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ABSTRACT

Sequence Determinants of Translation Efficiency

Adam J. Hockenberry

Bacterial gene expression requires numerous steps that are energetically costly and

tightly regulated. Following transcription of messenger-RNA, the translation of

mRNA into protein is further regulated by a variety of sequence features both within

and upstream of coding sequences. Collectively, these features contribute to the con-

trol of translation initiation, elongation, and termination rates that modulate protein

abundances. Despite the near universality of the genetic code, species specific con-

trol sequences can help to impede or facilitate horizontal gene transfer across species

boundaries and recombinant gene expression. A better understanding of the identity

and effects of features that control protein translation can both enhance genetic engi-

neering efforts and provide insight into the evolutionary pressures that have shaped

bacterial genomes.

In the following work, I report on several efforts to increase our understanding of

the link between mRNA sequences and protein translation rates. I develop several

novel metrics to better quantify the effects of translation initiation motifs, as well as
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synonymous codon usage biases, and find that these metrics can enhance predictions

of genome-wide translation rates and protein abundances. In addition to quantifying

the extent of the variation that can be explained by existing knowledge, these re-

sults provide insight into the constraints that features of translation initiation place

onto the evolution of coding sequences and vice-versa. I further apply comparative

genomic methods to show how that genome-wide variation in translation initiation

and elongation related features are largely governed by the environments and growth

strategies of different organisms.
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CHAPTER 1

Introduction

Translation of messenger-RNA molecules into proteins is one of the most energeti-

cally expensive cellular processes, and is essential for the maintenance, growth, and

reproduction of organisms1–4. While active proteins are frequently the molecule of

interest to researchers studying cellular processes, the ability to measure mRNA lev-

els has historically out-paced protein level measurements5–8. However, investigation

into a variety of species have shown that the relationship between cellular mRNA

and protein abundances is modest, with frequently cited correlations on the order

of 0̃.59–14. These comparatively low correlations were the motivation behind much

of the work that follows in this thesis. Why something so fundamental—the basic

formulation of the central dogma of molecular biology: DNA-to-mRNA-to-protein—

does such a poor job of explaining protein abundance variation was surprising to

me. In hindsight, some of this surprise was mis-guided. The expectation of a per-

fect correlation between mRNA and protein abundances ignores many physical and

evolutionary constraints as I will discuss throughout this introductory chapter. The

remainder of this thesis will focus on asking how knowledge of mRNA sequences can

be incorporated alongside knowledge of mRNA abundances to improve predictions

of protein abundances. Much is wrapped up in the statement “knowledge of mRNA
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sequences”, and various pieces of this puzzle form the basis of individual Chapters 2-

5 where I demonstrate my own attempts to encapsulate basic biological mechanisms

into a predictive framework to better explain the sequence-based regulation of mRNA

translation.

1.1. Control-points in bacterial gene expression

Precisely why mRNA and protein abundances correlate so poorly within individual

cells is a matter of on-going debate. In particular, several studies have questioned

these low correlations, suggesting that a combination of measurement error and

time-delays between mRNA and protein abundance changes are partially responsi-

ble15–18. In addition, different proteins, as well as their corresponding mRNA tran-

scripts, have different half-lives and this will ultimately affect steady state protein

abundances even if the rates of transcription and translation are identical between

different genes14,19–22. Further, multiple lines of research suggest that differential

translation efficiency—i.e. the number of protein molecules produced from a given

transcript over a given time-period—is highly variable between different genes and

likely a dominant factor affecting the relationship between steady-state mRNA and

protein levels10,14.

Ultimately, the translation efficiency of a given gene is subject to physical and

biological constraints. At one end of the spectrum, physical processes place an appar-

ent limit on the maximum achievable translation efficiency, for instance: sequential

movement along an mRNA relies on diffusion limited tRNA binding23,24. At the

other end of the spectrum, resource utilization places a floor on the expected levels
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of translation efficiency. The production of mRNA transcripts is both energetically

costly and mutagenic; having a large number of inefficiently translated mRNAs will

waste cellular resources on transcription when compared to a small number of well-

translated mRNAs4,25–27. Between these two extremes, there are a number of reasons

to expect that different genes will evolve according to different optimal levels of trans-

lation efficiencies3. Some genes are highly variable in their expression, being required

only in particular instances28,29. Other genes—so-called ‘house-keeping’ genes—are

expressed at near constant levels throughout the life of a cell. Among the variably ex-

pressed genes, it is sometimes advantageous to have rapid change in available active

protein molecules whereas this is less important for others30. Additionally, abso-

lute numbers matter in terms of expression noise. While a single, highly translating

transcript may be sufficient to ensure the required protein production for a partic-

ular gene, transcriptional noise resulting from the poisson-like process of transcript

production may make this an inviable strategy at the population level10,31–33.

It is important to emphasize that the rates of transcription, translation, and

degradation are not the result of an engineers optimal plan. Rather, the observed

rates for each individual step in this process for a given gene are the result of a

steady accumulation of fixed mutations through evolutionary processes. These pro-

cesses may include natural selection of advantageous mutations that increase overall

translation efficiency for a particular gene, but this assumes that the link between

efficient protein production and organism fitness is sufficiently large34–36. Just as
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plausibly, the observed rates associated with transcription, translation, and degra-

dation may be largely shaped by the random process of genetic drift, which dominates

when the selective advantage of an individual mutation is below a threshold related

to the effective population size of the species37–39. Further, organisms are simulta-

neously evolving these rates for all genes at the same time and are thus subject to

clonal interference whereby advantageous mutations resulting in more energetically

efficient production can still be rejected owing to the simultaneous accumulation of

different advantageous mutations in competing lineages40,41. These issues are fur-

ther complicated by tissue-specific expression, as well as a variety of other specific

regulatory mechanisms affecting temporal and spatial control of gene expression in

multi-cellular eukaryotes15,17,18. The remainder of this thesis and the results pre-

sented herein will largely focus on microbial species, particularly bacteria.

From the discussion thus far, several critical facts have already arisen that are

worthy of reiteration and synthesis. First, the rates of transcription, translation,

and degradation can all be manipulated to regulate and maintain the production

of a given protein at a target level of abundance. Second, there are certain limits

that constrain these bounds owing to cellular energetics and the reliance on diffusion.

Third, any given ‘strategy’ may have advantages including the robustness of ultimate

protein abundances to noise arising from stochastic production of transcripts and the

dynamic flexibility to alter levels according to environmental change. Finally, even

if an ideal combination of rates could be envisioned for a particular gene, evolution
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is a sequential and partially random process that will not always produce optimal

results.

By illustrating all of these issues, I hope to make it clear to the reader why a

one-size fits all approach is a mis-guided expectation, and that a strong correlation

between mRNA and protein abundances would be perhaps more surprising than the

relatively weak correlation that we observe for most species. The critical questions

that we are left with are: if we look at the genomes of extant species, and were we

able to perfectly measure the transcription, translation, mRNA and protein degra-

dation rates for every single gene, what interesting knowledge about this organisms

evolutionary history, biosynthetic capabilities, and role within the ecosystem could

we glean from this information? At a more practical level, how might we leverage

that knowledge to better design genes for biotechnology purposes?

1.2. The genetic code and synonymous diversity

Thus far, I’ve focused on the fact that rates of the various steps required for gene

expression can vary from gene to gene. This section will elaborate on the molecu-

lar source of this variation, and describe how individual rates may be tuned for the

same protein. The genetic code is redundant such that 64 possible nucleotide triplets

(codons) code for just 20 amino acids (and stop signals). How this code evolved, and

its possible selective advantage according to various biochemical and information

coding properties has been the subject of much debate42–45. Nevertheless the conse-

quences of this redundant code are widely known: there are as many as 6 synonymous

codons that may code for certain amino acids. An abundance of research starting
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with some of the very first sequenced genes has noted that individual organisms

have what appear to be preferences for and against the use of particular synonymous

codons23,46. These apparent preferences vary both from organism-to-organism, and

between genes within the same organism47,48.

On average, individual amino acids have 3.05 synonymous codons:

(1.1) (3aas ∗ 6cods) + (5aas ∗ 4cods) + (1aa ∗ 3cods) + (9aas ∗ 2cods) + (2aas ∗ 1cod)
20aas

where aa(s) refer to the number of amino acids within a particular class and cod(s)

refer to the number of synonymous codons used in that class. A back-of-the-envelope

calculation shows that even a comparatively small 100 amino acid protein will thus

have an astronomical 3.05100 (≈ 2.69 ∗ 1048) unique nucleotide sequences capable of

coding for it. Each of these hypothetical mRNA sequences may be translated and

degraded at very different rates, and these rates may depend on organism-specific

factors. In a seminal paper, Kudla et al. (2009) showed that wide-spread variation

in protein production between synonymous gene constructs does in fact exist49. The

researchers made 154 different synonymous constructs coding for Green Fluorescent

Protein, cloned them into plasmids, and expressed them in Escherichia coli. Despite

the fact that each synonymous gene was placed in the same plasmid backbone, with

the same promoter and surrounding regulatory sequences, protein production var-

ied by several orders of magnitude. A variety of studies have pointed to multiple

possible explanations for why synonymous transcripts produce different amounts of



22

protein, including variation in: i) cognate-tRNA levels corresponding to individual

codons that alter elongation patterns23,50, ii) binding efficiency of tRNA molecules

via wobble pairing51,52, iii) tRNA physical interactions on the ribosome and di-codon

biases53,54, iv) differences in the tRNA supply and demand55–57, v) RNA structures

precluding translation initiation and/or disrupting proper elongation49,58,59, vi) start

codon efficiency60, and vii) transcript degradation via accessibility to RNases61,62.

While the above explanations all relate to the overall rate of protein production,

differences in active protein production introduce further complexity. Research has

shown that some synonymous codons are more likely to result in mis-incorporation

of erroneous amino acids (that possibly disrupt proper protein folding/function)

or premature termination63–65. Differential translational accuracy may explain a

large portion of the synonymous codon usage bias observed in bacterial genomes,

particularly with regard to highly expressed genes where the burden of mis-folded

protein molecules can have toxic effects66. Additionally, protein folding can occur

co-translationally. Even within a single protein, it is highly possible—and evidence

suggests—that the translation rate of different regions is tuned not to ensure maxi-

mum speed, but rather proper protein folding, which may require purposefully slow

translation around complex folds67–69.

1.3. The interplay of translation initiation and elongation processes

Any discussion of codon usage bias and the expression differences arising from syn-

onymous gene constructs is complicated by one rather important fact: increasing the

rate at which the ribosome can translate mRNA may have absolutely no effect on the
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amount of protein produced if translation initiation is a rate-limiting step in protein

translation70. A given mRNA generally contains both upstream and downstream

non-coding regions that contain important signals for regulating initiation, termina-

tion, and transcript degradation71. Such ‘signals’ can be the presence of particular

nucleotide motifs that bind various proteins and mRNAs, or these motifs may be

related not to the nucleotides themselves but to the physical structures formed by

mRNA folding72. In the critical experiment of Kudla et al. (2009), these signals

were held constant between different constructs—as the researchers only altered the

protein coding region. But this viewpoint fails to account for important boundary

effects. The same 5′ untranslated region (5′ UTR) will fold into a very different

structure according to the sequence identity downstream of the start codon, which

can have important effects49.

In short, biology is not entirely modular: the same sequence in different sequence

contexts may behave very differently. Indeed, the dominant conclusion arising from

the study of Kudla et al. (2009) was that variance in predicted mRNA structure

surrounding the start codon between different synonymous constructs was the dom-

inant factor influencing protein production, with little or no measurable role for

codon usage biases. However, there is still outstanding debate with regard to this

conclusion73,74. Subsequently, a variety of research has confirmed the large degree of

context dependency that must be accounted for when attempting to isolate variables

associated with different regulatory processes75,76.
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1.4. Novel data, novel opportunities for understanding

The synonymous codon usage of endogenous genes for particular organisms often

show distinct preferences for and against individual codons. These preferences vary

from species to species with possible implications for recombinant protein produc-

tion, as well as horizontal gene transfer and viral infectivity77–79. Methods to measure

codon usage biases have shown that the most highly biased genes within a given or-

ganism tend to be expressed at the highest levels such that codon usage biases are

highly predictive of protein abundances in microbial species (these effects tend to

be much smaller for multi-cellular eukaryotes)80. Interpreting this correlation as

causation is a classic statistical trap, but it is nevertheless indicative of interesting

biology. Further, a larger set of research is beginning to show that certain synony-

mous codons do seem to translate at different rates from one another. Perhaps most

notably, the novel experimental technique of ribosome profiling allows researchers

to map the locations of ribosomes at the genome-scale and is shedding light on to

the process of translation. While initial studies failed to show any association be-

tween the speed of individual codon translation and tRNA abundance patterns or

apparent codon preferences, more statistically refined techniques have shown that

ribosome profiling does support this long-held hypothesis81–84. At the same time,

several other orthogonal experimental and systems-level techniques have also lended

support to a relationship between codon usage preferences, tRNA abundances, and

measurable differences in translation speed and/or accuracy85–87.
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The era of recombinant protein production and biotechnology has steadily shifted

as a matter of degree into the era of synthetic biology. Whether it is transferring

individual genes from one organism to the next, or de novo design of novel genes,

the ability to produce a target protein at desired levels in an organism of interest is

critical for countless applications71. There is thus a pressing need to streamline this

process, and a better understanding of how individual organisms code their native

genes has the potential to shed important light on our ability to rationally encode

genes for predictable expression. Further, library-based synthetic biology approaches

are generating vast amounts of data that may prove useful in answering many of these

questions75,86,88,89.

While the functional goal of being able to precisely dictate gene expression levels

through DNA sequence manipulation is of interest to engineers and basic biologists

alike, there is a second reason as to why a better understanding of the process of gene

encoding is important: signatures of translational selection can provide important

insight into the roles of genes within an organism and between organisms within a

ecological community80,90,91. Meta-genomic sequencing efforts continue to expand

our knowledge of species abundance and dispersal patterns in the natural world92.

Despite notable progress in the ability to culture and manipulate increasingly diverse

species, it is nevertheless difficult to imagine a near-future where transcriptomic,

proteomic, metabolomic, etc. measurements are available for even a fraction of the

known species in realistic growth conditions. However, as researchers uncover and

refine robust relationships between sequence-based proxies (such as codon usage bias)
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and protein abundances in well-studied species, we can gain confidence in predictions

about the most highly expressed genes from comparatively less well-studied species

based solely on their genome sequences.

The ability to ‘read’ a genome as more than a sequence of ‘As’, ‘Ts’, ‘Gs’, and

‘Cs’ is a critical goal for biologists. Given knowledge of a species DNA sequence, we

may one day be able to glean important information about its functional capacity,

its evolutionary history, and its role within the ecosystem. Increasingly accurate

tools for functional annotation of DNA sequences will allow biologists to translate

DNA sequence information into knowledge of biological processes, and signatures of

translation efficiency have thus far played an important role in this endeavor93.

The following work has been enabled by technological advances in systems and

synthetic biology, and the enormous amount of data that these advances have gen-

erated. Namely, the growing number of genome-wide RNA- and protein-abundance

datasets, the development and deployment of ribosome profiling as a method to mea-

sure the translation rates of individual genes and codons, and the vast increases in

the number of fully sequenced genomes together provide a rich source of data that

can be utilized to advance our knowledge of translation efficiency.

My initial investigation into the constraints governing how organisms encode

genes via synonymous codon usage bias, and how knowledge of these constraints

can be used to better predict translation efficiencies of native genes forms the basis

of Chapter 2. The conclusions resulting from this work showed that a large and
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under-appreciated constraint on synonymous codon usage biases is the need for effi-

cient translation initiation. My research thus turned to how novel datasets such as

ribosome profiling can be leveraged to better understand the relationship between

DNA sequence features relating to translation initiation and measured translation

efficiency. In Chapter 3, I describe novel methods to use ribosome profiling data in

order to support long-standing models of translation initiation and to fill in previous

gaps in our understanding surrounding the functioning of an important sequence

motif—the Shine-Dalgarno sequence. This work focused on understanding variation

in translation initiation efficiencies between genes from the same organism. In Chap-

ter 4, I extend this work by looking across the bacterial domain, and investigating

the factors governing the evolution of efficient translation initiation mechanisms and

the Shine-Dalgarno sequence between diverse organisms. In Chapter 5, I return to

the subject of coding sequence evolution, this time to show how translation initi-

ation mechanisms constrain the usage of Shine-Dalgarno-like motifs within coding

sequences and the consequence this has for translation efficiency. Finally, in Chapter

6 I discuss the implications of this work, and illustrate the challenges and opportuni-

ties that big-data continue to provide with regards to our understanding of mRNA

translation.
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CHAPTER 2

Quantifying position-dependent codon usage bias

This work was published with M. Irmak Sirer (co-first author), Luís AN Amaral,

and Michael C Jewett in Molecular Biology and Evolution, 2014.

2.1. Abstract

While the mapping of codon to amino acid is conserved across nearly all species, the

frequency at which synonymous codons are used varies both between organisms and

between genes from the same organism. This variation affects diverse cellular pro-

cesses including protein expression, regulation, and folding. Here, we mathematically

model an additional layer of complexity and show that individual codon usage biases

follow a position-dependent exponential decay model with unique parameter fits for

each codon. We use this methodology to perform an in-depth analysis on codon us-

age bias in the model organism Escherichia coli. Our methodology shows that lowly

and highly expressed genes are more similar in their codon usage patterns in the 5′

gene regions, but that these preferences diverge at distal sites resulting in greater

positional-dependency for highly expressed genes. We show that position-dependent

codon usage bias is partially explained by the structural requirements of mRNAs that

results in increased usage of A/T rich codons shortly after the gene start. However,

we also show that the positional-dependency of 4- and 6-fold degenerate codons is
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partially related to the gene copy number of cognate-tRNAs supporting existing hy-

potheses that posit benefits to a region of slow translation in the beginning of coding

sequences. Lastly, we demonstrate that viewing codon usage bias through a position-

dependent framework has practical utility by improving accuracy of gene expression

prediction when incorporating positional-dependencies into the Codon Adaptation

Index model.

2.2. Introduction

The initial investigations into the usage of synonymous codons occurred nearly 40

years ago23,46. Since then, a large body of work has shown that bias in codon us-

age is widespread across diverse taxa48 and related to a variety of factors including

genomic base composition94, mutational bias95,96, and selection for or against par-

ticular sequence motifs that are used as control elements to differentially degrade

or traffic mRNAs to particular areas of the cell45,97. Additionally, different species

of tRNA vary in their genetic copy number, overall expression level, and affinities

for their target codons23,50,51. Under the assumption that elongation rates may be

diffusion limited in at least some cases, it has long been speculated that codon usage

bias may impact both the speed and accuracy of translation. This, however, remains

a controversial topic with experimental support on both sides97–100.

The consequences of codon usage bias are equally as diverse as their origins.

Computational studies have shown that codon usage bias may play a role in gene

transfer between species79 and protein folding56. Additionally there is experimental

support showing that an understanding of codon usage bias is important for viral
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defense and vaccination77,78,101, resistance to environmental fluctuations in amino

acid levels102,103, temporal or cyclic control of gene expression104–106, co-translational

protein folding67, and recombinant protein production49,73. While the vast majority

of studies assume that codon usage bias is uniform along the length of genes, several

reports dating back to the 1980s showed that codon usage bias in particular gene

regions is distinct from others88,107–114 including clusters of ‘sub-optimal’ or ‘rare’

codons at the beginning of genes56,115,116.

There have been several proposed mechanisms as to why rare codons are enriched

in the 5′ region of genes, with one positing that a region of slow translation (a ‘trans-

lational ramp’ or ‘bottle-neck’) at the beginning of genes helps to keep ribosomes

evenly spaced and avoid collisions116,117. In parallel to this line of research, several

computational and experimental reports in recent years have also highlighted the

importance for reduced secondary structure surrounding the start codon49,52,118–120,

particularly for prokaryotic gene expression. More recently, researchers have drawn

a critical link between codon usage and mRNA secondary structure and showed that

the choice of synonymous codons can influence secondary structure88,114,121 and that

codon usage bias in the 5′ region of genes may modulate translation initiation in

addition to elongation.

However, most studies to date have analyzed aggregate measures of codon usage

(Codon Adaptation Index, tRNA adaptation index, etc.) that mask the potentially

important contributions of individual codons. To illustrate why this may be prob-

lematic, we note that the decreased ‘translational efficiency’ (for which codon and/or
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tRNA adaptation indices are often a proxy) in the beginning of gene sequences may

simply be the result of one or two amino acids having inverted preferences in this

region as opposed to a global phenomenon whereby all amino acids select ‘slow’

codons to modulate translation rate. This distinction could be critical for testing

mechanistic hypotheses about evolutionary/mutational origins of codon usage bias

as well as in designing recombinant proteins for optimal expression.

Further, most published studies also rely on bins of codons or an unnatural

delineation between gene regions (i.e. the first 10 codons versus the rest of the gene)

whose physical basis or statistical rationale is rarely discussed. Lastly, although

researchers have known about the positional dependence of codon usage bias for

years, to our knowledge all statistical models of codon usage bias fail to account for

this effect. Thus, there is a disconnect between this knowledge in principle and its

usage in practice.

To address these gaps, we sought to investigate position-dependent codon usage

bias through a rigorous quantitative framework with a focus on the model organism

Escherichia coli. We validate previous observations about heterogeneous codon usage

with regard to position and expand on the established link between base composition,

codon usage and mRNA structure. Further, we use model selection to determine a

functional form to individual codon usage biases and observe an unexpected hetero-

geneity of parameters that should serve as a crucial test for any proposed mechanistic

explanations relating to the origins of codon usage bias. We demonstrate that our

revised understanding of codon usage bias, viewed through a position-dependent
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framework, can be simply incorporated into existing codon usage models and used

to increase predictability in gene expression. Finally, we show preliminary support

that our results are likely not unique to E. coli by demonstrating that the position-

dependent exponential decay model more accurately describes codon usage biases in

a variety of organisms.

2.3. Results

2.3.1. Codon usage bias is not uniform with regard to position

To test whether there is position-dependent bias in codon usage preferences at the

genome-scale, we performed a χ2 test on 4,139 protein-coding genes from E. coli

(NCBI/Genbank: NC_00913.2). Briefly, we aligned all the coding sequences at

their start codon and partitioned the codons into 10 position-dependent gene regions

such that each bin contained approximately 130,000 total codons (Fig. 2.1A, see

Materials and Methods). To account for uneven gene lengths and maintain a similar

number of codons per bin, as illustrated in Fig. 2.1A, bin width is progressively wider

at distal sites. Within these bins, we counted the occurrences of individual codons

and compared those counts to the expected mean and standard deviation calculated

from a null model derived by using a synonymous codon shuffling algorithm. This

method preserves overall codon usage and amino acid structure within each gene

allowing us to quantify codon usage bias at all positions rather than simply codon

usage. We then calculated the χ2 statistic and determined the statistical significance

of the observed values.
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Figure 2.1. Codon usage bias is not uniform with regard to intragenic po-
sition. A, This cartoon schematic shows one codon that is used evenly throughout
the toy gene-set (codon a, blue) and one codon that is not (codon b, orange). To
statistically verify this, we align all genes at the 5′ region, group each codon into
position-dependent bins, compare codon usage in each bin to random expectation,
and sum the deviations over all bins. B, Squared z-scores of codon usage for E. coli
as a function of position. Codons on the y-axis are grouped according to the amino
acid they code for, and are labeled red if their usage bias is significantly non-uniform
(p < 0.00017). Results for each bin are depicted according to the quadratically scaled
color bar and the 10 bins are arranged from 5′ to 3′.
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For 41 out of a possible 59 redundant codons, we found statistically significant

(p < 0.00017) heterogeneous codon usage bias using this method (Fig. 2.1B, red

codons). Further, visual analysis of the squared z-scores for each bin reveals that the

observed deviations from uniformity are predominantly occurring in the 5′ region of

genes whereas there appears to be comparatively little heterogeneity in codon usage

bias at distal sites. To make sure that these findings are robust and do not rely on a

particular statistical test or binning scheme, we tried two different binning schemes

(50 and 100 bins, 41 and 38 significant codons respectively, Supplementary Fig. A.5)

and we performed 3 separate statistical tests for individual codons (all of which were

compared against a synonymous shuffling null model): the position of median codon

occurrence, the area under the curve of the cumulative distribution of codon usage

with regard to position, and the size of the largest deviation from expectation in the

cumulative distributions (see Materials and Methods). Using these tests, neither of

which require data binning, we found that 24 out of 59 codons had significantly non-

uniform codon usage bias in at least three out of the four tests and that 19 codons

were significantly non-uniform in all four of our tests (see Materials and Methods and

Supplementary Fig. A.1).

2.3.2. An exponential decay model most accurately describes patterns of

codon usage bias

We extended the observation of non-uniform codon usage bias by testing the hy-

pothesis that codon usage probability follows a specific functional form: uniform
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(which assumes that codon usage bias does not vary with regard to position), lin-

ear, step-function (which would imply a distinct region of 5′ codon usage bias), and

exponential decay. For each model, we used maximum likelihood estimation to de-

termine the best-fitting parameters to the conditional codon probability data (the

occurrences of the codon of interest divided by the occurrences of the amino acid of

interest for all x values where x is the codon position inside of genes). We then used

model selection based on Akaike Information Criterion (AIC)122, which penalizes

models with higher numbers of parameters, to determine which of the underlying

models best describes all of the codon data in the E. coli genome (see Materials and

Methods). We found strong evidence (odds ratio ∼ 102263 relative to uniform) that

an exponential decay model:

(2.1) Pa.a.j(codoni|x) = ai,j exp
(

− x

τi,j

)
+ ci,j

provides the best description of codon usage in the E. coli genome where codoni

refers to the ith codon that codes for the jth amino acid, a.a.j. Each parameter

is specific to the individual codon and amino acid, hence the parameter subscripts

i, j. For clarity, however, we will simply refer to these parameters in the general

sense as a, c, and τ . The model parameters have straightforward interpretations:

a + c represents codon probability at the start codon, c is the asymptotic value

that codon probability approaches, and τ is a measure of the distance over which

the decay occurs. In Fig. 2.2A, we show example fits comparing the goodness of

fit of the exponential decay and uniform models for the two phenylalanine codons.
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Further, in Fig. 2.2B we show fits in the 5′ region (first 100 codons) for aspartic acid,

phenylalanine, and glutamine to illustrate the heterogeneity of data and the best

fitting forms for several 2-fold redundant amino acids (see Supplementary Figs. A.6-

A.22 and Supplementary Figs. A.2 & A.3 for log-likelihood and AIC values for each

codon). While aspartic acid exerts no positional-dependency, glutamine deviates

sharply within a relatively short region of the gene-sequences while phenylalanine

codons show a much slower decay with regard to position. The observation for

aspartic acid and other amino acids such as histidine (Supplementary Fig. A.9) may

be explained by the fact that the dominant codon at the genome-scale ends in a T114

and is therefore unlikely to be further enriched in the beginning of gene sequences.

In both of these cases, aspartic acid and histidine, the dominant codon in highly

expressed genes is also in contrast to the dominant codon in the genome, but since

highly expressed genes are relatively few in number the impact of this may be may

be masked by genome-scale aggregation.

From this data, we also wish to make two further notes. First, if we restricted

our analysis to a set of codon positions (e.g. the first 20, 50, 100), we would possibly

miss valuable information: while 20 codons may be sufficient to encapsulate the

positional heterogeneity for glutamine, it would be insufficient to faithfully evaluate

phenylalanine. Second, this figure makes clear that the exponential decay model

is not likely to be the simplest model to describe all amino acids. However, the

exponential decay model is able to fit equally well to uniform and linear data-types

(e.g. aspartic acid by having extremely large τ values), albeit with one or two possibly
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Figure 2.2. The functional form of codon usage bias. A, For the amino acid
phenylalanine, we show the conditional probability of observing a codon as a function
of position (black line, smoothed with a sliding window of 8 codons). We also show
the best fitting exponential model (red) with corresponding 95% confidence intervals
(pink) and the uniform model (cyan, confidence intervals not shown for clarity). The
survival curve of E. coli gene lengths is highlighted at the top to illustrate the basis
for increasingly wide-confidence intervals due to data sparseness at distal sites. B,
Data for three different 2-fold redundant amino acids as in A but with the x-axis
extending only to 100 codons to highlight heterogeneity in the 5′ region.
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unnecessary parameters, whereas the uniform and linear models are simply unable

to fit certain data (e.g. glutamine). For our model selection, we ask which model fits

best for the set of all codons and arrive at the exponential decay model even though

the fit is not necessarily the best/simplest for each individual codon (though it is the

best for the overwhelming majority, see Supplementary Figs. A.2 & A.3). In fact,

the heterogeneity of parameters that we observe between amino acids was striking

and unanticipated.

2.3.3. Intragenic heterogeneity of codon usage bias is more pronounced

in highly expressed genes

Most studies of intragenic codon usage bias have looked at the entire genomes of

organisms. Since overall codon usage bias varies between genes from the same or-

ganism, certain E. coli genes may be contributing to the variation in intragenic codon

usage bias more than others108. To test this hypothesis, we used a dataset of sin-

gle molecule quantification of fluorescently tagged protein measurements collected

under steady state growth conditions in rich medium at 30◦C10 to categorize low

and high abundance proteins based on the top and bottom quartile of expression

(see Materials and Methods, Supplementary Fig. A.23 for expression distribution).

This delineation allows for sufficient separation of proteins such that there should

be no overlap between these two bins and each bin still encompasses enough genes

such that we have high confidence in the fits. Although this dataset only contains

measurements for 1
4
of the E. coli proteome, it is the largest proteome level dataset
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for E. coli that we are aware of and covers a wide distribution of expression levels.

We separately calculated the best fitting exponential parameters for each codon in

each gene set. Using the three parameters of Eq. (1), we define a single metric —

herein referred to as ‘positional-dependency (pD)’ — that encapsulates the degree

and magnitude of the heterogeneity in usage bias for a codoni into a single number

(Fig. 2.3A):

pDcodoni
=

∫ L

0

dx
[
Pa.a.j(codoni|x)− Pa.a.j(codoni|L)

]
(2.2)

where L is the median gene length in the genome and P (codoni|x) obeys Eq. (1) with

the parameter values obtained through maximum likelihood fits (see Materials and

Methods). Essentially, our pD metric is an integral of the exponential function that is

bounded by the median gene length, a limitation that we impose so as to have a high

degree of confidence in the codon probability data, which gets increasingly noisy at

distal sites. Positive values of pD correspond to codons used more frequently in the

beginning of gene sequences, and negative values of pD correspond to codons used

less frequently in the beginning relative to the end of genes.

We compared the absolute values of pD for all codons in lowly and highly ex-

pressed genes and saw that highly expressed genes have significantly greater positional-

dependency in their codon usage bias compared to lowly expressed genes (Wilcoxon

signed-rank test, p < 0.0001). Further, within both low and high expressing genes,

we divided codons into two sets, which we term as ‘rare’ and ‘abundant’, according

to their usage within a reference set of highly expressed genes47. By this definition,
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‘rare’ codons are those whose frequency is less than random expectation in the ref-

erence set and ‘abundant’ codons are used at a frequency greater than expectation.

We found a highly significant difference in pD values between these two codon sets

within highly and lowly expressed genes (Wilcoxon rank-sum test, p < 0.0001 &

p = 0.0007; Fig. 2.3B, top). Namely, the rare codons have positive values of pD and

thus are enriched in the beginning of genes. This difference also persists when we

use other metrics, such as the tRNA adaptation index51, to classify codons (Sup-

plementary Fig. A.24) and other delineations of lowly and highly abundant proteins

such as the bottom and top 50% of protein abundances (Supplementary Figs. A.23

& A.25).

We also split codons into sets according to the identity of the third position

base: A/T or G/C (Fig. 2.3B, bottom). Again, the difference between these sets

was significant for both low and high abundance protein sets (p < 0.0001 and p =

0.0006, respectively) suggesting that the base composition of codons may play a role

in determining the positional-dependency of codons and that this phenomenon is

equally important in lowly and highly expressed genes.

For each codon, we have probability values as a function of position in both the

low abundance and high abundance protein sets. This allows us to compute the

difference between these gene sets for a given codon at two positions, the beginning

of gene sequences and a distal site for which we use the median length E. coli gene:

(2.3) ∆beginning = |Pa.a.j(codoni|x = 1)high − Pa.a.j(codoni|x = 1)low|
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Figure 2.3. The effect of gene expression on position-dependent codon us-
age bias. A, Illustration of the ‘positional-dependency (pD)’ metric and exponential
parameters. B, pD of codons in the genes of low and high abundance proteins split
according to codon prevalence (top) and 3rd position base (bottom). We observe a
significant difference in absolute pD of the codons between the two gene sets as well
as differences within each gene set according to rare and abundant codons. Within
gene sets, we also observed significant differences in pD between codons that end
in A/T versus those that end in G/C. C, For each codon, we took the absolute
difference in codon probabilities between the low and high abundance protein data
sets and did so at two different points, the beginning of sequences and the median.
Shown are the cumulative distributions of these differences.
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(2.4) ∆distal = |Pa.a.j(codoni|x = 281)high − Pa.a.j(codoni|x = 281)low|

In Fig. 2.3C we show that the cumulative distribution of these absolute differences.

We observe that differences at the 5′ end (∆beginning) are smaller in magnitude as

compared to the absolute differences in codon probabilities at a distal site (∆distal)

(Wilcoxon signed-rank test, p = 0.0115). Thus, in E. coli lowly and highly expressed

genes are more similar in their codon usage biases at the beginning of gene sequences

than at distal sites. Assessing the generality of this finding will require high quality

proteome level datasets for other organisms that can be used to replicate this analysis.

2.3.4. Codon usage directly affects mRNA structure

To investigate the mechanistic basis for our findings, we next considered the effect

of codon usage on mRNA structure. Several recent studies have illustrated that

minimal secondary structure surrounding the start codon is important for translation

initiation49,88,114,118. Throughout the rest of the mRNA sequence, this constraint

does not exist and, in fact, strong mRNA structure may be important for regulating

mRNA half lives123. Given that structural demands are position dependent, we

sought to determine whether codon choice affects structure and thus whether this

constraint may be a factor promoting position-dependent codon usage bias88,114,121.

We therefore investigated the base pairing probability for each nucleotide in each

gene within the high abundance protein set (calculated from the Boltzmann ensemble

of structures, see Materials and Methods). We show that compared to synonymously

shuffled null-model counterparts, actual genes have significantly less structure in the
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5′ region (Wilcoxon rank-sum test on positions +5 to +15, p < 0.0001, Fig. 2.4A).

Additionally, we developed a synonymous shuffling method that preserves positional

frequencies of codons (and thus GC content at each position) within the gene set

(see Materials and Methods) and saw that this method also leads to significantly less

pairing probability in this region (p < 0.0001) compared to the null model but still

higher probability compared to actual genes (p < 0.0001). This method suggests

that the codons enriched in the 5′ region of genes are less likely to participate in

strong structural interactions.

Since evolution is an iterative process, we sought to understand changes to struc-

ture in response different types of mutations. We thus looked at the effect of all

possible single synonymous substitutions in the first 12 codons on the folding energy

of the -36 to +36 region of mRNAs from the highly abundant proteins (see Materials

and Methods). In Fig. 2.4B (left), we show that random mutations in this region are

likely to increase structure, again verifying a selective bias for minimal mRNA struc-

ture around the start codon. As we expected, single synonymous substitutions from

G/C -> A/T ending codons are more likely to decrease or maintain the structural

properties of mRNA compared to 3rd position A/T -> G/C substitutions, which

result in increased structure (Wilcoxon rank-sum test, p < 0.0001)124. Interestingly,

we also find that synonymous mutations from abundant -> rare codons are less likely

to introduce structure in the 5′ region compared to mutations from rare -> abun-

dant codons (Wilcoxon rank-sum test, p < 0.0001) suggesting that the usage of rare
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codons helps to maintain minimal secondary structure in this region, likely a result

of their base composition which supports recent findings88,114.

We repeated the above mutation simulation for a region distal to the initiation

codon (+36 to +108, mutating the 12 codons from +72 to +108 region for direct

comparison to our findings in the initiation region). At these distal sites, we con-

firmed that random mutations tend to decrease structure (Fig. 2.4B, right). In

contrast to the 5′ region, distal gene regions are more likely to tolerate substitutions

which preserve their strong structure (i.e. substitution to G/C rich and/or abun-

dant codons). This analysis supports our hypothesis that synonymous codon choice

affects mRNA structure and that requirements for reduced structure in the 5′ region

of transcripts may result in selection for a unique codon set. As opposed to previ-

ous studies121 that investigated structural robustness with regard to transcriptional

fidelity, we show that robustness of the gene sequences to different substitutions de-

pends on the position along a gene as well as the type of substitution. This likely

has a mechanistic basis in translation initiation where mRNA structure around the

start codon is potentially a rate-limiting barrier. Since most RNA structure is the

result of local interactions, this effect should be applicable within a narrow window

of codons/nucleotides that surround the start codon.

2.3.5. Position dependent bias in tRNA usage

The previous results, along with several recent studies88,114, lend clear support for

the hypothesis that mRNA structural constraints play an important role in shaping
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Figure 2.4. The link between codon usage bias and mRNA structure. A, We
folded a 200mer (-50 to +150nt, relative to the start codon) region for each gene in
the high abundance protein set and extracted the individual base pair probabilities.
For clarity we illustrate median pair probabilities relative to the null model created by
synonymous shuffling within genes (green). Actual genes (blue) and an alternative
gene-set created by shuffling synonymous codons between genes in a manner that
preserves positional biases (red) have significantly less structure in the 5′ region
(Wilcoxon rank-sum test on raw data, p < 0.0001 for all cases illustrated). B, We
calculated the effect on folding energy of single synonymous codon substitutions in
the genes of high abundance proteins. Left: the effect of substitutions in the 5′ region
(-36 to +36nt, relative to the start codon) is variable depending on the nature of
the codon. Right: the same analysis for a region distal to the start codon (+36 to
108nt). For all cases illustrated, error-bars represent standard-error of the mean and
p < 0.0001 according to Wilcoxon rank-sum test.
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codon usage patterns. However, the parameter heterogeneity observed in Fig. 2.2,

and in particular the large τ values — the length that it takes codon usage bias

to reach its asymptotic value — that we found for some codons, suggests that

mRNA structure alone is likely insufficient to explain all of the observed positional-

dependencies.

In most cases, the 2-fold redundant amino acids are read by one tRNA species

via wobble-rule base pairing so the results presented in Fig. 2.2 essentially represent

variation in codon usage given a particular tRNA. Interestingly, we note that in E.

coli K12 the only 2-fold redundant amino acid to have two different tRNA anti-

codons is glutamine, the amino acid with the sharpest positional-dependency in

Fig. 2.2. To test for the possibility of a translational-ramp or bottleneck consisting

of slowly translated codons at the 5′ end, we turned to 4-fold degenerate amino

acids, which are frequently read by at least two different tRNA species (one that

predominantly reads purines [A & G] and another that reads pyrimidines [T & C]

according to wobble-base pairing). Positional-dependency in these groups of codons

would represent between tRNA variation in codon usage as opposed to the within

tRNA variation that we previously observed for 2-fold redundant amino acids.

If AT/GC content variation is the main driver of codon usage patterns with regard

to position, we expected that grouping the purines and the pyrimidines separately

would lead to relatively uniform usage patterns with regard to position for these

separate ‘tRNA-classes’, though we expect the class of codons read by rarer tRNAs to

be less frequent overall as has been previously observed23. However, since the tRNAs
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Figure 2.5. Positional-dependency in codon groups and its association with
cognate-tRNA gene copy number. A, For all 4-fold redundant amino acids, we
group codons into separate sets under the assumption that single tRNA species are
more likely to read codons within these groupings according to wobble-base pairing
than between groupings. We illustrate conditional probabilities as in Fig. 2.2 and
highlight the gene copy number of the cognate tRNAs for each group (tRNAGCN)
to show that codons read by the rarer tRNAs are enriched in the 5′ region.
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that read these two groups of codons are often present at different concentrations,

if there is a benefit to slow translation in the 5′ region we would expect codons that

are predominantly read by the less abundant tRNAs to be enriched in this region.

What we observe for nearly all cases is that the rarer tRNA group (quantified by the

cumulative gene copy number of the cognate tRNAs (tRNAGCN) is indeed enriched in

the beginning of coding sequences (Fig. 2.5). Further, the position-dependent usage

of codons read by different tRNA species occurs over a relatively long range and not

the narrow window that would be expected to influence mRNA secondary structure

around the start codon. We repeated the above analysis for 6-fold redundant amino

acids and reach the same conclusion (Supplementary Fig. A.26). While we did not

observe any instance of codon groups read by abundant tRNAs being enriched at

the 5′ end, there are several cases, such as for the amino acids threonine and serine,

where we do not observe either enrichment or depletion of codon groups even though

tRNA gene copy numbers are heterogeneous. While further investigation might

resolve some of these differences, these data nevertheless suggest that in addition to

structural requirements, codons read by rare tRNAs are enriched at the 5′ end of

genes.

2.3.6. Intragenic codon usage bias can be used to more accurately predict

gene expression

Our findings support a new understanding of codon usage bias: that codon prefer-

ences vary with regard to intragenic position, that this variation is partially but not
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Figure 2.6. Accounting for position-dependent codon usage leads to supe-
rior estimates of gene expression levels. A, Our model posits that selection
for reduced mRNA structure around the start codon acts strongly on all sequences
relative to disruptive processes such as genetic drift and mutational biases. However,
preference for accurate and efficient translation, is a second and weaker effect that
is largely apparent in highly expressed genes and becomes stronger distal sites. B,
Rather than calculate the CAI for each gene, we aligned genes at the start codon
and calculated the CAI score for each position in either the reference set or genome.
The dip in adaptedness after the start codon for both data sets (blue) is corrected
by using exponential fits to the codon usage in the reference set (red). C, For two
datasets of transcript abundances10,127 and two datasets of protein abundances10,13,
we show that the R2 correlation coefficient between the CAI and gene expression
data is increased when using exponential fits to calculate the CAI as opposed to
the traditional uniform assumption. Top, raw values; bottom, % increase. Error
bars show standard deviation from 10,000 boot-strap re-sampled sets (paired t-test,
p < 0.0001 for all cases).
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entirely based on the structural requirements of mRNA, and that intragenic varia-

tion is particularly pronounced in highly expressed genes. Others have noted118, and

our analysis corroborates, that there are differences in both codon usage and mRNA

structure between lowly and highly expressed genes at the beginning of coding se-

quences. Here, however, we have shown that the magnitude of codon usage bias

differences between lowly and highly expressed genes at the beginning of genes is

smaller than the equivalent differences at distal sites — suggesting that the pressure

for minimal mRNA structure in the region surrounding the start codon is relatively

stronger than the need for efficient or accurate translation of individual codons. In

lowly expressed genes, selection for accurate or efficient translation may be dwarfed

by other evolutionary processes such as biased mutation and genetic drift. How-

ever, in highly expressed genes, the balance of these forces may be tipped in favor

of selection for individual codons (Fig. 2.6A). If this is indeed the case, accounting

for heterogeneity in codon usage preferences should improve the accuracy of existing

codon usage bias models.

There are many strategies to identify and quantify codon usage bias51,57; here we

attempt to incorporate these positional dependencies into one of the most popular

methods: the Codon Adaptation Index (CAI)47. The CAI relies on a reference

set of highly expressed47 or highly biased125,126 genes to determine a coefficient for

each codon that is based on the frequency of codon usage in the reference set. The

coefficient takes a single value for each codon in the classical approach corresponding

to the uniform assumption of codon usage bias. In contrast, we fit our exponential
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decay model, Eq. (1), to the same reference gene set and use these position dependent

functions in place of the single value approach (see Materials and Methods).

First, we observed that the reference set of genes has highly skewed codon usage

biases (Supplementary Fig. A.27), and show that calculating the CAI at each position

within the reference set (rather than for each gene) leads to a noticeable dip in CAI

shortly after the start codon (Fig. 2.6B, blue dashed line). To understand why this

result is slightly paradoxical, it is important to note the rationale behind the CAI:

the model is a distance metric that calculates how well the codon usage patterns

of a given gene match the codon usage patterns of a reference set of genes that are

known to be highly expressed. However, we have shown here that the codon usage

patterns of the reference set are inadequately described by a single number for each

codon, and therefore we hypothesize that the distance metric should account for

position-dependent codon usage. This hypothesis makes a strong prediction: if the

position-dependent codon usage biases are of physiological relevance, accounting for

this should lead to more accurate predictions of gene expression. However, if the

position-dependent codon usage biases that we observe in the reference set are over-

fitting to noise or are simply of no consequence, we would expect our predictions of

genome-wide transcript and protein abundances to be worse.

We thus utilize our exponential fits to the reference (training) set to come up

with a position-dependent array of coefficients for each codon, termed the position-

dependent CAI (pdCAI) model. One caveat with this methodology is that we limit

our analysis to the final codon-position of the longest gene in the reference set, as
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we are unable to say how codon preferences in our reference set of genes might

extrapolate past this point. Thus, for a given test-set gene, we only include the

codons up to position 705 in our calculation of the pdCAI (though we note this

cutoff encompasses the entirety of > 90% of endogenous E. coli genes (Fig. 2.2A,

top)). Otherwise, we follow the same mathematics and logic behind the original CAI

and show that, as expected, our pdCAI model corrects the dip in codon adaptedness

for both the reference set and the whole genome when the calculation is performed

in a way that treats all codons of a given position as a gene (Fig. 2.6B, red lines).

It is still unclear whether our correction leads to superior estimates of physio-

logically interesting properties. Namely, the usage of a rare codon early in a gene

sequence will boost the genes overall CAI score in our model while this usage will be

penalized by the standard CAI. In Fig. 2.6C, we show that in two distinct datasets

of E. coli transcript abundances10,127 as well as two distinct datasets of protein abun-

dances10,13, our pdCAI model makes more accurate predictions than the traditional

approach with percent increases in the range of 10-25% (bootstrap re-sampling fol-

lowed by paired t-test, for all cases p < 0.0001). Further, in addition to providing

robust improvements in predictive power across several datasets, this increase in

predictive power is also robust to an entirely different choice of reference set125 (see

Supplementary Fig. A.28).

2.4. Discussion

The pervasive understanding of codon usage bias assumes that rare codons are ‘sub-

optimal’, and their usage is thus minimized in coding sequences, particularly those
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of highly expressed genes. Our work suggests that this notion of globally ‘optimal’ or

‘sub-optimal’ codons is misguided and that observed codon preferences are actually

the result of contrasting forces, the magnitude of which varies significantly with

distance from the start codon. A codon may at once be ‘optimal’ with regards to

translational efficiency and/or accuracy, but ‘sub-optimal’ with regard to secondary

structure, all of which makes a blanket term of ‘optimality’ problematic in light of

ours and other recent results88,113,114.

By modeling individual codon probabilities, we uncover a unifying functional

form to codon usage bias. We find an unexpected heterogeneity in the easy-to-

interpret parameters for the exponential decay function for different codons within

E. coli. These results question the utility and validity of defining the 5′ region by an

arbitrary window of codons surrounding the start codon and treating this region as

‘distinct’.

We draw a link between codon usage and mRNA structure and support previous

findings by showing that the conflicting demands for and against mRNA structure

at different positions likely contributes to synonymous codon selection88,114,121. By

itself, this is a rather unsurprising fact since RNA secondary structure is the result

of base pairing interactions and synonymous codons are composed of different bases.

However, statistical investigations to support this assertion have until very recently

been lacking. Our methodology is distinct and complementary to several recent

studies that have investigated this link, and we draw largely similar conclusions:

codon choice has a clear impact on secondary structure and empirical codon usage
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biases reflect competing demands for and against secondary structure at different

gene positions88,114,121.

In contrast to these recent studies that focus on the prominent role of mRNA

structure in shaping 5′ codon usage biases, we also show that mRNA structural con-

straints are likely inadequate to account for the heterogeneity in codon usage biases

that we observe. Nucleotides distal to the start codon are unlikely to participate in

secondary structure around the initiation region, which made the observation that

several codons vary in their usage at relatively distal sites seem paradoxical. How-

ever, we show that codons read by less abundant tRNAs are also enriched in the

5′ of coding sequences. This finding could be interpreted as support for the trans-

lational bottle-neck hypothesis whereby enrichment of rarely used codons in the

beginning of coding sequences could serve as a mechanism to space out ribosomes

during translation so as to avoid collision. Another possible mechanism for the ob-

served positional-dependencies stems from the fact that different tRNAs vary in their

misreading rates63. Errors in translation are likely to be more costly at sites distal

to the start codon, and this could lead to stronger selection with increasing gene

length35. Teasing apart these two possibilities will require further investigations.

We note that although position-dependent codon usage bias had previously been

observed, the vast majority of literature on codon usage bias has either ignored this

fact or treated it as relatively inconsequential128,129. Our framework allows position-

dependent codon usage biases to be incorporated into existing models, which we

demonstrate here by re-defining the popular Codon Adaptation Index. Our aim here
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Figure 2.7. Position-dependent codon usage bias in multiple organisms.
A, The observed log odds ratios for the exponential decay model fits relative to
uniform model for different organisms. B, The distribution of τ values for E. coli
and P. aeruginosa highlights potential differences in the evolutionary forces that
have shaped the respective genomes.
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is not to develop a model to predict protein abundances with maximal accuracy.

Rather, we aim to show that the increased accuracy that we see is supportive of

the fact that the 5′ usage of rare codons in the reference set and in the genome

at large is likely beneficial in some regard. Additionally, this result allows us to

show that positional-dependencies are far from inconsequential, and that they can be

accounted for with relatively simple changes to existing models. We anticipate that

more thoroughly investigating the pdCAI model with regard to different reference

set choices and possible perturbations regarding how to most efficiently treat the

decreasing confidence of our reference set fits at distal codon positions (which is

particularly problematic for small gene-sets) may result in further improvements. All

of the predictive improvements that we report are of endogenous transcript/protein

levels, but the CAI model is frequently used in evaluating and designing recombinant

proteins. The improvements that we demonstrate may therefore have utility in this

field as well, though proper evaluation will require careful experimental controls to

account for confounding issues such as mRNA structure around the start codon.

Additionally, although we focused here on intra-organism codon usage biases, the

findings presented are likely not unique to E. coli. Towards this end, we repeated

our model selection analysis on eighteen other microbial genomes randomly chosen

to sample diverse taxa and found that the exponential decay model of codon usage

bias is systematically selected as a better fit to the data than the uniform model

(Fig. 2.7A, Supplementary Fig. A.4). While this fact alone may be unsurprising given

known differences in AT/GC skews at the 5′ end of genes, further investigation of how
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positional-dependency varies with organismal GC content, genome size, average gene

lengths, etc. may reveal unexpected patterns. Additionally, we note as one example

that the distribution of τ values for E. coli vary over a much larger range than

equivalent values from Pseudomonas aeruginosa (Fig. 2.7B). Values of τ on the order

of 10-100 are most likely indicators of the structural importance of mRNA, and since

P. aeruginosa is a relatively G/C rich organism, we hypothesize that enrichment of

A/T rich codons in the beginning of genes could conceivably account for the majority

of positional-dependency that is observed for this organism. Conversely, large τ

values (e.g. greater than 103) are the result of codons with little or no positional-

dependency, of which there are far more in E. coli than P. aeruginosa. The generality

of our method, and the ease of parameter interpretation suggest that comparative

genomics investigations into inter-species parameter heterogeneity may yield novel

insight into the forces that shape and constrain microbial genome evolution.

The effect of specific sequence features on a given gene’s expression level is highly

context dependent71 and a multitude of factors shape the usage of codons within

genes — many of which are undoubtedly particular to individual regulatory contexts

or protein specific constraints56,75,76,104–106. However, we have uncovered a clear

global pattern of codon usage within genes that is dependent on location and is

partially related to differential requirements for mRNA structure. We anticipate

that our results will be highly relevant in the field of synthetic biology and in genome

engineering applications for which organism-specific sequence design is an important

consideration. Further, the quantitative description of codon usage biases that we
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have outlined here can help to serve as a testing ground for evolutionary investigations

into the complex origins of codon usage bias within and between species.
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2.5. Materials and Methods

2.5.1. χ2 test of significance for uniformity in codon usage bias

After filtering out coding sequences that did not have recognizable start and stop

codons, contained internal stop codons or non-standard bases, whose length was not

a multiple of three, or was annotated as a pseudogene, we aligned genes at the start

codon, removed the start and stop codons, and for each subsequent codon, calculated

the χ2 value:

(2.5) χ2 =
n∑

i=1

(O − E)2

σ2
=

n∑
i=1

z2

where O is the observed counts per bin, E is the expected counts per bin, σ is the

standard deviation of the expected distribution per bin, n is the number of bins, and

z is the z-score per bin. We then compared this value to a chi-square distribution

with degrees of freedom equal to n − 1. A codon was deemed significant if the

probability of observing that value: p < 0.00017 according to Bonferroni multiple-

testing correction which is calculated from the number of tests (59) at a significant

p-value = 0.01.

2.5.2. Binning schema

First, we lined genes up at the start codon and searched for an initial bin width that

would contain approximately 130,000 codons (the entire E. coli genome contains

approximately 1,300,000 codons thus 10 equal-sized bins required approximately

130,000 codons per bin). The algorithm starts with codon position one of all genes
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and if there are < 130,000 codons then we add position two, etc. Once we found

a bin width that contains > 130,000 codons we compare the bin with the previous

width and choose the bin size that is closest to the target number (in this example:

130,000). We then start our next bin at the next position and iterate until the entire

genome is partitioned with each codon position occurring in one and only one bin.

In Fig. 2.1B, the first bin encompassed positions 1-34 of all genes and bins were

progressively wider at distal regions to account for fewer genes and thus less data at

these sites. It should be noted that one potential limitation of the χ2 arises when

bins contain fewer than 5 counts. In our published bin scheme, however, every bin for

every codon has far more than actual 10 observations. Further, not content with se-

lecting a bin scheme arbitrarily, we investigated a variety of other target bin numbers

and sizes and found that these did not affect the results of Fig. 2.1 (Supplementary

Fig. A.5).

2.5.3. Scrambling genes to determine expectation

For each gene, we followed a commonly used synonymous codon shuffling algorithm

where codons that code for the same amino acid were randomly shuffled within

genes. Thus, in a scrambled genome, each gene codes for the same amino acids

and does so using the same frequency of each codon. This procedure allows us to

preserve possible selection for or against particular codons or GC content within

particular genes and to isolate the variable of interest, which in our case is the
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deviation of spatial uniformity in codon usage bias. The expected counts in Fig. 2.1

were calculated from 200 scrambled genomes.

We also developed a novel synonymous codon shuffling method that we use to

interrogate mRNA structure in Fig. 2.4: rather than shuffle synonymous codons

within a gene, we allow for shuffling of codons between genes as long as the codons

occur at the same position. This method preserves the amino acid structure of each

gene, but not codon usage within genes. Rather, the method preserves positional

codon frequencies of the gene set while introducing a similar number of codon changes

per gene. Thus, were we to conduct the analysis in Fig. 2.1 using this as a null model,

counts per bin for each codon would be identical between all shuffled genomes as well

as in the actual genome.

2.5.4. Other statistical tests of codon usage bias

We performed 3 other statistical tests to determine whether any given codon was

significantly non-uniform in its usage bias. All of the following required lining the

genes up at the start codon as before, but neither require binning of codons which

was necessary for the χ2 test.

In the median test, we simply asked (for each codon) at which codon position

the median codon in the genome occurs at. Thus if a codon appears 1000 times,

we wanted to know at what position the 500th codon falls. We did this for the 200

scrambled genomes and found a discrete uniform distribution which allowed us to

measure the deviation from the mean of this distribution that was observed in the
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actual genome. A median closer to the start than expected would imply that this

codon occurs more frequently in the beginning of genes than random expectation.

The significance of this deviation was calculated via a two-tailed significance test.

In the area under the curve (auc) and the d-value tests, we relied on a cumulative

distribution function (CDF) of codon counts where the x-axis is the absolute codon

position re-scaled to 1 and the y-axis is cumulative counts of the codon of interest

re-scaled to 1. If a codon occurred equally throughout the genome, and all genes were

of equal length then perfect uniformity in usage would result in a diagonal line in the

CDF and the auc would equal 0.5. A codon occurring more in the beginning would

have an auc > 0.5 whereas a codon occurring at the end of genes would have an auc

< 0.5. However, since genes are not of equal length, the auc was far greater than 0.5

due to the fact that few genes are represented at distant codon positions. However,

we again assessed the significance of the actual genome findings by comparing against

the auc for 200 scrambled genomes which resulted in a normal distribution of values

to test our observed value against.

Lastly, using the CDF of scrambled genomes, we determined the ‘average’ CDF

and found the absolute value of the largest deviation from this average CDF when

plotted against the actual genome (the largest y-axis deviation regardless of where

it occurred). Unlike the median and auc tests, the distribution of the randomized

genomes was not normal since they were absolute values but a one-tailed test allowed

us to determine the significance of the actual genome compared to the expectation
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from 200 scrambled genomes. Crucially, we observed a large degree of overlap be-

tween these tests with the chi-square test being the most conservative estimate and

the d-value the least (Supplementary Fig. A.1).

2.5.5. Maximum likelihood estimation of model parameters

When amino acid j (aaj) is encountered at location x, the probability of codon i

(codoni) is defined by P (codoni|x, aaj). We considered uniform, linear, step func-

tion, and exponential models for this codon usage probabilities. These models, each

consisting of i functions (one for each codon i) of model parameters θi and location

x, are defined as:

(2.6) uniform: Pi(θi , x) = θi1

(2.7) linear: Pi(θi , x) = θi1x+ θi2

step function: Pi(θi , x) = θi1 if x < θi3,

Pi(θi , x) = θi2 if x ≥ θi3(2.8)

(2.9) exponential: Pi(θi , x) = θi1 exp
(
−x

θi2

)
+ θi3.

Note that for ease of following, in case of the exponential model we refer to θi1 as a,

θi2 as τ and θi3 as c in the main text.



64

We defined nik as the number of times we observe codon i at location x =

k among Njk genes with amino acid j at x = k. The observed fractions yik of

codon i usage at location k for amino acid j are obtained directly from these values:

they are the ratios of nik (the number of observations of codon i at k) to Njk (the

number of possibilities to use codon i at k). Each nik is binomially distributed with

the probability P (codoni|x = k, aaj), giving rise to the probability density function

(PDF):

f(nij|Nkj, Pi(θi , x)) =(
Njk

nik

)
Pi(θi , k)

nik(1− Pi(θi , k))
Njk−nik(2.10)

Assuming that the nik values are statistically independent from each other, the log-

likelihood function for the model parameters is:

(2.11) lnL(θi |ni,Nj) =
∑
i

ln f(nik|Njk, Pi(θi , k))

where ni and Nj are the vectors comprised of nik and Njk for all codon locations k.

For each codon, we estimated the parameters θ̂i for each of the four models by

finding the parameter set that maximizes this log-likelihood:

(2.12) θ̂i = argmax lnL(θi |ni,Nj)

For optimization, we used the fmin function of the SciPy scientific package for Python

programming language, which utilizes a downhill simplex algorithm. To ensure that
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the algorithm does not get stuck at local maxima, we performed each optimization

5 times, starting from different initial points.

2.5.6. Model selection

We used maximum likelihood estimation to determine the likelihood that our model

fits individual codon data. To correct for the possibility of over-fitting, we used

Akaike Information Criterion122, a measure of goodness of fit for a statistical model

that is grounded in information theory. It is defined as:

(2.13) AIC = 2k − 2 lnL

where k is the number of free parameters in the model, and L is the maximized like-

lihood for the estimated model. AIC is a relative measure of information loss caused

by using the model to describe reality. The model with the minimum AIC value is

the most likely model to minimize information loss compared to the underlying true

process130. The relative probability pM,AIC of model M minimizing the information

loss is given by:

(2.14) pM,AIC = exp
(
AICmin − AICM

2

)

where AICmin is the minimum AIC among all models, and AICM is the AIC of

model M .

For all datasets of all organisms we investigated, we calculated the AIC value for

each of the four tested models. First, we fit the codon usage probability function
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using MLE to each codon. We obtained the log-likelihood for the entire model

by summing the log-likelihoods of the individual fits. The total number of free

parameters is the number of codons times the parameters in the model for a single

codon. After calculating the Akaike Information Criterion values in this manner, we

also calculated relative odds of each model to minimize information loss according

to Eq. (2.14).

2.5.7. mRNA structural calculations

All free energy calculations were calculated using the RNAfold method of Vien-

naRNA131 with default parameters. To extract the Boltzmann distribution of se-

quences we used RNAsubopt131 and the -p 1000 flag.

For mutation studies, we used the transcript sequences of the 500 highly expressed

genes. For each gene, we iterated through the codons within a region of interest

(either 0 to +36nt, or +72 to +108nt), and if it matched the identified criteria (i.e.

in the rare set) we swapped it to a synonymous counterpart with the desired criteria

(i.e. in the abundant set). With 1 swap per gene, we re-folded and calculated the

MFE of the structure and subtracted this from the original MFE for that sequence to

determine the change in free energy from this substitution. We repeated this process

for all applicable codons within the entire gene set to arrive at the distributions in

Fig. 2.4.

For pair probability calculations, we created 5 separate scrambled genomes and

aggregated the results in order to compare the actual pair probabilities to those
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calculated from scrambled sequences. We fold each gene (-50 to +150 relative to

start) and for each base calculate the number of sequences out of 1000 which that

the base is paired. For each position we thus have a distribution of values (1 value

representing the pair probability from each gene for that position) that we compare

to the distribution created using synonymous shuffling algorithms.

2.5.8. Protein and transcript expression data

We downloaded the publicly available datasets of protein abundances in E. coli cal-

culated from single molecule fluorescence counting Taniguchi et al. (2010)10 and

mass-spectrometry Lu et al. (2007)13 and used the former dataset to classify pro-

teins as low and high abundance due to the greater size of the dataset. After mapping

genes back to the genome, we were left with a dataset of 1001 protein abundances

that we split according to either the quartiles or median expression. Additionally,

data of transcript abundances were downloaded from Taniguchi et al. (2010)10 and

Shiroguchi et al. (2012)127 and again filtered for genes that we were able to map back

to the genome. All of these datasets encompass only a sub-population of the tran-

scriptome/proteome, but since each experimental technique has unique biases and

limitations that restrict the sub-populations that they can measure, it is not safe to

assume that genes which could not be quantified are either lowly or un-expressed.

We thus only include genes for which measurements from the dataset in question

exist.
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2.5.9. Calculation of the Codon Adaptation Index

We make a slight alteration to the traditional calculation of the Codon Adaptation

Index by replacing the frequency of codon i that codes for amino acid j (Xi,j) with

a position dependent function Pi,j(x). The function used here is the maximum like-

lihood estimation of the exponential decay function for each codon. The Relative

Synonymous Codon Usage (RSCU) in our pdCAI is then:

(2.15) RSCUi,j(x) =
Pi,j(x)

1
n

∑nj

i=1 Pi,j(x)

which makes the weight of codon i also dependent on position:

(2.16) wi,j(x) =
RSCUi,j(x)

RSCUi,max(x)

and the pdCAI:

(2.17) pdCAIgene = (
L∏

x=1

wi,j(x))
1
L

When using the maximum likelihood fits of a uniform function, this result is analyt-

ically equivalent to the traditional CAI.

Additionally, based on the original formulation of the CAI, we use the RSCU of

codons in the reference set to determine rare and abundant codons47. RSCU values

less than 1 are categorized as rare and greater than 1 are categorized as abundant.
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2.5.10. Calculation of the tRNA Adaptation Index

There are a number of ways to classify ‘sub-optimal’ and ‘optimal’ codons. We use

the codon usage in a reference set of highly expressed genes to do so and adapt the

nomenclature of ‘rare’ and ‘abundant’47. However to demonstrate the robustness

of this finding we also classify codons according to their tRNA adaptation index

weights:

(2.18) Wi =

nj∑
i=1

(1− sij)tGCNij

(2.19) wi =
Wi

Wmax

where n is the number of different tRNA species that read codoni, tGCNij is the

gene copy number of the tRNA, and sij is a scaling factor to account for wobble

interactions in anti-codon recognition51. Under this scheme, for each amino acid, we

consider the lowest weight codon as ‘sub-optimal’ and the highest weight codon as

‘optimal’.
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CHAPTER 3

Leveraging genome-wide datasets to quantify the functional

role of the anti-Shine-Dalgarno sequence in regulating

translation efficiency

This work was published with Adam R Pah, Michael C Jewett, and Luís AN Amaral

in Open Biology, 2017.

3.1. Abstract

Studies dating back to the 1970s established that sequence complementarity between

the anti-Shine-Dalgarno (aSD) sequence on prokaryotic ribosomes and the 5′ untrans-

lated region (UTR) of mRNAs helps to facilitate translation initiation. The optimal

location of aSD sequence binding relative to the start codon, the full extents of the

aSD sequence, and the functional form of the relationship between aSD sequence

complementarity and translation efficiency have not been fully resolved. Here, we

investigate these relationships by leveraging the sequence diversity of endogenous

genes and recently available genome-wide estimates of translation efficiency. We

show that—after accounting for predicted mRNA structure—aSD sequence com-

plementarity increases the translation of endogenous mRNAs on the order of 50%.

Further, we observe that this relationship is non-linear, with translation efficiency

maximized for mRNAs with intermediate levels of aSD sequence complementarity.
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The mechanistic insights that we observe are highly robust: we find nearly identical

results in multiple datasets spanning 3 distantly related bacteria. Further, we verify

our main conclusions by re-analyzing a controlled experimental dataset.

3.2. Introduction

The abundance of different protein species within a single cell can vary by several

orders of magnitude, and multiple points of control are critical for tuning the ex-

pression of individual proteins over such a wide-range1,10,49,71. Transcription of the

gene of interest is a necessary first step in the pathway of gene expression but, by

itself, transcription is insufficient to ensure protein expression; studies in a variety of

organisms have shown that mRNA abundances only modestly predict protein abun-

dances10–14,132. The magnitude of these correlations remains open to debate, and

part of the lack of a strong relationship between mRNA and protein abundances

is likely a result of differential protein degradation rates and noisy measurements

of both quantities16. It is, however, clear that the rate at which different mRNA

species are translated into their protein product is variable and may be a significant

source of variation in protein abundance and a point of regulation71,133.

In studies dating back to the 1970s, researchers noted that a thermodynamic in-

teraction between the 16S ribosomal-RNA and the 5′ untranslated region (UTR) of

mRNAs is important for overall translation efficiency—defined here as the number of

protein molecules made per mRNA per unit time—by enhancing translation initia-

tion in prokaryotes72. The strength, optimal distance to the start codon, and struc-

tural accessibility of this anti-Shine-Dalgarno::Shine-Dalgarno (aSD::SD) sequence
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interaction all play a crucial role in modulating the rates of translation initiation

and thus protein abundances134–138. More recently, multiple studies have reinforced

this paradigm and continue to elucidate the finer details about the importance of

translation initiation signals, highlighting the fact that surrounding nucleotides may

constrain SD sequence evolution due to mRNA structural constraints75,76,88,114,139,140.

Much of our understanding about the process of translation initiation has come

from experimental researchers expressing multiple genetic constructs with slightly

varying 5′ UTRs placed upstream of a heterologous gene whose output is easy to

quantify. However, most studies have looked at a relatively small number of such

easily quantifiable genes that have been expressed in a small subset of experimentally

tractable species, often at high-levels. Experimental studies present a well-controlled

system to interrogate these mechanisms, but the degree to which these findings can

be extrapolated more broadly to different genes, species, and expression levels re-

mains largely unknown. Nevertheless, researchers ability to predict translation rates

of heterologous genes have continually improved as more and more detailed experi-

mental data is generated and incorporated into biophysical models71,139.

In parallel, a number of different studies have analyzed various facets of trans-

lation initiation sequence variation across bacteria using bioinformatic or compu-

tational means, but definitions about which genes to consider as ‘SD genes’ vary

broadly71,141–147. The main differences frequently concern where to look upstream of

the start codon for a putative SD sequence and what bases of the 16S rRNA sequence

to consider as the aSD sequence when assessing sequence complementarity to the 5′
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Figure 3.1. SD sequence usage is variably defined in the literature and
differs between genomes. A, Several studies report a range of relevant parameters
used to identify the aSD::SD sequence interaction. (1denotes studies that implicitly
derive aSD sequences by extrapolating from over-represented UTR motifs; 2denotes
studies that explicitly penalize for non-optimal distances to the start codon). B,
Sequence logos demonstrate that 5′ UTRs are highly non-random within a given
species, largely a result of significant purine enrichment. However, the magnitude of
this enrichment, and the spacing relative to the start codon varies between species
despite widespread conservation in the 3′ end of the 16S rDNA.



74

UTR of mRNAs (Fig. 3.1A). Despite their differences, bioinformatic investigations

have consistently shown that SD sequences occur much more frequently than random

expectation in the 5′ UTRs of most species, further suggesting a large role for aSD

sequence complementarity in regulating translation initiation (Fig. 3.1B).

Finally, as genome-scale and high-throughput sequencing technologies have come

of age, a third route of investigation has become possible. By measuring the trans-

lational status of thousands of different genes within a single experiment, ribosome

profiling (Ribo-seq) and RNA sequencing (RNA-seq) technologies can be combined

to allow researchers to determine translation efficiencies across the genome148. Ap-

plication of this technique to multiple organisms has already enhanced our under-

standing of translational regulation, stoichiometric protein production, determinants

of elongation speed, and genome annotation97,133,148,149. However, in the context of

bacterial translation initiation, several studies have suggested that the aSD binding

strength shows no discernible relationship with the measured translation efficiency of

endogenous genes at the genome-scale133,149,150. The negative results of these stud-

ies may be due to a variety of non-mutually exclusive factors, including: (i) noisy

or inaccurate estimates of translation efficiency from these data, (ii) sub-optimal

parameters associated with assessing the aSD sequence relationship, (iii) difficulty

accounting for the effect of mRNA structures surrounding the start codon through

computational means, (iv) the fact that many endogenous mRNAs are translation-

ally regulated or present in operons, and finally (v) the lack of a relationship in these



75

data may be, quizzically, real—requiring researchers to re-think our understanding

of the mechanisms governing translation initiation in bacteria.

Here, we investigate whether the sequence diversity of endogenous genes can be

leveraged along with ribosome profiling-based estimates of translation efficiencies to

precisely define the relevant parameters associated with aSD::SD sequence interac-

tion. Rather than attempt to develop a comprehensive model to explain as much

of the variation in translation efficiencies as possible, we instead propose a simpler

question: can empirically measured translation efficiencies help us to better under-

stand the particular phenomenon of aSD sequence complementarity and its role in

regulating translation efficiencies? Our data-driven analysis yields definitions for the

optimal distance between predicted aSD sequence binding and the start codon and

the extents of the aSD sequence itself. We further highlight a highly conserved non-

linear relationship between aSD sequence complementarity and translation efficiency

of endogenous genes whereby intermediate complementarity maximizes translation

efficiency downstream genes. We confirm these findings in multiple independent

genome-scale and experimental datasets, and in doing so highlight the robustness

of our conclusions while validating that the size of this effect is greatly enhanced as

experimental steps are taken to reduce error in translation efficiency measurements.
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3.3. Results

3.3.1. Deriving translation efficiency measurements from Ribo- and RNA-

seq

For a given mRNA, ribosome density maps derived from ribosome profiling can be

used to illustrate regions of relatively fast and slow translation. When used in con-

junction with RNA-seq to estimate mRNA abundances, this groundbreaking technol-

ogy allows researchers to roughly quantify relative translation efficiency (RTE) on

a per gene basis for thousands of genes in a single experiment. However, it is impor-

tant to note that estimates of RNA abundances and ribosome occupancies are both

error-prone due to biological noise as well as the numerous steps in the experimental

process that may introduce systemic bias151–155. Thus, RTE is a particularly noisy

approximation because error is compounded when dividing two error-prone values.

We therefore established several quality controls for gene inclusion that are stricter

than those previously used in the literature (see Materials and Methods). Following

on the previous work of others133,149, we then calculated relative translation efficiency

(RTE) per gene as:

(3.1) RTEi =
RPKMRibo−prof,i

RPKMRNA−seq,i
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whereRPKMRibo−seq andRPKMRNA−seq are Reads Per Kilobase per Million mapped

reads (RPKM) for a gene, i, obtained through ribosome profiling and RNA-seq, re-

spectively. Using the original Ribo- and RNA-seq mappings provided by three sep-

arate studies in rich media for Escherichia coli, Caulobacter crescentus, and Bacillus

subtilis we derived measurements of translation efficiency for 2910, 1833, and 2385

genes, respectively (Supplementary Fig. B.1)133,149,156. While this metric relies on

some crucial assumptions, such as equivalent elongation rates between genes, prior

work has shown that these assumptions are generally valid133; a noise-free RTE

metric calculated in this manner should be highly correlated with ‘true’ translation

efficiencies as we have defined it. We note that we investigated several variations in

the above metric such as excluding the beginning and the end of genes, Winsorizing

to limit extreme values, removing the lowest mRNA expression decile, etc. but none

of these variations lead to distinguishably different results so for the purposes of this

manuscript we opt for the simplicity of Eq. (3.1) moving forward.

As others have noted, mRNA structure surrounding the start codon is known

to influence translation initiation, perhaps playing a dominant role in determining

translation efficiency49,118,133,137,140. We confirmed this finding by showing that log-

transformed translation efficiencies in all three organisms showed highly significant

correlations with the predicted degree of mRNA secondary structure (∆Gfolding) in

the initiation region (defined here as -30 to +30 nucleotides relative to the first base

of the start codon[which was labeled +1]) (R2 = 0.13, 0.10, and 0.08 for E. coli,

C. crescentus, and B. subtilis, p < 10−42 for all cases). Given the strength of this
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correlation (Supplementary Fig. B.2), we analyze the residuals from this predictive

model (in units of log-scaled translation efficiency) in order to determine what role,

if any, aSD sequence complementarity has in modulating translation efficiency:

(3.2) ri = RTEi − R̂TEi

where RTEi is the relative translation efficiency of gene i, and R̂TEi is the estimate

of RTE for gene i derived from the regression on ∆Gfolding for each dataset. Put

more simply, the residual RTE value for a gene is the difference in observed RTE

minus the predicted RTE where our prediction is based off of the mRNA structure.

We include this step to alleviate the source of biological variation associated with

cis-structure, but note that these computational predictions also introduce error due

to the—at best—modest correlation between computationally predicted structures

and their counterparts as they exist in vivo124. Later, we show that all of our primary

results remain significant, albeit with decreased magnitude when we skip this step

and instead investigate RTE values directly.

3.3.2. Defining the optimal distance to the start codon and species specific

aSD sequences

Using the residual RTE values described in Eq. (3.2), we took a systematic ap-

proach in order to determine where to look, in an unbiased manner relative to the

start codon, for the statistical signal of aSD sequence complementarity under the as-

sumption that the true value of this parameter should show the strongest correlation
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Figure 3.2. Determining the optimal distance to the start codon. A, Illustra-
tion of the method used in this study for determining the predicted Gibbs free-energy
(∆Gbinding) of the hybridization of the putative aSD sequence (highlighted in red)
to the 5-nucleotide sequence at a distance of 7 nucleotides upstream from the start
codon. B, The strength of aSD binding for each gene at a distance of -7 is correlated
against the model residuals in units of log(RTE). Shown are 1st and 3rd order poly-
nomials (R2

adj = 0.023 and 0.026 respectively, p < 10−16 for both). C, We performed
the same correlation analysis as in (B) for each putative distance to the start codon
in the E. coli dataset for the given aSD sequence. Shown are the R2

adj values for the
relevant models with a maximum peak for d=-7.
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between aSD sequence complementarity and residual RTE values. For each gene, we

calculated the predicted hybridization energy of the core aSD sequence (5′-CCUCC-

3′) to each sequential 5-mer upstream of the start codon (Fig. 3.2A). Hereafter, we

will refer directly to the location (relative to the start codon) as the number of bases

between the fragment analyzed and the start codon (this metric of distance corre-

sponds to the aligned spacing presented by Chen et al.135). We asked how well the

aSD sequence complementarity at a particular location for all genes performed at

predicting residual RTE values via both linear and 3rd order polynomial regression.

In Fig. 3.2B we show example data for a distance to the start codon of -7 nu-

cleotides (assessing complementarity of nucleotides -12 through -8 for each gene).

We show both the 1st and 3rd order fits for the residual RTE data from E. coli,

and find that both correlations are small yet nevertheless highly significant (F-test,

p < 10−16). Further, in Fig. 3.2C, we show the adjusted-R2 (R2
adj) resulting from

repeating the correlations shown in Fig. 3.2B for each indicated distance relative to

the start codon. We utilize the R2
adj metric hereafter because unlike R2 this adjusted

metric penalizes for increasing parameter numbers associated with more complex

3rd order polynomial models and thus helps guard against over-fitting to the data.

Despite the relatively small R2
adj values, the sharpness of this peak shows that there

is a clear and highly significant relationship between aSD sequence complementarity

in the 5′ UTR of mRNAs and translation efficiency. The 3rd order polynomial model
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was slightly more predictive at this stage, so we present our data in the form of 3rd

order polynomial regressions hereafter except where otherwise noted.

Our choice of 5′-CCUCC-3′ as the aSD sequence in Fig. 3.2 was simply to illus-

trate our methodology by using the most conserved region of the 16S rRNA tail.

In practice, it is not clear precisely which 16S bases belong to the aSD sequence

although the 3′ tail of E. coli has been experimentally determined to end with 5′-

...CCUCCUUA-3′. In order to see if the data would allow us to recover the expected

aSD sequence, we repeated the above analysis for different putative aSD sequences

extending in the 5′ and 3′ directions at different binding locations and observed in-

creasing R2
adj values and a slight re-positioning of the optimal distance to the start

codon (Fig. 3.3A). It should be noted, however, that this change in the optimal dis-

tance is partially an artifact of our numbering scheme. As we include more 5′ bases

in the definition of the aSD sequence, even if the location of optimal binding for

a given mRNA does not change, the ‘distance’ will change based on the fact that

it is calculated relative to the 5′ end of the putative aSD sequence (Supplementary

Fig. B.3). In this analysis, we extend past the known rRNA sequence tail as a control

that will allow us to test the accuracy of our method by determining whether it is

able to uncover the known 3′ terminus.

We finally explored a range of variants that include extensions on both ends to de-

termine the optimally predictive aSD sequence and distance parameters for the given

dataset (Fig. 3.3B). Several of these putative aSD sequences produced similar results

so we selected the shortest sequence among these candidates (5′-ACCUCCUUA-3′)
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distance parameters based on their fit to the residual RTE data (* denotes the se-
lected best fitting aSD sequence). C, Comparison of R2
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order polynomial models from the best performing aSD sequence from (B).
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but stress that our methodology can likely not discriminate these boundaries pre-

cisely given the small differences in R2
adj values between putative aSDs with single

base additions/deletions. While the overall correlation coefficient in this best fit

model is still modest (R2
adj = 0.041), the significance of this finding is extremely high

(p < 10−26) indicating that despite the potentially large error in RTE estimates, we

are nevertheless able to observe a highly significant underlying relationship. These

data further show that although complementarity to the core aSD sequence shows

a roughly linear relationship with RTE (the 3rd order model in Fig. 3.2C performs

only slightly better), the inclusion of flanking sequences results in both increasing

predictive power as well as increasing non-linearity in the underlying relationship. Fi-

nally, as a further indicator of the accuracy of this method, it resulted in a frequently

cited aSD sequence of 5′-ACCUCCUUA-3′, thus uncovering the experimentally de-

termined 3′ terminus.

3.3.3. The relationship between aSD binding and translation efficiency

In order to test the generality of our findings for E. coli, we next tested whether

our methodology could produce comparable results for B. subtilis and C. crescen-

tus. We found that the 5′ extensions are similar for the different organisms studied

with B. subtilis showing preference for a slightly longer 5′ aSD extension, a find-

ing that is consistent with prior observations that the canonical SD sequence in B.

subtilis 5′ UTRs appears shifted further upstream of the start codon (Fig. 3.1B).
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Figure 3.4. Summary of findings for three independent organisms using
ribosome profiling based data. A, Scatter plot of residual RTE values after ac-
counting for the effect of mRNA structure versus aSD sequence complementarity for
the species-specific optimal aSD sequence (shown above in black) and optimal dis-
tance to the start codon (inset). B, Data from (A) depicted as equally sized quintile
bins to illustrate the magnitude of the effect. Bars denote the mean within each bin,
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plementarity at the optimal distance compared to a gene with weak aSD sequence
complementarity.
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We further found that species-specific 3′ extensions to the 16S rRNA result in en-

hanced correlations and thus are likely present in the processed 16S rRNA (to our

knowledge, the precise 3′ 16S rRNA terminus for these species is unknown) and par-

ticipate in message discrimination for these two organisms (Supplementary Figs. B.4

& B.5). For C. crescentus the aSD sequence that we obtained from our data-driven

model is 5′-CCUCCUUUC-3′ while for B. subtilis the corresponding sequence is the

5′ extended 5′-UCACCUCCUUUCUA-3′. However, as with E. coli, it is difficult to

discern whether single base additions/deletions to the ends of these putative aSD

sequences are functional.

Despite the vast evolutionary distance between these species, the functional form

of the best fitting models was highly similar for all three, showing the highest resid-

ual RTE values for intermediate binding strengths with similar predictive powers

in the 3rd order model (R2
adj = 0.041, 0.028 and 0.056, for all cases p < 10−11)

(Fig. 3.4A). We further verified that non-linear models provide a superior fit to the

data—even though R2
adj explicitly punishes models with more parameters—via the

Akaike Information Criterion (AIC), a stringent model selection metric used to judge

the relative quality of model fits while explicitly penalizing for parameter number

(Supplementary Fig. B.6).

In order to more clearly show the magnitude of the observed effect—and for

strictly illustrative purposes—we split the data for each organism into equally sized

quintile bins (i.e. the 20% of genes with the highest aSD sequence complementarity,

through to the 20% with the lowest). Notably, treating the data this way involves no
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model fitting and in doing so, we observe that: (i) the average gene which binds the

aSD sequence at the intermediate-to-strong binding strength level shows a 30-50%

increase in translation efficiency compared to an average gene that binds the aSD

very weakly (Fig. 3.4B) and (ii) the strongest binding quintile of genes exhibits either

decreased or equivalent translation efficiency compared to the bin with intermediate-

to-strong aSD binding strength. This suggests that mRNAs that contain sequences

that bind too strongly to the aSD sequence may actually show reduced translation

efficiency, a point that has support from several prior studies in the literature work-

ing with experimental systems157,158. We note, however, that the optimal sequence

complementarity bin for B. subtilis is larger than the optimal bin for E. coli and C.

crescentus. This variation may be a result of true underlying differences between

the translation initiation mechanisms between these distantly related species, or a

function of the fact that the B. subtilis aSD sequence is much longer resulting in

a broader range of sequence complementarity values than is observed for the other

species.

To test the robustness of the above findings to some of our previous assumptions,

we repeated the analysis from Figs. 3.3 & 3.4 by interrogating log-transformed RTE

values directly. Although cis-mRNA structure is thought to be an important regu-

lator of translation initiation, we are faced with the reality that our computational

predictions of structural stability are rough approximations of in vivo structures and

therefore may introduce further error and biases into our measurements. Neverthe-

less, we observed very similar results for all 3 organisms in terms of the optimal aSD
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sequence and distance (Supplementary Fig. B.7) as well as the functional form of

the best fitting model (Supplementary Fig. B.8). The fact that the significance of

our results are improved when removing the effect of mRNA structure provides fur-

ther evidence that the true magnitude of the aSD sequence complementarity effect

may be even further enhanced were we able to more accurately predict—and control

for—the structural component of this relationship.

Given recent concerns in the literature about the possibility of biases arising

from the size selection step of prokaryotic ribosome profiling studies, we analyzed

two further E. coli datasets (n = 1278 and 1321) from an independent lab that were

generated in such a way as to purportedly minimize potential sources of error153.

After accounting for mRNA structure as before (R2 = 0.11, p < 10−33 for both

datasets), we observed nearly identical results to the previous E. coli dataset (Fig. 3.5,

Supplementary Fig. B.6). For both replicates, the 5′-ACCUCCUUA-3′ aSD sequence

at a distance of -5 provided the best fit to the data with corresponding R2
adj values

of 0.06 and 0.07 for the best fitting 3rd order polynomial and effect sizes of 45% and

50%. While illustrating the robustness of our results for a given organism across

multiple independent datasets, this analysis also highlights the sensitivity of R2
adj to

measurement noise. Although we observed generally low, albeit highly significant,

R2
adj values in the previous analyses, we saw a 50% increase in predictive power using

the same modeling approach when applied to these new data while the effect size

remains relatively insensitive to this scatter. Indeed, in these data the correlation

between aSD sequence complementarity and residual RTE is nearly as large as the
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Figure 3.5. Validation of findings in independent E. coli ribosome profiling
datasets. Scatter plot and quintile analysis for independent E. coli datasets as in
Fig. 3.4. For both replicates, the optimal fitting aSD sequence and distance to the
start codon were the same as shown in Fig. 3.4 for E. coli with largely similar trends
and stronger correlation, presumably due to a reduction in measurement error.
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correlation between mRNA structure and RTE supporting previous observations of

a strong role for the aSD sequence in enhancing translation initiation.

Finally, given the propensity of prokaryotic genes to occur in operons, we repeated

our analysis for all 5 datasets (using the previously discovered organism specific

aSD and distance parameters) by splitting genes up according to whether they are

predicted to be first in a transcription unit or in the middle/end (see Materials and

Methods). Our results were variable for the different organisms with our model

fitting procedure resulting in substantially increased predictive power for genes in

the middle/end of operons for the E. coli datasets, while the opposite phenomenon

was evident in the C. crescentus and B. subtilis data (Supplementary Fig. B.9).

Nevertheless, all correlations were highly significant and the 3rd order polynomial

model—having a maximum value for intermediate aSD sequence complementary—

resulted in larger R2
adj values compared to linear models for all datasets, further

illustrating the robustness of this finding.

3.3.4. Translation efficiency in other data sets

To make sure that our observations are not a result of unknown systemic bias in

the ribosome profiling based method of calculating RTE, we turned to two separate

data sets. First, we utilized an independent data set from Taniguchi et al. (2010)

who estimated protein production per mRNA from the green fluorescent protein

(GFP)-tagged single-cell protein distributions for 1018 E. coli genes (see Materials

and Methods for our quality control procedures)10. Using their data, we performed
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Figure 3.6. Validation of principal findings in non-ribosomal profiling based
datasets. A, Genome-wide data from Taniguchi et al. (2010) show a significant re-
lationship between aSD binding strength and residual RTE values. Quintile analysis
shows a 160% increase in RTE between genes with weak and intermediate-to-strong
aSD sequence complementarity. B, Experimental data from Kosuri et al. show
the same trend as in Fig. 3.4 (R2

adj = 0.32 and 0.37 for 1st and 3rd order models,
p < 10−10 for both cases). Quintile analysis shows a large effect size as well as a
plateau / slight-decrease for the quintile with the largest degree of aSD sequence
complementarity.
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the same analysis as above and again observed nearly identical results to those seen in

Fig. 3.4 for E. coli. In other words, the data exhibit a maximum at intermediate-to-

strong aSD sequence complementarity (Fig. 3.6A, Supplementary Fig. B.10). When

we limit our analysis of this dataset to genes with the highest signal-to-error ratio

(specifically, the top 50% as calculated by Taniguchi et al. (2010)), the magnitude of

the R2
adj gets larger with 5′-ACCUCCUUA-3′ sequence complementarity at a spacing

of -5 predicting residual RTE with an R2
adj of 0.075 (p < 10−6) (Supplementary

Fig. B.10).

Finally, although our interest here is in the relationship between aSD sequence

complementarity and the translation efficiency of endogenous genes, we further ver-

ified our main conclusions using a controlled experimental dataset75. Kosuri et al.

(2013) measured the strength of 111 ribosome binding sites (RBS) by creating syn-

thetic constructs whereby RBS/promoter combinations drove expression of a down-

stream GFP reporter (see Materials and Methods). For each RBS, the protein pro-

duced per mRNA, averaged across the different promoter constructs, is an indicator

that we will again refer to as RTE for simplicity. For these data, we did not re-

move the effect of mRNA structure since each RBS data point represents an average

across multiple independent mRNA species (derived from different upstream pro-

moter sequences), and because the coding sequence remains unchanged. Alterations

in 5′ structure between these different constructs are still possible, but the effect is

likely diminished compared to the other studies and difficult to reliably assess com-

putationally. We nevertheless observed that a 3rd order polynomial model again
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provided a better fit to the data than a 1st order linear model (R2
adj = 0.37 and

0.316, respectively, p < 10−10 in both cases)(Fig. 3.6B, Supplementary Fig. B.10).

We also observed that the intermediate binding quintile produced RTE values 85%

higher than the weakest binding quintile and observed a plateau or slight decrease

in RTE for the strongest binding quintile of RBS sequences. This provides further

support for our conclusion that translation efficiency is maximized at intermediate

levels of aSD sequence complementarity and serves as an independent validation

of our genome-scale findings. The large R2
adj values that we observed also provide

strong empirical support for the hypothesis that some combination of error-prone

mRNA structure prediction and error in the calculated RTE values strongly limit

the observed R2
adj values in the genome-wide analyses while the general trends and

conclusions remain robust and are supported by this experimental dataset.

3.4. Discussion

Our work illustrates that there is a strong relationship between aSD sequence comple-

mentarity to the 5′ UTR of mRNAs and the translation of downstream endogenous

genes. Specifically, we demonstrate that after accounting for the effects of mRNA

structure: (i) aSD sequence complementarity to mRNA is predictive of translation

efficiencies for endogenous genes within a relatively narrow window relative to the

start codon, which can be empirically determined on a per-organism basis, (ii) slight

changes in the putative aSD sequence significantly alter the statistical conclusions al-

lowing us to determine a data-driven definition of the optimal aSD sequence for each
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species, and (iii) intermediate aSD sequence complementarity maximizes the trans-

lation efficiency of downstream genes in all data sets that we encountered including

well controlled experimental data.

Our study complements and extends the experimental study of Vimberg et al.

(2007) who showed similar patterns of decreasing translation efficiency for experi-

mentally manipulated genes with extended aSD sequence complementarity158. While

it is possible that native sequences do not typically have strong sequence comple-

mentarity and that this effect would thus only apply to a small range of artificial

gene constructs, we show here that a substantial number of genes from each genome

actually fall within the regime decreased translation efficiency due to the strength

of their aSD sequence complementarity. Overall translation efficiency appears to

be maximized at intermediate levels of complementarity between the aSD sequence

and mRNA, possibly as a result of competing processes governing the efficiency of

initiation complex assembly and the transition to translation elongation (Fig. 3.7)—

as originally articulated by Komarova et al. (2002)132,157–159. Alternatively, rapid

loading of ribosomes on a single mRNA may cause ribosomal queuing, and poten-

tially result in premature termination or frame-shifting as ribosomes unproductively

stall—thus decreasing overall ribosomal throughput on a given message160. More

accurate experimental and computational protocols that limit sources of error and

allow for more precise mapping of ribosome locations may fully resolve these and

other issues.
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Figure 3.7. Model explaining why translation efficiency may be maximized
for mRNAs with intermediate aSD sequence complementarity. The com-
peting processes of initiation complex assembly and transition into elongation select
for and against, respectively, strong aSD binding to mRNAs resulting in maximal
translation efficiency for sequence with intermediate binding strength.
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Many previous bioinformatic and experimental studies either implicitly or explic-

itly assume a continual increase in translation efficiency with increasing aSD sequence

complementarity71,133,143. One possible reason for this discrepancy is that many ex-

periments may not observe a drop-off in efficiency at high levels of aSD sequence

complementarity because they fail to access the full range of sequence diversity ca-

pable of binding to the 16S tail. We show here that mRNAs with perfect sequence

complementarity to the core aSD sequence appear to translate just fine (Fig. 3.2B,

linear fit). However, when considering the fact that sequence binding beyond the

core aSD sequence appears to occur in all of these species, perfect complementary

becomes detrimental as it begins to include base pairing to these flanking sequences.

Our goal here has not been to develop a comprehensive model to predict trans-

lation efficiencies measured by ribosome profiling, but rather to ask whether the

sequence diversity and translation efficiency measurements for thousands of native

genes can provide insight into the basic mechanisms of initiation. It is neverthe-

less surprising that the predictive power of the aSD::SD relationship is so low given

that the aSD sequence is so highly conserved across nearly all bacterial species, and

experimental investigations have seen large changes in protein output when modu-

lating 5′ UTR sequence binding to the aSD sequence71. However, as we have stressed

throughout, we note here again that our findings likely represent a lower bound on

the predictive power of this interaction for several reasons. Genome-scale metrics are

subject to both technical and biological noise, and translation efficiency as a metric

will particularly suffer from this noise due to error-propagation. Further, mRNA
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folding around the start codon is known to exert a large effect on translation effi-

ciencies and computationally predicted structures are rough approximations of the

true mRNA structure124. It is thus reasonable to assume that these sources of noise

contribute to lowering the expected ‘perfect’ correlations far below 1.0 as has been

observed for other systems16. Despite these concerns, the underlying relationship

that we observe is strong enough to show robust, statistically significant correlations

in all datasets that we investigated. In the most controlled dataset that we analyzed,

a 3rd order model of aSD sequence complementarity explained roughly 40% of the

observed variance in translation efficiency within an experimental system where the

structure surrounding the start codon should be relatively similar across different

constructs on account of the same coding sequence being expressed.

In addition to measurement noise and other caveats listed above, predicting the

translation efficiency of endogenous genes poses a number of other unique challenges

that contribute to low correlations. The location of transcription start sites relative

to the start codon is variable and experimentally measured 5′ UTRs are often shorter

than 30 bases and sometimes far longer. Further, a number of important genes such

as ribosomal proteins are known to be regulated at the level of translation by various

mechanisms that obscure statistical signal and which act in addition to the general

patterns that we are trying to study. On top of all these limitations, we are also

aware that translation efficiency may be modulated by differential elongation and

termination in a non-trivial manner and that even within the realm of translation

initiation other mechanisms such as the binding of ribosomal protein S1 may further
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modulate initiation efficiencies. Investigating the full-range of possible contributions

from each of these effects is far-beyond the scope of our study, but doing so in the

future will be valuable for better understanding translational regulation.

A better understanding of the rules governing translation initiation and transla-

tion efficiency stemming from this systems-biology approach has the practical poten-

tial to enhance our ability to design and engineer optimal protein expression systems

for a host of biotechnological purposes. Particularly, orthogonal ribosome systems

consisting of 30S subunits with altered aSD sequences (and corresponding mRNA

sequence preferences) are an increasingly utilized tool in the synthetic biology com-

munity161,162. The effect that expression of these ribosomes has on endogenous genes

governs their orthogonality, and predicting these effects based on the results that we

show here may form an important part of rationally designing optimal systems that

balance orthogonality against native genes and high expression of target genes97.

Continued development and application of the ribosome profiling technique and

associated technologies to diverse organisms will be critical for clarifying a number

of outstanding questions in the field of translation and advancing our understanding

of less-well understood species. While detailed experimental studies that system-

atically express and measure heterologous constructs remain the gold standard for

studying sequence-based control of gene expression, we show here that genome-scale

approaches combining RNA sequencing and ribosome profiling of native genes can

provide valuable insight into these same mechanisms—making this approach partic-

ularly attractive for species with less established experimental protocols. Studying
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the sequence effects on translation in endogenous genes thus provides a valuable and

complementary approach to long standing experimental and bioinformatic investi-

gations.

3.5. Materials and Methods

3.5.1. The data and relative translation efficiency

We downloaded ribosome profiling reads and corresponding RNA-sequencing reads

for Escherichia coli, Caulobacter crescentus, and Bacillus subtilis133,149,156. We used

the original researchers mapping of sequence reads to the respective genomes (.wig

files) and removed genes with coverage below 25% in either the RNA-seq or ribosome

profiling data sets in order to enrich for high confidence measurements. We also

removed any gene shorter than 30 codons as well as potentially mis-annotated genes

with zero ribosome profiling reads to the first 10 nucleotides. For all remaining

genes, we calculated translation efficiency for each gene as the RPKM in the Ribo-

seq dataset divided by the RPKM in the RNA-sequencing dataset. We separately

compiled 2 further datasets for E. coli, subjecting them to the same pipeline as

above153. We settled on this approach as it is far more strict in data inclusion criteria

than previous studies (which should partially limit noise in RTE measurements)

while still providing reasonably large numbers of genes for analysis.

We further utilize two experimental datasets to independently validate our con-

clusions. The first from Taniguchi et al. (2010) utilized single-cell distributions of
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protein counts to estimate the proteins produced per mRNA from fitted gamma-

distributions of single-cell expression10. From the original dataset of 1018 genes we

remove 4 from our analysis for quality control, i.e. coding sequences which are not

a multiple of 3, do not have a ‘product’ annotation, contain internal stop codons,

etc. Since estimates for translation efficiency in this dataset were based off of model

fitting under the assumption of gamma-distributed protein concentrations, we ana-

lyzed the subset of proteins (n = 717) for whom the probability of gamma fit was

>95%. For clarity we maintain the label of relative translation efficiency (RTE) to

describe these data but stress that their derivation is un-related to ribosome profiling

based estimates of translation efficiency and that RTE in this context has a slightly

different interpretation10.

We also downloaded experimental data from recombinant gene expression in E.

coli 75. Each of 110 different ribosomal binding sites (RBSs) were characterized using

FLOW-Seq (a method that combines fluorescence-activated cell sorting and high-

throughput DNA sequencing) and can be described by their average protein levels

across different promoters divided by the average mRNA levels (roughly equivalent

to RTE when calculated for the same protein) (from their initial data we exclude the

‘Dead-RBS’ construct because its short length is prohibitive to our analysis). Here

we analyze this ‘mean.xlat’ data (as described in their supporting tables75) as a

measure of relative translation efficiency. As before, for ease of language we continue

to refer to this as relative translation efficiency (RTE) but note the slight differences

in interpretation. Rather than subtracting out the effect of mRNA structure as in
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the previous datasets, we simply provide regressions on this raw data here since:

(i) the downstream gene is the same and thus structure is mostly preserved between

constructs and (ii) each promoter will introduce slightly different sequences upstream

of the RBS but their structural effects of this introduction should be accounted for

in the averaging process.

3.5.2. Gene classification and quantification of aSD binding strength

All calculations of RNA folding were performed using the RNAfold method from

ViennaRNA with default parameters163. Estimations of cis-structure were based on

calculated folding energies for the -30 to +30 nt region relative to the start codon

(‘A’, ‘T’, ‘G’ are bases +1, +2, and +3, respectively). RNA::RNA hybridizations

were performed using the RNAcofold method with default parameters. For each

gene, we iterated through all x-mers (where x is the length of the putative aSD

sequence) upstream of the start codon in order to capture 14 hybridization events.

3.5.3. Operon predictions

We utilized predicted operons from the Database of Prokaryotic Operons164. From

these data tables, we classified each gene according to whether it is predicted to

occur first within a transcription unit or whether another gene precedes it within a

transcription unit, regardless of the distance.
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3.5.4. Statistics and code sharing

All code used to perform translation efficiency measurements, as well as all sta-

tistics were written using custom scripts in Python that are included in the sup-

plementary information. All regression models and statistics (including R2, R2
adj

and Akaike Information Criteria (AIC)) were performed using the statsmodels pack-

age from Python; reported p-values in all regressions are based on the the F-test.

Code and necessary data to re-create figures are available at https://github.com/

adamhockenberry/OpenBiology_2016

https://github.com/adamhockenberry/OpenBiology_2016
https://github.com/adamhockenberry/OpenBiology_2016
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CHAPTER 4

Growth demands shape variation in translation initiation

mechanisms across bacterial species

This work was performed with Aaron J Stern, Michael C Jewett, and Luís AN

Amaral.

4.1. Abstract

The Shine-Dalgarno (SD) sequence is often found upstream of protein coding genes

across the bacterial kingdom—enhancing start codon recognition via hybridization

to the anti-SD (aSD) sequence on the small ribosomal subunit. Despite wide-spread

conservation of the aSD sequence, the proportion of SD-led genes within a genome

varies widely across species and the evolutionary pressures shaping this variation re-

main largely unknown. Here, we use phylogenetic comparative methods to show that

species capable of rapid growth have a significantly higher proportion of SD-led genes

in their genome, suggesting a role for SD sequences in meeting the protein produc-

tion demands of rapidly growing species. Further, in a larger dataset we show that

utilization of the SD sequence mechanism co-varies with: i) genomic traits that are

indicative of efficient translation, and ii) optimal growth temperatures. In contrast to

prior surveys, our results demonstrate that variation in translation initiation mecha-

nisms across genomes is largely predictable after accounting for phylogenetic effects,
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and that SD sequence utilization is part of a larger suite of translation-associated

traits whose variation is driven by the differential life-history strategies of individual

species.

4.2. Introduction

Translation of a given messenger-RNA (mRNA) into a functional protein is contin-

gent on the ability of the translational apparatus to recognize the proper start codon.

To discriminate between potential start codons, bacteria have evolved several distinct

mechanisms144. Most-utilized is the so-called Shine-Dalgarno mechanism—named

for a purine rich sequence commonly defined as 5′-AGGAGG-3′—whereby mRNAs

hybridize with a complementary anti-SD (aSD) sequence on the 16S rRNA of the

small ribosomal subunit (5′-...ACCUCCUU...-3′)72. Varieties of the canonical SD

sequence are enriched upstream of known start codons across nearly the entire bac-

terial kingdom, and the aSD sequence is highly conserved (though notable exceptions

exist, see: Lim et al. 2012)135,142,145,146,165–167. For a given gene within an organism,

researchers have shown that a number of context-dependent factors including the

structural accessibility of the SD sequence, the thermodynamic binding potential

between the sequence and the aSD sequence, and the exact positioning of the SD

sequence relative to the start codon are all factors that modulate the translation

initiation rate of downstream genes71,75,134,136,139,143,158,168–171.

The importance of the SD sequence is further supported by the fact that these

sequences are under-represented in the coding sequences of most bacteria, possibly

reflecting their role in translational pausing and erroneous initiation. The degree of
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this under-representation is highly variable across bacterial species, which is sugges-

tive of possible mechanistic differences in the translation machinery97,153,172,173.

Several other translation initiation mechanisms exist in bacteria, but are less

well-studied. Leaderless genes are so-named because the transcript sequence begins

at, or very close to, the recognized start codon147,174–176. Additionally, translational

scanning, and internal ribosome entry sites (IRES) are common eukaryotic initia-

tion mechanisms that may also be functional in prokaryotes under certain circum-

stances177,178. Finally, investigation into almost any genome uncovers a number of

genes with seemingly normal length 5′ UTRs, but no discernible SD sequence to sig-

nify the beginning of the predicted coding sequence141. In these cases, it is thought

that weak mRNA structure plays a large role in facilitating start codon recognition,

but AT-nucleotide rich sequences upstream may also be involved in this process by

binding to the RPS1 protein on the 30S ribosomal subunit118,120,179–182.

Despite an abundance of research showing that the SD sequence enhances transla-

tion initiation and start codon recognition of downstream genes, it is still not known

why bacteria use such diverse mechanisms, especially given the high conservation of

the aSD sequence in the 16S rRNA71,143,171. For example, why is it that roughly

90% of Bacillus subtilis genes are preceded by a SD sequence while for Caulobacter

crescentus the comparable number is closer to 50%144,146,149?

Cross-species variation in translation initiation mechanisms may impact genetic

isolation and transfer of genetic material, and quantifying the source and extent of
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this variation may prove useful in identifying important genes in a genome or ecologi-

cal community93,167. Further, both translation-system engineering and biotechnology

applications involving less well-studied microbial species are increasingly popular tar-

gets in the synthetic biology community162,183–187. These efforts are likely to benefit

from a better understanding of factors shaping translation initiation mechanisms.

Here, we use phylogenetic comparative methods in order to isolate independent

evolutionary events and show that the proportion of SD-led genes within a genome

is strongly related to the growth demands faced by a species. We develop a metric

that uses sequence entropy to summarize the presence of over-represented motifs in

the UTRs from a given genome, and show that it is predictive of minimum doubling

times for 187 bacteria. In order to extend our analysis to species without known

minimum doubling times, we use a database of 618 phylogenetically diverse species

and show that genome-wide variation in SD sequence utilization is largely predictable

at the individual organism level given knowledge of phylogenetic relatedness and a

small number of genomic features relating to the strength of selection on translation

efficiency.

4.3. Results

4.3.1. Sequence entropy and its relation to SD sequence utilization

Several techniques have been previously used to quantify the magnitude of an in-

dividual organisms utilization of the aSD::SD mechanism. In motif based methods,
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researchers pre-define several sub-sequences closely related to the canonical SD se-

quence and search through the protein coding genes within a given genome to de-

termine the fraction of genes that contain one of these motifs within some range

upstream of the start codon141,167. Similarly, in aSD sequence complementarity

based methods, researchers pre-define a range upstream of the start codon to con-

sider, a putative aSD sequence, and a hybridization energy threshold for determining

whether a gene is considered to be SD-led142,144–146,166.

Both of these methods rely on critical assumptions that may be hard to justify

when extrapolating across a large-set of diverse organisms. First, both methods

rest on a dichotomy between SD- and non-SD-led genes. While this simplification is

useful for discussing the phenomenon, an abundance of research has shown that there

are not two distinct categories but rather a spectrum of sequence complementarity

that affects translation initiation in a continuous manner71,158. Second, bacterial

genomes span a range of GC contents, and previous research has shown that it is

critical to compare the proportion of SD-led genes in a genome to appropriate null

model expectation144. Third, both of these methods carry an assumption that a SD

sequence, regardless of its location relative to the start codon, has the same impact

on translation initiation. However, experimental approaches have shown that spacing

between the SD sequence and start codon can have dramatic effects on translation

initiation rates71,158,168,169.

We sought a complementary approach grounded in information theory that would

allow us to investigate hundreds of diverse genomes without having to a priori define
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aSD sequence or SD sequence motifs. For each genome we extract the 5′ upstream

sequences from all annotated protein coding sequences (see Materials and Methods).

From this set, we then sum the information contained in the sequences within the

region where SD-type motifs are expected to occur (-20 to -4 relative to the start

codon):

(4.1) Iobserved =
−4∑

i=−20

(
log2 4 +

∑
k∈{A,T,G,C}

pi,k log2 pi,k
)

where pi,k is the probability of finding base k at position i. To control for non-uniform

GC content in translation initiation regions, we construct a null model where we

randomly shuffle each upstream region and calculate Irandom for one instance of this

shuffled set (see Materials and Methods). We repeat this process for 500 randomized

sets and compare the sequence information from the real genome to the average of

the randomized sets:

(4.2) ∆I = Iobserved − Irandom

By definition, ∆I is a measure of non-randomness in the translation initiation region

for a particular genome. Except for the requirement of a pre-defined range upstream

of start codons to include in the analysis, it does not require any other assumptions

about the the aSD::SD interaction. ∆I is agnostic to which sequence motifs are

over-represented—thus alleviating the need to pre-define either a putative aSD or

SD sequence.
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Figure 4.1A displays sequence logos of 5′ UTRs for representative species and

illustrates our methodology graphically. Figure 4.1B shows that while SD motif and

aSD sequence complementarity based methods (both calculated relative to a ran-

domized null model control, see Materials and Methods) generally correlate well in a

large dataset of diverse species, there is a clear departure from a linear relationship

for the Firmicute phylum. Further, ∆I correlates strongly with aSD sequence com-

plementarity for most species (Fig. 4.1B). However, we note that ∆I shows marked

differences for members of the Bacteroidetes phylum. Prior research identified ma-

jor alterations in the aSD sequence region of the 16S within this phylum, and our

results strongly support the hypothesis of altered sequence preferences by showing

that the 5′ upstream region of genes from these genomes exhibit significant varia-

tion in ∆I without any significant difference in either SD motif- or aSD sequence

complementarity-based metrics165. The ∆I metric thus allows us to incorporate

Bacteroidetes into future analysis (Fig. 4.1B, red data points). For simplicity, we

will refer below to ∆I and SD sequence utilization interchangeably, and make clear

when we use alternative measurements of SD sequence utilization.

4.3.2. Translation initiation and organismal growth demands

Given that SD sequences are known to enhance translation initiation and efficiency

for individual genes, we speculate that genome-wide variation in the usage of this

mechanism may be related to the differential growth demands of species. Vieira-

Silva et al. (2010) curated a list of minimum doubling times from the literature
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Figure 4.1. A sequence entropy based metric for genome-wide SD sequence
utilization A, Representative sequence logo examples and an illustration of our
pipeline for calculating ∆I B, Comparison between different ways of summarizing
SD sequence utilization. On the left, we show the correlation between SD motif and
aSD binding strength methods. On the right, ∆I and aSD binding strength. The
four largest phyla are color-coded according to the legend, a scheme which we use
throughout.
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and showed that a small set of genomic traits can be combined to predict this value

from an organism’s genome91,188. We replicated several of the findings of Vieira-Silva

et al. (2010) using phylogenetically generalized least squares (PGLS) regression to

account for the lack of independence of the data (see Materials and Methods)189. We

find that rRNA copy number, tRNA copy number, and ∆ENC′ (a measurement of

relative codon usage bias) all show a significant relationship with minimum doubling

times (F-test, p < 0.005 for all cases), while overall coding sequence number has a

weak but still significant effect (p = 0.007)91.

Next, we turn to translation initiation related metrics and find that ∆I signif-

icantly correlates with minimum doubling times in this set of species(p < 10−5),

showing the 2nd strongest correlation of all individual traits that we considered (Ta-

ble 4.1, Fig. 4.2).

We test several other translation initiation associated metrics and find that, in

contrast to SD sequence utilization, the proportion of protein coding genes contain-

ing an ATG start, and the average difference in GC content between gene starts

and internal regions (∆ GC initiation) (chosen as a proxy for selection on decreased

initiation region structure, see Materials and Methods) shows weaker associations

with known minimum doubling times in this dataset (p = 0.056 and p = 0.005 re-

spectively). We constructed a multi-variable PGLS model that combines all of the

possible predictors, and observe that only ∆I and ∆ENC ′ had statistically signifi-

cant coefficients (p < 0.001, both cases). Overall, a model containing all predictors
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Individual Complete
Trait model (R2) model (∆R2)
∆ENC ′ 0.124 -0.095
16S gene number 0.056 -0.011
tRNA copy number 0.061 -0.013
CDS number 0.039 -0.002
∆I 0.108 -0.077
ATG start % 0.02 -0.001
∆ GC initiation 0.042 -0.025

Table 4.1. Parameter contributions for predicting minimum doubling
times. The middle column illustrates the overall goodness-of-fit for individual pre-
dictors (left) of minimum doubling time (p < 0.01 for all values, except ATG start %).
The right column illustrates the change in goodness-of-fit from a model that includes
all predictors versus one that excludes only the variable of interest. Bold numbers
in this column illustrate the variables with significant coefficients in the complete
model (p < 0.001). All analyses were performed using Phylogenetic Generalized
Least Squares regression to remove the effect of shared ancestry, with independent
maximum likelihood fits of Pagel’s λ branch length transformation.
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R2 = 0.28 

Figure 4.2. Phylogenetically independent association between genome-scale
translation metrics and minimum doubling time We show the observed and
predicted values from a PGLS regression model using all predictors in Table 4.1.
Data are colored according to phyla as in Fig. 4.1B.
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resulted in an R2 of 0.28 (p < 10−9, λ = 0.94), while a more parsimonious model con-

taining only the two predictors with statistically significant coefficients resulted in

an R2 of 0.23 (p < 10−10, λ = 0.95), demonstrating the strong relationship between

growth demands and SD sequence utilization when controlling for shared ancestry.

For reference to prior research, a phylogenetically agnostic linear regression model

using all predictors yields an R2 of 0.54 (p < 10−15)—though we strongly caution

against ignoring the effects of shared ancestry in comparative analyses. SD usage

summary statistics calculated via aSD sequence complementarity showed similar re-

sults overall.

4.3.3. Relationship between SD sequence utilization and translation effi-

ciency associated traits

We next assembled a much larger and phylogenetically diverse data set consisting

of 618 bacterial species—unique at the genus level—for whom we have complete,

annotated genome-sequences as well as a high-quality phylogenetic tree describing

their relatedness92. We confirmed previous results, showing that SD sequence uti-

lization between these species varies considerably both within and between phyla

(Fig. 4.3A)144.

In order to determine whether the different traits that are important for transla-

tion efficiency co-vary with one another (independent of phylogeny) we test whether

any of the previously analyzed traits could predict SD sequence utilization at the

genome-scale. We again applied PGLS regression independently for each variable and
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find that ∆I is most significantly correlated with 16S rRNA gene copy numbers(F-

test, p < 10−13), the fraction of genes containing and ATG start codon(p < 10−13),

and ∆ GC initiation (p < 10−8) (Table 4.2).

In order to test the overall predictability of SD sequence utilization across this

diverse bacterial dataset, we consider a multi-variable PGLS model consisting of all

of the traits, resulting in an R2 of 0.226 (p < 10−15, λ = 1.0)(Fig. 4.3B, Table 4.2). A

parsimonious model that included only those traits with significant coefficients in the

initial multi-variable regression—16S rRNA gene copy numbers(p < 10−8), the frac-

tion of genes containing an ATG start(p < 10−10), and ∆ GC initiation(p < 10−5)—

yielded an R2 of 0.209 (p < 10−15, λ = 0.999). As with the predictions of minimum

doubling times, we observe similar findings when using aSD sequence complementar-

ity based summary statistics of SD sequence utilization as the dependent variable.

4.3.4. Relationship between translation initiation mechanisms and opti-

mal growth temperature

Having established that genome-scale SD sequence utilization is part of a suite of

traits related to differential organismal growth strategies, we next assess whether

other ecological factors relating to an organisms growth conditions may play a role

in further constraining the evolution of the SD sequence mechanism. Nakagawa

et al. 2010 had previously shown no association between SD sequence utilization

and optimum growth temperatures144. By contrast, our phylogenetically informed
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16S gene #

CDS #

ΔGC initiation
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ΔI aSD complementarity
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Dependent variable:

Figure 4.3. Genomic and environmental predictors of genome-scale SD se-
quence utilization A, Phylogenetic tree illustrating variation in ∆I B, Scatter plot
illustrating the observed and predicted values from a PGLS regression model using
all predictors in Table 4.2. Data are colored according to phyla as in Fig. 4.1B. C, For
the subset of species for whom we have optimal growth temperature estimates, we
show values of ∆I according to predicted mesophiles and thermophiles (p = 0.0026).
D, As in panel C we instead show phylogenetic residuals calculated from the model
shown in B (p < 10−7). E, We show the standardized regression coefficients (β) from
models using all independent variables to predict SD sequence utilization in the full
data set, and individual phyla to illustrate the robustness of our findings. ATG start
% and 16S gene copy number show a consistently positive relationship with SD se-
quence utilization regardless of the clade analyzed or the specific measurement of SD
sequence utilization tested.
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Individual Complete
Trait model (R2) model (∆R2)
∆ENC ′ 0.033 -0.006
16S gene number 0.091 -0.049
tRNA copy number 0.048 -0.001
CDS number 0.001 -0.001
ATG start % 0.115 -0.058
∆ GC initiation 0.055 -0.029

Table 4.2. Parameter contributions for predicting ∆I. The middle column
illustrates the overall goodness-of-fit for individual predictors (left) of ∆I (p < 10−6

for all cases except CDS number, p = 0.368). The right column illustrates the change
in goodness-of-fit from a model that includes all predictors to one that excludes
only the variable of interest. Bold numbers in this column illustrate the variables
with significant coefficients in the complete model(p < 10−5). All analyses were
performed using Phylogenetic Generalized Least Squares regression to remove the
effect of shared ancestry, with independent maximum likelihood fits of Pagel’s λ
branch length transformation.
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approach applied to this larger dataset (483 of the 618 species in our dataset had

high-confidence growth temperature annotations) finds that temperature constrains

genome-wide SD sequence utilization such that the genomes of thermophilic species

contain a significantly larger proportion of SD-led genes than mesophilic species

(Fig. 4.3C, F-test p = 0.0026). This association is even more pronounced when we

analyze the phylogenetic residuals of our best fitting model from Fig. 4.3B (Fig. 4.3D,

p < 10−7) by including temperature as a categorical dummy variable to represent

mesophile (0) or thermophile (1). When predicting ∆I, the R2 of the best fitting

PGLS model containing all variables increases from 0.203 to 0.252 for this subset of

483 species.

4.3.5. Clade specific relationships

Thus far, all of our analyses have been performed on the entire bacterial dataset, and

we have largely observed similar results with regard to the predictability of minimum

doubling times, and the predictability of SD sequence utilization regardless of the

different summary statistics of SD sequence utilization that we applied. However, as

we noted in Fig. 4.1B, ∆I and aSD sequence complementarity based methods show

varying degrees of correlation according to phylum. Here, we test the robustness of

our conclusions by independently analyzing relationships in the four largest phyla in

our dataset.

Despite the fact that our multi-variable model in Fig. 4.3 shows a fairly strong

ability to predict overall SD sequence utilization, there is considerable heterogeneity
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in the predictions when performed independently for different phyla. This finding

may reflect differences in the sample sizes, quality of genome annotations, or true

biological variation in mechanisms between independent phylogenetic lineages. Par-

ticularly, a PGLS regression model containing the same variables as in Fig. 4.3 is

able to account for a strikingly large amount of the variance when only consider-

ing Proteobacteria, regardless of the method used to measure SD sequence utiliza-

tion (Table 4.3, Fig. 4.3E)(p < 10−15, both cases). We observe similar results for

Actinobacteria (p < 10−10 for ∆I, p < 10−4 for aSD sequence complementarity).

However, fitting with our hypothesis that traditional methods are missing impor-

tant information with regard to the Bacteroidetes phylum, we show that models

constructed with ∆I as the dependent variable within this lineage have substan-

tially more explanatory power than comparable models constructed using the aSD

sequence complementarity based summary statistic as a dependent variable (R2 =

0.487 vs 0.05, p < 10−6 and p = 0.81 respectively) (Table 4.3, Fig. 4.3E). By contrast,

we observe the opposite trend for the Firmicutes lineage where models constructed

to explain ∆I as the dependent variable perform substantially worse than those con-

structed to predict the aSD sequence complementarity based summary statistic (R2

= 0.181 and 0.514, p = 0.018 and p < 10−9 respectively).

These phyla specific results illustrate several critical points. First, the sign on

the relationships between the most predictive individual features is extremely robust,

regardless of the phylum or SD sequence utilization summary statistic under con-

sideration. Increasing 16S copy number and increasing ATG start codon usage are
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R2 using all predictors
n ∆I aSD binding

All 618 0.226 0.24
Proteobacteria 267 0.467 0.477
Firmicutes 82 0.181 0.514
Actinobacteria 78 0.553 0.303
Bacteroidetes 63 0.487 0.05

Table 4.3. Correlation coefficients for different features in single and multiple re-
gression.
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consistently associated with increased SD sequence utilization. Second, ∆I is mea-

suring an aspect of translation in the Bacteroidetes phylum that is not accounted for

in previous models, which likely reflects novel sequence preferences in this lineage.

Third, the formulation of ∆I is missing an important aspect of translation initiation

that previous methods are able to capture for the Firmicutes phylum. Finally, in

the case of Proteobacteria and Actinobacteria, a substantial portion of the variation

in SD sequence utilization between genomes can be explained by a small number

of independent genome-level predictors regardless of the summary statistic used to

identify SD sequence utilization.

4.4. Discussion

To our knowledge, ours is the first study to show that variation in bacterial trans-

lation initiation mechanisms is a result of the life-history strategies of individual

species. We observe a strong relationship between minimum observed doubling times

and SD sequence utilization at the genome-scale, and further show that SD sequence

utilization co-varies with several genomic indicators of rapid growth, including the

copy number of rRNA genes which has long been established as being necessary

for rapid growth. Critically, our analysis is performed in a manner that corrects

for phylogenetic non-independence of data-points allowing us to show the robust-

ness of these relationships in independent clades across the bacterial kingdom, while

at the same time highlighting clade-specific features that may point to mechanistic

differences.
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A potential limitation of our findings is the fact that our study strongly relies on

genome annotations. As many as 10% of the genes from even relatively well-studied

species may have mis-annotated start codons, and our analysis fundamentally relies

on extracting the upstream region of annotated coding sequences149. However, it

seems unlikely that bias in annotation quality would artificially enhance our findings

with the more plausible scenario being that poor annotation quality likely dilutes

the true significance of the findings that we observe here. Additionally, although we

show that the sign of the relationship between SD sequence utilization and genomic

traits is largely robust for 4 different phyla, we note that these conclusions are par-

tially limited by the constraint that we are only able to independently analyze phyla

for which sufficient numbers of sequenced genomes exist. Future analyses of larger

datasets based off the methods presented here will allow researchers to investigate a

larger number of phyla and taxonomic groupings at a finer resolution to potentially

uncover novel biological variability of the type that we report for Bacteroidetes and

Firmicutes.

Our conclusions have several important consequences for researchers moving for-

ward. The observation that a particular species seemingly does not utilize the SD

sequence mechanism to a large degree is not evidence that the aSD::SD sequence

interaction is either dysfunctional or that it provides little translational advantage

for genes within this species. Our results suggest that the selective pressure on

highly efficient translation mechanisms may simply be diminished in particular lin-

eages based on their life-history strategies which may include slow growth, growth at
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low temperatures, or other unconsidered ecological/population-genetic factors. Thus,

researchers working on biotechnological applications in less commonly studied organ-

isms should particularly consider this point when designing vectors for recombinant

gene expression183–187.

Our results also add to the body of knowledge showing that a small number

of genomic traits—that includes usage of the SD sequence—can be used to predict

variation in minimum doubling times with surprisingly high accuracy. We show that

measurements of SD sequence utilization outperform more commonly known asso-

ciations such as the number of rRNA copies and speculate that this is, in part, a

consequence of the evolutionary malleability of different features188. Genome-wide

usage of the SD sequence mechanism, like codon usage bias, requires hundreds of mu-

tations to substantially alter and thus this trait will evolve much more slowly across

a phylogeny when compared to more labile traits that rely on copy number variation

such as rRNA and tRNA number. An interesting possibility is that the difference

in evolutionary rates between different traits could be further be exploited by ad-

vanced methods to predict species adapting to novel growth strategies on shorter time

scales. Like codon usage biases and in contrast to rRNA and tRNA numbers, we note

that summary statistics based on SD sequence utilization do not require complete

genome sequences and therefore may be estimated with partial genome fragments.

The results and methods that we present here may have important applications in
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our understanding of novel, uncultivated genomes, environmental meta-genomic se-

quencing efforts, and the relationship between higher-order genome traits and growth

strategies190.

4.5. Materials and Methods

4.5.1. Data assembly

We first assembled a database of prokaryotic genomes from NCBI using the GBProks

software (https://github.com/hyattpd/gbproks), including only ‘complete’ genomes

in our download and subsequent analysis (accessed on: March 10, 2016). From

the annotated GenBank files, we excluded pseudogenes and plasmid based sequences

from all subsequent analyses and proceeded to compile several traits for each genome.

In addition to SD sequence utilization summary statistics, we applied RNammer to

each genome in order to compile a list of ribosomal-RNA genes, and tRNAscan-SE to

assemble a large set of higher-order genome statistics191,192. We wrote custom scripts

to calculate codon usage bias ∆ENC ′ (having first parsed the gene annotations to

find ribosomal protein coding genes), coding sequence number, and the fraction of

annotated coding sequences that begin with ‘ATG’.

To calculate ∆GC initiation, we restricted our analysis to eliminate coding se-

quences shorter than 150 nucleotides and/or with ambiguous nucleotides. For each

coding sequence that passed this filter, we then calculated the GC content between

position -30 to +29 relative to the first base of the start codon (0) and subtracted

from this value the GC content from bases +30 to +90. For a genome, we then took
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the average value of this difference. We include this metric as a rough proxy for the

difference in mRNA structure surrounding the start codon vs the internal region of

genes.

For data on minimum doubling time, we downloaded the data table from Vieira-

Silva et al. (2010), and paired each bacterial species with a complete genome from

our database resulting in 187 pairs. To control for shared ancestry in subsequent

analyses, we constructed a phylogenetic tree based off the rRNA sequences for this

set of species. We first used RNAmmer to extract the 16S and 23S rRNA sequences,

followed by MUSCLE (v3.8.31) on each individual rRNA to produce a multiple-

sequence alignments193. These were concatenated together we conducted a parti-

tioned analysis using RAxML to construct a final tree. We performed 100 rapid

Bootstrap searches, 20 ML searches and selected the best ML tree for subsequent

analysis194.

For the larger data-set, we instead relied on a previously computed high-quality

dataset published by Hug et al. (2016)92. We used custom scripts to match entries

in this tree with genomes from our complete-genome database, and pruned away all

species without a high-quality match resulting in 618 species in our final dataset for

subsequent analyses.

For temperature annotations, we matched our existing set of 618 species to the

ProTraits database using custom scripts, and restricted our analysis to species with

temperature annotations exceeding a precision of 0.9 (equivalent to a FDR < 0.1)

for subsequent analyses195.
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4.5.2. Calculating summary statistics of SD sequence utilization

The calculation of ∆I is illustrated mathematically in the main text. Here, we

only add that calculation of the randomized sequences is performed by randomizing

the upstream region of each gene between -30 to 0. Analysis is then performed as

discussed for the -20 to -4 region (with index ‘0’ being the first base of the start

codon). Next, we highlight our calculation of the other two methods for calculating

SD sequence utilization. For each genome, we extract the -20 to -4 region upstream

of the start codon for each gene. In motif based methods, we consider a gene as

being SD-led if, in this defined region, any of the following motifs appear: ‘GGAA’,

‘GGAG’, ‘GAGG’, ‘AGGA’, or ‘AAGG’. We repeat this same process for 500 ran-

domized ‘genomes’ where a randomized genome is defined as the collection of all

upstream elements, with the critical difference being that these upstream elements

are first randomized between the -30 to 0 region (on a per-gene basis) prior to motif

search. We then take the difference between the observed number of SD-led genes

for a given genome and the average of the randomized cases to determine how many

more or less SD sequences appear in a given genome relative to the null model ex-

pectation. This number is then divided by the overall CDS number to determine the

final metric.

For aSD sequence complementarity, we perform a nearly identical procedure to

above with one major difference. Instead of searching the upstream region for motifs,

we evaluate the binding energy between each 8 nucleotide segment in the -20 to -4

region and the putative aSD sequence defined as 5′-ACCUCCUU-3′. If any sequence
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binds at a threshold of -4.5 kcal/mol or stronger, we consider this gene to be SD-led.

Compilation of the final aSD sequence complementarity metric proceeds as above.

4.5.3. Phylogenetically generalized least squares

We utilize phylogenetically generalized least squares (PGLS) regression in order to

mitigate the effects of shared ancestry in statistical analyses. Our PGLS analysis

relies on the most common null model, which assumes a brownian motion model

of trait evolution. For all statistical analyses presented in the paper, we use the R

package ‘caper’ and perform a simultaneous maximum-likelihood estimate of Pagel’s

λ, a branch length transformation, alongside the coefficients for independent variables

of interest in order to control for false-positive, and false-negative rates.
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CHAPTER 5

Depletion of Shine-Dalgarno sequences within bacterial

coding regions is expression dependent

This work was published with Chuyue Yang (co-first author), Michael C Jewett, and

Luís AN Amaral in G3:Genes|Genomes|Genetics, 2016.

5.1. Abstract

Efficient and accurate protein synthesis is crucial for organismal survival in compet-

itive environments. Translation efficiency — the number of proteins translated from

a single mRNA in a given time period — is the combined result of differential trans-

lation initiation, elongation, and termination rates. Previous research identified the

Shine-Dalgarno (SD) sequence as a modulator of translation initiation in bacterial

genes, while codon usage biases are frequently implicated as a primary determinant

of elongation rate variation. Recent studies have suggested that SD sequences within

coding sequences may negatively affect translation elongation speed, but this claim

remains controversial. Here, we present a metric to quantify the prevalence of SD

sequences in coding regions. We analyze hundreds of bacterial genomes and find

that the coding sequences of highly expressed genes systematically contain fewer SD

sequences than expected, yielding a robust correlation between the normalized occur-

rence of SD sites and protein abundances across a range of bacterial taxa. We further
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show that depletion of SD sequences within ribosomal protein genes is correlated with

organismal growth rates, supporting the hypothesis of strong selection against the

presence of these sequences in coding regions and suggesting their association with

translation efficiency in bacteria.

5.2. Introduction

Translation of mRNA to protein consumes a vast amount of cellular resources, par-

ticularly in rapidly growing unicellular organisms1,2,196. Many researchers have hy-

pothesized that efficient — fast and accurate — translation is highly advantageous

and should therefore leave a recognizable signature on the genome35,48,66,80,91,197.

For decades, researchers have focused on understanding the link between tRNA

concentration and translation rates of cognate codons, under the assumption that ri-

bosomal dwell-time on a particular codon is partially determined by diffusion limited

tRNA binding and competition between near-cognates23,50,51. Indeed, multiple lines

of evidence strongly support this hypothesis in a multitude of different organisms52.

Recently, ribosome profiling — a technique that maps transcriptome-wide ribo-

some occupancy — has been applied to study whether different codons show variation

in translation rates, but researchers have come to conflicting conclusions, even when

using the same dataset81–84,97. One of the most startling findings to emerge from

ribosome profiling experiments is the striking degree of heterogeneity in ribosome

occupancy across mRNAs, which is punctuated by large peaks suggestive of ‘paus-

ing’ or ‘stalling’97,148,149. These pauses — in contrast to known stalling sequences

— are orders of magnitude larger than what is expected from basal translation rate
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variations due to tRNA concentrations and may instead result from nascent pep-

tide interactions within the ribosomal exit tunnel (such as poly-proline sequences),

ribosomal queuing, or trans-interactions between mRNA and ribosomes70,84,97,100,198.

Using ribosome profiling, Li et al. (2012)97 showed that, in bacteria, translational

pauses were significantly associated with sequence binding between the anti-Shine-

Dalgarno (aSD) sequence of the 16S ribosomal-RNA and the translating message.

This binding interaction is important during the process of translation initiation,

where the ribosome binds to the 5′ untranslated region (5′-UTR) to facilitate start

codon recognition (Fig. 5.1A). However, the occurrence of these ‘Shine-Dalgarno’

(SD) sequences within coding sequences had not been previously associated with

translational pausing71,72. SD sequence mediated pauses have now been documented

for several bacterial species and independent ribosomal profiling datasets97,149,199.

Studies have built on these results by showing SD-associated pauses in vitro, nega-

tive effects of SD sequences on protein production in engineered sequences, enhanced

solubility of recombinant proteins via rational insertion of SD sequences at protein

domain boundaries, and enrichment of SD sequences following trans-membrane do-

mains of natural sequences53,68,200–202.

By contrast, recent results have questioned whether the observed SD-associated

pauses are actually an experimental artifact resulting from the ribosome profiling

protocol — specifically the differential sizes of sequencing fragments153,203. Indeed,
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Figure 5.1. The possible dual impacts of Shine-Dalgarno(SD) sequences on
protein synthesis. A, SD sequences in the 5′ untranslated region (UTR) of mRNA
are known to facilitate translation initiation in bacteria via binding to the anti-SD
sequence on the 3′ tail of the 16S ribosomal RNA. B, Recent research suggests that SD
sequences within coding sequences may regulate the rate of translation elongation.
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the existence of SD mediated pauses has not been confirmed using several other ex-

perimental methods153,204,205. It thus remains unclear what role, if any, SD sequences

within protein coding genes have in modulating translation speed (Fig. 5.1B).

Even though the usage and diversity of SD sequences within the 5′-UTR has

been analyzed extensively at the genome-scale142,144,146, the occurrence pattern of

these important sequence motifs within the coding sequences of diverse species has

been largely neglected (though see Itzkovitz et al. (2010)45 for an exception). Open

questions thus remain as to whether SD sequences are indeed systematically depleted

within coding sequences from diverse species, and if so, whether the depletion follows

any particular pattern that may provide clues to the evolutionary significance of these

sequences.

In order to answer these open questions, we sought to characterize the general

occurrence of SD sequences within protein coding genes across a range of bacterial

species of known phylogeny. We first present a metric to characterize single mRNA

sequences according to their estimated sequence binding propensity with the ribo-

somal aSD sequence. Using this metric, we show that depletion of SD sequences in

coding regions is a hallmark of bacterial genes and that, within a given species, the

degree of this depletion is inversely correlated with measured gene expression levels.

Finally, we show that variation in SD sequence depletion between different genomes

is related to the minimal known doubling time of individual species, suggesting that

depletion of SD sequences is driven by evolutionary pressure for greater translation

efficiency.
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5.3. Results

5.3.1. Quantifying the occurrence of SD sequences within coding sequences

We first counted the number of occurrences of the canonical SD motif (5′-AGGAGG-

3′) within the coding sequences of the 187 bacterial species compiled by Viera-Silva

et al. (2010)91. For each genome, we compared the number of SD sequences found

within coding sequences to the number expected by chance using a codon-shuffled

null model to control for codon usage bias within each gene (see Methods). We found

that 175 out of 187 genomes contained fewer canonical SD sequences in their coding

sequences than expected by chance (154 were significant at p < 0.0001, Monte Carlo

hypothesis testing, Fig. 5.3A).

However, single or multiple base mismatches to the canonical SD sequence are

frequently assumed to be functional in translation initiation and the strength of aSD

sequence binding to different hexamer sequences spans a range of values. To quantify

the occurrence of SD sequences on a per-gene basis in a manner that encapsulates the

full breadth of this heterogeneity, we estimated the free energy of binding between the

aSD sequence and each hexamer within the coding region of each mRNA (Fig. 5.2A,

see Methods for details). Since the free energy of binding (∆G) at a particular site

is proportional to the logarithm of the ratio of the association and dissociation rate

constants of binding, we define the affinity A of a hexamer {n1...n6} to the aSD

sequence as:

(5.1) A{n1...n6} ≡ exp(|∆G{n1,...,n6}|)
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Figure 5.2. Quantifying aSD sequence binding within coding regions. A, We
estimate the free energy of binding for each hexamer within a gene to the core anti-
SD sequence (5′-CCUCCU-3′). B, Free energy (top) and affinity (bottom) profiles
for a typical E. coli gene (b3055). The affinity profile amplifies the contribution from
strongly binding regions within the gene.
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We define the aSD binding score S of a gene as:

(5.2) Sgene ≡ logĀ,

where Ā is the average affinity over a gene’s coding sequence (Fig. 5.2B). The trans-

formations involved in the definition of S aim to lessen the contribution of weak-

binding interactions while amplifying the contributions from the strongest aSD bind-

ing sequences.

We calculated Sgene for each of the coding sequences of 187 bacterial species,

and define genome aSD binding score Sgenome = S̄gene. We again compared this

empirical value to the expected value for a given genome based off a codon-shuffled

null model and found that, similar to the previous analysis, 172 out of 187 genomes

had average aSD binding scores lower than expected by chance (167 were significant

at p < 0.0001, Monte Carlo hypothesis test, Fig. 5.3B). These results demonstrate

that genomes contain significantly fewer SD sequences than would be expected from

gene-specific codon usage biases and amino acid sequences.

5.3.2. The occurrence of SD sequences in coding regions correlates nega-

tively with E. coli gene expression data

Sgene allows us to test whether variation in aSD sequence binding between different

genes correlates with gene-level features such as expression level. We obtained five

genome-scale expression datasets for Escherichia coli to ensure the robustness of our

results (Supplementary Table C.2) and correlated the gene expression measurements
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Figure 5.3. Depletion of SD occurrence in genomes compared to expecta-
tion from 1000 randomly generated genomes using our codon-shuffled null
model. A, the canonical SD sequence AGGAGG is depleted within coding sequences
in most genomes (175 of 187) and B, The genome aSD binding score Sgenome is lower
for most organisms (172 of 187). Both distributions are centered significantly to the
left of zero showing that the majority of organisms avoid SD sequences according to
both metrics.
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Figure 5.4. aSD binding scores negatively correlate with gene expression
in E. coli. A, An example data set showing negative correlation between protein
abundance and aSD binding scores for individual E. coli genes (R2

adj = 0.175, p <

10−18). Specifically, coding sequences containing fewer SD sequence motifs have
higher protein abundances. B, Multivariate regression shows that expression changes
cannot be fully explained by codon usage bias, and that additional predictive power
is offered by Sgene. We chose 5 datasets that provide independent measurements of
mRNA, protein, and translation efficiency levels in order to test the robustness of
our findings10,13,127,133.
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against the calculated aSD binding score for each gene (Fig. 5.4A)10,13,127,133. We

observed a highly significant negative relationship in all datasets indicating that the

coding sequences of highly expressed genes contain fewer SD sequences (p < 10−18,

for all cases) (Fig. 5.4A,B).

A number of different factors are known to influence protein abundances, in-

cluding start codon choice, mRNA structural accessibility, and SD sequence usage

at translation initiation sites132. Here we wish to focus on the elongation phase of

translational control to determine what, if any, additional predictive power is con-

ferred by the effect of aSD sequence binding within coding sequences. Prior studies

have established that the codon usage bias of individual genes is highly correlated

with protein levels52. In order to investigate whether the observed correlation be-

tween Sgene and gene expression is driven solely by codon usage bias, we conducted

multivariable linear regression using both S and an established method for quan-

tifying codon usage bias to predict expression levels (N ′
c)206. If S were solely a

consequence of codon usage bias, the adjusted-R2 (R2
adj) should decrease when S is

included as an independent variable along with N ′
c. On the contrary, we observe that

the best model for all datasets includes both N ′
c and S as predictors of expression

(Fig. 5.4B, Supplementary Table C.2). While the enhancement in predictive power is

not additive, this is not uncommon when evaluating models with multiple co-varying

predictors.
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5.3.3. The occurrence of SD sequences within coding regions correlates

negatively with protein abundances in diverse bacterial taxa

To determine the generality of the previous finding, we expanded our analysis to

26 diverse bacteria for whom protein expression data was previously collected by

Wang et al. (2015)207 (see Methods). For 19 out of 26 datasets, we observed that S

was significantly negatively correlated (p < 0.01) with protein abundances (Fig. 5.5,

Supplementary Table C.3). As in the previous subsection, we also implemented

a multivariate model to determine whether the observed correlation was solely a

consequence of codon usage bias. For 23 out of 26 datasets we saw an improved R2
adj

value when Sgene is added as a predictor along with estimates of codon usage bias

(Fig. 5.5).

We further confirmed the observation that the more complex multivariate model

resulted in a better fit to the data by using AIC and BIC to evaluate model fits.

For 22 and 18 organisms, respectively, the multivariate model provided a better fit

to the data than a linear model based on codon usage bias alone (Supplementary

Fig. C.1).

5.3.4. Ribosomal protein coding sequences contain fewer SD sequences

than other genes

To overcome the limited availability of bacterial protein expression datasets, we next

investigated whether ribosomal protein coding sequences contain fewer SD sequences

than other genes within a genome. Ribosomal proteins are essential for all organisms
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and they are generally expressed at high levels making them some of the most likely

genes to show selection for accurate and efficient translation.

In E. coli, we observed that aSD binding scores for the 58 ribosomal protein

genes are significantly lower than that of all other genes (Fig. 5.6A). To quantify

the magnitude of this difference we define the normalized SD bias within a genome,

BSD, as:

(5.3) BSD =
S̄ribosome genes − S̄genome

S̄genome

∗ 100%

where S̄ribosome genes is the averaged Sgene for ribosomal protein coding genes, and

S̄genome is the averaged Sgene for all genes within a genome. When BSD < 0, ribosomal

protein genes contain fewer SD sequences than would be expected based on the

genome-wide average. We opt for this approach for two primary reasons. First, the

S values of ribosomal protein coding genes themselves would be heavily influenced

by the underlying genomic GC content. Normalizing to the genome-wide average

should help to mitigate this effect. Second, research has shown that at higher growth

rates, ribosomal protein genes make up an increasingly larger fraction of bacterial

proteomes208. Thus, relative differences in S between ribosomal protein coding genes

and the genome as a whole should reflect the selective pressure for increased ribosomal

protein production during periods of rapid growth.

Of the other 187 diverse bacteria spanning different genomic GC contents, growth

environments and growth rates, 173 have BSD < 0, suggesting that the vast majority
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of bacteria have a larger depletion of SD sequences in their ribosomal protein cod-

ing genes relative to the genome as a whole (Fig. 5.6B). The systematic depletion

of SD sequences in ribosomal protein coding sequences further suggests that these

motifs negatively impact gene expression and/or cellular fitness in a wide-diversity

of bacteria.

Previous studies have shown the relative codon usage bias of ribosomal genes

compared to the rest of the genome is correlated with the minimum observed dou-

bling time for particular species91. This finding is mechanistically assumed to be a

consequence of the fact that, at rapid growth rates, ribosomal proteins constitute

an increasingly large fraction of the proteome; selection for translational accuracy

or efficiency within these genes relative to the genome thus likely reflects the evo-

lutionary history driven by growth rate demands. We therefore hypothesized that

BSD scores may also be related to the growth rate demands of individual species. In-

deed, we found that BSD is positively correlated with the minimum known doubling

times of this set of 187 bacteria — fewer SD sequences within the ribosomal protein

coding sequences relative to the genome is associated with faster maximal growth

rates (Spearman-rank: ρ = 0.530, p < 10−14)(Fig. 5.6C). We further confirmed the

robustness of this finding via phylogenetic generalized least squares regression (see

Methods)(λ = 0.978: R2
adj = 0.07, p = 0.0002). This finding strongly suggests that

SD motifs within coding sequences are detrimental to growth and reproduction likely

via negatively impacting translation.
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5.4. Discussion

Prior research into translation elongation has focused on codon usage as the primary

means of modulating elongation speed, but recently, researchers have proposed that

anti-Shine-Dalgarno mediated sequence interactions are a dominant source of trans-

lational pausing in bacteria97,128. If true, this finding has important consequences for

our understanding of the basic mechanisms of translation as well as practical implica-

tions for coding sequence design for synthetic biology and biotechnological purposes.

By quantifying the usage of SD sequences within coding sequences in a diverse set

of bacterial taxa, we have shown a consistent trend whereby SD sequences within

coding regions are systematically depleted. Specifically, this effect is strongest in the

most highly expressed genes across a variety of genomes. We further show that the

level of biased depletion of SD sequences is strongest in organisms capable of very

rapid growth where selection for translation efficiency has previously been shown to

produce a variety of genome-scale hallmarks91.

Recently, Diwan and Agashe (2016)172 published an elegant analysis of ‘internal-

SD-like’ sequence usage in prokaryotes. Our results largely confirm the major finding

of this study that showed internal-SD-like sequences are depleted in >80% of the

species analyzed. While their results found a number of species that were exceptions

to this rule, we note that many of these exceptions are Archaea, whose translation

initiation mechanisms remain elusive and are therefore excluded from our analysis.

Further, our results build on these findings in important ways. By developing a

metric of S, which is defined at the single-gene level, our analysis provides insight into
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within-genome variation and the selective pressures governing the usage of internal-

SD sequences as it relates to gene expression costs. This within-genome analysis

allows us to show that avoidance of SD sequences is highly related to the maximal

growth rates of organisms using a method that controls for GC content variation,

which Diwan and Agashe (2016)172 found to impose an important constraint on the

appearance of internal-SD sequences. Our analysis does not focus on temperature or

variation in internal-SD usage with regard to position within genes, but the thorough

results of Diwan and Agashe (2016)172 likely hold within our data set.

There are several possible limitations to our methodology that readers should

be aware of when interpreting our findings. First, our study relies on an assumed

anti-Shine-Dalgarno sequence of 5′-CCUCCU-3′ to calculate aSD binding strength

scores for individual genes. It is possible, and evidence strongly suggests, that in

particular lineages the aSD sequence may be slightly altered or extended compared

to this canonical sequence165. We may therefore be mis-characterizing the aSD se-

quence for several species in our dataset, or not encompassing the full breadth of

possible sequence interactions. Future work can refine our findings to account for

this aSD heterogeneity as more aSD sequences will be empirically determined, but

we opt here for a conservative approach likely to be applicable for the majority of

organisms in our dataset. Second, while our study relies on the precise definition of

coding sequences bounds in existing genome annotations, prior research has shown

that these annotations are likely spurious for up to ~10% of annotated genes149,209.
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However, reliable N-terminal mapping is currently available for only a small frac-

tion of bacterial genomes; until better computational models are developed to refine

translational start site predictions, this will remain a limitation that adds noise to

any computational genome-scale analysis, such as the one we perform here.

SD sequences may be avoided within coding sequences for several different — and

non-mutually exclusive — reasons. These sequences may: (i) result in erroneous in-

ternal translation initiation leading to the production of truncated protein products

(ii) temporarily sequester ribosomes, thus limiting the number available for proper

translation initiation (iii) encourage translational frameshifting or (iv) substantially

slow down translation elongation97,168,210,211. In all of these cases, we would expect

SD sequences within coding sequences to be largely detrimental and thus avoided.

In particular, given that the consequences of any of the above explanations is ampli-

fied by high mRNA copy numbers, avoidance of these SD sequences would also be

expected to manifest particularly in the most highly expressed genes.

Although our results indicate that SD sequences are by and large detrimental,

we also wish to clarify that some proportion of the SD sites within coding sequences

may serve important functions. Owing to the compact nature of bacterial genomes,

the translation initiation site of many genes within operons will occur within the

3’ terminus of the preceding coding sequence. Further, the presence of multiple

translation initiation sites may serve a regulatory role for certain proteins, allowing

for the production of distinct isoforms depending on the N-terminal sequence or

controlling protein folding rates68,149,202,212.
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One benefit of our large-scale analysis is that exceptions to the rules can point

to interesting cases for further study. In Fig. 5.5 we found three species where S did

not appear to enhance predictions of protein abundance: Mycoplasma pneumoniae,

Shigella flexneri, and Leptospira interrogans. Although none of these species are

known to use non-canonical aSD sequences165, all are pathogenic species, suggesting

that a possible relationship may exist between ecological strategies, effective pop-

ulation size, and the selection against SD sequences. However, owing to the large

number of pathogenic species in this dataset, this finding will require further detailed

investigation. Additionally, several species analyzed in Fig. 5.6 showed an enhance-

ment of SD sequence usage within ribosomal proteins relative to the genome. Nearly

all of these cases come from 3 distinct orders (phyla), pointing to likely mechanistic

changes in the aSD interaction in particular clades: Rickettsia (Alphaproteobacte-

ria), Mollicutes (Tenericutes) and Spirochaetes (Spirochaete) (both M. pneumoniae

and L. interrogans, mentioned above, fall within one of these orders). Future ribo-

some profiling experiments on species from within these clades may provide clues on

the evolution of the aSD sequence interaction.

The patterns that we observe provide significant insight into the debate surround-

ing the usage of SD sequences within protein coding genes. Moreover, our results

are fully orthogonal to ribosome profiling based conclusions. It is clear from this

bioinformatic analysis that SD sequences are largely avoided across the bacterial

kingdom, and that this avoidance is likely due to deleterious effects on translation.

We thus conclude that even if SD mediated elongation pausing is an artifact of the
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ribosomal profiling protocol as suggested by Mohammad et al. (2016)153, care should

be taken to avoid SD sequences when designing coding sequences for recombinant

protein production applications.

5.5. Materials and Methods

5.5.1. Codon-shuffled null model

We randomly generated null model genomes that preserve codon usage and primary

amino acid sequence at the gene level. For each gene, we constructed a list of all

codons used in the original sequence. Given the primary amino acid sequence of

the gene, we then randomly selected a codon from the pool of available synonymous

codons for that particular amino acid without replacement. The start and stop

codons are not affected by this process and thus remain fixed during the shuffling

process. We repeated this procedure for every gene within a given genome in order to

create one instance of a randomized genome for null model comparison. For statis-

tical comparison using Monte Carlo hypothesis testing, we created 1000 randomized

genomes in this manner. Using our metric, we calculated the mean and standard

deviation in these randomized genomes for each organism, and then calculated a

z-score for the real genome along with the resulting p-value, which we report in the

main text.
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5.5.2. aSD hybridization

We predicted thermodynamic interactions between the anti-SD (aSD) sequence and

each six-nucleotide long sequence using the RNA co-fold method of the ViennaRNA

Package 2.0 with default parameters163. For this study, we have chosen to use the

canonical core aSD sequence of 5′-CCUCCU-3′ for all species, owing to the fact that

this core sequence is nearly universally conserved. Further, the 3′-tail of 16s rRNAs

is slightly variable and poorly annotated144,165 making it difficult to empirically de-

termine the precise aSD sequence for each individual species.

5.5.3. Pax-Db data collection

We collected the complete bacterial dataset from the Protein Abundance Across

Organisms Database (Pax-Db) in August 2015207. This resource contains protein

abundance measurements for 26 different bacteria. When multiple datasets were

available for a particular organism, we chose the ‘Integrated’ dataset, which is the

result of Pax-Db curators integrating the various protein abundance data sources

based on coverage and quality. The full set of data that we analyzed for each species

is available upon request.

5.5.4. Growth-rate dataset and phylogenetic relatedness

We obtained growth rate measurements (minimum doubling time, measured in hours)

from Viera-Silva et al. (2010)91. For each species in their data table, we matched

the name of the species provided in the original data source to the species name
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in a local copy of the NCBI genbank complete genome sequences. This resulted

in 187 matches for bacteria (Archaeal species, which were provided in the original

dataset, were ignored for the purposes of this study). Within each of these bacterial

genomes, we relied on annotations in the genbank files to find ribosomal proteins

by searching the ‘product’ field for ‘ribosomal subunit’, or perturbations thereof.

Full data including genbank files for all relevant organisms, and ribosomal protein

‘locus_tags’ used in this study is available upon request.

To construct a phylogenetic tree from these species, we extracted the 23S and 16S

gene sequences using RNAmmer-1.2192. When multiple sequences were available for

a given genome we randomly chose one of each for alignment. We then individually

aligned 23S and 16S sequences using MUSCLE193. Finally, we concatenated the 16S

and 23S alignments for each organism and constructed a maximum likelihood (ML)

tree using RAxML with a partitioned analysis that separately fit rate models for the

16S and 23S sequences. We used a GTRGAMMA evolutionary model with 100 rapid

bootstrap searches and 20 ML searches and selected the best fitting ML tree194.

5.5.5. Regression analyses

With one exception noted below, all statistical analyses were performed using the

SciPy (version: 0.16.0) and StatsModels (version: 0.6.1) packages in Python.

To control for phylogenetic effects in our growth rates regression analysis, we

used the PGLS function from the ‘caper’ package in R, choosing the optimal lambda

value to transform our input tree via maximum likelihood search.
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CHAPTER 6

Concluding Remarks

In the Introduction, I discussed the fact that a relatively small 100 amino acid protein

can be coded for by ≈ 1048 unique synonymous gene sequences. Assuming the same

rate of transcription, each of these possible constructs would nevertheless produce

variable amounts of active protein over time owing largely to organism-specific rates

of translation efficiency, translation accuracy, and transcript degradation. Over the

course of my research, I have focused on bacterial translation efficiency and have

advanced our understanding of its link with mRNA sequence in several fundamental

ways. When my work began, my intention was to investigate the process of trans-

lation elongation, specifically: how the choice of synonymous codons could affect

elongation rates. However, in my initial studies described in Chapter 2, I showed

that the demands for efficient translation initiation—weak mRNA structure sur-

rounding the start codon—constrain synonymous codon usage. Previous models of

codon usage bias, which are applied frequently throughout the biological literature,

have ignored this effect, but my work showed how position-dependent codon usage

bias can be incorporated existing models to increase statistical power and accuracy.

Based on this initial work, I switched my focus away from codon usage bias to

instead look at the sequence control of translation initiation. In Chapters 3 & 4, I
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investigated the causes and consequences of variation in the prevalence of a promi-

nent translation initiation motif—known as the Shine-Dalgarno sequence—within

and between bacterial genomes. I utilized existing ribosome profiling measurements

to validate and extend long-standing results relating to the control of translation

efficiency by the Shine-Dalgarno sequence. I showed that genes with intermediate

levels of complementarity to the anti-Shine-Dalgarno sequence show the highest lev-

els of translation efficiency, and that the extents of the anti-Shine-Dalgarno sequence

binding interaction can be defined in a data-driven manner. I next built on this work

by analyzing a large data-set of whole-genome sequences, and applied phylogenetic

comparative methods to show that the overall levels of Shine-Dalgarno sequence oc-

currences within a genome is largely predictable based on the maximal growth-rates

of organisms.

Finally, in Chapter 5 I returned to look more closely at coding sequences. Having

analyzed the role of the Shine-Dalgarno sequence in governing initiation rates and the

evolutionary pressures that shape variation in genome-wide SD sequence utilization,

I asked: to what degree do coding sequences themselves avoid these important motifs

and what are the likely consequences for elongation when internal-Shine-Dalgarno

sites occur? Mentoring an undergraduate researcher throughout this project, we

showed that internal-Shine-Dalgarno sites constrain coding sequence evolution at

the individual gene and genome levels. Genes with more internal Shine-Dalgarno

sequences tend to be expressed at lower levels, and genomes with more internal-

Shine-Dalgarno sequences tend to be from organisms that grow slowly.
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6.1. Common threads

Taken together, several common threads run through and unite this research program

which are worthy of discussion here. First, it is essential to note that none of this

research would have been possible a decade ago. Throughout all of these chapters,

much of my work relied on the availability of high-quality experimental datasets,

whether they be measurements of mRNA and protein abundances or estimates of

the minimum doubling time for individual species. During the course of my PhD, the

technique of ribosome profiling was first applied to bacterial species providing an even

richer set of data and novel opportunities for researchers interested in understanding

translational regulation. On top of this, nearly all of my work relied on the availability

of high-quality genome-sequences from evolutionarily diverse genomes.

Next, it is deserving of note that the abundance of data sources currently avail-

able for analysis presents its own set of unique challenges. Integrating fragments of

data from diverse sources in the search for truth is an essential part of the scientific

endeavor. Knowing which sources to trust, and deciphering which may provide novel

insight into a particular biological problem is essential to the work of data-driven

computational biology. Further, as experimental protocols (such as ribosome profil-

ing) grow increasingly complicated, advanced statistical techniques are essential to

account for bias, sources of error, and to limit the prevalence of false positive and

false negative results. A fundamental advance of every chapter in this thesis was the

development of a new way to quantify and summarize a complex biological phenom-

enon. This work is far from done, and in many respects I suspect we are just barely
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scratching the surface. Summarizing a complex biological phenomenon like transla-

tion initiation or elongation rates into a single (or even a small set of) meaningful

number/s in the hope that we will uncover a meaningful biological relationship is a

monumental challenge.

Finally, my work has been united by the effort to quantify how much we know

about particular phenomena. This point is perhaps best illustrated with an example:

using classical experimental techniques, researchers have shown for decades that the

Shine-Dalgarno sequence is important for translation initiation. Researchers can

(and have) taken genes such as GFP or lacZ, put them on a plasmid, and holding

all else as constant as reasonably possible, shown what happens to the protein levels

in two parallel experiments when they manipulate some facet of the SD sequence

interaction71. Moving the Shine-Dalgarno sequence too close or too far to the start

codon results in decreased protein expression, and disrupting the Shine-Dalgarno

sequence through point mutations can progressively abolish the ability of mRNAs

to be translated134,136,137. Despite all of these findings, however, open questions

remained as to how repeatable these findings were if different genes were used, if the

genes were on plasmids or chromosomally integrated, if they were placed behind a

strong or weak promoter, if the cells were grown in rich or minimal medium, etc.

In short, we’ve known for a long time that the Shine-Dalgarno sequence matters for

translation and that is a critical first step. But how much it matters in the context of

all the other variation that affects gene expression was an open—and in my mind just

as critical—question. As I describe in Chapter 3, the conclusions here are rough and
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subject to the limitation that ribosome profiling based measurements of translation

efficiency are very noisy. But researchers including myself were nevertheless surprised

to find that at best, knowledge of the Shine-Dalgarno sequence interaction explains

roughly 10% of the variation in genome-wide translation efficiency. Armed with that

knowledge, researchers can now ask a host of other important questions relating to

the conditions under which utilization of this sequence might evolve for particular

genes, and what other factors may be largely responsible for the ‘missing’ 90% of

variation.

6.2. The contribution of systems and synthetic biology

Systems biology is a sub-discipline of biology that likely has as many definitions as

practitioners. But counting myself among the latter, I view the challenge of systems

biology as ‘putting the pieces back together’. Reductionist approaches have cataloged

a host of important factors relating to the growth and maintenance of organisms. The

task that many in the biological community are attempting under the guise of systems

biology is to see how these anecdotes and fragments can fit together to quantitatively

describe the behavior of individual pathways, cells, and organisms. This task relies

strongly on researchers having laid the groundwork to identify key players involved

in a system. But at a certain point, to advance our understanding of whole-cells and

systems, someone has to zoom back-out and ask ‘how well are we doing?’ in order

to see the gaps and guide future studies. My on-going research philosophy is that for

biologists to interrogate and ultimately understand increasingly complex systems,

we must move towards codifying the decades of important anecdotes and research
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findings into a predictive, quantitative framework. The work presented in this thesis

represents my attempts at doing just that for the field of bacterial translational

control.

Synthetic biology, often mentioned in the same breath of systems biology, has

grown into its own formidable sub-discipline and is allowing researchers to test a host

of novel hypotheses at unprecedented scale. While many practitioners of synthetic

biology are driven by end goals of producing particular molecules for biotechnological

purposes, this practical goal can lead to important basic science findings. In the con-

text of translational regulation, it is researchers in the synthetic biology community

who have driven knowledge integration by measuring libraries of tens of thousands of

different constructs and asking how much variation in one factor— such as presence

or absence of the Shine-Dalgarno sequence—can explain the results. Reductionist

approaches are essential for finding molecules and pathways of interest that are nec-

essary and sufficient for certain phenomenon. Synthetic approaches, by contrast,

allow researchers to test the numbers. By transferring genes or pathways to different

organisms, researchers can test the extent to which we observe the predicted behavior

and how much variation in the behavior of interest can be described by the purported

mechanism. In essence, large-scale synthetic biology studies continue to provide the

most stringent test in terms of determining the state of our knowledge and whether

we truly understand a system. The results don’t always look pretty. Despite decades

of research that has been cited throughout this thesis relating to the importance of

codon usage bias, synthetic approaches are beginning to show that it is relatively
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easy to remove entire codons from an organism’s genome with little apparent conse-

quence for fitness213–215. Such findings should be cause for serious alarm that we’re

missing something important in our existing understanding of codon usage, and it’s

difficult to see how this knowledge would have been gained from anything other than

large-scale synthetic attempts to recode an entire genome.

6.3. A modest proposal

While the previous section focused on some larger issues relating to science, the

state of biology, and the common themes that unite my research program, here I

wish to turn more directly back to protein translation and ask what the future may

hold. Dramatic reductions in the cost associated with sequencing technologies have

resulted in an explosive growth in the number of genome-wide applications that lever-

age sequencing data in order to better understand cellular processes. Additionally,

near-constant breakthroughs in microscopy and mass-spectrometry continue to make

it easier for researchers to measure, with increasing accuracy, the abundance of indi-

vidual molecules through time and space. It is clear that technological breakthroughs

will continue, and speculation past a few short years is likely a fools-errand. But in

the short term, several advances seem relatively predictable and provide reason for

excitement about our future understanding of the sequence based determinants of

translation efficiency.

As a thought experiment, I like to imagine what experimental datasets I wish

that I had access to in an ideal world—without time or budgetary constraints. As a

starting point, I would want to know the abundances of all the mRNAs and protein
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molecules for a particular species in a particular growth condition. Since the link

between these two molecular species can be accomplished in a number of ways, I

would also like to know the instantaneous rates of transcription, translation, and

degradation of both molecular species, which can be accomplished through a variety

of existing methods. I would also want to have structural models for both the

mRNA and protein species for all genes. This hypothetical dataset could provide

a population level snapshot into nearly every aspect of gene expression, and now I

could think about extending it from the population level to acquiring each of these

measurements at the level of single-cells. I’d still be left with a snapshot, so I’d

really need a time-course of all this information to understand dynamic changes.

Still, I’d be left with an abundance of data about a single organism in a particular

set of growth conditions, so I could also envision repeating the very same process

for the same organism in different growth conditions (that would hopefully mimic

native conditions as much as possible). Oh, and repeating the entire process for a

few different closely related strains/species (10s? 100s? 1000s?) would be pretty

nice in order to link genetic variation to observed phenotypic differences.

This is a very ‘systems biology’ view. The parallel ‘synthetic biology’ dream ex-

periments would look a little bit different and are equally interesting to note. Rather

than studying natural evolution, the same measurements noted above could be per-

formed on recombinant constructs. So I’d start with GFP, for instance, and look

at perhaps thousands or tens of thousands of synonymous variants. For each vari-

ant, I would want single-cell distributions of both mRNA and protein abundances,
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of course. Ideally, I’d have those measurements alongside instantaneous transcrip-

tion, translation and degradation rates as above. Essential to these studies would be

measurements of growth rates and fitness for the different constructs to determine

how they individually impact the fitness of cells. Rather than choosing synonymous

constructs at random, a perhaps richer source of data that would more closely mimic

natural evolutionary processes would be to look at perhaps 100 different synony-

mous constructs, and for each construct develop deep mutational scanning libraries

to explore the local fitness landscapes consisting of single or double synonymous

mutations. Of course, the reality is that I would like generalizable results so the

same process would have to be repeated for the same protein under several pro-

moter::ribosome binding site libraries and genomic integration sites, and in several

different growth media, temperatures, etc. Finally, as lovely as all this data would

be, a single recombinant protein can only be generalized so far. I’d want to re-

peat this for at least several different proteins, particularly from different structural

classes and preferably ones that provide a functional output for the organism.

The reality is that nearly every experiment that I mentioned in both of these

dream scenarios is highly possible, and has been done to some degree by different

labs. The challenge is simply combining these techniques in a single-lab experiment

under common and repeatable growth conditions—although, in reality I’d want each

experiment performed by a few different labs for reasons of error-estimation and

robustness. Well, the other challenge is, of course, what on earth one would do with

all this data. How could we analyze it to get meaningful knowledge? I would argue
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that answering this question before we actually have the problem of dealing with

all of this data is essential to limiting researcher degrees of freedom and producing

robust, reproducible results. It seems unlikely that someone with enough time on

their hands to actually perform all of these experiments would have also had the time

to dedicate a decade of their life to learning the proper statistical analyses required

to deal with data having this level of complexity, and so computational biologists can

and should play a large role in anticipating these future experiments and developing

robust analytical pipelines.

6.4. Limitations of existing approaches

Perhaps the biggest issue surrounding many current and past studies related to se-

quence based control of gene expression is the sheer number of possible synonymous

constructs to evaluate. Quite frankly, it is not sufficient to take a given gene, make

two or three synonymous versions using ‘optimal’ codons and two or three using

‘sub-optimal’ codons, and expect to answer an interesting functional question. To

be sure, you may find differences that appear interesting, but under-powered studies

of this sort are highly susceptible to false positives. A researcher could choose any

combination from the > 1025 possible synonymous coding sequences that use ‘pre-

ferred’ codons and test their hypothesis against any combination of the other > 1025

sequences that do not. How a researcher chooses their constructs, or how they even

should in an ideal case is an interesting question. But if the claim is to make a mech-

anistic link related to something as diverse as codon usage biases, it’s absolutely

essential to show these results for tens, hundreds, or thousands of constructs; there
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are simply to many moving parts that can’t be controlled for in smaller studies. Con-

structs that vary in their codon usage will inevitably vary in their RNA secondary

structure, presence of particular binding motifs, etc. Without large numbers to min-

imize these other factors, it is impossible to determine the ultimate cause with any

degree of reliability. This is precisely why I think the era of systems and synthetic

biology is uniquely suited to studying how individual properties of coding sequences

influence translation efficiency. Even a high-throughput approach that studies 108

constructs wouldn’t begin to scratch the surface of the possible synonymous diversity

for an amino acid sequence, but it is nevertheless far more difficult to get spurious

false positive results with datasets of this size.

Another important area that biologists of all sub-disciplines must improve upon

is benchmarking different methods to set specific methodological standards. If a re-

searcher is comparing the mean values of some trait between two populations, there

are but a small number of accepted ways to quantify the statistical difference be-

tween them—first and foremost being the t-test. For more complex problems such

as measuring codon usage bias, differential expression from RNA-sequencing data,

codon occupancy from ribosome profiling data, etc. there are absolutely no accepted

standards. Researchers instead must seemingly choose at random from a tremen-

dous array of different methods. Unless they are highly skilled in understanding the

statistical assumptions and limitations behind each method, users of these methods

seemingly must hope that their analysis and chosen method is appropriate. To be

sure, there have been efforts to benchmark a large variety of techniques including
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differential expression analysis, but poorly performing methods continue to be used.

Different methods applied to the same data can support different conclusions, making

it critical that researchers understand the methods they use and—when possible—

that these methods are standardized.

6.5. Parting words

Despite the notes of pessimism embedded in the preceding discussion, I remain

supremely optimistic that the near future will provide answers to many of the biggest

problems surrounding translation efficiency. Experimental and computational meth-

ods are continually improving and providing insight into fundamental biological pro-

cesses in ways that researchers could scarcely have imagined even a decade ago. This

entire thesis, is simply a reminder that no one can do it by themselves. This is

a computational biology thesis, and the work that I’ve described would not have

been possible without the efforts of countless experimental researchers. As much

as computational biologists may rely on the data of experimentalists, so to must

experimentalists increasingly rely on computational biologists to design better ex-

periments, and to analyze those experiments in a manner that is free from bias and

utilizes as much of the available information as possible in a statistically rigorous

manner. Interpreting results and asking how they fit into, and/or disrupt our exist-

ing knowledge of molecules, pathways, cells, organisms, populations, and ecosystems

is what makes a researcher a biologist, no matter the methods.
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codon

ChiSq 

Value

ChiSq 

Pvalue

ChiSq 

DOF median

median 

Zscore auc

auc 

Zscore dvalue

dvalue 

Pvalue

Sig. in 3 

of 4

Sig in 4 

of 4

AAA 127.9641 0.0311 100 172 0.1087 0.905 2.7689 0.0031 0

AAC 178.1378 0 100 195 5.9422 0.894 -6.2962 0.0135 0 x x

AAG 127.9641 0.0311 100 166 0.4676 0.906 -2.7689 0.0103 0

AAT 178.1378 0 100 166 -6.8943 0.906 6.2962 0.0166 0 x x

ACA 434.0803 0 100 149 -5.7725 0.909 2.785 0.0455 0 x

ACC 264.8102 0 100 177 -0.1293 0.903 2.8729 0.0111 0

ACG 195.9198 0 100 178 4.0861 0.9 -6.3574 0.0144 0 x x

ACT 177.5995 0 100 163 -1.8434 0.906 1.4265 0.0119 0.0201

AGA 444.905 0 100 137 -2.2043 0.917 -1.6772 0.0832 0

AGC 175.1767 0 100 177 4.6877 0.9 -6.1675 0.0127 0 x x

AGG 161.8724 0.0001 100 147 1.1216 0.912 -1.4514 0.0441 0

AGT 114.0159 0.1599 100 166 0.3874 0.905 -0.2131 0.0151 0

ATA 426.8494 0 100 136 -6.2105 0.919 3.649 0.0559 0 x

ATC 199.7121 0 100 177 2.7448 0.904 -1.8019 0.0092 0

ATT 123.2836 0.0571 100 167 0.3095 0.91 0.1793 0.0021 0.7866

CAA 358.2179 0 100 164 -5.7557 0.907 5.2793 0.0205 0 x x

CAC 145.3595 0.0021 100 179 1.7609 0.902 0.6488 0.0038 0.764

CAG 358.2179 0 100 181 5.9895 0.899 -5.2793 0.0109 0 x x

CAT 145.3595 0.0021 100 168 -0.7991 0.908 -0.6488 0.0029 0.764

CCA 119.4929 0.0894 100 173 1.6362 0.905 -1.5159 0.0088 0.1718

CCC 409.6223 0 100 137 -14.895 0.918 14.9674 0.0731 0 x x

CCG 580.0727 0 100 193 12.646 0.895 -15.073 0.0294 0 x x

CCT 233.154 0 100 151 -7.7896 0.913 8.8962 0.0411 0 x x

CGA 151.2388 0.0007 100 155 -2.6476 0.913 3.1366 0.032 0

CGC 205.5766 0 100 178 -3.0107 0.903 5.3818 0.0107 0 x

CGG 176.6578 0 100 174 2.1245 0.902 -3.0312 0.0138 0.0259

CGT 122.1438 0.0656 100 185 2.5295 0.898 -4.096 0.0073 0.0216

CTA 146.646 0.0017 100 159 -2.5401 0.911 2.0695 0.0249 0

CTC 158.0108 0.0002 100 160 -7.2841 0.91 10.1871 0.0278 0 x

CTG 962.8651 0 100 183 11.623 0.901 -15.234 0.022 0 x x

CTT 367.5968 0 100 145 -11.375 0.916 10.4749 0.0439 0 x x

GAA 155.174 0.0003 100 179 -0.7899 0.902 6.0903 0.0047 0

GAC 96.5478 0.5791 100 180 -0.8384 0.899 1.818 0.0039 0.4281

GAG 155.174 0.0003 100 182 2.4628 0.898 -6.0903 0.0104 0

GAT 96.5478 0.5791 100 177 0.926 0.901 -1.818 0.0023 0.4281

GCA 208.6315 0 100 170 1.9355 0.905 -3.228 0.0102 0

GCC 197.6553 0 100 169 -6.5429 0.907 9.1629 0.0177 0 x x

GCG 309.3065 0 100 185 7.2372 0.9 -7.5829 0.0185 0 x x

GCT 172.2946 0 100 163 -3.7639 0.907 1.8237 0.0186 0

GGA 214.8093 0 100 163 -0.338 0.909 0.2316 0.0229 0

GGC 91.9616 0.7043 100 181 -1.8576 0.901 3.0845 0.005 0.0277

GGG 119.2033 0.0924 100 175 -0.7468 0.903 0.1922 0.0085 0.0936

GGT 98.1357 0.534 100 182 2.581 0.899 -3.6456 0.007 0.0216

GTA 222.3969 0 100 172 0.9514 0.905 -0.4236 0.0159 0

GTC 180.7344 0 100 163 -8.1232 0.907 7.6787 0.0234 0 x x

GTG 501.6292 0 100 187 9.7697 0.899 -12.641 0.025 0 x x

GTT 181.3435 0 100 164 -5.5019 0.907 6.8606 0.0159 0 x x

TAC 103.5041 0.3852 100 190 3.1483 0.897 -2.4395 0.0095 0

TAT 103.5041 0.3852 100 174 -3.337 0.903 2.4395 0.0072 0

TCA 186.5467 0 100 157 -1.6692 0.91 1.0257 0.0186 0

TCC 124.7843 0.0473 100 167 -4.9891 0.906 5.6959 0.0177 0 x

TCG 156.7292 0.0003 100 182 1.9039 0.9 -2.5485 0.0175 0

TCT 119.7204 0.0872 100 165 -1.8393 0.908 4.1201 0.0112 0.0465

TGC 107.6422 0.283 100 161 1.8409 0.912 -1.0002 0.0093 0.0211

TGT 107.6422 0.283 100 151 -1.5305 0.915 1.0002 0.0117 0.0211

TTA 647.4117 0 100 149 -7.439 0.916 5.6637 0.0373 0 x x

TTC 318.2339 0 100 188 9.7178 0.899 -12.989 0.0281 0 x x

TTG 108.4854 0.2641 100 170 2.0954 0.907 -4.3668 0.01 0.0424

TTT 318.2339 0 100 155 -9.6702 0.914 12.9885 0.0209 0 x x

Figure A.1. Significance of statistical tests for uniformity in the E. coli
genome. Shown are the test-statistic, where applicable, and the significance values
for 4 separate statistical tests of non-uniformity for the 59 redundant codons. Values
colored in red are significant and (x) in the final column marks whether three out
of four, or four out of four (respectively), tests are significant for a given codon.
Column headings: auc refers to the area under the curve that is observed after con-
structing the CDF function, and aucZscore refers to the z-score of this auc value
compared to 200 randomized genomes. The dvalue column refers to the maximum
distance (y-axis displacement) between the observed cumulative distribution and the
average of 200 cumulative distributions and the dvaluePvalue column shows how this
result compares to the individual 200 randomizations (since D is always positive, the
p-value is the number of empirically observed values > D divided by the number of
randomizations).
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Uniform(1) Linear (2) Step-wise (3) Exponential (3)

GAC -2794.47 -2789.48 -2789.68 -2789.32

AGC -2775.43 -2752.32 -2745.27 -2740.28

ATC -2842.97 -2779.41 -2788.63 -2762.78

CAC -2171.51 -2156.10 -2158.19 -2154.73

CCC -2160.52 -2062.76 -2106.42 -1937.82

ATT -2747.34 -2727.15 -2730.35 -2722.97

GTC -2730.50 -2713.43 -2728.87 -2692.17

ACC -2930.96 -2928.90 -2841.52 -2928.42

CGA -1801.75 -1770.94 -1770.44 -1749.32

CCA -2279.92 -2277.18 -2255.97 -2250.77

GTA -2563.16 -2561.96 -2518.62 -2501.20

TTA -2932.73 -2817.41 -2720.85 -2649.27

GGA -2448.38 -2415.51 -2417.87 -2354.15

AGT -2447.40 -2446.15 -2432.08 -2426.60

GAG -2888.66 -2877.53 -2855.17 -2877.58

TCC -2338.55 -2335.93 -2335.59 -2335.89

AAT -2735.21 -2631.52 -2674.72 -2572.07

ACG -2766.73 -2749.01 -2736.70 -2736.04

TAC -2342.80 -2324.19 -2329.56 -2317.34

CGT -2840.95 -2799.26 -2823.09 -2790.93

TAT -2342.80 -2324.19 -2326.04 -2317.34

TCT -2309.37 -2298.37 -2300.23 -2292.24

CAA -2748.81 -2703.93 -2623.16 -2611.38

TGT -1628.75 -1625.76 -1623.83 -1612.71

GCC -3106.17 -3083.55 -3093.74 -3083.22

CGG -2180.64 -2180.58 -2173.83 -2180.28

ATA -2031.83 -2001.75 -1922.25 -1839.26

AGA -1672.13 -1647.89 -1511.63 -1470.99

TCG -2465.60 -2448.03 -2438.27 -2410.75

GAA -2888.66 -2877.53 -2856.03 -2877.27

GCG -3408.48 -3323.48 -3303.03 -3174.56

GTT -2837.32 -2810.69 -2800.89 -2772.86

AAC -2735.21 -2631.52 -2621.25 -2572.07

CCT -2273.83 -2203.16 -2241.84 -2132.78

AAA -2411.35 -2411.10 -2408.03 -2411.09

CAG -2748.81 -2703.93 -2613.32 -2611.38

GCT -2847.28 -2829.07 -2804.45 -2758.80

AAG -2411.35 -2411.10 -2408.83 -2404.27

ACT -2431.21 -2423.97 -2406.10 -2400.95

AGG -1232.83 -1226.68 -1202.38 -1191.80

TTC -2719.94 -2515.59 -2594.28 -2448.72

CTG -4027.73 -3726.43 -3598.45 -3418.53

ACA -2470.09 -2453.33 -2296.07 -2256.96

GGT -2985.37 -2973.14 -2981.98 -2971.71

CTA -1913.40 -1907.63 -1890.16 -1881.54

GGC -3051.30 -3048.90 -3033.90 -3027.68

CAT -2171.51 -2156.10 -2158.69 -2154.73

TTG -2662.91 -2662.26 -2662.09 -2662.25

TTT -2719.94 -2515.59 -2539.36 -2448.72

GAT -2794.47 -2789.48 -2786.39 -2789.31

TGC -1628.75 -1625.76 -1622.39 -1612.71

GTG -3267.58 -3180.87 -3101.29 -2989.82

TCA -2234.97 -2216.67 -2195.23 -2188.20

GCA -3021.36 -3019.15 -2968.09 -2939.11

CTT -2656.59 -2572.62 -2588.59 -2461.84

CGC -2830.84 -2830.48 -2794.77 -2830.45

CCG -3060.24 -2834.63 -2887.45 -2612.59

CTC -2517.82 -2501.71 -2511.31 -2492.55

GGG -2541.45 -2539.34 -2539.55 -2536.80

Log-likelihood (parameter #)

Figure A.2. Log likelihood values for individual codons in the E. coli
genome. Larger numbers, i.e. less negative, indicate the model with a better
fit to the data. For nearly all codons, the exponential model has the highest log
likelihood. This is to be partially expected due to increased parameter number in
the exponential decay model compared to the uniform model, which we take into
account during our model selection phase. The most likely model is highlighted in
red text.
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Uniform(1) Linear (2) Step-wise (3) Exponential (3)

GAC 5590.93 5582.96 5585.36 5584.64

AGC 5552.87 5508.65 5496.54 5486.56

ATC 5687.94 5562.82 5583.26 5531.57

CAC 4345.02 4316.19 4322.37 4315.46

CCC 4323.05 4129.52 4218.85 3881.64

ATT 5496.68 5458.31 5466.70 5451.95

GTC 5462.99 5430.86 5463.74 5390.34

ACC 5863.93 5861.80 5689.04 5862.84

CGA 3605.50 3545.88 3546.88 3504.64

CCA 4561.83 4558.37 4517.94 4507.54

GTA 5128.32 5127.92 5043.24 5008.39

TTA 5867.47 5638.83 5447.69 5304.54

GGA 4898.75 4835.02 4841.73 4714.29

AGT 4896.80 4896.30 4870.16 4859.19

GAG 5779.32 5759.06 5716.33 5761.17

TCC 4679.11 4675.86 4677.18 4677.78

AAT 5472.43 5267.05 5355.44 5150.14

ACG 5535.46 5502.02 5479.39 5478.08

TAC 4687.59 4652.39 4665.12 4640.67

CGT 5683.90 5602.53 5652.17 5587.86

TAT 4687.59 4652.39 4658.07 4640.67

TCT 4620.75 4600.75 4606.45 4590.48

CAA 5499.61 5411.86 5252.32 5228.77

TGT 3259.49 3255.53 3253.65 3231.43

GCC 6214.34 6171.09 6193.49 6172.44

CGG 4363.27 4365.15 4353.66 4366.57

ATA 4065.65 4007.50 3850.51 3684.52

AGA 3346.26 3299.78 3029.25 2947.99

TCG 4933.19 4900.06 4882.53 4827.49

GAA 5779.32 5759.06 5718.06 5760.53

GCG 6818.97 6650.96 6612.05 6355.12

GTT 5676.65 5625.38 5607.79 5551.72

AAC 5472.43 5267.05 5248.50 5150.14

CCT 4549.67 4410.31 4489.68 4271.56

AAA 4824.71 4826.20 4822.07 4828.17

CAG 5499.61 5411.86 5232.64 5228.77

GCT 5696.56 5662.14 5614.90 5523.61

AAG 4824.71 4826.20 4823.66 4814.54

ACT 4864.43 4851.94 4818.20 4807.89

AGG 2467.65 2457.36 2410.77 2389.61

TTC 5441.89 5035.18 5194.57 4903.44

CTG 8057.46 7456.86 7202.90 6843.06

ACA 4942.18 4910.65 4598.14 4519.91

GGT 5972.73 5950.28 5969.97 5949.43

CTA 3828.79 3819.27 3786.33 3769.08

GGC 6104.61 6101.80 6073.81 6061.37

CAT 4345.02 4316.19 4323.37 4315.46

TTG 5327.82 5328.51 5330.18 5330.50

TTT 5441.89 5035.18 5084.72 4903.44

GAT 5590.93 5582.96 5578.77 5584.63

TGC 3259.49 3255.53 3250.79 3231.43

GTG 6537.15 6365.74 6208.59 5985.63

TCA 4471.95 4437.35 4396.47 4382.40

GCA 6044.73 6042.29 5942.18 5884.22

CTT 5315.18 5149.24 5183.17 4929.67

CGC 5663.68 5664.96 5595.55 5666.91

CCG 6122.48 5673.25 5780.90 5231.17

CTC 5037.64 5007.42 5028.61 4991.09

GGG 5084.91 5082.68 5085.11 5079.59

AIC (parameter #)

Figure A.3. AIC values for each model for individual codons in the E. coli
genome. Small numbers indicate that the given model is a better fit to the empirical
data. Red text indicates the best fitting model for a given codon.
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species AIC_mean AIC_linear AIC_step-wise AIC_exp

B. subtilis 374355.552 373589.971 371743.169 369328.286

C. jejuni 179164.559 178987.147 178820.388 178771.106

C. crescentus 255774.937 250097.602 244808.780 234878.952

C. botulinum 225176.261 224575.347 224609.334 224138.508

E. coli 312674.758 308250.155 305774.703 302254.963

H. influenzae 224756.294 223877.934 223763.599 223123.465

H. pylori 220469.890 220297.955 219487.046 219202.906

M. janaschii 184551.548 184100.167 183786.520 183479.849

L. johnsonii 260477.432 257690.455 257966.250 257158.966

L. lacti 248164.842 247762.575 246376.179 246005.036

L. interrogans 309803.699 308606.406 308625.767 307625.167

L. monocytogenes 259221.680 257328.985 256603.597 254971.737

P. aeruginosa 357453.098 355801.308 337398.014 330336.789

S. cerevisiae 653864.750 648938.769 651779.163 646124.387

S. enterica 314332.338 310524.853 307182.460 301771.057

S. aureus 261564.265 260817.230 260636.098 259244.467

S. pneumoniae 266061.017 263857.885 262093.112 260548.064

V. cholerae 310292.930 308448.254 306891.006 303137.144

Y. pestis 399517.998 397444.534 396135.214 393541.304

Figure A.4. AIC values for each organism tested. Small numbers indicate that
the given model is a better fit to the empirical data. Red text indicates the best
fitting model for a given genome.
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Figure A.5. χ2 test for two different bin schemes. As opposed to Fig. 2.1 of the
main manuscript, here we depict significance of codons when dividing the genome
into 50 (left) and 100 bins (right) to demonstrate robustness to bin size.
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Figure A.6. Aspartic acid codon usage in the E. coli genome.
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Figure A.7. Glutamine codon usage in the E. coli genome.
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Figure A.8. Tyrosine codon usage in the E. coli genome.
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Figure A.9. Histidine codon usage in the E. coli genome.
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Figure A.10. Asparagine codon usage in the E. coli genome.
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Figure A.11. Lysine codon usage in the E. coli genome.
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Figure A.12. Glutamic acid codon usage in the E. coli genome.
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Figure A.13. Cysteine codon usage in the E. coli genome.
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Figure A.14. Isoleucine codon usage in the E. coli genome.
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Figure A.15. Valine codon usage in the E. coli genome.
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Figure A.16. Proline codon usage in the E. coli genome.
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Figure A.17. Threonine codon usage in the E. coli genome.
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Figure A.18. Alanine codon usage in the E. coli genome.
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Figure A.19. Glycine codon usage in the E. coli genome.
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Figure A.20. Leucine codon usage in the E. coli genome.
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Figure A.21. Serine codon usage in the E. coli genome.
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Figure A.22. Arginine codon usage in the E. coli genome.
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Figure A.23. Summary of gene expression bins. For the protein expression
dataset used in Fig. 2.3 of the main text, we show the cumulative distribution of ex-
pression highlighting the quartiles used to classify low and high abundance proteins,
as well as the median that was used to perform the same analysis in Supplementary
Fig. A.25.
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Figure A.24. Classification of codons based off of tRNA Adaptation Index.
Instead of separating codons based on frequency of occurrence in a highly expressed
reference set, we separate codons based on the codon value in the tRNA Adaptation
Index(tAI). For each of the 18 redundantly coded amino acids, we select the best
and worst codon and separate these into ‘low’ and ‘high’ tAI categories (n =18 and
18, respectively) and compare the pD values between the two sets.
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Figure A.25. As in Fig. 2.3 of main text, using median gene expression
to delineate low and high abundance proteins. The results of Fig. 2.3 are
significant when defining lowly and highly abundant proteins using the median of
the expression set rather than the top and bottom quartiles.
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6-fold redundant amino acids.
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Figure A.27. Spatial usage of Phenylalanine in the CAI reference set. In
contrast to Fig. 2.2B in the main text, the codons coding for phenylalanine show an
extreme skewness that highlights the fact that high expressing genes (as evidenced
by the reference set) also use the ‘disfavored’ codons in the 5′ region.
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Figure A.28. CAI calculations with different reference set. In the manuscript,
we show the traditionally used 27 gene reference set. To demonstrate robustness, here
we show the same figures and calculations using a distinct reference set of highly
expressed genes. In general, this reference set performs more poorly at predicting
transcript/protein abundances and percent increases between our exponential fits
and the traditional uniform calculation are slightly lower, albeit still positive and
highly significant.
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Figure B.1. Example gene profiles showing mapped RNA- and Ribo-seq
reads that are used as input to calculate RTE. Our pipeline first removes a
subset of the total genes based off of coverage, annotation, and length requirements
resulting in RTE measurements for 2910, 1833, and 2385 genes in E. coli, C. cres-
centus and B. subtilis. Distributions of the RTE values on normal and log-scale
show that RTE is approximately log-normally distributed and comparable between
the three datasets studied.
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Figure B.2. Correlation between the free energy of RNA folding around
the start codon (-30 to +30) and log(RTE) for three different organisms
studied. Left, R2 = 0.13, 0.10, 0.08 for E. coli, C. crescentus, and B. subtilis
respectively; for all cases p < 10−43). For RTE in the main text we utilize the
residuals from the best fitting linear model based off this regression for each organism,
effectively removing the influence of mRNA structure on RTE (right).
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Figure B.3. Extended illustration of our numbering scheme for distance.
This example highlights that distance is not absolute and, rather, is calculated rela-
tive to the aSD sequence being considered. For the same mRNA sequence (top and
bottom), the distance decreases by two due to the fact that the example in the bot-
tom extends the hypothetical aSD sequence 2 bases in the 5′ direction. Numbering
is always relative to the 5′ end of the aSD sequence so varying this sequence. Other
numbering systems to compare between different putative aSDs will all suffer from
this problem unless an absolute point is used as an anchor (such as the middle U of
5′-CCUCC-3′). We opted for our scheme because we feel that, at the conclusion of
the process, our scheme is simpler to interpret for a given aSD sequence.
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Figure B.4. As in Fig. 3.3 of main text. A, R2
adj from the 3rd order model at

different distances to the start codon and various 3′ and 5′ extensions to the core
aSD for C. crescentus. B, Combination of best fitting putative aSDs from (A) to
determine the optimal aSD sequence. B, Comparison of R2

adj between the 1st and
3rd order polynomial models from best performing aSD sequence.
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Figure B.5. As in Fig. 3.3 of main text. A, R2
adj from the 3rd order model at

different distances to the start codon and various 3′ and 5′ extensions to the core aSD
for B. subtilis. B, Combination of best fitting putative aSDs from (A) to determine
the optimal aSD sequence. B, Comparison of R2

adj between the 1st and 3rd order
polynomial models from best performing aSD sequence.
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Figure B.6. Support to Figs. 3.4,3.5 of main text. For E. coli data (left), given
the optimal distance and aSD parameters, we show the effect of increasingly complex
polynomial fits on the R2

adj (top) and Akaike Information Criterion (AIC)(bottom),
two statistical methods commonly used for model selection. Both metrics penalize
models with increasing parameter number through different statistical means in order
to prevent over-fitting; the best model, according to the R2

adj, should be the one that
maximizes this metric while for the AIC the best model should minimize this value.
The data are also shown for C. crescentus (center) and B. subtilis (right) data, in all
cases this data was calculated using the optimal aSD and spacing values indicated
in Fig. 3.4 of the main text for each organism. Bottom row shows this same data for
E. coli based on the data used in Fig. 3.5 of the main text, from Mohammad et al.
(2016).
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Figure B.7. As in main text Fig. 3.3 and Supporting Figs. B.4& B.5.
Whereas the previous results display correlations between aSD sequence comple-
mentarity and residual RTE values (calculated by removing the effect of predicted
mRNA structure), here we repeated our algorithm to choose the best fitting aSD
sequence and distance parameters given the raw log-transformed RTE values. For
each of the three different organism datasets displayed, the qualitative conclusions
are similar with decreases in the overall magnitude and significance of the observed
effect but clear peaks for particular aSD and distance combinations which closely
align with the conclusions in the main text. We attribute the increasing signifi-
cance on the left side of the E. coli and C. crescentus data to the fact that the aSD
sequence complementarity is likely measuring GC content in this region and thus
mRNA structure by proxy.



222

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0 1 2 3 4 5 6

5830

5840

5850

5860

-1
2.
82
to
-7
.2
5

-7
.2
5
to
-6
.1
6

-6
.1
6
to
-4
.5
6

-4
.5
6
to
-3
.0
8

-3
.0
8
to
-0
.0
1

Binding strength quintiles (kcal/mol)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lo
g(
R
T
E
)

−14 −12 −10 −8 −6 −4 −2 0
Binding strength (kcal/mol)

−2

−1

0

1

2

3

4

lo
g(
R
T
E
)

1st order (R2

adj=0.006, p=1.46e-05)

3rd order (R2

adj=0.019, p=5.95e-13)

0.005

0.010

0.015

0.020

0 1 2 3 4 5 6

3310

3315

3320

3325

3330

3335

-1
1.
90
to
-7
.1
3

-7
.1
3
to
-5
.7
3

-5
.7
3
to
-3
.7
5

-3
.7
5
to
-2
.0
6

-2
.0
6
to
-0
.0
0

Binding strength quintiles (kcal/mol)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lo
g(
R
T
E
)

−14 −12 −10 −8 −6 −4 −2 0
Binding strength (kcal/mol)

−2

−1

0

1

2

3

4

lo
g(
R
T
E
)

1st order (R2

adj=0.005, p=1.69e-03)

3rd order (R2

adj=0.020, p=9.68e-09)

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6

5920

5940

5960

5980

6000

6020

-2
1.
59
to
-1
2.
48

-1
2.
48
to
-1
1.
32

-1
1.
32
to
-1
0.
12

-1
0.
12
to
-8
.8
0

-8
.8
0
to
-0
.1
1

Binding strength quintiles (kcal/mol)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

lo
g(
R
T
E
)

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
Binding strength (kcal/mol)

−2

−1

0

1

2

3

4

lo
g(
R
T
E
)

1st order (R2

adj=0.002, p=2.17e-02)

3rd order (R2

adj=0.034, p=2.98e-18)

C. crescentusE. coli B. subtilis

A
IC

R
2 a

d
j

Polynomial order Polynomial order Polynomial order

Figure B.8. As in main text Fig. 3.4. We repeated our analysis of the relationship
between aSD sequence complementarity and translation efficiency by looking at the
log-transformed RTE values (rather than the residual RTE values calculated by
removing the effect of predicted mRNA structure) for the best fitting aSD sequence
and distance parameters discovered in the main text. In all cases, a 3rd order model
is highly statistically significant, and fits the data better than a 1st order model.
Further, quintile bins again show that the strongest binding quintile of genes for all
datasets exhibits reduced RTE values.
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Figure B.9. Robustness of the results with respect to gene position within
operons for the indicated datasets. aSD sequences and distances for each dataset
are as in Figs. 3.4 & 3.5 of the main text.
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Figure B.10. As in main text Fig. 3.6. We analyzed the Taniguchi et al. dataset
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power of the underlying polynomial model as assessed by the R2

adj value. B) The
relevant AIC and and R2

adj values for the indicated datasets from Fig. 3.6.
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APPENDIX C

Supporting information to Chapter 5
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Figure C.1. Inclusion of the aSD binding strength score, S, to multivariate regression
between protein abundance and codon usage bias (N ′

C) enhances total predictive
power of mulitple regression models as evidenced by lower (A) AIC and (B) BIC
scores.
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Figure C.2. Single and multivariable regression outputs for E.coli gene expression
data, aSD binding score (S) and codon usage bias (N ′

C).
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Figure C.3. Single and multivariable regression outputs between protein abundance,
aSD binding score (S) and codon usage bias (N ′

C) in 26 bacteria.
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