patents per capita and (log) population
density in all CSDs (left) and densest CSDs hosting 50% of the U.S. popu-
lation. The plot is weighted by total population and controls for year fixed

effects. The measure of innovation is winsorized at the 1% level.
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Figure A.23. Marginal effect of having a conventional tail and being in
a certain core-conventionality category on the probability of being a hit
patent.
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Figure A.24. The dependent variable is defined as the tail-conventionality
of the median patent in the CSD-year observation. The bin-scatter plot is
weighted by the total number of patents filed in the CSD/Year observation
and controls for State and Year fixed effects.
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Figure A.25. Concentration of innovation output and log density of popu-
lation. The bin-scatter plot is weighted by the total number of patents filed
in the CSD/Year observation.

12, T T T T T 0.25.
=10t *—Total ] o2l —*—Conventional | |
S —+— Conventional '% —4—Unconventional
S 8 ——Unconventional | - ?} 015 —=—Congestion
£ —=—Congestion 3
s 6 g 01t 1
o -
o 4 9 005 -
c -

S _
S 2 8 — -
5 =]
3
2 2
R 5 -

T . — =
S o S
3 — o
O 2 L e ]

,,,77—77**"”"’7777777 ’
4 . . . . . 015 . . . . .
0.2 0.3 04 05 06 0.7 08 0.2 03 0.4 05 0.6 07 0.8

b b

Figure A.26. Left panel: Contribution of each term to condition m
Right panel: Contribution of rate of conventional ideas, rate of unconven-
tional ideas and congestion costs to overall welfare gain from optimal policy
under fixed urban structure.
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Figure A.27. Contribution of each component in to overall welfare
gain from optimal policy under flexible urban structure.
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Figure A.28. Welfare gain (% consumption equivalent) from optimal policy
with fixed structure (red line) and flexible structure (blue line).
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Figure A.29. Example of c-score distribution for a patent.  Tail-
conventionality corresponds to the 10th percentile of the distribution,
core-conventionality corresponds to the median. Similarly, we define tail-
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unconventionality as one minus tail-conventionality.
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Figure A.30. The figure shows a map of county sub-divisions in the United
States. A given CSD is colored in red if it produced at least one patent
per year between 2000 and 2010 (“continuously innovative”), in blue if it
produced innovation only occasionally. No patents have been filed in the
CSDs that are missing in the map.
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(a) Chicago (b) New York

(c) San Francisco (d) Boston

Figure A.31. The figure shows a map of county sub-divisions in four of the
main metropolitan areas in the United States. A given CSD is colored in
red if it produced at least one patent per year between 2000 and 2010 (“con-
tinuously innovative”), in blue if it produced innovation only occasionally.
No patents have been filed in the CSDs that are missing in the map.
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(a) Patents per worker and log-density of employment, all CSDs
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Only patents for which the state of the assignee coincides with at
the state of at least one of the inventors are included.
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(b) Patents per knowledge worker and log-density of knowledge
workers, all CSDs (left) and densest CSDs hosting 50% of U.S.
knowledge employment (right). Only patents for which the state
of the assignee coincides with at the state of at least one of the
inventors are included.
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Figure A.32. All the bin-scatter plots are weighted by total population or
(knowledge) employment, and control for year fixed effects. The measure
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(c) Patents per capita and log-density of population, all CSDs (left)
and densest CSDs hosting 50% of U.S. population (right). All
patents are geo-located at the residence of the first inventor.

of innovation is winsorized at 1% level.
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Figure A.33. Cumulative distribution functions of tail conventionality
(left) and core conventionality (right) in the universe of patents.
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Figure A.34. Placebo experiment: Estimated coefficients from 50 regres-
sions of log-density on concentration index on simulated patent networks.
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Figure A.35. Every pixel in the matrix indicates a patent class pair. The
darker the pixel the higher the c-score assigned to that class pair, the lighter
the lower the c-score. Diagonal elements of the matrix show a clear red ten-
dency compared to the rest of the matrix. The “class-clusters” of Chemistry
and Mechanical Engineering, among the others, are clearly visible around
the diagonal.
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Figure A.36. All the bin-scatter plots are weighted by total patents, and
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(¢) Median tail-conventionality
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continuously innovative CSDs.
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residence of the first inventor.

control for year and state fixed effects.
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Figure A.37. Spatial economy: Illustration. Innovators from background
S and D (programmers and designers) sort themselves into the downtown
areas of cities. Unskilled labor lives in the outskirts of cities and in the rural
areas. Production takes place in rural areas between cities.

HENRY AIKEN, OF PHILADELPHIA, PENNSYLVANIA.

- 'IMPROVEM.ENT IN ALLOYS FOR PRODUCING ORNAMENTAL COATINGS ON METALS,

Specification forming part of Letters Patent No, 18%,2%9, dated April 1, 1873; application filed
Febroary 21, 1873,

Figure A.38. Header of patent number 137,279, the first patent that
reports the year in which the application was filed.



AT
LHI am aware of the{Letters Patent No. 432881I
granted August 16, 1864, to Raiph Graham, 0
Brooklyn, Kings county, New York, for a
hand fire-arm adapted to projecting grenades
or small bombs, and I do not claim the inven-
tion therein shown; but o

What T do claim as new and of my inven-
tion, and for which T desire Letters Patent,
is—

1. Constructing a mortar with a hollow
sleeveprojecting from its base, instead of trun-
nions or cheeks, substantially as above de-
scribed, for the purpose of recelving the elastie
cushion, or any equivaleni spring, and the end
of a stake, as above set forth. o

9. The combination of the slot E and pinD
with the aforesaid 11;1ortar A, sleeve %, damd_

i as and for the purposes specliied.
Fpriog O Wit. F. GOODWIX.

Figure A.39. The figure shows an extract from patent number 46,101.
The patent references another patent in the text. This piece of infor-
mation is used to build a data set of citations prior to 1947.

What I claim as my invention and desire
to secure by Letters Patent is— '
. The construction of the spout, the balcony
and its appendages, the ventilator, the con-
struction of the feeder, and the method of
constructing the double top of the hive, and
the cement floor of the house; these I claim
separately and in combination, the aforesaid
invention being the best mode of producing
artificial swarms of hees. - -

JOHN SEARLE.

Witnesses: - "
Geo. M. Puures,
Josuaua Frrrmip,

Figure A.40. The figure shows an extract from the end of patent num-
ber 580. There the name of the inventor is listed in capital letters
together with the name of two witnesses.
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i oy congern ! ‘

Be it known that I, Jomx SparLE, of
Franklin, in the county of Merrimack and
State of New Hampshire, have invented a
new and Improved Mode 0% CODSLIUCLING
Bee-Houges and Beehives and the Manage-
ment Thereof, of which I do declare that the
following is a full and exact description and
to enable others skilled in the art to make
and use my invention I will proceed to give
a detailed description of the several parts
and the necessary results of the same when
combined. : : '

Figure A.41. The figure shows an extract from the of end patent num-
ber 580. There the name of the inventor is listed in capital letters
together with the name of two witnesses.
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Figure A.42. The figure compares the number of patents reported in
HistPat and CUSP. For CUSP I only selected the patents for which at
least one inventor or one assignee are U.S. residents.
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Figure A.43. The figure shows the share of patents for which all the
locations that appear in HistPat are also contained in CUSP. The
denominator is given by the number of patents available in HistPat in
a given year.



200000 - —  Total

= Foreign
- U.S.

150000 |

100000 |

Number of Patents

50000 -

1850 1900 1950 2000
Filing Year

Figure A.44. The graph plots the number of patents granted by the
USPTO by filing year and country of residence of their inventors. The
blue line represents the total number of patents issued by the USPTO.
The green line shows the number of patents whose inventors are U.S.
residents. The red line shows the number of patents whose inventors
are foreign residents.
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Figure A.45. The figure shows the share of patents that were the result
of an international collaboration by filing year. A grant is considered
an international collaboration if at least one inventor is a U.S. resident
and at least another one has her residence outside the United States.
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Figure A.46. The figure shows the average time (in years) that a patent
application filed in a certain year had to wait before being granted.
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Figure A.47. The figure shows the decline of single-authored patents
over time. Panel a reports the share of patents filed by a single inventor
by filing year. Panel b the average number of inventor for each filing
year.
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Figure A.48. This figure analyzes the distance patterns among the
inventors of a same patent. The left panel shows the minimum, mean,
and maximum distance across the inventors of the median patent. The
right panel reports the share of patents with at least two inventors that
live more than 100 km apart.
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Figure A.49. The figure shows the share of patents for which at least
two inventors live in the same city.
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Figure A.50. The figure shows the share of patents by filing year that
were assigned, in full or in part, to at least one person (or company)
different from the inventors.
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Figure A.51. The figure analyzes the distance patterns between as-
signees and inventors. The left panel shows the minimum, mean, and
maximum distance between the inventors and assignee fo the median
patent. The right panel reports the share of patents for which the dis-
tance between the assignee and at least one of the inventors is larger

than 100 kilometers.
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Figure A.52. The two figures report the average number of citation by
filing year. The left panel shows the series for the years between 1836
and 1940, whereas the right panel for the years after 1940.
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Figure A.53. The figure shows the share of patents that have not re-
ceived any citation at any point in time after being filed.
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Figure A.54. The figure shows the average distance of citations re-
ceived by the median patent in the 10 years following its filing.



APPENDIX B

Tables

1990

2000

2010

Overall

Gini 42.8

46.2

47.0

Across CTs - Within CZs

(Segregation) 19.5

Table B.1. The overall Gini is obtained from the FRED website. The data
sources and methodology for the across-CT and segregation measures are

explained in the text.

20.6

22.5
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Dep. Variable: Change in Segregation (Gini), 1990-2010
(1) (2) (3) (4) (5) (6)

Patenting Growth
# CT

# of Household

L27FFF (.84%FF  0.93%F%  0.63%%  0.62FF  0.64%*
(0.23)  (0.32)  (0.30) (0.26) (0.25)  (0.28)
2.02F%  3IRK 4 36FFE 4 35%K 4 0wk

(0.99)  (1.33)  (1.07)  (1.09)  (1.14)

213 -3.43%%  _3.30%*  _3.43%*

(1.58)  (1.33)  (1.35)  (1.45)

Income 8.20%F* 8 (2%F* 8 21¥**

(1.91)  (1.92) (1.97)

Import Exposure 0.01 0.01
(0.03) (0.03)

Local Govt Spending -0.06
(0.39)

# obs. 703 703 703 703 687 579

R? 0.10 0.14 0.16 0.23 0.23 0.23

Table B.2. All regressions are weighted by total number of households in
1990. Controls are in growth rates, 1990-2010. Missing observations in
columns (5) and (6) reflect data availability at the source and are concen-
trated in low population regions. Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable: Change in Segregation (Gini), 1990-2010
(1) (2) (3) (4) (5) (6)

Patenting Growth
# CT

# of Household

2.88FFF 2 BTHRF QQLFFE 9 3LFRE o JRRR 9 JOFEF
(0.47)  (0.70)  (0.69)  (0.68) (0.71)  (0.70)
005  1.85  245%  272%  265*

(1.39)  (1.65) (1.47) (1.53)  (1.58)

“3.49%  4.19%F  _414%F  _3.06%*

(1.93)  (1.70)  (L.73)  (1.84)

5.65FFF  520% 554K

Income

(2.11) (2.23) (2.28)

Import Exposure -0.02 -0.03
(0.04) (0.04)

Local Govt Spending -0.21
(0.34)

# obs. 703 703 703 703 687 579

First-stage estimates

Predicted 0.72%** 0.60%** 0.60*** 0.57F** (.56%** (.57FF*
Patenting Growth (0.07) (0.08) (0.08) (0.07) (0.07) (0.07)
Wald F stat. 388.38 233.96 247.03 205.88 192.35 173.07

R? 0.36 0.41 0.43 0.44 0.44 0.46

Table B.3. 2SLS estimates. All regressions are weighted by total number
of households in 1990. First-stage estimates include all the controls specific
to the model. Controls are in growth rates, 1990-2010. Missing observations
in columns (5) and (6) reflect data availability at the source and are con-
centrated in low population regions. Robust standard errors in parentheses.
**p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable: Change in Segregation, 1990-2010

Area A 3.39%** || Area B  4.18 Area C  1.52** || Area D -1.27%*%*
(0.99) (2.77) (0.64) (0.46)
Controls v Controls v Controls v Controls v
Area E  -3.95 Area F  -1.59 || Area G 4.37*** || Area H 2.88%**
(5.64) (1.13) (1.33) (0.92)
Controls v Controls v Controls v Controls v

Table B.4. 2SLS estimates. All regressions are weighted by total number
of households in 1990. Controls are included in growth. Robust standard
errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Dep. Variable:

Alneq., ASegr,., ACT — Ineq

(1) (2) 3) (4) (5)

Patenting Growth | 0.93** | 2.34%** 1.48%** | _0.86**  0.36
(0.46) | (0.68) (0.44) | (0.35) (0.35)

Alneq,.. 0.96%**
(0.08)
# obs. 703 703 703 703 703
Controls (Growth) v v v X v

Table B.5. 2SLS estimates. All regressions are weighted by total number
of households in 1990. Controls are included in growth. Robust standard
errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable: As?
(1) - OLS (2) -1V
rank; x Patenting Growth |  0.87** 1.75%%*
(0.41) (0.60)

rank; 9.00%% 9 19HH%
(0.21) (0.21)

CZ Fixed effects v v
& obs. 57.285 57,285

Table B.6. Regressions are weighted by total number of workers in 1990.
Standard errors are clustered at the CZ level. ***p < 0.01, **p < 0.05,
*

p <0.1.

Dep. Variable: ASegr
(1)-OLS (2)-0OLS (3)-1V (4) -1V
Patenting Growth 0.65** 0.78%**  1.99%** 9 11¥**
(0.30) (0.30)  (0.65)  (0.68)
Persistent Amenities 0.32 0.29
(0.23) (0.21)
Persistent Amenities x -0.45 -0.63%*
x Patenting Growth (0.29) (0.35)
Controls (Growth) v v v v
# obs. 337 337 337 337

Table B.7. All regressions are weighted by total number of households in
1990. Controls are included in growth. Number of observations reflect data
availability from Lee and Lin (2017). The index of persistent amenities is
normalized to have a mean of zero and a standard deviation of one. Robust
standard errors in parenthesis. ***p < 0.01, **p < 0.05, *p < 0.1.
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Structural Estimation

o 0.80 Wnn 004 |w,e 0.18
B 0.75 Wen —0.02 | wre  0.32
Ve Figure pn 0467 | pr  0.497
0 0.055 | 6, —0.004
f, 0.001
Table B.8. Parameter values
Dep. Variable:
A Occ-Gini A Segr
Model Data Model Data
Bin 0.60%H* Q. 51*¥* | 0.27%F* (. 18%** (.22%**F (.14%**
(0.22)  (0.15) (0.04)  (0.02)  (0.04) (0.04)
A Occ-Gini 0.14%** 0.15%**
(0.65) (0.45)
# obs. 663 663 663 663 663 663
R? 0.02 0.24 0.12 0.68 0.10 0.14

Table B.9. All regressions are weighted by total number of households in
1990. Robust standard errors in parentheses. ***p < 0.01, **p < 0.05,

*p < 0.1.
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# Obs | Min Max | Mean SD

Patents per 1,000p (CZ, 1985-1994) | 703 0 22.3 2.05 1.50
Patents per 1,000p (CZ, 2005-2014) | 703 0 29.4 241 297
Average HH income (CZ, 1990) 703 | 17,776 | 64,369 | 39,688 | 8,940
Average HH income (CZ, 2010) 703 | 39,021 | 140,656 | 77,108 | 17,770
Average HH income (CT, 1990) 59,525 | 5,000 | 558,810 | 39,687 | 20,638
Average HH income (CT, 2010) 72,236 | 5,000 | 640,456 | 77,107 | 45,419
Number of CTs (CZ, 1990) 703 1 2,728 | 603.3 | 760.5
Number of CTs (CZ, 2010) 703 1 3,890 | 728.7 | 948.2
Average Rent (CZ, 1990) 703 | 129.2 | 688.2 | 396.4 | 124.8
Average Rent (CZ, 2010) 703 231.6 | 2,020.4 | 903.6 | 334.8
Average Rent (CT, 1990) 59,383 | 99.5 1,500 | 398.5 | 183.6
Average Rent (CT, 2010) 72,007 | 99.5 2336.7 | 916.4 | 521.2

Segregation (CZ, 1990) 703 0 27.0 19.5 5.2

Segregation (CZ, 2010) 703 0 32.3 22.5 6.0

Inequality (CZ, 1990) 703 36.2 49.8 44.3 2.1

Inequality (CZ, 2010) 703 36.2 52.4 45.6 2.3

Table B.10. Summary statistics (weighted by total HH in respective year).
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Dep. Variable: Change in Segregation (Theil), 1990-2010
nmw @ B @ (6)
Patenting Growth | 1.26%** 0.75%* 0.81*%*  (0.50%* 0.52%* 0.51%*
(0.24) (0.32) (0.30) (0.27)  (0.29) (0.30)
# CT 2.60%*%  3.35%F  4.59%F* 4 56FFK 4 54%F*
(0.95) (1.30)  (1.06) (1.08)  (1.13)
# of Household -1.61  -3.01%*%  -3.04%*%  -3.22%*
(1.57)  (1.33) (1.34)  (1.45)
Income 8.80%**  R.64%**  8.9THHK
(2.07)  (2.10)  (2.17)
Import Exposure -0.02 -0.02
(0.03) (0.03)
Local Govt Spending 0.05
(0.40)
# obs. 703 703 703 703 687 579
R? 0.10 0.16 0.17 0.25 0.25 0.25

Table B.11. All regressions are weighted by total number of households
in 1990. Controls are in growth rates, 1990-2010. Missing observations in
columns (5) and (6) reflect data availability at the source and are concen-
trated in low population regions. Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

1995 1996 2003 2004 2005 2006 2013 2014
2005 d10 dg d2 d1
2006 le d3 dg d1
2013 do do dys  dr ...
2014 dlg dg dg dl

Table B.12. Structure and timing of the instrument. Years with a hat are
predicted, years without a hat are actual.
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Dep. Variable:
Change in Segregation, 1990-2010

vy @ B @
Patenting Growth | 1.27%%*% (.97 0. 70%** 0.61** 0.56**
(0.23)  (0.23)  (0.25) (0.24) (0.25)
# CT 0.51%**  _2.12%*  _2.25%* 2 64%*
(1.13)  (1.06)  (1.06)  (1.07)
# of Household 2.55%% 2. 54%% 3 19%K*
(1.05)  (1.08)  (1.07)

Income 1.09 1.55
(1.21)  (1.22)
Local Govt Spending -0.28%*
(0.16)

# obs. 703 703 703 703 643

R? 0.10 0.22 0.26 0.27 0.28

Table B.13. All regressions are weighted by total number of households in
1990. Missing observations in columns (4) and (8) reflect data availability
at the source and are concentrated in low population regions. Controls are
included as the log value in 1990. Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable:
Change in Segregation, 1990-2010
m @ B @ 66
Patenting Growth (1990-2010) | 2.34%#* 2 59%#k 3 gtk 2 73%**  1.69***  1.91*
(0.47)  (0.72)  (1.10)  (0.73)  (0.54)  (0.50)
Patenting Growth (1980-1990) -1.08%* -0.50%*
(0.45) (0.30)
Bartik-like variable -1.38 -0.01
(1.26) (1.02)
Constrained Instrument No No No Yes No No
State-year fixed effects No No No No Yes Yes
Baseline controls (Growth) v v v v v v
# obs. 703 703 690 703 703 690
First-stage estimates
Predicted 0.57HFHFF (.55%HFk (. 55%F* (. 48%**  (.54%**  (.46%**
Patenting Growth (0.07)  (0.06) (0.11)  (0.07)  (0.06)  (0.09)
Wald F-stat 205.88 188.22  57.40 135.34 151.75  38.88
R? 0.44 0.44 0.44 0.39 0.61 0.61

Table B.14. 2SLS estimates. All regressions are weighted by total number
of households in 1990. Robust standard errors in parentheses. ***p < 0.01,

**p < 0.05, *p < 0.1.
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Dep. Variable:
Change in Segregation, 1990-2010

(1) (2) (3) (4) (5)
Patenting Growth | 2.88%** 1.96%** 1.62%** 1.62%** 1.49%**
(0.47)  (0.45)  (0.50)  (0.52)  (0.50)

# CT 0.44***  -1.31 -1.31 -1.70
(0.13)  (1.28) (1.24) (1.20)

# of Household 1.70 1.70 2.30%*
(1.28)  (1.25)  (1.20)

Income -0.01 0.49
(1.29)  (1.32)

Local Govt Spending -0.24
(0.16)

# obs. | 703 703 703 643

First-stage estimates

Predicted 0.72%F%% 0. 76%**  (Q.71%** 0.65%** 0.64%**
Patenting Growth (0.07)  (0.08)  (0.08)  (0.08)  (0.08)
Wald F-stat 388.38  348.74 269.11 196.85 173.07

R? 0.36 0.36 0.38 0.39 0.40

Table B.15. 2SLS estimates. All regressions are weighted by total number
of households in 1990. Missing observations in columns (4) and (8) reflect
data availability at the source and are concentrated in low population re-
gions. Controls are included as the log value in 1990. Robust standard
errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable:
A Edu-Gini A Occ-Gini
OLS v OLS v

(1) (2) (3) (4) (5) (6) (7) (8)
Patenting | 1.38%*%* (.86** | 2.34*** 1.61%* | 1.81%F** 1.97H*%* | 4 41%** 5 .91%**
Growth (0.31) (0.33) | (0.56) (0.70) | (0.35) (0.34) (0.57) (0.90)

# obs. 703 703 703 703 703 703 703 703

Controls X v X v X v X v

Table B.16. 2SLS estimates. All regressions are weighted by total number
of households in 1990. Controls are included in growth. Robust standard
errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Dep. Variable: ASegr,,

Past Trend 1990-2010
O @ 6 @
Predicted 0.02  0.27
Patenting Growth | (0.29) (0.30)
Patenting Growth 2. 314K 1.41%*
(0.63)  (0.64)
# obs. 309 309 309 309
Controls (Growth) | X v X v

Table B.17. All regressions are weighted by total number of households in
1990. Controls are in growth rates, 1990-2010. Robust standard errors in
parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable: As?
(1) - Model (2) - Data

rank; x Bin 2.89%** 0.160**
(0.31) (0.063)

rank; -20.39%** 1.52%**
(2.39) (0.39)

CZ Fixed effects v v

# obs. 58,050 57.197

Table B.18. Regressions are weighted by total number of workers in 1990.
Standard errors are clustered at the CZ level. ***p < 0.01, **p < 0.05,
*

p <0.1.

Median Tail-conventionality
u_ @ ® @ 6 ©
Log population | -1.10%** -1.10%*** -0.78%F* (.81 %K
density (0.38)  (0.31) (0.19)  (0.14)
Log college- -0.87HFK (.92 K
graduate density (0.33) (0.29)
State/year f.e. no yes no yes no no
Weighted Pat Pat Pat Pat no Pop
N. Obs 18,095 18,095 18,095 18,095 18,095 = 18,095
R? 0.02 0.08 0.013 0.13 0.003 0.01

Table B.19. The dependent variable is defined as the tail-conventionality
of the median patent in the CSD-year observation. All regressions, except
for (5) and (6), are weighted by the total number of patents filed in the
CSD/Year observation. Standard errors in all the regressions are clustered
at the CSD level. U-scores are winsorized (1%) at the patent level. ***p <
0.01, **p < 0.05, *p < 0.1.
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Median Tail-conventionality

0 @ O
Log population density | -1.10%** -0.83*%** _0.80*** -0.56**
(0.31)  (0.26)  (0.27)  (0.27)
Log median income 2.01%** 9 7HRHKH 1.82%
0.67)  (0.99)  (1.0)
% College Graduates -0.028  -0.0173
(0.022)  (0.0234)
Gini -0.14
(0.105)
State/year f.e. yes yes yes yes
Weighted Pat Pat Pat Pat
N. Obs 18,095 18,095 18,095 17,995
R? 0.08 0.09 0.10 0.10

Table B.20. The dependent variable is defined as the tail-conventionality of
the median patent in the CSD-year observation. All regressions are weighted
by the total number of patents filed in the CSD/Year observation. Standard
errors in all the regressions are clustered at the CSD level. U-scores are
winsorized (1%) at the patent level. ***p < 0.01, **p < 0.05, *p < 0.1.

Unconventional Tail

) ) G)
Log population density | 0.0087**  0.0074** 0.0105***
(0.0037)  (0.0033)  (0.0038)
Publicly Traded -0.0161**  -0.0109
(0.0068)  (0.0080)
Log total patents -0.0038*
(0.0022)
State/year/class f.e. yes yes yes
N. Obs 1,059,999 706,469 706,469
Pseudo R? 0.007 0.007 0.008

Table B.21. Marginal effects of a patent-level logit regression. Dependent
variable is a dummy that takes value 1 if the Tail Conventionality of the

patent is below the median of its year-class bin.

Standard errors in all

the regressions are clustered at the CSD level. ***p < 0.01, **p < 0.05,

*p < 0.1.



Percentage of citations to class A from class # A

(1) (2) 3) (4)

Arrival of new
firm of class A

0.49%%% 0. 43¥FF (. 92FFF (655
(0.0002) (0.0002) (0.0011) (0.0002)

Class-CSD f.e.
Class-Year f.e.
Shock arrival year

yes yes yes yes
no yes no yes
2001 2001 2005 2005

Average S 0.43 0.43 0.43 0.43
N. Obs 682,116 682,116 682,116 682,116
within R? 0.003 0.006 0.001 0.005

Table B.22. This table reports the coefficients of a regression of the share
of citations received by patent class A from patents of classes other than A
in a given CSD at a given time on time/class and class/CSD fixed effects
and the cumulative normalized arrival of new firms of class A in that CSD.
Columns 2 and 4 include time/class fixed effects. Columns 3 and 4 only
include incoming firms on or after 2005. Standard errors clustered at the
CSD/class level are reported in parenthesis. ***p < 0.01, **p < 0.05,

*p < 0.1.

Filing Year | # Patent Grants | Filing Year | # Patent Grants
2000 161,388 2006 202,601
2001 209,259 2007 204,957
2002 209,957 2008 199,802
2003 199,752 2009 180,558
2004 198,383 2010 166,985
2005 200,204 Total 2,155,901

Table B.23. This table reports the number of patents issued from January
2002 to August 2014 and re-arranged by filing year. All patents (including

foreign grants) are counted.
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Variable Level Mean Min Max Winsor Weight # Obs.
Tail Conventionality Patent 85 40 164 1% No 1,058,999
Core Conventionality Patent 108 61 183 1% No 1,058,999
Median Tail Conventionality =~ CSD 77 40 164 No Pat 18,095
Patents per capita CSD 5.4 3.6 0.641 No Pop 18,095
Patents per capita (winsor) CSD 54 1le4 0.011 1% Pop 18,095
Density of population (/km?) CSD 1966 0.931 26821 No Pop 18,095

Table B.24. Summary statistics for the main variables used in the analysis.

Median Tail Conventionality

Log population | -1.31%** -1.36***
density (0.32) (0.35)
Chicago 1.13

(1.00)

Boston -3.48%*
(1.72)
New York 1.18
(0.97)

San Francisco 1.45%**
(0.55)

State/year f.e. yes yes
N. Obs 18,095 18,095

R? 0.14 0.14

Table B.25. All regressions are weighted by the total number of patents
filed in the CSD/Year observation. Standard errors in all the regressions
are clustered at the CSD level. ***p < 0.01, **p < 0.05, *p < 0.1.



HistPat CUSP
Years Covered 1836-1976 1836-2015

Inventor First Name N Y
Inventor Last Name N Y
Inventor Town N Y
Inventor County Y Y
Inventor State Y Y

Full Patent Text N Available upon request
Patent Number Y Y
Application Date N Y
Grant Date Y Y
Names of Multiple Inventors N Y
Names of Assignees N Y
Assignee Town N Y
Assignee County & State Y Y
Patent Class N Y
Backward and Forward Citations N Y

Table B.26. The table shows a schematic comparison of the variables
available in HistPat and CUSP.

Decade | Leading Class Description
1836-1845 EO02 Hydraulic Engineering; Foundations
1846-1865 F16 Engineering Elements or Units
1866-1875 A01 Agriculture
1876-1885 D05 Sewing
1886-1895 B41 Printing
1896-1905 D03 Weaving
1906-1945 F16 Engineering Elements or Units
1946-1995 A61 Medical or Veterinary Science; Hygiene
1996-2015 G06 Computing; Calculating; Counting

Table B.27. The table reports the leading technology for each decade
from 1836 to 2015. A leading technology is defined as the most frequent
technological class in the top percentile of the distribution of citations

received.
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APPENDIX C

Appendices

C.1. Appendix to Chapter 1
C.1.1. Data description

C.1.1.1. Income distribution at the CT level. The NHGIS provides informa-
tion on yearly household income at the CT level by dividing residents into 15 income
bins. The lower bounds of each income bin are: 0$, 15,000$, 20,000$, 25,0008,
30,0008, 35,000%, 40,000$, 45,000$, 50,000%, 60,000%, 75,000%, 100,000%, 125,000,
and 150,000%. In order to measure inequality and segregation, we need to approxi-
mate the income distribution. For each bracket except for the top one, we assume
that all households have income equal to the midpoint of the bracket. The top bin
is unbounded, with an average that potentially varies substantially across CTs, and
our measures will depend on the assumptions made on the distribution of income in
the top bracket. The literature has dealt with this issue by either fitting the param-
eters of an income distribution (usually assumed to be Pareto) or assuming that the
average is a fixed percentage above the amount reported in top coded data (usually

40-50% more).ﬂ These two methods have been subject to several criticsﬂ

1See for example Autor, Katz, and Kearney (2008) and Lemieux (2006).

2Critics of the former approach have argued that if the underlying distribution is far from the
assumed one, a researcher would obtain better results by taking the bin averages. Critics of the
latter have pointed to the fact that the assumption of the average income for the last bin is somewhat
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For our analysis, we design an alternative approach to assign a value to the top
bin, and validate our procedure by comparing the resulting segregation index with
the corresponding index we obtain by using information on average personal income,
that does not require to make arbitrary assumptions. First, the 5-year 2008-2012
ACS provides CT-level Gini indices using households as basic unit of analysis. For
each census tract in 2010, we set the average of the top bin so that the resulting Gini
matches the one reported in the ACSE| Second, we use the time series of individual-
level Gini data at a state level computed by Frank (2009). From there we collect
estimates for the Gini index for all the states in 1990 and 2010 and calculate the
percentage change. Assuming that the state trends for individual-level Gini are
mirrored by the corresponding CT trends for household-level Gini, we set the average
income in the top bin so that the percentage change in the Gini index is equal to the
one in Frank (2009)[]

To validate our procedure further, in Figure we show the correlation between

segregation in 1990 and 2010, respectively, using the household income distribution

arbitrary. Different methods to deal with binned income data have been reviewed by Von Hippel
et al. (2014).

3Note that in 3609 out of 98032 CTs (3.7%) there is no value that allows us to exactly match the
Gini reported in the ACS. This might be due to measurement errors or the approximation that all
the households earn the average of the income braket. In this case, our algorithm diverges, either
assigning values that are too low (i.e., smaller than 150,000$ which is the lower bound of the top
bin) or too high (i.e., bigger than 1,000,000$). When this happens we assign to the CTs in question
a default value of 200,000$ which is in line with the 1.4-rule. We experimented with different default
values and the main results are robust. Another 908 CTs (or 0.9%) appear in the income data but
not in the Gini data. In that case, we try to match the 2010 national Gini (0.48).

4We are not able to match 20,966 (or 21%) of the 1990 CTs with the 2010 data. In this case, we
assume that their Gini is the same as the national one in 1990 (0.43). As we did in 2010, when
the algorithm diverges or estimates an implausible value, we assign to the top bin a default value
of 200,0008.
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approximated using the procedure described above, and the same measure computed
using average personal income at the CT level, which does not require to make
arbitrary assumptions on the distribution of income within brackets. The correlation
between the two variables is equal to 90% in 1990 and 91% in 2010.

C.1.1.2. Other data sources.

Distribution of residents and workers by occupation. The distribution of residents
by occupation at the CT level is constructed as follows. First, from the NHGIS we
obtain information on the CT-level distribution of residents according to a coarse
definition of occupations, comprising 13 occupations in 1990 and 25 occupations in
2010. Then, using the IPUMS, we construct a CZ-specific crosswalk that maps the
coarse definition of occupation into the fine one (386 occupations in 1990 and 454 in
2010). To this end, we exploit the CZ-specific frequency of each fine occupation code
in each coarse category. Occupations are then categorized in two classes: knowledge
intensive and non-knowledge intensive. These two categories are defined accord-
ing to Florida (2017) definition of creative class: “The creative class is made up
of workers in occupations spanning computer science and mathematics; architecture
and engineering, the life, physical, and social sciences; the arts, design, music, en-
tertainment, sports, and media; management, business, and finance; and law, health
care, education, and training.” (p. 217)H

We assign workers to workplaces using the National Establishment Time Series

(NETS). This data set contains information about employment for the universe of

5The precise list of occupations that fall into the knowledge intensive category for 1990 and 2010
is available upon request.
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establishments between 1990 and 2010, as well as their location and NAICS code.
The latitude and longitude is provided at 5 geographical levels (namely block face,
block group, census tract centroid, ZIP code centroid or street level). We allocate
workers to each census tract according to the following procedure. First, we assign
to a census tract those establishments whose geographical coordinates are provided
at a block face, block group or census tract centroid levelﬂ Second, we assign the
workers of each establishment geo-located at ZIP code level based on the area of the
census tracts it contains[] We discard all those establishments whose coordinates are
missing or are at a street 1evel.E| This gives us an estimate of workers per NAICS at
a census tract level.

Since the NETS is a relatively new data set in the literature and there might be
some concerns related to its validity, before assigning each NAICS to a distribution
of occupations, we compare our employment estimates with the distribution of work-
ers obtained from the ZIP Code Business Patterns (ZBP) provided by the Census
Bureau. We first aggregate the employment data obtained from the NETS data at
a ZIP code level and we then check whether they systematically differ in the two
data sets. Note that we do expect them to somewhat differ for various reasons. For
example, the ZBP does not consider workers that are employed by the public sec-

tor. Therefore, the number of workers in ZIP codes that contain public universities

67,573,637 establishments were assigned this way in 1990; 28,111,455 in 2010.

"For example, if a certain ZIP code cotains two census tracts that cover 40% and 60% of its area,
respectively, we assign 40% of the employment of an establishment assigned to that ZIP code to
the first census tract and 60% to the second one. In 1990, 3,002,490 establishments were assigned
this way; 2,457,796 in 2010.

8156,185 establishments were discarded in 1990; 332,091 in 2010.
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or government buildings is likely to be significantly lower in the ZBPH Figure
shows the correlation between the workers estimated using the ZBP (x-axis) and the
NETS (y-axis) in 1994 (left panel) and 2010 (right panel)["| As we expected, the
NETS systematically reports more workers than the ZBP, although the two measures
are very close. Interestingly and in line with our prior expectations, the difference
between the two employment estimates is highest in ZIP codes that contain pub-
lic universities or government buildings. For example, the three largest differences
in 1994 come from ZIP codes 90012, 43215 and 77002 (92,662 vs. 20,667; 159,815
vs. 80,413; and 159,847 vs. 77,565, respectively). ZIP code 90012 contains the Los
Angeles City Hall as well as other government buildings (e.g., the California Depart-
ment of Transportation’s offices), the Ohio Statehouse is located in ZIP code 43215,
and ZIP code 77002 contains the Houston City Administration. In 1994 the NETS
reports an estimate of 16,336 workers for ZIP code 94720 (UC Berkeley), whereas
the ZBP of only 1,028.

Finally, we use the Occupational Employment Statistics (OES) provided by the
Bureau of Labor Statistics (BLS) to get an estimate of the occupational distribution
of workers in each census tract. The OES reports the percentage of workers active

in a certain occupation for each NAICS (SIC90 for 1990) CodeH Similarly to what

9Some other NAICS codes, as for example agriculture, are excluded from the ZBP
and the sampling frame differs in the two data sets. For more details, see
http://www.exceptionalgrowth.org/downloads/NETSvsBLS_DataCollectionDifferences.pdf

10We used 1994 instead of 1990, since this is the first year for which the ZIP Code Business Patterns
was made available.

HNote that since in the 90s only certain industry codes were reported in different years, we built
the crosswalk for 1990 using OES data from 1990 to 1993. Also, since the data are provided for
SIC (instead of NAICS) codes, we first build a crosswalk from NAICS to SIC and we then use the
appropriate distributions reported in the OES.
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we did for the residents, the occupations are then categorized in the two classes
according to their knowledge intensity.

Rent. Housing rent at the CT level is computed as the average rent for a one
bedroom apartment. The NHGIS provides rent data in brackets, as numer of apart-
ments leased for less than $200, $300, $500, $750, $1,000 and for more than $1,000.
We assign to all the apartments in each bin except for the top one the midpoint
value of the bracket. For the top bin, we set it to $1,500 in 1990 and $2,250 in 2010,
assuming an approximate growth of rent in the top bin of 2% per year.

Data on rent are not available for 6,535 C'T's out of 61,258 in 1990, and for 12,862
CTs out of 74,001 in 2010. To complete the dataset, we extrapolate the missing values
by running a regression of log average rent on log income, a third-degree polynomial
of density and log median house prices, and applying the estimated coefficients to
the observations with missing rent. This reduces the number of missing observations
to 1,874 in 1990 and 1,993 in 2010. All the missing observations are concentrated in
low population CTs.

Commuting time and flows. Commuting flows are collected from the Longitudinal
Employer-Household Dynamics (LEHD) dataset.H. The LEHD collects data about
bilateral commuting flows from and to each Census Block starting from QOOZ.H These
data are used to estimate the commuting flows/commuting times semi-elasticities

using the gravity equation ([1.22) obtained from the structural model. Since we

2nttps:/ /lehd.ces.census.gov/
13See https://lehd.ces.census.gov/data,/lodes/LODES7/LODESTechDoc7.2.pdf for more details.
Note that some years are missing for some states.
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assume in our model that the semi-elasticities of commuting are stable over the
period 1990-2010 and given the data availability, we collect commuting flows for
2010 for all the states (with the exception of Massachusetts for which data are only
available from 2011 onward). Data at a block level are then aggregated to obtain
commuting flows at our preferred level of geographical aggregation (i.e., 1990 CTs).

Commuting times between each pair of CTs are calculated using driving times
between the centroids of each Census Tract. Because of the high number of possible
combinations we were unable to use commercial routing services (e.g., Google Maps)
and we relied on the Open Source Routing Machine (OSRM).E The advantage of
using the OSRM is that it is possible to run it locally. This allows us to send
queries without limits and in parallel. In particular, it was possible to collect data
on commuting times for each pair of neighborhoods withing each city (for a total of
32.4 million pairs) in just few hours. The disadvantage is that the OSRM does not
contain any data on traffic (and in particular traffic during rush hours) which might

underestimate the actual commuting times/costs faced by workersﬁ

C.1.2. Derivations

C.1.2.1. Derivation of (1.9) and ([1.12)). The probability that an agent of type

x commutes from neighborhood i to neighborhood j can be derived as follows:

Yhttp: / /project-osrm.org/

5Note that, because of the lack of traffic data, commuting from A to B always takes the same time
as commuting from B to A. The commuting matrices are therefore symmetric which reduces the
number of queries necessary to populate them to 16.2 million.
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The probability that an agent of type x commutes to neighborhood j, conditional

on living in neighborhood j, can be derived as follows:

x x x
Tri]"i =P (uijo = m]g}‘ia\:«){(]} uimo)

ee z \¢, —¢
= / eu =t (sh)° e (5) v p (u > max ufmo) du
0

meS\{j}
= [ ) e Bl
0
0

(w?/dij)" |
S (i, o)

meS

C.1.3. Details on the Structural Estimation

We estimate the structural parameters of the model using the moment conditions

described in (|1.28). In particular, we need to estimate the parameter set:

p= {pna Pk, 5k7 Wnny Wnk, Wkn, Wk, )\kn7 )\kka 9}

given the data matrix:

X={R W, Q K, 1}

as well as the parameters {«a, 3, v., k}.



227

To do this, we use a N-step GMM approach, where the loss function is given by:
L=m(X,p) Wm(X, p)

wherem (X, p) is the value of the moment condition given the data matrix X and
parameters p, whereas W is a weight matrix which is updated at each step. In the
first step, we set W equal to the identity matrix and estimate the parameters p that

minimize L. Formally,
pfirst = argn;inm(X, p) m(X7 p) .

The parameters estimated in the first step are used to estimate the optimal
weighting matrix. The optimal weighting matrix, W, is the White (1980) het-

eroskedasticity consistent matrix of standard errors:

/

W =m (X, pfimt) m (Xv pfirst) :

The process is repeated until convergence.

C.1.4. Recursion to Find Equilibrium After Shocks

We define the share of land commercially used by the firm of type x in neighborhood

J as

<R
I
G
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where L; is the total amount of floor space available for (commercial or residential)

construction in neighborhood j, that we take as exogenous.

. . 0 0
Given starting values ¢, w?", 67

. (d”(q )(1 B)) E(B?”w;))s
ij = ZZ( (1 B)) E(BZwlz,O)g
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x,1 aY®
(7) wj™ = ngf
1 _ (I—a)Y"+(1-B)v; RY
(8) ¢ = Z L
ze{k,n}
zl _ (1—a)Y®
9) 6 = Sl
(10) Af = aj
(1) B =
We iterate until |¢) — ¢}|, [w}” — w$'| and |67° — 65| are below 1075 for all 4, j.

Otherwise, update the starting values according to:
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¢ =03q +0.7¢
wi? = 03w +0.7w!"

07 = 03607 +0.767°

C.1.5. Model-Generated Instrument for the Gravity Equation

In Section we show that the equilibrium conditions of the model yield a gravity
equation that can be used to estimate the semi-elasticity of commuting flows to
commuting times for each city in our sample. The gravity equation has the following

form:
log (755) = Vi + (j + veTij + 14

where ¢; = —¢ (1 — 3) ¢; + £B;. Since, B; is not directly observable it is not possible
to use this structural identity to estimate €. In particular, if we were trying to
regress the fixed effects on the observed rents, B; would be part of the error term
and, since residential amenities also affect rents, the estimate of € would be biased by
construction. In a similar setup, Allen et al. (2017) suggest it should be possible to
use the rents obtained through a model in which residential amenities are exogenous
and equalized across neighborhoods as instrument for the observed rents. The rents
estimated throught this procedure would be uncorrelated with B; by construction

and, if correlated with the actual rents, would constitute a valid instrument.
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The 2SLS procedure

i =74+ &

g = oq"" + x;

gives us an unbiased estimate of v = —e (1 — ) for each city ¢, and since the value
of 3 is known, from there it is possible to obtain an unbiased estimate of .. Being
the shape parameter of a Frechet distribution, €, needs to be strictly greater than
1.@ The point estimates we obtain through these procedure are bigger than one
in about 80% of cases, although values bigger than ones are included in the 0.95
confidence interval in 97% of commuting zones. The left panel of Figure shows
the distribution of €, obtained through the 2SLS procedure after discarding the top
and bottom 5% of observations. Although the distribution is clearly skewed towards
the right, it is possible to see that we obtain an estimate smaller than 1 for a non-
negligible share of commuting zones in our sample. The right panel of Figure
shows the distribution of all the epsilons greater than 1. The majority of them
(95%) is included in an interval between 1.08 and 13.06, with an average of 6.52
(weighted average: 6.00). This is consistent with the estimates obtained by Eaton
and Kortum (2002) in the context of a gravity trade model. Their estimations of the

shape parameter range from 3.60 to 12.86.

16The expected value of a Frechet distribution with shape parameters between 0 and 1 is infinity.
This is a problem in our setup, since the expected utility for each agent needs to be equalized across
cities.
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We now calculate the value of k. implied by our estimates of v, and e. and see
how it compares with our calibrated value of 0.01. For this exercise, we only consider
commuting zones with €. > 1. The left panel of Figure shows the unweighted
distribution of k. for the selected sample of commuting zones. All the values are
contained in an interval between 0 and 0.048 with an average of 0.01 and a median
of 0.007. Similarly, the right panel shows the same distribution weighted by the
number of people in each city. The weighted mean and median are very close to the

previous values (0.01 and 0.008, respectively).

C.2. Appendix to Chapter 2

C.2.1. C-Score: Details and Example

The c-score of the class pair (A, B) is calculated according to the following algo-

rithm {7

(1) The frequency of the citation pair (A, B) in the dataset is computed. To
avoid that our results are disproportionately driven by patents that give
a large number of citations, we weight every occurrence by the number of
possible pair combinations in a certain patent. Mathematically,

Cn—1 Ch

1
E —]l{cm:A, =BV cm=B,c=A}
n=1 m=1 l=m+1 Cn

1 N
FREQops (A, B) = >

2

7the conventionality score we also use foreign patents.
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where N is the total number of patents in the dataset, C), is the total number
of citations in patent n, ¢ and ¢; are the k-th and [-th citation of patent n,

respectively. It is easy to see that FREQogs (A, B) is a symmetric function.
(2) The theoretical frequency of the citation pair (A, B) is computed. This is
the frequency with which one would expect (A, B) to occur if the number
of citations from and to a certain class were to be respected. We weight the

contribution of each patent by its total number of citations given. Formally,

g

H N 1 Cy M ep=a 1 Cyg Yep=8 )
P32 (R Syem, SO0 N2 ) (3 Tyer, S0 5L i A2

FREQRAND (A, B) =
£y % (s Sper, o0 Hegptt)’ if A=
where H is the total number of classes, P}, is the set of patents of class h,
Cy, the number of citations of patent g patent, and ¢ is the k-th citation
of patent g. The first term in parenthesis in the first expression is the
(weighted) empirical probability that a patent of class i is cited in class h
if we took a citation at random from the pool of all the citations of class
h. The second term is the (weighted) empirical probability that a patent
of class j is cited in class h if we took a citation at random from the pool
of all the citations of class h. The multiplication of these two terms is
therefore the probability of observing a citation pair (A, B) if two citations
were taken at random from the pool keeping the network of citations from
class to class constant. This expression is multiplied by two for symmetry
reasons. Finally, these probabilities are weighted by the frequency of each

class in the universe of patents.
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The second expression implements the same idea in the case A = B.

(3) The c-score of each citation pair is calculated as follows:

_ FREQogs (4, B)
¢(AB) = FREQrann (A, B)

when the c-score is smaller than 1, the pair (A, B) is observed in the data
less often than what one would expect by taking the some paper in a pseudo-
random fashion. We consider this a sign of novelty. On the contrary, when
the c-score is bigger than 1, the pair is observed more frequently than the

pseudo-random distribution. We consider this a sign of commonality.

(4) Each of the " | different citation pairs of each patent is assigned its
2

corresponding c-score. This gives the distribution of c-scores for each patent.

The following is an example of how a patent is assigned a distribution of c-scores.
Consider a patent that cites 6 patents of 3 different classes (C'PUx3, MONITORX2,

SHOESx1):
{CPU, CPU, CPU, MONITOR, MONITOR, SHOES} .

Take all pairwise combinations of citations and assign each of these combinations

the corresponding c-score:

(CPU, CPU)x3 (MON, MON)x1 (CPU, MON)x6 (CPU, SH)x3 (SH, MON) x2
=1.4 =1.25 =1.1 =0.9 =0.75
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This generates a distribution of c-score for this specific patent (Figure |A.29)
from which we can extract the 10th percentile (tail-conventionality) and its median

(core-conventionality).

C.2.2. Proofs and Derivations

C.2.2.1. Proof of Proposition [2.3.1} We start with the maximization problem
of the developer that sets up a company town. We conjecture and verify at the
end of the proof that company towns are fully specialized. We focus on the case of
a S-specialized location, as the one for D-specialized sites is identical. Letting ¢
denote the Lagrange multiplier on the developer’s participation constraint, the first

order conditions of her problem can be expressed as:
0° = Ns

C

Plugging this solution in the profit function and imposing the zero profit condition

yields:

c 3o’ (67D i T=a(67D)
© g =[] A

As for the case of a generic town, let S and 6% denote the Lagrange multipliers

on the participation constraints on innovators of type & and D respectively. The
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first order conditions for the developer’s maximization problem yield:

0§ = N§  05=Ng
N§\* NE\*
foo(p) Ao ()

while symmetry implies that US = U5, which gives:

Ng 1_¢_ 1—}-7‘3
N§ C1l+7p

It is easy to see that this problem admits a unique solution in which N§ = N§ =

NG

5 and:

$=¢+1 15=9¢+1

Plugging this solution in the profit function and imposing the zero profit condition

gives:

2-(#+1) (1 1 @) o =HED [} ] Tt
G _ i
(C.2) N™ = { T o } { } :

W

Plugging the expressions for N and N¢ in the utility of the inventor and im-

posing U% = U allows us to write:

[1*a(¢>+1>][1f)w(¢+2)]

l1-—a a(l—a
o

(C 3) W 9—(¢+1) (2 + ¢) (CG)¢+1 . é (CG) Vl’“”’“)

(1+6)(CO) = L (€)' F

where

CG

11—« 11—«

{2—(%1) (1+ o) a] —a(672) - { b ]1a?¢+1)
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Plugging 1) into 1) and 1} and using the fact that V = %I{, yields

(2.18)), where ' and F© are constants that only depend on the primitives of the
model. In particular, define:

1—a(e+D)][1—a(é+2)]

- a(l—a)

2—(q5+1) (2 + ¢) (CG)¢+1 . é (CG) a

o o
(L+9¢)(CO)° =1 (CO) =

Then, the expressions for F¢ and F“ can be written as:
FG — oG (CW)_% FC — ¢ (CW)—% '

Finally, we need to show that, in equilibrium, generic cities are more denseley

populated that company towns. This is true if and only if:

a2
C¢ > ¢ (CW) —a(+D)]I—al6+1)]

Writing down the expression explicitly, reveals that this is always the case as long
as ¢ > 0.

It is left to show that company towns are fully specialized. This follows directly
from the fact that in a company town, for a given city population, the value of
innovation per person is maximized by maximizing intra-field spillovers, i.e. by

setting N* = Nk or N¥ = NE.OJ
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C.2.2.2. Proof of Proposition [2.3.2, In equilibrium, the rate of conventional (¢)

and unconventional (¢) innovation can be written, respectively, as:
G\ 2
p+1 N
o=l v = el ()

Using the equilibrium expressions for N and N¢, the ratio k = % can be written

as.

C o\ (6+1)
e k)
¢ e - (o)

) (@+1) —(p+1)

(5
+2) (17)(¢>+2) (¢+2)

Solving this expression to eliminate x from both sides, we can derive the equilibrium

relative mass of generic and company towns:

(C.4) = _—_Ck,

(7o)

K—_ N J
where ™ = — v (5P

The labor market clearing condition for skilled labor is:
IK6| NC + |KO| NC = 1.

Using and to substitute for ‘ICG’, N¢ and N¢, we obtain:

1-b
b

K.

K9 = |C* (FO) +

The total amount of unskilled labor used in the production of housing in generic
1
towns is equal to ‘ICG’ (N G) > and the total amount of unskilled labor used in the

1
production of housing in company towns is equal to ’ICC| (N C) . The total amount
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1
of unskilled labor used in the production of intermediate variaties is Ly = x (g) =

with o = (#p!7#. The labor market clearing condition for unskilled labor is:
1
G| (NG & C| (NC) & AT
(C.5) K] (NE) = + (KO (ND) ™+ = = L.

We have showed that all the terms in (C.5]), with the exception of w, can be

written as function of the relative supply of conventional to unconventional ideas, .
To obtain an expression for w, combine ([2.16) with (C.3)):

1-a(¢+1)
el

1—a(é+1) (1-8)
oW ( b ) (1-b) a’mlaw:na“] |

w= 1-b

which again illustrates that w can be written as a function of x only. We can then
write the left-hand-side of (C.5]) as a function of x only, and, in particular, it is easy

to show that k=& can be factored out from the expression, yielding:
11—«
ko F=1,

where F' is the sum of the constant terms in the addends of the left-hand-side of

(C.5). This leads to the unique solution for x:

F\ Toa

Once the value of k is obtained, recovering the equilibrium value of the remaining

variables is trivial. O
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C.2.2.3. Proof of Proposition . Once we factor out the term /4;_177&, the

labor market clearing condition for unskilled labor can be rewritten as:

l—a 1
Lo 1-b\ = 1—b\= 1—p\ @D
Lk« =B (T) + By <T) + Bs (T) )

where B, By and Bs only depend on other parameters. From this expression, it is
immediate that the relative supply of conventional to unconventional innovation, k,
is a decreasing function of the bargaining weight of the unconventional innovator, b.

t
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