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ABSTRACT

Quantitative Superfluid Helium-3 from Confinement to Bulk

Joshua J. Wiman

Liquid ®He is a remarkable substance. Even prior to the discovery of superfluidity in
1972, liquid *He was the paradigm of a strongly interacting Fermi liquid. At even lower
temperatures, liquid 3He undergoes a phase transition to a p-wave Fermi superfluid. Over
40 years since its discovery, superfluid *He is still the only confirmed p-wave superfluid.

One of the most striking features of this superfluid is the existence of two distinct
phases in the bulk liquid. These A and B phases are separated by a line of first order
transitions as a function of temperature and pressure. Shortly after the discovery of p-
wave superfluidity, it was realized that additional phases should be obtainable through
geometric confinement. With more recent advances in materials design and fabrication,
the use of confining geometries to control the superfluid 3He phase diagram has grown to
encompass a number of ordered and disordered geometries.

In this thesis I first consider the confinement problem in the Ginzburg-Landau regime,
focusing on novel superfluid phases in arrays of line impurities, thin films, and nanoscale
channels. In the last chapter I revisit the problem of precisely calculating bulk super-
fluid properties from a microscopic model. Using a quasiclassical free-energy functional
approach, with newly determined quasiparticle interactions, quantitative agreement with

the experimental specific heat and A-B phase boundary is achieved.
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CHAPTER 1

Introduction

Despite being almost solely produced as a byproduct of decaying nuclear weapons
stockpiles though the beta-decay of tritium, 3He has had a surprisingly large impact on
physics in the 20th and 21st centuries. As bulk quantities of purified liquid *He became
possible in the 1950s it became an exemplary experimental model for normal Fermi liquids.
In the 1960s, the first Helium dilution refrigerators were realized using *He diluted into
“He, which became critical parts of ultra low temperature physics.[102] The superfluidity
of 3He was only first confirmed in 1972 when Osheroff, Richardson, and Lee were able to
cool a sample below 2.7 mK.[68], [67] Since then, superfluid *He has become the model
(and only confirmed) p-wave Fermi superfluid, with unsurpassable purity and multiple
stable phases even in the bulk liquid, shown in Figure|L.1

The stable A and B phases, as first named by Osheroff et al[68], can be understood

in terms of their symmetries. The bulk normal Fermi liquid has the maximal symmetry

group

(1.1) G=U(1)y x SO(3)s x SO(3)r, x P x T,

which is the product of global gauge rotations, spin rotations, orbital rotations, space
inversion, and time-reversal, respectively. This maximal symmetry group is spontaneously

broken by the superfluid transition, with distinct residual symmetries for each phase.
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0.0 0.5 1.0 1.5 2.0 2.5
T (mK)

Figure 1.1. Bulk phase diagram adapted from Greywall’s measurements|[39]
and including the self-consistently calculated Tag points from this thesis.

The lower temperature B phase was first described by Balian and Werthamer|[13] and

has the residual symmetry group
(1.2) H=S03);sx T,

consisting of joint spin and orbital rotations combined with time reversal symmetry. This
phase is also known as the “isotropic” phase and its order parameter belongs to a J =0
representation.

The A phase appears only above ppcp ~ 21.22 bar and near 7. It was identified with
the spin-triplet, p-wave phase first discussed by or Anderson together with Morel|8] and

later Brinkman[7]. Its residual symmetry group is

(1.3) H=S0(2)s, x ZP™ x SO(2)1, s
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which consists of spin rotations about an axis d and a joint gauge and orbit symmetry
consisting of an orbital rotation of angle « € SO(2)r, about the angular momentum axis
[ combined with a gauge transformation —« € U(1)y. This phase is S = 0 and L = 1,
meaning it carries a groundstate angular momentum.|[77]

While it is remarkable enough that the bulk superfluid supports these two phases,
most of this thesis will be devoted to identifying potentially new phases by distorting
the bulk. In particular, placing 3He in a confining geometry reduces the maximal orbital
symmetry, eliminating the exact bulk phases and leading to novel phase diagrams. The
nature of the stabilized phases may be chosen by varying the confining geometry along
with the temperature and pressure.

Determining the precise nature of a novel phase requires a good understanding of the
basic interactions that lead to the bulk superfluid as well as a model for the confining
boundary. Although we have a good qualitative understanding of both of these, certain
quantitative aspects have evaded theorists. In particular, the bulk phase diagram itself
is quite difficult to calculate within a microscopic model due to both uncertainties in
the underlying quasiparticle interactions and computational challenges. In Chapter [§ we
present the first precise microscopic calculation of the bulk superfluid *He phase diagram.
In doing so, we find evidence that superfluid 3He is governed by competing ferromag-
netic and almost-localized antiferromagnetic exchange interactions. We also obtain new
evidence that 3He is an almost localized Fermi liquid in the sense of being near a Mott

transition.
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CHAPTER 2

Publication: Superfluid phases of *He in a periodic confined
geometry

2.1. Abstract

Predictions and discoveries of new phases of superfluid *He in confined geometries, as
well as novel topological excitations confined to surfaces and edges of near a bounding
surface of He, are driving the fields of superfluid 3He infused into porous media, as well as
the fabrication of sub-micron to nano-scale devices for controlled studies of quantum fluids.
In this report we consider superfluid 3He confined in a periodic geometry, specifically a
two-dimensional lattice of square, sub-micron-scale boundaries (“posts”) with translational
invariance in the third dimension. The equilibrium phase(s) are inhomogeneous and
depend on the microscopic boundary conditions imposed by a periodic array of posts.
We present results for the order parameter and phase diagram based on strong pair
breaking at the boundaries. The ordered phases are obtained by numerically minimizing
the Ginzburg-Landau free energy functional. We report results for the weak-coupling
limit, appropriate at ambient pressure, as a function of temperature 7', lattice spacing
L, and post edge dimension, d. For all d in which a superfluid transition occurs, we
find a transition from the normal state to a periodic, inhomogeneous “polar” phase with
T., < T. for bulk superfluid 3He. For fixed lattice spacing, L, there is a critical post

dimension, d., above which only the periodic polar phase is stable. For d < d. we find a
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second, low-temperature phase onsetting at 7., < 7. from the polar phase to a periodic
“B-like” phase. The low-temperature phase is inhomogeneous, anisotropic and preserves

time-reversal symmetry, but unlike the bulk B-phase has only Dif S point symmetry.

2.2. Introduction

The p-wave, spin-triplet superfluid phases of 3He provide the paradigm for unconven-
tional BCS pairing in which spin and orbital rotation symmetries, SO(3)s x S0(3)L, are
spontaneously broken in conjunction with U(1)y gauge symmetry. It was realized soon
after the discovery that these broken symmetries, particularly parity and orbital rota-
tion symmetry, implied that interfaces, boundaries and impurities could have profound
effects on the superfluid phases.[5, 73] In the case of the bulk A-phase the effect of the
boundary is to lock the orbital quantization axis, lA, normal to the boundary. The in-
fluence of boundaries can often extend to length scales much longer than the coherence
length, & = hvy/2mkgT, ~ 200 — 800 A depending on pressure, when there is competi-
tion between alignment effects from curved boundaries and/or superflow.|26] In a long
cylinder with radius R > &, the boundary condition on [ leads to a texture, i.e. a long-
wavelength spatial variation of the orbital quantization axis, l , which is also an equilibrium
current-carrying state.[57, 100}, [46] At the coherence length scale near a boundary strong
pair-breaking typically occurs. The orbital component of the order parameter normal to
the surface is suppressed and a spectrum of Fermionic states are localized near the bound-
ary.|21], [62], 98] The de-pairing effect of the boundary is further enhanced if the surface is
rough on length scales comparable to or smaller than &,. If superfluid *He is confined to

a region with dimensions of order a few coherence lengths then the geometry and surface
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structure on the boundaries can significantly modify the equilibrium phase diagram, and
can even stabilize phases not realized in bulk superfluid *He.[45], 62} (98, [99]

Several studies of superfluid *He have been performed on thin films or within a slab
geometry. 34}, (107, [84] In the case of strong one-dimensional confinement, i.e. boundary
separation D < D., = 9¢&g, the A phase is expected to be the stable phase even at pres-
sures well below the bulk critical pressure, p. ~ 21 bar.J98] Nuclear magnetic resonance
(NMR) measurements strongly support this prediction.[50] This is in stark contrast to the
bulk 3He phase diagram in which the A phase is only stable at high temperature and pres-
sure. In weak-coupling theory the planar and axial (ABM) phases are degenerate even
with strong surface disorder.[98] Strong-coupling effects which stabilize the Anderson-
Brinkman-Morel (ABM) state at high pressures and high temperatures are poorly known
for inhomogeneous phases at low-temperatures, 7' < T,, and low pressures, p — 0 bar.
For this reason the ground state of thin *He films at the lowest pressures is still an open
question. At intermediate scales of confinement, D., < D < D. ~ 13§, the ground
state in the weak-coupling limit is predicted to be a “crystalline” phase with an order
parameter that spontaneously breaks translation symmetry in the plane of the film.[99]
A one-dimensional periodic phase (“striped phase”) with in-plane wavelength Qll ~ 3&
has lower energy than any of the translationally invariant axial, planar or B-planar phases
over a wide range of film thicknesses and temperatures. The mechanism responsible for
spontaneously breaking translation symmetry for D < D, is the energy cost of surface
pair-breaking compared to the energy cost for domain wall formation between degenerate
B-planar phases. For D < D, it is energetically favorable for domain walls to enter

the film. Interactions between domain walls lead to the striped phase. This type of
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competition between surface pair-breaking, the formation of topological defects and the
stabilization of new phases not realized in bulk 3He is part of the motivation for develop-
ing sub-micron to nano-scale geometries for confining *He.[50} [35] Of particular interest
for this study is the possibility of confining 3He in a periodic geometry such as a cavity
supported by a periodic array of sub-micron scale posts.[108]|

We break translational symmetry externally by considering 3He infused into an infinite
two-dimensional (x — y) periodic array of square posts, with translational invariance in
the third dimension (z). This geometry can also be viewed as a two-dimensional (2d)
grid formed of vertical (z) and horizontal (y) channels. The spatial region between the
corners of four adjacent posts, or alternatively where the x and y channels intersect is
particularly significant, and we will refer to this region as the “center” of the 2d cell when
discussing superfluid 3He confined within this structure. We expect the results reported
here to be valid for confinement lengths in the z dimension, satisfying L, > 30&.

The order parameter for superfluid 3He belongs to the manifold of spin-triplet, p-wave,
BCS pairing states represented by the 2 x 2 “gap matrix”,
(2.1) A(p) = (i0aoy) Aui pr,

ai

which is a function of the direction of relative momentum of the Cooper pair, p, and
is parametrized in its most general form by nine complex amplitudes, A,;. The 3 x 3
matrix order parameter transforms as a vector under spin rotations, and separately as
a vector under orbital rotations. The maximal symmetry group for bulk 3He is G =
U(1)nx8S0(3)s%xS0(3), xPXT, where P, T and U(1)y represent space inversion, time-reversal

and global gauge symmetries of the normal phase. The symmetry reduction resulting from



28

the weak nuclear dipolar interaction is omitted here, but is important in resolving relative
spin-orbit rotational degeneracies, and in determining the NMR signatures of the phases

of confined ®He.

2.3. Ginzburg-Landau Theory

To determine the phase diagram and superfluid order parameter for *He confined
within a 2d periodic structure we minimize the Ginzburg-Landau (GL) free energy for a
general spin-triplet, p-wave condensate defined as a functional of the 3 x 3 matrix order
parameter. A few atomic units away from a boundary the *He-3He interactions responsible
for pairing are invariant under the maximal symmetry group of bulk *He. Thus, the GL

functional takes its bulk form,[72], 93]

Q4] — / AR {a(T)Tr (AAT) + By |Tr(AAT) + B, [Tr(AAN)”
(2.2) + Bs Tr [AAT(AAT)"] + BaTr [(AAY)?] + B35 Tr [AAT(AAT)"]

+ K1 (ViAo ViAL) + Ko (VA ViALL) + Ks (vaajvjA;k)} :

The equilibrium order parameter is obtained from the stationarity condition for the
GL functional. Confinement is introduced via boundary conditions of the order parameter
field, Aai(fi). For 3He confined in a non-magnetic, periodic geometry with 4-fold rota-
tional, reflection and inversion symmetries, the maximal symmetry group is reduced by
restricting the orbital rotations to the point group Dy, (which includes space inversion),

i.e.

(2.3) G = U(1)x x SO(3)g X Dy, X T.
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The domain, V, is a square unit cell with side length L. Periodic boundary conditions
are imposed on the order parameter field at the outer boundaries of this unit cell. In
the interior of the unit cell is an inner boundary representing the square post of side
length d. Typical boundary conditions for the order parameter on the inner boundary
are: (i) mazimal pair-breaking in which all components of the order parameter vanish on
the inner boundary and (ii) minimal pair-breaking in which only the orbital component
normal to the surface of the inner boundary is forced to vanish, and the normal derivative
of the tangential orbital components vanishes on the inner boundary. This latter boundary
condition corresponds to surfaces with specular reflection,|5] while the former boundary
condition corresponds to an atomically rough surface with strong backscattering.[77| Here
we report results based on maximal pair-breaking. We numerically minimize the GL
functional on this domain, and determine the stable (and in some cases meta-stable) order
parameter (phases) for superfluid 3He in this class of periodic confined geometries. We
also present results for the phase diagram as a function of temperature 7', confinement
length D = L — d, and period L. The results reported here are appropriate for low
pressures in the GL regime. Thus, we assume weak-coupling values for the GL. material

parameters: |72}, (93]

oT) = SN(ONT/T. 1), 26, = o= By = ~Fa = s,

@4 Ki=K= K= NO&. A= g 5o |
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where T, is the superfluid transition temperature for bulk *He, & = hvy/2nkpT., is the
zero-temperature correlation length, and N(0) = k}/2n% vypy is the single-spin quasipar-
ticle density of states at the Fermi surface, defined in terms of the Fermi velocity, vy, and
Fermi momentum and wavenumbers, p; = hky. [|

In what follows we neglect the nuclear dipolar energy and choose aligned spin and
orbital coordinate axes, {x,y, z}, corresponding to the high symmetry directions of the

periodic channel. Thus, the order parameter is represented by,

For bulk 3He, the B-phase, defined by the Balian-Werthamer state,

1 00
(2.6) AB:% 010/,
00 1
with amplitude given by
1 |a(T)]

. A3 =
(27) p(1) 2012 + %5345 ’

is the equilibrium phase at low pressures with free energy density given by

2
1 |OK(T)| _ _ACB (T o Tc)2 ’

2.8 Op/V =12V /0
(28) / 4 B12 + 38345 2T,

IThis published definition of K; is incorrect, it should be K; = Ky = K5 = %(03)]\7(0) £2
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where the notation refers to summation as 3, = B8; + 8; + . The second term is the B-
phase condensation energy scaled in terms of the heat capacity jump, ACE, at the normal
to B-phase transition. For weak-coupling values of the material coefficients this gives the
BCS result, ACp/Cy = 12/((3)7 ~ 1.43, where Cy = 272N(0)T. is the normal-state
heat capacity at T.. These values for the bulk B-phase order parameter and free energy
are used as the scale for the order parameter and free energy of confined 3He.

We note that the boundary condition imposed by an interior post is expected to be
accurate only for post side lengths d = &. For post dimensions, d < &, the boundary
is more accurately treated microscopically as an “impurity” that scatters excitations and
breaks pairs.[73] The pair-breaking effect of an impurity with side dimension smaller than
a coherence length is reduced by d/{, near the post. We avoid this limit and restrict our
analysis to post dimensions with d > %fo.

Before discussing the numerical results we describe some of the possible phases with a
high degree of residual symmetry, i.e. sub-groups of the maximal symmetry group, that

may be realized by *He in a confined Dy, geometry.

2.4. Symmetry Classes of *He in a confined Dy, geometry

The effects of confinement are enforced by the boundary conditions imposed on the
order parameter. The boundary conditions reflect the point symmetry of the confining
boundaries. For the case of a periodic array of square posts the elementary symmetry
group of a square post, Cyy, is the combined set of four-fold rotations, {FE,Cy, C%, C3},
where E is the identity and C} = (C4)" is a rotation about the z axis by n x 7/2, the set

of reflections through four vertical planes, {II.,,II,,,II.,,,IL,,/}, and the corresponding

2In Chapter [4| we consider a related model using line impurities with d < &
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rotary reflections, {R,; = C4ll,; |i = z,y,2’,y'}, where (2/,y') are axes rotated from (z,y)
by m/4 about z. The addition of reflection symmetry through the horizontal plane, II,,,
and 180° rotations about the vertical plane symmetry axes, {Ca,, Cyy, Coyr, Cay }, defines
the point group, Dyy, which includes space inversion, C; = Cy, - 11.,.

For any element g € Dy, a scalar function transforms as f (ﬁ) 2 F(g" - ﬁ), where

1

G is the 3 x 3 matrix representing the symmetry element g, g = ¢! is the matrix

inverse, and R = (x,y). Thus, the order parameter field, which is a vector under space
rotations and reflections, transforms as A (R) % gi;A0;(§7 - B). Similarly, for any
rotation ¢ € S0(3)s we have, Au;(R) % gaﬁAm(é), and under a gauge transformation,

X € U(1)x, Aui(R) & e X Ay (R). Time-reversal, T, reduces to complex conjugation,

Awi(R) 5 A%.(R).

2.4.1. Non-Equal Spin Pairing - The By Phase

In the case of bulk 3He the maximal symmetry sub-group of joint spin and orbital rotations
combined with time-reversal, SO(3)y,;s X T, is the symmetry class of the B-phase, i.e. the
Balian-Werthamer state with APV = A§,;. The discrete analog of the bulk B-phase is
a state, which we refer to as the Bo-phase, that is invariant under joint spin and orbital
elements of the maximal point group, Dy, and time-reversal, i.e. Hp = D{,:h+ 5 % T. Note
that space inversion is broken, but space inversion combined with inversion in spin-space

is a symmetry of the Bo-phase.
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The matrix structure of the By order parameter differs substantially from the isotropic

B-phase. For all g € Hp_, the order parameter satisfies,
(2.9) Aai(R) % gas As;(§" - B) g, = Aai(R).

It is then straightforward to show that

Ao Ay 0
(2.10) AP =14, 4, 0|,
0 Azz

with A, (z,y) = Ay(y,2), Agy(z,y) = Ay(y,x), As(z,y) = A..(y,z) and all com-
ponents are real (T symmetry). The diagonal (off-diagonal) components are even (odd)
under x — —x or y — —y. The numerical results presented below show that the Bg-phase

is the equilibrium state in the weak-coupling limit at low temperatures.

2.4.2. Equal Spin Pairing States

The superfluid phases with the highest degree of residual symmetry are those that preserve
a continuous rotation symmetry about an axis d in spin space, i.e. SO(Q)Sd. The direction
d is a vector representing spontaneously broken spin-rotation symmetry. If d is real, then
the broken symmetry phase is an equal-spin-pairing (ESP) state and d is the direction in
which the Cooper pairs have zero spin projection. The residual symmetry group of the
class of ESP states includes S0(2)s, x ZP™ where ZP™ = {1, ™} is a two element

group of the identity and the combined operation of a gauge transformation, ¢™, and a

rotation of  about an axis # L d in spin space. Continuous U(1)x symmetry is broken,
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but elements of U(1)y may be combined with spin or orbital rotations and reflections. In
particular, the point symmetry, Dy, is necessarily broken by any p-wave pairing state.
However, the residual symmetry of the z-aligned polar (P,) phase contains all the elements
of Dgy. In particular, the P, phase can be expressed as Az = d, a(x,y) z; with a(z,y)
real (time-reversal symmetry) and invariant under the sub-group Cyy: a(z,y) = a(y, z) =
a(—x,y) = a(zx, —y). The P, order parameter undergoes a sign change for any of the Cy;
operations and reflection in the zy plane since 2 — —2. Thus, combining these operations
pLe

with the gauge transformation, e'™, and Cq4, yields the group, D,;", which is isomorphic to

Dyn. Thus, the residual symmetry group for the P, phase is

2.11 Hp. = S0(2)s. x ZP" x DA™ % T.
z d 2 4h

This state is the stable superfluid phase that onsets from the normal state at 7, .

The P, phase retains the sub-group C4, of point symmetries, but is not the only ESP
state with this symmetry. If we omit the operations that transform z — —z, then we
obtain two possible symmetry classes. If time-reversal is preserved we obtain the residual

symmetry group is

(2.12) Hap = S0(2)s, x 5™ x Cf, x T
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with an orbital order parameter field, @ = a,% + a,y + a.Z, that includes three real

components satisfying the reflection symmetries,

(2.13) ap(1,y) = —a.(—2,y) = +a.(v,—y)

(2.14) ay(z,y) = Fay(=z,y) = —ay(z, -y

(2.15) az(2,y) = ay(y, )

(2.16) a:(r,y) = a.(y,2) =a.(-z,y) = a.(z,—y).

This phase is not found to be a local minimum of the GL functional for the weak-coupling
values of the § parameters.
Another ESP phase with CJ, symmetry is obtained if we break T symmetry, but

preserve I, - T. In this case the residual symmetry group is
(2.17) Heniral—c,, = S0(2)s, x Z3"" x C§, x {E, I, - T}.

The orbital vector, ay = @, £ ia,2, with @, = a,Z + a,9, is a complex vector field with
real amplitudes {a,, a,, a,} satisfying the reflection symmetries in Eqs. 2.13 required
by C}.. The = sign reflects the two-fold degeneracy resulting from broken time-reversal

symmetry. These are chiral phases with a local chiral vector field given by
(2.18) [ =+d, x a5 = +a.(B) a,(B) & — as(R) y] ,

which is confined to the xy plane. For a unit cell centered on the post, the chiral vector
vanishes on the post boundaries and at the center of the two channels, where a, = a, = 0,

if the periodicity of the ordered phase is the same as that of the underlying geometry.
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Here the phase is locally the P, phase. For chiral phases, and more generally current
carrying states, the periodicity of the ordered phase need not equal the underlying lattice
periodicity. Thus, a complete classification of the residual symmetry sub-groups should
include the space-group operations. This is beyond the scope of this report, but under-
scores the complexity of the possible phases of He in a periodically confined geometry.
E] In the weak-coupling limit this chiral ESP phase is not energetically stable, but this
phase, or a closely related phase with period 2L, may emerge as a stable, or meta-stable,
low temperature phase at high pressures due to strong coupling effectsﬁ However at high
pressures, for very weak confinement, L > 20,, and small post dimensions, d < &, the
chiral — C¥, phase is unlikely to be the equilibrium phase. In this limit we expect a chiral
ABM-like phase with Z_H,é in the center of the channels to be the equilibrium phase at
temperatures below a narrow region of stability of the P, phase.

The residual symmetries that define the bulk ABM phase, AABM = d,, (i & in),, are
(i) chiral symmetry, Z$a = {E Py - T}, where Py is reflection in a plane containing the
chiral axis | = 7 x 7, and (i) gauge-orbit symmetry, U(1)y,_, i.e. rotation by angle ¥
about the chiral axis, combined with a gauge transformation, e, by phase angle F9.
A discrete analog of the ABM phase of bulk *He is obtained by breaking CY, rotational
symmetry, but restoring symmetry with appropriate elements from U(1)y. In addition,
T symmetry is broken, but chiral symmetry is present as invariance with respect to the

combined operation, T - II,,. Thus, the discrete ABM phase is invariant with respect to

3In Chapter |3[ we describe equilibrium phases which break the lattice translation symmetry.
4The in-plane chiral phase with period 2L is a periodic version of the texture obtained by Surovtsev and
Fomin [88] for a uniform distribution of rod-like impurities embedded in *He-A.



37

the group obtained from these generators,

L-N,T /2 2 13T /2 13
C4h ’ :{E,e /04,6 04,6 /04,

2.19 TIL,, €/*TIL,,, ¢ TIL,,, ¢""/?TIL,, } |
) Y

and is isomorphic to C§,. The full symmetry group is then

L-N,T

(2.20) Hagy = 80(2)g, x Z9™ x Cii0 T,

O

~

and the functional form of the discrete ABM phase is AL, = a(x,y)d, (2 £i§),, where
a(z,y) is real an obeys the CY, reflection symmetries in Eq. [2.16] The An-phase is not
stable in the weak-coupling limit. However, several chiral phases are found to be stationary
points of the GL functional for strong-coupling values of the [-parameters appropriate

for high pressures. The phase diagram at high pressures will be discussed in a separate

report E]

2.5. Numerical Methods

To compute the order parameter which minimizes the GL functional we implement a
finite element method (FEM).[110] We discretize the *He unit cell with an unstructured
triangular mesh generated with the code Triangle.[87| This type of mesh permits spa-
tially varying triangular element sizes, which we use to provide finer spatial resolution in
regions near boundaries and sharp corners as shown in the left panel of Fig. 2.1] Also, an
unstructured mesh does not enforce any point symmetry that a periodic mesh possesses.
Thus, the residual symmetries of the phases we find result from interaction terms in the

5See Chapter
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Figure 2.1. Left panel: One-fourth of the unit cell showing the triangular
computational grid. The grey region defines the area occupied by the post.
Right panel: Order parameter amplitude, A,.(R), of the z-aligned polar

phase for L = 20&y, d = 8&,, T'= 0.9T,, and d = 2. The order parameter
is real and scaled in units of the bulk B-phase order parameter, Ag(T").

GL functional combined with pair-breaking and periodicity represented by the boundary
conditions.

For the FEM we represent the order parameter with quadratic Lagrange interpolating
functions defined on each element. The Lagrange interpolating functions are determined
by the values of the order parameter at six nodes corresponding to the vertices and
midpoints of edges of each element. The order parameter field defined at the nodes of
each element is continuous across the entire domain. The resulting integration over the
domain then separates into independent integrals over each element which we evaluate

numerically with Gauss-Legendre quadrature.[I]
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We minimize the discretized GL functional using an implementation of the conjugate
gradient algorithm, CG_DESCENT.[40] The gradient, G[A] = 6Q/6AT(R), is evaluated at
each node within the finite element scheme and input as the gradient in the conjugate
gradient method. We set convergence as max {|G;[A]|} < 1077, for all i degrees of freedom
(i.e. all 9 complex components of A at each node) which we determined to yield no

significant loss of accuracy compared to stricter tolerances.

2.6. Stable Phases - Maximal Pair-breaking

Figure (right panel) shows the equilibrium order parameter for confined *He with
period L = 20&, and post dimension d = 8§, at temperature T" = 0.97, for the case of
maximal pair-breaking by the interior boundary. This is a spatially modulated z-aligned
polar (P,) state in which only the z-orbital component, A.,, is non-vanishing. This phase
breaks spin- and orbital rotation symmetry, but preserves time-reversal symmetry. Note
that the polar amplitude is maximum in the center of the channel and decreases by
approximately 50 % into both x- and y channels. The P, phase is an equal-spin pairing
state and thus the more general representation for this phase is A,; = A(ﬁ) cza Z;, where
d is a real unit vector that defines the broken rotational symmetry in spin space. The
P, phase with only A.. # 0 corresponds to d = 2, and is degenerate with respect to
the orientation of d since we have neglected the nuclear dipole and Zeeman energies.
The P. phase belongs to the symmetry class of pairing states defined by the sub-group,
Hp, = S0(2)s, x Z3™ x Dji" x T, as discussed in Sec.

For the periods, L < 30§, and temperatures within the region of stability of the

P, phase, we find a finite polar amplitude everywhere within the 3He cavity, except at
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Figure 2.2. Order parameter components of the B phase plotted in the
domain V for L = 20&,, d = 12&y, and T' = 0.77,.. All values are real and
scaled by the bulk B-phase order parameter Ag(T"). Note the reduced scale
of the A,, amplitude.

the post boundaries. However for much larger periods, L, and the same channel width,
D = L —d, the amplitude of the P, order parameter appears to vanish deep within the z-
and y channels far from the center, leaving a lattice of isolated islands of P, condensate
in the center. This suggests there may be a regime in which de-coupled P, condensates
nucleate in the center region, but are not phase coherent and do not exhibit superfluidity.

For the same period, post dimension and boundary conditions we also find a second
stable phase in the weak-coupling regime at a lower temperature. This phase (Bp) also
preserves time-reversal symmetry, but has lower symmetry than that of the P, phase. The

Br phase is similar to the bulk B-phase in that the order parameter is real, with diagonal
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elements, A,,, Ay, and A.. in the center of the channel as shown in Fig. However,
the component A,, (A,,) is strongly suppressed in the y-channel (z-channel), and off-
diagonal components, A,, and A,,, appear at the corners of the posts. It is also clear
from Fig. that the components of the order parameter obey the reflection symmetries:
Apo(z,y) = Ayy(y, z) and A,y (z,y) = Ayz(y, ), and that the diagonal components, A,
Ay, and A, are even functions of x and y, while the off-diagonal components, A,, and

Ayz, are odd under x — —x or y — —y. The remaining off-diagonal components are all

zero: A, = A, = A,y = Ay, = 0. As discussed in Sec. these are the conditions
imposed by the discrete sub-group, Hg = D{,:h+ 5 % T. This is the maximal allowed point
symmetry and is the discrete analog of the maximal subgroup S0(3)y,s for the bulk B-
phase. Indeed, we recover the bulk B-phase for L — oo and d — 0, as indicated in
Fig. Note that the off-diagonal components are significantly smaller in magnitude
than the diagonal components and become negligible far from the post corners, except
for D ~ D.(T), the critical line separating the P, and By phases.

The phase transition from the P, to Bp phase is presented in Fig. which shows
the maximal magnitudes for the components of the order parameter as a function of the
confinement length D /&, for fixed period, L, and temperature, 7. The transition is 2°¢
order, i.e. continuous as a function of D or T, with spontaneously broken symmetry from
Hp, — Hp. For confinement lengths onsetting at the critical value, D .(T) — 4.1, at
T =0 and L = 20§, the x and y components, A,,, A,,, A, and A,,, become finite,
signaling the transition to the By phase. Close to the transition the B phase is locally a

“planar” phase deep within the channels due to the suppression of the orbital components

normal to the boundary. However in the central region the Bn phase is defined by all
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Figure 2.3. Order parameter amplitude as a function of the confinement
length, D, for L = 20§, and T = 0.77,.. The amplitudes are taken as the
maxima within the domain. Note that maxima for A,, and A,, are equal,
as are the maxima for A, and A,,, but suppressed compared to A... The
dashed vertical line marks the 2" order P, to By phase transition.

three diagonal components, as well as the off-diagonal components, A,, and A,,, allowed

by Di"® symmetry.

2.7. Weak-Coupling Phase Diagram

The phase diagram for superfluid *He in the weak-coupling limit as a function of
reduced temperature, 7'/T,, and confinement length, D/&, is shown in Fig. for two
values of the periodicity, L = 5y (left panel) and L = 20&, (right panel). These two
diagrams are qualitatively representative of the phase diagram for any 5 < L/& < 30.
In particular, we do not find any additional equilibrium phases as minima of the GL

functional with the weak-coupling material parameters.
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The transition lines are found by classifying the phases based on non-negligible order
parameter components, and then bracketing the location of both normal to P, and the
P, to Bp transitions. These brackets are refined until their width drops below a specified
tolerance, which we chose to be 0.025&;. Note that predicted phase boundaries are limited
by the restriction we place on the validity of the boundary condition for strong pair-
breaking, i.e. d > &,/2.

The phase boundary for the normal to P, transition is determined by a linear eigen-
value equation, obtained by solving the linearized GL equation for the P, order parameter,
a(T)A,. — K (Vi + VZ) A,. = 0, within the domain V, and with boundary condition,
A,.lov = 0, for maximal pair-breaking. The eigenfunction, A,, = ai(x,y), corresponding
to the highest instability temperature, T, , defines the spatial profile of the first unsta-
ble mode of the P, phase. If we knew the exact functional form of the first unstable
mode, a;(z,y), we could obtain the phase boundary, T., (D, L), from the equality in the

Rayleigh-Ritz inequality,

—/Vdﬁ{KﬂVa(x,y)F}
/V IR {Ja(e.y)?}

(2.21) a(T,,) >

In the absence of a;(z,y) we can obtain a lower bound on the N to P, transition tem-

perature with a good approximation to the eigenfunction ai(x,y). Consider the following
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approximation to the most unstable mode,

C(r) + C(y)

o) = | R €2 - aheD/2 - )

+C(@)0(D/2 - [z]) [O(=D/2 —y) + ©(=D/2 + y)]

(2.22) +C(y)O(D/2 = y)) [0(=D/2 =) + O(=D/2 + z)] ,

where C'(z) = cos(mx/D), ©(x) is the Heaviside step function, and = and y are defined
on the domain [—L/2, L/2]. This function is piece-wise continuous at the interfaces be-
tween the central region and the x- and y channels, and satisfies the strong pair-breaking
boundary condition, a|sy = 0. The variational result 7,)°", is shown in comparison to the
exact numerical result for the N — P, phase boundary, 7, in Fig.

For the range of L < 30, that we consider, and for all D > D.(T) that gives a super-
fluid transition, the P, phase is stable for a temperature range below 7,,. Furthermore,
for a given L there is a narrow range of confinement lengths, D, in which only the P,
phase is stable. This is in sharp contrast to one-dimensional confinement in an infinite
slab where the axial or planar phases are stable under strong confinement. The absence
of these phases in the periodic confined geometry here is due to pair-breaking within the
two orthogonal x and y channels, the large cost in gradient energy for z- and y orbital
components for strong confinement and the weak-coupling S-parameters. Chiral phases,
such as the Ag-phase and the chiral-C4, phase will be discussed in a separate report on

GL theory of confined phases in the strong-coupling limit.
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Figure 2.4. Phase diagrams for L = 5§y, and L = 20&,. The dashed curve is
the normal to P, transition obtained by the variational method. The solid
curves are fits of the transition data points to the functional form of the
variational curve. Note that there is a range of confinement lengths, D, for
which only the P, phase is realized.

2.8. Conclusions

We have investigated the inhomogeneous phases of superfluid *He confined to a two-
dimensional lattice of square, sub-micron-scale boundaries (“posts”) with translational
invariance in the third dimension. In the weak-coupling limit, and strong pair-breaking
by the boundary post, we find an instability from the normal state, at T,, < T, for bulk
superfluid 3He, to an equal-spin pairing state with z-aligned polar orbital order. For fixed
lattice spacing, L, there is a critical post dimension, d., above which only the periodic
polar phase is stable. For d < d,. we find a second, low-temperature phase onsetting at

T., < T., from the polar phase to a periodic “B-like” phase. The low temperature phase
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is inhomogeneous, anisotropic and preserves time-reversal symmetry, but unlike the bulk
B-phase has only D{;h+ S point symmetry. This or similar geometries may be realizable
with current nano-fabrication processes, and could therefore provide a potential avenue
for experimental studies of the polar phase in *He in well defined geometries.[108] Further
studies of 3He in geometries with periodic confinement are expected to yield a large number
of tunable phases with unique broken symmetries and topological properties that are not
realized in bulk superfluid 3He.
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CHAPTER 3

Strong-coupling GL theory of 3He in a periodic confined geometry

3.1. Strong-coupling Corrections

One of the main weaknesses of weak-coupling Ginzburg-Landau theory is revealed by
considering the pressure dependence, or lack thereof, of the free energy functional. The

condensation energy density for a bulk homogeneous phase is given by

(3.1) fo=—5

where 3, represents the characteristic sum of ;s for a given stationary phase. The ratio of
condensation energies for any two phases is therefore pressure independent, which means
that the B phase is the sole stable phase even at high pressures. Furthermore, that ratio is
also temperature independent, so that even if there were some pressure where the A phase
became stable, there would still be no transition as a function of temperature between the
homogeneous A and B phases. These two results obviously contradict the experimental
superfluid *He phase diagram and must be considered when interpreting weak-coupling
phase diagrams.

The weak-coupling material parameters are derived from the leading-order contribu-
tion to the full GL free-energy in an expansion in the small parameter 7'/Tr, in which
AQVE ~ (TC/TF)2 Ex and Ey is the ground state energy of the normal Fermi liquid. The

next-to-leading-order corrections to the weak-coupling GL functional enter as corrections
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to the weak-coupling material coefficients. These are of order A3 ~ BY(T /Ty ){w;| A|?),
where (w;|A|?) is a weighted average of the square of the scattering amplitude for binary
collisions between quasiparticles on the Fermi surface.|[72] At high pressures, these scat-
tering amplitudes largely compensate the small parameter T'/Tg, resulting in significant
strong-coupling corrections.

Although we later calculated the ASs through a model of the quasiparticle scat-
tering amplitude, detailed in Chapter [§ for this work we used the most current values
available, inferred from experiment by Choi et al.[23] These experimentally determined
beta parameters by design fit the heat capacity jumps for the A and B transitions, which
should make them reasonably accurate when considering the energetics of A and B-like
phases at T,.. The A phase correctly appears as a stable phase above the polycritical point
ppcp = 21.22 bar; however, in the standard formulation of fourth-order GL theory it is
the only stable phase at all temperatures above that point.

The presence of a tricritical points at ppcp tells us that we may break the degener-
acy between the A and B free energies around that point by retaining the leading-order
temperature dependence of the AfS*s which determine the tricritical point. Near T,
the leading strong-coupling corrections scale as AB ~ (T/Tr)|BY¢|, where the linear
scaling with T originates from the phase space for binary collisions of quasiparticles at
low temperatures. This is applied to the experimental S;s by first subtracting off the

weak-coupling contribution and then scaling the remaining strong-coupling piece as

ABP© = B° = B,

(32 ip, T) = B+ 2 AB(p).
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Figure 3.1. (Left) Experimental strong-coupling AS*¢s estimated by Choi
et al[23] and plotted relative to their weak-coupling values. (Right) The
bulk phase diagram showing the regions of stability of the A (green) and B
(red) phases using the experimental fs with linear 7" scaling. The dashed
line is the experimental A-B transition line terminating at the experimental
PCP point.

2.5

When we extrapolate this linear 7" dependence for all temperatures and pressures, we find

that the resulting Ginzburg-Landau bulk phase diagram largely reproduces the experi-

mental Typ line as shown in Fig. 3.1} This modification greatly enhances the region in

which GL theory is useful.
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3.1.1. Boundary Conditions

When dealing with confined geometries, appropriate boundary conditions are essential.
For planar surfaces there are two well-defined boundary conditions within Ginzburg-
Landau theory: maximal pairbreaking, representing quasiparticle retroreflection, and min-
imal pairbreaking, representing quasiparticle specular reflection.[5] If we take the surface
to lie along the x — y plane with 3He occupying z > 0, then maximal pairbreaking is the

condition

(3.3) A

o =0Vie{z,y,z2},

z=

while minimal pairbreaking corresponds to the boundary conditions

Aaz - 07

z=0

(3.4) V:Aaz|,_y = V:Aay|,_, = 0.

z=

In many cases it would be useful to go beyond these boundary conditions which rep-
resent the two extremes of surface Cooper pair suppression. Some geometries may be
highly sensitive to surface conditions, and interesting physics could be hidden between
these two limits. Additional control over the boundary conditions would also provide a
test of whether a geometry might be sensitive to small variations in experimental surface
conditions. Ambegaokar, de Gennes, and Rainer[5] introduced the idea of a transverse
extrapolation length b7 to describe the effect of an atomically rough surface on the or-
der parameter, where the order parameter components with relative momenta normal to

the surface were calculated to decrease to zero linearly past the boundary at a distance
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by ~ 0.54&, for such a surface with diffuse scattering. This idea can be turned into a more

general boundary condition in GL theory as

Aaz|z:0 - O’
1
VZ140‘96|z:0 - EAO‘I‘ZZO’
1
(35) Vquo‘y|z:O - EAO‘y’zzo’

where by = b:[ & can be treated as a parameter that varies between the maximal pair-

breaking (b7 = 0) and minimal pairbreaking (b;, = oc) limits. This “AdGR” boundary

condition is thus a useful extension of the typical Ginzburg-Landau boundary conditions.

3.2. Strong-coupling phase diagram

3.2.1. Stable phases

Figure 3.2. (Left) Diagram for the array of posts showing its relevant di-
mensions: the post size d, the confinement length D, and the post spacing
L. (Right) For purposes of plotting the superfluid order parameter, we shift

the origin of the unit cell.
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We return to the periodic geometry discussed in Chapter [2] and diagrammed in Fig.
[3.2J103]. While previously we only considered the equilibrium P, and sg phases in weak-
coupling, now we consider a broader range of possible phases, including A-like phases
with chiral symmetry. To minimize the free-energy functional we switch to a simpler set of
algorithms for this system and the remaining Ginzburg-Landau work in this thesis. Spatial
discretization is done using a simple finite difference scheme on a regular rectangular
lattice. We use a Quasi-Newton method, Limited-memory BFGS, as our numerical solver.
The details of L-BFGS are given in Appendix

In particular, the Ac, phase is an ESP phase which can be locally identified with the
polar distorted bulk A phase. Like the A phase it breaks time-reversal symmetry and
has a local chiral axis [ which will spatially average to point along one of the four [110]

directions. It has the residual symmetry group
(3.6) H=S0(2)s, x Z¥™ x D5,

where D;;]T’7r consists of combined orbital, gauge, and time reversal operations. The aAc,
order parameter is plotted in Fig. along with its chiral axis. This phase is closely
related to a phase found in quasi-1D cylindrical pores described in Chapter 5
Additional stable phases are possible through the formation of energetically favorable
domain walls which spontaneously break the lattice translation symmetry, and we describe
two which we know to be stable. These sa and sg phases consist of domains of the Ac, and
sg phases, respectively, separated by domain walls. The mechanism that stabilizes these
domain walls is the same that stabilizes the “stripe” phase|99] of superfluid 3He confined

in slabs discussed in Chapter Both domain wall phases have the same organization,
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Figure 3.3. The Ac, order parameter for 7' = 0, P = 30 bar, L = 80 nm,
and D = 50 nm in units of the bulk amplitude A% = —a(T)/(4245). The

[ vector is overlaid on the plot for the polar amplitude RA..

shown in Fig. and these phases may be calculated with a periodic unit cell of size
2L x 2L.

Both of these translational symmetry breaking phases have unique experimental sig-
natures. Unlike the Ac, phase, in the spo phase the [ vector spatially averages to zero over
a single unit cell. This means that its NMR signatures will be similar to that of the Polar

phase, and not the Ac, phase. In the sg phase, the spatial averages of A,.A,,, Az A..,

yy»
and A, A,, will likewise be zero, greatly modifying the tipping angle dependence of its

NMR frequency shifts relative to the sg phase.

3.2.2. Phase Diagram

Figure shows the regions of stability of all five superfluid phases. The P, phase occurs
at the highest temperatures due to its Cooper pair relative momentum being solely along
the unconfined direction. All transitions involving the P, phase are second order. All
phase transitions not involving the P, or normal phase are first order, including the s
and sg phases. The energetic advantage of the domain walls is highly dependent on the

relative values of L and D, and the energy separating sa from ac, and sg from sp is
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Figure 3.4. The domain structure for both the sy and sg phases. For sy,
A, = SA,, and A, = A, while for sg, A, = RA,, and A, = RA,,.
The domain walls are analogous those of the stripe B phase in the slab
geometry.

very small. Despite this, the tetracritical point separating those four phases is resolved
consistently for the dimensions of Fig. [3.5] These results suggest that ordered periodic

confining geometries could provide an extreme wealth of different superfluid phases.
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Figure 3.5. Phase diagram for the periodic geometry as a function of T'
and D with P = 30 bar, L = 80 nm, and maximal pairbreaking boundary
conditions. These values of P and L were chosen to cleanly separate the
five superfluid phases.
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CHAPTER 4

Line impurities and Nafen aerogels

4.1. Introduction

While the periodic post geometries may in principle by fabricated, there are similar
systems that are already being studied with *He. Silica aerogels have porosities reaching
above 98%, can be produced with high homogeneity, and provide confinement on the
order of the superfluid coherence length &,.|28, [70] Silica aerogels can be made globally
anisotropic through mechanical compression or chemical processing with uniaxial strains
up to +30% .[71]

Another class of high porosity random solids are materials composed of amorphous alu-
minum oxide or aluminum hydroxide.[11] These “nematic” aerogels, which are extremely
anisotropic, consist of slender strands aligned along a common axis, with characteristic
diameters of ~ 9 nm and interstrand spacing on the order of &,.[10] While several dif-
ferent varieties of these nematic aerogels have been studied, the the best studied are the
“nafen” aerogels, which lead to the first experimental observations of the polar phase in
superfluid *He and the discovery of half-quantum vortices stabilized in the polar phase
under rotation.[29), 12]

The array of strands, aligned on average along the z direction, can be reasonably
mapped onto the model of a periodic array of posts. However, their small &~ 9 nm diameter

makes them too small relative to & to be treated as macroscopic objects with boundary
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conditions in the GL theory. To explicitly study these nematic aerogels, we replace the
finite-diameter posts with line impurities described by an anisotropic scattering cross-

section.|[73]

4.2. Ginzburg-Landau Theory

The same strong-coupling Ginzburg-Landau theory developed in Chapter [3| is em-
ployed here, with the posts and their boundary conditions being replaced with a new
impurity term in the free-energy functional.

Pair-breaking due to the line impurities is incorporated into the GL theory by extend-
ing the microscopic calculation of the correction to the free energy for isotropic impurities
to line impurities.[90] In the GL regime the impurity contribution to the free energy
density for line impurities with density niyp(r) is

i

. s T
(4.1) fimp = Mimp(T) Sk, Tr (Am A1),

where w is a second-rank tensor defined by the transport cross-section for a line impurity,

o . A o cror o
(4.2) @y = 3( [ x kl ki |@(k)k; — dm(o o (ke Kk [ Ky )i

where dw/dS2 is the differential scattering cross-section, n the nematic axis of the line
impurity and w(k) = 47 ((dw /d)(k, K')|f x lA<’|>f{/ is the total scattering cross-section. In

particular, for a line impurity with only isotropic in-plane scattering %(R7 K’ ) = wy /72,

which gives w(R) = wp and w;; = %wo(&j — %ﬁzﬁ]) For line impurities with larger radii
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we may parametrize the tensor as

W 0 0
(4.3) w=0 w. 0],
0 0 w||

where w)| corresponds to scattering principally along p, = p - n and w, to scattering

principally in the p, — p, plane.[78]

4.3. Impurity Lattice

The simplest model of nafen is a periodic square lattice of line impurities with lattice
spacing, L, determined by the mean distance between nafen strands. The resulting GL
functional reduces to that for 3He confined within a unit cell with a single line impurity
at the origin. The impurity contribution to the free energy density of *He in the primitive
unit cell is then

2

k
f 2
imp = o 7 Aaz )
fimo = e ; {w)44:(0,0)]
(4.4) + wi (|Aaz(0,0)]* + [A4y (0,0)*) } .
The values of w| and w, depend on the quasiparticle-impurity potential and the quasipar-

ticle density of states at the Fermi energy.[78] We fit them based on the observed phase

transitions.
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p (g/cmB) r (nm) | L (nm) | w; (nm) W (nm)
nafen-72 72 4.0 52.8 4.25 0.704
nafen-90 90 4.0 47.8 4.25 1.073
nafen-243 243 4.5 32.3 4.25 0.667

Table 4.1. Experimental parameters for the nafen aerogels with corre-
sponding model parameters. The density, p, and the mean strand radius,
r, are from Asadchikov et al.[10]

The Normal-Polar transition, T, , can be accurately determined from linear instability

0°?

analysis with a uniform order parameter as

1 &(p)w
1. 4 L2

(4.5)

where T is the transition temperature for pure bulk *He. Table shows the experimental
and fit values of w) corresponding to three different nafen samples measured by Dmitriev
et al.[29]

The in-plane cross-section, w, is more difficult to fix, as it is a transition between
two inhomogeneous phases. For nafen-72 and nafen-90, we choose w; = 4.25 nm on the
basis of its agreement with experiment across most pressures. This is not possible with
nafen-243, since no phases were observed experimentally beyond the Polar phase. For
this reason, we use the same value of w, = 4.25 nm as a point of comparison. These
model parameters as well as the relevant experimental measurements are summarized in
Table Figure [4.1] shows the spatial dependence of the polar phase order parameter in
the square lattice for both nafen-90 and nafen-243. As T approaches T, from below, the

order parameter becomes increasingly uniform.
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Figure 4.1. Polar order parameter at p = 15 bar and 7" = 0.957 for the
square lattice models of both nafen-90, left, and nafen-243, right, in units

of Ap = +/|a|/2P12345-

4.4. Phase Diagram

The calculated phase diagrams for all three Nafen samples are shown in Figure
The Normal-Polar phase transition is in excellent with experiment across all samples and
pressures. Similarly, the calculated Polar-A transition matches the Polar-A transition
reported by Dmitriev et al in both nafen-72 and nafen-90[29]; in nafen-243, this transition
was not seen by Dmitriev et al. Few experimental data points are available for the B-A
transition on warming, and only in Nafen-90; however, the calculated transition curve is

still largely consistent with the available points at moderate pressure reported by Dmitriev

et al.[29]

4.5. Disorder in the Lattice

The strands that make up the nafen aerogels do not form a perfect lattice, and this
is expected to lead to inhomogeneities in the sample with varying degrees of confinement

and in-plane anisotropy. We can model this disorder by considering larger “supercells”
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Figure 4.2. Phase diagrams for nafen-72, nafen-90, and nafen-243, with
points denoting the phase transitions observed by Dmitriev et al. The lines

show the calculated transitions on the square lattice using the parameters
in Table {11

containing many impurity sites. To generate relatively large spatial inhomogeneities,
we fix the porosity of the supercell and place the impurities in space selected from a
uniform probability distribution. An example of such a supercell is shown in Fig.
which illustrates how the suppression of the order parameter varies together with the local
impurity density.

The dashed lines in Figure |4.4] are the phase transitions calculated for the supercell

in Fig. using the same values for w; and w, as with the regular nafen-90 lattice.
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Figure 4.3. Polar order parameter at p = 15 bar and T" = 0.957, for the
disordered supercell model of Nafen-90 in units of Ap = \/||/2B12345-

Although the inhomogeneous regions do shift the transition temperatures higher towards
T,, the magnitude of the shift is small and the pressure dependence of the transitions
remains largely the same. This would suggest that the square lattice model is adequate
to predict phase transitions in the nafen aerogels even in the presence of strong in-plane
disorder. However, upon checking the predicted NMR frequency for both disordered and

periodic models, we found substantial discrepancies with experiment.

4.6. NMR and further models

The experiments by Dmitriev et al [29] to determine the phase diagram of superfluid
3He in nafen aerogels were done using NMR frequency shifts to detect the spin and orbital
correlations of the superfluid phases. These shifts are calculated theoretically from the
inhomogeneous solutions of the order parameter obtained from GL theory based on the

theory of the NMR frequency shifts described in Chapter [§] The GL frequency shifts
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Figure 4.4. Nafen-90 phase diagram comparing the square lattice (solid
lines) to the disordered cell (dashed lines) of Fig. [4.3]

shown in Figure for both the periodic lattice and disordered supercell model of nafen
are very similar to each other and significantly larger than that found in experiment.

A possible reason for the discrepancy would be the presence of substantial correlated
disorder. To generate a more correlated disorder in the supercell we start as before by
first fixing the number of impurities based on the nafen porosity. A relatively small
initial number of nucleation sites are randomly placed. Starting from each nucleation
site, additional sites are chosen by taking steps sampled from a Lévy distribution with
median corresponding to the average interstrand spacing and placing an impurity at each
step. Figure 4.6[shows a representative of the modified Lévy distribution. For the NMR
calculations, the value of w; was tuned to match the apparent experimental 7, while the
value of w; was tuned to roughly match the initial NMR slope. This new model produced
remarkably better agreement with the experimental NMR data.

One thing lost with the modified Lévy model is a well-defined Polar-A transition.

Figure 4.7 shows the relatively broad temperature range in which the supercell contains
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Figure 4.5. Calculated NMR frequency shifts for three different models
of nafen-90 impurities compared to the experimental measurements by
Dmitriev et al.[29] The “modified-Lévy” curve model is described in the
text.

both polar distorted A phase regions alongside regions of pure polar phase. The two-
phase mixture is due to large fluctuations in the impurity density, with rarefied regions
favoring the chiral phase interspersed with denser regions of polar phase. At this time it
is not clear if nafen aerogels exhibit the large fluctuations in local density suggested by

the modified Lévy distribution.
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Figure 4.6. Impurity distribution for the “modified Lévy” model used in Fig.
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Figure 4.7. Volume fraction of the polar distorted A phase in the “modified
Lévy” supercell as a function of temperature.
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CHAPTER 5

Publication: Superfluid phases of *He in nanoscale channels

5.1. Abstract

Confinement of superfluid 3He on length scales comparable to the radial size of the
p-wave Cooper pairs can greatly alter the phase diagram by stabilizing broken symmetry
phases not observed in bulk 3He. We consider superfluid *He confined within long cylindri-
cal channels of radius 100 nm, and report new theoretical predictions for the equilibrium
superfluid phases under strong confinement. The results are based on the strong-coupling
formulation of Ginzburg-Landau theory with precise numerical minimization of the free
energy functional to identify the equilibrium phases and their regions of stability. We in-
troduce an extension of the standard GL strong-coupling theory that accurately accounts
for the phase diagram at high pressures, including the tri-crital point and T4g(p) line
defining the region of stability for the bulk A-phase. We also introduce tuneable bound-
ary conditions that allow us to explore boundary scattering ranging from maximal to
minimal pairbreaking, and report results for the phase diagram as a function of pressure,
temperature, and boundary conditions. Four stable phases are found: a polar phase stable
in the vicinity of 7T, a strongly anisotropic, cylindrical analog of the bulk B phase stable
at sufficiently low temperatures, and two chiral A-like phases with distinctly different
orbital symmetry, one of which spontaneously breaks rotation symmetry about the axis

of the cylindrical channel. The relative stability of these phases depends sensitively on
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pressure and the degree of pairbreaking by boundary scattering. The broken symmetries
exhibited by these phases give rise to distinct signatures in transverse NMR resonance
spectroscopy. We present theoretical results for the transverse NMR frequency shifts as

functions of temperature, the rf pulse tipping angle and the static NMR field orientation.

5.2. Introduction

Superfluid *He is a spin-triplet, p-wave Fermi superfluid, where not only is symmetry
spontaneously broken but also spin and orbital rotation symmetries SO(3)s x SO(3).
There are a myriad of ways to break these symmetries, leading to many potential su-
perfluid phases. In bulk 3He, in the absence of a magnetic field, only two stable phases
are observed: the A phase and the B phase. However, other phases may be stabilized by
introducing symmetry breaking terms, such as a magnetic field, impurities, or boundaries,
which couple to the spin and orbital degrees of freedom of the Cooper pairs. In particular,
confining surfaces suppress Cooper pairs with relative momentum normal to the surface,
which leads to a long-range orienting effect on the orbital order parameter.[5] When con-
fined within distances comparable to the Cooper pair coherence length, & ~ 160 — 770 A
depending on pressure, the influence of the confining surfaces can stabilize phases much
different than those of bulk superfluid *He.

Advances in nanoscale fabrication techniques,[50] as well as the production of porous
materials with interesting structure on the coherence length scale,[71], 11| have made
studies of the effects of strong confinement on broken symmetry phases of topological
quantum materials feasible, and have brought a surge of research on the effects of confine-
ment on superfluid *He.|25), [66], [59), 58], [106] One of the simplest confining geometries is

the pore, a long, small radius cylinder. The pore has long been of theoretical interest due
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to the number of different A-phase textures that might be stabilized,[54] as well the effects
of radial confinement on the superfluid phase diagram.[32] 89, 53] Nuclear magnetic res-
onance (NMR) experiments in 2 gm diameter pores have observed A-like textures,[37, [83]
but have had difficulty definitively identifying the textures present.[19] New fabrication
techniques for porous membranes|55] have made available pores with diameters below
1 pm, which, coupled with an array of new experimental techniques,|35), 109, (50, [75]
open new windows into superfluid *He under strong confinement.

In this paper we consider an infinitely long cylindrical pore of radius R = 100 nm,
and we study the equilibrium phases in Ginzburg-Landau (GL) theory and identify their
signatures in nonlinear NMR spectroscopy. By incorporating pressure dependent strong-
coupling corrections to the GL. material coefficients, and a tuneable pairbreaking boundary
condition, we obtain phase diagrams as functions of temperature, pressure, and surface
condition. Finally, we derive expressions for the transverse NMR frequency shifts of the
equilibrium phases of 3He confined in the pore as functions of rf pulse driven tipping
angle, and show how they vary with order parameter symmetry and orientation of the

static magnetic field.

5.3. Ginzburg-Landau Theory

We use Ginzburg-Landau theory calculations of the superfluid *He order parameter
and free energy to determine the stable phases present in the pore. The order parameter
for superfluid 3He, given by the manifold of spin-triplet, p-wave BCS pairing states, may
be represented by the 2 x 2 gap matrix,

(5.1) Ap) = Avi (ioaoy) i

ot
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which depends on the direction of the relative momentum p of the Cooper pairs, and is
parameterized by the 3 x 3 complex matrix order parameter A. The matrix A transforms
as a vector under spin rotations, and separately as a vector under orbital rotations. In

cylindrical coordinates A,; can be represented as

A Avy A
(5-2) A=Ay Aps Ap |
Azr Az¢ Azz

where we have chosen aligned spin and orbital coordinate axes.

The presence of boundaries reduces the possible residual orbital symmetries of the
superfluid phases to be elements of the point group of the confining cylindrical geome-
try. However, this reduction in symmetry is due to interactions atomically close to the
boundary surface; away from the surface, the 3He particle-particle interactions are still
invariant under the maximal symmetry group of bulk 3He. Thus, the Ginzburg-Landau

free energy functional is given by the invariants of the bulk *He symmetry group,
(53) Gbulk = U(l) X SO(3)S X 50(3)L x P x T,

which is the product of global gauge rotations, spin rotations, orbital rotations, space

inversion, and time-reversal, respectively. The resulting free energy functional is

(5.4) Q[A] = /V 0 (Foutel A] + fommalA])
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The terms fyux and fgaq are given by

ourl 4] = a(T)Tr (AAT) + 61 [Tr(AAT) [+ 5y [Tr(AAN]

(5.5) + By Tr [AAT(AATY] + B, Tr [(AAD)?] + B Tr [AAT(AAT)T] |

JoraalA] = K1 AL Aajn + Ko AL jAaks + K3 AL pAak,
+ ; Re { K1 (A7;Ag)5 — AfiArjs + Al Aigs — Ay Airg)
K (A7gAgsg — AjpArjy + A5 Aig)
TRy (A Asey — AbArgs + Al Aiss — AjyAior) }

1
5 {0 [AL A+ A5 Ay + AL A+ Al Aig + ARe(Ag Ay — AL Agy)]

(5.6) +(Ky + Ks) [|Argl® + [Apsl® + Af Aip + 2Re(Af Ay — AL Age)] )

where AT (A7) is the adjoint (transpose) of A, and

0Ani 10A, 0A.
(57) AOﬂ'J = { - } .
J

or ' r 0¢ = 0z

The term fuc holds for any orthogonal coordinate system, whereas fgraq is coordinate

specific and given in the form derived by Buchholtz and Fetter.|20] In the weak-coupling
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BCS limit the material parameters,

(5.8) Q"(T) = SNOT/T. 1),

(5.9 2BI° = By = By = = B,
. _ __NO) f1]7

. " = U 0]}

(5.11) g = K==y g

are determined by the normal-state (single-spin) density of states at the Fermi energy,
N(0), the bulk superfluid transition temperature, T;, and the Fermi velocity, v;. Note
that §o = hvy/2mkpT., is the Cooper pair correlation length, which varies from &, ~ 770 A
at p = Obar to & ~ 160 A at p = 34bar. The equilibrium order parameter is obtained
from minimization of the free energy functional by solving the Euler-Lagrange equations

obtained from the functional gradient §Q[A]/§AT = 0.

5.3.1. Strong-coupling Corrections

The weak-coupling GL material parameters are derived from the leading order contri-
bution to the full Luttinger-Ward free energy functional as an expansion in the small
parameter T/Tr, where Tp = Ep/kp ~ 1K is the Fermi temperature. In particular,
Qv ~ (TC/TF)2 Ex, where Ey is the ground-state energy of the normal Fermi liquid.
The next-to-leading corrections to the weak-coupling GL functional enter as corrections
to the fourth-order weak-coupling material coefficients. These corrections are of order
ABE =~ BY(T/Tr){w;|A|?), where (w;]AJ?) is a weighted average of the square of the

scattering amplitude for binary collisions between quasiparticles on the Fermi surface.|[72]
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Figure 5.1. The bulk phase diagram showing the regions of stability of the
A (blue) and B (red) phases using the experimental $s with linear T scaling.
The dashed line is the experimental A-B transition line terminating at the
experimental PCP point.

At high pressures, scattering due to ferromagnetic spin fluctuations largely compensates
the small parameter T'/Tr, resulting in substantial strong-coupling corrections.|[81]
While the A5’s may be calculated theoretically through a model of the quasiparticle
scattering amplitude[81], the most current determinations come from comparison with
experiment.[23] E] In the main analysis presented here we use the set of {f;} reported by
Choi et al.[23] These [-parameters reproduce the heat capacity jumps for the A and B
transitions, which is essential when considering the energetics of A and B-like phases. In
particular, the A phase correctly appears as a stable phase above the polycritical point
ppcp = 21.22 bar; however, in fourth-order GL theory it is the only stable phase at all
temperatures above the PCP, i.e. the standard fourth-order GL theory fails to account
for the A-B transition line, Tag(p). The missing transition line is traced to the omission
of the temperature dependence of the fourth-order [ parameters in the neighborhood
of a tri-critical point. In particular, the tri-critical point is defined by the intersection

IThis is no longer true. We report more accurate strong-coupling beta parameters in Chapter
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of the second-order transition line given by «a(7.,p) = 0, and the first-order boundary
line separating the A- and B-phases given by AB4p(Tas,p) = Sa — s = 0. Note that
Ba = Pous and B = B12+%6345 where we use the stanadard notation, 3. = B+ 08+ bk+
....J72] At the PCP we have Tag(ppcp) = Te(ppcp). But, for p > ppcp the lines separate
and we must retain both the temperature and pressure dependences of ABag(T,p) to
account for Thg(p) in the vicinity of ppcp. This is achieved with remarkable success by
making a single correction to the standard treatment of strong-coupling corrections within
GL theory. Near T, the leading-order strong-coupling corrections to the weak-coupling (3
parameters scale as AB ~ (T/Tr)|8)¢|, where the linear scaling with T'/Tr originates
from the limited phase space for binary collisions of quasiparticles at low temperatures.
Resolving the degeneracy between the A- and B-phases near ppcp is achieved by retaining
the linear T' dependence of the strong-coupling corrections to the g parameters. Thus, we
separate the § parameters determined at p and T,(p) into the weak- and strong-coupling
parts using Eq. and then scale the strong-coupling corrections, AF¢, determined at
T.(p) in Ref. [23] and listed in Tables [5.1] and [5.2]

(5.12) BT ) = B0 Top) + - ABE (),
(5.13) with  AG(p) = Bi(p, T.(p)) — B (p, T.(p)) -

The resulting bulk phase diagram predicted by these GL parameters accounts remark-
ably well for the experimental A-B transition line, Txg(p), as shown in Fig. , as well as
the heat capacity jumps and the PCP along T,(p). This result for the bulk phase diagram

gives us confidence in our predictions for the equilibrium phases of confined *He based on
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strong-coupling GL theory. The main analysis and predictions for inhomogeneous phases
of superfluid *He reported here are based on the strong-coupling material parameters from
Ref. [23] combined with the known pressure-dependent material parameters, vy, T, and
&o as listed in Table 5.1 and the temperature scaling in Eq. that accounts for the

relative reduction of strong-coupling effects below T..[82]

5.3.2. Sauls-Serene [ parameters

The individual AS parameters reported by Choi et al.[23] differ from those calculated
from leading order strong-coupling theory, or those obtained from the analysis of different
experiments, even though the different sets predict the same bulk phase diagram.

As a test of the sensitivity of our GL predictions for new phases in confined geometries
to the details of the model for the strong-coupling GL [ parameters we also calculated
the phase diagram based on the {f;} predicted by the leading order strong-coupling
theory.[72), 81] The theoretical values for the strong-coupling 3 parameters are determined
by angular averages of the normal-state quasiparticle scattering rate. The analysis of
Sauls and Serene is based on a quasiparticle scattering amplitude that accounts for the
effective mass, the ferromagnetic enhancement of the spin susceptibility and the normal-
state transport coefficients.[8I] The Sauls-Serene [-parameters, summarized in Tables
and reproduce the relative stability of the bulk A and B phases, albeit with an
elevated polycrital pressure of ppcp =~ 28 bar.

The results for the phase diagram with these two different sets of A/;¢, discussed in
Sec. [5.5] give robust predictions for the relative stabilty of new inhomogeneous phases of

3He confined in cylindrical pores.
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5.3.3. Boundary Conditions

For planar surfaces there are two limiting boundary conditions applicable within GL
theory: maximal pairbreaking, resulting from retro-reflection of quasiparticles,|[77] and
minimal pairbreaking, resulting from specular reflection.|5] If we use cartesian coordinates
and take the surface to lie along the x — y plane with 3He occupying z > 0, then maximal

pairbreaking is defined by the condition

(5.14) Aai|,_y=0Vi€ {z,y,2},

z=0

while minimal pairbreaking is defined by the conditions

Aaz| _07

2=0

(5.15) Vilas|,_y= VAl =0,

z=

In a cylindrical pore, additional care needs to be given to the boundary conditions
due to the presence of curvature on scales comparable to the coherence length. While
the boundary condition for maximal pairbreaking is not modified, the curved surface of
the pore modifies the minimal pairbreaking boundary condition for the azimuthal orbital
components of the order parameter, A,,. Fetter and Buchholtz proposed a minimal
pairbreaking boundary condition in GL theory based on the Euler-Lagrange boundary

term of the GL equations with a cylindrical surface,|20]

0A
5.16 2z =0, Auler=0,
( ) or lr=r ’ Ir=r
0Au 1
5.17 = —Ayolr=pr .
( ) or lr=r R olr=r
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We introduce an extension of these boundary conditions which interpolates between the
two extremes of minimal and maximal pairbreaking. The extension is based on Ambe-
gaokar, de Gennes, and Rainer’'s (AdGR) analysis[5] of the effects of diffuse scattering
by an atomically rough surface on the transverse components of the p-wave orbital order
parameter. AAGR showed that diffuse scattering leads to a boundary condition in which
the components that are transverse to the average normal direction of the surface are
finite, but extrapolate linearly to zero past the boundary at a distance by = 0.54&y. This
idea can be turned into a more general boundary condition for GL theory in a cylindrical

geometry as

Aar |7’:R =0 )
0A 1
= = __Aaz r=R
87‘ r=R bT | =
0 A

(5.18)

1 1
- - 1 Aa r=R -
or lr=R (R bT) d)‘ R

where V. = br/& can be treated as a parameter that varies between the maximal pair-
breaking (b — 0) and minimal pairbreaking (b — oo) limits. This generalized “AdGR”
boundary condition provides a useful extension of the typical Ginzburg-Landau boundary

conditions.

5.4. Superfluid Phases

The pore geometry reduces the maximal symmetry group for confined 3He to

(519) G= 50(3)5 X Dooh x T
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where D, is the point group of the pore and is obtained from the point group of the
circle, Cooy = SO(2) x {e, .}, by Dooh = Coov X {e, 7y}, where m,, is a reflection
through the x — y plane. By numerically minimizing the GL free energy with respect
to all order parameter components we identify four equilibrium superfluid phases for the
200 nm diameter pore. In these calculations we assume the phases are translationally
invariant along the z axis.

Recently Aoyama has shown that a translational symmetry breaking “stripe” B-like
phase along the axis of the channel may be possible in cylindrical geometries, stabilized
with an anisotropic boundary condition that implements specular reflection for scattering
along z, but retro-reflection in the r-¢ plane. This enhances A,. on the boundary relative
to Aae-[9] Our boundary condition has the opposite anisotropy. Thus, with our formula-
tion it is unclear if conditions allow for an energetically stable B-like stripe phase. This

question will be addressed in a separate report.

5.4.1. Polar (P,) Phase

Radial confinement in a cylindrical pore leads to the stability of the one-dimensional polar
(P,) phase below T,, < T,, where T,, is the transition temperature from the normal state.
The P, phase is a time-reversal invariant equal-spin pairing (ESP) phase with an order

parameter of form

(520) Aai - AZ(T) doc 21 ;

with radial profile shown in Fig. 5.2l The P, order parameter becomes spatially homo-

geneous with 7., — 7. in the limit of specular scattering, and will be the first superfluid
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Figure 5.2. Order parameter amplitudes for the P, phase as a function
of r at p = 26bar and T" = 0.57, for retro-reflection (maximal pair-
breaking), diffuse (b, = 0.54), and specular (minimal pair-breaking) bound-
ary conditions. Values are scaled by the unconfined polar phase amplitude
A% = |a(T)|/2B12345- For minimal pairbreaking boundary conditions the
P, phase is spatially homogeneous within the pore.

phase upon cooling from the normal state, except for the exceptional case of perfect specu-
lar reflection and perfect cylindrical cross-section (see Sec. . The residual symmetry
group of the P, phase is H = SO(2)s, x Zy™ x DT x T, where D%T = Cooy x {e, €77, }.
Thus, the P, phase breaks spin rotational symmetry but retains the full orbital point
group, D.p, by combining it with an element of the gauge group. Since the radius
R = 100 nm of the pore is much less than the dipole coherence length, &p &~ 10 — 20 pm,

the spin quantization axis, cf, for the ESP state is to high accuracy uniform in space. All

transitions to and from the P, phase that we find are second order.
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Figure 5.3. Order parameter amplitudes for the Bso(2) phase as a function of
ratp=26barand T" = 0.5T,. The left figure depicts maximal pairbreaking
(b, = 0) while the right shows minimal pairbreaking (b} = 0c). Values are
scaled by the bulk B phase order parameter, A% = |a(T)|/6(B12 +1/3B345).

5.4.2. Bgo(2) Phase

The Bgo(2) phase is the analogue to the bulk B phase for the cylindrical pore geometry,
and is stabilized at low temperatures and preferentially favored by strong pairbreaking
on the boundary. The residual symmetry of the Bgo(2) phase is H = DE.‘OJ;S x T, joint spin
and orbital D, transformations combined with time-reversal. The order parameter is

represented as
(521) Aai = Ar(r)fafi + A¢(T)95a<13¢ + Az(r)éaéi )

with the radial profiles shown in Fig. [5.3

5.4.3. Ago(2) Phase
In addition to the P, and Bgo(2) phases, we find two stable chiral A-like phases. The higher
symimnetry Ago(z) phase, reminiscent of the “radial disgyration texture” of bulk *He-A, is

favored by weak pair-breaking on the boundary. The residual symmetry group of the
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Aso(z) phase is H = SO(2)s, x Z3P™ x DX}, where DX = SO(2) x {e, tm.,} x {e, e/tm,,}

ooh ooh

and t is time reversal. The order parameter takes the form
(5.22) Agi = do[AL(r)2 + 10 Ag(r) ]

which is transverse to the pore boundary with radial profiles shown in Fig. The chiral

vector,
(5.23) I'=—A.(r)Ay(r) 7,

shown in Fig. , is radial except at the origin where [ vanishes; the gradient terms
in the GL functional require Ay = 0, yielding a polar order parameter at the core of
the cylindrical pore. The resulting chiral field is analogous to a radial disgyration - a
topological line defect of bulk 3He-A. This form for [ results in a zero average of I(r) over
the cylindrical pore, which leads to distinctly different NMR frequency shift for the ago(2)
phase as compared with a chiral state with a non-vanishing average chiral axis, (f(f’)> # 0,
as discussed in Sec. [5.6] For the specular boundary condition proposed in Ref. [20] (Eq.
with b, — 00), the Ago(2) phase entirely supplants the P, phase, and onsets at the

bulk transition temperature 7., despite being spatially inhomogeneous.

5.4.4. Ac, Phase

A lower symmetry A-like phase, denoted as Ac,, is an inhomogenous version of the the
circular disgyration, or Pan Am texture.[54), 37| This phase spontaneously breaks con-
tinuous SO(2);, symmetry of the cylinder and, unlike the Ago(2) phase, has a finite value

—

for the spatially averaged chiral axis, ([) # 0, that may point in any direction in the z —y



81

| |
N Aso) |——mou -]
—-—
— //’
< /, \\ /7
d 7 \ /
D R S N\ JdLF 7 -
/ \ //
/
/ / oo
0.0 I ]
0 0.5 10 0.5 1
r/R r/R

Figure 5.4. Order parameter amplitudes for the Ago(2) phase as a function of
rat p=26barand T" = 0.57.. The left figure depicts maximal pairbreaking
while the right shows minimal pairbreaking. Values are scaled by the bulk
A phase order parameter, A% = |a(T)| /4245
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Figure 5.5. Chiral axis [ for the Aso(2) phase at p = 26 bar, T' = 0.5 T, and
minimal pairbreaking boundaries. Arrow lengths are scaled by |Ay].

—

plane. For convenience we take () || ¢, with an order parameter of the form
(524) Aai = da [Az(ra ¢)2z + 1 Ar (7’, (b)fz + 1 A(z)('f", (b)éz] .

The residual symmetry group is then H = SO(2)g, x ZP™ x D;;T, where Dgl;T =
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Figure 5.6. Dominant order parameter amplitudes for the ac, phase at
p = 26bar and T' = 0.57T,.. The left figure depicts maximal pairbreaking
while the right shows minimal pairbreaking. Values are scaled by the bulk
A phase amplitude A% = |a(T)|/4B245-
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Figure 5.7. Chiral axis [ for the Ac, phase at p = 26bar and 7' = 0.57..
(Left) Maximal pairbreaking boundaries result in a nearly uniform [ direc-
tion. (Right) Minimal pairbreaking, on the other hand, gives the charac-
teristic “Pan Am” configuration. Arrow lengths are scaled by (AZ 4 A2)'/2.

{e, tea, Tap, tmy} X {e, €7tmy, }. The Ac, phase has a pair of disgyrations on the bound-

—

ary along an axis perpendicular to Z and (l), as can be seen for the case of minimal

pairbreaking in Fig. The aAc, phase is energetically favorable relative to the Ago(2)
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phase for strong pairbreaking on the boundary. In this case the boundary effectively
“censors” the energy cost of the ac, disgyrations. The suppression of the disgyrations is
evident in Fig. [5.7

The ac, phase is the only phase we find with broken axial symmetry, and thus explicit
¢ dependence. It is convenient to expand its amplitudes in terms of sines and cosines that

respect symmetry,

=d, Z { r)cos[(2] + 1) 7

Jj=0

(5.25) —i Dy (r)sin[(2] + 1)) & + A, (r) cos(2j6) z} .

Numerical solutions to the GL equations converge rapidly as a function of the number of
azimuthal harmonics, which greatly simplifies the numerical minimization compared to

allowing for an arbitrary ¢ dependence.

5.5. Phase Diagram

The phase diagram for superfluid *He confined within a pore is strongly dependent
upon the boundary conditions. We first fix R = 100 nm and consider the phase diagram
for four different values of b/, ranging from minimal to maximal pairbreaking as shown in
Figures [5.8) and For strong pairbreaking (Fig. the phase diagram is dominated
by the Bgo(2), Ac,, and P, phases. In this regime, our phase diagram differs from previous
calculations[53}, [32] due to the appearance of the ac, phase, which for strong pairbreaking
has a lower free energy than that of the ago(2) phase. As pairbreaking decreases on the
boundary, the Ago(2) phase appears at high pressure, with a tri-critical point separating

the Bso(2), Aso(2) and Ac, phases. The Ago(2) phase occupies most of the superfluid
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Figure 5.8. Phase diagrams for 0, = 0 (maximal pairbreaking) and 0/, =
0.1. The Aso(2) phase does not appear at all for maximal pairbreaking; as
pairbreaking at the boundary is relaxed it is stabilized at high pressure and
displaces the Bso(2) and Ac, phases.

phase diagram for minimal pairbreaking boundaries. It must be noted, however, that any

deviation from the perfect specular condition b, = co will suppress A, at the boundary
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Figure 5.9. Phase diagrams for b, = 0.54 and b, = oo (minimal pairbreak-
ing). As pairbreaking decreases, the Ac, phase is suppressed completely and
the stable range of the Bso(2) phase is decreased significantly. For minimal
pairbreaking the Ago(2) phase onsets at T' = T, with the P, phase absent.

near 7., and thus the P, phase should always be expected to be the highest temperature

superfluid phase observed experimentally.
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Figure 5.10. Temperature-confinement phase diagram for fixed b7 = 0.1,
p = 26 bar and the [ parameters of Ref. [23].

We also consider the influence of the pore radius, R, on stability of the various phases.
Fig. shows the phase diagram of stable phases in a cylindrical channel as a function
of the pore radius relative to the coherence length, R/&,. For a range of sufficiently small
R/&, only the P, phase is stable; the Bgo(2), Ac,, and Ago(2) phases enter the diagram
with increasing R. The Ago(2) phase is favored over the Ac, phase for large radii; however,
the relative stability of these two chiral phases is sensitive to boundary scattering, i.e. b/,
as shown in Figs. and For larger radii of order the dipole coherence length,
R ~ &p ~ 10 um, the spin quantization axis, cZ, for the Ac, and Ago(2) phases is no longer
constrained to be spatially uniform, and for R > £p these phases become “dipole-locked”
with d || 1.]20]

We also tested the robustness of our predictions for the phase diagram against a
different set of strong-coupling 3 parameters, specifically the Sauls-Serene set of A5

calculated on the basis of leading order strong-coupling theory[72] based on a quasiparticle
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Figure 5.11. Phase diagram for b/, = 0.1 using the g parameters of Sauls
and Serene.|81] The resulting phase boundaries are largely left unchanged
except for the shift upward in pressure of the tricritical point, roughly
corresponding to the difference of the Choi et al|23] polycritical point,
ppcp = 21 bar, and the Sauls and Serene polycritical point, ppcp & 28 bar.

scattering amplitude that accounts for both the normal-state effective mass, ferromagnetic
enhancement of the spin susceptibility and transport coefficients.|81] These § parameters
account for the relative stability of the bulk A- and B-phases, but have distinctly different
predictions for the pressure dependences of the strong-coupling corrections: AS¢. The
key result is that the structure of the phase diagram is unchanged with a different set of
strong-coupling 3 parameters, i.e. the relative stability of the P,, Bso(2), Ac,, and Ago(2)

phases is unchanged between the two sets of strong-coupling § parameters. This is shown

in Fig. 5.10,
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5.6. NMR Signatures

The superfluid phases obtained for the narrow pore neglect the nuclear magnetic dipole
energy. This is an excellent approximation since the nuclear dipole-dipole interaction
energy for dipoles separated by the mean interatomic spacing a is very small compared to
the pairing energy scale, a% (vh/2)* = 107  mx < T, ~ mk. Nevertheless, the dipole energy
gives rise to two important effects - (i) it partially resolves relative spin- orbital degeneracy
of the equilibrium states, and (ii) it generates a dynamical torque from the Cooper pairs
acting on the total spin when the latter is driven out of equilibrium. The dipolar torque
leads to NMR frequency shifts that are characteristic signatures of the broken symmetry
phases. In the following we report results for the nonlinear NMR frequency shifts that are
“fingerprints” of the P,, Aso(2), Ac,, and Bgo(2) phases. Our analysis is based on a spatial
and temporal averaging of the Leggett equations[48| for the nonlinear spin dynamics of
superfluid *He.

The dipolar interaction breaks relative spin-orbit rotation symmetry, thus reducing
the maximal rotational symmetry from SO(3)s x SO(3)1, to SO(3)L+s. This is reflected

by additional terms in the GL free energy functional, AQp = [, d*r fp[A], where
(5.26) fp=gp (|TrA]> + TrAA*)

is the mean pairing contribution to the nuclear dipolar interaction energy, with gp ~
(N(0)vh/2)? > 0. A convenient expression for gp is gn = 55524 /A%, where the A-phase
susceptibility, ¥ = xn, is equal to the normal-state spin susceptibility, A4 is the bulk
A-phase order parameter, and 24 is the corresponding longitudinal resonance frequency.

The dipole energy is a weak perturbation that resolves (partially) the relative spin- and
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orbital degeneracy of the zero-field phases of the cylindrical pore. In particular, for the
ESP states of the form An; = d, A;(7) the dipolar energy is given by fp = gp |d5|2, which
is minimized if d locally orients perpendicular to the two dominant orbital components.
However, spatial variations of the order parameter cost gradient energy. In the case
of the orbital components the spatial profiles are already optimized by minimizing the
GL functional subject to the boundary conditions of the confining geometry. For the
inhomogeneous phases of superfluid *He in a pore of radius R = 100 nm, the spatial
variations of the orbital components occur on a length scale that is short compared to the
dipole coherence length, {p = \/m ~ 10 um. Thus, spatial variations of d on such
short length scales of the pore geometry cost much more than the dipole energy. As a
result d “unlocks” from the local variations of the orbital order parameter. This allows us
to average the orbital components over the cross-section of the cylindrical pore and treat
the spin degrees of freedom as spatially uniform on the scale of R. For the non-ESP Bgo(2)
phase the spin structure is described by an orthogonal matrix, R[«, /3, 7], representing the
relative rotation of the spin and orbital coordinates.

The orientation of the spin coordinates of the Cooper pairs is also influenced by the

nuclear Zeeman energy,
(5.27) AQz =g. /Vd37" Ho (Aaidly;) Hy

where

N(O)?R 7¢(3)
.2 z = )
(5.28) 9=+ roy dsnere Y
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is the Zeeman coupling constant in the weak-coupling limit. For ESP states the static

NMR field prefers dl H.

5.6.1. Fast vs. slow spin dynamics

The nuclear dipolar energy generates frequency shifts, Aw = w—wy, of the NMR resonace
line for superfluid *He away from the Larmor frequency, wy, = vH, that are sensitive to
the spin and orbital structure of the ordered phase, the strength and orientation of the
static NMR field, and the rf field (“tipping field”) used to excite the nuclear spins. In
the high field limit, wy > ), where €2 ~ Q4 is the dynamical timescale set by the dipole
energy, we use Fomin’s formulation of the spin dynamics based on the separation of fast
and slow timescales for the dynamics of the magnetization (see also Ref. [22]), or total
spin, g(t), and the order parameter, A(t). The “fast” response is on the scale set by the
Larmor freqency, w ~ wy, while the “slow” response is set by the dipolar frequency of order
24.|33] Note that the static NMR field is still assumed to be small in the sense that the
Zeeman energy is much smaller than the condensation and gradient energies associated
with the orbital components of the order parameter. Thus, the dynamical contributions
to the nuclear dipole and Zeeman energies can be calculated on the basis of the solutions
for the orbital order parameter in zero field. However, for static NMR fields greater than
the Dipole field, H > Hp ~ 30G, the equilibrium orientation of the spin components
of the order parameter is determined primarily by the Zeeman energy, with the dipole
energy resolving any remaining degeneracy in the equilibrium orientation of the d vector,
or the rotation matrix R for the Bgo(2) state. This provides us with the initial equilibrium

conditions for orientation of the spin components of the order parameter.
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The spin dynamics of the superfluid phases is parametrized in terms of rotation ma-
trices for the precession of the order parameter, e.g. A(t) and total spin, S (t), following
an initial rf excitation of the spin system. An rf impulse applied at ¢ = 0 rotates (“tips”)
the total spin, S(t = 0%) by an angle § relative to the equilibrium spin, §0HFI = HZ.
The resulting dynamics of the order parameter for timescales, 0 < t < 27 /€, is then

parametrized by[33]
(5.29) A(t) = Ry (wt)Ry (B) Ry (—wit + 1) Ay,

where y’ | z' is the direction of the rf tipping field, and the rotation angles are defined by
one “fast” angle, wt, and two “slow” dynamical angles, 8 and 9. Inserting this expression
into Eq. for the dipole energy and averaging the result over the fast time scale, 27 /w,
gives the fast-time and short-distance scale averaged dipole energy density,

27

__ w W 1 =
(5.30) fo= %/0 dt Vcen/df‘rfD[A(r,t)].

This averaged dipolar energy functional determines the transverse NMR frequency shift
Aw as a function of tipping angle /3 for various orientations of the NMR field, H , relative
to the order parameter within the pore geometry. The variable 9 — the generalization of
Leggett’s rotation angle for the bulk B-phase — is fixed by the stationary condition of fp.

The transverse NMR frequency shift as a function of tipping angle is then given by|[33]

2

v 1l d—
31 Aw = — —

(5-31) W XsinﬁdﬁfD’

which provides the key NMR signatures for the phases of *He under strong confinement.
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Figure 5.12. Frequency shift of the Ago(2) phase at p = 26bar, T'= 0.5T,
and ¢/, = 0. The P, phase has the same functional form, but with larger
amplitude.

5.6.2. P, and Agg(2) Phases

The P, and Ago(2) phases are both ESP phases parameterized by a real d vector with
order parameters given by Eqs. and [5.22] respectively. Spatial averaging of the dipole

energy for these two phases leads to a dipole energy of the same form for both phases,
N2
(5.32) fo=gp (2(A2) = (a3) (d-2) ",

where Z is the axis of the cylindrical pore, and d is homogeneous and oriented in equilib-
rium in the plane perpendicular to the NMR field H and along a direction that minimizes
Eq. p.32

Parameterizing the direction of the NMR field in the coordinate system of the cylindri-

cal pore by Z' = {cos ¢sinf, sin ¢sin 6, cosf}, carrying out the transformation Eq.
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yields fp in Eq.

o = o ((A2) ~2(A2) [2(eos 3 + 1) cost sin

(5.33) + 4cos® B — (2cos B+ T cos® B) sin* 6] .

Since (A%) —2(A2) < 0in the pore, fp is minimized with respect to ¥ with ¢ = 0. Finally,
a general expression for the transverse shifts as a function of tipping angle is obtained

with Eq. [5.31],

wAw = ;—;QD (2 <A§> - <Ai>)

5008(5)—1)} |

(534) «eost) = st (o) (221

The dependences on the tipping angle, 5, and the polar orientation of the NMR field, 6,
are identical for both the P, and Ago(2) phases - only the magnitude of the shift differs
between the two phases. Note in particular that the shift vanishes precisely at g = /2
for ﬁ] |2. The result for the Ago(2) phase is equivalent to what is predicted for a 2D orbital
glass phase of *He-A.[28] Although the P, and ago(2) phases differ only quantitatively in
their transverse NMR frequency shift, they can still be distinguished in sufficiently clean
pores by the change in temperature dependence near the second order phase transition
between the two phases (see Fig. , in particular the discontinuity in the derivative of

the frequency shift, dAw/dT

Tey+

5.6.3. Ac, Phase
The ac, phase, with order parameter given by Eq. breaks SO(2) orbital symmetry,

and exhibits distinctly different NMR signatures compared to those of the Ago(2) phase.
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Figure 5.13. Transverse frequency shifts for the Ac, phase with H || 2 at
p = 26 bar, temperatures 7' = 0.5 — 0.8 T,., and maximal pairbreaking with
b, = 0.

Here we consider the two cases H | 2 and H 1 2. For H L 2 the residual Dy, symmetry
leads to a dependence of the transverse frequency shift on the azimuthal angle of H.

Due to the ¢ dependence of the order parameter it is convenient to work in Cartesian

—

coordinates with the chiral axis fixed along () || 5. The resulting spatial averages of the

order parameter profiles entering the average dipole energy become,

(AZ) = ((Aycosg — Aysing)®)
<AZ> = ((A,sing + Ay cos¢)?)
(AzA,) = ((Aycosp — Aysing)

(5.35) X (Apsing + Agcosp)) =0,
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For H || 2, the result for the transverse frequency shift for the ac, phase becomes

DAl = 177 [(A2) — (A2)
2P 1) (B

~ (3(A2) + (A2) — 4(A2)) cos

(5.36) +2[(A2) — (AZ)| (1 4+ cosB)}

The results for wAw for several temperatures are shown in Fig. [5.13] The shift is similar
to that for the P, and ago(2) phases, except for the asymmetry of the positive and negative
shifts. Note also that Aw vanishes at a temperature-dependent angle f* > 7 /2.

In contrast, for H = H(cos pZ + sin ¢y) the shift, wAw, depends on the azimuthal
angle ¢ of the static field, in addition to the tipping angle §. For an order parameter of
the form in Eq. we have (I} || §, and the resulting transverse frequency shift as a

function of ¢ and S becomes,

¢m¢M:%%m<m9+@9_xg»wwpn

(5.37) + ((AZ) — (A2)) (14 Tcos B) cos 2} .

The results for several field orientations, ¢ = 0,7/4,7/2, are shown in Fig. The
tipping angle dependences for H || (I} and H L (I} are of the same functional form
as the corresponding cases for bulk 3He-A. There is a “magic” tipping angle of 8, =
cos™1(—1/7) ~ 0.5457 at which Aw(p = 0) = Aw(p = m/2) independent of temperature.
The tipping angle dependence for ¢ = /4 is much weaker, and qualitatively similar

to that for the Ago(2) phase with H 1 2. Observation of these results for several field
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Figure 5.14. Transverse frequency shifts for the ac, phase with H L % at
p = 26 bar, temperatures 7' = 0.5 — 0.8 T, and maximal pairbreaking with
b’ = 0. The left panel shows the shifts for in-plane field orientation ¢ = 0
(blue), and ¢ = 7/2 (red). The right panel shows the shifts for ¢ = 7/4,
which has the same functional form as that of the ago(2) phase.

orientations would provide a clear identification of the ac, phase and determine the

direction of the mean chiral axis.

5.6.4. Bgo(2) Phase
The Bgo(2) phase is a non-ESP phase with a reduced and anisotropic spin susceptibility
below T.. The Bgo(2) phase also exhibits tipping angle dependence of the frequency shift
similar to that of 3He-B. In particular, for H L 2 the shift is a polar-distorted Brinkman-
Smith mode[17], and for H || £ we find the “perpendicular” mode[27] that is qualitatively
similar, but with important quantitative differences compared to bulk *He-B.

For H || %, the Zeeman energy is minimized in equilibrium by a spin-rotation R (7/2),
where n is in the x — y plane. This rotation leads to a positive transverse frequency
shift that is maximal at small tipping angles, unlike the Brinkman-Smith mode. The

quantitative description of the frequency shift depends on the spatial averages of the
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Bso(z) gap parameters,
Q = (A7) +2(A,Ay) + (A7)
(5.38) R=(A)+ (A}) +4(A2)
with the resulting transverse shift for H | Z given by
wm_ 17
wAw = 359D {4R cos B + 4P (1 + 4 cos ) cos v
XB

(5.39) —@Q (1 4 cos ) cos 20}

where the Leggett angle is

+1 1B < B,
(5.40) cost = % L < B < B,
-1 :5261/7

with cos 57 = (2P + Q)/(4P — Q) and cos 5, = (2P — Q)/(4P + Q). Note that yp
entering both Egs. and is given by xp = xn/[1 + g:/xn((A7) + (A2))] < xw-
This result is obtained in both cases by minimizing the Zeeman energy for the specific
field orientation. The left panel of Fig. shows the tipping-angle dependence of the
frequency shift Aw(l for temperatures starting just below the transition to BSO(2)-AC,
phase boundary at p = 10bar. At this pressure transition from the P, phase to the Bgo(2)
phase is interrupted by a narrow sliver of Ac, phase. Thus, near the Bgo(2)-Ac, phase

boundary, the P, order parameter is dominant and that is reflected in the tipping angle
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Figure 5.15. Transverse frequency shifts for the Bgo(2) phase at p = 10 bar,

temperatures 7' = 0.17,, 0.27,, 0.37T,, 0.36 T, and maximal pair-breaking,
b = 0.

dependence for T' = 0.367,.. At lower temperatures the transverse components of the
Bgo(2) become significant and the transverse shift evovles towards a form characteristic

of the B-phase with a sharp transition at ;. The polar distortion is still manifest as the

negative shift for g > (.

For the static NMR field H L 2 the relevant averages of the Bgo(2) gap are

P = (A2 4+ (A2) +2(0Ap) + 2(AAL) + 2 (AsA,)
Q =3(AZ) +3(AZ) +2(A,Ay)
+8(AAL) + 8 (AsA,) +8(A2)

(5.41) R=11(A?) + 11 (A2) + 18 (A, Ay) + 8 (A2)
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leading to a transverse shift

2

1
WAL = _ElgD {2R cos B+ 4P (1 + 4 cos 3) cos ¥
XB

(5.42) +Q (1 + cos fB) cos 20},

where

—2P(2cos B—1) :6 < BL‘
(5.43) cos ) = Qltcos )

1 18> Br.
and cos B, = (2P —Q)/(4P+ Q). Unlike bulk *He-B, the confinement induced anisotropy
of the Bgo(2) order parameter results in a nonzero transverse frequency shift even at small
tipping angles, and a temperature dependent critial angle 5. Once again the frequency
shift shows the evolution from a functional form close to the P, phase for T = 0.367,

towards the polar distored B-phase at low temperature.

5.7. Summary and Outlook

For *He in a long cylindrical pore of radius R = 100 nm, the relative stability of
superfluid phases is strongly dependent on pressure both through the combination of
strong-coupling corrections to the fourth-order GL free energy and changes in the effective
confinement ratio R/&y(p), and the degree of pairbreaking by boundary scattering. We
find four different equilibrium phases over the full pressure range for boundary conditions
spanning the range from maximal pairbreaking (retro-reflective boundaries) to minimal
pairbreaking (specular reflective boundaries). The first instability is to the z-aligned
polar P, phase, except for the idealized case of perfect specular reflection for a perfectly

circular pore. A polar distorted B-like phase is stabilized at sufficiently low temperatures
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within our theory for the strong-coupling effects based on the GL functional. We find two
symmetry inequivalent chiral A-like phases, the axially symmetric Ago(2) phase with a
radially directed chiral field and a polar core favored in the limit of weak pairbreaking, and
the broken axial symmetry chiral ac, phase with chirality directed perpendicular to the
axis of the pore. The Ago(2) phase dominates the phase diagram for specularly reflecting
boundaries while the Ac, phase appears at intermediate temperatures and higher pressures
separating the P, and Bgg(2) phases. The four equilibrium phases can be identified by
their distinct NMR freqency shifts as functions of tipping angle and NMR field orientation.
NMR experiments utilizing arrays of equivalent nano-pores should be able to test these
predictions and uniquely identify the polar phase as well as the new prediction of the
broken symmetry chiral Ac, phase.

The interplay of complex symmetry breaking, spatial confinement, surface disorder
and strong-interactions beyond weak-coupling BCS leads to a remarkably rich phase dia-
gram of broken symmetry states in what is perhaps the simplest of confining geometries,
the cylindrical pore. We expect an even wider spectrum of broken symmetry phases with
unique physical properties in more complex confining geometries,[103] or when confine-
ment is in competition with external fields or the formation of topological defects.[96], [99]
Indeed theoretical reports of new phases of superfluid *He in thin films and cavities have
simulated the development of nano-scale cavities, MEMS and nano-fluidic oscillators and
new nano-scale materials for experimental search and discovery of new quantum ground
states. In the latter category the infusion of quantum fluids into highly porous anisotropic

aerogels has opened a new window into the role of confinement on complex symmetry
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breaking. New chiral and ESP phases of superfluid *He in uniaxially stretched and com-
pressed silica aerogels have been reported,[15), [71], [78] and in a new class of nano-scale
confining media, called “nematic” aerogels, there is strong evidence to support the obser-
vation of a polar P, phase of *He in this strongly anisotropic random medium.[11], [29]
From the vantage point of our predictions for 3He confined in a long cylindrical pore there
are strong similarities between the phase diagram for R = 100 nm cylindrical pores and
the experimental phase diagram of *He in nematic aerogels, including the normal to P,
transition, and uniaxially deformed B-like and chiral A-like phases. E] It is remarkable
that the subtle correlations giving rise to chirality of an Ac, or Ago(2) phase survives the
random potential of these disordered porous solids. The observations pose challenges for
theorists to provide a quantitative understanding of how complex symmetry breaking and

long-range order remain so robust in random anisotropic materials.

In Chapter [4] we describe a model of nafen aerogels that exhibits analogous phases.



5.8. Material Parameters

102

The following tables summarize the pressure dependent material parameters that de-

termine the superfluid phases in strong-coupling GL theory.

plbar] | Te[mK] | vys[m/s] | &[nm] | ABSC | ABSC | ABSC | ABSC | ABEC
0.0 0.929 59.03 77.21 0.03 -0.11 0.10 -0.15 0.16
2.0 1.181 55.41 57.04 0.03 -0.04 | -0.14 | -0.37 0.19
4.0 1.388 52.36 45.85 0.02 -0.01 | -0.24 | -0.48 0.19
6.0 1.560 49.77 38.77 0.02 -0.01 | -0.28 | -0.54 0.18
8.0 1.705 47.56 33.91 0.02 | -0.02 | -0.30 | -0.58 0.17
10.0 1.828 45.66 30.37 0.01 | -0.03 | -0.31 | -0.60 0.15
12.0 1.934 44.00 27.66 0.01 -0.04 | -0.31 | -0.61 0.13
14.0 2.026 42.51 25.51 0.00 -0.05 | -0.30 | -0.62 0.11
16.0 2.106 41.17 23.76 0.00 | -0.05 | -0.27 | -0.66 0.10
18.0 2.177 39.92 22.29 0.00 | -0.06 | -0.27 | -0.68 0.09
20.0 2.239 38.74 21.03 -0.01 | -0.06 | -0.26 | -0.69 0.07
22.0 2.293 37.61 19.94 -0.01 | -0.07 | -0.26 | -0.71 0.06
24.0 2.339 36.53 18.99 | -0.01 | -0.07 | -0.26 | -0.72 0.04
26.0 2.378 35.50 18.15 -0.02 | -0.07 | -0.27 | -0.73 0.03
28.0 2411 34.53 17.41 -0.02 | -0.07 | -0.27 | -0.74 0.01
30.0 2.438 33.63 16.77 | -0.02 | -0.07 | -0.28 | -0.74 | -0.01
32.0 2.463 32.85 16.22 | -0.03 | -0.07 | -0.27 | -0.75 | -0.02
34.0 2.486 32.23 15.76 -0.03 | -0.07 | -0.27 | -0.75 | -0.03

Table 5.1. Material parameters for 3He vs. pressure, with 7, from Ref.
[39], vs calculated with m* from Ref. [39] and density n from Ref. [101].

Coherence lengths are calculated as & = hvy/2mkgT,. Strong-coupling

AB5¢ parameters at T, in units of |5}| are from Ref. [23].



ABSC ABSC ABSC ABSC ApBEC

3.070x1072 | —1.074x107} 1.038x107 1 | —1.593x101 1.610x10~1
—2.081x103 5.412x1072 | —1.752x10~1 | —1.350x10~! 2.263x10~2
2.133x107° | —1.081x10~2 3.488x10~2 1.815x1072 | —4.921x1073
—4.189x10~7 1.025x1073 | —4.243x10~3 | —1.339x10~3 3.810x10~4
— —5.526x10~° 3.316x10~4 5.316x1075 | —1.529x10~2
— 1.722x1076 | —1.623x10~° | —1.073x10~6 3.071x10~7
— —2.876x10~8 4.755x10~7 | 8.636x1072 | —2.438x1079

— 1.991x10710 | —7.587x10~? — —

— — 5.063x10~ 11 — —

eters from Ref. [23] of the form AS =" ald pm.

Table 5.2. Coefficients of a polynomial fit to the strong-coupling 5 param-
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plbar] | ABSE | ABSC | ABSC | ABSC | ApEC
0 -0.008 | -0.033 | -0.043 | -0.054 | -0.055
12 -0.034 | -0.080 | -0.117 | -0.199 | -0.194
16 -0.041 | -0.088 | -0.129 | -0.230 | -0.236
20 -0.048 | -0.095 | -0.136 | -0.254 | -0.277
24 -0.055 | -0.101 | -0.140 | -0.272 | -0.320
26 -0.059 | -0.103 | -0.140 | -0.280 | -0.344
28 -0.062 | -0.105 | -0.139 | -0.287 | -0.370
30 -0.066 | -0.106 | -0.137 | -0.292 | -0.398
32 -0.070 | -0.106 | -0.132 | -0.296 | -0.429
34.4 | -0.074 | -0.103 | -0.123 | -0.298 | -0.469

Table 5.3. Sauls-Serene AS¢ parameters|81] for *He vs. pressure. The
values at p = 0 bar were obtained by extrapolating the published A,
which were calculated only down to 12 bar, to their weak-coupling values

at lim,,,, T.(p)/Tr(p) = 0, which corresponds to a negative pressure of

Po = —H bar.
n ABSC ABSC ABSC ABSC ABEC
0 | —8.311x1073 | —3.334x1072 | —4.298x10~2 | —5.416x10~2 | —5.505x10~2
1| —2.404x1073 | —4.716x10~3 | —7.988x10~3 | —1.550x10~2 | —1.427x10~2
2 2.813x10° 8.032x10~° 1.637x10—* 3.174x10~% 2.942x10~4
3 | —4.024x10~7 | —9.400x10~% | —1.345x10~8 | —2.138x10~ ¢ | —6.654x10—6
Table 5.4. Coefficients of a polynomial fit to the Sauls-Serene 3 parameters

in Table 5.3 of the form Ag:

=>. a' pr.
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CHAPTER 6

Publication: Spontaneous Helical Order of a Chiral p-wave

Superfluid Confined in Nanoscale Channels

6.1. Abstract

Strong interactions that favor chiral p-wave pairing, combined with strong pair break-
ing by confining boundaries, are shown to lead to new equilibrium states with different
broken symmetries. Based on a strong-coupling extension of the Ginzburg-Landau (GL)
theory that accurately accounts for the thermodynamics and phase diagram of the bulk
phases of superfluid 3He, we predict new phases of superfluid *He for confined geometries
that spontaneously break rotational and translational symmetry in combination with par-
ity and time-reversal symmetry. E] One of the newly predicted phases exhibits a unique
combination of chiral and helical order that is energetically stable in cylindrical channels
of radius approaching the Cooper pair coherence length, e.g. R ~ 100nm. Precise nu-
merical mimimization of the free energy yields a broad region of stability of the helical
phase as a function of pressure and temperature, in addition to three translationally in-
variant phases with distinct broken spin- and orbital rotation symmetries. The helical
phase is stable at both high and low pressures and favored by boundaries with strong

pair-breaking. We present calculations of transverse NMR frequency shifts as functions of

IThis chapter extends Chapter [5| to include phases that spontaneously break translational symmetry
along the axis of the cylindrical channel.
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rf pulse tipping angle, magnetic field orientation, and temperature as signatures of these

broken symmetry phases.

6.2. Introduction

The superfluid phases of *He are paradigms for spontaneous symmetry breaking in
condensed matter and quantum field theory [95} [79]. The bulk A- and B phases are BCS
condensates of p-wave, spin-triplet Cooper pairs [49]. The broken symmetries of these
phases, which are well established, underpin the non-trival topologies of both ground states
[94, [61]. However, the bulk phases are only two realizations of the 18-dimensional mani-
fold of spin-triplet, p-wave condensates. When 3He is subjected to a confining potential on
scales approaching the Cooper pair coherence length, &, ~ 160 — 770 A depending on pres-
sure, new ground states with novel broken symmetries are stabilized [14), [99], 104, [105].

In this Letter we report theoretical predictions of the equilibrium phases of superfluid
3He when confined in quasi-one-dimensional channels with radial confinement ranging
from R = 2 — 20&,(p). Among these phases is a novel “helical” phase of *He that spon-
taneously breaks both time-reversal and translational symmetry along the channel. The
broken translational symmetry is realized as a double helix of disclination lines of the
chiral axis confined on the boundary of the cylinder walls. The double-helix phase is
predicted to be stable over a large region of the pressure-temperature phase diagram for

channels with radius R = 100 nm.
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6.3. Ginzburg-Landau Theory

Our results are based on a strong-coupling extension of Ginzburg-Landau (GL) the-
ory that accurately reproduces the relative stability fo the bulk A- and B-phases, in-
cluding the A-B phase transition [L04]. The GL theory is formulated as a functional of
the order parameter, the condensate amplitude for Cooper pairs, (¢, (p)ty(—p)) in the
spin-momentum basis. For spin-triplet, p-wave Cooper pairs the order paramater can
be expressed in terms of a 3 x 3 matrix A,; of complex amplitudes that transforms as
the vector representation of SO(3)g with respect to the spin index «, and as the vector
representation of SO(3); with respect to the orbital momentum index ¢. In cylindrical

coordinates the order parameter matrix may be represented as

Arr ArqS Arz
(6 1) A= A¢T A¢>¢> A¢z )
Azr Az¢ Azz

where we choose aligned spin and orbital coordinate axes. The GL free energy functional,

(62) QL) = [ & Frand ] + fyal )
v
is expressed in terms of a bulk free energy density [91],
fourA] = a(T)Tr (AAT) + By |Tr(AAT)|*

+ By [Tr(AAD)” + 85 Tr [AAT(AAT)"]

(6.3) + B Tr [(AA)?] + Bs Tr [AAT(AAT)*] |
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and the gradient energies,

(6.4) JeraalA] = K1 AL L Aje + Ko AL Aok + KA Aok j s

agk ag,j aj,k

where AT (A”) is the adjoint (transpose) of A, A,;; = 0j A, and the transformation of the
gradient free energy from the Cartesian representation to cylindrical coordinates given in
Eq. (6) of Ref. [104]. The material parameters, o, {3;|i = 1...5}, and {K,|a =1,2,3}
multiplying the invariants defining the GL functional are determined by the microscopic
pairing theory for *He. In weak-coupling theory these parameters are given in Refs.
[91], [104].

Ginzburg-Landau theory is widely used in studying inhomogeneous superconducting
phases, notably vortex states in type II superconductors [2], as well as Fulde-Ferrell-
Larkin-Ovchinnikov states at high field and low temperatures [4]. In the case of *He a
strong-coupling extension of the weak-coupling GL theory that accounts for the relative
stability of the bulk A- and B phases, and specifically the A-B transition line, Txg(p)
for pressures above the polycritical point, p 2 p. was introduced in Ref. [104]. The
strong-coupling functional is defined by the corrections to the fourth-order weak-coupling

material parameters,
(6.5) Bi(p, T) = B (p, T.(p)) + £ A8 (p) ,

with AS(p) = Bi(p, Te(p)) — BY(p, Te(p)). The weak-coupling parameters, 3(p, T.(p))
are calculated from a Luttinger-Ward formulation of the weak-coupling microscopic free-
energy functional and evaluated using the known pressure-dependent Fermi-liquid mate-

rial parameters, provided in Table I of Ref. [104]. The AS(p) have been obtained from
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Figure 6.1. Left: The chiral axis I(r) for the ac, phase at p = 26 bar,
T = 0.7T. with strong pairbreaking (b, = 0.1). The chiral axis is confined
in the » — ¢ plane. The arrow color density is scaled by the amplitude,
(A2 + A2)Y/2. The red and blue dots locate the two disgyrations, which
support supercurrents propagating along +z and —z, respectively. Right:
Supercurrent isosurfaces in the Sp phase, calculated using the full order
parameter in Eq. [6.13] of the Appendix.

analysis of measurements of the strong-coupling enhancement of heat capacity jumps,
NMR frequency shifts and the Zeeman splitting of superfluid transition in a magnetic
field [23]. The results we report are based on the strong-coupling parameters reported in
Table I of Ref. [104]. We emphasize that the extended GL functional accounts for the
relative stability of competing phases at temperatures well below T,.(p), including the bulk
A and B phases at high pressures [104], and the A to stripe phase transition in thin films
of 3He [105], and in the former case has been validated by our microscopic calculations
of Tap(p) and the strong-coupling beta parameters, AS¢(p), based on the formulation of

the strong-coupling theory developed in Refs. [72], 81, 80} [86].
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The geometry we consider here is an infinitely long cylindrical channel of radius R.
For the channel walls we use boundary conditions that include a variable order parameter
“slip length” by inspired by the analysis of Ambegaokar, de Gennes, and Rainer [5], as

well as the influence of boundary curvature [20]. The resulting conditions at r = R are

[104],
0A. 1
Aar r= :Oa = __Aaz r=R >
Ir=r or lr=R br Ir=r
0Aus 11
6.6 e B A
( ) or lr=R (R bT> ¢| r

where the transverse extrapolation parameter b, = br/&, varies between the b, — 0
(maximal pairbreaking) and 0}, — oo (minimal pairbreaking) limits.

The equilibrium order parameter is obtained by minimizing the GL free energy func-
tional, i.e. by solving the Euler-Lagrange equations, 6Q[A]/dAT = 0. When restricted
to translationally invariant states we obtain four phases stable in different regions of the
p — T phase diagram: the P, phase with Cooper pairs nematically aligned along the axis
of the cylindrical channel is the first unstable mode from the normal state. At a lower
temperature Cooper pairs with orbital wave functions transverse to z become unstable.
Strong-coupling and strong pair breaking on the boundary lead to two distinct chiral
phases with different symmetries. The first is a second-order transition from the P, phase
to the Ac, phase with the chiral axis aligned in the plane perpendicular to the z axis.
The Ac, phase spontaneously breaks SO(2)rotation symmetry. At lower temperatures the

cylindrically isotropic chiral phase, Ago(z), is stabilized, and at even lower temperatures,
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the polar-distorted Bgo(2) phase is favored. Both Ago(2) and Bgo(2) phases are separated

by first-order transitions [104].

6.4. Dynamical Instability

The chiral Ac, phase is an inhomogenous analog of bulk 3He-A, with a spatially
averaged angular momentum (chiral) axis (I) aligned along a fixed but arbitrary direction
in the r — ¢ plane, as shown in Figure[6.1} For maximal pairbreaking boundary conditions

the Ac, order parameter is given by

(6.7) Ani=d, cos (%) {Alzéi—i—i A;{(cos(qb—ﬂ)f‘i—sin((b—ﬂ)ggi)} :

—

where ¥ + /2 is the angle of the average direction of the angular momentum axis, ([)
in the r — ¢ plane. The in-plane chiral axis spontaneously breaks the continuous SO(2)
rotational symmetry of the confining potential. The corresponding continuous degeneracy
of the Ac, phase implies the existence of a Nambu-Goldstone (NG) mode associated with
massless, long-wavelength excitation of the orientation, 9, of (l_§

The dynamical equation for the NG mode is obtained from the action for the space-
time fluctuations of the Cooper pairs relative to the Ac, ground state, A,;(r,t) = Aqi(r, t)—

Ale(r),

ai

(6.8) S= / dt d*r {TTr (AAT) —L{[A]} :

where U|[A] is the effective potential derived from an expansion of the free energy func-
tional, Q[A], to quadratic order in the fluctuations, A, of order parameter. The additional

invariant represents the kinetic energy of the Cooper pair fluctuations, with the effective
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Figure 6.2. NG mode dispersion, w_, as a function of () and 7" and scaled
by the bulk A-phase amplitude at p = 26 bar and R = 100 nm. Negative
values denote imaginary values of w_. The circles indicate the most unstable
mode, Q/Q., for each temperature. Q. ~ 7/674 nm = 4.66 x 107nm~" is
the maximum value of the most unstable mode at the Sp-P, transition.

inertia given by 7 = 7¢(3)N;/48(wkgT.)? in the weak-coupling BCS limit [60], where N,
is the normal-state density of states at the Fermi energy.

For the NG mode the action is a functional of the degeneracy variable corresponding
to space-time fluctuations of the orientation of the chiral axis, ¥(¢, z), and the fluctuations

of the polar component of the Cooper amplitude, 6”(t, z), that couples linearly to J(¢, z)
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through the gradient energy. The order parameter that incorporates these fluctuations is

Ay = da cos <%

) {2 Al cos[p — I(t, 2)]7;
—i A" sin[p — O(t, 2)] s + Alzﬁz}

(6.9) —i8"(t, 2) sin (%) sinfe — O(t, 2)]dai

where A” and A/ take their equilibrium values found by minimizing the free energy
functional with the order parameter in Eq. Since the fluctuations depend only on
time, ¢, and the coordinate, z, along the channel, we can integrate out the dependences
on r and ¢. We then express the action in Fourier space, in which case we obtain a
sum over independent Fourier modes of the form, 9(t, z) = 0 cos(wt + Q=) and 07(t, z) =
07 sin(wt + @z). The Euler-Lagrange equations reduce to eigenvalue equations for the

coupled mode amplitudes,

83w —4) /mc "
o —a)ar (E) QO

w?o! = 1 {a + (1 — ﬁ) (B1s + Bos) (A + AL?)

T 972

(6.10) W = 2Q*Y

+3%Q° + WC)Q ll + = Cm(27r)} } 57

16(37?— 4) Al (7TC

(6.11) + E> Q9

where Cin(27) = Ozﬂ du (1 — cosu)/u. The weak-coupling relation K1 = Ky = K3 = K
has been used, and we introduced the velocity, ¢ = /K/T = v;/v/5, where v; is the

Fermi velocity.
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Figure 6.3. (Left) The amplitudes A’, (red); A, (blue); and A”, (green)
for the SA order parameter phase, at p = 26 bar, R = 100nm and scaled by
the bulk A phase amplitude Ay = \/|a(T)|/45245. The black vertical lines
denote the continuous phase transitions Ac,-Sa, Sa-P,, and P,-Normal

with increasing temperature. (Right) The temperature dependence of the
half-period L.

There are two eigenmodes corresponding to bosonic excitatoins with dispersions w4 (Q).
The low frequency mode, w_(Q) is identified as the NG mode with an excitation that is a
pure rotation by ¥, with a linear dispersion w_(Q) x @ for @ — 0. Indeed the ac, phase
supports low-frequency bosonic excitations corrsponding to oscillations of the chiral axis,
as shown in Fig. for R = 100nm, p = 26 bar and T'/T, = 0.5. However, the mode
softens as the temperature increases. Above a critical temperature of T* ~ 0.577, the
stiffness supporting the NG mode vanishes, and a conjugate pair of imaginary eigenfre-
quencies appear signalling a helical instability of the Ac, phase. Figure shows the
evolution from the dispersion relation from the region of a stable Ac, phase indicated
by positive frequencies. Negative values correspond to the magnitude of the imaginary
frequencies of the unstable NG mode. The wavevector of the most unstable mode, Q.(T),

is indicated at each temperature. As we show below the instability is stabilized to a new
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chiral phase with spontaneously broken translation symmetry along z by nonlinear terms

in the GL free energy.

6.5. Double Helix Phase

The structure of the broken translation symmetry of this new phase, designated as
Sa, is that of a double helix, easily visualized by the propagating rotation of the pair
disgyrations as shown in Fig. This phase has continuous helical symmetry under the
set of rotations by —© about z, R,[—©] combined with the translation along z a distance
+0/Q, T.[4+6/Q]. Note also the helical flow of the counter-propagating supercurrents
that are confined near the two disgyrations. The model for the order parameter in Eq.
allows us to to study the temperature evolution of the equilibrium S, phase, with
rotary propagation 9(z) = Qz, shown in Fig. Note that half-period, L = 7/Q, is a
minimum at the Sp-P, transition, with L =~ 37§, ~ 674nm at p = 26 bar, and diverges
as the Sa-Ac, transition is approached. The structure of the Sa phase obtained from the
variational model, as well as the second-order phase transitions between Ac,-Sa phases,
and Sa-P, phase, agree closely with the numerical minimization of the full GL functional

(see Appendix).

6.6. Phase Diagram

We find siz distinct phases for cylindrical channels: the translationally invariant P,,
ASO(2); Ac,, and Bgo(z) phases reported in Ref. [104], the double helix Sp phase, and
a periodic domain-wall B-phase, sg, predicted by Aoyama [9]. The sg phase is defined

by domain walls separating polar-distored B-like phases along the z axis. We impose
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Figure 6.4. Phase diagram for the cylindrical channel with R = 100nm and
strong pairbreaking, 0/, = 0.1. The labels So and sg correspond to the
helical and B-like stripe phases, respectively. The Ago(2) phase appears at
the highest pressures, and the Ac, phase is suppressed by the more stable
Sa phase. The sg phase appears in a narrow region at low pressure and

low temperature.
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boundary conditions for the half-period, L, of the order parameter at z = 0 and 2z = L,

where L is determined in the minimization of the free energy functional.

Figure [6.4] shows the phase diagram for a R = 100 nm cylindrical channel with strong

pairbreaking, b’- = 0.1. The polar P, phase, with Cooper pairs nematically oriented along

the channel is the first superfluid phase to nucleate from the normal state. At a lower

temperature the transverse orbital components appear; the chiral So phase develops at

second-order instability from the P, phase. Compared to an earlier calculation [104]

that assumed translational invariance along the channel, we find that the Ac, phase is

replaced by the more stable Sp phase. At the higher pressures, the isotropic chiral A
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phase is favored over the helical phase, separated by a first-order transition line, which
then terminates at a tricritical point, below which the helical phase is unstable to the
polar-distorted B phase, Bso(2), also separated by a first-order transition. At still lower
pressures the sg phase is stable in a very small window of the phase diagram. The Ago(2)
and sg phases are very sensitive to surface pair-breaking, and are completely suppressed
for maximal pairbreaking (see Appendix). Finally, as the surface boundary condition
approachs specular reflection the Ac, and Sa phases are supplanted by the Ago(2) phase. A
more detailed presentation of the phase diagram, including a phase diagram as a function

of channel radius R, is presented in the Appendix.

6.7. NMR Signatures

Nuclear magnetic resonance (NMR) spectroscopy is a tool for identifing inhomogenous
phases of superfluid *He [28]. The frequency shift of the NMR line relative to the Larmor
frequency is sensitive to the spin and orbital correlations of the order parameter that
minimizes the nuclear magnetic dipole energy, AQp = [, d&*r gp (|TrA]> + TrAA*). The
dipole energy lifts the degeneracy of the equilibrium states with respect to relative spin-
orbit rotations. Thus, deviations from the minimum dipole energy configuration lead
dipolar torques generated by the spin-triplet Cooper pairs that shift the NMR resonance
frequency away from the Larmor frequency. The magnitude of the shift is determined by
the dipole coupling, gp = ;%Qi /A%, which can be expressed in terms of normal-state
spin susceptibility, xn, and the bulk A-phase longitudinal resonance frequency, 4. We
follow the analysis described in Ref. [104] for the transverse NMR frequency shifts of the

translationally invariant phases of *He confined in nano-pores to calculate the frequency
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shifts of the Sp phase. In particular, the spatially averaged dipole energy density for
N2

the Sx phase is fp = gp(A2)s, (d-é) | with (A%)g, = 2(A2) — (A2) — (A?) where

(A2) = [, @1 Y, |Aail” and d lies in the plane of the channel and perpendicular to the

static magnetic field axis H. This results in a frequency shift of the same form as that of

the P, and ago(2) phases [104], but with amplitude o (A%)g,,
(6.12) wAw:igD<A2)SA [cosﬂ — sin? @ (5(:08—6_1)] ,
XN 4

where (3 is the pulsed NMR tipping angle and @ is the angle of the static field relative to
the z axis. Figure shows the frequency shift for 5 — 0 as a function of temperature for
the Sa variational order parameter defined in Eq. and plotted in Fig. for two field
orientations. The second order transition at the P,-S, boundary shows a discontinuity in
the slope of Aw(T'), and an apparent jump occurs at the Sp-Ac, transition. In fact this
is a smooth crossover confined to a narrow temperature range related to the divergence
of the period of the Sp phase. The detailed NMR, spectrum close to this transition is
more complex because the spatial variations of the Sa phase, set by the half-period, L,
can exceed the dipole coherence length, {p = \/m ~ 10 um near to the Sa-Ac,
transition. The d vector becomes inhomogeneous, spatial averaging breaks down and the
NMR line will broaden as the temperature approaches the Sa-Ac, transition in a narrow

window indicated by the gray shading in Fig. [6.5] A narrow NMR line is restored in the

Ac, phase.

6.8. Conclusions and Beyond *He

We find six distinct equilibrium phases within highly confined cylindrical channels,

including two phases that break translation symmetry along the channel. In particular,
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Figure 6.5. Small tipping angle (5 ~ 0) transverse frequency shift for the
Sa phase as a function of temperature. The S5 phase order parameter is
that shown in Fig. [6.3] The Sa and P, frequency shifts are found using
Eq. and the Ac, frequency shifts are given by Eqgs. 36 and 37 in Ref.
[104]. The grey shaded region denotes the region of the Spo phase where
the half-period L exceeds {p ~ 10 pm.

we predict a “helical” phase, Sa, which spontaneously breaks time-reversal symmetry and
translational symmetry, but retains rotary-translation (helical) symmetry. The double-
helix structure of this phase is predicted to be stable over a significant region of p-T phase
diagram for long cylindrical pores of radius approaching the Cooper pair coherence length
&0, and to show a distinct NMR, signature.

The novel broken symmetry phases of *He are based on competing interactions in
a strongly correlated Fermi liquid with unconventional pairing, combined with strong
pair breaking by confining boundaries. This situation can arise in a broad range of
unconventional superconductors, including chiral superconductors such as SroRuO,4 and
UPt3, as well as the cuprates. Indeed theoretical predictions of novel broken translational

symmetry phases are reported for d-wave superconductors subject to strong confinement
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[97), [43], and it seems likely that there are more novel broken symmetry phases in multi-
component, unconventional superconductors awaiting discovery.

Acknowledgements — This research was supported by National Science Foundation
Grant DMR-1508730. We thank Bill Halperin and Andrew Zimmerman for discussions
on confined phases of *He that contributed to this research. We also thank Michael Moore

for bringing Ref. [14] to our attention.

6.9. Appendix

Order Parameter for the Double Heliz Phase — Numerical minimization of the GL
functional to determine the exact structure of the Sp phase is made efficient, without
loss of accuracy, by developing the ¢-dependence as an expansion in symmetry-preserving

harmonics,

Au=d. > { A/ (r)sin[2)(6 + Q)] 7

J=0

+i AL () cos[(2) + 1) (¢ + Q2)]

~

+ A} (1) cos[2] () + Q2)] d;
+i A" (r)sin](2) + 1)(¢ + Q2)] &
+ A;’j(r) cos[2j (¢ + Qz)] Z;

(6.13) i A () sinl(2) + 1) (0 + Q)] &}

The numerical result for the Sp phase converges rapidly to the exact solution with the

addition of higher harmonics.
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Figure 6.6. Phase diagram for the cylindrical channel with R = 100nm
and b, = 0 (maximal pairbreaking). The Sa phase has displaced much
of the Ac, phase compared to the phase diagram calculated for only 2
translationally invariant phases [104].

Sensitivity of the Phase Diagram to Strong Pairbreaking — The anisotropic chiral
Ac, and Sa phases are favored under conditions of strong pairbreaking on the boundary
because the energy cost of the boundary half-disgyrations is minimal due to suppression
of all the order parameter components. By contrast the Ago(2) phase, which hosts a radial
disgyration at the center of the cell is disfavored over both anisotropic chiral phases.

This is reflected in the phase diagram for maximal pairbreaking, b’ = 0, shown in Fig.
for a R = 100 nm cylindrical channel. Note that strong-coupling, which is relatively
stronger at higher temperatures favors the helical phase over the translationally invariant

Ac, phase. Also note that sg phase is not stable at this confinement (R = 100 nm) for

maximal pair-breaking.
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Figure 6.7. Phase diagram: temperature versus radius for cylindrical chan-
nel at p = 26 bar with strong pairbreaking. b, = 0.1. All six phases we

have found are shown in this diagram, although the sg phase is stable in a
very narrow window of R and T

We also include the phase diagram as a function of the channel radius R (Fig. for
p = 26 bar and b/, = 0.1. The S phase is clearly favored by high confinement relative to
the Ac,, Aso(2), and Bgo(2) phases. However, at this pressure the sg phase is very fragile
and stable only at very low temperatures where non-local corrections to the gradient
energy, which are not included in the extended GL functional, are likely relevant. We also

note that there is a critical radius above which the Ac, phase appears.
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CHAPTER 7

Publication: Strong-coupling and the Stripe phase of He

7.1. Abstract

Thin films of superfluid 3He were predicted, based on weak-coupling BCS theory, to
have a stable phase which spontaneously breaks translational symmetry in the plane of the
film. This crystalline superfluid, or “stripe” phase, develops as a one dimensional periodic
array of domain walls separating degenerate B phase domains. We report calculations
of the phases and phase diagram for superfluid 3He in thin films using a strong-coupling
Ginzburg-Landau theory that accurately reproduces the bulk *He superfluid phase dia-
gram. We find that the stability of the Stripe phase is diminished relative to the A phase,
but the Stripe phase is stable in a large range of temperatures, pressures, confinement,

and surface conditions.

7.2. Introduction

The theoretical prediction of a crystalline superfluid, or “stripe” phase, that sponta-
neously breaks translational symmetry in thin films of 3He [99], along with advances in
nanoscale fabrication and experimental instrumentation [50], has renewed interest in the
properties of superfluid *He in thin films and confined geometries. In the weak-coupling
limit of BCS theory the Stripe phase is predicted to be stable in a large region of temper-

ature and pressure for films of thickness D ~ 700 nm. However, recent experiments on
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3He confined in slabs of thickness D ~ 700 nm and D =~ 1080 nm have failed to detect
evidence of the Stripe phase [50]. []

A limitation of the Vorontsov and Sauls theory is that it does not include strong-
coupling corrections to the BCS free energy. In bulk 3He, weak-coupling theory predicts
a stable B phase at all temperatures and pressures; however, the A phase is found to
be stable experimentally at 7T, and pressures above ppcp ~ 21.22 bar, with a first-order
transition at Thg < T, to the B phase. Theoretically accounting for the stability of
the A phase requires including next-to-leading order corrections to the full free energy
functional, i.e. corrections to the weak-coupling functional [72]. While these strong-
coupling corrections are largest at high pressures, they remain significant even for p ~
0 bar[23]. Thus, for superfluid *He confined within a film, it is to be expected that strong-
coupling effects will increase the stability of the A phase relative to both the B- and Stripe
phases, which could diminish, or even eliminate, the experimentally accessible region of
the Stripe phase.

In this paper we report our study of the A-Stripe and Stripe-B superfluid transitions
using a Ginzburg-Landau (GL) functional that incorporates strong-coupling corrections
to the weak-coupling GL material coefficients and accurately reproduces the bulk super-
fluid 3He phase diagram [104]. Within this strong-coupling GL theory we calculate the
superfluid order parameter and phase diagram as a function of pressure, temperature,

confinement, and surface conditions.

evitin et al[52] have recently reported evidence of spatial modulation in a 1080 nm slab.
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7.3. Ginzburg-Landau Theory

The general form of the p-wave, spin triplet order parameter for *He is given by the
mean-field pairing self energy, which can be expanded in the basis of symmetric Pauli

matrices (S = 1) and vector basis of orbital momenta (L = 1),

(7.1) A@p) = Z Agi (i000,) Pi

where p is the direction of relative momentum of the Cooper pairs defined on the Fermi

surface, and A,; are the elements of a 3 x 3 complex matrix,

rxr

yx

=
2
o
I
SN
g
SO

zZT

that transforms as a vector under spin rotations (with respect to ) and (separately) as
a vector under orbital rotations (with respect to i). We choose aligned spin and orbital

coordinate axes.

7.3.1. Free energy functional

To determine the order parameter and the phase diagram of *He in a film geometry, we
solve the Euler-Lagrange equations of the Ginzburg-Landau functional, subject to relevant
boundary conditions, and calculate the order parameter and the stationary free energy.

The GL functional is defined by bulk and gradient energies with temperature dependent
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strong-coupling corrections, and is supplemented by boundary conditions that we can
tune from maximal to minimal pair-breaking [104].
The Ginzburg-Landau free energy functional is expressed in terms of invariants con-

structed from the order parameter matrix, A, and is given by [91]

(7.3)  Q[A] = /Vdé {a(T)Tr (AAY) 4 8, |Tr(AAT)[* + B, [Tr(AAN)]
+ B3 Tr [AAT(AAT)] + By Tr [(AAT)?] + B Tr [AAT(AAT)*]

KL (Vi Do) + Ko (V40 uAie) + Ko (Vi 54000

In the weak-coupling limit the GL. material parameters are given by

(74) a™(T) = gNONT/T. - 1),

(7.5) Wy = By = By = Y = B,
we N(0) 1|7

i "= T ([0}

& g = K==y,

and determined by the normal-state, single-spin density of states at the Fermi energy,
N(0), the bulk transition temperature, T;, and the Fermi velocity, v;. The Cooper pair
correlation length & = hvs/2mkgT. varies from §, =~ 770 A at p = Obar to & ~ 160 A at

p = 34 bar.
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7.3.2. Strong-coupling corrections

The fourth order § parameters that enter the GL free energy functional are modified by
next-to-leading order corrections to the full Luttinger-Ward free energy functional [72].
These corrections scale as AG ~ 5Y(T'/Tr) near T,. Combining the A55¢ with the weak-
coupling coefficients in the bulk GL functional yields the critical pressure, ppcp, above
which the A phase is stable relative to the B phase. For p > ppcp the temperature scaling
of the strong-coupling corrections relative to the weak-coupling [ parameters breaks the
degeneracy in temperature between the A and B phases at the critical pressure and
accounts for the pressure dependence of the A-B transition line, Thg(p), and thus an
accurate bulk phase diagram [104]. The resulting strong-coupling  parameters are given

by

(7. BT.p) = B (0. Tep)) + - AFE ().

Figure shows the experimental bulk superfluid phase diagram as well as the phase di-
agram calculated from strong-coupling GL theory using AB¢ coefficients obtained based
on analysis of selected experiments by Choi et al. [23]. These § coefficients differ sub-
stantively from those calculated from strong-coupling theory based on a quasiparticle
scattering amplitude that accounts for the normal Fermi liquid properties of 3He. Figure
shows the bulk phase diagram calculated using the A from Sauls & Serene[81].
This set of [ coefficients has a higher polycritical pressure than experiment; however,

the pressure dependence of the ASP represents the expectation based on strong-coupling
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Figure 7.1. (Left) Bulk phase diagram with lines showing the measured
phase transitions and shading showing the calculated regions of phase sta-
bility based on GL theory. The AS coefficients are from Choi et al[23]
and are plotted in the right panel.

theory dominated scattering from ferromagnetic spin-fluctuations. Below p = 12 bar the

ABEC are extrapolated to zero at a negative pressure corresponding to 7, = 0 [104]. H

7.3.3. Boundary Conditions

Confinement is represented in the GL theory through boundary conditions. For infinite,
planar surfaces there are two limiting cases: maximal pairbreaking, due to the retroreflec-
tion of quasiparticles[77|, and minimal pairbreaking, corresponding to specular reflection
[5]. For a surface on the z — y plane with 3He filling z > 0, maximal pairbreaking is

2In Chapter |§ we report an improved microscopic strong-coupling model that reproduces the bulk phase
diagram along with its resulting GL parameters.
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Figure 7.2. (Left) Bulk phase diagram where the shaded regions represents
the phases calculated from GL theory with the AS of Sauls & Serene [81].
These strong-coupling corrections are plotted in the right panel.

defined within GL theory by

(7.9) Aqil o =0Vie{z,y, 2},

z=

while minimal pairbreaking is defined by

Aaz| _07

2=0

(7.10) ViAao|,_y = ViAay|,_,=0.

z=

These boundary conditions may be extended by interpolating between the two ex-
tremes. In particular, Ambegaokar, de Gennes, and Rainer (AdGR) showed that diffuse

scattering from an atomically rough surface leads to a GL boundary condition in which
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the transverse orbital components of the order parameter are finite at the surface, but
extrapolate linearly to zero a distance by = 0.54&, past the boundary. Thus, we introduce

more general boundary conditions defined by

AO‘Z‘ZZO - O’
1
VZAO“U‘ZZO - EAO“‘ZZO
1
(7.11) Viday|.og = - Aa.—

where by = b7.&, is the extrapolation length. The parameter b/ is allowed to vary from
b = 0, maximal pairbreaking, to b}, — oo, minimal pairbreaking. The film geometry
consists of two infinite coplanar surfaces separated by a distance D with 3He filling the

region between them. The boundary conditions in Eq. are imposed at z = £D/2.

7.3.4. Extrapolating GL theory to low temperatures

Ginzburg-Landau theory is only expected to be accurate in the vicinity of 7,. This is easily
seen in the order parameter amplitude, A% ~ 1 —T/T,, which varies linearly in 7' down to
T = 0; whereas the weak-coupling BCS order parameter saturates at low temperatures.
In confined 3He, this difference is reflected in the characteristic length scale for variations

of the order parameter, which in GL theory is

(7.12) §ar(T) = {%} : (%) '
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Figure 7.3. Comparison of the phase diagrams calculated within weak-
coupling quasiclassical theory (blue and orange lines), weak-coupling GL

theory (dashed lines), and weak-coupling GL theory with D rescaled by
Earn(T)/EA(T) (solid black lines).

In weak-coupling BCS theory, the characteristic length scale is

(7.13) a(T) = \/EZ+];S(T)’

which is significantly larger than g (7T") at low temperatures. In order to more accurately
extrapolate the spatial variations of the order parameter, as well as the confinement phase

diagram, to lower temperatures we rescale the film of thickness in the GL equations

D — D(T) with

(7.14) D(T) = D(T,)
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where D(T.) = D is the thickness of the film and D(T') is a rescaled thickness used
within the GL theory calculation. Figure [7.3| shows the effect of this rescaling on the
weak-coupling GL theory phase diagram for the region of stability of the Stripe phase
in comparison to the Stripe phase region obtained in weak-coupling quasiclassical theory
[99]. Rescaling lengths in the GL theory in terms of {A(T') gives a more accurate repre-
sentation of the confinement phase diagram than simple extrapolation of the GL results to
low temperature. The deviations that remain reflect the non-locality of the quasiclassical

theory for inhomogeneous phases for T' < T..

7.4. Stripe phase

The Stripe phase spontaneously breaks translational symmetry in the plane of the
film. We assume it does so along the x axis, leaving the order parameter translationally
invariant along the y direction. Broken translational symmetry leads to a new length
scale, L, which is the half-period of the Stripe phase order parameter; L is an emergent
length scale, which varies with temperature, pressure, film thickness, and the surface
boundary condition, and must be determined by numerical minimization of the GL free

energy in parallel with the self-consistent determination of the order parameter.

7.4.1. Order parameter

The Stripe phase is predicted to be stable in superfluid *He films of thickness D ~ 10&,
[99]. In weak-coupling theory this phase appears as a second order transition between
the Planar and B phases, and for D < D,., ~ 13£, corresponds to a periodic array of

degenerate B-phase domains separated by domain walls [99].
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Figure 7.4. Stripe phase order parameter for specular surfaces as functions x
and z for D = 12£,, p = 3 bar, T = 0.5T,, and calculated period L = 23.6.
The amplitudes are scaled in units of the bulk B phase order parameter,

Ap = \/| T)|/6(Br2 + 1/3B345).

For broken translational symmetry along the z axis the residual symmetry of the

Stripe phase is defined by the point group,

H = {e’ CIZ_xcgm} X {677T:tz xz}x{e xy xy

(7.15) x Ae, sz m}x{e e“’c'z‘z}xT,

where c5_ is an orbital space 7 rotation about the z axis, m>,

is a spin space reflection
about the zz plane, and T is the operation of time reversal. Based on this residual

symmetry group we can simplify the form of the order parameter for the Stripe phase to

(7.16) Alz,z)=1 0 4, 0 |,
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where the remaining five components are functions of z and z, and are all real due to
time reversal symmetry.

The spatial dependences of the self-consistent order parameter components for the
Stripe phase at pressure p = 3 bar, T/T, = 0.5, thickness D = 12&, with specular surfaces
are shown in Fig. Note that the calculated half period is L ~ 23.6,, and that the
dominant components are the diagonal elements, A,,, A,, and A... The latter exhibits
a domain wall separating degenerate B-like order parameters with sgn(A,,) = +1. The
pair-breaking of A.. on the boundaries is alleviated by the large off-diagonal component,
A.., at the junction with the domain wall. The remaining symmetry allowed amplitude,
A,., clearly exhibits the symmetry with respect to ¢t c5_, but is smaller by an order of
magnitude.

The stability of the Stripe phase results from a tradeoff between the lowering of the
energy at junctions where the surfaces intersect the domain wall (note the gradient energy
in Fig. and the cost in energy, away from the film surface, due to the suppression of
the order parameter along the domain wall. The total condensation energy density, with

separate bulk and gradient energy densities, is shown in Fig. [7.5]

7.4.2. Variational Model

The magnitude of the half-period of the Stripe phase, L, is most easily determined using
a variational form of the order parameter; L is a minimum at the Stripe-Planar transition

and diverges at the Stripe-B transition. At the Stripe-Planar transition, and for specular
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Figure 7.5. Energy density of the Stripe phase with specular surfaces for
D = 12¢,, p = 3 bar, T' = 0.57, and calculated period L ~ 23.6,. The
energy density f is scaled by the unconfined bulk energy density fz =
2a(T)Ap(T)* < 0, and is also shown separated into bulk and gradient
contributions.

boundaries, L may be derived from the variational order parameter,

Ay 00
(7.17) Az, 2)=1 0 A, 0 |,
AZ:E 0 AZZ

where A,, = —A,,cos(mz/L)sin(rz/D) and A,, = A,,sin(nz/L)cos(rz/D). At the

Stripe-Planar transition we assume that
(7.18) Ayy = Dgay, Ay K Agyy and AL, < Ay

After spatially averaging and dropping terms greater than second order in A, and A.,

the resulting GL functional reduces to,

7T2K23AzzAzz

2DL

Ki93D? + K, L?
4D?[2 ) }

K D? + K93L?
4D?[2 )} ’

(7.19) Foor = 2aA2 +48pAL —

+ A2 {% + BpA2_ 4 7? (

+Agz {% +ﬁ12Ag2m 4‘7’(’2 <
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where Bk = i + 05+ B + .., K. = K; + Kj + K, + ... and fp = Bia + 1/28345
determines bulk free energy of the Planar phase. Minimizing F,, with respect to A2
gives,

_ ’CY| . Agx _ Agz512

7.20 AZ —

The reduced free energy functional then simplifies to

@2 72 K23AZJJAZZ
7.21 Fo.=— —
(721) 48p oDL

Ki93D? + K, L?
2 2 123 1
Bp — B2 KD? + K932
A? - 2 )
+ ZZ{Oz( 155 +7 1D2]2

The last three terms in Eq. determine when nonzero values of A,, and A,, are

favorable and the Stripe-Planar instability occurs. At the instability

2 Az:c
(7.22) o(T) = _D2L2?5fp_ B12) {_2DLK23 (Azz)

zz

A\’
+(D2K123+L2K1) (A ) +(D2K1 +L2K123>} .

Minimizing F,,, with respect to the ratio A, /A,, gives

Azx DLKQS

7.23 _ '
( ) A..  D?Kys+ L?K,
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Combining Eq. with Eq. yields the Planar-Stripe instability temperature, Tps,

as a function of D and L. Optimizing Tps with respect to the Stripe phase period yields,

K93
7.24 L=[% D,
(7.24) | K93 — K|

which for weak-coupling values of K, K», and K3, reduces to L = v/3D.

Although the Planar to Stripe transition is interrupted by a first-order transition to
the A phase, the Stripe-Planar instability determines the scale of the half period, L,
and the temperature region where the Stripe phase is expected to be stable. The half-
period defines the wavenumber, )y = 77/\/§D, of the single-mode instability at Tpg. The
wavenumber varies with the film thickness, D, and temperature. Figure shows the
temperature dependence of () for two values of the film thickness starting from the Planar
to Stripe instability at Tpg, i.e. omitting the A phase. The stability of the A-phase relative
to the Planar phase changes the Stripe instability to a first-order transition at a lower
temperature Thg. For D = 11§, the stable region of Stripe phase persists to 7' = 0, while
for D = 11.5&, there is a Stripe to B phase transition at a temperature, Tsg < Tps. In
both cases the wavenumber decreases (L increases) as T drops below Tpgs, with Q — 0
(L — o) as T — Tgp. Strong coupling corrections to the free energy lead to a modest
increase the period of the Stripe phase away from the Stripe to B transition; however,

the transition temperature, Tgg, is sensitive to pressure (strong-coupling) as shown in the

right panel of Fig. [7.6]
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Figure 7.6. Temperature and pressure dependence of the wavenumber @)
for film thicknesses D = 11&,, with no Stripe to B transition (left panel),
and D = 11.5&y, with a Stripe to B transition (right panel). The onset of
the Stripe transition is based on the Planar-Stripe instability, i.e. omitting

the A phase.

7.5. Stripe Phase Stability

1.0

The most prominent effect of strong-coupling corrections to the weak-coupling BCS

theory in bulk superfluid *He is the stability of the A phase above ppcp = 21.22 bar. In

sufficiently thin films, the A phase is energetically stable relative to the B phase even in

weak-coupling theory, and is degenerate with the Planar phase |98}, [99] Strong-coupling

corrections favor the A phase over the Planar phase, leading to a stable A-phase in thin

films at all pressures.

Since the Stripe phase can be understood as a periodic array

of degenerate B phase domains separated by time-reversal invariant domain walls, one

expects strong-coupling to favor the A phase near the Planar-Stripe instability line. Indeed

the A phase suppresses the Planar to Stripe instability temperature. However, the Stripe

phase is found to be stable over a wide range of temperatures and pressures.
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Figure 7.7. Pressure-temperature-confinement phase diagram for the film
with minimal pairbreaking boundaries and experimental strong-coupling
corrections. The A phase is stable everywhere not excluded by the Stripe
and B phases.

Figure shows the phase diagram for minimal pairbreaking (specular) surfaces at
pressures from 0 to 12 bar, with the Stripe phase onsetting at temperatures above 0.57...
The accuracy of the strong-coupling GL theory is expected to diminish at very low tem-
peratures; therefore we show results for low and intermediate pressures for which the
A- to Stripe transition onsets above 0.57,.. Note that at T = 0 the strong-coupling GL
corrections vanish, and the phase boundaries are determined by weak-coupling theory at

T = 0 and thus pressure independent. This is an artefact of the temperature scaling of
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Figure 7.8. Pressure-temperature phase diagram for a film of thickness D =
700 nm with minimal pairbreaking (specular) boundary conditions. The A
phase is stable everywhere in the white region below the bulk transition
temperature. The larger yellow circles are data for the A-B transition based
on NMR from Levitin et al obtained with “He preplating [50].

the strong-coupling GL parameters. It is known that there are residual strong-coupling
corrections at the few percent level in the limit 7" = 0 [86].

A striking difference between the two sets of strong-coupling § parameters shown in
Figs. and is evident at low pressures. The A from Choi et al. [24] are non-
monotonic between p = 0 and p = 12 bar, which leads to maximal stability of the Stripe
phase at p ~ 3 bar. In contrast the theoretically calculated strong-coupling corrections
are monotonic functions of pressure and predict maximal stability of the Stripe phase at

p = 0 bar and decreasing stability with increasing pressure. H
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7.5.1. Pressure-Temperature Phase Diagram

Although a number of experiments have been reported on superfluid *He in planar ge-
ometries, of particular interest are those involving slabs of thickness D =~ 700 nm and
D ~ 1080 nm, which are in the range of confinement where the Stripe phase is expected
to be stable. Levitin et al. [50] (RHUL group) used transverse NMR frequency shifts
to determine transition temperatures in these cells. They did not find NMR evidence of
the Stripe phase. These experiments were done both with and without preplating the
surfaces of the slab with “He, the presence of which greatly increases the specularity of
the surface. Without the *He present, the RHUL group reported large suppression of the
onset of the superfluid transition - a suppression larger than that predicted theoretically
for maximally pairbreaking retro-reflective surface scattering. The explanation or origin
of this anomalous suppression is currently lacking. Thus, we focus on the measurements
done with *He preplating, which exhibit minimal T, suppression, and may be modeled
theoretically with minimal pairbreaking boundary conditions (specular scattering).
Calculations of the phase diagram for D = 700 nm are shown in Fig. The A
phase onsets at the bulk 7,.. There is an A to Stripe transition followed by the Stripe to B
transition. For both sets of strong-coupling § parameters, the Stripe phase is predicted to
be stable at low pressures and at experimentally accessible temperatures. Although the
stability of the A phase is maximal with specular boundary conditions, the calculated A-B
or A-S phase transition occurs at significantly higher temperature than that reported by

the RHUL group. The discrepancy is sufficiently large that it is well outside uncertainties

3New microscopic calculations in Chapter |8 accurately reproduce the thermodynamic potential and bulk
phase diagram without significant non-monotonicity.
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Figure 7.9. Pressure-temperature phase diagram for a film of thickness D =
1080 nm with minimal pairbreaking boundaries. The A phase is stable
everywhere not excluded by the Stripe and B phases.

in the magnitude of the strong-coupling parameters based bulk A- and B phase free
energies. Based on our calculations accessing the Stripe phase would be optimal for
pressures between p = 1 and p = 1.5 bar.

For the thicker slab geometry, D = 1080 nm, shown in Figure the Stripe phase is
predicted to have a negligible region of stability in the pressure-temperature plane based
on the  parameters from Choi et al. [24], and only a small window of stability at the

lowest pressures based on the theoretically calculated strong-coupling parameters.

7.5.2. Effects of Surface Conditions on the Phase Diagram

We use the variable boundary conditions in Egs. to investigate the sensitivity of
the Stripe phase to surface disorder. Figure [7.10] shows the temperature-confinement
phase diagram at p = 3 bar for maximal (b, = 0), diffuse (0, = 0.54), and minimal

(b7, = 00) pairbreaking boundary conditions. Maximal stability of the Stripe phase occurs
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for minimal pairbreaking, i.e. specular surfaces, as shown by the blue region of stable
Stripe phase. Note that for diffuse scattering the region of Stripe phase stability does not
differ significantly from that for specular boundary scattering. Conversely, for maximal

pairbreaking the Stripe phase exists only in the vicinity of 7' = 0.

7.6. NMR Signatures of the Stripe Phase

Nuclear magnetic resonance (NMR) spectroscopy of the 3He order parameter is based
on resonance frequency shifts originating from the Cooper pair contribution to the nuclear

magnetic dipole energy, AQ)p = fv d®r fp[A], which evaluated to leading order in A is
(7.25) fp=gp (|TrA? + TrAA*) |

where gp = #Qi/Ai is the nuclear dipole coupling, 7 is the 3He nuclear gyromagnetic
ratio, y is the nuclear magnetic susceptibility of normal *He, and €4 is the A phase longi-
tudinal NMR resonance frequency. The dipole energy, of order gpA?%, lifts the degeneracy
of relative rotations of the spin- and orbital state of the Cooper pairs.

NMR spectroscopy is based on the NMR frequency shift, Aw = w — wy, resulting
from the dipolar torque acting on the total nuclear magnetization. The shift depends in
general on the orientation of the NMR field, H, the initial tipping angle, 3, generated
by the r.f. pulse, and particularly the spin- and orbital structure of the order parameter.
We use the reduction of Leggett’s theory of NMR in *He proposed by Fomin [33], E]
valid for intermediate magnetic fields, 24 < w; < A, where w;, = vH is the Larmor

frequency [33]. The key approximation is the first inequality which provides a separation

4This theory is explained in detail in Section
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of “fast” and “slow” timescales for the spin dynamics. The second inequality allows us
to neglect the deformation of the order parameter by the Zeeman field. Similarly, for
inhomogeneous states we use the separation of length scales for spatial variations of the
Stripe phase, of order L ~ D &~ 1 um, both small compared to the dipole coherence length,
¢p = \/m ~ 20 um. The spin degrees of freedom of the order parameter cannot vary
on length scales shorter than the dipole coherence length £p. Thus, for L < £p the nuclear
spin dynamics is determined by the spatially averaged dipole energy. An exception to this
spatial averaging occurs near the Stripe-B transition where the period of the Stripe phase
diverges. In this limit the dipolar energy varies on sufficiently long spatial scales that
the spin dynamics is determined by a spatially varying dipolar potential. Combined with
Fomin’s formulation, the separation in scales for spatial variations of the orbital and spin
components of the order parameter allows us to calculate the nonlinear NMR frequency

shifts for the inhomogeneous phases of the thin film as described in Ref. [104].

7.6.1. Translationally invariant Planar-distorted B phase

For non-equal-spin pairing (non-ESP) states, e.g. the polar distorted B phase or the
Stripe phase, the nuclear magnetic susceptibility, y, is suppressed relative to that of
normal *He, yn. For all non-ESP phases, including the Stripe phase, the susceptibility

can be expressed as

o XN
BT 20 o ((A2) + (AZ))

(7.26)

For a non-ESP superfluid phase of a 3He film with the magnetic field ﬁ| |z, for both the

B and Stripe phases, there are two possible dipole orientations corresponding to different
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Figure 7.10. Temperature-confinement phase diagram for films at p = 3 bar
with the Choi et al. strong-coupling corrections. Results for three boundary
conditions are shown: minimal pairbreaking, b, — oo (solid); diffuse, 0/, =
0.54 (dashed); and maximal pairbreaking, ¢/, = 0 (dotted). For diffuse and
maximal pairbreaking, the suppression of the A to Normal phase transitions
are also shown.

local minima in the dipole energy [22]. The first orientation is a minimum of the dipole
energy and has positive frequency shift, which following Levitin et al[51] we denote as

the B* state in the case of the translationally invariant B phase. The frequency shift for
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the BT state is obtained as

(7.27)
Ai 2* AzzAzz 2 ; 2 *
.\ 2 (7) <i%> i +2 (<A?“'A%§z> — (Az>> cosfB, cosf > cosf[*,
WAWT = —gp X
B —(AZ) — (A AL) — 2 (Ao + Asz)?)cos B, cos B < cos ",
where (...) = (1/V) [,, >R ... denotes spatial averaging, and

(7.28) cosft =5 ( (AeAzz) +(A2) )

is the critical angle.

Axial symmetry of the Planar-distored B phase implies (A2) = (A2); thus, only (AZ2),
(A?%), and (A,,A..) are non-zero. This NMR resonance is analogous to the Brinkman-
Smith mode in bulk 3He-B, but with a positive frequency shift at small tipping angle and
a shifted critical angle.

The translationally invariant, but meta-stable, B_ state, corresponds to a minimum

of the dipole energy, and has a frequency shift given by

2

(7.29) wAw™ = ;—BgD { — ({AZ) +2(A2)) cos ﬂ} .

This mode has a negative frequency shift at small tipping angles and, unlike the B, state,
has no critical angle, and therefore no deviation from cosine tipping angle dependence.
The tipping angle dependences of both Planar-distorted B phase states are shown in Fig.
plotted as a function of cos 3. The positive (negative) shift at small tipping angle is

the signature of the of the BT (B7) state in the NMR spectra of the RHUL group [50].
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Figure 7.11. Transverse NMR frequency shifts as a function of tipping angle
B at D = 12&, p = 3 bar, and T" = 0.57,, with minimal pairbreaking for
the B* and ST states.

These identifications are confirmed by nonlinear NMR measurements [51] showing both

the pure cosine tipping angle dependence of wAw for the B~ state, and the “kink” in the

shift at the critical angle 5* for the B state. Note that for D = 12, at p = 3 bar there

is

7.

a small slope to the positive shift for cos f > cos Ox.

6.2. Nonlinear NMR shifts for the ST Stripe phases

The breaking of both translational and rotational symmetry in the plane of the film by

the Stripe phase leads to a qualitatively different transverse NMR frequency shift for the

Stripe phase with relative spin-orbit rotation corresponding to a minimum of the dipole
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energy, i.e. the S state,

+ 1 72 2
wAw™T = ZE‘QD { <(Ayy + Ase) >
(7.30) Ay — Ana)?) +8(AZ) — 4 ((A2) + (A2))] cos/s} .

The St phase is distinguished with respect to both the bulk B phase and the Planar-
distorted BT phase by the absence of a critical tipping angle. This results from spatial
averaging over the period of the Stripe phase which contains equal volumes of A,, > 0
and A,, < 0 giving (A, A..) = (4,,A.,) = 0.

By contrast the frequency shift of the metastable S~ phase does not differ substantially

from that of the B~ phase,

wAw™ = %;—ng { <(Ayy — Am)2> (1 + cos f3)
(7.31) C[2(A2) 2(A2) 4 8(AZ) — 4 ((A2) + (AL))] cosﬁ} .

Note that the constant term in the shift for the S~ state proportional to the average
((Ayy, — Ayz)?) is absent for the B~ state; however, this constant shift is negligibly small.
Figure shows the comparison between the translationally invariant B* NMR shifts
and those for the corresponding stable and metastable S* Stripe phases. The primary
NMR signature of the Stripe phase is the positive shift with an offset, a finite slope and
the absence of critical angle. This signature clearly differentiates the ST phase from the

B* states and the A phase.
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7.7. Summary and Outlook

By formulating a GL theory that incorporates pressure and temperature dependent
strong-coupling corrections, combined with temperature dependent rescaling of the con-
finement length, D, we have greatly expanded the region of applicability of GL theory
for calculations of the properties of confined superfluid *He. Strong-coupling corrections
expand the region of stability of the A phase and decrease the region of stability of the
Stripe phase; however, the Stripe phase remains stable in a large region of pressure,
temperature, and confinement. The stability of the Stripe phase is insensitive to diffuse
surface scattering; the phase diagram for specular and fully diffusive scattering predict
the Stripe phase to occur in nearly equivalent regions of the phase diagram. Nonlinear
NMR measurements are probably the best means of detecting the Stripe phase. The
NMR signatures - positive shift with no critical angle - differentiates the ST phase from
the B* and A phases.
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CHAPTER 8

Strong-coupling: Superfluid *He as the precursor to an

anti-ferromagnetic solid

8.1. Introduction

While the prior chapters of this thesis have made extensive use of strong-coupling cor-
rections, they have done so in the Ginzburg-Landau theory using strong-coupling material
coefficients inferred from experiment. This treatment cannot include low temperatures
and small length scales beyond the Ginzburg-Landau regime. It also is subject to substan-
tial theoretical uncertainty, because the strong-coupling corrections inferred by Choi et
al[23] look nothing like those previously calculated using microscopic theory[81]. In this
chapter we revisit the theory of the stability of the A phase with a microscopic strong-
coupling theory based on the Luttinger-Ward free-energy functional and quasiclassical
theory.

Attempts to understand the fine details of *He quasiparticle interactions and their
influence on the superfluid state predate the experimental discovery of the superfluid.
Fay and Layzer[31] in 1968 showed that many-body effects could favor p-wave pairing in
ferromagnetic (FM) neutral Fermi systems, specifically *He. The resulting paramagnon
exchange model, and the “feedback mechanism” of Anderson and Brinkman|7], provided
a plausible explanation as to what stabilized the superfluid A phase at pressures above

ppcp and temperatures near T..[47), [16].
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The feedback mechanism mediated by paramagnon exchange, however, was mostly
qualitative. Attempts to get a quantitative handle on the relative stability of the super-
fluid phases lead to models including more complicated interactions. One of the most use-
ful formalisms developed for this was the quasiclassical reduction of the Luttinger-Ward
free-energy functional developed by Rainer and Serene.[72] The free-energy functional
approach could be used to calculate static and dynamic properties for both the normal
Fermi liquid and the superfluid phases. Sauls and Serene[81] used this technique to cal-
culate superfluid energetics in the Ginzburg-Landau regime, and it was later shown to fit

Greywall’s B-phase specific heat measurements exceptionally well.|39]

8.2. Free-energy functional

We consider the quasiclassical reduction of the Luttinger-Ward free-energy functional

introduced by Rainer & Serene.|72] The full Luttinger-Ward functional is

(8.1) +[G],
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where the full Nambu space propagators are given by

. G(k, ,) F(k, &)
(8.2) Gk,en)=| X ~
Fi(k, —e,) —GY(=k, —¢,)
. S(k, en Ak, e,
(8.3) SR B
ANk, —e,) —X%(=k, —&,)
with
- C ;
(8.4) Gog(Fy &) = — /0 dr o7 (T, ag, (v) aly(0)
T I ’ j T
(8.5) G.s(—k, —e,) = _/0 dre "7 <TT a_gs(7T) a_Ea(O)>
- CE
(8.6) Fos(k, en) = —/ dr e (T az,, (1) a_z;(0))
0
Tor ’ j ] T
(8.7) Fli(k, e,) = _/0 dre " <TT a' . (1) aE5(0)>

The propagator G is fixed in terms of 3 by the Dyson equation as

—

8.8 G Uk, e,) = Gy ' (K, e,) — S(k, &n)
0

where éo is the propagator for noninteracting fermions. Eq. leads to the stationarity

property

(8.9) 5Q[G, 5] /05% (K, €,) =0,
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in which G and ¥ are treated as independent. A further stationarity property,

(8.10) §QG, 3/6G™ (K, £,) =0,

~

defines ®[G] in terms of the skeleton expansion of the self-energy,
(8.11) S = S = 200[G]/6G" .

To form the quasiclassical reduction of the free-energy functional, we first subtract off

the normal state QQy with

AS =5 - Sy
(8.12) AG =G -Gy,
and
AQIAG, AS] = Q5] — Q4]
T Bk N
5 Z/ T {AZG
(8.13) Hn[-GR + AS] — 1n[—@;)]} + AD[C].

The subtracted ® term is given by
~ T 3k a ~
(8.14) AQ[G] = ®[G] - ®[G] - 5 Z (QT)BTM[ZN AG].

The quasiclassical reduction proceeds from the observation that the energy scale of

the superfluid Cooper pairs, T¢, is much less than the Fermi scale Ty. This allows the
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problem to be simplified by restricting the propagator to a shell of width 2 E,. about the
Fermi surface, where . < F;. The high-energy contributions beyond this shell are es-
sentially integrated out and replaced by phenomenological parameters. The quasiclassical
propagator is then defined by

R 1 +Ec N ~
(8.15) G en) =+ / de, %G (P, =)

a E.

where &, = v¢(|p| —pys) and a is the weight of the quasiparticle pole in the spectral function
used to normalize the propagator. The quasiclassical self-energy we split into leading and

next-to-leading order contributions through

0 = X(psD, €n)T3

(816) - 6-\wc + 6-\5(:

Owe = 20AD[g]ye/0g"

(817) asc =2 5A(I)[§]bc/6/g\tr )

where Ad,,. reproduces the weak-coupling BCS functional, A®,. contains higher order
terms, and 7; denote Pauli matrices in particle-hole (Nambu) space. The A®,, is formally

of order (T'/T,)® and to this order can be evaluated at the weak-coupling stationary point,

A(Dsc [/g\wc} = A(I)sc |:f dgp@gn% - gp/l\ - a—\WC)_I] .
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After simplification, the quasiclassical free-energy functional is

AQ[E» /O-\wc - de Tl"4 {0 wce g
+/d§p (m[—@gl + O] — m[-@;l])}
(8.18) + AD . [7] + AP [Foc] -

where the normal-state quasiparticle propagator is
(8.19) Gyl = ie T3 — 61

Note that while g is the full propagator, .. no longer appears explicitly in Eq. This
means that we may eliminate g using 6 = 2 0A®([g]y./dg".
For homogeneous, unitary phases without external fields, we can further simplify the

~

functional by taking & = A and evaluate the logarithm and A®. in the usual manner|86],

™

AQ[A] :N(O)/CZQ {m(T/T)yA\?

+7T Z ‘A’4
len|(len] + /€2 + |A]?)

(8.20) + Ad[A].
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The propagator g in this approximation is given equivalently by Eilenberger’s transport

equation and normalization,

~

(8.21) 0= lie,73 — A, g] +ivppr- Vg
(8.22) 2= -1,

which for homogeneous equilibrium has the solution

~

i 73 — A(p)

VCERAINGIE

The order parameter A is given by the stationarity condition

(8.23) g=-—7

(8.24) 5Q/SAT = 0.

The strong-coupling contributions to the free-energy functional are described diagram-

matically in terms of four propagators,

—<—>—o A
A
(8.25) i — W—A
e AP
—r—<—o A *
—A
(8.26) 7 — W—A
N Ven+IAP
*r—<ato
(8.27) in = —im sgn(e,)1
<<t
(8.28) ; S sgn(e,) | 1
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Figure 8.1. ® diagrams. Diagram (a) generates the usual BCS weak-
coupling theory, while diagrams (b) to (h) are next order corrections at
(T./Tr)? which contribute to ®. and are described further in Appendix

where the exact expressions given are valid for the unitary, homogeneous states we con-
sider. The ® diagrams to order (T./Tr)? are given in Fig. and written out explicitly
for the A phase in Appendix [Al[72] The vertex in the leading diagram (a) is the irre-
ducible particle-particle interaction leading to p-wave superfluidity, while the other vertex
appearing in diagrams with four propagator lines is the quasiparticle-quasiparticle scat-
tering amplitude evaluated on the Fermi surface with p; = psp; and €,,, = 0. This vertex

T is expressed as

ﬁla a ]327 5

(829) TOC,B;%P(f)la ﬁZa ]337 ﬁ4) = >7:—< ’

ﬁ37 Y ﬁ47 P
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where «, 3, 7, and p are the spin projections (1 or |) for the incoming and outgoing
scattering states.

To order (T'/T})? the quasiparticle scattering amplitude reduces to a function of only
two variables, which we choose to be the two momentum transfers ¢, = [p; — ps| and

q2 = |p1 — pa|-[81] The vertex is then split into two functions as

Ta,ﬁ;’y,p(ﬁlapQ; pi’n ﬁ4) = (sa'yéﬁp V(Ql) - 5ap5,8’y I/(Q2)

(8.30) + Gory - 080 J(Q1) — Tap - 5y 1(q2)

where v(q) and j(q) represent the spin-independent and exchange interaction potentials
governing the scattering of quasiparticles near the Fermi surface. These potentials, or ef-
fective interactions, determine both the thermodynamic and transport Fermi liquid prop-
erties of normal 3He. They also determine the leading order strong coupling corrections
to the BCS free energy functional, and thus the relative stability of the A and B phases
of superfluid *He. Note that Eq. assumes that the only spin dependence is that from
exchange due to indistinguishable Fermions interacting through a spin-independent po-
tential. The nuclear dipole interaction, a spin-orbit interaction, violates this assumption;
however, it is a tiny perturbation compared to the pairing interaction and can be treated

perturbatively.

8.3. Frequency dependence of A

The Matsubara frequency sums in ®4. are generally convergent, however they converge
at values of ¢, orders of magnitude above the expected weak-coupling cutoff scale E,. ~

0.1Fr. This implies that, were the frequency dependence of the leading weak-coupling
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interaction and the order parameter treated self-consistently, then that scale would be
provide a frequency cutoff for the ® . terms through the frequency dependence of A.
While we do not know the exact form of the frequency dependence of the leading pair-
ing interaction, it is reasonable to approximate it as a boson-mediated pairing interaction.
We take the pairing interaction with a Lorentzian form. Thus we take the spin-fluctuation

mediated pairing interaction to be

A(ﬁ? Em; ﬁ/7 g;n) = A(ﬁ .]5/) 0(67717 6;71)7

(8.31) 0(em, ) = wit/[(Em — 1) + wif]

where the frequency cutoff is determined by the maximum paramagnon energy, wg =
rsEr(1 + F§). The coefficient x4 ~ O(1) is pressure independent and determined by
fitting to experiment. Treated self-consistently within the weak-coupling free-energy func-
tional, this pairing interaction results in an order parameter that also has a Lorentzian
frequency dependence of A(ﬁ, Em) & A(ﬁ) 0(gm,0). Figure|8.2[shows the frequency depen-
dence of the self-consistent order parameter, and we note that this self-consistent recovery
of the form of the pairing interaction is not found for the quartic cutoff used by Sauls
and Serene.[80] We therefore treat the order parameter A as having this fixed Lorentzian
frequency dependence instead of calculating it self-consistently for each individual Mat-

subara frequency &,,.

8.4. Experimental Inputs

The material parameters entering the free-energy functional, along with the quasipar-

ticle interaction potentials, must be determined experimentally. For the basic Fermi liquid
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Figure 8.2. The relative order parameter amplitude for the bulk A and B
phases as a function of Matsubara index m. The red circles (B phase)
and blue squares (A phase) are calculated self-consistently and have nearly
identical frequency dependence. The dashed black line is the Lorentzian
function with width wy = 1.14wg where wg is the spectral width of the
pairing interaction.

properties, the Fermi momentum py, the effective mass m*, and the molar volume V,,,, we
use the values found by Greywall[39] but converted to the newer PLTS-2000 temperature
scale as described by Goudon in Ref. [36]. This shift in temperature scale results in up
to a 5% enhancement of m*. We also use the magnetic susceptibility measurements, and
hence F{, from the Grenoble experiment presented in that paper.[36] The speed of first
sound, ¢1, and hence the value of F§, is from the experiment of Ref. [69] with fitting
coefficients provided by Ref [41].

Further normal Fermi liquid properties are considered but given far less weight due to
significant uncertainties. The Fermi liquid parameter F3, taken from Refs. [56], 42, [30],

is found to be most consistent with £ ~ 0.1 independent of pressure. We also incorporate
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data for three transport measurements: thermal conductivity[38], dynamic viscosity[63],
and spin diffusion|76] which constrain angular averages of the T matrix via exact solutions
to the Landau-Boltzmann transport equation for these transport properties.[18]

We further fit the model to the specific heat jumps of the A and B phase transitions
at T.. For the B phase and the A phase above ppcp we use Greywall’s data|39] converted
to the PLTS-2000 scale. To constrain the A phase specific heat jumps below ppcp, we
follow the analysis described by Choi et al[23] which uses g(3), the g-shift, and the B

phase specific heat.

8.5. Quasiparticle interaction potentials

Obtaining a good fit to the experimental input data required a large number of fitting
parameters characterizing the potentials v(¢) and j(¢q) appearing in Eq. regardless
of which polynomial bases or variational functions we tried. We chose to use [ < 10
shifted Legendre polynomials on ¢/2kr € [0, 1] due to their goodness of fit and numerical
efficiency. The additional free parameter, the spin fluctuation coefficient, was fixed at all
pressures as rg ~ 0.4. As we do not have enough independent inputs to fully constrain
this 21 parameter model, we checked for additional solutions using global optimization; we
found no additional minima in the physically reasonable parameter space aside from that
reported here. In addition, the overall shape of the potentials was found to be insensitive
to small shifts in the key experimental inputs.

Figure shows the resulting interaction potentials. The exchange interaction, —j(q),
is maximal near ¢ = 0, signifying the role of ferromagnetic spin fluctuations. In addition

to the ferromagnetic peak we find an additional maximum appearing at the same ¢ value
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Figure 8.3. The spin-dependent interaction potential j(g) and the spin-
independent potential v(q) at pressures from 0 to 34 bar. The curvature
variations of the potentials with pressure at small ¢ appear to largely be
artifacts of the underconstrained functional forms. The vertical dashed line
is the value of ¢ that corresponds to the solid 3Helattice constant at 34 bar.

in both —j(¢) and the spin-independent potential v(g). These peaks at a relatively high
q = q. are interpreted as anti-ferromagnetic spin-fluctuation exchange and exchange of
long-lived density fluctuations near a Mott transition, respectively. The wave vector, q,,
is found, at the melting pressure 34.4 bar, to match that lattice constant of the anti-

ferromagnetic *He solid,

2T

(8.32) o = W

~ 1.64 kp,

where v, is the molar volume of the bee solid *He.[74] Thus the form of the interaction
potentials strongly suggests a link between the interacting *He Fermi liquid, the strong-
coupling stabilization of the A phase, and the anti-ferromagnetic solid phase at higher

pressure, which we will discuss further in the Conclusion.
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8.6. Specific heat

Having determined the interaction potentials at 7., we can test the strong-coupling

free-energy functional below T, directly by calculating the superfluid specific heat,

(8.33) C —Cy=-T(0*°AQ/0T?),

as a function of temperature and comparing it to experiment. Evaluating the free-energy
functional for the A phase below T, is particularly challenging, since it is not possible to
separate the Matsubara sums from the angular integrals as is the case with the B phase.
We implemented the Foam Monte Carlo integration algorithm[44] to accomplish this, the
details of which are given in Appendix [C]

Figure [8.4] shows a direct comparison at p = 34 bar between the temperature de-
pendence of the superfluid specific heat in both A and B phases as measured by Grey-
wall[39],after conversion to the PLTS-2000 temperature scale, and self-consistent cal-
culations using the strong-coupling free-energy functional. The quantitative agreement
between theory and experiment is maintained at all pressures and temperatures available.
Figure[8.5|shows fractional differences between between our calculation and Greywall’s ex-
periment as a function of both temperature and pressure, and demonstrates greater than
95% agreement until 7'~ 0.9 mK where the thermometry calibration of the experiment
is known to be highly uncertain.

We find that, having fit the interaction potentials to our known normal and superfluid
properties at T, the strong-coupling theory maintains a high degree of accuracy when
calculating the specific heat at lower temperatures. While previous work by Sauls, Serene,

and Rainer[81], [85] showed a high degree of accuracy in calculating the B phase specific
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Figure 8.4. Superfluid specific heat as a function of temperature at 34 bar,
for both A and B phases, as calculated self-consistently with the strong-
coupling free-energy functional (solid lines) and as a measured by Grey-
wall[39] (squares and circles).

heat, it did not include the A phase due to numerical difficulty. Here we have shown that
the strong-coupling free-energy functional considered is able to accurately reproduce both

measured A and B phase specific heat curves.

8.7. Phase diagram

Another key test of the accuracy of the strong-coupling theory is the bulk phase
transition line between the A and B phases as a function of temperature and pressure.
This Txp is absent in weak-coupling, where only the B phase is stable, and its exact
location is extremely sensitive to the relative free energies of the A and B phases. Prior
microscopic strong-coupling results have not included this line due to the difficulty of

calculating the A phase free-energy below T.; however, the Thp line was found to be
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Figure 8.5. Fractional differences between the calculated superfluid specific
heat and Greywall’s measurements. For temperatures below the vertical
line at T' ~ 0.8 mK the temperature calibration for the experiment becomes
significantly more uncertain.

accurately represented by Ginzburg-Landau theory including both the strong-coupling
corrections to the 4th order invariants and their temperature dependence at T,.[104]
We calculate the Txp line through direct comparison of the A and B phase free energies
and where they cross. Figure shows the bulk phase diagram as measured by Grey-
wall[39], including the measured A-B transition, compared to our calculated Txp line.
The agreement is seen to be incredibly good, going from ppcp to the melting pressure at
34.4 bar and capturing the curvature of the Tp line. These results provide strong valida-
tion of the effective interaction potentials that determine the strong-coupling corrections

to the weak-coupling free energy.
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Figure 8.6. Bulk phase diagram adapted from Greywall’s measurements|[39]
and including the self-consistently calculated Tag points.

8.8. Ginzburg-Landau regime

Having shown the accuracy of the strong-coupling free-energy functional for the bulk
A and B phases, we can use it to recover the leading corrections to the weak-coupling

Ginzburg-Landau theory for He. These corrections appear in the fourth-order 3 coeffi-

cients as[104]

(8.34) Bi= B + (T/T) ABF.

The resulting ASS° coefficients are similar to those calculated by Sauls and Serene|81],

with the negative ASZ° dominating at high pressures followed by Af33¢. The theoretical
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Figure 8.7. Corrections to the fourth-order 8 coefficients for the *He
Ginzburg-Landau free-energy functoinal. These corrections are qualita-
tively similar to those calculated by Sauls and Serene.|81]

results for the strong-coupling G parameters are qualitatively different than that pro-
posed by Choi et al[23], which includes positive ASEC corrections, shown in Fig. these

positive corrections are hard, if not impossible, to realize in strong-coupling theory.

8.9. Conclusion

We have obtained extraordinarily good numerical agreement with the measured ther-
modynamic properties of bulk superfluid *He using next-to-leading order strong-coupling
quasiclassical theory. In particular, this work represents the first accurate quantitative
calculation of the Ty line and the A phase specific heat below T,.. Moreover, the quasi-
particle interaction potentials necessary for this quantitative accuracy show rich features
beyond the ferromagnetic interactions expected from spin-fluctuations. We find that

both anti-ferromagnetic and Mott interactions emerge from the fit to our input data,
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and that both these interactions exhibit a peak at the same wavevector g, correspond-
ing the anti-ferromagnetic solid *He lattice. The model of superfluid *He as an almost
localized Fermi liquid was first suggested by Anderson and Brinkman[6] on the basis of
its almost pressure-independent F{§ parameter and strongly pressure dependent effective
mass and later expanded by Vollhardt.[92] That significant weight in the interaction po-
tentials is necessarily found at large momentum transfer strongly suggests that the rich
phase diagram of *He is a product of interactions mediated by both ferromagnetic and
anti-ferromagnetic spin-fluctuations, as well as density fluctuations of an almost localized

Fermi liquid near a Mott transition.
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APPENDIX A
Strong-coupling diagrams

The diagrams (b) through (h) of Fig. that make up A®[A] for the bulk A phase
are described in this appendix; the B phase follows the same form as the weak-coupling
plus model studied by Serene and Rainer.[85] The angular integrals are formulated as in

Rainer and Serene|72] where the vertex T' is defined as
(A.1) Top,vp = v Oaplpy + T(a)(‘?)ap (F) gy -
The spin-symmetric and spin-antisymmetric components are given, respectively, by

T (q1, g) = 411 {4v(q1) —2v(qa) — 6j<¢12)}

(A.2) T (g1, ¢2) = éll {‘U(@h) +25(q2) — 2”(612)} -

We use the Abrikosov-Khalatnikov[3] angles to integrate the resulting terms in the free-

energy functional. These angles, 6 and ¢, relate to the momentum transfers as

¢ = |p1 — ps| = kg {|cos@ —1||cosp — 1]}1/2

(A.3) qQE]f)l—ﬁ4|:kf{]0089—1]|cos¢+1|}1/2 .
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For diagrams (d) and (e) we also must define two additional angles|72]

cos ' = cos ¢ — cos?(6/2)(cos ¢ + 1)

3cos?(0/2) — 1 — [cos?(6/2) — 1] cos ¢

(A.4) O3 = o0/ + 1+ [cosk(0]2) — [ cosd

The A phase order parameter is separated into

(A5) Aa(p, n) = A(en) w(p)

where the amplitude A is taken to be both real and positive and w(p) = p, + ip,. We

define the following convenience functions related to the scalar pieces of the quasiclassical

propagators,
fi Ae(gnz)
VL FA0(en,) 1 — (i - 2)%]
L= Eni — sgn(ey,)
Y= T o | T (R B
(A.6) gy = sgn(en,)

The prefactors, summations, and integrations are identical for each diagram consid-

ered, so we separate out the innermost integrand ¢, as

ZZZ/ / /—5 D1+ P2 — P3| — 1)

€ny €ng Eng

AD[A] =

(A7) X ()OSC[A) ﬁl;gnl; ]5275712; ﬁBa Engs ﬁl +ﬁ2 - ﬁSa Ena + Eng — 8713] .



Finally, the individual diagrams are then given by

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
(A.13)

(A.14)

| =

op == ([TV(0, ¢))* + 3TN0, §)I*) g% 9% g% gn

[T, ¢)* +3[T (0, $)]*) g5 g% 95 9n

/N

Pe =
0a = —2 [T(S)(Q, gb)T(S)(el’ ¢/) _{_T(a)(a gb)T(a)(Q” ¢/)}

X w(p2)w(pa) g5 12 g% f*
pe == [T, 9)TNO, ') + T (0, )T (O, ¢)] 9595 9% 95

or = =1 (ITD0, ) + 3T, 6)]2) w (o) (po)eo o) (p)
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APPENDIX B

Numerical Optimization with L-BFGS

Minimizing the Ginzburg-Landau free-energy functional is an example of a nonlinear

optimization problem. Given a function
(B.1) f(@ RN SR,

we want to find & such that V f(Z) = 0.
Numerically, we treat this as an iterative procedure in which at each iteration k f(Z%11)

is expanded as

(B.2) f(Tri1) = f(@ + ap)

P S .
(B.3) ~ fi + VIl ap+ §a2pTka+(’)(a3),

where a direction p; and step length o must be chosen to update 7 and By is the Hessian

matrix
(B.4) [Bilij = 0:0;f (k) -
Newton’s method explicitly minimizes Eq. with

(B.5) ap=-B;'Vf,.
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The downside of this solution is that it involves B,;l, which requires both the computation
of all second partial derivatives of f and also solving a linear system to recover p. To
avoid dealing with B,;l, Quasi-Newton methods use various approximations to eliminate
the computation of second derivatives and the additional matrix inversion problem.

Nocedal and Wright[65] describe in a great detail a number of Quasi-Newton and re-
lated methods, along with pseudocode and mathematical proofs for convergence. For the
Ginzburg-Landau solvers used starting with Chapter [3in this thesis we used the algorithm
Limited-memory BFGS (L-BFGS), related to the Broyden—Fletcher—Goldfarb-Shanno al-
gorithm.[64]

It is typical with Quasi-Newton methods, which return a vector p; to refine final step
size « through a linesearch method that minimizes f (&) + ap) with respect to a. These
linesearch methods typically combine secant methods and solution bracketing.[65]

Included below is Python 3.4 and numpy code demonstrating the implementation of
the L-BFGS two-loop recursion algorithm|[65] as well as a minimal linesearch with both
a secant step and bracketing. The code also includes a test problem to show how the

linesearch and L-BFGS portions are deployed.
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from numpy import

oo
*

def _ip(x, y):
return sum(

real (
x.conj() * y

class LBFGS:

def

def

__init__(self, m_max):

self._m_max = m_max # maximum memory
self..m = 0 # current memory size
self._mi = 0 # current index into memory

# saved state, to be set on first run

self._s = None # vector s ~ [m_max * n_dim]
self._y = None # vector y ~ [m_max * n_dim]
self._rho = None # vector rho ~ [m_max]

self._alpha = None # vector alpha ~ [m_max]

self.last_x = None # store last x
self.last_gx = None # store last gx

# search direction, is returned
self.p = None # search direction

update(self, x, ¢gx):
if self._s is None:
# initialize on first iteration, return gradient

self._s = zeros((self._m_max,) + x.shape)
self._y = zeros((self._m_max,) + x.shape)
self._rho = zeros((self._m_max))

self._alpha = zeros((self._m_max))

self.last_x copy (x)
self.last_gx = copy(gx)
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43
44
45
46
47
48
49
50
51
52
33
o4
35
96
57
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

self.p = - copy(gx)
return self.p

# add last iteration to memory vectors

k = self._mi

self._s[k, = x - self.last_x

self._y[k, = gx - self.last_gx

self._rho[k] = 1. / _ip(self._s[k], self._y[k])
self.p[:] = gx[:]

:]
: ]

self.last_x[:] = x[:]
self.last_gx[:] = gx[:]

# first loop, reverse
for kO in range(self.
if self._mi < kO:
k = self._mi + self._m - kO
else:
k = self._mi - kO

m):

self._alphal[k] = self._rhol[k] \
* _ip(self._s[k], self.p)
self.p -= self._alphalk] * self._y[k]

# scale factor (H_k*0)

gamma = 1. / self._rho[self._mi] / \
_ip(self._y[self. _mi], self._y[self._mi])

self.p *= gamma

# second loop, forward
for kO in range(self._m):
if self. mi + kO + 1 < self._m:
k = kO + self._mi + 1
else:
k = kO + self._mi + 1 - self._m

beta = self._rho[k] * _ip(self._y[k], self.p)
self.p += (self._alphalk] - beta) * self._s[k]

# memory index update
if self._m < self._m_max:

186



83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

self. m += 1
self. mi = (self._mi + 1) % self._m_max

# sign convention of search direction
self.p *= -1.
return self.p

class Secant:

def __init__(self, tol, margin):
self.tol = tol
self.margin = margin
self.bkt = [0., 1lel5]

def update_bracket(self, a, proj_a):
if proj_a > 0.:
self.bkt[1]

else:
self.bkt[0]

I
Q

I
Q

def secant_step(self, a0, pa0, al, pal):
return (a0 * pal - al * pa0) / (pal - pa0)

def update(self, x, gx0, p, gradf):
a0 = 0.
proj_a0 = _ip(gx0, p)
self.bkt = [0., 0.]
self.update_bracket (a0, proj_a0)
a = 1.
i=0
for i in range(0, 10):
x += (a - a0) * p
gx = gradf(x)
proj_a = _ip(gx, p)
self.update_bracket(a, proj_a)

if abs(proj_a) < self.tol:
break

a2 = self.secant_step(a0, proj_a0, a, proj_a)
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125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

w =

self.margin

if a2 < self.bkt[0] + w \
or (self.bkt[1]
and a2 > self.bkt[1]

a0
pro
a =
gx0[:]
return

def rosenbrock(
n = Xx.shape
s = 0.

a2 =

= a

j_al =
a2

= gx[:

a, i

X):

(0]

0.

]

for i in range(n -

s += 10
+

return s

0. * (x[1 + 1]

(x[1]

def grad_rosenbrock(x):

n = x.shape

s = zeros_1

s[0] = 100.
2.

s[-1] = 100

[0]
ike (x)

* 2.
(x[0]
T2,

for i in range (1,

s[i] =

S[i] IS

return s

def main():

100.
100.
(-2.

*

oo
*®

oo
*

1= 0.

(self.bkt[1] -

\

self.bkt[0])

- W):

o e
% 2

(-2.

JORWON
w*w

2)
2)

oo
*

* x[0]) + \

\

5 * (self.bkt[1] + self.bkt[0])
proj_a

1):

— X[l] Yk 2)

1_) *% 9

(x[1] - x[0] =** 2) =
- 1.)

(X[_].] - X[—2] B 2)
n - 1):
2. (x[i] - x[i - 1]
2. * (x[i + 11 - x[i]
x[i]) + 2. * (x[i] -

1.)
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166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

n 5000

X

fx = rosenbrock(x)
gx = grad_rosenbrock (x)

m_max 10

lbfgs

max_iter = int(le3)

tol = le-12
sec_tol = le-1

0.5 * ones((n))

LBFGS (m_max)

secant = Secant(sec_tol,

for i in range (0,

le-1)

max_iter):

gx[:1, pl:1, \

grad_rosenbrock)

p = lbfgs.update(x, gx)

a, li = secant.update(x[:],

err = amax (abs(gx))

err_sol = sum(abs(x - 1.))

print("iter: ", i, " err: ",
" abs err: ", err_sol)

if amax(abs(gx)) < tol:

break

print("Initial:

main ()

fx,

Final:

rosenbrock (x))
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APPENDIX C

Monte Carlo integration

One of the primary difficulties in calculating the strong-coupling diagrams in Chapter
is that they require, generally, summation over 3 Matsubara indices and integration over
5 angles. Calculating these sums by brute force numerical methods takes a huge amount of
computational time to achieve any degree of precision. This is further exacerbated by the
fact that evaluating the free-energy functional requires repeating this multidimensional
problem multiple times to achieve self-consistency.

To improve the performance of these evaluation, it is useful to look at the problem
as one of multidimensional integration. While the Matsubara frequencies are discrete,
they can be considered as piecewise constant functions for the purposes of integration
here. High dimensional integrals are a long-standing problem in numerical QFT, and one
of the most successful methods for calculating them is Monte Carlo integration. Here
we sketch out the basic motivations behind Monte Carlo integration schemes and our
implementation for the strong-coupling free-energy functional.

We want to calculate the integral

(1) I:/Vdff(f),
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where V' is the volume of the domain V being integrated over. Although our Matsubara
frequencies do not have explicit bounds, the cutoff provided by the weak-coupling dia-
gram at the spin-fluctuation scale guarantees convergence within a relatively small and
predictable range of indices. In the simplest Monte Carlo we take N uniform samples

{7} € V leading to the approximation for I,

V -
(C.2) INEN;wi:‘/(f).

The sample variance of f is

(©3) Var(f) = 5 30 (@) = (1)
so that
(C.4) Var(Iy) = VW Var(f).

This means that, so long as Var(f) is well-behaved, the error in Iy decreases as N'/2
independent of the dimension of the integration domain. This is qualitatively different
than methods like Gaussian-quadrature, where the number of points required for a given
precision will grow exponentially with dimension.

Clearly, there are better ways to sample a function than uniformly. The most straight-
forward would be to sample from a probability distribution proportional to |f|; however,
sampling properly from arbitrary probability distributions is quite difficult. General pur-

pose Monte Carlo algorithms attempt to approximate the probability distribution of | f|
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Figure C.1. Probability densities generated by Foam in comparison to the
exact function, two gaussians on a diagonal. Brighter points are higher
probability.

in a manner that requires minimal function evaluations and can itself be sampled effi-
ciently. We implement the Foam Monte Carlo algorithm developed by Jadach[44], which
iteratively creates a probability distribution through the cellular division of hypercubes.

Foam, as implemented here, works by starting from a single hypercube for the entire
domain, taking a number of uniform samples, and then splitting the hypercube along a
plane that maximally decreases the sum of the variance of the two new daughter cells.
Then a new hypercube is chosen by whichever hypercube in the set has the largest vari-
ance. The algorithm finalizes the probability distribution after a set number of hypercubes
have been generated. Each hypercube in the resulting probability distribution is weighted
through its sample RMS value. Figures and show a comparison between foam
distribution with different hypercube counts and probabilities derived from an exact |f|.
The final Monte Carlo integration estimate is obtained by sampling this final probability
distribution. We generally see estimated errors of less than 1073 in the strong-coupling

evaluations which are consistent across trials.
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251 Cells 2501 Cells

Figure C.2. Probability densities generated by Foam in comparison to the
exact function, a Marr wavelet. Brighter points are higher probability.

For our application we regenerate the foam of hypercubes repeatedly with temperature
and pressure. We also only care about the foam quality as far as it affects the numerical
integration. From these considerations, our version of Foam differs slightly from the
reference publications and code[44], in that it assumes the input function is not positive
definite and adds multiprocessor support where possible to optimize the foam generation

speed.
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