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ABSTRACT

Reduced Models for Noise-driven Limit-cycle Oscillators

Avinash Jagdish Karamchandani
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Motivated by rhythms in the brain, we investigate the synchronization of noisy and all-

to-all pulse-coupled oscillators. We consider a case where the oscillatory excursions are of

varying amplitude and where only sufficiently large excursions result in the output pulses

that drive the interactions between the oscillators. In the regime of weak noise and weak

interaction strength, we use a standard reduction to a Kuramoto-type phase-description

with continuous, non-sinusoidal coupling and the associated Fokker-Planck equation for

the population density of oscillator phases. Its linear stability analysis identifies the ap-

pearance of various emergent cluster states. Direct simulations of the oscillator equations

reveal that, in order to achieve quantitative agreement with the phase reduction theory,

the coupling strength and the noise have to be extremely small. Even moderate noise

leads to significant variation in the timing of the large oscillations, which can enhance the

diffusion coefficient in the Fokker-Planck equation by orders of magnitude. Introducing

an effective diffusion coefficient extends the range of agreement significantly. We find

that the effective diffusion coefficient, which can be computed efficiently via simulations

of a single, noise-driven oscillator, is highly nonlinear as of a function of the input noise

strength.

In a broader setting, for any limit-cycle oscillator that produces output conditional

on the amplitude of its oscillations, we also treat the effective diffusion coefficient the-

oretically. In a novel framework, we model the outputs by “events” that correspond to

distinguished crossings of a Poincare section. Using a linearization of the noisy Poincare

map and its description under phase-isostable coordinates, we derive the effective diffu-

sion coefficient for the occurrence and timing of the events using Markov renewal theory.

We show that for many oscillator models the corresponding point process can exhibit
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“unruly” diffusion: with increasing input noise strength, the diffusion coefficient vastly

increases compared to the standard reduction analysis, and, strikingly, it also decreases

when the input noise strength is increased further. The appearance of “unruliness” thus

reflects a break down of the standard phase reduction and, in the context of coupled oscil-

lators, of the Fokker-Planck theory. We provide a thorough analysis in the case of planar

oscillators, which exhibit unruliness in a finite region of the natural parameter space.
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CHAPTER 1

Introduction
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Many natural and engineering systems feature oscillatory dynamics. A key, quantita-

tive feature of such dynamics is phase, which identifies the state of the oscillator’s “internal

clock”. Systems with oscillatory dynamics can often be captured in a mathematical model

that features an attracting limit cycle, and in that case the phase variable parameterizes

the cycle. Notably, after any transients have subsided and the system has relaxed to

the cycle, phase fully describes the state of the system. Indeed, two identical oscillators

with different initial states can only differ after long times by their location on the cycle.

After a long times, their time evolutions will be identical except for a fixed advance or

delay relative to each other: a phase shift. Similarly, in situations where the oscillator is

subject to exogenous forcing for only a finite duration of time, the only “memory” that

the oscillator has of the forcing in the long time limit is a net shift in the phase.

Phase can be extended beyond the limit cycle and even transient dynamics can be

characterized in terms of phase. Art Winfree [85] introduces isochrons, codimension-1

surfaces that foliate the basin of attraction of the limit cycle and each intersect the cycle

at one point. And, under the oscillator’s intrinsic dynamics, they evolve steadily into

each other. Importantly, all trajectories that initially lie on the same isochron converge

to the trajectory that starts at the point of intersection with the limit cycle. That is, all

of the points on a given isochron have the same “asymptotic phase”. Thus, the isochrons

extend the definition of phase from the limit cycle to the full basin of attraction; phase is

a well-defined coordinate on the basin.

In situations where the timing of certain dynamical features are of primary interest,

a description of the dynamics by phase alone is desirable. Examples of such situations

include questions of how a person and their sleep-wake cycle responds to rapid travel
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across time zones, i.e. “jet lag”, and the how the timing of action potentials in neurons are

affected by synaptic currents. Phase reduction, a standard dimension reduction technique

for limit cycle oscillators, eliminates all of the other coordinates that e.g. characterize the

deviations from the limit cycle. In the absence of forcing, the equation for phase under

phase reduction is closed (in the sense that it does not depend on the discarded variables),

exact (in the sense that it is not an approximation), and trivial. In that situation, phase

evolves steadily:

φ̇ = f0.

But, when the oscillator is subject to forcing, a single phase equation can only approxi-

mately capture the non-trivial dynamics that result. Indeed, in the presence of additive

forcing u(t), the phase evolution becomes

φ̇ = f0 + Z (φ, other d.o.f.s)u(t),

where the Z quantifies the response of the phase to the forcing and typically depends

on other degrees of freedom besides phase. In that case, phase reduction is only valid in

the limit of strong scale separation: the attraction to the limit cycle must be strong in

comparison with the strength of forcing. Geometrically, in the phase space, this means

the oscillator’s trajectory remains close to the limit cycle and therefore its state can

be well-approximated as a position on the limit cycle. In this limit, the phase responds

approximately via the phase response curve Z0 (φ), which is the value of Z evaluated at the

point on the limit cycle with phase φ. Z0 is a function of phase alone and approximately
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closes the phase equation,

(1.1) φ̇ ∼ f0 + Z0 (φ)u(t).

When there is not adequate scale separation, however, (1.1) will fail to capture transient

or sustained dynamics that appear as a result of perturbative forcing, such as exogenous

noise or interactions from other, coupled oscillators.

This thesis investigates a break-down of the standard phase reduction technique in

settings where noisy oscillators interact with each other. Neural tissue is a prime example:

the membrane voltage oscillations of a single neuron affect the electrical activity of other

neurons, most commonly through synapses or gap junctions. Neural systems and other

systems of coupled oscillators are therefore complex systems: the oscillators individually

show nontrivial dynamics and population-level dynamics emerge from the interactions.

Phase reduction has been used in an effort to understand the emergent behavior, like

synchronization, in those systems; it simplifies the dynamics of the individual oscillators,

and therefore focuses study on the nature of the interactions and the effect it has on the

emergent dynamics. In Chapter 2 of this thesis, for example, we use phase reduction to

investigate oscillators with delayed pulsatile interactions, and we highlight how the delay

and pulse width affect the emergent states.

Complex systems have often been understood via phase transitions between different

types of emergent states, and coupled oscillator systems are no exception. Consider a

situation in which the oscillators not only interact with each other but are also subject

to independent white noise. There are then two main parameters: the noise strength

and the interaction strength. For sufficiently strong interactions and sufficiently weak
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noise, one expects such a system to support coherent, emergent states, like synchrony.

But, as the noise strength is increased or interaction strength decreased, coherence will

be lost. Locating and understanding the transition that occurs as a function of those

two parameters organizes our understanding of the emergent states. The analysis of

the transition can be made tractable by taking the oscillators to be identical, all-to-all

coupled, and infinite in number. Taken together with phase reduction, that means that

the population of oscillators can be characterized by a density ρ of their phases, which is

governed by a nonlinear “Fokker-Planck” equation,

(1.2)
∂ρ

∂t
= Dphase

∂2ρ

∂φ2
− ∂

∂φ
[f0ρ+K {nonlinear, nonlocal interaction term}] .

In (1.2), Dphase quantifies diffusion of phase density due to the noise, and its value is

given by the phase reduction. K is the interaction strength. (1.2) makes predictions

for which coherent states emerge and for what values of Dphase and K. An analysis

of the linear stability of the incoherent state within the Fokker-Planck theory reveals

a simple prediction for when the interaction strength is large enough to overcome the

noise: it must be greater than a critical value which is proportional to the noise strength,

K > Kcrit ∝ Dphase. We expect this prediction to be accurate in the limit of weak noise

and weak coupling.

In this thesis, we identify a system of coupled oscillators for which the phase reduction

fails dramatically to accurately predict the phase transition between the emergent coherent

states and incoherence. The natural questions that follow, and the ones central to this

thesis, are then: (1) “When does the Fokker-Planck phase transition analysis fail in

coupled oscillator systems with additive noise?”, (2) “Why?”, and (3) “What can we
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do about it?”. We address question (2) first: we find that the phase reduction does

not always accurately account for the response of the oscillators to the noisy drive. In a

coupled system, it is the response of the oscillators’ outputs to the noise that is important,

where the outputs are those dynamical features that drive the oscillator interactions. In

pulse-coupled systems, certain discrete dynamical “events” may trigger the pulses, and

thus those events are the relevant outputs. The action potentials in neuronal oscillators,

seen as “spikes” in the membrane voltage, are an example of such events, since they drive

the synaptic interactions with other neurons. Thus, of interest in this example is the

perturbation of the spike times due to the noise, which may not be well captured by the

diffusion coefficient Dphase that is given by phase reduction. Answering questions (1) and

(3) begins with a quantification of the actual noise response of the event timings, which we

call the “effective phase diffusion coefficient” Deff. As it turns out, the effective diffusion is

often highly nonlinear as a function of the input noise strength, and its graph often takes

on a characteristic, “unruly” shape. This is in stark contrast with the phase diffusion

coefficient Dphase, which, as predicted by the standard phase reduction, is linear. It is

when the effective diffusion deviates from the phase diffusion predicted by the standard

phase reduction that the phase transition analysis under the Fokker-Planck framework

fails. The effective diffusion coefficient is also the remedy: we find that the accuracy of

(1.2) improves dramatically when we replace Dphase with Deff.

The effective diffusion coefficient is thus the answer to all three of the above questions,

and is the common thread throughout this thesis. The thesis is organized in two chapters.

Chapter 2 is reproduced from a publication in Chaos, [36]. There we introduce the initial

motivation for our work: rhythm formation in the mammalian olfactory bulb. We describe
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rhythms within the Fokker-Planck framework as emergent states where the phases of

the neuronal oscillators are clustered. We show, however, that the standard approach,

where Dphase is defined via phase reduction, fails to accurately predict the onset of those

states even for weak noise. We introduce a computational definition of the effective

diffusion coefficient Deff based on simulations of a single oscillator, and demonstrate that

replacing Dphase with Deff extends the accuracy of the theory to much larger noise and

interaction strengths. In Chapter 3, we complement the computational treatment with

a theoretical accounting of the effective diffusion coefficient. There, we move from a

phase-oriented framework to an event-oriented framework, defining the events as arising

from distinguished crossings of a Poincare section. Treating the events as a point process,

we recast the effective diffusion coefficient as a point process statistic, and introduce a

formula for it using Markov renewal theory. Using that formula, we investigate the origin

of the unruly quality of Deff as function of the input noise strength and demonstrate that

“unruliness” is not uncommon amongst planar oscillators.
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CHAPTER 2

Pulse-Coupled Mixed-Mode Oscillators: Cluster States and

Extreme Noise Sensitivity
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2.1. Introduction

The synchronization of oscillators coupled in a network is of great interest in many

areas of science and engineering. Examples range from arrays of microwave oscillators [86]

and lasers [8], networks of Josephson junctions [81] and optomechanical oscillators [88]

to biological systems like pacemaker cells in the heart [52] and in the suprachiasmatic

nucleus of the brain, which controls the circadian rhythm [49]. In the brain coherent

rhythmic activity of large ensembles of neurons manifests itself in macroscopically ob-

servable rhythms, which have been found in many brain regions [78]. Among them the

widely observed γ-rhythm (30-100 Hz) has been studied particularly extensively [10, 9].

For weak coupling one can generically describe coupled oscillators in terms of their

phase. In this regime a substantial body of work has addressed the role of the network

structure in the synchronization of phase oscillators with simple sinusoidal coupling, as is

the case in the Kuramoto model [37, 16, 64]. The effect of modular network structure

has also been addressed to some extent for strongly coupled, simple oscillators [51].

Even in the weak-coupling limit the coupling function is, however, in general not si-

nusoidal. Instead, higher harmonics are expected to come into play, which can affect the

dynamics substantially; even just including a phase-shifted second harmonic can introduce

qualitatively new dynamics [29]. The Fourier content of the interaction function depends

on the type of coupling as well as on the properties of the periodic orbit of the uncoupled

individual oscillators via their phase-resetting curve [66]. Thus, for oscillators undergoing

complex periodic orbits like mixed-mode oscillations the phase-interaction function can

exhibit a similarly complex phase dependence. This has been studied in detail for oscilla-

tors that are coupled diffusively, which in neuronal systems arises in the presence of gap
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junctions; it was shown that such phase-interaction functions can stabilize a variety of

states in which the oscillator phases form different numbers of clusters [21].

Most neurons in the brain interact, however, instead via chemical synapses, which pro-

vide output pulses that are driven by the spikes of the neurons. The shape of these pulses

contributes to the Fourier content of the interaction function. Moreover, in contrast to

diffusive coupling, pulse-coupling involves delays reflecting the finite rise time of the pulse

and the propagation of the signal between neurons, which will be particularly significant

if the transmission involves communication with other brain areas. In the weak-coupling

limit the delays associated with pulse-coupling induce shifts in the phase dependence

of the interaction function, which strongly affect the synchronization properties of the

oscillators [19, 23].

A key requirement for the applicability of weak-coupling theory is that the periodic

orbits of the oscillators are only weakly perturbed by their interaction. Since the sub-

threshold oscillations (STOs) that are part of mixed-mode oscillations typically have very

small amplitude, even very weak perturbations may be able to trigger skipping or inserting

of a STO cycle in these oscillations, amounting to large deviations from the periodic orbit.

Among those perturbations is also noise that may be present in the circuit. This raises

the question to what extent weak-coupling theory is suited to study the synchronization

of mixed-mode oscillators.

An example motivating the present work is the mammalian olfactory system. There

the inhibitory interaction between the principal neurons of the olfactory bulb can on the

one hand be mediated by a interneuron population within the bulb itself, but on the

other hand it can also involve cells in a second, cortical area. Intriguingly, the olfactory
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bulb exhibits two different coherent rhythms: a faster one which is formed in the olfactory

bulb alone, and a slower one which requires the input from the second brain area [56, 57].

Moreover, the principal cells that drive these rhythms exhibit various types of mixed-mode

oscillations in which different numbers of small sub-threshold oscillations are interspersed

between the large voltage spikes that are responsible for the output of the neurons [14, 3].

Due to the interplay between these mixed-mode oscillations and the delays of the pulsatile

synaptic coupling the synchronization properties of a neuronal network like that of the

olfactory bulb are expected to be complex.

In this chapter we investigate the synchronization properties of all-to-all coupled net-

works of identical mixed-mode oscillators in which the inhibitory pulse coupling, which

drives synchronization, is counteracted by uncorrelated noise. We elucidate, in particular,

the role that the delay in the interaction plays in the stabilization of different phase-locked

states and the limitations that arise for the weak-coupling theory from the small size of

the sub-threshold oscillations. In addition to synchronous solutions in which all oscilla-

tors fire at the same time, we find cluster solutions in which subsets of oscillators are

phase-locked with each other. While one might have expected that the number of stabi-

lized clusters would be directly related to the number of sub-threshold oscillations that

the mixed-mode oscillations exhibit [21], this is not the case. Even for mixed-mode os-

cillations that include only a single sub-threshold oscillation the pulsatile coupling can -

depending on the delay and the pulse width - stabilize a variety of solutions exhibiting

up to 5 or more different clusters. Further, bistability between different cluster states as

well as oscillations in the different order parameters can appear.



24

With regard to the validity of the weak-coupling theory we find that it captures the

dynamics of the full system adequately only for extremely weak coupling and correspond-

ingly extremely weak noise. This is the case even when the phase-resetting curve, which

underlies the coupling term in a Fokker-Planck equation describing the synchronization,

is adjusted for the finite coupling strength. However, our numerical simulations reveal

that quantitative agreement for the onset of synchronization can be achieved over a much

larger range of the diffusion coefficient if an effective diffusion coefficient is introduced in

the Fokker-Planck equation. For the parameters investigated in this work this effective dif-

fusion can be up to a factor of 500 larger than what is expected within the weak-coupling

theory. This large boost in the diffusion is due to noise-driven skipping or adding of

sub-threshold oscillations.

This chapter is organized as follows. In Section 2.2 we introduce the neuronal model

that we use to investigate the interaction between mixed-mode oscillators and discuss some

essential aspects of the mixed-mode oscillations. In Section 2.3 we use weak-coupling the-

ory to determine the onset of synchronization and cluster formation and investigate the

role of the shape and delay of the inhibitory pulse coupling. We compare the results from

the weak-coupling theory with direct simulations of the spiking neurons in Section 2.4,

where we introduce an effective diffusion coefficient. In Section 2.5 we use weakly nonlin-

ear analysis of the Fokker-Planck equation to identify super- and sub-critical formation of

cluster states. Within the Fokker-Planck framework we also find secondary bifurcations

arising from the interactions between different cluster states and a tertiary Hopf bifur-

cation leading to oscillations of the order parameters that characterize those states. We

confirm these results in direct simulations of the full spiking neuron model.
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Currents:

Capacitive Leak Potassium Sodium Synaptic
Cm = 1 µF

cm2 Eleak = −65mV EK = −72mV ENa = 55mV Esyn = −70mV
ḡK = 50 mS

cm2 ḡNa = 500 mS
cm2

gleak = 0.01 mS
cm2 ḡKs = 310 mS

cm2 ḡNap = 0.7 mS
cm2

ḡKa = 10 mS
cm2

Ion Channel Dynamics:

αχ (V ) [ms−1], βχ (V ) [ms−1] = a+bV

c+de
−(V−Vhalf,2)/kV,2

χ∞ (V ) [1], τχ (V ) [ms] = y0 + a+be
−(V−Vhalf,1)/kV,1

c+de
−(V−Vhalf,2)/kV,2

y0 a b Vhalf,1 kV,1 c d Vhalf,2 kV,2

mK
α - 1 0 - - 0 1 11 19
β - 1 0 - - 0 1 −113 −61

mNa
α - 0.32× 50 0.32 - - 1 −1 −50 4
β - 0.28× 23 0.28 - - −1 1 −23 −5

hNa
α - 0.128 0 - - 0 1 −46 −18
β - 4 0 - - 1 1 −23 5

hK
χ∞ 0.135 0.865 0 - - 1 1 −14 −6.53
τ 50 0 0 - - - - - -

mKs
χ∞ 0 1 0 - - 1 1 −34 6.5
τ 7 0 0 - - - - - -

hKs
χ∞ 0 1 0 - - 1 1 −65 −6.6
τ 200 220 0 - - 1 1 −71.6 6.85

mKa
χ∞ 0 1 0 - - 1 1 70 14
τ 0 0 25 −45 −13.3 1 1 −45 −10

hKa
χ∞ 0 1 0 - - 1 1 −47.4 −6
τ 0 0 55.5 −70 −5.1 1 1 −70 −5

mNap χ∞ 0 1 0 - - 1 1 −51 5

Table 2.1. Mitral cell model parameters as used throughout this chapter.
The dynamics of each m or h variable follow one of two functional forms,
involving either α and β or χ∞ and τ that are unique to that m or h.

2.2. A Neuronal Mixed-Mode Oscillator
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Figure 2.1. A variety of limit cycle MMO patterns appear as the
injected current Itonic is varied. The time between a spike and the
following STO (or spike) is fairly consistent over a wide range of Itonic and
about three times the time between STOs (as seen e.g. in the green box).

As an example of a network of mixed-mode oscillators (MMOs), we consider a car-

icature of the mammalian olfactory system. The principal cells of the olfactory bulb,

the mitral cells, exhibit mixed-mode oscillations and indirectly inhibit each other via two

different synaptic pathways, one involving an interneuron population within the bulb and

the other in addition a third population in a separate brain area. The two pathways are
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Figure 2.2. A quasi-static bifurcation structure underlies the
mixed-mode oscillations. (Itonic = 17 µA

cm2 ) (a): The quasi-static bifur-
cation structure for slow hKs shows bistability between a fixed point (“QS
FP”) and a limit cycle (maximum and minimum voltage values depicted,
“QS LC”). The trajectory of the full 28-limit cycle (LC) is super-imposed.
(b): The temporal evolution of V and hKs along the full limit cycle.

expected to differ in particular in their effective propagation delays, and we focus in this

work on the role of delay in the pulsatile interaction between the MMOs. In terms of the

connectivity structure we consider here all-to-all coupling. While not biologically realis-

tic, this allows a description of the onset of cluster formation in terms of a Fokker-Planck

equation, which provides significant insight that is likely to carry over to more realistic

circumstances.

We use a single-compartment conductance-based model that features a fast, inacti-

vating sodium current, a persistent sodium current, a delayed rectifier potassium current,
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an A-type potassium current, and a slow inactivating potassium current[3, 7],

Cm
dV

dt
= gleak (Eleak − V ) + gK (EK − V )

+gNa (ENa − V ) + gsyn (Esyn − V )

+Iinj(2.1)

gK = ḡKm
2
KhK + ḡKamKahKa + ḡKsmKshKs

gNa = ḡNam
3
NahNa + ḡNapmNap,∞ (V )

dχ

dt
=



αχ (V ) (1− χ) + βχ (V )χ,

χ ∈ {mK ,mNa, hNa}

χ∞(V )−χ
τχ(V )

,

χ ∈ {hK ,mKa, hKa,mKs, hKs}

.(2.2)

Here the m and h are the activation and inactivation variables of the currents through

various ion gates. The dynamics of each follow one of two equivalent functional forms,

(2.2), involving functions of voltage that describe either the rate at which ion gates open

and close (α and β) or the variable’s steady-state value and it’s timescale (χ∞ and τ).

The specific functions for each variable, as well as the constants that appear in (2.1) are

given in Table 2.1. Compared to the mitral-cell models of Bathellier et al. [3] and Brea

et al. [7] we modified some parameters, particularly in cases where their models do not

agree with each other, so as to qualitatively match the experimental results in Bathellier

et al. [3].
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We model excitatory feed-forward input as a tonic current plus white Gaussian un-

correlated noise, i.e. for cells j and j′ we have

Iinj,j = Itonic +
√

2Din ηj (t)(2.3)

〈ηj (t) ηj′ (t
′)〉 = δj,j′δ (t− t′) .

The effective inhibitory interactions between these cells are modeled by delayed synaptic

pulses given by the difference of two decaying exponentials,

gsyn(t) = ḡsyn
∑
j,n

sDE (t− tj,n − tdelay; tw)(2.4)

= ḡsyn
∑
j,n

s (t− tj,n) ,

with

sDE (t; tw) =


e−β1t/tw − e−β2t/tw , t ≥ 0

0 t < 0

.

Here tj,n is the time of the nth spike of the jth cell and tdelay denotes the pulse delay. In

this work we choose β1and β2 so that their ratio is fixed at 1.1151 and tw is the half-height

width of the pulses, which we vary as a parameter. We refer to s(t) as the abstract pulse

that incorporates both the delay and pulse width.

The dependence of rhythmogenesis on the noise strength Din, the strength of interac-

tion ḡsyn, and the delay and shape of the synaptic pulses are of primary interest in this

chapter. We investigate it for a few fixed values of Itonic with the remaining parameters

fixed as given in Table 2.1. Note that the functions τhK , τhKa
, and τhKs

, which describe
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the time scales of the inactivation variables hK , hKa, and hKs, take on large values; these

variables are slow.

As a function of the tonic current, the noiseless model exhibits an extensive variety

of periodic MMO patterns characterized by large amplitude oscillations - the spikes (red

dots, Figure 2.1) - and small amplitude sub-threshold oscillations (STOs) (black dots). To

identify these patterns we use a customary notation [15] where n
nSTO,1

spike,1n
nSTO,2

spike,2 . . . indicates

a sequence of nspike,1 spikes, nSTO,1 STOs, nspike,2 spikes, nSTO,1 STOs, and so on. Voltage

traces of some exemplary patterns that persist for a moderate range of injected current

values are shown in Figure 2.1 (bottom). They all have relatively short periods suggesting

that simple patterns tend to be more resilient to changes in input current. In this work

we therefore focus on the simplest and perhaps most relevant patterns, e.g. the 11 pattern

found at Itonic = 24 µA
cm2 and the 28 pattern at Itonic = 17 µA

cm2 .

Through the use of geometric singular perturbation theory a great deal of progress

has been made in understanding the mechanisms underlying MMOs in fast-slow systems

[15]. We find here, though, that a less sophisticated and qualitative approach is sufficient

to gain intuition about this model in the limited context of spike-driven interactions. In

particular, we find it useful to consider the quasi-static system obtained by freezing the

value of hKs. In the case of Itonic = 17 µA
cm2 , the quasi-static system shows a relatively

simple bifurcation structure as a function of the fixed value of hKs, exhibiting bistability

between a limit cycle (spiking) and a spiral fixed-point (quiescence) (Figure 2.2). In the

full system, the inactivating variable hKs shows a net increase along the quasi-static limit

cycle, but decreases monotonically when the voltage is near the quasi-static fixed-point.

This sets up a bursting cycle that switches between the spikes and the STOs, which form
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Figure 2.3. The MMOs are sensitive to the timing and size of per-
turbative inputs. δ-pulse inputs that instantaneously shift the voltage
while leaving the other variables unchanged can significantly advance or
delay subsequent spikes. Their impact depends on their timing relative to
the first spike of the periodic MMO (horizontal axis) and the new value
to which the voltage is shifted (vertical axis). The colors indicate the time
between the first spike of the MMO and the first spike following the δ-pulse.
In (a), Itonic = 24 µA

cm2 , and in (b), Itonic = 17 µA
cm2 .

as transient oscillations around the fixed point. Note that when the hKs is not frozen

the small oscillations can extend to values of hKs for which the quasi-static fixed point is

unstable by a delayed-bifurcation effect. The characteristic decreasing and then increasing

magnitude of the STOs in MMO patterns like the 28 comes from the slow attraction to

and then repulsion from the fixed-point. We expect that this mechanism operates at other

values of the tonic injected current as well, resulting in some consistency in the model. In

particular, the time between two voltage maxima is fairly consistent across Itonic values,

and, interestingly, the time following a spike before another spike or STO peak is about

3 times as large as the time following an STO peak (green box, Figure 2.1).
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The quasi-static picture also provides some insight into how the presence of the STOs

affects the system’s response to external perturbations. Figure 2.3 shows two examples

of the response of the cell to δ-pulse inputs that produce instantaneous shifts of the

voltage away from the limit cycle. The color indicates the new, perturbed time of the

next spike relative to the beginning of the MMO (t = 0). Notably the next spike can

be delayed significantly when the perturbation drives the voltage close to its value at the

quasi-static fixed point, producing through the delayed bifurcation effect far more STOs

than on the limit cycle. This strong effect is not seen at all points along the STOs since

the instantaneous perturbations only involve the voltage. Instead, as further investigation

reveals, the effect is maximized close to the points where the activating variable mKs is

near its quasi-static fixed point value. We therefore expect that the temporal form of

STOs strongly affects the sensitivity of the system to injected or synaptic inputs.

2.3. Phase Resetting and Cluster Formation in the Weak-Coupling Theory

The response of limit cycle oscillations, like the MMOs of the mitral cell, to pertur-

bations can be characterized in part by a phase resetting curve (PRC). States resulting

from perturbations that push the system off the limit cycle but remain within its basin of

attraction will converge back to the limit cycle. The only effect that persists after a long

time is a shift along the limit cycle, i.e. a lag or lead, as compared to the unperturbed

system. The PRC quantifies this effect, giving the change in phase, i.e. the position

along the limit cycle, for some input as a function of the phase before the perturbation.

PRCs therefore have been used extensively to capture the lowest order temporal features

of neural oscillators under the effect of inputs.



33

Under the assumption of weak perturbative inputs (here weak synaptic pulses between

cells and weak injected noise), limit cycle oscillators can formally be reduced to phase

oscillators whose interaction is governed by the PRC [22]. In this limit, each cell evolves

nearly periodically along its limit cycle, and deviations from periodic spiking impact other

cells only at higher order. Spiking can therefore be considered periodic in the interaction

terms s. For a given time t, the time tj,n of each past spike (cf. (2.4)) can then be

parameterized as tj,k,l by the cell number j and the number of full cycles k since that

spike. In the case that the periodic orbit has multiple spikes per cycle, l denotes the

index of that spike within the cycle. Further, the time elapsed since the spike can be

written in terms of the integer number of cycles elapsed k, the current phase φj (t) of the

cell, and that spike’s phase φLCl within the cycle,

t− tj,k,l
weak−−−−→

coupling

k + φj (t)− φLCl
f0

.

Here the phase φj runs between 0 and 1, f0 is the natural firing rate of each cell, and φLCl

has fixed values for a given MMO.

Then by (2.4))

gsyn (t)

ḡsyn
=

∑
j

∞∑
k=0

L∑
l=1

s

(
k + φj (t)− φLCl

f0

)
+ h.o.t.(2.5)

≡
∑
j

L∑
l=1

ŝ
(
φj (t)− φLCl

)
+ h.o.t.

≡
∑
j

ŝall (φj (t)) + h.o.t.,
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where the infinite sum over k remains accurate to first order for exponentially decaying

pulses s [30]. We define ŝ as the 1-periodic sum of contributions from the infinite history

of the pulses received as a results of each of the jth cell’s limit cycle spikes and ŝall as

the total pulsatile input from all of those spikes. Each oscillator’s phase then evolves

according to

φ̇j = f0 +

[
ḡsyn

N∑
j′=1

ŝall (φj′) (Esyn − VLC (φj))(2.6)

+
√

2Dinηj (t)
]
Z (φj) ,

where N is the number of oscillators and the PRC Z characterizes the response of the

phase to both the pulsatile and noise inputs. We define Z as giving the phase response to

injected inputs; the response to synaptic inputs is then given by (Esyn − VLC (φ))Z (φ).

We note that we have omitted in (2.6) terms arising from Ito’s Lemma [87]. Ultimately,

the only effect of those terms is to slightly perturb the frequency f0, the exact value of

which is inconsequential in this analysis. Taking φj = f0t+ δφj, (2.6) becomes

˙δφj =

[
ḡsyn

N∑
j′=1

ŝall (f0t+ δφj′) (Esyn − VLC (f0t+ δφj))(2.7)

+
√

2Dinηj (t)
]
Z (f0t+ δφj) ,

For small ḡsyn and Din, the evolution of the phase perturbation δφ is slow compared to

1/f0 and we can apply the method of averaging. Averaging the coupling terms over one
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period results in a continuous interaction function,

H (δφj − δφj′) =

∫ 1

0

ŝall (τ + δφj′) (Esyn − VLC (τ + δφj))

× Z (τ + δφj) dτ

=

∫ 1

0

ŝall (φ− (δφj − δφj′))(2.8)

× (Esyn − VLC (φ))Z (φ) dφ.

Averaging the noise term gives additive rather than multiplicative noise [70], where the

new diffusion coefficient describes the diffusion of the phase variable:

(2.9) Dphase = Din

∫ 1

0

Z2 (φ) dφ.

Reintroducing the natural frequency f0, one arrives at a generalized Kuramoto model,

(2.10) φ̇j = f0 + ḡsyn

N∑
j′=1

H (φj − φj′) +
√

2Dphase ηj.

For a large all-to-all coupled network (N → ∞) of identical cells with uncorrelated

noisy inputs, the population-level dynamics can be captured by a non-linear Fokker-Planck

equation [39] for the probability density ρ(φ, t) of oscillators with phase φ at time t,

(2.11) ρt = Dphaseρφφ −
∂

∂φ

[
f0ρ+Kρ

∫ 1

0

H (φ− φ′) ρ (φ′) dφ′
]
,

where we take K = Nḡsyn to scale the synaptic coupling appropriately as N → ∞. The

emergence of rhythmic solutions can be studied by analyzing the destabilization of the

incoherent state (ρ = 1) by Fourier modes, where the growth of a perturbation of a mode
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e2πımφ with wavenumber m indicates the onset of coherent activity by the formation of m

clusters in phase. The eigenvalues for these modes are [39]

(2.12) λm = − (2πm)2D − (2πım) [f0 +KH0 +KHm] ,

where

(2.13) Hm =

∫ 1

0

H (φ) e−2πımφdφ

and, as we will do in the remainder of this section, we have written Dphase as D for brevity.

We will consider the location of the onset of cluster states (Reλm = 0) as a function of the

strengths of noise and coupling and of the pulse delay and shape. Note that in this limit

of weak coupling K and weak noise D the stability only depends on the ratio D
K

with the

incoherent state unstable to the m-cluster state for D/K < (D/K)crit,m, where

(2.14)

(
D

K

)
crit,m

=
ImHm

2πm
.

The linear stability analysis predicts that as noise is decreased or coupling is increased, the

incoherent states is first destabilized by a coherent state that has m = argmaxm′
(
D
K

)
crit,m′

clusters.

Further information, such as bistability between the incoherent and cluster states can

be obtained via weakly-nonlinear analysis. Taking ρ = 1 + Re
{
Ae2πım(φ−(f0+KH0)t)

}
, the

evolution of the magnitude of A, |A| = rm, is given by
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Figure 2.4. The weak-input phase resetting of the mixed-mode os-
cillator is complex. (a): Each spike and STO in the voltage trace (blue)
results in an oscillatory “feature” in the iPRC (magenta). (b): The iPRC
(right panel) can vary significantly across tonic injected current values, even
when the voltage trace (left panel) remains approximately fixed.

1

2πmK

drm
dt

=

(
γ0 − 2πm

D

K

)
rm + γ2r

3
m(2.15)

+γ4r
5
m +O

(
r7
m

)
,
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where

γ0 = Im {Hm}

γ2 = Im {Hmµ2}

γ4 = Im

{
Hmµ

2
2

[
−3

2
+ µ4g201 + µ∗2g210 +

µ∗2
µ2

µ4g111

]}

with

µ2 =
2 (H∗m +H2m)

3Hm −H∗m − 2H2m

µ4 =
Hm +H2m

2Hm −H∗m +H3m

g201 = − H∗m +H3m

2 (H∗m +H2m)2

g210 =
H∗

2 (H∗m +H2m)

g111 =
H∗m (H∗2m +H3m)

|H∗m +H2m|2
,

and the star denotes complex conjugate. The amplitude equation predicts bistability of

the incoherent state (rm = 0) and an m-cluster state (rm > 0) if the bifurcation is subcrit-

ical, γ2 > 0, and the quintic term saturating, γ4 < 0. In that case the bistability ranges

between the primary bifurcation point D
K

=
(
D
K

)
crit,m

and the saddle-node bifurcation at

D
K

=
(
D
K

)
SN,m

∼ 1
2πm

(
γ0 − γ2

2

4γ4

)
. Thus, in the limit of weak coupling and weak noise,

we can predict from the PRC and the stereotypical interaction pulses the nature of the

emergent, population-level dynamics (cf. Figures 2.12,2.13 below).
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Figure 2.5. A sample phase diagram over pulse delay and noise-
coupling ratio. Phase diagram for Itonic = 24 µA

cm2 and a pulse half-height
width tw of about 12.5 ms. The incoherent state is linearly stable above the
shaded areas. The critical noise-coupling ratio for mode m has a T

m
-perioidic

sinusoidal dependence on delay. The points marked with diamonds and dots
are probed in simulations of the spiking model (Figure 2.9).

For the mitral cell model we use the adjoint method [22] to compute infinitesimal

PRCs (iPRCs), i.e. the coefficient in the linearization of the PRC in the input strength.

The timing of the perturbation relative to the STOs substantially modulates its impact

(Figure 2.3). In the iPRC this manifests itself in substantial oscillations (Figure 2.4a),

indicating rapid changes from a phase lead to a phase lag or vice-versa. We note, however,

that while there seems to be an oscillatory feature in the iPRCs for every oscillation in

voltage (spike or STO), a general pattern for the magnitude of those responses and the

timing relative to the voltage oscillations is not apparent. Specifically, we do not expect

that the iPRC can be well predicted from the voltage trace alone. Indeed, iPRCs can

change dramatically across Itonic even when the voltage trace remains largely unchanged

(Figure 2.4b), reflecting the relevance of the other dynamical variables.
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m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11 m = 12 m = 13 m = 14 m = 15 m = 16 m = 17 m = 18

Figure 2.6. Phase diagrams for different tonic injected currents
show a variety of cluster states. For smaller pulse width tw the cluster
states with high m become more relevant, in particular for those MMOs
with many STOs.

Since the timing of the synaptic pulses strongly affects the interaction between the

oscillators, the delay tdelay plays a key role in the formation of cluster states. This is in

contrast to the diffusive coupling formed by gap junctions [21]. For MMOs with multiple

spikes per period (L > 1) the timing of these spikes, characterized by their phases φLCl=1...L

within the oscillation period, also affects the interaction significantly. To make the role of

tdelay and φLCl explicit, we write the synaptic input ŝall(φ) as a sum over the spikes within
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a period,

(2.16) ŝall (φ) =
L∑
l=1

ŝDE

(
φ− φLCl − f0tdelay

)
,

where, like ŝ, ŝDE (φ) is defined as the periodic sum of the infinite history of single pulses

sDE (t),

ŝDE (φ) =
∞∑
k=0

sDE

(
φ (t) + k

f0

)

=
e
− φ
f0tsyn,1

1− e
− 1
f0tsyn,1

− e
− φ
f0tsyn,2

1− e
− 1
f0tsyn,2

.

Similarly, we decompose H into the phase-shifted contributions from the different spikes

within a period,

(2.17) H (φ) =
L∑
l=1

h
(
φ− φLCl − f0tdelay

)
,

where

(2.18) h (φ) =

∫ 1

0

ŝDE (φ′ − φ) (Esyn − VLC (φ′))Z (φ′) dφ′.

In the equation for the onset of cluster mode m, (2.14), the dependence on tdelay and φLCi

can be expressed explicitly using the Fourier coefficients

hm ≡
∫ 1

0

h (φ) e−2πımφdφ
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of h, resulting in

(
D

K

)
crit,m

=
1

2πm
Im

{
hm

L∑
l=1

e2πımφLCl

}
(2.19)

× sin (2πmftdelay) .

We summarize this relationship with phase diagrams showing the critical noise-coupling

ratio for each Fourier mode as a function of delay, pulse shape, and/or tonic injected cur-

rent. Figure 2.5 shows the critical ratio plotted as a function of the pulse delay for the

11 mixed-mode pattern at Itonic = 24 for different values of m. The shading marks the

regions in parameter space for which the linear stability calculation predicts the growth

of a Fourier mode from the incoherent state. Depending on the coefficients γ2 and γ4

of the weakly nonlinear analysis (2.15), this is expected to lead to the formation of m-

clusters, as discussed in Section 2.5 below. Notably, the regions corresponding to mode

m are sinusoidal and T
m

-periodic in the delay, where T ≡ 1
f0

is the period of the MMO

(cf. (2.19)).

Comparison of the phase diagrams for different values of Itonic elucidates which aspects

of the different patterns’ iPRCs ultimately affect the linear stability predictions. For

example, Itonic = 24 and Itonic = 24.5 both produce very similar 11 voltage traces (Figure

2.4a), and both show similar sets of prominent modes (m = 1, 2, 3, 4) (Figure 2.6a,b).

However, their iPRCs differ significantly from each other (Figure 2.4a), resulting in quite

different linear stability surfaces (Figure 2.6a,b).

Depending on the MMO patterns that are obtained as Itonic is varied, a wide variety of

modes emerge readily, i.e. already for relatively small coupling or large noise (Figure 2.6).

The most prominent m-cluster states originate from large Fourier modes m in the iPRC
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Figure 2.7. Cluster number is roughly limited by the MMO pat-
tern. Across the MMO patterns shown in Figure 2.1, the m = mbound state
is an approximate upper limit to each pattern’s nth most prominent cluster
state for n = 1, 2, . . . , 5.

(see (2.18) and (2.19)). Since the iPRCs generally have an oscillatory feature for each

spike and for each STO that appears in the MMO pattern (Figure 2.4), longer patterns

have iPRCs with higher spectral content and therefore support cluster states over larger

ranges of m (Figures 2.6c,d). In fact, looking across tonic injected currents and focusing

on the 5 most prominent modes, which have the largest onset values (D/K)crit,m when

maximized over tdelay and tw, we find that they seem to be approximately limited by an

upper bound mbound (Figure 2.7). We find that the bound can be written in terms of the

number of spikes Nspike and the number of STOs NSTO in one period of the MMO,

(2.20) mbound ≡ 3Nspike +NSTO ≈
T

TSTO
.



44

Figure 2.8. A comparison of the MMO with an integrate-and-fire
model: phase diagrams in the limit of vanishing pulse width, tw = 0. (a):
For the MMO the higher modes appear as readily as the 1-cluster state (red
region). (b): In contrast, in the integrate-and-fire model, which does not
exhibit MMOs, the critical coupling strengths decay quickly with the mode
number.

This reflects the fact that over a wide range of tonic injected currents the duration of spikes

is approximately 3TSTO (Figure 2.1), where TSTO is the duration of one STO (TSTO ≈

7.5ms). Since strong oscillatory features in the iPRCs are at a minimum separated by

about TSTO (Figure 2.4), it is not unreasonable that its significant spectral content and

therefore the resulting cluster states are approximately limited by mbound.

The width of the synaptic pulses filters all modes that appear in the iPRC (cf. (2.18)),

affecting those modes with the largest values of m
T

the most. For a given tonic injected

current value, abundance of the states with large m relative to those with small m thusly

decreases as pulse width is increased (Figure 2.6). This has the potential to produce
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transitions from one cluster state to another as pulse width is increased, e.g. m = 4 to

m = 2 for tdelay ≈ 10ms and Itonic = 24 µA
cm2 (Figure 2.6a).

On the other hand in the extreme limit of a delta pulse the full effect of the MMOs

in the mitral cell model is revealed with cluster states emerging roughly as readily as or

more readily than the synchronous state (Figure 2.8a). In contrast, in an integrate-and-

fire model (see Appendix) without mixed-mode oscillations, the synchronous state always

persists for far stronger noise than cluster states, even for narrow pulses (Figure 2.8b).

We next test the predictive power of this theory and the resulting diagrams by com-

parison with numerical simulation of a network of the spiking conductance-based model

(the “spiking simulations”).

2.4. Weak-Coupling Theory Applies only for Extremely Weak Noise

To test the weak-coupling theory we simulate an all-to-all coupled network ofN = 1024

spiking cells, focusing on the linear stability of the incoherent state. To assess the onset

of cluster formation quantitatively we use the order parameters

(2.21) rm =

∣∣∣∣∣ 1

N

N∑
n=1

e2πımφn

∣∣∣∣∣ ,
where the phase values φm are approximated from spike times by assuming φ varies linearly

from 0 to 1 in each inter-spike interval. For m = 1, this is Kuramoto’s order parameter

for synchrony, and the rm are appropriate extensions for cluster solutions. Note that in

the limit N → ∞, these are the magnitudes of the Fourier modes that destabilize the

incoherent state in the Fokker-Planck Equation, (2.11).
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Figure 2.9. Critical coupling values for the destabilization of the
incoherent state as measured by simulation deviate greatly from
the weak-coupling predictions. Replacing the phase diffusion by an
effective diffusion in the predictions improves agreement with simulation.
Parameters: Iinj = 24 µA

cm2 , tw ≈ 12.5ms (cf. Figure 2.5).
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The order parameters from simulation are very noisy due to finite size effects, and we

compensate by running many realizations. In an effort to compare with the weak-coupling

results for the linear stability of the incoherent state, we measure the order parameter

growth rates rather than amplitudes. For a limited number of delays and noise strengths,

we estimate the critical coupling strength Kcrit (Figure 2.5, diamonds) via simulations

for a few coupling strengths greater than the critical value (dots). We use a linear fit of

the growth rates as a function of the coupling coefficient, extrapolate them to find the

K = Kcrit that corresponds to 0 growth, and estimate the error via boot strapping. As

a function of noise strength, the measured Kcrit agrees well with the theoretical, linear

prediction for noise levels Din . 10−5s−1. However, for even slightly larger values of

the noise, the coupling levels needed to synchronize the spiking neurons are orders of

magnitude larger than those predicted by the weak-coupling theory (Figure 2.9). The

noise levels and the corresponding coupling strengths in the linear regime are extremely

weak, as evidenced by the slow pace of the dynamics in those simulations. For example,

for Din = 5× 10−6s−1, simulation runtimes of up to 2.7× 105s (about 9 million limit cycle

oscillations!) were required to measure the growth rate of the order parameter.

The weak-coupling theory assumes that the limit cycle is only slightly perturbed by

the inputs from other neurons. This may not be the case for the coupling strengths used

in Figure 2.9. However, for a large all-to-all coupled network in the incoherent state, the

global synaptic current is nearly constant in time and close to the mean of the periodic

synaptic pulse ŝ. To assess the impact of the finite coupling we include this mean value

as a fixed synaptic current added to each cell, much like the tonic injected current. This

modifies the limit cycle and its iPRC, but for K > 0.1s−1 the resulting change in the
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Figure 2.10. The effect of finite noise and coupling. (a): Finite cou-
pling has only a small affect on linear stability. In the incoherent state, the
finite coupling induces a mean synaptic current, shifting the limit cycle and
its iPRC. This does not significantly affect the weak-coupling prediction in
the regime in question (cf. Figure 2.9). (b): Even small noise can induce
skipping and adding of STOs (Din = 2.5 × 10−5s−1). (c): Effective phase
diffusion is greatly amplified compared to the linear weak-coupling predic-
tion.
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predicted critical diffusion-coupling ratio is less than 3% (Figure 2.10a). We expect that

in our large but finite system, the impact of the finite coupling strengths on the critical

coupling values is just as insignificant.

Finite noise also could be a culprit. Noise does in fact cause significant deviations

from the limit cycle in the form of added or skipped STOs (Figure 2.10b). Even at low

noise, for which adding events are rare but typically followed by skipping events and vice

versa, the variability of the spike times over long time scales is greatly enhanced [35]. We

find that we can measure the effect of these deviations via an approximate effective phase

diffusion. In the absence on coupling, the Fokker-Planck equation gives an exponential

decay of the order parameters with the decay rate proportional to the diffusion coefficient

Dphase,

drm
dt

= − (2πm)2Dphaserm.(2.22)

Clearly, in making use of the weak-noise approximation for Dphase, this equation is

inaccurate. But from numerical simulation over many oscillations of uncoupled spiking

cells, we can still measure the decay rate in the first order parameter, r1, and empirically

define an effective diffusion coefficient, Deff. While the theoretical weak-noise phase diffu-

sion coefficient Dphase is proportional to the injected noise level (cf. (2.9)), the measured

effective diffusion Deff is strongly nonlinear (Figure 2.10c), increasing by a factor of 1000

when the injected noise strength Din is increased from 10−5s−1 by only a factor of 5. Re-

placing the phase diffusion coefficient Dphase in (2.11) by this effective diffusion coefficient

Deff, the theory agrees very well with the direct simulations over quite some range of the

coupling and diffusion coefficient (Figure 2.9, blue traces).
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Figure 2.11. The coupled MMOs exhibit complex emergent states:
cluster states in the spiking simulation for Iinj = 24 µA

cm2 , tdelay = 3.62ms and
K = 0.012s−1. The triangles indicating the spike times of a single cell. (a)
shows a moderately strong 2-cluster with r2 ≈ 0.6 (Din = 2.37× 10−ss−1),
(b) a strong 3-cluster with r3 ≈ 0.9 (Din = 2.25 × 10−ss−1), and (c) an
oscillatory multi-cluster state that shows at times a 2-cluster and at others
a state with 2-, 3-, and 5-cluster qualities (Din = 2.25× 10−ss−1, cf. Figure
2.14b.i,ii).

2.5. Complex Dynamics of Cluster States

Having established the predictive power of the weak-coupling theory when using the

effective diffusion, we now turn to exploring dynamics that appear in the Fokker-Planck

equation (2.11) and how they reflect the dynamics of the full spiking system.

The presence of high Fourier modes in the interaction function allows states that

are more complex than found in Kuramoto’s model with sinusoidal coupling. The most
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Figure 2.12. Weakly-nonlinear analysis predicts bistability of the
1-cluster and the incoherent state. (a): Phase diagram as in Figure
2.5 with predicted saddle-node bifurcation of the 1-cluster included (cf.
(2.15) with m = 1). Bistability is predicted in the diagonally hashed area.
The vertical line at tdelay = 5.3ms indicates the parameter range covered
in the bifurcation diagram shown in Figure 2.13 below. (b): Bifurcation
diagrams obtained by varying the delay with noise and coupling fixed at
the values indicated by black triangles in (a). (b.i) shows a supercritical
bifurcation and (b.ii) a subcritical primary bifurcation with a stable upper
branch arising in a saddle-node bifurcation. Stable (unstable) branches are
indicated by solid (dashed) lines.

prominent features that result are the cluster states predicted by the linear stability

analysis. States with more than one cluster do in fact appear robustly in the spiking

simulations, as seen in raster plots of the cell number against spike time (Figure 2.11). To

illustrate that in these states the frequency of the population spike volleys is greater than

the spiking frequency of the individual neurons, the spike times of an individual cell are

marked by black triangles. Particularly noteworthy is the bistability between a 3-cluster
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Figure 2.13. Simulations confirm the bistability. Simulations of the
Fokker-Planck equation (solid circles) and the spiking system (open circles)
both confirm the bistability predicted by the weakly nonlinear theory for
the Fokker-Planck equation (red lines) for tdelay = 5.3ms (cf. vertical green
line in Figure 2.12a and (2.15) with m = 1). The weakly nonlinear result
for the 2-cluster (blue line, m = 2) is included for reference.

state and an oscillatory state that is predominantly a 2-cluster state but has strongly

oscillating 3- and 5-cluster components (cf. Figure 2.14 below).

The weakly-nonlinear analysis for the order parameter rm, (2.15), predicts param-

eter regions of bistability between the incoherent and the cluster states (Figure 2.12).

Specifically, the bifurcation of the 1-cluster state is found to be subcritical for delays less

than 6.2ms. The analysis to quintic order predicts, in addition, a saddle-node bifurcation

(dash-dotted line in Figure 2.12a) and an upper, stable branch (Figure 2.12b.ii).

In fact, for a delay of tdelay = 5.3ms, we do find bistability in the spiking simulations

as predicted by the weakly-nonlinear analysis (Figure 2.13). While the location of the

saddle-node bifurcation and the amplitude of the upper branches differ quantitatively
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bifurcation diagrams in the left panels, arrows (a) and error bars (b) show
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(b.i-iii) indicate the origin of the raster plots in Figure 2.11.
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from the values predicted by the weakly-nonlinear analysis, the qualitative agreement is

good. It should be noted that the noise inherent in the spiking simulations limits the

extent to which the saddle-node bifurcation can be reached. We also show the results of

simulations of the Fokker-Planck equation (solid circles), which agree much better with

the spiking simulations than the weakly nonlinear theory. The discrepancy between the

spiking simulations and the weakly nonlinear theory reflects therefore more a limitation

of the weakly-nonlinear analysis than of the weak-coupling theory that it is based on.

The appearance of codimension-2 points, where the critical D
K

curves for two modes

intersect, suggests potentially interesting mode-mode interactions. In fact, for tdelay =

3.62ms, where the supercritical onset of the 2-cluster and 3-cluster states approximately

coincide (Figure 2.5), numerical simulations of the Fokker-Planck equation reveal both

steady and oscillatory mixed-mode states (Figure 2.14a). For decreasing noise-to-coupling

ratio, the 2-cluster state is initially stable until a mixed-mode branch forms. That mixed-

mode state undergoes a Hopf bifurcation, producing stable oscillations in the order pa-

rameter (Figure 2.14a.iii). Decreasing D
K

further, faster oscillations form on top of the

existing ones. Interestingly, the pure 3-cluster branch also becomes linearly stable for

smaller D
K

, leading to the stable coexistence of the 3-cluster state and the oscillations for

the same noise-coupling ratio (Figure 2.14a.i,ii). States strikingly similar to these appear

in the spiking simulation (Figure 2.14b) when Din is adjusted so that the effective diffu-

sion coefficient Deff matches the value of Dphase used in the Fokker-Planck simulations.

While the order parameters are noisy due to finite-system-size effects, the mixed states,

oscillations, and their coexistence with a 3-cluster state are clearly seen. Variations on top

of the oscillations for the lowest noise-coupling ratio may reflect the small, fast oscillations
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seen in the Fokker-Planck simulations, but they cannot easily be distinguished from noise.

Overall, however, the correspondence between the weak-coupling Fokker-Planck results

and the direct spiking simulations is quite good. In this case the weak-coupling theory

is not only predictive, but it also provides insight into the behavior seen in the spiking

simulation. Indeed, without the theoretical picture for comparison, one might conclude

that the noisy oscillations obtained in the spiking simulations are just the result of noise.

2.6. Discussion

Motivated by the observation of different rhythmic activities in networks of neurons

in the olfactory system [56], which are associated with the coherent activity of large

ensembles of neurons, we have investigated the synchronization behavior of networks

of mixed-mode oscillators. The role of STOs in neural rhythms has been previously

studied computationally [44, 53]. It was found that STOs can enhance the rhythms, in

their strength and in particular in robustness of their frequency. Via a semi-analytical

approach, we aimed to elucidate the origin of the rhythmic cluster states arising from

the phase resetting interactions of spikes and STOs. In contrast to previous work that

investigated diffusive coupling of the oscillators [21], we considered pulse coupling and

focused particularly on the impact of delays and pulse shape. In the neuronal contexts

such delays can arise from the dynamics of the chemical synapses, from the propagation of

the signal between neurons, and from the dynamics of intermediate neurons that may relay

the signal. In the olfactory system that motivated our analysis most of the intermediate

neurons are in the same brain area, but one of the observed rhythms is known to involve

also feedback from a different brain area, which introduces a longer delay [38].
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To gain semi-analytical insight into the system we considered weak coupling between

the neurons, which allows a reduction of the high-dimensional equations for each neuronal

oscillator to equations for the phases of the oscillators. Assuming all-to-all coupling and

large network size allows a further reduction to a Fokker-Planck equation for the phase

distribution of the oscillators. The mixed-mode character of the oscillations - together

with the shape of the pulses mediating the coupling - manifests itself in the high Fourier

content of the phase-interaction function. It is the large strength of the higher Fourier

modes that leads to the rich behavior of this system.

The interaction we considered is inhibitory. A classic macroscopic rhythm that can

arise from inhibitory coupling is the interneuron network gamma rhythm (ING), in which

the period of the population rhythm is determined by the time it takes the inhibition to

decay sufficiently for the neurons to resume spiking [80, 10]. Thus, in the ING-rhythm

the period is always monotonic in the delay of the inhibition. By contrast, for the mixed-

mode oscillators with weak coupling that we considered here the delay defines the relative

phase of the Fourier modes in the phase-interaction function and determines the period

of the population rhythm by selecting which cluster solution is stable. As a result, the

period of the rhythm is not directly related to the delay; in fact, an increase in the delay

often reduces the period. For instance, in Figure 2.6a increasing the delay from 10ms to

15ms increases the population frequency since the 2-cluster state is replaced by a state

with 3 clusters.

We focused on a parameter regime in which the mixed-mode oscillation is relatively

simple and contains only a single sub-threshold oscillation. Nevertheless, for sufficiently

narrow interaction pulses and depending on the delay we find that the solutions that
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emerge readily from incoherence can have even up to 4 or 5 clusters, reflecting popula-

tion frequencies approximately up to the sub-threshold oscillation frequency. Generally,

though, the shape of the voltage trace does not directly translate into specific cluster

states. The phase-resetting curve, which underlies the phase-interaction function, cannot

simply be deduced from the voltage trace, reflecting its dependence on the other variables

describing the oscillator.

The relatively large amplitude of the higher Fourier modes of the phase-interaction

function also introduces interesting nonlinear behavior of the order parameter. For in-

stance, we find that the bifurcation off the incoherent state to the cluster states is often

subcritical and our weakly nonlinear analysis also predicts hysteretic transitions between

cluster states and the incoherent state. Moreover, numerical simulations of the Fokker-

Planck equation reveal a tertiary Hopf bifurcation off a mixed-mode solution involving

two different cluster states. Direct numerical simulations of the spiking-neuron model

confirm the hysteresis as well as the oscillations in the order parameters.

The high Fourier content of the phase-interaction function discussed here reflects

largely the complexity of the mixed-mode oscillations arising from the sub-threshold oscil-

lations. The amplitude of high Fourier modes can also be enhanced by strongly skewing

the phase-resetting curve. For quadratic integrate-fire neurons this has been shown to

arise if there is strong spike-frequency adaptation [39, 43]. It also leads to the formation

of clusters and to population rhythms with frequencies that are much higher than the

spiking frequencies of the individual neurons.

Our quantitative comparison between the weak-coupling theory and direct numerical

simulations of the spiking neurons showed agreement only for extremely small coupling
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and correspondingly weak noise. Demonstrating agreement in this weak limit posed com-

putational challenges as the simulation time required to identify the growth of cluster

states in some cases exceeded 3 × 105s. This necessitated the use of high-performance

GPU computation and limiting the networks to a population size N that could reason-

ably be simulated. A single simulation for 1024 oscillators and times on the order of 105

seconds still took over 100 hours of computation time on 1024 cores.

We found that the discrepancy for slightly larger noise is mostly due to skipping and

inserting of sub-threshold oscillations, which arises already for quite small values of the

noise. It can lead to an increase in the diffusion of the phase by three orders of magnitude

even when the injected noise is only increased by a factor of 5 to a noise level at which only

about 1% of the oscillation periods are affected by skipping or adding. After introducing

an effective diffusion coefficient in the Fokker-Planck equation quite good agreement with

the weak-coupling theory is achieved.

The fact that the small sub-threshold oscillations allow even weak noise to induce cycle

skipping raises new interesting questions. How can this enhanced diffusion be described

theoretically? It is not sufficient to consider a randomly selected sequence of step sizes

drawn from a multi-modal distribution since it turns out that the skipping and adding

events are strongly correlated over a long time scale[35].
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CHAPTER 3

Events in Noise-Driven Oscillators: Markov Renewal Processes

and the “Unruly” Breakdown of Phase-Reduction Theory
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3.1. Introduction

3.1.1. Background: Phase reduction, Population Dynamics of Coupled and

Noise-driven Oscillators, and Limitations

Phase reduction is a well-established dimension-reduction technique for dynamical systems

that exhibit limit cycle oscillations [85, 41, 20, 67]. In appropriate limits, such as weak

perturbative forcing or strong contraction to the limit cycle, it replaces the possibly high-

dimensional oscillator state by a single phase variable φ, which represents the oscillator’s

“internal clock”, and allows one to describe the long-time dynamics of the oscillator

by a single differential equation for φ. Since this achieves a substantial reduction in

the complexity of the description, phase reduction is a powerful tool for the analysis of

individual and coupled oscillators [41] and their applications in many areas, including

neuroscience [74] and circadian rhythms [28].

In the presence of noise and in the limit of infinitely many oscillators, globally coupled

oscillators can be described by a nonlinear, non-local Fokker-Planck equation (1.2) for the

population distribution ρ(φ, t) of the phase [72, 75, 40, 36]. In this framework, a key role

in determining the tendency of the oscillators to synchronize is played by the diffusion

coefficient of the phase, Dphase. It represents the leading impact of the noise on the

oscillators, which tends to distribute their phases uniformly. (1.2) quantifies the intuition

that, as long as the diffusion is small in comparison with the strength K of the interactions

between the oscillators, coherent population-level dynamics, like synchronous states, will

emerge. In particular, (1.2) predicts that coherent states arise for coupling strengths K

above a critical value Kcrit that is proportional to Dphase: K > Kcrit ∝ Dphase (Figure
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3.1c, dashed line). This prediction should be accurate in the limit of weak interactions

and weak noise.

In Chapter 2, we applied the Fokker-Planck framework to mixed-mode oscillations

comprised dichotomously of large- and small-amplitude oscillations (Figure 3.1a). This

model arose in a neuronal context where only the large oscillations, which represent action

potentials, lead to any output to other neurons via chemical synapses. Therefore, from

the perspective of the other neurons in the network only these large-amplitude oscillations

are relevant events, and it is their timing that determines the population-level dynamics.

Numerical simulations reveal transitions from asynchrony to synchrony and more exotic

coherent states, which depend on the strength of the noise Din. Standard phase reduction

provides a direct linear connection between Din and Dphase, and thus the Fokker-Planck

theory (1.2) predicts the onset Kcrit for these coherent states as a function of the input

noise strength Din. For the mixed-mode oscillations investigated in Chapter 2, that pre-

diction fails spectacularly when compared to simulation of the full system, even when the

noise and the interactions are relatively weak (compare the dashed line and blue dots in

Figure 3.1c). To wit, it vastly underestimates the strength of the oscillator interactions

needed to overcome the independent noise and produce coherent dynamics states. In

Chapter 2, we found that the amount of diffusion is substantially underestimated by the

phase reduction theory, since Dphase does not take into account the fact that the oscillators

interact only via the amplitude-dependent events. Standard phase reduction, it turns out,

fails because it discards key amplitude information.
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3.1.2. Going Beyond Standard Phase Reduction: Events and Effective Phase

The need to go beyond the standard phase reduction has been recognized previously in

various other contexts, e.g. in shear-induced chaos [46] and systems involving multiple

time scales [54, 45]. Recent works have considered augmenting the phase variable with

one or more amplitude-like variables to increase the fidelity of the reduction (see e.g.

[79, 11]). Of particular interest is the phase-isostable reduction [84], offering a coordinate

system in which the unperturbed oscillator has especially simple dynamics.

Here we offer an event-centric extension to the standard phase reduction. In particular,

we address the influence of noise on oscillators in which the oscillatory excursions can be

divided into two classes: excursions that qualify as events and excursions that do not.

More concretely, describing each oscillatory excursion as the crossing of a Poincare section,

events correspond to a crossing within a limited domain of the Poincare section; crossings

outside that domain constitute non-events. In the neuronal mixed-mode oscillators, for

example, only the large-amplitude peaks in the voltage are events (action potentials),

whereas small-amplitude extrema are non-events.

In noise-driven oscillators, the events occur in an irregular fashion and define a sto-

chastic point process. We are particularly interested in the long-term statistics of the

events that reflect the degree of diffusion in the stochastic process. The quantity that is

of central interest for the description of the event irregularity is the growth rate of the

variance of the total number of events with time, which we propose to call the “temporal

variance growth rate” (TVGR)1 and represent by the symbol V(t)
E . As it turns out, this

quantity has a direct relationship to the phase diffusion coefficient Dphase in the limit of

1This quantity has also been referred to as “the slope of the variance-time curve” [12].
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weak noise. Namely, V(t)
E ∼ 2Dphase as Din → 0. This connection between the event-based

TVGR and the phase diffusion motivates us to introduce an effective phase that increases

by 1 between events, whose diffusion coefficient is given by an effective phase diffusion

Deff ≡ 1
2
V(t)
E .

In Chapter 2, we suggested that Dphase be replaced by Deff in (1.2) as a way to remedy

the deficiencies in the Fokker-Planck theory. We determined Deff computationally via

simulations of a single, uncoupled oscillator and found that it indeed compensates for the

discrepancy in the predictions and recovers the actual onset of coherent states (Figure

3.1b,c). The effective phase thus not only provides an intuitive picture of the long-time

dynamics of the events for an isolated oscillator, but also captures quantitatively the

synchronization behavior of a large ensemble of such oscillators when their interaction

is contingent on the events. Comparing the effective diffusion with the phase diffusion

shows just how poorly the standard phase reduction performs: Deff, which accounts for

the fact that the oscillators interact only via the amplitude-dependent events, is orders of

magnitude larger than Dphase (Figure 3.1b).

Strikingly, we find that the effective diffusion coefficient, exhibits “unruly” behavior

for a wide range of oscillators: while in the limit of weak noise the effective diffusion

coefficient Deff converges to the diffusion coefficient Dphase obtained from the standard

phase reduction, already for surprisingly small values of the noise it can become orders of

magnitude larger than Dphase, only to decrease when noise is increased further to larger

values (see Figure 3.1b for an example). For coupled such oscillators, this implies strongly

enhanced sensitivity to desynchronization for intermediate noise values and reduced sen-

sitivity for strong noise (see Chapter 2).
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In the present chapter, we address the source and abundance of the unruliness in

the TVGR and thus the effective diffusion coefficient. In contrast with our prior, purely

computational approach, we obtain explicit expressions for the TVGR by considering the

point process that arises from a linearized Poincare map. The paradigm of point processes

has already previously been used in the analysis of oscillatory and excitable systems. In

neuroscience, for example, the times Tn at which action potentials occur in a neuron are

often considered to arise from a point process. Indeed, the distribution of so-called inter-

spike-intervals, Tn+1 − Tn, is a subject of great interest (see e.g. [26]). More broadly,

point-process theory offers various measures of the temporal variability in oscillatory and

excitable dynamics (Table 3.1). The Fano factor, for instance, has been used to measure

the similarity of a given point process to a Poisson process, which has a Fano factor of 1.

For noise-driven, nonlinear oscillatory and excitable systems, the Fano factor and effective

diffusion coefficient have each been used to identify a variety of “resonances” that appear

as a function of input noise strength: coherence resonance and incoherence maximization

[58, 48].

The analysis of point processes is often limited to renewal processes, i.e. to point pro-

cesses in which the intervals between events are independent and identically distributed.

Noise-driven limit-cycle oscillators will, however, in general maintain correlations from

one cycle to the next and therefore do not fit the framework of renewal processes. In-

deed, non-renewal dynamics are seen in real world oscillatory systems [24, 26, 2]. These

correlations do not preclude a description of the oscillators within the framework of point

processes. In this work, we therefore include correlations in the time intervals between
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events by considering the Markov renewal process associated with the stochastic Poincare

map.

3.1.3. Organization of the Chapter

The chapter is organized as follows. In Section 3.2 we introduce the effective phase via

the events and their variance statistics and outline in more detail our approach for its

analysis. In the somewhat technical Section 3.3 and the corresponding Appendxi B.1, we

review the theory for variance statistics of Markov and Markov renewal reward processes,

offering a novel formula for the TVGR. We use that formula in Section 3.4 to demonstrate

in a simple toy model how unruliness can arise in V(t)
E , offering an simple explanation of

the eventual decrease of the TVGR with increasing noise strength. We then apply the

general theory to the linearization of Poincare map dynamics for limit cycle oscillators

in the Section 3.5 and the corresponding Appendix B.3. In Section 3.6 we narrow our

focus to two-dimensional oscillators and make an argument that unruliness in V(t)
E is a

common occurrence. We conclude with plausible extensions to this work in Section 3.7

and a broader discussion in Section 3.8.

3.2. Phase Diffusion and The Temporal Variance Growth Rate

3.2.1. Phase Reduction and Its Breakdown

The specific subjects of this chapter are noise-driven oscillatory systems and the statistical

characteristics of the events they produce. Motivated by systems in which output is only

generated by events, we will take the event timings to be the relevant read-out of the



66

(a)

Din = 10
-5:

Din = 10
-4:

Din = 10
-3:

V

t

an event a non-event phase slips

10
-9

10
-6

D
if
fu
s
io
n
C
o
e
ff
ic
ie
n
t

(b)

Log-Log Scale

Deff

(simulation)

Dphase

(phase reduction)

10
-6

10
-3

0

2 × 10-6

4 × 10-6

6 × 10-6

Input Diffusion Din
D
if
fu
s
io
n
C
o
e
ff
ic
ie
n
t

Linear-Log Scale

Deff is unruly.

Deff

Dphase

10
-6

10
-5

10
-5

10
-4

10
-3

10
-2

10
-1

Input Diffusion Din

In
te
ra
c
ti
o
n
S
tr
e
n
g
th

�

(c)

✁crit (simulation)

✁crit (theory,

Deff replacing Dphase)

✁crit

(phase reduction)

coherent states

incoherent states

factor

of ~100

Figure 3.1. Effective Diffusion in a Mixed-Mode Oscillator. (See also
Figures 2.9 and 2.10.) (a): Sample voltage traces of the neural MMO driven
by noise. Only the large-amplitude excursions are events in which the os-
cillator produces “output”; the small-amplitude excursions are non-events.
Phase slips occur for non-zero noise Din. (b): The phase diffusion Dphase

from phase reduction theory and the “unruly”effective diffusion Deff (same
data shown on two different scales). (c): A phase diagram for population
states in globally coupled oscillators. Standard phase reduction with the
Fokker-Planck theory, (1.2), predicts that the boundary between stable co-
herent states and stable incoherence is linear. The theory only agrees with
the full, coupled-oscillator simulation once Dphase is replaced with Deff.



67

system’s dynamics, and we will be particularly interested in quantifying the long-time-

scale, noise-driven dispersion of events. In this section we connect the statistics of the

events with the diffusive dynamics of the phase and introduce an effective phase, which

becomes relevant when the noise induces “phase slips” during which events are skipped

or extra ones are produced (as in, for example, Figure 3.1a).

We investigate systems in d+ 1 dimensions of the form

(3.1) d~y = ~F (~y) dt+
√

2DinG (~y) d ~W

that have a stable limit cycle when Din = 0, where ~W is the standard Wiener process

of dimension d + 1 and the matrix G(~y) characterizes the noise correlations. To define

events we choose a set E in phase space, such that an event occurs when ~y (t) intersects

E. For instance, in neuroscience applications the event often corresponds to an action

potential, where the voltage variable has a large “spike”.

For weakly perturbed limit cycles, the system description can be substantially simpli-

fied by a phase reduction, in which the state ~y ∈ Rd+1 is approximately represented by a

single phase variable φ parameterizing the limit cycle ~yLC (φ). The dynamics of (3.1) are

thus captured via a single equation [41, 1],

dφ = f0 dt+
√

2Din Z
T (φ) G (~yLC (φ)) d ~W +O (Din) ,

in which φ ∈ [0, 1) ; upon reaching 1, φ is reset to 0. Subsequently applying the method

of averaging (see e.g. Section 6.2 of [71]) yields

(3.2) dφ ∼ f0 dt+
√

2Dphase dW,
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where

(3.3) Dphase =

[
f0

∫ 1/f0

0

ZT (φ) G (~yLC (φ)) GT (~yLC (φ))Z (φ) dφ

]
Din.

The reduction thus offers a prediction for the amount of diffusion Dphase in the phase

variable. In particular, from (3.3), it is proportional to the input diffusion coefficient.

The dynamics of the reduced phase model are localized to the limit cycle, and so the

events produced by (3.2) are governed by the intersection of the limit cycle with E. In

this work, unless otherwise indicated, we will consider the simplest scenario, in which the

noiseless limit cycle intersects E once and does so transversely. Without loss of generality,

we take the phase on the limit cycle at the intersection to be φ = 0.

We can compare the full dynamics (3.1) with that of the phase oscillator (3.2) via

the corresponding point processes for the events. Define the point process Tn for the full

system (3.1) as the time t at which the nth event occurs. In contrast with the point process

for the phase oscillator, given by the times at which φ = 0, the process Tn will in general

be non-renewal. Indeed, a noise-driven limit-cycle oscillator will support correlations in

its dynamics from one intersection of E to the next. As the noise strength is increased

from infinitesimal values, ~y will deviate from ~yLC and the time interval, ∆Tn = Tn+1−Tn,

between events will deviate from the period of the unperturbed limit cycle. More drastic

changes occur with increasing noise strength if the event surface E extends only a finite

distance away from the limit cycle. In that case non-infinitesimal noise may cause the

trajectory to miss E in one cycle and return to it only in a subsequent cycle, inserting an

additional non-event crossing. The phase φ will then not capture the event point process

and - in terms of describing the events - the phase equation (3.2) breaks down.
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3.2.2. Effective Phase Diffusion for Events

In order to obtain a description that is able to deal with phase slips we introduce an

alternative, effective phase oscillator, one whose event statistics by definition match that

of the full oscillator in the long-time limit. It will be useful to characterize the point

process by the function Nt, the number of events that have occurred by time t. Take

(3.4) dφeff = feff dt+
√

2Deff dW,

where each reset from φeff = 1 to 0 constitutes an event and the effective oscillation

frequency,

(3.5) feff ≡
1

µ
= lim

t→∞

1

t
E {Nt} ,

and the effective phase diffusion coefficient,

(3.6) Deff ≡
1

2
V(t)
E =

1

2
lim
t→∞

1

t
var {Nt} ,

are defined by the event point process Nt of the full oscillator. We expect that in the

weak-noise limit, where phase reduction applies, feff → f0, Deff → Dphase, and so φeff → φ.

In general, and in contrast with φ, however, we do not think of a given value of φeff as

referring to a particular point or set of points in phase space. Instead, φeff is analogous to

an averaged dynamical variable whose dynamics only reflect those of the original system

over long time scales.

Note that because each passage from φeff = 0 to φeff = 1 governed by (3.4) is inde-

pendent from all others, the corresponding point process N eff
t (with events defined by
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definition
... in the ... in the effective phase oscillator
long-time or

limit effective renewal process

Event Rate 1
t
E {Nt} 1/µ feff = 1

E{∆τ}

Mean Inter-event Interval 1
n
E {Tn} µ

mean first passage time
= E {∆τ}

Temporal Variance 1
t
var {Nt} V(t)

E
2Deff = var{∆τ}

E{∆τ}3Growth Rate

Event Dispersion Rate 1
n
var {Tn} µ3V(t)

E

variance in the first passage time
= var {∆τ}

Fano Factor var{Nt}
E{Nt} µV(t)

E

var{∆τ}
E{∆τ}2(or Index of Dispersion)

Table 3.1. Typical point process statistics, their inter-relationships in the
long-time limit (n → ∞ or t → ∞), and their connection to the effective
phase oscillator (3.4). Note that as long as these long-time-scale statistics
exist for the general (non-renewal) point process, they can be reproduced
by a renewal process: choose the random renewal intervals ∆τ such that

µ = E {∆τ} and V(t)
E = var{∆τ}

E{∆τ}3 . (3.4) is just one example of such a renewal
process.

φeff = 1) is a renewal process, and its statistics are fully determined by the first passage

time distribution. Ignoring the reset, (3.4) produces Brownian motion with a drift, which

has a first passage time density given by an inverse Gaussian distribution with mean µ and

variance µ3V(t)
E (see e.g. [25, 1]). We note that because (3.4) incorporates each a mean-

and variance- type statistic, N eff
t will correctly reproduce all of the long-time statistics

of Nt that appear in Table 3.1, which are inter-related [12]. To facilitate the comparison

of the standard phase reduction (3.2) with the effective phase oscillator (3.4), here we

specifically focus on the effective diffusion Deff = 1
2
V(t)
E . In this context, a “break-down”

in the phase reduction theory occurs when Deff deviates greatly from the linear prediction,

Dphase.
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The break-down can be quite dramatic. Indeed, for the neuronal mixed-mode oscilla-

tors (see Chapter 2), as a function of the input noise strength Din, the effective diffusion

coefficient Deff grows orders of magnitude above the linear phase diffusion before even-

tually decreasing to comparable levels for large input noise (Figure 3.1b). We call this

behavior “unruly” because its graph is highly nonlinear and non-monotonic in stark con-

trast with the linear prediction from phase reduction, (3.3). Similarly dramatic effects

have been noted in the literature: non-monotonicity in the Fano factor has been called

incoherence maximization [48] when a maximum appears and coherence resonance [58]

when there is a minimum.

3.2.3. Theoretical Approach

The main contribution of this work is an asymptotic expression for the effective diffusion

coefficient (3.6) that applies to a wide class of limit-cycle oscillators and that is readily

analyzed and interpreted. In deriving that formula, we make the following over-arching

choices (see also Figure 3.2):

(1) We define an event as occurring when the trajectory ~y of the system (3.1) crosses

a subset E of a codimension-1 surface S that is transverse to the limit cycle.

(2) Of the variance-like statistics listed in Table 3.1, we compute in particular the

asymptotic temporal variance growth rate, V(t)
E = 2Deff.

(3) We approximate the dynamics in the vicinity of the limit cycle to linear order,

but - in contrast with the phase reduction (3.2) - we explicitly include dynamics

off of the limit cycle.
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Choice 1 defines a point process, which arises from crossings of a Poincare section S. It

has the structure of a Markov renewal process, where the “Markov” aspect governs the

positions on the Poincare section and the “renewal” aspect reflects the randomly varying

times between crossings. As compared with the renewal process generated by (3.2), in-

cluding the state space of the Poincare section enriches the dynamics. The dynamics can

be non-renewal, since the position on the section and the time intervals between crossings

will in general be correlated. We make the further choice to analyze the system by in-

cluding all crossings of S as steps in the process but distinguishing those in E as events.

There are therefore two related point processes that we consider, given by T Sn (or NS
t ) for

the process on S and TEn (or NE
t ) for the one limited to E. While in principle it is also an

option to simply limit the point process to E in the first place by taking S = E, our choice

makes calculation feasible. Unless otherwise indicated, we restrict our consideration to

sections that intersect the noiseless limit cycle once with the intersection occurring in E.

Then, in the absence of noise, T Sn = TEn , which is also the point process produced by the

phase-reduced model, (3.2).

The inclusion of E informs our Choice 2, since the asymptotic temporal variance

growth rate can be calculated as

(3.7) V(t)
E = lim

t→∞

1

t
var
{
NE
t

}
= lim

t→∞

1

t
var


NS
t∑

k=1

1E (xk)

 ,

where 1E is the indicator function for E on S and xk ∈ S is the position of the kth crossing

on the section - the kth step in the Markov process, which occurs at time T Sk . We note

that with this specification of the function 1E on the state space, this process could be

considered a Markov renewal reward process in which each event (xk ∈ E) produces a
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reward of 1 and each non-event crossing (xk ∈ S, but xk /∈ E) a reward of 0. In our

non-rigorous analysis, we will assume that the Markov processes are sufficiently “nice”;

at the least, we require that the processes have an invariant probability density π (x)

which is nonzero for all x ∈ S and has the necessary recurrence properties to render V(t)
E

independent of initial conditions.

Finally, Choice 3 means that, while our calculation of the effective diffusion coefficient

Deff = 1
2
V(t)
E will be an approximation of (3.6), it will be a correction to Dphase. In contrast

with the work presented in Chapter 2, where we found Deff computationally, we here offer

an analytical treatment that is made possible by the linearization. Our analysis combines

the ideas presented by Hitczenko and Medvedev [32] and Wilson and Moehlis [84]. The

former make use of an orthonormal moving coordinate frame to describe the Poincare

map for the position xk on the Poincare section, approximating the dynamics to linear

order in xk. We expect this approximation to be accurate when the Poincare map is

roughly linear in and near the subset E, e.g. if E is sufficiently small. We perform this

analysis using phase-isostable coordinates [84] under which the linearized dynamics are

particularly simple.

We note that Wilson and Ermentrout [83] have previously introduced a notion of

phase that also addresses features present in output signals, like neuronal voltage spikes.

In light of the work we present here, they, too, consider output features that correspond to

the crossing of a Poincare section S, and, under their “operational” definition of phase, the

oscillator completes one cycle with every crossing of S. Using phase-isostable coordinates,

they derive a representation of the transient response of the operational phase to forcing.

But, since their analysis is perturbative, it is not clear that the operational phase can be
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immediately generalized to account for amplitude-dependent events (and thus phase slips)

defined via an event subsection E. The amplitude-dependent events, however, underlie

the unruly noise response of oscillators that is of interest here. In our approach, in (3.7)

in particular, we capture the distinguished crossings of the Poincare section within the

Markov renewal framework via an additional element: the reward function 1E (x).

We also note that Schwalger and Lindner [69] have previously considered Markov

renewal processes on finite state spaces where, likewise, only some transitions are distin-

guished as events, and they provide a broad analysis of such models. As an application,

they consider the negative correlations between subsequent inter-spike-intervals that are

seen in some neurons, and they offer ad-hoc, minimal models with a small number of dis-

crete states that qualitatively reproduce the correlation. In this work, we have a similar

goal: capturing a statistical property of a non-renewal point process, here the unruliness

in the temporal variance growth rate for events, in a reduced model. Rather than using

an ad-hoc model, however, we make use of a systematic reduction that connects the full

system (3.1) directly to a linear model on the continuous-state-space Poincare section.

3.3. Asymptotic Variance Growth Rates for Markov and Markov Renewal

Processes

Our immediate goal is an understanding of the (asymptotic)2 temporal variance growth

rate (3.7). In this section and the corresponding Appendix B.1, we derive an expression

for it, (3.15), that is amiable to the analysis that appears in the following sections. We

find (3.15) in two steps: we first write the temporal variance growth rate in terms of a

2“Asymptotic” here reflects the fact that we are taking the limit t → ∞ or n → ∞. Since, throughout
this chapter, we are only considering long-time statistics - i.e. this type of limit, we will drop this modifier
in future references to this and related quantities.
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Figure 3.2. Events in a Noise-driven Limit-cycle Oscillator. (a):
Noisy trajectory crossing a Poincare section S and an event sub-section
E. (b): The linearized, stochastic, discrete-time dynamics for xk on the
Poincare section S. The shading gives the probability of xk+1 conditioned
on xk. (c): The designation 1E (xk) of each xk as an event or non-event and
the two associated point processes, T Sk and TEk .

sequential variance growth rate (Section 3.3.2 and Appendices B.1.1 and B.1.2), and then

we decompose the resulting formula into components that will show qualitatively different

behaviors when applied to the Markov renewal processes arising from oscillatory systems

(Section 3.3.3).
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3.3.1. Sequential Variance Growth Rates

The TVGR V(t)
E , (3.7), is a statistical property of the Markov renewal process T Sk on the

Poincare section S. Recall that a Markov renewal process is a Markov process in which

each step k occurs at a particular time Tk. The time interval ∆Tk ≡ Tk+1 − Tk between

steps is a random variable that may depend on the preceding and subsequent states, xk

and xk+1, and the ∆Tk are independent of each other once conditioned on the states xk

and xk+1 (see e.g. Chapter 6 of [34] for a pedagogical introduction). Since V(t)
E is defined

as a growth rate over time, it incorporates that temporal information. By contrast, we

define the sequential variance growth rate V(n)
x 7→f(x) (SVGR) of a function f on a Markov

process with states x ∈ S as

(3.8) V(n)
x 7→f(x) ≡ V

(n) [x 7→ f (x)] ≡ lim
n→∞

1

n
var

{
n∑
k=1

f (xk)

}
.

In our notation, the subscript x 7→ f (x) of V identifies how one maps the Markov states x

to the value f (x) that is then accumulated from one step to the next. In some instances,

for readability, we will alternatively write the expression x 7→ f (x) in square brackets.

As in the TVGR, the variance in the SVGR is taken over sample sequences given by xk.

However, unlike the TVGR, the SVGR V(n)
x 7→f(x) does not take into account any information

about the time between steps. In the case that f is an indicator function for those x that

correspond to events, the function variance is a simplified version of the TVGR wherein

the randomness of the time intervals in the Markov renewal process is ignored and all

intervals are set to 1.
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Note that, like xk, fk = f (xk) is itself a sequence of correlated random variables.

When the variance of the normalized sum V(n)
x 7→f(x) exists, it follows the standard formula

for series of random variables,

(3.9) V(n)
x 7→f(x) = var {f (x0)}+

∞∑
k=1

cov {f (x0) , f (xk)}+
∞∑
k=1

cov {f (xk) , f (x0)} .

Here, we imagine choosing the initial state x0 randomly according to the invariant density

of the Markov process. In that case, by the stationarity of the Markov process, x0 is as

good as any arbitrary element of the sequence. We write the two sums in (3.9) separately

to allow f to be vector-valued, in which case cov (·, ·) is in general a non-symmetric cross-

covariance matrix. Note that the definition of the SVGR (3.8) and the formula (3.9)

also allow for situations where the function f (x) itself is not deterministic, but takes

on random values that may depend on x. This is a feature we will make use of in the

following formulae.

We will also make use of a generalization of the SVGR, allowing for functions f that

depend on adjacent points xk and xk+1 of the Markov process:

(3.10) V(n)
(x→x′)7→f(x,x′) ≡ lim

n→∞

1

n
var

{
n∑
k=1

f (xk, xk+1)

}
.

For that we find it useful to define the Markov process on the “edges” of the original

process. We notate the sequence of states of the new process as zk ≡ (xk → xk+1). The

process’s dynamics are wholly induced by that of the original process: the probability to

transition from (a→ b) to (c→ d) under the new process is the probability to transition

from b to d under the original process if b = c and is 0 otherwise. The generalized SVGR
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on the original process is then just a standard SVGR on the new process, V(n)
(x→x′)7→f(x,x′) =

V(n)
z 7→f(z), and so it can be computed via (3.9).

3.3.2. The Event Temporal Variance Growth Rate as a Sequential Variance

Growth Rate

In Appendix B.1, we use a result from reward-renewal theory [73] to make the non-rigorous

argument that the TVGR for events V(t)
E can be written in terms of the generalized SVGR

of an (ordinary, non-renewal) Markov process. We find

(3.11) V(t)
E =

1

E {∆T}
V(n)

[
(x→ x′) 7→

(
1E (x)− E {1E (x)} ∆t (x, x′)

E {∆T}

)]
,

where ∆t (x, x′) is a random-valued function with the property that ∆t (xk, xk+1) has the

same distribution as ∆Tk when conditioned on xk and xk+1. Below and in the following

sections, we will rescale time so that the expected time interval is 1, and, because we will

use it often, introduce E as the event probability; thus

E {∆T} = 1(3.12)

E {1E (x)} = E .(3.13)

With these simplifying choices, (3.11) becomes

(3.14) V(t)
E = V(n)

(x→x′)7→(1E(x)−E∆t(x,x′)),

which can in principle be computed via (3.9).
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Before moving on, we make the following disclaimer. In Appendix B.1.1, we only give

a plausibility argument that the TVGR can by computed via (3.14). We offer a more

detailed derivation in Appendix B.1.2 resulting in the same formula, but that derivation

is only valid for Markov chains with finitely-many states. Even so, (3.14) has a clear

interpretation for more general state spaces. We assume that the result holds for the

Markov renewal processes we consider in this work, which, as we discuss in Section 3.5.2,

are innocuous Gaussian processes. We provide some empirical validation of (3.14) in

Section 3.6.6.

3.3.3. Decomposition of the Temporal Variance Growth Rate

The TVGR (3.14) is a (type of) variance of the sum of the correlated quantities 1E (x′)

and −E∆t (x, x′), and it would be reasonable to guess that it can be decomposed as the

variance of each term plus a type of covariance CV ,

(3.15) V(t)
E = V(n)

x 7→1E(x) − 2 E CV(n)
(x→x′) 7→1E(x),(x→x′)7→∆t(x,x′) + E2 V(n)

(x→x′)7→∆t(x,x′).

This is indeed the case, as we show in Appendix B.1.3, where we expand (3.14) via (3.9)

and reorganize the resulting terms. CV (n)
x7→f(x),x 7→g(x) is defined via a natural extension of

(3.8) and (3.9),

CV(n)
x 7→f(x),x 7→g(x) ≡ lim

n→∞

1

n
cov

{
n−1∑
k=0

f (xk) ,
n−1∑
k=0

g (xk)

}(3.16)

= cov {f (x0) , g (x0)}+
∞∑
k=1

cov {f (x0) , g (xk)}+
∞∑
k=1

cov {f (xk) , g (x0)} .(3.17)
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Note that if f and g are vector-valued, CV(n)
x 7→f(x),x 7→g(x) is analogous to a cross-covariance

matrix and will in general be non-symmetric.

The first term of (3.15) is just the sequential variance that arises by ignoring the

temporal aspect of the process, i.e. by setting ∆T = 1. We call it the “Markov-only” term.

Similarly, if one ignores the partitioning of the state-space by E by, say, setting E = S,

there is no variance in 1E (x). In that case, only the last term of (3.15), V(n)
(x→x′)7→∆t(x,x′),

is non-zero. We call this the “temporal” term. We call the remaining covariance term

“mixed”, since it only appears when both the temporal and partitioning aspects of the

process are present and are inter-dependent.

3.4. Temporal Variance Growth Rate for a Toy Model

Before considering the TVGR for stochastic limit-cycle oscillators, we introduce a sim-

ple, discrete 2-state toy model that reveals the quality of each the Markov, the mixed, and

the temporal components in (3.15) and how they interact to generate the non-monotonic

behavior of V(t)
E . We take x ∈ {0, 1} = S and E = {1}. In order to fully specify the

Markov-renewal process, we must prescribe the joint, conditional distribution for xk+1

and ∆T Sk = T Sk+1 − T Sk given xk. For simplicity, we assume that ∆T Sk is independent of

xk and that xk+1 is completely determined by ∆T Sk . Equivalently, there is a subset E∆T

of the positive real line, so that xk+1 corresponds to an event if and only if ∆T Sk ∈ E∆T .

Thus,

(3.18) xk+1 = 1E∆T

(
∆T Sk

)
.
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This very roughly captures what we expect to see in stochastic oscillators: the time to

reach E will generally be distributed differently from the time to reach S \E. Under these

assumptions, xj and xk are independent when j 6= k. Likewise, the pairs ∆T Sj and xk+1

as well as ∆T Sj and ∆T Sk are independent when j 6= k. In this simple scenario, only one

term survives in each of the components of the TVGR, corresponding to the first terms in

(3.9) and (3.17). Each of the Markov-only, mixed and temporal components of V(t)
E can

be evaluated easily, since xk is a sequence of independent Bernoulli-distributed random

variables governed by the probabilities E and 1− E . We have via (3.9) and (3.17)

V(n)
x 7→1E(x) = var {1E (x0)}

= E (1− E)

CV(n)
(x→x′) 7→1E(x),(x→x′)7→∆t(x,x′) = cov {1E (x1) ,∆t (x0, x1)}

= E (1− E)
(
∆t(1) −∆t(0)

)
V(n)

(x→x′)7→∆t(x,x′) = var {∆t (x0, x1)}

= var
{

∆T S0
}
,

where ∆t(n) = E
{

∆T Sk |xk+1 = n
}

for n = 0, 1.

Recall that we are interested in the TVGR as a function of an input noise strength

Din. In our toy model, we assert that the effect of increased input noise will be to increase

the variance of the inter-step times: we take ∆T Sk to be a random variable with mean 1

and variance σ2 ≡ Din

2
. Following (3.15) the TVGR can then be written simply as

(3.19) V(t)
E = E (1− E)

(
1− 2E

(
∆t(1) −∆t(0)

))
+ E2 Din

2
,
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Figure 3.3. Temporal variance growth rate V(t)
E for the 2-state toy

model (3.18). The “Markov-only” and mixed components of the TVGR
are non-monotonic and the temporal component is monotonic. In (a), the
oscillatory case, their sum, the full TVGR, has the characteristic unruly
quality: an initial linear growth, a strong nonlinear amplification, a max-
imum, and a subsequent decrease. The choice of an asymmetric interval
E∆T about ∆T S = 1 is only made so that ∆t1 6= ∆t0 and the mixed term
is nonzero. It is not essential to the appearance of unruliness. In (b), the
excitable case, the TVGR is missing the initial linear growth.

where E , ∆t(1), and ∆t(0) each vary with Din. When E∆T is a contiguous interval and

∆T Sn is unimodally distributed, we expect that each will in fact vary monotonically with

Din. Then, because of the appearance of the Bernoulli variance E (1− E), we expect the

Markov and mixed terms to be non-monotonic, but the temporal term to be monotonic.

As a concrete example, we consider the case where ∆Tn is a Gaussian random variable

and E∆T is an interval (a, b) with a < 1 < b. Note that this choice of E∆T implies that

events will be produced regularly when Din = 0, since then ∆T Sk = 1 ∈ E∆T for all k. In

this case, the temporal term is indeed monotonic, producing a roughly linear TVGR in

the weak-input-noise regime (Figure 3.3a). And the Markov and mixed terms are non-

monotonic and produce the strong and non-monotonic nonlinearity that is characteristic

of what we call “unruliness” (compare Figures 3.1b and 3.3a).
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Although we do not pursue it further in this work, we note that the toy model can also

be placed in an “excitable” rather than an oscillatory regime by choosing E∆T = (a, b)

with either a < b < 1 or 1 < a < b. Here event-production requires a nonzero amount of

noise, Din > 0. In contrast with the oscillatory case, no initial linear growth appears in

the TVGR, and the Markov-only component dominates at low noise (Figure 3.3b).

The pattern of behavior of the toy model in the oscillatory regime is mirrored in the

TVGR for planar limit cycle oscillators, as we show in Section 3.6. There, as is the case

here, the strong nonlinear rise in the TVGR roughly corresponds to E decreasing from 1 to

1
2
. In the oscillator, this reflects an increasing number of phase slips, i.e. oscillation cycles

that miss the event subset E and replace events with non-events, or vice versa. The TVGR

decreases again when E decreases past 1
2
, where the phase slips dominate the oscillations.

Thus, the Bernoulli variance E (1− E) underlies the seemingly counterintuitive increased

regularity in the (lack of) events with increased input noise strength.

3.5. Temporal Variance Growth Rate for Limit Cycle Oscillators

We now apply the theory developed in Section 3.3 to the particular Markov renewal

processes arising from Poincare map dynamics for oscillators. Here we first sketch the

case of general oscillators, which is discussed in detail in Appendices B.2 and B.3. In

Section 3.6 we then focus on the implications for unruliness in planar oscillators.

3.5.1. Noise-Driven Oscillators in Phase-Isostable Coordinates

We first write the limit-cycle oscillator in d + 1 dimensions, (3.1), in phase-isostable

coordinates (φ, ψ1, ψ2, . . . , ψd) (see [84] and Appendix B.2.1 for an extended discussion).
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For weak noise and assuming small deviations ψi from the limit cycle, one has

dφ = dt+
√

2Din
~Z (φ)T GLC (φ) d ~W + h.o.t.(3.20)

dψi = −κiψi dt+
√

2Din
~Yi (φ)T GLC (φ) d ~W + h.o.t. i = 1 . . . d .(3.21)

Here, ~Z (φ) is known as the phase response curve (PRC) and the ~Yi (φ) as isostable

response curves (IRCs). They are the gradients of the phase and isostables coordinates,

respectively, as functions of the state ~y evaluated at the point on the limit cycle with

phase φ. Here, in the limit of small Din, they give the responses of the phase and isostable

variables to the perturbation σG (~y) d ~W (t) that appears in (3.1). At lowest order, G (~y)

is replaced by GLC (Φ (~y)), where GLC (φ) is the value that G has at the point on the

limit cycle with phase φ. The higher order terms (h.o.t.’s) in (3.21) and in the following

are O
(
Din,
√
Din

∣∣∣~ψ∣∣∣ , ∣∣∣~ψ∣∣∣2), where ~ψ ≡ (ψ1, ψ2, . . . , ψd).

We note that, in the context stochastically-forced oscillators, recent studies have in-

troduced alternative, noise-strength-dependent versions of phase [68, 77] and isostable

coordinates [61]. Here in (3.20) and (3.21), we however make use of the phase-isostable

coordinate system defined with respect to the deterministic dynamics (see (B.11) and

B.12).

3.5.2. Linearized Poincare Map and First Passage Time

Turning now to the Poincare section and map, we represent the Poincare section S near

the limit cycle by

(3.22) φ = φS

(
~ψ
)

= ~mT
S
~ψ +O

(∣∣∣~ψ∣∣∣2) .
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Note that this section intersects the limit cycle at φ = 0, and therefore taking ~mS =

0 chooses the isochron given by φ = 0 as the Poincare section. In the general case,

~mS 6= 0, the Poincare section does not correspond to an isochron, and so the time ∆T Sn

between consecutive section crossings differs from the period of the periodic orbit by an

amount that reflects the change in ~ψ between the crossings. One has to leading order

E
{
~ψn+1

∣∣∣~ψn} ∼ Λ~ψn and E
{

∆T Sn

∣∣∣~ψn} ∼ 1 + ~δµ
T ~ψn, where Λ is the diagonal matrix

with entries e−κi and ~δµ ≡ mT
S (I−Λ). Taking into account the contribution of the noisy

perturbations at first order, we expect

∆T Sn = 1 + ~δµ
T ~ψn +

√
2Dinζn + h.o.t.(3.23)

~ψn+1 = Λ~ψn +
√

2Din~ηn + h.o.t.,

where ζn and ~ηn are normally distributed random variables with mean 0, which, in general,

will be correlated. Because the process is Markovian, ζn and ~ηn are i.i.d. across n. The

(co)variances of ζn and ~ηn depend on ~ms, Λ and the PRC and IRCs. They are derived

along with ~δµ in Appendix B.3.1. Note that since we assume stability of the limit cycle,

all Floquet multipliers that appear in the diagonal matrix Λ have magnitude less than

1. Then in the limit n → ∞, where the process becomes stationary, we expect ~ψn to be

distributed as

(3.24) ~ψn
dist.∼ N (0, 2DinΓss) ,

whereN (~µ,Σ) is the multivariate normal distribution with mean ~µ and covariance matrix

Σ. The “steady-state” matrix Γss is found via (3.23) by the condition that the covariance
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matrices for ~ψn and ~ψn+1 are the same, namely 2DinΓss. Thus,

var
{
~ψn+1

}
= var

{
Λ~ψn

}
+ 2DinΓ

implies

2DinΓss = 2Din (ΛΓssΛ + Γ)

where Γ is the covariance matrix of ~ηn. Equivalently,

(3.25) Γss =
∞∑
k=0

ΛkΓΛk.

Further, based on (3.23) and using elementary relationships between conditional and joint

normal distributions, we show in Appendix B.3.2 that the joint, stationary distribution

for ~ψ across multiple iterations of the map is given by

(3.26)

 ~ψn+m

~ψn

 dist.∼ N (0, 2DinCm) ; Cm ≡

 Γss ΛmΓss

ΓssΛ
m Γss

 ,

again in the limit n→∞.

3.5.3. Temporal Variance Growth Rate for Linearized Dynamics

We can compute the temporal variance growth rate using the distributions and statistic

cited above and derived in Appendix B.3.2. We use (3.15), where the Markov state x

is in this case the vector ~ψ. The above linearization of the dynamics is essential for

the computation; we make progress by leveraging the fact that all of the probability

distributions are Gaussian. While we leave the full details of the derivation to SI Section
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B.3.3, here we comment on results for each component of the TVGR, highlighting the

dependence of each on Din. In the SI and in the following, we take N (·; 0,Σ) to be the

probability density function for the multivariate normal distribution with mean ~0 and

covariance matrix Σ. Then, for example, (3.24) gives

(3.27) E =

∫
E

N (x; 0, 2DinΓss) dx.

From (3.9), we see that the Markov-only component V(n)
x 7→1E(x) is made up of a series

of integrals over N (·; 0, σ2Cm),

(3.28) V(n)
x 7→1E(x) =

(
E − E2

)
+ 2

∞∑
m=1

(
Em − E2

)
,

where

(3.29) Em ≡
∫
E×E

N (z; 0, 2DinCm) dz.

Note E0 = E and Em → E2 as m → ∞ (see the definition of Cm in (3.26)), so that in

some sense Em interpolates between E and E2 as m increases. Notoriously, closed form

expressions for integrals like Em are not known even if E is simple, e.g. a rectangular

region. One must resort to numerical analysis or, as we do in Appendix B.4 , to bounding

procedures to capture their behavior as a function of Din.
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The mixed component CV (n)

(x→x′) 7→1E(x′),(x→x′)7→∆t(x,x′) involves both 1E and ∆t (x, x′).

Under the linearized dynamics (3.23), ∆t (x, x′) is linear in x and x′ (see (B.52) in Ap-

pendix B.3.2). The mixed component, therefore, has at its essence the quantity

(3.30) xE ≡
1

E

∫
E

xN (x; 0, 2DinΓss) dx,

which identifies the center of mass of the event subset E with respect to the steady-state

density N (·; 0, 2DinΓss). Indeed, the only dependence CV (n)

(x→x′)7→1E(x′),(x→x′)7→∆t(x,x′) has

on Din is via the product xEE (see Appendix B.3.3). For many simple choices of E, xE can

be written in closed-form in terms of well-known functions, as we will do in Section 3.6.

As a function of Din, we expect the vector-valued xE to increase in magnitude from the

minimal distance between x = 0 and E (when the density N is localized around x = 0)

and converge to the centroid of E as Din → ∞ (when the density conditioned on x ∈ E

approaches the uniform density).

The temporal factor, V (n)

(x→x′)7→∆t(x,x′), does not involve the restriction of x to E; all

integrals found here will be over the entire domain, and there will be no boundary-induced

effects. Therefore this factor will only depend on Din via an overall scaling by Din (see

Appendix B.3.3 for details).

In total,

(3.31) V(t)
E =

(
E − E2

)
+ 2

∞∑
m=1

(
Em − E2

)
+~bTxEE2 + cDinE2.
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~bT and c and are found in Appendix B.3.3 to be

~bT = 2Γ−1
ss (I−Λ)−1 YT

G~zG(3.32)

≡ 2Γ−1
ss (I−Λ)−1

∫ 1

0

Λ1−sY (s)T GLC (s) GLC (s)T ~Z (s) ds,

where the columns of the matrix Y (φ) are the IRCs ~Yi (φ), and

c = 2~zTG~zG(3.33)

≡ 2

∫ 1

0

~Z (s)T GLC (s) GLC (s)T ~Z (s) ds,

respectively. As reflected in the above formulae, we define ~zG to be an averaged version

of the PRC ~Z (φ) and the matrix YG to be an averaged version of the IRC matrix Y (φ)

(see Appendix B.2.2 for an extended discussion of the averaging procedure). ~b and c are

therefore quantities that reflect the intrinsic oscillator dynamics: they do not vary with

Din or depend on the size and shape of E within the Poincare section. It will be the focus

of the next section to develop an understanding of the E- and Din-dependent elements E ,

Em, and xE and how they interact to form unruliness given different values of ~b and c.

Before moving on, we consider the limiting case where E = S. In this case, since

there are no steps in the Markov renewal process that are not events, no steps xk are

distinguished from any other. We see this in the TVGR (3.31), where xE = 0 and

E = Em = 1 when E = S. Only the final, temporal term, cDin = 2~zTG~zGDin, survives,

and so the effective diffusion coefficient Deff = 1
2
V(t)
E is precisely the linear phase diffusion

Dphase (3.3) from the phase reduction theory.
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More generally, when x = 0 ∈ E ⊂ S, both the Markov-only and mixed terms are

eliminated as Din → 0. Specifically, V(n)
x 7→1E(x) approaches 0 as Din → 0, since events

are produced with high probability and little variance. The event center of mass xE

also approaches 0 as Din → 0. Once again, only the temporal term survives. Therefore

when the event subsection intersects the limit cycle (0 ∈ E), Deff coincides with Dphase

in the weak noise limit. This shows that the effective diffusion coefficient Deff is the

result of an augmentation to the phase diffusion that takes effect above the weak-noise

regime. This follows from the fact that the phase-isostable representation, (3.20) and

(3.21), augments the standard phase reduction. Note that, in particular, oscillator models

in d + 1 dimensions are represented in the full TVGR (3.31) by 2d additional derived

parameters, the d components of each Λ and ~b, beyond the scalar c, which is associated

with standard phase reduction.

3.6. Main Results: Planar Oscillators

We now narrow our focus to one-dimensional Poincare maps that arise from two-

dimensional oscillators. In this case, b, xE, Λ, and Γss become scalar quantities and only

one column appears in YG ≡ ~yG. From (3.25) and (B.46) one obtains

(3.34) Γss =
1

1− Λ2
Γ =

1

1− Λ2
‖~yG‖2 ,

and the expression for b, (3.32), simplifies to

(3.35) b = 2 (1 + Λ)
~zTG~yG

‖~yG‖2 .
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The Cauchy-Schwarz inequality applied to ~zTG~yG shows that b2 and c = 2 ‖~zG‖2 cannot be

varied completely independently of each other,

1 ≥
(
~zTG~yG

)2

‖~yG‖2 ‖~zG‖2 =
b2

4(1 + Λ)2

‖~yG‖2

‖~zG‖2 =
1

2

1− Λ

1 + Λ
Γss

b2

c
.

Thus, the b − c parameter space is limited to a parabolic region that depends on Λ and

Γss

(3.36)
c

Γss

≥ 1

2

1− Λ

1 + Λ
b2.

We will further limit our investigation to cases where E is a single, finite interval in

the one-dimensional section S and where the limit cycle intersects E, so that events are

produced regularly in the absence of noise. Since S is parameterized by the single number

x = ψ, this is equivalent to taking

(3.37) E =

(
w

(
δ − 1

2

)
, w

(
δ +

1

2

))
,

where −1
2
< δ < 1

2
and w is the width of the interval. The TVGR will then depend

parametrically on w and δ as well as b, c, and Γss:

V(t)
E (Din;w, δ, b, c,Γss) = V(n)

x 7→1E(x) (Din;w, δ,Γss) +

+b xE (Din;w, δ,Γss) E2 (Din;w, δ,Γss) +

+cDin E2 (Din;w, δ,Γss) .(3.38)
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The dependence of V(t)
E (Din;w, δ, b, c,Γss) on its various parameters can be simplified

by noting their symmetry and scaling properties. Since, under linearization of the dy-

namics, the relevant joint densities are Gaussian and therefore symmetric, E and Em are

invariant and xE is negated under the reflection of E about 0, δ → −δ. And so the TVGR

is invariant when b is also negated (see (3.38)), i.e.

V(t)
E (Din;w, δ, b, c,Γss) = V(t)

E (Din;w,−δ,−b, c,Γss) .

Therefore we only need to consider intervals E, (3.37), with 0 ≤ δ < 1
2

so that xE ≥ 0.

Note also that w can be absorbed into Din in E , Em, and xE by a rescaling of b and c,

(3.39) Din ←
Din

w2
, b← wb, c← w2c.

Thus, a larger event window is compensated for by larger noise. Likewise, without loss of

generality, we could also effectively set Γss = 1 by absorbing Γss into Din and correspond-

ingly rescaling c (see (3.38)):

(3.40) Din ← ΓssDin, c←
c

Γss

.

In total,

(3.41) V(t)
E (Din;w, δ, b, c,Γss) = V(t)

E

(
Γss

w2
Din; 1, δ, wb,

w2

Γss

c, 1

)
,

and so, for any Γss > 0 and w > 0, V(t)
E can be understood by considering the case

Γss = w = 1 and varying b and c. Therefore, we at times only consider the behavior of

E (Din;w, δ,Γss) and xE (Din;w, δ,Γss) for Γss = w = 1.
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Our main goal is to understand the origin of the unruliness of V(t)
E , i.e. of its strong

rise and subsequent decrease with increasing Din. We therefore consider in detail the

Din-dependence of the three terms in (3.38). From (3.27) and (3.30) we find the exact

formulae

(3.42) E (Din;w, δ,Γss) =
1

2

[
erf

(
w
(
δ + 1

2

)
2
√

ΓssDin

)
− erf

(
w
(
δ − 1

2

)
2
√

ΓssDin

)]

and

(3.43)

xE (Din;w, δ,Γss) =
1

E

√
ΓssDin

π

(
exp

(
−
w2
(
δ − 1

2

)2

4ΓssDin

)
− exp

(
−
w2
(
δ + 1

2

)2

4ΓssDin

))
.

For any δ ∈
[
0, 1

2

)
, the event probability E is monotonically decreasing as a function of

Din (Figure 3.4a,b.i), reflecting the increased likelihood to miss the event sub-section E

as the noise is increased. In parallel, the event center of mass xE, which is a scalar for

planar oscillators, monotonically increases from 0 to the centroid of E at x = wδ, since

the probability density becomes ever more homogeneous across E (Figure 3.4a,b.ii).

For the Markov-only term V(n)
x 7→1E(x) no analytical expression is available for general Λ

due to the appearance of the term Em in (3.28). As we will see below in Section (3.6.2),

in a limit where Λ → 0 and w → 0 simultaneously, Em is given by E2 and therefore

V(n)
x 7→1E(x) = E (1− E) is non-monotonic in Din (Figure 3.4b.iii). As in the toy model, the

mixed term xEE2 has a maximum at intermediate values of Din and the temporal term

DinE2 increases monotonically, reaching a constant value asymptotically (Figure 3.4b.iv

and b.v).
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Figure 3.4. The Din-dependent Elements of the TVGR V(t)
E . (a): A

schematic depiction of the steady-state distribution on the Poincare section
S (black line) for δ > 0 and various Din. E is the probability mass associated
with E (red shading above the red interval), and xE is its center of mass.
(b): Plots of the TVGR elements as a function Din for various values of δ.
The gray arrows indicate roughly how the graphs change with increasing
δ; all converge to the solid black curve as δ → 1

2
. The top row shows the

“raw” elements, E and xE. Note that xE is identically 0 for δ = 0. In the
quasi-renewal limit (see Section 3.6.2), the TVGR is a linear combination
of the components plotted in (b.iii) and (b.v), E (1− E) and DinE2.

Overall, the Din-dependence of V(t)
E depends on the balance between the first two

and the third term in (3.38). Thus, b and c, which represent the specific dynamics
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of the oscillator via its averaged PRC and IRC (see (3.32) and (3.33)), are the primary

parameters in the TVGR. We will show in the following sections that for any choice of the

interval E containing 0, unruliness appears in a set of finite measure in the b-c parameter

space. After giving a concrete criterion for unruliness, we start our investigation in Section

3.6.2 with a limiting case of the dynamics where the TVGR can be treated exactly. In

the subsequent sections we then provide analytical estimates for the Markov-only term

that allow us to identify sufficient conditions on b and c to guarantee unruliness of V(t)
E ,

resulting in the phase diagram Figure 3.7.

3.6.1. The Criterion for Unruliness

The main goal of this chapter is to demonstrate widespread unruliness in the event out-

put of noisy oscillators. To make progress, we therefore need to make the criterion for

unruliness concrete and quantitative. At the same time, unruliness is in some sense a

qualitative phenomenon, where V(t)
E as a function of Din is initially linear, has a strong

monotonic rise, attains a maximum, and then eventually decreases. Any quantitative test

for unruliness should, therefore, only be interpreted as a rough “rule of thumb”. We briefly

consider three criteria, before settling on one. First, the most obvious feature of unruli-

ness as seen in Figures 3.1b and 3.3a is the maximum in the TVGR. A criterion could

therefore simply be that V(t)
E has a local maximum. This is unfortunately too generous,

since a local maximum does not imply a strong rise. For instance, in the simple quasi-

renewal case discussed in Section 3.6.2 below, V(t)
E has a local maximum for any value of

c ≥ 0, but not all cases shown in Figure 3.5 should qualify as unruly. A better crite-

rion is motivated by the visual appearance of graphs of sums of functions on a log-scale
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plot. On the log-scale, addition f + g becomes - very roughly - the maximum operation

max (log f, log g). This can be seen, e.g., in Figure 3.3a, where the total TVGR (black)

closely follows the larger of the temporal component (blue, dashed) and the Markov com-

ponent (orange, solid). Following that line of reasoning, the total TVGR would have a

prominent maximum if, in the vicinity of the maximum of the non-monotonic component

V(t)
E,non-monotonic ≡ V

(n)
x 7→1E(x) + bxEE2, that component dominated the monotonic, temporal

component V(t)
E,monotonic ≡ cDinE2. I.e.

V(t)
E,non-monotonic(D

(max)
in ) > V(t)

E,monotonic(D
(max)
in )(3.44)

with ∂
∂Din
V(t)
E,non-monotonic(Din)

∣∣∣
Din=D

(max)
in

= 0 .

(3.44) is a reasonable criterion that effectively separates those cases which we would

reasonably classify as unruly or not unruly. But we found that the analysis of (3.44)

becomes unnecessarily complicated for something meant to be “just a rule of thumb”. We

therefore opt for a yet stricter criterion that is more amiable to analysis and interpretation.

Given the monotonic saturation of V(t)
E

monotonic for Din →∞ (see Figure 3.4b.v), for V(t)
E

to be classified as unruly we require that the maximum of V(t)
E,non-monotonic is greater than

the asymptotic value (and upper bound) of V(t)
E,monotonic, which is also the asymptotic value

of V(t)
E :

(3.45) max
Din

{
V(t)
E,non-monotonic

}
> lim

Din→∞
V(t)
E,monotonic.

This criterion guarantees a prominent maximum in the TVGR; it indeed picks out those

cases that are strongly unruly (Figure 3.5).
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Figure 3.5. Unruliness requires c to be sufficiently small. Sample
TVGRs in the quasi-renewal limit that are (a) not unruly with c above the
unruliness threshold ccrit,r, (b) marginally unruly with c at the threshold,
and (c) unruly with c below the threshold (3.50). The presence of a local
maximum (red circle) does not distinguish these three cases. In the plots,
we take δ = 1

4
, but they are qualitatively representative for δ ∈

[
0, 1

2

)
.

3.6.2. The Quasi-Renewal Case (Λ→ 0 with w → 0)

We first consider the simple limiting case of strong contraction to the limit cycle, Λ→ 0.

In this limit, we expect the steady-state variance on the section, Γss, to go to 0. Indeed,

with (3.34) and the analysis in SI Section B.2.2.3,

Γss ∼ ‖~yG‖2 ∼ − 1

log Λ
.

For fixed values of Din, w, and δ, we have then E (Din;w, δ) → 1, Em (Din;w, δ) → 1,

and xE (Din;w, δ) → 0; crossings of the Poincare section are always at x = 0, i.e. on

the limit cycle. There are no phase slips, since events are produced at every crossing.

This is unsurprising: for strong contraction the standard phase reduction is an accurate

representation of the dynamics, and the process is effectively a renewal process. Indeed,

V(t)
E reduces in this limit to its phase-reduction value, V(t)

E → cDin = 2Dphase.

To obtain a non-trivial result in the limit of strong contraction, we need to take the

width of E to 0, as well, in order to keep the probability of phase slips 1 − E (Din;w, δ)
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unchanged. That requires

(3.46) w ∝
√

Γss ∝
√
− 1

log Λ

as Λ → 0 (see (3.42)). In this case, it is clear from (3.43) that xE → 0 still, but the

limiting behavior of Em requires some care. Applying the definitions of E from (3.37) and

Cm from (3.26), (3.29) becomes

(3.47) Em =

∫ w(δ+ 1
2)

w(δ− 1
2)

∫ w(δ+ 1
2)

w(δ− 1
2)

N


 x1

x2

 ; 2DinΓss

 1 Λm

Λm 1


 dx1dx2.

The dominant contribution to the covariance matrix for Λ� 1 is

2DinCm ∼ 2DinΓss

 1 0

0 1

 ,

and thus

(3.48) Em →

[∫ w(δ+ 1
2)

w(δ− 1
2)

N (x; 2DinΓss) dx

]2

= E2.

In total (3.28) becomes V(n)
x 7→1E(x) = E (1− E), reflecting the fact that there are no corre-

lations in events from one step to the next. We therefore call this limiting case, given

by Λ → 0 along with (3.46), the “quasi-renewal” case. Since xE = 0, the quasi-renewal

TVGR,

(3.49) V(t)
E,qr (Din; c) = E (1− E) + cDinE2,
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is independent of b. Here the TVGR has essentially the same form as in the toy model

discussed in Section 3.4 (cf. (3.19)) and unruliness arises if c is small enough for the

non-monotonic Markov-only term to dominate over the temporal term. It can be shown

that DinE2 → w2

4πΓss
independently of a as Din → ∞. Therefore, since E (1− E) has a

maximum value of 1
4
, V(t)

E,qr is unruly according to (3.45) if

(3.50) c < ccrit,qr = π
Γss

w2
.

Sample TVGRs that satisfy (3.50) are indeed strongly unruly (Figure 3.5).

3.6.3. Symmetric Intervals E (δ = 0, Λ > 0)

There are two effects as Λ is perturbed from 0: the mixed term bxEE2 becomes generally

non-zero and Em deviates from E2. As a stepping stone to the most general case, we first

consider only symmetric intervals given by δ = 0. In that case, the event center of mass

xE is 0, and we can consider Em alone in the question of how (3.50) generalizes.

In order to address unruliness in the TVGR in this case, we will need to understand

the infinite sum in (3.28),
∑∞

m=1 (Em − E2). Bounding Em in such a way that the sum

over m can be carried out and is well behaved for all Λ ∈ [0, 1) and all δ ∈
[
0, 1

2

)
turns

out to be quite involved. We show the full details in Appendix B.4 where we find that

0 ≤ Em − E2 ≤ ΛmE (1− E) ,

and so

(3.51) E (1− E) = V(n)
x 7→1E(x) (Λ = 0) ≤ V(n)

x 7→1E(x) <
1 + Λ

1− Λ
E (1− E) ,
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via a geometric series. Thus, a lower bound on the non-monotonic part of the TVGR for

Λ > 0 is found by replacing it with its Λ = 0 counterpart, that is by replacing V(n)
x7→1E(x)

with E (1− E). Therefore, if the maximum of E (1− E) exceeds the asymptotic value cw2

4πΓss

of cDinE2, then so will the maximum value of V(n)
x 7→1E(x), and the unruliness criterion (3.45)

will certainly be satisfied. So the quasi-renewal condition for unruliness, (3.50), can only

underestimate the range of c for which unruliness appears. At the same time, the upper

bound in (3.51) guarantees that for

(3.52) c >
1 + Λ

1− Λ
ccrit,qr

V(t)
E (Din;w, δ = 0, b, c) is certainly not unruly.

Thus, despite the uncertainty involved in being able to only bound V(n)
x 7→1E(x), we can

make the following statements

(3.53) V(t)
E (Din;w, δ = 0, b, c) is certainly unruly when c < ccrit,qr

(3.54) V(t)
E (Din;w, δ = 0, b, c) is certainly not unruly when c >

1 + Λ

1− Λ
ccrit,qr

(3.55)

V(t)
E (Din;w, δ = 0, b, c) may be unruly or not unruly for ccrit,qr < c <

1 + Λ

1− Λ
ccrit,qr .

When we consider δ 6= 0 in the following, b and c will both be relevant parameters.

The above statements will generalize to three regions of the b-c parameter space in which

V(t)
E is 1) certainly not unruly, 2) certainly unruly, and 3) may be either.
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3.6.4. The General Case

Finally, we consider V(t)
E in full generality for δ 6= 0 and Λ > 0. Due to the asymmetry δ 6=

0, the mixed term bxEE2 does not drop out and one has to deal with two non-monotonic

terms. Obtaining sharp, general conditions for the onset of unruliness is therefore quite

difficult. We therefore content ourselves with sufficient conditions.

Before considering more detailed criteria, (3.56)-(3.58) below, we first note that as long

as b ≥ 0 and δ ≥ 0, the mixed term bxEE2 is non-negative and non-monotonic (Figure

3.4b.iv) and can not detract from unruliness. So the criterion (3.53), which applied in the

case that δ = 0, will also guarantee unruliness when δ ≥ 0 and b ≥ 0:

V(t)
E (Din;w, δ, b, c) is certainly unruly when c < ccrit,qr and b ≥ 0 .

Thus, at least a finite region of the parameter space is unruly, bounded by c = ccrit,qr =

π Γss

w2 above, b = 0 to the left and to the right by b =
√

2 c
Γss

1+Λ
1−Λ

, which follows from the

physicality condition (3.36).

But, moreover, for b > 0 the mixed term bxEE2 and the Markov-only term V(n)
x 7→1E(x)

both contribute to the non-monotonicity of V(t)
E (Figure 3.6a,b). We therefore choose as

a broader, sufficient condition for unruliness that either of these terms by itself dominate

the monotonic temporal term cDinE2. And for b < 0 unruliness is guaranteed if the mixed

term is small enough to not undermine the dominance of the Markov-only term over the

temporal term (Figure 3.6c). We therefore require that the mixed term is dominated by

the temporal term, which in turn is dominated by the Markov-only term. These sufficient
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conditions can be summarized as either (I) the mixed term dominates,

(3.56) max
Din

{
bxEE2

}
> lim

Din→∞
V(t)
E = c

w2

4πΓss

,

or (II) the Markov-only term dominates,

(3.57) max
Din

{
V(n)
x 7→1E(x)

}
> lim

Din→∞
V(t)
E = c

w2

4πΓss

,

as long as b is not strongly negative,

(3.58) − b < cmin
Din

{
Din

xE

}
.

If (3.58) is not satisfied, a more refined analyses would be required to determine unruliness.

In the following we classify the unruliness in these situations, where V(t)
E could even have

a local minimum, as “unclear” (Figure 3.6d).

From (3.56)-(3.58), there will be four boundaries for unruliness in the parameter space.

One boundary, below which unruliness certainly occurs, follows from (3.56). Because of

the range of values that V(n)
x 7→1E(x) can take on (see (3.51)), two more follow from (3.57): the

boundary c = π Γss

w2 below which unruliness certainly occurs and the boundary c = 1+Λ
1−Λ

π Γss

w2

below which unruliness may possibly occur. These are generalizations of (3.53) and (3.55)

for δ ≥ 0, and they apply as long as the condition on b, (3.58), is satisfied. Thus, the two

regions corresponding to certain and possible unruliness will be cut short by the fourth

boundary −b = cminDin

{
Din

xE

}
beyond which the negative mixed term could diminish the

unruliness.
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Figure 3.6. The mixed component can promote or detract from
unruliness. Sample lower bounds (from (3.51)) of TVGRs that are unruly
(a) because the Markov component dominates over the asymptotic value of
the TVGR and (b) because b is positive and large and the mixed component
dominates. (c): b is negative, but the mixed term is not large enough to
detract significantly from the unruliness. (d): a situation where the typical
unruly quality is lost and a local minimum appears because b is sufficiently
large and negative. This situation is outside the scope of our analysis.

In order to represent all of the possibilities graphically in a single phase diagram

(Figure 3.7), we minimize the number of parameters that need to be considered. We have

already shown in (3.41) that the event interval width w and the steady-state variance

coefficient Γss can be absorbed by rescaling Din, b, and c. In the following we make this

rescaling explicit by defining

(3.59) bΛ ≡
1− Λ

1 + Λ
wb and cΛ ≡

1− Λ

1 + Λ
w2 c

Γss

.
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Figure 3.7. Dependence of unruliness on bΛ and cΛ (cf. (3.59)). (a):
The bΛ-cΛ phase diagram, representative for all Λ > 0 and 0 < δ < 1

2
.

The physical portion of the diagram is divided into four regions, reflecting
TVGRs that are not unruly (white), certainly unruly (red), and may be
either (orange). The fourth, blue region corresponds to situations that may
be different altogether, with a local minimum possibly appearing in the
TVGR. The boundaries between physical regions are all piece-wise linear,
and the pieces are either fixed (cΛ = π), vary with Λ (cΛ = 1−Λ

1+Λ
π), or have

slopes that vary with δ (cΛ = κ (δ) bΛ). (b): The δ-dependent slopes κunruly
and κuncertain.

To be precise, the noise strength should also be explicitly scaled, Din ← Γss

w2Din. But that

just shifts the noise level at which features in the TVGR, like unruliness, occur, and does

not change whether they appear or not. We choose to include also a Λ-dependent factor

in this rescaling, since it largely frees us from considering Λ explicitly. The physicality

condition (3.36) is simply cΛ ≥ 1
2
b2

Λ. And the threshold beyond which unruliness cannot

occur, (3.52), becomes cΛ = π, for any value of Λ > 0. The tradeoff is that the threshold

in cΛ below which unruliness certainly does occur, cΛ = 1−Λ
1+Λ

π, depends on Λ. The other

criteria, (3.56) and (3.58), remain independent of Λ. They correspond to linear boundaries
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that pass through the origin in the bΛ-cΛ plane (Figure 3.7a), with δ-dependent slopes

given by

(3.60) κunclear (δ) = −max
Din

{
xE (Din; δ)

Din

}

and

(3.61) κunruly (δ) = 4πmax
Din

{
xE (Din; δ) E2 (Din; δ)

}
,

respectively (Figure 3.7b). Note that in the case δ = 0, which was discussed in Section

3.6.3, κunclear = κunruly = 0: the phase diagram is divided into horizontal bands corre-

sponding to (3.53)-(3.55). And, as δ → 1
2
, κunclear diverges: in this limit, the entire left

hand of the phase diagram becomes “unclear”.

It is worthwhile considering what happens when the width of the event interval w is

changed. Varying w while keeping the remaining parameters fixed amounts to tracing out

parabolic curves in the (bΛ, cΛ)-plane that are defined by bΛ = B√cΛ (cf. (3.59)) with B

a constant (dashed lines in Figure 3.8a). Depending on B different scenarios arise (Figure

3.8b). Examples of the traces corresponding to the different regimes in Figure 3.8b are

shown as dashed lines in Figure 3.8a. Considering the limit w → 0, V(t)
E “certainly”

becomes unruly if b > 0 (scenario (i)), while for b < 0 the outcome is “unclear” (scenarios

(ii)-(iv)). As w is increased from 0, V(t)
E can become “certainly unruly” (scenario (ii)) or

“possibly unruly” (scenarios (ii) and (iii)) even when b < 0. The various transitions define

the values w∗unclear, w
∗
certain, and w∗possible, respectively, which are determined in Appendix

B.5.
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Figure 3.8. Dependence of unruliness on the event interval E. (a):
The effect of varying the interval width, w, in the bΛ-cΛ phase diagram
is to trace out parabolic curves of constant bΛ√

cΛ
. Four qualitatively dif-

ferent behaviors appear, depending on bΛ√
cΛ

: (i) unruliness will certainly

appear for some interval w ∈ (0, w∗certain), (ii) unruliness will certainly ap-
pear for w ∈ (w∗unclear, w

∗
certain) , (iii) unruliness could possibly appear for

w ∈
(
w∗unclear, w

∗
possible

)
, and (iv) the oscillator is either not unruly or the

situation is unclear for all w. (b): A phase diagram over bΛ√
cΛ

and δ sum-

marizes the appearance of the four different unruliness behaviors (i)-(iv).

In summary, since the physically accessible parameter range for planar oscillators is

given by

(3.62) − 1 ≤ 1√
2

bΛ√
cΛ

=
~zTG~yG

‖~zG‖ ‖~yG‖
≤ 1

(see (3.36) and (3.59)), and all finite event intervals E that intersect the limit cycle satisfy

0 ≤ δ < 1
2

up to reflection, Figure 3.8b captures all planar oscillators and their relevant

event intervals. It shows that for any value of B = bΛ/
√
cΛ, which characterizes the
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internal dynamics of the oscillator, there is a range of event intervals, characterized by δ

and w, for which the TVGR V(t)
E is certainly unruly.

3.6.5. Example: Hopf Normal Form

One might rightly complain that while the bΛ-cΛ plane (Figure 3.7a) shows a substantial

region of unruliness, b and c are derived parameters, whose relationship to the parameters

that originally appear in a given oscillator model are not clear. Likewise, while some

choice of E produces unruliness in any oscillator, that choice may not be of interest in a

given model or application. In short, it is not clear that the unruly region is reachable

by reasonable choices of the model’s parameters and a reasonable choice of interval E.

Here we address this concern by investigating the prototypical limit-cycle oscillator. We

compute the reduced parameters b and c for the unfolded Hopf normal form, also known

as the Stuart-Landau oscillator, with added noise,

d~y = 2π


 ε −α

α ε

 ~y −

 β −γ

γ β

 |~y|2 ~y
 dt+ σG d ~W.

In this coordinate system, the limit cycle is a circle centered at the origin with radius
√

ε
β

and has a period of α − εγ
β

. Without loss of generality, we rescale ~y and t so that the

radius and period are both fixed at 1. We can equivalently set β = ε and α = γ + 1.

We also make three simplifying choices of parameters in our analysis. Despite these

choices, the oscillator will show unruliness over a wide range of its remaining natural pa-

rameters. First, we set γ = 0, eliminating the amplitude-dependence of the deterministic
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angular velocity. This yields what we call the “Hopf oscillator”,

(3.63) d~y = 2π


 ε −1

1 ε

 ~y −

 ε 0

0 ε

 |~y|2 ~y
 dt+ σG d ~W,

for ε > 0. We also choose the Poincare section to be along the positive y1 axis, and leave

the event interval E unspecified for now, investigating below what is required of it to

produce unruliness. Lastly, we allow the additive noise to be correlated in the y1 and y2

components but have the same marginal variance in each; we parameterize the covariance

matrix as

σ2GGT = σ2

 1 ρ

ρ 1

 ,

where ρ ∈ [−1, 1] is the correlation coefficient between the components.

In order to rewrite the system in phase-isostable coordinates, (3.21), we first note that,

with the choice γ = 0, the geometric angle θ = arctan y2

y1
evolves with a constant rate

when the oscillator is unforced (σ = 0). So the isochrons are radial lines and we will take

φ = θ
2π

as the phase coordinate. The radial coordinate r =
√
y2

1 + y2
2 evolves by

ṙ = 2πεr
(
1− r2

)
.

ψ ∼ r − 1 is the isostable coordinate to first order approximation, since it has linear

dynamics near the limit cycle in the absence of noise,

ψ̇ = −4πεψ +O
(
ψ2
)
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(cf. (3.21)). We therefore have κ = 4πε and Λ = e−4πε. The PRC ~Z (φ) and the IRC

~Y (φ) follow by evaluating the appropriate gradients on the limit cycle:

~Z (φ) =
dΦ

d~y

∣∣∣∣
r=1

=
1

2π

 − sin (2πφ)

cos (2πφ)


~Y (φ) =

dΨ

d~y

∣∣∣∣
r=1

=

 cos (2πφ)

sin (2πφ)

 ,

which, once averaged, yield via (B.25)-(B.27),

~zTG~zG =
1

4π2

~zTG~yG =
1− e−4πε

8π2

ερ

1 + ε2

~yTG~yG =
1− e−8πε

8πε

1− 2ερ+ 4ε2

1 + 4ε2
.

Then from (3.35) and (3.33),

b =
2

π

ε2

1 + ε2
1 + 4ε2

1− 2ερ+ 4ε2
ρ(3.64)

c

Γss

=
4

π
ε

1 + 4ε2

1− 2ερ+ 4ε2
(3.65)

and from (3.59) and (3.62),

cΛ

bΛ

= 2w
1 + ε2

ερ

and

bΛ√
cΛ

=
1√
π

√
1− e−4πε

1 + e−4πε

ε3/2

1 + ε2

√
1 + 4ε2

1− 2ερ+ 4ε2
ρ.

Note that bΛ√
cΛ

has the same sign as ρ and is monotonically increasing in ρ.
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Figure 3.9. Dependence of unruliness on ε and w in the Hopf Os-
cillator. Regions of certain unruliness appear prominently in the Hopf
Oscillator. (a): For ρ ≥ 0 or δ = 0, there is no unclear region and certain
unruliness appears when either w or ε take on moderate or small values.
(b): When both ρ < 0 and δ > 0, the unclear region appears for small w.
Regions of possible unruliness are not shown.

Recall that there are two thresholds beyond which unruliness will certainly occur:

(3.56) and (3.57), which correspond to the line with slope κunruly (δ) and the lower hori-

zontal line segment, respectively, in Figure 3.7a. For the Hopf oscillator, it turns out that

the second criterion, c < ccrit = π Γss

w2 with cΛ
bΛ
> κunclear (δ), is sufficient to describe the

onset of certain unruliness. That is because bΛ√
cΛ

and κunruly (δ) are both bounded above

in such a way that the first criterion is met only if the second is already satisfied. In

particular, as w is decreased, the parameterized curve (bΛ (w) , cΛ (w)) always intersects

the line c = ccrit before the line cΛ
bΛ

= κunruly (δ). (This is similar to the left parabolic

curve labelled by “(i)” in Figure 3.8a and in contrast with the rightmost curve.) We

therefore need only consider how the Hopf oscillator’s parameters ε, ρ, δ, and w interact

with the boundary c = ccrit for certain unruliness and the boundary cΛ
bΛ

= κunclear (δ) for

the “unclear” region.
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For the Hopf oscillator, the second unruliness criterion (3.57) becomes

4

π
ε

1 + 4ε2

1− 2ερ+ 4ε2
=

c

Γss

<
ccrit
Γss

=
π

w2

or

w <
π

2

√
1− 2ερ+ 4ε2

ε (1 + 4ε2)
,

which is satisfied for moderate and small values of each w and ε (red region, Figure 3.9a

and b). There is no “unclear” region when ρ ≥ 0, since the mixed component of the

TVGR is positive and can only enhance the unruliness. In this case, there is a prominent

portion of the parameter space which shows certain unruliness, and it is realized with very

reasonable parameter choices, e.g. w . 1
2

with ε < 10. Recall that in Hopf oscillator has a

limit cycle of radius 1; only event interval widths w that are less than 1 are sensible. The

parameter ε measures the strength of contraction to the limit cycle, and corresponds to a

damping time constant of 1
2ε

. Since the limit cycle period is fixed to be 1, without further,

specific information about the system, ε should be “expected” to be O (1). Figure 3.9a

shows that for such choices of w and ε, the TVGR is largely unruly.

When ρ < 0 and δ 6= 0, bΛ√
cΛ

and, therefore, the mixed component of the TVGR is

negative, a region where the situation is unclear appears in the ε-w plane. The nature of

the TVGR is unclear when (3.58) is not satisfied. That happens when

2w
1 + ε2

ερ
=
cΛ

bΛ

< κunclear (δ)

or

w <
1

2

ε

1 + ε2
ρκunclear (δ) .
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Since κunclear (δ) is negative and increasing in magnitude with a, the corresponding region

grows with δ and |ρ| (Figure 3.9b). For moderate asymmetry δ in the event interval, there

is still a prominent region of certain unruliness even in this case.

3.6.6. Comparison of Theoretical Bounds, Numerics, and Simulation

We also make use the Hopf oscillator example to empirically validate our theory by com-

paring with numerics and simulations. We consider two parameter sets: (ε = 1, ρ = 0, δ = 0)

and (ε = 0.01, ρ = 1, δ = 0.25). The first corresponds to “typical” parameter choices for

the Hopf oscillator: ε = 1 corresponds to an O (1) time constant for the contraction to the

limit cycle that is comparable to the limit cycle period, ρ = 0 to isotropic additive noise,

and δ = 0 to the event subset E placed symmetrically around the limit cycle. Comparing

the theory and simulation using (in addition) the second, non-trivial parameter set vali-

dates our derivation of the TVGR (3.31) and the bounds (3.51) we place on it in the case

of planar oscillators.

We consider the following computations of the TVGR:

(1) The theoretical bounds (see (3.31) and (3.51)),

(
E − E2

)
+ bxEE2 +

c

2
σ2E2 ≤ V(t)

E ≤
1 + Λ

1− Λ

(
E − E2

)
+ bxEE2 +

c

2
σ2E2.

(2) Numerical approximation of the theoretical results via a truncation of the series

in V(n)
x 7→1E(x) to M = 50 terms (cf. (3.28)),

V(t)
E ≈

(
E − E2

)
+ 2

M∑
m=1

(
Em − E2

)
+ bxEE2 +

c

2
σ2E2,
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where the double integral (3.47) for Em is computed exactly along one dimension

and via numerical integration in the other. Note that, like the theoretical bounds,

this numerical estimate is subject to the first order asymptotic approximations

in the noise strength and isostable coordinate developed in Section 3.5 and the

corresponding Appendices B.2 and B.3.

(3) Simulation of the Hopf oscillator model with 8192 independent noise realizations.

We use the Euler-Maruyama time-stepping scheme with a step size of ∆t = 10−6

for a total time of trun = 900 (after a burn-in period of 100) and determine the

times TEk at which each realization crosses the line segment E via linear inter-

polation between the Euler-Maruyama steps. We then empirically estimate the

asymptotic TVGR as (see the definitions of “Event Rate” and “Event Dispersion

Rate” in Table 3.1)

V(t)
E ≈ n2 v̂ar

{
TEn
}

Ê {TEn }
3
,

where the hatted, sample statistics are computed across the 8192 realizations, and

n is the largest value such that all of the realizations produce at least n events

within a time of trun. For weak noise, the above empirical quantity seems to

converge much faster than the more obvious empirical estimate of 1
trun

v̂ar
{
NE
trun

}
.

For the first parameter set (ε = 1, ρ = 0, δ = 0), note that Λ = e−4πε ≈ 3.4 × 10−6 is

quite small and so the theoretical upper and lower bounds and the numerical approxi-

mation offer nearly identical results. We focus on the accuracy of those predictions in

comparison with simulations as a function of the noise strength Din and the event subset

size |E| = w. For smaller event intervals, the unruliness phenomenon arises at weaker

noise strengths (see (3.41) for the theoretical effective scaling of Din by w2). Since the
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Figure 3.10. Comparison of theory, numerics, and simulation for
the Hopf Oscillator. (a): The TVGR for the Hopf oscillator as a function
of the input noise strength Din for a variety of event subset sizes w and
ε = 1, ρ = 0, and δ = 0. Since Λ = e−4πε ≈ 3.4 × 10−6 is so small in
this case, the theoretical upper bound, the lower bound, and the numerical
approximation are indistinguishable at this scale. Only the theoretical lower
bounds (solid curves) are plotted in comparison with the simulation results
(points). (b): The TVGR for w = 0.01 and ε = 0.01, ρ = 1, and δ = 0.25.
The shaded region shows the range of the theoretical estimates, the solid
line the numerical approximation and the points the simulation results.

theory is accurate in the limit of weak noise, we expect that the theory will better capture

the unruliness in the graph of V(t)
E (Din;w) for smaller w. This is indeed the case (Figure

3.10a); for w = 0.001 and w = 0.01, the theory quantitatively recovers the nonlinear rise

and local maximum in V(t)
E (Din;w), which the standard phase reduction can not capture

even qualitatively. In all cases, the Markov renewal theory offers accuracy at noise lev-

els orders of magnitude greater than where the linear estimate V(t)
E,linear = cDin from the

standard phase reduction theory applies. Note that the Euler-Maruyama scheme captures

the stochastic forcing with a term with magnitude of order
√

∆tDin. For the scheme to

be accurate it must be able to resolve the passage through E, and the simulation should
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not be trusted when
√

∆tDin & w or, equivalently, Din & 106w2. In Figure 3.10, we have

restricted the simulation results for each w accordingly.

The second parameter set (ε = 0.01, ρ = 1, δ = 0.25) tests the accuracy of the theory

when the mixed term in the TVGR is non-zero (since δ 6= 0 and ρ 6= 0) and when

the lower bound, upper bound, and numerical approximation are distinguishable (since

Λ = e−4π·0.01 ≈ 0.88 is significant). Naturally, the numerical estimate will lie between the

theoretical upper and lower bound. But we should not necessarily expect the numerical

approximation and the simulation to coincide, since the numerical estimate is subject

to the first order approximation in the noise strength and isostable coordinate (Section

3.5). Nevertheless, for an event interval width of w = 0.1, both the theoretical bound and

numerics recover the unruly quality of the TVGR found via simulation (Figure 3.10b).

3.7. Extensions

In this section we briefly investigate situations in which alternative types of unruliness

appear: a semi-infinite event interval E and oscillators with higher dimensional state

spaces. We proceed heuristically, only considering the limiting, quasi-renewal case, where

the TVGR is given by (3.49). As we saw for planar oscillators with a finite interval E,

the Λ 6= 0 case is significantly more complicated but often produces qualitatively similar

results.

3.7.1. Semi-infinite E

In Section 3.6, we have only considered the cases where E is a finite subset of S. There

is another natural case to consider: E semi-infinite. For a planar oscillator, we might for
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Figure 3.11. An alternative, monotonic, form of “unruliness” for a
semi-infinite interval E. Shown are the two components of the quasi-

renewal TVGR V(t)
E,qr and their total for c = 10−4. We make this extreme

choice and c for illustrative purposes: each component is dominant for some
range of Din, and thus this plot shows all of the possible trends that can

appear in V(t)
E,qr. cE2Din will always be dominant for small and very large

noise, producing a linear trend. But if c is relatively small, E (1− E) will
then produce the characteristically strong nonlinear rise for moderate noise
strengths. It is possible that E (1− E) then contributes to a range over

moderately large input noise strengths where V(t)
E is roughly constant.

example take E = (xmin,∞), so that events occur when the crossing position is above a

threshold xmin. This is perhaps the case most relevant to neural oscillators, where only a

sufficiently large voltage peak may be classified as an “output event”.

In the quasi-renewal limit, Λ and xmin are jointly taken to 0 such that xmin ∝
√

Γss ∝√
− 1

log Λ
. Then, as was the case with the finite interval E (cf. Section 3.6.2),

E =
1

2

[
1− erf

(
xmin

2
√

ΓssDin

)]

is left invariant, xE → 0, and Em → E2 so that V(t)
E,qr (Din; c) = E (1− E) + cDinE2. The

proportionality constant between xmin and
√

Γss can be absorbed into Din, so that E =

1
2

[
1 + erf

(
1

2
√
Din

)]
, and we find that E is monotonically decreasing with Din. But, unlike
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the situation with a finite interval E, E (1− E) is monotonic as well (Figure 3.11, orange

curve). Thus, overall V(t)
E will not be non-monotonic. Instead, we find an alternative

“unruly” quality for semi-infinite intervals E: a linear trend for low Din, a substantial

nonlinear rise for moderate Din, and a monotonically increasing return to a linear trend

for large Din (Figure 3.11, black curve). Recall that, in contrast, for finite E the TVGR

V(t)
E is asymptotically constant for large Din.

3.7.2. Oscillators of Dimension d+ 1 > 2

Considering the general analysis in Section 3.5, perhaps the most obvious generalization

is an extension to higher-dimensional oscillators. This becomes a challenge immediately:

the probability distributions of interest, though they might be Gaussian (Section 3.5.2),

are all multi-dimensional. For an arbitrary choice of the event subset E, the integrals

Em (3.29) and xE (3.30) will not in general be found exactly or easily bounded. In this

section, we briefly consider two choices for E for which the calculation in the Λ→ 0 limit

is tractable. They serve as prototypical examples and may give insights into the general

unruliness phenomena in higher dimensions.

3.7.2.1. Semi-infinite E. The discussion of Section 3.7.1 applies directly to higher-

dimensional oscillators when one takes E to be a semi-infinite region bounded by a hy-

perplane: E =
{
~ψ
∣∣∣~aT ~ψ > xmin

}
. In that case, the dimensions orthogonal to the vector

~a can be “integrated out” reducing the analysis to the one dimensional case. And, since

all probability densities are Gaussian, the marginal distributions along the coordinate y

defined by y = ~aT ~ψ are Gaussian as well. We must note, however, that this analysis
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only covers the case where the boundary of E is a hyperplane in the phase-isostable co-

ordinates. This may not be a natural choice for every oscillator model. Even so, the

high-dimensional neural mixed-mode oscillator (Figure 3.1b) has a linear trend for large

Din (as is predicted here for a semi-infinite E, cf. Figure 3.11). In that model, any voltage

peak large enough qualifies as a “spike” event, i.e. E is bounded by a hyperplane orthogo-

nal to the voltage axis, which, in general, is not linear in phase-isostable coordinates. We

speculate that the semi-infinite quality, rather than the specific choice of the boundary of

E is responsible for the large-noise linear trend.

3.7.2.2. Finite E with 0 ∈ E. As the prototypical example for finite E, take E to be

an ellipsoid centered at ~ψ = 0, shaped like the level-sets of the steady-state probability

density N (0, 2DinΓss) on the d-dimensional section S. In this case, due to the symmetry

in E, the event center of mass xE = 0. In the quasi-renewal limit, we take Λ and the size

of E to 0 jointly so that E is fixed. With the appropriate constants absorbed into Din, we

find

E = 1−
Γ
(
d
2
, 1

4Din

)
Γ
(
d
2
, 0
) ,

where Γ is the incomplete gamma function. Since 0 ∈ E, the event probability E ap-

proaches 1 for small Din, as before. For large Din, E goes like D
− d

2
in . And so, in contrast

with the planar case, the temporal term cE2Din ∼ cD1−d
in is actually asymptotically de-

creasing for state-space dimension d + 1 > 2 . The result is a yet different form of un-

ruliness, where the TVGR is dominated by E (1− E) at moderate and large noise (Figure

3.12). The prominent maximum at moderate noise will appear so long as c is sufficiently

small (we set c = 0.1 in Figure 3.12). Note that in the large noise limit E (1− E) ∼ E



119

Figure 3.12. Alternative forms of unruliness in higher dimensions

with symmetric E. Shown is the quasi-renewal TVGR V(t)
E,qr with c = 0.1.

(a): The two non-zero components of the TVGR for oscillator dimension
d + 1 = 4. For d + 1 > 3, the TVGR is dominated by E (1− E) for large
Din. (b): The TVGR for various d. For d + 1 > 2, it is asymptotically
decreasing.

goes like D
− d

2
in , which dominates D1−d

in when d + 1 > 3. For all d + 1 > 2, the TVGR is

asymptotically decreasing.

Consider for the moment a similar ellipsoid E, which is, however, asymmetric, such

that the center of mass of E is non-zero, xE 6= 0. Since the mixed term in the TVGR is

~b ·xEE2, the contribution of the asymmetry to V(t)
E in the large-noise limit is subdominant,

O (E2). Therefore we expect that the small- and large- noise asymptotic trends and

the alternative form of unruliness found for the unit ball E will be reproduced for mild

asymmetry in E. We speculate that it is also reproduced for other reasonable choices of

finite E, e.g. those that are convex.

3.8. Discussion

In this work, we have demonstrated that beyond the linear regime predicted by the

standard phase-reduction analysis, the event-based, diffusive response of noise-driven
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limit-cycle oscillators can be “unruly”: with increasing noise strength it can exhibit an

enormous nonlinear amplification and a subsequent decrease for yet stronger noise. Such

behavior was observed in Chapter 2 in numerical simulations of mixed-mode oscillations.

Here we extracted the origin of such unruly behavior by considering the point process

that arises from crossings of a Poincare section S on which a subset E is distinguished

as event-producing. Since we make use of the phase-isostable representation, the work

presented here covers a large class of systems with stable limit cycles. Indeed, for generic

planar oscillators and E a finite interval, we have argued that unruliness appears in a

finite region of the natural parameter space, and, via a linearization of the dynamics,

we have shown this explicitly. We found that unruliness can appear even in a simple,

prototypical oscillator driven by additive noise. And, through that example, we con-

firmed quantitatively the predictions of the point-process approach by direct numerical

simulations.

The specification of the event surface E as a proper subset of the Poincare section

S is essential to our results; it partitions the points on the section S into events and

non-events. Using the linearization of the Poincare map (Section 3.5.2) but excluding the

partitioning, there would be no unruliness (see the discussion at the end of Section 3.5.3).

What justifies introducing such a partitioning? Recall that our inspiration follows from

the mixture of large-amplitude voltage spikes and small-amplitude STOs that appear in

neural mixed-mode oscillators (Figure 3.1a). There, only the spikes correspond to the

action potentials through which the neurons interact with each other; therefore the spikes

are the events of interest. Indeed, in Chapter 2, we found that replacing the standard

phase diffusion coefficient Dphase in the Fokker-Planck equation (1.2) with the event-based
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effective diffusion coefficient Deff = 1
2
V(t)
E , which is unruly and substantially larger, was

essential and sufficient to capture the dynamics of a globally-coupled coupled population

of noisy neural mixed-mode oscillators. That replacement enables (1.2) to reproduce even

the bistability and non-trivial population dynamics that appear in the full simulations

(see Chapter 2). Notably, because the effective diffusion coefficient Deff is a property of

noise-response of individual oscillators, we could measure it efficiently via simulations of

a single, uncoupled oscillator and then apply the result to the population dynamics.

The designation of events by E can be interpreted more generally as a relevant read-

out of an oscillator’s dynamics. Examples can also be found outside of neuroscience. For

instance, in synthetic biology the repressilator is captured experimentally via large am-

plitude oscillations in the read-out fluorescence [18]. And, in fact, a recent, mathematical

study of a repressilator model makes use of a finite Poincare section (equivalently, a finite

subset E of a section S) to capture the distribution of times between oscillation peaks

[59]. In contrast with the original repressilator model, Potapov et. al.’s version sup-

ports bistability between a fixed point and a limit cycle via a subcritical Hopf bifurcation.

That leads to noise-induced small amplitude oscillations near the fixed point and noisy

large amplitude oscillations near the limit cycle, with stochastic transitions between them.

While those authors did not consider it, the observed variability in the oscillator output

resulting from the transitions could be quantified using the effective diffusion coefficient

Deff.

Regular transitions between oscillatory and quiescent phases in the absence of noise

are also found in a wide range of natural systems. These “bursters” often arise from

the coupling of a bistable oscillator to an additional slow mode [63]. When the large
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oscillations are identified as events and the system is forced with noise, our results suggest

that the event variability of the bursters often could be unruly. Indeed, in a numerical

study [35], we found such unruliness in a burster arising in an unfolding of the Hopf-zero

bifurcation normal form (see e.g. [27] for a discussion of the unfolding of this codimension-

2 bifurcation). The effect of noise in both bursting and mixed-mode oscillator systems is

of considerable theoretical interest [50, 76, 5]. It would be an important extension of our

work to go beyond the computational results of Chapter 2 and capture theoretically the

effective diffusion coefficient in such systems, where, in particular, oscillations of variable

amplitude appear already without noise. The analysis is likely to be more complicated

than what we have covered here: when the noiseless limit cycle shows both small and

large oscillation amplitudes, typical Poincare sections would be pierced by it multiple

times. The technical elements of our derivation in Section 3.5 and Appendix B.3 will

then be more involved, with a key challenge being a reduced representation of the more

complicated Poincare map and first passage time.

In this work, we have focused on the variance in the number of events appearing in a

given time interval normalized by that time interval in order to quantify the variability

in events produced by oscillators. This “temporal variance growth rate” (TVGR), which

is proportional to the effective diffusion coefficient, is just one of a many statistical at-

tributes of a point process. The distributions of the individual time intervals between

events, e.g. inter-spike-intervals (ISIs) for neuronal oscillators, are also of broad interest.

And, interestingly, for certain oscillators the coefficient of variation of the ISIs can be

non-monotonic as a function of input noise strength [55, 13]. Our event-based frame-

work may prove useful in that context as well, offering efficient models for complex (e.g.
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multi-modal) ISIs distributions and complementing existing, theoretical [55] and phe-

nomenological [13] approaches. Besides the TVGR and the ISI coefficient of variation,

other natural, variance-like, summary statistics have been previously investigated in the

literature. Some, like the dispersion of event times and the Fano factor, are related to the

TVGR by factors of the mean event interval in the long-time limit (Table 3.1). Thus, the

unruly behavior in the TVGR we characterized here may well be related to the so-called

coherence resonance and incoherence maximization other authors have found in the Fano

factor [58, 48]. It would be an interesting extension of our work to characterize the mean

event interval and thus connect all of the statistics that appear in Table 3.1 in application

to limit-cycle oscillators. We note that in much of the literature (e.g. in [60, 33]), the

TVGR and the related quantities V(n)
x 7→f(x) and V(t)

(x,x′,∆T ) 7→w(x,x′,∆T ), which we considered

in Sections 3.3 and B.1, appear in the context of central limit theorems. Informally,

those theorems indicate that those mean and variance statistics are largely sufficient in

describing the event point process over long time scales.

We provided a general decomposition of the TVGR, (3.15), and applied it to a simple

toy model (Section 3.4). Notably, the toy model does not include any memory between

states at one step and the next, but nevertheless shows unruliness. Thus, the Markov-

renewal process (and the memory across steps it offers) is not strictly necessary; a renewal

process would be sufficient to generate unruliness in the TVGR. Indeed, the analyses of

coherence resonance and incoherence maximization found in the literature often assume

renewal dynamics, e.g. by considering only the marginal distribution of single inter-

event time intervals. However, the Poincare map dynamics for limit cycle oscillators

are generally Markovian, reflecting the deterministic dynamics of the underlying limit
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cycle. Moreover, those non-renewal dynamics are not only widespread but may also play

a functional role, for instance, in the context of neuroscience, in information processing

in the brain [24, 2, 62]. One of our contributions in this work is an examination of

the TVGR in its entirety within the Markov renewal framework, including the effect of

correlations between successive states of the process. In our analysis of planar oscillators,

we carefully bound the size of those effects (see (3.51) and SI Section B.4) and find that the

correlations contribute positively towards the non-monotonic, Markov-only component of

the TVGR (see (3.51)), and therefore may enhance its unruly quality.

The formula we derive for the TVGR (3.15) is exact, but we apply it to limit cy-

cle oscillators in Section 3.5 and the corresponding Appendix B.3 via a linearization of

the dynamics. Even though the linearization is an approximation, we anticipate that

generically there will be a degree of structural stability as nonlinear effects are “turned

on”. In particular, we expect that the event probability E continues to be a monoton-

ically decreasing function of the noise strength Din (as in Figure 3.4a,b.i), leading to

the non-monotonicity in the Markov-only component and the TVGR overall. And, so,

we anticipate that the unruliness we have discussed here will appear in many (weakly)

nonlinear oscillator models.

In real, nonlinear systems the events of interest and the non-events may well be pro-

duced in different regions of phase space, which may have very different dynamics. The

partitioning of S by E is then a first step in taking this qualitative difference into account.

The boundary ∂E constitutes a dynamical separatrix of some type (see [65, 31, 6] for

specific examples and analyses). In general, we would not expect the Poincare map to

vary smoothly across such a boundary, and the linearization we have considered in this
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work fails to be an accurate representation. It would be an interesting extension of this

work to consider a piece-wise linear approximation to the Poincare map that is segmented

at ∂E. That would be analogous to piece-wise linear approximations to the differential

equations of nonlinear systems that have been used to study, e.g., coherence and stochastic

resonance [47].

Additionally, one may consider a relaxation of the hard threshold in the partitioning

of events and non-events. In the broader context of Markov renewal reward processes that

we discuss in Section 3.3, there is no particular reason to limit an asymptotic variance

growth rate calculation to rewards given by the indicator function 1E. In this view, 1E is

just one of many observation functions on the Poincare section that can be used to probe

the nonlinear, stochastic dynamics of the oscillator. We would expect the unruly behavior

that we have investigated in this work to be reflected in some way also in the asymptotic

variance growth rates for other observation functions.

Finally, we return to our original motivation: a reduced model whose event statistics

(Table 3.1) agree with those of the limit-cycle oscillator in the long-time limit. In con-

sidering the events, we eschewed the phase variable in favor of a point process. Notably,

extending the phase reduction by considering isostable variables, (3.20)-(3.21), does not

offer corrections to the phase dynamics at first order in the noise strength (compare (3.2)

and (B.13)). In contrast, since the event subset E distinguishes different amplitudes, the

phase-isostable representation along with E does offer an enhanced approximation of the

event point process statistics even at linear order. Our work offers one example where

first identifying within the dynamics a non-renewal point process and then capturing the

point process as a reduced Markov renewal-reward process proved beneficial. There may
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be many other circumstances in which complex noise-driven nonlinear dynamics can be

captured effectively by Markov-renewal point processes.
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Figure A.1. The integrate-and-fire model chosen for comparison: the pa-
rameters of the leaky integrate-and-fire model used in Fig. 2.8 are chosen
to match the voltage range of the MMO.

Currents:

Capacitive Leak Synaptic

C
(IF )
m = 1 µF

cm2 E
(IF )
leak = −38mV Esyn = −70mV

gleak = log 2 s·mS
cm2 · fmitral

Spiking:
Vreset = −72mV

Vthreshold = −55mV

Table A.1. Integrate-and-fire model parameters.

To contrast the MMOs of the mitral cell model in the context of synaptic interactions,

we make use of a leaky integrate-and-fire model:

C(IF )
m

dV

dt
= g

(IF )
leak

(
E

(IF )
leak − V

)
+ gsyn (Esyn − V ) ,
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and when V = Vthreshold, V is set to Vreset. gsyn is given by Eq. (2.4) like the mitral

cell, and we choose parameters as in Table A.1 so that the firing frequency fmitral, the

minimum voltage, and the spiking “threshold voltage” approximately match that of the

mitral cell model (Fig. A.1).
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B.1. Derivation of the Event TVGR Formula

In this appendix section, we offer two derivations of a generalization of (3.11), (B.8)

below, wherein the temporal variance growth rate V(t)
(x,x′,∆T )7→w(x,x′,∆T ) (TVGR) is related

to a sequential variance growth rate V(n)
(x→x′) 7→fw(x,x′) (SVGR), and a derivation of (3.15),

where the TVGR is decomposed into three components. In Section B.1.1, we offer a

non-rigorous, plausibility argument that motivates the form of (3.14). In Section B.1.2

we give a more careful derivation that is only valid for Markov chains with discrete state

spaces and yet yields the same formula. Between the plausibility argument given in B.1.1,

the derivation of limited scope given in B.1.2, and the empirical evidence we provide in

Section 3.6.6, we are content to take (3.14) as fact for the further analyses presented in

this work.

B.1.1. The TVGR Formula by Rough Analogy

(3.7) shows that the event TVGR is associated with the function 1E(x) on the Markov

renewal process. We will consider more generally any “reward” w on the Markov renewal

process, which is typically taken to be a (possibly random) function of the current state

x, the next state x′, and the time interval ∆T between them. The temporal variance

growth rate associated with w is therefore

(B.1) V(t)
(x→x′,∆T )7→w(x,x′,∆T ) ≡ lim

t→∞

1

t
var

{
Nt∑
k=1

w (xk, xk+1,∆Tk)

}
.

We recall that the random variable ∆Tk will in general depend on xk and xk+1, and,

once conditioned on xk and xk+1, ∆Tk is independent of xj, j 6= k, k + 1. The same

is true of the reward w (xk, xk+1,∆Tk) conditioned on xk and xk+1. We can imagine,
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therefore, constructing the Markov process xk first, independently of the time intervals

and reward, and then add to the process the random time intervals ∆Tk and the random

reward w. To that end, we take ∆t (xk, xk+1) to be a random function that has the same

distribution as ∆Tk when conditioned on xk and xk+1 and rewrite w (xk, xk+1,∆Tk) as

w (xk, xk+1,∆t (xk, xk+1)):

(B.2) V(t)
(x→x′,∆T )7→w(x,x′,∆T ) = lim

t→∞

1

t
var

{
Nt∑
k=1

w (xk, xk+1,∆t (xk, xk+1))

}
.

As compared with (B.1), (B.2) is a step closer to the generalized SVGR (3.10), since the

quantity in the sum is a random function of the states xj alone. This will be helpful in

the following, where we find a formula for V(t)
(x,x′,∆T )7→w(x,x′,∆T ) in terms of a SVGR.

In Section B.1.2, we offer a derivation of such a formula for the special case of a

Markov renewal process on a discrete state space. But here we find the same formula

((B.8), below) in a more general setting by analogy. To set up the analogy, first compare

the SVGR of a Markov process xk with that of an i.i.d. process yk. For independent

samples yk,

(B.3)
1

n
var

{
n∑
k=1

f (yk)

}
= var {f (y)} ,

while in general for large n,

(B.4)
1

n
var

{
n∑
k=1

f (xk)

}
∼ V(n)

x 7→f(x) 6= var {f (x)} .

So the SVGR V(n)
x 7→f(x) can be thought of as the asymptotic, effective variance of f (x) that

takes into account the fact that xk and xl are interdependent. Now, in the analogy, the
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SVGR (B.4) is to the i.i.d variance (B.3) as the TVGR V(t)
(x,x′,∆T )7→w(x,x′,∆T ) for w is to a

TVGR V(t)
∆T 7→w(∆T ) for a renewal-reward process:

(B.5) V(n)
x 7→f(x) : var {f (y)} :: V(t)

(x,x′,∆T )7→w(x,x′,∆T ) : V(t)
∆T 7→w(∆T ).

As compared with a Markov renewal-reward process, a renewal-reward process has no

state space and the time intervals are i.i.d. The reward can only be a random function of

the time interval, and therefore the corresponding temporal variance growth rate is

(B.6) V(t)
∆T 7→w(∆T ) ≡ lim

t→∞

1

t
var

{
Nt∑
k=1

w (∆Tk)

}
.

Renewal-reward theory [73] offers the required formula for (B.6),

(B.7) V(t)
∆T 7→w(∆T ) =

1

E {∆T}
var

{
w (∆T )− E {w (∆T )}

E {∆T}
∆T

}
.

Note that like the i.i.d variance var {f (y)} and in contrast with the function variance

V(n)
x 7→f(x) (cf. (3.9)), (B.7) only includes the variance evaluated over one step of the process,

reflecting the fact that the steps in the renewal-reward process are independent.

To complete the analogy (B.5) and find V(t)
(x,x′,∆T )7→w(x,x′,∆T ), we must replace the vari-

ance var in (B.7) with its asymptotic, effective counterpart V(n) that takes into account

the non-renewal quality of Markov renewal processes (compare (B.3) and (B.4)). We also

generalize the function w (∆T ) as w (x, x′,∆t (x, x′)), concluding that

(B.8) V(t)
(x,x′,∆T ) 7→w(x,x′,∆T ) =

1

E {∆T}
V(n)

(x→x′)7→fw(x,x′),
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Figure B.1. A schematic depiction of Cinlar’s analysis for discrete-state
Markov-renewal processes [89]. The “first recurrence loops” (FRLs) each
with initial and final state y are distinguished by color. The time durations
∆T̂l = T̂l+1 − T̂l of the FRLs are independent and identically distributed;
the visits to y form the renewal process T̂l.

where

fw (x, x′) ≡ w (x, x′,∆t (x, x′))− E {w (x, x′,∆T )}
E {∆T}

∆t (x, x′) .

Note that the left hand side of (B.8) is the TVGR-like quantity, defined in (B.1) with

respect to the time t, while the right hand side includes a function variance, defined via

(3.8) and (3.10) with respect to the discrete steps n. We make use of (B.8) and the

formula for function variances, (3.9), to evaluate the reward TVGR V(t)
(x,x′,∆T )7→w(x,x′,∆T ).

For the case of interest in this work, the reward is the indicator function for events,

w (x, x′,∆T ) = 1E (x), and (B.8) yields (3.11).
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B.1.2. The TVGR Formula for Discrete State Spaces

Here we derive (B.8) for Markov renewal processes for a discrete rather than continuous

state space. We begin by referring to Cinlar, [89], who approaches the Markov-renewal-

reward process by connecting it to a renewal-reward process. He considers a partitioning

of the sequence xk for k ∈ {0, 1, . . .} into what we call “first recurrence loops” (FRLs),

which are all the subsequences that start at the initial state y = x0 and end at the same

state y without visiting it in between (Figure B.1). Note that this requires the state space

to be discrete, since otherwise the return to state y happens with probability 0. Once the

first FRL back to y is complete, the next one is a completely independent realization of a

FRL starting at y, reflecting the Markov character of the underlying process. Thus, the

time ∆T̂l elapsed between subsequent visits to y (during the lth FRL, FRLl) along with

the reward Ŵl accumulated during those intervals is a renewal-reward process. Renewal-

reward theory then gives [73]1

(B.9) V(t)
(x,x′,∆T )7→w(x,x′,∆T ) =

1

E
{

∆T̂1

}var

Ŵ1 −
E
{
Ŵ1

}
E
{

∆T̂1

}∆T̂1

 ,

where ∆T̂1 =
∑n̂1

k=1 ∆Tk = Tn̂1 and Ŵ1 =
∑n̂1

k=1w (xk, xk+1,∆Tk), defining n̂l to be

the (random) number of steps in the lth FRL. Since the FRLs parameterized by l are

independent, the choice to set l = 1 in (B.9) is as good as any. E
{

∆T̂1

}
is the mean first

recurrence time for state y. It is proportional to the expected transition time E {∆T}

across all pairs of states,

E
{

∆T̂1

}
= pE {∆T} ,

1In [89], the factor of E
{

∆T̂1

}−1

is missing. It appears correctly in Equation 5.2.5 of [73].
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where the constant of proportionality p ≡ 1
π(y)

= E {n̂1} is the mean first recurrence

time as measured in steps [89]. Similarly, E
{
Ŵ1

}
= pE {w}, so that E{Ŵ1}/E{∆T̂1} =

E{w}/E{∆T}.

We are now equipped to meet our goal - to rewrite V(t)
(x,x′,∆T )7→w(x,x′,∆T ) as a SVGR that

can be computed via (3.9). We first note that the definition of the TVGR for a general

reward, (B.1), covers the generalized SVGR case, V(n)
(x→x′)7→f(x,x′), considered in Section

3.3.1. Namely, when the Markov renewal process is defined so that the intervals ∆Tk are

always 1,

V(n)
(x→x′)7→f(x,x′) = V(t)

(x,x′,∆T ) 7→f(x,x′)

=
1

E {n̂1}
var
{
F̂1 − E {f} n̂1

}
,(B.10)

where ∆T̂1 is replaced by n̂1 and F̂1 =
∑n̂1

k=1 f (xk, xk+1) is determined from f like Ŵ1 is

from w. Now consider the randomly-valued function

fw (x, x′) ≡ w (x, x′,∆t (x, x′))− E {w}
E {∆T}

∆t (x, x′) ,

where ∆t (x, x′) is such that ∆t (xk−1, xk) has the same distribution as ∆Tk conditioned

on xk−1 and xk. Note that

Ŵ1 −
E {w}

E {∆T}
∆T̂1 =

n̂1∑
k=1

[
w (xk−1, xk,∆Tk)−

E {w}
E {∆T}

∆Tk

]

F̂w1 − E {fw} n̂1 =

n̂1∑
k=1

[fw (xk−1, xk)− E {fw}] .
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And, since E {fw} = 0, fw (xk−1, xk)−E {fw} has the same distribution as w (xk−1, xk,∆Tk)−
E{w}

E{∆T}∆Tk when each is conditioned on xk−1 and xk. In turn, since n̂1 is completely deter-

mined by the sequence of states, x0, x1, . . ., the sums F̂w1−E {fw} n̂1 and Ŵ1− E{w}
E{∆T}∆T̂1

conditioned on x0, x1, . . . have the same mean and variance. It then follows from the law

of total variance that var
{
F̂w1 − E {fw} n̂1

}
= var

{
Ŵ1 − E{w}

E{∆T}∆T̂1

}
. Thus, comparing

(B.9) and (B.10) yields (B.8).

As mentioned earlier, the reasoning Cinlar and we present regarding the FRLs - in

particular the hatted quantities that appear in (B.9) and subsequent equations - are

sensical only for Markov chains with finitely-many and perhaps countably-many states.

However, the rough argument by analogy presented in Section B.1.1 does not require a

restriction of the state-space and yet yields the same result, suggesting a more general

validity.

B.1.3. Decomposition of the TVGR

In this section we expand the temporal variance growth rate, V(t)
E = V(x→x′) 7→(1E(x)−E∆t(x,x′)),

to produce (3.15). From (3.9), we have

V(t)
E = var {1E,0 − E∆t0}+ 2

∞∑
k=1

cov {1E,0 − E∆t0, 1E,k − E∆tk} ,

where 1E,k ≡ 1E (xk) and ∆tk = ∆t (xk, xk+1). Note that since 1E (x′) − E∆t (x, x′) is a

scalar function, we can and have combined the two sums that appear in (3.9). Then by

the standard sum properties of variance and covariance,

var {1E,0 − E∆t0} = var {1E,0} − 2Ecov {1E,0,∆t0}+ E2var {∆t0}
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and

cov {1E,0 − E∆t0, 1E,k − E∆tk}

= cov {1E,0, 1E,k} − Ecov {1E,0,∆tk} − Ecov {∆t0, 1E,k}+ E2cov {∆t0,∆tk}

The first terms in each of the above two lines give

var {1E,0}+ 2
∞∑
k=1

cov {1E,0, 1E,k} = V(n)
x 7→1E(x),

and similarly the last terms give E2V(n)
(x→x′)7→∆t(x,x′). The remaining terms - those with

pre-factors of E - are

−2E

[
cov {1E,0,∆t0}+

∞∑
k=1

cov {1E,0,∆tk}+
∞∑
k=1

cov {∆t0, 1E,k}

]
= −2E CV(n)

(x→x′)7→1E(x′),(x→x′)7→∆t(x,x′),

using the definition of CV given in (3.17). Together, these give the decomposition cited

in (3.15).

B.2. Averaged System in Phase-Isostable Coordinates

In order to capture the linearized Poincare map dynamics, we make use of the phase

and isostable coordinates [84], which we find reflect the oscillator dynamics simply and

facilitate a comparison to the standard phase reduction. Here in Section B.2.1 we dis-

cuss the phase-isostable coordinate system, and in Section B.2.2 we introduce a form of

averaging to further simplify the equations.
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B.2.1. Phase-Isostable Coordinates

The phase-isostable coordinates are based on isochrons, equi-phase surfaces that foliate

the basin of attraction of the limit cycle. The isochrons can be thought of as level sets

of the so-called asymptotic phase function Φ (~y), which extends the definition of a phase

coordinate φ on the limit cycle to the basin of attraction. In turn, the isostable coordinates

ψi, defined via level sets of functions Ψi (~y), parameterize the isochrons in such a way that

Ψi (~y) = 0 identifies the limit cycle. Thus, the ψi = Ψi (~y) can be thought of as amplitude

coordinates. Φ and Ψi are defined so that that flows ~y0 (t) of the unperturbed system (i.e.

(3.1) with Din = 0) satisfy

d

dt
Φ (~y0 (t)) = 1(B.11)

d

dt
Ψi (~y0 (t)) = −κiΨi (~y0 (t)) .(B.12)

Note we have implicitly defined time such that the limit cycle has period 1 in the absence

of perturbations; the phase φ goes through a unit interval in a complete cycle. Note also

that when the constants κi have positive real parts, the isostable functions relax towards

the limit cycle given by ψi = 0 as t → ∞. This reflects the fact that the limit cycle

is stable. In this work, we will limit our consideration to the cases where κi are real

and positive, in which case the functions Ψi are also real-valued. We refer the reader

to [84] for a detailed introduction to isostable coordinates and to [82] for a treatment

of the situations where some κi are complex. We also note that, since they satisfy the

linear (B.12), the isostable functions Ψi are eigenfunctions of the Koopman operator.

But not all Koopman eigenfunctions produce isostable coordinates. Isostables correspond
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in particular to the so-called “principal” eigenfunctions, which are non-degenerate: they

have non-zero gradients on the limit cycle. See [42] for a rigorous investigation of when

the principal eigenfunctions exist and are unique.

The non-degeneracy of the isostables comes into play when we consider the noisy

perturbative forcing of the oscillator (3.1). In the change of coordinates from ~y to phase

and isostables, the gradients of Φ and Ψi gives the responses of the phase and isostables

to the forcing:

dφ = dt+ σ
(
~∇Φ (~y)

)T
G (~y) d ~W +O

(
σ2
)

dψi = −κiψi dt+ σ
(
~∇Ψi (~y)

)T
G (~y) d ~W +O

(
σ2
)

i = 1 . . . d ,

where σ ≡
√

2Din. (3.20) and (3.21) then follow from assumption that the deviation ~ψ ≡

(ψ1, ψ2, . . . , ψd) from the limit cycle is O (σ), and, therefore, at first order approximation

the gradients can be replaced with their values on the limit cycle. Thus, in (3.20) and

(3.21),

~Z (φ) = ~∇Φ (~y)
∣∣∣
~yLC(φ)

~Yi (φ) = ~∇Ψi (~y)
∣∣∣
~yLC(φ)

,

where ~yLC (φ) is the point on the limit cycle with phase φ. Note that, since we work to

first order in σ, the result is the same under either the Ito or Stratonovich interpretation

of (3.1).
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B.2.2. Averaging

For small σ, we expect that the accumulation of the noisy perturbation is slow in compari-

son with the fast oscillation of φ. Therefore, within the first order of approximation, we use

a form of averaging to simplify the φ-dependent terms ~Z (φ)T G (φ) and ~Y T
i (φ) GLC (φ)

that appear in (3.20) and (3.21). The end result of our averaging are the equations

dφ = dt+ σ~zTG d
~W (t) + h.o.t.(B.13)

dψi = −κiψi dt+ σeκi(1−mod1φ)~yTG,i d ~W (t) + h.o.t.,(B.14)

where mod1 (φ) = φ − bφc, a 1-periodic function, is the fractional part of φ. In Section

B.2.2.1 we derive expressions for the constant vectors ~zG and ~yG,i, and in Section B.2.2.2 we

explain the (admittedly odd) appearance of e−κimod1(φ) in (B.14). We consider a limiting

case in Section B.2.2.3 and offer a brief discussion of this unusual form of averaging in

Section B.2.2.4.

B.2.2.1. Averaged PRC and IRCs. In order to apply averaging, we first rewrite the

equations for ψi, (3.21), using an integrating factor,

(B.15) d
(
eκitψi

)
= σeκit~Yi (φ)T GLC (φ) d ~W (t) + h.o.t.,

where, as in Section 3.5, the higher order terms (h.o.t.’s) are O
(
σ2, σ

∣∣∣~ψ∣∣∣ , ∣∣∣~ψ∣∣∣2). Aver-

aging (B.17) is non-trivial, since eκit is non-periodic, and we will in fact not average in

the usual, long-time-scale sense. We will be interested in the solutions φ (t) and ψi (t) for

times t ∈ Z that are roughly the times of crossings of the Poincare section. So, instead, by

“averaging” we here mean replacing ~Z (φ)T GLC (φ) and ~Yi (φ)T GLC (φ) with the constant
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real vector ~zTG and a simplified expression eκi(1−mod1φ)~yTG,i (their respective “averages”) in

such a way that the distribution of the solutions φ and ψi remains unchanged at integer

values of t.

Consider initial conditions φ (0) = 0 + O
(
σ,
∣∣∣~ψ∣∣∣) and ψi (0) = ψi,0, which will be

relevant to the Poincare map dynamics. For both the unaveraged and averaged equations,

φ = t +O
(
σ,
∣∣∣~ψ∣∣∣). From the unaveraged equations (3.20) and (B.15), we obtain linear,

time-varying equations,

dφ = dt+ σ ~Z (t)T GLC (t) d ~W (t) + h.o.t.(B.16)

d
(
eκitψi

)
= σeκit~Yi (t)

T GLC (t) d ~W (t) + h.o.t.,(B.17)

at first order approximation. Similarly, from the averaged equations (B.13) and (B.14),

dφ = dt+ σ ~zTGd ~W (t) + h.o.t.(B.18)

d
(
eκitψi

)
= σeκi(t+1−mod1(t))~yTG,i d

~W (t) + h.o.t.

= σeκi(btc+1)~yTG,i d
~W (t) + h.o.t.(B.19)

The solutions of both the unaveraged system (B.16) and (B.17),

φ (t) = φ0 + t+ σ

∫ t

0

~Z (s)T GLC (s) d ~W (s) + h.o.t.(B.20)

eκitψi (t) = ψi,0 + σ

∫ t

0

eκis~Yi (s)
T GLC (s) d ~W (s) + h.o.t.,(B.21)
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and the averaged system (B.18) and (B.19),

φ (t) = φ0 + t+ σ~zTG
~W (t) + h.o.t.(B.22)

eκitψi (t) = ψi,0 + σ

∫ t

0

eκi(bsc+1)~yTG,id ~W (s) + h.o.t.,(B.23)

are Gaussian processes at lowest order. Both sets of equations are in agreement already

about the means, E {φ (t)} = t and E {ψi (t)} = e−κitψi,0. What remains is to match the

variances and covariances, var {φ (t)}, cov {φ (t) , ψi (t)}, and cov {ψi (t) , ψj (t)}, between

the two sets of solutions.

It is sufficient to match after one period, i.e. at t = 1: since GLC (s), ~Yi (s) and

~Z (s) are 1-periodic, their influence on the (co)variances from t = 0 to t = 1 is similar to

that between t = l and t = l + 1 for l ∈ Z. Indeed, the (co)variances at integer values

of t only depend on their values at t = 1 and a time-dependent prefactor that depends

parametrically at most on κi. For var {φ (t)}, this is easy to see, since the amount of

variance that accumulated in each period is the same:

var {φ (t)} = σ2

∫ t

0

~Z (s)T GLC (s) GLC (s)T ~Z (s) ds

= σ2t

∫ 1

0

~Z (s)T GLC (s) GLC (s)T ~Z (s) ds

= tvar {φ (1)} , (t ∈ Z) ,
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and so the aforementioned prefactor for var {φ (t)} is t. For cov {φ (t) , ψi (t)}, the prefac-

tor turns out to be 1−e−κit

1−e−κi
:

cov {φ (t) , ψi (t)} = σ2e−κit
∫ t

0

eκis ~Z (s)T GLC (s) GLC (s)T ~Yi (s) ds

= σ2e−κit
t−1∑
l=0

eκil
∫ 1

0

eκis ~Z (s)T GLC (s) GLC (s)T ~Yi (s) ds

=
1− e−κit

1− e−κi
cov {φ (1) , ψi (1)} (t ∈ Z) .

Similarly, cov {ψi (t) , ψj (t)} = 1−e
−(κi+κj)t

1−e
−(κi+κj)

cov {ψi (1) , ψj (1)} for t ∈ Z. Since the time-

dependent prefactors t, 1−e−κit

1−e−κi
and 1−e

−(κi+κj)t

1−e
−(κi+κj)

are independent of GLC (t), ~Yi (t) and ~Z (t),

they are unchanged when ~Yi (t)
T GLC (t) and ~Z (t)T GLC (t) are averaged. Therefore, we

need only to match the (co)variances of the unaveraged and averaged solutions at a single

integer value of t. We choose t = 1.

At t = 1, the expression for the averaged ψi, (B.23), simplifies to

(B.24) eκiψi (1) ∼ ψi,0 +
σ
√
κi

eκi~yTG,i ~W (s) ,

and the (co)variances of interest for averaged solutions, (B.22) and (B.24) are

var {φ (1)} = σ2~zTG~zG

cov {φ (1) , ψi (1)} = σ2~zTG~yG,i

cov {ψi (1) , ψj (1)} = σ2~yTG,i~yG,j.
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Define σ2Ξ as the covariance matrix for (φ (1) ;ψ1 (1) ;ψ2 (1) ; . . . ;ψd (1)) with entries σ2ξi,j

as they follow from the unaveraged solutions, (B.20) and (B.21). Then for the averaged

and unaveraged version of the (co)variances to match, we require that

~zTG~zG = ξ1,1 ≡
∫ 1

0

~Z (s)T GLC (s) GLC (s)T ~Z (s) ds(B.25)

~zTG~yG,i = ξ1,i+1 ≡ e−κi
∫ 1

0

eκis ~Z (s)T GLC (s) GLC (s)T ~Yi (s) ds(B.26)

~yTG,i~yG,j = ξi+1,j+1 ≡ e−(κi+κj)

∫ 1

0

e(κi+κj)s~Yi (s)
T GLC (s) GLC (s)T ~Yj (s) ds,(B.27)

for 1 ≤ i, j ≤ d. Equivalently, we require that Ξ can be decomposed as Ξ = RT
GRG,

where

(B.28) RG =

(
~zG, ~yG,1, ~yG,2, · · · , ~yG,d

)
.

Since Ξ is proportional to a covariance matrix, it is positive semi-definite. The decom-

position is therefore possible, but it is not unique. Ξ is invariant under orthogonal trans-

formations O of RG, RG 7→ ORG. But O only has the effect of rotating or reflecting the

independent components of d ~W (t). Indeed, as can be seen in Section (B.3) below, the

temporal variance growth rate only depends on Ξ, not on the specific choice of vectors

~zG and ~yG,i.

B.2.2.2. Limitations of a Constant IRC Average. We now justify the odd inclu-

sion of eκi(1−mod1φ) in the average of ~Yi (φ)T GLC (φ). Consider an equivalence class of all

1-periodic, vector-valued functions ~Yi (φ)T GLC (φ) that produce the same (co)variance

statistics for φ and ψi. In the averaging discussed above, we have chosen the 1-periodic



154

vector eκi(1−mod1φ)~yG,i as a simple representative of that equivalence class. Would a con-

stant vector ~yconstant
G not be a simpler choice? In other words, why can one not replace

~Yi (φ)T GLC (φ) with a constant vector (~yconstant
G )

T
, like we do for ~Z (φ)T GLC (φ)?

As it turns out, constant averages can not capture the full range of possible correlations

between φ and the ψi. Consider a planar oscillator where ~Z (φ)T GLC (φ) = ~zG and

~Y1 (φ)T GLC (φ) = ~yconstant
G,1 are constant. The correlation coefficient between φ (1) and

ψ1 (1) is (following (B.25)-(B.27))

ρφ(1),ψ1(1) =
cov {φ (1) , ψ1 (1)}√

var {φ (1)} var {ψ1 (1)}

=
e−κ1

∫ 1

0
eκ1sds√(∫ 1

0
ds
)(

e−2κ1
∫ 1

0
e2κ1sds

) ~zTG~y
constant
G,1

‖~zG‖
∥∥~yconstant

G,1

∥∥
=

√
2

κ1

eκ1 − 1

eκ1 + 1

~zTG~y
constant
G,1

‖~zG‖
∥∥~yconstant

G,1

∥∥ .
The second factor is the cosine of the angle between ~zG and ~yconstant

G,1 and can take on

values between −1 and 1, but the first factor is strictly less than 1 for κ1 > 0. The choice

of constant averages, ~zG and ~yconstant
G,1 , only accommodates correlation coefficients between

−
√

2
κ1

eκ1−1
eκ1+1

and
√

2
κ1

eκ1−1
eκ1+1

. It would not be a problem if no choice of ~Z (φ)T GLC (φ) and

~Y1 (φ)T GLC (φ) yields a correlation coefficient outside of that range: ~zG and ~yconstant
G,1 could

be made to produce the same statistics. But counterexamples are easy to find. Consider

the simple scenario where

~Z (φ)T GLC (φ) = ~Y1 (φ)T GLC (φ) =

(
sin (2πφ) 0

)
.



155

The correlation coefficient is

ρφ(1),ψ1(1) =
e−κ1

∫ 1

0
eκ1s sin2 (2πs) ds√(∫ 1

0
sin2 (2πφ) ds

)(
e−2κ1

∫ 1

0
e2κ1s sin2 (2πs) ds

)
=

8π
√

4π2 + κ2
1

16π2 + κ2
1

√
2

κ1

eκ1 − 1

eκ1 + 1

which exceeds
√

2
κ1

eκ1−1
eκ1+1

when κ1 is between 0 and about 17.8.

Using the averages ~zG and eκi(1−mod1φ)~yG,i, the correlation coefficient ρφ(1),ψi(1) is -

by design - just the cosine of the angle between ~zG and ~yG,i. Similarly, ρψi(1),ψj(1) is

the cosine of the angle between ~yG,i and ~yG,j. The averages ~zG and eκi(1−mod1φ)~yG,i thus

cover all possible correlation values and can be made to represent any ~Z (φ)T GLC (φ) and

~Yi (φ)T GLC (φ).

B.2.2.3. Averages in the Quasi-Renewal Limit. The analysis of the temporal vari-

ance growth rate is greatly simplified in the Λ → 0 (κi → ∞) limit. Here we discuss

the behavior of ~zTG~zG, ~zTG~yG,i, and ~yTG,i~yG,j (given in (B.25)-(B.27)) in that “quasi-renewal”

limit. ~zTG~zG does not depend on κi and is unchanged. ~zTG~yG,i and ~yTG,i~yG,j on the other hand

both go to 0 as κi → ∞. The asymptotic form of the integrals in (B.26) and (B.27) can

be found via Laplace’s method (see e.g. Section 6.4 of [4] for a pedagogical treatment).

Both ~zTG~yG,i and ~yTG,i~yG,j are of the form

I (κ) =

∫ 1

0

eκ(s−1)g (s) ds

where g (s) is 1-periodic and κ play the role of κi or κi + κj. Since eκ(s−1) is maximized

at s = 1, we replace g (s) with g (1) = g (0) at first order approximation. To the same
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order of approximation, since the integrand is exponentially small for s < 1, the integral

can be taken over s from −∞ to 1, yielding

I (κ) ∼
(∫ 1

−∞
eκ(s−1)

)
g (0) =

1

κ
g (0) .

For ~zTG~yG,i and ~yTG,i~yG,j, this becomes (cf. (B.26) and (B.27))

~zTG~yG,i ∼
1

κi
~Z (0)T GLC (0) GLC (0)T ~Yi (0)

~yTG,i~yG,j ∼
1

κi + κj
~Yi (0)T GLC (0) GLC (0)T ~Yj (0) .

In particular, in a planar oscillator, where there is a single vector ~yG and Λ = e−κ is a

scalar, ‖~yG‖2 goes like − 1
log Λ

, a fact the we make use of in Section 3.6.2.

B.2.2.4. Some Comments About Averaging. As we discussed above, averaging in

the usual long-time-scale sense is not desirable, since - in deriving the Poincare map

dynamics - we integrate (B.13) and (B.14) over an O (1) time interval. The φ-dependent

factor eκi(1−mod1φ) is required to capture the joint statistics of φ (t) and ψi (t) at t ∼ 1, and,

in some sense, ~zTG and eκi(1−mod1φ)~yTG,i are the simplest PRC and IRCs that can reproduce

the statistics from any given oscillator model. This reflects the fact that additional time

scales introduced by the appearance of κi in the isostable equations, (3.21), remain relevant

over the O (1) time interval. In fact, the initial condition φ (0) ∼ 0 also remains relevant.

~yG,i not only varies with κi but also depends on our choice of where φ = 0: a redefinition

of φ by a shift would not leave ~yG,i invariant (see (B.26) and (B.27)). Since we choose

φ = 0 to identify the point where the Poincare section intersects the limit cycle, this

ultimately means that the averaged IRCs ~yG,i depend the location of that intersection.
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The standard phase reduction with the standard averaging, (3.2) and (3.3), follows

under the assumption of strong contraction to the limit cycle (κi � 1). In that case

ψi ∼ 0 and can be ignored. Note that the phase diffusion Dphase = ~zTG~zGDin is invariant

under shifts of the phase variable (see (B.25)), and it is thus independent of where the

Poincare section intersects the limit cycle.

We must also note that the averaging step we have presented here is not strictly

necessary in our derivation of the event temporal variance growth rate, which could follow

directly from the linearized, but unaveraged system, (3.20) and (3.21). But, by averaging,

we reveal what minimal, extra information about the oscillator beyond the standard phase

reduction is required to capture events statistically in the long-time limit. The averaged

quantities give an interpretation to the oscillator-dependent parameters that appear in

the formula for the TVGR (3.31): ~b roughly measures the overlap between the averaged

PRC ~zG and each of the averaged IRCs ~yG,i (see (3.32)), and c measures the magnitude

of the PRC (see (3.33)).

B.3. Temporal Variance Growth Rate for Limit-cycle Oscillators

Here we detail the derivation of the TVGR for limit cycle oscillators, starting from the

averaged equations, (B.13) and (B.14). In Section B.3.1, we adapt the derivation given

by Hitczenko and Medvedev in [32] of the linearized Poincare map and first passage time,

(3.23), for the averaged system. We derive the associated joint distributions and statistics

for the positions on the Poincare section and the first passage times in Section B.3.2. In

Section B.3.3, we use those distributions and statistics to produce an expression for the

temporal variance growth rate (3.31).
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B.3.1. Linearized Stochastic Poincare Map

As in Hitczenko and Medvedev’s work (hereafter referred to as “HM”), our derivation of

the first passage time and linearized Poincare map, (3.23), follows from the approximate

solution in a moving coordinates representation of the noise-driven limit cycle oscillator.

While HM use amplitude coordinates ~ρ that are orthogonal to the limit cycle, we use

isostable coordinates that parameterize isochrons, which in general are not orthogonal to

the limit cycle. We first contrast the two choices, noting the simplicity of the system in

isostable coordinates. In the moving orthogonal coordinates, the system to lowest order

is (Equations 2.8-2.9 of HM)

dθ ∼
[
1 + ~a (θ)T ~ρ

]
dt+ σ~h (θ)T d ~W (t)(B.29)

d~ρ ∼ R (θ) ~ρ+ σH (θ)T d ~W (t) ,(B.30)

while in isostable coordinates with averaging, it is (B.13) and (B.14), or

dφ ∼ dt+ σ~zTG d ~W (t)(B.31)

d~ψ ∼ −K~ψ dt+ σeK(1−mod1φ)YT
G d

~W (t) ,(B.32)

where σ ≡
√

2Din, K is the diagonal matrix with entries κi, and YG is the matrix

with columns ~yG,i. Note the inclusion of the vector ~a in (B.29) that captures shear in

the flow in the vicinity of the limit cycle. Since the shape of the isochrons takes the

shear into account, no such term appears in phase equation (B.31) under phase-isostable

coordinates. The dynamics of the amplitude coordinates are also simpler. In the absence

of perturbative inputs, the isostable coordinates are decoupled, evolving by a constant
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diagonal matrix K (cf. the generally non-diagonal R (θt) in (B.29) that varies with the

phase variable θ). Since we apply averaging beforehand, the noise terms in (B.31) and

(B.32) are simplified. We note that over the course of HM’s derivation, the averaging

calculation presented in Appendix B.2.2, as it applies to the time interval t ∈ [0, 1], is

done implicitly. In the end, the results we obtain by averaging first are equivalent to those

found by applying HM’s work to the unaveraged system (3.21). Formally, the averaged

system, (B.31) and (B.32), which are the starting point of our analysis, are a special case

of (B.29) and (B.30). HM study (B.29) and (B.30) in their full generality, and so their

results apply to isostable coordinates - up to one limitation, discussed below - simply by

making the following substitutions:

(B.33) θ → φ, ~ρ→ ~ψ

(B.34) ~a (θ)→ 0, R (θ)→ −K, h (θ)→ zG,H (θ)→ YGeK(1−mod1φ).

Recall, however, that we define a general Poincare section by φ = φS

(
~ψ
)
∼ ~mT

S
~ψ (see

the discussion around (3.22)). In contrast, HM’s analysis is limited to the case where

the Poincare section is given by θ = 0, which in their work is to be interpreted as a

surface orthogonal to the limit cycle. The replacements (B.33) and (B.34) would reflect

the choice φS

(
~ψ
)

= 0, for which the Poincare section is an isochron. One could extend

HM’s rigorous work, generalizing it for arbitrary Poincare sections in moving orthogonal

coordinates. We opt instead to present a less formal derivation for arbitrary sections in

the simpler phase-isostable coordinates.
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Mirroring HM, we begin with the solution of (B.31) and (B.32) with the initial con-

dition restricted to the section: ~ψ (tn) = ~ψn and φ (tn) = ~mT
S
~ψn. The subscript n reflects

that this starting point is the nth crossing of the section. The equation for φ, (B.31),

simply can be integrated, yielding

(B.35) φ (t) ∼ mod 1

(
~mT
S
~ψn + t− tn + σ~zTG

(
~W (t)− ~W (tn)

))
to first order in σ and ~ψ. We rewrite (B.32) using an integrating factor of eK(t−tn) and

(B.35),

(B.36) d
(

eK(t−tn) ~ψ
)
∼ σeK[(t−tn)+1−mod1(t−tn+O(σ,|~ψ|))]YT

G d ~W (t) .

Since the first return time to the Poincare section is tn+1 = tn + 1 + O
(
σ,
∣∣∣~ψ∣∣∣),

we will integrate (B.36) over an interval t ∈
(
tn, tn + 1 +O

(
σ,
∣∣∣~ψ∣∣∣)). Note that

mod1

(
t− tn +O

(
σ,
∣∣∣~ψ∣∣∣)) is simply t − tn + O

(
σ,
∣∣∣~ψ∣∣∣) for all but a subset of mea-

sure O
(
σ,
∣∣∣~ψ∣∣∣) of that interval. Given that (B.36) is overall O

(
σ,
∣∣∣~ψ∣∣∣), we may therefore

replace the factor [(t− tn) + 1−mod1 (. . .)] in the exponent on the right hand side of

(B.36) with 1 to first order approximation. Integrating then yields

eK(t−tn) ~ψ (t) ∼ ~ψn + σeKYT
G

(
~W (t)− ~W (tn)

)
,

for t ∈
(
tn, tn + 1 +O

(
σ,
∣∣∣~ψ∣∣∣)). Once we further evaluate at t = tn+1, eK(t−tn) =

eK +O
(
σ,
∣∣∣~ψ∣∣∣), and so the Poincare map takes ~ψn to

(B.37) ~ψn+1 ≡ ~ψ (tn+1) ∼ e−K ~ψn + σYT
G∆ ~Wn,
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where ∆ ~Wn = ~W (tn + 1) − ~W (tn) is a standard normal vector random variable. Also,

from (B.35)

(B.38) φ (tn+1) ∼ ~mT
S
~ψn + σ~zTG∆ ~Wn.

We now derive the first passage time to first order approximation. Because the

Poincare section is defined via (3.22), the first return time is the first time tn+1 such

that

(B.39) φ (tn+1) = ~mT
S
~ψ (tn+1)

and tn+1 = tn + 1 +O
(
σ,
∣∣∣~ψ∣∣∣). Estimating the first passage time ∆T Sn = tn+1− tn to first

order in σ and ~ψn, we write it as

(B.40) ∆T Sn ∼ 1 + ~δµ
T ~ψn + σζn.

Inserting tn+1 = tn + ∆T Sn into (B.39) and expanding it around tn + 1 using (B.37) and

(B.38) and the facts that φ̇ = 1 +O
(
σ,
∣∣∣~ψ∣∣∣) and ~̇ψ = O

(
σ,
∣∣∣~ψ∣∣∣) then gives to first order

φ (tn + 1) + φ̇ (tn + 1)
(
~δµ
T ~ψn + σζn

)
∼ ~mT

S

(
~ψ (tn + 1) + ~̇ψ (tn + 1)

(
~δµ
T ~ψn + σζn

))

(
~mT
S
~ψn + σ~zTG∆ ~Wn

)
+
(
~δµ
T ~ψn + σζn

)
∼ ~mT

S

[
e−K ~ψn + σYT

G∆ ~Wn

]
.

(B.41)

From (B.41) we see that

(B.42) ~δµ
T
≡ −~mT

S (I−Λ) ,
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where Λ ≡ e−K, and

ζn ≡
(
~mT
SYT

G − ~zTG
)

∆ ~Wn

=

(
−1, ~mT

S
K−

1
2

)
RT
G∆ ~Wn,(B.43)

where RG =

(
~zG, ~yG,1, ~yG,2, · · · , ~yG,d

)
, as defined in (B.28). Following (B.37),

(B.40), and (B.43), the covariance matrix for

(
∆T Sn ; ~ψn+1

)
conditioned on ~ψn is

given by α ~βT

~β Γ

 ≡

 (
~mT
SYT

G − ~zTG
)

(YG ~mS − ~zG)
(
~mT
SYT

G − ~zTG
)
YG

YT
G (YG ~mS − ~zG) YT

GYG

(B.44)

=

 −1 ~mT
S

~0 I

Ξ

 −1 ~0T

~mS I

 ,(B.45)

where Ξ = RT
GRG. It will be useful to rewrite α and ~β in terms of

(B.46) Γ ≡ YT
GYG

as

α = ~mT
SΓ~mS − 2~mT

SYT
G~zG + ~zTG~zG

~β = Γ~mS −YT
G~zG.(B.47)
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B.3.2. Steady-State Probability Densities

Computation of the TVGR will require the steady-state distribution of ~ψn for n large,

(3.24), the joint distribution of ~ψn and ~ψn+m for large n, (3.26), and the distribution

of ∆Tn conditioned on ~ψn and ~ψn+1, (B.52) below. These all follow from the linearized

Poincare map and first passage time (3.23). Written in terms of a conditional distribution,

(B.48)

 ∆T Sn − 1

~ψn+1

 dist.∼
given ~ψn

N


 ~δµ

T

Λ

 ~ψn, σ
2

 α ~βT

~β Γ


 ,

whereN (~µ,Σ) is the multivariate normal distribution with mean ~µ and covariance matrix

Σ and α, ~β and Γ are as defined in Section B.3.1. The distribution for ~ψn is found in

Section 3.5.2, and we outline the derivation of the others here.

To start, we cite elementary formulas for connecting conditional and joint multivariate

normal distributions (see e.g. [17]). Generally, for two (potentially vector-valued) random

variables y1 and y2 that are jointly normally distributed, i.e.

(B.49)

 y1

y2

 dist.∼ N


 µ1

µ2

 ,

 Σ11 Σ12

ΣT
12 Σ22


 ,

the distribution of y1 conditioned on y2 is again normally distributed:

(B.50) y1
dist.∼

given y2

N
(
µ1 + Σ12Σ

−1
22 (y2 − µ2) , Σ11 −Σ12Σ

−1
22 ΣT

12

)
.

Now, using (B.49) and (B.50) we will recover the joint distribution for ∆T Sn , ~ψn, and ~ψn+1

from the conditional distribution for ∆T Sn and ~ψn+1. Taking y1 =
(

∆T Sn − 1; ~ψn+1

)
and
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y2 = ~ψn and comparing (B.48) and (B.50), we find that

Σ12 =

 ~δµ
T

Λ

Σ22

Σ11 = σ2

 α ~βT

~β Γ

+

 ~δµ
T

Λ

Σ22

(
~δµ Λ

)

µ1 =

 ~δµ
T

Λ

µ2,

where Λ ≡ e−K. From (3.24) we have µ2 = E
{
ψ̃n+1

}
= 0 and Σ22 = var

{
~ψn+1

}
= σ2Γss

in steady-state, and (B.49) becomes

(B.51)


∆T Sn − 1

~ψn+1

~ψn

 dist.∼ N

0, σ2


α + ~δµ

T
Γss

~δµ ~βT + ~δµ
T
ΓssΛ ~δµ

T
Γss

~β + ΛΓss
~δµ Γss ΛΓss

Γss
~δµ ΓssΛ Γss


 .

Similarly, taking y1 = ∆T Sn − 1 and y2 = ~ψn+1 and matching (B.48) and (B.49), (B.50)

gives the conditional distribution for ∆T Sn ,

(B.52) ∆T Sn
dist.∼

given ~ψnand~ψn+1

N
(

1 + ~δµ
T ~ψn + ~βTΓ−1

(
~ψn+1 −Λ~ψn

)
, σ2

[
α− ~βTΓ−1~β

])
.



165

We now consider (3.26), the joint distribution of ~ψn and ~ψn+m, for m > 0 and n→∞.

Applying (3.23) recursively and neglecting higher-order terms, we have

~ψn+m = Λm ~ψn +
m∑
k=1

Λk−1~ηn+m−k

Since the ~ηn+m−k are i.i.d. with mean 0 and covariance matrix Γ, var
{
~ψn+m

∣∣∣~ψn} =

σ2
∑m−1

k=0 ΛkΓΛk or, using (3.25), σ2 (Γss −ΛmΓssΛ
m). So

(B.53) ~ψn+m
dist.∼

given ~ψn

N
(
Λm ~ψn, σ

2 (Γss −ΛmΓssΛ
m)
)
.

Then, as we did above for (B.51), we recover the joint density (3.26) using (B.49) and

(B.50) and the facts that E
{
~ψn

}
= E

{
ψ̃n+m

}
= 0 and var

{
~ψn

}
= var

{
~ψn+m

}
= σ2Γss.

B.3.3. The TVGR Term-by-Term

We compute the TVGR for the limit cycle oscillator via (3.15) and using the covariance

matrix (B.44) as well as the other distributions cited in Sections 3.5.2 and B.3.2. Recall

the state x of the Markov renewal process is the position ~ψ on the Poincare section. In

the following, we use x and ~ψ interchangeably.

In order to evaluate V(t)
E , we find it useful to first compute CV(n)

(x→x′)7→h(x),(x→x′)7→x and

CV (n)
(x→x′) 7→h(x),(x→x′) 7→x′ for an arbitrary scalar or vector-valued, deterministic function h.

Since E {xn} = E
{
~ψn

}
= 0, (3.17) gives

(B.54)

CV(n)
(x→x′)7→h(x),(x→x′)7→x = E

{
h (xn)xTn

}
+
∞∑
k=1

E
{
h (xn)xTn+k

}
+
∞∑
k=1

E
{
h (xn+k)x

T
n

}
.
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Recall that we use N (·, µ,Σ) to denote the probability density function for the normal

distribution with mean µ and covariance matrix Σ. Note then that

E
{
h (xn)xTn+k

}
=

∫
S×S

h (xn)xTn+kN


 xn+k

xn

 ; 0, σ2Ck

 dxn+k dxn,

where Ck is as defined in (3.26). We can integrate over xn+k to find for k ≥ 0

E
{
h (xn)xTn+k

}
= E

{
h (xn) E

{
xTn+k |xn

}}
= E

{
h (xn) xT

n Λk
}

= HΛk,

where from (B.53) E
{
xTn+k |xn

}
= xT

n Λk and we define

(B.55) H ≡
∫
S

h (x)xTN
(
x; 0, σ2Γss

)
dx.

Analogously, using (3.26) and (B.50), we have E
{
xTn |xn+k

}
= xTn+kΓ

−1
ss ΛkΓss, and, thus,

for k ≥ 0,

E
{
h (xn+k)x

T
n

}
= E

{
h (xn+k) E

{
xTn |xn+k

}}
= E

{
h (xn+k)x

T
n+kΓ

−1
ss ΛkΓss

}
= HΓ−1

ss ΛkΓss.

So the sums in (B.54) can be written in closed-form as geometric series,

CV(n)
(x→x′)7→h(x),(x→x′) 7→x = H

[
I +

(
(I−Λ)−1 − I

)
+ Γ−1

ss

(
(I−Λ)−1 − I

)
Γss

]
= H

[
−I + (I−Λ)−1 + Γ−1

ss (I−Λ)−1 Γss

]
.
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It will be useful to decompose the expression in brackets as

(B.56) CV(n)
(x→x′)7→h(x),(x→x′)7→x = HΓ−1

ss (I−Λ)−1 Γ (I−Λ)−1 ,

which can be done via the fact that Γss = ΛΓssΛ+Γ (see the discussion preceding (3.25)).

It can similarly be shown that

CV(n)
(x→x′)7→h(x),(x→x′)7→x′ = H

[
Λ +

(
(I−Λ)−1 − (I + Λ)

)
+ Γ−1

ss (I−Λ)−1 Γss

]
= HΓ−1

ss (I−Λ)−1 Γ (I−Λ)−1(B.57)

is precisely the same as CV(n)
(x→x′) 7→h(x),(x→x′) 7→x.

It is also useful to consider the expression ∆t (x, x′) that appears in the TVGR. Recall

from the discussion in Section 3.3.2 and Appendix B.1 that ∆t (x, x′) is a random function

of x and x′: even when conditioned on x and x′, there may be uncertainty in its value.

For the linearized Poincare map dynamics, ∆t
(
~ψn, ~ψn+1

)
has the same distribution as

∆T Sn conditioned on ~ψn and ~ψn+1 and can be decomposed as

(B.58) ∆t
(
~ψn, ~ψn+1

)
= ∆t

(
~ψn, ~ψn+1

)
+ δtn,

where ∆t (x, x′) is the mean of ∆t (x, x′) conditioned on x and x′ and the δtn are zero

mean i.i.d. Gaussian random variables independent of the ~ψj for any j (see (B.52)). Since

each of the terms constituting the mixed component are covariances of ∆t
(
~ψn, ~ψn+1

)
with 1E

(
~ψj

)
(see (3.17)), the mixed component does not depend on the δtn, i.e. it can
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be rewritten as

CV (n)
(x→x′) 7→1E(x),(x→x′)7→∆t(x,x′) = CV(n)

(x→x′)7→1E(x),(x→x′) 7→∆t(x,x′)
.

While δtn likewise does not contribute to the covariances in the temporal component,

V(n)
(x→x′)7→∆t(x,x′), it does affect the first, variance term in (3.9) var

{
∆t
(
~ψ0, ~ψ1

)}
. By the

law of total variance

var
{

∆t
(
~ψ0, ~ψ1

)}
= var

{
E
{

∆t
(
~ψ0, ~ψ1

) ∣∣∣~ψ0, ~ψ1

}}
+ E

{
var
{

∆t
(
~ψ0, ~ψ1

) ∣∣∣~ψ0, ~ψ1

}}
= var

{
∆t
(
~ψ0, ~ψ1

)}
+ var {δt0} .(B.59)

The first term of (B.59) is the first term of V(n)

(x→x′)7→∆t(x,x′)
. So, beyond those terms in-

cluded in V(n)

(x→x′)7→∆t(x,x′)
, V(n)

(x→x′) 7→∆t(x,x′) has the additional contribution var {δt0}. Thus,

V(t)
E = V(n)

x 7→1E(x) − 2 E CV(n)

(x→x′)7→1E(x),(x→x′)7→∆t(x,x′)
+ E2V(n)

(x→x′) 7→∆t(x,x′)
+ var {δt0} .

We now evaluate V(t)
E term-by-term.

(1) V(n)
x 7→1E(x)

This term is as written in (3.28).

(2) CV(n)

(x→x′)7→1E(x),(x→x′) 7→∆t(x,x′)

From (B.52) and (B.58) we see that ∆t
(
~ψn, ~ψn+1

)
is linear in xn = ~ψn and

xn+1 = ~ψn+1, we write

(B.60) ∆t
(
~ψn, ~ψn+1

)
= 1 +~bT0

~ψn +~bT1
~ψn+1,
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where, using (B.42), (B.47), and (B.52),

~b1 = Γ−1~β = ~mS − Γ−1YT
G~zG

~b0 = ~δµ−Λ~b1 = −~mS + ΛΓ−1YT
G~zG.

Because it will be useful, we note that their sum is simply

(B.61) ~b0 +~b1 = − (I−Λ) Γ−1YT
G~zG.

Then, since CV is a bilinear functional (see (3.16)),

CV(n)

(x→x′)7→1E(x),(x→x′) 7→∆t(x,x′)
= CV(x→x′)7→1E(x),(x→x′)7→x~b0 + CV(x→x′)7→1E(x),(x→x′)7→x′~b1,

where x = ~ψ. Now we can apply (B.56) and (B.57) with h (x) = 1E (x), yielding

CV(n)

(x→x′)7→1E(x),(x→x′) 7→∆t(x,x′)
= X TΓ−1

ss (I−Λ)−1 Γ (I−Λ)−1
(
~b0 +~b1

)
,

where, using (B.55),

X T = E {1E (xn)xn} =

∫
E

xTN
(
x; 0, σ2Γss

)
dx.

Note that X = xEE , where xE and E are as defined in Section 3.5.3. We rewrite

CV(x→x′)7→1E(x),(x→x′) 7→∆t(x,x′) as −1
2
X T~b, where

(B.62) ~b = 2Γ−1
ss (I−Λ)−1 YT

G~zG

follows from (B.61) and contains the factors that are independent of σ and E.
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(3) V(n)

(x→x′)7→∆t(x,x′)

Again decomposing ∆t via (B.60), we have from the linearity of V and CV (see

(3.9) and (3.17)),

(B.63)

V(n)

(x→x′)7→∆t(x,x′)
=

(
~bT0 ,

~bT1

) V(n)
(x→x′)7→x CV(n)

(x→x′)7→x,(x→x′)7→x′

CV(n)
(x→x′)7→x′,(x→x′)7→x V(n)

(x→x′)7→x′


 ~b0

~b1

 .

Note that V(n)
(x→x′)7→x = CV(n)

(x→x′) 7→x,(x→x′)7→x, and so we can apply (B.56) and

(B.57) for each of the matrix-valued entries in the matrix appearing in (B.63).

But since (B.56) and (B.57) give the same result, all of those entries are the same:

V(n)
(x→x′)7→x. To compute V(n)

(x→x′)7→x, we take h equal to the identity function. (B.55)

gives H = σ2Γss, and thus

V(n)
(x→x′)7→x = σ2 (I−Λ)−1 Γ (I−Λ)−1 .

Then we have from (B.61) and (B.63)

V(n)

(x→x′)7→∆t(x,x′)
=

(
~b0 +~b1

)T
V(n)

(x→x′)7→x

(
~b0 +~b1

)
= σ2~zTGYGΓ−1YT

G~zG(B.64)

(4) var {δt0}

(B.52) reveals that the conditional variance of ∆t (x, x′) is given by
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σ2
[
α− ~βTΓ−1~β

]
. Then following (B.47),

var {δt0} = σ2
[
α− ~βTΓ−1~β

]
= σ2

[
~mT
SΓ~mS − 2~mT

SYT
G~zG + ~zTG~zG −

(
~mT
SΓ− ~zTGYG

)
Γ−1

(
Γ~mS −YT

G~zG
)]

= σ2
[
~zTG~zG − ~zTGYGΓ−1YT

G~zG
]
.(B.65)

(5) V(t)
E

Putting all of the above pieces together, we arrive at (3.31),

V(t)
E =

(
E − E2

)
+ 2

∞∑
m=1

(
Em − E2

)
+
(
~b · xE

)
E2 + c

σ2

2
E2,

where ~b is given by (B.62) and c follows from (B.64) and (B.65):

c =
2

σ2

(
V(x→x′)7→∆t(x,x′) + var {δt0}

)
= 2~zTG~zG.(B.66)

B.4. Bounds on the Markov-only Component

In this section we derive (3.51): upper and lower bounds on V(n)
x 7→1E(x), the Markov-

only component of the temporal variance growth rate, for planar oscillators. For the lower

bound, we show that Em − E2 > 0 for all finite m ≥ 0. For the upper bound, we bound

each term (Em − E2) individually in such a way that the infinite sum can be carried out

as a geometric series. Specifically, we find a B that is independent of Λ and m such that

(B.67) Em − E2 ≤ ΛmB,
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and therefore

V(n)
x 7→1E(x) = E (1− E) + 2

∞∑
m=1

(
Em − E2

)
≤ B + 2

Λ

1− Λ
B =

1 + Λ

1− Λ
B.

Both the lower and upper bounds involve a comparison of

Em =

∫
E×E

N
(
z; 0, σ2Cm

)
dz

with E2, where

Cm =

 1 Λm

Λm 1

 .

Note that, since 0 ≤ Λ < 1, C∞ = I, and so E2 = E∞. We start our analysis with a

transformation of variables z to ζ such that the resulting integrands are independent of

m,

ζ =
1√
2

 1√
1+µ

1√
1+µ

− 1√
1−µ

1√
1−µ

 z,

where µ ≡ Λm. This amounts to a rotation by −π
4

and a scaling of the two resulting

components by 1√
1+µ

and 1√
1−µ , respectively. Under this transformation, the integrand

becomes the probability density function for a 2D normal random variable ζ with uncor-

related components: N (ζ; 0, σ2I). The cost of this step, of course, is that the domain of

integration z ∈ E × E =
[
δ − 1

2
, δ + 1

2

]
×
[
δ − 1

2
, δ + 1

2

]
is no longer rectangular and now

depends on m. On the other hand, Em and E∞ can now be directly compared, since they

share the same probability density N (ζ; 0, σ2I). Each term in the infinite sum, Em−E∞,
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Figure B.2. (a): Regions of integration for Em (bounded by the red lines)
and E∞ (bounded by the black lines) in the ζ-plane. The red regions count
positively towards Em − E∞ and the black regions negatively. This picture
is to scale for δ = 0.25 and µ = 0.6, but is qualitatively representative for
all δ ∈

(
0, 1

2

)
and µ ∈ (0, 1). (b) and (c): Radial representation Θ (η) of the

exact difference in the areas of the regions. In (a) and (b), δ = 0.25 and
µ = 0.6. In (c), where δ = 0.25 and µ = 0.4, Θ (η) becomes negative for an
interval of η.

is given by the difference in the total probability mass in a diamond-shaped region and

in a square region in the ζ-plane (red and black regions, respectively, Figure B.2a).

Since the probability density has circular symmetry, we analyze the difference in prob-

ability mass in polar coordinates. Progress can be made by integrating over the angular

coordinate, which yields

(B.68) Em − E∞ =
1

2πσ2

∫ ∞
0

ηΘ (η) e−
η2

2σ2 dη,
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where η is the radial coordinate and Θ (η) is the net angular content of the diamond-

shaped region less the square region at a distance of η from the origin. Note that for

µ < 1 (i.e. Λ < 1 and m > 0) and for η sufficiently small, Θ (η) = 0, since the diamond

and square overlap at small η. Θ (η) is also 0 for sufficiently large η since the diamond

and square are finite for µ < 1. These facts will act as “boundary conditions” in our

analysis, since we characterize Θ (η) in terms of its derivative in the following.

Between its initial and final values, Θ (η) is a piecewise smooth function that depends

parametrically on δ and µ. We expect it might become non-smooth at radii corresponding

to 1) the distance between the origin and the corners of the square and diamond and 2) the

minimum distance between the origin and the sides of the square and diamonds (Figure

B.2a). As it turns out, though, the distance to the sides of the square and to the sides

of the diamond are equal; those radii / distances are invariant in µ. At those values of

η, Θ (η) is smooth, since the contributions from the square and diamond cancel. There

are 6 remaining, unique “non-smooth radii”, taking the symmetry about the ζ1-axis into

account. We label them via cardinal directions (north, east, and west; south is equivalent

to north) and an index of m if that radius is specific to the diamond and of ∞ if it is

specific to the square (Figure B.2a):

(B.69)

ηN,m =

√
1

2 (1− µ)
+

2δ2

1 + µ
; ηE,m =

√
2

1 + µ

(
1

2
+ δ

)
; ηW,m =

√
2

1 + µ

(
1

2
− δ
)
.

Here the m = ∞ counterparts are given by replacing µ = Λm with 0. Note that ηE,m

and ηW,m are strictly decreasing as functions of µ, while ηN,m is strictly increasing for

µ ∈ [0, 1) when δ ∈
[
0, 1

2

)
.
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The behavior of the function Θ (η) between those 6 radii can be fully specified by

the ordering of the radii. For example, if ηE,m > ηN,∞ (as in the two cases shown in

Figure B.2), then Θ is constant between η = ηW,∞ and η = ηN,∞. 5 different orderings

of the non-smooth radii and therefore 5 different qualitative behaviors of Θ (η) appear

non-degenerately for δ ∈
(
0, 1

2

)
and µ ∈ (0, 1) (Figure B.3a,b). Between subsequent pairs

of the non-smooth radii, Θ (η) takes on one of only six potential functional forms up to

an additive constant. In particular, each piecewise segment of the derivative Θ′ (η) is one

of 0, Θ′NE (η), ±Θ′NW (η), or ± (Θ′NE (η) + Θ′NW (η)), with

(B.70) ΘNd (η; δ) ≡ 2 arcsec

(
η

ηNd (δ)

)

for d = E,W , where ηNE and ηNW are the distances from the origin to the sides of

diamond/square (Figure B.2a),

(B.71) ηNE =
1

2
+ δ; ηNW =

1

2
− δ.

The functional form of ΘNd (η; δ) follows from elementary geometry along with the “initial

condition” of Θ = 0 for small η. Since Θ is 0 initially, we see the parts of the circle of radius

η that protrude outside of the square (diamond) as contributing positively (negatively)

towards Θ. For d = E, for example, ΘNE(η)
2

is the angle subtended by each the northeast

and southeast side of the square or diamond when restricted to the exterior of a circle

of radius η (Figure B.3c,d). Note that while η < ηE,m < ηE,∞, i.e. before the circle

passes through the eastern corner of the diamond, the net contribution from this eastern

quadrant is 0 (in Figure B.3c, the dashed and solid arcs are equal in length). It is only

when ηE,m < η < ηE,∞, i.e. when the circle intersects the square and not the diamond on
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Figure B.3. (a): Curves in the δ-µ plane on which two of the non-smooth
radii are degenerately equal. In the numbered regions between the curves,
the radii have a particular ordering and Θ (η) a particular piecewise be-
havior. (b): Curves in the η-µ plane that separate the different smooth
segments of Θ (η). While (b) is to-scale only for δ = 0.075 and corresponds
to the vertical dashed line in (a), each of the numbered horizontal strips
is representative of the corresponding region in (a). They indicate the or-
dering of non-smooth radii and smooth segments, which is invariant within
each region. The shading in (b) indicates the smooth behavior that Θ (η)
takes on in that interval of η. 0 means Θ is constant, NE stands in to mean
Θ′ (η) = Θ′NE (η), −NE − NW for Θ′ (η) = −Θ′NE (η) − Θ′NW (η), etc. The
points marked c and d correspond to the situations shown in subfigures
(c) and (d). (c) and (d) give a geometric interpretation of ΘNE (η) in the

ζ-plane, as an example: ΘNE(η)
2

is one of the acute angles in right triangles
with adjacent side length ηNE and hypotenuse η.
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the northeast and southeast sides, that the net angle accumulates at a rate of Θ′NE (η) (in

Figure B.3d, η-dependent dashed arc is longer than the fixed solid arc). The accumulation

is due to the increasing part of the circle falling outside the square and stops once η > ηE,∞

(note how the blue shading ends at η = ηE,∞ in Figure B.3b). Note that Θ′Nd (η) > 0 and

therefore the appearance of a minus sign in some of preceding functional forms indicates

that Θ (η) is decreasing, as it does in the northern quadrant. Generally, Θ′Nd makes

a positive contribution to Θ when ηd,m < η < ηd,∞ and a negative contribution when

ηN,∞ < η < ηN,m (Figure B.3b).

With the above, common analysis set-up, we now treat the lower and upper bounds

separately.

B.4.1. The Lower Bound

We aim to show that (B.68) can be bounded as

(B.72) Em − E∞ ∝
∫ ∞

0

ηΘ (η) g (η;σ) dη ≥ 0,

where g (η;σ) ≡ e−
η2

2σ2 . If Θ (η) is non-negative, the above inequality will hold trivially.

This is the case for values of δ and µ corresponding to regions 1-3 of Figure B.3a. For

µ < 1 (i.e. Λ < 1 and m > 0), Θ (η) must eventually be 0 at large η, since both the

diamond and square extend only to finite η. In regions 1-3, as η increases, Θ (η) is first

(non-strictly) increasing from 0, and then decreases monotonically to 0, remaining 0 for

η > ηN,m (consider the “boundary conditions” Θ (0) = Θ (∞) = 0 and the signs of Θ′ (η)

associated with the shading in Figure B.3b). This implies that Θ (η) remains non-negative

for all η.
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In regions 4 and 5, the argument is more subtle. Here Θ (η) initially increases (non-

strictly) for η < ηN,∞, then decreases (again, non-strictly) for η ∈ (ηN,∞, ηN,m), and then

again increases until η = ηE,∞, where Θ = 0. Therefore Θ (η) is initially 0, becomes

positive for some interval of η, and then crosses 0, becoming negative before returning to

0 (as in e.g. Figure B.2c). The same is true of ηΘ (η). Most importantly, the interval

where Θ (η) and ηΘ (η) are negative is on the rightmost end of their support. At the

same time, for any 0 < η1 < η2, g(η2;σ)/g(η1;σ) is strictly increasing as a function σ. This

means that, in the integral in (B.72), the negative part of ηΘ (η) has the greatest relative

contribution in the limit σ →∞. It is therefore sufficient that
∫∞

0
ηΘ (η) dη ≥ 0 in order

to show that (B.72) holds. But the integral
∫∞

0
ηΘ (η) dη is just the difference in area

between the diamond and the square, 1√
1−µ2

− 1, which is positive for 0 < µ < 1.

We conclude that Em − E∞ > 0 for any Λ ∈ (0, 1), m > 0, and δ ∈
(
0, 1

2

)
.

B.4.2. The Upper Bound

We recall our goal, a bound B independent of µ = Λm such that (cf. (B.68) and (B.67))

Em − E∞
µ

=
1

2πσ2µ

∫ ∞
0

ηΘ (η; δ, µ) g (η;σ) dη ≤ B (σ; δ) ,

and we therefore aim to select an appropriate upper bound of 1
µ
Θ (η; δ, µ) uniform in µ.

However, many of the obvious (e.g. piecewise constant) upper bounds on Θ result in

divergences in the above integral as µ → 1. The difficulty is that ηN,m → ∞ as µ → 1.

Indeed, the limiting shape of the diamond region is the infinite strip
[
δ − 1

2
, δ + 1

2

]
×

(−∞,∞), and so Θ remains nonzero for arbitrarily large values of η. We find it necessary

to incorporate the behavior in the limit as µ → 1 into our bound. In particular, we will
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demonstrate in the following that

(B.73)
1

µ
Θ (η; δ, µ) ≤ Θ (η; δ, µ = 1) .

(B.73) in turn gives B = E (1− E), since E∞ = E2 and Em → E as µ→ 1.

To demonstrate that our bound (B.73) holds true, we first recall that Θ (η; δ, µ) is either

0 or negative for η > ηN,m (δ, µ) and ηN,m increases as a function of µ (Figure B.3b). Since

Θ (η; δ, µ = 1) is non-negative for all η, the bound holds trivially for η > ηN,m (δ, µ). For

η ≤ ηN,m, consider the decomposition Θ = ΘENE + ΘNNE + ΘNNW + ΘWNW , where for

d = E,W

ΘNNd (η; δ, µ) ≡



0, η ≤ ηN,∞

−
∫ η
ηN,∞

Θ′Nd (η) dη, ηN,∞ < η ≤ ηN,m

ΘNd (ηN,∞)−ΘNd (ηN,m) , η > ηN,m

= ΘNd (min (η, ηN,∞ (δ)) ; δ)−ΘNd (min (η, ηN,m (δ, µ)) ; δ)(B.74)

and ΘNNE + ΘNNW reflects the “−NE−NW” contribution that, as a function of η, mono-

tonically decreases in the red region in Figure B.3b and otherwise remains constant.

Similarly,

(B.75) ΘdNd (η; δ, µ) ≡ ΘNd (min (η, ηd,∞ (δ)) ; δ)−ΘNd (min (η, ηd,m (δ, µ)) ; δ)

reflects for d = E the blue “NE” and for d = W the yellow “NW” contributions. It is

sufficient to show that 1
µ
ΘNNd (η; δ, µ) ≤ ΘNNd (η; δ, 1) and 1

µ
ΘdNd (η; δ, µ) ≤ ΘdNd (η; δ, 1)

for d = E,W and η ≤ ηN,m (δ, µ) to validate (B.73). The first of these is trivial,
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since ΘNNd (η; δ, µ) is independent of µ and non-positive for η ≤ ηN,m (δ, µ), and thus

1
µ
ΘNNd (η; δ, µ) ≤ ΘNNd (η; δ, µ) = ΘNNd (η; δ, 1). The latter follows if h (x;µ) ≤ h (x; 1)

for all x ≥ 0 and µ ∈ (0, 1), where (cf. (B.69), (B.70), (B.71), and (B.75))

h (x;µ) ≡ 1

µ

[
arcsec

(
min

(
x,
√

2
))
− arcsec

(
min

(
x,

√
2

1 + µ

))]
.

Note that h′ (x;µ) is non-negative and only depends on µ by a factor of 1
µ
. So, for any

given value of x, it is minimized as µ→ 1. It is therefore sufficient to verify the inequality

h (x;µ) ≤ h (x; 1) in the limit as x→∞; if h (∞;µ) ≤ h (∞; 1),

h (x;µ) = h (∞;µ)−
∫ ∞
x

h′ (u;µ) du

≤ h (∞; 1)−
∫ ∞
x0

h′ (u; 1) du

= h (x; 1)

for all x ≥ 0. So we verify that

h (∞;µ) =
1

µ

[
π

4
− arcsec

(√
2

1 + µ

)]
≤ π

4
= h (∞; 1) .

This is equivalent to

sin
(π

4
(1− µ)

)2

≤ 1− µ
2

,

which is satisfied for µ ∈ (0, 1), since equality is obtained at µ = 0, 1, 1−µ
2

is linear, and

sin
(
π
4

(1− µ)
)2

is a concave-up function of µ on the open interval.
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Figure B.4. An alternative representation of the phase diagram, Figure
3.8a, showing the dependence of unruliness on the event interval width
w.

B.5. Dependence on Event Interval Width

In this section, we derive the relationship between the event interval width |E| = w

and unruliness in planar oscillators. From Figure 3.8a, we see that changing w with a

fixed value of bΛ√
cΛ

moves the oscillator between the regions of possible unruliness, certain

unruliness and uncertainty. We therefore first translate the bΛ-cΛ phase diagram (Figure

3.8a) into a phase diagram over bΛ√
cΛ

and w (Figure B.4). It is useful to normalize w by a

characteristic width, the value of w that is required to fix cΛ = 1: from (3.33) and (3.59),

wcΛ=1 =

√
1 + Λ

1− Λ

Γss
c

=
1√

2 (1− Λ)

‖~yG‖
‖~zG‖

.

It then turns out that the linear boundaries from the bΛ-cΛ phase diagram remain linear

and with the same slope in the bΛ√
cΛ

- w
wcΛ=1

phase diagram. Referring to Figure B.4, we see

the following:
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i) If bΛ√
cΛ

> 0, the TVGR is not unruly for w > w∗possible, is possibly unruly for

w ∈
(
w∗certain, w

∗
possible

)
, and is certainly unruly for w ∈ (0, w∗certain), where

w∗possible =
√
πwcΛ=1 =

√
π

2

1

(1− Λ)

‖~yG‖
‖~zG‖

ands

w∗certain = max

(√
1− Λ

1 + Λ
π, κunruly (δ)

bΛ√
cΛ

)
wcΛ=1

= max

(√
π

2 (1− Λ2)

‖~yG‖
‖~zG‖

,
κunruly (δ)

1− Λ

~zTG~yG

‖~zG‖2

)
.

ii) If 1
κunclear(δ)

√
1−Λ
1+Λ

π < bΛ√
cΛ

< 0, the TVGR is possibly unruly for w ∈(
w∗certain, w

∗
possible

)
and is certainly unruly for w ∈ (w∗unclear, w

∗
certain), where

w∗unclear = κunclear (δ)
bΛ√
cΛ

wcΛ=1 =
κunclear (δ)

1− Λ

~zTG~yG

‖~zG‖2 .

iii) If 1
κunclear(δ)

√
π < bΛ√

cΛ
< 1

κunclear(δ)

√
1−Λ
1+Λ

π, the TVGR is possibly unruly for w ∈(
w∗unclear, w

∗
possible

)
, but the situation is unclear for w < w∗unclear.

iv) If bΛ√
cΛ
< 1

κunclear(δ)

√
π, the TVGR is not unruly for w > w∗unclear and the situation

is unclear for w < w∗unclear.
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