Health Monitoring of Early Age Concrete

Surendra P. Shah

Center for Advanced Cement-Based Materials Northwestern University, Illinois, USA

Center for Advanced Cement-Based Materials

Keynote CONSEC'04, Seoul, June 30, 2004.

Scope of Research

Test method for *in-situ* testing of *early age* concrete

Life Cycle of Concrete

<u>Outline</u>

- Basics of Wave Propagation
 Principle of Wave Reflection Method
 General Application
 - Setting Behavior
 - Compressive Strength
 - Dynamic Shear Modulus
 - Measures of Cement Hydration
 - Microstructural Parameters
- 4. Field Application5. Conclusions

Wave Propagation

Longitudinal Waves (L-Waves)

also: Primary (P-) Waves, Compression Waves

Direction of Travel

Direction of Particle Motion

Wave Velocity:

$$v_{L} = \sqrt{\frac{E(1-v)}{\rho(1+v)(1-2v)}}$$

<u>Governing Parameters</u> Young's Modulus E Poisson's Ratio v Density ρ

Transverse Waves (T-Waves)

also: Secondary (S-) Waves, Shear Waves

Direction of Travel

Direction of Particle Motion

Wave Velocity:

 $v_{T} = \sqrt{\frac{G}{\rho}}$

<u>Governing Parameters</u> Shear Modulus G

Density p

no propagation in liquids or gases !

Excitation

Center for Advanced Cement-Based Materials

Wave Reflection at Boundaries

if P- or S-wave encounters an interface between two materials the wave is

- partially reflected
- partially transmitted

reflection coefficient

$$r = \frac{Z_{mortar} - Z_{steel}}{Z_{mortar} + Z_{steel}}$$

acoustic impedance

governs the reflection process

Principle of WR-Method

Principle of Wave Reflection Method

Case 1: concrete is liquid

no wave transmission at interface

shear waves: do not propagate in liquids

Center for Advanced Cement-Based Materials

Principle of Wave Reflection Method

Case 2: concrete is hardening

transmission losses at interface

Signal Analysis

N

Attenuation Development

👗 Ce

Center for Advanced Cement-Based Materials

ed Materials

Test Equipment

Reflection Loss vs. Setting

Center for Advanced Cement-Based Materials

Influence of Admixtures

Influence of Admixtures

Influence of w/c-ratio

Center for Advanced Cement-Based Materials

Summary – Setting

WR-Method can measure influence of

- -admixtures
- -w/c-ratio
- -temperature (not shown)

on the setting behavior of cement-based materials

Reflection Loss vs. Viscoelastic Properties

 WR-method can be used to measure rheological parameters of fresh cement paste

Rheometric Measurements

for comparison

coaxial cylinder

barrel with paste

Storage Shear Modulus

normalized values show similar trends

Summary – Visco-elastic Parameters

WR-Method can reproduce

- –storage modulus (measure of elasticity)–viscosity
- during the setting of cement-based materials

Reflection Loss vs. Strength

Strength Test on Extruded Cylinders

Ram-Extruder

Strength Test

Reflection Loss vs. Strength

R_L vs. Strength

Summary – Compressive Strength

Strength and reflection loss follow similar trends

Reflection loss is (bi-) linearly related to compressive strength at early ages.

Relationship is independent

-of w/c-ratio (for mortar)

-of temperature (results not shown)

Reflection Loss vs. Shear Modulus

Determination of Shear Modulus

Center for Advanced Cement-Based Materials

Dynamic Shear Modulus

Reflection Loss is governed by cement paste properties

<u>Summary – Shear Modulus</u>

Reflection loss

- is governed by dynamic shear modulus,
- measures shear modulus of cement paste portion of mortar

Reflection Loss vs. Direct Measures of Hydration

Reflection Loss vs. Degree of Hydration

Degree of hydration measured by TGA

Comparison in time

Reflection Loss vs. Microstructure

Center for Advanced Cement-Based Materials

Reflection Loss vs. Capillary Porosity

Decrease of Capillary Porosity (Pco -Pc)

Reflection loss uniquely related to decrease in porosity

Gel-Space Ratio vs. Reflection Loss

Center for Advanced Cement-Based Materials

Numerical Simulation – HYMOSTRUC3D

Connectivity of Solid Phase

initial stage **no contacts** hydration step x clusters

hydration step y closed path

Results: percolation threshold
total amount of solidsterialsconnected solid

Center for Advanced Cement-Based Materials

Solid Phase vs. Reflection Loss

Contact Area

Reflection loss uniquely related to contact area

Summary – Microstructure

Reflection loss is closely related to microstructural changes.

Unique relationships to:

decrease of capillary porosity

gel-space ratio

contact area

Field Application

Test Object – Prestressed Box Girder

Production Process

Need for Quality Control

When has concrete reached the critical strength for removing girder?

On-Site Measurements

Result of Field Test

Options for Vertical Structures

e.g. walls, non-steel formwork columns transducer steel plate steel formwork

Summary – Field Application

WR-method can be used for field testing during production process.

- in-situ strength can be assessed
- equipment can be made portable
- advance laboratory testing necessary

Final Conclusions

Wave Reflection Method can nondestructively monitor:

- setting behavior
- viscoelastic properties
- compressive strength
- dynamic shear modulus
- progress of cement hydration
- microstructural changes
- in-situ strength of concrete structures

Early Age Concrete Properties

decision support on construction site