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ABSTRACT 

The brain has a remarkable ability to rapidly adapt behavior. On the scale of 

development, the brain learns to control the complex dynamics of our limbs by forming and 

pruning synaptic connections. However, the motor system also learns on much shorter 

timescales, such as when learning to hit the bullseye of a dartboard, or using a new tool. This 

process, referred to as motor learning, may be mediated by interactions between the cerebellum 

and areas of the cerebral cortex including primary motor (M1) and dorsal premotor cortex 

(PMd). PMd is involved in movement planning with strong connectivity with M1, the main 

cortical output to the spinal cord. Both are intimately interconnected with the cerebellum. 

Although cortical reorganization is believed to underlie the long-term learning of motor skills, it 

is unlikely to account for the rapid adaptation that is observed experimentally. In this project, I 

studied how behavioral adaptation arises from the coordinated activity of neural populations in 

the motor cortex. I recorded from neurons in both M1 and PMd as monkeys learned to 

compensate for perturbations applied to their reaching movements. I show that throughout 

learning neurons in M1 maintain a fixed relationship with the dynamics of movement, suggesting 

that adaptation may not involve cortical reorganization. Instead, behavioral changes are mediated 

through the altered recruitment of M1 neurons. I then study the population-level activity patterns 

of M1 and PMd and show that PMd plays a direct role in learning how to control the dynamics 

of the limb by modifying the motor plans sent to M1, potentially by interactions with the 

cerebellum. These modified plans are executed without changing the functional interactions 

between neurons in either area, or from PMd to M1. These results provide new insight into the 

process of motor adaptation and the neural control of movement, and highlight a population-wide 

mechanism that could help to explain rapid learning processes through the brain. 
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MOTOR LEARNING 

During development, the brain learns to control the complex dynamics of our limbs by 

forming and pruning synaptic connections. However, the motor system also learns throughout 

our lives, such as when learning to play an instrument or a sport, and on much shorter time 

scales, such as when learning to use a novel tool. For decades, neuroscientists and psychologists 

have attempted to understand what mechanisms exist in the brain to allow such adaptability. 

Understanding how the motor system can adapt is fundamental to the goal of understanding how 

the brain controls movement. In the following sections, I will review literature exploring the 

range and limits of the brain's ability to adapt its motor output, a process commonly called 

"motor learning". I will then review the anatomy and physiology of areas of the motor cortex, 

and how they may be involved in motor learning. 

 

PSYCHOPHYSICS OF MOTOR LEARNING 

Overview 

Through practice, the motor system can learn to change its output in order to better achieve 

a desired behavior. This process of motor learning occurs on a variety of timescales (Krakauer 

and Shadmehr 2006), and involves the concerted effort of many brain regions (Grafton et al. 

2008). Motor learning is commonly studied in the laboratory environment using systematic 

perturbations to our natural movements (Shadmehr and Mussa-Ivaldi 1994; Lackner and Dizio 

1994; Wolpert et al. 1995). In these tasks, subjects are instructed to perform a simple action, such 

as to rapidly move a finger (Classen et al. 1998; Muellbacher et al. 2002), reach to a specific 

location (Shadmehr and Mussa-Ivaldi 1994; Lackner and Dizio 1994; Wolpert et al. 1995), or 

throw a dart (Martin et al. 1996a). The experimenters then apply the perturbation, inducing 
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errors. Over time, subjects use sensory feedback regarding these errors to adjust their motor 

output to achieve the desired goal (Wolpert et al. 1998). By studying the behavioral signatures of 

this adaptation, researchers hope to explain not only how the motor system can adapt, but also 

how it plans and executes natural movements. 

 

Internal models of the limb 

To help understand and explain the process of motor learning, we can draw inspiration from 

the control of robotics and view the motor system as a feedback controller (Slotine 1985; 

Wolpert et al. 1995). Reaching movements are believed to be planned in the coordinates of the 

hand to achieve a desired smooth kinematic trajectory (Morasso 1981; Flash and Hogan 1985). 

Yet, the motor command must ultimately be transformed into a pattern of muscle activations that 

actually drive the limb. This process may be mediated by an "inverse model" of the limb 

(Shadmehr and Mussa-Ivaldi 1994). While making a movement, sensory feedback is used to 

shape the motor output, but delays in the motor command output and subsequent sensory signals 

would make pure feedback control difficult. Thus, when the brain generates a motor plan, it does 

so using a "forward model" of the motor output (Wolpert et al. 1995). This forward model 

predicts the sensory consequences of the action. Potential errors, then, can be identified by 

comparing the actual motor output  against the model's expectation (Wolpert et al. 2011).  

Many studies have proposed that motor learning can be achieved by modifying the brain's 

forward and inverse models of the limb (Shadmehr and Mussa-Ivaldi 1994; Wolpert et al. 1995, 

1998; Lalazar and Vaadia 2008). These modifications can occur rapidly, even within a single 

trial (Thoroughman and Shadmehr 2000). Learning can even occur without the subject’s 

knowledge, indicating that the motor system can adapt these internal models subconsciously 
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(Kagerer et al. 1997; Mazzoni and Krakauer 2006). In the following sections, I will describe a 

variety of experiments that were designed to investigate what role these forward and inverse 

internal models play in coordinating movement.  

 

Perturbations of limb dynamics 

Experimentally, motor learning has been studied using a number of paradigms, each 

providing insight into distinct aspects of this system. One primary class of experiments modifies 

the dynamics of the motor output.  A classic study by Lackner and Dizio placed subjects in a 

spinning room to induce Coriolis forces that perturbed their ability to reach outwards from the 

body (Lackner and Dizio 1994). In another study, Shadmehr and Mussa-Ivaldi modified the 

dynamics of planar reaching movements using a velocity-dependent force applied to the hand by 

robotic motors (Shadmehr and Mussa-Ivaldi 1994). A variant of this paradigm, referred to as the 

“curl field”, is commonly used to study motor learning (Gandolfo et al. 1996; Brashers-Krug et 

al. 1996; Shadmehr and Brashers-Krug 1997; Thoroughman and Shadmehr 1999, 2000; 

Krakauer et al. 1999; Caithness et al. 2004; Mattar and Gribble 2005; Smith and Shadmehr 2005; 

Thoroughman and Taylor 2005; Smith et al. 2006; Hwang et al. 2006; Orban de Xivry et al. 

2011). In all of these experiments, the subjects learned to compensate for the altered dynamics to 

make reaches with straight endpoint kinematic trajectories. 

To achieve this type of learning, it is believed that subjects adapt their inverse internal 

model of the limb dynamics. In psychophysics, evidence of the adapted internal model comes 

from the presence of "after effects", or oppositely-directed errors produced when the perturbation 

is removed (Shadmehr and Mussa-Ivaldi 1994). After effects indicate that the novel dynamics 

have been internalized, forcing subjects to readapt to their normal movement execution dynamics 
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once the perturbation is removed. The learned dynamics in one posture generalize to novel 

postures (Shadmehr and Mussa-Ivaldi 1994; Gandolfo et al. 1996; Thoroughman and Taylor 

2005). Furthermore, the specific generalization patterns suggest that the inverse internal model is 

represented in the intrinsic joint coordinates (Shadmehr and Mussa-Ivaldi 1994; Gandolfo et al. 

1996), rather than in any external or kinematic coordinate frame. This generalization provides 

further evidence that learning arises from a modified inverse model of the limb rather than 

something like a look up table. In the following chapters, I will explore potential neural 

mechanisms in the motor cortex underlying this adapted internal model. 

 

Learning with motor primitives 

The rapid rate of motor adaptation belies the complexity of the dynamics of the limb. The 

brain can readily adjust its output to perform the desired behavioral goal, accounting for the 

complex limb mechanics and large number of degrees of freedom. One possible explanation is 

that the brain uses flexible combinations of discrete motor modules, referred to as motor 

primitives (Thoroughman and Shadmehr 2000; Mussa-Ivaldi and Bizzi 2000), to simplify the 

control problem. This framework can predict the behavioral error patterns during CF learning, as 

well as the limitations on the ability to learn (Thoroughman and Shadmehr 2000). In Chapter 3, I 

will discuss a conceptual model of cortical function which offers a possible explanation for these 

primitives. 

Although we can rapidly engage these primitives to achieve a variety of learned behaviors, 

there are combinations of perturbations that appear to be incompatible, and cannot be learned at 

the same time. For example, the motor system does not seem to be able to learn inverse internal 

models for multiple conflicting curl fields simultaneously (Brashers-Krug et al. 1996; Wigmore 
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et al. 2002). Intriguingly, a more recent study showed that opposing curl fields can be learned 

simultaneously if they are presented such that each field requires a separate preparatory state, 

whether by perturbation (Krakauer et al. 1999) or by task design (Sheahan et al. 2016). This 

raises the intriguing possibility that a specific adapted motor plan is crucial to motor learning, an 

idea that will be explored in Chapter 4. 

 

Visuomotor perturbations 

A second common class of motor learning experiments perturbs the visual feedback that the 

subject receives. In the classic psychophysical studies, participants wore optical prism goggles 

that shifted the visual feedback of the world, inducing errors as subjects performed a motor 

behavior (Held and Schlank 1959; Held and Freedman 1963; Cohen 1967; Martin et al. 1996a, 

b). Over time, the subjects learned to compensate for the visual shift. As with the curl field, there 

were after effects when the prisms were removed. An analogous paradigm that is commonly 

used in motor learning studies is the visuomotor rotation (VR) (Krakauer et al. 1999, 2005, 2006; 

Mazzoni and Krakauer 2006; Schlerf et al. 2012). The VR is typically implemented in a virtual 

environment such as the cursor on a computer screen, made to track the motion of the hand. The 

cursor feedback is then rotated by a fixed angle, and the subjects must compensate in order to 

acquire the desired target. Throughout this process, the motor system is believed to modify its 

internal models (Wolpert et al. 1995) to reduce the sensory error. 

Although the solution to the VR seems simple, the ability to learn a VR depends on a 

number of factors, including the starting posture (Baraduc and Wolpert 2002), the speed of 

presentation (Kagerer et al. 1997; Werner et al. 2014), or the context (Ingram et al. 2013). An 

intriguing study by Mazzoni et al. demonstrated that such adaptation occurs even when subjects 
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are instructed to pursue the explicit strategy to compensate for the VR (Mazzoni and Krakauer 

2006). In this case, subjects were given a 45° rotation and instructed to reach to neighboring 

target 45° away in order to compensate. Thus, there was a mismatch between the explicit 

intention of the subject (“reach to the neighboring target”) and the prediction of the forward 

model, which expected the cursor to go to the neighboring target rather than the original target. 

Movement errors gradually increased as the motor system adapted to this error, what they called 

implicit learning. This adaptation was at odds with the explicit intention of the subject. This 

result illustrates that sensory errors during VR learning engage an implicit adaptive process, and 

that learning likely cannot be reduced to a purely cognitive strategy. This observation is useful 

for interpreting the results I will present in Chapter 4 using a similar VR paradigm. 

 

Multiple timescales of motor learning 

The internal models described above can be adapted within a single session, yet most real-

life skills are formed over months or years of practice. Evidence from psychophysical studies in 

humans suggests that motor learning occurs on at least two distinct timescales (Karni et al. 1998; 

Kleim et al. 2004; Costa et al. 2004; Smith et al. 2006). The early phase of learning occurs on 

immediate exposure to a perturbation and is characterized by rapid reduction in errors (Riek et al. 

2012). A later phase is characterized by a slower adaptation rate as behavior begins to stabilize. 

There is compelling evidence that these two processes require different underlying neural 

mechanisms (Baraduc et al. 2004; Costa et al. 2004; Riek et al. 2012; Herzfeld et al. 2014). 

Several studies have attempted to understand how memories of motor skills are stored and 

improved over time. Shadmehr and Brashers-Krug allowed subjects to adapt to a force field on 

one day, and re-tested them with the same field a day later. They observed that the subjects 
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performed significantly better in the early trials of the second day, with a faster rate of 

adaptation, than they did on the first day (Shadmehr and Brashers-Krug 1997). This 

phenomenon, which was also previously observed in the primate oculomotor system (Kojima et 

al. 2004), is commonly referred to as "savings" (Krakauer et al. 2005; Smith et al. 2006; Huang 

et al. 2011). Between sessions, the motor memory is "consolidated" in the brain for long-term 

storage (Brashers-Krug et al. 1996; Shadmehr and Brashers-Krug 1997; Shadmehr and Holcomb 

1997; Muellbacher et al. 2002; Krakauer and Shadmehr 2006; Debas et al. 2010). After this time, 

the motor memory is seemingly immune to interference, and can be readily recalled. The 

subsequent savings have been shown to persist for as long as months (Shadmehr and Brashers-

Krug 1997). 

Consolidation is advantageous because it places the motor memory in a protected state. A 

professional tennis player, for example, can learn to play ping pong without fear of forgetting 

how to swing their racket. However, a group of three laboratories published a study attempting to 

replicate the effect of consolidation of motor memories in a variety of tasks. They found that 

their subjects consistently were not able to consolidate the motor memories (Caithness et al. 

2004), and instead were susceptible to interference from conflicting perturbations. This was true 

even days after the initial learning, allowing plenty of time for consolidation of the initial motor 

memory. Furthermore, effective consolidation has proven elusive in many visuomotor rotation 

and prism goggle paradigms (Caithness et al. 2004; Krakauer and Shadmehr 2006). The authors 

proposed that motor memories do not get consolidated into a protected state, but instead merely 

become inactive. The memories can then be recalled and further modified when necessary, but 

may become susceptible to interference. These complications suggest that the necessary 

conditions for effective long-term memory storage and retrieval are complex, and likely depend 
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on the task demands (Goedert and Willingham 2002), as well as the characteristics of the neural 

processes that mediate the learning. In the experiments I present in the following chapters, I will 

focus exclusively on within-session learning, which is largely comprises the fast stage of 

learning before consolidation. However, I will extensively discuss the implications of my results 

for long-term learning in Chapter 5. 

 

MOTOR CORTEX AND THE NEURAL CONTROL OF MOVEMENT 

Overview 

A goal-directed movement such as a reach ultimately arises from the activation of spinal 

motoneurons that control the muscles of the limb. However, there are a number of cortical and 

sub-cortical structures, including the spinal cord, brainstem motor nuclei, cerebellum, and the 

motor cortices, that play important roles in transforming the high-level goal into a low-level 

pattern of muscle activations (Kalaska and Crammond 1992). In this section, I will review the 

rich history of literature studying the anatomy and physiology of the motor and premotor 

cortices, two of the critical output areas of the cerebral cortex. 

 

Primary motor cortex anatomy and physiology 

The primary motor cortex (M1), or Brodmann’s Area 4 (Brodmann 1909), was first 

identified by its low threshold for eliciting movements with electrical stimulation (Fritsch and 

Hitzig 1870; Ferrier 1873). M1 lies along the precentral gyrus and extends into the central 

sulcus. The area is characterized by the presence of large projection neurons in Layer 5, better 

known as Betz cells (Betz 1874). Electrical stimulation of M1 with intracortical microstimulation 

(ICMS) readily elicits muscle contractions or movement with low current thresholds (Ferrier 
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1873; Bucy 1933; Penfield and Boldrey 1937; Fetz and Baker 1969). M1 is the primary output of 

the cerebral cortex to the spinal cord, with direct projections to spinal circuits via the pyramidal 

tract (corticospinal neurons) (Rathelot and Strick 2009). 

The spatial arrangement of M1 appears to have a functional organization. Experimenters 

have used electrical stimulation to map the surface of the gyrus and identify a coarse topographic 

map of motor output, with the medial aspect marked by leg and proximal arm movements, and 

the lateral aspect corresponding to distal arm and facial movements (Penfield and Boldrey 1937). 

Neurophysiological studies of single neurons suggested that cells deep within the central sulcus 

were more intimately related to the activation of muscles than those cells found on the gyrus 

(Johnson et al. 1996; Crammond and Kalaska 1996) A recent study by Rathelot and Strick found 

evidence that the sulcal M1 had direct projections to spinal motoneurons, and may be specialized 

for finger movements (Rathelot and Strick 2009). The authors used retrograde viral labeling to 

identify corticospinal projections and found that many cells in the sulcus had monosynaptic 

connections with motoneurons, suggesting that the hand regions in the sulcus evolved to achieve 

to dexterous control. In contrast, most of the corticospinal projections from the gyrus (which 

includes the arm region studied in the later chapters) synapse on spinal interneurons, and thus 

have an indirect effect on the spinal motoneurons that cause movement. They drew an 

evolutionary distinction between the gyrus, called “Old M1”, and the phylogenetically newer 

sulcal region, called “New M1”, proposing that over time primates evolved the direct 

connections to achieve the more complex demands of dexterous finger movements. In the 

experiments described in the following chapters, I focus on neural activity on the gyrus which is 

related to proximal limb movements for reaching.  
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The precise function of M1 during behavior has been the subject of considerable debate over 

the last several decades. In 1982, Georgopoulos found that M1 activity recorded during a 

reaching behavior correlated with the direction of reach (Georgopoulos et al. 1982). He averaged 

the neural firing rate over the course of the reach and fit cosine tuning curves to each neuron 

according to the model D = b0 + b1•cos(q + b2), where D represents the discharge of the neuron 

and q the direction of movement. There were three parameters to fit for these tuning curves, 

representing the mean firing rate (b0), the depth of modulation (b1), and the preferred direction 

(PD; b2). The PD represents the direction of hand motion for which the cell fires maximally. A 

later study expanded this model to include the effect of movement speed (Moran and Schwartz 

1999). A series of studies, discussed more extensively below, used similar kinematic tuning 

models to attempt to understand the role of motor cortical areas in motor learning (Gandolfo et 

al. 2000; Li et al. 2001; Padoa-Schioppa et al. 2002, 2004; Paz et al. 2003; Xiao et al. 2006; 

Richardson et al. 2008; Arce et al. 2010a, b; Mandelblat-Cerf et al. 2011). Additionally, this 

kinematic framework has been used extensively in Brain Computer Interfaces (BMIs) to control 

the movement of computer cursors or robotic arms (Paninski et al. 2002; Taylor et al. 2002; 

Carmena et al. 2003; Hochberg et al. 2006; Collinger et al. 2013). 

Although the kinematic tuning curves employed by Georgopoulos are adequate descriptions 

of the basic neural firing statistics during reaching, they provide an incomplete view of the 

information contained within M1. Much earlier, in 1968, Evarts showed that pyramidal tract 

neurons modulated their activity with the amount of force applied about the wrist (Evarts 1968). 

In 1969, Fetz and Baker compared the activity of neurons in the precentral cortex to 

electromyograms (EMG) of muscles in the leg and showed that increased muscle activation 

typically coincided with bursts of neural activity (Fetz and Baker 1969). In the following years, 
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many studies have shown a direct relationship between M1 activity and muscle activity (Fetz et 

al. 1976; Thach 1978; Morrow and Miller 2003; Pohlmeyer et al. 2007; Cherian et al. 2011; 

Ethier et al. 2012), and its activity has been shown to depend on several other non-kinematic 

variables such as force (Humphrey et al. 1970; Cheney and Fetz 1980), joint torques (Fetz et al. 

1986; Bauswein et al. 1991; Werner et al. 1991), and posture (Scott and Kalaska 1995, 1997). 

These studies make it clear that, the information contained within M1 has a complex and multi-

variate relation to the dynamics of limb movement (Kalaska and Crammond 1992; Churchland 

and Shenoy 2007). 

 

Premotor cortex anatomy and physiology 

The premotor cortex, or Brodmann’s Area 6, lies directly anterior to M1, and is 

distinguished from M1 by its cytoarchitecture, notably a lack of Betz cells (Bucy 1933, 1935). 

Early studies identified a number of additional features that distinguish premotor cortex from 

M1. The area has a higher threshold for eliciting movement from electrical stimulation (Bucy 

1933; Weinrich and Wise 1982; Dum and Strick 2002). Anatomically, the premotor cortex 

receives diverse corticocortical inputs (Kurata 1991), and has strong bidirectional connectivity 

with M1 (Dum and Strick 2002, 2005) and the cerebellum (Dum and Strick 2003). Although 

premotor cortex is typically viewed as hierarchically “above” M1, it also has many projections to 

the spinal cord and other subcortical structures (Dum and Strick 1991). Thus, the premotor 

cortex may provide information about movement to these structures in parallel with M1. 

In monkeys, the premotor cortex is subdivided by the spur of the arcuate sulcus into dorsal 

(PMd) and ventral (PMv) regions, each with distinct inputs, outputs, and functional roles (Kurata 

and Hoffman 1994; Hoshi and Tanji 2002, 2006). The activity of PMv is related to both motor 
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and cognitive processes (Rizzolatti et al. 2002), but is believed to play an important role in 

grasping (Hoshi and Tanji 2006). PMv receives information about both visual and 

somatosensory stimuli, and appears to encode movements in extrinsic space (Kakei et al. 2001). 

Rather than the multi-sensory grasp-related activity of PMv, PMd appears to have a more 

specific motor role during reaching (Hoshi and Tanji 2002). PMd can be further subdivided into 

rostral and caudal segments, each with different functional characteristics (Fujii et al. 2000). 

While the rostral aspect appears to play a role in eye movements, and can even elicit saccades 

with electrical stimulation (Fujii et al. 2000), the caudal aspect relates specifically to movements 

of the limb. 

In the following chapters, I will focus exclusively on the caudal aspect of PMd, which plays 

an important role in preparing and executing reaching movements (Weinrich and Wise 1982; 

Shen and Alexander 1997; Hoshi and Tanji 2002; Cisek et al. 2003; Cisek and Kalaska 2005; 

Churchland et al. 2006a, 2010a). In 1980, Roland et al. studied the cerebral blood flow of healthy 

subjects during movements and found that premotor cortex was preferentially activated when a 

movement required a new “motor program”, or when the motor program needed to be adjusted 

based on sensory feedback (Roland et al. 1980). PMd activity can be used to predict the intended 

action of a monkey long before movement begins (Cisek and Kalaska 2005; Santhanam et al. 

2006; Thura and Cisek 2014). Furthermore, activity in PMd preferentially reflects the target or 

goal of a reaching movement (Vaadia et al. 1988; Shen and Alexander 1997), and even the 

probability of an upcoming reach(Dekleva et al. 2016; Glaser et al. 2017) . Based on these 

observations, PMd is believed to help facilitate the transformation from planned kinematics to 

executed dynamics (Shen and Alexander 1997; Batista et al. 2007).  
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A POPULATION-LEVEL VIEW OF CORTICAL ACTIVITY 

Overview 

For many years, since the work of Ramon y Cajal (y Cajal 1995) and the Neuron Doctrine, 

the neuron has been treated as the basic functional unit of the brain. Through the anatomical and 

neurophysiological studies described in the preceding sections, it is apparent that M1 is 

intimately related to the execution of movement and that PMd plays an important role in 

preparing the movement. However, the relationship between neural activity in both of these areas 

and behavior is complex. Many cells appear to represent multiple external covariates, while 

others represent no single covariate. Ultimately, since many of the available measurable 

behavioral outcomes, such as hand kinematics or joint torques, are correlated, it is difficult to 

determine what precisely is encoded by neurons in M1. Recent work has begun to question 

whether neurons in M1 must encode any particular behavioral variable. In 1992, Eb Fetz 

proposed that the purpose of neurons in M1 is to generate patterns of muscle activation, and as 

such, neurons do not necessarily need to represent any specific external covariation (Fetz 1992). 

More recently, Churchland et al. studied the activity of single neurons during reaching and found 

widely heterogeneous firing patterns, with a great deal of temporal complexity (Churchland and 

Shenoy 2007). These properties make it difficult to relate neural activity reliably to any single 

behavioral covariate. Ultimately, the neurons in the motor cortices must cause movement, not 

simply represent it (Fetz 1992; Kalaska and Crammond 1992), so it is unlikely that we will find 

such simple, lawful relationships at the single neuron level.  

While researchers have been able to gain much insight into brain function by studying single 

neurons, each neuron is not independent. The activity of a given neuron is ultimately a reflection 

of its inputs from other cells (Sussillo et al. 2015). Furthermore, behavior ultimately arises from 
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the concerted activity of vast populations of neurons (Fetz 1992; Hatsopoulos et al. 1998). As 

such, several recent theories have proposed that, while each neuron has a unique input/output 

relationship, when it comes to behavior, the basic building blocks may better be viewed as the 

coordinated activity of neural populations (Churchland et al. 2012; Shenoy et al. 2013; Kaufman 

et al. 2014; Elsayed et al. 2016). In this section, I will review a growing body of work suggesting 

that there is substantial insight to be gained by studying the brain at the level of neural 

populations. I will then draw from these ideas for the analyses presented in Chapter 4 to study 

how population-level interactions can give rise to adapted behaviors. 

 

Dimensionality reduction for neural data analysis 

The majority of studies described in the previous sections used microelectrodes to record the 

activity of individual neurons. While modern recording technology allows us to record the 

activity of hundreds or even thousands of neurons simultaneously, this remains only a small 

fraction of the number of neurons used to generate even simple actions. Yet, the activity of these 

small populations of neurons can explain a large fraction of task-relevant variability 

(Cunningham and Yu 2014; Gao and Ganguli 2015), suggesting that the brain does not use all of 

the potential degrees of freedom provided by the neurons to generate behavior. This idea was 

recently formalized by Gao and Ganguli, who theorized that the "dimensionality", or the number 

of degrees of freedom in the neural population, is bounded by the complexity of a given behavior 

(Gao and Ganguli 2015). The dimensionality of the neural population can be thought of as the 

number of independent signals within the population, and is typically defined as the number of 

components needed to explain the majority of variance. The apparently low dimensionalities 

observed in M1, typically on the order of 10 (Santhanam et al. 2009; Sadtler et al. 2014), is a 
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consequence of the simple behavioral tasks used in neurophysiology experiments. Thus, in order 

to obtain a more complete view of motor cortical function, we may need to employ more 

complex behavioral tasks. The discussion contained in Chapter 3 explores these ideas in more 

depth. 

Population analyses typically begin with a form of dimensionality reduction. Dimensionality 

reduction reduces a large number of correlated signals, in this case the spiking activity of 

individual neurons, into a smaller number of linearly independent signals (Cunningham and Yu 

2014). The simplest and most common method is Principle Components Analysis (PCA) (Law 

and Jolliffe 1987). PCA can be used to identify the shared covariance patterns across a 

population of neurons and orders them according to the variance explained. The low-dimensional 

components define the “neural manifold” (Stopfer et al. 1997; Sadtler et al. 2014), which is 

composed of a relatively small number of components that capture the majority of population 

variance. The meaning and implications of such manifolds are discussed in depth in Chapter 3, 

and later used to study cortical activity during motor learning in Chapter 4.  

 

Using population analyses to explain behavior 

While traditional single neuron techniques typically require averaging over time and many 

repetitions of the same behavior to achieve adequate statistics, we can now leverage the large 

numbers of recorded neurons to study trial-to-trial variations in behavior.  Much of the evidence 

that dimensionality reduction can help to explain how neural populations give rise to behavior 

comes from the work of Krishna Shenoy and his colleagues. One study used Factor Analysis, a 

dimensionality reduction technique that is analogous to PCA, to show that PMd activity during 

movement planning can be reduced to a simple and orderly structure in the neural state space 
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(Santhanam et al. 2009). Despite the relatively large numbers of recorded neurons, the behavioral 

output could be explained with only a few dimensions of activity. Another study used population 

activity to show that trial-to-trial neural variability is reduced following the presentation of a 

stimulus, and that longer reaction times occurred when more neural variability was present at the 

time of go cue, suggesting that the movement was not adequately prepared (Churchland et al. 

2006b). A later study from the same group showed that the position in neural state space at the 

time of go cue could predict abnormal reaction times, illustrating a direct link between the 

dimensionality-reduced view of population activity and the subsequent behavior (Afshar et al. 

2011). 

One the most compelling examples of population-level analysis comes from Kaufman et al. 

(Kaufman et al. 2014), who used population activity to explain how the brain can plan a 

movement to be made at a future time without actually causing that movement. Their analysis 

exploited the observation that population activity has a larger dimensionality than the behavioral 

output. They used dimensionality reduction to identify a six-dimensional representation of neural 

activity, and a three-dimensional representation of muscle activity in a standard reaching task. 

The larger neural dimensionality necessitated the existence of an "output-null" space, which 

captured neural activity that produced no output in the muscles, as well as an "output-potent" 

space that captured the direct mapping from neural activity to muscles. They used a linear 

mapping between neurons and muscles to define the potent and null spaces, and showed that pre-

movement preparatory activity existed in the null dimensions only. Thus, motor planning can 

occur without causing movement because the output-potent dimensions cancel out. Intriguingly, 

they found a lawful relationship between activity in the null space and the subsequent behavior. 

This result gave a meaningful interpretation of the null space activity, which served to set the 
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preparatory state for the system dynamics of the neural population necessary to cause the desired 

movement (Churchland et al. 2010a, 2012). 

Together, these studies highlight the advantages of studying neural populations. In many of 

these cases, such as the null space of Kaufman et al., the analysis uncovered a population-level 

mechanism that was not observable with individual neurons. Besides the motor system, similar 

techniques have been used to understand odor processing in the locust (Broome et al. 2006), the 

process of decision making in prefrontal cortex (Mante et al. 2013), and processing in the visual 

(Cowley et al. 2016) and auditory cortices (Okun et al. 2015), suggesting a common framework 

linking the function of areas throughout the brain. 

 

Population activity may be constrained by the network connectivity 

There is evidence that the neural covariance patterns found through dimensionality 

reduction are more than mere mathematical descriptions of the data, but instead seem to capture 

underlying connectivity within the population. Okun and colleagues used population recordings 

from multiple cortical areas in three species to show that the covariance patterns found through 

PCA correlated with actual synaptic connectivity (Okun et al. 2015). First, they showed that the 

correlations between a given neuron and the surrounding population were the same during both 

spontaneous and stimulus-evoked activity. Second, they showed that this correlation predicted 

the magnitude of the response of each neuron to optogenetic stimulation of the surrounding 

population, suggesting that the correlations captured some causal link. Lastly, they showed that 

the neural covariance during behavior correlated with the number of synapses shared between 

neurons. 
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In another experiment, Sadtler et al., used a learning paradigm with a Brain Computer 

Interface (BCI) to show that the neural covariance patterns obtained through dimensionality 

reduction reflect actual constraints on the possible network activity (Sadtler et al. 2014). They 

used FA to identify a ten-dimensional neural manifold, which the mapped linearly to the two-

dimensional velocity of a cursor. They asked the monkey to learn two classes of perturbations to 

this decoder: the "within-manifold" perturbation rotated the mapping between the manifold and 

the cursor; the "outside-manifold" perturbation rotated the mapping of each neuron to the 

manifold, breaking the normal covariance patterns. While the monkeys could readily learn the 

within-manifold perturbation, they were unable to learn the outside-manifold perturbation in a 

single session. These results, together with those of Okun et al, provide strong evidence that the 

low-D covariance patterns reflect actual network connectivity. 

 

MOTOR CORTEX AND CEREBELLUM DURING MOTOR LEARNING 

Overview 

During motor learning, the adapted behavior ultimately results from changes in the activity 

of M1, PMd, and other cortical areas, likely involving interactions with the cerebellum. In this 

section, I will provide a brief review of psychophysical and neurophysiological experiments that 

support this view. 

 

Involvement of M1 in motor learning 

 Since M1 plays a major role in the execution of voluntary movement, it is likely that the 

adapted behavior observed in motor learning is ultimately caused by changes in activity of M1 

neurons. While the precise role of M1 in developing, storing, and recalling motor memories is 
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not well understood, M1 appears to play a crucial role in the consolidation of a motor memory. 

Using whole-brain functional imaging, Shadmehr et al. showed that neural correlates of a motor 

memory emerged over time in the hours after learning a skill (Shadmehr and Holcomb 1997). 

This change in M1 activation could predict the subsequent performance. A later study showed 

that disruption of M1 with repetitive transcranial magnetic stimulation (rTMS) did not impair the 

within-session learning of a CF, but did eliminate consolidation of the memory (Richardson et al. 

2006). A similar experiment showed that disruptive rTMS between sessions of practice with a 

ballistic finger movement task impaired the retention, again suggesting a critical role of M1 in 

consolidating the memory (Muellbacher et al. 2002). However, this experiment used a simple 

motor paradigm involving rapid and precise finger movements. A follow-up study using the CF 

paradigm could not replicate this result (Baraduc et al. 2004). The authors ultimately concluded 

that learning novel dynamics requires a different, more distributed neural mechanism than 

learning a skill that relies on the existing dynamics. 

Although CF and VR learning share many common features, adaptation to these two 

perturbations likely require distinct neural processes within the motor system. Krakauer et al. 

demonstrated that learning a VR did not interfere with consolidation of a CF memory (Krakauer 

et al. 1999). Although the authors interpreted this as independent learning of kinematics and 

dynamics based on two independent sources of error, a later study clarified that the kinematic 

variable used for the perturbation determines if there will be interference (Tong et al. 2002). The 

standard CF is velocity-dependent, while the VR is static or position dependent. Tong et al. 

showed that a position-dependent force field interfered with the VR, suggesting that the 

interference cannot be entirely attributed to the altered effector dynamics. 
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Regardless of this distinction, it appears that the learning of dynamic and static 

perturbations, such as the standard CF and VR, may involve distinct neural circuits (Krakauer 

2003). Diedrichsen et al. used fMRI to identify regions of the brain that were active during CF 

and VR learning and found distinct patterns of activation in the two paradigms (Diedrichsen et 

al. 2005). Although both perturbations involved both the cerebellum and motor cortex, only the 

VR also involved interactions with parietal cortex. Regions of parietal cortex are important for 

reaching (Snyder et al. 1997), possibly by mediating coordinate transformations between the goal 

in visual coordinates and the desired trajectory in body-centered coordinates (Buneo et al. 2002). 

Since the VR effectively perturbs how the visual feedback maps onto the hand trajectory, a 

computational study has suggested that VR learning may involve interactions between motor 

cortex and the posterior parietal cortex (Tanaka et al. 2009). 

 

Involvement of the cerebellum in motor learning 

The cerebellum is known to play a necessary role in motor learning. Patients with cerebellar 

degeneration are unable to learn to compensate for a CF, suggesting that the cerebellum is 

necessary to adapt the internal model (Smith and Shadmehr 2005). The circuitry of the 

cerebellum is organized in a manner that seems to enable the storage and recall of memories 

(Albus 1971). Early studies implicated the activity of Purkinje cells in the cerebellar cortex in 

driving motor learning (Gilbert and Thach 1977), and numerous theories have proposed how the 

cerebellum could implement error-based learning (Kawato and Gomi 1992; Wolpert et al. 1998). 

Increasing cerebellar excitability with direct current stimulation improves the ability of subjects 

to adapt to a CF (Galea et al. 2011; Herzfeld et al. 2014), and functional imaging shows 

activation of the cerebellum during both CF and VR learning (Diedrichsen et al. 2005). Although 
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the experiments in the following chapters will focus on the motor cortices, the strong 

connectivity of these areas with the cerebellar nuclei (Dum and Strick 2003) suggests that the 

cerebellum is closely involved in shaping the activity of cortical neurons during learning. 

 

Long-term learning mechanisms and plasticity 

There is considerable evidence that extended training results in persistent changes in the 

synaptic connectivity within the cortex. A study of the hand representations of expert violinists 

and other string players found a larger cortical representation in the motor cortex contralateral to 

the fretting hand (Elbert et al. 1995). They interpreted these results as long-term plasticity that 

enables the highly dexterous finger movements required to play the instrument. In monkeys, 

Nudo et al. observed cortical reorganization during skill learning directly. They trained monkeys 

on a behavioral task and used electrical stimulation to map the forelimb cortex before and after 

learning and found changes in the identified motor maps (Nudo et al. 1996). This process likely 

requires synaptogenesis (Kleim et al. 2002), and may operate via NMDA receptor activation 

(Bütefisch et al. 2000). 

Motor learning over days has also been shown to change the horizontal connections within 

rat M1 (Rioult-Pedotti et al. 1998). In mice, Peters et al. used calcium imaging techniques to 

monitor the activity of large populations of neurons in M1 during motor skill learning (Peters et 

al. 2014). They found that, across days, the population activity patterns became increasingly 

stable, with corresponding changes in the dendritic spines linking neurons. Interfering with the 

formation of these spines prevented the animals from learning the skill (Chen et al. 2015). Neural 

plasticity underlying long-term learning has been observed in a number of other species and 

learning models, including sensory associations in birds (Jeanne et al. 2013) and behavioral 
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habituation in Aplysia Californica (Bailey and Chen 1983). Intriguingly, in the Aplysia 

experiment, structural plasticity was not observed in the hours immediately following learning of 

the response, suggesting that short-term learning may require a fundamentally different 

mechanism (Bailey and Chen 1988). A similar finding was observed in rats: synaptogenesis only 

began to occur after extensive training (Kleim et al. 2004).  

 

Activity of primary motor cortical neurons during curl field learning 

A series of studies from the Bizzi group investigated the learning-related changes in neural 

activity during curl field adaptation (Gandolfo et al. 2000; Li et al. 2001; Padoa-Schioppa et al. 

2002, 2004; Xiao et al. 2006; Richardson et al. 2008, 2012). In the earliest studies (Gandolfo et 

al. 2000; Li et al. 2001), the authors recorded from single neurons in M1 and characterized the 

spatial tuning (Georgopoulos et al. 1982) of each neuron before (Baseline), during (Force), and 

after (Washout) CF learning. They found that the preferred direction (PD) of the majority of M1 

cells rotated in the direction of the curl field. Using a statistical test on the PDs, they assessed 

whether there were significant changes in tuning between each of Baseline, Force, and Washout 

epochs. They identified five classes of cells. "Kinematic" cells showed no change in tuning 

throughout the session, while "Dynamic" cells changed with the curl field, then rotated back to 

their original tuning in Washout. Another class, labeled "Other", had different tuning in all 

epochs. However, the most intriguing cell types, called "Memory I" cells, showed a change in 

tuning during Force that persisted into Washout. This class was complemented by "Memory II" 

cells, which did not change during Force but changed in the opposite direction in Washout. 

Together, these two classes of Memory cells balanced each other such that the average change 

between Baseline and Washout was near zero. A later study used chronically-implanted 
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electrode arrays to study the activity of the same M1 neurons over five consecutive sessions with 

a CF (Richardson et al. 2012). This allowed the authors to assess each individual cell across days 

for changes in neural activity that could explain the across-session effect of savings (Krakauer et 

al. 2005). They identified persistent changes in neural tuning between the first and second 

sessions that they interpreted as an effect of internal model consolidation. 

The authors of the original Bizzi studies interpreted the PD changes, and appearance of 

Memory cells, as evidence of an adapted kinematics-to-dynamics transformation (Shadmehr and 

Mussa-Ivaldi 1994). The Memory cells, in this framework, represented a learning-related 

reorganization of M1. This concept was later expanded into a general framework for learning 

using unstable representations (Rokni et al. 2007), though another study found reaching 

representations to be quite stable over days (Chestek et al. 2007). A study by Stevenson et al. 

offers a potential explanation for this difference by showing that poorly estimated tuning curves 

can appear to change as a result of noise, even when the underlying neural behavior is known to 

be unchanged (Stevenson et al. 2011). This observation raises the possibility that the appearance 

of Memory cells following curl field learning may be the result of behavioral or measurement 

noise, rather than a sign of learning-related plasticity. This possibility will be addressed in-depth 

in Chapter 2. 

A study by Cherian et al. proposed an alternative interpretation for the changes in M1 tuning 

during CF adaptation (Cherian et al. 2013). The authors simultaneously recorded the activity of 

neurons in M1 as well as EMG from numerous muscles of the proximal limb. They found that 

both neurons and muscles immediately changed their spatial tuning when the curl field was 

imposed, with no progressive change in PDs associated with the behavioral adaptation. Thus, the 

authors concluded that the PD changes observed by the Bizzi group simply reflected the altered 
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movement dynamics of the CF. Furthermore, they found no evidence for Memory cells, which 

they instead attributed to randomly distributed classification errors (Stevenson et al. 2011). 

Another series of studies from the Vaadia group also used a variant of the CF paradigm to 

study the adaptive responses of M1 neurons (Arce et al. 2010a, b; Mandelblat-Cerf et al. 2011). 

These experiments were unique in that they perturbed only one of the eight target directions of a 

center out task in order to study the generalization pattern of the model for the learned target to 

other, unperturbed targets. Arce et al. repeatedly presented only the perturbed target, allowing 

the monkeys to rapidly adapt, before testing on all eight targets (Arce et al. 2010b). One 

limitation of this approach is that the directional tuning of the recorded neurons could not be 

assessed during learning, since the monkeys only reached in a single direction. The authors 

studied the adaptive responses of cells that were active for the perturbed direction during reaches 

in that direction. Most of these cells changed their activity to reflect the altered dynamics, and 

some even appeared to retain this new representation when tested on the unperturbed targets, a 

phenomenon that the authors concluded was related to Memory cells. 

While the Memory effects observed by Arce et al. seem to support the conclusions of the 

Bizzi studies (Arce et al. 2010b), a follow-up study from the Vaadia group appeared to reach a 

different conclusion (Mandelblat-Cerf et al. 2011). Like Arce et al, only a single target was 

perturbed, though all eight targets were presented throughout learning. The authors could thus 

assess directional tuning throughout the adaptation period. They found that, throughout learning, 

M1 activity related consistently to the movement that the monkey intended to make. They 

concluded that the observed changes in M1 activity during CF learning reflect the change in the 

monkey’s intention, or “motor plan”, not a change in the functional properties those cells. 
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The Bizzi group performed several similar curl field experiments while recording from 

numerous other motor-related regions of the brain. In PMd and the Supplementary Motor Area 

(SMA), they found evidence of a kinematics-to-dynamics transformation during motor planning 

(Padoa-Schioppa et al. 2002, 2004; Xiao et al. 2006), while PMv appeared to reflect only the 

altered dynamics (Xiao et al. 2006). In the cingulate motor area, neurons appeared to alter their 

discharge during force field learning, but did so in a non-directional manner (Richardson et al. 

2008). Together, these studies suggest that learning is likely a consequence of the coordinated 

activity of a variety of interconnected motor and premotor regions (Diedrichsen et al. 2005). The 

studies of M1 by Mandelblat-Cerf et al. and Cherian et al. described previously do not support 

the hypothesis that the observed neural tuning changes in M1 are a consequence of plastic 

changes occurring within M1. Instead, they strongly suggest that compensation for the CF occurs 

above the inputs to M1, and that the new patterns of muscle activation that drive the adapted 

behavior are a consequence of altered recruitment of M1 neurons. This possibility was 

acknowledged by Richardson et al., who said that their Memory cells may result from a 

persistent change in input to M1 rather than plastic reorganization within M1 (Richardson et al. 

2012). Given the strong bidirectional connectivity between PMd and M1 (Dum and Strick 2002, 

2005), and the role of premotor cortex in motor planning (Roland et al. 1980; Weinrich and Wise 

1982; Shen and Alexander 1997; Cisek and Kalaska 2005), PMd is an appealing candidate to 

look for the source of this altered recruitment. In Chapter 4, I will describe an experiment 

designed to test this hypothesis directly. 
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SUMMARY 

In this chapter, I reviewed a wide range of literature that suggests that the motor and 

premotor cortices play an important role in motor learning. The following chapters will address 

one of the key questions in understanding the neural basis of motor learning: what mechanisms 

are employed by the motor cortices to adapt behavior rapidly? In Chapter 2, I will resolve the 

apparent discrepancies between the previous studies of M1 activity during CF learning. In 

Chapter 3, I will describe a conceptual framework for studying and interpreting the activity of 

neurons which focuses on population-level interactions.  In Chapter 4, I will describe an 

experiment that uses simultaneous population recordings from M1 and PMd to shed light on how 

these areas are coordinated during CF and VR learning. I will provide evidence that PMd plays 

an important role in CF adaptation by adjusting a motor plan to compensate for the new limb 

dynamics. In the final chapter, I will discuss the implications of my work, and speculate on 

possible mechanisms that may underlie short-term and long-term motor learning. 
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CHAPTER 2 
 
ALTERED TUNING IN PRIMARY MOTOR CORTEX DOES NOT ACCOUNT FOR BEHAVIORAL 

ADAPTATION DURING FORCE FIELD LEARNING 
 
Matthew G. Perich, Lee E. Miller 

 
FOREWORD 

 This chapter consists of a manuscript that has been published in the journal Experimental 

Brain Research (Perich and Miller 2017). The purpose of this paper was to resolve a discrepancy 

between the “Memory cell” result of the classic studies of the Bizzi group, and a more recent 

experiment from Lee Miller’s lab. The latter study proposed that the changes in spatial tuning 

observed in M1 neurons merely reflect the altered dynamics of the motor output, though a 

number of procedural differences made direct comparison difficult. I recorded from neurons in 

the primary motor cortex of monkeys in a curl field task. I looked at the spatial tuning properties 

of each cell to look for evidence of cortical plasticity, but ultimately did not find any changes in 

neural properties with a time course that matched that of behavioral adaptation. I ultimately show 

that the neurons consistently relate to the dynamics of the motor output throughout learning, and 

use a basic musculoskeletal model to illustrate this concept in a simulated population of neurons. 
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ABSTRACT 

 Although primary motor cortex (M1) is intimately involved in the dynamics of limb 

movement, its inputs may be more closely related to higher order aspects of movement and 

multi-modal sensory feedback. Motor learning is thought to result from the adaption of internal 

models that compute transformations between these representations. While the psychophysics of 

motor learning has been studied in many experiments, the particular role of M1 in the process 

remains the subject of debate. Studies of learning-related changes in the spatial tuning of M1 

neurons have yielded conflicting results. To resolve the discrepancies, we recorded from M1 

during curl field adaptation in a reaching task. Our results suggest that aside from the addition of 

the load itself, the relation of M1 to movement dynamics remains unchanged as monkeys adapt 

behaviorally. Accordingly, we implemented a musculoskeletal model to generate synthetic 

neural activity having a fixed dynamical relation to movement and showed that these simulated 

neurons reproduced the observed behavior of the recorded M1 neurons. The stable representation 

of movement dynamics in M1 suggests that behavioral changes are mediated through 

progressively altered recruitment of M1 neurons, while the output effect of those neurons remain 

largely unchanged. 

 

INTRODUCTION 

Despite the complexity of the limb’s dynamics, we make precise reaching movements with 

smooth hand kinematics, long thought to suggest that we plan reaches in a hand-centered 

reference frame (Morasso 1981; Flash and Hogan 1985). More recently, models based on 

optimal feedback control have been proposed that do not require explicit trajectory planning and 

transformation (Todorov 2004; Scott 2012). In either case, control signals must ultimately be 
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expressed in the intrinsic, musculoskeletal coordinates of motor execution. Both approaches 

posit the use of internal models of the limb (Wolpert et al. 1995), whether to transform a desired 

kinematic trajectory into kinetic commands (Kalaska and Crammond 1992; Shadmehr and 

Mussa-Ivaldi 1994), or for optimal state estimation (Shimansky et al. 2004; Todorov 2004; Scott 

2012). These internal models are learned during development, but it is also possible to modify 

them on a shorter time scale, for example, when using a heavy tool that requires altered forces to 

produce a given movement. 

The psychophysics of this short-term motor adaptation process have been studied by using 

Coriolis forces to perturb reaches made in a rotating room (Lackner and Dizio 1994) and by 

perturbing reaches with forces imposed by a robotic manipulandum (Shadmehr and Mussa-Ivaldi 

1994). Over time, subjects learn to alter their patterns of muscle activity to compensate for these 

external forces and restore normal kinematic trajectories. When normal movement dynamics are 

restored, the transient appearance of behavioral “aftereffects”, expressed as oppositely directed 

errors during re-adaptation to normal movement dynamics, is taken as evidence of internal model 

adaptation. 

The pattern of generalization found in the experiments described above suggests that the 

learned internal model represents the dynamics of movement in terms of intrinsic coordinates of 

the limb (Shadmehr and Mussa-Ivaldi 1994). Given the considerable evidence that primary 

motor cortex (M1) encodes low-level details of motor execution (Evarts 1968; Fetz et al. 1986; 

Kalaska et al. 1989; Scott and Kalaska 1997; Morrow and Miller 2003; Sergio et al. 2005), it is 

reasonable to expect that this short-term adaptive process could be implemented by neurons in 

M1. Experimental evidence for the short-term adaptation of internal models within M1 comes 

from several studies of altered neural tuning as monkeys adapted to a curl-field (CF) perturbation 
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(Gandolfo et al. 2000; Li et al. 2001; Richardson et al. 2012). These studies compared the spatial 

tuning properties of individual M1 neurons before, during, and after CF adaptation. They 

reported that a subset of M1 neurons (called “Dynamic” cells) changed their tuning in response 

to the altered dynamics. Intriguingly, they also found a number of cells whose change in tuning 

persisted even when the CF was removed, together with a second, complementary group of cells 

that had no initial change, but changed subsequently when the CF was removed. These “memory 

cells”, were thought to be evidence of the modification of internal models within M1 during CF 

adaptation. A follow-up study found no evidence of memory cells, with neural tuning changes 

simply mimicking the behavior of muscles (Cherian et al. 2013), although differences in task 

design between the studies made it difficult to compare the differing results directly. 

The goal of the present study was to resolve the discrepancies between these studies and 

characterize the behavior of neurons in M1 prior to, in the presence of, and following a curl force 

field. Imposing the curl field led to apparent tuning changes in M1 that occurred as early as we 

were able to test, which were consistent with the altered dynamics of movement and directly 

proportional to the magnitude of the applied perturbation. Furthermore, simulated neurons with 

fixed dynamical relationships generated from a simple musculoskeletal model reproduced the 

critical features observed in the recorded units. These new results suggest that M1 neurons do not 

exhibit short-term learning-related changes reminiscent of internal model adaptation, but instead 

have a largely unchanging relation to the dynamics of movement that must have been formed 

over longer, perhaps developmental periods of time. Short-term behavioral adaptation thus 

appears to occur at a hierarchical level above the inputs to these cells, likely involving upstream 

areas that provide input to M1.  
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METHODS 

Behavioral Task 

Two monkeys (male, macaca mulatta) were seated in a primate chair and grasped the handle 

of a 2-D planar manipulandum that controlled a computer cursor on a screen in a standard center-

out (CO) task (Figure 2.1a). A trial began when the monkey moved to the center target. After a 

hold period of 500-1500 ms, a 2cm target was randomly displayed in one of eight regularly 

spaced outer positions at a radial distance of 8 cm, followed by a variable delay period of 500-

1500 ms before an auditory go cue (Figure 2.1b). Monkey C was initially trained without the 

instructed delay (which had been used in the prior studies), and the first six curl field sessions 

with this monkey omitted it. As we were interested in the movement-related activity of M1 it is 

unlikely that the lack of a delay impacted our conclusions, though to ensure that there were not 

differences we later collected an additional seven sessions from Monkey C with the delay. The 

monkeys were required to reach to the target within one second and hold for 500 ms to receive a 

liquid reward. 

Each experimental session had three task epochs: a short Baseline epoch in which the 

monkey made unperturbed movements, a longer Adaptation epoch when the monkey adapted to 

reaching movements made with the curl field, and a Washout epoch when the CF was removed 

and the monkey readapted to normal movement dynamics. During CF trials, motors in the 

manipulandum applied forces at the endpoint proportional to the velocity of the hand according 

to Equation 1. 

 𝐹 =
𝐹#
𝐹$

= 𝑘 cos 𝜃* − sin 𝜃*
sin 𝜃* cos 𝜃*

𝑝#
𝑝$

 (1)  
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where F is the applied force, 𝑝 is hand velocity, and k is a constant (0.15 N•s/cm). The 

forces were exerted at a direction qc of 85° relative to the direction of hand movement to avoid 

instabilities that occurred when the force was applied at 90°. The CF was enabled for the 

duration of the Adaptation epoch including the return movement and intervals between trials. 

 Both monkeys required several experimental sessions to learn to tolerate the perturbation, 

initially completing only a small number of reaches in a given curl field session. Data analysis 

began with the first session in which a given monkey completed at least 25 reaches to each target 

during adaptation and had sufficient time in Washout for deadaptation. The data used for 

analysis began with the third and seventh interaction with the curl field for Monkey C and 

Monkey M, respectively. The experimental sessions reported here were typically not 

consecutive, but instead, had intervening sessions with adaptation to visual rotation. 

Consequently, we focus here on within-session learning, since the experiments were not 

designed to investigate long-term savings. The monkeys also performed a small set of control 

sessions of similar duration to the force field sessions, but with no applied force field. In these 

sessions, all other task parameters were identical to the curl field sessions. These control sessions 

allowed us to ascertain the baseline variability in our analyses in order to better understand the 

effect of the force field. 

 

Implantation of Microelectrode Arrays 

 We implanted 100-electrode arrays with 1.5mm shaft length (Blackrock Microsystems, 

Salt Lake City) in the arm area of M1 of two monkeys. We placed the monkeys under isoflurane 

anesthesia and opened a craniotomy above the motor cortex. M1 was localized using visual 

landmarks and the arm area was identified using bipolar cortical surface stimulation to evoke 
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twitches of proximal muscles. The arrays were then inserted pneumatically. Figure 2.1c shows 

array implant locations for the two monkeys and neighboring cortical surface landmarks, based 

on photographs taken intraoperatively. 

 

Analysis of Behavioral Adaptation  

We computed the “takeoff angle” error between one vector drawn from the position of the 

hand at the start of movement to the position of the hand at the time of peak speed, and a second 

vector pointing from the hand directly to the target. This metric was designed to focus on the 

ballistic phase of movement and ignored force-induced error corrections later in the reach. 

 

Neural Data Acquisition 

 Neural data were amplified, band-pass filtered (250 to 5000 Hz) and digitized using a 

Cerebus system (Blackrock Microsystems, Salt Lake City, UT). We identified threshold 

crossings of 5.5 times the root-mean square (RMS) amplitude of the signal on each of the 

channels and recorded spike times and brief waveform snippets. Additionally, we recorded 

kinematic data from the robot handle and endpoint force data using a 6-axis strain gauge in the 

handle to measure the net forces acting on the hand. After each session, we used Offline Sorter 

(Plexon, Inc, Dallas, TX) to sort all the waveforms that crossed a detection threshold. 

Importantly, we sorted the waveforms for all three epochs together, to ensure that we did not 

inadvertently introduce sorting differences. Since we sought to study well-isolated neurons, they 

were included only if they had a waveform signal to noise ratio greater than three (calculated as 

the average waveform peak-to-peak value divided by two times the standard deviation of the 

waveform shapes). We ensured that each single unit was reliably held throughout the session by 
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comparing the spikes from each epoch using a statistical test that incorporated the waveform 

shapes and inter-spike interval distribution (Tolias et al. 2007), an approach also used by a 

previous study in our lab (Rebesco et al. 2010). We excluded units with an average firing rate 

during movements <5 Hz to achieve adequate model fits. 

 

Neural Tuning Analysis 

 For each unit, we fit directional tuning curves relating the firing rate (f) to the direction of 

movement kinematics (q) (Georgopoulos et al. 1982) according to Equation 2. 

 𝑓 = 𝑓0 + 𝐷𝑂𝑇 cos 𝜃 − 𝑃𝐷  (2) 

where fm is the mean firing rate across directions, DOT represents the depth of tuning, and PD 

represents the preferred direction. We grouped movements into 45-degree bins according to their 

mean directions, and fit the model to the average firing rates in the eight bins.  

We obtained confidence bounds for the PD estimate using a bootstrapping procedure with 

1000 iterations. We excluded from analysis, poorly-tuned units whose bootstrapped PD 

confidence bounds exceeded ±20 degrees and whose lower 95% confidence bound for R2 was 

below 0.5. In practice, this yielded results similar to a requirement of mean R2 ≥ 0.7, but ensured 

that every bootstrap fit used for the PD confidence interval was of acceptable quality. 

The typical method for determining PDs uses target-based tuning, where the average neural 

activity throughout the movement is regressed to the target direction. We compared this target-

centric tuning to similar tuning computed in a hand movement coordinate frame, relating average 

neural firing rate to the actual direction of hand motion. We selected a window of time beginning 

with the onset of movement (as determined by a velocity threshold crossing of 1.5 cm/s) until the 

time of peak speed. This window was chosen to focus on the ballistic, planned aspects of reach 
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and to avoid the later error correction phases of movement, particularly in the Adaptation epoch. 

To compensate for typical neuronal transmission delays, we shifted neural activity forward by 

100 ms to better align with the kinematics. 

 

Neural Tuning Comparison 

 We tested for changes in PD estimates for each single unit during the Baseline, 

Adaptation, and Washout epochs. We determined the significance of PD changes by computing 

confidence bounds on the differences between the 1000 reference Baseline PD estimates 

obtained with the previously described bootstrapping procedure, and the 1000 bootstrapped PD 

estimates in each tested epoch. A change was considered significant if the 95% confidence 

bounds of the differences did not include zero. 

 We classified cells into five categories based on their tuning behavior in the three epochs 

(Li et al. 2001). "Kinematic" cells had no change in PD. "Dynamic" cells had a significant 

change from Baseline PD during Adaptation but returned to Baseline tuning in the Washout. As 

in prior studies, we also defined two types of "Memory" cells. Type I had a change in PD during 

Adaptation that persisted in the Washout, while Type II changed only between Adaptation and 

Washout. A final class, termed "Other", had different tuning in all three epochs. To further 

characterize the behavior of these cells, we computed a "Memory cell" index, shown in Equation 

3, to determine if Other cells more closely resembled Dynamic or Memory cells (Cherian et al., 

2013).  

 𝑀𝑒𝑚	𝐼𝑛𝑑 = =>?@A=>BC
0DE =>FGA=>BC , =>FGA=>?@

 (3) 
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Values greater than 1.0 indicated that the PD in Washout was closer to its value in Adaptation 

than in Baseline, and thus the cells were more like Memory cells, while values less than 1.0 were 

more like Dynamic cells. 

 

Musculoskeletal model 

 We implemented a simple musculoskeletal arm model in order to generate simulated 

neurons with known relationships to behavior. The monkey’s limb was modeled as a two-link 

planar manipulator fixed at the shoulder (Figure 2.7a). For each session of behavioral data, we 

used the real hand position and inverse kinematics to compute the joint angles (qe and qs) for the 

model system according to Equations 4 and 5. 

 𝜃I 𝑡 = cosAK LM N OPLQ N OARSOAROO

TRSRO
 (4) 

 𝜃U(𝑡) =
RSPRO XYZ [\(N) LQ(N)ARO Z]^ [\(N) LM(N)

RO Z]^ [\(N) LQ(N)
 (5) 

where L is the length of each limb segment. We then computed joint torques at the elbow (te) 

and shoulder (ts) using inverse dynamics (Equation 6) derived in (Murray et al. 1994). The 

equations are reproduced with our notation here: 

 
𝜏U(𝑡)
𝜏I(𝑡)

= 𝐴 + 2𝐵 cos 𝜃I(𝑡) 𝐵 cos 𝜃I(𝑡) + 𝐶
𝐵 cos 𝜃I(𝑡) + 𝐶 𝐶

𝜃U(𝑡)
𝜃I(𝑡)

+

−𝐵 sin 𝜃I 𝑡 𝜃I(𝑡) −𝐵 sin 𝜃I 𝑡 𝜃U 𝑡 + 𝜃I(𝑡)
𝐵 sin 𝜃I 𝑡 𝜃U(𝑡) 0

𝜃I(𝑡)
𝜃I(𝑡)

 (6) 

𝐴 = 𝐼U + 𝐼I + 𝑚U𝑟UT + 𝑚I 𝐿UT + 𝑟IT   

𝐵 = 𝑚I𝐿U𝑟I 

𝐶 = 𝐼I + 𝑚I𝑟IT 
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where for each limb segment, m is the mass, r is the distance to the center of mass (assumed to 

be half of L), and 𝐼 = K
g
𝑚𝐿T. Note that we did not make precise measurements of the mass of 

each limb segment, but instead used approximate values based on morphometry studies (Cheng 

and Scott 2000) and the total body mass of each monkey (Monkey C: 12 kg, Monkey M: 10 kg). 

We measured approximate segment lengths for each monkey (Monkey C: Ls = 25 cm, Le = 20 

cm; Monkey M: Ls = 20 cm, Le = 24 cm), though qualitatively our results were consistent even 

with relatively large changes in these parameters. 

 Based on the torque computed from actual trajectories, we calculated patterns of muscle 

activation to drive the modeled limb using shoulder, elbow, and biarticular muscles for both 

flexion and extension. The moment arms of each muscle were given by the matrix [2 -2 0 0 1.5 -

2; 0 0 2 -2 2 -1.5] (Lillicrap and Scott 2013). Given the redundancy in these muscles, we 

performed static optimization at each time step to find the activations for the desired joint 

torques. We normalized the required muscle force by the physiological cross-sectional area 

(PCSA) of each muscle. We used PCSA values from (Cheng and Scott 2000), assuming that 

each of our modeled muscles represented the sum of the corresponding groups of synergistic 

muscles. We minimized the total squared activation across the six muscles, with the additional 

constraint that activations must not be negative. During curl field trials, we modeled the effect of 

the CF using the parameters and equations described previously. These forces caused an 

additional torque about each joint that altered the optimal muscle activations needed to drive the 

limb with the observed kinematics. 

 We simulated a population of M1 neurons with a firing rate generated using randomly 

weighted combinations of the activations ai of the six muscles. For each neuron, we generated a 

weight wi pseudo-randomly for each muscle from a Gaussian distribution with a mean of zero 
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and a standard deviation of one, modeling balanced excitatory and inhibitory effects on muscle 

activation (Kujirai et al. 1993; Mariño et al. 2005). We added the resulting sum to a random 

baseline spiking probability w0. These weighted sums were scaled to give physiologically 

realistic firing rates and treated as the mean rate of a Poisson process, l, which generated a 

random spike count n for each time bin according to Equations 7 and 8. 

 𝜆 = 𝜔j + 𝜔DD 𝛼D;  −1 ≤ 𝜔D ≤ 1;  0 ≤ 𝜔j ≤ 0.1 (7) 

 𝑛|𝜆	~	Poisson(𝜆) (8) 

We included a threshold nonlinearity in the form of saturation at a l value of 1 to avoid 

physiologically unrealistic firing rates. Neural activity was made to lead the intensity function by 

a latency drawn for each neuron from a uniform distribution between 70 and 130 ms to simulate 

the anticipated lag between neural activity and movement used for the recorded units. 

Importantly, we kept the weights between neurons and muscles constant throughout the session. 

Thus, the model provided time-varying patterns of neural activity sufficient to drive the limb in 

the presence of the curl field. We then performed the same kinematic analysis on these simulated 

neurons as we did on the recorded single units.  

 

RESULTS 

Behavioral adaptation to the force field 

 We analyzed thirteen sessions of data with curl field learning from Monkey C and nine 

curl field sessions from Monkey M. Of the 22 sessions, 14 used a counter-clockwise (CCW) curl 

field and 8 used a clockwise (CW) curl field. We saw no clear difference in behavioral or neural 

data between the two directions, aside from the sign of the effects. The experimental sessions for 

both monkeys occurred over several months, and each learning session was treated 
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independently. Additionally, we collected 11 control sessions that had a large number of trials 

with no imposed fields (five with Monkey C and six with Monkey M). We attempted to 

maximize the number of Adaptation trials that the monkey would perform in each session to 

provide more nearly complete adaptation. Consequently, the number of trials in each epoch 

varied from session to session depending on the monkey’s motivation. The monkeys averaged 

185 ± 21 (mean ± st.d.) movements in Baseline, 266 ± 35 movements during Adaptation, and 

196 ± 100 movements for the Washout. Figure 2.1d shows representative kinematics and the 

discharge of 30 single units, sorted according to each cell’s PD, recorded from Monkey M during 

the Baseline epoch. Note that the first movement (indicated by the upward arrow at the top of the 

panel, which was actually a movement away from the monkey) was accompanied by a burst 

from several units with upward PDs. These same units shut off during the subsequent return 

movement, and burst again (more weakly) for the later diagonal movements that had an upward 

component. Though somewhat noisy, similar observations can be made for the downward and 

leftward PD units. 

To quantify behavioral adaptation, we used the “takeoff angle” error metric (see Methods), 

which compares the direction of initial hand movement to the location of the target. The average 

speed traces for both monkeys had a characteristic biphasic profile during Adaptation that 

appeared to represent an initial open-loop movement, followed by a correction. This effect 

decreased during learning, yet was present to some degree even in the later, more-adapted trials 

(Figure 2.2a). We thus evaluated the takeoff angle error metric in the brief window between 

movement onset and the time of peak speed, prior to the apparent error correction. For the CW 

curl field sessions, we flipped the sign of the error to align it with the CCW-field errors and to 

simplify analysis and presentation of the results. The CF-induced errors decreased significantly  
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Figure 2.1 | Behavioral tasks and neural recordings. a) Macaque monkeys were seated in a chair and controlled a 
cursor on a computer screen using a 2-D planar manipulandum that covered a 20cm x 20cm workspace (top left). 
During the Adaptation epoch, the monkeys made reaches in a velocity-dependent force field applied to the endpoint 
of the hand, approximately orthogonal to its direction of motion (top right). b) The center-out task required that the 
monkey reach from the center of the workspace to one of eight outer targets (see Methods). c) We implanted 
electrode arrays, indicated by the squares, in the arm region of M1 of two monkeys. CS: Central Sulcus; AS: 
Arcuate Sulcus; PCD: Pre-central Dimple.  d) Upper panel shows normalized neural spike rasters for 30 single units 
recorded simultaneously from Monkey M during a series of reaches. The arrows along the top illustrate the direction 
of each reach. The units have been sorted by their PDs, indicated approximately by the arrows to the left of the 
panel. The bottom panel illustrates X (solid) and Y (dashed) components of hand velocity.  
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for both monkeys with adaptation (Figure 2.2). At the beginning of Washout, both monkeys 

made significant errors due to the after-effects of adaptation. 

 

Neural responses to altered dynamics 

 We identified a total of 523 single units across the 22 curl field sessions (Monkey C: 49 ± 

7 units per session, Monkey M: 25 ± 10 units per session, mean ± st.d.). Since the recordings 

were made with chronically implanted arrays, these were certainly not all unique. However, 

groups of sessions were separated by as much as 18 months, increasing the diversity of the 

neural populations they represented. Many electrode channels yielded well-isolated single units 

(Across all channels: Monkey C: 28-49%; Monkey M: 12-35%; of these, rough one-quarter to 

one-half yielded more than one well discriminated, single unit). 

We first examined the change in neural responses of M1 cells from Baseline to the 

Adaptation and Washout epochs. We computed the mean firing rate of each cell in the window 

of time from movement onset to peak speed, as described above. We determined the PD of each 

cell by fitting tuning curves with respect to the direction of hand motion in that window, rather 

than the target location. This approach did not require the assumption that the monkey reached 

straight to the target, as would otherwise be necessary. We divided the Adaptation and Washout 

epochs into three blocks, each one-third of the total movements. We looked initially at spatial 

tuning in the final block of each epoch when behavior was most likely to be stable. 

For the curl field sessions, 36% of cells (190/523) met our requirements for spatial tuning 

(see Methods). In the control sessions, a higher percentage of cells (66%, 144/226) met the 

tuning  
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Figure 2.2 | Behavioral adaptation to the force field. a) The top row shows reach position traces for three 
representative sessions with clockwise curl field perturbations for Monkey C (left) and Monkey M (right).  For each 
monkey, we plotted the final reach to each target during Baseline (left), the first reach and final reach to each target 
during Adaptation (middle), and the first reach to each target during Washout (right) for each of the three sessions. 
Trajectories during Baseline and late Adaptation were generally straight, while the early Adaptation and Washout 
trajectories were markedly curved. The bottom row shows speed profiles, averaged over the trajectories plotted in 
the top row for each session. b) We used the average takeoff angle (see Methods) at movement onset to characterize 
behavioral adaptation. The left panel shows these angles for the first 100 Baseline reaches, 200 Adaptation reaches, 
and 100 Washout reaches for each session with Monkey C. The black line indicates the mean across sessions for 
each trial (13 with Monkey C and 9 with Monkey M). Takeoff angle increased when the force field was applied and 
gradually decreased during Adaptation. There were after-effects during Washout that returned gradually to Baseline 
values. Note that all three epochs contained additional trials beyond those shown here, that varied in number across 
sessions. c) Behavioral adaptation for Monkey C (red) and Monkey M (green). For the Adaptation and Washout 
epochs, we averaged the take-off angle in non-overlapping blocks of reaches, each containing one-third of the total 
number of successful trials. These blocks of trials are used again in the later neural analysis (see Figure 2.4). Plotted 
data represent mean ± SEM across all sessions.  
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criteria due to the more consistent trial-to-trial behavior compared to the perturbed trials. Figure 

2.3a shows example waveforms and tuning curves throughout the three epochs for six 

representative cosine-tuned single units. The changes in PD (DPD) from Baseline to Adaptation 

and Baseline to Washout epochs for all cells are shown in Figure 2.3b. As we did with the 

behavioral adaptation data, we changed the signs of DPDs in the CW sessions to align them with 

the CCW metrics. Across the population, the mean PD shifted by 21° ± 19° (mean ± st.d.) 

between Baseline and Adaptation, but only 1.6° ± 12° between Baseline and Washout (Figure 

2.3b, solid black lines). We divided these cells into five classes based on the significance of their 

changes across the three epochs. Combined across all sessions, 55% of cells (104/190) were 

classified as “Dynamic”, having a significant change of tuning between the Baseline and 

Adaptation epochs that returned to the Baseline PD during Washout. All of these cells are 

located near the horizontal axis with positive PD changes in Figure 2.3b. Fifty of the remaining 

cells (26%) were clustered near the origin, with statistically unchanged tuning and were 

classified as “Kinematic” cells. 

We also found 13 (7%) cells that fit the definition of Memory I type cells, having PDs that 

rotated during the Adaptation epoch and kept the new tuning during Washout (Figure 2.3b, red 

diamonds). In addition, there were nine (5%) Memory II cells (stable tuning across the Baseline 

and Adaptation epochs but altered tuning in Washout). These cells (Figure 2.3b, green diamonds) 

were clustered near zero PD change during Adaptation. Lastly, we identified 14 (7%) cells with 

significantly different tuning in all three epochs, referred to in prior literature as “Other” cells. 

For these, we computed a “Memory cell index” (see Methods) describing whether the changes 

more closely resembled Dynamic cell behavior (values less than one) or Memory I cell behavior  
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Figure 2.3 | Neural PD changes. a) Waveforms and tuning curves for six representative cosine-tuned units recorded 
from one session of Monkey C during the Baseline period and the final third of trials in the Adaptation and Washout 
periods. The black scale bar next to the waveforms indicates 500 uV. The red line indicates the PD, and the dashed 
red lines denote the 95% confidence bounds on the PD. The scaling circles are colored according to the cell 
classification. b) Change in preferred direction (DPD) from the Baseline to Adaptation epochs (abscissa) and from 
the Baseline to the Washout (ordinate). Histograms indicate marginal distributions, with gray being all tuned cells, 
and red being the best isolated cells (SNR > 6). Black dashed lines on the histograms represent the mean change 
from baseline for each distribution (21° in Adaptation and 1.6° in Washout). Most PDs changed significantly during 
Adaptation and reverted to their original tuning in Washout. Symbol colors and pie chart (inset) shows the 
proportion of each cell type for the population. The Dynamic and Memory I cells with solid fills represent Other 
cells that were reclassified using the Memory Cell index (see Methods). 
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(values greater than one). Thirteen of the fourteen cells had an index below one and if included 

in the Dynamic cell group would bring the total Dynamic population to 62% of all cells 

(117/190). We could find no tendency for the Kinematic and Dynamic cells to be located 

differentially on the arrays. 

Our decision to regress neural activity against the motion of the hand differs from earlier 

studies (Gandolfo et al. 2000; Li et al. 2001), which averaged neural activity over the duration of 

the reach and regressed against the target direction. To ensure our results did not depend on the 

differences between these coordinate frames, we repeated these analyses using the more typical 

target-direction regressor. We found qualitatively similar PD changes during Adaptation, 

although the DPD distribution was slightly smaller on average and more variable (17° ± 22°). 

The choice of coordinate system had little impact on our cell classifications, with 29% 

Kinematic, 46% Dynamic, 13% Memory I or II, and 12% Other.  

As a control, we analyzed data from several sessions in which there was no curl-field 

perturbation, dividing the large number of trials into three equal portions. Under these 

conditions, we would expect no changes in PDs, and for all single units to be classified as 

Kinematic. In fact, we found only 81% of cells (117/144) to be Kinematic. There was a small 

number of Dynamic (6%, 19/144) and Memory I (4%, 5/144) cells, and a slightly larger group of 

Memory II cells (9%, 13/144). No cells were classified as Other. 

The cell classification in Figure 2.3 used a block of trials from the final third of the 

Adaptation and Washout epochs when adaptation or de-adaptation would have been most nearly 

complete. We repeated the classification using PD changes in the first and second blocks of trials 

to assess the time course of neural PD changes. If changing PDs were related to adaptation, we 

would expect to find smaller changes earlier in the Adaptation epoch. However, that was not the 
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case. Any cells that rotated did so fully in the first Adaptation block (Figure 2.4a). There was no 

progressive change in PD throughout the Adaptation or Washout epochs, even as behavioral 

performance continued to change (compare Figure 2.2c). 

We then tested the stability of cell classifications using the first and second blocks of trials 

within Adaptation and Washout. If Memory cells result from motor learning, we would expect to 

find fewer early in Adaptation. At the population level, neuron classification rates were similar 

for all three blocks of trials (Figure 2.4b). However, at the single cell level, there were 

differences in the classifications of individual units. We compared each unit’s classification 

during the middle and final blocks of the Adaptation and Washout epochs. Of the 190 cells that 

were tuned in the final block, 155 were tuned in all three blocks. The Dynamic population 

proved to be fairly robust; 76% (68/89) of Dynamic cells from block 3 were also classified as 

Dynamic in block 2, well above chance (approximately 20% given the five classes). A slightly 

lower proportion of Kinematic cells, (66%; 23/35), had consistent classification, while the 

classification of Memory (4/18) and Other cells (5/13) was close to chance. Together, these 

results show that short-term motor adaptation is not a product of progressive changes within M1, 

and that putative Memory cells are likely the result of statistical misclassification. 

 

Magnitude of neural PD changes depends on the instantaneous force 

The previous results used PDs computed within a brief window between movement onset 

and peak speed. However, the speed and amount of force exerted by the curl field varied even 

within this window. If M1 activity is related to movement dynamics, we should observe larger 

DPD when the monkey experienced larger curl forces. We fit PDs within six overlapping  
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Figure 2.4 | PD changes did not correlate with behavioral adaptation. a) DPD (mean ± SEM) of the population 
as the monkeys adapted for three different blocks of data during Adaptation and Washout. The PDs for Monkey C 
(red) and Monkey M (green) rotated when the force field was applied, with no progressive changes across these 
blocks despite the changing behavior (Figure 2.2c). b) Neural population classifications for each of the blocks of 
Adaptation and Washout trials from Figure 2.4a. Error bars represent standard error of the mean across experimental 
sessions. There were similar proportions of each cell class within the three blocks. 
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windows (30% of the movement duration for each trial, typically ~150 ms) from the beginning 

of movement. The last of these ended approximately at the time of peak speed. The magnitude of 

the CF force varied throughout this period, which we compared to the DPD for all cells that had 

significant cosine tuning in a given window (Figure 2.5a). There was a strong correspondence 

between the two measures. However, Figure 2.5a shows single units from the same time 

windows pooled across multiple sessions and thus removes the correlations with behavior on 

individual sessions. Each point in Figure 2.5b represents, for a single time window from Figure 

2.5a, the mean ΔPD for the population of recorded cells on one session and the corresponding 

RMS curl force experienced on that session. A linear fit across all data points from both 

monkeys was highly significant (r=0.51, p~0; black line of Figure 2.5b). 

 

Neural tuning to the “motor plan” is stable during adaptation 

 The correlation between ΔPD and force suggests that endpoint kinematics may not be the 

appropriate reference frame with which to describe M1 activity. Therefore, we also expressed 

M1 activity in terms of the dynamics of the “motor plan”, using an approach developed by 

Mandelblat-Cerf, et al (Mandelblat-Cerf et al. 2011). Briefly, during the window between 

movement onset and peak speed, we used endpoint velocity to compute the underlying CF force, 

which we subtracted from the force recorded by the force transducer. The resulting force vector 

provided an estimate of the net force at the hand that would have been produced by the monkey 

in the absence of the curl field and serves as a proxy for the movement that the monkeys 

intended to make, referred to as the “motor plan” (Figure 2.6a). In early CF trials, this motor plan 

should be directed towards the target, then rotate gradually to counter the CF over the course of 

adaptation. We computed the average motor plan force vector during the time between  
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Figure 2.5 | Neural PD changes depend on force. a) We fit PDs for all single units in overlapping, sliding time 
windows beginning at movement onset and computed ΔPD between Baseline and Adaptation in each window. 
Values represent mean ± SEM across the cells that were tuned in any given window. This plot compares the time-
varying change in RMS force measured at the handle (black lines, scale bar) with the population ΔPD (red for 
Monkey C, green for Monkey M, left axis) in each window. b) Each data point shows the per-session average of the 
ΔPD change observed in each of the time windows shown in Figure 2.5a plotted against the difference in endpoint 
force in that window. The fitted line gives the relationship ΔPD = 6.6° + 26° x ΔForce 
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Figure 2.6 | M1 consistently encodes the desired motor plan. a) We identified the direction of the intended force 
application (blue arrows), or the “motor plan”, by subtracting the effect of the curl field from the observed endpoint 
force vector (red arrows). In Baseline, these two coordinate frames were identical. Initially during Adaptation, the 
monkey intended to reach to the target, though the direction of the hand motion was altered by the curl field. In late 
Adaptation trials, the hand reached the target but the compensatory motor plan was rotated toward the direction of 
the perturbation. b) Despite the large behavioral effects, PD changes in the motor plan coordinate system, plotted as 
in Figure 2.3b, were centered near zero at the beginning of both adaptation and washout. 
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movement onset and peak speed. We then fit cosine tuning functions to the firing rate of our M1 

units regressed to the direction of this vector. We assessed the change in the resulting PDs 

between Baseline and Adaptation trials. If this dynamic coordinate frame more accurately 

captures M1 modulation, the average ΔPD should be significantly smaller than that shown in 

Figure 2.3b. Indeed, neural tuning in this “motor plan” reference frame was quite stable during 

Adaptation, with a population ΔPD = 0.8° ± 22° (mean ± st.d.; p=0.95, one-sample t-test), 

suggesting that M1 activity more consistently relates to the net forces produced by the limb 

(Figure 2.6b). 

 

Musculoskeletal Model 

 We repeated the tuning analyses using our simulated, muscle-based neurons and found 

results qualitatively similar to those of the recorded single units. We generated 500 simulated 

neurons (Figure 2.7b) for each of the 22 curl-field sessions from both monkeys to give a total of 

11,000 neurons. The randomly weighted muscle force inputs allowed cells to have equal 

activation from antagonist muscle groups. As a result, not all cells produced significant spiking 

activity. As with the recorded units, we considered only cells that had a firing rate greater than 

five Hz during the movement period, which removed 1827 cells from further analysis. Of the 

remaining neurons, 46% (4279/9173) also met our cosine tuning criteria. 

The PD changes during Adaptation were broadly distributed, with a mean significantly 

larger than that of the recorded units (68° ± 22°; Figure 2.7c, top marginal distribution), while 

the distribution of model neuron PD changes during Washout was a bit narrower (-1° ± 7°; 

Figure 2.7c, right marginal distribution). The PDs rotated immediately due to the effect of the 

force perturbation, which altered the relationship between endpoint kinematics and joint torques  
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Figure 2.7 | Simulated dynamics neurons reproduce properties of recorded units. a) Schematic of 
biomechanical model and neural generative model. The limb was modeled as a two-link manipulandum controlled 
by six muscles (colored lines). Neural activity was generated from weighted sums of these muscle activities (see 
Methods). b) Biomechanical model examples from one session with Monkey M. The left column is a representative 
reach to the -135° target in Baseline, while the right column is a reach to the same target with the curl field. Top 
row: endpoint velocities in the x (solid) and y (dashed) directions. Second row: joint torques for shoulder (solid) and 
elbow (dashed) computed using the model. Third row: muscle activations from the biomechanical model. Colors 
correspond to the muscles in Figure 2.7a. Bottom row: raster plots showing the spiking activity of a subset of the 
simulated neurons sorted by PD. c) Same as Figure 2.3b for simulated neurons. d) Same as Figure 2.4a for simulated 
neurons. e) Same as Figure 2.5a for simulated neurons.  
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(Figure 2.7d). The ΔPD was thereafter constant during Adaptation, with no temporal correlation 

to behavior. Although the majority of cells were classified as Dynamic (87%, 3726/4279), there 

were many Other type cells (13%, 543/4279) and far smaller numbers of Kinematic (2/4279) and 

Memory (8/4279) cells. Since the neural firing rates were generated using fixed dynamical 

relationships, any change in spatial tuning in the Washout that lead to Other or Memory cells 

must have been due to a misclassification resulting from chance and/or different kinematic 

behavior rather than a change in underlying neural processes. Assuming all Memory and Other 

cells were the result of altered behavioral statistics in Washout, then 13% (551/4279) of 

simulated neurons were classified erroneously, somewhat less than the proportion observed in 

the recorded units (19%, 36/190). The PD changes of modeled neurons also had a dependence on 

time (and force) throughout the reach (Figure 2.7e), as did the real units (Figure 2.5a). 

 

DISCUSSION 

Summary 

We investigated the spatial tuning of M1 neurons as monkeys made reaching movements 

against an externally imposed curl field that altered limb dynamics. We showed that the majority 

of single units were Dynamic, having PDs that changed when the field was imposed and returned 

to their Baseline tuning when it was removed. Importantly, the PDs of the units showed no 

progressive change even during ongoing behavioral adaptation, but instead, the size of ΔPD was 

well correlated with the magnitude of the CF force. This was true over the course of movements 

(Figure 2.5a) and across sessions (Figure 2.5b). When instead computed in terms of dynamic, 

“motor plan” coordinates, there was no change in PD. Lastly, we used a simple musculoskeletal 

model to generate a population of neurons with fixed relationships to joint torques. These 
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modeled neurons had a broad distribution of ΔPDs that was qualitatively similar to that of the 

recorded units. It has been proposed that learning results by adapting the brain’s internal inverse 

model of limb dynamics (Shadmehr and Mussa-Ivaldi 1994). Overall, our results suggest that 

short-term adaptation of such an internal model likely occurs before the inputs to these M1 

neurons, which themselves maintain a consistent relationship to the dynamics of movement.  

 

Tuning changes do not suggest internal model adaptation within M1 

The progressive learning of new motor skills must be encoded within the brain, presumably 

by changes in discharge that mimic the time course of the behavioral adaptation. It is reasonable 

to expect that M1 participates in this process. M1 tuning curve changes, especially those of 

Memory cells, have been thought to be an expression of this process (Gandolfo et al. 2000; Li et 

al. 2001; Arce et al. 2010b; Richardson et al. 2012). This theory suggests that changes in neural 

discharge are the result of altered functional properties either within M1 or in downstream neural 

circuits, embodying an adapted internal model. It is important to note that although these prior 

studies expressed neural activity within the classic kinematic coordinate frame, they did not 

assume that M1 acts as a kinematic controller. Indeed, they found that the activity of many M1 

cells reflected movement dynamics, with a range of effects that was suggestive of a kinematic to 

dynamic transformation (Li et al. 2001). The critical difference between those studies and our 

own, however, is the suggestion that these properties are altered during the hour-long process of 

adaptation, for which we can find no compelling evidence. 

In our experiment, there were progressive behavioral changes within sessions (Figure 2.2) 

and clear behavioral aftereffects during Washout. If changes within M1 mediate this short-term 

motor learning through internal model adaptation, we would predict that the magnitude of the 
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change in neural tuning or the proportion of Memory cells should gradually change as the 

monkey adapts. However, although the CF affected the great majority of the recorded and 

simulated neurons, we found no progressive change in their PDs throughout the Adaptation 

epoch (Figures 2.2 and 2.4). Thus, we interpret the PD changes as a direct consequence of the 

altered dynamics, rather than the subsequent process of adaptation. Although the PD changes 

appeared at the earliest point at which we were able to examine them, a limitation of the tuning 

analysis is that we must average over a relatively large number of trials to achieve adequate 

statistical power. Much of the behavioral adaptation occurred early, within the first block in the 

session. However, it is important to note that there were still significant behavioral changes even 

between blocks two and three (Figure 2.2c). If the tuning changes were the consequence of 

learning, there should be evidence of further tuning changes across all three blocks. 

Furthermore, we saw little evidence of Memory cells. Although there was no progressive 

change in their number during learning, the classification of individual Memory cells did change 

unpredictably. Finally, we even found a small number of Memory cells in the control sessions, in 

which there was no applied curl field. A similar study that recorded the activity of single units in 

the supplementary motor area also detected Memory cells in control sessions approximately as 

often as during the learning sessions (Padoa-Schioppa et al. 2004).  These observations raise the 

concern that Memory cells may be the result of measurement noise rather than a robust change in 

neural tuning. There are several potential explanations for the differences between our results 

and those in the prior studies. First, we used a stronger force field (0.15 compared to 0.07 

Ns/cm). Since neural PDs rotate in proportion to the magnitude of force (Figure 2.5), the larger 

effect size likely made our classifications more robust. Additionally, our experiments contained 

more movements during Adaptation (266 on average, versus ~160-200 in prior studies), allowing 
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us to exclude more of the earlier, less adapted trials. More movements likely also allowed for 

more complete adaptation and stable behavior. If Memory cells arise from noisy estimates, then 

larger fields, more trials, and more stable behavior should decrease the chance of 

misclassification. 

Although we classified cells as Dynamic and Kinematic for consistency with prior literature, 

the units were not distributed bimodally in a manner that would suggest two distinct classes. 

Rather, in both the recorded and simulated neurons there was a continuum of ΔPD magnitudes. 

Those recorded units with small rotations may represent muscles that were only minimally 

affected by the CF. Alternatively, this continuous distribution may well represent an internal 

model that transforms motor commands from kinematic to dynamic coordinates (Fetz 1992; 

Kalaska and Crammond 1992; Shadmehr and Mussa-Ivaldi 1994). In that case, however, it 

appears that these neurons are not the source of the short-term behavioral adaptation in our 

experiments. Instead, the internal model represented by the outputs of this neural circuit 

remained stable, suggesting that compensation for the modified external dynamics occurred at a 

higher level and was simply transmitted to M1. 

 

Neural tuning is related to movement dynamics  

If the tuning changes in M1 in the presence of a curl field do not correspond to behavioral 

adaptation, how are they to be explained? We propose that PD changes are primarily due to the 

direct effect of force on M1 firing rates (Evarts 1968; Scott and Kalaska 1995, 1997; Sergio and 

Kalaska 2003; Sergio et al. 2005; Gupta and Ashe 2009). Our evidence for this includes the very 

rapid PD rotation with the onset of the CF, the strong correlation between ΔPD and force (Figure 

2.5), and the stable PD representation that occurred for the dynamic motor plan. Although the 
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discharge of these units changed during the course of learning to drive the adapted behavior, 

their spatial tuning throughout the Adaptation epoch was quite stable. Importantly, our 

conclusions do not need to assume that single M1 neurons necessarily encode specific variables 

(e.g., endpoint kinematics, endpoint force, joint angles, muscle activations) and indeed many 

studies of activity in M1 have suggested that individual neurons need not represent any particular 

movement covariate (Fetz 1992; Churchland and Shenoy 2007; Elsayed et al. 2016). We focused 

on a brief window, early in movement before online error correction, to simplify the 

interpretation of our results. Yet, there remains the possibility that some of the PD changes were 

the result of changes in short-latency proprioceptive feedback to M1 (Scott et al. 2015). Indeed, 

it has been proposed that proprioceptive feedback to M1 is necessary to learn curl field 

perturbations (Wolpert et al. 1995; Mathis et al. 2017), and that the adapted internal model is 

shared for both feedforward control and feedback control (Wagner and Smith 2008). Although 

afferent inputs likely influence the shape of at least some tuning curves, this influence is 

equivalent to that of premotor inputs with respect to our argument about the role of M1 in short-

term adaptation. The rapid and sustained PD changes throughout adaptation, whether the result 

of altered premotor or afferent inputs to M1, suggest that the dynamical relation between M1 

activity and movement was altered only by the addition of the load force, not subsequent 

adaptation.  The very similar results in our musculoskeletal model, which lacked proprioceptive 

feedback, further support the conclusion that PD changes result primarily from the altered 

dynamics of the task. 

It would be enlightening to pursue a more detailed model of the relation between M1 

activity and muscle force, but that is well beyond the scope of this study. With their fixed 

generative relationship to dynamics, the simulated neurons exhibited tuning changes remarkably 
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similar to those of the recorded M1 units. There were, however, some differences. Notably, our 

model had a large percentage of Dynamic cells, many Other cells, and virtually no Kinematic or 

Memory cells. These differences are likely due in large part to two factors. First, there were 

larger model PD changes during Adaptation, and generally smaller changes during Washout 

compared to the real neurons, yielding more robust statistical changes underlying the Dynamic 

classification. Second, there was much less variability in the discharge of the simulated neurons 

compared to the real units, leading to narrower confidence intervals on the PD estimates. The 

activity of real neurons likely includes a number of sources of signal-dependent noise, or 

variability that is not strictly stochastic but is also not well-captured by our cosine tuning model. 

Such sources could include the posture or load dependence of neurons (Scott and Kalaska 1995; 

Sergio et al. 2005), the control of muscles not included in the model or not strongly modulated in 

the task, and other activity that is not related explicitly to the motor outputs (Fetz 1992; 

Churchland and Shenoy 2007). This combination of factors caused virtually all modeled neurons 

to be statistically different in Adaptation from both other epochs. This greatly decreased the 

likelihood of observing Kinematic cells.  It also meant that most cells that happened to differ 

between Baseline and Washout became Other (all epochs different) rather than Memory.  A 

smaller PD change in Adaptation would have increased the probability that the Other cells would 

instead be classified as Memory, since no change would be observed in Adaptation. 

The broader distribution of modeled PD changes may have been the result of simplifications 

in our biomechanical model and our generative neural model. First, we assumed that motion was 

limited to two joints in the horizontal plane, while the actual posture also involved movements of 

most of the limb’s seven degrees of freedom, many of which would not have contributed directly 

to the planar tuning curves. Second, our neurons were based on a small number of modeled 
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muscles, which are greatly simplified compared to the number of muscles that actually move the 

limb. This simple model did not include force-length and force-velocity characteristics, or 

posture-dependent pulling directions, and it minimized any co-contraction. Including these 

features would likely increase the number of single units with less than maximal responses to the 

curl field, thus providing a population that more closely resembles the recorded M1 cells. 

It is important to note that the model was not intended to recreate the monkeys’ behavior 

precisely; we used real behavioral kinematics simply to provide realistic movement speeds, 

trajectories, and effects of behavioral adaptation. We generated neural activity directly from the 

activity of the modeled muscles, maintaining a fixed dynamical relation between the two. 

Although the connectivity was random, there is much evidence that the real connectivity of 

corticomotoneuronal cells is more structured, with many cells favoring reciprocal activation of 

agonists and antagonists (Cheney et al. 1985). In practice, the majority of the modeled cells that 

were cosine-tuned had this structure. Although the firing of many M1 cells is closely related to 

forces at the hand and to patterns of muscle activity (Evarts 1968; Ashe 1998; Cabel et al. 2001; 

Sergio et al. 2005), a number of studies have shown that the discharge of M1 neurons correlates 

with many aspects of behavior beyond the activation of muscles (Fetz 1992; Churchland and 

Shenoy 2007). Our modeled neurons lack activity related to intrinsic network dynamics (Shenoy 

et al. 2013), movement planning and preparation (Alexander and Crutcher 1990), or afferent 

feedback (Asanuma et al. 1979; Cheney and Fetz 1984). As such, our modeled neurons cannot be 

expected to replicate the precise patterns of activity that would be observed in a real motor 

cortical population. Nevertheless, despite these simplifications, the generated neurons behaved in 

a qualitatively similar manner to the recorded units. The results from our experimental and 
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modeled data are consistent with the conclusion that M1 activity encodes information related to 

the dynamics of the intended movement that remains unchanged during adaptation. 

 

Comparison with prior studies 

Including the original study in 2000 (Gandolfo et al. 2000), several studies have proposed 

that short-term tuning changes in M1 during curl field learning reflect modification of an 

internal, inverse model of limb dynamics that drives the behavioral adaptation (Li et al. 2001; 

Arce et al. 2010b; Richardson et al. 2012).  Another study reached a conclusion more like ours, 

that M1 activity was consistently correlated with the “motor plan” during adaptation 

(Mandelblat-Cerf et al. 2011). Their motor plan analysis, applied to our data, yielded similar 

results. However, that study did not include a Washout period, so they could not assess their 

neurons for any memory effects. Furthermore, they used a unique design, in which the CF was 

applied to a single reach direction (as did the 2010 Arce study). This difference makes 

comparison of both these studies with the earlier studies from Bizzi’s group difficult.  

Another important later study used chronically implanted electrode arrays, allowing some 

neurons to be tracked between sessions. That study replicated many of the earlier within-session 

findings, but also reported some neurons with persistent, cross-session PD shifts that were taken 

as evidence of long-term learning. However, they also acknowledged that the M1 tuning changes 

they described did not necessarily mean a change in the functional properties of M1 cells, but 

instead likely reflected altered recruitment by higher order brain areas, as we have concluded. 

Nonetheless, they interpreted the changes in PD and the presence of Memory cells as signatures 

of an adapted internal model, not simply the dynamics of the added load. Neither our results, nor 

those of the previous study from our group (Cherian et al. 2013), support this conclusion. 
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The discrepancies between Cherian et al. and the earlier studies have also been puzzling, 

though a number of differences in the design of the studies make direct comparison difficult. 

First, Cherian et al. compared movements between two oppositely directed curl fields. 

Interference between the two perturbations may have disrupted the learning process (Brashers-

Krug et al. 1996), raising the possibility that the lack of Memory cells was simply a consequence 

of incomplete adaptation. Our experiment compared curl fields to null fields, as did the earlier 

studies. Second, Cherian et al. used a random-movement task with dynamics that were quite 

different from the standard center out movements used in prior literature. The lack of explicit 

planning and greater movement complexity may have led to different rates or signatures of 

learning (Smith et al. 2006; Sheahan et al. 2016). For the present study, we used the center-out 

task, which also allowed us to compare target-based and hand-movement reference frames. 

Finally, we added a biomechanical model, with known, fixed dynamics. Both our recording and 

modeling results remain at odds with the conclusions of the earlier studies (Gandolfo et al. 2000; 

Li et al. 2001; Arce et al. 2010b; Richardson et al. 2012).  

 

Behavioral adaptation is mediated by altered recruitment of M1 neurons 

Motor adaptation is a complex process that is dependent on many factors, including the type 

of perturbation (Krakauer et al. 1999), the perturbation schedule (Orban de Xivry et al. 2011), 

and even whether the subject has explicit knowledge of the perturbation (Mazzoni and Krakauer 

2006). It is likely that motor learning involves the concerted efforts of multiple cortical and sub-

cortical areas (Kawato 1999). Our results suggest that short-term adaptation to a curl field is not 

mediated by persistent plastic changes in the functional characteristics of the units we recorded 

in M1. There remains the possibility that adaptation occurs upstream of our recording but still 
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within M1. However, two studies investigating curl field learning by humans used repetitive 

transcranial magnetic stimulation to disrupt M1 and concluded that it is not a critical site for 

short term motor learning (Richardson et al. 2006; Overduin et al. 2009). The greater rate of 

adaptation for humans than monkeys and the possibility that humans may make more use of 

altered strategy than monkeys complicates the cross-species comparison. However, the 

inactivation results are consistent with the idea that the rapid adaptation to a novel dynamic 

environment results from changes in the recruitment of M1 neurons by higher cortical areas. 

Similar studies suggest that the supplementary motor area (SMA) helps to compensate for the 

altered dynamics, potentially by altering its inputs to M1. However, its responses to the CF 

varied quite broadly, during both learning and control conditions, suggesting a complex role for 

SMA (Padoa-Schioppa et al. 2002, 2004).  Curl field adaptation is likely mediated as well by 

inputs from dorsal premotor cortex (Shadmehr and Holcomb 1997; Dum and Strick 2002, 2005), 

and undoubtedly involves cortical interactions with the cerebellum (Wolpert et al. 1998). 
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CHAPTER 3 
 
NEURAL MANIFOLDS FOR THE CONTROL OF MOVEMENT 
 
Juan A. Gallego, Matthew G. Perich, Lee E. Miller, Sara A. Solla 
 

FOREWORD 

The following chapter is an adapted version of a Perspective article published in the journal 

Neuron (Gallego et al. 2017). The article appears in a special issue titled “How the Brain 

Works”. In the article, we discuss a new approach to understanding the neural control of 

movement that is based on population-level connectivity patterns. The article serves not only as a 

review of existing literature studying neural populations, but also as a novel conceptual 

contribution to the field. Throughout the text, we attempt to integrate existing knowledge and 

formalize a new framework for interpreting many experimental observations based on the idea of 

“neural modes”. The ideas contained within started from a long series of intellectual discussions 

I had with Dr. Juan Gallego, a co-author on the manuscript. For the purposes of this dissertation, 

I have added an additional section analyzing population activity from M1 and PMd during 

reaching. With these data, I illustrate some important concepts about the neural manifolds, and 

the function of M1 and PMd. This chapter provides essential background for the analytical 

approach that I use in Chapter 4 to understand population-level activity during learning.  
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ABSTRACT 

The analysis of neural dynamics in several brain cortices has consistently uncovered low-

dimensional manifolds that capture a significant fraction of neural variability. These neural 

manifolds are spanned by specific patterns of correlated neural activity, the “neural modes.” We 

discuss a model for neural control of movement in which the time-dependent activation of these 

neural modes is the generator of motor behavior. This manifold-based view of motor cortex may 

lead to a better understanding of how the brain controls movement. 

 

INTRODUCTION 

Since the work of Herbert Jasper (Jasper et al. 1958) and Ed Evarts (Evarts 1968), cortical 

function has been studied by recording single neuron activity while animals perform a variety of 

behaviors, including decision making (Newsome et al. 1989), sensation (Wurtz 1969), and 

movement (Humphrey et al. 1970; Georgopoulos et al. 1982).  

In the motor system, the main focus of this article, single neuron studies typically involved 

recordings during repeated, stereotypical movements. Many of these experiments sought explicit 

representations that relate single-neuron activity to specific movement covariates, including but 

not limited to target position, endpoint and joint kinematics, endpoint forces, and muscle activity 

(Evarts 1968; Humphrey et al. 1970; Thach 1978; Georgopoulos et al. 1982; Morrow and Miller 

2003). Although some of these efforts involved the decoding of population activity 

(Georgopoulos et al. 1982), they were restricted to models of non-interacting neurons whose 

individual activity was associated with specific movement covariates.  

However, some of these studies also identified single neurons whose activity did not 

represent movement parameters (Fetz 1992; Churchland and Shenoy 2007; Scott 2008). If 
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neurons in primary motor cortex (M1) were to represent movement parameters, those 

representations ought to be most evident in corticomotoneuronal (CM) cells, which make direct 

connections onto spinal motoneurons (Fetz 1992). Yet, many of these CM cells do not represent 

any specific movement covariate (Fetz et al. 1989).  

The ultimate role of M1 is to generate movement, not to represent it (Scott 2004; Cisek 

2006; Churchland et al. 2012); thus, it is not surprising that many M1 neurons do not relate to 

any single movement covariate. The search for representations at the single-neuron level might 

actually divert us from understanding the neural control of movement. Early neural network 

simulations indicated that individual neurons need not explicitly encode movement covariates 

when the goal of M1 population activity is to generate realistic muscle activation patterns (Fetz 

1992). 

The role of neurons that do not explicitly represent any movement covariate can be 

explained by recent work based on optimal feedback control theory, which postulates that the 

goal of motor cortex is to produce a desired movement and force, taking into account the state of 

the muscles. This hypothesis avoids the need for explicit representation of movement covariates 

by single neurons, though some neurons may still represent movement covariates or high level 

task characteristics as a byproduct of the necessary control signals (Todorov 2000; Scott 2008).  

Recent and accelerating technical developments provide the experimental tools for 

monitoring the activity of large numbers of neurons, as well as the statistical and modeling tools 

for analyzing how these neural populations perform the computations necessary to plan and 

execute movement (Gao and Ganguli 2015). The challenge of understanding the neural control 

of movement by analyzing neural population activity is formidable, as population activity in any 

specific area not only reflects its intrinsic dynamics, but must also respond to its inputs and 
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generate output projections based on the computations being performed (Sussillo et al. 2015). A 

simplification arises from the fact that neural computations are based on the joint activity of 

interconnected neurons (Fetz 1992; Hatsopoulos et al. 1998; Shenoy et al. 2013); the resulting 

population activity is thus likely constrained by the connectivity of the underlying network.   

Here we argue that the underlying network connectivity constrains the possible patterns of 

population activity (Tsodyks et al. 1999; Sadtler et al. 2014; Okun et al. 2015), and that the 

possible patterns are confined to a low-dimensional manifold (Stopfer et al. 2003; Yu et al. 2009) 

spanned by a few independent patterns that we call neural modes. These modes capture a 

significant fraction of population covariance. It is the activation of these neural modes, rather 

than the activity of single neurons, that provides the basic building blocks of neural dynamics 

and function (Shenoy et al. 2013; Sadtler et al. 2014; Luczak et al. 2015).  

We thus propose a generative model of the activity of individual neurons based on the 

activation of neural modes, and explain how the parameters of the model can be identified using 

dimensionality reduction methods. We then review work showing that these neural modes span 

task-specific neural manifolds in premotor and motor cortices. We propose that neural manifolds 

spanned by a surprisingly small number of neural modes are likely to simplify the neural control 

of movement, and speculate on the potential learning mechanisms underlying the emergence of 

this low-dimensional organization. 

 

FROM SINGLE NEURONS TO NEURAL MANIFOLDS 

Current multi-electrode arrays (MEAs) allow for the simultaneous recording of about a 

hundred neurons. This is many more than the small numbers recorded with single electrodes, but 

still a tiny fraction of the total number of neurons involved in movement generation. Despite this 
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limitation, Brain-Machine Interfaces (BMIs) based on these MEAs are able to predict reasonably 

well many behavioral variables (Paninski et al. 2002; Carmena et al. 2003; Ethier et al. 2012).  

What is the underlying reason for this success? Intuitively, it is the high degree of 

correlation and redundancy across individual neural activity. This intuition has been recently 

made precise in elegant arguments on the low dimensionality of the stereotypical motor 

behaviors used in most motor control studies (Gao and Ganguli 2015). The relatively small 

number of independent signals needed to control behavior during the execution of such tasks 

only requires a small number of independent neural signals. These neural signals are the latent 

variables (Cunningham and Yu 2014)  that describe the dynamics of the neural modes.  

The participation of individual neurons in neural modes is illustrated in Figure 3.1a. Note 

that each neural mode includes a large fraction of the neurons in the population, and that a given 

neuron can participate in several neural modes. In this view, the time-dependent activity of 

individual neurons is simply a reflection of the latent variables (Figure 3.1b) (Macke et al. 2011; 

Kobak et al. 2016; Kaufman et al. 2016). Consider the neural space in Figure 3.1c; each axis 

represents the activity of one of the N recorded neurons (here, N=3). Assuming that network 

connectivity constrains the possible patterns of population activity (Tsodyks et al. 1999; Sadtler 

et al. 2014; Okun et al. 2015), the population dynamics will not explore the full high-dimensional 

neural space, but instead remain confined to a low-dimensional surface within the full space, the 

neural manifold. In the simplest linear case, the neural manifold is flat, as the hyperplane in 

Figure 3.1c, spanned by the two neural modes, 𝑢Kand 𝑢T.  

This geometrical picture illustrates a possible generative model for the dynamics of 

individual neurons: the activity 𝑛D 𝑡  of the ith neuron, 1 ≤ 𝑖 ≤ 𝑁, results from a linear 

combination of latent variables 𝐿u 𝑡  plus additive noise 𝜀D: 
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 𝑛D 𝑡 = 	 𝑤Du	𝐿u 𝑡u + 𝜀D (1) 

Here, 𝐿u 𝑡  is the jth latent variable, the time-dependent activation of the jth neural mode. 

Each latent variable results from projecting the neural population activity onto the corresponding 

neural mode. The coefficient 𝑤Du in the linear combination quantifies the contribution of the jth 

latent variable to the activity of the ith neuron. These participation weights relate to the internal 

connectivity of the network (Okun et al. 2015). The noise term 𝜀D represents intrinsic neural 

noise, and potentially other processes not accounted for in the model. By construction, neural 

population activity remains within the neural manifold except for small fluctuations (see how 

close the actual black trajectory is to the gray trajectory projected into the manifold in Figure 

3.1c). 

Dimensionality reduction techniques allow us to study neural population dynamics by 

finding a set of neural modes that span the neural manifold and identify relevant population 

features (Cunningham and Yu 2014). Common linear techniques for dimensionality reduction, 

such as principal component analysis (PCA) and factor analysis (FA), identify neural modes as 

dominant patterns of covariation across neurons and yield the parameters of the generative model 

(Eq. 1; Figure 3.1b). As an illustration, we show that neural data recorded during an isometric 

wrist task (Figure 3.2a,b) is largely accounted for by the latent variables in Figure 3.2c. The low-

dimensionality of the neural manifold follows from the rapid increase of the explained variance 

with the number of neural modes (Figure 3.2d).  

 

NEURAL MANIFOLDS: A FRAMEWORK TO STUDY NEURAL CONTROL OF MOVEMENT 

The concept of the neural manifold and its associated latent variables has been used in a 

series of recent studies that replace the search for movement representation by single neurons to 
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Figure 3.1 | The neural manifold hypothesis. a) Latent variables as a generative model for population activity. The 
relative area of the blue/green regions in each neuron represents the magnitude of the contribution of each latent 
variable to the neuron’s activity. b) Spikes from three recorded neurons during task execution as a linear 
combination of two latent variables. c) Trajectory of time-varying population activity in the neural space of the three 
recorded neurons (black). The trajectory is mostly confined to the neural manifold, a plane shown in gray, spanned 
by the neural modes u1 and u2. d) A curved, nonlinear neural manifold, shown in blue. Linear methods would 
capture a flat, local approximation to a small task-specific region of the manifold. e) Linear manifolds for two 
different tasks shown as gray and purple planes. Are these two planes local linear approximations to different 
regions within a large, continuous manifold (transparent surface with blue contour), or are they distinct task-specific 
manifolds that may or not share neural modes? 
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consider instead movement planning and execution based on the activation of a few neural 

modes (Churchland and Shenoy 2007; Santhanam et al. 2009; Churchland et al. 2010b, a, 2012; 

Ahrens et al. 2012; Kaufman et al. 2014; Sadtler et al. 2014; Bruno et al. 2015; Overduin et al. 

2015; Sussillo et al. 2015; Elsayed et al. 2016; Michaels et al. 2016).  

One of the earliest findings of a neural manifold for movement control comes from Shenoy 

and colleagues (Santhanam et al. 2009), who analyzed population activity recorded with an MEA 

implanted in the arm area of dorsal premotor cortex (PMd) during a delayed center-out reach 

task. Single-neuron activity in PMd correlates with the direction toward the end point of an 

upcoming reach movement (Riehle and Requin 1989; Shen and Alexander 1997). Shenoy and 

colleagues used FA to obtain neural modes that accounted for the observed shared variance of 

individual neurons. They found that a three-dimensional manifold sufficed to identify target-

specific clusters of latent activity during the delay period (Figure 3.3a). 

A subsequent study (Churchland et al. 2010b) showed a systematic decrease in the trial-to-

trial variability in the neural dynamics of both PMd and primary visual cortex (V1) following 

stimulus onset, as demonstrated in two-dimensional visualizations of the latent variables (Figure 

3.3b). The low-dimensional manifold was characterized using Gaussian Process Factor Analysis 

(GPFA), a method that combines FA with temporal smoothing through a Gaussian kernel, to 

extract the low-dimensional trajectories defined by the latent variables during individual trials. 

The method was proposed and compared to static methods like PCA and FA in an earlier paper 

(Yu et al. 2009) that identified variability reduction following target presentation in PMd data.  

The notion of a neural manifold and its associated latent variables was subsequently used by 

Churchland, Shenoy, and colleagues (Churchland et al. 2010a, 2012) to explain how neural 

activity in both PMd and M1 during movement planning (Riehle and Requin 1989) does not 
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Figure 3.2 | Latent variables for an isometric center-out task. a) Monkey performing an isometric eight-target 
center-out wrist task. The targets are color coded (inset). The same target color code is used for the curves shown in 
panels b and c. b) Peristimulus time histogram for three out of the 68 neurons recorded in a single session. c) Latent 
variables track the activation of the three leading neural modes, identified with PCA. In panels b and c, target 
presentation (“Tgt on”) is followed by movement onset (“Mov”) after about 140 ms. d) Variance explained as 
function of the number of PCA neural modes. Ten modes sufficed to account for about 70% of the variance.  
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generate movement during the delay preceding a go signal (Cisek and Kalaska 2005). To explain 

how M1 could prepare movement without causing it, the same group (Kaufman et al. 2014) 

identified a six-dimensional neural manifold using PCA, then built a linear model that related 

these latent variables to three muscle synergies (d’Avella et al. 2003; Tresch and Jarc 2009), also 

identified by PCA. Based on this linear model, they divided the neural manifold into a potent 

space, whose activity controls muscle activity, and a null space, whose activity does not affect 

muscle activity (Figure 3.3c). They showed that preparatory activity lies in the null space; this 

condition-dependent activity provides an initialization from which the population dynamics 

evolve to generate the desired movement (Churchland et al. 2010a, 2012). In a recent follow-up 

study, the same group expanded this analysis to show that preparatory and movement activity lie 

in orthogonal spaces within the manifold, and that population dynamics evolve from one to the 

other (Elsayed et al. 2016) (Figure 3.3d). 

The separation between potent and null spaces was also used by Slutzky and colleagues to 

investigate the long-term stability of BMIs (Flint et al. 2016). They found that the stability of all 

recorded neurons was not uniformly necessary to achieve stable BMI control, and showed that 

neural activity in the potent space was significantly more stable than neural activity in the null 

space. This finding provided evidence supporting the postulate that optimal feedback control 

allows the brain to control activity in the potent space, while activity in the null space can vary 

from trial to trial (Todorov and Jordan 2002).  

Together, these studies strongly support the existence of low-dimensional manifolds in 

motor cortices. The notion that latent variables may constitute the building blocks of population 

activity allows us to consider the activity of individual neurons as one-dimensional samples of 

the manifold dynamics. These studies also suggest that the constraints embodied by the neural  
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Figure 3.3 | Neural modes in motor cortices. a) Preparatory activity in PMd for an eight-target reach task. A 
neural manifold spanned by three neural modes reveals target-specific clusters. The targets are color coded (inset). 
Each point represents activity measured during the delay period for one trial. Adapted from (Santhanam et al. 2009). 
b) Population variability in PMd is reduced by stimulus presentation. For a delayed reach task (timeline at bottom of 
panel), population activity trajectories for individual trials are shown in gray in a two-dimensional manifold. The 
“Pre-target” confidence ellipsoid shrinks during “Go cue”, as trajectories get closer together. Adapted from 
(Churchland et al. 2010b). c) The null space allows for movement preparation without execution. Population activity 
trajectories for each reach condition are shown in gray in a two-dimensional manifold. Preparatory activity sets the 
corresponding initial conditions (gray circles within purple ellipsoid). Null (purple, top) and potent (dark blue, 
bottom) latent variables, defined with respect to EMG activity, are shown on the right. Adapted from (Kaufman et 
al. 2014). d) Neural modes associated with movement preparation and execution span different manifolds. Two 
movement modes span a plane (in gray), while the orthogonal preparation mode spans a line that contains the initial 
conditions (colored circles). Projections of the full trajectories onto the movement manifold resemble the traces in 
panel c. Trajectories are color coded for each target, as per panel a. Adapted from (Elsayed et al. 2016).  
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manifolds simplify movement generation by providing a small number of signals that are 

independently controlled to achieve a desired behavior (Thoroughman and Shadmehr 2000; 

Mussa-Ivaldi and Solla 2004; Shenoy et al. 2013; Overduin et al. 2015; Song et al. 2015).  

 

EMERGENCE OF NEURAL MANIFOLDS THROUGH LEARNING 

Neural manifolds embody patterns of correlated activity; we hypothesize that these 

correlations reflect the connectivity of the underlying network of neurons. Since long-term 

learning can alter cortical connectivity (Rioult-Pedotti et al. 1998; Fu et al. 2012), we address 

potential connections between learning and the emergence of neural manifolds.  

A revealing connection between neural manifolds and learning was discovered by Batista, 

Yu, and colleagues (Sadtler et al. 2014), who used a BMI paradigm in monkeys to address the 

question of why some motor skills are easier to learn than others. They used FA to identify a ten-

dimensional neural manifold, and built a linear decoder from these latent variables into a two-

dimensional center-out task. Once the monkeys had learned the task, the decoder was modified 

in one of two ways; see Figure 3.4a. When the modification required the use of existing neural 

modes (a within-manifold perturbation), the monkeys easily adapted in a single session (Figure 

3.4b). In contrast, when the modification required the acquisition of new neural modes (an 

outside-manifold perturbation), the task proved significantly harder to learn (Figure 3.4c). The 

same group subsequently showed that monkeys could learn new neural modes (Oby et al. 2015) 

if they were guided to generate these new patterns progressively, over many days. These results 

suggest that short-term adaptation may be based on the generation of new combinations of 

preexisting neural modes, while long-term learning may require generating new neural modes. If 

neural modes arise from a neural circuitry that constrains spatiotemporal patterns of activity, it is 
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not surprising that modifying a neural manifold is more difficult than simply learning to use an 

existing neural manifold in novel ways.  

A connection between the emergence of neural manifolds and learning also arises from a 

simulation (Sussillo et al. 2015) in which a Recurrent Neural Network (RNN) was trained to 

output the correct activity pattern for seven muscles recorded during a reach task (Churchland et 

al. 2012) (Figure 3.4d). In the RNN model, training refers to learning the connections between 

neurons to obtain a network able to perform the desired function, in analogy with the 

modification of synaptic connectivity in biological learning. Latent variables were then identified 

for the data generated by the trained RNN, and compared to those for the experimental data. The 

experimental data were best reproduced by the simplest RNN connectivity that allowed the 

network to output the measured muscle activity. A similar result was subsequently achieved with 

an RNN trained to output the x and y components of hand velocity for a delayed center-out reach 

task (Michaels et al. 2016). 

In a complementary simulation study (Hennequin et al. 2014), Gerstner and colleagues 

proposed a neural network model with random excitatory recurrent connections and inhibitory 

connections that were learned to achieve stable population dynamics. This balanced network 

generated population activity patterns whose associated latent variables also exhibited the 

damped oscillations experimentally observed in the latent variables during reaching (Churchland 

et al. 2012). It is quite interesting that a network model not trained to produce a specific output – 

kinematics or muscle activity – but to stabilize its internal dynamics also exhibits oscillatory 

latent variables.  
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Figure 3.4 | Neural manifolds and learning. a) Existing neural modes facilitate the adaptation to variations of a 
learned task. In a BMI paradigm, ten latent variables representing the recorded activity of M1 neurons were mapped 
onto x and y components of cursor velocity. Once monkeys were proficient with the BMI, a b) within-manifold or c) 
outside-manifold perturbation was imposed on the decoder inputs. Adaptation to b) required a change in the relative 
activation of existing neural modes, while c) required the acquisition of new neural modes through changes in neural 
comodulation patterns. Adapted from (Sadtler et al. 2014). d) A recurrent neural network was trained to generate 
condition-specific EMG patterns selected through inputs representing preparatory activity. The latent variables that 
described the population activity of the trained recurrent network closely resembled those associated with the 
experimental data. Adapted from (Sussillo et al. 2015). 
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NEURAL MANIFOLDS FOR REACHING THROUGHOUT THE MOTOR CORTEX 

The sensorimotor cortex is divided into a large number of functionally and 

cytoarchitecturally distinct regions (Brodmann 1909; Penfield and Boldrey 1937). An intriguing 

question is how the structure of the manifold evolves between these areas of the cortex. The 

manifold reflects the connectivity of local populations (Okun et al. 2015), such as those recorded 

by multielectrode arrays, but cells also send projections to other brain regions. Thus, there may 

be neural modes that are shared across the motor cortices. However, since each area performs 

distinct functions in coordinating movement, there must be area-specific modes as well. The 

observed dimensionality is a function of the complexity of a behavior (Gao and Ganguli 2015), 

yet it may also depend on the complexity of the activity in an area perhaps reflecting local 

computation. For the same behavioral output, we might expect high-order areas such as the pre-

frontal cortex to require more neural modes than low-level output areas such as M1. 

Here, we compared neural manifolds within M1 and PMd, two functionally distinct motor 

cortical areas. PMd appears to serve a more complex role in generating behavior than does M1. 

PMd has prominent activity during both motor planning related to sensory inputs and motor 

execution (Mushiake et al. 1991; Shen and Alexander 1997; Batista et al. 2007), while M1 is 

intimately involved in the execution of movement (Evarts 1968; Georgopoulos et al. 1982; 

Sergio et al. 2005). If neural modes are the fundamental building blocks of behavior, we predict 

that more modes will be needed to accomplish the diverse functions of PMd than for the motor 

execution function of M1. To test this hypothesis, we recorded simultaneously from populations 

of neurons in M1 and PMd using multielectrode arrays as monkeys performed a planar center-

out reaching task. We adapted a method by Machens and colleagues to estimate the 

dimensionality, or the number of neural modes, of a recorded neural population (Machens et al. 
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2010). In brief, the method uses the trial-to-trial variability in each neuron’s firing to estimate the 

amount of variance that can be explained simply by noise.  This value is used to place a 

threshold on the PCA variance explained, thereby determining the number of non-noise 

dimensions. 

As predicted, we consistently identified a larger dimensionality in PMd compared to M1 

(Figure 3.5a). Since each neural mode captures population-wide activity, we expect that 

dimensionality within a local population should not depend on the particular neurons, or even the 

number of neurons that we recorded. We tested this by estimating the dimensionality of repeated 

random sub-samples of the recorded neurons. We found similar dimensionality even when 

removing 50% of the neurons, with PMd consistently higher-dimensional than M1 (Figure 3.5b). 

These results illustrate that the more complex and higher-order functions performed by PMd 

involve a larger number of neural modes than M1. Given the strong connectivity between M1 

and PMd (Dum and Strick 2002), some neural modes are likely to be shared. The shared modes 

may represent a direct means of information transfer between the populations, while the area-

specific modes support the functions performed by that area (Sussillo et al. 2015). An interesting 

avenue for future research is to analyze the structure of the manifolds from simultaneously-

recorded populations to understand whether these across-area modes exist, as well as their 

purpose in generating behavior. 

 

NEURAL MANIFOLDS IN NON-MOTOR BRAIN CORTICES 

Although we have focused on neural manifolds in motor cortices, it is important to remark 

that neural manifolds seem to be widely present across the brain. A number of studies have 

shown that the largely heterogeneous activity patterns of individual neurons in monkey 
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Figure 3.5 | PMd manifold has higher dimensionality than the M1 manifold. a) Summary histograms of 
dimensionality for M1 (top) and PMd (bottom). Each entry in the histogram represents a single session, taken from 
22 sessions from two monkeys b) For one example session from Monkey C, the effect of population size on 
dimensionality. We randomly subsampled the neural populations 100 times at each percentage and repeated the 
dimensionality analysis. The result of each repetition is plotted as a single point with a random jitter on the 
horizontal axis to show the density. PMd (right) was consistently higher dimensional than M1 (left). 
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(Machens et al. 2010; Mante et al. 2013; Markowitz et al. 2015; Kobak et al. 2016) and rat 

(Durstewitz et al. 2010) prefrontal cortex, monkey (Churchland et al. 2010b) and rat (Forsberg et 

al. 2016) V1, rat olfactory cortex (Kobak et al. 2016), rat thalamus (Chapin and Nicolelis 1999), 

rat parietal cortex (Raposo et al. 2014), locust olfactory system (Stopfer et al. 2003), aplysia 

pedal ganglion (Bruno et al. 2015), and perhaps the entire zebrafish brain (Ahrens et al. 2012) 

can be explained as generated by a small set of latent variables associated with neural modes. In 

all these studies, neural modes and their time-varying activation helped describe previously 

unexplained mechanisms of neural function.  

Studies of sensory cortices have provided clear evidence of network connectivity constraints 

on the activity of individual neurons. In the cat V1, the instantaneous activity of strongly tuned 

neurons is tightly linked to the population activity measured with optical imaging, both in 

response to stimulus presentation and during spontaneous activity (Tsodyks et al. 1999). 

Experiments in auditory and somatosensory cortices of awake and anesthetized rats further 

examined the relation between spontaneous and stimulus-evoked activity (Luczak et al. 2009) 

and found a surprising degree of conservation across these distinct regimes. The authors 

identified neural modes for spontaneous population activity, and found that neural modes in 

response to stimuli lay within the same neural manifold. Interestingly, the evoked responses 

sampled a smaller portion of the manifold than the spontaneous activity, an organization of 

population activity also found in monkey V1 (Cowley et al. 2016). 

Recent experiments in both mouse and monkey V1, and in rat auditory cortex demonstrated 

that the correlation between single neuron activity and population activity is the same during 

both spontaneous and stimulus-evoked activity (Okun et al. 2015). These authors demonstrated 

that correlations between individual neurons and the population significantly predict all pairwise 
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correlations among the neurons. The degree of correlation between individual neurons and the 

population displays three interesting properties: 1) it predicts the responses of individual neurons 

during optogenetic stimulation of the surrounding population, suggesting that the relationship 

between population activity and that of a single neuron is causal; 2) it predicts the estimated 

number of synapses that a neuron receives from its neighbors, relating activity correlations to the 

underlying network structure; 3) it correlates strongly with the participation weight of the first 

FA factor on the activity of each neuron. Together, these results provide convincing if not direct 

evidence that network connectivity underlies the interactions among neurons captured by 

dimensionality reduction methods and the resulting neural modes. 

 

OPEN QUESTIONS 

The prevalence of neural manifolds across brain areas highlights their importance as a tool 

to understand brain function and reinforces the idea that neural processing may be built upon 

latent variables rather than on the activity of single neurons. The concept of neural manifolds is 

not restricted to flat surfaces; the manifold might well be a nonlinear surface within the neural 

space (Figure 3.1d). However, for stereotypical laboratory tasks as those discussed here, linear 

methods such as PCA or FA capture a large amount of the neural covariance. If the task-specific 

neural dynamics explore only a limited region within the manifold, a local linear approximation 

to a nonlinear neural manifold would work quite well (see the gray and purple planes in Figure 

3.1e). For complex behaviors whose dynamics explore a larger region of neural space, linear 

methods may provide poor estimates of the neural manifold. Nonlinear methods for 

dimensionality reduction such as Locally Linear Embedding (LLE) (Roweis and Saul 2000), 
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Isomap (Tenenbaum et al. 2000), or Autoencoder Neural Networks (Hinton and Salakhutdinov 

2006) might be needed. 

These nonlinear methods have already been used in non-motor brain areas. Analysis of 

population data from the locust antennal lobe during an odor identification task using LLE 

revealed odor-specific neural manifolds that contain trajectories corresponding to different 

concentrations of the same odor (Stopfer et al. 2003). The analysis of the population activity of 

retinal ganglion cells using Isomap (Ganmor et al. 2015) identified activity clusters 

corresponding to similar visual stimuli. It remains an open question whether nonlinear methods 

might reveal mechanisms for the neural control of movement that linear methods have not 

revealed. 

The studies discussed here focus on neural manifolds associated with specific tasks. Since 

organisms are able to execute a rich repertoire of motor tasks, how are the corresponding neural 

manifolds organized with respect to each other within the neural space? The neural space may 

contain distinct neural manifolds, each associated with a specific task. What is then the 

relationship among these distinct manifolds? Is each manifold spanned by its own unique neural 

modes, or do tasks in a class share some neural modes that represent common features? These 

are virtually unexplored questions; note however a recent suggestion that preparation and 

execution of a movement correspond to orthogonal but related manifolds (Elsayed et al. 2016). 

Whether a similar finding applies to manifolds corresponding to the execution of different tasks 

is yet unknown.  

An alternative is that all motor behaviors might lie within a single, possibly nonlinear, 

universal neural manifold, with each task sampling a different region (Figure 3.1e). Because the 

tasks commonly studied are simple and stereotypical, the manifolds extracted from the recorded 
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neural data may capture only a small region of the universal manifold, a region spanned by task-

specific neural modes. This picture agrees with theoretical arguments that limiting the 

complexity of behavior also constrains the dimensionality of the neural manifolds (Gao and 

Ganguli 2015). In this view, recording larger populations of neurons may not yield new insights; 

only by recording population activity during naturalistic, complex behaviors will we uncover the 

true underlying neural manifold.  

We have argued that motor behaviors are generated by the time-varying activation of a 

small set of neural modes, population-wide activity patterns arising from network connectivity 

that define a low-dimensional manifold in neural space. We argue that the transition from a 

neuron-centric to a manifold-centric view of neural activity fosters a important advance in our 

understanding of brain function. Experiments involving longer and more complex motor tasks 

will require the development of increasingly sophisticated techniques for recording and data 

analysis; all these will be critical to advance our understanding of the relation between network 

connectivity, the resulting neural manifolds, and motor behaviors.  

 

METHODS 

Two monkeys (male, mucaca mulatta; Monkey C: 11.7 kg, Monkey M: 10.5 kg) were 

seated in a primate chair and made reaching movements with a custom 2-D planar 

manipulandum to control a cursor displayed on a computer screen. The monkeys performed a 

standard center-out reaching task with eight outer targets evenly distributed around a circle at a 

radius of 8cm. All targets were 2cm squares. Each trial began when the monkey moved to a 

center target. After a variable hold period (0.5 – 1.5 s), one of the eight outer targets appeared. 

The monkey had a variable instructed delay period (0.5 – 1.5 s). The monkeys then received an 
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auditory go cue, and the center target disappeared. The monkeys had one second to reach the 

target, where they had to hold for 0.5 s. 

After extensive training, we surgically implanted chronic multi-electrode arrays (Blackrock 

Microsystems, Salt Lake City, UT) in M1 and PMd. From each array, we recorded 96 channels 

of neural activity using a Blackrock Cerebus system (Blackrock Microsystems, Salt Lake City, 

UT). The snippet data was manually processed offline using spike sorting software to identify 

single neurons (Offline Sorter v3, Plexon, Inc, Dallas, TX).  Across 22 behavioral sessions, we 

isolated between 137 – 256 PMd and 55 – 93 M1 neurons for Monkey C, and 66 – 121 PMd and 

26 – 51 M1 neurons for Monkey M. We excluded cells with a trial-averaged firing rates of less 

than 1 Hz. 

We counted spikes in 10 ms bins and square root transformed the raw counts to stabilize the 

variance (Cunningham and Yu 2014). We then convolved the spike train of each neuron for each 

trial with a Gaussian kernel of width 100 ms to compute a smooth firing rate. We used Principal 

Component Analysis (PCA) to reduce the smoothed firing rates of the neurons in each session to 

a small number of components. 

To estimate the dimensionality of a population, we adapted a method developed by Machens 

et al to estimate the dimensionality of our recorded populations (Machens et al. 2010). In brief, 

PCA provides an orthogonal basis set with the same dimensionality as the neural input. 

However, the variance captured by many of the higher dimensions (with the smallest 

eigenvalues) is typically quite small. We estimated the noise in the neural activity patterns using 

the trial-to-trial variation in the activity of each neuron. We sampled a random pair of trials for 

each reach direction and subtracted the activity of each neuron. This gave an estimate of the 

variance of each neuron across two different reaches to each target. We then ran PCA on the 
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neural “noise” space provided by this difference for all targets. We repeated this 1000 times, 

giving a distribution of eigenvalues for each of these noise dimensions. We used the 99% limit of 

these distributions to estimate the amount of noise variance explained for each dimension. This 

allowed us to put a ceiling on the amount of variance that could be explained by noise. The 

dimensionality was thus defined by the number of dimensions needed to explain 95% of the 

remaining variance. 
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CHAPTER 4 
 
A NEURAL POPULATION MECHANISM FOR RAPID LEARNING 
 
Matthew G. Perich, Juan A. Gallego, Lee E. Miller 

 

FOREWORD 

This chapter is adapted from a submitted manuscript (Perich et al. 2017). Although the 

content is for the most part the same as the submitted manuscript, I have rearranged the figures 

and expanded the text to elaborate on several important points. Using the manifold framework 

laid out in the previous chapter, I developed an analytical approach to study the population-level 

interactions between M1 and PMd during learning. This allowed me to test the hypothesis laid 

out at the end of Chapter 2 that PMd recruits M1 during CF learning. I show evidence that 

supports this hypothesis: there are specific changes in PMd activity patterns during CF learning. 

These changes were not observed during adaptation to a VR, suggesting a fundamental 

difference in how the brain learns to compensate for these two perturbations. 
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ABSTRACT 

The brain’s ability to adapt behavior is crucial to survival. Long-term learning of dexterous 

motor skills likely requires plastic changes in cortex (Nudo et al. 1996), but we can also learn 

even from errors in single movements (Thoroughman and Shadmehr 2000). Such trial-to-trial 

adaptation likely requires a faster mechanism. Here, we show how the brain can adapt behavior 

by redeploying existing population activity patterns without altering the functional structure of 

the cortex. We recorded from both primary motor cortex (M1) and dorsal premotor (PMd) cortex 

in macaque monkeys during motor learning. We trained computational models to predict single 

neuron spiking based on the activity of the surrounding neural population in order to study the 

functional relationships between neurons within the two areas (Truccolo et al. 2010). 

Intriguingly, the functional structure within each area was preserved throughout learning, 

suggesting that the underlying neural circuitry remained unaltered (Ahissar et al. 1992; Gerhard 

et al. 2013). To study the interaction between the areas, we separated the PMd activity 

(Cunningham and Yu 2014) into two sets of components: “potent” components that captured 

activity that mapped onto M1, and “null” components that captured activity patterns with effects 

only within PMd (Kaufman et al. 2014). As was true within each area, the activity of the potent 

components consistently predicted M1 spiking throughout its learning-related changes. In stark 

contrast, the mapping from the null components gradually changed with learning. These results 

show that, at a population level, PMd develops new motor plans (reflected in the null 

components) that are transmitted to M1 through an unchanged functional mapping (captured by 

the potent components) between the two areas. Use of the PMd-to-M1 null space as a neural 

scratch pad for the gradual development of new motor plans is a powerful mechanism that may 

explain a variety of rapid learning processes throughout the brain. 
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INTRODUCTION 

In order to make skilled movements, sensory input is combined with internal state variables 

and transformed into a plan executed by the motor cortices (Kalaska et al. 1997). This 

transformation may be mediated in part by an “internal inverse model” that maps a desired motor 

action to the required low-level muscle commands. The dorsal premotor (PMd) and primary 

motor (M1) cortices, together with the cerebellum, are prime candidate locations for such an 

inverse model. PMd is involved in movement planning (Cisek and Kalaska 2005), with diverse 

inputs and strong connectivity with M1 (Dum and Strick 2002), while M1 is the main cortical 

output to the spinal cord (Rathelot and Strick 2009). Correction of movement errors, such as 

those caused by external perturbations (Shadmehr and Mussa-Ivaldi 1994), is thought to lead to 

alteration of the inverse model, leading to progressively more accurate movements even on a 

trial-by-trial basis (Thoroughman and Shadmehr 2000). The rapid speed of these changes seems 

incompatible with structural changes in synaptic connectivity (Bailey and Chen 1983, 1988). 

Furthermore, monkeys using brain-machine interfaces have great difficulty learning mappings 

between brain activity and cursor movement that require the normal pattern of covariation 

among recorded cortical neurons to be altered (Sadtler et al. 2014). Given that neural covariance 

patterns seem to be determined by synaptic connectivity (Okun et al. 2015), this result further 

suggests that changes in cortical connectivity may not be the primary mechanism for short-term 

learning. At the same time, the progressive change in performance over tens of minutes and the 

performance savings between sessions seem incompatible with a mechanism like the network 

reverberation that may underlie short-term working memory (Major and Tank 2004). 

To reconcile these apparently contradictory observations, we recorded simultaneously from 

electrode arrays implanted in both M1 and PMd (Figure 4.1a) as monkeys learned to make 
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accurate reaching movements that were perturbed by a curl field (CF), a velocity-dependent 

force applied to the hand (Shadmehr and Mussa-Ivaldi 1994), or a visuomotor rotation (VR). The 

CF altered the dynamics such that straight reaches to each target required the monkeys to learn 

new muscle activation patterns (Thoroughman and Shadmehr 2000; Cherian et al. 2013), while 

the VR rotated the visual feedback that the monkeys received. We investigated whether changes 

in the functional relationships of the M1 and PMd populations could explain the adapted 

behavior. 

 

RESULTS 

Behavioral adaptation and single neuron activity  

Two rhesus macaque monkeys to performed the standard center-out reaching task (Figure 

4.1a). Each session began with reaches in a null field before the monkeys began to adapt to the 

CF (Shadmehr and Mussa-Ivaldi 1994; Li et al. 2001; Cherian et al. 2013), and progressively 

straighten their reaches (Figure 4.1b,c). Evidence of their learning was revealed by the 

occurrence of after-effects upon eventual return to the null field. As has been previously 

observed, neural activity during adaptation was strikingly heterogeneous across neurons 

(Churchland and Shenoy 2007), and nearly all cells showed large changes in firing rate (Figure 

4.1d). Intriguingly however, the population correlation structure was surprisingly similar before 

and after learning, despite the large changes in neural firing in both areas (Figure 4.1e,f). 
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Figure 4.1 | Curl field task. a) Monkeys performed a standard center-out task with a variable instructed delay 
period following cue presentation (top). We recorded from single neurons in M1 and PMd (bottom; CS: central 
sulcus, PCD: pre-central dimple, AS: arcuate sulcus). b) Example position traces for the first reaches to each target 
from four sessions with a clockwise CF (top row) and five sessions with a counter-clockwise CF (bottom row). 
Sessions from both monkeys are included. Data from the three sessions with Monkey C with shorter reaches were 
plotted on a different scale to provide uniform length for visualization purposes. Curvature increased when the CF 
was imposed (top right), but straightened during learning (bottom left). We observed oppositely directed after-
effects in Washout (bottom right). c) Angular error for all CF sessions across trials. Thin gray lines represent error 
on individual sessions, while thick black line is median across sessions. Error increased with the CF (“force on”), 
and after-effects can be seen upon removal (‘force off”). d) Summary of percent of firing rate change for all cells 
recorded on a single session. e) Normalized pairwise correlations between all cells recorded on the same session as 
Panel c. Clustering was performed in Baseline (BL, left) as a means to visualize the correlation structure, and the 
same ordering was kept for late CF (right). f) Summary of pairwise correlations between BL and late CF for all 
combinations of neurons recorded in each of the nine CF sessions. A random subsample of 5,000 pairs is plotted. 
The value of ‘r’ for each plot indicates the Pearson’s correlation coefficient to assess similarity between the null-
field and CF conditions for all pairwise-correlations from all sessions. 
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Assessing population relationships during learning 

We used Poisson Generalized Linear Models (GLMs) to predict the spiking of individual 

neurons based on the activity of the remaining neurons (see Methods) (Pillow et al. 2008; 

Truccolo et al. 2010). Using data from late in learning when behavior had stabilized, we trained 

three models (Figure 4.2a,b): one predicted M1 neurons from the M1 population activity (M1-

M1), another predicted PMd neurons from the PMd population (PMd-PMd), and the third 

predicted M1 neurons from the PMd population (PMd-M1). We assessed model performance 

using a relative pseudo-R2 (rpR2) metric, which quantified the improvement in model 

performance due to the neural inputs above that of reach kinematics alone (see Methods). This 

removed the effect of shared variability due to behavior-related common inputs, and left the 

unique contributions of individual neurons. We tested generalization of each model from the late 

CF training data to the early CF trials. Good generalization would indicate that the relationships 

between neurons were unchanged during learning. 

All three models performed similarly well when test on cross-validated training data (Figure 

4.2c). We then tested whether the models could generalize to the Early CF trials. The within-area 

models (M1-M1, PMd-PMd) predicted the complex spiking changes remarkably well throughout 

learning (Figure 4.2d,e). However, early in learning, M1 spiking was poorly predicted from PMd 

(Figure 4.3a). Furthermore, the model’s performance changed with a time course very much like 

that of behavioral adaptation (Figure 4.3b), suggesting that learning resulted from a change in the 

functional relationships between neurons in PMd and M1, even though the functional 

interactions within the two networks remained unchanged (Ahissar et al. 1992; Gerhard et al. 

2013; Okun et al. 2015). 
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Figure 4.2 | GLM model performance during CF learning. a) We trained three models: two within an area (M1-
M1, and PMd-PMd) and one between the areas (PMd-M1). b) Schematic of angular error (mean ± st.e. across 
sessions) during CF learning. We trained GLMs using data recorded late in learning, after behavior had stabilized 
(right) and tested them for generalization throughout the initial phase of learning, beginning at the first CF trial 
(left). We compared Early CF (highest error) and Late CF (lowest error) trials within the testing block. c) Cross-
validated rpR2 for all cells with significant fits for the three GLM models. Cells were pooled across two monkeys 
and nine total sessions. d) Spiking of three representative neurons (black) and model predictions (colors) during 
three early and three late learning trials. e) Summary histograms of rpR2 values for predictions of a block of 5 trials 
in early CF (hollow) and late CF (solid). M1-M1 and PMd-PMd had similar distributions during early and late CF, 
but Early CF predictions by the PMd-M1 models were significantly lower than Late CF (p = 0.01, two-sample t-
test). 
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Figure 4.3 | Time course of GLM model performance changes. a) Percent error in model performance during 
early and late learning. Significant differences were observed between PMd-M1 during Early and Late, and PMd-
M1 compared with M1-M1 and PMd-PMd during late, with a significance level defined at p < 0.01 (two-sample t-
test). b) Time course of model performance changes. Predictions were made for individual trials, and then smoothed 
with a 30 trial moving average (see Methods). Plotted data are mean and standard error across predicted neurons for 
each model. Behavioral error processed with the same methods is overlaid in gray. The decrease in PMd-M1 model 
error followed the time course of behavior. 
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Separating PMd into potent and null components 

We sought to explain how the relationships between PMd and M1 neurons could change 

while those within each area remained consistent. Intuitively, PMd population activity at once 

reflects its inputs, their subsequent processing, and the eventual outputs to M1 (Sussillo et al. 

2015) (Figure 4.4a). We sought to separate these components of population activity by projecting 

PMd activity patterns onto output-null and output-potent spaces (Figure 4.4b, see Methods) 

(Kaufman et al. 2014). We used Principal Component Analysis (PCA) to represent the activity of 

the M1 and PMd populations as a small number of components that captured mutual covariance 

patterns across neurons (Cunningham and Yu 2014). PMd consistently contained more 

components than M1 (see Chapter 3), indicating the existence of a null space containing PMd 

activity that had no net effect on the M1 components. We hypothesized that these extra 

components and the resulting null space arise from planning-related computations performed 

within PMd that did not directly activate M1. Such null-space planning activity could account for 

the altered overall relationships between PMd and M1, while at the same time, allowing the 

potent space to maintain a stable mapping from PMd to M1. 

We repeated the GLM analysis to predict the spiking of individual M1 neurons using either 

the PMd potent (Pot-M1) or null (Null-M1) components as inputs (Figure 4.4c). If the null 

components capture motor planning within PMd that changes with learning, the accuracy of the 

Null-M1 model should change with behavioral performance, much like the overall PMd-M1 

model. However, if the updated motor plans are ultimately sent in a consistent manner to M1, 

Pot-M1 should remain unchanged. We compared these models against a third GLM which used 

all of the PMd components found by PCA. For both monkeys, Pot-M1 predicted M1 spiking 

consistently, while Null-M1 and PCA-M1 predictions changed (Figure 4.4d) with a time course  
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Figure 4.4 | Predictions from potent and null components. a) Hierarchical schematic of motor planning in PMd 
and M1. b) We devised an analysis to demix the PMd outputs to M1 from the other functions of the population. The 
former comprises the potent space, while the latter resides in the null space. c) The time-varying projections of PMd 
activity onto these potent and null axes were used as the inputs to a GLM model to predict M1 spiking. d) Bar plot 
comparing model error performance during early and late trials with potent (Pot-M1), null (Null-M1), and all PMd 
PCs (PCA-M1). Pot-M1 performed significantly better than the other models (p < 0.01, two-sample t-test). e) The 
time course of model performance for Pot-M1 and Null-M1 for all sessions with the two subjects. Gray line is the 
mean behavioral error corresponding to those trials. 
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like that of behavior (Figure 4.4e). For this analysis, we had to assume a dimensionality for both 

M1 and PMd. We verified that our results were not dependent on the precise values selected by 

repeating the GLM analysis for different dimensionalities, always assuming the dimensionality 

of PMd to be twice that of M1. We found that Null-M1 consistently performed worse during 

Early CF than Late CF for all dimensionalities tested (Figure 4.5). Pot-M1 performed 

significantly better than Null-M1, though for higher dimensionalities (where the potent space is 

overestimated), the GLMs began to perform worse. This is expected, since the components found 

when overestimating the true potent space can include noise, or even activity that would 

otherwise participate in the output-null dimensions. 

The stability of Pot-M1 shows that, at a population level, there exists a direct mapping 

between PMd and M1 that persists throughout short-term motor adaptation. The stability of the 

potent mapping (along with the M1-M1 and PMd-PMd models) supports the conclusion that 

there were no structural changes in these cortical areas, since the potent and null spaces are 

defined simply by different weightings of the same neurons with the same connectivity (see 

Figure 4.8d). Learning, then, results from new activity patterns within PMd, which may be 

necessary to set a new preparatory state for M1 (Churchland et al. 2012; Kaufman et al. 2014). 

 

GLM predictions during VR adaptation 

We next asked if the observed changes within PMd are a necessary consequence of adapted 

behavior, or if they are indicative of a more specialized role for PMd in the CF task. On a 

separate set of sessions, the monkeys learned to reach in the presence of a static rotation of the 

reach-related visual feedback (visuomotor rotation; VR). Considerable evidence from behavioral 

studies in humans suggests that the brain areas involved in learning a static visual mapping differ  
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Figure 4.5 | Potent and null differences do not depend on selected dimensionality. Comparison of GLM 
performance error between early CF (left bars for each dimension) and late CF trials (right bars) for Pot-M1 and 
Null-M1 as a function of the selected dimensionality. Values for eight dimensions plotted here are those included in 
Figure 4.4d. Our primary effect that Pot-M1 generalizes to early CF trials better than Null-M1 was consistent for a 
range of dimensionalities. 
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from those required to learn novel effector dynamics (e.g., the CF) (Krakauer et al. 1999; 

Diedrichsen et al. 2005). Since VR learning appears to rely heavily on parietal cortex 

(Diedrichsen et al. 2005; Tanaka et al. 2009), hierarchically upstream yet of PMd, we 

hypothesized that VR adaptation would not result in a change in the functional relationship 

between M1 and PMd. 

We repeated the above analyses using sessions where the monkeys adapted to a VR of 30 

degrees (Figure 4.6a). There were a number of similarities with the CF sessions: behavioral 

errors were similar in magnitude and time course (Figure 4.6b,c), and there were highly varied, 

complex changes in neural activity patterns with a preserved correlation structure (Figure 4.6d-

e). However, when we fit GLM models to predict single neuron spiking, all models, including 

PMd-M1, accurately generalized early and late in learning (Figure 4.7a), despite the clear 

behavioral adaptation (Figure 4.7b). Thus, there were no changes in the functional relationships 

between the PMd and M1 populations, despite diverse changes in single-neuron activity. This 

result highlights a fundamental difference in the neural adaptation to these two perturbations, and 

supports the view that VR adaptation occurs upstream of PMd, likely involving parietal cortex 

(Diedrichsen et al. 2005; Tanaka et al. 2009). It also strengthens our conclusions about the CF 

task: the poor generalization of the PMd-M1 GLM model is not a necessary consequence of 

changing behavior, but rather captures a previously undescribed mechanism by which the motor 

cortices drive sensorimotor adaptation through population-level activity patterns. 
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Figure 4.6 | Visuomotor rotation task. a) The monkeys also adapted to a visuomotor rotation (VR) using the same 
center-out task as Figure 4.1. The VR rotated the visual cursor feedback on the screen by 30 degrees. b) Position 
traces for the first (or last) reach to each target for four representative sessions with the VR, shown as in Figure 4.1b. 
c) Angular error for the VR sessions, as plotted in Figure 4.1c. The monkeys exhibited behavioral errors that were 
similar to those of the CF condition. d-f) Neural activity changes and pairwise correlations, as plotted in Figure 4.1. 
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Figure 4.7 | GLM performance during VR learning. a) Model prediction error during early and late VR trials. 
There were no significant changes throughout learning. b) Same format as Figure 4.3b. All GLM models, including 
PMd-M1 generalized well from late VR to early VR trials, despite clear behavioral adaptation (gray). 
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Discussion 

Long-term learning is known to alter connectivity in the motor cortex, resulting in increased 

horizontal connections (Rioult-Pedotti et al. 1998) and synaptogenesis(Kleim et al. 2002). Many 

have proposed that the brain uses similar plastic mechanisms to adapt behavior on shorter 

timescales (Classen et al. 1998; Li et al. 2001). However, structural changes would have 

impaired predictions of the GLM models (Ahissar et al. 1992; Gerhard et al. 2013). Hence our 

results suggest that, at least on the time scale of a single experimental session, there were no 

structural changes within PMd or M1. Instead, we show that we learn by exploring new activity 

patterns within the existing network structure. These new patterns offer a possible explanation 

for the changes in movement representations of single neurons previously reported during CF 

learning (Gandolfo et al. 2000; Li et al. 2001; Richardson et al. 2012). It is important to note that 

our GLM models and null/potent analysis finds functional relationships between the neural 

populations; it does not necessarily represent direct anatomical connectivity. However, we 

expect that activity reflecting any direct or indirect synaptic connectivity would be contained 

within these models. 

Our lab has previously found that the relationship between M1 activity and the dynamics of 

the motor output remains unchanged during CF adaptation (Cherian et al. 2013), with no 

evidence for adaptive changes in either spatial tuning or firing rates that have a time course like 

that of learning. Therefore, we hypothesized that CF learning must be mediated by changes in 

recruitment of M1 by upstream areas, including PMd. Our current results directly support this 

interpretation: PMd exploits the null space to formulate new motor plans reflecting the modified 

task demands of the CF, which are then used to recruit M1 without changing the connectivity 
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within either area, or within the potent space from PMd to M1. The lack of any such change in 

null-space processing during the VR task suggests that VR adaptation occurs upstream of PMd.  

Through lesion, computational, and recording studies, the cerebellum has been implicated in 

a variety of supervised, error-driven motor-learning problems, including both the curl field and 

visual rotation paradigms explored in this study (Diedrichsen et al. 2005; Galea et al. 2011; 

Izawa et al. 2012; Herzfeld et al. 2014). It is also considered to be a site at which both forward 

and inverse internal models may be learned (Wolpert et al. 1998; Imamizu et al. 2000). Many 

forms of cellular plasticity are present in the cerebellum, occurring at multiple sites and over 

several time scales (Zheng and Raman 2010; Yang and Lisberger 2013). The cerebellum also 

supports rapid, short term memory storage through the bistable properties of Purkinje 

cells(Loewenstein et al. 2005). The most direct evidence for its role in motor adaptation comes 

through Purkinje cell recordings during the adaptation of arm (Gilbert and Thach 1977), eye 

(Yang and Lisberger 2013), and head (Brooks et al. 2015) movements. Given the extensive 

interconnections with PMd (Dum and Strick 2003) the new motor plans during CF learning may 

arise from interactions between PMd and an evolving inverse internal model in the cerebellum 

(Wolpert et al. 1998; Thoroughman and Shadmehr 2000; Diedrichsen et al. 2005). 

Other evidence suggests that while these internal models may depend on the cerebellum for 

their modification, they may actually be located elsewhere (Shadmehr and Holcomb 1997). Over 

a longer time period (hours to days), the motor memory is consolidated, possibly through 

structural changes in the cerebral cortex (Nudo et al. 1996; Peters et al. 2014). We propose that 

such structural changes could emerge to support the long-term refinement and recall of skills 

(Bailey and Kandel 1993; Peters et al. 2014), while rapid behavioral adaptation is mediated by 

modified population-wide activity patterns within the existing constrained network structure of 
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the motor cortices. Similar activity patterns have been found in prefrontal cortex for decision-

making (Mante et al. 2013), working memory (Machens et al. 2010), and rule-learning 

(Durstewitz et al. 2010), in the motor cortex for movement planning (Kaufman et al. 2014), and 

in the parietal cortex for navigation (Harvey et al. 2012). These widespread observations suggest 

that the novel coordination mechanism between neuronal populations described here could be 

exploited throughout the brain for the rapid, flexible adaptation of behavior.  

 

METHODS 

Behavioral task 

Two monkeys (male, mucaca mulatta; Monkey C: 11.7 kg, Monkey M: 10.5 kg) were 

seated in a primate chair and made reaching movements with a custom 2-D planar 

manipulandum to control a cursor displayed on a computer screen. We recorded the position of 

the handle at a sampling frequency of 1kHz using encoders. The monkeys performed a standard 

center-out reaching task with eight outer targets evenly distributed around a circle at a radius of 

8cm. All targets were 2cm squares. The first three sessions with Monkey C used a radius of 6 

cm. However, we observed no qualitative different in the behavioral or neural results for the 

shorter reach distance, and all sessions were thus treated equally. Each trial began when the 

monkey moved to a center target. After a variable hold period (0.5 – 1.5 s), one of the eight outer 

targets appeared. The monkey had a variable instructed delay period (0.5 – 1.5 s) which allowed 

us to study neural activity during explicit movement planning and preparation, in addition to 

movement execution. The monkeys then received an auditory go cue, and the center target 

disappeared. The monkeys had one second to reach the target, where they had to hold for 0.5 s. 
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In the curl field (CF) task, two motors applied torques to the elbow and shoulder joints of 

the manipulandum in order to achieve the desired endpoint force. The magnitude and direction of 

the force depended on the velocity of hand movement according to Equation 1, where 𝐹 is the 

endpoint force, 𝑝 is the derivative of the hand position 𝑝, qc is the angle of curl field application 

(85°), and k is a constant (0.15 N•s/cm): 

 𝐹 =
𝐹#
𝐹$

= 𝑘 cos 𝜃* − sin 𝜃*
sin 𝜃* cos 𝜃*

𝑝#
𝑝$

 (1) 

In the visuomotor rotation (VR) task, hand position p was rotated by qr (here, chosen to be 

30°) to provide altered cursor feedback 𝐶 on the screen. The rotation was position-dependent so 

that the cursor would return to the center target with the return reach: 

 𝐶 =
𝐶#
𝐶$

= cos 𝜃x − sin 𝜃x
sin 𝜃x cos 𝜃x

𝑝#
𝑝$  (2) 

Both the CF and VR perturbations were imposed continuously throughout the block of 

learning trials, including the return to center and outer target hold periods. 

Each session was of variable length since we allowed the monkeys to reach as long as 

possible to ensure that behavior had sufficient time to stabilize, and allow for large testing and 

training sets for the GLM. For the CF sessions, the monkeys performed a block of unperturbed 

Baseline trials (range across sessions: 170 – 225 rewards) followed by an Adaptation block with 

the CF perturbations (201 – 337 rewards). The session concluded with a Washout block, where 

the perturbation was removed and the monkeys readapted to making normal reaches (153 – 404 

rewards). The curl field was applied in both clockwise (CW) and counter-clockwise (CCW) 

directions, though we saw no qualitative difference between the sessions. Monkey C had three 

CW sessions and two CCW sessions, while Monkey M had four CCW sessions. For the VR 
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sessions, the monkeys performed 154 – 217 successful trials in Baseline, 219 – 316 during VR 

(either CW or CCW), and then 162 – 348 in Washout. Monkey C performed two CW VR 

sessions and two CCW sessions, while monkey M performed three CCW sessions. There is 

considerable evidence that learning can be consolidated, resulting in savings across sessions 

(Huang et al. 2011). In this study, we minimized the effect of savings to focus on single-session 

learning. The monkeys typically: 1) received different perturbations day-to-day, as we alternated 

between CF and VR sessions, 2) received opposing directions of the perturbation on subsequent 

days, and 3) had multiple days between successive perturbation exposures. 

 

Behavioral adaptation analysis 

For a quantitative summary of behavioral adaptation, we used the errors in the angle of the 

initial hand trajectory. We measured the angular deviation of the hand from the true target 

direction 150 ms after movement onset.  To account for the natural biases of the monkeys, we 

found the difference on each trial from the average deviation for that target in Baseline trials. 

Sessions with the CW and CCW perturbations were similar except for the sign of the effects. 

Thus, for the behavioral data in Figures 4.1 and 4.6, we pooled all perturbation directions 

together and simply flipped the sign of the CW errors. Figures 4.1b and 4.6b show the position 

traces for example CF and VR sessions, respectively. Since the target size was 2cm, there could 

be some deviation in the starting and ending positions, and subsequently some deviation in the 

total length of the reaches. For visualization purposes only, we normalized the length of each 

reach to begin in the center of the workspace and have a total linear distance of 8cm between the 

starting and ending points.  
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Neural recordings 

After extensive training in the unperturbed center-out reaching task, we surgically implanted 

chronic multi-electrode arrays (Blackrock Microsystems, Salt Lake City, UT) in M1 and PMd. 

From each array, we recorded 96 channels of neural activity using a Blackrock Cerebus system 

(Blackrock Microsystems, Salt Lake City, UT). The snippet data was manually processed offline 

using spike sorting software to identify single neurons (Offline Sorter v3, Plexon, Inc, Dallas, 

TX). We sorted data from all three task epochs (Baseline, CF/VR learning, and Washout) 

simultaneously to ensure we reliably identified the same neurons throughout the sessions. With 

such array recordings, there is a small possibility that duplicate neurons can appear on different 

channels as a result of electrode shunting, which would influence our GLM models by providing 

perfectly correlated inputs for these cells. While such duplicate channels are often easily 

identifiable during recording, we took two precautionary steps to ensure our data included only 

independent channels. First, we used the electrode crosstalk utility in the Blackrock Cerebus 

system to identify and disable any potential candidates with high crosstalk. Second, offline we 

computed the percent of coincident spikes between any two channels, and compared this 

percentage against an empirical probability distribution from all sessions of data. We excluded 

any cells whose coincidence was above a 95% probability threshold (in practice, this was 

approximately 15-20% coincidence, which excluded no more than one or two low-firing cells per 

session). 

Across all sessions, we isolated between 137 – 256 PMd and 55 – 93 M1 neurons for 

Monkey C, and 66 – 121 PMd and 26 – 51 M1 neurons for Monkey M. For the pairwise 

correlation analysis, we excluded cells with a trial-averaged firing rates of less than 1 Hz. Our 

GLM models were by necessity poorly fit for neurons with low firing rates. Thus, for the GLM 
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analyses, we only considered neurons with a trial-averaged mean firing rate greater than 5 Hz. 

Pooled across all monkeys and CF and VR sessions, this gave a population of 918 M1 and 2221 

PMd neurons. Given the chronic nature of these recordings, it is certain that some individual 

neurons appeared in multiple sessions. However, our analyses primarily focus on the population-

level relationships which we found to be robust to changes in the exact cells recorded, so we do 

not expect our results to biased by partial resampling. 

 

Dimensionality reduction 

We counted spikes in 10 ms bins and square root transformed the raw counts to stabilize the 

variance (Cunningham and Yu 2014). We then convolved the spike train of each neuron for each 

trial with a Gaussian kernel of width 100 ms to compute a smooth firing rate. We used Principal 

Component Analysis (PCA) to reduce the smoothed firing rates of the neurons in each session to 

a small number of components (Cunningham and Yu 2014). PCA finds the dominant covariation 

patterns in the population and provides a set of orthogonal basis vectors that captures most of the 

population variance. Importantly, the axes of PCA capture population-wide interactions, with 

nearly all neurons contributing to the dominant components. 

For the null and potent space analysis described below, we needed to select dimensionalities 

for M1 and PMd. We adapted a method developed by Machens et al (Machens et al. 2010) to 

estimate the dimensionality of our recorded populations. In brief, PCA provides an orthogonal 

basis set with the same dimensionality as the neural input. However, the variance captured by 

many of the higher dimensions (with the smallest eigenvalues) is typically quite small. We 

estimated the noise in the neural activity patterns using the trial-to-trial variation in the activity 

of each neuron. We sampled a random pair of trials for each reach direction and subtracted the 
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activity of each neuron. This gave an estimate of the variance of each neuron across two different 

reaches to each target. We then ran PCA on the neural “noise” space provided by this difference 

for all targets. We repeated this 1000 times, giving a distribution of eigenvalues for each of these 

noise dimensions. We used the 99% limit of these distributions to estimate the amount of noise 

variance explained for each dimension. This allowed us to put a ceiling on the amount of 

variance that could be explained by noise. The dimensionality was thus defined by the number of 

dimensions needed to explain 95% of the remaining variance. 

 

Potent and null space calculation 

Using the above method, we estimated the dimensionality of the M1 and PMd populations 

on each session. Since we identified a larger dimensionality for PMd than M1, there existed a 

"null space" in PMd, which encompasses PMd activity that has no net effect on M1 (Kaufman et 

al. 2014). To identify the geometry of the null and potent spaces, we constructed multi-input 

multi-output (MIMO) linear models, W, relating the N-dimensional PMd space to the O-

dimensional M1 space (with N > O): 

 𝑀 = 𝑊𝑃 (3) 

M (O x t) and P (N x t) are matrices whose rows contain the activity of each PC for M1 and 

PMd, respectively, and whose columns contain the time points (t). We evaluated the quality of fit 

for these linear mappings using R2 (Figure 4.8b,c), and found that M1 activity was well-

predicted for most of the leading dimensions. We then performed singular value decomposition 

(SVD) of the matrix W (O x N) that maps PMd onto M1: 

 𝑊 = 𝑈𝑆𝑉′ (4) 
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SVD decomposes the rank-deficient rectangular matrix W into a set of orthonormal basis 

vectors that allows us to define the null and potent spaces. For our purposes, the matrix V’ 

defines the vectors that define the potent and null spaces, with the first N rows corresponding to 

the potent space, and the remaining M - N rows defining the null space (Figure 4.8a; Equation 

5): 

 𝑉 =
𝑣KK ⋯ 𝑣K�
⋮ ⋱ ⋮
𝑣�K ⋯ 𝑣��

 (5) 

We used only trials from the Baseline period of each session to find the axes for PCA, as 

well as the null and potent spaces. The Baseline trials were independent of the CF/VR trials used 

for both testing and training the GLM models, ensuring that we did not bias our results to find 

any specific solutions. However, we obtained nearly identical results if we used all of the data, or 

data only from the CF/VR trials, indicating that the null and potent spaces identified through this 

analysis did not change throughout the session. It is also important to note that the null and 

potent spaces, as with the PCA axes, typically comprised population-wide activity patterns, 

rather than sub-groups of neurons (Figure 4.8d). 

It is worth noting that although we defined the Null space as activity which produced zero 

output in the low-dimensional M1 components, we could still predict M1 spiking quite well from 

the Null space in the cross-validated training data. Although potentially unintuitive, it worked 

well for a number of reasons. First, we identified the potent and null spaces using population-

wide components, and used these activity patterns to predict the spiking single neurons. 

Additionally, for a given reach direction within a condition, the stereotyped activity in the null 

space could be well-correlated with activity in the potent space (and subsequently M1) due to the  
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Figure 4.8 | Identifying output-potent and output-null spaces. a) Schematic representation of the method to 
identify output-potent and output-null spaces using trial-averaged data from a single session. Traces show the 
activity of components found by PCA on a representative session, with each color corresponding to one of the eight 
target directions. We used multi-linear regression to build a matrix W relating the activity of the M1 PCs (here, 
dimensionality of two) to the PMd PCs (here, dimensionality of four). Thus, W is a 2x4 matrix. Using Singular 
Value Decomposition (see Methods), we identified a matrix V’, the first two rows of which contained the basis 
vectors of the potent space, while the last two rows defined the null space. We multiplied the PMd PCs by this 
matrix to get the time-varying potent (top) and null (bottom) projections. b) Example predictions (red) of the first 
eight M1 PCs (black) from the first sixteen PMd PCs, with R2 quantifying quality of fit for a single session. c) 
Summary of R2 for M1 PC predictions across sessions (gray lines). Black line and gray shading indicate and mean 
and st.dev. across sessions. d) We attempted to identify potent or null subpopulations using an index that quantified 
the relative weights of each neuron onto the potent and null axes (see Methods). Values of 1 indicate the cell was 
exclusively potent, and values of -1 indicate the cell was exclusively null. The distribution of cells was centered 
around zero, indicating that the potent and null spaces captured population-wide activity patterns. 
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lawful relationship between them (Kaufman et al. 2014; Elsayed et al. 2016). It is under the 

condition of changing behavior that these correlations can begin to break. 

 

Single neuron correlation analysis 

We studied the correlations between individual neurons using the same smoothed firing 

rates we used for PCA. We then aligned each trial at the time of movement onset and isolated a 

window beginning 700 ms before and ending 800 ms after movement onset. We averaged across 

trials for each target direction, during both the pre-learning Baseline and the learning epochs. We 

excluded the first 50% of CF or VR trials to look at neural activity when adaptation was most 

complete. We then performed pairwise cross-correlations between all neurons recorded on each 

session during Baseline and late CF/VR. The coefficient of correlation values shown in Figures 

4.1 and 4.6 were computed using the pairwise correlation values using all pairs of neurons from 

each session, as a means to quantify the similarity between the two conditions. For the heat maps 

shown in Figures 4.1 and 4.6, we normalized the range of each row to scale from -1 to 1 to 

enhance visualization. We then used a simple hierarchical clustering algorithm to sort the 

neurons in the Baseline condition. This same sorting order was used for the late CF heat map as a 

means of visually assessing the consistency in the correlation structure. 

 

Generalized Linear Models 

We trained Poisson Generalized Linear Models (Nelder and Baker 1972) (GLMs) to predict 

the spiking activity of individual neurons on a single-trial basis (Truccolo et al. 2010). GLMs 

extend Gaussian multilinear regression approaches for the Poisson statistics of neural spiking. 

We take weighted linear combinations of the desired covariates, xi, such as limb kinematics: 
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 𝜃D𝑥DD = 𝑋Θ (6) 

The weighted covariates were passed through an exponential inverse link function. The 

exponential provides a non-negative conditional intensity function l, analogous to the firing rate 

of the predicted neuron: 

 𝜆|𝑋, Θ = exp 𝑋Θ  (7) 

The number of observed spikes, n, in any given time bin is assumed to a Poisson process 

with an instantaneous firing rate mean of l: 

 𝑛|𝜆	~	Poisson(𝜆	𝑑𝑡) (8) 

 

Covariate inputs to the GLMs 

In our analyses, we used GLMs to predict the spiking activity of single neurons based on the 

activity of the remaining population and kinematic signals. We binned the neural spikes at 50 ms 

intervals and downsampled the continuous kinematic signals to 20 Hz to match the binned 

spikes. We shifted the kinematic signals backwards in time by three spiking bins (150 ms) to 

account for transmission delays between cortical activity and the motor output. Previous studies 

have observed a broad range of delays (Moran and Schwartz 1999), so we convolved the 

kinematic signals with raised cosine basis functions centered at 0 ms and -100 ms, adapting the 

method of Pillow et al., where bases further back in history become wider (Pillow et al. 2008). 

By including these convolved signals as inputs to our GLM models, we allowed the neurons to 

have more flexible temporal relationships with the kinematics. Note that all GLM models 

included the same convolved endpoint position, velocity, and acceleration signals as covariates. 

We trained two types of models: the Basic models included only kinematic covariates, while 

the Full models included both the kinematic covariates and the spiking activity of the single-
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neuron populations (Figure 4.9a). For the GLMs with single neuron inputs, we trained three 

different types of Full models. M1-M1 models predicted the spiking activity of each M1 neuron 

from the activity of all other M1 neurons recorded on the same session, PMd-PMd models 

predicted the spiking of each PMd neuron from all other PMd neurons, and PMd-M1 models 

predicted M1 neurons using the activity of all PMd cells. For the GLM analysis with potent and 

null components (Figures 4.4 and 4.5), we used low-dimensional summaries of PMd population 

activity as inputs to the GLMs, rather than single neurons. For PCA-M1, we projected PMd 

activity into the PCA space (see above) and selected only the first 16 dimensions as input to the 

GLM. Since PCA captures population-wide covariance patterns, we expected that this approach 

would provide nearly identical results to the single neuron models of PMd-M1, and it was 

included primarily as a control. For Pot-M1 and Null-M1, we projected the time-varying PMd 

signals onto the basis vectors for the potent and null space, respectively (see above). We then 

used these time-varying signals as inputs to GLMs to predict the spiking of M1 neurons. 

 

Training the GLMs 

We trained the models using the last 50% of CF or VR trials when behavior was most 

stable, including only trials where the monkeys made successful reaches to acquire the outer 

target (reward trials). This allowed us to test the generalization of the GLMs during the early 

adaptation trials. For the CF, it was important to both train and test the GLMs using trials from 

the CF epoch to avoid extrapolating between the Null and CF conditions. When we imposed the 

CF, it changed the relationship between the kinematics and dynamics of limb movement. Thus, if 

we trained the GLM on Baseline trials, the relationship between kinematics and neural activity 
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Figure 4.9 | Types of GLM models. a) Schematic representation of the GLM models. The Basic model included 
only kinematic covariates (see Methods), while the Full model included both kinematics and neural activity. The 
relative pseudo-R2 metric was a comparison between these two models. b) Distribution of cross-validated pseudo-R2 
values for predictions of all M1 neurons from all sessions with the Basic model (gray). Black overlaid distribution 
shows cells with significant model fits (see Methods). c) Same as Panel b, but for predictions of PMd neurons. 
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changed immediately on CF trials (Cherian et al. 2013), leading to poor GLM generalization for 

all models. By both training and testing within the block of CF trials, we avoided the problem of 

extrapolating to new dynamics conditions. Although the VR sessions did not have this problem, 

we adopted this same approach the sake of consistency. 

We trained the models using a maximum likelihood method (glmfit in Matlab, The 

Mathworks Inc). In the case of our full population spiking models, we had dozens to hundreds of 

covariate inputs for a single predicted output. Although we had very large numbers of training 

data points (typically on the order of 10,000 samples), there is the possibility our models were 

impaired by overfitting. We guarded against overfitting using ten-fold cross-validation of our 

training dataset. We also repeated our analyses using Lasso GLM for regularization and observed 

nearly identical results (data not shown). We thus chose to use the non-regularized GLM for 

simplicity and to reduce the computational load, since it did not impact our results. 

 

Evaluating GLM performance 

We evaluated GLM performance using a particular formulation of the pseudo-R2 (pR2). The 

pR2 is analogous to the R2 commonly used in model-fitting with Gaussian statistics, but it is 

generalized to incorporate the assumed Poisson statistics of the neural spiking data: 

 pRT = 1 − �Y� R E A�Y�	 R(�)
�Y� R E A�Y�	 R(E)

 (9) 

The pR2 finds the difference in log-likelihood between the observed spiking data (n) and the 

model predictions (𝜆). This value is compared against the difference in log-likelihood for the 

mean of the dataset (𝑛). We used the Likelihood (L) for Poisson data according to: 

 𝐿 = Poisson(𝑛N|𝜆N)�
N�K = ��

�����	(A��)
E�!

�
N�K  (10) 
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And thus, the log-likelihood (log L) across all time bins (t) of a given spike train is: 

 log 𝐿 = 𝑛N log 𝜆N − 𝜆N − log 𝑛N!�
N�K  (11) 

Although the upper bound for pR2 is one, poor model fits can be less than zero. A pR2 of 

one indicates a perfect model fit, a value of zero indicates that the model prediction performs as 

well as finding the mean of the data, while values less than zero indicate that the model 

performed worse than merely fitting the mean. Typical pR2 values are smaller in magnitude than 

those typically found with the Gaussian R2. When evaluating GLM fits, we used a bootstrapping 

procedure with 1000 iterations to obtain 95% confidence bounds on the pR2 value. We 

considered a model fit to be significant if this bootstrapped confidence interval was above zero, 

indicating that the model helped to explain the spiking activity. For many analyses, we used the 

relative pseudo-R2 (rpR2), which directly compares two separate GLM models. While pR2 

compared the log-likelihood of the model predictions to the mean of the data, the rpR2 compares 

the predictions of a Full model to a Basic model with fewer covariates. 

 rpRT(Basic, Full) = 1 − �Y� R E A�Y�	 R(��)
�Y� R E A�Y�	 R(�B)

 (12) 

Here, 𝜆�, the Full model prediction, which includes both the kinematics and the population 

spiking, is compared to 𝜆�, the prediction of the Basic model, which includes only kinematics. 

This metric thus quantifies the improvement in performance afforded by the additional neuronal 

inputs. Positive values indicate that the Full model performed better than the Basic model, while 

negative values indicate that predictions were better with kinematics alone. As with the pR2, we 

obtained confidence bounds with a bootstrapping procedure and assessed significance by 

determining if the lower bound was above zero. This indicated that the addition of population 
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spiking added information over the kinematics alone, and thus could be capturing meaningful 

functional relationships between the population and the predicted cell. 

For the plots intended to visualize the time course of GLM model changes, such as Figure 

4.3b, we predicted neural spiking on individual trials. However, predictions could be quite noisy 

with such small numbers of data points. For example, if a cell fired very few spikes on a 

particular trial, the pR2 may be quite low, even though the model generally performed quite well. 

To remove some of this variability, we smoothed the trial-to-trial predictions for each neuron (as 

well as the overlaid behavior) with a moving average. We chose a window of 30 trials, though 

we observed similar (but slightly more variable) traces even down to window sizes of 5-10 trials. 

Since there were rapid behavioral improvements in the early trials, we padded the beginning and 

end with NaNs, each of a length of half of the window size. This helped to prevent averaging out 

the changing behavioral effects, with the tradeoff of slightly increasing noise. In practice, our 

results were similar without this padding. 

 

Selecting cells with significant population relationships 

For most of our analyses, we studied cells that were well-predicted by our GLMs. We 

determined this by two main criteria using ten-fold cross-validation on the training data. First, we 

required that the Basic pR2 was significantly above zero. This reduced the pool of candidate cells 

to 522/918 (57%) in M1 and 612/2221 (28%) in PMd, but was necessary so that the rpR2 would 

be well defined. Qualitatively, we obtained similar results when we relaxed this criterion to 

include more cells. We also required that the rpR2 was significantly above zero. We only 

included cells that were significantly above zero for all ten of the folds for all pR2 and rpR2. This 
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method was very conservative, but ensured that we only studied cells that were reliably 

predicted. 

 

Statistical tests 

For the GLM models, we assessed the significance of model fits empirically using a 

bootstrapping procedure on cross-validated data as described above. We additionally used two-

sample Student’s t-tests to compare the distributions of pseudo-R2 changes in Early and late 

learning. For Figure 4.2e, this was done using the raw rpR2 values. For Figures 4.3a, 4.4d, 4.5, 

and 4.7a, the t-test was done using the normalized change in rpR2.  
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CHAPTER 5 
 
DISCUSSION 
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SUMMARY OF FINDINGS 

In the previous chapters, I presented the results of a series of experiments designed to 

investigate the role of the primary motor and dorsal premotor cortex in short-term motor 

adaptation. I trained monkeys to make movements with the altered movement dynamics of a curl 

field, or with the perturbed feedback of a static visuomotor rotation. Throughout these chapters, I 

studied how neural activity in M1 and PMd changed to drive behavioral adaptation. In Chapter 2, 

I presented a detailed analysis of the tuning properties of individual M1 neurons during CF 

adaptation. I provided evidence that CF learning does not result from changes in the functional 

properties of the recorded M1 neurons. I hypothesized that behavioral adaptation was mediated 

by altered recruitment of M1 neurons by PMd, rather than plastic reorganization within M1. In 

Chapter 3, I presented a new conceptual framework for interpreting neural population activity. 

This framework was used in Chapter 4 to directly investigate the relationship between PMd and 

M1 during CF and VR adaptation. I found that throughout both learning paradigms, functional 

relationships within M1 and PMd were unchanged. However, there was a specific, behavior-

related change in the processing performed by PMd when preparing inputs for M1. In this 

chapter, I will discuss the implications of these findings, propose plausible mechanisms 

underlying these observations, and speculate on interesting future directions. 

 

POSSIBLE MECHANISMS UNDERLYING MOTOR LEARNING  

Short term motor learning may not require structural changes 

The results of the preceding chapters suggest that, at least on the timescale of a single 

experimental session, plasticity does not occur in the motor cortices during motor learning. In 

Chapter 2, I studied the functional relationship between neurons in M1 and the motor output. I 
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found that the changes in kinematic tuning can be accounted for by the altered dynamics of the 

curl field, and there were no changes with a time course that could explain behavioral adaptation. 

Based on this observation, I concluded that there were no changes in the functional outputs of 

these cells, or in the downstream circuits such as the spinal cord. I interpret this observation to 

mean that M1 must be recruited differently by upstream premotor circuits. There remains the 

possibility that the altered recruitment of the recorded populations came from upstream plastic 

changes within M1, though this idea would be inconsistent with numerous psychophysical 

studies suggesting that M1 is not essential for acquisition of a motor skill (Richardson et al. 

2006; Herzfeld et al. 2014). The GLM results of Chapter 3, discussed below, further support that 

short-term learning is not a result of reorganization within M1. 

 

Transition to long-term learning 

The results of Chapters 2 and 4 suggest that, on the timescale of seconds to minutes, 

behavior is adapted without engaging cortical plasticity. However, on the scale of hours to days 

or even years, it is known that the cortex does undergo plastic changes (Elbert et al. 1995; Nudo 

et al. 1996; Rioult-Pedotti et al. 1998; Kleim et al. 1998, 2004; Peters et al. 2014). This 

distinction of timescales has been shown elegantly in the Aplysia californica, a marine mollusk. 

A naive aplysia learns to avoid an approaching stimulus after just a single exposure. A study 

showed that several hours after this single exposure, there were significantly more, and larger, 

dendritic spines in the presynaptic terminals of sensory neurons that controlled the reflex, 

corresponding to the maintained memory (Bailey and Chen 1983). However, the changes in 

synaptic connectivity were not present in the minutes following learning, even though the 

subjects showed complete behavioral habituation (Bailey and Chen 1988). 
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Although the Aplysia is a simple organism compared to primates, similar observations were 

made in a motor learning experiment with rats. No structural synaptic changes were observed 

during short-term behavioral improvements, while large-scale synaptogenesis and cortical 

reorganization occurred during long-term learning on the scale of days (Kleim et al. 2004). These 

observations are compelling. They suggest that brain has evolved mechanisms to adapt and 

maintain behavior on a short timescale without engaging the costly and time-consuming process 

of synaptic plasticity. When it is advantageous to remember a skill for an extended period of 

time, it can then be hardcoded into the synaptic circuitry. In the motor system, structural changes 

in M1 can be seen within days of practice (Peters et al. 2014). After the initial learning session, 

where the cerebellum plays a key role, the memory may move to the cortex to be consolidated 

(Galea et al. 2011). This can facilitate the long-term recall of the skill. There is psychophysical 

evidence for this theory, since the motor cortex does not appear to be crucial for the initial 

adaptation (Richardson et al. 2006), while a functional cerebellum is necessary (Smith and 

Shadmehr 2005). However, motor cortical disruption can impair the recall, suggesting a 

prominent role in consolidation.  

 

The cerebellum as a candidate for short-term learning 

What is the neural mechanism underlying the change in null-space processing I observed in 

the CF task? I propose that, during CF learning, PMd computes a new motor plan through its 

interactions with the cerebellum. The cerebellum is known to play an essential role in error-

based learning (Diedrichsen et al. 2005), and is activated during learning of both curl fields and 

visuomotor rotations (Diedrichsen et al. 2005). The cerebellum is intimately connected with the 

parietal, premotor, and motor cortices (Dum and Strick 2003), and has a highly specialized 
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circuitry that makes it a prime candidate to engage with the motor areas of the cerebral cortex for 

trial-to-trial learning. The cerebellar Purkinje cells have unique physiological properties with 

mechanisms for substantially changing their output on a rapid timescale in response to such 

errors. Purkinje cells are bistable, with two activity states characterized by different intrinsic 

excitability and rates of tonic output (Loewenstein et al. 2005). Movement error signals are 

encoded by climbing fibers from the inferior olive, which synapse on Purkinje cells in the 

cerebellar cortex and cause complex spikes (Kawato and Gomi 1992). Activation of these 

climbing fibers can switch the Purkinje cells between the two states, causing persistent changes 

in cerebellar output in less than a second (Loewenstein et al. 2005). 

The specialized circuitry and anatomical connectivity of the cerebellum provide plausible 

mechanisms for rapid behavioral adaptation. Errors experienced during the previous CF trial 

alter the output of the cerebellar Purkinje cells (Kawato and Gomi 1992), which may be relayed 

to PMd via the dentate nucleus (Dum and Strick 2003). PMd integrates this signal with visual 

and intention information from areas such as parietal cortex (Batista et al. 2007), allowing it 

formulate a new motor plan that can compensate for the altered dynamics. Given the anatomical 

connectivity between parietal cortex and cerebellum (Dum and Strick 2003), a similar 

mechanism could be employed in response to visual errors in the VR task, where the visual cue 

is transformed into a new endpoint of the planned movement. 

This cerebellar-dependent framework may also be consistent with the slow and fast 

timescales of learning discussed in Chapter 1 (Karni et al. 1998). The fast phase of learning is 

characterized by rapid behavioral changes, but is highly susceptible to interference. The slow 

phase occurs over a longer timescale, but during this time the motor memory is less susceptible 

to interference. Within the framework of the CF learning experiments, I speculate that during a 
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session, the unique properties of Purkinje cells, including bistability, are exploited to rapidly 

change the output of the cerebellum in response to errors. This gives the rapid trial-to-trial 

learning. Over longer time periods, the cerebellum can undergo a more stable change using LTP 

or LTD (Zheng and Raman 2010). Ultimately, as described above, during long-term learning the 

cerebral cortex can begin to alter connectivity (Rioult-Pedotti et al. 1998; Kleim et al. 2004), 

accounting for the slower phase of learning. 

 

INTERPRETATION OF THE RESULTS 

Functional and synaptic connectivity 

In the preceding chapters, I investigated whether motor learning causes reorganization of 

motor representations or functional connectivity in the motor cortex. The most probable 

mechanisms for such reorganization would be through synaptic plasticity. There are a number of 

means through which plasticity can be achieved. New synaptic connections can be formed 

between an axon and the dendrites of a second neuron. Although this process is believed to 

require a substantial amount of time (Bailey and Kandel 1993), the efficacy of existing synapses 

can be changed on a shorter timescale. In a common model, the coordinated activity of a pair of 

neurons triggers a biochemical process that increases or decreases the efficacy of that synapse 

(Markram and Tsodyks 1996; Nevian and Sakmann 2006; Delattre et al. 2015). Additionally, the 

intrinsic excitability of a cell can be regulated through leak currents or tonic inputs (Zheng and 

Raman 2010), such that the same synaptic input produces a different spiking rate. While other, 

more specialized, mechanisms exist, all of these processes will result in a change in the 

input/output relationship between neurons. 
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The evidence presented in the previous chapters suggests that short-term motor learning 

likely does not involve structural reorganization within the motor cortices. I developed analyses 

that identified the functional relationships between single neurons and behavior (Chapter 2), or 

between populations of neurons (Chapter 4). Since I used chronic extracellular array recordings, 

I cannot identify cell types, or trace synaptic connectivity between the recorded cells. Indeed, it 

is likely that most of the recorded cells only have indirect relationships (via one or more 

intermediate synapses, or via common inputs). However, I expect that any true synaptic 

connectivity would be captured within these functional models. Furthermore, I expect that any 

change in synaptic connectivity or efficacy would be reflected in the ability of the GLM models 

to predict spiking. This is expected for synaptically connected cells, where functional 

connectivity directly corresponds to anatomical connectivity (Gerhard et al. 2013). It is also true, 

however, at the level of the population, where connectivity between randomly selected cells is 

likely to be indirect (e.g. through one or more intermediate synapses). A plastic change between 

a subset of neurons in a network can be expected to change the functional interactions between 

those neurons and the surrounding population, even if they do not share direct, synaptic 

connections with those neurons (Ahissar et al. 1992). A change in functional connectivity does 

not necessarily imply a change in structural connectivity. However, if I observe no functional 

change, we can expect that there has been no structural change, or at least that any structural 

changes were too small to have a functional effect. The GLM measurements of functional 

connectivity can thus serve as reasonable proxies to evaluate whether there have been structural 

changes within the network. 
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Interpreting the GLM models 

The GLM analysis was designed to study the interactions between M1 and PMd. The 

stability of the GLM models within each brain area (M1-M1 and PMd-PMd) suggests that there 

were no structural changes within the two populations. However, there are three potential 

explanations for the learning-related functional change between PMd and M1. 1) There may be a 

specific change within M1 that breaks the relationship with PMd. However, in this case, one 

would predict the M1-M1 model to show a similar change, which was not observed. 2) M1 may 

be directly recruited by other brain areas, for example the supplementary motor area (Padoa-

Schioppa et al. 2002, 2004), without the influence of PMd. This explanation seems unlikely, 

since I observed adaptive changes in the neural activity within PMd. While compensation for the 

CF likely involves other brain areas (Baraduc et al. 2004), if adaptation were mediated entirely 

outside of PMd, one would not expect its activity to change. 3) PMd plays a specific role in 

recruiting M1 to compensate for the altered dynamics. The null and potent space analysis of 

Chapter 4 most strongly support this last explanation. Both the null and potent space GLM 

models would be equally impaired by changes within M1 (Explanation #1) or by influence of 

other areas (Explanation #2), yet only the null space model showed a learning-related change. 

 

Motor planning in PMd is crucial for CF learning 

The neural control of movement is distributed across a number of cortical and subcortical 

structures (Kalaska et al. 1997). My data cannot exclude the possibility that adaptation occurs in 

parallel with the circuitry of M1 and PMd, though the null space processing changes of Chapter 

4 suggest a specific role of PMd in CF adaptation. Even if it is not the sole learning pathway, 

PMd is at least playing a crucial role in preparing the adapted movements with the CF. The 
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results can be interpreted in the context of the work of Churchland et al., where PMd serves to 

set the preparatory state for the movement activity of M1 (Churchland et al. 2010a, 2012; 

Kaufman et al. 2014). Part of the role of PMd may be to transform sensory information about the 

cue and intention into a motor plan (Shen and Alexander 1997; Batista et al. 2007), and PMd is 

known to modify its preparatory activity based on the behavioral outcome and context (Kurata 

and Wise 1988; Vaadia et al. 1988; di Pellegrino and Wise 1993; Cisek and Kalaska 2005). 

Evidence from psychophysical experiments suggests that a specific motor plan is important for 

CF learning (Sheahan et al. 2016). Subjects can learn opposing curl fields only if the task 

conditions are such that both curl fields require separate motor plans. The results of Chapter 4 

suggest that PMd may be an important locus for this task-specific preparatory activity. 

 

Visuomotor rotation learning is upstream of PMd 

Learning the VR perturbation caused no plastic changes within or between the M1 and PMd 

populations. Intriguingly, I did not observe the change in null-space processing that occurred 

with the CF. It is important to note that in the VR task, PMd activity still changed during 

learning, and preparatory activity in PMd still played an important role in the reaching 

movements. The key difference, though, is that for a given hand trajectory with the VR, the 

processing performed by PMd was unchanged. I interpret this observation to mean that VR 

learning occurs upstream of PMd. The VR is known to engage areas of parietal cortex 

(Diedrichsen et al. 2005), and it has been proposed that VR learning can occur through 

interactions between motor cortex and areas of parietal cortex such as the parietal reach region 

(PRR) (Snyder et al. 1997), without changing the movement representation in M1 (Tanaka et al. 
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2009). Since I did not record from PRR in these experiments, I cannot provide direct evidence 

for this claim, though my results support this theory. 

 

LIMITATIONS OF THE ANALYSES AND EXPERIMENTS 

Practical considerations of the single-neuron cosine tuning model 

In the analyses of Chapter 2, I focused exclusively on the preferred direction (PD) of each 

cell. However, the cosine tuning curves that I used were described by two other parameters: the 

mean firing rate and depth of modulation. In a series of analyses that were not included in the 

final paper, I studied the adaptive changes of these two parameters for all cells. Unlike the PDs, 

which showed consistent rotations in the direction of the CF, the changes in the other parameters 

were seemingly random. Cells were equally likely to increase or decrease their firing rates or 

modulation depth, and we observed no progressive shift at the population-level that could 

explain behavior. These results are consistent with the ultimate conclusion of Chapter 2 that 

adaptation is mediated by the altered recruitment of M1 neurons. The new recruitment patterns 

increase the activity of some cells and decrease the activity of others in a complex manner that 

differs across reach direction and over time. 

A limitation of the cosine tuning analysis is that many cells are not well-described by a 

cosine function in hand coordinates. Thus, a large proportion of the neural population was 

excluded from analysis. It is possible that the adaptive changes could have occurred in the 

properties of these excluded cells, though this is not likely to be the case. The population-level 

analyses of Chapters 3 and 4 provide one avenue to address this limitation. Since I included 

every M1 neuron in the GLM and PCA analyses, I was not biased towards a particular 
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subpopulation. Yet, I reached a similar conclusion that M1 is not subject to reorganization during 

within-session learning. 

Although extracellular recording methods may be biased towards recording the activity of 

larger excitatory cells, the neural population likely included a variety of cell types. Thus, the 

cells I recorded can be viewed as a random sample of cells that ultimately generate movement. I 

saw no evidence that the cosine tuning model, or the tuning changes with the CF, identified any 

subpopulations of neurons. In an unreported analysis, I tested for this specifically by separating 

the neural population into putative excitatory and inhibitory neurons based on the width of the 

recorded spike waveform (Kaufman et al. 2013). Although I saw no difference in tuning 

behavior during CF adaptation for these two populations, there is evidence that these cell types 

may contain different information about the control movement (Best et al. 2016). It may be 

enlightening in future experiments to perform a more careful analysis of neural sub-types.  

 

Limitations of the population GLM approach  

In Chapters 3 and 4, I included kinematic variables as covariates into the GLM. This was 

intended to remove the confounding effect of behavior-related common inputs to the population 

of recorded cells. By removing this confound, I hoped to study more closely the precise 

interactions between the neural populations. However, the inclusion of only kinematics may also 

be a limitation of the analysis. Given the considerable evidence that activity in M1 correlates 

with variables such as force (Evarts 1968) and muscle activation (Morrow and Miller 2003), 

kinematic variables such as endpoint position may not be the most appropriate inputs to the 

GLMs to predict M1 spiking. Ideally, the neural recordings would be complemented by 

recordings of EMG or joint torques. These variables could then be included along with the 
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kinematics to provide a more complete view of behavior, and allow me to study more accurately 

the neuron-to-neuron interactions. As a control, I included as inputs to the GLM, the readings of 

the force transducer in the handle (this setup was described in Chapter 2) and the results were 

unchanged. I ultimately used the kinematics as a high-level correlate of behavior, and did not 

intend to impose any precise model of M1 function. Thus, I do not anticipate that the results and 

conclusion are dependent on this detail. 

A second limitation of the GLM approach is that I can only study cells that were well-

predicted by my GLMs. In practice, I had to exclude many cells due to low pseudo-R2 values. I 

do not expect that excluding these cells caused me to draw any incorrect conclusions, nor that 

these excluded cells represent a distinct subclass that might behave differently. The cells that 

were excluded primarily had low mean firing rates, and the conclusions did not depend on the 

choice of minimal firing rate. Furthermore, the exclusion only applied to those cells I chose to 

predict with the GLM output; I included the entire population as inputs. Any structural change 

within these excluded cells would have been apparent in the performance of my GLM models. 

Although I did not directly compare if these excluded cells are the same as those excluded by the 

cosine tuning analysis of Chapter 2, in both cases there was a relationship between quality of fit 

and firing rate, so there is likely to be overlap. 

 

FUTURE DIRECTIONS 

There are a number of compelling questions that could be addressed in subsequent studies. 

The results of Chapter 4 suggest that PMd helps to learn the altered dynamics of the curl field, 

potentially through interactions with the cerebellum. Since M1 also shares many connections 

with the cerebellum (Dum and Strick 2003), the learning effect may not be isolated to PMd 
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alone. Although the planning activity in M1 is weaker than PMd (Cisek and Kalaska 2005; 

Kaufman et al. 2010), neurons in M1 do have meaningful preparatory activity (Kaufman et al. 

2013). In Chapter 4, I considered the activity of PMd with respect to M1 to determine the output-

null space. An interesting follow-up experiment would be to record electromyograms (EMG) of 

proximal limb muscles during CF learning. As Kaufman et al. showed, null space planning can 

be seen in M1 with respect to muscles, allowing the brain to prepare to move without causing 

that movement (Kaufman et al. 2014). Some of this planning may be altered within M1 during 

CF learning, which could appear in the null space of muscle activity in a similar manner as the 

PMd to M1 null space. 

Many other brain areas could be studied using this framework. Sensory feedback is 

necessary to get the error signal for CF learning (Wolpert et al. 1995), and primary 

somatosensory cortex (S1) is necessary to adapt to CF perturbations (Mathis et al. 2017). 

Simultaneous population recordings from M1/PMd and S1 could shed light on how they interact. 

Does corticocortical somatosensory feedback help PMd and M1 to develop the new motor plan, 

or is the S1 processing only used to compute errors that are sent to the cerebellum or other 

subcortical structures? Similarly, it would be interesting to test the hypothesis that parietal cortex 

learns to compensate for the VR. I hypothesize that if I recorded from populations of neurons 

from PRR and PMd simultaneously I would observe a similar change in null space processing 

from PRR to PMd, as PRR adjusts the visuomotor mapping from goal into a planned action 

(Buneo et al. 2002). 

Another compelling, but more difficult, experiment would be to record from Purkinje cells 

in the cerebellar cortex simultaneously with PMd. This could provide a direct test of my 

interpretation of the experiments. I would predict that cerebellar Purkinje cells should show 
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functional changes with respect to the motor output, but have a fixed functional interaction with 

PMd. This would imply that the Purkinje cell changes do, indeed, cause the adapted behavior, 

and that the PMd effect arises from interactions with the cerebellum through the fixed 

architecture. 

One further set of experiments, which I piloted during the course of these experiments, is to 

causally probe the motor system to identify any functional changes in motor or premotor cortex. 

In the first paradigm, I used intracortical microstimulation (ICMS) of M1 to evoke twitches in 

the proximal limb muscles. The twitches ultimately produced a force vector at the hand, which 

could be measured. This provided an input-output mapping between motor cortex and hand 

movement. By probing the system in this manner before, during, and after CF learning I hoped to 

test directly, whether plastic changes occurred downstream of the M1 cells that I recorded. If the 

magnitude and direction of the evoked force remains unchanged throughout learning, then it is 

unlikely the underlying circuitry has changed. I later developed a similar approach to validate the 

PMd to M1 connectivity of Chapter 4. In this paradigm, I used ICMS within PMd and attempted 

to evoke responses in the spiking of M1 cells as a direct test of functional connectivity. I could 

then compare these functional maps throughout learning to validate the results of the GLM. 

These experiments remain promising avenues for continued research. 

In the experiments of Chapter 4, I imposed the VR perturbation suddenly, causing large 

errors on the first trial. At least in humans, this engages a cognitive strategy of voluntary error 

correction in order to compensate. There is compelling evidence from psychophysical studies 

that subjects can learn to adjust for gradual rotations, where the size of the perturbation is 

increased in small increments, without being aware that the perturbation has been applied or that 

they have adapted (Kagerer et al. 1997). After the rotation has gradually ramped up to the full 
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magnitude, the subjects show similar aftereffects to those observed with the sudden rotation, 

indicating that implicit learning was achieved in both cases. If adaptation to the sudden VR 

perturbation occurs in part as a result of an explicit cognitive strategy, or re-aiming the desired 

trajectory, then the gradual perturbation may more directly engage an implicit motor learning 

process (Mazzoni and Krakauer 2006). It is possible that during the sudden perturbation, the 

monkeys can form a new explicit motor plan and compensate before the inputs to PMd. An 

interesting experiment would be to repeat the analyses using a gradual onset perturbation to 

determine if it has an effect on PMd and M1 interactions. 

There are also possible experiments related to the source of long-term learning and savings 

across sessions. In the current experiments, I focused on within-session learning. With a long-

term study of the same skill, one could ask if the null-space processing I observed is necessary 

even for consolidated skills. It is possible that once a behavior is well-learned the memory can 

reside exclusively in the cortical circuitry, and that PMd will not need to perform the new null-

space processing that I observed in the CF experiment. However, I would predict that null-space 

planning is necessary to adapt behavior, even for well-practiced movement. The effect of savings 

simply changes the rate at which you can achieve proficiency. Even expert athletes and 

musicians must warm up before they can achieve peak performance (Ajemian et al. 2010). 

Perhaps plasticity, then, only serves to make the online control faster and more efficient, not to 

completely replace the need to adapt online. 

These experiments provide compelling evidence that studying population-level interactions 

can give insight that cannot be seen at the level of single neurons. However, while the analyses 

treated the recorded neural population as random samples of the underlying neural manifold 

(Gao and Ganguli 2015), there is a great degree of specialization in the cell types and 
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connectivity of the cortex. Another interesting future direction would be to explore how the 

population activity relates to the known cell-types and laminar organization of M1 and PMd. 

Although PMd has many corticospinal projections (Dum and Strick 1991), it lacks the large Betz 

cells that allow for high information transfer speeds (Bucy 1935). Although in these experiments 

I have treated the population as a random sample of underlying latent signals, there may be 

additional specialization that could be exploited to better understand the system. A limitation of 

the Utah arrays that I used is the inability to target particular cell types. Modern recording 

techniques such as two-photon calcium imaging allow large populations of neurons with 

particular genetic signatures or projection locations to be recorded, providing a plausible avenue 

to begin to answer these types of questions. 

 

CONCLUSION 

For most species, the ability to flexibly adapt movements is essential for survival. In this 

dissertation, I explored the mechanisms by which the dorsal premotor cortex can coordinate with 

the primary motor cortex, and presumably other brain areas, to change the behavioral output on a 

short timescale. Although there remains much work to be done to fully understand how this 

process occurs, these experiments are an intriguing step forward, with implications for 

understanding the mechanisms available to the brain to generate behavior using neural 

populations. These results also have strong implications for the field of brain-machine interfaces. 

By exploiting knowledge of the natural functions of different brain areas, as well as taking a 

principled approach to using cortical signals for brain decoders, we can develop more intuitive 

and adaptable interfaces with strong clinical potential.  



	 144 
REFERENCES 

Afshar A, Santhanam G, Yu BM, et al (2011) Single-trial neural correlates of arm movement 
preparation. Neuron 71:555–564. doi: 10.1016/j.neuron.2011.05.047 

Ahissar E, Vaadia E, Ahissar M, et al (1992) Dependence of cortical plasticity on correlated 
activity of single neurons and on behavioral context. Science (80- ) 257:1412–5. doi: 
10.1126/science.1529342 

Ahrens MB, Li JM, Orger MB, et al (2012) Brain-wide neuronal dynamics during motor 
adaptation in zebrafish. Nature 485:471–477. doi: 10.1038/nature11057 

Ajemian R, D’Ausilio A, Moorman H, Bizzi E (2010) Why professional athletes need a 
prolonged period of warm-up and other peculiarities of human motor learning. J Mot Behav 
42:381–8. doi: 10.1080/00222895.2010.528262 

Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61. doi: 10.1016/0025-
5564(71)90051-4 

Alexander GE, Crutcher MD (1990) Preparation for movement: neural representations of 
intended direction in three motor areas of the monkey. J Neurophysiol 64:133–50. 

Arce F, Novick I, Mandelblat-Cerf Y, et al (2010a) Combined adaptiveness of specific motor 
cortical ensembles underlies learning. J Neurosci 30:5415–25. doi: 
10.1523/JNEUROSCI.0076-10.2010 

Arce F, Novick I, Mandelblat-Cerf Y, Vaadia E (2010b) Neuronal correlates of memory 
formation in motor cortex after adaptation to force field. J Neurosci 30:9189–98. doi: 
10.1523/JNEUROSCI.1603-10.2010 

Asanuma H, Larsen KD, Yumiya H (1979) Direct sensory pathways to the motor cortex in the 
monkey: A basis of cortical reflexes. In: Integration in the Nervous System. Igaku-Shoin, 
New York, pp 223–238 

Ashe J (1998) Force and the motor cortex. Behav Brain Res 87:253–270. doi: 10.1016/S0166-
4328(96)00145-3 

Bailey CH, Chen M (1983) Morphological basis of long-term habituation and sensitization in 
Aplysia. Science 220:91–3. doi: 10.1126/science.6828885 

Bailey CH, Chen M (1988) Morphological basis of short-term habituation in Aplysia. J Neurosci 
8:2452–2459. 

Bailey CH, Kandel ER (1993) Structural Changes Accompanying Memory Storage. Annu Rev 
Physiol 55:397–426. doi: 10.1146/annurev.ph.55.030193.002145 

Baraduc P, Lang N, Rothwell JC, Wolpert DM (2004) Consolidation of dynamic motor learning 
is not disrupted by rTMS of primary motor cortex. Curr Biol 14:252–6. doi: 
10.1016/j.cub.2004.01.033 

Baraduc P, Wolpert DM (2002) Adaptation to a visuomotor shift depends on the starting posture. 
J Neurophysiol 88:973–81. 

Batista AP, Santhanam G, Yu BM, et al (2007) Reference frames for reach planning in macaque 



	 145 
dorsal premotor cortex. J Neurophysiol 98:966–83. doi: 10.1152/jn.00421.2006 

Bauswein E, Fromm C, Werner W, Ziemann U (1991) Phasic and tonic responses of premotor 
and primary motor cortex neurons to torque changes. Exp Brain Res 86:303–310. doi: 
10.1007/BF00228953 

Best MD, Takahashi K, Suminski AJ, et al (2016) Comparing offline decoding performance in 
physiologically defined neuronal classes. J Neural Eng 13:26004. doi: 10.1088/1741-
2560/13/2/026004 

Betz V (1874) Anatomischer Nachweis zweier Gehirncentra. Cent für die medizinischen 
Wissenschaften 12:578–580, 595–599. 

Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 
382:252–5. doi: 10.1038/382252a0 

Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Johann Ambrosius 
Barth, Leipzig 

Brooks JX, Carriot J, Cullen KE (2015) Learning to expect the unexpected: rapid updating in 
primate cerebellum during voluntary self-motion. Nat Neurosci 18:1–10. doi: 
10.1038/nn.4077 

Broome BM, Jayaraman V, Laurent G (2006) Encoding and decoding of overlapping odor 
sequences. Neuron 51:467–82. doi: 10.1016/j.neuron.2006.07.018 

Bruno AM, Frost WN, Humphries MD (2015) Modular deconstruction reveals the dynamical 
and physical building blocks of a locomotion motor program. Neuron 86:304–318. doi: 
10.1016/j.neuron.2015.03.005 

Bucy PC (1933) Electrical Excitability and cyto-architecture of the premotor cortex in monkeys. 
Arch Neurol Psychiatry 30:1205–1225. 

Bucy PC (1935) A comparative cytoarchitectonic study of the motor and premotor areas in the 
primate cortex. J Comp Neurol 62:293–331. doi: 10.1002/cne.900620203 

Buneo C a, Jarvis MR, Batista AP, Andersen R a (2002) Direct visuomotor transformations for 
reaching. Nature 416:632–6. doi: 10.1038/416632a 

Bütefisch CM, Davis BC, Wise SP, et al (2000) Mechanisms of use-dependent plasticity in the 
human motor cortex. Proc Natl Acad Sci 97:3661–5. doi: 10.1073/pnas.050350297 

Cabel DW, Cisek P, Scott SH (2001) Neural activity in primary motor cortex related to 
mechanical loads applied to the shoulder and elbow during a postural task. J Neurophysiol 
86:2102–8. 

Caithness G, Osu R, Bays P, et al (2004) Failure to consolidate the consolidation theory of 
learning for sensorimotor adaptation tasks. J Neurosci 24:8662–71. doi: 
10.1523/JNEUROSCI.2214-04.2004 

Carmena JM, Lebedev M a, Crist RE, et al (2003) Learning to control a brain-machine interface 
for reaching and grasping by primates. PLoS Biol 1:E42. doi: 10.1371/journal.pbio.0000042 

Chapin JK, Nicolelis MAL (1999) Principal component analysis of neuronal ensemble activity 



	 146 
reveals multidimensional somatosensory representations. J Neurosci Methods 94:121–140. 
doi: 10.1016/S0165-0270(99)00130-2 

Chen SX, Kim AN, Peters AJ, Komiyama T (2015) Subtype-specific plasticity of inhibitory 
circuits in motor cortex during motor learning. Nat Neurosci 18:1109–1115. doi: 
10.1038/nn.4049 

Cheney PD, Fetz EE (1980) Functional classes of primate corticomotoneuronal cells and their 
relation to active force. J Neurophysiol 44:773–791. 

Cheney PD, Fetz EE (1984) Corticomotoneuronal cells contribute to long-latency stretch reflexes 
in the rhesus monkey. J Physiol 349:249–72. 

Cheney PD, Fetz EE, Palmer SS (1985) Patterns of facilitation and suppression of antagonist 
forelimb muscles from motor cortex sites in the awake monkey. J Neurophysiol 53:805–
820. 

Cheng EJ, Scott SH (2000) Morphometry of Macaca mulatta forelimb. I. Shoulder and elbow 
muscles and segment inertial parameters. J Morphol 245:206–224. doi: 10.1002/1097-
4687(200009)245:3<206::AID-JMOR3>3.0.CO;2-U 

Cherian  a, Krucoff MO, Miller LE (2011) Motor cortical prediction of EMG: evidence that a 
kinetic brain-machine interface may be robust across altered movement dynamics. J 
Neurophysiol 106:564–75. doi: 10.1152/jn.00553.2010 

Cherian A, Fernandes HL, Miller LE (2013) Primary motor cortical discharge during force field 
adaptation reflects muscle-like dynamics. J Neurophysiol 110:768–83. doi: 
10.1152/jn.00109.2012 

Chestek C a, Batista AP, Santhanam G, et al (2007) Single-neuron stability during repeated 
reaching in macaque premotor cortex. J Neurosci 27:10742–50. doi: 
10.1523/JNEUROSCI.0959-07.2007 

Churchland MM, Cunningham JP, Kaufman MT, et al (2012) Neural population dynamics 
during reaching. Nature. doi: 10.1038/nature11129 

Churchland MM, Cunningham JP, Kaufman MT, et al (2010a) Cortical preparatory activity: 
representation of movement or first cog in a dynamical machine? Neuron 68:387–400. doi: 
10.1016/j.neuron.2010.09.015 

Churchland MM, Santhanam G, Shenoy K V (2006a) Preparatory activity in premotor and motor 
cortex reflects the speed of the upcoming reach. J Neurophysiol 96:3130–3146. doi: 
10.1152/jn.00857.2006 

Churchland MM, Shenoy K V (2007) Temporal complexity and heterogeneity of single-neuron 
activity in premotor and motor cortex. J Neurophysiol 97:4235–57. doi: 
10.1152/jn.00095.2007 

Churchland MM, Yu BM, Cunningham JP, et al (2010b) Stimulus onset quenches neural 
variability: a widespread cortical phenomenon. Nat Neurosci 13:369–378. doi: 
10.1038/nn.2501 

Churchland MM, Yu BM, Ryu SI, et al (2006b) Neural Variability in Premotor Cortex Provides 



	 147 
a Signature of Motor Preparation. J Neurosci 26:3697–3712. doi: 
10.1523/JNEUROSCI.3762-05.2006 

Cisek P (2006) Preparing for speed. Focus on “Preparatory activity in premotor and motor cortex 
reflects the speed of the upcoming reach”. J Neurophysiol 96:2842–3. doi: 
10.1152/jn.00857.2006 

Cisek P, Crammond DJ, Kalaska JF (2003) Neural activity in primary motor and dorsal premotor 
cortex in reaching tasks with the contralateral versus ipsilateral arm. J Neurophysiol 
89:922–42. doi: 10.1152/jn.00607.2002 

Cisek P, Kalaska JF (2005) Neural correlates of reaching decisions in dorsal premotor cortex: 
specification of multiple direction choices and final selection of action. Neuron 45:801–14. 
doi: 10.1016/j.neuron.2005.01.027 

Classen J, Liepert J, Wise SP, et al (1998) Rapid plasticity of human cortical movement 
representation induced by practice. J Neurophysiol 79:1117–23. 

Cohen MM (1967) Continuous versus terminal visual feedback in prism aftereffects. Percept 
Mot Skills 24:1295–1302. doi: 10.2466/pms.1967.24.3c.1295 

Collinger JL, Wodlinger B, Downey JE, et al (2013) High-performance neuroprosthetic control 
by an individual with tetraplegia. Lancet 381:557–64. doi: 10.1016/S0140-6736(12)61816-9 

Costa RM, Cohen D, Nicolelis MAL (2004) Differential corticostriatal plasticity during fast and 
slow motor skill learning in mice. Curr Biol 14:1124–34. doi: 10.1016/j.cub.2004.06.053 

Cowley BR, Smith MA, Kohn A, Yu BM (2016) Stimulus-Driven Population Activity Patterns 
in Macaque Primary Visual Cortex. 1–31. doi: 10.1371/journal.pcbi.1005185 

Crammond DJ, Kalaska JF (1996) Differential relation of discharge in primary motor cortex and 
premotor cortex to movements versus actively maintained postures during a reaching task. 
Exp brain Res 108:45–61. 

Cunningham JP, Yu BM (2014) Dimensionality reduction for large-scale neural recordings. Nat 
Neurosci. doi: 10.1038/nn.3776 

d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a 
natural motor behavior. Nat Neurosci 6:300–308. doi: 10.1038/nn1010 

Debas K, Carrier J, Orban P, et al (2010) Brain plasticity related to the consolidation of motor 
sequence learning and motor adaptation. Proc Natl Acad Sci U S A 107:17839–17844. doi: 
10.1073/pnas.1013176107 

Dekleva BM, Ramkumar P, Wanda PA, et al (2016) Uncertainty leads to persistent effects on 
reach representations in dorsal premotor cortex. Elife 5:1–24. doi: 10.7554/eLife.14316 

Delattre V, Keller D, Perich M, et al (2015) Network-timing-dependent plasticity. Front Cell 
Neurosci 9:1–11. doi: 10.3389/fncel.2015.00220 

di Pellegrino G, Wise SP (1993) Effects of attention on visuomotor activity in the premotor and 
prefrontal cortex of a primate. Somatosens Mot Res 10:245–262. doi: 
10.3109/08990229309028835 



	 148 
Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J 

Neurosci 25:9919–9931. doi: 10.1523/JNEUROSCI.1874-05.2005 
Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections 

to the cerebral cortex. J Neurophysiol 89:634–639. doi: 10.1152/jn.00626.2002 
Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the 

frontal lobe. J Neurosci 11:667–89. 
Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77:677–

82. 
Dum RP, Strick PL (2005) Frontal lobe inputs to the digit representations of the motor areas on 

the lateral surface of the hemisphere. J Neurosci 25:1375–86. doi: 
10.1523/JNEUROSCI.3902-04.2005 

Durstewitz D, Vittoz NM, Floresco SB, Seamans JK (2010) Abrupt transitions between 
prefrontal neural ensemble states accompany behavioral transitions during rule learning. 
Neuron 66:438–448. doi: 10.1016/j.neuron.2010.03.029 

Elbert T, Pantev C, Wienbruch C, et al (1995) Increased cortical representation of the fingers of 
the left hand in string players. Science (80- ) 270:305–7. 

Elsayed GF, Lara AH, Kaufman MT, et al (2016) Reorganization between preparatory and 
movement population responses in motor cortex. Nat Commun 13239. doi: 
10.1038/ncomms13239 

Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis 
through brain-controlled stimulation of muscles. Nature 485:368–71. doi: 
10.1038/nature10987 

Evarts E V (1968) Relation of pyramidal tract activity to force exerted during voluntary 
movement. J Neurophysiol 31:14–27. 

Ferrier D (1873) Experimental Researches in Cerebral Physiology and Pathology. J Anat Physiol 
8:152–155. doi: 10.1136/bmj.1.643.457 

Fetz E, Baker M (1969) Response properties of precentral neurons in awake monkeys.  
Fetz EE (1992) Are movement parameters recognizable coded in the activity of single neurons? 

Behav. Brain Sci. 15:679–690. 
Fetz EE, Cheney PD, German DC (1976) Corticomotoneuronal connections of precentral cells 

detected by post-spike averages of EMG activity in behaving monkeys. Brain Res 114:505–
510. doi: 10.1016/0006-8993(76)90973-2 

Fetz EE, Cheney PD, Mewes K, Palmer S (1989) Control of forelimb muscle activity by 
populations of corticomotoneuronal and rubromotoneuronal cells. Prog Brain Res 80:437-
49–30. 

Fetz EE, Cheney PD, Palmer SS (1986) Activity of forelimb motor units and 
corticomotoneuronal cells during ramp-and-hold torque responses: comparisons with 
oculomotor cells. Prog Brain Res 64:133–141. doi: 10.1016/S0079-6123(08)63408-1 



	 149 
Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed 

mathematical model. J Neurosci 5:1688–703. 
Flint RD, Scheid MR, Wright ZA, et al (2016) Long-Term Stability of Motor Cortical Activity: 

Implications for Brain Machine Interfaces and Optimal Feedback Control. J Neurosci 
36:3623–3632. doi: 10.1523/JNEUROSCI.2339-15.2016 

Forsberg LE, Bonde LH, Harvey MA, Roland PE (2016) The Second Spiking Threshold: 
Dynamics of Laminar Network Spiking in the Visual Cortex. Front Syst Neurosci 10:1–21. 
doi: 10.3389/fnsys.2016.00065 

Fritsch G, Hitzig E (1870) Ueber dir elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol 
Lpz 37:330–332. 

Fu M, Yu X, Lu J, Zuo Y (2012) Repetitive motor learning induces coordinated formation of 
clustered dendritic spines in vivo. Nature 1:92–95. doi: 10.1038/nature10844 

Fujii N, Mushiake H, Tanji J (2000) Rostrocaudal distinction of the dorsal premotor area based 
on oculomotor involvement. J Neurophysiol 83:1764–9. 

Galea JM, Vazquez A, Pasricha N, et al (2011) Dissociating the roles of the cerebellum and 
motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. 
Cereb Cortex 21:1761–70. doi: 10.1093/cercor/bhq246 

Gallego JÁ, Perich MG, Miller LE, Solla SA (2017) Neural manifolds for the control of 
movement. Neuron 94:978–984. doi: 10.1016/j.neuron.2017.05.025 

Gandolfo F, Li C, Benda BJ, et al (2000) Cortical correlates of learning in monkeys adapting to a 
new dynamical environment. Proc Natl Acad Sci 97:2259–63. doi: 
10.1073/pnas.040567097 

Gandolfo F, Mussa-Ivaldi FA, Bizzi E (1996) Motor learning by field approximation. Proc Natl 
Acad Sci U S A 93:3843–6. 

Ganmor E, Segev R, Schneidman E (2015) A thesaurus for a neural population code. Elife 4:1–
19. doi: 10.7554/eLife.06134 

Gao P, Ganguli S (2015) On simplicity and complexity in the brave new world of large-scale 
neuroscience. Curr Opin Neurobiol 32:148–155. doi: 10.1016/j.conb.2015.04.003 

Georgopoulos  a P, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the 
direction of two-dimensional arm movements and cell discharge in primate motor cortex. J 
Neurosci 2:1527–37. 

Gerhard F, Kispersky T, Gutierrez GJ, et al (2013) Successful Reconstruction of a Physiological 
Circuit with Known Connectivity from Spiking Activity Alone. PLoS Comput Biol 9:32–
34. doi: 10.1371/journal.pcbi.1003138 

Gilbert PF, Thach WT (1977) Purkinje cell activity during motor learning. Brain Res 128:309–
28. 

Glaser JI, Perich MG, Ramkumar P, et al (2017) Population coding of conditional probability 
distributions in dorsal premotor cortex. bioRxiv 1–27. doi: https://doi.org/10.1101/137026 



	 150 
Goedert KM, Willingham DB (2002) Patterns of interference in sequence learning and prism 

adaptation inconsistent with the consolidation hypothesis. Learn Mem 9:279–292. doi: 
10.1101/lm.50102.previously 

Grafton ST, Schmitt P, Van Horn J, Diedrichsen J (2008) Neural substrates of visuomotor 
learning based on improved feedback control and prediction. Neuroimage 39:1383–1395. 
doi: 10.1016/j.neuroimage.2007.09.062 

Gupta R, Ashe J (2009) Offline decoding of end-point forces using neural ensembles: 
Application to a brain machine interface. IEEE Trans Neural Syst Rehabil Eng 17:254–262. 
doi: 10.1109/TNSRE.2009.2023290 

Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal cortex during a 
virtual-navigation decision task. Nature 484:62–8. doi: 10.1038/nature10918 

Hatsopoulos NG, Ojakangas CL, Paninski L, Donoghue JP (1998) Information about movement 
direction obtained from synchronous activity of motor cortical neurons. Proc Natl Acad Sci 
95:15706–11. 

Held R, Freedman SJ (1963) Plasticity in Human Sensorimotor Control. Science (80- ) 142:455–
462. doi: 10.1126/science.142.3591.455 

Held R, Schlank M (1959) Adaptation to disarranged eye-hand coordination in the distance-
dimension. Am J Psychol 72:603–605. 

Hennequin G, Vogels TP, Gerstner W (2014) Optimal control of transient dynamics in balanced 
networks supports generation of complex movements. Neuron 82:1394–1406. doi: 
10.1016/j.neuron.2014.04.045 

Herzfeld DJ, Pastor D, Haith AM, et al (2014) Contributions of the cerebellum and the motor 
cortex to acquisition and retention of motor memories. Neuroimage. doi: 
10.1016/j.neuroimage.2014.04.076 

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. 
Science 313:504–7. doi: 10.1126/science.1127647 

Hochberg LR, Serruya MD, Friehs GM, et al (2006) Neuronal ensemble control of prosthetic 
devices by a human with tetraplegia. Nature 442:164–171. doi: 10.1038/nature04970 

Hoshi E, Tanji J (2002) Contrasting neuronal activity in the dorsal and ventral premotor areas 
during preparation to reach. J Neurophysiol 87:1123–1128. 

Hoshi E, Tanji J (2006) Differential involvement of neurons in the dorsal and ventral premotor 
cortex during processing of visual signals for action planning. J Neurophysiol 95:3596–616. 
doi: 10.1152/jn.01126.2005 

Huang VS, Haith A, Mazzoni P, Krakauer JW (2011) Rethinking Motor Learning and Savings in 
Adaptation Paradigms: Model-Free Memory for Successful Actions Combines with Internal 
Models. Neuron 70:787–801. doi: 10.1016/j.neuron.2011.04.012 

Humphrey DR, Schmidt EM, Thompson WD (1970) Predicting measures of motor performance 
from multiple cortical spike trains. Science 170:758–762. doi: 
10.1126/science.170.3959.758 



	 151 
Hwang EJ, Smith M a, Shadmehr R (2006) Dissociable effects of the implicit and explicit 

memory systems on learning control of reaching. Exp Brain Res 173:425–37. doi: 
10.1007/s00221-006-0391-0 

Imamizu H, Miyauchi S, Tamada T, et al (2000) Human cerebellar activity reflecting an acquired 
internal model of a new tool. Nature 403:192–5. doi: 10.1038/35003194 

Ingram JN, Flanagan JR, Wolpert DM (2013) Context-dependent decay of motor memories 
during skill acquisition. Curr Biol 23:1107–12. doi: 10.1016/j.cub.2013.04.079 

Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach 
adaptation and learning sensory consequences of action. J Neurosci 32:4230–9. doi: 
10.1523/JNEUROSCI.6353-11.2012 

Jasper H, Ricci GF, Doane B (1958) Ciba Foundation Symposium - Neurological Basis of 
Behaviour. In: Wolstenholme G, O’Connor C (eds). John Wiley & Sons, Ltd., Chichester, 
UK,  

Jeanne JM, Sharpee TO, Gentner TQ (2013) Associative learning enhances population coding by 
inverting interneuronal correlation patterns. Neuron 78:352–363. doi: 
10.1016/j.neuron.2013.02.023 

Johnson PB, Ferraina S, Bianchi L, et al (1996) Cortical networks for visual reaching: 
Physiological and anatomical organization of frontal and parietal lobe arm regions; 
Representing spatial information for limb movement: Role of area 5 in the monkey. Cereb 
Cortex 6; 5:102; 391-119; 409. 

Kagerer F a, Contreras-Vidal JL, Stelmach GE (1997) Adaptation to gradual as compared with 
sudden visuo-motor distortions. Exp Brain Res 115:557–61. 

Kakei S, Hoffman DS, Strick PL (2001) Direction of action is represented in the ventral 
premotor cortex. Nat Neurosci 4:1020–5. doi: 10.1038/nn726 

Kalaska J, Cohen D, Hyde M, Prud’homme M (1989) A comparison of movement direction-
related versus load direction-related activity in primate motor cortex, using a two-
dimensional reaching task. J Neurosci 2080–2102. 

Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. 
Science 255:1517–23. 

Kalaska JF, Scott SH, Cisek P, Sergio LE (1997) Cortical control of reaching movements. Curr 
Opin Neurobiol 7:849–859. doi: 10.1016/S0959-4388(97)80146-8 

Karni  a, Meyer G, Rey-Hipolito C, et al (1998) The acquisition of skilled motor performance: 
fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci 
95:861–8. 

Kaufman MT, Churchland MM, Ryu SI, Shenoy K V (2014) Cortical activity in the null space: 
permitting preparation without movement. Nat Neurosci 17:440–8. doi: 10.1038/nn.3643 

Kaufman MT, Churchland MM, Santhanam G, et al (2010) Roles of monkey premotor neuron 
classes in movement preparation and execution. J Neurophysiol 104:799–810. doi: 
10.1152/jn.00231.2009 



	 152 
Kaufman MT, Churchland MM, Shenoy K V (2013) The roles of monkey M1 neuron classes in 

movement preparation and execution. J Neurophysiol 110:817–825. doi: 
10.1152/jn.00892.2011 

Kaufman MT, Seely JS, Sussillo D, et al (2016) The Largest Response Component in the Motor 
Cortex Reflects Movement Timing but Not Movement Type. eNeuro. doi: 
10.1523/ENEURO.0085-16.2016 

Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin 
Neurobiol 9:718–27. 

Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on 
feedback-error learning. Biol Cybern 68:95–103. 

Kleim J a, Barbay S, Nudo RJ (1998) Functional reorganization of the rat motor cortex following 
motor skill learning. J Neurophysiol 80:3321–5. 

Kleim J a, Hogg TM, VandenBerg PM, et al (2004) Cortical synaptogenesis and motor map 
reorganization occur during late, but not early, phase of motor skill learning. J Neurosci 
24:628–33. doi: 10.1523/JNEUROSCI.3440-03.2004 

Kleim JA, Barbay S, Cooper NR, et al (2002) Motor Learning-Dependent Synaptogenesis Is 
Localized to Functionally Reorganized Motor Cortex. Neurobiol Learn Mem 77:63–77. doi: 
10.1006/nlme.2000.4004 

Kobak D, Brendel W, Constantinidis C, et al (2016) Demixed principal component analysis of 
neural population data. Elife 5:1–36. doi: 10.7554/eLife.10989 

Kojima Y, Iwamoto Y, Yoshida K (2004) Memory of learning facilitates saccadic adaptation in 
the monkey. J Neurosci 24:7531–7539. doi: 10.1523/JNEUROSCI.1741-04.2004 

Krakauer JW (2003) Differential Cortical and Subcortical Activations in Learning Rotations and 
Gains for Reaching: A PET Study. J Neurophysiol 91:924–933. doi: 10.1152/jn.00675.2003 

Krakauer JW, Ghez C, Ghilardi MF (2005) Adaptation to visuomotor transformations: 
consolidation, interference, and forgetting. J Neurosci 25:473–478. doi: 
10.1523/JNEUROSCI.4218-04.2005 

Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for 
kinematic and dynamic control of reaching. Nat Neurosci 2:1026–31. doi: 10.1038/14826 

Krakauer JW, Mazzoni P, Ghazizadeh A, et al (2006) Generalization of motor learning depends 
on the history of prior action. PLoS Biol 4:1798–1808. doi: 10.1371/journal.pbio.0040316 

Krakauer JW, Shadmehr R (2006) Consolidation of motor memory. Trends Neurosci 29:58–64. 
doi: 10.1016/j.tins.2005.10.003 

Kujirai T, Caramia MD, Rothwell JC, et al (1993) Corticocortical inhibition in human motor 
cortex. J Physiol 471:501–19. doi: VL  - 471 

Kurata K (1991) Corticocortical inputs to the dorsal and ventral aspects of the premotor cortex of 
macaque monkeys. Neurosci Res 12:263–280. doi: 10.1016/0168-0102(91)90116-G 

Kurata K, Hoffman DS (1994) Differential effects of muscimol microinjection into dorsal and 



	 153 
ventral aspects of the premotor cortex of monkeys. J Neurophysiol 71:1151–1164. 

Kurata K, Wise SP (1988) Premotor cortex of rhesus monkeys: set-related activity during two 
conditional motor tasks. Exp Brain Res 69:327–343. doi: 10.1007/BF00247578 

Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J 
Neurophysiol 72:299–313. 

Lalazar H, Vaadia E (2008) Neural basis of sensorimotor learning: modifying internal models. 
Curr Opin Neurobiol 18:573–581. doi: 10.1016/j.conb.2008.11.003 

Law J, Jolliffe IT (1987) Principal Component Analysis. Stat 36:432. doi: 10.2307/2348864 
Li CS, Padoa-Schioppa C, Bizzi E (2001) Neuronal correlates of motor performance and motor 

learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 
30:593–607. 

Lillicrap TP, Scott SH (2013) Preference distributions of primary motor cortex neurons reflect 
control solutions optimized for limb biomechanics. Neuron 77:168–79. doi: 
10.1016/j.neuron.2012.10.041 

Loewenstein Y, Mahon S, Chadderton P, et al (2005) Bistability of cerebellar Purkinje cells 
modulated by sensory stimulation. Nat Neurosci 8:202–11. doi: 10.1038/nn1393 

Luczak A, Barthó P, Harris KD (2009) Spontaneous Events Outline the Realm of Possible 
Sensory Responses in Neocortical Populations. Neuron 62:413–425. doi: 
10.1016/j.neuron.2009.03.014 

Luczak A, McNaughton BL, Harris KD (2015) Packet-based communication in the cortex. Nat 
Rev Neurosci 16:745–755. doi: 10.1038/nrn4026 

Machens CK, Romo R, Brody CD (2010) Functional, but not anatomical, separation of “what” 
and “when” in prefrontal cortex. J Neurosci 30:350–60. doi: 10.1523/JNEUROSCI.3276-
09.2010 

Macke JH, Buesing L, Cunningham JP, et al (2011) Empirical models of spiking in neuronal 
populations. Adv Neural Inf Process Syst 24:1–9. doi: 10.1.1.230.7630 

Major G, Tank D (2004) Persistent neural activity: Prevalence and mechanisms. Curr Opin 
Neurobiol 14:675–684. doi: 10.1016/j.conb.2004.10.017 

Mandelblat-Cerf Y, Novick I, Paz R, et al (2011) The neuronal basis of long-term sensorimotor 
learning. J Neurosci 31:300–13. doi: 10.1523/JNEUROSCI.4055-10.2011 

Mante V, Sussillo D, Shenoy K V, Newsome WT (2013) Context-dependent computation by 
recurrent dynamics in prefrontal cortex. Nature 503:78–84. doi: 10.1038/nature12742 

Mariño J, Schummers J, Lyon DC, et al (2005) Invariant computations in local cortical networks 
with balanced excitation and inhibition. Nat Neurosci 8:194–201. doi: 10.1038/nn1391 

Markowitz D a, Curtis CE, Pesaran B (2015) Multiple component networks support working 
memory in prefrontal cortex. Proc Natl Acad Sci 112:11084–11089. doi: 
10.1073/pnas.1504172112 

Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical 



	 154 
pyramidal neurons. Nature 382:807–810. 

Martin T a, Keating JG, Goodkin HP, et al (1996a) Throwing while looking through prisms II. 
Specificity and storage of multiple gaze-throw calibrations. Brain 119:1199–1211. doi: 
10.1093/brain/119.4.1183 

Martin T a, Keating JG, Goodkin HP, et al (1996b) Throwing while looking through prisms. I. 
Focal olivocerebellar lesions impair adaptation. Brain 119 ( Pt 4:1183–98. 

Mathis MW, Mathis A, Uchida N (2017) Somatosensory Cortex Plays an Essential Role in 
Forelimb Motor Adaptation in Mice. Neuron 93:1493–1503.e6. doi: 
10.1016/j.neuron.2017.02.049 

Mattar A a G, Gribble PL (2005) Motor learning by observing. Neuron 46:153–60. doi: 
10.1016/j.neuron.2005.02.009 

Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during 
visuomotor adaptation. J Neurosci 26:3642–5. doi: 10.1523/JNEUROSCI.5317-05.2006 

Michaels JA, Dann B, Scherberger H (2016) Neural Population Dynamics during Reaching Are 
Better Explained by a Dynamical System than Representational Tuning. PLOS Comput Biol 
12:e1005175. doi: 10.1371/journal.pcbi.1005175 

Moran DW, Schwartz AB (1999) Motor cortical representation of speed and direction during 
reaching. J Neurophysiol 82:2676–92. 

Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–7. doi: 
10.1007/BF00236911 

Morrow M, Miller L (2003) Prediction of muscle activity by populations of sequentially 
recorded primary motor cortex neurons. J Neurophysiol 89:2279–2288. doi: 
10.1152/jn.00632.2002.Prediction 

Muellbacher W, Ziemann U, Wissel J, et al (2002) Early consolidation in human primary motor 
cortex. Nature 415:640–4. doi: 10.1038/nature712 

Murray RM, Li Z, Sastry SS (1994) A Mathematical Introduction to Robotic Manipulation.  

Mushiake H, Inase M, Tanji J (1991) Neuronal activity in the primate premotor, supplementary, 
and precentral motor cortex during visually guided and internally determined sequential 
movements. J Neurophysiol 66:705–718. 

Mussa-Ivaldi F a, Bizzi E (2000) Motor learning through the combination of primitives. Philos 
Trans R Soc Lond B Biol Sci 355:1755–69. doi: 10.1098/rstb.2000.0733 

Mussa-Ivaldi FA, Solla SA (2004) Neural primitives for motion control. IEEE J Ocean Eng. doi: 
10.1109/JOE.2004.833102 

Nelder J, Baker R (1972) Generalized linear models. Encycl. Stat. Sci.  

Nevian T, Sakmann B (2006) Spine Ca2+ signaling in spike-timing-dependent plasticity. J 
Neurosci 26:11001–13. doi: 10.1523/JNEUROSCI.1749-06.2006 

Newsome WT, Britten KH, Movshon J a (1989) Neuronal correlates of a perceptual decision. 
Nature 341:52–54. doi: 10.1038/341052a0 



	 155 
Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of 

movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 
16:785–807. 

Oby E, Degenhart A, Tyler-kabara E, et al (2015) Network constraints dictate the timescale of 
learning new brain-computer interfaces. In: Annual Meeting of the Society for 
Neuroscience. Chicago, IL,  

Okun M, Steinmetz N a., Cossell L, et al (2015) Diverse coupling of neurons to populations in 
sensory cortex. Nature. doi: 10.1038/nature14273 

Orban de Xivry J-J, Criscimagna-Hemminger SE, Shadmehr R (2011) Contributions of the 
motor cortex to adaptive control of reaching depend on the perturbation schedule. Cereb 
Cortex 21:1475–84. doi: 10.1093/cercor/bhq192 

Overduin S a., D’Avella A, Roh J, et al (2015) Representation of Muscle Synergies in the 
Primate Brain. J Neurosci 35:12615–24. doi: 10.1523/JNEUROSCI.4302-14.2015 

Overduin SA, Richardson AG, Bizzi E (2009) Cortical processing during dynamic motor 
adaptation. Adv Exp Med Biol 629:423–38. doi: 10.1007/978-0-387-77064-2_22 

Padoa-Schioppa C, Li C-SR, Bizzi E (2004) Neuronal activity in the supplementary motor area 
of monkeys adapting to a new dynamic environment. J Neurophysiol 91:449–73. doi: 
10.1152/jn.00876.2002 

Padoa-Schioppa C, Li CSR, Bizzi E (2002) Neuronal correlates of kinematics-to-dynamics 
transformation in the supplementary motor area. Neuron 36:751–65. 

Paninski L, Fellows MR, Donoghue JP, et al (2002) Instant neural control of a movement signal. 
Nature 416:141–2. doi: 10.1038/416141a 

Paz R, Boraud T, Natan C, et al (2003) Preparatory activity in motor cortex reflects learning of 
local visuomotor skills. Nat Neurosci 6:882–90. doi: 10.1038/nn1097 

Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of 
man as studied by electrical stimulation.  

Perich MG, Gallego JA, Miller LE (2017) A Neural Population Mechanism For Rapid Learning. 
bioRxiv 1–24. doi: https://doi.org/10.1101/138743 

Perich MG, Miller LE (2017) Altered tuning in primary motor cortex does not account for 
behavioral adaptation during force field learning. Exp Brain Res. doi: 10.1007/s00221-017-
4997-1 

Peters AJ, Chen SX, Komiyama T (2014) Emergence of reproducible spatiotemporal activity 
during motor learning. Nature. doi: 10.1038/nature13235 

Pillow JW, Shlens J, Paninski L, et al (2008) Spatio-temporal correlations and visual signalling 
in a complete neuronal population. Nature 454:995–9. doi: 10.1038/nature07140 

Pohlmeyer E a, Solla S a, Perreault EJ, Miller LE (2007) Prediction of upper limb muscle 
activity from motor cortical discharge during reaching. J Neural Eng 4:369–79. doi: 
10.1088/1741-2560/4/4/003 



	 156 
Raposo D, Kaufman MT, Churchland AK (2014) A category-free neural population supports 

evolving demands during decision-making. Nat Neurosci 17:1784–1792. doi: 
10.1038/nn.3865 

Rathelot J-A, Strick PL (2009) Subdivisions of primary motor cortex based on cortico-
motoneuronal cells. Proc Natl Acad Sci U S A 106:918–23. doi: 10.1073/pnas.0808362106 

Rebesco JM, Stevenson IH, Körding KP, et al (2010) Rewiring neural interactions by micro-
stimulation. Front Syst Neurosci 4:1–15. doi: 10.3389/fnsys.2010.00039 

Richardson AG, Borghi T, Bizzi E (2012) Activity of the same motor cortex neurons during 
repeated experience with perturbed movement dynamics. J Neurophysiol 107:3144–54. doi: 
10.1152/jn.00477.2011 

Richardson AG, Lassi-Tucci G, Padoa-Schioppa C, Bizzi E (2008) Neuronal activity in the 
cingulate motor areas during adaptation to a new dynamic environment. J Neurophysiol 
99:1253–66. doi: 10.1152/jn.01096.2007 

Richardson AG, Overduin S a, Valero-Cabré A, et al (2006) Disruption of primary motor cortex 
before learning impairs memory of movement dynamics. J Neurosci 26:12466–70. doi: 
10.1523/JNEUROSCI.1139-06.2006 

Riehle  a, Requin J (1989) Monkey primary motor and premotor cortex: single-cell activity 
related to prior information about direction and extent of an intended movement. J 
Neurophysiol 61:534–549. 

Riek S, Hinder MR, Carson RG (2012) Primary motor cortex involvement in initial learning 
during visuomotor adaptation. Neuropsychologia 50:2515–23. doi: 
10.1016/j.neuropsychologia.2012.06.024 

Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP (1998) Strengthening of horizontal 
cortical connections following skill learning. Nat Neurosci 1:230–4. doi: 10.1038/678 

Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor 
cortex. Curr Opin Neurobiol 12:149–54. 

Rokni U, Richardson AG, Bizzi E, Seung HS (2007) Motor learning with unstable neural 
representations. Neuron 54:653–66. doi: 10.1016/j.neuron.2007.04.030 

Roland PE, Skinhøj E, Lassen N a, Larsen B (1980) Different Cortical Areas in Man in 
Organization of Voluntary Movements in Extrapersonal Space. J Neurophysiol 43:137–150. 

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. 
Science 290:2323–2326. doi: 10.1126/science.290.5500.2323 

Sadtler PT, Quick KM, Golub MD, et al (2014) Neural constraints on learning. Nature 512:423–
426. doi: 10.1038/nature13665 

Santhanam G, Ryu SI, Yu BM, et al (2006) A high-performance brain-computer interface. 
Nature 442:195–8. doi: 10.1038/nature04968 

Santhanam G, Yu BM, Gilja V, et al (2009) Factor-analysis methods for higher-performance 
neural prostheses. J Neurophysiol 102:1315–30. doi: 10.1152/jn.00097.2009 



	 157 
Schlerf JE, Galea JM, Bastian AJ, Celnik P a (2012) Dynamic modulation of cerebellar 

excitability for abrupt, but not gradual, visuomotor adaptation. J Neurosci 32:11610–7. doi: 
10.1523/JNEUROSCI.1609-12.2012 

Scott S (2004) Optimal Feedback Control and the Neural Basis of Volitional Motor Control. Nat 
Rev Neurosci 5:532–546. doi: doi: 10.1038/nrn1427 

Scott SH (2008) Inconvenient truths about neural processing in primary motor cortex. J Physiol 
586:1217–24. doi: 10.1113/jphysiol.2007.146068 

Scott SH (2012) The computational and neural basis of voluntary motor control and planning. 
Trends Cogn Sci 16:541–549. doi: 10.1016/j.tics.2012.09.008 

Scott SH, Cluff T, Lowrey CR, Takei T (2015) Feedback control during voluntary motor actions. 
Curr Opin Neurobiol 33:85–94. doi: 10.1016/j.conb.2015.03.006 

Scott SH, Kalaska JF (1995) Changes in motor cortex activity during reaching movements with 
similar hand paths but different arm postures. J Neurophysiol 73:2563–7. 

Scott SH, Kalaska JF (1997) Reaching Movements With Similar Hand Paths But Different Arm 
Orientations . I . Activity of Individual Cells in Motor Cortex. J Neurophysiol 77:826–852. 

Sergio LE, Hamel-Pâquet C, Kalaska JF (2005) Motor cortex neural correlates of output 
kinematics and kinetics during isometric-force and arm-reaching tasks. J Neurophysiol 
94:2353–78. doi: 10.1152/jn.00989.2004 

Sergio LE, Kalaska JF (2003) Systematic changes in motor cortex cell activity with arm posture 
during directional isometric force generation. J Neurophysiol 89:212–28. doi: 
10.1152/jn.00016.2002 

Shadmehr R, Brashers-Krug T (1997) Functional stages in the formation of human long-term 
motor memory. J Neurosci 17:409–19. 

Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 
277:821–5. 

Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a 
motor task. J Neurosci 14:3208–24. 

Sheahan HR, Franklin DW, Wolpert DM (2016) Motor Planning, Not Execution, Separates 
Motor Memories. Neuron 92:773–779. doi: 10.1016/j.neuron.2016.10.017 

Shen L, Alexander GE (1997) Preferential representation of instructed target location versus 
limb trajectory in dorsal premotor area. J Neurophysiol 77:1195–212. 

Shenoy K V, Sahani M, Churchland MM (2013) Cortical control of arm movements: a 
dynamical systems perspective. Annu Rev Neurosci. doi: 10.1146/annurev-neuro-062111-
150509 

Shimansky YP, Kang T, He J (2004) A novel model of motor learning capable of developing an 
optimal movement control law online from scratch. Biol Cybern 90:133–145. doi: 
10.1007/s00422-003-0452-4 

Slotine J-JE (1985) The Robust Control of Robot Manipulators. Int J Rob Res 4:49–64. doi: 



	 158 
10.1177/027836498500400205 

Smith M a, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different 
timescales underlie short-term motor learning. PLoS Biol 4:e179. doi: 
10.1371/journal.pbio.0040179 

Smith M a, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in 
Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–21. doi: 
10.1152/jn.00943.2004 

Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the posterior parietal cortex. 
Nature 386:167–170. doi: 10.1038/386167a0 

Song W, Cajigas I, Brown EN, Giszter SF (2015) Adaptation to elastic loads and BMI robot 
controls during rat locomotion examined with point-process GLMs. Front Syst Neurosci. 
doi: 10.3389/fnsys.2015.00062 

Stevenson IH, Cherian A, London BM, et al (2011) Statistical assessment of the stability of 
neural movement representations. J Neurophysiol 106:764–74. doi: 10.1152/jn.00626.2010 

Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on 
desynchronization of odour-encoding neural assemblies. Nature 390:70–4. doi: 
10.1038/36335 

Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an olfactory 
system. Neuron 39:991–1004. doi: 10.1016/j.neuron.2003.08.011 

Sussillo D, Churchland MM, Kaufman MT, Shenoy K V (2015) A neural network that finds a 
naturalistic solution for the production of muscle activity. Nat Neurosci 18:1025–33. doi: 
10.1038/nn.4042 

Tanaka H, Sejnowski TJ, Krakauer JW (2009) Adaptation to visuomotor rotation through 
interaction between posterior parietal and motor cortical areas. J Neurophysiol 102:2921–
32. doi: 10.1152/jn.90834.2008 

Taylor DM, Tillery SIH, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic 
devices. Science 296:1829–32. doi: 10.1126/science.1070291 

Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear 
dimensionality reduction. Science 290:2319–23. doi: 10.1126/science.290.5500.2319 

Thach WT (1978) Correlation of neural discharge with pattern and force of muscular activity, 
joint position, and direction of intended next movement in motor cortex and cerebellum. J 
Neurophysiol 41:654–676. 

Thoroughman K a, Shadmehr R (2000) Learning of action through adaptive combination of 
motor primitives. Nature 407:742–7. doi: 10.1038/35037588 

Thoroughman K a, Shadmehr R (1999) Electromyographic correlates of learning an internal 
model of reaching movements. J Neurosci 19:8573–88. 

Thoroughman K a, Taylor J a (2005) Rapid reshaping of human motor generalization. J Neurosci 
25:8948–53. doi: 10.1523/JNEUROSCI.1771-05.2005 



	 159 
Thura D, Cisek P (2014) Deliberation and commitment in the premotor and primary motor 

cortex during dynamic decision making. Neuron 81:1401–16. doi: 
10.1016/j.neuron.2014.01.031 

Todorov E (2000) Direct cortical control of muscle activation in voluntary arm movements: a 
model. Nat Neurosci 3:391–398. doi: 10.1038/73964 

Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–15. doi: 
10.1038/nn1309 

Todorov E, Jordan MI (2002) Supp Optimal feedback control as a theory of motor coordination. 
Nat Neurosci 5:1226–1235. doi: 10.1038/nn963 

Tolias AS, Ecker AS, Siapas AG, et al (2007) Recording chronically from the same neurons in 
awake, behaving primates. J Neurophysiol 98:3780–3790. doi: 10.1152/jn.00260.2007 

Tong C, Wolpert DM, Flanagan JR (2002) Kinematics and dynamics are not represented 
independently in motor working memory: evidence from an interference study. J Neurosci 
22:1108–13. 

Tresch MC, Jarc A (2009) The case for and against muscle synergies. Curr Opin Neurobiol 
19:601–7. doi: 10.1016/j.conb.2009.09.002 

Truccolo W, Hochberg LR, Donoghue JP (2010) Collective dynamics in human and monkey 
sensorimotor cortex: predicting single neuron spikes. Nat Neurosci 13:105–11. doi: 
10.1038/nn.2455 

Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical 
neurons and the underlying functional architecture. Science 286:1943–1946. doi: 
10.1126/science.286.5446.1943 

Vaadia E, Kurata K, Wise SP (1988) Neuronal activity preceding directional and nondirectional 
cues in the premotor cortex of rhesus monkeys. Somatosens Mot Res 6:207–230. doi: 
10.3109/08990228809144674 

Wagner MJ, Smith MA (2008) Shared internal models for feedforward and feedback control. J 
Neurosci 28:10663–10673. doi: 28/42/10663 [pii]\r10.1523/JNEUROSCI.5479-07.2008 

Weinrich M, Wise SP (1982) The premotor cortex of the monkey. J Neurosci 2:1329–1345. 

Werner S, Schorn CF, Bock O, et al (2014) Neural correlates of adaptation to gradual and to 
sudden visuomotor distortions in humans. Exp Brain Res. doi: 10.1007/s00221-014-3824-1 

Werner W, Bauswein E, Fromm C (1991) Static firing rates of premotor and primary motor 
cortical neurons associated with torque and joint position. Exp Brain Res 86:293–302. 

Wigmore V, Tong C, Flanagan JR (2002) Visuomotor rotations of varying size and direction 
compete for a single internal model in motor working memory. J Exp Psychol Hum Percept 
Perform 28:447–57. 

Wolpert DM, Diedrichsen J, Flanagan JR (2011) Principles of sensorimotor learning. Nat Rev 
Neurosci 12:739–51. doi: 10.1038/nrn3112 

Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. 



	 160 
Science (80- ) 269:1880–2. 

Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 
2:338–47. 

Wurtz RH (1969) Visual receptive fields of striate cortex neurons in awake monkeys. J 
Neurophysiol 32:727–42. 

Xiao J, Padoa-Schioppa C, Bizzi E (2006) Neuronal correlates of movement dynamics in the 
dorsal and ventral premotor area in the monkey. Exp brain Res 168:106–19. doi: 
10.1007/s00221-005-0074-2 

y Cajal SR (1995) Histology of the nervous system of man and vertebrates. Oxford University 
Press, USA 

Yang Y, Lisberger SG (2013) Interaction of plasticity and circuit organization during the 
acquisition of cerebellum-dependent motor learning. Elife 2013:1–19. doi: 
10.7554/eLife.01574 

Yu BM, Cunningham JP, Santhanam G, et al (2009) Gaussian-Process Factor Analysis for Low-
Dimensional Single-Trial Analysis of Neural Population Activity. J Neurophysiol 102:614–
635. doi: 10.1152/jn.90941.2008 

Zheng N, Raman IM (2010) Synaptic inhibition, excitation, and plasticity in neurons of the 
cerebellar nuclei. Cerebellum 9:56–66. doi: 10.1007/s12311-009-0140-6 

 


