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ABSTRACT

The Criterion for Chaos in Three-Planet Systems

and

Warped Planet-Disk Interactions

Jeremy Rath

We establish the criterion for chaos in three-planet systems, for systems similar to those

discovered by the Kepler spacecraft. Our main results are as follows: (i) The simplest

criterion, which is based on overlapping mean motion resonances (MMRs), only agrees

with numerical simulations at a very crude level. (ii) Much greater accuracy is attained

by considering neighboring MMRs that do not overlap. We work out the widths of

the chaotic zones around each of the neighbors, and also provide simple approximate

expressions for the widths. (iii) Even greater accuracy is provided by the overlap of

three-body resonances (3BRs), which accounts for the fine-grained structure seen in maps

from N-body simulations, and also predicts Lyapunov times. From previous studies, it is

unclear whether interplanetary chaos should be attributed to the overlap of MMRs or of

3BRs. We show that the two apparently contradictory viewpoints are in fact consistent:

both predict the same criterion for chaos. (iv) We compare the predicted criterion with
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high-resolution maps of chaos from N-body simulations, and show that they agree at a

high level of detail.

Additionally, we derive from first principles the linear warp equations for an inclined

disk perturbed by a planet. The equations predict the general solution is a flat disk

interior to the planet’s orbit, a smooth transition region extending to ∼ R/c0, and a

flat outer disk. We used the warp equations to derive a bending criterion based on the

parameters of the planet and disk. Finally, we test both the warp equations and the

bending criterion with several 3D numerical simulations performed with the AREPO code,

finding good agreement between theory and numerics.
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CHAPTER 1

The Criterion for Chaos in Three-Planet Systems

1.1. Introduction

In the Solar System, the planets’ orbits are chaotic (Holman & Murray, 1996; Laskar,

1996; Laskar & Gastineau, 2009). Many exoplanetary systems are also chaotic, or at least

close to the threshold for chaos, e.g., Kepler-11 (Mahajan & Wu, 2014; Yee et al., 2021),

Kepler-36 (Deck et al., 2012), Kepler-102 (Volk & Malhotra, 2020), GJ876 (Goździewski

et al., 2002; Batygin et al., 2015a), and Kepler-24, Kepler-85, and Kepler-444 (Yee et al.,

2021). The chaos cannot be too violent, because otherwise the systems would not survive

for billions of years. That raises the question of how planets were emplaced into such

delicate configurations. It also opens the door to using observed planetary configurations

to learn about their early history. But our understanding of how chaos works in planetary

systems is not yet sufficient to answer such questions.

A simple and powerful criterion for the presence of chaos is resonance overlap (Walker

& Ford, 1969; Chirikov, 1979). Resonance overlap accounts for much of the chaos in

planetary systems. But which resonances overlap depends on the system, as planetary

systems harbor a variety of different kinds of resonances. In nearly circular two-planet

systems, decreasing the planets’ separation drives them toward chaos. There is a critical

separation inside of which the orbits are always chaotic, and its value is determined by

where neighboring first-order mean motion resonances (MMRs) overlap (Wisdom, 1980;
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Deck et al., 2013). Two-planet systems can also be driven toward chaos by increasing

their eccentricity, because the widths of MMRs increase with increasing eccentricity. The

critical eccentricity for chaos has been determined by, e.g., Mardling (2008); Hadden &

Lithwick (2018). It depends not only on first-order MMRs, but on higher-order MMRs

as well. In systems of more than two planets, Tamayo et al. (2021) suggest that chaos is

generally attributable to the overlap of two-body MMRs—similar to the two-planet case.

Overlap of other kinds of resonances also produces chaos. In the inner Solar System,

chaos is caused by the overlap of secular resonances (Laskar, 1996; Lithwick & Wu, 2011;

Batygin et al., 2015b). And in the outer Solar System, chaos has been attributed to the

overlap of three-body resonances (3BRs; Murray & Holman, 1999). Quillen (2011) and

Petit et al. (2020) suggest that chaos in planetary systems is driven by overlapping 3BRs,

while Tamayo et al. (2021) suggest that overlapping two-body MMRs are responsible.

One of the goals of this paper is to resolve this apparent discrepancy.

Chaos in generic Hamiltonian systems is understood at a much deeper level than

simply resonance overlap (see, e.g., textbooks and reviews of Chirikov, 1979; Lichtenberg

& Lieberman, 1983; Escande, 1985; Zaslavsky, 2007). Two concepts in particular play a

prominent role in this paper. First, nearby resonances that do not overlap excite chaos in

the vicinity of their separatrices. The extent of the chaotic zone around each separatrix

is readily calculable by applying the “whisker” or “separatrix” map (which we shall also

refer to as the “theory of kicks”). One might suspect that the resulting correction to the

resonance overlap criterion is at best an order-unity one. But, as we shall demonstrate,

resonance overlap is only approximately correct when the two resonances have comparable

strengths. In the more general case, where one resonance is much stronger than the other,
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Figure 1.1. Lyapunov times for our fiducial three-planet system in the PP-
plane: The axes give the initial orbital periods of the inner and outer plan-
ets, in units of the middle planet’s period, and the Lyapunov time is as
colored. The locations of 1st and 2nd order MMRs are on the top and
right axes. Broadly speaking, MMRs tend to be chaotic, and overlapping
resonances enhance chaos.
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the correction becomes very large. The second concept is that of secondary resonances:

two nearby resonances excite secondary resonances, and those secondaries can overlap

and lead to chaos.1 There are then two predictions for the extent of the chaotic zone—

from the theory of kicks and from secondary resonances—and they have been shown to

agree with each other (e.g. Lichtenberg & Lieberman, 1983). While these concepts are

detailed in standard references, we provide a self-contained discussion in this paper in

order to aid the nonexpert. We also develop some improvements on the standard theory,

as summarized in Section 1.6.1.

The outline of this paper is as follows: In Section 1.2, we use numerical integrations

to map out the chaos of a fiducial three-planet system.2 We use that map as a touchstone

for the theory of chaos developed in later sections. In Section 1.3, we show how the

dynamics near a crossing of two MMRs can be reduced to a much simpler model system:

the perturbed pendulum. In Section 1.4, we review the theory of kicks for the perturbed

pendulum, and develop an “improved” theory that is applicable further away from the

separatrix. We then use that theory to predict the chaos seen in the touchstone map. In

Section 1.5, we apply the theory of overlapping secondary resonances to predict chaos.

In the final section (Section 2.4), we provide a summary, assess the validity of our main

approximations, compare to prior work, and discuss the outer Solar System.

1A 3BR is an example of a secondary resonance; it is produced when the two primary resonances involve
three planets.
2We treat the planets as idealized point particles, neglecting non-Newtonian effects such as tides and
general relativity.
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Figure 1.2. Locations and widths of two-body MMRs for the system de-
picted in Figure 1.1. The vertical blue bands are resonances between the
inner two planets; the horizontal bands are between the outer two; and
overlapping zones are red. The first- and second-order MMRs are labeled;
but all resonances are shown in blue, unless their width is less than the
pixel size. Tamayo et al. (2021) provide a semi-analytic formula for the
chaos criterion based on two-body MMR overlap. Their results are shown
by the two black curves in the lower right corner. The lower curve is based
on the initial eccentricities, and the upper is based on the maximum eccen-
tricities reached via purely secular evolution. The curves were made with
D. Tamayo’s code SPOCK, which is publicly available at
github.com/dtamayo/spock.

https://github.com/dtamayo/spock
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1.2. Map of Chaos in a fiducial Three-Planet System

We explore the chaotic behavior of a fiducial three-planet system. The system we

choose is similar to planets c, d, and e of Kepler-11, as given by the all-eccentric fit of

Table S4 in Lissauer et al. (2011), with two modifications: the middle planet’s mass is set

to zero, and its eccentricity is boosted. (Lissauer et al. 2013 provide updated parameters

for the Kepler-11 planets, but we do not use those.). To be explicit, the masses of the

three planets are {12, 0, 9.3}M⊕; the eccentricities are {0.003, 0.070, 0.016}; the angular

orbital elements and stellar mass are set to those in Lissauer et al. (2011); and inclinations

are set to zero. Converting the middle planet to a test particle allows us to focus on its

dynamics, while neglecting its backreaction on the other bodies. As discussed in Section

1.6.2, generalizing to a massive middle planet is straightforward.

Figure 1.1 shows the result from a suite of integrations of the fiducial system in the

period-period (”PP”) plane, i.e., the axes represent the initial orbital periods of the inner

and outer planets (P1 and P2, respectively). For comparison, the nominal orbital periods

from Lissauer et al. (2011) are P1/P = 0.57 and P2/P = 1.41, where P is the period of

the middle planet. Each point in Figure 1.1 represents an integration with given initial

periods, performed with the WHFast integrator (Rein & Tamayo, 2015) in REBOUND

(Rein & Liu, 2012). The color represents the Lyapunov time, which is determined by

fitting the MEGNO with a least-squares fit (Cincotta et al., 2003). In general, the Lya-

punov time can vary in time, whereas for Figure 1.1 we wish to show the Lyapunov time

toward the beginning of the simulation. Therefore, we halt a simulation when the runtime

exceeds ten times the Lyapunov time, which we have found is typically long enough to
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provide a sufficiently accurate measurement of the Lyapunov time. The systems in which

the inferred Lyapunov time exceeds 106 P are colored white in Figure 1.1.

The bulk of this paper is aimed at predicting the structure in Figure 1.1. We observe

that much of the chaos is associated with MMRs. For comparison, Figure 1.2 shows in

blue the locations and widths of the MMRs between the inner two planets (vertical bands)

and between the outer two planets (horizontal bands), where the widths are taken from

Equations (1.21) and (1.23) below. The simplest predictor for chaos is resonance overlap

(Chirikov, 1979). Figure 1.2 depicts the overlapping regions in red. We observe that

resonance overlap provides a rough guide to where the chaotic zones are in Figure 1.1.

Resonance overlap is seen to be most successful when the widths of the two overlapping

resonances are comparable. But it does not explain, e.g., why many of the resonances in

Figure 1.1 are chaotic even when there appear to be no nearby overlapping resonances;

nor why there are diagonal chaotic bands in Figure 1.1. We shall address these issues,

and others, below.

1.3. Chaos of a Perturbed Pendulum

1.3.1. Reduction to Perturbed Pendulum

In order to explain the structure seen in period-period maps (such as Figure 1.1), we

examine how a test particle behaves when it is affected by two MMRs, one with an

interior planet (to be labeled by subscript 1) and one with an exterior planet (labeled 2).

As we show in Appendix A, the test particle’s Hamiltonian can be written as a perturbed
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pendulum:3

H(ϕ, p, t) =
p2

2
− ϵ1 cos(ϕ)− ϵ2 cos(r(ϕ− νt)) ,(1.1)

where the first two terms describe a simple pendulum, and the third is the perturbation.

Before studying the dynamics of the perturbed pendulum, we summarize how it is related

to the orbital system under consideration:

• The first cosine term is from the MMR with the inner planet, and the second is

from the one with the outer planet. The dimensionless coefficients (ϵ1 and ϵ2)

are proportional to the corresponding planet’s mass, and are both ≪ 1.

• The parameter ν is proportional to the difference between (i) the test particle’s

mean motion if it is at nominal resonance with planet 1; and (ii) the corresponding

quantity with planet 2 (Equation A.9). The parameter r is a ratio of integers: if

we label the frequency ratio of the inner resonance by j1:j1−k1, and the frequency

ratio of the outer as j2:j2 + k2 (for positive integer j’s and k’s), then r = j2/j1.

• The canonical co-ordinate ϕ is the resonant argument of the inner planet’s reso-

nance (Equation A.10), The argument of the second cosine,

(1.2) ψ ≡ r(ϕ− νt)

3The main approximation used to derive Equation (1.1) is the “pendulum approximation,” whereby the
coefficients of the cosine terms are assumed to be constant (Murray & Dermott, 1999). We assess its
validity in Section 1.6.2. We also adopt a novel approximation, following Hadden (2019), that allows
us to combine together all of the k1 + 1 cosine terms associated with the inner resonance, and similarly
all of the k2 + 1 terms associated with the outer. Without this approximation, the form of Equation
(1.1) would only be applicable to the case where the inner and outer planets are circular, and the middle
planet is eccentric. But with it, we may consider three eccentric planets as a nearly trivial extension of
the circular case. See Section A.2 for further details.
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is the resonant argument of the outer planet’s resonance.

The form of Equation (1.1), with the first two terms referring to the inner planet’s

resonance, is convenient when the inner planet dominates the dynamics, and the outer

planet is treated as a perturbation. But that is merely a convention. By symmetry, one

could swap ϵ1 and ϵ2 in Equation (1.1) without affecting the dynamics, provided ϕ, p, r,

and ν are redefined by swapping the 1 and 2 indices in their definitions (Equations A.8–

A.11). Nonetheless, throughout this paper we retain the convention of Equation (1.1),

with p and ϕ corresponding to the inner planet’s resonance (the “ϵ1-resonance”) and ψ to

the outer planet’s (the “ϵ2-resonance”).

Equation (1.1) has four parameters (ϵ1, ϵ2, r, and ν). These may be reduced to

three by rescaling p, H, t, and ν to reduce Equation (1.1) to H(ϕ, p, t) = p2

2
− cos(ϕ) −

ϵ2
ϵ1
cos(r(ϕ−νt)). Therefore, in analyzing Equation (1.1), one may set ϵ1 → 1 without loss

of generality. Despite that, we shall retain ϵ1 for most of the paper, with the principal

exceptions being Section 1.4.2.1 and Appendices B–D, where we set ϵ1 = 1 to reduce

clutter.4

1.3.2. Surfaces of Section

We start by using a surface of section to exhibit the dynamics of Equation (1.1), similar

to what is done in Murray & Holman (2001) and Zaslavsky (2007). For each surface of

section, we fix the parameters (r, ν, ϵ1 and ϵ2), and numerically integrate the perturbed

4If one analyzes a perturbed pendulum with ϵ1 = 1, the results are easily generalized to arbitrary values
of ϵ1 by setting

{ϵ2, p, ν, t,H} →
{
ϵ2
ϵ1
,
p

√
ϵ1
,
ν

√
ϵ1
, t
√
ϵ1 ,

H

ϵ1

}
.
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pendulum’s equations of motion for different initial values of p and ϕ. This experiment is

equivalent to fixing the orbits and masses of the two planets and exploring what happens

for different initial semimajor axes of the test particle. From each integrated trajectory,

we plot snapshots in the p-ϕ plane at times t such that rνt = {0, 2π, 4π, · · · }. Stable

trajectories will create 1D curves in the p-ϕ plane, while chaotic ones will randomly fill a

2D region. Figure 1.3 shows an example surface of section with r = 1, ϵ1 = 1, ϵ2 = 0.1,

and a large forcing frequency (ν ≫ 1). In that case, each cosine term (i.e., “resonance”)

in Equation (1.1) produces a “cat’s eye” in the surface of section. The ϵ1-resonance is

centered at p = 0, and the ϵ2-resonance is centered at ν. Within the ϵ1-resonance, ϕ

librates, and within the other resonance, it is ψ that librates.

For Figure 1.4, we dial down ν, which lowers the ϵ2-resonance in the p-ϕ plane. In

the context of the orbital problem, this corresponds to moving the planets so that the

two resonances approach each other. At moderate separation (ν = 3.9), one observes new

islands close to the lower resonance’s separatrix, and the separatrix becomes chaotic. As ν

gets smaller, additional islands appear, and the chaotic region expands. The ϵ2-separatrix

also becomes chaotic. But chaos does not extend below the lower ϵ1 separatrix, nor above

the upper ϵ2 separatrix. We quantify all of this behavior in the following sections.

We combine the plots for all values of ν by taking a “double surface of section”: at

each ν we take a cut in the surface of section at ϕ = 0, and record the values of p where

trajectories are chaotic. We then stack these for different values of ν. The result is

shown in Figure 1.5(a), where chaotic trajectories are shown in black.5 A double surface

5In practice, we make a double surface of section as follows: we initialize ϕ = ψ = 0, and p = pi, and plot
in black in the pi-ν plane wherever an orbit with those initial values is chaotic, as indicated by MEGNO.
Note that the perturbed pendulum has 1.5 degrees of freedom, and hence the boundary between the
chaotic and nonchaotic regions is well defined (Section 4.6 in Chirikov, 1979).



27

Figure 1.3. A surface of section for the perturbed pendulum with r = 1,
ϵ1 = 1, ϵ2 = 0.1, and ν = 10. At this large value of ν the two resonances
appear as “cat’s eyes,” and are clearly separated. There is also little chaos.

of section is analogous to the PP-plane, because a simple linear change of coordinates

brings {p, ν} to {P1, P2} (Section 1.4.3). Figure 1.5(b) shows, in blue, the locations of the

two resonances in the p-ν plane. This plot is the analog of Figure 1.2. The most naive

criterion for chaos—resonance overlap—predicts that chaos should occur in the red zone

of this plot. Comparing with panel (a), we see that, as before, this prediction provides

only a rough guide to the numerical result. It does not explain, e.g., why most of the

chaos occurs when the two resonances marginally overlap (i.e. at {ν, p} ∼ {2, 2} and
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Figure 1.4. Surfaces of section for the perturbed pendulum, as in Figure
1.3, but for three lower values of ν. The separatrices of the ϵ1 resonance
are shown in blue. In the middle panel, the extent of the chaotic region
predicted by Equation (1.11) is indicated in green.

∼ {−2,−2}), nor why much of the chaos consists of spikes that extend from near the

points of marginal overlap.

In this paper, we develop two theories to explain the chaos in double surfaces of section,

and hence in the PP-plane. The first, which we call the theory of kicks, predicts smoothed

shapes for the chaotic zones, e.g., as shown in Figure 1.5(c) in red. The second is based

on secondary resonance overlap. It predicts the same smoothed shapes for the chaotic

zones, but it also accounts for the spikes, and predicts the Lyapunov times to moderate

accuracy.

1.4. Theory of Kicks

In this section, we first derive the criterion for chaos based on the theory of kicks (Sec-

tion 1.4.1), which is similar to the “whisker map” of Chirikov (1979) and the “separatrix

map” of Zaslavsky (2007). We then complete the derivation, leading to two explicit, but

approximate, forms for the criterion (Section 1.4.2). We call the first form the classical

theory (Chirikov, 1979; Lichtenberg & Lieberman, 1983; Zaslavsky, 2007), and the second
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Figure 1.5. (a) Double surface of section for the system in Figure 1.4, show-
ing the chaotic regions in black for many different values of ν (at ϕ = 0). (b)
Prediction for (a), based on naive resonance overlap. The libration regions
of both resonances are blue, and the predicted chaotic region is in red. (c)
The region predicted to be chaotic by the classical kick criterion (Equation
1.10) is outlined with green dashed curves. The improved kick criterion
(Equations 1.8 and 1.17) is shown with the red regions. The green circles
show the reduced classical criterion (Equation 1.12).

incorporates our improvements. Next, we apply the improved theory to a single resonance

crossing from Figure 1.1, and finally apply it to many more resonance crossings in Figure

1.1.
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1.4.1. Kick Criterion

We model the perturbed pendulum (Equation 1.1) as a simple pendulum subjected to

discrete kicks that are given by the ϵ2 term in the Hamiltonian. We focus on an unper-

turbed trajectory near the separatrix (i.e., the ϵ1-separatrix). For definiteness, we assume

at first that ν > 0 and the trajectory is above the separatrix, in the circulation zone.

Whenever ϕ swings from −π to π—or, more generally, from (2k − 1)π to (2k + 1)π for

integer k—the pendulum is considered to have experienced a kick.

Let us consider two successive kicks. The key quantity of interest for whether or not

chaos occurs is the kick phase ψ = r(ϕ − νt), which is the argument of the ϵ2-cosine.

Chaos is postulated to occur if the first kick is sufficiently strong that it changes the kick

phase at time of the second kick—relative to what it would have been without the first

kick—by ≳ 1. If that happens, it means that the first kick was strong enough to scramble

the amplitude of the second kick (∝ cosψ) by an order-unity amount. The scrambled

second kick will in turn scramble the third kick, etc., leading to pseudorandom evolution,

and hence chaos.

To calculate the change in kick phase, we first determine how the first kick changes

the unperturbed energy, E = p2

2
− ϵ1 cosϕ. The equations of motion from the perturbed

pendulum give

dE

dt
= −ϵ2rϕ̇ sin(r(ϕ− νt)) .(1.3)

Since we consider ϵ2 to be small, we evaluate the change in energy from the first kick by

integrating Equation (1.3) from half a period before the kick to half a period after, while
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taking ϕ(t) as unperturbed:6

δE = −ϵ2r
∫ t(1)+T

2

t(1)−T
2

ϕ̇unp sin
[
r
(
ϕunp + ϕ(t(1))− νt

)]
dt

where t(1) is the time of the first kick; the unperturbed ϕ(t) = ϕunp(t− t(1))+ϕ(t(1)), after

adopting the convention that ϕunp(t = 0) = 0; and T is the unperturbed period. The

above equation may be rewritten as

δE = −ϵ2r sinψ(1)K(E)(1.4)

where

(1.5) K(E) =

∫ T
2

−T
2

ϕ̇unp(t
′) cos [r (ϕunp(t

′)− νt′)] dt′ ,

after changing the time coordinate to t′ = t − t(1), making use of the symmetry of ϕunp

under time reversal, and defining ψ(1) = ψ(t = t(1)). Approximate expressions for K(E)

are presented below. In addition to its dependence on E, K depends on the parameters

ϵ1, r, and ν.

Given the change in energy, the period changes by δT = dT
dE
δE, where the T (E)

relationship for an unperturbed pendulum is well-known (e.g., Lichtenberg & Lieberman,

1983). Therefore, the change in kick phase at the second kick is

δψ(2) = −rνδT = ϵ2r
2ν sinψ(1) K(E)

dT

dE
,(1.6)

6This expression for δE is slightly incorrect because it includes “fast oscillations,” whose effects average
out. In Appendix C, we show how the fast oscillations should be removed.
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which has a “typical” value of

δψ(2) ∼ ϵ2r
2νK(E)

dT

dE
(1.7)

Finally, for chaos to occur, one requires this typical value to be ≳ 1; i.e., trajectories with

energy E that satisfy

∣∣∣∣dEdT
∣∣∣∣ ≲ ϵ2r

2 |νK(E) |(1.8)

are chaotic. We call this the kick criterion.

1.4.2. Two Approximate Kick Criteria

1.4.2.1. Classical Kick Criterion. Previous studies (e.g., Chirikov, 1979; Lichtenberg

& Lieberman, 1983; Zaslavsky, 2007) take the unperturbed trajectory to be very near the

separatrix (E ∼ ϵ1). One may then evaluate K by setting ϕunp in Equation (1.5) to its

value on the separatrix, and correspondingly set the integration limits to ±∞. As we

show in Appendix B, the result is

K ≈ νA2r(rν)(1.9)

where A2r(rν) is the Melnikov-Arnold (MA) integral, the value of which is given in Equa-

tion (B.2). The resulting K is independent of E. In deriving Equation (1.9), we assume,

as above, that the unperturbed trajectory is in the circulation zone; and we also set ϵ1 = 1

for clarity. We shall continue to set ϵ1 = 1 in the remainder of this subsection, before

generalizing to arbitrary ϵ1 at the end.
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Equation (1.8) may be further simplified by using the near-separatrix relation |dE/dT | ≈

|E − 1|, resulting in the “classical kick criterion:”

|E − 1| < ϵ2r
2ν2 |A2r(rν) | .(1.10)

In order to depict this on a double surface of section, we convert E to the value of p at

ϕ = 0, via E = p2

2
− 1 ≈ 1 + 2∆p, where ∆p is the height above the separatrix at ϕ = 0.

In that case, Equation (1.10) becomes

∆p < ∆pchaos,ν ≡
1

2
ϵ2r

2ν2 |A2r(rν) | .(1.11)

The extent of the chaotic zone above the separatrix, ∆pchaos,ν , is depicted by the arrows

in Figure 1.4(b). That extent depends on the height of the ϵ2 resonance, i.e., on ν. In

particular, in Figure 1.5(c), the top green dashed curve in the upper-right quadrant shows

the prediction of Equation (1.11) for how ∆pchaos,ν depends on ν. Comparing that part

of the plot with the numerical result in panel (a) shows good agreement. For ν ≫ 1,

A2r(rν)∝e−πrν/2 (Equation B.2), and so ∆pchaos,ν decays exponentially as ν increases, as

seen in panel (c). Furthermore, ∆pchaos,ν hits a peak value at ν ∼ 1, and then decays to

zero as ν → 0. The peak value is

∆pchaos =
1

2
ϵ2κ(r)(1.12)
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where

κ(r) ≡ max
ν

r2ν2 |A2r(rν) | ≈


3.5r1.0 r < 0.28

8.9r1.8 r > 0.28

,(1.13)

and where the latter approximation is from a simple fit that is in error by ∼ 20% near

the crossover (at r = 0.28), and by ≲ 5% away from the crossover. For the case shown in

Figure 1.5, r = 1 and so ∆pchaos =
1
2
× 0.1× 8.9 = 0.44. In Figure 1.5(c) we plot a green

circle at this distance from the separatrix; note that we position the ν of the circle along

the ϵ2-resonance rather than at the peak of ∆pchaos, for reasons that will be described in

Section 1.4.2.2. We refer to Equation (1.12) as the “reduced classical criterion.” It will

prove useful for estimating the extent of the chaotic zones in a PP diagram.

The remaining green dashed curves in Figure 1.5(c) are calculated similarly. At ν > 0,

there are three additional boundaries: in the upper libration zone (i.e., just below p = 2),

the lower libration zone, and the lower circulation zone. For the first of these, the analysis

is the same as previously, except that the period is twice as long, which implies that

|∆pchaos,ν | should be increased by a factor of 2 there. That factor of 2 is erroneously

omitted in the literature (e.g., Chirikov, 1979). The boundary in the lower libration zone

must be the same as that in the upper, because the two regions depict the same orbits.

And in the lower circulation zone, one should simply switch ν → −ν in Equation (1.11)—

because an orbit in the lower circulation zone with ν > 0 is equivalent to one in the upper

circulation zone with ν < 0, and the previous analysis applies to the upper circulation

zone. The remainder of the green curves, i.e., at ν < 0, may be trivially obtained from
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those at ν > 0 by antisymmetry. As seen in Figure 1.5, the predicted green curves all

agree moderately well with the numerical result of panel (a).

We conclude this subsection by generalizing Equations (1.9), (1.10), and (1.12) to

arbitrary ϵ1 ̸= 1, which may easily be done by applying the rules in footnote 4 (as well as

E → E/ϵ1). The results are as follows:

K ≈ ν
√
ϵ1
A2r

(
rν
√
ϵ1

)
(1.14)

|E − ϵ1| <
ϵ2
ϵ1
r2ν2

∣∣∣∣A2r

(
rν
√
ϵ1

)∣∣∣∣ classical(1.15)

∆pchaos =
1

2

ϵ2√
ϵ1
κ(r) reduced classical(1.16)

and κ(r) is left unchanged.

1.4.2.2. Improved Kick Criterion: Although the classical criterion (Equation 1.15)

is adequate for predicting the chaos in the system shown in Figure 1.5, it is inadequate

for many resonant crossings in the PP diagram. There are two main shortcomings. First,

when the chaotic region extends beyond the ϵ1 separatrix by a distance larger than the

width of that resonance, one may not set ϕunp to its value on the separatrix. From

Equation (1.16), that occurs when ϵ2κ(r) ≳ ϵ1. And second, one must consider the chaos

of the ϵ2-separatrix, which becomes dominant when ϵ2 ≳ ϵ1. In the following, we address

these two shortcomings in turn.

For the first, we generalize the classical criterion by (a) evaluating dE/dT in Equation

(1.8) with the full expression that is valid for any E; and (b) approximating K without

assuming that the trajectory is on the separatrix. We derive that improved approximation

in Appendix C. The derivation is subtle, because one must distinguish between fast and
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slow oscillations. But the final result is simple: in Equations (1.9) and (1.14), one should

replace ν → ν − ∆p, where ∆p is the height above the separatrix at ϕ = 0, i.e., ∆p ≡√
2(E + ϵ1)−2

√
ϵ1 . Physically, that result may be understood from the principle that the

strength of the kick should depend on the difference in frequency between the perturbing

ϵ2 resonance and that of the test particle at the time of the kick (see Appendix C). It is

for this reason that we position the green circles in Figure 1.5 (Equation 1.12) along the

ϵ2 separatrix: the maximum extent of chaos should occur when ν −∆p ∼ 1 rather than

ν ∼ 1.

The resulting improved approximation for K is given by Equation (C.7), for the case

when ν > 0, ϵ1 = 1 and the trajectory is in the upper circulation zone. That is easily

generalized to arbitrary ϵ1 and to the remaining zones, following what we did for the

classical criterion. To be explicit, the final “improved kick criterion” is given by Equation

(1.8), in which

K(E) ≈



(ν−|∆p|)√
ϵ1

A2r

[
r(ν−|∆p|)√

ϵ1

]
upper circulation

(ν+|∆p|)√
ϵ1

A2r

∣∣∣ r(ν+|∆p|)√
ϵ1

∣∣∣ libration

(ν−|∆p|)√
ϵ1

A2r

[
− r(ν−|∆p|)√

ϵ1

]
lower circulation

(1.17)

when ν > 0. Now K depends on E via its dependence on ∆p. Very near the separatrix

(E ∼ ϵ1), K reduces to its classical expression. The case when ν < 0 is found by

antisymmetry. We show the improved criterion in red in Figure 1.5(c). Its agreement

with the numerical result in panel (a) is slightly better than the classical prediction,

particularly inside the libration zone.
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Figure 1.6. A more chaotic system: (a) Numerical double surface of section,
for a system the same as in Fig 5, but ϵ2 increased to 0.8. (b) The pre-
dicted chaotic region for the ϵ1 resonance using the classical criterion (green
outline) and the improved criterion (red region). (c) Chaos from both res-
onances: the improved criterion for the ϵ1 resonance is in red, copied from
panel (b), and that for the ϵ2 resonance is overplotted in orange. The
merged prediction is outlined in black. The green circles show the reduced
classical criterion, now applied to both the ϵ1- and ϵ2- resonances.

In Figure 1.6(a)–(b), we repeat the study from Figure 1.5, but now with ϵ2 increased

from 0.1 to 0.8, in which case ∆pchaos = 3.6. That is comparable to the width of the

ϵ1 resonance (∆p = 4), and so one expects the classical criterion to be inadequate. The

numerical chaotic region is shown in panel (a), and it is now seen to be much larger than

before. In fact, it agrees much better with the prediction of naive resonance overlap, i.e.,
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with the analog of Figure 1.5(b) after increasing to ϵ2 = 0.8. That fact is generally true:

naive resonance overlap works best when the widths of the two overlapping resonances

are comparable (e.g., Shepelyansky, 2009).

In panel (b), we show the predictions from the classical criterion (the green dashed

curves) and from the improved criterion (the red region). The red region is a much better

match to the numerical result. In particular, the red region predicts that the chaos in the

circulation zone roughly follows the ϵ2-separatrix, whereas the classical prediction does

not.

We turn now to the chaos of the ϵ2 separatrix. To plot its improved kick criterion,

we may reuse the prior results, but with the roles of the two resonances swapped. We

proceed by first writing the Hamiltonian as

H(ϕsw, psw, t) = p2sw/2− ϵ2 cos(ϕsw)− ϵ1 cos(rsw(ϕsw − νswt)) ,(1.18)

where the “sw” subscript means that those quantities are defined with the 1 and 2 indices

swapped in Equations (A.8)–(A.11). We then use the chaos criterion to determine the

chaos threshold in the psw-νsw plane. And finally, we map that into the p-ν plane via the

transformation p = psw + νsw and ν = −νsw. For the system in Figure 1.6, the result is

shown panel (c) in orange.

Finally, we must merge the red and orange regions, which we do as follows: we discard

the red when it lies inside of the ϵ2 resonance, because there the ϵ2 resonance dominates

the dynamics; and similarly, we discard the orange when it is within the ϵ1 resonance.

That procedure discards everything in the region where both resonances overlap (e.g., the

red region in Figure 1.5(b)), which is incorrect: in that region, the stronger resonance
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Figure 1.7. Surface of section of the perturbed pendulum, with the param-
eters of the 5:3–2:3 resonance crossing, and ν as shown.

dominates the dynamics. Therefore, if ϵ1 > ϵ2 we keep the red in the overlapping region,

and, if otherwise, we keep the orange there. The resulting prediction is outlined in black

in panel (c). It is seen to agree quite well with the numerical result.7 We also show in

panel (c) the green circles from the reduced classical criterion (Equation 1.12), but now

for both of the resonances.

1.4.3. A Worked Example: The 5:3–2:3 Crossing

We use our prior results to predict the shape of the chaotic zone at the crossing between

the 5:3 and 2:3 resonances in Figure 1.1. The resonant integers are j1 = 5, k1 = 2, j2 = 2,

and k2 = 1, and hence r = j2/j1 = 2/5. The resonant strength from the inner planet

is ϵ1 = µ1|C1|ẽ21 (Equations A.3 and Appendix A.2), where µ1 is the planet-to-star mass

ratio, ẽ1 is roughly the relative eccentricity between the test particle and the inner planet

7Panel (a) has more chaos near the center of the plot than predicted by panel (c). That is because
when ν ∼ 0, chaos becomes adiabatic and needs to be treated differently (see, e.g., Shevchenko (2008)).
However, this disparity is minor and we neglect it for the remainder of the paper.
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(See Equation A.15 for the precise definition), and C1 is the Laplace coefficient for the

5:3 resonance. For the parameters of Figure 1.1, ϵ1 ≈ 9.5 × 10−7. A similar calculation

yields ϵ2 = µ2C2ẽ2 ≈ 3.3 × 10−6. As explained in Section 1.3.1, ϵ1 may be scaled out

of the problem, in which case the strength of the perturbing resonance becomes ϵ2/ϵ1,

i.e., only the relative strength of the two resonance determines which orbits are chaotic.

For the present case, we have ϵ2/ϵ1 ≈ 3.5. Although we retain dependencies on ϵ1 in

this subsection for completeness, the following results may be equally well understood by

setting ϵ1 → 1 everywhere.

Figure 1.7 shows a surface of section of Equation (1.1), when the height of the ϵ2

resonance is ν = 10
√
ϵ1 . It differs from the one shown in Figure 1.3 in two notable ways.

First, because r = 2/5 the ϵ1-resonance now has five cat’s eyes for every two of the ϵ2-

resonance. And second, the large value of ϵ2/ϵ1 produces the chaos of the ϵ1-resonance

even at this large separation.

Figure 1.8(a) is the numerical double surface of section, and panel (b) is the prediction

of the improved kick criterion. For the prediction, the chaotic regions of both resonances

have been merged, as for the black outlined region in Figure 1.6(c). The prediction agrees

well with the numerical result. The green circles show the rough estimates from the

reduced classical kick criterion—i.e., from Equation (1.16) for the topmost circle, and

from the analogous equation for the rightmost circle, which marks the chaos of the ϵ2

resonance. Also shown is the width of the ϵ1-separatrix, ∆p = 4
√
ϵ1 .

The final step for comparing with Figure 1.1 is to transform Figures 1.8(a)-(b) to the

PP plane. But before doing so, we must account for the initial resonance angles (ϕi and

ψi), which are determined from the initial orbital elements via the expressions in footnote
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Figure 1.8. Double surface of section of the perturbed pendulum, with the
parameters of the 5:3–2:3 resonance crossing. (a) Numerical result. (b) Pre-
diction of the improved kick criterion (red) and estimate from the reduced
classical criterion (green circles). (c) and (d) The same as (a) and (b), but
now accounting for the initial resonance angles.

2 in Appendix A.1. We find ϕi ≈ 1.1 rad and ψi ≈ 4.8 rad. By contrast, Figure 1.8(a)

is initialized at ϕi = ψi = 0 (see footnote 5). Therefore, panel (c) repeats panel (a),

but now from integrations that start at the correct initial angles. Correspondingly, the

prediction in panel (d) is determined as in panel (b), but, where we previously converted

from E → p assuming ϕ = 0, we now use p =
√

2(E + ϵ1 cosϕ) . We use an analogous

expression for the ϵ2-resonance.
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Figure 1.9. The 5:3–2:3 resonance crossing: (a) Lyapunov time in N -body
simulations, in a zoomed-in region of Figure 1.1. (b) Lyapunov time in
integrations of the perturbed pendulum model. This panel is the same as
Figure 1.8(c) after a simple coordinate transformation, and after a change
in the color-coding to indicate Lyapunov time. (c) The analytic prediction
of the improved kick criterion for the chaotic region. (d) The location of
(inflated) secondary resonances (green), and where they overlap (red).

Figure 1.9 shows the final result for this resonance crossing. Panel (a) repeats the N -

body simulations of Figure 1.1, zoomed in to the 5:3–2:3 crossing. Panel (b) repeats the
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numerical integration of the perturbed pendulum (Figure 1.8(c)), with two alterations:

First, the coordinates are changed from p-ν to those of the PP plane via the linear

transformation

P1

P
≈ j1 − k1

j1
(1 +

√
3 p)(1.19)

P2

P
≈ j2 + k2

j2
(1 +

√
3 (p− ν)) ,(1.20)

which follows from Equations (A.9) and (A.11) after expanding to linear order in p and

ν. And second, the chaotic region is colored to show the Lyapunov time. Comparing

panels (a) and (b) shows that the perturbed pendulum model explains the bulk of the

N -body chaos, albeit not the very weak chaos with Lyapunov time ≳ 103P . Panel (c)

shows the prediction from the improved kick theory, which results from transforming the

coordinates of Figure 1.8(d). The theory accounts for much of the structure seen in panels

(a) and (b). Also shown in panel (c) are the widths of the resonances, and estimates of

the chaotic extents. The width of the ϵ1 resonance follows from ∆p = 4
√
ϵ1 , Equation

(1.19), and from accounting for the initial phase ϕi as described above, which together

imply

∆P1

P
= 4

√
3ϵ1

j1 − k1
j1

(
1 + cosϕi

2

)1/2

.(1.21)

The extent of the ϵ1 separatrix from the reduced classical criterion (Equation 1.16) is

∆Pchaos,1

P
≈

√
3

2

j1 − k1
j1

ϵ2√
ϵ1
κ(r) .(1.22)
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For brevity, we ignore the dependence on ϕi in the latter expression, which is appropriate

when ∆Pchaos,1 ≲ ∆P1. For an average ϕi, the ratio of the widths is ∆Pchaos,1/∆P1 ∼

0.2 ϵ2
ϵ1
κ(r), which evaluates to 1.2 for this system. The extents of the ϵ2 resonance and

chaotic region follow similarly, yielding

∆P2

P
= 4

√
3ϵ2

j2 + k2
j2

(
1 + cosψi

2

)1/2

(1.23)

∆Pchaos,2

P
≈

√
3

2

j2 + k2
j2

ϵ1√
ϵ2
κ

(
1

r

)
.(1.24)

The ratio of widths is ∆Pchaos,2/∆P2 ∼ 0.2 ϵ1
ϵ2
κ
(
1
r

)
≈ 2.3.

In sum, the improved kick criterion explains the overall shape of the chaos seen in

panels (a) and (b). But it does not address the finer-scale structure. As we shall show in

Section 1.5 much of that is explained by the overlap of secondary resonances. We show

the final result in panel (d), but defer discussion of that panel to Section 1.5.4.

1.4.4. Many Crossings

We repeat the prior calculation for many more resonance crossings in Figure 1.1. Figure

1.10 shows the prediction of the improved criterion in red, for resonances up to tenth

order. It reproduces the majority of the strong chaos seen in Figure 1.1, with Lyapunov

time ≲ 104P . We also show the reduced classical criterion (green circles) for the largest

resonance crossings. These show that the classical estimate is an adequate approximation.

It improves upon the naive resonance overlap when the two resonances have different sizes.
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Figure 1.10. The red shaded region shows the prediction for where the chaos
should occur in Figure 1.1, based on the improved kick criterion for reso-
nances up to tenth order. The reduced classical prediction is shown as the
green circles for resonances up to second order.
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1.5. Theory of Overlapping Secondary Resonances

In surfaces of section such as Figures 1.4 and 1.7, one observes that new cat’s eyes

(“secondary resonances”) appear when the two primary resonances are sufficiently close.

These secondary resonances correspond to 3BRs in the orbital problem. Here, we work

out their locations and widths. We also show that the overlap of neighboring secondary

resonances reproduces the improved kick criterion. Finally, we use secondary resonances

to estimate the Lyapunov times.

1.5.1. Locations and Widths of Secondary Resonances

We analyze the perturbed pendulum Hamiltonian (Equation 1.1) as in standard Hamil-

tonian perturbation theory (e.g. Lichtenberg & Lieberman, 1983). First, the unperturbed

part is rewritten in action-angle variables (J, θ):

Hpend(ϕ, p) ≡
p2

2
− ϵ1 cosϕ → Hpend(J) .(1.25)

Hamilton’s equations for the unperturbed motion now read J = const, and θ̇ =
dHpend

dJ
≡

ω = const., where ω = 2π/period.8 And second, the effect of the perturbation on an

unperturbed trajectory with given J is studied by expanding H ′ = ϵ2 cos [r(ϕ− νt)] in a

Fourier series in the angle, θ. Each term in the series will have a fixed frequency as the

pendulum follows its unperturbed trajectory. In Appendix D, we show that the Fourier

8The inverse of the function Hpend(J) is given explicitly in Equation (1.3.10) in Lichtenberg & Lieberman
(1983).
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series is

(1.26) H ′(θ, J, t) = ϵ2

∞∑
M=−∞

cM(J) cos [Mθ + r(lθ − νt)] ,

where l = 0 when the unperturbed trajectory is in the libration zone, and l = 1 when it

is in the circulation zone, and the Fourier coefficients are

cM(J) =
1

2π

∫ π

−π
cos(rϕunp(θ, J)− (M + lr)θ)dθ .(1.27)

Note that we suppress functional dependencies on the parameters (ϵ1, ϵ2, ν, r). In the

integrand of Equation (1.27), ϕunp(θ, J) describes the pendulum as it follows its unper-

turbed motion; it is the same function as appears in the kick criterion (Equation 1.5),

except now we relabel its argument t → θ = ωt, and we also make its dependence on J

explicit. Equation (1.27) may be evaluated numerically, with ϕunp(θ, J) taken from Smith

& Pereira (1978). An approximation for cM that is valid near the ϵ1-separatrix is derived

in Equation (D.9) in Appendix D, and one valid far from the separatrix is provided in

Appendix D of Escande (1985).

The perturbed pendulum Hamiltonian in action-angle variables is thereforeH(θ, J, t) =

Hpend(J) +H ′(θ, J, t), without approximation. Each cosine term in the Fourier series for

H ′ produces a secondary resonance. If we focus on a single M term, the Hamiltonian

becomes

H(θ, J, t) ≈ Hpend(J) + ϵ2cM cos [Mθ + r(lθ − νt)] .(1.28)
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The center of the resonance is where the argument of the cosine is stationary: (M+rl)θ̇−

rν = 0. After setting θ̇ = ω, as is valid to leading perturbative order, the Mth resonance

occurs where the unperturbed pendulum has the frequency

ωM =
rν

M + lr
.(1.29)

To understand Equation (1.29), consider first the case that the unperturbed pendulum

lies in the circulation zone (l = 1). Then the frequency of the ϵ2 term in Hamiltonian

(1.1) is r(ϕ̇ − ν) ∼ r(ω − ν). Equating that forcing frequency to an integer multiple of

the unperturbed pendulum’s frequency (ω) reproduces Equation (1.29) (when the integer

is −M). Likewise, if the unperturbed pendulum lies in the libration zone, then the

forcing frequency is r(ϕ̇− ν) ∼ −rν, because ϕ̇ averages to zero. Equating that to −Mω

reproduces Equation (1.29) at l = 0.

General secondary resonances of the Hamiltonian in Equation (1.1) have resonant

angle in the circulation zone9

(1.30) Φ[M,N ] =Mϕ+Nψ

for integers M and N . We call these [M,N ] resonances, in which case Equation (1.29)

describes [M, 1] resonances. In a slight abuse of terminology, we shall also label the

ϵ1-resonance as the [1, 0] and the ϵ2-resonance as the [0, 1].10

9Equation (1.30) is the resonant angle when the unperturbed ϕ and ψ are circulating. When the unper-
turbed ϕ is librating and ψ is circulating, the resonant angle is (M −Nr)ϕ+Nψ.
10It is an abuse because the argument of the ϵ2 cosine in the perturbed pendulum differs from that of the
M = 0 cosine term in Equation (1.26). The latter provides a slightly more accurate description of the
ϵ2-resonance; or, to be more precise, Equation (1.26) with M = 0 incorporates not only the ϵ2-resonance,
but also its perturbation by the ϵ1-resonance.
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Figure 1.11. Overlap of secondary resonances leading to chaos, for a per-
turbed pendulum with the same parameters as Figure 1.6. (a) The locations
of the [M, 1] secondary resonances are shown as the black dashed curves,
and their widths are shaded green. The [0, 1] is stippled because we neglect
it in determining where overlap occurs. (b) [M, 1] secondary resonances
(light green) are copied from panel (a), after inflating by π/2 and exclud-
ing the [0, 1]. The yellow shadings are the same for the [1, N ] resonances.
The region where at least two secondary resonances overlap is shown in red.
The black curve is the prediction of the improved kick criterion, copied from
Figure 1.6(c).
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Equation (1.29) determines the locations of the [M, 1] resonances. To plot them in

the p-ν plane, i.e., in the plane used for double surfaces of section, at each ν we use the

properties of the unperturbed pendulum to convert from ωM to energy E, and thence to

the value of p at ϕ = 0 (via E = p2

2
− ϵ1). The result is shown in Figure 1.11(a) as black

dashed lines, for the same system as Figure 1.6.

We turn now to the widths of the resonances, which are determined by first Taylor

expanding Hpend(J) in Equation (1.28) about JM (the action corresponding to ωM) which

gives Hpend ≈ const +ωM(J − JM) + 1
2

d2E
dJ2

∣∣∣
J=JM

(J − JM)2. The term linear in J − JM is

removed by a canonical change of variables, and Equation (1.28) is turned into a simple

pendulum by dividing through by d2E/dJ2 (and correspondingly rescaling time by the

same factor). The full-width can then be read off:

(1.31) ∆J = 4

(
ϵ2cM

d2E/dJ2

)1/2

= 4

(
ϵ2cM
dω/dJ

)1/2

.

We use this expression to produce the green region in Figure 1.11(a), after inserting the

exact dω/dJ from Equation (4.3.29) of Lichtenberg & Lieberman (1983).

1.5.2. Chaos from Secondary Resonance Overlap

Chaos is postulated to occur where secondary resonances overlap with each other. In

Figure 1.11(b), the overlapping region for the system in panel (a) is shaded red. That

red region is made as follows: First, the green [M, 1] secondary resonances from panel (a)

are copied over, after inflating their width in ∆J by π/2 and changing their color to light

green (to indicate their inflation); the reason for the inflation will be discussed shortly.

Second, the analysis that produced the light green region is repeated, but with the roles
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of the ϵ1- and ϵ2- resonances swapped. That produces [1, N ] secondary resonances, in the

notation introduced below Equation (1.29), which are shown in Figure 1.11(b) in yellow,

after inflation.11 The [M, 1] resonances all lie to one side of the [1, 1] resonance and the

[1, N ] lie to the other. Finally, the region where at least two of the secondary resonances

overlap is colored red.

In the above procedure, three of the resonances must be treated specially: the [1, 0],

[0, 1], and [1, 1]. For the [1, 0], we do not include its overlap with the green regions

in calculating the red. That is because the ϵ1-resonance is incorporated into Hpend in

Equation (1.28), and that equation is integrable for a single M , i.e., two M ’s are needed

for chaos. We also neglect the overlap with the [0, 1] for the same reason. For the third—

the [1, 1]—its width may be calculated in two ways, as it is both an [M, 1] and a [1, N ]

resonance. We choose it to be the [M, 1] if the ϵ1-resonance is stronger (ϵ1 > ϵ2); otherwise

we choose it to be the [1, N ].

Also shown in Figure 1.11(b) is the prediction of the improved kick criterion (the

black curve), which is copied from Figure 1.6(c). The two criteria (kick and overlap)

are seen to largely agree, although the overlap criterion is spikier. Comparing with the

numerical integration (Figure 1.6a), we see that most of the spikes in the numerical plot

are attributable to overlapping secondary resonances.

Although the overlap criterion is more accurate than the kick criterion throughout

most of the plot, in the center of Figure 1.11(c) overlap predicts less chaos; and in that

11To be more precise, the yellow regions are made by first defining the swapped quantities psw, ϕsw,
etc., in which the 1 and 2 indices are swapped in their definitions (as described in Section 1.4.2.2). The
locations and widths are then calculated in the psw-νsw plane, and that result is transformed to the p-ν
plane via the transformation in Section 1.4.2.2. Note that in calculating the [1, N ] resonances, we take
the unperturbed Hamiltonian to be the first and third terms in Equation (1.1), rather than Equation
(1.28) with M = 0; although the latter is more accurate, we choose the former for simplicity.
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region it is the kick criterion that is the more accurate, as may be seen by comparing with

the numerical result. That is because resonance overlap is only accurate when the widths

of the two resonances are comparable, as discussed in Section 1.2 and Section 1.4.2.2.

And near the center of the figure (|ν| ≲ 2), neighboring resonances are ill-matched in

size; e.g., at the value of ν pointed to by the [0, 1] label in panel (a), the [0, 1] has a large

width in p, while the [1, 1] is squeezed into the edges of the ϵ1-separatrix. One could, of

course, improve on the overlap prediction by applying the kick method to two secondary

resonances, or by considering the overlap of tertiary resonances (Escande & Doveil, 1981).

But that lies beyond our scope.

1.5.3. Agreement With Improved Kick Criterion

Lichtenberg & Lieberman (1983) demonstrate analytically that the overlap and kick cri-

teria agree with each other, subject to the approximations of the classical kick criterion.

Here, we extend their analysis to the improved kick criterion. From Equation (1.29),

resonances M and M + 1 differ in their frequency by δω ≈ rν
(M+lr)2

, when M ≫ 1. That

translates into a spacing in actions of

(1.32) δJ =
rν

(M + lr)2

∣∣∣∣dJdω
∣∣∣∣ .

Overlap between neighboring secondary resonances occurs when ∆J > δJ where ∆J is

given in Equation (1.31),12 i.e., when

16ϵ2cM >
(rν)2

(M + lr)4

∣∣∣∣dJdω
∣∣∣∣ .(1.33)

12Strictly speaking, overlap occurs when the sum of the half-widths of adjacent resonances exceeds δJ .
We ignore this subtlety because adjacent resonances have comparable widths when M ≫ 1.
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Setting dJ
dω

= dJ
dE

dE
dT

dT
dω
, dE
dJ

= ω, dT
dω

= − 2π
ω2 , and ω to its resonant value (Equation 1.29)

then yields

∣∣∣∣dEdT
∣∣∣∣ < 16

2π
ϵ2rν(M + lr)cM(1.34)

≈ 4

π2
ϵ2r

2ν(ν −∆p)A2r[r(ν −∆p)](1.35)

where in the approximation we set cM to the form derived in Appendix D (Equation D.9),

and for simplicity we specialize to the upper circulation zone and set ϵ1 = 1. Equation

(1.35) reproduces the improved kick criterion (Equations 1.8 and 1.17), albeit with a

numerical coefficient of 4
π2 instead of unity (as shown also in Lichtenberg & Lieberman,

1983).13 This shows that the kick criterion and the secondary resonance overlap criterion

produce essentially the same criterion for chaos.

1.5.4. The 5:3–2:3 Crossing

We return to the worked example in Section 1.4.3, the 5:3–2:3 crossing, for which we

repeat the procedure leading to Figure 1.11(b), and then transform to the P1-P2 plane

with Equations (1.19)–(1.20). The result is shown in Figure 1.9(d), where now we depict

all of the (inflated) secondary resonances in light green. The overlap region (red) is very

similar to the numerical chaotic region from the perturbed pendulum model (panel b),

which in turn agrees moderately well with what is found in N -body integrations (panel a).

The only place panels (b) and (d) disagree significantly is where there is a large disparity

13Such a disagreement is not surprising, because both criteria are only defined up to arbitrary order-unity
factors. For this reason, we plot secondary resonances with widths inflated by π/2.
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in resonance sizes, which occurs in the region within the 5:3 that is also outside the 2:3.

A similar effect was seen in the previous example (Figure 1.11).

Much of the discrepancy between the two numerical results (panels a and b) may now

be understood by comparing with panel (d). For example, the separatrix of the [1, 1] is

chaotic throughout panel (a), and its chaos is evidently due to its intersection with hor-

izontal and vertical lines that represent high-order 2 body resonances. Those resonances

were excluded from the perturbed pendulum model. Many of the other secondaries in

panel (a) are also chaotic, due to their overlap with 2-body resonances.

1.5.5. Three Body Resonances

Secondary resonances in the perturbed pendulum model give rise to 3BRs in the N -

body problem.14 Here we discuss their locations and widths in the PP plane. The 3BR

resonant argument from an [M,N ] secondary isMϕ+Nψ, where for the previous example

ϕ = 5λ− 3λ1 and ψ = 2λ− 3λ2, and we neglect here the ϖ terms. The [1, 1] resonance is

the largest secondary (see below). For the example, its argument is Φ[1,1] = 7λ−3λ1−3λ2.

Therefore, the location of the [1, 1] is determined by d
dt
Φ[1,1] = 0 ≈ 7

P
− 3

P1
− 3

P2
(continuing

to neglect the ϖ terms), i.e., it traces out the following curve in the PP-plane:

P2

P
=

3

7− 3P/P1

,

which matches what is seen in Figure 1.9(a) and (d).

The width of an [M, 1] resonance is worked out by Escande (1985). We turn that into

the 3BR width by inserting his Equation (D.16) for cM into Equation (1.31), and then

14Not all secondary resonances are 3BRs. For example, if the two primary resonances involve the same
two planets, then the resulting secondaries only involve two planet angles.
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converting ∆J to ∆P , which yields

∆P[M,1]

P
≈ ∆P1

P

√
ϵ2
ϵ1

( ϵ1
8E

)M/2

Σ (r,M)(1.36)

to lowest order in ϵ1/E, where E = p2/2− ϵ1 cosϕi, and ϕi is the initial phase (see Section

1.4.3); and Σ (r,M) is given by Equation (D.17) of Escande (1985) (with Σ(r,M) = ΣM
r

in his notation). Likewise, for the [1, N ] resonances,

∆P[1,N ]

P
≈ ∆P2

P

√
ϵ1
ϵ2

(
ϵ2

8Esw

)N/2
Σ

(
1

r
,N

)
(1.37)

where Esw = p2sw/2 − ϵ2 cosψi, in terms of the swapped quantities described in footnote

11.

Of particular note is the dependence of the widths on ϵ1 and ϵ2, since those quantities

are typically very small (of order µek; see Equation A.3). One might naively have expected

the [1, 1] width to be ∼ √
ϵ1ϵ2 , because it arises from the coupling of two MMRs, each

with width ∼
√
ϵ (Equations 1.21 and 1.23). That would make the width extremely small.

But Equations (1.36)-(1.37) show that there is an extra factor of E in the denominator,

and that is typically of order ϵ1 in the region of interest. Therefore the 3BR widths are

not necessarily much smaller than those of the MMRs that generate them.

1.5.6. Many Crossings

For the fiducial system of Figure 1.1, the secondary resonances (i.e., 3BRs) are shown in

Figure 1.12 in green. And the regions where they overlap are shown in red. Comparing

to Figure 1.1, we see that the strong chaos is adequately predicted, and some of the finer

structure is captured. Here, we consider also the overlap of secondary resonances from
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Figure 1.12. 3BRs (green) and their overlap (red) for our fiducial system.
We show all 3BRs that are at least three pixels in width.

different two-body resonance crossings, which makes up a large portion of the chaos in

the lower right of the figure. Secondary resonances also interact with primary resonances

to produce chaos, but we omit such crossings because they are subdominant.
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Figure 1.13. The predicted Lyapunov time based on overlapping secondary
resonances. For two secondaries from the same 2BR crossing, the prediction
is color-coded; but for two secondaries from different 2BR crossings, we are
unable to make a prediction, and those overlaps are colored black.
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We also use secondary resonances to estimate Lyapunov times. We do so in two steps:

(i) we infer empirically an expression for the Lyapunov time in the perturbed pendulum

model of Equation 1.1; and (ii) we apply that expression to pairs of overlapping secondary

resonances. For step (i), a crude estimate of the Lyapunov time is the frequency of small

oscillations in the stronger of the two resonances; for definiteness, we assume in the

present discussion that ϵ1 > ϵ2, in which case the crude estimate is tlyap ∼ ϵ
−1/2
1 . But we

improve on that estimate by running perturbed pendulum simulations. These show that,

for a given choice of the parameters r, ϵ1, and ϵ2, the Lyapunov time is roughly constant

throughout the p-ν plane. Fitting the result to a power-law expression results in

tlyap ∼ 11
√
rϵ1

(
ϵ1
ϵ2

)0.1

.(1.38)

We note that Shevchenko (2007) derives an expression for tlyap analytically in his Section

3. His result is also ∝ (rϵ1)
−1/2, but has a different dependence on ϵ1/ϵ2. Additionally,

he includes a dependence on ν, which we neglect.

For step (ii), we consider the overlap of neighboring secondaries, both of which come

from the same 2BR crossing. In that case, the Hamiltonian is written as Equation (1.28),

plus a second cosine term with M → M + 1. We then rescale that Hamiltonian so that

it is in the form of the perturbed pendulum model, except with new parameters (ϵ1, ϵ2,

etc...), and apply the expression in Equation (1.38).15 If there are multiple sets of over-

lapping resonances in the same location, we keep the most chaotic (the shortest Lyapunov

15We estimate Lyapunov times from the overlap of secondaries, rather than of primaries. Estimating
them from primaries (i.e., assuming that the Lyapunov time is constant in the p-ν plane of the primary
pair) provides a rough approximation to the true Lyapunov times. But a better approximation is obtained
by estimating them from secondary resonance overlap, because the secondary overlap accounts for much
of the fine structure within the primary pair’s p-ν plane.
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time). The resulting Lyapunov times are shown in color in Figure 1.13. One should also

include the overlapping secondaries that come from two different 2BR. However, that cal-

culation is beyond the scope of this paper; we merely color such overlapping secondaries

black in Figure 1.13. Figure 1.13 shows an order-of-magnitude agreement with Figure 1.1

throughout much of the domain. While our estimate for the Lyapunov time is crude, the

agreement shows that a simple model containing only 3BRs can reproduce the Lyapunov

times found in the full N -body simulations. Additionally, the abundance of black in the

lower right corner highlights the importance of overlapping secondaries from different 2BR

crossings.

1.6. Discussion

1.6.1. Summary

Our principal results are as follows:

(1) We mapped out the chaos in the PP plane, for a fiducial three-planet system

where the middle planet is converted to a test particle (Figure 1.1). As shown

by Figure 1.2, resonance overlap is at best a crude guide for where chaos occurs.

(2) To improve upon resonance overlap, we first reduced the dynamics near an MMR

crossing to a much simpler system with 1.5 degrees of freedom: the perturbed

pendulum (Equation 1.1). The reduction, which is based on a novel approxima-

tion that combines many subresonances (Appendix A, Hadden (2019)), allows us

to apply standard techniques from chaos theory to the planetary problem. The

chaos map in the PP plane for a given MMR crossing was thereby reduced to
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a double surface of section of the perturbed pendulum (e.g., Figures 1.5(a) and

1.9(a)-(b)).

(3) Two standard methods were applied to predict the chaotic zone. The first was

kick theory (also known as the “separatrix map” or “whisker map”), which pre-

dicts the chaotic zone around each resonance. But that theory, as developed in

the literature, is only adequate very near the separatrix. We therefore developed

an improved kick criterion that applies further away (Section 1.4.2.2 and Appen-

dix C). A highly simplified prediction for the extent of the chaotic zones in the

PP-plane is provided by Equations (1.22) and (1.24). For our fiducial planetary

system, we combined the results from many different MMR crossings in Fig-

ure 1.10, which agrees with Figure 1.1 considerably better than naive resonance

overlap.

(4) The second standard method we applied was that of overlapping secondary res-

onances, or equivalently overlapping 3BRs (Section 1.5 and Appendix D). We

developed an improved theory for the overlap, which parallels the improved kick

theory, and showed that both of the improved theories agree with each other.

Moreover, overlapping 3BRs account for much of the finer structure in the PP

plane.

(5) We determined a semi-analytical expression for the Lyapunov time of the per-

turbed pendulum (Equation 1.38). We then applied that expression to adjacent

secondary resonances to predict the Lyapunov times in the PP-plane (Figure

1.13). The result is in moderate agreement with Figure 1.1.
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1.6.2. Validity of Key Assumptions

We assess the validity of our key assumptions:

(1) Massless middle planet: Making the middle planet massive should not introduce

fundamentally new complications. For example, the reduction to a perturbed

pendulum in Appendix A proceeds virtually unchanged. One complication is that

whereas we only considered MMR crossings experienced by the middle planet, one

must also consider crossings experienced by the inner and outer planets. But if the

three planets have comparable masses, those crossings should be subdominant—

because the strongest interactions should involve the middle planet. As a check,

we repeated Figure 1.1, but with the middle planet having a mass of 12M⊕

(Lissauer et al., 2011). We found very little difference from Figure 1.1, beyond the

slight broadening and strengthening of the chaotic regions. A second complication

with a middle massive planet is its effect on the secular evolution, as discussed

below.

(2) Three planets: Based on the reasoning of the previous point, we do not expect

additional planets to introduce significant novelties. To determine whether any

planet is chaotic, one need only examine its MMRs with any two other planets.

(3) Coplanar planets: Allowing for modest inclinations should typically have little

effect, because inclinations are weakly coupled to eccentricities. As a test, we

repeated Figure 1.1 but with i = e for each planet, and there was little difference

to the figure. See also numerical experiments by Tamayo et al. (2021).

(4) Pendulum model for MMRs (see footnote 3): the pendulum approximation breaks

down for first-order MMRs at low eccentricity (e ≲ µ1/3 ∼ 0.03, where the latter
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expression is for 10M⊕ planets). In that case, the shape of the separatrix changes

(Henrard & Lemaitre, 1983), and one would have to modify the two methods (kick

and secondary overlap) presented in this paper to account for this change. That

lies beyond the scope of this work.

(5) Neglect of secular effects: In adopting the pendulum approximation, we assume

that the resonance strengths (ϵ1 and ϵ2) are constant, with values determined

by the initial eccentricities. But secular evolution alters the eccentricities on a

timescale of ∼ P/µ. Tamayo et al. (2021) show that one may account for that

effect in a simple way: rather than using the initial eccentricity, one should use the

maximum eccentricity as determined by secular evolution alone. Note that our

fiducial system exhibits little secular evolution—because the massless planet has

higher e than the other planets—and hence did not require such a correction. But

where such a correction is required, it is straightforward to apply. An additional

secular effect we neglect is chaos due to overlapping secular resonances. That

could potentially lead to chaos on even longer timescales, as in the Solar System.

1.6.3. Comparison with Prior Work on Overlapping 3BRs

Petit et al. (2020), building on Quillen (2011) and Quillen & French (2014), determine a

criterion for chaos in three planet systems from the overlap of 3BRs. In contrast to us,

they assume the planets’ orbits are circular, which allows for the planets to be much more

closely spaced before chaos occurs. For example, for our fiducial example of Figure 1.1,

they predict that the threshold for chaos for equal-spaced planets occurs at P1 ≈ 0.88P

and P2 ≈ 1.14P , which is beyond the range of Figure 1.1.
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Nonetheless, it is instructive to compare their 3BRs with ours. Their 3BR locations are

the same as those of the 3BRs that arise from the 1:1–1:1 crossing. The angles of the two

MMRs are ϕ = λ−λ1 and ψ = λ−λ2, and so the crossing produces 3BRs with the angle

(M +N)λ−Mλ1−Nλ2. In the PP plane, these 3BRs describe the curves M P
P1

+N P
P2

=

M +N , all of which intersect the point (P1, P2) = (1, 1)P . Therefore those authors omit

many of the 3BRs that we consider, as is appropriate at zero eccentricity. To determine

the widths of the aforementioned 3BRs, Quillen (2011) considers the combination of two

MMRs with angles I1(λ − λ1) and I2(λ − λ2), respectively, for integers I1 and I2. The

subsequent papers by Quillen & French (2014) and Petit et al. (2020) incorporated an

additional set of crossings into the width calculation: those from two 1st order MMRs,

at integer combination [M,N ] = [1, 1], which is easily seen to produce the same 3BR

arguments as the 1:1–1:1 crossings.

1.6.4. The Outer Solar System

Chaos in the outer Solar System has been attributed to 3BRs amongst Jupiter, Saturn,

and Uranus (Murray & Holman, 1999). In Figure 1.14, we show the PP map for those three

planets. We see that the strongest chaos in the vicinity of the true system is dominated

by the crossing between the 5:2(Jup.-Sat.) and 1:3 (Sat.-Ura.), as well as the 3BRs that

result from the [1, 1] and [2, 1] combinations of those two resonances. Nonetheless, the

current system is close to—not inside of—those chaotic zones. Instead, we find that chaos

appears to be more strongly affected by a very high order resonance between Jupiter and

Saturn, as well as by a secular resonance. We note that the specific 3BR identified by

Murray & Holman (1999) is the [1, 1] combination that arises from the crossing of the
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Figure 1.14. PP map for the Jupiter-Saturn-Uranus system. The param-
eters are from JPL’s DE441 ephemerides (Park et al., 2021) evaluated at
2000 January 1. The blue dot indicates the true system. The orange dashed
lines denote the nominal locations of various resonances: the one labeled
MH is the 3BR proposed by Murray & Holman (1999); the ones labeled
[1, 1] and [1, 2] are the corresponding [M,N ] combinations from the 5:2-1:3
crossing; and the one labeled 7:1 is a resonance between Jupiter and Uranus.
The dashed lines do not correct for secular frequencies, which would shift
the lines by a small amount (∼ 0.001P ).
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5:2(Jup.-Sat.) and the 1:7(Jup.-Ura.) (labeled MH on our plot). And although there

is some chaos associated with the 1:7, there does not appear to be any chaos associated

with the combination proposed by Murray & Holman (1999), even when we repeat Figure

1.14 at a significantly higher resolution. Additionally, in agreement with Guzzo (2005),

we find that including Neptune does little to change the structure of Figure 1.14.

The Lyapunov time of the outer Solar System is very uncertain. Previous studies

have found values ranging from 2 Myr (blue on our colormap) to 1 Gyr (white) (Hayes,

2007). Figure 1.14 shows that this is due to the fine-grained structure of the chaos in

the vicinity of the true orbital elements (blue dot). Because there are additional effects

which we neglect, e.g. those caused by the terrestrial planets, the location of the blue

dot is only approximate. But its distance relative to the four key resonances (the orange

dashed lines) is comparable to what is found by Guzzo (2005), who includes more effects.

We defer a more careful analysis to future work.
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CHAPTER 2

Warped Planet-Disk Interactions

2.1. Introduction

In the past decade, there has been an increasing number of warped protoplanetary

disks (Marino et al., 2015; Stolker et al., 2016; Benisty et al., 2017; Debes et al., 2017;

Long et al., 2017; Min et al., 2017; Casassus et al., 2018; Benisty et al., 2018; Muro-Arena

et al., 2020; Ballabio et al., 2021). Benisty et al. (2017), for example, observe shadows on

the disk, HD 100453, which they explain by the presence of an inner disk misaligned to

the outer by ∼72◦ blocking stellar light. Debes et al. (2017) infer a precessing inner disk

by observing a brightness asymmetry rotate coherently over a 17 year span. Examples,

such as these, have led many to speculate that the cause of such a misalignment is an

unseen exoplanet. This raises the question: how massive must a planet be to cause a

sufficient bend in a disk to explain the observations? To answer this, we must understand

how warped disks interact with nearby planets.

Warped disks, typically in the context of a binary star system, have been studied

extensively (Papaloizou & Pringle, 1983; Pringle, 1992; Papaloizou & Lin, 1995; Ogilvie,

1999; Lubow & Ogilvie, 2000; Ogilvie & Dubus, 2001; Facchini et al., 2013; Foucart &

Lai, 2014; Zanazzi & Lai, 2018; Martin et al., 2019; Dullemond et al., 2022). Papaloizou

& Pringle (1983) derived the equations for the tilt of a viscous accretion disk subject to

an external torque in the diffusive regime (α ≫ H/R). Lubow & Ogilvie (2000), similarly,
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derived the equations for the tilt in the wave regime (α ≪ H/R) (see also, e.g., Papaloizou

& Lin, 1995). These equations make different assumptions, and are thus incompatible.

Some attempts have been made to unify these equations (Martin et al., 2019; Dullemond

et al., 2022). Martin et al. (2019) postulates a generalized set of equations that may

work in both regimes, while Dullemond et al. (2022) derives from first principles a similar

expression. Both sets of equations are tested only against the original equations and not

against numerical simulations. However, Facchini et al. (2013) tests the prediction of

the tilt from the equations of Lubow & Ogilvie (2000) against numerical simulation of a

binary system and finds some cases where the theory agrees well, and other cases where

there is some discrepancies. However, these studies have not aimed at understanding what

happens if a planet is embedded in the disk, which is the primary goal of this paper.

Most of the work on inclined planet-disk interactions has focused on a large disk

with a small planet (Tanaka & Ward, 2004; Cresswell et al., 2007; Bitsch & Kley, 2011;

Rein & Liu, 2012; Arzamasskiy et al., 2018). Still, some work has looked at the massive

planet case (Marzari & Nelson, 2009; Xiang-Gruess & Papaloizou, 2013; Bitsch et al.,

2013; Zhu, 2019), but typically with other questions in mind (e.g., migration rates and

inclination damping rates). Zhu (2019), however, does examine the bending question using

theory and simulations. He derives a rough breaking condition, and finds agreement when

compared with his simulations. However, his simulation results are not tested against any

analytic theory, such the steady-state α-disk powerlaw surface density profile (Lynden-

Bell & Pringle, 1974; Hartmann et al., 1998) or any of the warp equations. Still, his results

are promising that embedded exoplanets can explain the misalignments in observed disks,

and we seek to expand on it. To that end, we derive a set of equations governing the warp
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in a disk, similar to those of Lubow & Ogilvie (2000). From those, we derive a bending

criterion. Finally, we verify the warp equations and bending criterion with 3D numerical

simulations.

The outline of this paper is as follows: We describe our background and perturbed

system in Section 2.2.1. We give the time-dependent warp equations in Section 2.2.2,

which are derived in Appendix E, and compare them to those of Lubow & Ogilvie (2000)

in Section 2.2.3. Next, we characterize solutions in Section 2.2.4, and present the bending

criterion in Section 2.2.5. The bending criterion itself is derived in Appendix F. Then

we present our 3D simulations in Section 2.3. Finally, we summarize and discuss our

conclusions in Section 2.4.

2.2. Warped Disks: Theory

2.2.1. Star-Planet-Disk System

We model a protoplanetary disk with an embedded planet orbiting a star. We use cylin-

drical coordinates, (R, ϕ, z), and align them to the orbit of the planet, i.e., the orbit of

the planet is in the R-ϕ plane. We assume the mass of the disk is negligible, and that the

planet mass, mp, is much smaller than the mass of the star, M⊙.

The disk is locally isothermal, i.e.,

c (r) = cp

(
r

Rp

)q
,(2.1)

where r =
√
R2 + z2 , Rp is the orbital radius of the planet, and q and cp are parameters.

The scale height of the disk is H ≈ c/ΩK where ΩK is the Keplerian frequency. The disk
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has a powerlaw density profile with a gap at the planet:

Σ (R) = Σsc(R)

(
R

Rp

)p
,(2.2)

where q is a parameter and Σsc(R),

Σsc(R) =


Σgap |R−Rp| < ∆gap

Σ0 otherwise

,(2.3)

is our model for the gap.1 Because we ignore self-gravity, the value of Σp is irrelevant,

but only Σgap/Σ0 matters. We treat viscosity in our disk by the α-prescription (Shakura

& Sunyaev, 1973), in which case viscous steady-state is achieved when p + 2q = −1.5

(Lynden-Bell & Pringle, 1974; Hartmann et al., 1998).

The planet is taken to be on a fixed, circular orbit, which we time-average to give

Φp =
mp

2π

∫ 2π

0

dϕ√
R2
p +R2 − 2RRp cos (ϕ) + z2 + h2s

(2.4)

as the potential where hs is the softening radius. The softening radius is an ad-hoc way

to remove the singularity at R = Rp and z = 0. In the real system, the singularity is

removed by the planet accreting material within some radius, but orbit averaging the

planet potential precludes modeling this region of the disk. Additionally, time averaging

the orbit means that the planet will not create a gap. We, therefore, model the gap

with Equation (2.3) in our calculations of the warp equations, while our 3D numerical

1This model is unphysical.However, we find that any model that rapidly drops from Σgap to Σ0 at the
gap edges has the same outcome.
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simulations will not have a gap. Taking this region into more detailed account–both in

regards to the softening radius and a realistic gap–is beyond the scope of this work.

2.2.2. Governing Equations

We treat the warp in the disk as a linear perturbation to a flat, steady-state disk in the

plane of the planet’s orbit. The background state satisfies radial and vertical balance

(Equations E.4 and E.5). The perturbation is a m = 1 linear warp governed by the

linearly perturbed momentum and continuity equations (the steady state equations are

Equations E.8-E.11, while time dependence is included in Appendix E.3). We reduce

these equations by expanding the perturbed quantities in Hermite polynomials, i.e.,

X ′ = X ′
0H0

( z
H

)
+X ′

1H1

( z
H

)
+X ′

2H2

( z
H

)
+ ...(2.5)

where Hn(z/H) is the nth Hermite polynomial, X ′
n = 1

n!
⟨Hn

(
z
H

)
X ′⟩, and

⟨(·)⟩ ≡ 1√
2π H

∫ ∞

−∞
(·)e−z2/(2H2) dz .(2.6)

Then, we solve for the lowest order solution by neglecting higher order terms and elimi-

nating v′ϕ and ρ′, leaving only v′R and v′z. Finally, we change variables to those similar to

Lubow & Ogilvie (2000). For the entire derivation, see Appendix E. The resulting warp

equations are

∂G

∂t
+
(
κ̂20 − 1

) iΩ0

2
G+ αΩ0G =

ΣH2R2Ω3
0

4

[
(1 + 2iα)R

∂W

∂R
+

d ln c2

d ln r

⟨ z
H
δΦ⟩

R2Ω2
0

W

]
,

(2.7)
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which we refer to as the “sloshing equation”, and

ΣR2Ω0

[
∂W

∂t
+

⟨ z
H
δΦ⟩

R2Ω2
0

iΩ0

2
W +

1

4
αRΩ0

H2

R2

∂W

∂R

]
=

1

R

∂G

∂R
− 3iαG

2R2
,(2.8)

which we refer to as the “angular momentum equation”, where

W = −
iv′∗z,0
RΩ0

(2.9)

is the complex inclination,

G =
1

2
ΣH2R2Ω0

(
v′∗R,1
H

+
v′∗z,0
R

)
(2.10)

is the internal torque (so called because of how it appears in Equation 2.8), an asterisk

denotes the complex conjugate,

δΦ =

[
R
∂Φ

∂z
− z

∂Φ

∂R

]
R

H
(2.11)

Ω0 is the orbital frequency evaluated in the midplane (Equation E.4), and

κ̂20 = 4 + 2
d lnΩ0

d lnR
.(2.12)

is the square of the dimensionless epicyclic frequency in the midplane.

2.2.3. Comparisons

The warp equations are similar to those in Lubow & Ogilvie (2000), but with a three key

differences:
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Figure 2.1. Results for |W | (left), arg(W ) (middle left), |G| (middle right),
and arg (G) from a time-dependent simulation of the warp equations. The
parameters for the simulation are: H = 0.1, µ = 0.01, hs = 0.1, and α = 0.1.
The solid lines are from Equations (2.7) and (2.8), while the dashed lines
are from Equations (A53) and (A54) of Lubow & Ogilvie (2000). The
results are qualitatively similar, with the general difference being that the
equations presented in this paper predict the planet to have a smaller effect
on both W and G.

(1) The definition of the internal torque depends on vr rather than vR. Intuitively,

this makes sense as a disk tilted to some inclination, but still flat, should have

G = 0 which G ∝ vr predicts.

(2) The planet’s contribution to the angular momentum equation (Equation 2.8) is

changed. However, our evaluation reduces to that in Lubow & Ogilvie (2000)

when Taylor expanding about z = 0.

(3) We include more viscous terms, leading to three additional viscous terms in the

final warp equations.

2.2.4. Solutions

To solve the time-dependent warp equations (Equations 2.7 and 2.8), we implement the

numerical scheme described in Section 4 of Lubow et al. (2002). Our grid has N = 150

points logarithmically distributed over the computation domain, from R = 0.1 to R = 250,

and Np = 50 additional points within a few softening radii of the planet. W is taken
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halfway between grid points, while G is taken at grid points. Each time step is split

into two, where the viscous terms are evaluated at the original step, while non-viscous

terms are evaluated at the half-step. For boundary conditions, we use the torque free

condition for the inner boundary, which arises from angular momentum conservation at

the boundary edge (Dempsey et al., 2020). For the outer boundary, we assume the disk

is much larger than our numerical domain, where, outside, the disk is unaffected by the

planet, and therefore flat with inclination I0 = 1 and twist β0 = 0. This corresponds

to Wout = I0e
iβ0 , which we take as our second boundary condition. Correspondingly, we

take Σ to be the viscous steady-state solution, such that neglecting ∂Σ
∂t

is always valid.

Though, we do allow for a parameterized gap at the planet (Equation 2.3).

One important fault with this integration scheme is that one term must be dropped

due to a crippling instability: the viscous term proportional to ∂W
∂R

in the sloshing equation

(Equation 2.7). The instability occurs not only at the inner boundary, which would be

solvable if it were the only issue, but also at R = Rp where ∂W
∂R

is largest. Therefore,

all our time-dependent calulations drop this term. Qualitatively, this makes no difference

and the general picture can be understood from the equations without the extra term.

But it will make a quantitative difference when we compare to 3D simulations in Section

2.3.

We show a typical simulation in Figure 2.1. Very quickly (within a few orbits), the disk

reaches a quasi-steady-state, where the inner disk has flattened at a smaller inclination and

G = 0, the inclination rises and |G| ∼ constant from Rp out to some outer radius outside of

which the disk is unchanged. The fact that the outer disk is unchanged validates our outer
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boundary condition. Finally, this quasi-steady-state continues propagating outwards at

roughly half the sound speed,2 slightly decreasing the inner disk inclination as it does.

We now turn to characterizing steady-state solutions to the warp equations. We

illustrate the effect of µ in Figure 2.2 by showing solutions for varying µ, while holding

everything else fixed. Intuitively, a small planet mass cannot overcome the disk’s pressure

resisting bending. However, a large enough planet can overcome it and cause the disk to

significantly bend. Comparing the timescales for the two mechanisms, ts ∼ Rs/(HpΩ0)

for pressure flattening the disk and tp ∼ R2
s/(µpΩ0R

2
p) for the planet bending the disk,

yields the classical bending criterion

µbend,c ≥
Hhs
R2
p

(classical)(2.13)

where the disk bends when the equality is satisfied (Larwood et al., 1996). For the case

in Figure 2.2, the condition is matched for µ ∼ 10−2, which is when a significant bend

appears. If a gap in Σ(R) is included at the planet, it will inhibit the disk’s ability to

resist bending, decreasing µbend.

Viscosity has the counter-intuitive effect, which we illustrate in Figure 2.3: rather than

further resisting the effect of the planet as one would expect, it enhances the effect of the

planet. This is accomplished by the inner part of the disk being able to further affect the

rest of the disk through viscosity, smoothing out and extending the transition between

the inner and outer disk. This has the ultimate effect of decreasing the inclination of the

inner disk.

2The fact that the warp propogates at half the sound speed was derived by and generalized by Papaloizou
& Lin (1995). Similarly, the dispersion relation for the warp equations makes the same prediction when
Φ ≈ Φ⋆ and H/R≫ α.



75

Figure 2.2. Steady state inclination profiles from warp equations (Equations
2.7 and 2.8) at steady-state, with α = 0, H = 0.1, rs = 0.1, and a few values
of µ. Without viscosity, no twist in the disk develops. An order unity bend
occurs when µ is somewhere between 10−2 and 3.2× 10−2.

2.2.5. Bending Criterion

Now we answer the question: when will a disk develop a significant bend? We answer

by deriving the change in inclination between the inner and outer disk, ∆W , using the

perturbative approach of Foucart & Lai (2014), and determining when it is larger than

the inner disk inclination, Win. See Appendix F, In the inviscid case, we find the disk
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Figure 2.3. Steady-state inclination profiles from our equations (solid lines)
and Lubow & Ogilvie (2000) (dashed lines), with Hp = 0.05, mp = 2.5 ×
10−3, rs = 0.1, and a few values of α. Increasing α extends the influence of
the planet, causing the inner disk to bend further and twist.

bends when:

µbend,0 ≳


Hhs
R2

p
(inviscid; shallow gap)√

Σgap

Σ0

hs∆gap

R2
p

H
Rp

(inviscid; deep gap)

.(2.14)
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In the shallow gap limit, this expression agrees with the classical criterion (Equation 2.13),

and, in the deep gap limit, has the same dependence on Σgap as the breaking criterion3

derived by Zhu (2019). However, when there is a gap, the disk becomes easier to bend as

the gap prevents the pressure from as effectively resisting the planet’s effect.

Additionally, we find a sufficiently large viscosity can make the disk more susceptible

to bending. We find an additional criterion,

µbend,αα ≳


H2hs
R3

p
(viscous; shallow gap)

Σgap

Σ0

H2

R2
p

(viscous; deep gap)

.(2.15)

If either criterion is satisfied, we predict the disk to break. Typically, the inviscid criterion

is sufficient, but, for a sufficiently small gap depth, µbend,α will become smaller than

µbend, 0. An example of this is shown in Figure 2.3, where inviscid bending criterion is

not satisfied (µbend,0 = 5 × 10−3), but, for α ≳ 0.1, the viscous criterion is satisfied and,

correspondingly, the numerical result has an order unity bend. Note, however, that in the

case of protoplanetary disks, typically H/R > α and therefore µbend,α is only relevant if

a deep gap is present. We illustrate µbend as a function of Σgap in Figure 2.4, both from

theory and numerical calculation. The numerical µbend is found by a bisection algorithm

on the steady-state versions of Equations (2.7) and (2.8), and agrees with the theoretical

prediction to order unity.

3Note: our “bending” criterion is for when the inner disk has an order unity bend compared to the outer
disk, while his “breaking” criterion is for when the inner and outer disks precess independently. Still,
they are similar concepts.
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Figure 2.4. The theoretical (blue; Equation 2.14) and numerical (green)
µbend required for an inviscid disk to bend, which agree to a factor of unity.
Additionally, the correction to µbend from a small viscosity is illustrated in
red.

2.3. Warped Disks: 3D Simulations

Our goal now is to verify the linear theory for warps presented in Section 2.2 using

direct 3D numerical simulations. This is no easy task, however, as our background disk

must be in viscous steady-state, which is difficult to achieve due to a timescale problem:

the disk’s viscous time tν is much longer than its dynamical time Ω−1. As an unfortunate
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result, simulation studies rarely contrast the viscous evolution of disks with theoreti-

cal steady-state solutions, such as the expected power-law profile. But there is another

challenge in attaining the true solution: imperfect boundary conditions can introduce

anomalous torques into the gas leading to an incorrect solution (e.g., see Dempsey et al.,

2020). For example, the case of open inner and outer boundaries break angular momen-

tum balance of viscous disks, forbidding the disk from reaching the power-law profile

characteristic of the (planet-less) true steady state by artificially depleting mass at both

boundaries.

To address the timescale problem, we initialize our simulations in viscous steady-state,

neglecting the planet. This initial condition allows the disk to evolve on tw, which is much

shorter than tν . To solve the boundary problem, we implement torque free boundary

conditions (Dempsey et al., 2020). This allows us to run simulations which match the

theoretical models presented in Section 2.2.

2.3.1. Numerical Setup

We defer a complete description of our setup to Appendix G, but here provide a brief

summary: We use the AREPO code (Springel, 2010; Pakmor et al., 2016) in its Navier-

Stokes version (Muñoz & Lai, 2016). We initialize a locally isothermal disk in near steady-

state with q = −1/2 (Equation 2.1). That is, v and ρ are given by radial and vertical

balance (Equations E.4 and E.5) and Σ(R) is given by Equation (2.2) with p = −1/2. The

disk begins with and is kept at a resolution of roughly 250 azimuthal cells near the planet,

and 100 in the rest of the disk. Finally, we rotate the disk to I = 1◦ and β = 0◦.4 The

4This angle is, admittedly, very small; however, we tested for I = 10◦ found no change for the inclination
profile, while a change appeared when I = 30◦.
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star is included as a fixed point source with a spline softening for r < 0.1Rp (e.g., Springel

et al., 2001), while the planet’s force, dependent on µ and hs, is pre-calculated on a grid

and linearly interpolated. The inner boundary condition is torque-free (Dempsey et al.,

2020), and the disk is large enough such that the outer boundary condition is irrelevant.

Measuring v′z,0 and v′R,1 from the simulations is nontrivial as AREPO does not have a

regular grid. Examining v′z, we note first that

v′z =
1

π

∫ 2π

0

vz,T e
−iϕdϕ(2.16)

gives the m = 1 component of vz where vz,T is the total vertical velocity. v′z,0 is defined as

v′z,0 =
1

H

∫ ∞

−∞
v′zψ dz .(2.17)

To perform the integral, we insert Equation (2.16) and integrate in R, giving

v′z,0 =
1

πR∆RH

∑
v′z,T e

−iϕψδV ,(2.18)

which is now in a usable form. We apply the same process for v′R,1. From those, we

calculate W and G, using the theoretical values of H and Ω, but calculating Σ directly

from the simulation.

2.3.2. Results

Figure 2.5 shows W and G from nine AREPO simulations. The first row shows them as

a function of time for the example in Figure 2.1, with the warp equations overplotted.

There is reasonable agreement between theory and simulation: The overall shape of both
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variables is matched well as they evolve in time, with the one exception being arg(G).

While W and |G| are insensitive to the method by which they are computed, arg(G)

is very sensitive. It is thus difficult to determine if the disparity is due to the method

we calculate G, resolution in the simulation, or an actual problem in the theory. The

remaining variables have a small disparity between theory and simulation, which will be

addressed momentarily. Nonetheless, the general picture described in Section 2.2.4 is

matched: the inner disk quickly flattens to a lower inclination, and then the disturbance

propagates outward as a quasi-steady-state. This allows us to compare the remaining

simulations to the steady-state equations so that all the viscous terms can be included.

In the remaining rows, we vary one parameter of the disk or planet at a fixed time

(T = 100Tp), and compare it to the steady-state equations.5 As the equations assume

steady-state, they are only valid roughly to where the wave has propagated. The varied

parameters are, in order, µ, α, and H. We see that, in all cases, the general picture still

holds true. Furthermore, the bending criterion presented in Section 2.2.5 is satisfied for

µ = 0.01 in the first row, α = 0.2 in the second row, and H = 0.05 in the final row. These

are the only simulations where Win ≲ 0.5 validating the bending criterion. The only

simulation wherein there remains noticeable disagreement between theory and simulation

is when α = 0.2, which is likely due to approximation that α ≪ 1 has started to break

down.

Overall, we find good agreement between simulations and the warp equations, as well

as the bending criterion. The primary observable, Wout −Wout, is well predicted in each

5For the steady-state equations, we use the Σ profile from AREPO and, because the overall scaling is
arbitrary, normalize to r = 5.
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Figure 2.5. First row: W and G from an AREPO simulation at several times
for the parameters in Figure 2.1 (H = 0.1, µ = 6 × 10−3, hs = 0.1, and
α = 0.1). There is acceptable agreement between the analytic theory and
the AREPO simulation. The remaining three panels show AREPO while
varying one variable compared to the steady-state equations. The second
row varies µ, the third varies α, and the final varies H. Across all three rows
(except when the panel indicates otherwise), µ = 0.01, H = 0.1, T = 100Tp.
The second row has hs = 0.1, while the third and fourth have hs = 0.2.
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case. Likewise, the qualitative picture of a quasi-steady-state propagating outwards at

half the sound speed holds true.

2.4. Discussion

2.4.1. Summary

Our principal results are as follows:

(1) We derived from first principles the equations that describe a warp in a disk in

the presence of a star and orbit averaged planet (Equations 2.7 and 2.8; derived

in Appendix E). These equations are an improvement upon those in literature,

as they correct the definition of the internal torque, include a modified form of

the potential, and better take into account viscosity.

(2) In Sections 2.2.4 and 2.2.5, we characterized the solutions to the warp equations

as a function of time (Figure 2.1): a quasi-steady-state of a flat inner disk,

transition region, and a flat outer disk. Likewise, we examined the role of each

parameter (Figures 2.2 and 2.3), and determined a criterion (Equations 2.14 and

2.15; derived in Appendix F) for when the disk bends.

(3) We derived a bending criterion in the inviscid (Equations 2.14) and very viscous

limits (Equation 2.15) in Appendix F, which is described in Section 2.2.5 and

portrayed in Figure 2.4. In the inviscid shallow gap limit, the criterion matches

the classical criterion (Equation 2.13). Likewise, it matches that of Zhu (2019)

for the inviscid deep gap limit.

(4) Finally, in Figure 2.5, we compared the warp equations to 3D simulations per-

formed in AREPO for various parameters, and found good agreement.



84

2.4.2. Key Approximations

The principal approximations made throughout this work are:

(1) We orbit averaged the planet’s potential. This allowed us to treat the planet

as an axisymmetric potential, greatly simplifying the problem. However, this

introduced the unphysical softening radii, as well as requiring us to model the

gap in the disk. We expect the case of a full planet will be similar to the one

examined here, but dealing with that case is beyond the scope of this work.

(2) Everywhere we assumed that both H/R ≪ 1 and α ≪ 1. This is likely the case

for protoplanetary disks, but applying the warp equations to other contexts may

violate these assumptions.

(3) We neglected ∂Σ
∂t
. Typically, this is considered equivalent to assuming α ≪ H/R,

limiting our results to the wave regime. Alternatively, we assume the background

disk is in viscous-steady state. This ensures ∂Σ
∂t

= 0, allowing Equations (2.7)

and (2.8) to apply in both the wave and diffusive regimes.
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APPENDIX A

Reduction to Perturbed Pendulum

A.1. Circular Planets

We consider a test particle perturbed by two resonances: a j1:j1 − k1 resonance with

an inner planet (denoted with subscript 1) and a j2:j2+k2 resonance with an outer planet

(denoted with subscript 2), where the ji and ki are all positive. We derive here the

test particle’s Hamiltonian when the two perturbing planets are on circular orbits (see

Appendix A.2 for the extension to eccentric planets). The Hamiltonian (or, really, energy)

is

H = − GM

2a︸︷︷︸
HKep

−GM
a

µ1C1e
k1 cos(j1λ− (j1 − k1)λ1 − k1ϖ)︸ ︷︷ ︸

Hres,1

+µ2C2e
k2 cos(j2λ− (j2 + k2)λ2 + k2ϖ)︸ ︷︷ ︸

Hres,2


(A.1)

where {a, e, λ,ϖ}, without subscripts, are the standard orbital elements for the test par-

ticle; the subscripted orbital elements are for the planets; M is the stellar mass; µi is the

planet mass scaled to the stellar mass; and the Ci are disturbing function coefficients.1

1A more accurate model may be obtained by replacing the coefficients Cie
ki in Equation (A.1), which ap-

proximate the resonance amplitudes at leading order in eccentricity, with the cosine amplitudes Sji,ki
(α, e)

defined in Equation (23) of Hadden & Lithwick (2018), which are correct to all orders in eccentricity, then
proceeding through the derivation presented here. Nonetheless, we find that the Cie

ki provide sufficiently
good approximations of the resonance amplitudes for all cases considered in this paper so we have chosen
to work with these expressions as they are more common in the literature.
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C1 is obtained directly from Equation (6.113) of Murray & Dermott (1999), while C2 has

an additional factor of a/a2. For ki ≤ 4, Murray & Dermott (1999) provide a convenient

table in their Appendix B: for example, for a second order resonance with the inner planet

(k1 = 2), C1 → f53 in their table’s notation, and for a second order resonance with the

outer planet (k2 = 2), C2 → a
a2
f45.

The derivation of Equation (1.1) proceeds as follows:

(1) We adopt the pendulum approximation, in which we treat all quantities in the

non-Keplerian part of Equation (A.1) as constants, except for λ and λi. The

validity of this approximation is examined in Section 1.6.2. Setting λi = nit for

the two planets, where ni is their mean motion, we have

Hres,1 +Hres,2 = ϵ1 cos(j1(λ− nr,1t)) + ϵ2 cos(j2(λ− nr,2t))(A.2)

where

ϵ1 = µ1|C1|ek1 , ϵ2 = µ2|C2|ek2 ,(A.3)

nr,1 =
j1 − k1
j1

n1 , nr,2 =
j2 + k2
j2

n2 .(A.4)

Here, nr,i is the mean motion when the test particle is at nominal resonance

with the ith planet. We drop constant phases within the cosine arguments be-

cause they have little influence on the dynamics (although they are needed for

transforming between orbital and pendulum coordinates).2

2Without neglecting phases, the argument of each cosine term is ji(λ−nri)− ξi where ξ1 = k1ϖ1− (j1−
k1)λ1,initial and ξ2 = −k2ϖ2 + (j2 + k2)λ2,initial. If Ci < 0, then ξi → ξi + π.
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(2) We turn Equation (A.1) into a proper Hamiltonian by replacing a in Hkep with

Λ ≡
√
GMa , which is the momentum conjugate to λ. We then expand Λ around

its value at nominal resonance with either planet 1 or 2. Typically, one wishes

to expand around whichever resonance has the larger effect. For definiteness,

we choose planet 1 and comment on how things change with the other choice in

Section 1.3.1. Therefore, we write

Hkep = −G
2M2

2Λ2
≈ nr,1Λr,1

(
Λ− Λr,1
Λr,1

− 3

2

(
Λ− Λr,1
Λr,1

)2
)

(A.5)

where Λr,1 =
√
GMar,1 and ar,1 = (GM/n2

r,1)
1/3.

(3) We make a canonical transformation to the new coordinate and momentum,

{ϕ, P} = {j1(λ− nr1t), (Λ− Λr1)/j1}, which produces a new Hamiltonian which

differs from the original only in that the first term in brackets in Equation (A.5)

disappears. Then, in order to remove a relative constant factor between Hkep

and Hres,i, we rescale both the new momentum and Hamiltonian by the same

constant, (−Λr1/
√
3 j1); although that rescaling is not canonical, it leaves the

equations of motion unchanged. The result is

H(ϕ, p, t) =
(
nr,1j1

√
3
)
×
(
p2

2
− ϵ1 cosϕ− ϵ2 cos

(
j2
j1
(ϕ− (nr2 − nr1)j1t)

))
(A.6)

where p is the rescaled momentum (given explicitly below).

(4) In order to remove the overall constant in front of Equation (A.6), we rescale

time: trescale = t(nr,1j1
√
3 ). We therefore have for our final Hamiltonian:

H(ϕ, p, trescale) =
p2

2
− ϵ1 cosϕ− ϵ2 cos(r(ϕ− νtrescale))(A.7)
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where

r =
j2
j1

(A.8)

ν =
1√
3

nr2 − nr1
nr1

,(A.9)

and ϕ and p are related to the orbital elements and (unscaled) time via

ϕ = j1(λ− nr1t)(A.10)

p = −
√
3
Λ− Λr1
Λr1

≈ −
√
3

2

a− ar1
ar1

.(A.11)

A.2. Eccentric Planets

When the two planets are eccentric, each Hres,i in Equation (A.1) becomes a sum of

ki cosine terms, e.g.

Hres,1 = µ1

(
C1,0e

k1 cos(ψ − k1ϖ) + C1,1e1e
k1−1 cos(ψ −ϖ1 − (k1 − 1)ϖ) + · · ·

)
(A.12)

where ψ = j1λ− (j1− k1)λ1. If one had to consider each of those cosine terms separately,

the calculations needed for this paper would be exceedingly cumbersome. But one may

avoid that with a trick (Hadden, 2019, hereafter H19). Following H19, we first write for

the inner planet’s resonance

Hres,1 = µ1Real

{[
k1∑
l=0

C1,l

(
e1e

−iϖ1
)l (

ee−iϖ
)k1−l] eiψ}(A.13)

where the Roman e is an exponential (Euler’s number). H19 showed that the square-

bracketed sum in the above equation may be approximated by a single combined term.
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Moreover, whereas the sum apparently depends on the complex eccentricities (ee−iϖ)

of the test particle and inner planet separately, the combined term only depends on a

single combined quantity. To be explicit, H19 shows that the square-bracketed term is

sufficiently well approximated by

[...] ≈ C1

(
ẽ1e

−iϖ̃1
)k1

,(A.14)

where the new quantities (with tilde’s) are defined via

ẽ1e
−iϖ̃1 = ee−iϖ −

(a1
a

)0.825
e1e

−iϖ1 ,(A.15)

which is nearly the difference between the two complex eccentricities. We note paren-

thetically that H19 obtain the coefficient on the second term in the above expression by

inserting Equation (A.15), with an undetermined coefficient, into Equation (A.14), with

an undetermined amplitude3; then expanding into k1 + 1 terms; and finally choosing the

undetermined coefficients by matching term-by-term with the square-bracketed sum. Re-

markably, even though there are only two fitting parameters and k1 + 1 coefficients to

match, the error after the fit is performed is small. Some discussion of why this fit works

can be found in Section 2.4 of H19. Nonetheless, we may take advantage of this result

by using for Hres,1 the term displayed in Equation (A.1), after simply replacing e → ẽ1

and ϖ → ϖ̃1. The resonance with the outer planet proceeds in a nearly identical way: in

3While H19 fits for both undetermined parameters, we have found that C1 is a sufficiently good approxi-
mation for the amplitude and use it instead. This is true in all circumstances except when indirect terms
are present. In our main example (Figure 1.1), this is only significant for the 2:1 and 1:2 resonances, so
we fit two parameters in those cases.
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Hres,2, one makes the replacement e → ẽ2 and ϖ → ϖ̃2, where the variables with tildes

are defined via ẽ2e
−iϖ̃2 = ee−iϖ − (a2/a)

0.825e2e
−iϖ2 .

The Hamiltonian with eccentric planets is therefore identical to the one with circular

planets derived above (Equations (A.7)–(A.11)), except that the eccentricity that enters

in ϵ1 should be ẽ1 (rather than e), and the one that enters in ϵ2 should be ẽ2.
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APPENDIX B

The Melnikov-Arnold Integral

The MA integral is1

(B.1) A2r(rν) ≡ lim
s→∞

∫ s

−s
cos [r (ϕsep(t

′)− νt′)] dt′

where ϕsep is the pendulum’s phase on the separatrix (Chirikov, 1979). Technically, the

integral does not converge in the limit of large s, but oscillates around a constant value

as s increases. That constant value has the following analytic expression:

[A2r(rν)]constant =
2π

Γ(2r)

eπrν/2

sinh(πrν)
(2rν)2r−1(1 + f2r(rν))(B.2)

where f2r is given by Equation (A.9) of Chirikov (1979); in particular, f2r = 0 when

0 ≤ r ≤ 1, and f2r is typically order unity for 1 < r ≲ 2. The dependence of A2r on s

(before the s limit is taken) is illustrated by the orange dotted curve in Figure B.1. At

large s, it oscillates around Equation (B.2) (the horizontal line). Even though Equation

(B.1) is not strictly identical to Equation (B.2), we follow Chirikov (1979), and drop the

“constant” label from Equation (B.2) throughout the body of the paper.

1We set ϵ1 = 1 throughout this appendix.
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Figure B.1. An illustration of the proper integral versions of A2r(rν) (the
orange dotted line) and Ã2r(rν) (the blue solid line) as functions of the
integration bound, as well as the analytic expression given in Equation
(B.2) (the horizontal green line), with r = 1 and ν = 4.2. This figure is
based on Figure 3.22 in Lichtenberg & Lieberman (1983).

The integral that appears in the classical kick criterion (Section 1.4.2.1) is not Equation

(B.1), but

Ã2r(rν) ≡
1

ν
lim
s→∞

∫ s

−s
ϕ̇sep(t

′) cos [r (ϕsep(t
′)− νt′)] dt′ ,(B.3)

which has an extra factor of ϕ̇sep/ν. Unlike Equation (B.1), this integral does converge to

Equation (B.2). The blue curve in Figure B.1 shows this integral and its convergence at

large s. We note that in the context of the classical kick criterion, the issue of integral non-

convergence is merely an artifact of the standard definition of the MA integral (Equation

B.1); i.e., had one chosen to adopt Equation (B.3) as the definition, no such issue would

arise. We have belabored the non-convergence because it plays an important role in the

improved kick criterion (Appendix C).
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APPENDIX C

Improved Kick Criterion

For the kick criterion, one must evaluate K in Equation (1.5), which we restate here

for convenience as

K(E, r, ν; s) =

∫ s

−s
ϕ̇unp(t

′) cos [r(ϕunp(t
′)− νt′)] dt′(C.1)

where s = T/2 and T = T (E) is the unperturbed period. Note that we now allow K to

depend explicitly on the integral limit s, for reasons that will be apparent; we set ϵ1 = 1

for this appendix; and we explicitly display the dependence of K on r and ν, unlike in

the body of the paper. For the classical criterion, one sets ϕunp in this expression to be

on the separatrix and T = ∞. But for the improved criterion, we allow ϕunp to follow a

trajectory slightly displaced from the separatrix by approximating

ϕunp(t) ≈ ϕsep(t) + (∆p)t(C.2)

where ∆p is a constant that we take to be the relative drift rate at t = 0:

∆p = ϕ̇unp(0)− ϕ̇sep(0)(C.3)

=
√
2(E + 1) − 2 .(C.4)
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Figure C.1. In each panel, we show the original definition of K as a function
of s (Equation C.1) as a blue solid line. We show our approximation to K
(Equation C.5) as a red dotted line. The approximation is absent from
the left panel because it is identical to Equation (C.1) when E = 1. The
horizontal dashed lines are given by Equation (C.7). The black points
indicate the value of Equation (C.1) at s = T/2. It is absent in the left
panel because T = ∞ there.

Inserting this ϕunp into Equation (C.1) leads to

(C.5) K(E, r, ν; s) ≈
∫ s

−s

(
ϕ̇sep(t

′) + ∆p
)
cos(r(ϕsep(t

′)− (ν −∆p)t′))dt′ .

Figure C.1 shows K versus s for three sets of parameters. The left panel has E = 1 (and

hence ∆p = 0) and is the same as the blue curve in Figure B.1. In the middle panel,

the trajectory is displaced from the separatrix (E = 1.1). The solid blue curve shows the

exact integral (Equation C.1); the red dotted curve shows the approximation (Equation

C.5); and the black dot indicates where s = T/2. We see that the approximation agrees

well for this value of E at the time of interest. The right panel shows another comparison

at higher ν.

Figure C.1 also illustrates an important, yet subtle, complication: the value of Equa-

tion (C.1) (i.e., the height of the black dot at time T/2) is subject to fast oscillations,

and it depends on the precise phase of the fast oscillation at that time. Yet in truth,
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one wishes to average out the fast oscillations. That is because each successive kick is

subject to similar fast oscillations, and so they average out after many kicks. As a result,

the value of Equation (C.1) at time T/2 is not what should enter the kick criterion. One

requires the height of the horizontal lines in the figure, rather than those of the black

dots.

To calculate the horizontal lines, we start from Equation (C.5), and focus first on the

ϕ̇sep term within the brackets. At large |t|, ϕ̇sep decays smoothly to zero (ϕ̇sep ≈ 4e−|t|).

Therefore, extending the integration limits to s = ∞ will remove oscillations on a timescale

much faster that T . The second bracketed term (∆p) is subdominant to the first for

|t′| < T/2 and is oscillatory as s → ∞. Therefore, we neglect it. The net result is that

Equation (C.1) should be replaced with

K(E, r, ν) ≈
∫ ∞

−∞
ϕ̇sep(t

′) cos(r(ϕsep(t
′)− (ν −∆p)t′))dt′(C.6)

= (ν −∆p)A2r [r(ν −∆p)](C.7)

where the latter equality follows from Appendix B, and A2r is given by Equation (B.2).

Equation (C.7) is the main result of this appendix; the horizontal lines in Figure C.1 are

at the values prediction by this equation. In Section 1.4.2.2, we use Equation (C.7) to

produce the improved kick criterion.

The “improved” expression for K differs from the classical one (Equation 1.9) by the

replacement ν → ν −∆p. One may understand why ν −∆p is the relevant frequency by

referring to a surface of section, such as Figure 1.3. The perturbing resonance is at height

p = ν, and our trajectory of interest is at height p = 2+∆p at the critical moment when
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it receives its kick (i.e., when ϕunp ≈ 0). The difference between those two heights is equal

to the difference in frequencies, which sets the strength of the kick. Therefore the kick

strength on our trajectory of interest is almost equivalent to the kick on a trajectory on the

separatrix, provided the height of the perturbing resonance is lowered from ν → ν −∆p.

Figure (C.2) (left panel) compares the various expressions for K as a function of E, for

r = 1 and ν = 4.2. The horizontal dot-dashed line is the classical K (Equation 1.9), which

is independent of E. The blue solid curve is the exact expression before the removal of

fast oscillations (i.e., Equation C.1 at s = T/2). One sees that very close to the separatrix

(E − 1 ≲ 1), the exact expression oscillates around the classical one. The oscillations are

caused by the aforementioned fast oscillations, and do not contribute to chaos. In fact,

the classical expression is more accurate than the exact one at such close distances to the

separatrix. But the peak in the blue curve at E − 1 ∼ 10 is not due to fast oscillations,

and the classical expression is inadequate there. The black dashed curve is the improved

expression (Equation C.7). It both captures the true behavior close to the separatrix,

and does an adequate job at capturing the peak—considerably better than the classical

criterion. The right panel of Figure C.2 is similar, but for r = 4 and ν = 2.5, and likewise

shows how Equation (C.7) captures the broad peak while removing the fast oscillations.

We note that a truer measure for how well Equation (C.7) performs can be ascertained

by comparing its prediction for the transition to chaos with numerical integrations, as is

done in Figure 1.6 (a) and (b) for the case r = 1 and ϵ2/ϵ1 = 0.8. We have done so for

many additional cases, and find that Equation (C.7) invariably produces the best match

with simulations.
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Figure C.2. A comparison of different expressions for K as a function of E:
Solid blue lines depict the original definition (Equation C.1), green dot-
dashed lines depict Chirikov’s approximation (Equation 1.9), and black
dashed lines depict our approximation (Equation C.7). The left panel has
the same parameters as the two left panels of Figure C.1.

We conclude this Appendix with a second, more formal, derivation of Equation (C.7),

based on the action-angle formalism derived in Appendix D. The rate of change of the

unperturbed energy is

(C.8)
dE

dt
=
∂E

∂J

dJ

dt
= −ω∂H

∂θ
= ϵω

∞∑
M=−∞

cM(M + lr) sin
[
Mθ + r(lθ − νt) + ψ(1)

]
where ω = 2π/T ; the final expression follows from the Fourier expansion of the pertur-

bation in the angle variable (Equation D.5); and ψ(1) is the forcing phase at the time of

the first kick (Section 1.4.1). Integrating over an (unperturbed) orbit yields a change in

energy with the form of Equation (1.4) where

(C.9) K(E, r, ν) =
∞∑

M=−∞

ωcM(
M + lr

r
)

∫ π
ω

− π
ω

cos [Mθ + r(lθ − νt)] dt

We keep in this sum overM only the dominating term (i.e., the one that is near-resonant)

satisfying (lr+M)ω− rν ∼ 0. This effectively removes the fast oscillations. Next, we set
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θ = ωt and evaluate the integral to yield

K(E, r, ν) ≈ 2ωcM

(
M + lr

r

)
sin
[
π
ω
(Mω + r(lω − ν))

]
(M + lr)ω − rν

.(C.10)

Using the approximation that (lr +M)ω − rν ∼ 0 and inserting Equation (D.9) for cM ,

we get

K(E, r, ν) ≈ (ν −∆p)A2r [r(ν −∆p)](C.11)

which is identical to Equation (C.7).
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APPENDIX D

Perturbed Pendulum Expansion in Action-Angle Variables

For Section 1.5, we require the expansion of the perturbed piece of the Hamiltonian,

H ′, in terms of the action-angle variables of the unperturbed pendulum. Before expanding

H ′ ≡ ϵ2 cos[r(ϕ− νt)], we first expand eirϕ. In the libration zone of Hpend, ϕ is a periodic

function of θ (i.e. ϕ(θ) = ϕ(θ + 2πn) where n ∈ Z). Hence we may expand

eirϕ =
∑
M

cMe
iMθ ,where cM ≡ 1

2π

∫ π

−π
ei(rϕ−Mθ)dθ (in libration zone)(D.1)

But in the circulation zone, ϕ changes by 2π when θ does; i.e., it is the difference (ϕ− θ)

which is a periodic function of θ. In that case, one should replace ϕ→ ϕ− θ throughout

Equation (D.1). Both zones may be combined by introducing

l =


0 in libration zone

1 in circulation zones

(D.2)

in which case

eirϕ =
∑
M

cMe
i(M+lr)θ , where cM ≡ 1

2π

∫ π

−π
ei[rϕ−(M+lr)θ]dθ.(D.3)
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Note that cM is real, which follows from the fact that Hpend is unchanged when ϕ→ −ϕ.

Using Equation (D.3), we write

H ′ = ϵ2 cos [r (ϕ− νt)](D.4)

= ϵ2

∞∑
M=−∞

cM cos [Mθ + r (lθ − νt)](D.5)

where

cM =
1

2π

∫ π

−π
cos [rϕ− (M + lr) θ] dθ .(D.6)

This expression was derived for the libration zone by Smith & Pereira (1978) and for

the circulation zone by Escande & Doveil (1981). The above expressions for H ′ and

cM are exact, and are the main result of this appendix. There are several approaches to

approximate/compute the integral in cM : Smith & Pereira (1978) give analytic expressions

for r = 1
2
and r = 1, and show analytic solutions exist for all 2r ∈ Z. Escande (1985) gives

approximate expressions far from the separatrix for both inside and outside of resonance,

which we use for the sake of computation time to create Figures 1.12, and 1.13.

We conclude this appendix with an approximate expression for cM , which is needed

for deriving the improved kick criterion with the action-angle method (Appendix C) and

for quantifying secondary resonance overlap (Section 1.5.2). As was done to evaluate

Equation (C.1), we set ϕ(t) ≈ ϕs(t) + (∆p)t and take the integration bounds to infinity
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to get

cM ≈ ω

2π

∫ ∞

−∞
cos [rϕsep − (M + lr)ωt+ r∆p t] dt(D.7)

=
ω

2π
A2r [(M + lr)ω − r∆p](D.8)

where Am(λ) is the MA-integral given in Equation (B.2). Although the above approxi-

mation is generally a good one, it fails at M = 0. In that case, as E → ∞ the argument

of the A2r approaches a constant (because ω → ∆p + 2) and the prefactor (ω) increases

without bound. However, in truth limE→∞ c0 = 1. To correct for that, we change the

prefactor by a quantity that is small whenever M ̸= 0, yet yields the correct limiting

behavior of c0, by setting

cM ≈ 1

2π

[
ω − r∆p

M + lr

]
A2r [(M + lr)ω − r∆p] .(D.9)
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APPENDIX E

The Warp Equations

We derive the governing equations for the steady-state warp of a disk caused by a

planet. Our results are similar to those found in Papaloizou & Lin (1995) and Lubow

& Ogilvie (2000), but with some differences to be described in Section 2.2.3. We model

the disk perturbatively. The background state consists of disk and planet both having

zero inclination, while the perturbation is the an m = 1 mode corresponding to the disk’s

inclination. We use cylindrical coordinates (R, ϕ, z) aligned with the planet’s orbit. We

assume the disk mass is sufficiently low that the gravitational force it exerts is negligible.

We also assume that the equation of state is locally isothermal, with pressure = density×

c(r)2, where c(r) is the prespecified sound speed (Equation 2.1), and r =
√
R2 + z2 .

The disk’s equations are

0 =
∂vT

∂t
+ (vT · ∇)vT + c2∇λT +∇(Φ + c2)− fT(E.1)

0 =
∂λT
∂t

+∇ · vT + (vT · ∇)λT(E.2)

where the T subscript denotes total value (i.e., background plus perturbed), vT is the

velocity, λT = ln ρT is the logarithm of the density, fT is the viscous force, and Φ is the

sum of star and planet potentials. We first solve the time-independent case by expanding

the perturbation in Hermite polynomials, following Okazaki et al. (1987); Ogilvie (2008).

Then, we include time dependence in Appendix E.3.
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E.1. Background

We assume the background is axisymmetric, and neglect viscosity. The velocity is

v = RΩϕ̂ ,(E.3)

with Ω(R, z) to be determined. We denote background quantities by dropping the T

subscript. The profiles of Ω and λ are determined by the radial and vertical components

of Equation (E.1):

RΩ2 = c2
∂λ

∂R
+

∂

∂R

(
Φ + c2

)
(E.4)

0 = c2
∂λ

∂z
+

∂

∂z

(
Φ + c2

)
.(E.5)

The vertical equation (Equation E.5) to leading order gives

λ ≈ ln

[
Σ(R)ψ(ζ)

H

]
(E.6)

where ζ = z/H, Σ(R) is the surface density profile,

ψ(ζ) =
1√
2π

e−ζ
2/2 ,(E.7)

H ≈ c0/ΩK ≈ c0/Ω0 is the scale height where ΩK is the Keplerian frequency, and Ω0 and

c0 are their respective values at z = 0.
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E.2. Steady-State Equations

We set λT = λ+ λ′, with λ′ = (function of R)× eiϕ, and similarly for vT . Perturbing

Equations (E.1) and (E.2) in steady-state produces

0 = iΩv′R − 2Ωv′ϕ + c2
∂λ′

∂R
− f ′

R(E.8)

0 = iΩv′ϕ +

(
2Ω +R

∂Ω

∂R

)
v′R +R

∂Ω

∂z
v′z +

ic2λ′

R
− f ′

ϕ(E.9)

0 = iΩv′z + c2
∂λ′

∂z
(E.10)

0 = iΩλ′ +
∂λ

∂z
v′z +

∂v′z
∂z

+
1

R

∂

∂R
(Rv′R) +

∂λ

∂R
v′R +

iv′ϕ
R

.(E.11)

We solve these equations by expanding the perturbed quantities in Hermite polynomials,

e.g.,

X ′ = X ′
0H0(ζ) +X ′

1H2(ζ) +X ′
2H2(ζ) + ...(E.12)

where Hn is the nth Hermite polynomial and X ′
n is given by

X ′
n =

1

n!
⟨Hn(ζ)X

′⟩(E.13)

where, as shorthand, we denote

⟨(·)⟩ ≡
∫ ∞

−∞
(·)ψ(ζ)dζ .(E.14)

The Hermite polynomials have the property that ⟨HnHm⟩ = n!δnm, where δnm is the

Kronecker delta function. We adopt the ansatz that the solution does not differ too
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significantly from the rigid tilt solution, i.e., λ′, v′R, and v
′
ϕ are odd functions while v′z is

even,1 and that the nth term has magnitude O(H/R)n.2

Multiplying Equations (E.8) and (E.9) by H1(ζ)ψ(ζ) and Equation (E.10) by ψ(ζ),

vertically integrating in ζ, and neglecting terms O(H2/R2) and smaller yields:

0 = iΩ0v
′
R,1 − 2Ω0v

′
ϕ,1 +Hc20

d

dR

(
λ′1
H

)
− f ′

R,1

(E.15)

0 = iΩ0v
′
ϕ,1 +

(
2Ω0 +R

dΩ0

dR

)
vR,1 +

ic20λ1
R

+
Ω0

2

d ln c20
d lnR

[
1 +

⟨ζδΦ⟩
R2Ω2

0

]
H

R
v′z,0 − f ′

ϕ,1

(E.16)

0 = iΩ0v
′
z,0 +

c20λ
′
1

H
,

(E.17)

where ∂Ω
∂z

is determined from ∂
∂z

× (Equation E.4)− ∂
∂R

× (Equation E.5):

2RΩ
∂Ω

∂z
=

d ln c20
d lnR

[
Ω2ζ +

δΦ

R2

]
H

R
(E.18)

and we define

Ω2
0 ≡

1

R

∂Φ

∂R

∣∣∣∣
z=0

(E.19)

1This can also be argued by symmetry: λ′, e.g., must be positive for the entirety of the midplane of a
warped disk. As eiϕ becomes negative for half the orbit, the sign must be counter-acted by the fact that
λ′ is odd in z.
2As an example, the rigid tilt solution for the radial velocity is v′R = sin(I)Ωz (Papaloizou & Lin, 1995).
Ω is an even function in z, whose expansion in z/R has O(1) coefficients. Therefore, the expansion in
Hermite polynomials has only odd terms with ordering is O(Hn/Rn).
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and

δΦ ≡ R

[
R

H2

∂

∂ζ
− ζ

∂

∂R

]
Φ .(E.20)

Solving for λ′1 in Equation (E.17), inserting it into Equations (E.15) and (E.16), and

rescaling gives

0 = v′R,1 + 2iv′ϕ,1 +
H

R

d ln c20
d lnR

v′z,0 −
H

R

[
d lnΩ0

d lnR
+

d

d lnR

]
v′z,0 +

if ′
R,1

Ω0

(E.21)

0 =

(
2 +

d lnΩ0

d lnR

)
vR,1 + iv′ϕ,1 +

H

R

[
1 +

1

2

d ln c20
d lnR

(
1 +

⟨ζδΦ⟩
R2Ω2

0

)]
v′z,0 −

f ′
ϕ,1

Ω0

.(E.22)

Turning now to the continuity equation (Equation E.11), there is a subtlety with the

ordering of the terms. The first three terms all require going to higher order because λ′

and ∂λ
∂z

are both R2/H2 larger than the other terms, and the derivative of v′z brings v′z,2

down to the order of the rest of the terms. λ′1 at higher order is given by Equation (E.10)

to O(H4/R4): [
1 +

(c2)2
c0

(
H

R

)2
]
iHλ′1
c20

= Ω0

[
1 +

Ω2

Ω0

(
H

R

)2
]
v′z,0(E.23)

where Ω = Ω0 +Ω2z
2/R2 + ... and likewise for c2. Therefore, after multiply by H1(ζ) and

integrating, the first three terms of the continuity equation become

⟨H1(ζ)

[
iΩλ′ +

∂λ

∂z
v′z +

∂v′z
∂z

]
⟩ = Ω2

0H

c20

(
4
Ω2

Ω0

− (c2)2
c20

)(
H

R

)2

v′z,0 +
H

R

d ln (ΣH2)

d lnR

v′z,0
R

− ⟨ζδΦ⟩
Rc20

v′z,0

(E.24)
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where v′z,2 canceled completely,Equation (E.18) gives Ω2 ≈ Ω0

4

d ln c20
d lnR

, (c2)2 ≈ c20
2

d ln c20
d lnR

, and

∂λ
∂z

is given by z × (Equation E.4)−R× (Equation E.5):

∂λ

∂z
= −Ω2z

c2
+
z

R

∂λ

∂R
− δΦ

Rc2
.(E.25)

Including the remaining terms and multiplying by R yields

0 =
1

ΣH

∂

∂R
(RΣHv′R,1) + iv′ϕ,1 −

⟨ζδΦ⟩
c20

v′z,0 +
H

R

[
1

2

d ln c20
d lnR

+
d ln (ΣH2)

d lnR

]
v′z,0 .(E.26)

Our set of three equations, Equations (E.21), (E.22), and (E.26), can be further re-

duced by eliminating v′ϕ,1 via (Equation E.21)−2×(Equation E.22) and (Equation E.21)−

(Equation E.22)− (Equation E.26):

0 = −
(
3 + 2

d lnΩ0

d lnR

)
v′R,1 +

i

Ω0

(
f ′
R,1 − 2if ′

ϕ,1

)
− H

R2Ω0

d

dR

(
R2Ω0v

′
z,0

)
− H

R

d ln c20
d lnR

⟨ζδΦ⟩
R2Ω2

0

v′z,0

(E.27)

and

0 = − 1

ΣHRΩ0

d

dR

[
ΣHRΩ0

(
Rv′R,1 +Hv′z,0

)]
+
⟨ζδΦ⟩
c20

v′z,0 +
i

Ω0

(
f ′
R,1 − if ′

ϕ,1

)
,(E.28)
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where we dropped the subdominate ⟨ζδΦ⟩ term. Taking advantage of the combination in

the derivative in Equation (E.28), we swap variables to ur
3 and uz defined as

ur ≡
1

Ω0

[
v′R,1
H

+
v′z,0
R

]
(E.29)

uz ≡
v′z,0
RΩ0

(E.30)

and simplify the expression by using the dimensionless square of the epicyclic frequency:

κ̂20 = 4 + 2
d lnΩ0

d lnR
.(E.31)

Making these substitutions and dividing the equations byHΩ0 simplifies Equations (E.27)

and (E.28) to

R
duz
dR

=
(
1− κ̂20

)
ur −

d ln c20
d lnR

⟨ζδΦ⟩
R2Ω2

0

uz +
i(f ′

R,1 − 2if ′
ϕ,1)

HΩ2
0

(E.32)

and

1

ΣH2R2Ω2
0

d

dR

(
ΣH2RΩ2

0ur
)
=

⟨ζδΦ⟩
c20

uz +
i(f ′

R,1 − if ′
ϕ,1)

HΩ2
0

.(E.33)

As a pair, they describe the warp in steady-state in terms of ur and uz.

E.3. Time-Dependent Equations

We now include time dependence in Equations (E.8)-(E.11) and follow the same pro-

cedure as in Appendix E.2 to derive the final form. Following Lubow & Ogilvie (2000),

we assume that the time variances are slow, and therefore ∂2/∂t2 terms can be neglected.

3The name, ur, is chosen as the definition corresponds to a rescaling of v′r,1. This can be seen by:

⟨v′rζ⟩ = v′R,1 +
H
R v

′
z,0 +O(H3/R3).
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The z-part of the momentum equation (Equation E.17) becomes:

0 =
∂v′z,0
∂t

+ iΩ0v
′
z,0 +

c20λ
′
1

H
.(E.34)

The remaining equations then become

i

Ω0

∂v′R,1
∂t

− iH
c20
Ω0

∂

∂R

(
1

c20

∂vz,0
∂t

)
= [RHS of Eq. (E.21)](E.35)

− 1

Ω0

∂v′ϕ,1
∂t

− iH

RΩ0

∂v′z,0
∂t

= [RHS of Eq. (E.22)](E.36)

iRHΩ0

c20

∂v′z,0
∂t

= [RHS of Eq. (E.26)](E.37)

where the right hand side (RHS) of the equations are unchanged. As before, we com-

pute (Equation E.35) − 2 × (Equation E.36) and (Equation E.35) − (Equation E.36) −

(Equation E.37), which give

i

Ω0

∂v′R,1
∂t

− iH
c20
Ω0

∂

∂R

(
1

H

∂λ′1
∂t

)
+

2

Ω0

∂v′ϕ,1
∂t

+
2iH

RΩ0

∂v′z,0
∂t

= [RHS of Eq. (E.27)](E.38)

and

−2iRHΩ0

c20

∂v′z,0
∂t

= [RHS of Eq. (E.28)] ,(E.39)

where, for the latter equation, we only keep the one time derivative as it is O(c−2
0 ) larger

than the rest. The factor of 2 arises because
∂λ′1
∂t

contributes one and iΩ0λ
′
1 contributes

another.
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We eliminate v′ϕ,1 in Equation (E.38) by taking the time derivative of Equation (E.16)

and dropping higher order terms, giving:

∂v′ϕ,1
∂t

=
i

2

∂v′R,1
∂t

+
iHc20
2

∂

∂R

(
1

H

∂λ1
∂t

)
(E.40)

which reduces Equation (E.38) to

2i

Ω0

∂v′R,1
∂t

+
2iH

RΩ0

∂v′z,0
∂t

= [RHS of Eq. (E.27)] .(E.41)

Finally, converting to ur and uz and matching the previous scaling, yields

2i

Ω0

∂ur
∂t

+
(
κ̂20 − 1

)
ur −

i(f ′
R,1 − 2if ′

ϕ,1)

HΩ2
0

= −R∂uz
∂R

− d ln c20
d lnR

⟨ζδΦ⟩
R2Ω2

0

uz .(E.42)

The other time-dependent warp equation is attained by is attained by dividing Equa-

tion (E.39) by HΩ0 and converting to ur and uz:

2iR2Ω0

c20

∂uz
∂t

+
⟨ζδΦ⟩
c20

uz +
i(f ′

R,1 − if ′
ϕ,1)

HΩ2
0

=
1

ΣH2RΩ2
0

d

dR

(
ΣH2R2Ω2

0ur
)
.(E.43)

E.4. The Viscous Force

We now derive the perturbed viscous force, f ′, to leading order in H/R and α neglect-

ing the planet potential. The total (perturbed plus unperturbed) viscous force is given

by

fT =
1

ρT
∇ ·
(
αρT c

2τ T
Ω

)
(E.44)

= ∇ ·
(
αc2τ T
Ω

)
+
αc2τ T
Ω

∇λ(E.45)
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where λT = ln ρT as before,

τ =


2
∂vR,T

∂R
R ∂
∂R

(vϕ,T
R

)
+ 1

R

∂vR,T

∂ϕ

∂vR,T

∂z
+

∂vz,T
∂R

2
(

1
R

∂vϕ,T
∂ϕ

+
vR,T

R

)
∂vϕ,T
∂z

+ 1
R

∂vz,T
∂ϕ

2
∂vz,T
∂z

− 2

3
(∇ · vT ) I3×3(E.46)

and the elements of τ are given in Section 2 of Landau & Lifshitz (1997). We suppress

the lower-left elements of the matrix above since their values are apparent from symmetry

of the matrix. We neglect bulk viscosity as it does not contribute to the contribute any

leading order terms: for the background, ∇ · v = 0, so the bulk viscosity drops entirely,

and, for the perturbation, τ ′ is dominated by the only z-independent terms, τ ′zz and τ
′
ϕz.

Perturbing the viscous force, we get

f ′ = ∇ · (αc
2τ

Ω
)′ +

αc2

Ω
(τ ·∇λ′ + τ ′·∇λ) .(E.47)

The dominant terms in f ′ will contain either λ′ or ∂λ
∂z
, as they are a factor of c−2

0 larger

than the rest. The first term on the right hand side of Equation (E.47) contains no such

terms, so we neglect it.

The only nonvanishing components of the unperturbed τ matrix are τRϕ and τϕz.

Therefore, we can write

τ ·∇λ′ = τRϕ

(
1

R

∂λ′

∂ϕ
R̂+

∂λ′

∂R
ϕ̂

)
+ τϕz

(
∂λ′

∂z
ϕ̂+

1

R

∂λ′

∂ϕ
ẑ

)
(E.48)

≈ R
∂Ω

∂R

(
iλ′

R
R̂+

∂λ′

∂R
ϕ̂

)
+R

∂Ω

∂z

(
∂λ′

∂z
ϕ̂

)
(E.49)

where we neglect the ẑ term because it is O(H2/R2).
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Turning to τ ′ · ∇λ, all the elements are non-zero. However, from Appendix E.2, we

know the leading terms are τRz and τϕz, which are O(1), while all remaining terms are at

least O(H/R). This, along with the fact that the background density dominates over the

horizontal ones, reduces τ ′ · ∇λ to

τ ′·∇λ ≈ (τRzR̂ + τϕzϕ̂)
∂λ

∂z
.(E.50)

Notably, neither term produces any leading order contribution to f ′
z.

Combining terms, and setting ∂λ
∂z

≈ −Ω2z
c2

(Equation E.5), we see that the R̂ and ϕ̂

components of Equation (E.47) are

f ′
R =

αc2

Ω

∂Ω

∂R
iλ′ − αzΩ

(
∂v′R
∂z

+
∂v′z
∂R

)
(E.51)

f ′
ϕ =

αc2

Ω

[
R
∂Ω

∂R

∂λ′

∂R
+R

∂Ω

∂z

∂λ′

∂z

]
− αzΩ

(
∂v′ϕ
∂z

+
iv′z
R

)
.(E.52)

Following the process in Appendix E, we multiply the viscous force by H1(ζ)ψ(ζ) and

vertically integrate (in ζ). Therefore, f ′
R,1 is

f ′
R,1 =

αc20
Ω0

dΩ0

dR
iλ′1 − αΩ0

[
v′R,1 +H

dv′z,0
dR

]
(E.53)

= αHΩ2
0

[
d lnΩ0

d lnR

v′z,0
RΩ0

−
v′R,1
HΩ0

− 1

Ω0

dv′z,0
dR

]
(E.54)

= −αHΩ2
0

[
ur +R

duz
dR

]
(E.55)
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where in the second line we used Equation (E.17) for λ′1, and in the third we used the

definitions of uz and ur (Equations E.30 and E.29). Similarly, if ′
ϕ,1 is

if ′
ϕ,1 = αc20

[
H
d lnΩ0

d lnR

d

dR

(
iλ′1
H

)
+

d ln c20
d lnR

iλ′1
2R

]
− αΩ0

(
iv′ϕ,1 −

H

R
v′z,0

)
(E.56)

= αΩ0
H

R

[
R

Ω0

d lnΩ0

d lnR

d

dR

(
Ω0v

′
z,0

)
+ 2v′z,0 +

(
2 +

d lnΩ0

d lnR

)
Rv′R,1
H

]
(E.57)

=
1

2
αHΩ2

0

[
κ̂20ur + 2R

d lnΩ0

d lnR

duz
dR

]
+ 2αHΩ2

0

(
d lnΩ0

d lnR

)2

uz(E.58)

where we used Equation (E.16) for iv′ϕ,1,
4 Equation (E.17) for iλ′1, and κ̂20 is given by

Equation (E.31).

Equation (E.58) shows that a rigidly tilted circular disk—i.e., a disk with uz constant

and ur = 0—has non-vanishing viscous force. That might appear surprising on physical

grounds. But, in truth, the “extra” term (the term proportional to uz) in Equation (E.58)

arise from the viscous force of the unperturbed disk, which leads to accretion. That claim

may be verified by calculating the viscous force in a circular disk with zero inclination,

and then tilting the force field, which reproduces uz term. Alternatively, one could include

viscous terms in the background state, in which case the uz terms cancel out. In either

case, one should drop the uz term if one seeks the effect of viscosity on the warp (as

opposed to its effect on accretion). Doing so, Equation (E.58) reduces to

if ′
ϕ,1 →

1

2
αHΩ2

0

[
ur − 3R

duz
dR

]
,(E.59)

4The steady-state equations allow us to solve for f ′ϕ,1 from a set of equations (Equations E.16 and E.56).

Since the correction will be O(α2), we neglect it.
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after additionally approximating Ω0 as Keplerian, consistent with the approximations at

the beginning of this appendix.

E.5. Combining Results

We now combine the results from the previous two appendices to give the final form

of the time-dependent, warp equations we use throughout the main body of the paper.

We switch to similar variables as those of Lubow & Ogilvie (2000):

W = −iu∗z(E.60)

is the complex inclination,

G =
1

2
ΣH2R2Ω2

0u
∗
r ,(E.61)

and an asterisk denotes the complex conjugate. Then Equation (E.43) can be written as

ΣR2Ω0

[
∂W

∂t
+

⟨ζδΦ⟩
R2Ω2

0

iΩ0

2
W +

1

4
αRΩ0

H2

R2

∂W

∂R

]
=

1

R

∂G

∂R
− 3iαG

2R2
(E.62)

where we have used Equations (E.55) and (E.59) for the viscous forces. In this form,

Equation (E.63) is conservation of angular momentum with G being the internal torque.

Similarly, the same process applied to Equation (E.42) yields

∂G

∂t
+
(
κ̂20 − 1

) iΩ0

2
G+ αΩ0G =

ΣH2R2Ω3
0

4

[
(1 + 2iα)R

∂W

∂R
+

d ln c20
d lnR

⟨ζδΦ⟩
R2Ω2

0

W

]
(E.63)
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as the second warp equation. The principal advantage of the equations in this form are

that G is roughly a piecewise constant at steady-state, making solving either the time-

dependent or steady-state equations much easier.
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APPENDIX F

Bending Criterion

We now derive the difference in inclination between the inner and outer disks, ∆W ,

in steady-state, and use the result to determine an approximate bending criterion. We

take R3Ω2 ≈ 1 and drop most of the viscous terms.1 These allow Equation (E.63) to be

written as

dW

dR
= (ϵH − ϵp − 2iα)

2iG

ΣH2
,(F.1)

where κ̂20 − 1 ≡ ϵH − ϵp and

ϵp ∼
µR2

p

(R−Rp)
2 + h2s

(F.2)

ϵH ∼ H2

R2

[
d lnΣ

d lnR
+

d ln2Σ

d lnR2

]
.(F.3)

ϵp =
µR2

2R2
p
b
(1)
3/2(R/Rp) is the exact form (taken from Equations 2.4 and 2.12)) where b

(j)
s (α)

is the Laplace coefficient, and Equation (F.2) is a modification of the approximation given

in Equation (45) of Laskar & Robutel (1995).2 Similarly, the angular momentum equation

1The viscous terms, other than αΩ0G, primarily influence the twist and arg(G) and only minorly affect
|Win|.
2We modify the approximation in two ways: we include a softening radius and we take R2 → R2

p in the
numerator. This latter approximation is so that the approximation is better at the planet at the expense
of R≪ 1.
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(Equation E.62) is

dG

dR
= −1

2
ΣϵpiW .(F.4)

where we Taylor expand the planet potential about z = 0 to get:

⟨ζδΦ⟩
R2Ω2

0

≈ ϵp .(F.5)

In order to determine the bending criterion, we solve perturbatively, following Foucart

& Lai (2014). We assume that W = W (0) + W (1)(R), where the unperturbed u
(0)
z is

independent of R and, in our setup, is equal to the disk’s inclination far beyond the

planet. We do the same thing for G, where G(0) = 0 for the unperturbed disk, matching

our inner boundary condition. The angular momentum equation yields, to first order,

G(1)(R) = −1

2
iW (0)

∫ R

0

Σ(R′)ϵp(R
′) dR′ .(F.6)

We then insert this into Equation (F.1) to yield the change in inclination:

∆W = W (1)(R → ∞)−W (1)(R = 0)(F.7)

=

∫ ∞

0

(ϵp + ϵH − 2iα)
2iG(1)

ΣH2
dR .(F.8)

The bending criterion is that

|∆W |/W (0) ≳ 1 .(F.9)
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It may be evaluated for any assumed values for Σ, H, µ, and hs. In the following,

we derive simple rough expressions for the bending criterion, considering four cases of

increasing complexity.

F.1. Inviscid with a Shallow Gap

We consider first the “stiffest” case: an inviscid disk with a shallow gap. Because

ϵp(R) is a sharply-peaked function with maximum at R ∼ Rp, provided the gap is not too

deep (see Appendix F.2 for quantification), we may approximate

G(1) ∼


−iW (0)Σ(R)E(R) R ≲ Rp − hs

−iW (0)Σ(Rp)E(R → ∞) R ≳ Rp − hs

(F.10)

where

E(R) ≡
∫ R

0

ϵp(R
′) dR′(F.11)

∼ µR2
p


1

Rp−R R ≲ Rp − hs

1
hs

R ≳ Rp − hs

.(F.12)
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Therefore, for an inviscid shallow gap, Equation (F.8) becomes

∆W ∼ −
∫ ∞

0

ϵpiG
(1)

ΣH2
dR(F.13)

∼ W (0)

∫ Rp

0

E(R)ϵp
H2

dR(F.14)

∼ W (0)E(R)
2

H2
dR(F.15)

∼ W (0)
µ2R4

p

H2h2s
,(F.16)

where the last line takes ϵp ≫ ϵH , which is valid for a shallow gap. The bending criterion

(Equation F.9) becomes

µ ≳
hsH

R2
p

(inviscid shallow gap) .(F.17)

F.2. Inviscid with a Deep Gap

We now consider the case of a deep gap. We denote the gap width by ∆gap, and the

gap depth by Σgap. The key difference when considering a deep gap is that the integral

in Equation (F.6) is dominated by the region interior to the gap. Then, provided the gap

is sufficiently deep, then at radii R ≳ Rp −∆gap, we have

∫ R

0

Σ(R′)ϵ(R′) dR′ ∼ (ΣE)|R=Rp−∆gap(F.18)

∼
µR2

p

∆gap

Σ0 ,(F.19)
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where Σ0 is the value interior to the gap (i.e., the ungapped value). For the above equation

to hold, the integral in the gap region,

∫ Rp

Rp−∆gap

Σ(R′)ϵ(R′) dR′ ∼
µpR

2
p

hs
Σgap ,(F.20)

must be subdominant. In other words, a “sufficiently deep” gap satisfies

Σgap

Σ0

≲
hs

∆gap

.(F.21)

Inserting Equation (F.19) into Equation (F.6) shows that for such a gap

G(1) ∼ −
Σ0µpR

2
p

∆gap

iW (0) , for R ≳ Rp −∆gap(F.22)

Inserting that into Equation (F.8) gives

∆W ∼ iG(1)

ΣgapH2

∫ ∞

Rp−∆gap

ϵp dR(F.23)

∼ W (0) Σ0

Σgap

µR4
p

H2hs∆gap

(F.24)

where in the first line we drop ϵH for simplicity, even though, for a sufficiently deep gap,

it could play a role at the gap edge. Therefore, the bending criterion becomes

µ ≳

(
Σgap

Σ0

hs∆gap

R2
p

)1/2
H

Rp

(inviscid deep gap) .(F.25)
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F.3. Viscous with a Shallow Gap

When viscosity is included (α ̸= 0), the torque is unchanged (Equation F.6), but α

contributes a term to W (Equation F.8):

∆W |α ∼ α

∫ ∞

0

G(1)

ΣH2
dR(F.26)

∼ −iαW (0)

[
1

H2

∫ Rp

0

E(R) dR

+E(∞)

∫ ∞

Rp

Σ(Rp)

ΣH2
dR

] ,(F.27)

which is found by inserting Equation (F.10) into Equation (F.8). The second integral

converges provided we assume that ΣH2/R is an increasing function of R, which is al-

ways true for a viscous steady-state disk. In that case, both integrals have comparable

magnitudes, yielding

∆W |α ∼ −iαW (0)
µR3

p

hsH2
(F.28)

And therefore viscosity will cause the disk to bend provided

µα ≳
hsH

2

R3
p

(F.29)

Comparing with the inviscid case (Equation F.17), we infer the following: if α < H/Rp,

then the bending criterion is the inviscid one; where as is if α > H/Rp, then then the

critical µ for bending is smaller than the inviscid one by H
Rpα

.
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F.4. Viscous with a Deep Gap

When a deep gap is present, the viscosity contributes primarily between the planet

and the outer edge of the gap. Therefore, inserting Equation (F.22) into Equation (F.8)

gives

∆W |α ∼ −iαµpW (0)
Σ0R

2
p

∆gap

∫ ∞

Rp−∆gap

1

ΣH2
dR(F.30)

∼ −iαµW (0)
Σ0R

2
p

ΣgapH2
(F.31)

i.e., the bending criterion is

µα ≳
Σgap

Σ0

H2

R2
p

.(F.32)

Again, comparing with the inviscid result (Equation F.25), we find that the criterion is

the inviscid one when α ≲ Σ0

Σgap

H2

hs∆gap
, and Equation (F.32) otherwise.
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APPENDIX G

Computational Methods

We simulate 3D accretion disks using the moving-mesh code AREPO (Springel, 2010;

Pakmor et al., 2016) in its Navier-Stokes version (Muñoz et al., 2013). We choose this

numerical scheme because of its unstructured, moving mesh, which offers three main

benefits: (i) The resolution elements follow the motion of the disk, capturing orbital,

viscous, and bending motion easily, while also keeping the resolution elements in the

regions of interest. (ii) It allows for flexible refinement conditions, which permits the

necessary higher resolutions in the disk midplane when there is a sharp bend, such as

near the planet. (iii) It enables us to simulate large disks with little additional cost, as

the time step for larger cells decreases.

G.1. Gravitational Potential

The star’s gravitational force is including directly with a spline softening for r < 0.1Rp

(e.g., Springel et al., 2001). We implement the planet through the the time-averaged po-

tential in Equation (2.4). The planet’s angular momentum is aligned with the coordinate

frame’s z-axis. The derivatives of the potential are pre-computed numerically on an (R, z)

grid and provided to AREPO. The force on a cell is calculated by linearly extrapolating

between the grid points.
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G.2. Initial Conditions

We initialize a locally isothermal, power-law α-disk with q = p = −1/2 (Section

2.2.1).1 Therefore, the outer part of the disk—where the planet has no effect—is already

in steady-state. We reduce Σ rapidly inside of Rin = 0.1Rp and outside of Rout = 100Rp.

We translate Σ(R) to ρ(R, z) by applying vertical hydrostatic balance (Equation E.5).

Similarly, we get the azimuthal velocity by next applying centrifugal balance (Equation

E.4). The radial and vertical velocities are initialized as zero, as the viscous flow is very

small compared to the azimuthal flow.

G.3. Mesh Construction and Refinement Criteria

AREPO is a Godunov-type finite volume method (e.g., Toro, 2009) implemented on a

continuously deforming Voronoi tessellation (e.g., Serrano & Español, 2001), itself gen-

erated from a set of mesh-generating points. The mesh-generating points can be placed

across the computational domain in an arbitrary fashion. For 2D accretion disks, a quasi-

polar allocation of points may be desirable (e.g., Muñoz et al., 2014). Alternatively, a

Monte-Carlo sampling of the density field can be used to produce nearly constant mass

Voronoi cells in 3D (e.g., Muñoz et al., 2015). Volume-based and mass-based approaches

can also coexist in a single simulation, alternating them depending on location within the

computational domain (e.g., Muñoz & Lai, 2016).

In this work, we choose to allocate mesh-points quasi-cylindrically in 3D, using an

ad-hoc scheme that allocates Nϕ(R, z) cells spaced uniformly in the ϕ-direction for any

1Because we neglect self-gravity, Σ0 scales out of the problem and is, therefore, an irrelevant a parameter.
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given R and z. The resolution function is defined as

(G.1) Nϕ(R, z) = Ndiskf(R)g(z/zdecay) .

where f(R) and g(z) are arbitrary functions that are responsible for allocating most

Voronoi cells closer to the disk midplane and closer to R = Rp (see Figure G.1). Our

fiducial resolution scale is represented by Ndisk = 50.

First, we place a ring of Nϕ(Rp, 0) mesh-generating points in the disk’s midplane at

R = Rp. We then place additional rings inside/outside our first ring radially spaced by

the azimuthal spacing of the original ring. Rings are added in this way until the whole

midplane is filled. Next, we place rings of Nϕ(R, z) points above and below each current

ring, with the vertical position of the new ring equal to the azimuthal spacing of the

old ring. This process is repeated until the entire computational box is filled. Finally,

we misalign the disk to the planet by rotating our mesh by the inclination I about the

y-axis, and the twist γ about the z axis. We typically initialize our disks with I0 = 1◦

and β0 = 0◦.

This mesh-allocation procedure consequently defines a space-varying inter-cell sepa-

ration of ≃ 2δtarg where we have defined the “target cell radius”

(G.2) δtarg ≡
πR̃

Nϕ(R̃, z̃)
,

where the tilde denotes coordinates measured relative to the disk midplane. This reference

size provides us with a resolution criterion to be implemented throughout the duration

of the simulation: cells with rcell > 2δtarg are flagged for splitting, while rcell < 2δtarg are

flagged for merging (Springel, 2010).
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Figure G.1. Here we show f(R) and g(z) from Equation (G.1) forNϕ = 100,
Np = 250, Rin = 0.1, and Rout = 100.

G.4. Boundary Conditions

Our disk is embedded in a large cube, Rbox = 250Rp with periodic boundary condi-

tions. This condition creates spurious reflections at the boundary, but because the region

outside the disk has an extremely low density and evolves on a timescale much longer

than our runtime, it does not affect the disk.

The inner boundary presents more difficulties. AREPO has no computational inner

boundary. However, do to the dynamics of the system, mass will pile up at the star
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Figure G.2. The Σ profile for a simulations of a flat disk without a planet.
The orange dashed line is the initial condition, the green line is the viscous
steady-state solution, and the blue points are the simulation after one vis-
cous time at the inner boundary. The numerical solution matches well to
the theoretical prediction, validating our choice of inner boundary condi-
tion.

as the disk accretes. Consequently, this extraneous, excess mass needs to be removed.

So, we model the computational inner edge of the disk by an accretion region of radius

racc = 0.1Rp where the mass of each volume element is gradually drained. This accretion

radius is assumed to be much larger than the “true” inner edge (≈ the stellar radius).

Consequently, the boundary condition implemented there must obey the “torque free”

behavior described by Dempsey et al. (2020). That is, angular momentum must be

conserved as mass is removed. Dempsey et al. (2020) do this in 2D by increasing the

azimuthal velocity of a cell as its mass is removed. We extend this to 3D by increasing

velocity in both the azimuthal and polar directions. Specifically, inside radius racc, we
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remove mass during a timestep by

ρ (t+∆t)− ρ (t) = −γ (r) ρ (t)∆t(G.3)

where γ (r) = is our mass removal function. When we remove mass, we also boost the

velocity by

|∆vϕ|
|vϕ|

=
∆ρ

ρ

|∆vθ|
|vθ|

=
∆ρ

ρ
(G.4)

and thus angular momentum is conserved across the boundary. We show in Figure G.2

that the steady-state Σ (r) profile is preserved into the inner boundary with this boundary

condition. This validates that this is the correct inner boundary condition to use for our

3D simulations.

For the systems we are examining, the part of the disk interior to the planet is off less

importance as it roughly has constant inclination and zero internal torque. Therefore,

for the sake of computational time, we drop the resolution significantly inside the planet,

and only preserve the proper Σ profile outside of the planet. For example, the Σ profile

for simulation shown in the first row of Figure 2.5 is shown in Figure G.3 at the same

times. In this instance, Σ does initially evolve inside of Rp until settling to an incorrect

steady-state. However, it stays roughly the viscous steady-state solution for R ≳ Rp,

which is the region of interest.
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Figure G.3. The Σ profile for the AREPO simulation corresponding to the
first row of Figure 2.5. The viscous steady-state solution is shown in blue.
While the simulation does not match the correct solution up to the inner
boundary, it is correct in the region of interest, from R ∼ 1 to R ∼ 50.
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