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Abstract

The Geography, Determinants, and Effects of Innovation

Enrico Berkes

Endogenous growth theory has long recognized innovation as one of the key dri-

vers of growth. Understanding what factors encourage or discourage innovative ac-

tivities and how, in turn, these affect our communities is therefore crucial to inspire

policies that promote inclusive growth. This dissertation tries to broaden our com-

prehension of the innovative process and its consequences. The first chapter shows

that knowledge intensive activities cause an increase in income segregation within

U.S. cities and proposes a framework that can be used to study how to mitigate

this effect. In the second chapter, we explore how population density is related to

the kind of innovation produced in a certain area. More densely populated places

tend to promote the creation of unconventional ideas. Finally, the third chapter

describes a newly developed data set of geographically referenced historical patents

that will allow researchers to get a long run perspective and better understanding of

the innovation process as a whole.
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Preface

The first chapter of this dissertation, which is joint work with Ruben Gaetani,

analyzes the effect of the rise of knowledge-based activities on spatial inequality

within U.S. cities, exploiting the network of patent citations to instrument for local

trends in innovation. We find that innovation intensity is responsible for 20% of the

overall increase in urban segregation between 1990 and 2010. This effect is mainly

driven by the clustering of employment and residence of workers in knowledge-based

occupations. We develop and estimate a spatial equilibrium model to quantify the

contribution of productivity and residential externalities in explaining the observed

patterns. Endogenous amenities account for two thirds of the overall effect. We

illustrate the relevance of the model for policy analysis by studying the impact of

four proposed projects for Amazon’s HQ2 on the structure of Chicago.

In the second chapter, we use a newly assembled dataset of U.S. patents to show

that innovation activities are far from being limited to densely populated urban

areas, but inventions based on atypical combinations of knowledge are indeed more

prevalent in high-density cities. To interpret this relation, we propose that informal

interactions in densely populated areas help knowledge flows between distant fields,

but are less relevant for flows between technologically close fields. We build a model

of innovation in a spatial economy that endogenously generates the pattern observed
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in the data: specialized clusters emerge in low-density areas, whereas high-density

cities diversify and produce unconventional ideas.

In the last chapter, I describe a newly assembled data set of historical patents.

Patents are commonly used as the main source of data for empirical studies related

to innovation and technological change. The large amount of information about the

underlying innovative process contained in each patent has certainly contributed to

their popularity. Nevertheless, due to the lack of reliable data, historical analysis has

focused on relatively small time frames or on specific dimensions of patents data. The

goal of this paper is to fill this gap. I build and release a comprehensive time series of

the universe of U.S. patents. The data set contains all the variables commonly used

in the literature and, importantly, geolocates every inventor and assignee reported

in each grant over the period 1836-2016.
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CHAPTER 1

Income Segregation and Rise of the Knowledge Economy

with Ruben Gaetani

1.1. Introduction

The knowledge economy is a set of economic activities relying on non-manual and

non-routine technical skills, scientific knowledge, and intellectual creativity. Over the

past 40 years, these activities have become the main engine of economic prosperity

in advanced countries. Since 1975, the share of value added generated by knowledge-

intensive sectors in the United States has increased by almost 15 percentage points,

and the number of patents per capita issued by the United States Patent and Trade-

mark Office (USPTO) has doubled (Figure A.1). The same trend is observed when

considering several other measures of knowledge intensity, including educational at-

tainment, number of scientific publications, ratio of intangibles to assets, and share

of workers employed in R&D activities and creative sectors. The suggested expla-

nations for this structural shift include globalization, automation of routine jobs,

and the steady increase in the burden of knowledge that requires an ever-increasing

number of R&D workers to sustain a constant productivity growth (Jones, 2009).

This trend is believed to be associated with major social and cultural changes.

Individuals with different education levels, abilities, and social connections have been



16

differentially exposed to the opportunities offered by this new economic landscape

and, as a result, have experienced diverging economic fortunes. Moretti (2012) ar-

gues that the geographical dimension is the most striking aspect of this divergence.

The rise of the creative class (Florida, 2002) has allowed and induced waves of gen-

trification and re-urbanization of metropolitan cores, as well as the development of

specialized innovation clusters in suburban areas. The reorganization of production

and consumption activities within cities, driven by supply factors (e.g., thick labor

markets and knowledge spillovers) as well as demand factors (e.g., preferences for lo-

cal amenities), appears to be correlated with the emergence of intellectually creative

jobs in many fast-growing local economies (Florida and Mellander, 2015).

One of the most evident signs of this reorganization of the urban structure is the

sharp increase in income segregation in U.S. cities. Our preferred measure of income

segregation, the cross Census tracts (CTs) within commuting zone (CZ) Gini index,

increased by 3 Gini points over the period 1990-2010, which corresponds to 70% of

the increase in overall inequality over the same period of time (Table B.1). However,

the extent to which the rise in income segregation in U.S. metropolitan areas reflects

a causal effect of the expansion in knowledge-intensive activities remains an open

question. Theoretically, there are several reasons to believe that such effect exists.

First, innovation and other creative jobs crucially depend on knowledge transmission,

which has been shown to be strongly localized (e.g., Jaffe et al., 1993). An increase

in the returns to new ideas makes clustering in space with individuals who offer

high learning opportunities more convenient for creative people. Second, workers in
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the knowledge economy tend to be disproportionately sensitive to urban and social

dimension, such as quality of schooling and social relationships, which are often

strictly local in nature.

Uncovering the fundamental causes of the increase in urban segregation is of great

importance, as segregation has been shown to have a first-order impact on several

policy relevant outcomes, including schooling (Baum-Snow and Lutz, 2011), health

(Acevedo-Garcia et al., 2003; Alexander and Currie, 2017), and inter-generational

mobility (Chetty and Hendren, 2016). However, inferring the direct impact of an

expansion in creative jobs is problematic because of potential reverse causation and

the presence of unobservable factors affecting, at the same time, the explanatory and

dependent variables. Examples of these factors include financial or housing shocks,

that affect, at the same time, the urban environment and the ability of a geographical

area to develop innovation-based activities.

In this study, we address this challenge by adopting an instrumental variable ap-

proach, that exploits exogenous variation in knowledge intensity across U.S. cities.

Our analysis suggests that innovation intensity is responsible for 20% of the aggre-

gate trend in income segregation. The analysis further reveals that the effect we

measure can be explained only in part by diverging income paths of initially segre-

gated neighborhoods. A major part of the effect is, in fact, explained by an increase

in the geographical sorting of households along the income dimension.

To measure (and instrument for) the knowledge intensity of the local economy,

we use a newly assembled dataset of geo-referenced USPTO patents in the years
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1975–2014. By comparing citation patterns in the early period (1975–1994) with the

ones in the late period (1995–2014), we document the existence of a stable network

of knowledge diffusion across geographical areas and technological classes. This per-

sistence suggests that knowledge links established in the past are broadly orthogonal

to changes in the economic environment. Using the network in combination with

actual patenting in the period 1995–2004, we build a credible instrument for current

innovative activities at the local level. We run an extensive set of validation exercises

to address the remaining endogeneity concerns.

Our two-stage least squares (2SLS) results imply that a one standard deviation

increase in patenting between 1990 and 2010 leads to an increase in the measured

income segregation of 1.19 Gini points, equal to 39% of the overall increase in segre-

gation over the considered period. Educational and occupational segregation, which

is the extent to which residents of different educational backgrounds and occupations

sort themselves in the city, also surges. The estimated effect is stronger for high-

learning sectors (including IT and electronics) and even negative for low-learning

ones, such as textiles. The IV analysis reveals that the bias in the OLS estimates

is negative. This bias suggests that unobserved shocks affecting, at the same time,

segregation and innovation tend to operate on the two variables in opposite direc-

tions, overall. Financial shocks that generate widespread housing and neighborhood

dismantlement are possible examples.

These results can be explained as the outcome of two (related but) inherently dif-

ferent phenomena. On the one hand, an increase in inequality in a metropolitan area
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that is perfectly segregated induces a one-to-one increase in measured segregation

(we will refer to this case as the inequality effect). On the other hand, the measured

segregation increases even in the absence of any change in inequality when people

move closer to other people with a similar level of income (we will refer to this second

case as the sorting effect). The analysis strongly supports the sorting effect as the

primary cause of the increase in urban segregation resulting from the expansion of

innovation activities, with the inequality effect only explaining a limited portion of

it.

In the second part of the paper, we explore two possible mechanisms. We ar-

gue that innovation shocks increase the returns from local learning externalities and

generate incentives for firms to cluster in space to benefit from them. As a result,

high-education, high-salary workers move close to these areas to reduce commuting

costs, thereby affecting residential segregation. We provide evidence that employ-

ment in knowledge-intensive occupations becomes more geographically concentrated

in cities experiencing larger innovation shocks. We also propose that the endogenous

response of residential amenities plays an important role in amplifying this effect.

Consistent with this interpretation, we find that the impact is significantly stronger

in cities whose variation in residential amenities is not anchored to persistent or

natural amenities. The magnitudes of the estimated effects suggest that localized

knowledge spillovers and residential amenities play an important role in linking in-

novative activities to income segregation.
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To quantitatively disentangle the relative importance of these two forces in de-

termining the trends in segregation that we observe in the data, we build a gen-

eral equilibrium model of the city structure in the spirit of Ahlfeldt et al. (2015) –

ARSW hereafter – that embeds endogenous amenities and productivities. We extend

the model in ARSW by introducing heterogeneity in workers’ occupations: workers

in creative occupations enjoy local learning externalities that are directly affected

by a city-wide knowledge shock, whereas workers in non-creative occupations have

stagnant productivity that is unaffected by the surrounding economic activity. Both

types of workers perceive local residential externalities that are determined by the

density and background of their neighbors.

To estimate the strength of local externalities, we rely on the exogenous cross-city

variation in knowledge intensity inferred in the empirical analysis. To this end, we

impose that residual factors affecting the spatial distribution of economic activity

do not vary systematically with the predicted patenting growth. In particular, our

identifying assumption is that the within-city average of the change in the exogenous

components of productivity and residential amenities is independent of the value of

the knowledge shock. The structural estimation reveals the existence of steep, local-

ized residential externalities for agents in creative sectors. This finding confirms that

the endogenous response of residential amenities in neighborhoods where knowledge

workers concentrate is disproportionately valued by knowledge workers themselves,

and it operates as a powerful amplification channel in driving the increase in seg-

regation. This asymmetry accelerates the effect of an initial shock to geographical
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sorting in the city. The model suggests that about two thirds of the overall impact

on urban segregation can be explained through the endogenous response of localized,

occupation-specific residential amenities.

We illustrate the relevance of the model for policy analysis by running four coun-

terfactual exercises that analyze the impact of four Chicago-based bids for Ama-

zon’s new headquarters. Our simulations suggest that although some high-knowledge

workers relocate to the high-amenity neighborhoods by the lake in all scenarios, the

location of the campus has a sizable effect on the local development of the neighbor-

hoods around, as well as on the overall increase in income segregation. The impact

on segregation would be the smallest when the campus is located in the southern part

of the city, as it would attract high-salary workers where low-income neighborhoods

currently prevail.

Related Literature. This study contributes to the literature on the causes of in-

come segregation in cities in advanced countries in general, and the United States, in

particular. Jargowsky (1996) documents a steady increase in economic segregation in

U.S. metropolitan areas since 1970, and confronts this trend with the slow decline in

racial segregation. In more recent research, Reardon and Bischoff (2016) document

that the trend in residential segregation that started in the 1980s continued, to a

lesser extent, until very recently. They also show that residential segregation in cities

is correlated with the increase in income inequality. Income inequality at the city

level has been intensively analyzed by Baum-Snow and Pavan (2013), and Baum-

Snow, Freeman and Pavan (2016), who document a positive relationship between
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city size and an increase in the dispersion of earnings; they interpret this relation

as evidence of a skill-biased change in agglomeration economies. Diamond (2016)

studies the geographical sorting of college graduates across U.S. cities between 1980

and 2010, whereas the current study focuses on the determinants of income and

occupational sorting within cities.

Income segregation has been widely studied, particularly in relation to the role

that neighborhood effects play in social and economic outcomes, such as education,

health, and inter-generational mobility. Education and segregation have a strong

two-way link, especially in countries (like the United States) where public spending

in schooling is very localized. For example, Baum-Snow and Lutz (2011) analyze the

response of white families in schooling enrollment (that took the form of migration

to the suburbs and private school enrollment) following the racial desegregation of

U.S. metropolitan areas in the 1960s and 1970s. Chetty and Hendren (2016) use tax

records in a quasi-experimental setting to measure the strength of neighborhood ef-

fects on children and their ability to explain differences in inter-generational mobility

across areas.

This study examines the distributional effects of innovation, but focuses specifi-

cally on the process of knowledge creation. A similar approach is adopted by Aghion

et al. (2015), who use cross-state variation and find that changes in innovation in-

tensity can explain the rise in top income inequality in the United States. Florida

and Mellander (2015) conduct a comprehensive study of urban segregation in U.S.

metro areas and link this increase to the emergence of the creative class and the



23

expansion of jobs in the high-technology industry. In the present study, we provide

causal evidence that supports their interpretation.

On the theory side, we augment the model developed by Ahlfeldt et al. (2015)

by allowing for agents of different backgrounds (specifically workers in creative and

non-creative occupations). While their strategy uses cross-neighborhood exogenous

variation in the concentration of economic activity given by Berlin’s division and

reunification, our structural estimation relies on exogenous cross-city variation in

the intensity of knowledge spillovers for the innovative sector.

The rest of the paper is organized as follows. Section 1.2 introduces the data

and the measures of inequality, segregation, and knowledge intensity. Section 1.3

describes the empirical strategy and results. Section 1.4 introduces the model setting,

discusses the structural estimation, and presents the quantitative results. Section 1.5

concludes.

1.2. Data and Measurement

We combine data on innovation, captured by patenting activity, with social and

economic indicators from the Census and the American Community Survey (ACS).

For the purposes of our empirical analysis, we interpret Commuting Zones (CZs) as

cities and Census Tracts (CTs) as neighborhoods (and use the terms interchangeably

throughout the text). CZs are defined with respect to actual commuting flows in

the U.S. and, contrary to MSAs, constitute a complete partition of the country.1

1We use the definition of 2000 Commuting Zones provided by Data.gov.
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Given that our objective is to assess how innovation shocks affect residential and

employment concentration within a local labor market, CZs are the natural unit of

geographical aggregation for our analysis.

We now proceed to describe the data sources and main variables in more details.

1.2.1. Patents data

Our preferred measure of knowledge intensity is patenting within a local labor mar-

ket. Patent data are collected from the United States Patents and Trademark Office

(USPTO). The USPTO has digitized the full text of all the patents issued from 1976

onwards, and made the files available for download. We download and parse all the

files up to March 2015 and construct a new dataset that includes, for each grant,

information on filing and issuing year, technological class,2 forward and backward ci-

tations as well as residence (city and state) of its inventors. Grants are then assigned

to a CZ based on the location of their first inventor. From the publicly available doc-

uments, we identify a total of 5,030,264 patents out of which 2,634,606 are located

in the United States.

1.2.2. Segregation, Inequality and other economic outcomes

Our preferred measures of inequality and segregation in cities are based on the Gini

index which has the advantage of being widely used, and therefore offers a natural

2Although each patent is associated to multiple classes, the USPTO assigns a single main class
to each grant. This main class is available only in the US classification system, although in our
analysis we use the international patent classification. Since each grant is associated with several
IPC classes but only one main USPTO class, we build a many-to-one function that maps every
USPTO class to a single IPC class based on the associations that recur more often.
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reference point for our empirical analysis. Mathematically, the Gini index is defined

as twice the area between the Lorenz curve and the 45-degree line. More precisely,

letting {i}Nczi=1 be the set of basic units (e.g., individuals or households) in a CZ

ordered from the poorest to the richest, the Gini index of city cz is defined as:

(1.1) Ineqcz = 100×

[
1− 2×

Ncz∑
i=1

i∑
i′=1

xi′

xcz

]

where xi is the income of the basic unit i, whereas xcz total city income. Equivalently,

we can construct a measure of income segregation in city cz, defined as inequality

of income across neighborhoods, where each unit in neighborhood ct is assigned the

average income of the neighborhood itself. In particular, letting {ct}Mcz

ct=1 be the set of

neighborhoods in a CZ, ordered from the poorest to the richest, we define segregation

in city cz as:

(1.2) Segrcz = 100×

[
1− 2×

Mcz∑
ct=1

(
Nct

Ncz

ct∑
ct′=1

xct′

xcz

)]

where xct is total neighborhood income and Nct
Ncz

is the population share of neighbor-

hood ct in city cz. In other words, Segrcz measures the variation of income within

a CZ, once the variation within neighborhoods has been removed.3 In the extreme

case in which average income of each neighborhood is the same, our measure takes

3In the implementation of (1.2) we use a piecewise linear, instead of a step function, to approximate
the Lorenz curve. This guarantees that Segrcz is always between zero and one. The empirical results
are robust to using the Theil index, that has the advantage of being decomposable into between
and within components of income dispersion, but it has the disadvantage that its upper bound is
determined by the size of total population. This makes it difficult to use this index to analyze the
evolution of inequality over time.
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value zero. On the other extreme, when households are perfectly sorted across neigh-

borhoods, Segrcz is equal to Ineqcz.

Information on income is provided at the CT level by the National Historical

Geographic Information System (NHGIS).4 The NHGIS assembles data from the

Census and the American Community Survey (ACS) and aggregates them at various

geographical levels. Data at the CT level divide households into 15 income bins.5

To measure inequality and segregation, we need the income distribution (or its ap-

proximation). The problem arises from the fact that the top bin is unbounded, with

an average that potentially varies substantially across CTs. The literature has ap-

proached this issue in different ways, each with its own advantages and limitations.

Appendix C.1.1.1 discusses them and provides a detailed description of the procedure

we use to approximate the income distribution.6

From the NHGIS, we also extract data at the CT level on population, education

and rents. These are used either as controls or in ancillary analyses throughout the

text. The structural estimation of the model requires data on the distribution of resi-

dence and employment by occupation in each CT, average earnings by occupation at

the CZ level, and measures of bilateral commuting times and commuting flows across

4https://www.nhgis.org/.
5The lower bounds of each income bracket are 0$, 10,000$, 15,000$, 20,000$, 25,000$, 30,000$,
35,000$, 40,000$, 45,000$, 50,000$, 60,000$, 75,000$, 100,000$, 125,000$, and 150,000$.
6To validate our procedure further, we compute segregation in (1.2) using income per capita in each
CT provided by the NHGIS, that does not require to make assumptions on the distribution of the
top bin. The correlation between the two variables is 90% in 1990 and 91% in 2010 (see Figure
A.9).
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CTs. The distribution of residence by occupation is obtained by matching informa-

tion from the NHGIS and the Integrated Public Use Microdata Series (IPUMS).7 The

distribution of employment by occupation is gathered from the National Establish-

ment Time Series (NETS). The NETS provides data on employment, geographical

location and industry for the universe of establishments over the period 1990-2015.8

Contrary to the County Business Pattern, this dataset has the advantage of also

including jobs in the public sector. Industry is then mapped into occupations by

using the crosswalks provided by the BLS. Average earnings by occupation in each

CZ are compiled from the IPUMS.

Bilateral commuting times across CTs are taken from the Open Source Rout-

ing Machine (OSRM).9 This routing engine allows us to compute travel time by car

for each pair of coordinates. We collect data on commuting times for each pair of

neighborhoods within each city for a total of 16.2 million pairs.10 Finally, bilat-

eral commuting flows are collected at the Census Block level from the Longitudinal

Employer-Household Dynamics (LEHD) dataset.11. Data at a block level are then

7https://www.ipums.org/
8In particular, the dataset includes about 10 million observations in 1990 and about 30 million
observations in 2010. The vast majority of the establishments can be univocally assigned to a CT.
The establishments for which we can only identify the ZIP code are proportionally distributed to the
corresponding CTs based on their area. We discard the establishment for which the geographical
information is only available at a State level. More details in Appendix C.1.1.2.
9http://project-osrm.org/
10The OSRM can be run locally and has therefore the advantage of not being subject to query limits.
However, real-time data on traffic are not available, as it is the case for more popular services such
as Google Maps. The commuting times collected this way are therefore to be interpreted as lower
bounds.
11https://lehd.ces.census.gov/
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aggregated to obtain commuting flows at our preferred level of geographical aggre-

gation (CTs).

Appendix C.1.1.2 provides summary statistics and further details on the con-

struction the main variables.

1.2.3. Data Timeline

In this paper, we study the long-run impact of local innovation activities on income

segregation and inequality within U.S. cities. For most of the analysis we look at

changes in local labor market outcomes over a 20-year period, specifically, between

1990 and 2010. The structure of the data, schematized in Figure A.2, is especially

suitable for this purpose.

Socio-economic outcomes at the CT level are available every ten years, whereas

patent data cover a 40-year period that can be conveniently divided into two 20-

year samples. The early sample (1976-1995) is used to infer knowledge links across

geographical and technological areas in the U.S. and to measure innovation for the

1990 observation. The late sample (1996-2014) is itself divided into two time peri-

ods. The first decade (1995-2004) is used in conjunction with the knowledge links

previously estimated to calculate the local shocks to innovation used as an instru-

ment. The second decade (2005-2014) is used to measure innovation for the 2010

observation. To avoid our results to be driven by transitory shocks to innovation,

we compute the patenting activity for each data point (1990 and 2010) as ten-year

averages (1985-1994 and 2005-2014, respectively).
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1.3. Empirical Analysis

The main question of this paper is whether CZs that experience an expansion

in innovation and knowledge activities also experience an increase in income seg-

regation, defined as variation of income across neighborhoods within the city. We

first identify a causal nexus between those phenomena and empirically investigate

its features. We then use a quantitative model to infer the relative importance of

economic forces behind our findings as well as some prevailing features of production

and consumption in a knowledge economy.

The empirical model studies the relationship between income segregation at the

city level and the size of local patenting activity:

(1.3) Ycz,t = αt + βcz + γ log(1 + Patentscz,t) + δ Xcz,t + εcz,t

where Ycz is segregation, Xcz a set of controls for city cz, and t ∈ {1990, 2010}.

Our instrument for patenting allows us to generate exogenous variation for the late

sample (t = 2010), while taking patents in the early sample (t = 1990) at their

observed level. This requires us to estimate the model in differences:

(1.4) ∆Ycz = α̃ + γ∆ log(1 + Patentscz) + δ∆Xcz + ε̃cz

and instrument for ∆ log(1 + Patentscz) in the 2SLS analysis. Since we include the

logarithm of population in the set of controls, the results would be identical if patents

per capita are used instead. To avoid having to drop observations with zero patents
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either in 1990 or 2010, we adopt the convention of taking the logarithm of one plus

total patents.12 For robustness, we also estimate (1.4) including the set of controls

at their 1990 level.

1.3.1. Correlations and OLS

Figure A.3 shows the unconditional correlation between the change in income seg-

regation and the growth rate of total patents between 1990 and 2010. The Figure

(like most of the regressions throughout the text) is weighted by total number of

households in the first period (1990). The R2 of the weighted regression is 0.10 and

the coefficient is statistically and economically significant. A one standard deviation

increase in patenting growth is associated with an increase of 31% of one standard

deviation in segregation in the cross-section of CZs.

In Table B.2, we include a set of control variables that might naturally confound

this correlation. First, since the number of CTs changes substantially between 1990

and 2010, there might be the risk that a dimensionality bias in the construction

of our segregation measures leads us to mis-measure the increase in segregation in

cities where the number of CTs has grown more. To account for this possibility, in

column (2) we control for the growth in the number of CTs within the city.13 In

12Since all the regressions are weighted by total population in 1990 and zeros are concentrated in
scarcely populated areas, this strategy yields virtually identical results as alternative strategies used
in the literature (e.g. including dummies for zeros, taking growth rates through midpoint method).
Also note that, since we consider 10 year averages for patenting activity, only 25 commuting zones
have a patenting activity which is equal to 0 either in 1990 or in 2010. The total population of
these is about 208,000 people in 1990 (or 0.08% of the U.S. population).
13It is possible that controlling for the growth rate in the number of CTs is not enough to account
for the potential dimensionality bias in the construction of our segregation measures. To address
this concern, we run a set of simulations in which we reassign CTs to CZs under the constraints



31

columns (3)-(4), we include the growth rate of population and income, respectively.

Local industry composition at the beginning of the sample could be a major con-

founding factor if aggregate shocks at the industry level (notably, trade shocks) had

an impact both on a location’s expansion in knowledge-intensive activities and on

other variables affecting the urban environment. Hence, in column (5) we control

for trade shocks using the measure of exposure to import from China developed by

Autor et al. (2013).14 Finally, the role of the public sector in providing at the same

time local services for residents and financial support to innovation activities may

generate a significant bias. In column (6), we control for the growth rate of local

public spending, provided by the Census at the County level.15 Although some of

the controls attenuate the size, the coefficient for patent growth remains positive,

statistically significant and economically large.16

Table B.13 reports the results for the OLS regressions when the controls are in-

cluded in levels at their 1990 value, instead of growth rates. Results are virtually

unchanged. As shown in Appendix B.16, we uncover a similar pattern when we

consider segregation along an educational or occupational dimension. To measure

that (1) each CZ is assigned the same number of CTs as the original dataset, and (2) each CZ has
approximately the same population as the original dataset. This random assignment experiment
reveals that the pure dimensionality bias is zero for all practical purposes.
14This measure is constructed at the CZ level as: ∆IPWuit =

∑
j
Lijt
Lujt

∆Mucjt

Lit
, where Lit is 1990

employment in CZ i and ∆Mucjt is the change in US import from China in industry j, between
1990 and 2007. Since the authors use 1990 CZs (instead of 2000 CZs), we construct a crosswalk
between the two partitions based on the intersection with the highest population.
15These data are available for download at http://www2.census.gov/pub/outgoing/govs/special60/.
16Data for the last two controls is not available for all the commuting zones in our sample, so that
the number of observations is lower than 703. Data are mainly missing in low populated areas.
We exclude the last two controls in our benchmark specification, and in tables where full controls
are included but not reported. Results change to a negligible extent when these two variables are
included.
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educational segregation, we use a modified version of the Gini index, where individ-

uals are assigned 1 unit of “income” if they have a college degree and 0 otherwise.

As for occupational segregation, we use the classification of individuals into creative

and non-creative occupations, as outlined in Appendix C.1.1, which constitutes the

basis for our structural model in Section 1.4. In this case, residents are assigned

1 unit of “income” if they are employed in a creative occupation, and 0 otherwise.

Both measures display a positive and significant correlation with patenting growth.

1.3.2. Instrumenting for patenting activity

The evidence discussed up to this point must be interpreted with caution. To claim

the existence and identify the strength of a causal relationship, we need to identify

variation in patenting that is orthogonal to unobserved factors that might affect at

the same time the expansion of a knowledge-based economy and urban segregation.

The range of such possible factors is large and the direction of the bias is ex-ante

ambiguous. Examples of unobserved factors include short-run phenomena such as

housing shocks and financial shocks, or long-run trends such as technological obso-

lescence of local industries, that have a direct impact on the urban context, as well

as potentially affecting patenting and other innovative activities. One might also

be worried about inverse causality, with income segregation being the cause, rather

than the consequence, of the emergence of the knowledge economy in U.S. local labor

markets.
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In this section, we propose an instrument for innovation activities at the local

level that can be used to tackle this identification challenge. The strategy we pro-

pose is general and can be applied to other contexts in which channels of knowledge

diffusion are observable and measurable. We use the observed network of patent ci-

tations to infer the existence of persistent diffusion links across technological classes

and geographical areas. Observing a patent that cites another invention reveals the

existence of an underlying link between the technological classes and the geograph-

ical areas of the two grants. The more citations we observe from and to the same

class-CZ pair, the stronger the underlying link. In the reminder of this section, we

provide details on the mathematics and intuition behind the instrument. Section

1.3.4 discusses conditions and evidence for its validity.

1.3.2.1. Construction of the instrument. The idea behind the instrument is

that local patenting is determined, at least partly, by ideas that are generated else-

where in the economy, and that transmit to local innovative activities through chan-

nels of knowledge transmission that are pre-determined, stable over time, and infer-

able from the network of patent citations. In order to be used to draw conclusions on

the causal effect of innovation on segregation and inequality, this instrument must

(1) have predictive power on actual patenting in 2005-2014 and (2) identify variation

in patenting that is uncorrelated (conditional on controls) with unobservable factors

that can affect at the same time innovation and the dependent variable. We exten-

sively discuss the first point in the next sub-section, where we show that the network

of diffusion inferred in the early sample is in fact persistent and can be used to predict
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innovation in the late sample. As for the second point, our identification assumptions

can be summarized in two main points: (1) Innovation shocks that occur in other

geographical areas do not have a direct impact on local outcomes (relative to the

aggregate impact), other than the effect that operates through knowledge diffusion,

and (2) there are not unobservable factors that affect at the same time the ability

to form knowledge links with specific areas in the past and local segregation and

inequality outcomes 20 years later. Section 1.3.4 discusses the conditions for and the

evidence in support of the validity of the instrument.

Formally, we proceed in two steps. In the first step, we use the observed citation

patterns to isolate knowledge links across space, time and the technology spectrum.

For each patent of class µ issued in CZ r at time t−∆, we first calculate the share of

citations that it receives from patents produced in other commuting zones at time t.

We then sum up over the time period that goes from 1985 to 1994 and, to account

for size effects in the citations distribution, we divide by the total number of patents

of class µ issued in CZ r at time t−∆. Mathematically, we calculate a coefficient of

diffusion as:

(1.5) d75−94
r,s,µ,ν,∆ =



1994∑
t=1985

∑
p∈(S,N ,T )

sp→(r,µ,t−∆)

1994∑
t=1985

∑
q

1{q∈(r,µ,t−∆)}

r 6= s

0 r = s

for ∆ ∈ {1, . . . , 10}
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where sp→(r,µ,t−∆) is the share of citations that a patent p ∈ (S, N , T ) (i.e., of class

ν produced in CZ s at time t) gives to patents of class µ produced in CZ r at time

t − ∆ for all the s’s different from r. To reduce endogeneity concerns, we set the

coefficient to zero for links that start and end in the same CZ. The coefficient can be

interpreted as “how much” of a new patent in (ν, s), the destination class-CZ pair,

is “induced” by a previous patent in (µ r), the origin class-CZ pair, ∆ years after

filing. The idea is that existing patents are perfectly substitutable building blocks

for future innovation. Note that since we use ∆ ∈ {1, . . . , 10}, we need to use the

entire early sample (1975-1994) to compute the coefficients of diffusion. Note that

this approach implicitly assumes an input-output model for the production of ideas.

In particular, D75−94
r,s,·,·,∆ is equivalent to an input-output matrix specific to each pair of

cities, (r, s),17 and time lag, ∆. Each entry, d75−94
r,s,µ,ν,∆, of this matrix determines how

many patents of class µ produced in CZ r are necessary to produce an extra patent

of class ν in CZ s after ∆ years. The main departure from a classic input-output

model of production is that in our case ideas are non-rival, non-excludable inputs.

As a result, the sum of all the inputs that appear in the production of new patents

can be larger than the overall amount of available inputs. 18

17Note that the network is not symetric in cities, so that D75−94
r,s,·,·,∆ 6= D75−94

s,r,·,·,∆
18To fix ideas, consider a world with two CZs (San Francisco and Detroit) that only produce two
types of patents (Vehicles and Computers) and that only exists between 1975 and 1978. Assume
that one patent of class Vehicles is filed in Detroit in 1975 and that San Francisco in 1976 produces
100 patents of class Computers that only cite the one patent filed in Detroit the year before. In this
case, our measure of knowledge diffusion between the pairs (Detroit, Vehicles) and (San Francisco,
Computers) at lag 1 would be:

dDT,SF,V H,CPU,1 = 100.
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In the second step, the coefficients of diffusion constructed using the 1975-1994

sample are used to predict patenting in each class-CZ pair for the 2005-2014 period.

More precisely, to estimate the patenting activity in the destination CZ s in 2005, we

apply the adjacency matrix of the network with lag 1 to the actual patenting activity

of all the other (origin) CZs in 2004 and then add up the results. In a similar way,

we then apply the adjacency matrix with lag 2 to the actual patenting activity that

occurred in 2003, and so on until lag 10. To obtain the predicted patenting activity,

we sum the numbers we obtained at all lags. Mathematically,

ˆpats,2005 = c2005

10∑
∆=1

∑
r∈S

∑
ν∈N

(
D75−94

r,s,·,ν,∆
)T
patr,·,2005−∆

where D75−94
r,s,·,ν,∆ is a column of the adjacency matrix that contains the coefficients

of diffusion from CZ r to CZ s and class ν. Each row in the vector represents

a technological class in the origin CZ. The vector patr,·,2005−∆ contains the actual

number of patents for each class filed in CZ r in year 2005 − ∆. The term c2005

is a rescaling term that makes sure that the total number of patents we estimate

nationwide is the same as the one we observe in the data. The prediction of the

patenting activity in the subsequent years follows the same strategy, with the only

exception that when predicting total patents for 2006, the network with lag 1 is

Now, further assume that in 1978 Detroit files another patent of class Vehicles that cites 30 of the
patents produced in San Francisco 2 years before. In this case, we would have,

dSF,DT,CPU,V H,2 =
1

30
The intuition is that, from what we observe in the citations network, one single patent of class
Vehicles in Detroit produces enough ideas to “generate” 100 patents of class Computers in San
Francisco. On the contrary, we need 30 patents of class Computers in San Francisco to produce a
single patent of class Vehicles in Detroit.
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applied to predicted patents in 2005, instead of the actual ones (and similarly for all

the years between 2006 and 2014).19 We do this to avoid endogeneity concerns that

might arise when using contemporaneous patenting activity. Table B.12 graphically

outlines the exact structure used to build the instrument. Predicted patents in the

second sub-period (2005-2014) are then averaged to obtain the instrument for the

t = 2010 observation.

Note that the network we build is a directed one. If a class-CZ pair is linked to

another pair, the opposite is not necessarily true. This contrasts with more com-

mon IV approaches used in the past in similar settings. For example, the Bartik

instrument relies on the mere geographical distribution of innovative activities in the

pre-sample period, and implicitly assumes that the coefficient of diffusion of ideas

from any origin class-CZ pair is given by the national share of patents of the same

class in the destination region. For our purposes, this approach carries some un-

desirable properties, most notably the inability to separate innovation shocks from

industry or technology-specific nationwide trends that ultimately affect innovation,

but also have an impact on the dependent variable. As we extensively discuss in

Section 1.3.2.2, our approach significantly dampens this concern. First, we exploit

the richness of the citation data to isolate directed technological linkages, includ-

ing across classes links, and use it to diffuse lagged innovation output (1995-2004),

rather than contemporaneous one (2005-2014). Second, our approach is robust to

19The role of c2005 is now evident. We add it to our estimation to avoid that the predicted number
of patents in the later years is smaller just because predicted number of patents is used alongside
actual patenting activity.
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setting to zero the coefficient of diffusion not only for the citations coming from the

same region but also for those coming from the same technological class, reducing the

concern that predicted patenting growth simply reflects correlated industry trends.

Third, we can directly control for those nationwide trends by including a Bartik-like

variable directly into our set of controls.

1.3.2.2. First-stage results. One of the conditions for the instrument to be valid

is that the network of knowledge inferred from the citations patterns is determined

in the past but stable over time. This condition can be directly tested by comparing

the network in the early sample with its counterpart in the late sample. This is done

in three steps. First, we build the network of citations and compute the coefficients

of diffusion separately for the two samples (1975-1994 and 1995-2014). For each

∆ ∈ {1, . . . , 10}, we take the difference of the two adjacency matrices and calculate

its Frobenius norm as follow:

real∆ =
∥∥D75−94

∆ −D95−14
∆

∥∥
2

=

√∑
r,s,µ,ν

(
D75−94

∆ −D95−14
∆

)2
.

Second, for each year between 1975 and 2014, we reshuffle all the patents filed

in that year under the constraint that after the reshuffling each commuting zone is

assigned the same amount of patents as in the real dataset.20 We repeat the same

20We also run the exercise under the constraint that each commuting zone is assigned the same
number of patents it started with for each technological class. The results are virtually the same.
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exercise performed in the first step for this new sample of patents and calculate,

reshuf∆ =
∥∥∥D̃75−94

∆ − D̃
95−14

∆

∥∥∥
2

=

√∑
r,s,µ,ν

(
D̃

75−94

∆ − D̃
95−14

∆

)2

where D̃
75−94

∆ and D̃
95−14

∆ are the citation networks built using the reshuffled patents.

Finally, we calculate the percentage difference between reshuf∆ and real∆ for

each ∆. This number tells us how far the two real networks are compared to two

networks that, while maintaining the same structure and properties of the original

ones, are uninformative of each other. A positive value indicates that the two net-

works built using the actual data are more similar than the two reshuffled networks.21

Figure A.4 plots the difference (in percentage) for all the values of ∆ together with

the 95% confidence interval we obtained by repeating this procedure 50 times. The

difference of the reshuffled networks is around 26% higher than the one obtained

with the actual networks for the first lag and it gradually declines until it is indis-

tinguishable from zero at lags 9 and 10. The decline implies that the more years

pass after a new idea is generated the less citation patterns are distinguishable from

links that are generated at random. This result is quite intuitive. With time a new

technology becomes more and more public knowledge and is adopted or embedded

in patents produced in areas that do not have any direct link with the city where

the technology was originally produced.

Consistently with the results in the left-panel of Figure A.4, the right-panel shows

a scatter plot of the first stage relationship between predicted and actual growth rate

21Note that this difference is only interpretable in relative terms.
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of patenting. We plot the residuals of a regression of patent growth on the full set

of controls. It is visually clear that the two variables are strongly but not perfectly

correlated. The residual R2 is 0.24, while the coefficient of the regression is 0.57. The

Cragg-Donald Wald F statistics in the regression with full set of controls is 223.4,

which rules out weak instrument concerns.

Figure A.14 in Appendix visually compares actual and predicted patent growth

at the CZ level on a map of the United States, and can be useful to gain intuition

on the validity of the instrument. Areas that are anecdotally associated with a large

expansion of innovation and other knowledge-intensive activities (notably, Austin

TX and Durham-Raleigh NC) are properly captured by the instrument.

1.3.3. IV Results

Our identification strategy captures local changes in patenting that are due to knowl-

edge created in other geographical areas, linked to the original CZ through the chan-

nels of knowledge diffusion computed in (1.5). These channels are pre-determined

with respect to new ideas themselves. When new knowledge becomes available in a

city, innovation-intensive activities expand. In this section, we explore the effects of

such an expansion on income segregation.

Table B.3 shows the 2SLS estimates of the relationship between innovation and

segregation, as depicted in (1.4). All regressions are weighted by total number of

households in 1990. The coefficient on patent growth is positive and statistically

significant. Columns (2)-(6) introduce the set of controls considered for the OLS
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estimates. The coefficient on income growth reveals that segregation has increased

more in areas with better economic performance. Columns (1)-(4) of Table B.15 in

Appendix report the results when controls are included at their 1990 values. The

coefficient on early sample population reveals that segregation has increased more in

larger cities (consistently with the findings in Baum-Snow and Pavan 2013). Contrary

to the OLS regressions, where the full set of controls had a significant dampening

effect on the size of the coefficient, the 2SLS estimates are not significantly affected

by the introduction of the controls.

A 10% increase in patenting between 1990 and 2010 is estimated to increase in-

come segregation by 0.17 − 0.23 Gini points, depending on the specification. Since

the (population weighted) average growth rate of patents is 16% and the average in-

crease in segregation 2.94, the effect is economically large. The effect is particularly

significant in accounting for the cross-sectional variation in changes in segregation.

Taking the specification with the basic set of controls in growth rates as a refer-

ence point, a one residual standard deviation increase in patenting growth increases

segregation by 56% of a residual standard deviation in segregation change.

The 2SLS estimates are more than twice as large as the ones in the OLS regres-

sions. This suggests that unobservable factors affecting at the same time innovation

and segregation tend to operate on the two variables in opposite directions. This is

hardly surprising. For example, financial shocks that generate widespread turmoil

on the urban structure are likely to increase segregation while having a dampening

effect on the local potential to develop a knowledge-based economy.
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Table B.16 in Appendix shows that a similar effect is observed for segregation de-

fined in terms of educational achievement and occupation type (as defined in Section

1.3.1), instead of income level. Patent intensity appears to have a strong positive

impact on both measures. However, occupational segregation appears to be more

tightly connected with income segregation than its educational counterpart: a regres-

sion of the change in occupational segregation on the change in income segregation

yields an R2 of 12%, whereas the corresponding figure for educational segregation is

only 1.5%.

1.3.4. Instrument validation: Exclusion restriction

The instrument used in the IV analysis is a composite one, as it combines a pre-

established network of knowledge links and a collection of innovation shocks that are

then diffused through it. Hence, it requires two main identifying assumptions. First,

the network of patent citations should not be capturing long-run trends in innovation

and segregation. Second, shocks that affect innovation in the origin commuting zones

should not be correlated with other shocks that affect innovation and segregation in

the destination commuting zone other than through the channel identified by our

instrument.

To address the first point, we run a number of falsification tests to verify to what

extent the growth rate of patenting predicted by our instrument reflects long-term

trends in innovation and segregation. We start by regressing predicted patenting

growth (1990-2010) on past changes in segregation (1980-1990). Figure A.11 and
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columns (1)-(2) of Table B.17 show the correlation between our instrument and the

pre-sample trend in segregation. This correlation is practically equal to 0.22 Then,

we check whether the instrument is correlated with previous trends in innovation,

and to what extent this could affect our second stage results. Figure A.13 shows the

correlation between the residuals of regressions of predicted patenting growth and

past trends in patenting growth (1980-1990) on the basic set of controls. Although

the coefficient of the two variables have a slightly positive correlation (the coefficient

of the regression is 0.13 and is statistically significant), the R2 of the regression is

just 0.03, reflecting a very weak correlation. Column (2) in Table B.14 shows the

2SLS regression with the basic set of controls once the past trend in innovation is

explicitly controlled for. The coefficient on patenting growth remains positive and

significant, and is slightly larger in magnitude. This suggests that the correlation

of the instrument with past trends in innovation is weak at best and is unlikely to

confound our estimated effects.

As for the second point, the main concern is that geographical areas that are

linked in the knowledge network have similar characteristics, such as a similar in-

dustry structure, geographical proximity, common regulation, or exposure to other

shocks that make it hard to disentangle the genuine effect of knowledge shocks from

the effect of other factors that have an impact on innovation in the origin CZ and

22The years we selected to calculate past changes in segregation are dictated by data availability
from the Census. Note that, in the 1980 Census, CTs were not covering the entirety of the United
States, but only the most densely populated areas. For this reason, not all the CZs are available for
our analysis. This is unlikely to affect our results significantly, since all our regressions are weighted
by the number of households. However, to make the two exercises readily comparable we re-run our
benchmark regressions only using the CZs available in 1980. Columns (3)-(4) of Table B.17 report
the results, which remain mainly unchanged.
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segregation in the destination CZ. To control for the effect of nationwide industry

or technology-specific shocks, we include a Bartik-like variable in the set of controls.

Namely, for each CZ r we define a vector S1990
r =

{
s1990

1,r , ..., s
1990
N,r

}
, where s1990

µ,r denotes

the share of patents in the early sample that belong to technological class µ and was

produced in CZ r. Then, for each class-CZ pair (µ, r), we compute the growth rate

gµ,−r of the number of grants in that technological class, counting only patents pro-

duced outside r, between 1990 and 2010. We then compute the Bartik-like variable

in r as:

ĝr =
∑
µ∈N

s1990
µ,r · gµ,−r.

This prediction replicates the idea behind a Bartik shock, with the distribution of

patents across technological classes used in place of the distribution of employment

across industries. Column (3) in Table B.14 shows the 2SLS regression once the

Bartik shock is included in the set of controls. The coefficient on patenting growth

is robustly positive and larger in magnitude. Again, the inclusion of variables that

control directly for industry performance (via their correlation with the distribution

of innovation across classes) increases the size of the coefficient, confirming that

unobservable shocks tend to operate on income segregation and innovation output

in opposite directions.

To provide further evidence that our instrument is not capturing correlated in-

dustry trends across technologically linked CZs, column (4) of Table B.14 replicates

the main 2SLS, with a version of our instrument in (1.5), in which the coefficient of

diffusion is set to zero not only when the origin and destination CZs coincide, but
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also when the origin and destination technological classes are the same.23 This ver-

sion of the instrument displays a weaker correlation with observed patenting growth

(the R2 of the first stage regression drops from 0.23 to 0.16) but the coefficient of

the IV regression is robustly positive and, again, larger in magnitude compared to

our benchmark regression.

Lastly, we address the concern of changes in legislation and other geographically

correlated unobservable factor by introducing state fixed effects in the 2SLS estima-

tion of (1.4).24 In this case, we are evaluating changes in segregation resulting from

an expansion in innovation activities only through within-state variation. The results

are reported in column (5) of Table B.14. The estimated coefficient is smaller, but

the share of explained within-state variation is still sizable. One residual standard

deviation in patenting growth explains 42.6% of a residual standard deviation the

change in segregation. Column (6) reports the results when all the controls intro-

duced in this section are included in the IV regression. Also in this case the results

are robust.

1.3.5. Which technologies are driving the effect?

Our analysis can be disaggregated to investigate what types of technology are mainly

responsible for the estimated effect. This decomposition is possible because our

instrument delivers a separate predicted value for patenting in each technology class.

It is a widespread belief that segregation has increased more in areas that are intensive

23In other words, we set d75−94
r,s,µ,ν,∆ = 0 whenever either r = s or µ = ν.

24This implies that time fixed effects in (1.3) are state specific.
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in high-tech industries. The following quote is taken from Florida (2015): “Economic

segregation tends to be more intensive in high-tech, knowledge-based metros. It is

positively correlated with high-tech industry [...]”. By disaggregating the analysis at

a technology class level, we can test whether this observation can be interpreted as

causal.

The International Patent Classification (IPC) classifies patents into 8 main tech-

nological areas (each one divided into several technology sub-classes). We aggregate

patents from each technology sub-class into their respective main technological area

(which are labelled by letters from A to H). We then run a set of 8 separate 2SLS

regressions, analogous to the ones shown in Section 1.3.3, with the exception that

patenting growth is measured (and instrumented for) only within a given technolog-

ical area.

Results are shown in Table B.4. The positive effect of patenting on segrega-

tion seems to be entirely driven by 4 out of 8 technological areas: class A (Human

Necessities), which include Medicine and Pharmaceuticals among the others; class

C (Chemistry); class G (Physics) which include all IT and Computer sectors; and

class H (Electricity) which includes all major electronics products. Class D (Textiles

and Paper), which is arguably the least knowledge intensive one in the IPC, has a

negative and significant coefficient.

These results are obtained with the full set of controls, including income growth,

so they are unlikely to capture exclusively differences in economic outcomes brought
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about by different types of jobs. However, the reason why knowledge intensive sec-

tors (like Medicine, Chemistry and Information Technology) have a disproportionate

effect on urban segregation, while less knowledge-intensive ones (like Textiles) have a

negative effect is not obvious. Two explanations are the most likely candidates. On

the one hand, learning-intensive sectors benefit more from learning spillovers and the

proximity that such spillovers require. This produces higher incentives to cluster in

space for people in areas where returns from learning are higher. On the other hand,

people employed in those sectors might be disproportionally sensible to residential

amenities, giving them a higher incentive to cluster in space. The spatial equilibrium

model in Section 1.4 will be used to disentangle the contribution of the two candidate

explanations to the observed effect.

1.3.6. Segregation and Inequality: Is it sorting?

Results up to this point show that an expansion of innovation activities has a positive

impact on measured segregation, that is, on the variation of income across neighbor-

hoods, within cities. Disregarding migration, there are two main phenomena that

can induce this.

On the one hand, starting from a city with positive segregation (i.e. a condition in

which the distribution of income is not the same in every neighborhood), a divergence

in household income (e.g. a spread in the income distribution of the city) leads to an

increase in measured segregation, even in the absence of any reallocation of residents

across neighborhoods in the city. We refer to this phenomenon as inequality effect. On
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the other hand, measured segregation can increase even if within-city inequality stays

the same, if residents choose to relocate across neighborhoods and sort themselves

along the income dimension. We refer to this case as sorting effect.

The two phenomena can be used to think about the link between segregation and

inequality in an intuitive way. The inequality effect allows us to connect changes in

inequality with changes in segregation in the case where initial segregation is complete

(e.g. where each household is the only resident in its neighborhood). In this case, it

is clear that the following identity holds:

∆ Ineqcz = ∆Segrcz.

Since in reality initial segregation is never complete, in the absence of relocation an

increase in inequality will in general induce a smaller change in segregation:

∆ Ineqcz ≥ ∆Segrcz.

Hence, changes in inequality can always be interpreted as upper-bounds in terms of

the effects on measured segregation.

As for the sorting effect, segregation can increase, as a result of the relocation

of high (low) income households towards initially high (low) income neighborhoods,

even if ∆ Ineqcz = 0. In what follow, we discipline how much of the observed effect

can be due to inequality and how much to sorting effects.

In Table B.5, we provide a comparison of the impact of patenting on segregation

and inequality within-city. Specifically, we estimate (1.4) using alternatively Segrcz
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and Ineqcz as dependent variables. Innovation does have a positive impact on in-

equality. However, since the effect on segregation is larger than the one on within-CZ

inequality, the two regressions taken together imply that the sorting effect is con-

tributing significantly to the change in segregation.

In Column (3), we estimate (1.4) using ∆Segrcz as dependent variable, and in-

cluding ∆Ineqcz as a control. The coefficient on ∆Ineqcz is 0.93, suggesting an

almost complete transmission of inequality to segregation. Moreover, the coeffi-

cient that measures the effect of patenting growth on ∆Segrcz drops accordingly by

roughly one third, but remains positive and significant. This implies that roughly

two thirds of the impact of innovation shocks on segregation can be explained as a

sorting effect, whereas the remaining third as an inequality effect.

The impact of an innovation shock on within-neighborhood inequality is ex-ante

ambiguous, since the inequality and sorting effects operate on opposite directions.

On the one hand, the positive impact on ∆ Ineqcz implies that, if people were not

allowed to relocate, we would observe a positive effect on within-CT inequality, as

well.25 On the other hand, the sorting effect works to counteract the impact of within-

city on within-CT inequality. The last two columns of Table B.5 report the parameter

estimates using average within-CT inequality as left-hand side variable. Patenting

growth has a small negative coefficient, that becomes statistically indistinguishable

from zero when we add the baseline controls to the regression. This suggests that the

25In the extreme case in which the income distribution for each CT is identical to the one in the city,
an increase in inequality at a city level would translate into a one-to-one increase of average within-
CT inequality. On the other hand, if people were perfectly sorted along the income dimension, an
increase in city-level inequality would have no impact on within-CT inequality.
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sorting effect completely offsets the increase in the dispersion of income within-CT

that stems from the inequality effect.

1.3.7. Exploration of the mechanism

In the previous subsections, we showed the existence of a strong, causal relationship

between the expansion of local knowledge-based activities and income segregation in

U.S. cities. We further showed that this effect is also visible along an educational

and occupational dimension and is mostly driven by technological fields with high

technological content and learning intensity such as Physics and Chemistry. This

result suggests that high returns from learning spillovers can increase incentives for

companies whose output has a high knowledge content to cluster in space to take ad-

vantage of highly localized learning opportunities, inducing a positive link between

innovation intensity and concentration of knowledge-intensive firms. In addition,

high-education, high-salary workers might optimally relocate in the surrounding ar-

eas to minimize their commuting costs. The endogenous response of residential

externalities (e.g. local services that are valued more by workers in the knowledge

economy, such as schools and organic grocery stores) can play an important role in

amplifying this effect.

The structural model presented in Section 1.4 formalizes this mechanism. The

goal of this subsection is to provide suggestive reduced-form evidence in its sup-

port. First, we show that innovation shocks promote the geographical concentra-

tion of knowledge workers towards neighborhoods with high learning opportunities.
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Second, we show that the impact of innovation shocks is stronger in cities whose

neighborhoods are less anchored to natural (or persistent) amenities, highlighting

the potential role of endogenous residential externalities in driving the process.

1.3.7.1. Clustering of employment. One possible mechanism behind the re-

sults described in Section 1.3.3 is the change in the concentration of employment

of knowledge-intensive occupations that is induced by a knowledge shock. The fact

that knowledge spillovers are strongly localized has been confirmed by multiple stud-

ies, starting from Jaffe et al. (1993). When useful knowledge becomes available and

innovation opportunities emerge, incentives to cluster in space to benefit from them

are positively affected. This in turn has a direct effect on residential segregation,

provided that work location affects residential choices, (for example, if people are

averse to spending time commuting).

To confront this intuition, we first verify that in cities with high innovation shocks,

knowledge intensive employment moves towards neighborhoods with strong learning

opportunities. Our measure of knowledge spillovers at the neighborhood level is

adapted from Ahlfeldt et al. (2015), and is based on the structural model outlined

in Section 1.4.3. The index captures the concentration of knowledge workers sur-

rounding a given neighborhood.26 Specifically, for each CT j in city cz, knowledge

externalities in 1990 are computed as:

Λkk
j =

∑
l∈Scz

e−δkτjl
W k
l

Kl

,

26See Appendix C.1.1 for details on the classification of occupations and the construction of the
distribution of residents by occupation at the neighborhood level.
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where Scz is the set of neighborhoods in cz, τjl is the commuting time (in minutes)

between CTs j and l, W k
l is the number of knowledge workers employed in l in 1990

and Kl is the area of l. The parameter δk controls the rate of decay of knowledge

externalities and is estimated in Section 1.4.6.

Our conjecture is that, in cities that receive strong knowledge shocks, knowledge

occupations will cluster into neighborhoods with high externalities. Letting skj,cz be

the percentage of knowledge workers in CT j ∈ Scz, and letting rankj,cz be the

percentile of j in the distribution of Λkk within cz in 1990, we estimate via 2SLS the

following equation:

(1.6) ∆skj,cz = αcz + β rankj,cz + γ rankj,cz ×∆ log(1 + Patentscz) + εj,cz.

We cluster standard errors at the CZ-level and weight each CT by the total number

of workers in 1990. A positive sign for the coefficient of the interaction, γ, sug-

gests that neighborhoods with high learning opportunities in 1990, in cities where

the knowledge shock has been stronger, have experienced a more pronounced shift

towards knowledge-intensive occupations. The OLS and IV estimates of 1.6 are dis-

played in Table B.6. The interaction term has a positive and significant coefficient,

that is meaningful in magnitude. Combining the estimates of β and γ, we can see

that in cities at the 95th percentile of the distribution of innovation shocks, CTs

at the top of the distribution of Λkk in 1990 experienced a shift in the composition

of employment towards knowledge occupations about 3.52 percentage points higher

than CTs at the bottom of the distribution of Λkk in 1990. The corresponding figure,
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in cities at the 5th percentile of the distribution of innovation shocks, is significantly

smaller (1.40).

1.3.7.2. The role of residential amenities. As mentioned in the previous sub-

section, the fact that high-knowledge firms cluster in space might directly influence

residential choices of workers through commuting costs considerations. This pro-

cess could be amplified by the existence of endogenous residential spillovers that are

disproportionately valuable to high-education, high-salary workers. For example, a

high concentration of creative workers might attract amenities such as elite schools

or fitness centers, to which other types of workers might be less sensible.

To check whether residential amenities play a role in promoting the increase in

segregation observed in the data, we exploit the index of natural amenities assembled

by Lee and Lin (2017). The authors build an index based on the distance to natural

amenities (e.g., ocean coast) or the presence of steady features (e.g., fountains) for

each Census Tract contained in a Metropolitan Statistical Area (MSA). In their

paper, they show that MSAs where the index variance is higher are also MSAs

whose spatial income distribution has remained more persistent over time. Our idea

is that cities that incorporate residential amenities whose valuation is unlikely to be

altered by the surrounding distribution of residents, should also be cities where the

residential spillover channel is weaker. In other words, the presence of extremely

valuable amenities that are exogenous relative to the geography of the city should

have a dampening effect to the residential agglomeration forces documented in the

previous sections, since the endogenous spillovers would play a more marginal role.
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We first assign every CT contained in the Lee and Lin’s (2017) dataset to a

CZ and, following their methodology, we calculate the standard deviation of the

amenities index for each city.27 We then introduce this term and its interaction with

patenting growth to our baseline regression model. A negative coefficient for the

interaction term indicates that cities whose variation in residential amenities is more

anchored to natural or persistent features, experience a less pronounced change in

income segregation following an innovation shock. Columns 2 and 4 of Table B.7

report the OLS and IV results of such a regression. As expected, the parameter

associated with the interaction term is negative and statistically significant at a 10%

level. The magnitude of the coefficient is economically large. The point estimate

implies that cities ranked at the 95th percentile in their degree of persistent residential

amenities display a marginal effect of knowledge shocks on income segregation equal

to 0.84 Gini points, less than a quarter of the marginal impact in a city at the 5th

percentile of the distribution (2.96). This suggests that residential amenities play

indeed an important role in amplifying the effect of innovation shocks on income

segregation.

27Note that since the MSAs do not cover the whole U.S. territory, for this exercise we are able to
use data from 337 cities only.
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1.3.8. Taking Stock

The empirical analysis shows a robust and economically meaningful causal relation-

ship between the expansion of innovation activities and the increase in income seg-

regation in U.S. cities between 1990 and 2010. This effect is stronger for learning-

intensive fields (Medicine, Chemistry, IT, Electronics) and weaker (or negative) for

less knowledge-intensive fields (Textiles). Less than 50% of this effect can be ex-

plained by an increase of income inequality, suggesting that knowledge intensity

generates incentives for people to sort in space along income, occupational and edu-

cational dimensions. As a potential mechanism, we provide evidence suggesting that

(1) innovation shocks induce an increase in the geographical concentration of em-

ployment of knowledge-intensive occupations, which can affect income segregation if

the location of employment is linked to residential choices, and (2) the endogenous

response of residential amenities can work as an important amplification channel.

In the next section, we propose a structural model of the internal structure of

cities that formalizes and quantifies such mechanism. We augment the model de-

veloped in ARSW to allow for a creative, knowledge-intensive sector and a residual

non-creative sector. The model features occupation-specific productivity and resi-

dential externalities, generating a variety of motives for job clustering and residential

sorting. The exogenous innovation shocks derived in the empirical analysis allow us

to structurally estimate the parameters controlling the strength of such externali-

ties. The model is successful in replicating the key empirical relationships, and can

be used to investigate the factors that drive them.
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1.4. Model

We consider an economy comprising a finite set of cities C. In what follows,

we present the model for an arbitrary city c ∈ C, and suppress the city index for

notational convenience. Our setting expands ARSW by allowing for multiple cities

and worker types. We refer to the original paper and its Appendix for some of the

derivations and details.

1.4.1. Demand

A city c ∈ C comprises a finite set of neighborhoods (CTs) S. Agents differ intrinsi-

cally by their background, or sector in which they operate. There is a creative sector

k and a residual sector n, to which each worker inelastically supplies one unit of

labor. The utility function of worker o of type x ∈ {k, n}, living in neighborhood i

and working in j is given by

(1.7) Ux
ijo =

zijo
dij

Bx
i

(
cxijo
β

)β ( hxijo
1− β

)1−β

where cijo is a tradable consumption good (the numeraire), hijo is consumption

of housing of price qi, B
x
i represents residential amenities, and zijo is a Frechet-

distributed random variable with shape parameter ε > 1. The term dij = eκτij

represents iceberg commuting costs, with τij denoting commuting times (in minutes)

from i to j, and κ > 0 a parameter controlling the sensitivity to commuting. Every
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worker maximizes her utility subject to

cxijo + qih
x
ijo ≤ wxj ,

where wxj is the wage that workers of type x receive when working in CT j. Utility

maximization yields

hxijo = (1− β)
wxj
qi
, cxijo = βwxj .

Using the two optimality conditions, we can write the indirect utility function as

(1.8) uxijo = Bx
i

zijo
dij

wxj (qi)
β−1 .

Upon moving to the city, each agent receives a collection of Frechet-distributed

independent draws, one for each (i, j) pair of residence and workplace neighborhoods,

and chooses the pair that delivers the highest utility. Using the indirect utility

function in (1.8) and the properties of the Frechet distribution, we can calculate the

share of workers o of type x choosing to live in CT i and work in CT j:

(1.9) πxij =

(
Bx
i w

x
j

)ε (
dijq

1−β
i

)−ε
∑

l,m∈S×S

(Bx
l w

x
m)ε

(
dlmq

1−β
l

) ≡ Φx
ij

Φx
.
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Summing over the work locations, we get the share of people of type x who live

in neighborhood i:

(1.10) πxRi =
∑
j∈S

πxij =

∑
j∈S

Φx
ij

Φx
.

Similarly, the share of workers of type x who work in j can be expressed as

(1.11) πxWj =
∑
i∈S

πxij =

∑
i∈S

Φx
ij

Φx
.

The probability of commuting to j conditional on living in i is given by

(1.12) πxij|i =

(
wxj /dij

)ε∑
l∈S

(wxl /dil)
ε

Therefore, the measure of people of type x who work in j, denoted by W x
j , is given

by

(1.13) W x
j =

∑
l∈S

(
wxj /dlj

)ε∑
m∈S

(wxm/dlm)ε
πxljR

x,

where Rx is the amount of residents of type x living in the city.28

28Note that Rx =
∑
jW

x
j =

∑
iR

x
i , where Rxi is the mass of residents of type x in CT i.
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Using the conditional probability derived in (1.12), we can calculate the expected

wage of type x conditional on living in neighborhood i:

E [wx | i] =
∑
k∈S

(wxk/dik)
ε∑

l∈S

(wxl /dil)
ε
wxk ,

which is the average wage received by workers of type x in CT k weighted by the

probability of working there, conditional on living in i.

The distribution of utilities of type x for each type in the city is given by

Gx (u) = e−Φxu−ε .

To see this, note that the probability that the utility of an agent of type x chosen at

random in the city is higher than u, 1−Gx (u), is equal to the probability that her

utility is bigger or equal to u for at least one residence-workplace pair, or equivalently

to 1 minus the probability that her utility is smaller than u for all the residence-

workplace combinations:

1−Gx (u) = 1−
∏

l,m∈S×S

Gx
lm (u) ,

where Gx
ij (u) = e−Φxiju

−ε
is the utility distribution of workers of type x living in i

and working in j. From here it is easy to see that

E [ux] = Γ

(
1− 1

ε

)
(Φx)1/ε
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where Γ (·) is the Gamma function. The expected utility when deciding to move into

the city must be equal to the reservation utility Ūx, that is constant across cities.

1.4.2. Production

Each neighborhood j hosts a representative, perfectly competitive firm of each sector

x ∈ {k, n}. The firm hires sector-specific labor and rents office space, and aggre-

gates them into a homogeneous final good according to a Cobb-Douglas production

function:

yxj = Axj
(
Hx
j

)1−α (
W x
j

)α
,

where yxj is output of firm x in CT j, Axj is its total factor productivity, and Hx
j is

total office space rented by the representative firm.

Profit maximization gives

(1.14) (1− α)Axj

(
W x
j

Hx
j

)α
= qj, αAxj

(
Hx
j

W x
j

)1−α

= wxj .

Combining the FOCs with the zero profit condition yields

(1.15) qxj = (1− α)

(
α

wxj

)α/(1−α) (
Axj
)1/(1−α)

.

1.4.3. Residential and productivity externalities

The terms Bx
i and Axj summarize the location’s residential and productivity charac-

teristics. We assume them to be geometric functions of the concentration of economic

activity around the relevant location. Elasticities are occupation-specific, so that the
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intensity of the externalities depend on the type of resident or worker who is gener-

ating and benefiting from them.

We define density of residents of type x2 ∈ {k, n} around residents of type

x1 ∈ {k, n} in neighborhood i as

(1.16) Ωx1x2
i =

∑
l∈S

e−ρx1τil
Rx2
l

Kl

,

where ρx1 is the rate of decay of residential externalities perceived by residents of

type x1, and Kl is the area in CT l.29 Then, residential amenities for type x1 in

location i are

(1.17) Bx1
i = bx1

i (Ωx1x1
i )ωx1x1 (Ωx1x2

i )ωx1x2 ,

where ωx1x1 (ωx1x2) represents the elasticitiy of residential externalities from residents

of type x2 (x1) to residents of type x1, and bx1
i is an exogenous term that captures the

component of residential amenities that is not affected by the surrounding economic

activity.

Similarly, we define the density of employment of type x around workers of type

k (creative occupations) in neighborhood j as

(1.18) Λkx
j =

∑
l∈S

e−δkτjl
W x
l

Kl

,

29This functional form is consistent with the intuition given by Lucas and Rossi-Hansberg (2003)
on how knowledge spillovers are generated.
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where δk is the rate of decay of productivity externalities perceived by workers of

type x. Then, the productivitiy term for type k in location j is

(1.19) Akj = akj
(
Λkk
j

)λkk (Λkn
j

)λkn ,
where λkk (λkn) represents the elasticity of productivity externalities from workers

of type k (n) to workers of type k, and akj is an exogenous term that captures

the component of productivity that is not affected by the surrounding economic

activity. In the structural estimation of Section 1.4.6, we allow λkk (the intensity of

local learning among workers in the creative sector) to depend on the city-specific

knowledge shocks that were estimated in the empirical analysis.

We maintain the assumption that the productivity terms for the non-creative

occupations, Anj , are stagnant, and are not affected by local externalities, so that

Anj = anj for all neighborhoods. This assumption is consistent with Davis and Dingel

(2016), in which only workers who select themselves in knowledge intensive occu-

pations benefit from the concentration of learning opportunities in large cities. As

discussed in Section 1.4.6, our quantitative results support this interpretation.

1.4.4. Equilibrium

We now have all the elements to define an equilibrium of the model.

Definition 1.4.1. Given quantities
{
Li, Ki, {axi , bxi }x∈{k,n}

}
i∈S
∈ (0, ∞) and

{τij}i,j∈S×S ∈ (0, ∞) and reservation utilities
{
Ūk, Ūn

}
, an equilibrium is a set of
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quantity and prices
{
{πxRi, πxWi, R

x
i ,W

x
i , w

x
i , A

x
i , B

x
i }x∈{k,n} , qi

}
i∈S

, so that, for each

type x ∈ {k, n}:

• Expected utility of moving into the city equals the reservation utility

(1.20) Γ

(
1− 1

ε

)[∑
l∈S

∑
m∈S

(
dlm (ql)

1−β
)−ε

(Bx
l w

x
m)ε
]1/ε

= Ūx

• The share of population living in i is given by (1.10)

• The share of population working in j is given by (1.11)

• Land markets clear for each i ∈ S:

(1.21)

∑
x∈{k,n}

(
(1− α)Axi

qi

)1/α

W x
i + (1− β)

∑
x∈{k,n}

∑
l∈S

(wxl /dil)
ε∑

m∈S

(wxm/dim)ε
wl

 Rx
i

qi
= Li

• Productivity and residential externalities are determined by (1.17) and (1.19),

respectively

• Factor prices satisfy (1.14), so that firms make zero profits

• Labor markets clear:

Rx
i = πxRi

∑
l∈S

Rx
l , W x

j = πxWj

∑
l∈S

W x
l ,

Rx ≡
∑
l∈S

Rx
l =

∑
l∈S

W x
l ≡ W x.

The fact that residential amenities and productivities are subject to local external-

ities gives rise to the potential for multiple equilibria. As discussed by ARSW, the
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structure of the model allows to deal with this multiplicity directly by identifying a

unique set of location characteristics that is compatible with the data, so that only

the observed equilibrium is relevant for the estimation of the model’s parameters.

1.4.5. Recovering wages and location characteristics from data

The structure of the model allows us to recover unobserved location character-

istics starting from data on residents by sector,
{
Rk
i , R

n
i

}
i∈S , workers by sector,{

W k
j ,W

n
j

}
j∈S , and rental price of floor space, {qi}i∈S , bilateral commuting times,

{τij}i,j∈S , and average wage by sector in the city,
{
w̄kc , w̄

n
c

}
, given knowledge of the

parameters κ and εc. The equilibrium conditions can then be inverted to univo-

cally identify wages by sector,
{
wkj , w

n
j

}
j∈S , residential amenities

{
Bk
i , B

n
i

}
i∈S , and

productivities
{
Akj , A

n
j

}
j∈S .

We first discuss how we obtain an estimate for the city-specific parameter control-

ling the sensitivity to commuting, νc = εcκ. We then discuss how to pin down local

wages by sector. Finally, we show how to recover the values of residential amenities

and productivities. The data sources used for this purpose are described in details

in Appendix C.1.1.

Estimating sensitivity to commuting times. We allow the parameter that controls

the sensitivity of the utility function to commuting times to vary by city. Taking

logs of (1.9) yields a gravity equation for commuting flows from CT i to CT j:

(1.22) log
(
πxij
)

= αx + ψxi + ζxj + νcτij + ηxij
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where νc = εcκ, and ψxi and ζxj are residence and workplace fixed effects, respectively.

Since there are no comprehensive measures of commuting flows by occupation, we ap-

proximate a single gravity equation for commuting flows by estimating one equation

of the same form for each city:

(1.23) log (πij) = α + ψi + ζj + νcτij + ηij.

We show in the Appendix (Figure A.16) that an alternative method for estimating

νc, based on replicating the observed share of residents commuting for less than 60

minutes from their workplace, yields very consistent results.

We estimate (1.22) by OLS separately for each city using data on actual com-

muting flows from the Longitudinal Employer-Household Dynamics (LEHD) dataset.

The distribution of estimates of νc is illustrated in Figure A.15. The median value

is −0.041, which implies that one additional minute of commuting time decreases

commuting probability by 4.1%.30

Recovering wages, residential amenities and productivities. For given values of

κ and εc, wages by sector in each location are uniquely (up to a normalization)

determined by the following system of 2× |S| equations:

(1.24) W x
j =

∑
i∈S

(
wxj
)εc

/eνcτij∑
l∈S (wxl )εc /eνcτil

Rx
i ,

30The results are consistent with the ones in ARSW, who estimate a value of −0.07 for the same
parameter.
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where {W x
i , R

x
i }i∈S are observed in the data, and where an appropriate normalization

of the wages is chosen, so that the average wage in the city is equal to the observed

counterpart in the data, w̄xc . We choose units so that the geometric mean of the

non-creative sector’s wage in the CZ with the first index (Memphis) is equal to

one.31

Given a value for α and knowing {qi}i∈S and
{
wkj , w

n
j

}
j∈S , productivities

{
Akj , A

n
j

}
j∈S

can be recovered from equation (1.15). Then, given values for {δk, δn} and {λx1x2}x1,x2∈S

and observed areas {Ki}i∈S , the exogenous component of productivity
{
akj , a

n
j

}
j∈S

can be obtained by combining (1.18) and (1.19).

Given values for εc and β, observed data for
{
Rk
i , R

n
i , qi

}
i∈S , and the equilibrium

wages
{
wkj , w

n
j

}
j∈S , combining (1.10) and (1.20) allows us to recover residential

amenities
{
Bk
i , B

n
i

}
i∈S :

(1.25) Bx
i =

(
Rx
i

Rx

) 1
εc

 Ūx

Γ
(

1− 1
εc

)
 q1−β

i

(w̃xi )1/εc
x ∈ {k, n} ,

where w̃xi =
∑

j

(
wxj /dij

)ε
. We choose units so that the geometric mean of residential

amenities for both types in the CZ with the first index (Memphis) is equal to one.

This choice of units allows us to recover the unobserved value of the reservation

utility Ūx and to evaluate (1.25) for the remaining cities.32

31See Lemma S.7 in the Supplement to ARSW for a proof that the system of equations in (1.24)
determine a unique (up to a normalization) vector of wages

{
wxj
}
j∈S .

32One additional normalization is required to define units in which floor space is denominated. We
normalize the price of floor space, qi, so that the geometric mean in Memphis is equal to one.
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1.4.6. Structural estimation

We follow ARSW and set α = 0.8, β = 0.75 and κ = 0.01 in our calibration,

which implies εc = νc/0.01.33 In order to estimate the remaining parameters (the

ones that control the strength of the agglomeration externalities) we exploit the

differential change in the concentration of economic activity in cities between 1990

and 2010 that results from differential changes in knowledge intensity, as recovered

in the empirical analysis. In particular, we rely on the orthogonality between the

inferred innovation shocks and other factors that affect the geographical distribution

of economic activity in the city. The model captures those residual factors as changes

in the exogenous components of productivity and residential amenities, axj and bxj .

Our orthogonality condition imposes that changes in the average of the exogenous

components within a city are independent from the innovation shock the same city

receives.

To introduce innovation shocks, we assume that the elasticity of productivity

externalities for the creative sector λkk is identical across cities in 1990 (λ90
kk), but

varies in 2010 depending on the city-specific value of the knowledge shock:

(1.26) λ10
kk,c = λ90

kk + θ0 + θ1 · binc

33Following Allen et al. (2017), we also estimated εc using a model generated instrument together
with the fixed effects obtained from the gravity equation (1.22). Although the confidence interval
includes values strictly greater than 1 for 96% of the commuting zones, the point estimate is smaller
than 1 in 20% of the cases, including in some major cities such as Los Angeles and New York. For this
reason, we use the ARSW estimates and set κ = 0.01 for our analysis. Interestingly, the weighted
and unweighted mean of κc obtained through the procedure proposed by Allen et al. (2017) is very
close to this value. Details of the procedure and results are provided in the Appendix.
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where θ0 and θ1 are estimated jointly with the remaining parameters, and binc is the

value of the knowledge shock for city c, as described below.

To make the orthogonality condition operational, we proceed in three steps. First,

we compute for each city the predicted patenting growth, as outlined in Section

1.3.2.1:

(1.27) ĝc = log ˆpatc,05−14 − log patc,85−94.

Second, we take the residuals of a regression of ĝc on the set of basic controls (number

of CTs, income and population growth). Third, we sort cities according to those

residuals (in ascending order) into 10 bins, so that the sum of the population of

all the cities in the bin is approximately equal for all the bins (and equal to 1
10

of the total population). The resulting categorization determines the value of the

knowledge shock (binc) introduced in (1.26). The orthogonality condition can then

be expressed as

(1.28)


Ec∈Cbin [∆10−90Ei∈Sc log (axi )] = Ec∈C [∆10−90Ei∈Sc log (axi )]

Ec∈Cbin [∆10−90Ei∈Sc log (bxi )] = Ec∈C [∆10−90Ei∈Sc log (bxi )]

for all bin ∈ {0, ..., 9} and x ∈ {k, n}. In (1.28), all expectations are weighted

by total population in the neighborhood. For a fixed set of parameters, and given

observed data on residents, workers and price of housing (that also imply a unique

vector of wages through (1.24)), residential and productivity fundamentals can be

recovered by combining (1.25) with (1.17) and (1.15) with (1.19), respectively.
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Condition (1.28) requires that cities with different knowledge shocks do not dis-

play systematic differences in the way residual fundamentals change between 1990

and 2010. Hence, the systematic difference in how the concentration of economic

activity changes must be due to the combination of the the change in the production

function of the creative sector induced by the knowledge shock, and the endogenous

agglomeration forces in the model.

The system in (1.28) delivers 3×10 moment conditions for a set of 11 parameters

to estimate:34

P ≡ {ρn, ρk, δk, ωnn, ωnk, ωkn, ωkk, λkn, λkk, θ0, θ1} .

Our estimation routine sets the value of the parameters, P ∗, in such a way as to

minimize the sum of the squares of the moment conditions:

P ∗ = argminP∈P m (P ) Wm (P )′

where W is the optimal weighting matrix. Details on the estimation algorithm can

be found in Appendix C.1.3.

The results of the estimation are displayed in the right panel of Table B.8. The

rates of decay of residential externalities (ρn and ρk) are close to the corresponding

estimates in ARSW (0.55−0.90), and suggest that residential externalities are slightly

more localized for knowledge workers. The rate of decay of productivity spillovers for

34Note that since we assume λnn = λnk = 0, the moment conditions involving ani do not identify
any relevant parameter.
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knowledge workers (δk) is lower than the estimate in ARSW (0.35−0.92) and points

in the direction that learning externalities, albeit localized, have a larger geographical

span than other types of productivity spillovers.35 The estimated value of δk implies

that a 10 minutes commuting time reduces the strength of the externality by roughly

42%.

Two additional considerations stand out. First, as suggested by the similar es-

timated values of ωnn and ωnk, residential externalities perceived by non-creative

workers are closer across the two types than externalities that knowledge workers

receive from neighbors of both types. These are very steep for knowledge workers

(ωkk is high), and significantly lower for residents of the opposite type (ωkn is low).

This dichotomy suggests that, following an initial shock to the distribution of em-

ployment, the amplification effect of local amenities on the distribution of residents

can be large. Second, workers in the creative sector receive very steep productiv-

ity externalities from other knowledge workers, and less powerful externalities from

non-creative workers.

1.4.7. Quantitative Exploration

In this section, we first explore to what extent the estimated model can account

for the observed relationship between innovation and income segregation, and then

perform counterfactual experiments to shed light on the underlying mechanism.

35Incidentally, when productivity spillovers for n-workers are included in the estimation, the routine
delivers an explosive value of δn, roughly equal to 10, which implies that productivity spillovers for
non-creative workers are extremely localized, possibly limited to the firm’s boundaries.
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We proceed as follows. For each city in the sample, we first compute the model

equilibrium using data on residents and workers by type, and rental price of housing

in 1990. We then recover the exogenous component of productivity and residential

amenities, {axi , bxi }, as described in Section 1.4.5. In running the counterfactuals,

we keep the value of the location characteristics fixed at the inferred 1990 level,

and change exclusively the value of λkk in order to reflect the corresponding knowl-

edge shock, as in equation (1.26). The algorithm used to find the new equilibrium

(adapted from ARSW) can be found in Appendix C.1.4. Note that the endogenous

agglomeration forces can give rise to multiple equilibria. The recursion used in the

following experiments looks for the equilibrium that is closer to the original one.

We present our results in bin scatter plots, so that each dot in the figure cor-

responds to the weighted average of the observations in the knowledge shock bin,

as defined in Section 1.4.6. The dotted line represents the predicted values in the

following weighted OLS regression:

∆Y 90−10
cz = α + γ · bincz + εcz,

where the left-hand-side variable varies according to the specification. Since the

model does not target the average change in segregation, we shift the resulting values

by a uniform factor, in such a way as to make the average for the first bin equal

to zero, and explore the ability of the model to explain the differential change in

segregation between cities with different knowledge shocks.
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Figure A.5 shows the model performance in replicating the empirical relationship

between the estimated knowledge shock (i.e. the predicted patenting growth, as in

(1.27)) and the change in segregation between 1990 and 2010. The model replicates

the empirical relationship closely: the slope of the regression line is 0.22 for the data,

and 0.27 for the model. A weighted regression of the change in segregation in the

data and in the model yields a coefficient of 0.13, which suggests a large correlation,

even if the only perturbance in the model is the change in λkk prescribed by the bin.

The model is also successful in replicating the empirical relationship between

knowledge shocks and change in occupational segregation (Table B.9). The model

coefficient (0.60) is not significantly different from the empirical one (0.51). Table

B.9 also clarifies that occupational segregation is one of the dimensions along which

knowledge shocks translate into higher income segregation. As shown in the right

columns of Table B.9, when controlling for the change in occupational segregation,

the coefficients on income segregation drop by about a third in both the model and

the data regressions. Since occupational segregation does not depend on changes in

the level or the dispersion of income, this effect only translates into higher sorting,

and does not appear in the inequality effect.

The model also captures the relationship between knowledge shocks and clus-

tering of employment in knowledge intensive occupations. Table in B.18 Appendix

replicates the results in Table B.6 using the bin value of the knowledge shock for the

model counterfactuals (left column) and the data (right column). Neighborhoods

with strong learning externalities in 1990 experience a more pronounced increase in
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the share of knowledge workers in high-bin cities rather than in low-bin cities. The

coefficient of the interaction terms in the model regression is larger in magnitude

than the empirical counterpart, but is consistent in sign and statistical significance.

Notice that none of the quantities in Figure A.5 and Table B.9 and B.18 appear as

a target in the structural estimation.

Figure A.6 shows the baseline change in segregation in the model simulation (red

line) and the change in segregation that results exclusively from the reallocation of

workers across neighborhoods following the shocks, keeping the average income by

occupation for each neighborhood and occupation fixed at its original 1990 level. This

measure captures the portion of the sorting effect that realizes along the occupational

dimension, and translates in units of income segregation the occupational sorting

observed in Table B.9. The slope of the blue line (0.11, compared to 0.27 for the red

line) can be interpreted as a lower bound for the contribution of the sorting effect to

the overall response of segregation to knowledge shocks.

1.4.7.1. Endogenous vs Exogenous Residential Amenities. Finally, we use

the model to isolate the role of learning externalities and evolving residential ameni-

ties in driving the response of income segregation to innovation shock. Disentangling

the relative importance of those two candidate factors is of crucial importance for the

design of policies aimed at attenuating the rise in segregation, from the improvement

of the transit system to changes in the provision of local public goods. As discussed

in Section 1.4.6, the estimated values for residential elasticities suggests that the en-

dogenous amenities generated by the concentration of residents in the creative sector



74

are valued disproportionately more by residents of the same type. Emblematic ex-

amples may include high-quality schools, walkable areas, fitness centers or organic

grocery stores. Hence, an initial shock to the distribution of residence - generated,

for example, by a reshuffling of the distribution of employment - can be significantly

amplified by the endogenous response of residential amenities.

Figure A.7 shows the results of a counterfactual experiment, in which residential

amenities are exogenously given (in other words, Bx
i = bxi ). This is equivalent to

assume that the elasticities of residential externalities (ωx1x2) are equal to zero. The

resulting relationship is significantly flatter than the benchmark, suggesting that

the amplification mechanism can be quite large. The coefficient of the regression

in the counterfactual is 0.09, whereas the coefficient in the benchmark model is

equal to 0.27. Comparing the two coefficients, we conclude that two thirds (roughly

66%) of the overall estimated impact of knowledge shocks on income segregation

can be attributed to the amplifying effect of localized, occupation-specific residential

amenities.36

1.4.7.2. Chicago Bids for Amazon HQ2. At the beginning of September 2017,

Amazon announced its intention of adding a second North American headquarter to

the one already existing in Seattle. By the end of the month more than 50 cities

across the United States and Canada, including Chicago, had publicly considered to

36Another implication is that the relationship between the change in segregation in the data and
in the model is flatter than in the model with endogenous amenities. A regression of the change
in segregation in the model with exogenous amenities and the data yields a coefficient of 0.03,
compared to the 0.13 of the full model.
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submit a bid, for a total of more than 100 projects.37 In this Section, we illustrate

how our model can be used for policy experiments by assessing the impact of each bid

on Chicago’s city structure. Six projects, each in a distinct location, were deposited

by city developers. The project located furthest north plans to redevelop the area

by the river that is now occupied by the former A. Finkl & Sons steel plant, which

was demolished in 2011. The second proposal for Amazon’s HQ2 would be located

a couple of miles South East towards the Loop, and it would be composed of four

new buildings overlooking the river in the property owned by Tribune Media at 700

W. Chicago Avenue. Three other projects were proposed just (South-)West of the

Loop: One in the Old Main Post Office; another plans to redevelop Union Station

in different stages; and the last one would be just be just South of the loop. Being

the 3 projects in a radius of less than one mile from each other, for the purpose of

our counterfactual analysis, we only consider the one in the Old Main Post Office

which lies in the middle of the two. The last project is the only one located in the

South Side and would be built over the Michael Reese Hospital which ceased activity

in 2009. Figure A.19 in the Appendix shows the exact location of the four projects

considered in this simulation.

For this analysis, we first estimate the equilibrium quantities in 2010, and we

then shock the exogenous term of productivities. The shock is calibrated to attract

about 50,000 high-knowledge workers in the considered neighborhood. This number

37“Amazon refuses Arizona’s cactus as bidders for HQ2 climb to 118,” The Seattle Times, September
19, 2017. Map updated October 19, 2017.
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matches the number of workers Amazon expects to employ in its second headquar-

ter. Figure A.8 shows the forecasted change in high-knowledge residents in the four

scenarios. The first panel considers the scenario in which the headquarter is located

on the premises of the former Michael Reese Hospital, the second panel the scenario

in which it is located in the Old Main Post Office, the third panel the Tribune Media

scenario, whereas the last panel the former A. Finkl & Sons steel plant. There are

two main trends that is possible to identify by comparing the four counterfactuals.

First, in all the considered scenarios high-skilled high-salary workers tend to move

in the high-amenities areas by the lake and downtown. Second, despite this general

trend, the location of the headquarter seems to matter a lot for local development.

On the one extreme, in the Michael Reese Hospital’s scenario, high-knowledge work-

ers start moving in the South Side. The areas around the University of Chicago and

along the coast seem to be the most attractive. On the other extreme, in the A.

Finkl & Sons steel plant’s project, the majority of the gains are concentrated in the

richer North Side. This is also reflected in the estimated changes in segregation: 1

Gini point in the former case, and 1.3 Gini points in the latter. According to our

simulations the city would experience the highest change in segregation (1.5 Gini

points) if the Amazon campus was located on the Tribune Media’s property. Figure

A.20 in the Appendix shows the change in high-knowledge workers in the four cases.

It is important to point out two caveats. First, some of these projects also include

an expansion of the public transportation system. This might reduce the overall

segregation, although it should not affect the local development results. Second, our
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model does not include a notion of migration. All the 50,000 high-knowledge workers

attracted by the new campus all come from the commuting zone of Chicago. Taking

migration into consideration might make the segregation effect worse, since rents in

high-demand neighborhoods would increase more than in our counterfactuals.

1.5. Conclusion

We have shown that the rise of an innovation based economy is causally linked

to the surge in income segregation experienced by U.S. cities in the last decades.

Our instrumental variable results imply that local innovation trends are responsible

for 56% of the cross-sectional variation, and 20% of the overall change in measured

segregation. We have further showed that the estimated effect is driven by innovation

in learning-intensive sectors (including IT and Electronics), and can be only partially

explained as a consequence of an increasing dispersion of income.

Our interpretation relies on the view that local knowledge shocks (e.g. the de-

velopment of new scientific insights that are relevant for local innovation) increase

the returns from localized learning externalities, providing incentives for companies

in knowledge-intensive sectors to cluster geographically. This in turn affects residen-

tial segregation, as workers in creative occupations relocate to live closer to their

place of employment. But therein lies a powerful amplification mechanism, as the

endogenous response of residential amenities, valued disproportionately by the cre-

ative class, makes the overall change in residential segregation more pronounced. A

quantitative model of the internal structure of cities, estimated using detailed neigh-

borhood level data on residence and employment in U.S. cities, predicts that as much
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as 66% of the overall effect can explained as the result of the endogenous evolution

of localized, occupation-specific residential amenities.

The rise of the knowledge economy is profoundly changing the way we live and

interact. The increasing economic divide in areas experiencing rapid growth in their

innovative sectors has often been cited as one of the main challenges that advanced

economies will need to face in their near future, as it brings about social unrest and

political instability. Understanding its causes is a crucial step in properly designing

policies aimed at confronting it, and making sure this secular shift happens in an

inclusive way. Those suggested policies include improvements in the public transit

system, supply of affordable housing, and change in the way public goods, such as

schooling, are provided. Our quantitative framework, which combines state-of-the-

art techniques from urban economics with newly constructed datasets on patenting

and on the geographical distribution of creative occupations in the universe of U.S.

cities, is especially suitable to study the effects of those policies. This is left for

future research.
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CHAPTER 2

The Geography of Unconventional Innovation

with Ruben Gaetani

2.1. Introduction

The idea that informal interactions are central to innovation and knowledge dif-

fusion has become a cornerstone of recent theories of economic growth (Lucas, 1988).

If true, this idea implies that economic geography, by determining the extent of those

interactions, should play a first-order role in the creation and diffusion of knowledge.

A sizable literature has built on this intuition to emphasize the role of cities and ag-

glomeration in driving technological progress and growth (Glaeser et al., 1992; Black

and Henderson, 1999; Glaeser, 1999).

In this paper, we empirically examine the link between density and innovation

using narrowly geo-referenced information on patenting activity in the United States.

Our geographically disaggregated data show that the advantage of cities in produc-

ing innovation is more nuanced than commonly believed. While suburban areas are

responsible for a substantial share of overall innovation activity, high-density places

disproportionately generate innovation with a high degree of unconventionality. This

finding reconciles the intuition that density fosters creativity with the observation

that the origin of innovation in the U.S. is far from being limited to dense urban
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areas. We then propose a spatial theory of a knowledge-based economy that is con-

sistent with our findings. The theory highlights a novel rationale for why economic

activity agglomerates in places of different density and degree of diversification. This

rationale is grounded in the process of knowledge creation and reconciles the tension

between returns to local specialization (Marshall, 1890) and returns to diversity (Ja-

cobs, 1969), without relying on agents whose productivity is ex-ante heterogeneous.

While existing spatial theories of innovation and knowledge diffusion have focused on

explaining heterogeneity in size (Davis and Dingel 2016) or diversification (Duranton

and Puga 2001), our model can account simultaneously for both dimensions, as well

as their empirical relation, opening up novel insights for policy analysis. We show

that a system of place-based subsidies can have a significant impact on aggregate

welfare by changing both the intensity and composition of innovation activity.

The empirical analysis is based on the full-text record of all the patents granted

by the USPTO in the years 2002-2014, georeferenced at the County Sub-Division

(CSD, henceforth) level. At this narrow level of geographical disaggregation, the

concentration of innovation activities in high-density areas appears to be smaller

than commonly thought. Over 77% of the patents in our sample originate from

geographical units with density below 1,600 people per square kilometer.1 The rela-

tionship between patenting per capita and density of population is non-monotonic,

1In 2005, the density of population of San Jose-Palo Alto was 1,547 residents per square km. The
share of patents produced in CSDs with lower density is 63.4%. As a comparison, in 2005, density
of population is 26,407 in Manhattan; 7,175 in Boston; 6,514 in San Francisco; 5,588 in Chicago.
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peaking around the density of San Jose-Palo Alto and declining for higher levels of

density.

However, our disaggregated data reveal a more nuanced connection between den-

sity and innovation outcomes.

First, innovation produced in densely populated areas is more likely to be built

upon unconventional combinations of prior knowledge. To show this fact, we propose

a notion of technological distance, based on the observed network of patent citations,

that proxies for the intensity of idea flows between fields. We develop an algorithm

in the spirit of Uzzi et al. (2013) to evaluate the atypicality of the references listed

in each patent. Our measure compares the observed frequency of each pairwise

combination of citations with the frequency one would expect if references were

distributed at random. This procedure assigns an index of conventionality (c-score)

for each citation pair: combinations are conventional if their empirical frequency is

large compared to their random frequency. The c-score ranks inventions along a

dimension that is economically meaningful: Unconventional patents are significantly

more likely to be highly cited compared to conventional ones, and significantly less

likely to be produced by large, publicly traded firms. We find that unconventional

innovations tend to disproportionately originate from densely populated areas. This

relationship is statistically and economically significant, emerges both in patent-level

and CSD-level regressions and is robust to a wide variety of specifications.

Second, dense cities host a more diversified pool of learning opportunities. Com-

puting the technological distance between any pair of patents produced in each CSD,
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we find that pairwise combinations of inventions in high-density CSDs are more tech-

nologically distant than combinations in low-density ones. Therefore, inventors in

dense cities are more likely to be exposed to ideas from distant backgrounds. This

higher degree of local diversification can translate into a higher degree of unconven-

tionality, provided that the local pool of innovation is a predictor of the technologies

combined into new inventions. To get at this, we adopt a difference-in-difference

strategy and look at the patenting activity of pre-existing firms upon arrival in town

of companies in different technological fields. We find that such arrival significantly

biases the citation behavior of pre-existing entities toward the field of the arriving

firm. To the best of our knowledge, this paper is the first to provide direct evidence

of inter-sectoral localized knowledge spillovers operating through this channel.

The facts that we document suggest an alternative interpretation of how tech-

nological change interacts with economic geography. Overall, suburban areas play a

prominent role in the innovation process. Big innovative companies such as IBM or

Motorola tend to perform their research in large office parks located outside main

city centers. One possible interpretation is that these companies can organize knowl-

edge flows efficiently within the organization, and do not need to rely on casual

interactions in a dense environment. By contrast, informal interactions in dense

and diversified areas may become important in generating knowledge flows across

technologically distant fields, since specialized formal networks (e.g. firms, academic

departments or research labs) may not internalize them efficiently. As a result, inno-

vations originating in high-density areas will display more uncommon combinations



83

of prior knowledge. This calls for a reassessment of the theoretical link between ge-

ography and innovation. In particular, a spatial model of innovation should be able

to account for the simultaneous emergence of specialized clusters in suburban areas

and diversified hubs in urban centers, while taking the heterogeneity of innovation

into account. In the second part of the paper, we propose such a model and study

its implications for place-based policy analysis.

In our setting, innovators are specialized in one out of a set of scientific fields.

They choose where to locate, balancing congestion costs and innovation opportu-

nities. New product lines are created by combining an unconventional idea, which

assembles diversified knowledge from multiple fields, with a conventional idea, that

embodies specialized knowledge from one single field. Innovators have an incentive to

cluster with people of similar background to benefit from intra-field spillovers that

increase their ability to develop ideas. However, developing unconventional ideas

demands interactions with inventors from different fields, which require additional

search through informal channels. This friction amplifies the benefits from agglomer-

ation in the form of inter-field spillovers, and implies that, in equilibrium, diversified

cities are more densely populated than specialized ones.

The model reproduces the geographical sorting of innovation activity observed in

the data. The complementarity between conventional and unconventional ideas leads

to the emergence of asymmetric sites, both in terms of density and specialization.

Densely populated cities diversify and generate unconventional innovation, whereas

specialized clusters emerge in low-density areas and produce conventional ideas. The
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equilibrium implies that composition and intensity of the innovative activity are

tightly related to the economic geography, and depend on the parameters of the

model in an intuitive way.

This unexplored link opens up novel possibilities for welfare improving place-

based transfers. Market forces produce wedges in the balance between the rate

of invention and urban congestion, and in the balance between the supply of con-

ventional and unconventional ideas. We study optimal policy in this setting, and

characterize conditions under which a planner would use place-based policies to in-

crease urbanization and boost unconventional innovation. We also show that welfare

gains from the optimal set of transfers are significantly larger when the planner has

the ability to affect the urban structure by creating new cities and reconverting the

nature of existing ones, compared to a planner who can only intervene by relocating

agents within the current urban structure.

This paper contributes to the empirical and theoretical literature on the role

of localized knowledge spillovers for innovation and growth. The importance of

localization and geography for the spreading of knowledge, which dates back to

Marshall (1890),2 has been the subject of extensive research in recent years since

Lucas (1988) and Krugman (1991) seminal papers on economic development and

geography.

2In Marshall’s famous words: “When an industry has thus chosen a locality for itself, it is likely to
stay there long: so great are the advantages which people following the same skilled trade get from
near neighborhood to one another. The mysteries of the trade become no mysteries; but are as it
were in the air, and children learn many of them unconsciously.”
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A sizable literature has provided empirical estimates of the size and properties of

local knowledge and productivity externalities. Jaffe et al. (1993) find that patent

citations display a significant bias towards patents that were produced in the same

state and metropolitan area. Greenstone et al. (2010) estimate significant agglomer-

ation spillovers on TFP by comparing winning and losing counties bidding to attract

large plants. Kerr and Kominers (2014) propose a theory of cluster formation based

on firm’s location and interaction choices, and confront its predictions using data

on patent citations by technology class, finding that the geographical properties of

innovation clusters are controlled by the spatial range of knowledge transmission,

which is specific to each technology class.

Another body of literature has investigated the implications of knowledge ex-

ternalities for the spatial concentration of innovation, and its interaction with the

geographical distribution of economic activities more broadly. Audretsch and Feld-

man (1996) find that, in State-level regressions, knowledge intensity in an industry

is positively related to its geographical concentration of innovation, after control-

ling for the concentration of production. Rosenthal and Strange (2001) find that

industry-level measures of knowledge spillovers have a significant effect on industry

agglomeration only at a very narrow geographical levels (specifically, ZIP codes).

Carlino et al. (2007) document a positive relationship between employment density

and patent intensity across MSAs. Agrawal et al. (2010) use patent citations to

shed light on the reason why, despite the well known advantages from innovating in
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dense and diverse cities, we observe the prevalence of large firms locating in “com-

pany towns”. The authors find that those companies tend to cite disproportionately

previous own inventions, suggesting a limited scope for them to have access to broad

and diversified learning opportunities. A number of studies have focused on the role

of specialization and diversity in cities in driving innovation and economic outcomes

(Glaeser et al. 1992; Florida and Gates 2001; Feldman and Audretsch 1999; Delgado,

Porter and Stern 2014). Our main finding is broadly consistent with Packalen and

Bhattacharya (2015), who find that over the last century newer concepts have been

implemented in inventions originating from high-density regions.3 A comprehensive

review of the existing literature on the geography of innovation can be found in

Carlino and Kerr (2015).

This paper also contributes to the theoretical literature on spatial equilibria in a

knowlege-based economy. Glaeser (1999) proposes one of the first models of knowl-

edge flows in a spatial setting. The coexistence of diversified and specialized cities

in an innovation economy was first analyzed by Duranton and Puga (2001). In their

model, young firms locate in diversified cities to experiment with different proto-

types, while established firms move to specialized sites where cost advantages are

stronger. Davis and Dingel (2016) develop a model in which productivity in cities is

3Packalen and Bhattacharya (2015) find that throughout the last century, patents produced in
more densely populated urban areas have made more intense use of newer concepts, identified as
new sequences of words. On the contrary, we look directly at combinations of ideas. The pattern of
geographical sorting that we document runs through a specific channel, namely, a more hybridized
composition of the knowledge base upon which new ideas are built. Packalen and Bhattacharya
(2015) also find that the advantage of dense cities is significantly weaker in the part of the sample
corresponding to the time period covered by this paper. This suggests that the sorting that we
document could be even stronger if an earlier sample of patents were used. This is left for future
research.
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fostered by informal interactions among people with heterogeneous abilities. In their

setting, the heterogeneity in city size is determined by the comparative advantage of

high-skilled individuals in an environment with high learning opportunities. Our set-

ting rationalizes heterogeneity in city size through the complementarity of different

forms of innovation, while maintaining homogeneity in agents’ productivity.

The remainder of the paper is organized as follows. Section 2.2 introduces the

dataset and presents new empirical facts about the geographical organization of the

innovative activity in the United States. Section 2.3 introduces the model, charac-

terizes its solution, highlights the mechanism, and studies its implications. Section

2.4 analyzes optimal place-based policies under fixed and flexible urban structure.

Section 2.5 concludes.

2.2. Empirical Analysis

The analysis is performed using the universe of patents granted by the US Patent

and Trademark Office (USPTO) between January 2002 and August 2014, and filed

between January 2000 and December 2010. Table B.23 reports the total number

of patents by filing year. There are several advantages to focusing on this recent

sample. First, the recent digitization of the patent archive has made it easier for

authors and reviewers to look for earlier patents to reference. Second, by focusing

on a short period, we minimize long-run changes in the propensity to patent and

the technological composition of the sample. Third, we can reliably link the location
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reported in the patent with socio-economic and demographic characteristics from the

Census and the American Community Survey.

Every patent is assigned to one of 107 International Patent Classification (IPC)

categories.4 For each grant, we gather information on the identity and location of

the original assignee, the inventors, as well as on the full list of cited patents (up

to a maximum of 1,500 citations per patent). Every patent is geo-located following

a hierarchical rule: If the patent file reports the name of an institutional assignee

(e.g. a company, a research lab or an academic institution), we assign the patent to

the geographical coordinates of its location; if it does not report any assignee or its

address is missing or located outside the United States, we attempt to geotag the

grant according to the location of its first inventor, otherwise of its second inventor

and so on until we are able to assign a location to each patent. Note that we

choose to use the location of the assignee, whenever available, instead of the address

of the inventor. Most of the literature on the subject, since Jaffe et al. (1993)

uses the location of the inventor. Both alternatives raise a number of issues. For

example, when a patent lists multiple inventors whose locations are too far apart

to suggest any interaction through spatial proximity, the address of the institution

can represent a more accurate indication of the geographical origin of the invention.

Many companies issue patents under several addresses, corresponding to different

establishments or research facilities. The main concern with our approach is that

4Since each grant is associated with several IPC classes but only one main USPTO class, we build a
many-to-one function that maps every USPTO class to a single IPC class based on the associations
that recur more often.
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the address of the assignee sometimes represents the headquarters of the company

instead of the research facility.5 To address this concern, we run robustness checks

using two separate geotagging strategies: (1) the sub sample of patents assigned to

the address of the firm, only when it is in the same state of the address of at least one

of the inventors and (2) all the patents located at the address of the inventor. We

mention these checks several times throughout the text. We only consider patents

that reference at least two citations. The main analysis is performed on a final sample

of 1,058,999 patents filed over an 11-year period.

The analysis is conducted at a County Sub-Division (CSD) level. The CSD is

the finest geographical unit that we are able to identify uniquely by intersecting

the location information retrievable from the full-text of the patent and the data

available from the Census and the American Community Survey.6 The CSD is finer

than a county. It typically coincides with city boundaries and, in a few cases (e.g.

New York City) a city can be partitioned in multiple CSDs. Since demographic

data at this level of disaggregation are only available every 10 years, we interpolate

the values of the demographic variables between 2000 and 2010 assuming a constant

growth rate throughout the years.

2.2.1. Low-density areas produce a substantial share of patents

The literature on the geography of innovation has long emphasized the importance

of density of population in determining innovation outcomes, and documented the

5Aghion et al. (2015) report a 92% correlation between the two locations at a State-level.
6The socio-economic and demographic indicators at a CSD level are available at https://nhgis.org.
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concentration of innovation activities in densely populated regions. Most studies

have focused on large geographical units, such as States, Commuting Zones (CZs) or

Metropolitan Areas (Carlino et al. 2007; Abel et al. 2011). A visual inspection of the

geography of patenting in the U.S. confirms this intuition. The map in Figure A.30

shows the distribution of continuously innovative CSDs, defined as locations that filed

at least one grant per year between 2000 and 2010.7 There is a clear tendency for

innovative activity to concentrate around main urban areas, highlighting a pattern

that one would expect. For example, the East-Coast, the Chicago Area, the Texas

Triangle and the Bay Area, among others, are all highly innovative regions.

The left panel of Figure A.21 displays a bin-scatter plot of the CZ-level empirical

relationship between the logarithm of density of population (measured as residents

per square kilometer) and patenting intensity (measured as patents per capita)8 in

the balanced panel of 742 U.S. CZs between 2000 and 2010.9 At this level of dis-

aggregation, the common intuition that density is associated with higher innovation

intensity is confirmed. More densely populated CZs have higher patenting per capita,

and the relationship appears to be monotonically increasing even in the right portion

of the density distribution. The coefficient of the underlying regression implies that

7Note that CSDs are a partition of the US: the empty areas are CSDs where no patents were filed
between 2000 and 2010.
8We winsorize this variable at the 1% level. Table B.24 reports the summary statistics of the main
variables. We weight observations by total population, and include year fixed effects to control for
aggregate trends in patenting and density.
9To obtain the bin-scatter plot, we divide the variable on the x-axis into bins (typically 50
or 100 bins) - each containing the same weighted number of observations - and take the
mean of the y-variable across the observations falling in each bin. Chetty et al. (2013)
show that this methodology graphically captures the correlation between two variables. See
http://michaelstepner.com/binscatter/ for a discussion.
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doubling CZ-level density is associated with 0.10 more patents per 1000 residents.

The right panel of Figure A.21 shows the same correlation only for the subset of

the densest CZs that make up 50% of the U.S. population in 2005. The correlation

remains positive and significant, and the underlying coefficient implies that doubling

density is associated with 0.08 additional patents per 1000 residents.

The picture changes substantially when we narrow down the unit of observation to

the CSD-level. Figure A.31 shows the distribution of continuously innovative CSDs

in close-up maps of the four most densely populated metropolitan areas. Two less

obvious observations emerge. First, a substantial part of patenting activity occurs

away from main urban centers, often in low-density areas that are geographically

separated from major cities (notably, Armonk, NY and Schenectady, NY). Second,

even within major urban agglomerations, a big share of the innovative action takes

place in their suburban portion (e.g. Schaumburg, IL and Mountain View, CA).

Overall, low density regions seem to play a key role in the innovation process. About

77% of the patents filed between 2000 and 2010 originate from CSDs with 2005

density below 1,600 residents per square km (slightly above San Jose-Palo Alto),

and about 63% from CSDs with 2005 density below 1,500 (slightly below San Jose-

Palo Alto).10

The left panel of Figure A.22 shows the CSD-level empirical relationship between

the logarithm of density and patents per capita,11 Patenting intensity is no longer

monotonically increasing in density, peaking at around 1,300 residents per square km

10About 12.2% of all the grants in the dataset are assigned to the San Jose-Palo Alto CSD.
11Again, we winsorize this variable at the 1% level.
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(roughly the density of CSDs such as San Jose-Palo Alto, Austin and Raleigh) and

declining for CSDs with higher density. The right panel of Figure A.22 include only

the densest CSDs that make up 50% of the U.S. population in 2005. The relationship

is weak and, if anything, decreasing, with the underlying coefficient implying that

doubling density in the right portion of the distribution is associated with 0.02 less

patents per 1,000 residents, although the estimated coefficient is not statistically

different from zero.

2.2.1.1. Robustness. There are three major measurement concerns related to the

interpretation of Figure A.22. First, the choice of a narrow geographical unit of

analysis raises the possibility that commuting can confound local population density

as a proxy for personal interactions. Second, the choice of using density of population

can bias the empirical correlation if units with a high density of skill-rich employment

tend to have low overall density (as would be the case for places like Mountain View,

CA, and Armonk, NY). Third, the choice of locating the address of the firm whenever

possible raises the concern that a firm files for the patent in a location that is different

from the one of the research facility.

To address these concerns, we look at two extreme cases. In the first case, we

assume that all the relevant interactions only occur at the workplace. To attenuate

the possibility of incorrectly assigning patents at the firm’s headquarters instead of

the research facility, we consider only the subset of patents for which the assignee is

in the same state of at least one of the inventors. In this case, we would be correctly

assigning the location, but learning opportunities would be mismeasured, as density
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of workers should be used instead of density of residents. The top panel of Figure

A.32 reproduces the results of Figure A.32 by using density of workers and innovation

intensity for this subset of reliably geo-located patents. To measure density of em-

ployment, we use data from the National Establishment Time Series, that contains

close-to-universe information on establishments in the U.S., including industry indi-

cators.12 In the middle panel of Figure A.32, we use density of knowledge-intensive

employment, which controls for the skill composition of the local labor force and

provides a more accurate measurement of the interactions that are relevant for in-

novation. Although the relationship between density and patenting intensity is now

tilted upwards compared to Figure A.32, the qualitative patterns are preserved, with

patenting intensity peaking for intermediate levels of density and declining for places

in the right portion of the density distribution.

In the second case, we assume that all the relevant interactions only occur the

inventor’s residence and its surroundings. This time, learning opportunities would

be correctly measured by population density, but the patents issued to institutional

assignees would be wrongly geolocated. In the bottom panel of Figure A.32, we repli-

cate the analysis by geo-locating all the patents at the address of the first inventor.

The patterns appear even more pronounced than in Figure A.32, with a significant

negative relationship emerging in the right panel.

12See the Appendix of Berkes and Gaetani (2018) for details on the geolocation of each estab-
lishment, on the crosswalk between industry and occupation, and on the definition of knowledge-
intensive occupations.
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2.2.2. Dense locations produce more unconventional innovation

Once we account for a narrow level of disaggregation to tell apart highly urbanized

centers of larger metropolitan areas from their suburban parts, the intuition that

learning opportunities offered by density should be strong enough to attract the

bulk of innovation receives weak support from the data: suburban regions take on a

relevant portion of aggregate patenting activity. Agglomeration positively correlates

with the rate of invention in low-density places, but not in high-density ones. A

possible explanation is that density catalyzes the flow of knowledge across fields that

are not fully connected through established networks, whereas formal organizations

are able to internalize knowledge flows efficiently within their own field without

relying on density-driven informal interactions. As a result, higher density eventually

does not translate into more intense patenting, but rather into a shift in the type of

innovation produced.

In this subsection, we show that innovation produced in high-density areas tends

to be constructed on a more diversified set of prior knowledge. To assess this fact,

we build a measure of atypicality of the knowledge base of each invention. We

use the distribution of citations across technological classes to infer the intensity of

knowledge flows between fields. The fact that a pair of patent classes is recurrently

referenced together indicates frequent knowledge flows between the two. Conversely,

the fact that a given pair of technologies is rarely referenced together denotes the

lack of frequent knowledge transmission between the two.
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2.2.2.1. Measurement. We now describe how we measure the degree of intercon-

nection between two technological classes. We adapt the methodology proposed by

Uzzi et al. (2013, UMSJ henceforth) who study atypical citation patterns in the

universe of academic papers. To the best of our knowledge, this paper is the first to

apply a similar algorithm to patents. The basic idea is to compare the frequency of a

bundle of classes in the observed network of citations with the frequency one would

obtain by assigning citations at random in a replicated network. In this process, the

structure of the network is kept constant. In other words, references in the repli-

cated network are randomly reshuffled under the constraint that the total number of

citations from each class A to each other class B is the same in the two networks.13

The conventionality-score (or c-score) of the pair (A, B) is then defined as the ratio

between the observed frequency and the random frequency:

c (A, B) =
fobs (A, B)

frand (A, B)
× 100.

The interpretation of the c-score is straightforward: a high value of c implies

that we observe classes A and B cited together relatively more often in the data

than what we would expect if citations were assigned pseudo-randomly. We refer

13This is a departure from UMSJ that only keep the total number of citations from and into
each class constant. We do this so that our measure does not depend on the size of a given class
relative to the whole sample. While aligning with the basic intuition in UMSJ, we differ from
their implementation in two additional dimensions. First, we do not consider the time dimension
explicitly in the replicated network: the total number of citations is kept constant across classes,
but not across years. Given that our time window (2000-2010) is relatively short, this simplification
is not likely to have a big impact on our estimates. Second, we assume that the number of nodes
is big enough such that the law of large numbers applies, which allows us to have an analytical
expression for the random frequency. This delivers an exact formula that can be computed without
simulating the replicas.
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to such a citation pair as “conventional” and infer that knowledge flows between

A and B are relatively frequent. On the other hand, a low ratio indicates that A

and B are observed in the data relatively less often than at random. In this case,

the combination is defined as “unconventional”. The details of the algorithm are

provided in Appendix A.

Figure A.35 shows a heat-map of the symmetric c-score matrix. Each pixel rep-

resents a citation pair and it is colored based on its c-score. For example, the pixels

on the diagonal represent the c-score of citation pairs of the form (A, A). We use

a chromatic scale in which brighter pixels denote more unconventional pairs. The

figure highlights two patterns that support the validity of the measure. First, combi-

nations on the diagonal tend to be more conventional than other citation pairs. This

is exactly what we would expect: once a patent cites a certain class, it is likely to cite

it again, since that class plays some role in the patent development. Second, around

the diagonal we observe some “clusters” of conventionality. This happens because

the IPC classification system assigns close labels to classes that are technologically

close. For example, classes in the top-left cluster group all the patents related to

human necessities. It is not surprising that a citation that falls in that group is likely

to appear with another citation in the same group.14

14However, the c-score identifies technological proximity also between classes that belong to dif-
ferent IPC clusters. The following are some significant examples: Food (belonging to the Human
Necessities cluster) and Sugar (belonging to the Chemistry cluster) have a c-score of 1.17; Butchery
(Human Necessity) and Weapons (Metallurgy) have a c-score of 1.14; Decorative Arts (Printing)
and Photography (Instruments) have a c-score of 1.15; Knitting (Textiles) and Brushware (Human
Necessity) have a c-score of 1.84.
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We assign to each patent an entire distribution of c-scores, one for each pairwise

combination of references (hence, a grant with N references is assigned
(
N
2

)
possibly

identical scores). Two statistics of the distribution are of particular interest. The

10th percentile (or “tail-conventionality”) proxies for the most unconventional pair

of classes listed by the patent.15 The median c-score (or “core-conventionality”)

proxies for how tightly grounded the patent is in prior knowledge. Figure A.33 plots

the cdf of the core and tail-conventionality in our final sample. Consistently with

the findings in UMSJ, it shows that the median patent is highly conventional at the

core (its core-conventionality is well above one).

Next, we show that having an unconventional tail is a powerful predictor of

technological impact. To show this, in the spirit of UMSJ, we define a hit patent as

an invention that received more citations than 95% of the other grants issued in the

same year and belonging to the same class. We estimate a logit model of the form:

(2.1) logit (Hitict) = α + δc + δt + β × UTailict + γ × Coreict

where Hitict is a dummy that takes value 1 if grant i is a hit patent, UTailict is a

dummy that takes value 1 if the tail-conventionality is below the median of class c

in year t, Coreict is a set of 4 indicators denoting the core-conventionality quartile

(in class c and year t), δc and δt are class and time fixed-effects respectively.16

15In this paper we follow USMJ and use the 10th percentile for tail-conventionality, but our results
are robust to using the minimum. We winsorize the c-score measure at the 1% level.
16We include time and class fixed effects to account for the fact that discreteness in defining the
top 5% of the citation distribution leads some classes/years to have a mechanically higher share of
hit patents. A linear probability model yields very similar results.
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Figure A.23 shows the joint marginal effects of the two variables on the prob-

ability of becoming a hit patent. The conditional probability ranges from 3.7% of

a patent with a conventional tail and an unconventional core to 6.2% of a patent

with an unconventional tail and a somewhat conventional core. By construction, the

unconditional probability is 5%. Having an unconventional tail increases this prob-

ability by about 1.7 percentage points. On the other hand, the core seems to have

a smaller impact. If anything, having an unconventional core decreases the chances

of being a hit patent. Our results are very similar to the ones obtained by UMSJ

for academic papers: scientific research with the highest impact appears strongly

rooted in existing knowledge and at the same time displays the intrusion of novel

combinations. This surprising similarity suggests that the process of innovation, no

matter if academic or applied, follows a somewhat universal pattern.17

The strong correlation between unconventionality and technological impact shows

that the c-score is ranking patents along a meaningful dimension. Motivated by this

result, in what follows we will use tail-conventionality as our reference measure.

2.2.2.2. Finding. Here we explore the hypothesis that density plays the decisive

role of catalyzing knowledge diffusion across unrelated fields. If this intuition is

correct, we should observe that patents from high-density regions display more un-

conventional references. By facilitating interactions, density allows people to gain

17The fact that high-impact research is novel and, at the same time, tightly grounded, is explained
at least in part by UMSJ by the necessity to efficiently deliver an idea to an inertial audience.
For example - as mentioned in their paper - Charles Darwin’s On The Origin of Species does not
address the groundbreaking idea of natural selection until the second part of the work, the first part
being entirely dedicated to a much more uncontroversial subject: the selective breeding of cattle
and dogs.
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insights they cannot acquire through their formal network. This translates into new

ideas being obtained by assembling a more hybridized set of prior knowledge.

Table B.19 and Figure A.24 show several CSD-level correlations between (log)

density of population (or college educated workers) and the tail-conventionality of the

median patent filed in a given CSD/Year observation. For the purpose of this section,

we limit the sample to continuously innovative CSDs, which gives us a balanced

panel of 1,645 locations over 11 years, for a total of 18,095 observation. In all the

specifications, increasing density of population has a negative and significant impact

on the tail-conventionality of the median patent. In the baseline specification, an

increase in density of population equal to the weighted residual inter-quartile range

decreases tail-conventionality by 27% of its weighted residual inter-quartile range.

To study this relationship more in depth, we add to the specification various CSD

specific controls, including (log) median income, the percentage of people with a col-

lege degree, inequality (measured by the Gini index). The results are reported in

Table B.20. The effect of density on tail-conventionality stays negative and statisti-

cally significant. The coefficient on median income is always positive and statistically

significant. This is probably driven by specialized high-income company towns. The

share of college graduates and the degree of inequality (Gini index) both have a

negative effect, but the coefficients are not statistically significant.

Table B.21 reports the marginal effects of (log) density on the probability that

the patent has an unconventional tail, obtained from a patent-level logit regression.

Consistently with the CSD-level results, the coefficient is positive and significant.
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This patent-level regression allows us to control for whether the patent is produced

by a publicly traded firm. The results show that traded firms produce conventional

innovation, which is consistent with the interpretation of unconventional innovation

as creative destruction events. This is an interesting fact per se and would deserve

further research.

2.2.2.3. Robustness. Table B.25 in Appendix shows that these results are not

driven by any of the four most densely populated urban centers (New York City,

Boston, San Francisco and Chicago). The bin-scatter plots in Figure A.36 repeat the

robustness checks mentioned in Section 2.2.1.1. The top panel shows the correlation

between tail conventionality and density of employment for the subset of patents in

which the assignee and at least one of the inventors coincide at the level of the state.

The middle panel reproduces the same result using density of knowledge-intensive

employment. The bottom panel uses all the patents located at the address of the

first inventor. All these alternative specifications yield consistent results.

Figures A.22 and A.24 show that density of population and innovation are indeed

tightly related. Density seems to be more powerful in affecting the type, rather than

the rate, of local innovation activities. This pattern of geographical sorting runs

through a previously unexplored channel, namely, a more hybridized composition of

the knowledge base upon which new ideas are built. In the next two subsections, we

show that (1) dense cities offer a more diversified pool of interaction opportunities

and (2) those interactions can be inferred by looking at innovation outcomes. These
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two findings together suggest that the geographical sorting that we document can be

explained as a result of the local interactions available in densely populated areas.

2.2.3. Dense locations are more technologically diversified

In this subsection, we show that dense cities tend to be more diverse in their inno-

vation output. In particular, we use the concept of the c-score to show that dense

cities host a diversified range of innovation activities spanning technologically dis-

connected fields, whereas low-density areas are specialized in a set of technologically

close fields.

2.2.3.1. Measurement. In addition to assessing the degree of unconventionality

of a single patent, the idea of the c-score can also be useful for evaluating the tech-

nological diversification of a given subset of inventions: a group of patents is highly

diversified if two items drawn at random from the group are likely to belong to

technologically distant fields. This idea can be applied to evaluate the degree of

technological diversification of a given region over a certain period.

Specifically, we consider all the pairwise combinations of patents filed in each

CSD/Year bin. Each of these combinations is assigned the c-score corresponding to

the pair of patent classes to which the two grants belong. For example, a CSD that

has produced N patents in a given year will be assigned
(
N
2

)
c-scores.18 We then

compute the median c-score of those combinations. This procedure delivers an index

18To clarify, in this case we are not evaluating the set of references of a given patent, but rather
the technological distance of the innovation output itself.
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of concentration for County Sub-Division CSD in year t defined as:

(2.2) Concentration (CSDt) ≡ median ({c (CLASSi, CLASSj) | (i, j) ∈ CSDt}) .

2.2.3.2. Finding. The bin-scatter plot in Figure A.25 shows the correlation be-

tween density of population and the concentration index defined in (2.2). High-

density regions are significantly more diversified than low-density ones. The mag-

nitude of this effect is economically meaningful: a regression of log-density on the

concentration index yields a coefficient of −2.7, which implies that an increase in

density of population equal to the weighted residual inter-quartile range increases

diversification by 30% of its weighted residual inter-quartile range.

2.2.3.3. Robustness. Since the measure in (2.2) computes the median of a set

whose cardinality grows at a binomial rate with the number of local patents, a pos-

sible concern is that CSDs with a higher number of patents (as it is typically the

case with dense cities) mechanically have a low index of concentration. To address

this possibility, we conduct a placebo experiment in which we generate 50 datasets

identical to the original one in terms of total number of patents produced by each

CSD/Year bin, but reshuffling the geographical allocation of individual patents at

random. We then run 50 regressions of log-density on the simulated indexes of

concentration. The resulting coefficients are plotted in Figure A.34. Although the

distribution of coefficients for the simulated datasets still has a slightly negative aver-

age, showing that the index in (2.2) has indeed a dimensionality bias, the estimated

coefficients range between 0.04 and −0.099, with a mean of −0.037, two orders of



103

magnitude smaller than the estimated coefficient on the original sample (2.7). This

illustrates that the correlation in A.25 is not explained by this bias.

2.2.4. The local pool of ideas predicts local inventions

The key implication of Figure A.25 is that, if local interactions are important in de-

termining the knowledge embedded into new inventions, people in densely populated

regions will have a more diversified pool of possible ideas to draw from and will,

as a result, have a higher chance of producing unconventional innovation. In the

extreme case in which local interactions are the only source of ideas, having access

to a local pool of innovators from remote fields will be a necessary condition for gen-

erating unconventional patents. In this subsection, we look at the citation behavior

of geographically close patenting firms to provide evidence of this class of cross-field

knowledge spillovers.

Inferring the existence of these externalities from the citation behavior of local

firms raises the obvious challenge that it is hard to disentangle knowledge spillovers

from endogenous locational choice. Places that produce (or are expected to produce)

significant knowledge flows between two fields can be endogenously populated by

firms belonging to those fields. For example, a company that aims to produce high-

tech wearable goods, might find it optimal to locate in a town hosting strong CPU

and apparel sectors.

To control for this possibility, we adopt a difference-in-difference approach and

follow the evolution of the citation behavior of pre-existing firms upon arrival in their
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location of a company from a different industry. The assumption is that the location

of pre-existing firms is uncorrelated with the locational choice of incoming firms.

Pre-existing firms are all the companies that patent at least once in a given CSD at

the beginning of the sample (year 2000). Incoming firms are all the companies that

file the first patent in a given CSD in some year after 2000 (we run a robustness

exercise considering only firms entering from 2005 onwards). Each incoming firm is

assigned to the technology class corresponding to the most recurring class among its

patents. Then, for each class-CSD-year observation, we construct an arrival shock

as:

(2.3) Acdt =

∑t
τ=2001Rcdτ

Pd,2000

where Rcdτ is the number of patents filed in year τ by incoming firms of class c in CSD

d and Pd,2000 is the total number of patents filed in 2000 by pre-existing firms in the

same CSD. In other words, the numerator of Acdt proxies for the cumulative inflow

of patents of class c, while the denominator normalizes by the size of potentially

affected firms.

The specification of the regression is the following:

(2.4) Scdt = δct + δdc + βAcdt + εcdt

where δct and δdc are class-year and CSD-class fixed effects, respectively, that control

for aggregate trends in the importance of a given class, and for the time-invariant

relevance of a given class in the local innovation output. The dependent variable
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Scdt is the percentage of citations that class c receives in patents filed by firms that

are pre-existing in place d and belong to a class different than c.19 Its unconditional

average is 0.43%.20 To estimate the parameter of interest, β, we exploit the variation

in the increase in the propensity to cite class c that results from a higher relative

inflow of firms of class c. The identifying assumption is that the citation shares

display parallel trends within the same class, across different CSDs. To see this

formally, consider the diff-in-diff representation of (2.4) between year t and year t+r

for class c in places d1 and d2:

(
Scd1(t+r) − Scd1t

)
−
(
Scd2(t+r) − Scd2t

)
= β

[∑t+r
τ=t+1Rcd1τ

Pd1,2000

−
∑t+r

τ=t+1 Rcd2τ

Pd2,2000

]
.

If β > 0, it means that pre-existing firms producing, say, laptops in a town that has

received a high inflow of apparel firms (compared to its size) have disproportionately

shifted their citation behavior towards apparel. The results are shown in Table

B.22. The estimates of β are always positive and statistically significant, as well as

economically meaningful: the arrival of a firm producing exactly as many patents as

Pd,2000 results in an increase in Scdt equal in size to its unconditional mean (column

3). We also report results where we construct the shocks only considering incoming

19For example, how frequently patents that belong to any class different from CPU reference items
in CPU .
20Given that we have 107 classes, if citations were distributed at random, every class should receive
a share of citations from other classes equal to 1

106 = 0.94% on average. The fact that the uncon-
ditional average is about half that number is simply telling us that on average half of the citations
go to items in the same class of the citing patent itself.
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firms that arrive in or after 2005 (column 4). The results are robust and larger in

magnitude.21

2.2.5. Discussion

We provided evidence that a significant share of innovation activity concentrates in

low-density CSDs, and, as a result, the relationship between density and patenting

is non-monotonic. Above a certain threshold higher density does not translate into

a higher rate of patenting. However, we show that it is possible to reconcile this

finding with the common wisdom that cities play a key role in fostering innovation.

In particular, we show that denser places produce innovation with a higher degree of

unconventionality, i.e. innovation that is built upon a more uncommon combination

of existing knowledge. We propose that the observed geographical pattern stems from

the fact that density is crucial in facilitating learning across distant fields, where ideas

are more efficiently transmitted through informal channels. However, this requires

dense cities to attract a diversified innovation pool, at the cost of weakening intra-field

externalities, which may result in a lower rate of invention. Finally, we show that the

local technological mix predicts the composition of the knowledge background upon

which new inventions are built, suggesting that local learning externalities across

fields are an important determinant of innovation outcomes.

21The fact that the estimated coefficient is larger in magnitude suggests, as one would expect, the
presence of a positive correlation between the class of firms arriving before and after 2005.
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In the next section, we develop a model of innovation in a spatial economy that

accounts for these empirical facts, and generates novel implications for place-based

subsidies and innovation policies.

2.3. Model

In this section, we explore the interaction between economic geography and com-

position of innovation in a general equilibrium model of a spatial economy, in which

the heterogeneity in innovation is explicitly taken into account. In its positive im-

plications, the model rationalizes the observed geographical patterns: specialized

clusters emerge in low-density areas and produce conventional innovation, while

high-density cities become diversified hubs and generate unconventional ideas. The

theory provides a novel rationale for the coexistence of heterogeneous cities (both

in terms of size and degree of diversification) without assuming agents whose ability

is ex-ante heterogeneous, differentiated products or intrinsic productivity differences

across different locations. In its normative implications, the model highlights pre-

viously unexplored room for the use of local policies, and shows that a system of

place-based subsidies can have sizable effects on welfare by affecting the intensity

and direction of innovation.
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2.3.1. Production and consumption

A representative household has access to a homogeneous final good that aggregates

a set X of available, perfectly substitutable, varieties:

C =

∫
X
ci di.

The economy is closed and there is no investment. Total consumption of the final

good is equal to total output. The representative household receives and consumes

a lump-sum transfer from the other agents in the economy (innovators, unskilled

workers, absentee landlords, city developers and absentee managers).

Active varieties are produced by firms whose production facilities are located

outside urban centers, in a congestion-free area where rent is zero. Firm producing

variety i decides how much unskilled labor li to hire in order to maximize:

(2.5) max
li

πi ≡ lβi − wli

where w is the wage of unskilled workers and β ∈ (0, 1). In order for product line i

to become active, one conventional and one unconventional idea directed to i must

be combined. We denote by x the measure of active product lines (or, equivalently,

the innovation rate).

Labor demand for active varieties is equal to:

(2.6) l =

(
β

w

) 1
(1−β)
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while total labor demand in the production sector is equal to LF = x l. Firm’s profits

are equal to:

(2.7) π = γ w−
β

1−β

where γ =
(
β

β
1−β − β

1
1−β

)
. A fraction a ∈ (0, 1) of firm’s profits is appropriated

by the innovators responsible for discovering the corresponding variety, while the

remaining share 1 − a is appropriated by absentee managers. The parameter a

captures all the factors that contribute to the wedge between the social and the

private returns to innovation, such as limited intellectual property protection and

dynamic technological spillovers.

In equilibrium, labor demand is constant across firms, which implies that total

output (and total consumption) is equal to:

(2.8) C = x1−β LβF ,

from which it emerges that production depends positively on the innovation rate, x,

and the mass of workers employed in production, LF .

For expositional simplicity, we assume that all the intermediate varieties in the

economy are high-tech devices (e.g. smartphones) that are obtained by combining a

software component (S) with a design blueprint (D). The model easily generalizes

to the case of multiple components or multiple sectors.22 In order for a variety to

22The extension simply requires an additional equilibrium condition that pins down the optimal
degree of diversification of cities.
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become active, an unconventional idea (that mixes software and design) must be

combined with a conventional idea (either in the software or in the design). Conven-

tional and unconventional ideas are matched via undirected search: letting ζ denote

the aggregate mass of unconventional, and ψ the aggregate mass of conventional

ideas, the resulting mass of active varieties is determined by the following matching

function:

(2.9) x = ζµ ψ1−µ

where µ ∈ (0, 1).

2.3.2. Economic Geography

Innovation takes place in a system of cities whose mass and size is endogenous.

2.3.2.1. Agents, Cities and Housing. The economy is populated by a measure

L of unskilled workers and a measure N = 1 of skilled innovators. Each innovator is

born either as a programmer (S) or a designer (D). For simplicity, we focus on the

symmetric case in which the mass of designers is equal to the mass of programmers,

so that NS = ND = 1/2.

Skilled and unskilled agents are fully mobile. Skilled innovators live in cities

with positive rent. Unskilled workers live either in rural areas (close to production

facilities) or in the outskirts of cities, and do not pay rent. There is a large mass of

potential settlements. Each settlement has an area equal to 1, which implies that

we can think of local population and local density interchangeably. These sites are
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owned by absentee competitive landlords, and governed by city developers,23 who

have the ability to tax and provide subsidies to the local economy. Developers have

three options for how to utilize their own site:

(1) They can establish a company town that provides research facilities for in-

novators to implement their ideas. Innovators living in a company town can

only interact with agents of their own type (e.g. at the workplace), but

cannot interact with innovators of the other type.

(2) They can establish a generic town that does not provide research facilities

directly but allows people of different types to potentially interact together.

(3) They can leave their site deserted.

In order to attract innovators, developers commit to provide type-specific subsidies,

τS and τD, to the research activity of local inventors. The subsidies are financed by

taxing the absentee landlords’ profits. City developers act to maximize profits (taxes

minus subsidies) and since option 3 leads to zero profits, a free-entry condition can

be used to pin down the active mass of sites of type 1 and 2. We denote by Nk the

skilled population in town k and Lk the local unskilled labor input.24 Each skilled

individual inelastically demands one unit of housing. Housing services are provided

by competitive landlords, who face a local housing production function:

(2.10) Nk =
(
Lk
)α

23As in Becker and Henderson (2000).
24We denote skilled population of type S and D by Nk

S and Nk
D, respectively.
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where the parameters α ∈ (0, 1) controls the strength of the congestion force. The

rent paid by residents of city k is equal to the marginal cost of producing housing

services:

(2.11) Rk =
w

α

(
Nk
) 1−α

α .

The entire landlord’s profit is taxed by the local developer, whose revenue is equal

to NkRk−wLk. To clarify, city developers are large agents at the local level but are

small from the point of view of the aggregate economy: they can affect local rents

but take all aggregate quantities and prices as given.

2.3.2.2. Innovation. Skilled agents are fully mobile and choose to live in the town

that offers them the best combination of rent and innovation opportunities, taking

into account the subsidies provided by city developers. The innovation process takes

place in three steps:

(1) Agents of type S living in a city with Nk
S innovators receives an idea with

probability
(
Nk
S
)φ

, where φ > 0 controls the extent of the learning externali-

ties. Similarly, inventors of type D living in a city with Nk
D peers receive idea

with probability
(
Nk
D
)φ

. Namely, individuals receive intra-field spillovers by

agents of the same type that live in the same location. Being surrounded

by a high number of “peers” increases the rate of arrival of ideas.25

25This source of agglomeration externality is akin to the cost-reduction externality considered by
Duranton and Puga (2001) in that it only affects agents of the same industry.
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(2) Upon receipt of an idea, the agent must either execute it conventionally,

through the local formal network, or search for an innovator of the other

type to execute the idea unconventionally:

(a) The first option (execute it conventionally) is only available to agents

living in company towns : in this case, the agent makes her conventional

idea available.

(b) The second option (execute it unconventionally) is only available to

agents living in generic towns : the programmer (or designer) starts

a search process in which he finds an innovator of the opposite type

with frequency Nk
D (or Nk

S). If search is unsuccessful, the idea is lost.

If search is successful, the innovator makes her unconventional idea

available.

(3) In order for a product line to become successfully active (we refer to this

case as a “successful innovation”), it must receive ideas from both an un-

conventional and a conventional innovator (of either type S or D). Letting

ζ denote the total mass of unconventional ideas in the economy, and ψ the

total mass of conventional ideas, a total mass of x = ζµψ1−µ is formed.

The resulting monetary value of the successful innovation is aπ, where π is

defined as in equation (2.7). The monetary value is split between the two

innovators according to Nash bargaining, with the unconventional innovator

receiving a fraction b ∈ (0, 1) of the profits, and the conventional innovator

receiving the remaining share 1−b. Note that this stage of the search process
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does not take place in cities, but rather on a decentralized, economy-wide

marketplace in which geographical factors are irrelevant.

Please note that the search process at point 2(b) is separated from the search pro-

cess at point 3. The former allows an innovator in a generic town to be matched

with an agent from the opposite background, and execute her idea unconventionally.

The latter allows an innovator (of any background) endowed with a conventional

idea to be matched with another innovator (of any background) endowed with an

unconventional idea. Importantly, the process at point 3 occurs in an economy-wide

marketplace that is unaffected by geography. If this matching process is successful,

a product line becomes active and the two matched innovators split the resulting

surplus (aπ) according to the bargaining weight b.

It follows from the discussion that the probability that an unconventional (con-

ventional) idea is turned into a successful innovation positively (negatively) depends

on the ratio between the aggregate mass of conventional to unconventional ideas,

κ ≡ ψ
ζ
. In particular, the probability that an unconventional idea becomes an active

product line is equal to κ1−µ, whereas the probability that a conventional idea is

executed is equal to κ−µ.

2.3.2.3. Utility and innovation rates. To save on notation, in what follows we

conjecture that company towns will be fully specialized (i.e. they will host innovators

of only one background). This conjecture will be proven formally in Proposition

2.3.1. Let KG denote the set of generic cities, and KCS (or KCD) denote the set of

S-specialized (or D-specialized) company towns. The utility of an inventor of type
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S living in city k can be written as:

(2.12) Uk
S =


(
1 + τ kS

) (
Nk
S
)φ
Nk
D b a π κ

1−µ −Rk k ∈ KG(
1 + τ kS

) (
Nk
S
)φ

(1− b) a π κ−µ −Rk k ∈ KCS

with the one for type D being analogous, but with inverted indexes. In (2.12), the

utility of an innovator of type S in city k ∈ KG is given by the frequency of idea

generation,
(
Nk
S
)φ

, multiplied by the frequency of matching with a D-type agent,

Nk
D, the frequency of finding a conventional idea on the economy-wide marketplace

(κ1−µ), and the resulting share of profits, baπ, subsidized by the city developer at

gross rate
(
1 + τ kS

)
, minus the local rental price of housing, Rk. Analogously, the

utility of an innovator of type S in city k ∈ KC is given by the frequency of idea

generation,
(
Nk
S
)φ

, multiplied by the frequency of finding an unconventional idea on

the economy-wide marketplace (κ−µ), and the resulting share of profits, (1− b) aπ,

subsidized by the city developer at gross rate
(
1 + τ kS

)
, minus the local rental price

of housing, Rk.

Once the spatial distribution of innovators is determined, the aggregate innova-

tion rates can be derived as:

(2.13) ψ =

∫
KCS

(
Nk
S
)φ+1

dk +

∫
KCD

(
Nk
D
)φ+1

dk.

(2.14) ζ =

∫
KG

[(
Nk
S
)φ+1

Nk
D +

(
Nk
D
)φ+1

Nk
S

]
dk
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In (2.14), the rate of unconventional innovation is given by the integral over all the

generic locations of the probability of arrival of ideas for S-type innovators,
(
Nk
S
)φ

,

multiplied by the mass of S-type innovators in city k, Nk
S , and multiplied by the fre-

quency of successful search for a D-type innovator, Nk
D, plus the corresponding prod-

uct for D-type innovators. In (2.13), the aggregate rate of conventional innovation

is given by the probability of arrival of ideas for S-type innovators in S-specialized

company towns, plus the same rate for D-type company towns.

The following assumption, that will be maintained throughout, is necessary to

ensure that agglomeration externalities are not sufficiently strong to perpetually

dominate the congestion force:

Assumption 1: 1
α
> 2 + φ.

2.3.3. Equilibrium

In spatial equilibrium, agents of the same type must be indifferent across active

locations:

Uk
S = Uk′

S ∀k, k′ ∈ KG ∪ KCS

Uk
D = Uk′

D ∀k, k′ ∈ KG ∪ KCD.

In what follows, we will focus on symmetric equilibria in which the contribution

to aggregate growth of designers and programmers is the same. This simply requires

ex-ante utility to be equalized also across types:

Uk
D = Uk′

S ∀k ∈ KG ∪ KCD k′ ∈ KG ∪ KCS .
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A local developer’s revenues are equal to the total profit made by the competitive

landlord:

Revk = RkNk − wLk =
w (1− α)

α

(
Nk
) 1
α .

Its expenses are equal to the total subsidies paid to the innovators:

Expk =



[
τ kS
(
Nk
S
)φ
Nk
D + τ kD

(
Nk
D
)φ
Nk
S

]
b a π κ1−µ k ∈ KG

τ kS
(
Nk
S
)φ

(1− b) a π κ−µ k ∈ KCS

τ kD
(
Nk
D
)φ

(1− b) a π κ−µ k ∈ KCD

.

In equilibrium, free entry of city developers will drive their profits to zero:

Revk = Expk ∀k ∈ KG ∪ KC .

To save on notation, in deriving the equilibrium, we work with the returns on

unconventional ideas, V , and the unskilled wage rate,W , normalized by the expected

returns on conventional ideas:

(2.15) V ≡ b a π κ1−µ

(1− b) a π κ−µ
=

b

1− b
κ

(2.16) W ≡ w

(1− b) a π κ−µ

where κ ≡ ψ
ζ
.

The fact that the relative return on unconventional ideas V depends linearly

on κ highlights a complementarity that is at the root of equilibrium existence and
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uniqueness. We now have all the ingredients to provide a definition of a symmetric

equilibrium for this economy.

Definition 2.3.1. A symmetric equilibrium is a set of company towns and generic

cities K =
{
KC ,KG

}
a utility level U , aggregate innovation rates ζ, ψ and x, profit

level π, wage rate w, subsidies
{
τ kS , τ

k
D
}
k∈K, local skilled populations

{
Nk
S , N

k
D
}
k∈K,

local rents
{
Rk
}
k∈K, local unskilled labor

{
Lk
}
k∈K, firm’s labor demand l and un-

skilled labor employed in production LF such that:

(1) City developers optimally choose τ kS , τ kD, Nk
S and Nk

D and make zero profits

(2) ζ, ψ and x are defined as in (2.14), (2.13) and (2.9), respectively

(3) U is defined as in (2.12) and is equalized across types and active sites

(4) Firm’s labor demand l and profits π are defined by (2.6) and (2.7), respec-

tively, and total labor in production is given by LF = xl

(5) Lk and Rk are defined as in (2.10) and (2.11)

(6) Labor markets clear:
∫
KN

k
S +Nk

D dk = N and LF = L−
∫
K L

k dk.

2.3.4. Characterization

We start by solving the city developer’s problem of determining the type, size and

composition of its location and the optimal subsidies. We can solve the problem of

a developer who aims to found a company and a generic town separately. The free-

entry condition will drive profits to zero and make the developer indifferent between

establishing any of the two categories of locations (and leave the site deserted).
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The problem of a city developer who chooses to establish a company town can be

written as:

maxNk
S ,τ

k
S ,N

k
D,τ

k
D

W (1− α)

α

(
Nk
S +Nk

D
) 1
α − τ kS

(
Nk
S
)φ+1 − τ kD

(
Nk
D
)φ+1

subject to :
(
1 + τ kS

) (
Nk
S
)φ − W

α

(
Nk
S +Nk

D
) 1−α

α ≥ U(
1 + τ kD

) (
Nk
D
)φ − W

α

(
Nk
S +Nk

D
) 1−α

α ≥ U

In this problem, the maximand represents the developer’s profits, while the con-

straints represent the level of utility the developer must guarantee to the inventors

to convince them to join the location. Notice that we have written the maximization

normalizing all terms by the expected returns on conventional ideas, (1− b) a π κ−µ.26

As a consequence, the returns on conventional ideas that enter the developer’s cost

and the inventor’s utility are normalized to one.

The maximization of a city developer choosing to establish a diversified city is

maxNk
S ,τ

k
S ,N

k
D,τ

k
D

W (1− α)

α

(
Nk
S +Nk

D
) 1
α − τ kS

(
Nk
S
)φ+1

Nk
DV − τ kD

(
Nk
D
)φ+1

Nk
SV

subject to :
(
1 + τ kS

) (
Nk
S
)φ
Nk
D V − Wα

(
Nk
S +Nk

D
) 1−α

α ≥ U(
1 + τ kD

) (
Nk
D
)φ
Nk
S V − Wα

(
Nk
S +Nk

D
) 1−α

α ≥ U

The following proposition characterizes the solution to the developer’s problem

and the equilibrium system of cities.

26This includes normalizing inventor’s utility U = U
(1−b)aπκ−µ .
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Proposition 2.3.1. In a symmetric equilibrium, city developers in company

towns (C) and generic towns (G) set the optimal subsidy to:

(2.17) τC = φ τG = 1 + φ.

The optimal population in the two types of locations is:

(2.18)
NC = FC 1−b

b
κ−1

NG = FG 1−b
b
κ−1

where FC and FG are constants that only depend on the primitives of the model.

Company towns are perfectly specialized. Generic towns are perfectly diversified

(NG
S = NG

D = NG

2
) and are more densely populated than company towns.

Proof. See Appendix. �

The city developer’s optimal strategy is derived for given equilibrium relative

prices V andW . In the Appendix, we show that, by substituting this optimal choice

into the remaining equilibrium conditions and the definitions in (2.15) and (2.16), the

system reduces to one equation in one unknown (the relative supply of conventional

and unconventional innovation, κ), that admits one and only one solution, and can

be solved analytically. Once the equilibrium value of κ has been determined, backing

up the remaining variables becomes trivial. This leads to the following:

Proposition 2.3.2. A symmetric equilibrium exists and is unique.

Proof. The proof is constructive. See Appendix. �
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2.3.5. Mechanism

Proposition 2.3.1 represents the model counterpart to Figures A.24 and A.25, that

show the empirical correlation between density and conventionality of patenting, and

concentration of the knowledge pool, respectively. The intuition behind Proposition

2.3.1 is that agents perceive an additional benefit from agglomerating in diversified

cities compared to specialized clusters, and this induces them to trade off additional

congestion costs and lower intra-field spillovers for the opportunity of having a higher

exposure to inter-field interactions. To see this, compare the elasticity of the local

externalities in a specialized company town with the elasticity in a diversified city. In

the former case, it is equal to φ, that is, the elasticity of intra-field spillovers, whereas

in the latter case it is φ+1, where the +1 results from the fact that joining a diversified

town also increases the matching frequency for inventors of the other field. The

developer internalizes this additional externality and, as a result, diversified towns

are more densely populated than specialized ones.

The developer’s optimal strategy maximizes the value of local output per person,

given the relative prices V andW ,27 although at the aggregate level the equilibrium is

in general constrained-inefficient. The equilibrium configuration does not maximize

neither the rate of innovation, x, nor social welfare, C, that also depends on the mass

of unskilled labor employed in the production of the final good. Two immediate

sources of inefficiency are the fact that the equilibrium system of cities depends

27This property was named Henry George Theorem by Stiglitz (1977).
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on the bargaining weight b, that does not enter social welfare, and the lack of full

appropriability of the returns from innovation, captured by the parameter a.

The model unique symmetric equilibrium displays the coexistence of specialized

company towns that produce conventional ideas, and diversified high-density cities

that produce unconventional ideas. The coexistence of both types of cities is dictated

by the complementarity between the two forms of innovation, which is transmitted to

the equilibrium outcomes via the relative returns of unconventional to conventional

ideas, V . This relative value depends in turn on the relative supply of the two types

of ideas, κ, and on the Nash bargaining weight of the unconventional innovator, b.

The parameter b encapsulates all the residual forces that control the relative returns

of unconventional to conventional ideas, such as the degree of competition and IP

legislation.

For a given value of the relative supply, the total rate of invention is determined

by the degree of agglomeration, characterized by the mass of active sites of each

type,
∣∣KC∣∣ and

∣∣KG∣∣, and their population density, NC and NG. These are in turn

determined by the interplay between the agglomeration and the congestion forces in

the model. The social cost of congestion is the increase in the demand of unskilled

labor that is needed to produce housing, at the expense of the mass of unskilled labor

employed in the production of the intermediate varieties (recall that, ultimately, only

tradable goods enter consumption and utility). The concavity in the production of

housing, controlled by the parameter α, implies that higher agglomeration leads to

lower unskilled labor in production. Higher agglomeration can either result from a
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more concentrated geography, i.e. a lower mass of active sites, each displaying higher

density, or, for a given mass of active sites
∣∣KC∣∣ and

∣∣KG∣∣, from a higher share of

skilled labor in the most densely populated sites (of type G).

By substituting the equilibrium values of NC and NG into the expressions for ψ

and ζ (2.13 and 2.14) it is easy to see that the relative mass of company towns to

diversified cities is a decreasing function of the parameter b:∣∣KC∣∣
|KG|

= FK
1− b
b

,

where FK is a simple function of the other model primitives. The following proposi-

tion shows that also the relative supply of conventional to unconventional ideas is in

fact a decreasing function of the the same parameter b.

Proposition 2.3.3. The equilibrium relative supply of conventional to unconven-

tional ideas, κ, is a decreasing function of the bargaining weight of the unconventional

innovator, b.

Proof. See Appendix. �

2.4. Welfare and Policy

We now turn to studying the optimality of the equilibrium. City developers

internalize knowledge externalities at the local level and the associated congestion

costs, but they do not internalize non-local externalities such as the pecuniary effect

on V and W and the imperfect appropriability of innovation, a. The existence of

non-local externalities makes the equilibrium constrained inefficient. In this section,
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we analyze the optimal local policy of a constrained planner who can tax and provide

place-based subsidies to innovators.

Before turning to the study of optimal subsidies, we illustrate how the model

delivers a simple additive decomposition of welfare. Since there is no investment in

the model, consumption, production and welfare coincide. Using the definition of

total consumption in (2.8), we can decompose welfare additively as:

(2.19) log (C) = (1− β) (1− µ) log (ψ)︸ ︷︷ ︸
Conv. rate

+ (1− β)µ log (ζ)︸ ︷︷ ︸
Unconv. rate

+ β log (LF )︸ ︷︷ ︸
Congestion

.

The first term captures the contribution of the frequency of conventional inno-

vation, ψ, on aggregate welfare. The second term identifies the contribution of the

frequency of unconventional innovation, ζ. Finally, the third term captures the ben-

efits from reducing congestion in cities and freeing up unskilled labor to be employed

in the production of tradable goods.

2.4.1. Fixed urban structure

We first consider the extreme case of an urban structure that is fixed as prescribed

by its decentralized equilibrium. Existing sites can neither be withdrawn by their

respective developers nor can their nature of generic/specialized location be changed.

Moreover, new locations cannot be created. In this case, the zero profit condition

of city developers does not need to hold. The mass of locations
∣∣KC∣∣ and

∣∣KG∣∣ is

fixed. The planner can only reallocate workers across the pre-existing sites. This can

be achieved through a simple system of lump-sum transfers
{
T kS , T

k
D
}
k∈K that are
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technology and site specific, with the objective of shifting innovation activity away

or towards a given type of location.

The planner’s problem reduces to the choice of the share η ∈ (0, 1) representing

the fraction of innovators living in diversified cities:

(2.20) maxη∈(0,1) (1− β) (1− µ) log (ψ) + (1− β)µ log (ζ) + β log (LF )

subject to : ψ =
∣∣KC∣∣ ( (1−η)N

|KC |

)φ+1

ζ =
∣∣KG∣∣ ( ηN

2|KG|

)φ+2

LF = L−
∣∣KG∣∣ ( ηN

|KG|

) 1
α −

∣∣KC∣∣ ( (1−η)N
|KC |

) 1
α

with
∣∣KC∣∣ and

∣∣KG∣∣ (the mass of company and generic towns, respectively) given.

Differentiating the problem in (2.20) with respect to η, and evaluating the first-

order condition at the equilibrium, it is easy to see that the planner chooses to

incentivize agglomeration and unconventional innovation if and only if the following

condition is satisfied:

(2.21) − (1− β) (φ+ 1) (1− µ)

1− η
+

(1− β) (φ+ 2)µ

η
+ β

∂ log (LF )

∂η
> 0

Since Proposition 2.3.1 implies that NG > NC , and due to the concavity in the

housing production function, the third term of condition (2.21) is negative. Hence,

the planner can decide to pay additional congestion costs to increase the share of

skilled labor in diversified cities and the supply of unconventional ideas. The planner
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will choose to do so if the benefit from increasing the supply of unconventional inno-

vation, (1−β)(φ+2)µ
η

, is large enough to outweigh the cost from the loss of conventional

innovation, − (1−β)(φ+1)(1−µ)
1−η , and the increase in congestion, β ∂ log(LF )

∂η
.

The bargaining weight b plays a central role in determining departures from

optimality in the case of a fixed urban structure. To see this, note that in equilibrium,

the share of skilled agents in company towns is proportional to:

1− η ∝
1−b
b

F I FG + FG 1−b
b

,

from which it is immediate to see that it is a decreasing function of b.

The black line in the left panel of Figure A.26 displays the value of condition

(2.21) for a simple parametrization of the model28 and for b spanning between 0

and 1. For sufficiently low values of b, the decentralized equilibrium supplies too

little unconventional ideas. The planner chooses to increase the share of agents in

diversified cities to increase the supply of unconventional ideas (red line), reduce the

supply of conventional ideas (blue line) and increase congestion costs (green line).

The opposite policy is implemented if b is sufficiently high, that is, the direction

of the market forces is such that the equilibrium supply of unconventional ideas is

above the socially optimal level.

The right panel of Figure A.26 displays the contribution of the components in

(2.19) to the improvement of aggregate welfare for the same range of values of b.

28We set a = 0.5, β = 0.3, µ = 0.5, φ = 0.2 and α = 0.4. Note that the values of φ and α satisfy
Assumption 1. The qualitative pattern displayed in Figure A.26 holds irrespectively from the value
of these parameters.
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When market forces favor inefficiently low supply of unconventional ideas (b low),

welfare gains emerge from increasing agglomeration and congestion costs, and re-

ducing the supply of conventional innovation. This kind of efficiency gain, which

originates from a tradeoff between congestion and aggregate innovation, is observa-

tionally equivalent to the gain that would emerge in a standard model of geography

and innovation, where social returns to innovation are not fully captured by innova-

tors and other local agents, and, as a result, the market outcome provides too little

agglomeration. On the other hand, when market forces push for an inefficiently high

supply of unconventional ideas, welfare gains emerge from a decrease in congestion

costs, and an increase in the supply of conventional ideas. Contrary to the first case,

this kind of efficiency gain originates from a reduction in agglomeration. Innovation

activities relocate from high-density to low-density areas, freeing up unskilled labor

for production, and simultaneously increasing the supply of conventional ideas.

2.4.2. Flexible urban structure

We now analyze optimal policy when the urban structure is not fixed. We consider

a planner whose policy tool consists of class-location specific transfers that multi-

plicatively subsidize innovation outcomes, financed through a lamp-sum tax. In this

case, the system of cities is not predetermined: new cities can be created, specialized

towns can be converted into diversified cities (or vice versa), and existing cities can

be shut down. For a given policy choice, the zero profit condition of city developers
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will work to determine the size and mass of active sites. This gives the planner some

flexibility in affecting the urban structure.

There are several possible interpretations of a setting in which policy is not con-

strained by a fixed urban structure, including a social planner who faces a sufficiently

mobile skilled labor force, adopts a sufficiently long-run perspective in its policy im-

plementation, or faces a geography in which the system of cities is not anchored to

the presence of natural or historical amenities.

The planner chooses net transfer rates
{
T kS , T

k
D
}
k∈K between−1 and +∞ and pays

to successful innovators the corresponding transfer rate times the effective value of

the innovation. Assuming symmetry in the planner’s solution, the optimal system of

transfers reduces to a pair of net transfer rates
{
TG, TC

}
for diversified and special-

ized cities, respectively. Given this policy choice, the resulting equilibrium can be

found as in Proposition 2.3.1, with the inventor’s income now augmented with the

multiplicative transfer. For a given choice of transfers, the resulting geography has

the following solution:

(2.22)


NC = 1+TC

1+TG
FC 1−b

b
κ−1

NG = 1+TC

1+TG
FG 1−b

b
κ−1

Figure A.27 plots the contribution of the three components in (2.19) to the welfare

gains resulting from the optimal system of transfers, for a range of values of the

parameter a (which controls the appropriability of the returns to innovation) and for
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two extreme values of the bargaining weight of the unconventional innovator (b = 0.2

and b = 0.8). Figure A.27 reveals two key patterns.

First, as the appropriability of the returns to innovation increases, the contri-

bution of conventional and unconventional ideas to overall welfare gains (left and

central panel) decreases, and the contribution of congestion (right panel) increases.

This pattern is not specific to a setting with heterogeneous innovation, as a similar

pattern would emerge in an analogous model that only allows for one type of ideas.

What is peculiar to our setting is that the contribution of congestion to overall wel-

fare gains becomes positive for sufficiently high (but still strictly lower than one)

values of a (namely, even with incomplete appropriability), provided that the bar-

gaining weight of the unconventional innovator b is sufficiently high (red line, right

panel). The intuition is that when the bargaining weight is sufficiently high, the de-

centralized equilibrium supplies an inefficiently high amount of unconventional ideas.

Reducing the supply of unconventional ideas requires relocating innovators towards

low-density company towns, which reduces congestion.

Second, for sufficiently low values of the appropriability parameter, the optimal

policy can increase welfare via a contemporaneous increase in both conventional and

unconventional ideas, at the cost of a corresponding increase in congestion. This

outcome is achieved by shrinking the mass of active sites, and increasing the density

of population in both specialized and diversified cities. An implication of this fact

is that when the margin of adjusting the urban structure is available, the tradeoff
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between the two types of ideas disappears, and composition and rate of innovation

can both be improved at the same time.

The welfare benefits from having access to this additional margin of adjustment

are potentially large. Figure A.28 compares the welfare gains from optimal policy

in the cases of fixed and flexible urban structures for a range of values of a and

for two extreme values of the bargaining weight (b = 0.2, left panel, and b = 0.8,

right panel). The welfare gains are significantly larger under a flexible structure.

Under the baseline parametrization (a = 0.5), the welfare gain from the optimal

policy under a fixed urban structure are equal to 5.7% of consumption, against

8.69% under a flexible structure when b = 0.2. The difference is even larger when

the bargaining weight of the unconventional innovator increases to b = 0.8, with the

gain under a flexible structure increasing to 15.2%, against 5.86% achievable under

a fixed structure.

2.5. Conclusion

Understanding the process through which creative ideas are generated is crucial

to fully exploit the comparative advantage of advanced economies in today’s world.

In this paper, we explore a specific aspect of this process, namely how the economic

geography shapes the creative content of innovation. We show that high-density

regions have an advantage in producing unconventional ideas. We do this by assem-

bling a new dataset of georeferenced patents and by assigning a measure of creativity

that is novel to the literature on the geography of innovation. Our empirical analysis

reveals that the combination of ideas embedded into inventions is determined by the
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local technology mix. This supports the hypothesis that knowledge spillovers across

fields resulting from informal interactions are a key component of the innovation pro-

cess. High-density areas promote diversification and facilitate informal interactions,

resulting in a higher degree of unconventionality in innovation. Our analysis recon-

ciles the fact that a big portion of innovative activity takes place outside cities with

the common wisdom, rooted in the literature, that density is an important catalyzer

of knowledge diffusion.

We integrate these findings into a model of heterogeneous innovation and spa-

tial sorting. In our setting, the choice between producing conventional and uncon-

ventional ideas depends on their relative price and, crucially, on the local degree of

density and diversification. In equilibrium, low-density specialized cities coexist with

high-density diversified ones. This asymmetry is dictated by the complementarity of

unconventional and conventional ideas in the innovation process and does not depend

on the existence of agents with ex-ante heterogeneous productivity. The composition

of innovation determines the balance between rate of innovation and congestion costs,

which in equilibrium is suboptimal. Our analysis reveals that whether the planner

has some flexibility in adjusting the urban structure makes a big difference in deter-

mining the welfare benefits from place-based policies. This supports the widespread

idea that a fully mobile skilled labor force can be an important accelerator for growth

in advanced economies. The archetypal geographical mobility of the U.S. labor force

was crucial in the development of some of the most innovative areas on the planet

(e.g. Silicon Valley, Research Triangle, etc. . . ) and can help explain why over the last
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decades the United States outperformed Europe in terms of technological leadership

and creativity. Future research will be devoted to exploring this nexus.
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CHAPTER 3

Comprehensive Universe of U.S. Patents (CUSP): Data and

Facts

3.1. Introduction

Patents have been the main source of data for empirical studies on innovation

and technological change. Despite being an imperfect proxy for technological input

and output,1 the fact that patent data are easily accessible, offer a wide range of

information about the invention content and the underlying innovation process, and

are available for a large number of developed countries has contributed to their

popularity in the literature. With some notable exceptions (e.g., Nicholas, 2010),

until recently, research papers on the topic have mostly focused on the past 50 years.

Similarly, historical analysis has concentrated on relatively small time frames (e.g.,

Moser, 2005) or on specific dimensions of patents data. The likely underlying reason

is the lack of a reliable source of data for historical patents. In fact, the U.S. Patent

and Trademark Office (USPTO) provides detailed data for all the patents issued

from 1976 on, and studies on innovative activities prior this year often required the

collection of data by hand.

1For example, Moser (2005) uses data from two World’s Fairs at the end of the 19th century and
shows that inventors from countries without patent laws focused on sectors that relied more on
secrecy than patenting. This suggests that, at least in that period, patenting activity was skewed
towards a certain set of industries.
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More recently, thanks to the availability of increasingly reliable Optical Character

Recognition (OCR) software, cheap computational power, and the publication of

high-quality scan of historical patents by the USPTO various scholars started working

on historical patent data. Notable examples are Akcigit et al. (2017), Sarada et al.

(2017), Packalen and Bhattacharya (2015), and Petralia et al. (2016). The first

two match patents data to the recently released decennial Census data and therefore

mainly focus on the decades between 1880 and 1940. Packalen and Bhattacharya

(2015) study the importance of physical proximity for innovation throughout history.

To do so, they extract the name of the city, or county, from the text of each patent

and study how the tendency of using new ideas in inventions changes with population

density. Finally, Petralia et al. (2016) digitalize the images provided by the USPTO

and extract information about the county of residence of inventors and assignees.

The parsing of the text is supplemented with some machine learning techniques,

such as neural networks, that are used to measure the plausibility of the collected

data, as well as to infer the values of missing observations.

Despite the important contribution of these papers, different data sets contain

different sets of variables and cover different time frames. Moreover, not all the data

collected in these projects are readily available to other researchers. The aim of this

paper is to fill this gap. Three years ago, I started working on a newly assembled

data set of historical patent. The idea was to collect all the variables that are

commonly used in the innovation literature using a consistent methodology and data

sources and share the result with the rest of the community. Traditional sources, such
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as the USPTO and Google Patents, are complemented by newly digitalized patent

documents and an extensive use of fuzzy matching is employed to extract information

about the patent itself (e.g., technology classes, filing year, and backward citations),

as well as about inventors and assignees. Each inventor and assignee is geolocated at

the town level, the most disaggregated geographical level that is possible to identify

from the patent text. The outcome is what I called the Comprehensive Universe of

U.S. Patents (CUSP). It spans almost two centuries of patent data (1936-2015) and

contains the richest set of variables available so far. Various sanity checks show a

high degree of accuracy.

The first part of the paper describes in details the data sources and the techniques

used to extract the data. I also compare CUSP with HistPat (Petralia et al., 2016),

one of the most promising data sets of historical patents readily available on the

Harvard Dataverse. The analysis shows a broader coverage of CUSP and a similar

level of accuracy in terms of geolocation of the patents, the dimension that is most

stressed in HistPat. In the second part, I report some stylized facts. Some of these

are new and might point to interesting directions for future research. Some others

confirm well-known patterns already discussed in the literature (e.g., the upward

trend in the average number of inventors per patent is already described by Wuchty

et al., 2007). Nevertheless, this new data set offers for the first time a long-term

perspective and allows us not only to observe trends but also to pin down when the

trends started in history.
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The rest of this paper is structured as follows. Section 3.2 describes in details

the data contained in the CUSP and how they were assembled. Section 3.3 briefly

compares the CUSP with some other historical patent data sets. Section 3.4 provides

some stylized facts that might be source of inspiration for future research. Section

3.5 concludes.

3.2. Data

The data set collects a comprehensive set of variables for the entire universe of

patents issued by the USPTO between 1836 and 2015. To do this, I use five distinct

data sources:

(1) Patent text and information reported on the USPTO website;2

(2) State-, or in one case city-, level databases. Such databases are usually

maintained either by universities or public libraries and contain all the in-

ventions a (not always) comprehensive list of the patents whose inventor was

resident in that state (or city). In many cases, these databases only cover

historical patents. I was able to identify seven local inventors databases:

(a) Cincinnati Inventors Database

(b) Iowa Inventors Database

(c) Nevada Inventors Database

(d) Oklahoma Inventors Database

(e) South Carolina Inventors

(f) The Portal to Texas History

2http://patft.uspto.gov/netahtml/PTO/search-adv.htm
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(g) Wyoming Inventors Database;

(3) High quality patent images digitalized with an OCR software;

(4) Google Patents;

(5) Patents issued after 1920 digitalized by Google and made available on the

USPTO website. This was the first attempt made by Google to OCR histor-

ical patents and the result is generally of poor quality. Nevertheless, these

data are used as a last resort in case it is not possible to extract the needed

information from the previous sources.

Using multiple sources reduces the probability that the information I am looking

for is not available in any of them, and allows me to select the most reliable one.

Given the peculiarities of each database in terms of the degree of accuracy and data

availability, the database of choice is based on the year in which the patent was

issued and the piece of information I am trying to collect. First, since the USPTO

makes readily available all the information for the patents issued after 1976, their

website is my preferred source for all the patents issued after that year. Additionally,

from there it is also possible to collect information about the technology classes for

all the grants going back to 1836. Second, I use the local inventor databases to

extract information about inventors and assignee and their town of residence for

all the patents listed there. These data have a limited coverage in terms of space

and time, but the information contained in the local databases is reliable and easy

to extract. Finally, I parse the patent text obtained from the three digitalization

processes (mine, Google Patents, and USPTO) for all the remaining variables and
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patents. It was not possible to extract all the pieces of information for the universe

of patents, but all the patents are listed in each table.

The rest of this section describes in more details the variables available in CUSP

and the strategy employed to extract them.

3.2.1. Issue and Filing Years

A patent’s issue year is readily available from the USPTO website for all the patents

ever granted. The same is not true for the year in which the patent was filed. This

piece of information is often missing for historical patents. However, filing years are

arguably a better indicator of when the invention was completed than issuing years.3

When not available from digital sources, it is possible to retrieve the date in which the

patent was filed directly from the patent text starting from patent number 137,279

and issued on April 1, 1873. The filing date appears in the patent header preceded

by “application filed on”. Figure A.38 shows the header of this patent. The parsing

process follows two increasingly less stringent steps. First, I look for sequences of

exactly four numbers preceded by the words “application”, “filed”, “tiled”, “fiied”, or

“fledi”4 and followed by a month or its abbreviation (e.g., january or jan).5 Second,

if this procedure is not successful, I look for sequences of exactly four numbers that

are on the same line as the keywords listed above.

3Figure A.46 in Section 4 shows that the up until the 19th century the issue and filing years were
very close, with an issuance time of less than one year for the average patent. However, the two
kept diverging until the late 40s when on average a patent had to wait 4 years before being issued.
4“tiled”, “fiied” and “fledi” are common mistakes made by the OCR software when reading “filed”.
5Note that before this process, I substitute all the occurrences of “l9” (“el” followed by a nine) and
“—9” with “19”. Similarly, for “l8” and “—8”.
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Since the likelihood of error is different for each of the two steps, each observation

in the data set is assigned a flag that will help researchers to understand how confident

we should be with the value reported. The flag is set equal to 1 if the filing year

comes from the USPTO (or Google Patents) website; 2 if the filing year was obtained

through the first round of parsing; 3 if it was obtained by searching for sequences of

four numbers appearing on the same line as the keywords “application” and “filed”

(and its variations). At the end of this process, the filing year of 8,178,429 patents

(or 93.2%) was obtained from an official source, 446,184 (or 5.1%) from the first

round of parsing and 88,270 (or 1.01%) from the second round.6

Finally, issue and filing years are checked for consistency. If the first two digits

are a 9 and a 1, respectively, I swap them;7 if the issue year is outside the time frame

of the dataset (1790-2015), then I replace it with a missing value; if the filing year is

outside the time frame of the dataset, is larger than the issue year, or the difference

between issue and filing years is bigger than 30, then I set it to missing value. In the

end, issue and filing years are available for a total of 8,712,883 patents (or 99.3%).

3.2.2. Technological Classes

Technological classes are assigned to each patent by patent reviewers. The USPTO

regularly updates class definitions and corrects the classification of patents back-

wards. Each patent is associated with multiple technology classes according to three

6Note that the percentages here is calculated using 8,772,775 as denominator, that is the total
number of patents minus the number of patents for which the filing year is unknown since it is not
reported anywhere in the text (i.e., patents whose number is smaller than 137,279).
7Swapping the first two digits is a relatively common typo in patent documents.
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different classification systems: the U.S. Patent Classification (USPC), the Coop-

erative Patent Classification (CPC) and International Patent Classification (IPC)

schemes. Technology classes are indicative of the pieces of knowledge embedded

in the invention patented. For example, a patent that describes an image process-

ing method for TVs might be classified under the US patent categories 382 (Image

Analysis) and 348 (Television). Documents classified in the USPC system are also

assigned one (and only one) principal class. The principal class captures the scope

of the invention as a whole or the main inventive concept using the claims as a guide

(USPTO, 2012). The CPC and the IPC do not specify any main technological cat-

egory. If a patent cannot be classified within the current classification system, or

its principal class is unclear at that point in time, then it is assigned a 1/1 as main

class. Since the USPTO reviews and updates its classification system every couple

of months, the total number of 1/1 patents is quite small (15,819 patents or 0.2% of

my sample).

In my data set, I collect technology classes for all the three classification schemes

directly from the USPTO website.8 Classes were collected in June 2016 and therefore

represent the classes assigned at that point in time. The data set contains two

tables that report the technology classes according to the USPC. The first contains

the classes as they were made available by the USPTO. In the second, I assign a

main class to the patents whose principal class is 1/1 based on the frequency of its

8See for example http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2
&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=1&p=1&f=G&l=50&d=PALL
&S1=0137279.PN.&OS=PN/137279&RS=PN/137279 for patent number 137,279. The principal
class according to the USPC is in bold.
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secondary classes (at a three-digit level). When two or more secondary classes appear

with the same frequency, the one with the smallest number is selected. For example,

if a patent was assigned classes 1/1, 324/12, 324/121, 345/67, 345/87, then 1/1 is

substituted with 324.9

3.2.3. Backward and Forward Citations

Backward and forward citations have been extensively used in the empirical literature

to understand knowledge flows across firms and inventors, as well as as a measure of

patent quality, the idea being that the more a patent is cited the more the invention

it describes is valuable.10 That is why a patent data set would not be complete

without this piece of information. For each patent in the dataset, I collect the

patent number of all the U.S. patents referenced in the grant. Once the backward

citation matrix is populated, it is possible to obtain the list of forward citations,

that is the patent numbers of all the patents that cite a certain invention, simply

by “inverting” that matrix. Starting in 1947, all the patents issued by the USPTO

include a section that lists all the references cited.11 Before that year, prior art upon

which the invention was built was reported on the file history which is not publicly

available. Nevertheless, some patents were directly referenced in the patent text

and it is therefore possible to get a sense, albeit noisy, of knowledge flows across

technology fields and regions.

9Note that even after this procedure some patents are assigned class 1/1. This is due to the fact
that they do not report any additional class making the frequentistic procedure impossible.
10Alcácer et al. (2009) discuss the merits and demerits of using citations in empirical work.
11The first patent to include a “References Cited” section is Patent Nr. 2,415,068.
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The data collection strategy for backward citations crucially depends on when

the patent was issued. For patents issued after 1976, citations are directly collected

from the computerized patent information available on the USPTO’s website. For

patents issued between 1947 and 1975 I parse the text and extract the contents of

the section titled “References Cited” that lists the references to other patents or, in

some cases, scientific articles. From this section, I collect the number of all the U.S.

patents cited. Finally, for the patents issued before 1947, I look for references to other

patents directly in the patent text. In particular, I look for sentences that contain the

keywords “patent” or “patents” followed by “no”, “number”, “numb”, “num”, “nos”,

or “numbers” and get the patent number referenced afterwards. Figure A.39 shows

an extract of patent no. 46,101 in which the inventor describes how his patent differs

from a previously issued patent and states his claims. This strategy finds a total of

182,044 patents cited by patents issued before 1947. I apply the same strategy for

all the post-1947 patents that do not include a “References Cited” section.

The two tables that contain backward and forward citations are structured with

a long form. The first column contains the number of the citing patent, whereas

the second column the number of the patent cited. Each line correspond to a single

citation. A patent that cites multiple grants will appear on multiple lines. The

table containing backward citations has two additional columns. The first is a binary

variable that takes value 1 if the citations was added by the examiner, as reported by

Google Patents. The second column contains a flag that take value 1 if the citations

are collected from a digital source (i.e., either Google Patents or the USPTO website);
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value 10 and 11 if the citations are obtained from the “References Cited” section of

patents OCR’ed by the USPTO and by myself, respectively; value 5 if the citations

come from the main text of the patent as in Figure A.39.12

3.2.4. Inventors Name and Location

The collection of the inventors names and locations is the most challenging and

sensitive task. For this reason, particular attention was devoted to this phase of the

data collection. Fuzzy matching techniques are employed to overcome some of the

problems that occur due to the fact that the performance of OCR programs heavily

relies on the original image quality and sometimes the digitalized text displays various

typos. As for backward citations, use the information available on the USPTO

website to extract the name of the inventors and their residence for all the patents

issued after 1976.13 The maximum number of inventors in a single patent in the

sample is 76. This is the number of inventors of grant number 7,581,231, a software

patent filed by Microsoft.

For patents whose patent number is smaller than 1,583,767, I use a three step

approach to collect the relevant information. First, I parse the end of the patent

and identify the inventors’ signatures (in print). Figure A.40 shows the very end

of patent number 580, a bee hive. The name of the inventor is reported in capital

letters together with the name of two witnesses. The fact that signatures are printed

12This step only uses the patents OCR’ed by myself since the quality of the text is generally superior.
13Note that the USPTO reports the details of some patents even before 1976. In this case, all the
details are collected from there.
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in capital letters and with a larger font minimizes the amount of typos during the

digitalization process. Second, I parse the patent header (Figure A.38) looking for

the residence of the inventors identified at the end of the grant. The patent header is

characterized by the keywords “United States Patent Office” or “assignor” (and some

variations that take into account frequent typos), whereas the inventors’ location is

extracted by looking for keywords like “of” or checking weather the name of a state is

contained in the header string. Third, if the code is unable to extract the information

from the header (for example because none of the keywords listed above is present),

then I parse the beginning of the patent text (Figure A.41). All the patents prior to

1,583,767 start with a formula similar to the one in the Figure: “To all whom it may

concern: Be it known that I, <inventor name>, residing at <name of city>, in the

county of <name of county> and State of <name of state>”. By searching for this

pattern, it is possible to extract the city and state of residence of a certain inventor.

This technique is however left as last resort, since parsing the patents text is prone

to more typos than the header (which is written in a bigger capitalized font), and the

formula changes from time to time, making the pattern matching task more difficult.

The strategy used to extract inventors names and locations for the patents whose

number is between 1,583,767 (included) and 1,920,165 (excluded) is similar to the

one above, with the exception that the third step had to be dropped, since the

patent text does not contain information about the inventors anymore. This is the

same strategy employed to extract information for all the patents issued after patent

1,920,165. However, for these the parser needed to be modified to take into account
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the new structure of the header (e.g., the keywords used to identify the header are

different). Note that for the majority of patents issued starting from the end of the

19th century, the name of the inventors is readily available from Google Patents.

In that case, the name of the inventors is taken from there and the steps described

above are used for the sole purpose of getting information about their residence.

Possible typos in the location names are then fixed by using a frequentistic ap-

proach. First, I count how often a city/state pair appears in the data set. Second, I

iterate over all the inventors in the data set and compare the reported location with

those in the previously built dictionary. If the dictionary contains a city in the same

state with a Levenshtein distance of 2 or less that appears more frequently in the

original data set, then I assign that city to that inventor. Similarly, if the data set

contains a city/state pair with a Levenshtein distance of 1 or less for both the city

and state (e.g., Chicago, IL and Chicag, HI) and a higher frequency then I assign to

that inventor the more recurring pair.

Finally, when no location is reported for an inventor, I check in the previous and

if there is an inventor whose location is not missing with the same name and who

filed a patent one year before or after. If that is the case I assign the location of the

latter to the former.

3.2.5. Assignees Name and Location

Extracting the location and name of assignees from the patent documents is a more

straightforward task compared to extracting information about inventors, but also
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one that is prone to more mistakes. In fact, there is no redundancy in the documents:

details about the assignees appear one and only one place: the header of the patent.

Using the same procedure developed for inventors, I identify the header of each

patent and check for the presence or absence of the string “assign”. If this sequence

of characters is not contained in the header, then I conclude that the patent has no

assignees, otherwise I parse the rest of the line searching for the name and location of

the assignees. Unfortunately, their location is not always available: sometimes only

the assignee name is reported, while other times the assignee name is followed by “a

corporation of <name of state>” without any further detail. From a careful review of

a number of patents, it seems that the state reported there represents where the firm

is registered, and does not necessarily indicate the location of the branch where the

inventor works.14 For this reason, when either the location is missing or the assignee

name is followed by “a corporation of ¡name of state¿” without any reference to the

city where the assignee is actually located, I assign the company to the same location

of the first inventors, when they are all reported to live in the same location.15 This

approach biases the distance between inventors and assignees towards zero. Some of

the facts reported in Section 4 should therefore be interpreted as a lower bound.

Similarly to what I did for the inventors, I fix possible typos using a frequentistic

approach and missing values looking at assignees with the same name one year before

and after the filing year of the patent.

14For example patent number 1,898,054 is assigned to the National Lead Company of New York,
N.Y., a corporation of New Jersey.
15In the next iteration of the data set, I will flag these instances to allow researchers to drop them
for robustness checks.
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3.3. Validation and Comparison

An in-depth comparison with other data sets of historical patents is beyond the

scope of this paper. The interested reader is referred to Andrews (2017) who presents

a newly assembled data set of geo-referenced historical patents and, in doing so, he

compares it with other four existing data sets.16 However, to give credibility and

motivate the data collection effort, it might be useful to contrast CUPS with HistPat,

a very renowned publicly available data set of historical patents described in Petralia

et al. (2016) and available on the Harvard’s Dataverse. Table B.26 schematically

shows the variables available in the two data sets.17 Figure A.42 compares the

number of patents contained in the two data sets and the actual number of patents

reported by the USPTO by issue year. The dashed yellow line shows the official

number of patents issued by the USPTO in each year. The total number of patents

in CUSP almost perfectly match this series.18 Since HistPat seems to only include

patents for which all the inventors and assignees are located in the U.S., the red

line shows the number of patent that satisfy this requirement in CUSP, whereas the

green line represents the number of patents in HistPat. The difference between the

two series is always relatively small except for the period between the two World

Wars when HistPat systematically covers less patents. Although CUSP contains a

16Unfortunately, it was not possible to gain access to the data (or their aggregate statistics) un-
derlying the work of Akcigit et al. (2017) and Packalen and Bhattacharya (2015). He therefore
excludes them from the analysis in the present version of the paper.
17The rows and first column of the table are taken from Andrews (2017) and reported here upon
the generous agreement of the author.
18Some minor differences are due to the fact that some patents were withdrawn after being issued.
Those patents are discarded from my data set.
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larger amount of variables and patents, Petralia et al. (2016) put a lot of intellectual

and computational effort in identifying the county of residence of each inventor and

assignee listed in the patent. The real test is therefore to compare the two data sets

along a geographical dimension.

When multiple inventors and assignees are reported on a patent, HistPat as-

signs to that grant multiple locations without giving any information about whose

residence is the one reported. For comparison purposes, I therefore extract all the

counties assigned to the assignees and inventors of a patent and compare them with

the ones listed in HistPat. If CUSP reports all the counties reported by HistPat for

a given patent,19 I count that as a success, otherwise the patent is categorized as a

non-match. The resulting matching rate is about 80%. The exercise includes all the

patents issued in the period 1836-1976 and available in both data sets. Figure A.43

reports the share of non-matched patents by issue year. The share remains quite

stable around 20% over the whole period with a peak of about 35% in 1919-1920.

Analyzing by hand a random sample of the patents not matched shows mixed results.

Sometimes CUSP contains the right location of the assignee but the wrong location

of the inventor (or viceversa), whereas HistPat contains the wrong location of the

assignee but the right county of the inventor (or viceversa); sometimes CUSP is off

track and other times HistPat is off track.20 From time to time the mismatch is due

to the fact that while HistPat reports the county stated in the text, CUSP reports

19Note that in some cases CUSP actually contains more entries than HistPat.
20Note that sometimes patents contain contradictory information. For example patent number 9
states in the header that the inventor is from New York, which is what is reported in CUSP, whereas
in the text the inventor is from Springfield, MA, which is what is reported in HistPat.
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the county that contained the town in 2000. For example, when patent number 48

was granted Portsmouth, VA was part of Norfolk County, whereas nowadays is an

independent city. I include in the data set a list of the patent numbers that, accord-

ing to the procedure described above, do not match in the two data sets. The list

will provide guidance on where to concentrate my efforts for the next iteration of the

data set.

3.4. Stylized Facts

3.4.1. Numbers

Fact 1.1: Patenting activity in the U.S. has steadily increased over time;

the growth started accelerating in the 80s. The number of patents filed at the

USPTO has experienced an important acceleration starting in the 80s. This trend

seems to be mainly driven by two factors. First, the number of U.S. patents that had

been decreasing since the 60s shows a dramatic reversal of the trend in that decade.

The change might be due to the growing importance of software patents. Second, the

number of foreign patents also accelerated in those years, although the upward trend

started already in the 50s. Figure A.44 plots the total number of patents issued by

the USPTO according to their filing year and country of residence of their inventors.

The blue line represents the total number of patents by filing year, whereas the red

and green lines show the patents whose inventors are foreign or a U.S. residents,

respectively.21 The graph highlights two additional interesting facts. First, the share

21Note that the graph excludes what in Fact 1.2 I define international collaborations, so the green
and red lines do not necessarily sum up to the blue line. However, as it is shown in Fact 1.2 the
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of foreign patents before the 60s was almost negligible. Second, in 2010 the number

of patents whose inventors are foreign residents passed the number of patents filed

by inventors whose residence is in the United States.

Fact 1.2: The share of patents resulting from international collabora-

tions started increasing in the 50s. An international collaboration is defined as

a patent for which at least one inventor is a U.S. resident and at least one other has

her residence outside the United States. The number of international collaborations

has importantly increased over the years with a steady growth that started in the

80s. Despite this, international collaborations still remain a small fraction of the total

number patents filed at the USPTO. Figure A.45 shows this pattern graphically. In

2010, less than 5% of the patents filed were the result of international collaborations.

Fact 1.3: The time needed to issue a patent was negligible in the 19th

century; it was on average 2-3 years in the 20th century. Since information

about the year in which the grant was filed is often absent in data sets of historical

patents data, it is common practice in the literature to proxy the filing year with the

year in which the patent was granted. Authors often argue that in the past the time

necessary to examine a patent was shorter due to the smaller amount of applications

and their relative simplicity (see for example, Akcigit et al., 2017). Figure A.46

tests this hypothesis. The average issuance time for patents filed before 1900 was

indeed below one year, but it was already almost 2 years by 1915 and more than

2.5 years in the 1920s. The average issuance time experienced an important increase

share of foreign collaborations is small. The main patterns of the graph do not change if I used the
country of residence of the first inventor to classify patents into U.S. and foreign patents, instead.
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during WWII reaching 4 years in 1947 and gradually went back to about 2 years in

the period between the 1970s and the 2000s, when it started rising again to reach

another peak in 2005 when the average patent had to wait about 4 years before

being issued. The decrease at the end of the sample might be due to the decrease

in the number of applications received by the USPTO during and after the Great

Recession, or might be simply due to truncation problems (patents filed in 2010 with

an issuance time larger than 5 years do not appear in the sample).

3.4.2. Inventors

Fact 2.1: The share of single-authored patents was around 80% up until

1920 when it started declining. Single-authored patents have become increas-

ingly rare in the past century. Figure A.47 provides evidence for this fact from two

different angles. Panel a shows the share of patents filed by a single inventor, whereas

panel b the average team size by filing year. The share of patents filed by a single

inventor has steadily decreased over time since the end of the 1920s. In the 19th

century between 70% and 80% of the inventions patented were single-authored. By

2010, this share had decreased below 20%. Similarly, average team size remains sur-

prisingly stable, around 1.2 inventors per patent, up until the late 40s when it starts

a rapid increase. In 2010, the number of inventors for the average patents is about

2.7, more than double compared to 60 years before. Wuchty et al. (2007) document

this pattern for the period (1975-2000). Thanks to the larger time frame covered

by CUSP, it is possible to put this finding into a historical context and pin down
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the moment when the shift happens. Interestingly, de Solla Price (1963) documents

that the cost of research as a share of GDP did not increase before WWII when it

started and exponential growth. It would be interesting to understand what factors

have driven the decline of single-authored patents which started in the 1920s and

accelerated in the late 1940s, and if technology fields contributed differential to this

trend. This is left for future research.

Fact 2.2: Average and maximum distance among the inventors of the

median patent started an upward trend in the 50s; minimum distance

increased at first and then plateaued. An important idea in the innovation

literature is that the decline in communication costs have made the collaboration

with people living in other cities or countries less costly and hence proximity less

important. Consistently with this intuition, Packalen and Bhattacharya (2015) find

that inventors in more dense cities were adopting ideas faster throughout the 20th

century, but the advantage of living in a large city has disappeared more recently.

However, this insight appears to be in contrast with other observations, such as the

existence of large innovation hubs, or of seminars and conferences that allow scholars

to personally discuss with their peers.

A possible explanation to these two seemingly contradictory facts is that prox-

imity still matters at the very beginning of a project and for certain specific tasks.

For example, informal exchanges of ideas might play a crucial role in first stages of

a project and proximity might be important to, say, analyze and brainstorm about

the outcomes of lab experiments. If this was the case, I would expect to observe an
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increase in the geographical dispersion of teams of inventors over time. The inven-

tors who need to work on tasks that require proximity should be clustered in space,

but could potentially be geographically disconnected from the other members of the

team. Figure A.48 tries to shed some light on this by plotting the minimum, mean,

and maximum distance among the inventors of the median patent. More precisely, I

calculate the minimum, average, and maximum distance among the inventors of each

U.S. patent filed in a given year by two or more inventors.22 The left panel of Figure

A.48 reports the median of these distribution. The graph shows a clear increase in

the three series between 1950 and 1970, when they started diverging. After 1970,

the minimum distance of the median patent stabilized around 10 kilometers, whereas

mean and maximum distances kept their growth and reached 30 and 40 kilometers,

respectively, in 2010. The right panel shows the share of patents for which at least

one inventor is reported to live at least 100 kilometers away from any other inven-

tor in the patent. This series shows two breaks. One between 1930 and 1940 that

brought the share of these patents from about 7% to about 22%, and one in the

1970s when a still ongoing upward trend started. In 2010, about 33% of the filed

patents had at least one inventor more than 100 kilometers apart. Figure A.49 shows

the share of patents for which at least two inventors live in the same city.23 This

share has also experienced an important decline between 1930 and 1950, but it then

stabilized just below 40%.In future research, it could be interesting to study whether

22Note that these three statistics coincide when there are only two inventors and that solo patents
are discarded for this analysis.
23Note that this is not necessarily the specular image of Figure A.48, panel b, since a patent with
three inventors, two living in Chicago and one in Columbus, would contribute to both graphs.
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some technology fields have contributed differentially to this trends and also if they

are confirmed when keeping the team size constant. Since team size has also been

increasing over the same period of time, a null model in which inventors are added

in a pseudo-random way could be consistent with the pattern described in Figures

A.48 and A.49.

3.4.3. Assignees

Fact 3.1: The share of patents with an assignee has steadily increased

over time. Figure A.50 shows the share of patents whose rights were assigned, in

full or in part, to a third-party. A third-party could be an individual or a company

that commissioned or sponsored the development of the invention described in the

grant. The share of patents without assignee has been shrinking over time and has

been less than 20% for the past 40 years. The increasingly capital intensive nature

of R&D activities or a trend towards market concentration might be at the root of

this trend.

Fact 3.2: Average and maximum distance between inventors and assignees

of the median patent started an upward trend in the 50s; minimum dis-

tance increased at first and then plateaued. Similarly to what we did for

inventors, it is possible to analyze the distance between inventors and their assig-

ness. A priori it is not obvious what to expect. On the one hand, the advantage

in terms of resources of big firms and a tendency towards concentration (see for

example Grullon, 2017) should reduce the average distance between inventors and
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assignees. On the other hand, more outsourcing and the decline in communication

and transportation prices should work as a centrifugal force. Figure A.51 suggests

that centrifugal forces dominate centripetal ones. The left reports the evolution of

the minimum, average, and maximum distance between the inventors their assignees

for the median patent in the sample.24 The right panel shows the share of patents for

which the maximum distance between the inventors and their assignee is at least 100

kilometers. The graphs show a clear tendency towards decentralization, although the

minimum distance has remained constant since the 1980s. Similarly to what was ar-

gued for Fact 2.1, it might the case that R&D operations are directed by researchers

working for the assignee and some specific tasks are outsourced to other labs.

3.4.4. Citations

Fact 4.1: The average number of backward citations per patent has steadily

increased over time. The average number of patents cited by each patent has been

steadily increasing over time. Figure A.52 shows this trend over time. The left panel

shows the series for the years between 1836 and 1940, whereas the right panel for

the years after 1940. The data are split into two figures to take into account the

introduction of a mandatory section containing the list of references cited in 1947

that has importantly increased the number of citations successfully extracted from

the data. As it is possible to see in the left panel of Figure A.52, the average number

of citations prior to the mandatory disclosure of the references is order of magnitudes

24Note that these three statistics coincide for solo authored patents with an assignee.
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smaller, but not negligible. Nevertheless, as the right panel of Figure A.52 highlights,

the amount of references obtained in this way is probably only a small fraction of

the full list of prior art considered when examining the patent.25

Citations might have steadily increased over time for two main reasons. First,

digitalization have made it easier for inventors and reviewers to find inventions re-

lated to the one described in the patent. This would explain the acceleration in

the average number of citations after 1980. Second, the number of inventions upon

which newer inventions are built on has also increased over time. Inventions have

become increasingly complex and if in the past a new idea relied on basic knowledge,

nowadays it builds on a large number of previous discoveries (e.g., Jones, 2009). Such

an increase in complexity would translate in an increase in the number of references.

Fact 4.2: The share of patents without forward citations was around 90%

until 1910; it has then declined to 10% and remained mostly stable. The

share of patents without forward citations has dramatically decreased between 1910

and 1940, but was stable in the years before and after this period. Before 1910

about 90% of patents did not receive any citation since they were filed, whereas

after 1940 this share was around 10%. Figure A.53 reports this pattern over time.

The low share before the 20s might be related to the introduction of the mandatory

reference sector in 1947. More interesting is the extremely low share of patents

without forward citations in the second half of the 20th century. Three facts might

explain this trend. First, higher patenting costs might have contributed to attract

25Future research should investigate the informativeness of pre-1947 citations.
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more meaningful patents. Second, the second part of the 20th century witnessed

a significant increase in the number of foreign patents filed in the United States.

Because of the costs involved in the patenting process, it is usually believed that

grants filed to multiple patent offices are particularly valuable. Finally, there might

have been an increase in the amount of self-citations. As suggested by Jones et al.

(2007), an increase in the number of inventors per patent is likely to increase the

number of self-citations. It could be interesting to explore these explanations in

future research.

Fact 4.3: The average distance of citations received by the median patent

in the first 10 years after filing was 0 up to the 40s; it has been increasing

ever since. Figure A.54 analyzes the average distance of the citations received by

the median patent in the 10 years after being filed. More precisely, I calculate the

average distance between first inventors for each patent filed in each year. The figure

reports the median of this distribution. With the exception at the beginning of the

sample which is manly due to the small number of citations in the 19th century, the

series shows a clear upward trend that started in the mid-40s and is still ongoing.

This trend seems to support the idea that the decreasing cost of communication

facilitate the diffusion of knowledge across space.

3.4.5. Classes

Fact 5.1: In the past 200 years only 9 classes made it to the top 1% terms

of citations received per decade. Given the long time span provided by these
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data, we can ask what technologies were the most valuable in each decade. To do

so, I exploit a standard measure of patent relevance used in the literature, namely

the number of citations received by each grant. More precisely, I rank all the patents

filed in each decade by the number of citations received and I select those in the

top percentile. I define the most frequent principal class among the patents selected

as the leading technology for that decade.26 Table B.27 reports the results of this

procedure. The table highlights two interesting facts. First, despite its simplicity,

this methodology is able to capture the well-known technological waves in the United

States over the past two centuries. The industrial revolution at the beginning of the

twentieth century, the rise of medical science after the second world war with the

development of vaccines and antibiotics, and finally the digital revolution in the

second part of the 90s. Second, the length of the technological waves seems to have

increased over time. Although this might be due to the nature of the data that are

more noisy at the beginning of the sample, this fact might be explained by two other

observations. On the one hand, it might be that since innovation becomes more

complex in every field over time, it is more rare to have a breakthrough that moves

the center of gravity towards another technology. On the other hand, it might be

that the more recent waves enjoy more ideas to build upon and it takes longer to

exhaust their creative momentum.

26Using the top 5%, instead of the top percentile, leads to similar results. Berkes et al. (2018)
explore more refined definitions of leading technology exploiting the network structure of patent
citations.
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3.5. Conclusion

Since Hall et al. (2001), patents have been the preferred measure of innovation

in the literature. The more than 3000 citations received by that paper alone in less

than 20 years testify the high-demand for high-quality data on the topic. Because

of the new opportunities offered by newly released or collected historical data, such

as the historical decennial Census of Population, researchers have started moving

their attention to pre-1976 data. In the past few years, the efforts to digitalize and

extract meaningful information from historical patents have multiplied. The lack of

a single data set that offers all the variables of interest collected with a consistent

methodology and the fact that these data are sometimes not share with the rest of

the community might constitute an important barrier for researchers who do not

have access to them. This paper fills this gap and describes a freely available newly

assembled data set of historical patents containing all the variables usually employed

in the literature. I anticipate that some issues might surface at the beginning when

using them for actual research, the same way I found and fixed some problems while

writing Section 3.4. Based on the feedback I will receive, I expect to make the data set

more reliable over time and potentially include additional variables. The comparison

with HistPat performed in Section 3.3 validates the data at least from a coverage

and geographical points of view. Finally, some of the stylized facts presented in

Section 3.4 show that the data are able to replicate some already well-known trends

in the literature and gives a novel historical perspective to them. Some other trends

described there are new and could spur ideas for future research.
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Figure A.1. The blue line is the contribution to U.S. GDP (value added)

of computer and electronic products, electrical equipment, appliances and

components, information, finance and insurance, professional and business

services, educational services, health care and social assistance, arts, enter-

tainment and recreation (data from the BEA). The dashed red line is the

number of patents per 1,000 people issued to U.S. inventors by the USPTO.
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Figure A.2. The t = 0 observation corresponds to 1985-1994 data for

patenting, and the 1990 Census for economic and demographic variables.

The t = 1 observation corresponds to 2005-2014 data for patenting, and the

2008-2012 ACS for economic and demographic variables.
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Figure A.3. Unconditional correlation between growth in patenting and

change in income segregation between 1990 and 2010, weighted by total

number of households in 1990.
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Figure A.4. Left-panel: Comparison between the Frobenius norm of the

difference between the real diffusion matrices in the early and in the late

samples, and the Frobenius norm of the difference between the reshuffled

diffusion matrices in the early and in the late samples. Right-panel: Scatter

plot of the residuals of actual and instrumented patent growth, after par-

tialling out the standard controls (number of CTs, household growth and

income growth). The scatter plot is weighted by total households in 1990.

0 2 4 6 8 10
Bin

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
 S
e
g
re
g
a
ti
o
n

Model
Data

Figure A.5. Knowledge shock (bin) and change in segregation, 1990-2010:

Data and Model.
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Figure A.6. Knowledge shock (bin) and change in segregation, 1990-2010:

Full effect (red line) and Sorting effect (blue line) computed as segregation

with 1990 distribution of average wages by CT/occupation and 2010 (model

based) distribution of residents by CT/occupation.
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Figure A.7. Knowledge shock and change in segregation 1990-2010: Ex-

ogenous vs Endogenous residential amenities.
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Figure A.8. Change in high-knowledge residents in each census tract of

Chicago as a result of Amazon’s new headquarter locating in a specific

neighborhood (colored in green). Panel (a) considers the case in which

Amazon’s HQ2 is located on the old Michael Reese Hospital premises;
panel (b) when it is located in the Old Main Post Office; panel (c) in

the Tribune Media River Front property; panel (d) in the old A. Finkl &

Sons steel plant. For each counterfactual, the distribution of the change is

divided in 5 quantiles. The census tracts colored in bright red correspond

to the top quantile, the ones in bright blue to the bottom quantile.
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Figure A.9. Correlation between Segrcz computed using the approximated

distribution of household income (horizontal axis) and the actual distribu-

tion of average personal income across CTs (vertical axis) in 1990 (left

panel) and 2010 (right panel).

Figure A.10. Correlation between workers as reported in the ZBP (x-axis)

and in the NETS (y-axis) in 1994 (left) and 2010 (right). Each point rep-

resents a ZIP code. The dashed red line is the 45-degree line.
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Figure A.11. Scatter plot of predicted patenting growth (instrument) and

pre-trend in segregation (1980-1990). The scatter plot is weighted by total

households in 1990.
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Figure A.12. Distribution of changes in measured segregation and patent-

ing growth in the cross section of U.S. CZs, 1990-2010.
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Figure A.13. Scatter plot of predicted patenting growth (instrument) and

pre-trend in patenting (1980-1990). The scatter plot is weighted by total

households in 1990.



176

Figure A.14. Predicted (top map) and actual (bottom map) growth rate

of patents in U.S. commuting zones, 1990-2010.
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Figure A.16. The bin scatter plot compares the value of νc estimated using

(1.22) with the value of νc that minimizes the difference between the share of

people in city c commuting for less than 60 minutes and the model generated

counterpart.
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through a 2SLS procedure that uses a model-generated instrument. The left

histogram reports the entire distribution after dropping the top and bottom

5% of the values. The right panel reports the distribution for εc > 1 only.
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Figure A.18. The two histograms report the distribution of κc for those

commuting zones with εc > 1. The left and right histograms show the

unweighted and weighted distribution of this variable, respectively.
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Figure A.19. Map of Chicago divided by census tract. The areas high-

lighted in black are the ones that were proposed as suitable places to host

the Amazon’s HQ2.
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Figure A.20. Change in high-knowledge workers in each census tract of

Chicago as a result of Amazon’s new headquarter locating in a specific

neighborhood (colored in green). Panel (a) considers the case in which

Amazon’s HQ2 is located on the old Michael Reese Hospital premises;
panel (b) when it is located in the Old Main Post Office; panel (c) in

the Tribune Media River Front property; panel (d) in the old A. Finkl &

Sons steel plant. For each counterfactual, the distribution of the change is

divided in 5 quantiles. The census tracts colored in bright red correspond

to the top quantile, the ones in bright blue to the bottom quantile.
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Figure A.21. Bin-scatter plot of patents per capita and (log) population

density in all CZs (left) and densest CZs hosting 50% of the U.S. population.

The plot is weighted by total population and controls for year fixed effects.

The measure of innovation is winsorized at the 1% level.
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Figure A.22. Bin-scatter plot of patents per capita and (log) population

density in all CSDs (left) and densest CSDs hosting 50% of the U.S. popu-

lation. The plot is weighted by total population and controls for year fixed

effects. The measure of innovation is winsorized at the 1% level.
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Figure A.23. Marginal effect of having a conventional tail and being in

a certain core-conventionality category on the probability of being a hit

patent.
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Figure A.24. The dependent variable is defined as the tail-conventionality

of the median patent in the CSD-year observation. The bin-scatter plot is

weighted by the total number of patents filed in the CSD/Year observation

and controls for State and Year fixed effects.
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Figure A.25. Concentration of innovation output and log density of popu-

lation. The bin-scatter plot is weighted by the total number of patents filed

in the CSD/Year observation.
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Figure A.26. Left panel: Contribution of each term to condition 2.21.

Right panel: Contribution of rate of conventional ideas, rate of unconven-

tional ideas and congestion costs to overall welfare gain from optimal policy

under fixed urban structure.
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Figure A.27. Contribution of each component in 2.19 to overall welfare

gain from optimal policy under flexible urban structure.
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Figure A.28. Welfare gain (% consumption equivalent) from optimal policy

with fixed structure (red line) and flexible structure (blue line).
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Figure A.29. Example of c-score distribution for a patent. Tail-

conventionality corresponds to the 10th percentile of the distribution,

core-conventionality corresponds to the median. Similarly, we define tail-

unconventionality as one minus tail-conventionality.
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Figure A.30. The figure shows a map of county sub-divisions in the United

States. A given CSD is colored in red if it produced at least one patent

per year between 2000 and 2010 (“continuously innovative”), in blue if it

produced innovation only occasionally. No patents have been filed in the

CSDs that are missing in the map.
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(a) Chicago (b) New York

(c) San Francisco (d) Boston

Figure A.31. The figure shows a map of county sub-divisions in four of the

main metropolitan areas in the United States. A given CSD is colored in

red if it produced at least one patent per year between 2000 and 2010 (“con-

tinuously innovative”), in blue if it produced innovation only occasionally.

No patents have been filed in the CSDs that are missing in the map.
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(a) Patents per worker and log-density of employment, all CSDs
(left) and densest CSDs hosting 50% of U.S. employment (right).
Only patents for which the state of the assignee coincides with at
the state of at least one of the inventors are included.
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(b) Patents per knowledge worker and log-density of knowledge
workers, all CSDs (left) and densest CSDs hosting 50% of U.S.
knowledge employment (right). Only patents for which the state
of the assignee coincides with at the state of at least one of the
inventors are included.
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(c) Patents per capita and log-density of population, all CSDs (left)
and densest CSDs hosting 50% of U.S. population (right). All
patents are geo-located at the residence of the first inventor.

Figure A.32. All the bin-scatter plots are weighted by total population or

(knowledge) employment, and control for year fixed effects. The measure

of innovation is winsorized at 1% level.
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Figure A.33. Cumulative distribution functions of tail conventionality

(left) and core conventionality (right) in the universe of patents.
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Figure A.34. Placebo experiment: Estimated coefficients from 50 regres-

sions of log-density on concentration index on simulated patent networks.



189

 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

CHEMISTRY

MECH. ENG.

Figure A.35. Every pixel in the matrix indicates a patent class pair. The

darker the pixel the higher the c-score assigned to that class pair, the lighter

the lower the c-score. Diagonal elements of the matrix show a clear red ten-

dency compared to the rest of the matrix. The “class-clusters” of Chemistry

and Mechanical Engineering, among the others, are clearly visible around

the diagonal.
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(a) Median tail-conventionality
and log-density of employment
in continuously innovative CSDs.
Only patents for which the state
of the assignee coincides with at
the state of at least one of the
inventors are included.
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(b) Median tail-conventionality
and log-density of knowledge
workers in continuously innova-
tive CSDs. Only patents for
which the state of the assignee
coincides with at the state of at
least one of the inventors are in-
cluded.
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(c) Median tail-conventionality
and log-density of population in
continuously innovative CSDs.
All patents are geo-located at the
residence of the first inventor.

Figure A.36. All the bin-scatter plots are weighted by total patents, and

control for year and state fixed effects.
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Figure A.37. Spatial economy: Illustration. Innovators from background

S and D (programmers and designers) sort themselves into the downtown

areas of cities. Unskilled labor lives in the outskirts of cities and in the rural

areas. Production takes place in rural areas between cities.

Figure A.38. Header of patent number 137,279, the first patent that
reports the year in which the application was filed.
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Figure A.39. The figure shows an extract from patent number 46,101.
The patent references another patent in the text. This piece of infor-
mation is used to build a data set of citations prior to 1947.

Figure A.40. The figure shows an extract from the end of patent num-
ber 580. There the name of the inventor is listed in capital letters
together with the name of two witnesses.
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Figure A.41. The figure shows an extract from the of end patent num-
ber 580. There the name of the inventor is listed in capital letters
together with the name of two witnesses.
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Figure A.42. The figure compares the number of patents reported in
HistPat and CUSP. For CUSP I only selected the patents for which at
least one inventor or one assignee are U.S. residents.
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Figure A.43. The figure shows the share of patents for which all the
locations that appear in HistPat are also contained in CUSP. The
denominator is given by the number of patents available in HistPat in
a given year.
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Figure A.44. The graph plots the number of patents granted by the
USPTO by filing year and country of residence of their inventors. The
blue line represents the total number of patents issued by the USPTO.
The green line shows the number of patents whose inventors are U.S.
residents. The red line shows the number of patents whose inventors
are foreign residents.
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Figure A.45. The figure shows the share of patents that were the result
of an international collaboration by filing year. A grant is considered
an international collaboration if at least one inventor is a U.S. resident
and at least another one has her residence outside the United States.
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Figure A.46. The figure shows the average time (in years) that a patent
application filed in a certain year had to wait before being granted.
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Figure A.47. The figure shows the decline of single-authored patents
over time. Panel a reports the share of patents filed by a single inventor
by filing year. Panel b the average number of inventor for each filing
year.
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Figure A.48. This figure analyzes the distance patterns among the
inventors of a same patent. The left panel shows the minimum, mean,
and maximum distance across the inventors of the median patent. The
right panel reports the share of patents with at least two inventors that
live more than 100 km apart.
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Figure A.49. The figure shows the share of patents for which at least
two inventors live in the same city.
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Figure A.50. The figure shows the share of patents by filing year that
were assigned, in full or in part, to at least one person (or company)
different from the inventors.
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Figure A.51. The figure analyzes the distance patterns between as-
signees and inventors. The left panel shows the minimum, mean, and
maximum distance between the inventors and assignee fo the median
patent. The right panel reports the share of patents for which the dis-
tance between the assignee and at least one of the inventors is larger
than 100 kilometers.
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Figure A.52. The two figures report the average number of citation by
filing year. The left panel shows the series for the years between 1836
and 1940, whereas the right panel for the years after 1940.
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Figure A.53. The figure shows the share of patents that have not re-
ceived any citation at any point in time after being filed.
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Figure A.54. The figure shows the average distance of citations re-
ceived by the median patent in the 10 years following its filing.
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APPENDIX B

Tables

1990 2000 2010
Overall

42.8 46.2 47.0
Gini

Across CTs - Within CZs
19.5 20.6 22.5

(Segregation)

Table B.1. The overall Gini is obtained from the FRED website. The data

sources and methodology for the across-CT and segregation measures are

explained in the text.



202

Dep. Variable: Change in Segregation (Gini), 1990-2010

(1) (2) (3) (4) (5) (6)

Patenting Growth 1.27*** 0.84*** 0.93*** 0.63** 0.62** 0.64**

(0.23) (0.32) (0.30) (0.26) (0.25) (0.28)

# CT 2.22** 3.21** 4.36*** 4.35*** 4.29***

(0.99) (1.33) (1.07) (1.09) (1.14)

# of Household -2.13 -3.43** -3.39** -3.43**

(1.58) (1.33) (1.35) (1.45)

Income 8.20*** 8.02*** 8.21***

(1.91) (1.92) (1.97)

Import Exposure 0.01 0.01

(0.03) (0.03)

Local Govt Spending -0.06

(0.39)

# obs. 703 703 703 703 687 579

R2 0.10 0.14 0.16 0.23 0.23 0.23

Table B.2. All regressions are weighted by total number of households in

1990. Controls are in growth rates, 1990-2010. Missing observations in

columns (5) and (6) reflect data availability at the source and are concen-

trated in low population regions. Robust standard errors in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.



203

Dep. Variable: Change in Segregation (Gini), 1990-2010

(1) (2) (3) (4) (5) (6)

Patenting Growth 2.88*** 2.87*** 2.84*** 2.34*** 2.41*** 2.40***

(0.47) (0.70) (0.69) (0.68) (0.71) (0.70)

# CT 0.05 1.85 2.45* 2.72* 2.65*

(1.39) (1.65) (1.47) (1.53) (1.58)

# of Household -3.49* -4.19** -4.14** -3.96**

(1.93) (1.70) (1.73) (1.84)

Income 5.65*** 5.20** 5.54**

(2.11) (2.23) (2.28)

Import Exposure -0.02 -0.03

(0.04) (0.04)

Local Govt Spending -0.21

(0.34)

# obs. 703 703 703 703 687 579

First-stage estimates

Predicted 0.72*** 0.60*** 0.60*** 0.57*** 0.56*** 0.57***

Patenting Growth (0.07) (0.08) (0.08) (0.07) (0.07) (0.07)

Wald F stat. 388.38 233.96 247.03 205.88 192.35 173.07

R2 0.36 0.41 0.43 0.44 0.44 0.46

Table B.3. 2SLS estimates. All regressions are weighted by total number

of households in 1990. First-stage estimates include all the controls specific

to the model. Controls are in growth rates, 1990-2010. Missing observations

in columns (5) and (6) reflect data availability at the source and are con-

centrated in low population regions. Robust standard errors in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable: Change in Segregation, 1990-2010

Area A 3.39*** Area B 4.18 Area C 1.52** Area D -1.27***

(0.99) (2.77) (0.64) (0.46)

Controls X Controls X Controls X Controls X
Area E -3.95 Area F -1.59 Area G 4.37*** Area H 2.88***

(5.64) (1.13) (1.33) (0.92)

Controls X Controls X Controls X Controls X

Table B.4. 2SLS estimates. All regressions are weighted by total number

of households in 1990. Controls are included in growth. Robust standard

errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Dep. Variable:

∆Ineqcz ∆Segrcz ∆CT − Ineq
(1) (2) (3) (4) (5)

Patenting Growth 0.93** 2.34*** 1.48*** -0.86** 0.36

(0.46) (0.68) (0.44) (0.35) (0.35)

∆Ineqcz 0.96***

(0.08)

# obs. 703 703 703 703 703

Controls (Growth) X X X × X

Table B.5. 2SLS estimates. All regressions are weighted by total number

of households in 1990. Controls are included in growth. Robust standard

errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable: ∆skj
(1) - OLS (2) - IV

rankj × Patenting Growth 0.87** 1.75***

(0.41) (0.60)

rankj 2.29*** 2.12***

(0.21) (0.21)

CZ Fixed effects X X
# obs. 57,285 57,285

Table B.6. Regressions are weighted by total number of workers in 1990.

Standard errors are clustered at the CZ level. ***p < 0.01, **p < 0.05,

*p < 0.1.

Dep. Variable: ∆Segr
(1) - OLS (2) - OLS (3) - IV (4) - IV

Patenting Growth 0.65** 0.78*** 1.99*** 2.11***

(0.30) (0.30) (0.65) (0.68)

Persistent Amenities 0.32 0.29

(0.23) (0.21)

Persistent Amenities × -0.45 -0.63*

× Patenting Growth (0.29) (0.35)

Controls (Growth) X X X X
# obs. 337 337 337 337

Table B.7. All regressions are weighted by total number of households in

1990. Controls are included in growth. Number of observations reflect data

availability from Lee and Lin (2017). The index of persistent amenities is

normalized to have a mean of zero and a standard deviation of one. Robust

standard errors in parenthesis. ***p < 0.01, **p < 0.05, *p < 0.1.
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Assigned Parameters Structural Estimation

α 0.80 ωnn 0.04 ωnk 0.18
β 0.75 ωkn −0.02 ωkk 0.32
κ 0.01 λkn 0.12 λkk 0.31
νc Figure A.15 ρn 0.467 ρk 0.497

δk 0.055 θ0 −0.004
θ1 0.001

Table B.8. Parameter values

Dep. Variable:

∆ Occ-Gini ∆Segr

Model Data Model Data

Bin 0.60*** 0.51*** 0.27*** 0.18*** 0.22*** 0.14***

(0.22) (0.15) (0.04) (0.02) (0.04) (0.04)

∆ Occ-Gini 0.14*** 0.15***

(0.65) (0.45)

# obs. 663 663 663 663 663 663

R2 0.02 0.24 0.12 0.68 0.10 0.14

Table B.9. All regressions are weighted by total number of households in

1990. Robust standard errors in parentheses. ***p < 0.01, **p < 0.05,

*p < 0.1.
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# Obs Min Max Mean SD
Patents per 1,000p (CZ, 1985-1994) 703 0 22.3 2.05 1.50
Patents per 1,000p (CZ, 2005-2014) 703 0 29.4 2.41 2.97

Average HH income (CZ, 1990) 703 17,776 64,369 39,688 8,940
Average HH income (CZ, 2010) 703 39,021 140,656 77,108 17,770
Average HH income (CT, 1990) 59,525 5,000 558,810 39,687 20,638
Average HH income (CT, 2010) 72,236 5,000 640,456 77,107 45,419

Number of CTs (CZ, 1990) 703 1 2,728 603.3 760.5
Number of CTs (CZ, 2010) 703 1 3,890 728.7 948.2
Average Rent (CZ, 1990) 703 129.2 688.2 396.4 124.8
Average Rent (CZ, 2010) 703 231.6 2,020.4 903.6 334.8
Average Rent (CT, 1990) 59,383 99.5 1,500 398.5 183.6
Average Rent (CT, 2010) 72,007 99.5 2336.7 916.4 521.2
Segregation (CZ, 1990) 703 0 27.0 19.5 5.2
Segregation (CZ, 2010) 703 0 32.3 22.5 6.0
Inequality (CZ, 1990) 703 36.2 49.8 44.3 2.1
Inequality (CZ, 2010) 703 36.2 52.4 45.6 2.3

Table B.10. Summary statistics (weighted by total HH in respective year).
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Dep. Variable: Change in Segregation (Theil), 1990-2010

(1) (2) (3) (4) (5) (6)

Patenting Growth 1.26*** 0.75** 0.81*** 0.50* 0.52* 0.51*

(0.24) (0.32) (0.30) (0.27) (0.29) (0.30)

# CT 2.60** 3.35** 4.59*** 4.56*** 4.54***

(0.95) (1.30) (1.06) (1.08) (1.13)

# of Household -1.61 -3.01** -3.04** -3.22**

(1.57) (1.33) (1.34) (1.45)

Income 8.80*** 8.64*** 8.97***

(2.07) (2.10) (2.17)

Import Exposure -0.02 -0.02

(0.03) (0.03)

Local Govt Spending 0.05

(0.40)

# obs. 703 703 703 703 687 579

R2 0.10 0.16 0.17 0.25 0.25 0.25

Table B.11. All regressions are weighted by total number of households

in 1990. Controls are in growth rates, 1990-2010. Missing observations in

columns (5) and (6) reflect data availability at the source and are concen-

trated in low population regions. Robust standard errors in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.

1995 1996 ... 2003 2004 2̂005 2̂006 ... 2̂013 2̂014

2̂005 d10 d9 ... d2 d1 ...

2̂006 d10 ... d3 d2 d1 ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...

2̂013 ... d10 d9 d8 d7 ...

2̂014 ... d10 d9 d8 ... d1

Table B.12. Structure and timing of the instrument. Years with a hat are

predicted, years without a hat are actual.
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Dep. Variable:

Change in Segregation, 1990-2010

(1) (2) (3) (4) (5)

Patenting Growth 1.27*** 0.97*** 0.70*** 0.61** 0.56**

(0.23) (0.23) (0.25) (0.24) (0.25)

# CT 0.51*** -2.12** -2.25** -2.64**

(1.13) (1.06) (1.06) (1.07)

# of Household 2.55** 2.54** 3.19***

(1.05) (1.08) (1.07)

Income 1.09 1.55

(1.21) (1.22)

Local Govt Spending -0.28*

(0.16)

# obs. 703 703 703 703 643

R2 0.10 0.22 0.26 0.27 0.28

Table B.13. All regressions are weighted by total number of households in

1990. Missing observations in columns (4) and (8) reflect data availability

at the source and are concentrated in low population regions. Controls are

included as the log value in 1990. Robust standard errors in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable:

Change in Segregation, 1990-2010

(1) (2) (3) (4) (5) (6)

Patenting Growth (1990-2010) 2.34*** 2.59*** 3.28*** 2.73*** 1.69*** 1.91*

(0.47) (0.72) (1.10) (0.73) (0.54) (0.50)

Patenting Growth (1980-1990) -1.08** -0.50*

(0.45) (0.30)

Bartik-like variable -1.38 -0.01

(1.26) (1.02)

Constrained Instrument No No No Yes No No

State-year fixed effects No No No No Yes Yes

Baseline controls (Growth) X X X X X X
# obs. 703 703 690 703 703 690

First-stage estimates

Predicted 0.57*** 0.55*** 0.55*** 0.48*** 0.54*** 0.46***

Patenting Growth (0.07) (0.06) (0.11) (0.07) (0.06) (0.09)

Wald F-stat 205.88 188.22 57.40 135.34 151.75 38.88

R2 0.44 0.44 0.44 0.39 0.61 0.61

Table B.14. 2SLS estimates. All regressions are weighted by total number

of households in 1990. Robust standard errors in parentheses. ***p < 0.01,

**p < 0.05, *p < 0.1.
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Dep. Variable:

Change in Segregation, 1990-2010

(1) (2) (3) (4) (5)

Patenting Growth 2.88*** 1.96*** 1.62*** 1.62*** 1.49***

(0.47) (0.45) (0.50) (0.52) (0.50)

# CT 0.44*** -1.31 -1.31 -1.70

(0.13) (1.28) (1.24) (1.20)

# of Household 1.70 1.70 2.30*

(1.28) (1.25) (1.20)

Income -0.01 0.49

(1.29) (1.32)

Local Govt Spending -0.24

(0.16)

# obs. 703 703 703 643

First-stage estimates

Predicted 0.72*** 0.76*** 0.71*** 0.65*** 0.64***

Patenting Growth (0.07) (0.08) (0.08) (0.08) (0.08)

Wald F-stat 388.38 348.74 269.11 196.85 173.07

R2 0.36 0.36 0.38 0.39 0.40

Table B.15. 2SLS estimates. All regressions are weighted by total number

of households in 1990. Missing observations in columns (4) and (8) reflect

data availability at the source and are concentrated in low population re-

gions. Controls are included as the log value in 1990. Robust standard

errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable:

∆ Edu-Gini ∆ Occ-Gini

OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)

Patenting 1.38*** 0.86** 2.34*** 1.61** 1.81*** 1.97*** 4.41*** 5.91***

Growth (0.31) (0.33) (0.56) (0.70) (0.35) (0.34) (0.57) (0.90)

# obs. 703 703 703 703 703 703 703 703

Controls × X × X × X × X

Table B.16. 2SLS estimates. All regressions are weighted by total number

of households in 1990. Controls are included in growth. Robust standard

errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Dep. Variable: ∆Segrcz
Past Trend 1990-2010

(1) (2) (3) (4)

Predicted 0.02 0.27

Patenting Growth (0.29) (0.30)

Patenting Growth 2.31*** 1.41**

(0.63) (0.64)

# obs. 309 309 309 309

Controls (Growth) × X × X

Table B.17. All regressions are weighted by total number of households in

1990. Controls are in growth rates, 1990-2010. Robust standard errors in

parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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Dep. Variable: ∆skj
(1) - Model (2) - Data

rankj × Bin 2.89*** 0.160**

(0.31) (0.063)

rankj -20.39*** 1.52***

(2.39) (0.39)

CZ Fixed effects X X
# obs. 58,050 57,197

Table B.18. Regressions are weighted by total number of workers in 1990.

Standard errors are clustered at the CZ level. ***p < 0.01, **p < 0.05,

*p < 0.1.

Median Tail-conventionality

(1) (2) (3) (4) (5) (6)

Log population -1.10*** -1.10*** -0.78*** -0.81***

density (0.38) (0.31) (0.19) (0.14)

Log college- -0.87*** -0.92***

graduate density (0.33) (0.29)

State/year f.e. no yes no yes no no

Weighted Pat Pat Pat Pat no Pop

N. Obs 18,095 18,095 18,095 18,095 18,095 18,095

R2 0.02 0.08 0.013 0.13 0.003 0.01

Table B.19. The dependent variable is defined as the tail-conventionality

of the median patent in the CSD-year observation. All regressions, except

for (5) and (6), are weighted by the total number of patents filed in the

CSD/Year observation. Standard errors in all the regressions are clustered

at the CSD level. U-scores are winsorized (1%) at the patent level. ***p <

0.01, **p < 0.05, *p < 0.1.
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Median Tail-conventionality

(1) (2) (3) (4)

Log population density -1.10*** -0.83*** -0.80*** -0.56**

(0.31) (0.26) (0.27) (0.27)

Log median income 2.01*** 2.7*** 1.82*

(0.67) (0.99) (1.0)

% College Graduates -0.028 -0.0173

(0.022) (0.0234)

Gini -0.14

(0.105)

State/year f.e. yes yes yes yes

Weighted Pat Pat Pat Pat

N. Obs 18,095 18,095 18,095 17,995

R2 0.08 0.09 0.10 0.10

Table B.20. The dependent variable is defined as the tail-conventionality of

the median patent in the CSD-year observation. All regressions are weighted

by the total number of patents filed in the CSD/Year observation. Standard

errors in all the regressions are clustered at the CSD level. U-scores are

winsorized (1%) at the patent level. ***p < 0.01, **p < 0.05, *p < 0.1.

Unconventional Tail

(1) (2) (3)

Log population density 0.0087** 0.0074** 0.0105***

(0.0037) (0.0033) (0.0038)

Publicly Traded -0.0161** -0.0109

(0.0068) (0.0080)

Log total patents -0.0038*

(0.0022)

State/year/class f.e. yes yes yes

N. Obs 1,059,999 706,469 706,469

Pseudo R2 0.007 0.007 0.008

Table B.21. Marginal effects of a patent-level logit regression. Dependent

variable is a dummy that takes value 1 if the Tail Conventionality of the

patent is below the median of its year-class bin. Standard errors in all

the regressions are clustered at the CSD level. ***p < 0.01, **p < 0.05,

*p < 0.1.
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Percentage of citations to class A from class 6= A
(1) (2) (3) (4)

Arrival of new 0.49*** 0.43*** 0.92*** 0.65***

firm of class A (0.0002) (0.0002) (0.0011) (0.0002)

Class-CSD f.e. yes yes yes yes

Class-Year f.e. no yes no yes

Shock arrival year 2001 2001 2005 2005

Average S̄ 0.43 0.43 0.43 0.43

N. Obs 682,116 682,116 682,116 682,116

within R2 0.003 0.006 0.001 0.005

Table B.22. This table reports the coefficients of a regression of the share

of citations received by patent class A from patents of classes other than A
in a given CSD at a given time on time/class and class/CSD fixed effects

and the cumulative normalized arrival of new firms of class A in that CSD.

Columns 2 and 4 include time/class fixed effects. Columns 3 and 4 only

include incoming firms on or after 2005. Standard errors clustered at the

CSD/class level are reported in parenthesis. ***p < 0.01, **p < 0.05,

*p < 0.1.

Filing Year # Patent Grants Filing Year # Patent Grants

2000 161,388 2006 202,601

2001 209,259 2007 204,957

2002 209,957 2008 199,802

2003 199,752 2009 180,558

2004 198,383 2010 166,985

2005 200,204 Total 2,155,901

Table B.23. This table reports the number of patents issued from January

2002 to August 2014 and re-arranged by filing year. All patents (including

foreign grants) are counted.



216

Variable Level Mean Min Max Winsor Weight # Obs.

Tail Conventionality Patent 85 40 164 1% No 1,058,999

Core Conventionality Patent 108 61 183 1% No 1,058,999

Median Tail Conventionality CSD 77 40 164 No Pat 18,095

Patents per capita CSD 5.e-4 3.e-6 0.641 No Pop 18,095

Patents per capita (winsor) CSD 5.e-4 1.e-4 0.011 1% Pop 18,095

Density of population (/km2) CSD 1966 0.931 26821 No Pop 18,095

Table B.24. Summary statistics for the main variables used in the analysis.

Median Tail Conventionality

Log population -1.31*** -1.36***

density (0.32) (0.35)

Chicago 1.13

(1.00)

Boston -3.48**

(1.72)

New York 1.18

(0.97)

San Francisco 1.45***

(0.55)

State/year f.e. yes yes

N. Obs 18,095 18,095

R2 0.14 0.14

Table B.25. All regressions are weighted by the total number of patents

filed in the CSD/Year observation. Standard errors in all the regressions

are clustered at the CSD level. ***p < 0.01, **p < 0.05, *p < 0.1.
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HistPat CUSP
Years Covered 1836-1976 1836-2015

Inventor First Name N Y
Inventor Last Name N Y

Inventor Town N Y
Inventor County Y Y
Inventor State Y Y

Full Patent Text N Available upon request
Patent Number Y Y

Application Date N Y
Grant Date Y Y

Names of Multiple Inventors N Y
Names of Assignees N Y

Assignee Town N Y
Assignee County & State Y Y

Patent Class N Y
Backward and Forward Citations N Y

Table B.26. The table shows a schematic comparison of the variables
available in HistPat and CUSP.

Decade Leading Class Description
1836-1845 E02 Hydraulic Engineering; Foundations
1846-1865 F16 Engineering Elements or Units
1866-1875 A01 Agriculture
1876-1885 D05 Sewing
1886-1895 B41 Printing
1896-1905 D03 Weaving
1906-1945 F16 Engineering Elements or Units
1946-1995 A61 Medical or Veterinary Science; Hygiene
1996-2015 G06 Computing; Calculating; Counting

Table B.27. The table reports the leading technology for each decade
from 1836 to 2015. A leading technology is defined as the most frequent
technological class in the top percentile of the distribution of citations
received.
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APPENDIX C

Appendices

C.1. Appendix to Chapter 1

C.1.1. Data description

C.1.1.1. Income distribution at the CT level. The NHGIS provides informa-

tion on yearly household income at the CT level by dividing residents into 15 income

bins. The lower bounds of each income bin are: 0$, 15,000$, 20,000$, 25,000$,

30,000$, 35,000$, 40,000$, 45,000$, 50,000$, 60,000$, 75,000$, 100,000$, 125,000$,

and 150,000$. In order to measure inequality and segregation, we need to approxi-

mate the income distribution. For each bracket except for the top one, we assume

that all households have income equal to the midpoint of the bracket. The top bin

is unbounded, with an average that potentially varies substantially across CTs, and

our measures will depend on the assumptions made on the distribution of income in

the top bracket. The literature has dealt with this issue by either fitting the param-

eters of an income distribution (usually assumed to be Pareto) or assuming that the

average is a fixed percentage above the amount reported in top coded data (usually

40-50% more).1 These two methods have been subject to several critics.2

1See for example Autor, Katz, and Kearney (2008) and Lemieux (2006).
2Critics of the former approach have argued that if the underlying distribution is far from the
assumed one, a researcher would obtain better results by taking the bin averages. Critics of the
latter have pointed to the fact that the assumption of the average income for the last bin is somewhat
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For our analysis, we design an alternative approach to assign a value to the top

bin, and validate our procedure by comparing the resulting segregation index with

the corresponding index we obtain by using information on average personal income,

that does not require to make arbitrary assumptions. First, the 5-year 2008-2012

ACS provides CT-level Gini indices using households as basic unit of analysis. For

each census tract in 2010, we set the average of the top bin so that the resulting Gini

matches the one reported in the ACS.3 Second, we use the time series of individual-

level Gini data at a state level computed by Frank (2009). From there we collect

estimates for the Gini index for all the states in 1990 and 2010 and calculate the

percentage change. Assuming that the state trends for individual-level Gini are

mirrored by the corresponding CT trends for household-level Gini, we set the average

income in the top bin so that the percentage change in the Gini index is equal to the

one in Frank (2009).4

To validate our procedure further, in Figure A.9 we show the correlation between

segregation in 1990 and 2010, respectively, using the household income distribution

arbitrary. Different methods to deal with binned income data have been reviewed by Von Hippel
et al. (2014).
3Note that in 3609 out of 98032 CTs (3.7%) there is no value that allows us to exactly match the
Gini reported in the ACS. This might be due to measurement errors or the approximation that all
the households earn the average of the income braket. In this case, our algorithm diverges, either
assigning values that are too low (i.e., smaller than 150,000$ which is the lower bound of the top
bin) or too high (i.e., bigger than 1,000,000$). When this happens we assign to the CTs in question
a default value of 200,000$ which is in line with the 1.4-rule. We experimented with different default
values and the main results are robust. Another 908 CTs (or 0.9%) appear in the income data but
not in the Gini data. In that case, we try to match the 2010 national Gini (0.48).
4We are not able to match 20,966 (or 21%) of the 1990 CTs with the 2010 data. In this case, we
assume that their Gini is the same as the national one in 1990 (0.43). As we did in 2010, when
the algorithm diverges or estimates an implausible value, we assign to the top bin a default value
of 200,000$.
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approximated using the procedure described above, and the same measure computed

using average personal income at the CT level, which does not require to make

arbitrary assumptions on the distribution of income within brackets. The correlation

between the two variables is equal to 90% in 1990 and 91% in 2010.

C.1.1.2. Other data sources.

Distribution of residents and workers by occupation. The distribution of residents

by occupation at the CT level is constructed as follows. First, from the NHGIS we

obtain information on the CT-level distribution of residents according to a coarse

definition of occupations, comprising 13 occupations in 1990 and 25 occupations in

2010. Then, using the IPUMS, we construct a CZ-specific crosswalk that maps the

coarse definition of occupation into the fine one (386 occupations in 1990 and 454 in

2010). To this end, we exploit the CZ-specific frequency of each fine occupation code

in each coarse category. Occupations are then categorized in two classes: knowledge

intensive and non-knowledge intensive. These two categories are defined accord-

ing to Florida (2017) definition of creative class: “The creative class is made up

of workers in occupations spanning computer science and mathematics; architecture

and engineering, the life, physical, and social sciences; the arts, design, music, en-

tertainment, sports, and media; management, business, and finance; and law, health

care, education, and training.” (p. 217).5

We assign workers to workplaces using the National Establishment Time Series

(NETS). This data set contains information about employment for the universe of

5The precise list of occupations that fall into the knowledge intensive category for 1990 and 2010
is available upon request.
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establishments between 1990 and 2010, as well as their location and NAICS code.

The latitude and longitude is provided at 5 geographical levels (namely block face,

block group, census tract centroid, ZIP code centroid or street level). We allocate

workers to each census tract according to the following procedure. First, we assign

to a census tract those establishments whose geographical coordinates are provided

at a block face, block group or census tract centroid level.6 Second, we assign the

workers of each establishment geo-located at ZIP code level based on the area of the

census tracts it contains.7 We discard all those establishments whose coordinates are

missing or are at a street level.8 This gives us an estimate of workers per NAICS at

a census tract level.

Since the NETS is a relatively new data set in the literature and there might be

some concerns related to its validity, before assigning each NAICS to a distribution

of occupations, we compare our employment estimates with the distribution of work-

ers obtained from the ZIP Code Business Patterns (ZBP) provided by the Census

Bureau. We first aggregate the employment data obtained from the NETS data at

a ZIP code level and we then check whether they systematically differ in the two

data sets. Note that we do expect them to somewhat differ for various reasons. For

example, the ZBP does not consider workers that are employed by the public sec-

tor. Therefore, the number of workers in ZIP codes that contain public universities

67,573,637 establishments were assigned this way in 1990; 28,111,455 in 2010.
7For example, if a certain ZIP code cotains two census tracts that cover 40% and 60% of its area,
respectively, we assign 40% of the employment of an establishment assigned to that ZIP code to
the first census tract and 60% to the second one. In 1990, 3,002,490 establishments were assigned
this way; 2,457,796 in 2010.
8156,185 establishments were discarded in 1990; 332,091 in 2010.
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or government buildings is likely to be significantly lower in the ZBP.9 Figure A.10

shows the correlation between the workers estimated using the ZBP (x-axis) and the

NETS (y-axis) in 1994 (left panel) and 2010 (right panel).10 As we expected, the

NETS systematically reports more workers than the ZBP, although the two measures

are very close. Interestingly and in line with our prior expectations, the difference

between the two employment estimates is highest in ZIP codes that contain pub-

lic universities or government buildings. For example, the three largest differences

in 1994 come from ZIP codes 90012, 43215 and 77002 (92,662 vs. 20,667; 159,815

vs. 80,413; and 159,847 vs. 77,565, respectively). ZIP code 90012 contains the Los

Angeles City Hall as well as other government buildings (e.g., the California Depart-

ment of Transportation’s offices), the Ohio Statehouse is located in ZIP code 43215,

and ZIP code 77002 contains the Houston City Administration. In 1994 the NETS

reports an estimate of 16,336 workers for ZIP code 94720 (UC Berkeley), whereas

the ZBP of only 1,028.

Finally, we use the Occupational Employment Statistics (OES) provided by the

Bureau of Labor Statistics (BLS) to get an estimate of the occupational distribution

of workers in each census tract. The OES reports the percentage of workers active

in a certain occupation for each NAICS (SIC90 for 1990) code.11 Similarly to what

9Some other NAICS codes, as for example agriculture, are excluded from the ZBP
and the sampling frame differs in the two data sets. For more details, see
http://www.exceptionalgrowth.org/downloads/NETSvsBLS DataCollectionDifferences.pdf
10We used 1994 instead of 1990, since this is the first year for which the ZIP Code Business Patterns
was made available.
11Note that since in the 90s only certain industry codes were reported in different years, we built
the crosswalk for 1990 using OES data from 1990 to 1993. Also, since the data are provided for
SIC (instead of NAICS) codes, we first build a crosswalk from NAICS to SIC and we then use the
appropriate distributions reported in the OES.
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we did for the residents, the occupations are then categorized in the two classes

according to their knowledge intensity.

Rent. Housing rent at the CT level is computed as the average rent for a one

bedroom apartment. The NHGIS provides rent data in brackets, as numer of apart-

ments leased for less than $200, $300, $500, $750, $1,000 and for more than $1,000.

We assign to all the apartments in each bin except for the top one the midpoint

value of the bracket. For the top bin, we set it to $1,500 in 1990 and $2,250 in 2010,

assuming an approximate growth of rent in the top bin of 2% per year.

Data on rent are not available for 6,535 CTs out of 61,258 in 1990, and for 12,862

CTs out of 74,001 in 2010. To complete the dataset, we extrapolate the missing values

by running a regression of log average rent on log income, a third-degree polynomial

of density and log median house prices, and applying the estimated coefficients to

the observations with missing rent. This reduces the number of missing observations

to 1,874 in 1990 and 1,993 in 2010. All the missing observations are concentrated in

low population CTs.

Commuting time and flows. Commuting flows are collected from the Longitudinal

Employer-Household Dynamics (LEHD) dataset.12. The LEHD collects data about

bilateral commuting flows from and to each Census Block starting from 2002.13 These

data are used to estimate the commuting flows/commuting times semi-elasticities

using the gravity equation (1.22) obtained from the structural model. Since we

12https://lehd.ces.census.gov/
13See https://lehd.ces.census.gov/data/lodes/LODES7/LODESTechDoc7.2.pdf for more details.
Note that some years are missing for some states.
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assume in our model that the semi-elasticities of commuting are stable over the

period 1990-2010 and given the data availability, we collect commuting flows for

2010 for all the states (with the exception of Massachusetts for which data are only

available from 2011 onward). Data at a block level are then aggregated to obtain

commuting flows at our preferred level of geographical aggregation (i.e., 1990 CTs).

Commuting times between each pair of CTs are calculated using driving times

between the centroids of each Census Tract. Because of the high number of possible

combinations we were unable to use commercial routing services (e.g., Google Maps)

and we relied on the Open Source Routing Machine (OSRM).14 The advantage of

using the OSRM is that it is possible to run it locally. This allows us to send

queries without limits and in parallel. In particular, it was possible to collect data

on commuting times for each pair of neighborhoods withing each city (for a total of

32.4 million pairs) in just few hours. The disadvantage is that the OSRM does not

contain any data on traffic (and in particular traffic during rush hours) which might

underestimate the actual commuting times/costs faced by workers.15

C.1.2. Derivations

C.1.2.1. Derivation of (1.9) and (1.12). The probability that an agent of type

x commutes from neighborhood i to neighborhood j can be derived as follows:

14http://project-osrm.org/
15Note that, because of the lack of traffic data, commuting from A to B always takes the same time
as commuting from B to A. The commuting matrices are therefore symmetric which reduces the
number of queries necessary to populate them to 16.2 million.
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The probability that an agent of type x commutes to neighborhood j, conditional

on living in neighborhood j, can be derived as follows:

πxij|i = P

(
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C.1.3. Details on the Structural Estimation

We estimate the structural parameters of the model using the moment conditions

described in (1.28). In particular, we need to estimate the parameter set:

p ≡ {ρn, ρk, δk, ωnn, ωnk, ωkn, ωkk, λkn, λkk, θ}

given the data matrix:

X = {R, W , Q, K, τ}

as well as the parameters {α, β, νc, κ}.



227

To do this, we use a N -step GMM approach, where the loss function is given by:

L ≡m (X, p)
′
W m (X, p)

wherem (X, p) is the value of the moment condition given the data matrix X and

parameters p, whereas W is a weight matrix which is updated at each step. In the

first step, we set W equal to the identity matrix and estimate the parameters p that

minimize L. Formally,

pfirst ≡ arg min
p
m (X, p)

′
m (X, p) .

The parameters estimated in the first step are used to estimate the optimal

weighting matrix. The optimal weighting matrix, W , is the White (1980) het-

eroskedasticity consistent matrix of standard errors:

W = m
(
X, pfirst

)
m
(
X, pfirst

)′
.

The process is repeated until convergence.

C.1.4. Recursion to Find Equilibrium After Shocks

We define the share of land commercially used by the firm of type x in neighborhood

j as

θxj ≡
Hx
j

Lj
,
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where Lj is the total amount of floor space available for (commercial or residential)

construction in neighborhood j, that we take as exogenous.

Given starting values q0
i , w

x,0
j , θx,0j
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(9) θx,1j =
(1−α)Y xi
q1
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(10) Axj = aj

(11) BX
i =

We iterate until |q0
i − q1

i |,
∣∣wx,0j − wx,1j ∣∣ and

∣∣θx,0j − θx,1j ∣∣ are below 10−6 for all i, j.

Otherwise, update the starting values according to:
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q2
i = 0.3 q1

i + 0.7 q0
i

wx,2j = 0.3wx,1i + 0.7wx,0i

θx,2j = 0.3 θx,1i + 0.7 θx,0i

C.1.5. Model-Generated Instrument for the Gravity Equation

In Section 1.4.5, we show that the equilibrium conditions of the model yield a gravity

equation that can be used to estimate the semi-elasticity of commuting flows to

commuting times for each city in our sample. The gravity equation has the following

form:

log (πij) = ψi + ζj + νcτij + ηij

where ψi = −ε (1− β) qi + εBi. Since, Bi is not directly observable it is not possible

to use this structural identity to estimate ε. In particular, if we were trying to

regress the fixed effects on the observed rents, Bi would be part of the error term

and, since residential amenities also affect rents, the estimate of ε would be biased by

construction. In a similar setup, Allen et al. (2017) suggest it should be possible to

use the rents obtained through a model in which residential amenities are exogenous

and equalized across neighborhoods as instrument for the observed rents. The rents

estimated throught this procedure would be uncorrelated with Bi by construction

and, if correlated with the actual rents, would constitute a valid instrument.
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The 2SLS procedure

ψi = γq̂i + ξi

qi = σqmodeli + χi

gives us an unbiased estimate of γ = −ε (1− β) for each city c, and since the value

of β is known, from there it is possible to obtain an unbiased estimate of εc. Being

the shape parameter of a Frechet distribution, εc needs to be strictly greater than

1.16 The point estimates we obtain through these procedure are bigger than one

in about 80% of cases, although values bigger than ones are included in the 0.95

confidence interval in 97% of commuting zones. The left panel of Figure A.17 shows

the distribution of εc obtained through the 2SLS procedure after discarding the top

and bottom 5% of observations. Although the distribution is clearly skewed towards

the right, it is possible to see that we obtain an estimate smaller than 1 for a non-

negligible share of commuting zones in our sample. The right panel of Figure A.17

shows the distribution of all the epsilons greater than 1. The majority of them

(95%) is included in an interval between 1.08 and 13.06, with an average of 6.52

(weighted average: 6.00). This is consistent with the estimates obtained by Eaton

and Kortum (2002) in the context of a gravity trade model. Their estimations of the

shape parameter range from 3.60 to 12.86.

16The expected value of a Frechet distribution with shape parameters between 0 and 1 is infinity.
This is a problem in our setup, since the expected utility for each agent needs to be equalized across
cities.
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We now calculate the value of κc implied by our estimates of νc and εc and see

how it compares with our calibrated value of 0.01. For this exercise, we only consider

commuting zones with εc > 1. The left panel of Figure A.18 shows the unweighted

distribution of κc for the selected sample of commuting zones. All the values are

contained in an interval between 0 and 0.048 with an average of 0.01 and a median

of 0.007. Similarly, the right panel shows the same distribution weighted by the

number of people in each city. The weighted mean and median are very close to the

previous values (0.01 and 0.008, respectively).

C.2. Appendix to Chapter 2

C.2.1. C-Score: Details and Example

The c-score of the class pair (A,B) is calculated according to the following algo-

rithm:17

(1) The frequency of the citation pair (A,B) in the dataset is computed. To

avoid that our results are disproportionately driven by patents that give

a large number of citations, we weight every occurrence by the number of

possible pair combinations in a certain patent. Mathematically,

FREQOBS (A,B) =
1

N

N∑
n=1

Cn−1∑
m=1

Cn∑
l=m+1

1 Cn

2


1{cm=A, cl=B∨ cm=B, cl=A}

17the conventionality score we also use foreign patents.
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where N is the total number of patents in the dataset, Cn is the total number

of citations in patent n, ck and cl are the k-th and l-th citation of patent n,

respectively. It is easy to see that FREQOBS (A,B) is a symmetric function.

(2) The theoretical frequency of the citation pair (A,B) is computed. This is

the frequency with which one would expect (A,B) to occur if the number

of citations from and to a certain class were to be respected. We weight the

contribution of each patent by its total number of citations given. Formally,

FREQRAND (A,B) =



∑H
h=1

Nh
N

2

(
1
Nh

∑
g∈Ph

∑Cg
k=1

1{ck=A}
Cg

)(
1
Nh

∑
g∈Ph

∑Cg
k=1

1{ck=B}
Cg

)
if A 6= B

∑H
h=1

Nh
N

(
1
Nh

∑
g∈Ph

∑Cg
k=1

1{ck=A}
Cg

)2

if A = B

where H is the total number of classes, Ph is the set of patents of class h,

Cg the number of citations of patent g patent, and ck is the k-th citation

of patent g. The first term in parenthesis in the first expression is the

(weighted) empirical probability that a patent of class i is cited in class h

if we took a citation at random from the pool of all the citations of class

h. The second term is the (weighted) empirical probability that a patent

of class j is cited in class h if we took a citation at random from the pool

of all the citations of class h. The multiplication of these two terms is

therefore the probability of observing a citation pair (A,B) if two citations

were taken at random from the pool keeping the network of citations from

class to class constant. This expression is multiplied by two for symmetry

reasons. Finally, these probabilities are weighted by the frequency of each

class in the universe of patents.
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The second expression implements the same idea in the case A = B.

(3) The c-score of each citation pair is calculated as follows:

c (A,B) =
FREQOBS (A,B)

FREQRAND (A,B)

when the c-score is smaller than 1, the pair (A,B) is observed in the data

less often than what one would expect by taking the some paper in a pseudo-

random fashion. We consider this a sign of novelty. On the contrary, when

the c-score is bigger than 1, the pair is observed more frequently than the

pseudo-random distribution. We consider this a sign of commonality.

(4) Each of the

 Cn

2

 different citation pairs of each patent is assigned its

corresponding c-score. This gives the distribution of c-scores for each patent.

The following is an example of how a patent is assigned a distribution of c-scores.

Consider a patent that cites 6 patents of 3 different classes (CPU×3, MONITOR×2,

SHOES×1):

{CPU, CPU, CPU, MONITOR, MONITOR, SHOES} .

Take all pairwise combinations of citations and assign each of these combinations

the corresponding c-score:

(CPU, CPU)︸ ︷︷ ︸
c=1.4

×3 (MON, MON)︸ ︷︷ ︸×1

c=1.25

(CPU, MON)︸ ︷︷ ︸
c=1.1

×6 (CPU, SH)︸ ︷︷ ︸×3

c=0.9

(SH, MON)︸ ︷︷ ︸×2

c=0.75
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This generates a distribution of c-score for this specific patent (Figure A.29)

from which we can extract the 10th percentile (tail-conventionality) and its median

(core-conventionality).

C.2.2. Proofs and Derivations

C.2.2.1. Proof of Proposition 2.3.1. We start with the maximization problem

of the developer that sets up a company town. We conjecture and verify at the

end of the proof that company towns are fully specialized. We focus on the case of

a S-specialized location, as the one for D-specialized sites is identical. Letting θC

denote the Lagrange multiplier on the developer’s participation constraint, the first

order conditions of her problem can be expressed as:

θC = NS

τCS = φ.

Plugging this solution in the profit function and imposing the zero profit condition

yields:

(C.1) NC
S =

[
φα

1− α

] α
1−α(φ+1)

[
1

W

] α
1−α(φ+1)

.

As for the case of a generic town, let θGS and θGD denote the Lagrange multipliers

on the participation constraints on innovators of type S and D respectively. The
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first order conditions for the developer’s maximization problem yield:

θGS = NG
S θGD = NG

D

τGS = φ+

(
NG
D

NG
S

)φ
τGD = φ+

(
NG
S

NG
D

)φ
while symmetry implies that UGS = UGD , which gives:

(
NG
S

NG
D

)1−φ

=
1 + τS
1 + τD

.

It is easy to see that this problem admits a unique solution in which NG
S = NG

D =

NG

2
and:

τGS = φ+ 1 τGD = φ+ 1.

Plugging this solution in the profit function and imposing the zero profit condition

gives:

(C.2) NG =

[
2−(φ+1) (1 + φ)α

1− α

] α
1−α(φ+2)

[
V
W

] α
1−α(φ+2)

.

Plugging the expressions for NG and NC in the utility of the inventor and im-

posing UG = UC allows us to write:

(C.3) W =

2−(φ+1) (2 + φ)
(
CG
)φ+1 − 1

α

(
CG
) 1−α

α

(1 + φ) (CC)φ − 1
α

(CC)
1−α
α


[1−α(φ+1)][1−α(φ+2)]

α(1−α)

V
1−α(φ+1)

α

where

CG ≡
[

2−(φ+1) (1 + φ)α

1− α

] α
1−α(φ+2)

CC =

[
φα

1− α

] α
1−α(φ+1)

.
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Plugging (C.3) into (C.1) and (C.2), and using the fact that V = b
1−bκ, yields

(2.18), where FG and FC are constants that only depend on the primitives of the

model. In particular, define:

CW ≡

2−(φ+1) (2 + φ)
(
CG
)φ+1 − 1

α

(
CG
) 1−α

α

(1 + φ) (CC)φ − 1
α

(CC)
1−α
α


[1−α(φ+1)][1−α(φ+2)]

α(1−α)

.

Then, the expressions for FC and FG can be written as:

FG = CG
(
CW
)− α

1−α(φ+2) FC = CC
(
CW
)− α

1−α(φ+1) .

Finally, we need to show that, in equilibrium, generic cities are more denseley

populated that company towns. This is true if and only if:

CG > CC
(
CW
) α2

[1−α(φ+2)][1−α(φ+1)] .

Writing down the expression explicitly, reveals that this is always the case as long

as φ > 0.

It is left to show that company towns are fully specialized. This follows directly

from the fact that in a company town, for a given city population, the value of

innovation per person is maximized by maximizing intra-field spillovers, i.e. by

setting Nk = Nk
S or Nk = Nk

D.�
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C.2.2.2. Proof of Proposition 2.3.2. In equilibrium, the rate of conventional (ψ)

and unconventional (ζ) innovation can be written, respectively, as:

ψ =
∣∣KC∣∣ (NC

)φ+1
ζ =

∣∣KG∣∣ (NG

2

)φ+2

.

Using the equilibrium expressions for NC and NG, the ratio κ = ψ
ζ

can be written

as:

κ =
ψ

ζ
=

∣∣KC∣∣ (FC
)(φ+1) (1−b

b

)(φ+1)
κ−(φ+1)

|KG| 2−(φ+2) (FG)(φ+2) (1−b
b

)(φ+2)
κ−(φ+2)

.

Solving this expression to eliminate κ from both sides, we can derive the equilibrium

relative mass of generic and company towns:

(C.4)

∣∣KG∣∣
|KC |

=
b

1− b
CK,

where CK =
(FC)

φ+1

2−(φ+2)(FG)φ+2 .

The labor market clearing condition for skilled labor is:

∣∣KG∣∣NG +
∣∣KC∣∣NC = 1.

Using (2.18) and (C.4) to substitute for
∣∣KG∣∣, NG and NG, we obtain:

∣∣KC∣∣ =

[
CK
(
FG
)

+
1− b
b

]
κ.

The total amount of unskilled labor used in the production of housing in generic

towns is equal to
∣∣KG∣∣ (NG

) 1
α , and the total amount of unskilled labor used in the

production of housing in company towns is equal to
∣∣KC∣∣ (NC

) 1
α . The total amount
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of unskilled labor used in the production of intermediate variaties is LF = x
(
β
w

) 1
1−β ,

with x = ζµψ1−µ. The labor market clearing condition for unskilled labor is:

(C.5)
∣∣KG∣∣ (NG

) 1
α +

∣∣KC∣∣ (NC
) 1
α + x

(
β

w

) 1
1−β

= L.

We have showed that all the terms in (C.5), with the exception of w, can be

written as function of the relative supply of conventional to unconventional ideas, κ.

To obtain an expression for w, combine (2.16) with (C.3):

w =

[
CW

(
b

1− b

) 1−α(φ+1)
α

(1− b) aγκ
1−α(φ+1)−αµ

α

](1−β)

,

which again illustrates that w can be written as a function of κ only. We can then

write the left-hand-side of (C.5) as a function of κ only, and, in particular, it is easy

to show that κ−
1−α
α can be factored out from the expression, yielding:

κ−
1−α
α F = L,

where F is the sum of the constant terms in the addends of the left-hand-side of

(C.5). This leads to the unique solution for κ:

κ =

(
F

L

) α
1−α

.

Once the value of κ is obtained, recovering the equilibrium value of the remaining

variables is trivial. �
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C.2.2.3. Proof of Proposition 2.3.3. Once we factor out the term κ−
1−α
α , the

labor market clearing condition for unskilled labor can be rewritten as:

Lκ
1−α
α = B1

(
1− b
b

) 1−α
α

+B2

(
1− b
b

) 1
α

+B3

(
1− b
b

)(φ+1)

,

where B1, B2 and B3 only depend on other parameters. From this expression, it is

immediate that the relative supply of conventional to unconventional innovation, κ,

is a decreasing function of the bargaining weight of the unconventional innovator, b.

�
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