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Abstract

Anisotropic Semiconducting Thin Films: Synthesis, In-Plane and Cross-Plane

Characterization, and Thermoelectric Application

Yang Tang

Anisotropic semiconducting thin films have attracted attention in recent years for

important applications such as electrical interconnects, electronic sensors, field-emission

devices and thermoelectric devices. However, the characterization of the full conductivity

tensor, especially the cross-plane conductivity, remains a great challenge for anisotropic

thin films. In addition, the synthesis of large-area thin-film conductors with controllable

in-plane conductivity anisotropy is not thoroughly studied. To address these problems,

this work explores new directions in the characterization, synthesis, and applications of

anisotropic conductors.

A new method to characterize the in-plane and cross-plane electrical conductivity of

anisotropic semiconductor thin films is proposed. In this method, a “triple stripline”

device structure is created by adding three narrow stripline contacts to the top of the

anisotropic thin-film layer of interest. The substrate is assumed to be highly conductive,

as is typical for optical devices, and serves as a grounding back-plane. The electrostatic
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potential distribution of this device is proved to have no analytical solution and solved

numerically. It is shown that experimental measurements of the potential can uniquely

determine all components of the conductivity tensor. Initial progress towards an experi-

mental demonstration is presented.

Three semiconducting thin films with artificial in-plane conductivity anisotropy are

synthesized: the carbon nanotube (CNT) film, the graphene-polymer film, and the Al-

GaAs thin film. The conduction channels for these three films are aligned by evaporation-

driven self-assembly, three-dimensional printing, and ion-implantation isolation, respec-

tively. Anisotropy ratios above 104 are observed for both the CNT and AlGaAs thin films.

While the CNT and graphene-polymer films are p-type, the AlGaAs film can be doped

to be either n or p-type.

“Cross-hatched” n and p-type anisotropic thin-film conductors with conducting axes

orthogonal to each other can open up new applications in p× n-type transverse thermo-

electrics, in which the induced heat flow is perpendicular to the applied electric current

or conversely, the generated electric field is perpendicular to the applied temperature gra-

dient. The theory of transverse thermoelectrics is studied with normalized electric field

and heat flux scales, and the maximum cooling performance is presented here for the

first time. The theoretical model of the p×n-type transverse thermoelectrics is reviewed,

and candidate materials are proposed. Among the candidate materials, artificially struc-

tured anisotropic thin films are shown to enable the cross-hatched p × n structures, and

development towards a p× n AlGaAs structure is reported.
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G||, which may be caused by the much larger thickness of the CNT

stripes compared with the diameter of a single CNT. The hysteresis is

attributed to the injection and trapping/de-trapping of carriers in the
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3.4 (a) Microprobe Seebeck measurement set-up compatible with probe-

station measurement. (b) Average longitudinal Seebeck coefficient

of 20 µm wide aligned p-type SWCNT stripes under different gate

voltages. The results show that S|| does not depend on gate voltage

in the range of −20 V to 20 V. 93

3.5 Longitudinal Seebeck coefficient S|| measurement for nominally

n-doped aligned CNT stripes of width around 5-7 µm. The as-grown

CNT stripes (black) show p-type Seebeck coefficient + 15.4 µV/K,

which decreases after viologen-doping (red) and decreases further after
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effect was air-stable within this time scale while the annealing effect
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D = 800 µm. The stripe width of the printed film is roughly equal

to the nozzle diameter. The top surface is corrugated, and the width

of the grooves between adjacent stripes increases with the nozzle

diameter D. 99
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is typically around half of D, due to the ink spreading before drying

up. The top surface shows a much larger roughness compared with

the bottom surface, as indicated by the depth of the deepest valley Rv

in the figure legend. 101

3.8 The anisotropic van der Pauw measurement contact configurations

and results for the 3DG film printed with nozzle diameter

D = 100 µm, measured at T = 300 K. The resistance anisotropy

AR = RAD,BC/RAB,DC is measured for different combinations of the

four contacts, and the resistivity anisotropy Aρ = ρyy/ρxx is calculated

via anisotropic scaling and conformal mapping. The consistency in Aρ

of different configurations indicate the validity of the anisotropic van

der Pauw method. Note for four edge center contacts in (d), AR = 1
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3.9 The temperature dependence of (a) the anisotropic resistivity

components ρxx, ρyy and (b) their ratio Aρ = ρyy/ρxx for 3DG thin

films printed with different nozzle diameter D. Both ρxx and ρyy

slightly increase as the temperature decreases from T = 300 K to

4 K, except for ρyy for the thin film with nozzle diameter D = 800

µm, which reduces by about 15% when the temperature decreases

from T = 300 K to 140 K. The resistivity anisotropy ratio is robustly

temperature independent for most samples, with the exception

described above for the D = 800 µm at higher temperatures. 105

3.10 The anisotropic conductivities versus temperature fitted by

fluctuation-induced tunneling model for 3DG thin films printed with

different nozzle diameter D. The median value of the tunneling

junction width w is proportional to the ratio T1/T0. Note for the

D = 800 µm sample, only the lower half of the temperature range

(T = 4 K to 140 K) is fitted. 108

3.11 The Hall resistance Rxy measured at T = 300 K and T = 4 K for

3DG films printed with varied nozzle diameter D. At 300 K, Rxy is

smaller than the noise level due to the high carrier concentration. At

4 K, the overall positive slope of Rxy at large B indicates that p-type

conduction dominates the electrical conduction of the 3DG films.

However, the concavity at weak magnetic field can be evidence that
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D is mainly due to their smaller thickness. 110

3.12 The magnetoresistance (top panels) along the longitudinal (Rxx, solid

squares) and transverse directions (Ryy, open circles) for 3DG thin

films printed with various nozzle diameters D and the measured

resistance anisotropy AR = Ryy/Rxx (solid lines, bottom panels) at

(a) T = 300 K and (b) T = 4 K. AR only decreases by 1 - 2% as the

magnetic field B increases from 0 T to 5 T. Note AR is different from

the resistivity anisotropy Aρ = ρyy/ρxx. 112

3.13 (a) Schematic of the Al0.42Ga0.58As thin film and proton ion

implantation. The doped Al0.42Ga0.58As thin film is electrically isolated

from the substrate with the GaAs/Al0.42Ga0.58As superlattices. The

SiO2 mask layer is patterned into stripes by photolithography and

wet etching, and defines the protected and damaged regions of

Al0.42Ga0.58As in proton (H+) implantation. The strip width and

separation between strips are both 10 µm. (b) The etched L-shaped

Hall bar of ion-implanted Al0.42Ga0.58As and resistance measurement

set-up. An AC current I is sent through the Hall bar and the voltage

drops Vxx and Vyy can be measured with the voltage contacts on the

side, from which the transverse (ρ⊥) and parallel (ρ∥) resistivities to

the ion-implanted strip direction can be determined. 115
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proton energies when the Al0.42Ga0.58As layer is 500 nm thick. The

dosage used for this simulation is D = 5 × 1015 cm−2. 117

3.15 The SRIM simulation of the implanted proton distribution compared

to SIMS measurement of (a) As-grown p-type doped Al0.42Ga0.58As and

(b) annealed n-type doped Al0.42Ga0.58As. The measured Al and Ga

fraction peaks/valleys indicate the depth of the GaAs/Al0.42Ga0.58As

superlattice barrier below the doped Al0.42Ga0.58As layer. The peak

proton density agrees with simulation for the as-grown sample, and is

smaller for the annealed one. Integration of the proton density over

depth indicates that more than 50% of the implanted protons diffused

towards the surface and more than 30% diffused out of the sample. 119

3.16 The temperature-dependent resistivity of pristine and ion-implanted

(a) n-type and (b) p-type Al0.42Ga0.58As. For the ion-implanted

samples, only the longitudinal resistivity along the conduction channel

direction (ρ∥) is plotted, the transverse resistivity (ρ⊥) is at least four

orders larger and cannot be accurately determined due to parallel

conduction through the highly insulating substrate. The temperature

ranges span from room temperature to the lowest temperature where

contacts fail, which is around 200 K for n-type and lower than 10 K

for p-type. The room temperature longitudinal resistivity increases

only by a factor of 3.3 and 3.6 at room temperature after proton
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anisotropies can be realized by ion-implantation isolation. 121

3.17 The temperature-dependent Seebeck coefficient of pristine and

ion-implanted n-type Al0.42Ga0.58As. For the ion-implanted samples,

only the longitudinal Seebeck coefficient along the conduction channel

direction (S∥) is plotted, the transverse Seebeck coefficient (S⊥) is not

measurable. 123

4.1 (a) Longitudinal (b) Transverse thermoelectric Peltier coolers,

whereby heat flow (Q, white arrows) from cold side (TC) to hot side

(TH) is induced by the applied electrical current density (J , black

arrows). The subscripts x, y denote the directions of Q and J . Qy is

parallel/anti-parallel to Jy in (a), and transverse to Jx in (b). 129

4.2 (a) Longitudinal and (b) transverse thermoelectric generators for large

Seebeck voltage generation. To increase the generated Seebeck voltage

V+ − V− from a given temperature different TH − TC , the longitudinal

generator requires many thermoelements linked in series, which

involves the arrangement of alternate n and p-legs with increasing

junction resistance. The transverse thermoelectric generator can just

increase the length-to-thickness ratio Lx/Ly. 130

4.3 (a) Cascaded longitudinal Peltier cooler and (b) exponentially tapered

transverse Peltier cooler for large thermal differences. Note the

simplicity of the single-leg structure on the right. 132
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4.4 Normalized temperature profile of transverse thermoelectric coolers

operating at maximum temperature difference for various zTh values.

At y∗ = y/Ly = 0 the heat sink temperature T ∗ = T/Th = 1 and at

the y∗ = 1 the cold side heat flow Qc = Qy(y
∗ = 1) = 0. 137

4.5 The dependence on zT of maximum normalized temperature difference

(left axis) whereby ∆T ∗ = (Th − Tc)/Th and maximum cooling power

density when Tc = Th (right axis) for transverse thermoelectric coolers

in comparison with longitudinal coolers. ∆T ∗
max and Q∗

c,max(T
∗
c = 1)

are numerically calculated for the transverse coolers but can be

analytically solved for the longitudinal coolers [10,11]. 138

4.6 The maximum normalized cooling power density Q∗
c,max for transverse

thermoelectric cooling as a function of the normalized cold side

temperature T ∗
c for various zTh values. 140

4.7 The dependence on zTh of maximum normalized temperature

difference whereby ∆T ∗ = (Th − Tc)/Th for an exponentially

tapered transverse cooler with Lx(y) = Lx(0)e(−y/L). The parameter

Ly/L defines the overall shape of the tapered coolers, since

Lx(y = Ly)/Lx(0) = e(−Ly/L), i.e., the larger Ly/L is, the narrower

the top width is relative to the bottom width. 142

4.8 (a) Equivalent effective zTh values to achieve the same normalized

temperature difference with a rectangular transverse cooler for various

tapering parameters Ly/L. (b) The effective zTh enhancement

depends on the tapering parameter. 143
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4.9 (a) The maximum normalized cooling power density Q∗
c,max for an

exponentially tapered transverse cooler as a function of the normalized

cold side temperature T ∗
c for various tapering parameters Ly/L. The

figure of merit is assumed to be zTh = 1.0. (b) Q∗
c,maxe

(−Ly/L) scales

the cooling power density at the tapered top by the reduced area of

the top surface to effectively give the cooling power density per unit

base-area. This is plotted versus T ∗
c . 144

4.10 p × n-type thermoelectrics have p-type dominated conduction and

Seebeck coefficient along the a-axis and n-type dominated conduction

and Seebeck coefficient along the orthogonal b-axis, as indicated by

the crossed arrow symbol at the bottom right. The movement of

electrons (orange dashed arrows) and holes (green solid arrows) in

orthogonal directions results in net charge current Jx to the right

and net particle or heat flow Qy up. The carrier transport shown in

this figure can be driven either by drift due to an electric field along

+x direction or by diffusion due to a temperature gradient along −y

direction [12]. 147

4.11 (a) Band alignment of T2SL, where the grey color indicates the

forbidden bandgap. GaSb valence band EV (green) lies energetically

above the InAs conduction band EC (orange). EF is the Fermi energy.

E0,e is the ground energy for electron band, and E0,hh is the the

ground energy for heavy hole band. (b) Dispersions simulated using

nextnano 8 × 8k · p envelope function method [13,14]. The in-plane



26

dispersion is to the left of k = 0, and the out-of-plane dispersion to

the right of k = 0. ∆sp = Es − Ep is the s − p band difference. (c)

Plot of the optimized Z⊥T at 300 K as a function of different InAs

and GaSb layer thicknesses [15]. 152

4.12 Cross-hatched p × n transverse thermoelectrics. (a) By alternatively

aligning n-type conduction channel array and orthogonally oriented

p-type conduction channel array, p × n conduction is realized. (b) A

schematic diagram of cross-hatched transverse thermoelectric cooler.

With an applied current J , electron-hole pairs are generated at top

surface absorbing heat and recombine at the bottom giving off heat,

cooling top surface. 154

4.13 (a) Diagram of a cross-hatched p × n Seebeck generator. The

p-type (blue strips) and n-type (orange strips) conduction channels

are aligned with angle θp and θn to x axis, respectively. With

a temperature difference applied to the left and right surfaces, a

transverse Seebeck voltage is generated in the y direction, driving a

current I through the load resistor RL. (b) The formation of tilted

longitudinal thermocouple. In the open-circuit model, one pair of p

and n channels that overlap at the left/right edges effectively forms a

tilted longitudinal thermocouple. 159

4.14 The overall fabrication flow for cross-hatched p × n AlGaAs crystal.

The p and n-type conduction channels are created via ion implantation

isolation. 162



27

4.15 Growth protocol of the p + n bilayer Al0.42Ga0.58As structure. 163

4.16 (a) Photomask patterns for on-chip Seebeck measurement device. (b)

Example Seebeck measurement result for the p + n AlGaAs structure

with both layers grown at once. Sp and Sn are directly extracted

from the slop of the Seebeck voltage measured at two outer contacts,

which require further scaling to compensate for the over-estimated

temperature difference. 164

4.17 (a) The wafer-scale photolithography patterns for cross-hatched p× n

AlGaAs. (b) Transverse Seebeck measurement device structure. n

and p-type ohmic contacts are alternatively deposited on left and

right edges and to avoid shorting the temperature difference between

top and bottom edges. 167

A.1 (a) NernstEttingshausen effect. In the presence of a B-field, electrons

and holes in a semimetal or narrow-gap semiconductor both feel a

Lorenz force component in the upwards direction, resulting in a net

heat flow transverse to the electrical current. (b) A stacked synthetic

transverse thermoelement cut from a two-phase (1 and 2) layered

material. The anisotropic Seebeck tensor arises from having the layers

in series along one axis, and in parallel along the other axis. 184
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CHAPTER 1

Introduction to anisotropic conductors

Anisotropic conductors, with distinct properties in each direction, have attracted

tremendous attention in recent years for their important applications such as electronic

sensors, field-emission devices, and magnetic devices [16–18]. This chapter is a general

introduction to anisotropic conductors. We start with the electrical conductivity tensor

representation of anisotropic conductors and introduce the state of art characterization

techniques in Section 1.1. The challenges in characterizing anisotropic thin film conduc-

tors in both in-plane and cross-plane directions will be presented. In addition, we will

cover different categories of anisotropic thin films and the corresponding synthesis meth-

ods in Section 1.2. And finally, we discuss the applications of anisotropic conductors in

Section 1.3.

1.1. Anisotropic electrical conductivity tensor characterization

The electrical transport properties of anisotropic conductors can be characterized by

measuring the conductivity tensor. The generic form of the conductivity tensor σ for

homogeneous three-dimensional (3D) materials is a symmetric rank-2 tensor [19] (Table

1.1), which only contains 6 unique components. The 3D materials can be rotated to

align the three principal axes with the x, y and z axes in Cartesian coordinate system,

resulting in a diagonalized conductivity tensor with the number of unique components

reduced to 3. If it is possible to know these principle axes in advance, one can align the
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material principal axes with those of the characterization structure to reduce the number

of independent measurements required.

Table 1.1. Conductivity tensors for 3D and 2D materials with prin-
ciple crystalline axes unaligned and aligned with respect to the x, y, z-
measurement axes, or aligned in the presence of a magnetic field B. For
2D materials, the magnetic field direction is perpendicular to the plane
B = Bz ẑ.

arbitrary axes crystal axes crystal axes with B

3D


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz




σxx 0 0

0 σyy 0

0 0 σzz




σxx −σxy σxz

σxy σyy −σyz

−σxz σyz σzz



2D

 σxx σxy

σxy σyy


 σxx 0

0 σyy


 σxx −σxy

σxy σyy



A magnetic field B is usually applied to extract more information including the carrier

density and mobility, which leads to asymmetric conductivity tensors in arbitrarily aligned

materials. For 3D materials with measurement axes aligned to the principal crystal axes,

the external B will induce purely anti-symmetric off-diagonal components (Table 1.1, last

column). To reduce the complexity of the characterization, it is common practice to apply

a magnetic field along one principal axis (e.g. B = Bzẑ). In this case, all off-diagonal

tensor components with Cartesian coordinates that include the magnetic field direction

(σxz and σyz) become zero. In addition, many materials have planar symmetry which
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Figure 1.1. An L-shape Hall bar in the x-y plane in the presence of a
magnetic field Bz. The current Ix and Iy are applied along the principal
axis directions x and y, respectively. The longitudinal resistances along
two directions Rxx and Ryy are measured with two voltage contacts along
the bar, and the Hall resistance Rxy is measured with two voltage contacts
across the bar.

we will define as the x-z plane, so that there are only two unique conductivity tensor

components: σxx = σzz and σyy. In such cases, the 3D conductivity tensor in the presence

of a B-field can be reduced to a 2D tensor (Table 1.1, row “2D”), which enables the

separate characterization of the three cross-sections parallel to the principal axes.

The most widely used method for measuring an anisotropic conductivity tensor is the

Hall bar method. In this method, the material is cut into a bar-shaped sample along one

principal axis (e.g. x) and a current Ix is applied through the current contacts at two
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ends (Fig. 1.1). The longitudinal resistance Rxx is measured with two voltage contacts

along the bar with a separation l and the Hall resistance Rxy is measured with two voltage

contacts across the bar under an external magnetic field Bz. Two resistivity components

can be extracted from the measured resistances: ρxx = RxxA/l and ρxy = Rxyd, whereby

A and d are the bar cross-section area and thickness, respectively. The 2D conductivity

tensor can be obtained by inverting the resistivity tensor (σ = ρ−1). To extract the

full 3D tensor, at least three Hall bars are needed for 3D aligned materials, and at least

two Hall bars are required for 2D materials. Two orthogonally oriented Hall bars can be

combined into an L-shaped Hall bar, as shown in Fig. 1.1. The Hall bar method is known

to potentially be imprecise due to the difficulty of accurately measuring the geometric

factor l/A [20].

Alternatively, methods using planar samples may be adapted to extract the tensor

components for 2D or 3D materials. One such method is the van der Pauw (vdP)

method [21, 22], which is extensively used in electrical characterization. This method

accepts planar samples of arbitrary shape and uses four point-like contacts on the sample

periphery. For anisotropic samples, additional requirements are posed on the sample ge-

ometry and enough information can be obtained to extract the full in-plane conductivity

tensor. The literature on vdP method for anisotropic materials are limited, and most stud-

ies use rectangular samples with principal axes aligned with the rectangle edges [23,24]

or with non-standard measurement geometries [25–27]. Recently the anisotropic vdP

method has been extended to parallelogram shaped samples with both known or un-

known principal axis orientation [28]. To extract the full tensor, the anisotropic vdP



32

Figure 1.2. Vertical magnetoresistance measurement setup for p-type
InAs/GaSb type-II superlattices by Umana-Membreno et al. [1]. This mea-
surement method is only able to extract the longitudinal component of the
resistivity tensor ρyy and the other two components ρxx and ρxy are missing,
which reduces the reliability and accuracy of the extraction of the conduc-
tivity tensor, carrier density, and mobilities.

method requires three samples for 3D aligned materials, but only one sample for 2D ma-

terials. Also, the accuracy is higher than the Hall bar method since the measurement

geometry-induced error is much smaller.

While the conductivity tensor for bulk anisotropic conductors can be characterized

with the Hall bar method and the van der Pauw method, the characterization of anisotropic

thin films is much more challenging, for both in-plane and cross-plane anisotropic conduc-

tivities. The primary obstacle to the in-plane conductivity characterization is the parallel
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conduction of the substrate. For anisotropic thin films grown on top of a conductive sub-

strate, e.g. the active layer of optical devices [29], the highly conductive substrate will

short-circuit any standard in-plane transport characterization that one might attempt at

macroscopic scales. Current in-plane transport characterization of such structures either

requires additional effort in removing the bottom conductive layer with precise mechani-

cal or chemical approaches [30], low temperatures whereby the bottom conductive layer

freezes out [31], or fabrication of the anisotropic thin film on another insulating sub-

strate, whereby the transport properties can be different from the native performance in

the original device due to lattice mismatch.

The cross-plane conductivity tensor characterization for anisotropic thin films is even

more challenging than the in-plane direction. The film thickness is typically too small

to allow any patterning in the vertical direction, as would be required to implement

any of the characterization methods above. Unfortunately, in practice, there are many

electronic and optoelectronic devices with exactly this sort of anisotropic layer, typically a

superlattice, such as for photodetectors [32,33], lasers [34,35], and transistors [36]. One

technique has been previously proposed to characterize the vertical transport properties

of these materials, using a vertical “bar” structure as shown in Fig. 1.2 [1]. However, in

such a structure only the longitudinal component of the resistivity tensor ρyy(B) can be

extracted from the magneto-resistance measurement, the Hall voltage is short-circuited

by the facet contacts on top and bottom; thus no information about the off-diagonal

tensor components can be extracted. The lack of the off-diagonal components of the

conductivity tensor reduces the reliability and accuracy of the calculation, and eliminates

the possibility of deducing other important transport parameters such as mobility and
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carrier density. Thus a novel method that can characterize both the in-plane and cross-

plane conductivities of an anisotropic thin film conductor atop a conductive substrate is

highly desirable, as will be introduced in Chapter 2 – the triple stripline method.

1.2. Synthesis of anisotropic conductors

Strictly speaking, any materials with an asymmetric electronic structure are anisotropic

conductors. According to the asymmetry and the resulting conductivity anisotropy di-

rections, we divide anisotropic conductors into three categories: homogeneous crystals,

anisotropic conductive film (ACF) and aligned nanostructures. The synthesis methods

will be discussed for each category, respectively.

Homogeneous crystals with a planar structure typically exhibit high conductivity in-

plane and low conductivity cross-plane. One familiar example is copper oxide super-

conductor compound, which has highly anisotropic conductivity above Tc [37]. Yttrium

barium cuprate, YBa2Cu3O6+x, for example, has planar copper oxide layers separated by

barium and yttrium ions [2] (Fig. 1.3a). The electrical conductivity is much higher par-

allel to the conducting Cu-O bonds than in the perpendicular direction. Similar planar

structure can be found in non-stoichiometric rutile TiO2−x [38], intermetallic compounds

TaS2C5H5N [39], and silicide ReSi1.75 [40]. Crystals with heterostructures such as su-

perlattices are not as prominently discussed since the cross-plane conductivity is rarely

measured. The synthesis method for the layered homogeneous crystals will depend on the

specific crystal growth technique.

Anisotropic conductive films (ACF), also known as z-axis ACF, are an example of

how an anisotropic composite material has important technological relevance. ACF’s
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Figure 1.3. (a) The crystal structure of YBa2Cu3O6+x showing the con-
ducting Cu-O layers perpendicular to the c-axis. Figure reproduced from
Ref. [2]. (b) Application of anisotropic conductive film (ACF) for circuitry
connection [3].

are electrically conducting in the cross-plane direction but insulating in the other two

in-plane directions [3]. An ACF is typically an insulating polymer-matrix containing

conducting particles that can form cross-plane conducting paths. These particles are

randomly dispersed in the film but are in low enough concentration that they do not

form conducting paths in the in-plane direction, as shown in Fig. 1.3(b). The polymer

matrix is typically chosen to be an elastomer (such as silicone) or a thermoplast (such as

polyimidesiloxane or seflon) to provide resilience, so the ACF can be reusable [41]. Metal

wires [42], metal columns [43], and individual metal coated polymer particles [44] have

been used as the conducting particles. After bonding under heat and pressure, the vertical

distance between the top and bottom electrodes becomes smaller than or comparable to

the particle diameter, forming the cross-plane conducting paths.

The last and most interesting category of anisotropic conductors is aligned nanos-

tructures, which normally have higher conductivity in the alignment direction, and lower
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Figure 1.4. (a) Isotropic nanomaterials: 0D spheres and clusters and
Anisotropic nanomaterials: (b) 1D nanofibers, wires, and rods, (c) 2D films,
plates, and networks, and (d) 3D nanomaterials (reproduced from Ref. [4]).
(e) Schematic showing the slip-stick behavior of evaporation-driven self-
assembly (EDSA), reproduced from Ref. [5]. (f) Schematic of the capillary
printing process using a nano-patterned PDMS stamp to produce highly
aligned Ag nanowire arrays, reproduced from Ref. [6].

conductivity in the orthogonal direction. With an in-plane alignment direction, an in-

plane conductivity anisotropy can be realized, which is not achievable in the previous

two categories. Nanomaterials can present isotropic or anisotropic physical and chemical

properties depending on the shape of the nanostructure, as categorized in Fig. 1.4 based on

the dimensionality [4]. To develop macroscopic anisotropic properties, a number of self-

assembly methods have been studied for aligning the anisotropic nanostructures, including

spin coating [45], Langmuir-Blodgett assembly [46], dielectrophoresis [47], blown-bubble
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assembly [16], and DNA-linker-induced surface assembly [48]. However, most of these

approaches are limited in the material density and coverage area. To achieve large-area,

high-density anisotropic nanomaterial thin-film, high-throughput self-assembly methods

would be particularly interesting, such as the evaporation-driven self-assembly (EDSA)

method [5], which aligns the 1D nanowires into stripes parallel to the solution/substrate

interface during evaporation (Fig. 1.4e), and the capillary printing technique [6], which

“drags and prints” nanowire arrays along the channels (Fig. 1.4f).

While the synthesis of conductors with cross-plane anisotropic conductivity, e.g. the

layered crystal and ACF, has been well studied, creation of the in-plane conductivity

anisotropy is not well-studied. In chapter 3, we demonstrate the synthesis of anisotropic

semiconductor thin films with artificial in-plane conductivity anisotropy, including the car-

bon nanotube (CNT) film aligned using EDSA, the 3D-printed graphene-polymer film,

and finally the AlGaAs thin film with ion-implantation isolated channels. With the syn-

thesis techniques used, both n- and p-type in-plane anisotropic conductivities in controlled

orientation can be achieved, which opens up applications involving multiple anisotropi-

cally conducting layers.

1.3. Application of anisotropic conductors

Anisotropic conductors have extensive applications in electronics, optics and thermo-

electrics. ACF is widely used for interconnection in electronic packaging (chip-to-package,

package-to-board and board-to-board) in liquid display manufacturing [49]. Superlattices

(SLs) such as InAs/(In,Ga)Sb [32–34], InAs/InAs1−xSbx [29, 50] and GaAs/AlGaAs
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SLs [51] have been widely used in photodetectors and quantum cascade lasers. Low-

dimensional nanostructures such as PbSe-PbTe quantum dots [52], Si1−xGex nanowires

[53], and Bi2Te3 superlattices [54] have been reported to have superior thermoelectric

performance compared with the bulk materials.

In addition to the conventional thermoelectrics mentioned above, we have identified a

novel paradigm in thermoelectrics, i.e., the p×n-type transverse thermoelectrics, whereby

orthogonally aligned p and n-type anisotropic conduction in a system can generate a heat

flow transverse to the electrical current. This opens up new applications for anisotropic

conductors, as will be introduced in Chapter 4.

1.4. Thesis outline

This dissertation studies novel directions in the electrical characterization, synthe-

sis, and application of anisotropic semiconducting thin films. Chapter 2 proposes a new

method to simultaneously characterize the in-plane and cross-plane electrical conductivity

of anisotropic thin films with a “triple stripline” device structure. The motivation and

complete theory behind the method will be presented as well as the preliminary progress

towards an experimental demonstration. Chapter 3 shows the synthesis of three artifi-

cial thin film semiconductors with anisotropic in-plane electrical conductivities, including

aligned carbon nanotube stripes, 3D-printed graphene-polymer stripes and ion implanta-

tion isolated AlGaAs stripes. Chapter 4 introduces p×n-type transverse thermoelectrics, a

novel paradigm of transverse thermoelectrics that is a potential application of anisotropic

semiconductors, as well as introducing the “cross-hatched” artificial approach to fabricat-

ing p× n-type structures.
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CHAPTER 2

Triple stripline method: characterizing conductivity of

anisotropic thin films

In this chapter, we propose a new method to characterize the in-plane and cross-plane

electrical conductivity of anisotropic semiconductor thin films with a “triple stripline”

device structure. The motivation and complete theory behind the method will be pre-

sented here as well as the preliminary progress towards an experimental demonstration.

Section 2.1 considers the electrostatic potential caused by a single stripline contact to an

anisotropic thin film conductor, based on the generic structure of optical devices which

have a grounding back-plane, and proposes a closed analytical form for the potential.

However, since this closed form has no analytical solution, Section 2.2 provides a nu-

merical alternative solution to the potential distribution. Section 2.3 adds two more

voltage-contact striplines to the single current-contact stripline to create the full triple

stripline device structure, and considers the experimental potential measurements that

can uniquely determine all components of the conductivity tensor. Finally Section 2.4

describes the progress thus far towards realizing the triple stripline device.

2.1. Magnetotransport potentional distribution in anisotropic thin films:

Analytical description of the problem

In this section, we identify the appropriate geometry to study the conductivity tensor

of anisotropic thin films and identify useful coordinate transformations for describing this
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problem. Optical devices such as IR detectors and emitters typically have a bottom doped

contact, a central undoped active layer and a top doped contact [29] (Fig. 2.1a). The layer

of interest is the anisotropically resistive active layer atop the highly conductive bottom

contact layer, as shown in Fig. 2.1(b). By etching away the top doped contact layer, and

depositing a narrow metal strip as a top contact, the standard device structure can be

readily modified into the geometry under study. Note that this model requires that the

stripline contact width D is significantly narrower than the thickness of the active layer t,

as shown in Fig. 2.1(b) above. The active layer of interest is assumed to have a width much

larger than its thickness t, to minimize edge current effects. For simplicity, we therefore

assume the active layer width to be infinite. The work in this section is published has

been SPIE conference proceedings [55].

From the discussion in Section 1.1, the anisotropic conductivity tensor in the presence

of a magnetic field can be represented by a two-dimensional (2D) tensor since the thin-film

is isotropic in-plane:

(2.1) σ =

 σxx σxy

−σxy σyy

 .

Here the x-axis is the in-plane direction, and the y-axis is the cross-plane direction. The

anisotropy ratio is defined as A = σyy/σxx. And the 2D anisotropic conductivity tensor

is fully described with the three independent components σxx, σyy and σxy. It has to

be noted that even within the simple Drude model each component will depend on the

magnetic field (B), with more complicated B-field dependence arising, for example, from

contributions from multiple carrier species in multi-carrier materials. For simplicity, this
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Figure 2.1. (a) The typical structure of optical device layers, with an active
layer sitting between two highly conductive top- and bottom-contacts. (b)
The proposed single stripline diagnostic structure. The top conducting
layer is etched away, and the bottom conducting layer is used as a ground
plane. One narrow contact stripline is deposited on the top of the active
layer. The electromagnetic potential distribution of this structure will be
calculated as a first step towards developing a measurement method of the
full conductivity tensor.

chapter will concern itself strictly with the potentials that result from a given conductivity

tensor at a fixed B-field.
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We will now solve for the electrostatic potential of the proposed single-stripline diag-

nostic structure, using mixed Dirichlet and Neumann boundary conditions for the bottom

and top surfaces of the layer of interest. The potential and current distribution of the di-

agnostic structure in galvanomagnetic phenomena is governed by the steady-state Laplace

equation with corresponding boundary conditions. The Laplace equation has the same

form with or without a magnetic field due to the anti-symmetry of the off-diagonal terms

of the conductivity tensor:

(2.2) ∇ · (σ · ∇φ) = σxx
∂2φ

∂x2
+ σyy

∂2φ

∂y2
= 0,

where φ is the electric potential and the current density is j = −σ · ∇φ. The structure

is modeled as a 2D infinite strip within −∞ < x < +∞, 0 ≤ y ≤ t. Part of its boundary

satisfies Dirichlet boundary conditions where the potential is fixed to zero at the bottom

grounding plane and set to the applied voltage V at the central stripline on the top plane:

(2.3) φ = 0|y=0, φ|x=0,y=t = V.

Neumann boundary conditions can be defined for the remaining part of the strip boundary

where the current density perpendicular to the boundary is either zero or fixed value Iδ(x)

at the top stripline.

(2.4) jy = −
(
−σxy

∂φ

∂x
+ σyy

∂φ

∂y

)
|y=t = Iδ(x)

Here I is the total current resulting from the voltage V applied on the top stripline.

For simplicity we consider the stripline to have zero-width (c → 0) since its width is
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much smaller than the film thickness (c ≪ t). According to the σxy term for the Neu-

mann boundary conditions in Eq. (2.4), we see that although the Dirichlet condition does

not change with the magnetic field, the Neumann condition will change under different

magnetic field strengths and result in different potential distributions.

Fourier transforms are utilized to analytically solve the boundary value problem (BVP)

defined by Eqs. (2.2)-(2.4). The Fourier transform has several forms, here we use the

unitary form with angular frequency φ̂(ξ) = 1√
2π

+∞∫
−∞

φ(x)e−iξxdx and the inverse transform

φ(x) = 1√
2π

+∞∫
−∞

φ̂(ξ)e+iξxdξ. Making partial Fourier transform for Eqs. (2.2)-(2.4) with

x → ξ (so φ(x, y) 7→ φ̂(ξ, y)), we arrive at the modified differential equation:

(2.5) σxx(−ξ2)φ̂ + σyy
∂2φ̂

∂y2
= 0,

with boundary conditions:

(2.6) φ̂ |y=0 = 0

at the bottom surface, and

(2.7)

(
−σxy(+iξ)φ̂ + σyy

∂φ̂

∂y

) ∣∣∣∣y=L =
I√
2π

at the top.

The solution of potential distribution φ̂(ξ, y) to Eqs. (2.5)-(2.7) has the form:

(2.8) φ̂(ξ, y) = A(ξ)e+γξy + B(ξ)e−γξy,
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whereby γ =
√

σxx

σyy
. The fact that φ(x, y) is purely real requires φ̂(ξ, y) = φ̂∗(−ξ, y).

Then the Dirichlet boundary condition Eq. 2.6 yields A(ξ) = B(−ξ). Thus the solution

in the Fourier regime (Eq. 2.8)) can be rewritten as:

(2.9) φ̂(ξ, y) = A(ξ)(e+γξy − e−γξy) = 2A(ξ) sinh(γξy).

Since φ̂(ξ, y) = φ̂∗(−ξ, y), the coefficient A(ξ) needs to satisfy:

(2.10) A∗(ξ) = −A(−ξ).

Substituting Eq. (2.9) into the Neumann boundary condition Eq. (2.7), we can solve for

the parameter A(ξ):

(2.11) A(ξ) =
I√
2π

1/2ξ

−iσxysinh(γξL) + σyyγcosh(γξL)
,

which is verified to satisfy the requirement defined by Eq. (2.10). So the complete form

of the potential distribution in the Fourier regime can be derived as:

(2.12) φ̂(ξ, y) =
I√
2π

sinh(γξy)

−iσxyξ sinh(γξL) + σyyγξ cosh(γξL)

The potential distribution in the real regime φ(x, y) can be obtained by applying the

inverse Fourier transform to the φ̂(ξ, y). Defining parameters A = I√
2πσxy

, a = γy, b =

γ σyy

σxy
, c = γL, Eq. (2.12) can be rewritten as:

(2.13)

φ̂(ξ, y) =
A

b2
sinh(aξ) (b cosh(cξ) + i sinh(cξ))

ξ(1 + Bsinh2(cξ))
, whereby

(
B =

b2 + 1

b2
= 1 +

σxx

σyy

)
.
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The inverse Fourier transform of φ̂(ξ, y) can be simplified as:

(2.14)

φ(x, y) = 1√
2π

+∞∫
−∞

φ̂(ξ, y)e+iξxdξ

= 1√
2π

+∞∫
0

φ̂(ξ, y)e+iξxdξ + 1√
2π

0∫
−∞

φ̂(ξ, y)e+iξxdξ

= 1√
2π

+∞∫
0

φ̂(ξ, y)e+iξxdξ + 1√
2π

+∞∫
0

φ̂(−ξ, y)e−iξxdξ

= 1√
2π

+∞∫
0

(φ̂(ξ, y) + φ̂(−ξ, y)) cos(ξx) + i(φ̂(ξ, y) − φ̂(−ξ, y)) sin(ξx))dξ

= 1√
2π

2A
b2

+∞∫
0

dξ sinh(aξ)

ξ(1+Bsinh2(cξ))
[b cosh(cξ) cos(ξx) + sinh(cξ) sin(ξx)]

So the analytical solution of the potential distribution φ(x, y) can be expressed in the

integral form:

(2.15) φ(x, y) =
1√
2π

2A

b2

+∞∫
0

dξ
sinh(aξ)

ξ
(
1 + Bsinh2(cξ)

) [b cosh(cξ) cos(ξx) + sinh(cξ) sin(ξx)]

Recalling that a, b, and c all depend on y the final expression becomes:

(2.16)

φ(x, y) = 1
π

σxx

σyyσxy

+∞∫
0

dξ
sinh(

√
σxx
σyy

yξ)

ξ

(
1+

(
1+σxx

σyy

)
sinh2(

√
σxx
σyy

Lξ)

) ·[√
σyy

σxx
cosh(

√
σxx

σyy
Lξ) cos(xξ) + sinh(

√
σxx

σyy
Lξ) sin(xξ)

] .

Equation (2.16), however, has no analytical solution. that there exists no straightfor-

ward analytical solution of the potential distribution. It may be appropriate to calculate

the infinite integral of Eq. (2.16) numerically for one or two points of interest, however

this infinite integral would require a significant amount of time to numerically calculate
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an array of points in the x − y plane. Further study shows that there is a more ele-

gant numerical approach to solve for the potential distribution throughout the volume of

the anisotropic layer, which involves linear coordinate transformation and finite element

method simulation, described below.

2.2. Magnetotransport potentional distribution in anisotropic thin films:

Numerical solution

The numerical solution to the potential distribution in the anisotropic thin films re-

quires a different strategic approach than the analytical solution of the previous section.

Whereas Hall voltages and resistances of finite 2D structures can be numerically calcu-

lated using boundary element methods [56], finite difference [57, 58] or finite element

method (FEM) [59, 60], all these numerical methods require a finite calculating area,

and the majority demonstrated results only on isotropic materials. To solve the present

problem of an anisotropic conductor with infinite lateral dimension, we propose to use

linear coordinate transformations to simplify the problem, including a scaling transfor-

mation to transform the problem of an infinite anisotropically conducting strip into an

isotropic one, and then two conformal maps to transform the infinite isotropic strip into

a finite rectangle, which is suitable for numerical calculation. Once these transforms are

identified, the problem of the infinitely wide strip can be solved by inverting this same

set of the transforms. The work in this section is published has been SPIE conference

proceedings [55].
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2.2.1. Coordinate transformation: scaling transformations and conformal maps

The boundary condition problem describing the potential φ(x, y) for the anisotropic infi-

nite strip (Eq. (2.2)-(2.4)) can be transformed into an equivalent problem in another 2D

coordinate system with potential distribution φ′(x′, y′) for an isotropic rectangle. There

are two conditions that need to be satisfied for the transformation to preserve the Laplace

equation and the boundary conditions. Analogous to the treatment of anisotropic media

under zero magnetic field in Ref. [26], we require two conditions:

I) φ(x, y) = φ′(x′, y′).

II) The net current flowing through any segment ∆L = (∆x,∆y) and its image

∆L′ = (∆x′,∆y′) must be the same.

Condition I guarantees the potential remains the same on the transformed Dirichlet

boundaries. Condition II preserves the current flowing through the Neumann boundaries

and the divergence of the current density, so the Laplace equation is still satisfied. These

two conditions also ensure that any resistance R is transformed to an identical resistance

R′ = R in the primed frame.

Scaling transformation: anisotropic to isotropic infinite strip

A non-conformal scaling transformation is required to transform the anisotropic con-

ductivity tensor into an isotropic form. The transformation has been solved for three-

dimensional (3D) form by van der Pauw [22], but here we explicitly solve for the 2D

simpler form. Suppose we perform a linear transformation x′ = αx, y′ = βy so that

φ(x, y) = φ′(x′, y′). This scaling transformation is linear, but it is non-conformal since it

does not preserve the local angles in the transformation. The electric field in the new 2D
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coordinate system is:

(2.17)
E ′

x = −∂φ′

∂x′ = − 1
α
∂φ
∂x

= 1
α
Ex

E ′
y = −∂φ′

∂y′
= − 1

β
∂φ
∂y

= 1
β
Ey

Condition II requires that:

(2.18)
j′xdy

′ = jxdy ⇒ j′x = 1
β
jx

j′ydx
′ = jydx ⇒ j′y = 1

α
jy.

Since j = σ · (−∇φ), Eq. (2.17) and (4.1) lead to:

(2.19) j′ =

 j′x

j′y

 =

 α
β
σxx σxy

−σxy
β
α
σyy


 E ′

x

E ′
y

 = σ′ ·E′

When α
β

=
(

σyy

σxx

)1/2
= A1/2, σ′ reduces to an isotropic conductivity tensor:

(2.20) σ′ =

 σm σxy

−σxy σm

 ,

where σm = (σxxσyy)
1/2. Here we adopt α = A1/2 π

2
1
t

and β = π
2
1
t
, to map the anisotropic

infinite strip described in Section 2.1 into an isotropic infinite strip within −∞ < x′ <

∞, 0 < y′ < π
2
, for convenience in the subsequent conformal mapping.

It has to be noted this transformation is not the only non-conformal mapping that can

transform the 2D anisotropic conductivity tensor into an isotropic form. The 2D linear

transformation can be represented by the transformation matrix T =

 T11 T12

T21 T22

 so
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that

 x′

y′

 = T ·

 x

y

. It can be proven that any 2D linear transformation that has :

(2.21)
T 2
11 + T 2

21

T 2
12 + T 2

22

=
σyy

σxx

, T11T12 + T21T22 = 0

can transform the boundary condition problem into an coordinate system in which the

conductivity tensor is isotropic, as long as T ̸= 0.

Conformal map: infinite strip to finite rectangle

Although the conductivity tensor in the transformed frame is now isotropic, the nu-

merical solution would still require an infinite mesh. We will use conformal mapping to

transform the problem to a finite-sized mesh that can be solved efficiently with the finite

element method (FEM). In this case, we will conformally map the infinitely wide stripe in

the (x′, y′) coordinate system to a finite rectangle in the (u, v) coordinate system, in which

the potential distribution can be calculated with FEM simulation. A conformal map is

a linear transformation that preserves local angles and can be used to transform open-

boundary shapes (e.g. infinite strip) to closed shapes [61], which is convenient for solving

harmonic functions over a planar domain since the image functions are also harmonic.

To simplify the mathematical representation, we use complex coordinates z′ = x′ + iy′

and w = u + iv to represent the coordinates in the origin and final coordinate systems,

respectively, and we use analytical functions of the complex coordinates to describe the

conformal transformations.
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Figure 2.2. Calculation of the amount of current flowing through the
elementary segment before and after the conformal map. The isotropic
z′-plane is conformally mapped into the w-plane, whereby the elementary
segment dLz′ and the current density jz′ that passes it are transformed
to dLw and jw, respectively. The total amount of current flowing through
dLz′ and dLw should be identical.

Before we apply any conformal maps to further simplify the boundary condition prob-

lem in the (x′, y′) coordinate system, we need first prove that the anti-symmetric conduc-

tivity tensor σ′ in the primed frame remains invariant under conformal transformation to

satisfy conditions I and II mentioned above. Suppose there is a conformal map from the

z′-plane (x′, y′) to the w-plane (u, v) so that φ′(x′, y′) = ϕ(u, v) (Fig. 2.2). The conformal

map requires:

(2.22) ux′ =
∂u

∂x′ =
∂v

∂y′
= vy′ , uy′ =

∂u

∂y′
= − ∂v

∂x′ = −vx′ .

Here we adopt the notation ux′ to represent the partial derivative of u with respect to

x′. The current flowing through the segment dLz′ = (dx′, dy′) in z′-plane and its image
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dLw = (du, dv) in w-plane are :

dIz′ = |jz′ × dLz′| = jy′dx
′ − jx′dy′

dIw = |jw × dLw| = jvdu− judv = (jvux′ − juvx′)dx′ − (−jvuy′ + juvy′)dy
′,

respectively. From dIz′ = dIw and using the conformal relations of Eq. (2.22) we can

determine the tensor m:

(2.23) jz′ =

 jx′

jy′

 =

 vy′ −uy′

−vx′ ux′


 ju

jv

 =

 ux′ −uy′

uy′ ux′

 jw = mjw.

According to the definition of conductivity tensors, jz′ = σ′(−∇zφ
′), jw = σw(−∇wϕ).

From

(2.24) ∇zφ
′ =

 ∂φ′

∂x′

∂φ′

∂y′

 =

 ux′ vx′

uy′ vy′


 ∂ϕ

∂u

∂ϕ
∂v

 =

 ux′ −uy′

uy′ ux′

∇wϕ = m∇wϕ,

we can identify the conductivity tensor in the w-plane:

(2.25)

σw = (m)−1 σ′m =
1

u2
x′ + u2

y′

 ux′ uy′

−uy′ ux′


 σm σxy

−σxy σm


 ux′ −uy′

uy′ ux′

 = σ′.

As a result, we have shown that the anti-symmetric conductivity tensor remains the same

after the conformal mapping from the z′-plane to w-plane. This significant result enables

us to apply any conformal map that simplifies the geometry of the infinite isotropic strip

from Section 2.2.1 to a finite shape that can be simulated numerically.
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Figure 2.3. The conformal maps transforming the infinite strip from (a)
z′-plane to (b) upper half s-plane, to (c) a finite rectangle in the w-plane.
The purple line in all three plots represents the Dirichlet boundary at fixed
ground potential, and the black dot or string of dots represent the Dirichlet
boundary at potential V . The red and green circles trace specific boundary
points that map to the corners in the w-plane of panel (c).

We adopt two conformal map steps to transform the output of the scaling transfor-

mation, an infinite strip in the z′-plane, to a finite rectangle in the w-plane. One step

transforms the infinite strip in z′-plane to an infinite semicircle in the upper-half s-plane,

and the following step transforms the infinite semicircle in s-plane into a finite rectangle

in w-plane. The first conformal map is:

(2.26) s = tanh(z′),

which transforms the infinite strip within −∞ < x′ < +∞, 0 ≤ y′ ≤ π/2 in the complex

z′-plane (z′ = x′ + iy′) in Fig. 2.3(a) into the upper half s-plane in Fig. 2.3(b). The infinite

ground plane y′ = 0 (purple line) is mapped into the finite segment −1 ≤ p ≤ 1 along the

line q = 0 and the top point contact at z′ = iπ
2

is mapped onto infinity in the s-plane. The
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points at the top of the infinite strip at z′ = ±d + iπ/2 (red and green dots in Fig. 2.3a),

map to the s-plane at s = ±1/k, where k = tanh(d).

The second conformal map is a Schwarz-Christoffel transformation [62] that maps

the upper half-plane into a finite rectangle, as shown in Fig. 2.3(c). A SchwarzChristoffel

mapping is a conformal transformation of the upper half-plane onto the interior of a simple

polygon. Consider a polygon in the complex w-plane, there exists a mapping w(s) from

the upper half-plane {s ∈ C : Im s > 0} to the interior of a polygon in the w-plane, which

maps the real axis of the upper half-plane to the edges of the polygon. If the polygon has

interior angles ϕ1, ϕ2, ..., ϕn, then the mapping is given by:

(2.27) w(s) = C
∫ s

(ζ − ζ1)
−ϕ1/π(ζ − ζ2)

−ϕ2/π · · · (ζ − ζn)−ϕn/πdζ,

where C is a constant, ζ is a real-value integral variable, and ζ1 < ζ2 < · · · < ζn are the

coordinates of the points along the real axis of the s-plane, which are corresponding to the

vertices of the polygon in the w-plane. We choose a specific form of SchwarzChristoffel

mapping that maps the upper half-plane in the s-plane to a rectangle in the w-plane:

(2.28)

w(s) = −C/k
∫ s

0
(ζ + 1/k)−1/2(ζ + 1)−1/2(ζ − 1)−1/2(ζ − 1/k)−1/2dζ (0 < k < 1)

= C
∫ sin−1 s

0
1√

1−k2 sin2 θ
dθ = C F(sin−1 s, k2),

where −1/k,−1, 1, 1/k are the coordinates of the points on the real axis of s-plane that

correspond to the vertices of the mapped rectangle in the w-plane, F(ϕ, k2) is the in-

complete elliptic integral of the first kind F(ϕ, k2) =
∫ ϕ

0
(1 − k2 sin2 θ)−1/2dθ and C is
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a scaling factor. After the second conformal map, the result is a finite rectangle with

vertices ±K and ±K + iK ′, as shown in Fig. 2.3(c), where K = C F(π/2, k2) and

K ′ = |C F(sin−1(1/k), k2) − K|. The original infinite ground plane y′ = 0 in z′-plane

(purple line) in Fig. 2.3(a) is mapped to the bottom edge of the rectangle in w-plane, the

top point contact at z′ = iπ
2

is mapped to the center of the top edge of the rectangle

(w = iK ′), and the red and green points on the top of the infinite strip at z′ = ±d+ iπ/2

are mapped to the top-left and top-right corners of the rectangle in w-plane. By invert-

ing the scaling and conformal maps discussed above, the potential distribution in the

anisotropic infinite strip can be easily calculated by first conducting a numerical simu-

lation of the potential distribution in the isotropic, finite rectangle in the w-plane, and

then using the inverse transformations to map the result to the desired anisotropic infinite

strip in the z-plane.

2.2.2. Finite element method (FEM) numerical simulation

To simulate the potential distribution in an isotropic, finite rectangle, FEM code based

on the open-box Matlab implementation [63] of Courant’s P1 triangle elements for the

numerical solution of elliptical problems with mixed boundary conditions is used. The

rectangle is divided into multiple triangles using DistMesh [7], and the calculation uses

the mapped isotropic conductivity tensor and boundary conditions as described in Sec-

tion 2.2.1. As shown in Fig. 2.4, the mesh generating algorithm is modified to produce

high-density triangle meshes near contacts, corner, and edges of the rectangle, and low-

density meshes elsewhere, which results in a right balance between accuracy and speed

for the following FEM simulation.
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Figure 2.4. Triangle meshes generated in the finite rectangle in w-plane
for FEM simulation. The rectangle is divided into small triangle elements
using DistMesh [7]. The mesh density is enhanced near the stripline contact
and the edges and corners of the rectangle, where the boundary conditions
are applied, and a higher resolution is preferred.

FEM: accuracy and consistency

The accuracy of the FEM simulation is studied with a simple diagnostic structure

shown in Fig. 2.5. The potential and current flux distribution is simulated in a finite

rectangle with top and bottom facet contacts. As shown in Fig. 2.5(a), in a finite rectangle

with top edge fixed at potential φ = V and bottom edge grounded, the equipotential lines

are confirmed to be parallel to the horizontal axis, while the current flux lines are along

the vertical axis when the off-diagonal conductivity is zero (σuv = 0), i.e., there is no

external magnetic field present. The total current flowing through the rectangle can be

analytically calculated with Icalc = V σvv. With FEM simulation, the total current can

also be obtained by integrating the calculated current flux density along the top or bottom
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Figure 2.5. The FEM simulated potential distribution (red lines) and
current flux density (blue lines) in a finite rectangle with top and bottom
facet contacts with (a) zero and (b) non-zero off-diagonal component of the
conductivity tensor. A Hall angle θH = arctan(σuv/σuu) is formed between
the current flux and potential gradient directions.

edge, which yields a numerically simulated value Isim. Simulations with various σvv values

yield relative error: ∣∣∣∣Isim − Icalc
Icalc

∣∣∣∣ ≤ 0.1%.

When σuv ̸= 0, i.e., an external magnetic field perpendicular to the uv-plane is

present, the equipotential lines and current flux lines are no longer orthogonal, as shown

in Fig 2.5(b). Instead, the current flux and potential gradient directions (the norm of

equipotential lines) will form a Hall angle θH = arctan(σuv/σuu). For example, the Hall

angle in Fig 2.5(b) is θH = arctan(0.62) ≈ 32◦. The potential and current flux distribution
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in Fig 2.5(b) is consistent with previous numerical study of rectangular-shaped device in

the presence of external magnetic field [64].

2.2.3. Potential distribution results

Figure 2.6 demonstrates the procedure of calculating the potential distribution in an in-

finite strip with anisotropic conductivity tensor in the presence of a B-field. Suppose the

conductivity tensor in the infinite strip at z-plane has σyy/σxx = 2, σxy/σxx = 1, as shown

in Fig. 2.6(c). Using the maps described in Section 2.2.1, the anisotropic infinite strip can

be transformed to a rectangle in w-plane (Fig. 2.6a), with width Wu = 32.6 and thick-

ness tv = 10, and also an isotropic conductivity tensor (σvv/σuu = 1, σuv/σuu = 1/
√

2).

The electric potential distribution (red lines) in this isotropic rectangle can be readily

calculated with an FEM simulation solving Eq. (2.2) under the boundary conditions de-

scribed by Eq. (2.3) and (2.4) (Fig. 2.6a). Using the inverse transformation of the maps

described in last section, the potential distribution can be readily obtained in both s-

plane (Fig. 2.6b) and z-plane (Fig. 2.6c), and the current flux density (blue lines) can

be calculated with the corresponding conductivity tensors. From Fig. 2.6(c) we can see

that in the anisotropic infinite strip, the potential drops at different rate in x and y di-

rections, consistent with the expected conductance anisotropy σyy/σxx = 2. In addition

both equipotential and current flux lines curve towards the left due to the finite magnetic

field indicated by the non-zero Hall conductivity σxy/σxx = 1. To better understand the

separate effects of the conductivity anisotropy and the finite magnetic field, we separately

study the anisotropy ratio σyy/σxx and the off-diagonal conductivity ratio σxy/σxx in what

follows.
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Figure 2.6. (a) The calculated potential distribution (red lines) and cur-
rent flux density (blue lines) in the finite isotropic rectangle (w-plane) cor-
responding to σyy/σxx = 2 and σxy/σxx = 1 in the z-plane coordinates.
(b) The potential distribution in the upper-half s-plane is mapped with
an inverse Schwarz-Christoffel transformation from the w-plane. (c) The
potential distribution in the z-plane is mapped with the inverse scaling
transformation from the s-plane. The dots represent the locations of the
top stripline contact (black) and corner coordinates in the w-plane (red and
green). The purple line represents the ground plane.
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Figure 2.7. The FEM-calculated potential distribution in finite rectangles
with isotropic conductivity are mapped to the infinite strip with σxy = 0
and anisotropy ratio (a) A = σyy/σxx = 0.2, (b) A = 1 (isotropic), and
(c) A = 5. The mapped rectangles have thickness tv = 10 and width
Wu = 17.7, 28.8, 53.5 respectively. The resultant potential distribution rep-
resenting the anisotropic infinite strip is shown in (d)-(f). The dots repre-
sent the stripline contact (black) and w-plane corner points (red and green),
and the purple line represents the ground plane.

We first study the anisotropy ratio under zero magnetic field, whereby σxy = 0. The

potential distribution of anisotropic infinite strips with anisotropy A = σyy/σxx = 0.2, 1, 5

is calculated from the FEM simulation of their mapped rectangles in the w-plane, as

shown in Fig. 2.7. The aspect ratio W/t of the mapped rectangle in w-plane depends on
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the anisotropy ratio A through the variable k = tanh(A1/2π/2):

(2.29)
Wu

tv
=

2F(π/2, k2)

Im[F(sin−1(1/k), k2)]
,

where Im(z) gives the imaginary part of a complex number z. As shown in Fig. 2.7(a)-

(c), Wu/tv increases with the anisotropy ratio A. The potential distribution changes

dramatically as the conductivity anisotropy changes. For the isotropic case of Figs. 2.7(b)

and 2.7(e) (A = 1), the equipotential lines start as semi-circles near the top stripline

contact and flatten out near the bottom ground plane in Fig. 2.7(e). As the conductivity

anisotropy A changes, the equipotential lines deviate from the isotropic case by extending

toward the high conductivity direction, i.e., x-direction for A < 1 in Fig. 2.7(d) and

y-direction for A > 1 in Fig. 2.7(f), so the potential changes more slowly in the high

conductivity direction. It should be noted that the equipotential lines and current flux

lines are perpendicular to each other only in the isotropic case (A = 1) under zero magnetic

field, whereby the conductivity tensor is effectively reduced to a scalar. We note that for

single-carrier materials, under the Drude model, A does not change with magnetic field,

whereas for multiple-carrier materials, the anisotropy ratio will become a function of the

magnetic field A(B).

The off-diagonal term σxy breaks the symmetry of the potential distribution about the

y-axis under a magnetic field, as seen in Fig. 2.8. Consider an infinite strip with isotropic

conductivity (A = 1) with subjected to three different magnetic field strengths so that

σxy/σxx = 0.2, 1, 5 respectively. The potential distribution calculated by FEM for the

rectangles in w-plane are shown in Fig. 2.8(a)-2.8(c), and the potential distribution of the

original infinite strips in z-plane is shown in Fig. 2.8(d)-2.8(f). Both the equipotential
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Figure 2.8. The FEM-calculated potential distribution for the case of
an infinite strip with isotropic conductivity (A = 1) is plotted for various
magnetic field strengths represented by σxy/σxx = (a) 0.2, (b) 1 and (c)
5. Because all plots are derived for the same conductivity anisotropy ratio
A = 1, namely the isotropic case, the mapped rectangles have the same
thickness tv = 10 and width Wu = 28.8. The resultant potential distribu-
tion representing the infinite isotropic strip in a finite B-field is shown in
(d)-(f).The dots represent the stripline contact (black) and w-plane corner
points (red and green), and the purple line represents the ground plane.

and current flux lines are curved toward the bottom left corner of the strip (for an n-

type sample assuming electrons dominate the conduction) under the magnetic field in the

direction shown in the figure. As the ratio σxy/σxx increases, the curvature increases and

eventually the current flux will concentrate to a so-called ”hot spot” on the bottom left
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corner. The voltage difference between the two points represented by red and green dots

are ∆V = 0.0601V , 0.2850V and 0.7296V respectively, and we can see that the voltage

∆V does not increase linearly with σxy/σxx, unlike conventional Hall bars. This indicates

that there exists a longitudinal component in the resistance between these two symmetric

points when the magnetic field exists, and as a result, we cannot directly measure a pure

Hall resistance in this isotropic strip without mixing in some longitudinal resistance, due

to the ground plane at the bottom shorting out the Hall voltage and causing asymmetric

redistributions of the current with increasing B.

Understanding how the potential distribution changes with the conductivity anisotropy

(A = σyy/σxx) and the non-zero σxy under external magnetic field is the first step towards

developing a possible characterization method to determine the three independent com-

ponents of the conductivity tensor. Since there are only three independent variables in the

2D anisotropic conductivity tensor (σxx, σyy and σxy), it should be possible to extract the

full conductivity tensor by conducting three independent resistance measurements. How-

ever, unlike the conventional Hall bar structure whereby pure longitudinal conductivities

(σxx and σyy) can be easily separated from the Hall conductivity (σxy), the interrelation-

ship between these independent components here is more complex and requires careful

consideration, as described in the next section.

2.3. Triple stripline method: theory

Based on the calculated potential distribution of anisotropic thin films atop a conduc-

tive substrate, we propose a novel characterization method to extract the full conductivity

tensor, the triple stripline method. This method utilizes a diagnostic device structure
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Figure 2.9. The triple stripline device structure for measuring the three
independent conductivity components of an anisotropic active layer on a
conducting substrate. Three narrow stripline electrodes are deposited on
top of the active layer, with a pitch width equal to the active layer thickness
t and a width much smaller than t.

(Section 2.3.1) with three narrow stripline contacts on top, as indicated by the name –

one stripline serving as a current source and two others serving as voltage probes. The

conductivity tensor is extracted by numerically calculating the potential distribution and

resistances and comparing the measured resistances with calculation results, as discussed

in Section 2.3.2. The device structure can be further adapted to materials with large

conductivity anisotropy and materials grown on top of an insulating substrate, as shown

in Section 2.3.3.

2.3.1. Device structure and measurement setup

The diagnostic device structure for the triple stripline method consists of an anisotropi-

cally resistive thin film layer atop a highly conductive bottom contact layer, with three
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narrow stripline contacts on top, as shown in Fig. 2.9. As previously mentioned many

optical devices such as photodetectors and emitters consist of a bottom heavily-doped

backplane, a central undoped or lightly doped anisotropic superlattice active region and

a top heavily-doped surface [29]. By etching away the top layer, and depositing three

narrow metal strips as top contacts, theses devices can be readily modified to realize the

proposed diagnostic structure. This structure requires that the stripline contact width c

is significantly narrower than the thickness of the active layer t, so they can be treated

as point contacts in the simulation. Along with the geometric constraints of the single

stripline method described previously, the active layer should have a length L that is

much larger than t as in Fig. 2.10. At the two ends, the stripline contacts extend over

an insulating layer to allow larger contact pads for measurement convenience. The pitch

between adjacent striplines is chosen to be equal to the film thickness P = t, as shown in

Fig. 2.10.

Two sets of measurements are needed for the triple stripline method, as shown in

Fig. 2.10. Measurement (I) in Fig. 2.10(a) applies current I from the left-most stripline

contact 1 through the active layer to the ground plane contact at the bottom, and measures

the potential of the other two stripline contacts 2 and 3 relative to ground (V2 and V3).

Measurement (II) in Fig. 2.10(b) applies current I from the center stripline contact 1 to

the bottom ground plane, and measures the potential of the two side stripline contacts

1 and 3 with respect to ground (V1 and V3). It should be noted that there are multiple

ground electrodes around the device, so all the measurement are 4-point so that the results

are independent of any contact resistances.
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Figure 2.10. Two measurement setups with the triple stripline device.
(a) Measurement I: apply current I from the left-most stripline contact 1
and measure four-point voltages V2, V3 relative to the ground plane. (b)
Measurement II: apply current I from the center stripline contact 2 and
measure voltages V1, V3 from the two sides relative to the ground plane.

The potential distribution of the device in the two measurements can be calculated

with the model and the numerical simulation approach demonstrated in Sections 2.2

and 2.2.3 . For active layer below the striplines far from two ends, the potential and

current flux distribution is uniform along z-axis. The method until now has allowed us

to deduce the potentials Vi for the various configurations with a known anisotropy ratio

and a known Hall angle. Now we need to invert this process by repeating this calculation

for a continuum of different anisotropy factors and Hall angles, and then parametrically
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plotting the result versus the various Vi voltages to be measured. The result will enable

us to extract the conductivity tensor, as described in next section.

2.3.2. Deducing the full 2D conductivity tensor

The 2D conductivity tensor in the x-y plane for thin films with an external magnetic

field has only three independent components. With aligned principal axes and external

magnetic field B = Bẑ the conductivity tensor can be re-written as

(2.30) σ =

 σxx σxy

−σxy σyy

 = σxx

 1 −σxy/σxx

σxy/σxx σyy/σxx

 = σxx

 1 − tan θH

tan θH A

 .

This tensor has three independent components: the anisotropy ratio A = σyy/σxx, the

tangent Hall angle tan θH = σxy/σxx and the longitudinal conductivity amplitude σxx.

The full tensor can therefore be extracted from three independent measurements: V2/V3,

(V2−V3)/I in measurement I of Fig. 2.10(a), and V1/V3 in measurement II of Fig. 2.10(b).

Conductivity tensor components ratios

The first step in identifying the three unknowns in the conductivity tensor is to de-

termine the anisotropy ratio A = σyy/σxx and the tangent Hall angle tan θH = σxy/σxx.

From the Laplace equation and boundary conditions governing the potential distribution,

the normalized potential distribution only depends on these two ratios, independent of

absolute magnitude of the tensor. To study how these two ratios affect the potential

distribution, we consider the following two special cases of zero magnetic filed but varying
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anisotropy, and of isotropic conduction with varying magnetic field, similar to Section

2.2.3:

I) No external magnetic field (σxy = 0)

The potential distribution of the infinite anisotropic strip is symmetric around the

top current contact in the absence of a magnetic field. Figure 2.11(a)reproduces the

results of Fig. 2.7 (d)-(f) for the varying anisotropy ratio A = σyy/σxx. To quantify the

effect of anisotropy on potential, we measure the ratio V2/V3 with measurement I in

Fig. 2.10(a). For small anisotropy ratio A < 1, the equipotential lines are horizontally

stretched, leading to a low line density along the top edge and thus a small ratio V2/V3 =

2.3. As the anisotropy ratio A increases, the equipotential lines become horizontally

compressed, resulting in a high line density near the current source along the top edge

and a large ratio V2/V3.

The potential ratio V2/V3 exhibits a monotonically increasing dependence on the

anisotropy ratio A = σyy/σxx, as shown in Fig. 2.11(b). Thus for a given measured

potential ratio V2/V3, the corresponding anisotropy ratio can be readily extracted from

the curve. It has to be noted that for large anisotropy ratios, the magnitudes of V2 and

V3 become very small and the relative measurement error can be large. But in practice

most anisotropic materials have higher in-plane conductivity than that in the out-of-plane

direction, i.e., σyy/σxx < 1. In this case, the potential ratio V2/V3 ≤ 5 can be measured

with a reliable accuracy.

II) Isotropic material (A = σyy/σxx = 1)

The off-diagonal tensor components σxy breaks the symmetry of the normalized equipo-

tential lines around y-axis under a magnetic field. As shown in Fig. 2.12, as the normalized



68

Figure 2.11. (a) The potential distribution of the infinite strip for different
conductivity anisotropy ratio A = σyy/σxx, when σxy = 0 reproduced from
Fig. 2.7 (d)-(f). (b) The calculated voltage ratio V2/V3 increases monotoni-
cally with the anisotropy ratio A = σyy/σxx.

Hall conductivity σxy/σxx increases, both the equipotential and current flux lines curve

towards one side, resulting in an increasing asymmetry. Unlike a conventional Hall bar

structure in which the potential distribution asymmetry is evaluated as a potential dif-

ference, here we use the ratio V1/V3 as measured with the second setup in Fig. 2.10(b) to

reflect the “normalized” potential distribution asymmetry.

Similar to case I), the potential ratio V1/V3 in the second measurement monotonically

increasing with the normalized Hall conductivity σxy/σxx, which enables the inverse map-

ping from the measured V1/V3 to σxy/σxx. However, the increase in V1/V3 with σxy/σxx is

even steeper than that of V2/V3 with respect to σyy/σxx in Fig. 2.11. Thus the measure-

ment error will limit the practical application of the inverse mapping to small normalized
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Figure 2.12. (a) The potential distribution of the infinite strip for isotropic
conductivities (A = σyy/σxx = 1) with varied tan θH = σxy/σxx ratios,
which can be induced by different magnetic field strengths, as reproduced
from Fig. 2.8(d)-(f). (b) The calculated voltage ratio V1/V3 increases mono-
tonically with the tangent Hall angle tan θH = σxy/σxx.

Hall conductivity, e.g. σxy/σxx ≤ 1. Fortunately, this is the low-magnetic field limit,

which is readily accessible. For conductors with one single species of carrier, the tangent

Hall angle is tan θH = σxy/σxx = µB, whereby µ is the Hall mobility. So the inverse

mapping from V1/V3 to the normalized Hall conductivity σxy/σxx is most useful in the

weak field limit, appropriate to the classical Hall regime.

The inverse mapping from the measured potential ratios (V2/V3 and V1/V3) to the

respective conductivity parameters (A and tan θH , respectively) for the two special cases

discussed above can be generalized to a two-dimensional parametric mapping to deduce

the two conductivity parameters for an arbitrary case. The unique relation between the
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potential ratios and the conductivity tensor components ratios can be expressed as:

(2.31)
V2/V3 = fx(σyy/σxx, σxy/σxx),

V1/V3 = fy(σyy/σxx, σxy/σxx)

in which fx and fy are nonlinear functions of the anisotropy ratio A = σyy/σxx and

the tangent Hall angle tan θH = σxy/σxx. If the mapping from (σyy/σxx, σxy/σxx) to

(V2/V3, V1/V3) can be proven to be a one-to-one mapping, then there should exist an

inverse mapping:

(2.32)
σyy/σxx = Fx(V2/V3, V1/V3),

σxy/σxx = Fy(V2/V3, V1/V3)

Although it is difficult to analytically prove the inverse relation mathematically, the one-

to-one mapping can be verified graphically.

Figure 2.13 shows the contour map of the potential ratio V2/V3 (solid lines) and

V1/V3 (dashed lines) plotted on Cartesian coordinates of the tensor components ratios

σyy/σxx and σxy/σxx. Every pair of solid and dashed contour lines only have one in-

tersection in the first quadrant, indicating the mapping between (σyy/σxx, σxy/σxx) and

(V2/V3, V1/V3) is an one-to-one mapping. With known measured potential ratios (e.g.

V2/V3 = 6, V1/V3 = 12), the two corresponding contour lines (blue solid and red dashed

lines) can be determined, and their intersection point uniquely indicates the conductivity

components ratios (σyy/σxx = 0.49 and σxy/σxx = 0.87). It can be observed that for most

situations the two sets of contour lines have a finite intersection angle, which promises

reliable accuracy for this inverse mapping. For the extreme case of small anisotropy ratio
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Figure 2.13. Contour map of with iso-voltage-ratio lines V2/V3 (measure-
ment I, solid line) and V1/V3 (measurement II, dashed line) for the tangent
Hall angle σxy/sigmaxx and anisotropy ratio σyy/σxx. For any pair of mea-
sured voltage ratios, e.g. V2/V3 = 6 and V1/V3 = 12, corresponding contour
lines can be located from the map (blue and red), and their intersection
uniquely defines the values for σyy/σxx and σxy/σxx.

σyy/σxx < 0.05 the contour lines for V1/V3 are crowded and become almost parallel with

the contour lines of V2/V3 nearby. The characterization of this extreme case will be cov-

ered in Section 2.3.3. With this contour map of the potential ratios, the only independent

tensor component remaining unknown is the amplitude of σxx.

Conductivity tensor component amplitude
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Figure 2.14. Contour map of the factor g as a function of the conductivity
component ratios σyy/σxx and σxy/σxx. Once g is determined, the conduc-

tivity component amplitude can be calculated with σxx = g
(

σyy

σxx
, σxy

σxx

)
I

V23·L ,

whereby V23 = V2 − V3 in the first measurement.

The conductivity amplitude represented by σxx can be determined by the potential

difference V23 = V2 − V3 in the first measurement. It can be shown that:

(2.33) σxx = g (σyy/σxx, σxy/σxx)
I

V23L
,

whereby g (σyy/σxx, σxy/σxx) is a unitless scalar. Fig. 2.14 shows the common logarithm of

the numerically calculated factor g as a function of σyy/σxx and σxy/σxx. The range of the

factor g for small anisotropy ratio (σyy/σxx ≤ 1) and weak magnetic field (σxy/σxx ≤ 1)
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limit is g ∼ 106-107 when the current I, potential difference V23 and stripline length L

use SI units. As one example, with the conductivity components ratios σyy/σxx = 0.49

and σxy/σxx = 0.87 as determined in Fig. 2.13, the corresponding factor g is g = 106.1 =

1.26×106. It has to be noted that large value of the factor g may amplify the measurement

error of the potential difference V23, the current I and the stripline length L. Thus the

conductivity tensor component amplitude σxx is expected to have a larger error compared

with the components ratios. It is suggested to use a conventional in-plane planar device

as reviewed in Section 1.1 to examine the amplitude of σxx for consistency check if high

accuracy is needed.

As a summary of the triple stripline method characterization procedures, the full con-

ductivity tensor is extracted with two steps. The first step is determining the anisotropy

ratio A = σyy/σxx and the tangent Hall angle tan θH = σxy/σxx from two measurements.

Measurement (I) applies the current from the left-most stripline contact 1 and measure

the potential ratio of the other two contacts V2/V3, and Measurement (II) applies the

current from the center stripline contact 2 and measure the potential ratio of the other

two contacts V1/V3. Then σyy/σxx and σxy/σxx can be extracted from the parametric plot

of the potential ratios V2/V3 and V1/V3. The second step is determining the conductivity

amplitude from the numerically calculated factor g and the measured potential difference

V23 = V2 − V3, as well as the current I and stripline length L in the first measurement.

For materials with non-equivalent in-plane principal axes x and z, a second triple stripline

device can be fabricated with the device rotated around the vertical axis (y) by 90◦ to
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characterize the 2D conductivity tensor in the y-z cross-section. Combining the charac-

terization results from two such devices, the electrical transport properties such as the

carrier density and Hall mobility in all three directions can be extracted.

2.3.3. Expansion of triple stripline method

As discussed in the last section, the application of the triple stripline method is limited

to materials with small conductivity anisotropy in the weak magnetic field limit, and it

considers only the technologicallly relevant case of a highly conductive substrate. In this

section, we discuss how to expand the triple stripline method to other regimes. Adjusted

structures and measurement setups are proposed to apply this method to thin films with

large or small conductivity ratios and thin films with insulating substrates.

Large or small conductivity components ratios

The major bottleneck limiting the application of the triple stripline method to ma-

terials with large anisotropy or Hall angles lies in the step of extracting conductivity

components ratios σyy/σxx and σxy/σxx from the appropriate plot. As shown in Fig. 2.15,

increasing the two ratios to 10 results in potential ratios V2/V3 and V1/V3 in the order

of 103, in which case the amplitudes of the denominator potentials V2 and V3 become

extremely small, seriously limiting the practical measurement accuracy. To reduce the

relative measurement error, it is required to increase the normalized amplitude of V2 and

V3.

One possible solution to this problem is to reduce the distance between neighboring

stripline contacts. As shown in Fig. 2.11(a) and Fig. 2.12(a), as the conductivity ratios

increase, the equipotential lines get severely compressed or distorted. To increase the
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Figure 2.15. Contour map of V2/V3 (Measurement I), solid line) and V1/V3

(Measurement I), dashed line) as a function of the conductivity anisotropy
ratio σyy/σxx and the ratio σxy/σxx, identical to Fig. 2.13, but for a larger
range..

normalized amplitude of V2 and V3, the voltage contacts on the top edge should be moved

closer to the current contact, i.e., the pitch width, or the distance between neighboring

striplines should be reduced. However, to preserve the validity of the infinite strip model,

it is required that the pitch width between neighboring striplines to be much larger than

the stripline width, which is limited by the fabrication technique of the metal stripline

contacts.

Similarly, for extremely small conductivity tensor components ratios, mainly extremely

small anisotropy ratio σyy/σxx, the equipotential lines are severely stretched in the hor-

izontal direction, resulting in a ratio V2/V3 close to 1. To solve this problem, we can
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increase the distance between neighboring contacts. Again to maintain the infinite strip

model, it is required the stripline pitch width is much smaller than the device width W

and stripline length L.

In practice, the potential distribution and ratios will be calculated for specific device

structures to compare with experimental measurement results. The contour map of the

potential ratios and the factor g can be calculated for triple stripline structure with

increased/decreased stripline pitch width as mentioned above, or even devices with non-

equal pitch widths between the metal striplines. Then the full conductivity tensor can

be extracted with these calculation results and the two measurements as discussed in the

last section.

Insulating substrate: Penta stripline method

For an anisotropic active layer grown on top of an insulating substrate, a penta stripline

method can be applied instead of the triple stripline method. As shown in Fig. 2.16, the

penta stripline device has 5 instead of 3 metal stripline contacts on top surface. The two

measurement setups use the side stripline contact as the ground. With the two potential

ratios V2/V3 from Measurement (I), and V2/V4 from Measurement (II), and the amplitude

of V2 − V3 from the first measurement, the full conductivity tensor can be extracted

following similar procedures as the triple stripline method. To enhance the accuracy,

in the first measurement we can also switch the source current contact and the ground

contact, and measure the two voltage stripline contacts on the right half of the device (V3

and V4), and then take the average of V2/V3 and V4/V3.
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Figure 2.16. Two measurement setups with the penta stripline device. (a)
Apply current I between two side stripline contacts on top and measure
four-point voltages V2, V3 relative to the ground. b) Apply current I from
the center stripline contact and ground the two contacts on two sides, mea-
sure voltages V2, V4 of the stripline contacts between the current source and
ground.

2.4. Triple stripline method: device fabrication

The triple stripline method can be applied to any homogeneous, anisotropic materi-

als that have one principle axis of anisotropy perpendicular to the film. Since all the

dimensions are relative, the film thickness can range from macroscale to microscale,

with the lower limit sets by fabrication techniques. To illustrate the fabrication of

the triple stripline device structure, the III-V compound semiconductor GaAs and the

GaAs/AlGaAs superlattices are chosen as a representative of isotropic and anisotropic

materials, respectively. The growth protocol for the triple stripline devices are designed

to achieve varied conductivity anisotropy ratios. Fabrication procedures and challenges

will be discussed, while the complete device fabrication is yet to be finished.
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Figure 2.17. The growth protocol of GaAs and GaAs/AlGaAs superlattice
based triple stripline devices. The 3 µm thick active layer is lightly doped
(ND = 2 × 1016cm−2) (a) single crystal GaAs with (100) orientation (b)
GaAs/Al0.33Ga0.67As (115 / 15 Å) suplerlattice and (c) GaAs/Al0.33Ga0.67As
(100 / 30 Å). The three different active layers will provide different conduc-
tivity anisotropy ratios.

2.4.1. Growth protocol

Single crystal GaAs with (100) orientation and GaAs/Al0.33Ga0.67As superlattice active

layer with thickness t = 3 µm are grown on top of highly conductive GaAs substrate with

molecular beam epitaxy (MBE). The MBE growth protocols are shown in Fig. 2.17. The

active layer is lightly-doped with ND = 2 × 1016 cm−3, while both the top GaAs cap and

the bottom contact layer below the active layer are heavily doped with ND = 4 × 1018

cm−3 to ensure the ohmic contact quality and uniform potential distribution in the ground

layer. The thickness t = 3 µm is chosen so that the required metal stripline thickness is

reasonable for thermal evaporation. A GaAs/AlGaAs superlattice buffer layer is added
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between the bottom contact layer and the substrate to reduce the dislocation defect

density and provide a smoother growth interface.

Fabrication procedures

There are mainly four fabrication steps, insulation layer SiN sputtering, alignment

marks evaporation, the metal contacts fabrication and finally the GaAs cap layer etching.

Each step contains several processes, as shown in the list below:

(1) Insulation layer

• E-beam lithography for SiN rectangular agrea and alignment marks (Fig. 2.18a)

• High temperature (T = 180 ◦C) Si3N4 sputtering with tSiN = 60 nm and

liftoff

(2) Alignment mark

• Negative photolithography with the alignment mark pattern (Fig. 2.18b)

• Thermal evaporation of Ni/Au = 10/80 nm and liftoff

(3) Metal contacts

• E-beam lithography with the narrow stripline patterns and large contacts

(Fig. 2.18c)

• Thermal evporation of Ni/Au = 30/200 nm and liftoff

• Indium contacts soldering to the substrate on scratched corners and anneal-

ing at 180 ◦C for 60 seconds.

(4) GaAs cap layer etching

• Reactive ion etching (RIE) of the heavily doped GaAs cap layer atop the

active layer.
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Figure 2.18. E-beam and photolithography mask patterns (a)-(c) and
zoom-in for narrow metal stripline evaporation patterns (d).

Figure 2.18 shows the E-beam and photolithography patterns used in the fabrication.

The SiN insulating layer are sputtered for two rectangles (Fig. 2.18a) seperated by a gap

of L = 30 µm (Fig. 2.18d). Both the patterns for insulating SiN layer sputtering and

contacts evaporation (Fig. 2.18c) are fabricated by E-beam lithography. To align the

SiN patterns and metal contacts patterns, one additional metal alignment mark layer is

fabricated by photolithography (Fig. 2.18b), since SiN is too dim under electron beam for

any alignment. The zoom-in view of the narrow metal striplines with width D = 300 nm

and pitch P = 3 µm is shown in Fig. 2.18(d).
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Figure 2.19. SEM images of the metal strip contacts after liftoff with
ebeam lithography bilayer resist consisting of : (a) PMGI + PMMA, (b)
MMA (3000 rpm) + PMMA (4000 rpm) and (c) MMA (2000 rpm) +
PMMA (3000 rpm). The number in the parentheses is the spinning rate,
the lower of which leads to the thicker and more stiff resist layer. The
ebeam lithography pattern line width is set to be W = 250 nm. The lat-
ter two resist combinations have different width for different layers of the
metalization, which may be attributed to the larger undercut and smaller
thickness compared with the first resist combination.

2.4.2. Fabrication challenges and future work

The major challenge in the fabrication procedures is the fabrication of narrow stripline

ohmic contacts. One aspect of this challenge is the patterning of narrow metal striplines,

including the Ebeam lithography, thermal evaporation and liftoff. Another challenge is

the ohmic contact recipe to GaAs and AlGaAs that does not require a high annealing

temperature. Although this challenge has been resolved, the fabrication of the final triple

stirpline device is still yet to be finished and the experimental measurement will be in the

future work.

I) Ebeam lithography and evaporation
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The Ebeam lithography patterning and thermal evaporation of the narrow metal

striplines require a special bi-layer resist structure. The metal stripline thickness required

for the device is around tmetal ∼ 250 nm, as discussed in Section 2.4.1. The bi-layer resist

MMA/PMMA is widely used in e-beam lithography for metal evaporation. However, as

a good rule of thumb, it is required that the lower layer of resist (MMA) should be at

least twice the thickness of the metal to deposit. Thus it requires tMMA >= 2tmetal = 500

nm, which is beyond the thickness limit of MMA resist film, unless a very low spin rate

is used, which results in non-uniform resist. The small thickness of the MMA layer in

the MMA/PMMA bi-layer resist and relative large undercut leads to the widening of the

metal striplines, as shown in Fig. 2.19(b) and (c). The cause of the widening can be attrib-

uted to the fact that metal sources in the boats at two sides of the thermal evaporator (Ni

and Ge) have different incident angles compared with the metal source in the center boat

(Au). As a result, metal atoms evaporated from two side boats can enter the undercut

region of the bi-layer MMA/PMMA resist and create a widened region.

To solve this problem, a thicker and more rigid bi-layer resist PMGI/PMMA is used.

The thickness of PMGI is around tPMGI ∼ 700 nm > 2tmetal. The resulting metal striplines

evaporated are shown in Fig. 2.19(a). To determine the optimal dosage for this bi-layer

resist, a series of dosage tests are performed. As shown in Fig. 2.20, the optimal dosage for

the narrow striplines is dosage = 400 µC/cm2 (Fig. 2.20b), while that for the ears of the

striplines at two ends (designed for a good overlapping with the large area contact pads

patterned with photolithography) is dosage = 300 µC/cm2. With the PMGI/PMMA bi-

layer resist and optimal dosage calibrated in e-beam lithography, uniform narrow metal

striplines with a width reasonably close to the designed width can be evaporated.
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Figure 2.20. Dosage test for PMGI + PMMA bilayer resist. The SEM
images of the metal strips after liftoff with various dosages are shown on
top. The zoom-in images at bottom show that the width of the metal strips
increase with dosage.

II) Non-annealed ohmic contacts

There was great difficulty in creating ohmic contacts with the standard AuGe/Ni

recipe. The AuGe/Ni metalization has been widely used for ohmic contacts to n-type

GaAs and AlGaAs [65–67]. The ohmic contact recipes based on the AuGe/Ni system

require annealing at temperatures higher than 360 ◦C, which is the melting point of the

AuGe eutectic. However, all the metal stripline contacts are measured to be non-ohmic

after annealing.
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The annealing might have caused the failure of the AuGe/Ni based contacts. Large

horizonal and vertical diffusion in high annealing temperature due to the melting of the

contact metals and dissolution of GaAs [68] have been reported. The typical lateral edge

deterioration after annealing at 440 ◦C for two minutes is around 0.19 µm, with the worst

case observed to be around 0.5 µm [69]. The vertical diffusion depth is around 0.2 µm

after annealing [70]. Both the lateral and vertical diffusion distances are comparable to

the pitch width of the narrow striplines. Given the small width and thickness of the

stripline contacts compared with the pitch width, large area, non-uniform defects below

these striplines can be expected.

To avoid the problem of annealing, non-annealed contacts consisting of a small work

function metal layer at the bottom and a highly conductive gold layer on top have been

attempted, including Ti/Au, Al/Au and Ni/Au. The heavily doped GaAs cap layer on top

can potentially form ohmic contacts with metals with small work function, even without

annealing. The Ni (30 nm)/ Au(200 nm) contacts are proven to be ohmic for a thick,

heavily doped GaAs cap layer with tcap = 70 nm. A thinner GaAs cap layer can result in

non-ohmic contacts as well, which may be caused by the depletion near the cap surface

due to surface-trap-induced mid-gap pinning. With the Ni/Au stripline ohmic contacts,

the complete triple stripline devices will be fabricated, and the experimental measurement

will be finished in the future work.

III) T -shaped stripline contacts

Another future improvement to the fabrication procedure is to evaporate T -shape

stripline contacts with SiN mask layer, as shown in Fig. 2.21. With Wtop = 2.5 µm

≫ Wbot = 300 nm, the metal stripline resistance Rmetal is reduced by a factor of 8. Such a
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Figure 2.21. Cross-section view of the triple stripline device with T-shape
narrow stripline contacts. The metal contacts have narrower bottom width
to fit the point contact model, and larger top width to reduce the metal
strip resistance and ensure the uniform potential distribution along the strip
direction.

T -shape metalization can enhance the quality of the contacts by eliminating any residual

resist and can reduce the required metal stripline thickness tmetal, which opens up more

possibilities for ohmic contact recipes.
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CHAPTER 3

Synthesis of anisotropic thin film semiconductors

In this chapter, the synthesis of three artificial thin film semiconductors with anisotropic

in-plane electrical conductivities will be introduced, including aligned carbon nanotube

stripes, 3D-printed graphene-polymer stripes and ion implantation isolated AlGaAs stripes.

Section 3.1 introduces the p-type anisotropic thin film formed by aligned carbon nan-

otube stripes, whereby the aligned conduction channel arrays are fabricated via the

evaporation-driven self-assembly (EDSA) methods. Section 3.2 shows aligned graphene-

polymer stripes fabricated by the three-dimensional printing technology, which also ex-

hibits anisotropic p-type in-plane conduction. Section 3.3 demonstrates the creation of

anisotropic conductivity in both n and p-type bulk crystals such as AlGaAs via ion im-

plantation isolation.

3.1. Aligned carbon nanotube (CNT) stripes

In this section, we demonstrate an approach to fabricate aligned CNT stripe arrays

with large in-plane conductivity anisotropy ratio. In principle, one-dimensional (1D)

nanostructure such as nanowires (NWs) and nanotubes(NTs) can be aligned to form

anisotropic thin film conductors. Theoretically, aligned conduction channel arrays can be

fabricated from any material to create a conductivity anisotropy, as long as the aspect

ratio of length to width is large enough; thus the 1D nanostructures become the natural

candidates for making anisotropic films. Among many different 1D nanostructures that
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have been studied, carbon nanotubes (CNTs) are of particular interest due to their high

and highly oriented electrical conductivity, mechanical strength, and optical properties.

Anisotropic conductivity has been reported for vertically aligned CNT arrays [71], which

can be potentially used as interconnecting materials. However, CNT films with in-plane

conductivity anisotropy had not been heavily studied before this work.

3.1.1. CNT stripe array preparation

Aligned CNT stripe arrays are fabricated with the evaporation-driven self-assembly (EDSA)

method [72,73]. The alignment of CNTs is required to retain the anisotropic conductivity

of individual nanotubes when they form a conducting layer. There are many different in-

growth or post-growth alignment methods for CNTs, and we decided to adopt the EDSA

method since it offers a convenient approach to align electronically monodisperse CNTs

into high-density, large area, homogeneous stripe arrays or thin films [5]. EDSA utilizes

the well-studied “coffee-ring phenomenon”, where particles suspended in a droplet tend

to aggregate at the edges of the drop, forming a ring-like structure. This pinning of the

droplet edge is caused by the frictional force between the substrate and the particle suspen-

sion coupled with accelerated evaporation at the contact line. Electronically monodisperse

semiconductor SWCNTs sorted by density gradient ultracentrifugation (DGU) [74]are

dispersed into specific solutions and by changing the surfactant or nanotube concentra-

tion [5], aligned arrays of isolated stripes with different width and space can be formed

(Fig. 3.1). The pitch width (center-to-center stripe distance, P ) will increase with stripe

width (W ) up to P ∼ 40µm, when the stripes converge into a continuous film [5].
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Figure 3.1. Scanning electron microscopy (SEM) images of aligned single-
wall carbon nanotube (SWCNT) stripes with stripe width of (a) W ∼ 1-3
µm (b) W ∼ 5-7 µm. For each panel, the morphology of stripes is shown in
the top images. Each stripe consists of a group of aligned SWCNT bundles
around 10-15 nm in diameter as shown in the high-contrast SEM images of
a single stripe at the bottom. The wider stripe shows better morphological
uniformity and alignment.

The morphology and alignment of the semiconducting CNT stripes are studied by

scanning electron microscopy (SEM). The CNT stripe width varies from W = 1 µm to

W = 20 µm. Continuous films are not studied here since the conductivity anisotropy

will be weakened by misaligned nanotubes forming a percolating network as the film

thickness increases [5]. Single SWCNTs with diameter around 1 nm twist together to
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form bundles with diameter 10-15 nm, as shown in the SEM images (Fig. 3.1 bottom

panels). The bundles are then aligned into parallel stripes. As the stripe gets wider

the CNT density increases and the uniformity of the stripes improves, as observed from

the top panels of Fig. 3.1. Also, the alignment of CNT bundles are shown to be better

for wider stripes (Fig. 3.1 bottom panel comparison). The stripe width to pitch width

ratio (W/P ) increases almost linearly with stripe width W when W < 10 µm (Fig.3.2b),

however, it stays around 0.5 for W = 10 - 20µm. When W > 20 µm the ratio W/P will

increase again and finally saturates to 1 [5] when W ∼ 40 µm (not shown).

3.1.2. As-grown p-type CNT stripes

Large in-plane conductivity anisotropy is achieved for as-grown p-type CNT stripes.

Aligned stripes are deposited on an insulating substrate, and the four-point method

was adopted to measure the longitudinal resistance between two adjacent gold pads R||

(Fig. 3.2a). The space between these square gold pads is equal to their side length, so

with measured R||, the average longitudinal bulk conductivity along the stripe direction

σ|| = 1/R||d can be calculated, where the average stripe thickness is d = 20 nm as mea-

sured with atomic force microscopy (AFM). Similarly, the effective transverse conductivity

σ⊥ is measured, which is almost zero due to the gap between stripes. Thin films formed

by these aligned as-grown CNT stripes will only conduct in the longitudinal direction,

and stay insulating in the transverse direction.

σ|| increases monotonically with stripe width from W =1 µm to W = 20 µm as shown

in Fig. 3.2(b). The increasing trend is partly due to the increasing stripe width to pitch

width ratio W/P from around 0.25 to 0.5, but the trend continues between 10 µm and 20
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Figure 3.2. (a) Scanning electron microscopy (SEM) images of aligned
CNT stripes deposited on a Si substrate with SiO2 insulating layer. Gold
pads are deposited on top of CNT stripes. The 4-probe method is used
to measure the longitudinal resistance between two adjacent gold pads:
R|| = (V+ −V−)/I. (b) Average longitudinal conductivity σ|| (triangles) for
different width of as-grown p-type CNT stripes. The longitudinal resistance
R|| (circles) for multiple CNT stripes between two gold pads is measured
to be decreasing with increasing stripe width W . The stripe width/pitch
ratio W/P (squares) increases almost linearly when W < 10 µm, and stays
around 0.5 for 10 µm < W < 20 µm.

µm where the ratio stays around 0.5, indicating that the better morphological uniformity

and alignment of wider stripes also help to enhance σ||. Note how the coverage fraction

W/P seems to saturate near 50% in the limit of wider stripes. The measured conductivity

of σ|| = 103 - 104 S/m agrees with that of 148 nm diameter SWCNT bundle (σ|| ∼ 1×103

S/m) [75] and long SWCNT strands (σ|| ∼ 3 × 103 S/m) [76]. Since large σ|| is normally

preferred for electronic and thermoelectric devices, wider stripes or even continuous thin

films are the better choice from the aspect of electrical conductivity. However, a finite
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gap between adjacent stripes is still needed to ensure the insulation in the transverse

direction.

3.1.3. n-type CNT stripe fabrication attempts

Unlike the as-grown p-type CNT stripe arrays, n-type CNT stripes require additional

processing. The as-grown SWCNTs are p-type due to oxygen doping in air. To obtain the

n-type aligned SWCNT arrays, both gate-field modulation and chemical/electrochemical

doping have been attempted. However, air-stable n-type CNT arrays are proved not

achievable with existing technologies.

I) Gate-field modulation

Gate-field modulation can tune the Fermi level in carbon nanotubes and change the

electron/hole density of the CNT conducting channel. It has been reported that n-type

conductance was sometimes observed in a p-type semiconducting SWCNT field effect tran-

sistor at large positive gate voltages, especially in large-diameter tubes [77,78]. Also the

gate-field modulation of the Seebeck coefficient of an individual semiconductor SWCNT,

with a peak S ∼ 260 µV/K at room temperature, has been reported [79]. So we decided

to implement gate-field modulation on the as-grown p-type SWCNT stripes as an attempt

to fabricate n-type CNT stripes.

The device structure (Fig. 3.3 inset) used for gate-field modulation is similar to a

CNT field effect transistor. As-grown p-type SWCNTs are aligned into stripes on SiO2

insulating layer, and gold pads are deposited on top of SWCNT stripes as source, drain

contacts. The channel direction is along the stripe direction. The heavily doped silicon

substrate served as a back-gate.
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Figure 3.3. Longitudinal conductance G|| hysteresis versus gate voltage
from -20 V to +20 V. G|| is determined by taking an I−V curve at each Vg

value plotted above. The device structure is similar to a back-gated CNT-
based field-effect transistor, as shown in the inset. The red arrows depict
the sweep directions. For Vg up to +20 V, the p-CNT channel is still not
pinched off, as indicated by non-zero G||, which may be caused by the much
larger thickness of the CNT stripes compared with the diameter of a single
CNT. The hysteresis is attributed to the injection and trapping/de-trapping
of carriers in the SiO2 at large Vg [8].

The p-type conductance is modulated by nearly a factor of 4 when gate voltage sweeps

from −20 V to + 20 V (Fig. 3.3). The hysteresis of G|| in the gate sweep may be due to the

injection and trapping/de-trapping of carriers in the SiO2 layer at large gate voltages [8].
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Figure 3.4. (a) Microprobe Seebeck measurement set-up compatible with
probe-station measurement. (b) Average longitudinal Seebeck coefficient of
20 µm wide aligned p-type SWCNT stripes under different gate voltages.
The results show that S|| does not depend on gate voltage in the range of
−20 V to 20 V.

Higher gate voltage has been tested but irreversible damage to the 100 nm thick SiO2

insulting layer was caused. The p-type conducting channel does not pinch off at large

positive gate bias up to + 20 V, and that may be due to the fact that the stripe thickness

is 10 times greater than the diameter of individual nanotubes, resulting in a much larger

threshold voltage. To get n-type conductance, even larger gate voltage is needed. That

requires a much thicker SiO2 layer, which reduces the gate field strength. As a result,

gate field modulation seems not to be a good option for tuning the p-type SWCNT stripes

to n-type, unless thinner aligned CNT stripes are fabricated, which might be realized by

adjusting the surfactant and CNT concentration in EDSA.

The effect of gate-field modulation is also illustrated by the longitudinal Seebeck mea-

surement at different gate voltages as shown in Fig. 3.4(b). The average longitudinal
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Seebeck coefficient S|| of the SWCNT stripes with stripe width around 5∼7 µm is mea-

sured with a home-made thin film Seebeck measurement module which is compatible

with probe stations (Fig. 3.4a). A temperature difference up to 15 K is applied to the

two ends of the stripe, and the slope of the longitudinal Seebeck voltage with respect to

temperature difference represents S|| at room temperature (Fig. 3.4b). The positive sign

of S|| confirms the p-type nature of the as-grown SWCNTs. No obvious change of S|| is

observed when gate voltage sweeps from -20 V to + 20 V, indicating that the dominating

carrier type of the conducting channel remains p-type.

II) Post-alignment chemical and electrochemical doping

In addition to the gate-field modulation, other doping schemes which require post-

alignment chemical or electrochemical treatment have also been attempted. Typical n-

type chemical doping of CNTs with alkali metals is achieved under a vacuum environ-

ment, but such chemically doped CNTs are unstable in air. There are several chemical

or electrochemical methods demonstrated for the production of air-stable n-type CNTs,

including physical adsorption of polymers containing electron-donating groups such as

poly(ethyleneimine)(PEI) [80–82], use of metal contacts with low work functions [83],

application of viologens for a direct redox reactions [84], and deposition of a high-κ ox-

ide passivation layer to prevent oxygen doping [85]. Considering the solution used for

alignment might affect the doping efficiency, post-alignment treatment is preferred. For

post-alignment treating the adsorption of PEI may be limited to the top surface of CNT

stripes and the low work function metal contacts are also only in touch with the top

surface; thus we adopt the latter two methods to fabricate n-dope aligned CNT stripes.
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Figure 3.5. Longitudinal Seebeck coefficient S|| measurement for nomi-
nally n-doped aligned CNT stripes of width around 5-7 µm. The as-grown
CNT stripes (black) show p-type Seebeck coefficient + 15.4 µV/K, which
decreases after viologen-doping (red) and decreases further after annealing
(blue) since the annealing assists the dopant diffusion and oxygen desorp-
tion. However, the Seebeck coefficient remains p-type. After exposing to
air for 48 hours the Seebeck coefficient recovers to the value before anneal-
ing (cyan), indicating the original “n-doping” effect was air-stable within
this time scale while the annealing effect disappeared. Another attempt of
n-doping with HfO2 dissipation layer (purple) shows similar reduced p-type
S||.
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Chemical doping of aligned SWCNT stripes with viologens via direct redox reactions

reduces the p-type Seebeck coefficient of as-grown CNT stripes, but cannot produce air-

stable n-type conduction. Neutral viologen solution is separated from charged viologen

solutions by using a reducing agent of sodium borohydride, and then the solution is

dropped onto the aligned as-grown SWCNT stripes to donate the electrons to CNTs.

This method has been demonstrated to successfully transform CNT-thin film transistors

(CNT-TFTs) from p-type to n-type, with remarkable stability sustained in both air and

water [84]. As shown in Fig. 3.5, the longitudinal Seebeck coefficient of the SWCNT

stripes drops from +15.4µV/K to +8.6µV/K after viologen doping, indicating that part

of the SWCNTs are successfully transformed to n-type, while the overall conduction is still

dominated by the remaining p-type CNTs. This might be due to the relative large stripe

thickness (∼ 20 nm) and the large density of the CNTs in our aligned stripes compared

with the random network of CNTs grown by water plasma chemical vapor deposition

(CVD) as reported [84].

Another electrochemical n-doping approach with a HfO2 dissipation layer deposited

onto CNT stripes using atomic layer deposition (ALD) is also tested. This method should

work in principle in two aspects to converting the pristine p-type CNTs to n-type. First,

the annealing in the vacuum chamber during the ALD process should desorb the oxy-

gen atoms near the nanotube surface, making the nanotube more intrinsic. This ef-

fect is demonstrated by the drop of longitudinal Seebeck coefficient from +8.6µV/K to

+4.7µV/K after annealing and restoration to +8.8µV/K after exposing to air for two

days (Fig. 3.5). The Seebeck coefficient does not drop further, which might be because the

desorption of oxygen atoms is not complete due to the relatively high density of the CNTs
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in the stripes. Second, the deposited HfO2 layer should prevent the oxygen absorption

and the positive fixed charges near the CNT/HfO2 interface, which are introduced by the

deficiency of oxygen atoms in HfO2, should bend the energy band of electrons in CNTs

downward and function as an inherent positive gate voltage, shifting the conduction at

zero gate bias toward n-type. However, similar to the gate-field modulation, the effect

of the positive fixed charge in the HfO2 layer is not obvious, with longitudinal Seebeck

coefficient only dropping by 0.2µV/K after HfO2 doping (Fig. 3.5 blue and purple curve

comparison ).

The post-alignment doping attempts fail to transform all the SWCNT stripes from

p-type to n-type, which may be caused by the dense structure of the twisted CNT bundles

in the relatively thick SWCNT stripes. The diffusion of viologen in chemical doping and

the electrical modulation by gate voltage or the positive fixed charges in the oxide layer

are both limited to the CNTs near the top surface of the stripes. Pre-alignment doping

might prove to be a better option for n-type doping of aligned CNT stripes or thin films.

However, the stability of the doping during the solution-based alignment procedures will

be a challenge.

In summary, we have achieved functioning p-type as-grown SWCNT stripe array,

with zero transverse conductivity σ⊥ ∼ 0 and average longitudinal conductivity up to

σ∥ ∼ 4 × 103 S/m. However, attempts for n-type air-stable stripes fabrication including

gate-field modulation, chemical doping, and electrochemical doping after alignment are

not successful. p-type CNT thin films formed by aligned stripes fabricated via EDSA can

have extremely large in-plane conductivity anisotropy ratio, and can be combined with

other n-type anisotropic thin film semiconductors to form advanced device structures.
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3.2. 3D-printed graphene-polymer stripes

Three-dimensional printed graphene (3DG), is a combination of 3D polymer printing

which serves as a matrix, and interspersed graphene flakes. 3DG has recently invoked

new interests in both acdemia [86–88] and industry. The direct writing technique of 3D

printing uses viscoelastic liquid material ink made of molten or water solution [86,87] of

graphene/polymer mixture, which quickly solidifies after extrusion and can be deposited

layer by layer to form 3D objects. However, the polymer component can deteriorate the de-

sired intrinsic properties of graphene. High graphene content ink (60 vol%) [87] has shown

better electrical performance compared with other graphene [86,88] or carbon-based 3D

conductive ink [89,90], and is promising for flexible electronics and 3D electronics.

This section studies the anisotropic electrical transport properties of aligned 3DG

stripes. The electrical conductivity of the high content 3DG has been previously charac-

terized at room temperature for different particle loadings, annealing temperatures, tip

diameters, strain and bending cycles [87]. The results fit well with the shear-induced

flake alignment model, indicating that each printed fiber can have anisotropic properties

between the directions along and transverse to the fiber. Since each layer is formed by

multiple fibers stitching together, the thin film is expected to exhibit overall anisotropic

conductivity. In this Section, transport properties such as the conduction mechanism,

the carrier type, and the temperature dependence are studied to help achieve a better

understanding and further optimization of the electrical properties of 3DG.
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Figure 3.6. The bottom and top surfaces of 3DG thin films printed with
nozzle diameter (a) D = 100 µm, (b) D = 200 µm, (c) D = 400 µm and
(d) D = 800 µm. The stripe width of the printed film is roughly equal to
the nozzle diameter. The top surface is corrugated, and the width of the
grooves between adjacent stripes increases with the nozzle diameter D.
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3.2.1. Aligned 3DG stripes preparation

Single-layer thin films of aligned 3DG stripes are printed using the three-dimensional

printing technology with various nozzle diameters. The 3DG ink with 60 vol% graphene

used in this study is the same as the one in Ref. [87]. Aligned fibers are printed and closely

stitched together to form a single layer thin film with nozzle diameters D = 100, 200, 400

and 800 µm. As shown in Fig. 3.6, the stripe width is roughly consistent with the nozzle

diameter.

Different surface roughnesses are observed for the top and bottom surfaces of the

printed 3DG thin films. The bottom surfaces are relatively smooth, with the adjacent

stripes closely stitched together to form a continuous flat surface, as shown in the left

column of Fig. 3.6. The top surfaces, on the contrary, have gaps between neighboring

stripes, as shown in the right column, and thus have a larger roughness. Figure 3.7

compares the top and bottom surface roughness profiles. The depth of the deepest valley

Rv of the top surface is much larger than that of the bottom surface. However, it is still

within 25% of the film thickness t, which is consistent with the fact that the gaps do not

penetrate the thin films.

The roughness difference of top and bottom surfaces can be attributed to ink spreading

before it dries. The bottom interface of the thin films should be in direct contact with the

glass slide substrate during the printing. The ink spreads horizontally before solidifying,

resulting in a film thickness t less than 50% of the nozzle diameter (Fig. 3.7), and also a

relatively smooth bottom surface. The spreading of the 3DG ink will reduce the anisotropy

of the 3DG stripe arrays. In the extreme case, the ink spreads fast enough to form a

continuous, isotropic thin film, and the stripes will not be able to be observed. The fact
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Figure 3.7. The (a) bottom and (b) top surface profile of 3DG films printed
with nozzle diameters D = 100, 200, 400 and 800 µm. The film thickness
t is typically around half of D, due to the ink spreading before drying up.
The top surface shows a much larger roughness compared with the bottom
surface, as indicated by the depth of the deepest valley Rv in the figure
legend.

that the stripes can be clearly observed and that the top surfaces have gaps, indicate the

extent of the ink spreading.

3.2.2. Characterization method

To measure the conductivity anisotropy and magneto-transport properties of these thin

films, square samples with dimension 5 × 5 mm2 are cut, and eight silver paste contacts

are placed at the corners and center of edges. The silver paste contacts are made in a

way that the edge of the thin film is entirely covered in the vertical direction to minimize

measurement error. The samples are measured with lock-in amplifiers in a cryostat that

provides the capabilities of temperature sweep (T = 2 ∼ 300 K) and magnetic field sweep

(B = 0 ∼ 5 T).
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Figure 3.8. The anisotropic van der Pauw measurement contact configura-
tions and results for the 3DG film printed with nozzle diameter D = 100 µm,
measured at T = 300 K. The resistance anisotropy AR = RAD,BC/RAB,DC is
measured for different combinations of the four contacts, and the resistivity
anisotropy Aρ = ρyy/ρxx is calculated via anisotropic scaling and conformal
mapping. The consistency in Aρ of different configurations indicate the va-
lidity of the anisotropic van der Pauw method. Note for four edge center
contacts in (d), AR = 1 is expected independent of Aρ. The deviation from
1 can be partially attributed to the contact displacement.

The resistivity or conductivity anisotropy of the 3DG thin films is measured with the

anisotropic van der Pauw method [91]. The 3DG films have known principal axes of

the anisotropic conductivities, i.e., the longitudinal direction x along the stripes, and the

transverse direction y perpendicular to the stripes, thus the in-plane resistivity can be
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represented by a diagonalized tensor

(3.1) ρ =

 ρxx 0

0 ρyy

 .

With known resistivity anisotropy Aρ = ρyy/ρxx, the anisotropic, square sample can be

scaled with a coordinate transformation to an isotropic, rectangular equivalent sample,

which can be further transformed into the upper half plane with a conformal map, as

shown in Section 2.2.1. Thus any four point contacts A,B,C,D on the sample periphery

used for the conventional van der Pauw method will be mapped into four positions on

the real axis of the upper half plane, from which the corresponding four-point resistance

ratio can be readily calculated. Inverting this process, the resistivity anisotropy and the

resistivity tensor components can be extracted from the measured van der Pauw resistance

anisotropy.

The consistency of the resistance anisotropy is checked with the anisotropic van der

Pauw method , using various combinations of contact configurations. Strictly speaking,

the van der Pauw method can only be used for homogeneous and uniform resistive layers.

The 3DG films are not perfectly uniform electrically conducting layers due to contact

resistance between adjacent stripes and different width and depth of the gap between

stripes. But as long as the number of strips is large within the area that is measured, the

layer can be effectively approximated as an homogenoeus anisotropic conductor. Fig. 3.8

shows that the resistivity anisotropy Aρ extracted from the van der Pauw resistance

anisotropy AR measured with different contact configurations are highly consistent. Note

for Fig. 3.8(d), the resistance ratio is expected to be AR = 1 regardless of the resistivity



104

anisotropy Aρ, and achieves this value to within 16%. However this orientation cannot be

used to deduce Aρ. The deviations in the measured AR values may be attributed to the

finite size of the contacts, as well as geometric displacement of the point contacts away

from the edge centers.

3.2.3. Results and discussion

Conductivity anisotropy and temperature dependence

The anisotropic resistivity of the 3DG thin film samples is measured in a tempera-

ture range from T = 300 K down to 4 K (Fig. 3.9a). The measured room temperature

resistivity along the fiber direction (x-direction) is ρxx ∼ 0.2 - 0.3 Ω·cm, consistent with

the longitudinal resistivity measured with open-mesh cylinders [87]. For all samples, the

longitudinal resistivity along the x-direction (ρxx) is smaller than the transverse resistivity

in the y-direction (ρyy), which is also consistent with the shear-induced flake alignment

description demonstrated in Ref. [87]. The reorientation and alignment of the graphene

flakes along the direction of flow, i.e., x-direction, leads to fewer graphene/polymer junc-

tions on the conduction path compared with the transverse direction, and thus smaller

resistivity in the longitudinal direction than the transverse direction.

The resistivity anisotropy ratio A = ρyy/ρxx shows negligible temperature dependence.

As shown in Fig. 3.9(b), the resistivity anisotropy ratios are almost constant ranging from

Aρ ∼ 1.8 - 2.3 for varied nozzle diameters. One exception is the 3DG film printed with the

nozzle diameter D = 800 µm, which has a 20% decrease in the transverse resistivity ρyy

as the temperature decreases from 300 K to 140 K, while the longitudinal resistivity ρxx

maintains a nearly constant value. This behavior may be attributed to the wide and deep
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Figure 3.9. The temperature dependence of (a) the anisotropic resistivity
components ρxx, ρyy and (b) their ratio Aρ = ρyy/ρxx for 3DG thin films
printed with different nozzle diameter D. Both ρxx and ρyy slightly increase
as the temperature decreases from T = 300 K to 4 K, except for ρyy for the
thin film with nozzle diameter D = 800 µm, which reduces by about 15%
when the temperature decreases from T = 300 K to 140 K. The resistivity
anisotropy ratio is robustly temperature independent for most samples, with
the exception described above for the D = 800 µm at higher temperatures.

gaps between stripes for the D = 800 µm sample. As the temperature decreases, the film

may contract, possibly, reducing the gap width and enhancing the transverse conductivity,

while the longitudinal direction is not much affected. For other samples that have smaller

gap width and depth, or for the D = 800 µm sample at a temperature below 140 K,

the small gap may be not blocking the transverse conduction, thus ρyy exhibits similar

temperature dependence to ρxx.

There is no clear relation between the nozzle diameter D and the resistivity anisotropy

Aρ = ρyy/ρxx. As shown in Fig. 3.9 (b), the D = 200 µm sample has the maximum resis-

tivity anisotropy Aρ = 2.3, while the D = 400 and D = 800 µm samples share the same

minimum resistivity anisotropy Aρ = 1.8. This seems to contradict the shear-induced
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alignment model, which predicts that the graphene flakes are aligned near the tip wall

and not aligned near the center; the volume ratio of the aligned graphene/polymer flakes

would be expected to decrease with increasing nozzle diameter, leading to a decreasing

resistivity anisotropy ratio. The inconsistency may be attributed to the ink spreading

and the gap formed between stripes, as well as possible use of different pressures and flow

rates for the different nozzle diameters.

The resistivities of the printed 3DG films show unconventional behavior with only

weak temperature dependence. As shown in Fig. 3.9(a), the resistivity increases by less

than 15% when temperature decreases from 300 K to 4 K. To better understand the

temperature dependence, the corresponding anisotropic conductivities σxx = 1/ρxx and

σyy = 1/ρyy are calculated and fitted with different models. According to the fitting,

the electrical conductivity of printed 3DG films cannot be explained by the thermally

activated conductivity or the variable range hopping conductivity [92]. Instead, the vast

amount of interconnects among graphene flakes, separated by the dielectric barrier in the

graphene/polymer composite, may lead to a conductivity that is mainly stipulated by the

fluctuation-induced tunneling of charge carriers through the contact junctions [93].

Fluctuation-induced tunneling conduction is a conduction mechanism present in dis-

ordered systems formed by large conducting regions separated by small insulating bar-

riers [93]. In these systems, the overall conduction is dominated by the charge transfer

across the insulating gaps. Thermal fluctuations can cause excess or deficit charge to build

up on the junction faces, creating a strong local electric field due to the small junction

width of the conducting regions at the junction. The thermal fluctuation and associated
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local electric field change will affect the tunneling conductivity through the potential bar-

rier at the junction and introduce a temperature dependence that deviates from both the

simple activation model and the variable range hopping model.

With an approximated parabolic potential barrier [94], the conductivity dependence

on the temperature of 3DG films can be expressed as [93]:

(3.2) σ = σ0 exp

(
− T1

T + T0

)
,

where σ0 is a parameter that depends only weakly on temperature, and T1 and T0 are

material dependent characteristic temperatures defined as [95,96]:

(3.3) T1 =
8ε0
e2kB

(
AV 2

0

w

)
,

and

(3.4) T0 =
16ε0ℏ

π(2m)1/2e2kB

(
AV

3/2
0

w2

)
,

where ε0 is the vacuum permittivity, 2πℏ the Planck’s constant, m the carrier mass, e

the electron charge, A the surface area of the tunneling junction, w the potential barrier

width and V0 the potential barrier height. When the carrier mass m and potential barrier

height V0 are known, the potential barrier width w can be calculated from the ratio of T0

and T1:

(3.5) w =
T1

T0

2

πχ
.

Here χ is the tunneling constant defined by χ =
√

2mV0/ℏ.
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Figure 3.10. The anisotropic conductivities versus temperature fitted by
fluctuation-induced tunneling model for 3DG thin films printed with differ-
ent nozzle diameter D. The median value of the tunneling junction width
w is proportional to the ratio T1/T0. Note for the D = 800 µm sample,
only the lower half of the temperature range (T = 4 K to 140 K) is fitted.

Figure 3.10 shows that the anisotropic conductivities for samples printed with varied

nozzle diameters are well fitted by the fluctuation-induced tunneling conduction model,

with the three fitting parameters σ0, T1 and T0 listed in Table 3.1. Since we do not have

the data to observe the distribution of tunneling junction parameters, the fitted param-

eters should be interpreted as an indicative of the median values of these parameters.
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According to Eq. (3.5), the median value of the junction width w is proportional to the

ratio T1/T0. Table 3.1 shows that the fitted ratio T1/T0 for longitudinal and transverse

conductivities of each sample are consistent. The similar ratio indicates the samples have

similar median junction width in the longitudinal and transverse directions, which is phys-

ically reasonable and can be regarded as supporting evidence of the fluctuation-induced

tunneling conduction in the measured 3DG films. More information about the hole ef-

fective mass in the majority graphene and the molecular orbital energies of the minority

polylactide-co-glycolide of the liquid ink used are needed to determine the accurate values

of the junction width.

Table 3.1. The fluctuation-induced tunneling model fitting parameters for
the temperature dependent anisotropic conductivities in Fig. 3.10.

σ0 (S/cm) T0 (K) T1 (K) T1/T0

D = 100 µm σxx 4.91 124 27.0 0.22

σyy 2.40 94.6 17.3 0.18

D = 200 µm σxx 4.26 72.0 11.5 0.12

σyy 1.90 111 18.5 0.17

D = 400 µm σxx 4.95 51.9 7.26 0.14

σyy 2.64 19.5 2.16 0.11

D = 800 µm σxx 4.42 137 28.8 0.21

σyy 2.37 92.2 15.3 0.17

Magnetotransport properties

Mixed n- and p-type conduction with p-type dominating is observed in the printed 3DG

films in the magnetotransport characterization. The Hall effect and the magnetoresistance

measurement have been performed in a continuously varying magnetic field perpendicular

to the thin film surface, with the maximum field strength up to Bmax = 5 T. Electric
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Figure 3.11. The Hall resistance Rxy measured at T = 300 K and T = 4
K for 3DG films printed with varied nozzle diameter D. At 300 K, Rxy is
smaller than the noise level due to the high carrier concentration. At 4 K,
the overall positive slope of Rxy at large B indicates that p-type conduc-
tion dominates the electrical conduction of the 3DG films. However, the
concavity at weak magnetic field can be evidence that n-type conduction
of electrons also contribute to the total conduction. The larger amplitude
of Hall resistance for thinner films with smaller D is mainly due to their
smaller thickness.

transport properties including the predominant charge carrier type, carrier concentration,

and mobility can, in principle, be extracted from the magnetotransport measurement

results.
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Figure 3.11 shows the Hall resistance Rxy dependence on the magnetic field strength

at T = 300 K and T = 4 K for 3DG films printed with varied nozzle diameter D. At

T = 4 K, all the curves are almost linear in the strong magnetic field (B > 2.5 T) with a

positive slope, indicating that p-type conduction of holes dominates the overall electrical

conduction. However, the concavity and negative Rxy in weak magnetic field (B < 2 T)

reveals that there also exists mixed n-type conduction contributed by electrons, causing

non-linear Rxy as B varies. The upper B-field bound for the concavity varies with the

mobility of the minority n-type carriers and majority p-type carriers. At T = 300 K, the

concavity covers the entire range of B = 0 - 5 T, and thus no slope or carrier density can

be extracted.

Figure 3.12 shows the magnetoresistance along longitudinal (Rxx) and transverse di-

rections (Ryy) for all samples measured at T = 300 K and T = 4 K. Both Rxx and Ryy

slightly increases with B-field in a quasi-parabolic trend. The anisotropic resistance ratio

Ryy/Rxx slightly decreases by 1 - 2% as B increases from 0 to 5 T. Note the resistance

anisotropy AR is different from the resistivity anisotropy Aρ = ρyy/ρxx.

The mixed conduction of holes and electrons has been analyzed with the multi-carrier

model [97] and Fourier-domain mobility spectrum analysis (FMSA) [98]. However, these

Drude model based analysis technique cannot provide a proper fitting to all the con-

ductivity tensor components, revealing their limitation in disordered systems whereby

fluctuation-induced tunneling conduction dominates the overall conduction. A further

theoretical study is needed to understand the Hall effect and magnetoresistance in such

disordered systems with mixed conduction.
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Figure 3.12. The magnetoresistance (top panels) along the longitudinal
(Rxx, solid squares) and transverse directions (Ryy, open circles) for 3DG
thin films printed with various nozzle diameters D and the measured resis-
tance anisotropy AR = Ryy/Rxx (solid lines, bottom panels) at (a) T = 300
K and (b) T = 4 K. AR only decreases by 1 - 2% as the magnetic field B in-
creases from 0 T to 5 T. Note AR is different from the resistivity anisotropy
Aρ = ρyy/ρxx.

A crude estimation of the effective hole density and mobility are obtained from the

positive slope of Rxy in the strong magnetic field near B = 5 T and the conductivities at

zero magnetic field. As shown in Table 3.2, the effective hole concentration is estimated

to be around 6.5 ∼ 9.5 × 1019 cm−3 at T = 4 K. The corresponding hole mobilities in the
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longitudinal and transverse directions for single-layer 3DG films exhibit a small amplitude

in the order of 1 cm2/Vs.

Table 3.2. The low temperature (T = 4 K) hole density p and anisotropic
mobilities µx, µy estimated from the slope of Rxy near B = 5 T.

D (µm) t (µm) p (cm−3) µx (cm2/V·s) µy (cm2/V·s)
100 70 7.7E18 3.3 1.7

200 130 9.5E18 2.4 1.1

400 190 8.4E18 3.3 1.8

800 420 6.5E18 3.5 1.9

In summary, the conductivity of the 3DG films shows semiconductor behavior with a

weak temperature dependence, which can be well fit by a fluctuation-induced tunneling

conduction model. All the 3DG films printed with nozzle diameters D = 100, 200, 400

and 800 µm exhibit higher conductivity in the longitudinal direction than the transverse

direction. The conductivity anisotropy ratio is measured to be temperature-independent,

in the range of Aρ ∼= 1.8 - 2.3, and appears to be independent of the nozzle diameter.

The magnetotransport measurement reveals mixed conduction of electrons and holes with

p-type conduction from holes dominating at high B. However, the classic Drude model-

based parallel conduction analysis technique cannot explain the data well, so a further

theoretical study on the disordered systems with fluctuation induced tunneling conduction

dominating is needed to fully understand the magnetotransport of the 3DG thin films.

3.3. Ion implantation-induced anisotropy in semiconducting layers

This section demonstrates the synthesis of anisotropically conducting AlGaAs thin

films with both n- and p-type conduction, by defining micron-scale parallel conduction
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channel arrays using ion implantation isolation. Unlike CNTs and graphene-polymer

composites which are p-type as-grown and difficult to maintain as n-type in air, bulk

semiconductors can be conveniently doped to either p- or n-type, and the doping is stable

in air, making them better candidates for n-type anisotropic conductors. AlGaAs is

chosen as a representative of the conventional bulk semiconductors due to its moderately

large Seebeck coefficient [99] for both n and p type materials, which are intended for

thermoelectric applications that will be introduced in the next chapter.

The ion-implantation isolation technique is adopted to define the micron-scale con-

duction channel arrays that can achieve a large in-plane conductivity anisotropy. Ion

implantation is an essential process for modern compound semiconductor devices and

circuits, and has been proven to be an efficient and practical approach to isolate closely

spaced devices [100] with selective masking of the semiconductor surface. The isolation

results when free carriers are trapped by deep level centers formed by the implantation

process. The conduction channels separated by implanted isolation regions will conduct

only along the channel direction and are highly insulating in the direction transverse to

the implanted channels. We fabricate 10 µm-wide proton-implanted channels separated

by 10 um-wide conduction channels with an overall 20 µm pitch [101,102]. A conductiv-

ity anisotropy ratio up to 104 and a low longitudinal resistivity along the channel direction

have been observed, leading to an AlGaAs thin film with significant in-plane conductiv-

ity anisotropy that can be doped either n-type or p-type. The work in this section is

published has been SPIE conference proceedings [103].
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Figure 3.13. (a) Schematic of the Al0.42Ga0.58As thin film and proton ion
implantation. The doped Al0.42Ga0.58As thin film is electrically isolated
from the substrate with the GaAs/Al0.42Ga0.58As superlattices. The SiO2

mask layer is patterned into stripes by photolithography and wet etching,
and defines the protected and damaged regions of Al0.42Ga0.58As in proton
(H+) implantation. The strip width and separation between strips are both
10 µm. (b) The etched L-shaped Hall bar of ion-implanted Al0.42Ga0.58As
and resistance measurement set-up. An AC current I is sent through the
Hall bar and the voltage drops Vxx and Vyy can be measured with the
voltage contacts on the side, from which the transverse (ρ⊥) and parallel
(ρ∥) resistivities to the ion-implanted strip direction can be determined.

3.3.1. Method

The synthesis consists of the thin film growth and the ion implantation isolation. The

AlxGa1−xAs thin films are fabricated by molecular beam epitaxy (MBE) on a semi-

insulating GaAs (100) substrate, undoped AlxGa1−xAs buffer layer and GaAs/AlxGa1−xAs

superlattice electrical isolation layer, as shown in Fig. 3.13(a). The stoichiometric alu-

minum fraction x = 0.42 is chosen to maximize the Seebeck coefficient by approaching

the 8-fold degeneracy among the Γ, X, and L valleys [99]. The Al0.42Ga0.58As layer is then
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doped with silicon (ND = 5× 1016 cm−3) or carbon (NA = 1.5× 1018 cm−3) to create the

n-type or p-type layers, respectively. A thin GaAs cap layer is grown on the top surface

to prevent oxidation in air. After the sample growth, a thick SiO2-mask layer is grown by

plasma-enhanced chemical vapor deposition (PECVD) and patterned into narrow parallel

strips with photolithography and wet etching, whereby the strip width and separation are

both 10 µm, leading to a 20 µm wide pitch. Proton implantation with energy E = 50 keV

and dosage D = 5× 1015 cm−2 is used to damage the crystal structure of the unprotected

regions between neighboring SiO2 strips, aiming to increase the resistivity transverse to

the strip direction while preserving low resistivity along the strip direction.

After proton implantation and removal of the SiO2-mask layer, Al0.42Ga0.58As thin

films are mesa etched into the L-shaped Hall bar pattern for resistivity characterization,

as shown in Fig. 3.13(b). Metalization contacts are fabricated by thermal evaporation

of Ni(5 nm)/Ge(25 nm)/Au(100 nm)/Ni(20 nm)/Au(100 nm) [65] or e-beam evapora-

tion of Pt(5 nm)/Ti(5 nm)/Pt(30 nm)/Au(120 nm) [104] contacts for n-type or p-type

AlGaAs, respectively. The n-type contacts are annealed at 430 ◦C for 5 minutes in 5%

H2: N2 forming gas to ensure the ohmicity, while the p-type contacts are already ohmic

as-deposited provided that the contacting area is protected by the SiO2 mask layer during

the proton implantation. To eliminate the effect of contact resistances, an AC four-point

measurement is performed by applying an AC current I through the L-shaped Hall bar

and measuring the voltage drop along (Vyy) and transverse (Vxx) to the implanted ar-

ray of channels. The resistivity in two directions can be determined by ρ∥ = GdVyy/I

and ρ⊥ = GdVxx/I, where d is the thickness of the AlGaAs layer and G = W/L the

geometrical correction factor.
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Figure 3.14. SRIM [9] simulated proton and vacancy defect profile for
different proton energies when the Al0.42Ga0.58As layer is 500 nm thick.
The dosage used for this simulation is D = 5 × 1015 cm−2.

3.3.2. Results and analysis

Proton implantation dosage and energy

The proton implantation dosage is chosen to maximize the resistivity of the isola-

tion regions. Typically as the dosage increases, the implanted material resistivity will

first increase, then saturate when the conduction is shorted by the highly resistive but

nonetheless parallel conducting semi-insulating substrate, and then the resistivity will
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again decrease when the defect concentration is high enough to permit hopping con-

duction [101,102]. The optimal dosage within the resistance saturation plateau is pro-

portional to the carrier concentration in the doped layer of interest [101]. The dosage

D = 5 × 1015 cm−2 in this experiment is scaled from the reported optimal dosage by

Lippen et al. [101] based on the carrier concentration and film thickness changes.

The stopping and range of ions in matter (SRIM) simulation [9] is used to determine

the optimal proton implantation energy. The protons are known to create point defects

including vacancies and interstitials in AlGaAs due to the low stopping power for protons.

As shown in Fig. 3.14, the depths of the vacancy peak and proton peak are predicted

to increase with proton energy while the peak amplitude remains almost the same. To

maximize the transverse resistivity of the Al0.42Ga0.58As layer, the largest average vacancy

and proton density between d = 0 and d = 500 nm is needed. On the other hand, it is

beneficial to minimize the defect density beyond d = 500 nm to avoid damaging the

underlying layer and thus enable the fabrication of a multi-layer artificial anisotropic thin

film. The optimal proton energy satisfying these two criteria is around E = 50 keV as

observed from Fig. 3.14.

Proton distribution profile

The theoretical SRIM simulation of the proton distribution is compared to the exper-

imental results measured by secondary ion mass spectrometry (SIMS) in Fig. 3.15. Two

different samples are fabricated : a) as-grown p-type Al0.42Ga0.58As (NA = 1.5 × 1018

cm−3) and b) annealed (430 ◦C, 5 minutes) n-type Al0.42Ga0.58As (ND = 5 × 1016 cm−3).

Since the doping density is much lower than the proton and vacancy peak density, the

doping is not expected to affect the proton or vacancy distribution significantly. The
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Figure 3.15. The SRIM simulation of the implanted proton distri-
bution compared to SIMS measurement of (a) As-grown p-type doped
Al0.42Ga0.58As and (b) annealed n-type doped Al0.42Ga0.58As. The
measured Al and Ga fraction peaks/valleys indicate the depth of the
GaAs/Al0.42Ga0.58As superlattice barrier below the doped Al0.42Ga0.58As
layer. The peak proton density agrees with simulation for the as-grown
sample, and is smaller for the annealed one. Integration of the proton den-
sity over depth indicates that more than 50% of the implanted protons
diffused towards the surface and more than 30% diffused out of the sample.

depth of the measured Ga and Al fraction peaks and valleys indicate deviations from the

nominal thickness for the Al0.42Ga0.58As layer, resulting in dp = 565 nm and dn = 416 nm,

for the p- and n-type layers, respectively. From Fig. 3.15(a) we observe that the SIMS

measured proton peak density and full-width at half-maximum (FWHM) agree well with

the SRIM simulation results. The SIMS measured peak location is 100 nm deeper than

the simulation, which may be caused by a small shift in the actual implantation energy.

The post-implantation anneal causes protons to spatially redistribute, resulting in a

more dispersed and lower peak. As shown in Fig. 3.15(b), the measured proton peak

density after anneal is only around 1/7 of the simulated value, and the measured FWHM
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= 252 nm is 56% wider than the simulated 162 nm. The hydrogen peaks near the surface

(d < 75 nm) are due to the hydrogen atoms adsorbed on the surface being driven into

the sample by ion beams during SIMS, so only the hydrogen detected for d > 75 nm is

due to proton implantation. The sheet density of implanted protons can be obtained by

integrating the SIMS hydrogen density with depth for d > 75 nm, which is H2D, as-grown

= 4.49×1015 cm−2 for the as-grown sample a) and H2D, annealed = 1.87×1015 cm−2 for the

annealed sample b), respectively. We observe that the pre-anneal sheet density is close

to the implantation dosage D = 5× 1015 cm−2, while after annealing only around 42% of

implanted protons remain in depth d > 75 nm, with the remainder likely having diffused

towards and even out of the surface. In spite of the large exodus of hydrogen ions from

the implantation volume, there remains a large post-anneal resistance enhancement in

the implanted regions, implying that the implantation process is sufficiently effective in

increasing resistivity that the diffusion of H atoms and possibly even healing of some of the

vacancy defects are nonetheless insufficient to restore the conductivity of the implanted

regions.

Conductivity anisotropy

Table 3.3. The post-anneal resistivity and anisotropy ratio at T = 300 K.

ρ∥ (Ω·m) ρ⊥ (Ω·m) ρ⊥/ρ∥

p-Al0.42Ga0.58As 3.0 × 10−3 > 150 > 5 × 104

n-Al0.42Ga0.58As 2.0 × 10−2 > 200 > 1 × 104

The post-anneal resistivity for the longitudinal (parallel to the channel arrays) and

transverse (perpendicular to the channel arrays) directions at room temperature are shown

in Table. 3.3. For the transverse direction, the sheet resistance may not represent the
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Figure 3.16. The temperature-dependent resistivity of pristine and ion-
implanted (a) n-type and (b) p-type Al0.42Ga0.58As. For the ion-implanted
samples, only the longitudinal resistivity along the conduction channel di-
rection (ρ∥) is plotted, the transverse resistivity (ρ⊥) is at least four or-
ders larger and cannot be accurately determined due to parallel conduction
through the highly insulating substrate. The temperature ranges span from
room temperature to the lowest temperature where contacts fail, which is
around 200 K for n-type and lower than 10 K for p-type. The room tem-
perature longitudinal resistivity increases only by a factor of 3.3 and 3.6 at
room temperature after proton implantation and annealing, indicating that
extreme conductance anisotropies can be realized by ion-implantation iso-
lation.

conduction within the implanted AlGaAs layer, but instead is consistent with parallel

conduction through the semi-insulating GaAs substrate, thus leading to a non-uniform

resistance when choosing different voltage contact pairs. Here only the minimum value

of the corresponding transverse resistivity is listed. The results show that the proton-

implanted AlGaAs thin film has a reasonably small resistivity along the strip direction

and orders of magnitude larger resistivity in the transverse direction, with a conductivity

anisotropy ratio σ∥/σ⊥ = ρ⊥/ρ∥ > 104.
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Further insight into the change of longitudinal resistivity after proton implantation is

obtained by measuring the temperature dependence of the resistivity before and after the

ion-implantation. Figure 3.16 shows that the longitudinal resistivity (ρ∥) after proton-

implantation has a similar temperature dependence to the pristine sample resistivity. The

Arrhenius dependence of ln(ρ) vs 1/T for n-type Al0.42Ga0.58As yields a donor binding

energy of ED = 158 meV and ED = 147 meV before and after proton-implantation

for silicon doping, which agree with previously published results, e.g. ED = 150 meV

for Al0.36Ga0.64As [105]. The resistivity of p-type Al0.42Ga0.58As first decreases with de-

creasing temperature, which can be attributed to temperature dependent phonon scatter-

ing [106], and then resistivity increases again as the temperature decreases below about

5 K. The two activation energies EA = 6.4 meV and Ehop = 0.77 meV extracted from

the two different slopes below 200 K are associated with the carbon acceptor binding

energy and nearest-neighbor hopping gap respectively, and the values are consistent with

previous reports EA = 7.8 meV and Ehop = 2.1 meV [107].

After proton implantation and anneal, the longitudinal resistivity amplitude increases

by a factor of 3.3 for n-type Al0.42Ga0.58As and a factor of 3.6 for p-type Al0.42Ga0.58As.

Such a small increase in longitudinal resistivity can be largely attributed to the decrease

in the conduction channel width. The conducting channels and the separation between

adjacent channels are both designed to be 10 µm wide, leading to an expected factor

of 2 increase in ρ∥. However, the actual undamaged conduction channel width will be

even smaller due to the lateral spread and diffusion of the implanted protons and their

associated vacancy and interstitial damage, thus leading to a resistivity increase by slightly

more than the factor of 2. The Seebeck measurement of pristine and ion-implanted n-type
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Figure 3.17. The temperature-dependent Seebeck coefficient of pristine
and ion-implanted n-type Al0.42Ga0.58As. For the ion-implanted samples,
only the longitudinal Seebeck coefficient along the conduction channel di-
rection (S∥) is plotted, the transverse Seebeck coefficient (S⊥) is not mea-
surable.

Al0.42Ga0.58 (Fig. 3.17) also reveals that the Seebeck coefficient measured in the parallel

direction is not significantly reduced (reduction by less than 25%), which indicates the

ion-implanted anisotropic thin films are promising candidate materials for thermoelectric

applications that require both large conductivity anisotropy and large Seebeck coefficient.
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In summary, this section demonstrates an artificial synthesis approach to creating in-

plane conductivity anisotropy in bulk-doped semiconductor films based on proton implan-

tation isolation. A post-anneal conductivity anisotropy ratio up to ρ⊥/ρ∥ = σ∥/σ⊥ > 104

for both n-type and p-type films is achieved at the price of increasing the longitudinal

resistivity by only a factor of 3.3 ∼ 3.6. The increase in longitudinal resistivity may

be reduced by decreasing the ratio of the conducting channel spacer to channel width,

provided that the proton-implanted isolation region remains wide enough to suppress the

transverse conduction. This approach can be readily applied to other semiconductor ma-

terials such as Si, SiGe, Bi2Te3 and other electric and thermoelectric materials that may

lead to novel applications in thermoelectrics.
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CHAPTER 4

p× n-type transverse thermoelectrics: Application of anisotropic

conductors

This chapter introduces transverse thermoelectrics, a paradigm that is a potential

application of anisotropic semiconductors. as well as introducing the “cross-hatched”

artificial approach to fabricating p × n-type structures. Section 4.1 introduces trans-

verse thermoelectrics in general, including the anisotropic Seebeck tensor of anisotropic

semiconductors and transverse thermoelectric devices. The thermoelectric transport and

maximum cooling power density are numerically studied with a normalized notation in

Section 4.2. Then Section 4.3 introduces the model of the p× n-type transverse thermo-

electrics whose Seebeck anisotropy is ambipolar, i.e., p-type in one direction and n-type

transverse, allowing purely transverse thermoelectric transport. Section 4.4 proposes the

potential candidate materials and fabrication approaches for p×n-type transverse thermo-

electrics. Section 4.5 discusses the interconnect model for the anisotropically conducting

n and p layers in cross-hatched p × n structures. Finally, the plan for a p × n AlGaAs

structure is reported in Section 4.6.
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4.1. Introduction to transverse thermoelectrics

4.1.1. Anisotropic Seebeck tensor

It is well known that a temperature difference creates a corresponding electrochemical

potential difference in a homogeneous conductor. The density of electric current j in a

conductor can be represented as a function of the electric field E and the temperature

gradient ∇T [108,109]:

(4.1) j = σ ·E + σ · (S · ∇T )

where E = −∇µ̄, µ̄ = φ + ζ0/e is the electrochemical potential, ζ0 is the chemical

potential energy, e is the electron’s charge, σ and S are the electric conductivity and

Seebeck tensors, respectively. Equation 4.1 can be rewritten as

(4.2) j = σ ·
(
E + ET

)
, ET = −S · ∇T

wehreby ET is the so called thermoelectric field.

For an isotropic medium in the presence of a temperature gradient, a thermo-electromotive

force (thermo-emf) can only be generated by an inhomogeneity [108]. In isotropic media,

the electric conductivity σ and the Seebeck tensor S reduce to scalars σ and S, leading

to a conservative thermoelectric field and zero thermo-emf:

(4.3) E =

∮
ETdl = S

∮
∇Tdl = 0.

In general junctions between two different materials provide the required inhomogeneity.

Therefore conventional thermoelectric devices are based on thermocouples consisting of
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two materials with different Seebeck coefficients and a temperature difference created

between the two junctions of the connected two materials, i.e.,

(4.4) E =

∮
ETdl = SA

∫ x2

x1

∇Tdl + SB

∫ x1

x2

∇Tdl = (SA − SB)(T2 − T1).

However, the generation of thermo-emf is also possible in thermoelectrically homo-

geneous medium, when the thermoelectric properties are anisotropic. Whereas in the

isotropic medium, a temperature difference creates a thermoelectric field lengthways, while

this is not generally true in anisotropic materials, i.e., the thermoelectric field can be non-

parallel to the temperature gradient, ET ∦ ∇T . For simplicity, consider a two-dimensional

conductor with two orthogonal crystallographic axes a and b, the Seebeck tensor can be

represented by a diagonal matrix:

(4.5) S =

 Saa 0

0 Sbb

 ,

and after rotating the Cartesian coordinate system by an angle θ about its origin to reach

the laboratory coordinates x, y, we have:

(4.6) S =

 Sxx Sxy

Syx Syy

 =

 Saa cos2 θ + Sbb sin2 θ (Saa − Sbb) sin θ cos θ

(Saa − Sbb) sin θ cos θ Sbb cos2 θ + Saa sin2 θ

 .

The transverse component of the Seebeck tensor Sxy = Syx = (Saa−Sbb) sin θ cos θ will lead

to a transverse component of the thermoelectric field ET
⊥, which is perpendicular to the

temperature gradient ∇T direction. The non-zero Sxy can have various origins, resulting

in different transverse thermoelectric phenomena, as reviewed in Appendix A. Note that if
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Saa and Sbb have opposite signs, there will be two angles where either Sxx = 0 or Syy = 0,

meaning that an appropriately oriented current can induce a purely orthogonal heat flow.

We call such materials which have a p-type Seebeck in one direction and an n-type Seebeck

in the perpendicular direction p × n-type transverse thermoelectrics, and these will be

discussed in greater detail in Section 4.3. The transverse thermo-emf generated from the

Seebeck anisotropy can be utilized to realize transverse thermoelectric energy conversion

devices that have fundamentally different geometric design and thermoelectric utility than

the conventional longitudinal thermoelectric devices.

4.1.2. Transverse thermoelectric devices

Conventional thermoelectric devices utilize a longitudinal thermoelectric effect [10, p. 1014]

to generate electricity, measure temperature differences, or control the temperatures of

objects, in which the heat flow of interest is everywhere parallel (p-type) or antiparallel

(n-type) to the electrical current flow. Despite their widespread applications, longitudinal

thermoelectrics have limitations in micro-scale on-chip cooling because of the complex-

ity of microscale fabrication [110], and at cryogenic temperatures because of freeze-out

of extrinsically doped semiconductors (Ref. [10], Chapter 1), requiring many stages to

achieve large thermal differences (Ref. [10], Chapter 1) or many thermocouples in series

for large thermo-motive voltages [111]. A transverse component of the thermoelectric

effect [108], whereby the electrical current and heat flow (or temperature gradient) are

no longer parallel or anti-parallel, can, however, be observed for any material with an

anisotropic Seebeck response. Thermoelectric devices which rely on this transverse ther-

moelectric effect can have distinct advantages in all the above operating applications,
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Figure 4.1. (a) Longitudinal (b) Transverse thermoelectric Peltier coolers,
whereby heat flow (Q, white arrows) from cold side (TC) to hot side (TH)
is induced by the applied electrical current density (J , black arrows). The
subscripts x, y denote the directions of Q and J . Qy is parallel/anti-parallel
to Jy in (a), and transverse to Jx in (b).

because of their simple, single-leg implementation and their geometric adaptability to the

required function, as described below.

Figure 4.1 compares a standard double-leg longitudinal thermoelectric device (Fig. 4.1a)

with a single-leg transverse thermoelectric device. Note that the former device requires

two different materials with oppositely signed Seebeck coefficients, comprising two legs,

and two intermediate electrical contacts connecting the n-leg to a metal and then to a

p-leg at the cold junction. The transverse device is single-leg and requires no intermediate

junction, enabling geometric scalability to an arbitrary size, small or large.

The physics of the transverse thermoelectric effect is well-established [10, 108]. In

transverse thermoelectric devices, a temperature gradient can generate a Seebeck voltage
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Figure 4.2. (a) Longitudinal and (b) transverse thermoelectric generators
for large Seebeck voltage generation. To increase the generated Seebeck
voltage V+−V− from a given temperature different TH−TC , the longitudinal
generator requires many thermoelements linked in series, which involves the
arrangement of alternate n and p-legs with increasing junction resistance.
The transverse thermoelectric generator can just increase the length-to-
thickness ratio Lx/Ly.

in the transverse direction, and, conversely, the induced heat flow in the Peltier effect is

transverse to the applied electrical current (Fig. 4.1b) [10]. The transverse Seebeck and

Peltier coefficients can then be defined as:

(4.7) Sxy =
dV/dx

dT/dy
, πyx =

Qy

Jx
,

where Qy, Jx are heat flux density and electric current density, respectively, and the

transverse figure of merit is defined as ZxyT = S2
xyT/ρxxκyy. Similar to the longitudinal

figure of merit, the transverse figure of merit determines the efficiency of both Peltier

coolers and Seebeck generators; large ZxyT values lead to higher efficiency, although the

specific formula differs for the transverse case [12].
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The separate directions for electric current and heat flow gives rise to special ad-

vantages in the geometric engineering of transverse thermoelectric devices. One such

advantage is the generation of a large Seebeck voltage in the x direction with a finite

temperature difference in the y direction by changing the length-to-thickness ratio of the

transverse thermoelements [108, 109]. As shown in Fig. 4.2, for a vertical temperature

difference ∆T = TH − TC , the Seebeck voltage generated is M · S∆T in a longitudinal

thermoelement, where M is the number of series thermocouples, and Sxy∆T Lx

Ly
in a trans-

verse thermoelement. Thus the transverse Seebeck voltage can be increased with a trivial

geometric increase of the length Lx or by reducing the sample thickness Ly of a single

block of material. The longitudinal Seebeck voltage, on the other hand, can be increased

only by increasing M , linking many longitudinal thermoelements in series, requiring an

arrangement of n and p-legs in a series of junctions of increasing length and complexity.

The dependence of the transverse Seebeck voltage on the length-to-thickness ratio makes

transverse thermoelectrics very useful for producing fast-response thermal detectors of

very small thickness, and therefore thermal mass, and sizeable Seebeck voltage [112–114].

Another advantage of the separation of electric current and heat flow directions in

transverse thermoelectric devices is in tapered geometries for transverse Peltier cooling

[115]. To achieve a substantial cooling effect, longitudinal thermoelectrics usually use a

cascade structure consisting of a vast number of thermocouples stacked in a pyramid shape

(Fig. 4.3a). The bottom stages need to have larger cooling power than the upper stages,

because they have to extract the Joule heating of the upper stages and from the heat

load while generating a small thermal differential. The thermal resistance associated with

junctions at each stage interface limits practical implementation to at most six stages [10].
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Figure 4.3. (a) Cascaded longitudinal Peltier cooler and (b) exponentially
tapered transverse Peltier cooler for large thermal differences. Note the
simplicity of the single-leg structure on the right.

However, the cascading structure is much simpler in transverse Peltier coolers which can

be simply implemented in an exponentially tapered geometry. As shown in Fig. 4.3(b), an

exponentially tapered device has a wide base on the heat-sink side and a narrow strip on

the refrigerated source side, with Lx = Lx,0 exp−y/L, where Lx,0 = Lx(y = 0), and L sets

the characteristic length scale of the tapering. The cooling power is increased along the

heat flow direction, because of the increasing area of the cross-section, and performs as a

cascade structure without addition of thermal or electrical junctions [109]. It has been

shown that arbitrarily large cooling temperature differences can be achieved theoretically

by use of an exponentially tapered device [115], which serves as an infinite-stage cascade

cooler; even a trapezoidal shape has been shown experimentally to result in significant

enhancement of the maximum cooling temperature [116].
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4.2. Cooling power of transverse thermoelectrics

In this section, the theory of transverse thermoelectric coolers is advanced. Though

the physics of the transverse thermoelectric effect is well-established [108], the perfor-

mance of transverse coolers, especially the cooling power, has rarely been studied. The

maximum temperature difference achievable for layered composite transverse coolers has

been approximated analytically [114] and calculated numerically [117], however, gen-

eral calculations of the thermoelectric performance for transverse thermoelectrics have

been limited thus far [12]. To solve this problem, Section 4.2.1 introduces a normalized

notation to generalize the governing equations of the thermoelectric transport for arbi-

trary temperatures and materials parameters. It is confirmed that analytical solutions for

the temperature distribution, maximum temperature difference, and maximum cooling

power density in transverse coolers do not exist. A numerical study of the normalized

temperature distribution and maximum cooling power density of rectangular coolers (Sec-

tion 4.2.2) reveals that transverse coolers provide superior performance over longitudinal

coolers with the same figure of merit. Section 4.2.3 extends the numerical study to expo-

nentially tapered coolers and shows that exponential tapering can enhance the maximum

cooling temperature difference and maximum cooling power density, at a price of reducing

the total cooling power. The work in this section has been published in SPIE conference

proceedings [118].

4.2.1. Normalized thermoelectric transport equations

The Seebeck tensor determines the Peltier heat flux density when an electrical current

is applied, according to the Peltier tensor Π= TS. Considering an anisotropic Seebeck
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tensor with a transverse component Sxy (Eq. 4.6), an electrical current J=Jxx̂ along the x-

direction (Fig. 4.1b) will induce a Peltier heat flux QΠ = ΠJ= (TS)J with longitudinal

and transverse components

(4.8) QΠ,x = QΠ · x̂ = SxxTJx,

(4.9) QΠ,y = QΠ · ŷ = SyxTJx.

The total heat flux density Q = QΠ − κc∇T consists of one component induced by

the electrical current through the Peliter effect and another by the temperature gradient

via diffusive Fourier heat flow, whereby κc is the open circuit thermal conductivity tensor

when J = 0 [119]. Boundary conditions including isothermal surfaces T (y = 0) = Th and

T (y = Ly) = Tc and equi-potential surfaces x = 0 and x = Lx lead to a thermal gradient

along the y-direction ∇T = dT/dyŷ, only, and a uniform electric field along the x-axis

Exx̂ [119]. Thus the longitudinal current density and transverse heat flow are both only

a function of y for a given material:

(4.10) Jx =
Ex

ρxx
− Sxy

ρxx

dT

dy
,

(4.11) Qy = T
Ex

ρxx
Syx − (1 + zT )κc

yy

dT

dy
,

where zT = (SxySyxT/ρxxκ
c
yy) = (S2

xyT/ρxxκ
c
yy) is the figure of merit for transverse ther-

moelectrics.
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For steady state, the charge and energy conservation conditions require ∇ · J = 0

and ∇· (Q+µ̄J)= 0, where µ̄ is the electrochemical potential, and −∇µ̄ =E. While the

former condition is guaranteed by Eq. 4.10, the latter condition for the transverse cooler

here is simplified to :

(4.12)
dQy

dy
= ExJx,

i.e., the Joule heating ExJx due to longitudinal current must diffuse transversely (Qy).

The governing equation of the temperature distribution for the transverse cooler can

be deduced from Eqs. (4.10)-(4.12), which is simplified to the following form assuming

temperature-independent thermoelectric parameters:

(4.13) 0 =

(
Ex

Sxy

− dT

dy

)2

+
1 + zT

z

d2T

dy2
.

To minimize the number of independent parameters and generalize the equations for

various temperatures and device dimensions, we introduce the heat flux and electric field

scales Q0 = (κc
yyTh/L) and E0 = (SxyTh/L), respectively, which normalize the thermo-

electric transport equations. Eqs. (4.11) and (4.13) can be simplified as :

(4.14) Q∗
y = −(zTh)E∗T ∗ − (1 + (zTh)T ∗)

dT ∗

dy∗
,

(4.15) 0 =

(
E∗ − dT ∗

dy∗

)2

+
1 + (zTh)T ∗

zTh

d2T ∗

d(y∗)2
,
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where T ∗ = (T/Th), E∗ = (Ex/E0), y∗ = (y/Ly) and Q∗ = (Qy/Q0) are normalized

temperature, electric field, y coordinate and heat flux density, respectively. Equations

(4.14) and (4.15) indicate that the normalized heat flux density Q∗
y and the normalized

temperature profile T ∗(y∗) only depend on the normalized electrical field E∗ and transverse

figure of merit zTh. When the cooling power density at cold side Q∗
c is zero, the maximum

normalized temperature difference ∆T ∗ = 1 − T ∗
c = 1 − T ∗(y∗ = 1) will be achieved with

an optimal E∗ that satisfies

(4.16)
∂∆T ∗

∂E∗ |E∗=E∗
opt

= 0,

thus ∆T ∗
max(zTh) is only a function of zTh. Similarly the maximum of the cooling power

density at the cold side Q∗
c = Q∗

y(y
∗ = 1) for a given T ∗

c can be obtained when E∗ satisfies:

(4.17)
∂∆Q∗

c

∂E∗ |E∗=E∗
opt′

= 0,

and Q∗
c,max depends only on T ∗

c and zTh. Equations (4.14)-(4.17) cannot be exactly solved

with analytical methods. Thus it is important to solve the temperature profile and heat

flux numerically to study the cooling power of the transverse coolers.

4.2.2. Cooling power of rectangular transverse coolers

The normalized temperature profile in rectangular coolers for maximum temperature dif-

ference corresponding to various transverse figure of merit zTh values (Fig. 4.4) is numer-

ically calculated by solving the governing equations (4.14)-(4.17) with the bvp4c solver

in Matlab [120]. The maximum temperature difference is achieved with no heat load

Q∗
c = 0. The zero slope at the hot side (y∗ = 0) indicates that there is no heat diffusing
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Figure 4.4. Normalized temperature profile of transverse thermoelectric
coolers operating at maximum temperature difference for various zTh values.
At y∗ = y/Ly = 0 the heat sink temperature T ∗ = T/Th = 1 and at the
y∗ = 1 the cold side heat flow Qc = Qy(y

∗ = 1) = 0.

from the heat sink back to the device. Thus all the Peltier cooling power will be used to

compensate the Joule heating in the device. The temperature slope from hot side to cold

side becomes steeper as zTh increases.

The dependence of the maximum temperature difference ∆T ∗ = 1 − T ∗
c on zTh is

summarized in Fig. 4.5, left axis. Transverse coolers show a larger ∆T ∗ than the ana-

lytically solved ∆T ∗ = 1 + 1−
√
1+2zTh

zTh
for longitudinal coolers [11]. For zTh = 1, a 30%

temperature reduction is predicted for the transverse cooler, which is slightly larger than
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Figure 4.5. The dependence on zT of maximum normalized temperature
difference (left axis) whereby ∆T ∗ = (Th − Tc)/Th and maximum cooling
power density when Tc = Th (right axis) for transverse thermoelectric cool-
ers in comparison with longitudinal coolers. ∆T ∗

max and Q∗
c,max(T

∗
c = 1)

are numerically calculated for the transverse coolers but can be analytically
solved for the longitudinal coolers [10,11].

the 27% reduction of the conventional longitudinal cooler with the same zTh. For the

sake of theoretical comparison, a larger zTh of 4 results in a 60% temperature reduction

for the transverse cooler compared with 50% for the longitudinal cooler.

The normalized maximum cooling power density Q∗
c,max of the transverse cooler when

Tc = Th is plotted in Fig. 4.5, right axis as a function of zTh. Unlike the linear dependence

Q∗
c,max = 1/2 zTh for longitudinal coolers when T ∗

c = 1 [10], Q∗
c,max for transverse coolers
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shows a superlinear dependence on zTh which exceeds the longitudinal limit at all zTh,

approaching the longitudinal behavior in the small zTh limit. The enhancement in Q∗
c,max

for transverse coolers over longitudinal coolers with the same zTh is 28% when zTh = 1

and rapidly increases to 220% when zTh = 4.

Figure 4.6 shows the maximum cooling power density Q∗
c,max of rectangular transverse

coolers as a function of T ∗
c for various zTh values. For a given zTh, the Fourier diffusion

heat flow increases when T ∗
c decreases, thus a larger portion of the Peltier cooling power

is used to compensate the diffusive heat flow, and the remaining cooling power density at

the cold side Q∗
c,max will decrease. The intersection of the curves with the horizontal axis

and vertical axis corresponds to the maximum normalized temperature difference case

and maximum cooling power density case in Fig. 4.5, respectively. The performance of

a rectangular transverse cooler can be readily predicted from Fig. 4.6 for any given heat

load or cold side temperature.

4.2.3. Cooling power of exponentially tapered transverse coolers

As discussed in Section 4.1.2, transverse thermoelectric coolers can be exponentially ta-

pered (Fig. 4.3b) to enhance the maximum cooling temperature. Following the analysis

of Kooi et al. for the N-E effect [119], the exponential tapering adds the term of Qy
d(ln z)
dy

to the right of Eq. (4.12), and hence a new term to the right of Eq. (4.13), yielding the

equation:

(4.18) 0 =

(
Ex

Sxy

− dT

dy

)2

+
1 + zT

z

d2T

dy2
−
(

1 + zT

z

dT

dy
− Ex

Sxy

T

)
/L,
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Figure 4.6. The maximum normalized cooling power density Q∗
c,max for

transverse thermoelectric cooling as a function of the normalized cold side
temperature T ∗

c for various zTh values.
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whereby L is the length scale for the exponential tapering defined in

(4.19) Lx(y) = Lx(0) exp−y/L .

Similar to the rectangular coolers, we can normalize this equation in terms of T ∗ =

(T/Th), E∗ = (Ex/E0), y
∗ = (y/L) and Q∗ = (Qy/Q0), in which Q0 = (κc

yyTh/L) and

E0 = (SxyTh/L). The normalized equation is:

(4.20) 0 =

(
E∗ − dT ∗

dy∗

)2

+
1 + (zTh)T ∗

zTh

d2T ∗

d(y∗)2
−
(

1 + (zTh)T ∗

zTh

dT ∗

dy∗
− E∗T ∗

)
.

Exponential tapering enhances the maximum value of the normalized temperature

difference ∆T ∗ = (Th − Tc)/Th. For an exponentially tapered transverse thermoelectric

cooler of height y = Ly, the parameter Ly/L defines the overall shape of the tapering,

whereby Ly is the device thickness along the y axis. The ratio of top Lx(y = Ly) and

bottom width Lx(0) of the cooler decreases exponentially as the tapering parameter Ly/L

increases. As shown in Fig. 4.8, larger tapering parameters Ly/L correspond to larger

∆T ∗
max for a given zTh value. The maximum normalized cooling temperature differences

at different Ly/L > 0 are larger than that achieved with a rectangular transverse thermo-

electric cooler at Ly/L = 0 (black line). For a physically reasonable tapering parameter

Ly/L = 5, which means when the heat sink width is Lx(0) = 1 cm, the cold side width is

Lx(y = Ly) = 0.007 cm, can increase ∆T ∗
max by 85%, from ∆T ∗

max = 0.31 to ∆T ∗
max = 0.57,

when the figure of merit is zTh = 1.

The same maximum normalized temperature difference achieved with an exponentially

tapered cooler with zTh can be achieved with a rectangular cooler that has a larger figure

of merit zeffTh > zTh. The zeffTh of a rectangular transverse thermoelectric cooler for
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Figure 4.7. The dependence on zTh of maximum normalized temperature
difference whereby ∆T ∗ = (Th −Tc)/Th for an exponentially tapered trans-
verse cooler with Lx(y) = Lx(0)e(−y/L). The parameter Ly/L defines the
overall shape of the tapered coolers, since Lx(y = Ly)/Lx(0) = e(−Ly/L),
i.e., the larger Ly/L is, the narrower the top width is relative to the bottom
width.

transverse thermoelectric coolers with various tapering parameter Ly/L is obtained by

calculating the ∆T ∗
max for the exponentially tapered cooler (Fig. 4.7), and extracting the

corresponding zeffTh from the ∆T ∗
max-zTh curve for the rectangular cooler(Fig. 4.5). As

shown in Fig. 4.8(a), zeffTh increases almost linearly with zTh for each tapering parameter



143

Figure 4.8. (a) Equivalent effective zTh values to achieve the same normal-
ized temperature difference with a rectangular transverse cooler for various
tapering parameters Ly/L. (b) The effective zTh enhancement depends on
the tapering parameter.

Ly/L, thus the zT enhancement factor γzT = zeffTh/zTh can be obtained by take the

slope of the lines. Figure 4.8b) shows that γzT has a quasi-linear dependence on the

tapering parameter Ly/L, and a polynomial fitting leads to an empirical approximation

of γzT = 1 + 0.389(Ly/L) + 0.023(Ly/L)2 for Ly/L <= 5.

The maximum normalized cooling power density Q∗
c,max for the exponentially tapered

transverse thermoelectric coolers as a function of T ∗
c for various Ly/L values is shown in

Fig. 4.9(a), assuming zTh = 1.0. Similar to ∆T ∗
max, Q

∗
c,max for the exponentially tapered

transverse thermoelectric coolers (Ly/L > 0) is also enhanced compared with the rectan-

gular coolers (Ly/L = 0). The enhancement in ∆T ∗
max and Q∗

c,max for exponentially tapered

transverse thermoelectric coolers opens up potential applications in hot-spot cooling that

requires large temperature difference and large cooling power density locally. However, the

enhancement in the cooling power density comes at a price of reducing the total cooling
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Figure 4.9. (a) The maximum normalized cooling power density Q∗
c,max for

an exponentially tapered transverse cooler as a function of the normalized
cold side temperature T ∗

c for various tapering parameters Ly/L. The figure
of merit is assumed to be zTh = 1.0. (b) Q∗

c,maxe
(−Ly/L) scales the cooling

power density at the tapered top by the reduced area of the top surface to
effectively give the cooling power density per unit base-area. This is plotted
versus T ∗

c .

power Q∗
c,maxLx(y = Ly) . For a given heat sink base width Lx(0), the total cooling power

is proportional to Q∗
c,maxe

−Ly/L. As shown in Fig. 4.9(b), the intersection of the curves

with the vertical axis, which correspond to the maxium cooling power case (T ∗
c = 1),

decreases as Ly/L increases, which indicates the tapering brings in a trade-off between

the maximum cooling power density and the total cooling power.

In conclusion, this section studies the theory of transverse thermoelectric coolers with

a normalized variable notation, which generalizes the equations to be independent on the

absolute temperatures and sample parameters. Numerical calculation of the maximum

temperature difference and cooling power for the rectangular transverse thermoelectric

coolers shows enhancement of performance compared with longitudinal coolers with the

same figure of merit. Further study on the exponentially tapered coolers indicates that
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the tapering enhances the maximum normalized cooling temperature difference and the

maximum cooling power density, though at a price of reducing the maximum total cooling

power. This opens up potential applications of exponentially tapered transverse thermo-

electric coolers in hot-spot local cooling, which is especially interesting for on-chip thermal

management.

4.3. p× n-type transverse thermoelectrics model

In this section, we study the model of a new paradigm of transverse thermoelectrics

named as “p × n-type” transverse thermoelectrics, where p × n refers to p-type Seebeck

coefficient and electrical conductivity in one direction and n-type Seebeck coefficient and

conductivity in the orthogonal direction. The p × n-type Seebeck anisotropy can result

from the p× n-type anisotropic electrical conductivity, which requires both electrons and

holes to conduct in parallel, with electrons dominating conduction in one direction and

holes dominating the orthogonal direction. The thermoelectric property tensors and trans-

port equations of materials with p× n-type conductivity will be studied in detail below.

This model was firstly published in Physics Review Letters [12], with my contribution in

the band structure simulation of InAs/GaSb type-II superlattices, which was proposed as

a candidate p× n material.

4.3.1. Thermoelectric tensors of p× n materials

The large transverse Seebeck coefficient in the p × n materials arises because of parallel

anisotropic conduction between electron and hole bands [12]. Consider an intrinsic mate-

rial with anisotropic electron and hole electrical conductivity tensors σn, σp and isotropic
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Seebeck tensors sn,sp. For simplicity, we only consider two conducting directions. In the

Cartesian coordinate system defined by the orthogonal principal axes (a, b) of the crystal,

the thermoelectric tensors are diagonal:

(4.21)

σn =

 σn,aa 0

0 σn,bb

 , σp =

 σp,aa 0

0 σp,bb



sn =

 sn 0

0 sn

 , sp =

 sp 0

0 sp

 ,

where sn < 0 and sp > 0. The total conductivity tensor and total resistivity tensor are

σ = ρ−1 = σn + σp. Note that the Seebeck tensor for each band is isotropic when taken

separately.

The Seebeck tensor of the two-band system is the average of the two Seebeck tensors,

weighted by the conductivity tensors:

(4.22) S = (σnsn + σpsp)(σn + σp)
−1.

This weighting by conductivity tensors leads to Seebeck coefficients of opposite signs in

orthogonal directions. Suppose holes dominate conduction in the a direction and electrons

dominate in the b direction, as labeled by the symbol p× n in Fig. 4.10.
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Figure 4.10. p×n-type thermoelectrics have p-type dominated conduction
and Seebeck coefficient along the a-axis and n-type dominated conduction
and Seebeck coefficient along the orthogonal b-axis, as indicated by the
crossed arrow symbol at the bottom right. The movement of electrons (or-
ange dashed arrows) and holes (green solid arrows) in orthogonal directions
results in net charge current Jx to the right and net particle or heat flow
Qy up. The carrier transport shown in this figure can be driven either by
drift due to an electric field along +x direction or by diffusion due to a
temperature gradient along −y direction [12].

We define a small variable ξ as the ambipolar conductivity ratio of two carriers: ξa =

σn,aa/σp,aa < 1, ξb = σp,bb/σn,bb < 1. The total Seebeck tensor is

(4.23) S =

 Sp,aa 0

0 Sn,bb

 ,
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with components

(4.24)
Sp,aa = sp+ξasn

1+ξa
> 0

Sn,bb = sn+ξbsp
1+ξb

< 0

when ξa < |sp/sn| and ξb < |sn/sp|. And the Seebeck anisotropy is

(4.25) ∆S = Sp,aa − Sn,bb =
1 − ξaξb

(1 + ξa)(1 + ξb)
(sp − sn).

It will increase as ξa, ξb get smaller, and reaches the maximum value (sp − sn) when

ξa = ξb = 0, i.e., when holes only conduct in the a direction and electrons only conduct

in the b direction. Note that when the band conductivities are insufficiently anisotropic,

Eq. 4.24 is not satisfied, and the Seebeck tensor will be anisotropic and unipolar, either

fully p-type or fully n-type as described in Section A. The strong Seebeck anisotropy can

lead to a large transverse Seebeck coefficient, as discussion in Section 4.1.1.

4.3.2. Transverse thermoelectric figure of merit

The transverse thermoelectric figure-of-merit is defined as:

(4.26) Zxy(θ)T =
S2
xy

κyyρxx
=

sin2 θ cos2 θ(Sp,aa − Sn,bb)
2

(sin2 θκaa + cos2 θκbb)(cos2 θρaa + sin2 θρbb)
.

It has significance analogous with that of the figure-of-merit in conventional longitudinal

thermoelectrics. The larger that the value of Zxy(θ)T , the higher the efficiency of the

corresponding transverse thermoelectric generator or cooler is. θ⊥ maximizes Zxy(θ)T
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when [111,121,122]

(4.27) cos2 θ⊥ =
1

1 +
√

κbb/κaa

ρbb/ρaa

with

(4.28) Z⊥T = Zxy(θ⊥)T =
(Sp,aa − Sn,bb)

2T

(
√
ρaaκaa +

√
ρbbκbb)2

.

Equation 4.27 shows that θ⊥ has no dependence on the Seebeck anisotropy. In semicon-

ductors the thermal conductivity is usually dominated by the lattice thermal conductivity

κl. If we consider the thermal conductivity κl to be approximately isotropic, then it is use-

ful to define a transverse power factor PF⊥ which can be optimized for optimal transverse

thermoelectric performance:

(4.29) PF⊥ =
(Sp,aa − Sn,bb)

2

(
√
ρaa +

√
ρbb)2

.

Since the tensors S and ρ can be calculated with semi-classical Boltzmann transport

theory for corresponding scattering mechanisms, the PF⊥ can be theoretically estimated

to evaluate the thermoelectric performance of certain band structures. The thermoelectric

transport governing equations for the p×n-type transverse thermoeletrics are the same as

other transverse thermoelectric systems, and can be solved numerically with a normalized

notation as discussed in Section 4.2.1.
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4.4. p× n-type transverse thermoelectrics candidates

The signature of p × n-type transverse thermoelectrics is the strongly anisotropic

Seebeck tensor, which arises from the anisotropic ambipolar conductivity ratio of electrons

and holes. We identified three classes of materials that can potentially be good candidates

for p× n-type transverse thermoelectrics: superlattices with engineered anisotropic band

structure, materials with “cross-hatched” p and n-type conduction channels, and bulk

crystals with ambipolar Seebeck anisotropy. The former two classes can be artificially

engineered, and thus will be the focus of our study in this section.

4.4.1. Superlattices with anisotropic band structure

The anisotropic ambipolar conductivity ratio of electrons and holes in p×n thermoelectric

systems can be realized by engineering the carrier band structure of intrinsic semiconduc-

tor superlattices. This will be demonstrated here by engineering of a superlattice in the

InAs/GaSb type-II superlattice (T2SL) system, with so-called broken-gap alignment. The

work in this section has been published in Journal of Electronic Materials [123].

Anisotropic band structure can induce anisotropic conductivity, as determined by

the effective mass tensor, the deformation potential constant tensor if strain exists, and

any anisotropic scattering. If one can engineer the band structure so that the electron

band and hole band have markedly different anisotropy, a large anisotropic ambipolar

conductivity ratio can be realized and may lead to a large Seebeck anisotropy. Narrow

gap (Eg ∼ kBT ) materials will be preferred for this method, because both electrons and

holes have to conduct and large-bandgap intrinsic materials will lead to small electrical

conductivity and thus small figure-of-merit.
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InAs/GaSb T2SL has a bandgap that can be continuously tuned to zero. As shown

in Fig. 4.11(a), the GaSb valence band lies energetically above the InAs conduction band,

thus by varying the electron well width dInAs and the hole well width dGaSb, the quantum

confinement energy can tune the gap between the electron and hole bands. This tunable

bandgap grants the T2SL system the potential for operation at different temperatures

with appropriate superlattice period corresponding to Eg ∼ kBT .

The anisotropic ambipolar conductivity ratio arises in this case from the different

anisotropy of the electron and hole effective mass tensors. The effective mass is inversely

proportional to the curvature of the parabolic energy-crystal momentum dispersion. As

shown in the calculated band structure(Fig. 4.11b) [15], holes have relatively large in-

plane effective mass and infinite out-of-plane mass in the layer-to-layer tunneling direction

whereas the electron effective mass is small and almost isotropic. With an overall moderate

p-type Fermi energy, we can make holes dominate the in-plane conduction and electrons

dominate the cross-plane conduction, thus realizing a strongly anisotropic Seebeck tensor

and a transverse Seebeck coefficient up to Sxy = 320µV/K [12].

There are several major differences of note between the p × n transverse thermo-

electrics based on T2SL in this section and the two-phase stacked synthetic transverse

thermoelectrics of Section A. Firstly, the T2SL is a single crystal with nanoscale layers,

while the two-phase stacked synthetic material consists of millimeter-thick layers of two

materials with differing lattice structures, which are mechanically and electrically bonded

together. Whereas the stacked synthetic TTE structure has layer thicknesses that pre-

vent it from scaling below the ∼ cm scale, the T2SL and other transverse thermoelectric

crystals can be easily scaled to the micron scale. Another key difference is the origin of
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Figure 4.11. (a) Band alignment of T2SL, where the grey color indicates
the forbidden bandgap. GaSb valence band EV (green) lies energetically
above the InAs conduction band EC (orange). EF is the Fermi energy. E0,e

is the ground energy for electron band, and E0,hh is the the ground energy
for heavy hole band. (b) Dispersions simulated using nextnano 8 × 8k · p
envelope function method [13,14]. The in-plane dispersion is to the left of
k = 0, and the out-of-plane dispersion to the right of k = 0. ∆sp = Es−Ep

is the s − p band difference. (c) Plot of the optimized Z⊥T at 300 K as a
function of different InAs and GaSb layer thicknesses [15].

the anisotropic Seebeck coefficient. In p× n TTE, electrons and holes conduct in parallel

in all directions, and the anisotropic ambipolar electrical conductivity ratio induces the

Seebeck anisotropy, with electrons and holes subjected to the same temperature gradi-

ent. On the other hand in the stacked synthetic TTE, the layers have series resistance in
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the cross-plane direction and parallel conduction in the in-plane direction, and it is the

difference in both electrical and thermal conductivities of the two materials that leads to

the Seebeck anisotropy [111]. As pointed out in the comparison in Section A and 4.3, the

equations that give rise to the transverse Seebeck coefficient are completely different.

With the band simulation and thermal conductivity measurement results, Z⊥T of dif-

ferent InAs and GaSb thicknesses can be estimated (Fig. 4.11c). The anisotropic electrical

conductivity of the T2SL can also be characterized with the triple stripline method in-

troduced in Chapter 2, but here for simplicity we use the simulated values directly. A

theoretical estimate of the optimal Z⊥T ∼ 0.03 for this material system has been pre-

dicted. Although this value is still relatively small compared with conventional longitudi-

nal thermoelectrics, the real advantage is in scalability, whereby a maximum cooling up to

∆T = 9.1 K at room temperature is expected [12] in an exponentially tapered geometry

(Fig. 4.3b), which can be scaled down to micron size. This is competitive with the recent

experimental results in on-chip cooling with much more complicated superlattice-based

longitudinal thin-film thermoelectrics, which cooled by only ∆T ∼7.1 K [110].

4.4.2. Cross-hatched p× n materials

The second artificial approach to creating a p × n thermoelectric system is to fabricate

aligned p-type conduction channels and orthogonally aligned n-channels to form a “cross-

hatched” structure (Fig. 4.12a). The inherent anisotropic conduction within each one-

dimensional (1D) channel enables us to have p× n type electrical conduction (Fig. 4.12b)

for the cross-hatched channel array, and thus an anisotropic Seebeck tensor. By alterna-

tively cross-hatching multiple p and n channel array layers, an aritificial p × n structure
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Figure 4.12. Cross-hatched p × n transverse thermoelectrics. (a) By al-
ternatively aligning n-type conduction channel array and orthogonally ori-
ented p-type conduction channel array, p× n conduction is realized. (b) A
schematic diagram of cross-hatched transverse thermoelectric cooler. With
an applied current J , electron-hole pairs are generated at top surface ab-
sorbing heat and recombine at the bottom giving off heat, cooling top sur-
face.

can be fabricated. It has to be noted that the diffusion buffer layer between p and n layers

in Fig. 4.12(b) is optional, since the device would function equally well if electrons and

holes equilibrated at every point in the device. In any case, the depleted region at the

p− n junction between two layers may serve as a diffusive barrier layer.

The 1D conduction channels in the cross-hatched p × n material can be fabricated

with nanowires, 3D-printed graphene/polymer stripes, or ion-implantation isolated bulk

crystal channels as described in Chapter 3. Theoretically, the 1D conduction channels

can be fabricated from any material, as long as the aspect ratio is large enough. 1D

nanostructures such as nanowires (NWs) and nanotubes (NTs) are natural candidates, due
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to the large aspect ratio, the possibility to make thin-film thermoelectrics, and the good

thermoelectric properties compared with bulk materials. The conduction channel arrays

can also be defined by other approaches, for example, the 3D-printed graphene/polymer

stripes can form p-type aligned channels, and the ion implantation isolation can be used

to define both n and p-type aligned conduction channel arrays in bulk crystals. An

actual cross-hatched p×n device can even have a composite structure with n and p layers

fabricated with different techniques, for example, p-type 3DG stripes on top cross-hatching

with the n-type AlGaAs conduction channels at the bottom.

4.4.3. Bulk crystals with ambipolar Seebeck anisotropy

The classes of material with ambipolar Seebeck anisotropy include materials with open

Fermi surfaces, materials with closed Fermi surfaces but with opposing curvature and

sharp singularities, and narrow-gap semiconductors with anisotropic band structures.

Weak ambipolar Seebeck anisotropy has been reported for materials with open Fermi

surfaces, for example single-crystal rhenium (∆S < 10 µV/K) [124], PdCoO2, PtCoO2

and related materials (∆S ≈ 100 - 200 µV/K, but Sp < 20 µV/K) [125]. Beryllium

has also been reported to have weak ambipolar Seebeck anisotropy below 600 K with

∆S < 10µV/K [126]; this was attributed to singularities of its strongly anisotropic Fermi

surfaces. Two more noteworthy materials are narrow-gap semiconductors ReGexSi1.75−x

[127] with Sp = +200 µV/K and Sn = −220 µV/K in a and c directions, and CsBi4Te6

[128] with Sp = +100 µV/K and Sn = −80 µV/K in the b and c directions, respectively.

Initial calculation based on published data shows that the largest transverse figure-

of-merit for bulk crystals is Z⊥T ≈ 0.025 for CsBi4Te6 (experimental) and Z⊥T ≈ 0.04
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(theoretical) at T = 300 K, and Z⊥T ≈ 0.36 for ReSi1.75 (experimental) at T = 1060

K. p × n-type bulk crystals with higher transverse figure of merit at room temperature

are yet to be discovered. The transverse figure-of-merit of bulk crystals with ambipolar

Seebeck anisotropy is not significantly larger than those with unipolar anisotropic Seebeck

tensor as reviewed in Appendix A. However, in the anisotropic crystals with a unipolar

anisotropic Seebeck tensor, there is always an accompanying longitudinal component of

the induced heat flow (or electrical current) in a Peltier (or Seebeck) effect, which reduces

the efficiency of the transverse thermoelement. For proper transverse performance, an

ambipolar Seebeck tensor is desired.

4.5. Cross-hatched p× n layer interconnect model

Cross-hatched p×n structure based on the bulk crystal can be realized by alternatively

stacking the n and p layers with anisotropic conductivity created with ion implantation

isolation. However, the thermoelectric performance of such p × n structures will depend

on the degree of electrical equilibration between the n and p layers. In this section, we

study two extreme cases, the short-circuit model and the open-circuit model, the results

of which set limits for the expected performance of the actual p× n structure.

The thermoelectric transport inside the cross-hatched p×n structure involves diffusion,

generation, and recombination of electrons and holes. The n and p layer channel arrays

form pn-junctions wherever the cross-hatching occurs. A temperature gradient applied

45◦ to the channel direction causes a driving force to the free carriers from the hot to

the cold part of the structure. The resulting current alters the local carrier balance

between generation and recombination and leads to enhanced generation of electron-hole
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pairs in the hot part and increased recombination in the cold part of the pn-junctions.

This is similar to the pn-junction thermoelectric generator [129–131] in longitudinal

thermoelectrics. However, in the cross-hatched p × n structure, the electrons and holes

diffuse along orthogonal directions as confined by the conduction channels (Fig. 4.12b),

and accumulate at opposite edges.

For simplicity, we consider two extreme cases, the first of which is the short-circuit

model, in which the local vertical pn-junction effective resistance is much smaller than

the in-plane conduction channel resistance. The second case is the open-circuit model,

in which the pn-junctions are fully depleted, and the n and p channels are electrically

isolated except for at edges.

4.5.1. Short-circuit model

In the short-circuit model, the electrical potential of electrons and holes at pn-junctions

away from edges is identical, which indicates that they are subjected to the same local

electric field. Assuming a strong mechanical bond between layers, the n and p channels

can be regarded as thermally shorted at pn-junctions as well. Thus the system can be

approximated as an ideal p×n-type transverse thermoelectric system as studied in Section

4.3. The metric to evaluate the performance of the cross-hatched p × n structure is the

transverse figure of merit, with the maximum value:

(4.30) Z⊥T = Zxy(θ⊥)T =
(Sp − Sn)2T

(
√
ρnκn +

√
ρpκp)2

,

whereby the Seebeck coefficient S, resistivity ρ and thermal conductivity κ for electrons

and holes are measured along the channel directions of n and p-layers, respectively.



158

4.5.2. Open-circuit model

The open-circuit model assumes the n and p conduction channels are electrically isolated

at the depleted vertical pn-junctions within the layer area. Only at the edges are the n-

and p-layers shorted by metal contacts. As shown in Fig. 4.13(a). n and p conduction

channels are cross-hatched with channel orientation forming angle θn and θp with the x

axis, respectively. A temperature gradient is applied in the +x direction, which generates

a transverse Seebeck voltage between top and bottom contacts that drives a current I

through an external load resistor RL.

This cross-hatched structure consists of multiple thermocouples, each formed by one

pair of p and n conduction channels that overlap at the left or right edges, as marked

by the dashed lines in Fig. 4.13(a). Assuming the p and n channels perfectly overlap

at left and right edges with overlapped region width d0 along the y axis, the electrical

conduction between top and bottom contacts can be regarded as the parallel connection

of multiple conductions paths. Each conduction path from bottom to top is formed by

multiple thermocouples connected in series. Assuming the device length L is much larger

than its width W , the number of parallel conduction paths and the average number of

thermocouples in each conduction path are:

(4.31) N|| =
W

wn

+
W

wp

= W

(
sin θn
dn

+
sin θp
dp

)
=

W

d0
(tan θn + tan θp)

and

(4.32) N =
L

W (tan θn + tan θp)
,
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Figure 4.13. (a) Diagram of a cross-hatched p × n Seebeck generator.
The p-type (blue strips) and n-type (orange strips) conduction channels are
aligned with angle θp and θn to x axis, respectively. With a temperature
difference applied to the left and right surfaces, a transverse Seebeck voltage
is generated in the y direction, driving a current I through the load resistor
RL. (b) The formation of tilted longitudinal thermocouple. In the open-
circuit model, one pair of p and n channels that overlap at the left/right
edges effectively forms a tilted longitudinal thermocouple.

respectively. Here dn and dp are the pitch width of n and p conduction channels, and

wn and wp are the width of the contacting area between the conduction channel and

top/bottom edges.

The efficiency of this transverse Seebeck generator can be calculated assuming a uni-

form temperature gradient along x direction:

(4.33) η =
WRL

QH

=
I2RL

K∆T + (Sp − Sn) (THI0)
L
d0

− 1
2
I2R

,
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whereby WRL
is the output power to the load resistor, QH is the heat flow from the hot

side (right edge), I is the total current, I0 is the current for each parallel conduction path,

K is the thermal conductance between left and right edges and R the inner resistance

between top and bottom contacts. This equation can be reduced to:

(4.34) η =
u∆T

(1+u)2

Z
+ TH (1 + u) − 1

2
∆T

,

where u = RL/R and Z = N2(Sp−Sn)2

KR
. To maximize the efficiency, the transverse figure of

merit parameter Z has to be maximized.

Assuming the thermal conduction between hot and cold edges are dominated by

phononic heat flow, the thermal conductance can be approximated as K = κl
Lt
W

, whereby

κl is the lattice thermal conductivity and t is the thickness of n and p layers. Thus we

have:

(4.35) Z =
(Sp − Sn)2

κl

1
ρn

cos2θn
+ ρp

cos2θp

,

which is maximized to be

(4.36) Zmax =
(Sp − Sn)2

κl (ρn + ρp)
when θn, θp → 0.

The essence of the open-circuit model is to realize an overall transverse Seebeck effect

with tilted longitudinal thermocouples. As shown in Fig. 4.13(b), the unit thermocouple

in the cross-hatched structure can be formed by tilting the two legs of a longitudinal

thermocouple. In the extreme case θn, θp → 0, the cross-hatched structure reduces to
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parallel longitudinal thermocouples along x axis, and the resistance between top and

bottom edges are R → ∞, thus u = RL/R → 0, which leads to η → 0. To achieve the

Zmax in Eq. 4.36, RL → inf is required.

The actual thermoelectric transport in the cross-hatched p × n structure will not

strictly follow the short-circuit or the open-circuit models, instead, it will be somewhere

in-between. The two models analyzed above provide two bounds of the transverse figure of

merit as defined in Eq. 4.30 and 4.35. By comparing the Z value of the actual device, which

can be calculated with measured total transverse Seebeck coefficient Sxy, longitudinal

resistivity ρxx and thermal conductivity κyy via Z = S2
xy/ρxxκyy, to those predicted by

the two models, a weighting coefficient can be determined so that the actual thermoelectric

transport can be understood as a weighted combination of two models.

4.6. Cross-hatched p× n AlGaAs fabrication progress and future work

To experimentally demonstrate cross-hatched p×n materials, the fabrication of p×n

structure based on Al0.42Ga0.58As is attempted for a proof-of-concept transverse Seebeck

measurement. AlGaAs is chosen due to its large Seebeck coefficient for both n and p-type

doped materials [99]. The Seebeck coefficient of n-type AlxGa1−xAs is maximized with

the aluminum mole fraction x = 0.42, which yields multiple degenerate valleys of the

conduction bands.

4.6.1. Fabrication flow

The overall fabrication flow is shown in Fig. 4.14. A p-type Al0.42Ga0.58As layer is grown

by molecular beam epitaxy (MBE) on top of semi-insulating GaAs (100) substrate with
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Figure 4.14. The overall fabrication flow for cross-hatched p × n AlGaAs
crystal. The p and n-type conduction channels are created via ion implan-
tation isolation.

a GaAs/AlGaAs superlattice buffer layer to reduce the lattice mismatch. Then p-type

conduction channels are created via ion implantation isolation, which is followed by MBE

regrowth of another n-type Al0.42Ga0.58As layer on top. And finally n-type conduction

channels orthogonal to the p-type channels are fabricated by ion implantation isolation.

4.6.2. p + n-AlGaAs

The MBE regrowth quality and its influence on the Seebeck coefficient of the n and p

layers are studied by growing a p + n structure without ion implantation isolation. The

growth protocol is shown in Fig. 4.15, the d = 500 nm thick p-Al0.42Ga0.58As is first grown

with MBE, with a 25 nm thick undoped GaAs cap layer on top. Then another d = 500

nm thick n-Al0.42Ga0.58As is grown with another highly doped thin GaAs cap layer. One
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Figure 4.15. Growth protocol of the p + n bilayer Al0.42Ga0.58As structure.

group of samples have both p and n layers grown at once, while another group of samples

is taken out of the MBE chamber and put in air for 12 hours and then the n layer is

regrown.

Ultrasonic bath with concentrated H2SO4 kept below 300 K is used to process the

GaAs cap surface before regrowth to reduce oval defects [132]. The undoped GaAs layer

between the p and n-AlGaAs layers function as a cap layer that protects the AlGaAs

surface before regrowth. The cap thickness d ∼ 25 nm is chosen since atomic force

microscopy (AFM) study shows that the etching depth of GaAs in concentrated H2SO4

(96 %) with ultrasonic bath remains below 10 nm after 10 minutes.
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Figure 4.16. (a) Photomask patterns for on-chip Seebeck measurement
device. (b) Example Seebeck measurement result for the p + n AlGaAs
structure with both layers grown at once. Sp and Sn are directly extracted
from the slop of the Seebeck voltage measured at two outer contacts, which
require further scaling to compensate for the over-estimated temperature
difference.

The Seebeck coefficient for the p and n-AlGaAs layer and the total Seebeck coeffi-

cient of two layers (pn-junction thermoelectrics) are measured with an on-chip Seebeck

measurement setup. As shown in Fig. 4.16(a), the on-chip Seebeck measurement setup is

formed by two resistor temperature sensors on the hot and cold sides, a meander-shaped

resistance heater, and the bar-shaped mesa-etched sample between the two sensors. Both

the sensor and the heater are fabricated with gold filament, which has a linear resistance-

temperature dependence at room temperature. Half of the bar area is etched down to the

p-AlGaAs surface, and ohmic contacts for both n and p-AlGaAs layers at the two ends

are used to measure the Seebeck voltage.

Figure 4.16b shows the measured Seebeck voltage as a function of temperature differ-

ence for n− and p-AlGaAs layers for the p + n-AlGaAs structure with both layers grown
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in MBE chamber at once. The Seebeck coefficient is extracted from the slope. The actual

temperature difference between the two metal contacts is slightly smaller than that mea-

sured by the two temperature sensors. Assuming the temperature distribution is roughly

linear from the hot to cold side, we can simply scale the measured Seebeck coefficient with

a geometric correction factor dsensor/dcontacts. The results are shown in Table. 4.1.

Table 4.1. The geometrically corrected Seebeck coefficient for p+n-AlGaAs
and single layer AlGaAs.

Sample p (cm−3) n (cm−3) Sp

(µV/K)
Sn

(µV/K)
Spn

(µV/K)

p+ n-AlGaAs (grown at once) 2.1E18 ≤5.0E16 +345 −490 +780

p+ n-AlGaAs (regrown) 1.9E18 ≤5.3E17 +440 −170 +370

p-AlGaAs 1.6E18 N/A +370 N/A N/A

n-AlGaAs N/A 5.0E16 N/A −630 N/A

The measured Seebeck coefficient of the n-AlGaAs in p + n-AlGaAs structure (Sn =

−490 µV/K for all grown at once and Sn = −170 µV/K for regrown) drastically deviates

from that of the single layer n-AlGaAs (Sn = −630 µV/K). This happens when the

pn-junction resistance is much smaller than the n-layer sheet resistance. Similar to the

open-circuit model discussed in the last section, when the p and n-AlGaAs layers are

electrically isolated by the depleted pn-junction, the total Seebeck coefficient Spn ≈ Sp −

Sn. Comparing Spn for the p+n-AlGaAs structure to Sp−Sn for single layer AlGaAs we

can see that the grown-at-once sample is much closer to the open-circuit model than the

regrown sample.

The inconsistency between all-grown-at-once and regrown p+n-AlGaAs Seebeck coef-

ficients can be attributed to the inconsistent doping of the n-AlGaAs layer. As shown in
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Table. 4.1, the carrier density measured by Hall measurement indicates that the electron

density of the regrown sample is one order higher than that of the all-grown-at-once sam-

ple. Such an inconsistency can be caused by accidental change of MBE growth condition

such as the silicon filament current. Also both the electron and hole density deviate from

the aimed value in the growth protocol (1017 cm−3). This is because the doping in the

MBE chamber was calibrated with GaAs, instead of Al0.42Ga0.58As. A new round of dop-

ing calibration and growth of the p + n-AlGaAs structure are required to achieve aimed

doping density and consistent Seebeck coefficient for the regrown sample.

4.6.3. Future work

The fabrication of the cross-hatched p×n AlGaAs structure requires further experimental

effort. Firstly, the doping density of both n and p-type AlGaAs need to be re-calibrated

to achieve aimed carrier density with the MBE system. Only when that is done, the all-

grown-at-once and regrown p+n-AlGaAs structure can be attempted again to examine the

total Seebeck coefficient of the pn-junction thermoelectrics, which will determine whether

the short-circuit model or the open-circuit model fits the thermoelectric transport in the

cross-hatched p× n structure based on AlGaAs.

Secondly, the cross-hatched p and n conduction channels need to be fabricated in the

two AlGaAs layers via ion implantation isolation. Figure 4.17a) shows the overview of the

wafer-scale photolithography patterns for the p and n layer ion implantation. Different

regions of the wafer can be used for following Seebeck characterization of single n-layer,

single p-layer and p × n structure. Transverse Seebeck coefficient of the cross-hatched

p × n structure needs to be measured. It has to be noted that to avoid shorting the
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Figure 4.17. (a) The wafer-scale photolithography patterns for cross-
hatched p× n AlGaAs. (b) Transverse Seebeck measurement device struc-
ture. n and p-type ohmic contacts are alternatively deposited on left and
right edges and to avoid shorting the temperature difference between top
and bottom edges.

temperature difference between the hot and cold side, alternative scattered n and p-type

ohmic contacts should be fabricated at the sample electrical contact edges, as shown in

Fig. 4.17(b). In the Seebeck measurement, the scattered ohmic contacts on the two edges

will be shorted to other contacts on the same edge with external cables.

Finally, the aluminum composition ratio x and the doping density for both electrons

and holes can be optimized to achieve the maximum transverse figure of merit. Theoretical

study [133] has shown that for single-layer n-type AlxGa1−xAs, the optimum x that

maximizes the figure of merit at room temperature is x = 0.31 with predicted optimal

doping density 1.44 × 1019 cm−3.
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APPENDIX A

Transverse thermoelectric phenomena

By definition, a transverse thermoelectric effect exists whenever a material has a non-

zero transverse Seebeck coefficient Sxy. In this section we review the three most prominent

transverse thermoelectric phenomena with different origins of Sxy, namely the Nernst-

Ettingshausen (N-E) effect, in which a magnetic field induces the transverse effect, two-

phase stacked synthetic materials in which macroscale anisotropy yields the transverse

effect, and homogeneous anisotropic crystals with unipolar Seebeck, whose band structure

gives rise to the transverse effect.

I) Nernst-Ettingshausen Effect

The Nernst-Ettingshausen (N-E) effect [134] is a thermomagnetic effect in which a

magnetic field is used to induce a transverse heat flow perpendicular to both the electrical

current and the magnetic field (Fig. A.1a), resulting in a non-zero Sxy. This effect occurs

in semimetals or semiconductors in which there is an abundance of both electrons and

holes in approximately equal number. Whereas the longitudinal thermoelectric effect is

compromised when there are two types of charge carrier, because electrons and holes

carry heat in opposite directions, in the N-E effect the magnetic field B gives electrons

and holes a common direction of motion perpendicular to the applied current, and this

Lorenz force drives the net component of the heat in the same direction. Whereas the

superiority of longitudinal thermoelectrics has been established in applications above room

temperature, the N-E effect outperforms more standard methods at low temperatures at
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Figure A.1. (a) NernstEttingshausen effect. In the presence of a B-field,
electrons and holes in a semimetal or narrow-gap semiconductor both feel
a Lorenz force component in the upwards direction, resulting in a net heat
flow transverse to the electrical current. (b) A stacked synthetic trans-
verse thermoelement cut from a two-phase (1 and 2) layered material. The
anisotropic Seebeck tensor arises from having the layers in series along one
axis, and in parallel along the other axis.

which doped semiconductors would freeze out. Thus, some semimetals, for example,

Bi [135], and narrow-gap semiconductors, for instance, Bi-Sb alloys [135, 136], can be

useful thermomagnetic materials at low temperatures, at which the mobility µ is large

enough for the product µB ≥ 1 (Ref. [10], chapter 8).

Research on thermomagnetic cooling was most active from the 1960s to 1980s, and

focused on Bi and BiSb alloys. Yim and Amith [135] observed a thermomagnetic figure-

of-merit ZxyT = 0.33 at 115 K with the alloy Bi0.99Sb0.01 in a magnetic field up to 0.8 T.

Horst and Williams [136] subsequently increased this value to ZxyT = 1.0 at 150 K in a

magnetic field of 1.0 T by using the alloy Bi0.97Sb0.03. Geometrical enhancement of cooling
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in transverse thermoelements has been demonstrated at cryogenic temperatures with a

Bi0.97Sb0.03 N-E cooler, with ∆T = 36 K for a rectangular cooler and ∆T = 54 K for an

exponential shape cooler in a 1.5 T magnetic field at 156 K heat sink temperature [119].

However, the strong magnetic field limits practical applications of the N-E effect.

The N-E effect is quantified in terms of the Nernst coefficient, defined as:

(A.1) N = −Ex/Bz

dT/dy
,

which gives rise to a transverse Seebeck component Sxy = NBz. Explained qualitatively,

this equation implies that a thermal diffusion current (Qy), as a result of the temperature

gradient, dT/dy, induces a transverse drift current flow (Jx), because of the Lorenz force

in a perpendicular magnetic field (Bz). At equilibrium, the charges accumulate to build

up a transverse Seebeck voltage in the x direction, resulting in a transverse electric field

Ex and a counter-propagating diffusion current J ′
x = −Jx that compensates Jx.

II) Two-Phase Stacked Synthetic Materials

Another transverse thermoelectric phenomenon, introduced in the 1970s, is that ob-

served in two-phase [109] stacked synthetic transverse thermoelectrics. These materials

realize Seebeck anisotropy with alternating slabs of semiconductor with large Seebeck co-

efficient and (semi)metal with large electrical and thermal conductivity (Fig. A.1b). The

anisotropy of the resulting diagonalized Seebeck tensor can, by basis rotation, be turned

into a non-zero transverse Seebeck coefficient. An electrical current applied at an opti-

mum angle will induce a transverse heat flow, and the angle can be chosen to maximize

the transverse figure of merit.
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The two-phase stacked synthetic transverse thermoelement can be used for Peltier

cooling. It was first proposed by Babin et al. [121] in 1974, and later demonstrated by

Gudkin et al. [116], by use of a BiSbTe-Bi two-phase system, in 1978. They observed

a good transverse figure-of-merit ZxyT = 0.25 and Peltier cooling of ∆T = 23 K with a

rectangular block. The cooling was enhanced to ∆T = 35 K by use of a trapezoidal block,

the cold side of which was one tenth the width of the heat sink. Interest in transverse

Peltier cooling decreased after the 1980s but has been renewed in recent years because

of the need for miniaturized cooling devices for microelectronics. In 2006 Kyarad and

Lengfellner [113,114] achieved 22 K cooling by use of Bi2Te3Pb multilayer structures with

a simpler form of construction. However, two-phase synthetic transverse Peltier coolers

are limited in conventional thermoelectric cooling because they have lower figure-of-merit

than commercial longitudinal Peltier coolers. Other applications, for example, microscale

cooling, are also limited because the slabs are, typically, of millimeter dimensions and

such implementations are very difficult to reduce to the micro-scale for electronics or

thin-film applications [109]. Furthermore, the extrinsic doping eliminates the possibility

of cryogenic cooling, because charge carriers in the extrinsic semiconductor layer freeze

out at the low-temperature limit.

The transverse Seebeck effect in two-phase stacked synthetic transverse thermoele-

ments has also been studied. Zahner et al. demonstrated use of transverse thermoele-

ments made of alternating layers of copper and constantan with a relatively fast response

(τ = 0.1 ms for a sample 0.1 mm thick) as thermal detectors [112]; later, a similar response

time was reported by Fischer et al. [137] for constantanchromel multilayers. Kyarad and

Lengfellner [138] reported large Seebeck anisotropy of approximately 1.5 mV/K in AlSi
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multilayers and estimated the response time to be τ = 1 µs for samples 0.1 mm thick.

Kanno et al. [139] reported a serpentine Bi/Cu heat flux sensor with a simple layered

structure and a sensing capability of 0.4 µV(Wm−2)−1. The transverse Seebeck effect has

also been studied for power generation. As recently reported by Takahashi et al. [140],

an 11-cm-long tubular thermoelectric generator based on Bi0.5Sb1.5Te3/Ni was able to

provide an open-circuit voltage of 240 mV and power of 2.7 W under a temperature dif-

ference ∆T = 85 K created by hot fluid inside the tube (TH = 368 K) and cold fluid

outside (TC = 283 K), pushing synthetic transverse thermoelectrics closer to commercial

applications of waste heat recovery from fluid media.

As already mentioned, the transverse Seebeck coefficient in two-phase stacked syn-

thetic materials arises from the different character of the two thermoelectric materials.

Suppose components 1 and 2 in the two-phase stacked synthetic system have Seebeck

coefficients S1 and S2 and are of the same thickness. In the parallel direction (a direc-

tion) each component will contribute to the Seebeck voltage according to its electrical

conductance, i.e., they behave like two Seebeck generators in parallel connection which

are subjected to the same temperature gradient. Thus:

(A.2) Sa =
S1σ1 + S2σ2

σ1 + σ2

.

In the perpendicular direction (b direction), each component will contribute according to

its thermal resistance, because they are connected in series, which leads to:

(A.3) Sb =
S1/κ1 + S2/κ2

1/κ1 + 1/κ2

.
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Ideally S1 and S2 should be large and of opposite sign and the electrical and thermal

conductivities should be greatly imbalanced, σ1 ≫ σ2 and κ1 ≫ κ2; then, in the a

direction the overall Seebeck coefficient will be approximately equal to S1 and in the b

direction it will be close to S2, resulting in the large Seebeck anisotropy. As discussed in

Section 4.1.1, the Seebeck anisotropy can be converted to a non-zero transverse Seebeck

coefficient by cutting from the two-phase material at an angle θ.

III) Anisotropic Crystals with Unipolar Seebeck Coefficients

Some homogeneous anisotropic crystals also have unipolar, anisotropic Seebeck co-

efficients and a corresponding transverse component of the thermoelectric effect. Here

“unipolar” means that the Seebeck coefficient in all directions has the same sign but dif-

ferent magnitude. According to theory [122], the highly anisotropic Seebeck tensor can

arise either from mixed conduction of electrons and holes, or from single-carrier-dominated

conduction.

Mixed conduction of electrons and holes usually leads to an intrinsic transverse thermo-

electric component in semimetals and narrow-gap semiconductors. Korylyuk et al. [141],

in 1973, were the first to demonstrate a transverse thermoelectric effect in the single crys-

tal, narrow-gap semiconductor CdSb (Eg = 0.49 eV), which had large Seebeck anisotropy

∆S = 280µV/K but a small figure-of-merit ZxyT ≈ 0.002. The conduction in CdSb

is intrinsic, mixed conduction near room temperature [142], and, because of the rela-

tive temperature independence of the thermoelectric coefficients combined with optical
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transparency, CdSb and its eutectics have been used in rapid transverse radiation de-

tectors [143,144]. The semimetal Bi was the material used in the first transverse ther-

moelement, dubbed at the time an “anisotropic thermoelement” by the authors, with

∆S ≈ 50µV/K and ZxyT ≈ 0.02 [145].

Single-carrier-dominated materials with a unipolar anisotropic Seebeck tensor have

also been reported. Some silicon compounds, for example MnSi1.75 [10, p. 299] and CrSi2

[146], have Seebeck anisotropy (∆S ≈ 50− 100µV/K at 300 K) over a wide temperature

range (2001000 K for CrSi2). High-TC superconductors YBCO [147], LCMO [148,149],

and Bi2Sr2Ca-Cu2O8 [150] and stoichiometries of CaCoO [151,152], have also been shown

to have a weak transverse Seebeck coefficient Sxy ≈ 1−35µV/K induced by heat flux from

a laser. Thin films made from these materials have shown potential as ultrafast heat-flux

sensors, for example, picosecond response was observed for a YBa2Cu3O7−δ thin film 10

nm thick at room temperature [37].

The anisotropic Seebeck tensor of anisotropic crystals can arise in the presence of two

or more anisotropic scattering mechanisms, or in the presence of two types of charge carrier

if at least one type has an anisotropic effective mass [122]. It has been shown that for a

single-carrier material with one scattering mechanism the Seebeck coefficient is isotropic

irrespective of crystal anisotropy. The Seebeck tensor becomes anisotropic only when

the conduction in different directions is dominated by different scatteringmechanisms, or

under anisotropic conduction of several carrier species [108].

Despite the ability of transverse materials to serve as rapid-response heat-flux sensors,

they do not fulfill their potential as high-output voltage power generators and compact,
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micro-scale Peltier coolers. The existing materials described above either require an ex-

ternal magnetic field, cannot be scaled-down in fabrication, or suffer from values of the

transverse figure-of-merit or Seebeck coefficient which are too small. To overcome these

limitations and to enhance the transverse figure-of-merit, it is worth studying ways of

artificially inducing a larger transverse Seebeck coefficient, and studying other materials

with strong Seebeck anisotropy for possible use as transverse thermoelectric materials.
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