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ABSTRACT

Bio-informed Image-based Deep Learning Frameworks for Prognosis of Pediatric

Spinal Deformities

Mahsa Tajdari

Predicting pediatric spinal deformity (PSD) from X-ray images collected on the

patient’s initial visit is a challenging task. This research provides a bio-informed

framework based on a mechanistic machine learning technique with dynamic patient-

specific (PS) parameters to predict PSD. We provide a geometry-based bone growth

model that can be utilized in a range of applications to enhance the bio-informed

mechanistic machine learning framework, taking dynamic aspects into account. The

proposed technique is being utilized to examine and predict spine curvature in PSD

cases such as adolescent idiopathic scoliosis (AIS). The best fit of a segmented 3D

volumetric geometry of the human spine acquired from 2D X-ray images is employed.

Using an active contour model based on gradient vector flow (GVF) snakes, the an-

teroposterior and lateral views of the X-ray images are segmented to derive the 2D

contours surrounding each vertebra. The snake parameters are calibrated on the
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dataset, resulting in considerable improvement in image segmentation and data col-

lection. The 2D segmented outlines of each vertebra are transformed into a 3D image

segmentation result. The Iterative Closest Point (ICP) mesh registration technique

is then used to establish a mesh morphing approach and creates a 3D Atlas spine

model. Using the comprehensive 3D volumetric model, one can automatically extract

spinal geometry data as inputs to the mechanistic machine learning network. The pro-

posed bio-informed deep learning network with the modified bone growth model not

only significantly outperforms other state-of-the-art model-based methods, but also

achieves competitive or even superior performance against state-of-the-art learning-

based methods.
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CHAPTER 1

Introduction

1.1. Motivation and objectives

Spine deformities are common pediatric and adolescent conditions and these con-

ditions may lead to health risks ranging from pain, loss of function, to even pulmonary

and cardiopulmonary difficulties. If the spine loses its usual, graceful S -shape (when

seen from the side), or if the spine loses its straightness, deformities may arise as a

result (viewed front to rear). The term Pediatric Spinal Deformity (PSD) refers to

malformations of the spine in children, such as scoliosis, kyphosis, and spondylolisthe-

sis [10]. Scoliosis and kyphosis are conditions characterized by aberrant curvature of

the spine, while spondylolisthesis is characterized by the displacement of vertebrae.

PSD is caused by a variety of etiologies; the most common of which is idiopathic

scoliosis and importantly occurs during phases of growth and development. Bone

growth of the vertebrae is affected directly, leading to progression and advancement

of deformity.

Adolescent Idiopathic Scoliosis (AIS) is used to describe one of the most prevalent

spinal conditions in children and adolescents. AIS accounts for around 80% of all

pediatric scoliosis cases, affecting approximately 3% of adolescents under the age of

16 in the United States [11] roughly 7 million individuals in the United States. There

remains more to learn about the underlying pathophysiology of PSD.
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While the human spine is composed of 24 vertebrae, only 17 are of interest to

AIS analysis. Thoracic (T 1-12) and lumbar (L 1-5) vertebrae, shown in Figure 1.1,

are assumed to be responsible for scoliosis, making them the focus of diagnosis and

treatment. Note that the treatment of scoliosis is mainly reliant on the shape and

extent of spinal curvature, and specific treatment choices are usually determined by

the surgeon’s expertise. As a result, the development of a clinically validated, patient-

specific (PS) model of the spine to assist surgeons in identifying early-stage PSD would

guide optimum surgical and non-surgical treatment options, resulting in significant

therapeutic benefit. For both screening and monitoring in present clinical practice,

the lack of an appropriate safe, inexpensive, and accurate measuring technology is

a major need in clinical practice. To track the evolution of deformities throughout

adolescent growth, frequent imaging is essential [12] and the extracted features from

medical images such as Cobb angle determine the severity of spinal deformity.

It is common practice in spine surgery to use computer-aided procedures, such

as advanced imaging for improved surgical navigation (to determine safe placement

or a surgical path for implants [13, 14, 15]), for more successful execution of the

surgical plan [16, 17]. One of the greatest barriers to incorporating these technolo-

gies into clinical practice is the time and effort necessary to generate PS functional

models from medical imaging. It entails a number of manual procedures and is time

intensive, even for seasoned specialists [18, 19]. For example, image segmentation

is both time-consuming and user-dependent [20, 21]. Certain software applications

support automated image analysis of the spine. However, it is often required to locate

and segment vertebrae ahead of time, which is a time-consuming operation [22]. Due
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Figure 1.1. Diagram of the the human spine, the thoracic ( T1 to T12)
and the lumbar regions ( L1 to L5) are responsible for scoliosis.

to the 2D nature of the X-ray data, generating 3D detailed geometry of the spine

from a 2D set of X-ray images is a challenging task [23, 24]. Furthermore, various

manual processes are required to segment the obtained volumetric mesh in order to

detect hard and soft tissue once the 3D model has been formed. Machine learning

(ML) approaches, on the other hand, need a large amount of data to be trained and

provide reliable results. The absence of reliable medical data for a given individual
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over time is one of the challenges in implementing ML for prognosis spinal deformity.

Furthermore, these models are referred to as “data-hungry” approaches since they

cannot forecast outside of the range of the training data. Recent publications show

that by including physics into the system, one may enhance the model’s predictabil-

ity range [25]. However, for spinal curve progression including bone formation, PS

governing physical equations with time-varying and geometric-based coefficients are

unavailable.

Previously published research in [2] used X-ray imaging data to develop a prog-

nostic framework for AIS. This framework predicts spine morphology by combining

clinical data acquired from X-ray images with mechanistic features extracted from a

spine surrogate model along with the bone growth model. Despite this framework

presented a unique technique to using mechanistic data science for forecasting spine

deformity, the method has a number of limitations that impede deploying this frame-

work in real-world scenarios. One restriction is the manual parameter adjustment for

image segmentation of each vertebra. The presented 3D reconstruction and geom-

etry generation technique requires considerable labor since each tissue is generated

separately and all tissues are assembled together. Moreover, the bone growth model

has constant parameters throughout all patients and time steps. However, these as-

sumptions are unrealistic since bone formation differs across ages and vertebrae. The

proposed framework predicts a 2D image of the spine, while AIS is a 3D deformation.

The framework is only evaluated for landmarks placed on the growth plate and does

not take into account all points derived from X-ray data.

Challenges in analyzing the PSD through modeling can be summarized as:
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• Lack of consistent medical data for a specific person over time;

• Need for a swift predictive method suitable to be used by the medical prac-

titioners;

• Time-consuming process of segmenting medical images;

• Generating patient-specific volumetric mesh and extracting required infor-

mation;

• The absence of knowledge to understand the governing physics of the prob-

lem; and

• Combining all information to come up with a predictive model despite having

limited data.

This dissertation aims to address the concerns above by developing a bio-informed

mechanistic machine learning framework that can predict spinal curvature using the

available limited patient-specific data.

1.2. Related works

1.2.1. Vertebrae image segmentation

Precisely segmenting the vertebrae is critical for subsequent analysis in an injury

detection system. Statistical shape model (SSM)-based techniques have dominated

previous work in vertebral segmentation [26, 27]. Based on a training set, these

approaches capture statistical information on the shape and/or appearance of the

vertebra. The mean shape is then manually or semi-automatically set close to the

real vertebra, and a search process is used to converge the shape on the true vertebral

boundaries. Latest evidence has used random forest-based machine learning (ML)
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models to achieve shape convergence [28, 27, 29, 30]. These approaches, however,

are only efficient and accurate for the restricted data reported in the literature and

cannot be applied to PS datasets.

1.2.2. 3D model development and computational simulation

Compared to MRI and computational tomography (CT) scanners, X-ray images are

more commonly employed due to their accessibility, lower cost, shorter scanning time,

and lower ionizing radiation levels particularly for adolescent patients. Statistical

Shape Models (SSM) [31, 32, 33, 34] or Statistical Shape and Intensity Models

(SSIM) were used to reconstruct bones from X-ray images. To prevent local maxima

while optimizing the deformable model parameters, it is important to select a rea-

sonable starting point [35, 36]. Recent years have seen the use of deep learning to

recognize landmarks and triangulate them [35]. However, performing 3D reconstruc-

tion from two or more 2D photos using a deep learning technique remains a tough

problem due to the complexity of describing a dimensional expansion in multi-view

circumstances. The EOS imaging system (formerly, Biospace Med, Paris, France),

the DIERS formetric scanner, and ultrasonography are examples of recent break-

throughs in diagnostic imaging for AIS [12]. The EOS imaging system is made

up of two orthogonal pairs of X-ray tubes and detector units that allow for the si-

multaneous capture of anteroposterior (AP) and lateral (LAT) X-ray pictures while

standing. EOS imaging can quickly scan the spine in 8–15 seconds, depending on

the patient’s height. From the EOS anteroposterior and lateral pictures, the software

system sterEOS (EOS Imaging, Paris, France) can generate a highly accurate 3D
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model of the spine [37, 38, 39]. However, this technology is unable to divide distinct

tissues in order to account for the many biological organs. Due to its expensive cost,

it is not widely available in many medical centers.

To gain a better knowledge of load distribution and other mechanical features, the

3D generated PS geometry may be utilized to construct a finite element model. There

is no comprehensive automated workflow for anatomically correct FE simulations of

the spine based on 2D X-ray data. A lot of work has been done on parametric FE

models or a mix of statistical and FE models [40, 41]. However, those models either

ignore essential PS features or require a lot of manual labor, which necessitates a

certain level of operator experience. Although efforts to automate the construction

of FE models of the healthy spine have been performed [42, 19], the technique has

never been integrated with deep learning-based segmentation algorithms or applied

to diseased situations.

1.2.3. Implementing ML for studying spinal deformity

The application of artificial intelligence (AI) in medical research [43] has skyrocketed

in recent decades. ML is a subset of AI that allows computers to discover patterns

from data without explicit programming. These approaches, however, are character-

ized as data-hungry methods since they always rely on the training data [44]. When

it comes to medical image analysis, there has always been the challenge of how to

accurately integrate ML for disease diagnosis, prognosis, and therapy. A framework

with such characteristics should always be able to capture the biological governing

equation in order to offer extra information in addition to the training data. Recent
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studies have attempted to use AI to predict spinal deformities [45, 46, 47, 48]. These

frameworks, on the other hand, cannot be applied to other disciplines. Recently, re-

search has shown that by incorporating the system’s underlying physical equations,

the framework may forecast data outside of the projected range [2, 49]. However,

there are certain processes in between that need manual parameter adjustment and,

as a result, cannot be implemented for real-time prognosis framework.

1.3. Contribution and outline of the dissertation

This dissertation introduces a flexible and powerful bio-informed mechanistic neu-

ral network architecture that aims to push the limits of existing methods by cali-

brating time-varying geometry based parameters for prognosticating 3D shape spinal

deformity. Moreover, the framework is enhanced by calibrating image segmentation

algorithm variables. To generate detailed geometry, the segmented data is fed into

a 3D reconstruction tool. A novel bone growth model is proposed to potentially

improve neural network prediction performance without adding additional compu-

tational burden, and a thorough analysis of parameter setting, intermediate results,

and cross-validation studies is provided to better support the working mechanism of

the proposed bio-informed mechanistic deep learning framework. The contribution of

this dissertation is summarized as follows:

• Predicting pediatric spinal deformity (PSD) progression using bio-informed

mechanistic machine learning;

• Calibrating parameters of image segmentation to expedite the process;

• Generating patient-specific volumetric mesh of the spine from X-ray images;
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• Developing a surrogate 3D FE model combined with a bone growth model

of the spine; and

• Developing a modified bone growth model containing PS time-varying and

geometry based parameters.

This dissertation proceeds as follows: in Chapter 2, image segmentation parame-

ters are calibrated to expedite the process, and a 3D reconstruction method is used

to reconstruct the geometry using X-ray data. Chapter 3 focuses on generating a de-

tailed PS surrogate finite element model of the human spine. The machine learning

method is the topic of Chapter 4, which explains how the framework can be used

in conjunction with the modified bone growth model, data from the spine surrogate

model, and extracted data from medical data to create the bio-informed mechanis-

tic prognosis framework. Finally, in Chapter 5, conclusions are drawn, and future

research directions are discussed.
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CHAPTER 2

Patient-specific image segmentation and data generation

2.1. Introduction

To track the evolution of deformities throughout adolescent growth, frequent imag-

ing is essential [12] and the extracted features from medical images such as Cobb angle

determine the severity of spinal deformity. Later, these features can be implemented

to classify spinal deformities based on image features [50]. Various imaging tech-

niques, such as X-ray, magnetic resonance imaging (MRI), or computed tomography

(CT), may be used to detect spinal deformity. Compared to MRI and computational

tomography (CT) scanners, X-ray images are more commonly employed due to their

accessibility, lower cost, shorter scanning time, and lower ionizing radiation levels par-

ticularly for adolescent patients. X-ray are taken from two orthogonal view known

as anteroposterior (AP) and lateral (LAT) view shown in Fig. 2.1. Segmentation of

images is a critical and challenging aspect of image processing [51, 52, 21]. Addi-

tionally, this is a barrier that impedes the deployment of 3D reconstruction as well as

other innovations [53]. Precisely segmenting the vertebrae is critical for subsequent

analysis in an injury detection system. This chapter addresses the aforementioned

challenges by introducing an effective approach for segmenting X-ray images, gener-

ating 3D reconstructions of the spinal column, and extracting mechanistic features.
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Figure 2.1. (a) Lateral (LAT) and (b) Anteposterioir (AP) view of the
image obtained from X-ray data.

2.2. Data collection

To collect the imaging data for this project, we selected patients with AP thora-

columbar X-ray imaging from the radiology records of a large urban tertiary pediatric

hospital (Lurie Children’s in Chicago, Illinois) between September 2011 and July 2019.

Demographic data was collected, along with radiographic diagnoses. Scoliotic cur-

vature was defined as Cobb Angle > 10◦ [54]. Those patients with neuromuscular

etiologies and structural deformities (e.g. spina bifida) were excluded. Patients were

between 7 months to 21 years of age. Of those patients with radiographically diag-

nosed scoliosis, 190 were included with age at study ranging from 2-18 years. 130 of

these patients were female. 55 of these patients had at least one level of operative

vertebral fusion. 163 patients without radiographically diagnosed scoliosis met the
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inclusion criteria, ranging in age from 7 months to 21 years. Of these, 83 patients

were female. None underwent spinal fusion. Demographic data is shown in Table 2.1.

Table 2.1. Demographic information for the X-ray imaging data.

Features Scoliosis Control
Number of patients 190 163

Sex 103 Female 83 Female
Age range 2-18 years 7 months-21 years

Spinal fusion 55 0

2.3. Image segmentation and parameter calibration

In this section, we provide a detailed explanation of the process of extracting

landmarks from X-ray images in order to generate patient specific geometry (Chapter

3) and to study non-uniform bone growth (Chapter 4). Image segmentation of clinical

X-ray images is carried out to extract features for the prognosis framework [55].

The corner points of each vertebra are identified and used as reference points to

monitor variations in spine shape and bone formation over time. We implement

semi-automated image segmentation using active contour, also known as, the snakes

method [56]. A rectangular contour consisting of four corner points is initialized

manually around each vertebra and evolved to capture the shape. The segmentation

is carried out in 2D for both AP and LAT images. The evolution of the active contour

is carried out iteratively through minimization of image energy, allowing it to converge

at the edges of features and external constraint energy. Snakes are considered energy-

minimizing splines which are defined in a parametric form. Using v(s) = (x(s), y(s))

to parametrically represent the location of a snake where parameter s ∈ [0, 1]. As s
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changes smoothly a closed contour on a plane is traced. The total energy functional

proposed in [56] considers both image and constraint forces is given as

(2.1) E(v(s)) =

∫ 1

0

Eint(v(s)) + Econ(v(s)) + Eimg(v(s)) ds,

where Eint(v(s)), Eimg(v(s)) and Econ(v(s)) are the energy functionals associated

with internal spline energy, image force and external constraint energy, respectively.

The Eint(v(s)) term is given as

(2.2) Eint(v(s)) = α | v′(s) |2 +β | v′′(s) |2,

where α and β are weights associated with the first and second order regularization

terms which are elastic length and stiffness of the contour. Eimg(v(s)) is defined as

(2.3) Eimg(v(s)) = wlineEline(v(s)) + wedgeEedge(v(s)) + wtermEterm(v(s)),

where wline, wedge and wterm are the weighting coefficients associated with the energy

functionals Eline = I(x, y), Eedge = −|▽I(x, y)|2 and Eterm =
CyyC2

x−2CxyCxCy+CxxC2
y

(C2
x+C2

y)
2
3

,

I(x, y) is the image intensity, C(x, y) = Gσ(x, y) ∗ I(x, y) and Gσ is a Gaussian of

standard deviation σ [56].

Active contour model is fast and is able to accurately segment each vertebra in

the X-ray images. However, there are a few drawbacks. The accuracy of segmen-

tation depends on how accurately the active contour is initialized. The optimized
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parameters for the segmentation of each vertebra must be calibrated ahead of time,

which is a time-consuming process. We propose an improved calibration method to

obtain optimum parameters for the accurate segmentation of clinical X-ray images.

The parameters of the Snake algorithm are categorized into two groups: geometric

parameters and fitting parameters.

Geometric Parameters : For each vertebra, we initialize the active contour as a

rectangle and define geometric parameters such as the width (wn), height (hn) and

rotation angle (θn) from the horizontal axis. n is the vertebra level number where

n = 1 ∼ 17 correspond to the thoracic vertebra (T1, T2, · · · , T12) and n = 13 ∼ 17

represent lumbar vertebra (L1, L2, · · · , L5). From the T1 to the L5 vertebra, we

assume a linear relationship between each vertebra size and vertebra level, with L5

vertebra having the largest size. The length and width of T1 and L5 can be used to

determine the corresponding length and width of other vertebrae. The user chooses

three reference corner points (top right, bottom right and bottom left) for T1 (w1

and h1) and L5 (wm and hm) vertebrae as shown in Fig. 2.2(a), and the parameters

for the remaining vertebrae are computed using

hn = h1 + (
hm − h1

N − 1
) ∗ (n− 1),

wn = w1 + (
wm − w1

N − 1
) ∗ (n− 1).

(2.4)

For each vertebra, the user manually selects the center point. The rotation angle

can be obtained by

(2.5) θn = cos−1(
ϕ⃗n.x⃗

|ϕ⃗n|.|x⃗|
)
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Figure 2.2. (a) Approximating length and width of vertebrae by picking
reference corner points of T1 and L5; and (b) the approximation of angle
of rotation for each vertebra [1].

where θn is the rotation angle of the vertebra n, x⃗ is the vector of horizontal axis and

ϕ⃗n is the bisector of the vector that connects the two adjacent vertebrae as shown

in Fig. 2.2(b). It is worth noting that the framework may be used for any number

of vertebrae in any regions of interest, including cervical, thoracic, lumbar, or a

combination of all three. By estimating geometric parameters for the lumbar spine,

Fig. 2.3 compares the ground truth and the modified snake method. The findings are

in excellent accord with the ground truth, as shown.

Fitting Parameters : The weighting coefficients in the active contour model are set

in order to move the contour around each vertebra. α and β are the weights associated

with the first-order and second-order regularizing terms of the internal spline energy
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Figure 2.3. Comparison between two segmented lumbar spines using
the snake algorithm, the yellow dots are the landmarks identifying the
spline fitted to the boundary of vertebrae (a) ground truth (b) by esti-
mating geometric parameters (angle of rotations, length and width of
each vertebra) [1].

(Eq. (2) in [56]) that control the tension and rigidity of the snake, respectively. γ is

the step size associated with the iterative update of the active contour and κ is the

weighting coefficients associated with the derivatives of the external force terms (Eq.

(17) in [56]). wl, we and wt are the weighting coefficients associated with the image,

edge, and terminal energy functions, respectively [56]. By identifying the optimal sets

of these parameters, one may precisely determine the curvature of the vertebrae. A

sensitivity analysis [57] is performed on each pair of snake parameters, as illustrated

in Fig. 2.4, to provide a better estimate on the optimized parameters. To come up

with the optimized parameters throughout the dataset, the optimized pair with the
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Figure 2.4. Sensitivity analysis on the calibrating parameters of the
snakes algorithm to set initial point for multi variable optimization [1].

least error will be picked and assigned as the initial values in the Simplex method.

As a result of this phase, all of the parameters are optimized, as shown in Fig. 2.5.

Fig. 2.6 depicts the segmented spinal column in AP view, taking into account

both the geometric parameters and the calibrating parameters. First, the reference

point of the most top and the most bottom vertebrae will be identified and then the

program will identify the contour around each vertebra.

Figure 2.5. Optimized multi variables of the snakes method for the
lumbar spine. The dotted line denotes the ground truth and solid lines
are the optimized configuration. The normalized mean square error is
0.0187 corresponding to α = 0.25, β = 0.25, γ = 12, κ = 0.2, wl = 0.5,
we = 0.5, wt = 0, and iteration = 50.
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Figure 2.6. Three steps for image segmentation. (a) Picking the refer-
ence point of the most top and bottom of each vertebra, (b) pick the
center point of all vertebrae and (c) segmented data by implementing
optimized geometric and calibrating parameters using the snakes algo-
rithm [1].

2.4. Defining spinal angles

2.4.1. Background

Spinal curvature measurement is time-consuming and unreliable in clinical practice.

Radiographic criteria, particularly the Cobb angle, are used to determine whether to

monitor, brace, or propose surgical intervention for scoliosis [58]. These measures’ re-

sults have significant consequences for patient therapy and care. The Cobb technique

has been considered the gold standard for determining the magnitude of a scoliosis
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curve [59]. The Cobb technique, however, has certain drawbacks. According to stud-

ies of interobserver and intraobserver reliability, the Cobb angle has a measurement

error of around 3–5◦ [60, 61, 62, 63]. An inaccurate definition of the end vertebra,

an improper drawing of the lines through endplates or the pedicles, and the draw-

ing of perpendiculars or the measurement of the angle itself are all possible sources

of inaccuracy [64]. Anterior-posterior or posterior-anterior standing radiographs are

often used to determine the Cobb angle. Scoliosis, on the other hand, is a three-

dimensional (3D) deformity, while the Cobb angle recorded on an X-ray on a plane

is a two-dimensional (2D) value [65]. Furthermore, there is no standard approach for

quantifying the shape or severity of AIS cases, classifying patients, or determining the

appropriate course of therapy at this time. This section aims to introduce five global

angles extracted from both the AP and LAT views to quantify the 3D geometry of

the spine in a unique way and provide a standard technique to compute them.

2.4.2. Assumptions

Key assumptions were used to select a coordinate system, describe input data, and

define and calculate features, documented below.

Coordinate systems: To define and plot vertebrae landmarks, a 3D Cartesian

coordinate system was used:

• The X − Y plane represents the transverse plane

• the X − Z plane represents the lateral plane

• The Y − Z plane represents the anteroposterior plane.
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These planes are mutually orthogonal, with the Z-axis representing the vertical di-

rection (parallel to patient height).

Input data: To calculate features, vertebrae landmarks were extracted from the

snakes algorithm explained in 2.3 in 2D views (AP and LAT). General requirements

for the structure and content of input datasets were documented to ensure “Calculat-

ing AIS Features” was applicable to other datasets, ensuring it could be widely used.

Vertebrae landmarks were assigned to Region 1, 2, 3, or 4 based on location, shown in

Figure 2.7. It was assumed that each region represents an irregular vertebra surface

and contains an arbitrary number of landmarks. The notation used in this section is

described in Table 2.2.

Table 2.2. Notation table of variables used in the feed forward neural
network.

Tht Thoracic vertebra, t = 1, ..., 12
Lul Lumbar vertebra, l = 1, ..., 5
Li
j,k Line passing through region j of vertebra i in k view

i = 1, ..., 17 Vertebra number
j = 1, ..., 4 Vertebra region

k Plane, typically Anteroposterior (AP) or Lateral (LAT)
L Lumbar vertebra with maximum curvature
T Thoracic vertebra with maximum curvature
C Vertebra with maximum curvature ( either L or T)
U Vertebra 2 above C
B Vertebra 2 below C

For any 2D projection:

(1) Region 1 represents the vertebra’s left surface. Corresponding landmarks

and features are shown in blue.

(2) Region 2 represents the vertebra’s lower surface. Corresponding landmarks

and features are shown in yellow.
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Figure 2.7. Vertebra landmarks assigned to regions 1, 2, 3, and 4, an-
teroposterior plane. The line of best fit through regions 2 and 4 are
shown for (a) 16 landmarks and (b) four landmarks.

(3) Region 3 represents the vertebra’s right surface. Corresponding landmarks

and features are shown in red.

(4) Region 4 represents the vertebra’s upper surface. Corresponding landmarks

and features are shown in green.

These irregular surfaces were approximated with lines (in 2D) and planes (in 3D)

of best fit. For example, Fig. 2.7 shows lines of best fit through Region 2 and Region

4 landmarks of vertebra i in the anteroposterior plane. The line passing through

region j of vertebra i in k view (k can be AP or LAT) can be written as

(2.6) Li
j,k

.
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2.4.3. Calculating global angles

As previously discussed, there are no standard metrics to describe, classify, and com-

pare spinal deformity patients. The spine’s three-dimensional form may be repre-

sented mathematically using the following angles as shown in Fig. ??:

• Trunk Inclination Angle (TIA) ;

• Sacral Inclination Angle (SIA);

• Thoracic Kyphosis Angle (TKA) ;

• Lumbar Lordosis Angle (LLA);

• Cobb Angle (CA).

Figure 2.8. Description of the five global angles (αi). (a) 3D config-
uration of the spine. The green points describe the landmarks of the
spine; (b) Thoracic Kyphosis Angle (TKA) and Lumbar Lordosis An-
gle (LLA) in z−x plane; (c) Sacral Inclination Angle (SIA) and Trunk
Inclination Angle (TIA) in the z − y plane; and (d) Cobb Angle in the
z − y plane [2].)

These angles are measured from 2D X-ray projections, and reflect the severity of

curvature in each spinal region. This investigation proposes standard mathematical
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definitions of each global angle, ensuring they are always measured relative to the

same relative points.

In the lateral (LAT) plane:

• The Thoracic Kyphosis Angle (TKA) is the angle between region 2 of Th1 (

1st thoracic vertebra) and region 4 of Th12 ( 12th thoracic vertebra) calcu-

lated by

(2.7) TKA = cos− 1(
L1
2,LAT · L12

4,LAT

|L1
2,LAT ||L12

4,LAT |
).

• The Lumbar Lordosis Angle (LLA) is the angle between region 2 of L1 ( 1st

lumbar vertebra) and region 4 of L5 ( 5th lumbar vertebra) obtained by

(2.8) LLA = cos− 1(
L13
2,LAT · L17

4,LAT

|L13
2,LAT ||L17

4,LAT |
).

In the anteroposterior (AP) plane:

• The Trunk Inclination Angle (TIA) is the angle between region 4 of L5 ( 5th

lumbar vertebra) and region 3 of L derived by

(2.9) TIA = cos− 1(
L17
4,AP · LL

3,AP

|L17
4,AP ||LL

3,AP |
).
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• The Sacral Inclination Angle (SIA) is the angle between region 4 of L5 ( 5th

lumbar vertebra) and region 1 of T calculated by

(2.10) SIA = cos− 1(
L17
4,AP · LT

1,AP

|L17
4,AP ||LT

1,AP |
).

• The Cobb Angle (CA) is the angle between region 2 of U and region 4 of B

explained by

(2.11) CA = cos− 1(
LU
2,AP · LB

4,AP

|LU
2,AP ||LB

4,AP |
).

2.5. 3D shape reconstruction from bi-planer 2D data

Time history X-ray images from two orthogonal perspectives (AP and LAT) are

used in this study to gather PS data (Fig. 2.1). PS characteristics are retrieved from

X-ray images to assess spinal deformity prognosis. The snakes algorithm, on the

other hand, cannot be directly applied since the image scale varies between LAT and

AP. Furthermore, there are no stable characteristics in images that can be tracked

throughout time.

The initial step should be to calibrate the camera location in order to make all

data consistent and comparable in scale. Here are the assumptions for the camera

calibration step:

• Reference of the coordinate system: The coordinate system’s reference point

in AP and LAT perspectives is the center point of L5 (5th lumbar vertebra).
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• Angle between AP and LAT views : the angle between AP and LAT views

is 90◦.

• Scaling criterion: The images are taken with different scales. Images need

to be scaled such that the heights of the spine in these two X-ray views are

the same. It is assumed that AP view is fixed and the LAT view will be

calibrated accordingly. The scaling factor between two pairs of images is

calculated as

(2.12) s =
zAP
max − zAP

min

zLAT
max − zLAT

min

,

where zAP
max and zAP

min are the maximum and minimum of z coordinates of

landmarks in AP respectively. Similarly zLAT
max and zLAT

min are the maximum

and minimum of z coordinates of landmarks in LAT respectively.

As seen in Fig. 2.9, the scaled data will subsequently be fed into a 3D recon-

struction procedure. The size of the bounding box for each vertebra is calculated

by identifying the minimum and maximum in each direction, and the nodes in 3D

space corresponding to that region are identified. The nodes on the boundary and

corners will also be detected using the MATLAB convhull function [66]( Convex hull

of the 3D reconstructed region). The 3D reconstruction geometry will be obtained

as well as the boundary points and corner points for every vertebrae by performing

the described technique and utilizing the scaled landmarks received from the X-ray

images ( Fig. 2.10).
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Figure 2.9. The flowchart of 3D reconstruction of vertebrae using 2D
data [1].

Figure 2.10. 3D reconstruction of vertebrae using 2D data. The cam-
era parameters are calibrated before reconstruction. (a) The 3D re-
constructed corner point, (b) the segmented data of the AP and LAT
views, (c) the 3D reconstructed geometry using the bounding box al-
gorithm. The red points denote the outer surface and the blue points
denote the inner surface. (d) and (e) are the zoomed view of the L3
vertebra, visualizing the 3D reconstructed inner and out points [1].
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CHAPTER 3

Generate a patient-specific surrogate spine model using

imaging data

3.1. Background

In this Chapter, a surrogate spine model is developed to approximate the selected

properties based on the results of the physical model. A surrogate model is the one

that approximates a more complex, higher fidelity model and can be used in place

of the said complex model [67]. Surrogate modeling is a well-known approach to

study various industrial engineering problems and is a great tool to assist the com-

putationally expensive analysis and optimization [68]. In this research, a surrogate

spine model is introduced in which the modeling parameters are fitted to get the best

result. Previous efforts on building spine models are found in [69], where the models

are validated for single distinct spinal geometry with one set of material properties.

This fact raises the question regarding the validity of the results and compatibility

with the in vitro and in vivo results. As presented in Appendix A, the surrogate

model is validated based on the reported range of data in the literature. It should

be noted that indirect validation is used as described in [70] since the in vivo stress

distribution on each distinct geometry is not available. The results obtained by the

surrogate model will be used in the bio-informed mechanistic NN (Chapter 4) and

will provide the “trend” of the output prediction data.
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3.2. Generate patient specific volumetric mesh of spinal column and rib

cage using MR data

In this section we aim to generate a detailed model of human spine and rib cage in-

cluding all tissues. Human spine is a complicated 3D geometry and generating patient

specific 3D mesh would be time consuming process. For different biomechanical ap-

plications and clinical assessment, three-dimensional mechanical modeling of human

tissue is necessary, but repetitive manual processing of multiple images is needed [71].

Thanks to the registration method [72, 73, 74], the process of generating a detailed

model can be performed once and later for other patients, the steps can be performed

by obtaining a number of landmarks from X-ray data and registering them to the

detailed model. This is beneficial in two major aspects. First, not all patients have

the CT or MR data due to the adverse effect of radiation on the patient and the high

cost of 3D imaging. Second, it is time-consuming to segment each slice of the image

and assemble all the geometries. As it is described in Fig 3.1, the 3D reference model

( also known as ATLAS model) is generated erstwhile using the MR/CT data from

a voluntary patient. This model will be implemented as the reference model, and for

other patients, the patient-specific geometry will be generated using the landmarks

from X-ray data (Fig 3.2).

Figure 3.1. The steps of generating reference model using MR data
(perform one time).
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Figure 3.2. The steps of generating patient specific geometry using X-
ray data (repeat several times).

3.2.1. Segmenting MR data

MR data from a voluntary AIS patient is imported to the Materialise Mimics software.

The MR data contains 574 2D slices of images in the transverse plane in DICOM

( Digital Imaging and Communications in Medicine) format. The DICOM images

contain the patient information ( i.e. age, sex, birthday and the date that the exam

was taken). Fig 3.3 shows the environment of Mimics software after importing all

the slices of the spine images. Mimics can provide this ability to segment each slice

based on the desired tissue. Fig 3.4 shows setting up the threshold for the cortical

bone, and the green area denoted the cortical bone area. Although the software has

some automatic threshold for hard and soft tissue detection, it would sometimes be

required to define the threshold manually to capture all the pixels corresponding to

the desired tissue.

From the cortical bone region detected by the software, the area of interest (spinal

column and rib cage) should be selected. Fig 3.5 shows the generated geometry by

the software. The developed geometry should be post-processed to be implemented

for the finite element analysis. The parts corresponding to different tissue should be

separated in every slice of the image. Fig 3.6 shows the two masks, one correlated to

the rib cage and the other corresponding to the spinal column. The ”New Mask” tool
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Figure 3.3. Mimics environment that visualise coronal, sagital and axial
view.

can be used to highlight specific anatomy from the DICOM data. Further splitting

of the masks is required to separate all tissues in every slice of the image. Fig 3.7

demonstrates splitting the rib cage mask to cartilage and the ribs. To generate the

intervertebral disc, the space between the vertebrae will be filled with a volume, and

the final geometry, including the vertebra, rib cage, and discs, is generated as shown

in Fig 3.8.

It should be noted that the output of the Mimics is in Standard Tessellation

Language (STL) format, which contains the connected triangular surface mesh. The

Mimics output is imported to Trimatic Software to generate all tissue, including

vertebrae cortical bone, vertebrae cancellous bone, vertebra growth plates, interver-

tebral disc nucleus, and intervertebral Annulus, ribs, cartilage, and sternum. The

output STL file of the spine model is imported to the Meshlab Software to generate



53

Figure 3.4. Setting up the threshold of the image to detect cortical
bone.

Figure 3.5. The surface mesh generated by Mimics
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Figure 3.6. Mimics split masks to spinal column and rib cage

Figure 3.7. Mimics split masks to separate sternum and cartilage in the
rib cage

STP file. STP stands for the “Standard for the Exchange of Product”, which con-

tains information regarding 3D objects and are typically used to transfer 3D data
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Figure 3.8. Generate intervertebral disc by filling the space between
two adjacent vertebrae.

between different CAD/CAM (Computer-aided design/computer-aided manufactur-

ing) programs. Later, the STP file is imported to Abaqus, and the mesh module of

the ABAQUS is implemented to generate the volumetric mesh. Four ligaments ac-

counting for the three major sets of ligaments (anterior longitudinal ligament (ALL)

posterior longitudinal ligament (PLL) and intertransverse ligament) are defined using

four spring sets. The steps are shown in Fig 3.9.

3.3. Generate a volumetric reference model of human spine

As explained in Section 3.2, the 3D finite element meshes of the vertebrae and

intervertebral discs are generated using X-ray images. Each vertebra is partitioned

into cortical and cancellous bone and growth plate regions and each intervertebral disc

(IVD) is partitioned into annulus fibrosus and nucleous pulposes regions as shown in

Figure 3.10. Linear elastic material property is considered for each tissue [75] as

given in Table 3.1 (for 39 months) and tetrahedral elements are used for the entire

spine. Since AIS targets patients in early ages, published literature proposed using a

constant elastic modulus before 15 years old [76]. However to be more precise, the
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Figure 3.9. Steps to generate the reference model using MR data. In
the first step the MR (or CT) data are loaded to Mimics to perform
image segmenttion. Next, the generated data will be transferred to
Trimatic for further improvement on the geometry an to generate the
STL format. Later, the geometry will be imported to MeshLab to
generate STP file. In the final step, the complted solid geometry will
be import to ABAQUS for volumetric mesh, assigning time-dependent
material properties and time-dependent boundary conditions.

mechanical properties of cortical bone can be updated ( see Table A.2 in Appendix

A) for a given year before 13 years old. In this simulation, the material properties are

updated accordingly for each year. The total number of elements and vertices of the

spine geometry are 595, 573 and 128, 205, respectively. The boundary conditions are

defined such that the bottom surface of the L5 vertebra is fixed in all directions (X,

Y and Z) and the top surface of the T1 vertebra is fixed to allow no motion in X and
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Figure 3.10. The 3D finite element mesh of the spine consisting of
the lumbar vertebrae, thoracic vertebrae and intervertebral discs. The
close-up views are of the partitioning of a single vertebra into the growth
plate at the level of the cortical bone and cancellous bone and the inter-
vertebral disc into the Annulus Fibrosus and Nucleous Pulposus regions
are shown [2].

Y directions. In order to connect each intervertebral disc to the adjacent vertebrae,

the nodes located on the top surface of the disc are linked to the nodes on the bottom

surface of the top-adjacent vertebra. Similarly, the nodes at the bottom surface of the

disc are linked to all the nodes on the top surface of the bottom-adjacent vertebra.
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There are two forces applied on the spinal column. The first one is the gravita-

tional force and the second one is the vertical stabilizing force due to the surrounding

muscles of the vertebrae as it is shown in Figure 3.11. The dominant direction of

the resultant loads on the spinal column is presumed to be close to the direction

of the gravitational force. Gravitational load is applied at the center of mass of

each vertebra and it is applied to each vertebral level unevenly based on the work

proposed in [77]. In order to consider the effect of the surrounding muscles on the

vertebral body in the standing position, the gravitational load increases as given by

the equation F i = (15 + 2.1Mi) [78], where F i is the total force applied on each

vertebra vi (i = 1, · · · , 17) and Mi is the percentage of the total mass of each ver-

tebra as described in Table 3.2 for a subject with the weight of the spine given as

16.5 kg (at 39 months). The applied load on each intervertebral disc is calculated

as F
(i,i−1)
v = F i − F (i−1), where F

(i,i−1)
v is the applied load on the intervertebral disc

located between the vertebrae vi and v(i−1). Based on the combination of gravita-

tional and muscular forces that are calculated from the intervertebral disc pressure,

this framework of calculating applied force on the spinal column is chosen such that

it expresses the activity of the vertebral growth plates. The load applied to the spine

can be dynamically updated based on the age and the weight can be estimated using

[5] as described in Table 3.3.

As seen in Figure 3.12, vertebral bone has both longitudinal and lateral growth.

To study the non-uniform local growth of each element, a local coordinate system

is defined at each face of the tetrahedral element in which the local coordinates for

one face are defined as shown in Figure 3.13. The local x and y directions are the
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Figure 3.11. Schematic representation showing the applied gravita-
tional and muscular load on each vertebra, applied load on the in-
tervertebral disc and the boundary conditions for the finite element
simulation [2].

Table 3.1. Material properties used in human spine simulation.

Tissue Young’s modulus (MPa) Poisson’s ratio
Cortical Bone 768 0.3

Cancellous Bone 400 0.3
Annulus Fibrosus 8 0.45
Nucleus Pulposus 2 0.49
Growth Plate 50 0.4

principal axes attached to each face of the elements and the local z direction is along

the normal vector of the face. The origin of the local coordinate system is located at

the centroid of each face. It should be noted that the corresponding elements of the

surface meshes are comparable, as we are registering the volumetric mesh shown in

Figure 3.10 with any new surface meshes of the vertebrae extracted from the method

given in Section 3.2. Thus, the number of elements and their ID numbers are the
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Table 3.2. Numerical description of the applied load (F i = 15+2.1Mi)
on each vertebra for the patient at 39 months (16.5 kg). Force applied

to each intervertebral disc is F
(i,i−1)
v = F i − F (i−1) = 0.91 kg.

Vertebral level Vertebral name Percentage of total mass Mass (Mi) (kg) F i (kg)
1 T1 14.0 2.31 19.85
2 T2 16.6 2.73 20.75
3 T3 19.2 3.16 21.65
4 T4 21.8 3.59 22.53
5 T5 24.4 4.02 23.44
6 T6 27.0 4.45 24.34
7 T7 29.6 4.88 25.24
8 T8 32.2 5.31 26.15
9 T9 34.8 5.74 27.05
10 T10 37.4 6.17 27.95
11 T11 40.0 6.60 28.86
12 T12 42.6 7.02 29.74
13 L1 45.2 7.45 30.64
14 L2 47.8 7.88 31.54
15 L3 50.4 8.31 32.45
16 L4 53.0 8.74 33.35
17 L5 55.6 9.17 34.25

Table 3.3. Calculating weight based on age [5].

Age range Weight calculation (kg)
1 (age in months+9)/2

(1, 5] 2× (age in years+5)
(5, 14] 4× (age in years)

same for all the spine models. The z direction is calculated for the same element

at three different time frames (68, 84 and 100 months). As shown in Fig. 4.4.2 a

neural network will be designed which uses both clinical and synthetic (finite element

simulation) data.

Based on the steps provided in 3.9 a volumetric finite element model of the spinal

column and rib cage is generated. This model can be implemented later for treatment

purposes. The model consists of 207,518 nodes and 752,489 elements. Four-node
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Figure 3.12. Longitudinal (a) and lateral (b) vertebral growth at 68, 84
and 100 months. The top and bottom rows show the side and front
views of the volumetric meshes of vertebra, respectively.

tetrahedral element (C3D4) is used for solid sections and spring elements are used

for the ligaments. The patient is a 32-month old female with the weight of 16.3 Kg.

The weight of the patient can be calculated based on the age using the information

provided in [2]. The assumptions on the weight applied on the spinal column and the

mechanical properties implemented in the model is explained in [2]. In this model

the discs are assumed to be viscoelastic and the mechanical properties corresponding

the ligaments applied on the spring in the FE model is extracted from [79]. The

displacement in the z direction is shown is Fig. 3.14 for the static loading condition.
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Figure 3.13. Three directions of growth are shown for one element of
the volumetric mesh of a vertebra. Changes in the surface normal
direction are observed between 68 and 84 months and between 84 and
100 months [2].

3.4. Implementing registration method to deform the reference model

Registering two surfaces involves finding a map that defines the location of se-

mantically corresponding points between a template surface and a target surface.

In this step, X-ray data is segmented to identify the landmarks around each ver-

tebra. Non-rigid Iterative Closest Point (ICP) is used to determine the landmarks

[80]. In this method a search based on spatial proximity finds the correspondence

of points, and the transformation of each point is modelled by general deformation.

Consider Fig 3.15, the green surface is the reference surface consisting vertices v (sur-

face S) and the goal is to reconstructing the surface passing through the vertices u

which generates surface Γ. The algorithm determines the closest point (ui) for each
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Figure 3.14. Distribution of displacement in z direction for a 38 months
old patient.

displaced source vector (Xivi) and find the optimal deformation for the stiffness used

in the iteration. The cost function that would be minimized in this algorithm would

be

(3.1) E = Ed(X) + αEs + βEl,

where Ed corresponds to the distance between the target and source landmarks, Es

accounts for the transformations of neighbouring vertices. α is a regularizing term

that controls the rigidity of the registration. In the case of rigid registration where the

distance between the landmarks are constant in the target and reference surface,α is

set to be a large value comparing to other terms. El explains the cost function related
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to the important landmarks and the coefficient β regulates the contribution of El to

the cost function. In this project, El could be selected in a way to trace the growth

plates landmarks. The detailed explanation of the registration technique implemented

in this project is explained in [2].

Figure 3.15. Registering the source to the target surface using ICP
method. The reference surface S (green) is deformed by locally affine
transformations (Xi) onto the target surface Γ (red). The algorithm
determines closest points (ui) for each displaced source vertex (Xivi)
and finds the optimal deformation for the stiffness used in this iteration.
This is repeated until a stable state is found.
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CHAPTER 4

Mechanistic bio-informed machine learning algorithm for

prognosis spinal deformity

4.1. Introducing Mechanistic Machine learning algorithm to predict

spinal deformity

In chapter 2, diagnosing spinal deformity (SD) with spinal features are introduced.

In this chapter we aim to introduce a methodology for SD prognosis by considering

all the characteristic features. Data driven diagnosis of spinal deformities have been

studied in literature to predict spinal deformities over years [81, 82]. However, these

literature suffer from the limited training data and can only predict within the range

of the input data. Rare deformities are not predicted by these models and cannot be

implemented in medical application. In this chapter we bring about a data-driven bio-

informed mechanistic machine learning to predict spinal deformity. Machine learning

methods are known as “data-hungry” methods. Traditional data-driven approaches

are regression methods that just perform interpolation on the input data. In the

proposed bio-informed framework we have implemented clinical data extracted from

X-ray images along with mechanistic data obtained from a spine surrogate model as

the input data of the data-driven approach [49, 2, 1]. The clinical data are chosen in

a way to uniquely characterise the 3D spinal shape discussed in chapters 2 and 3. By

implementing mechanistic data in the predictive frame work one would consider the
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governing physical equation of the bone growth into the predictive model to increase

the accuracy of the predictive approach and enhance the predictability outside of

the range of the training data. To study spinal curve progression over years, it is

believed that bone growth is a crucial factor that alters vertebrae shape over years

which exacerbate the spinal deformity and lead to sever spinal deformity diseases over

years.

4.2. Challenges and bone growth model

Gathering all medical data, classifying them (based on age, type of deformity, and

medical background), and storing them for analysis are time-consuming and labor-

intensive. Furthermore, unlike traditional machine learning algorithms that require a

large amount of data to train, the PS prognostic framework should be developed to

meet the limited available data as well as the following challenges:

• The lack of consistent medical data for a specific person over time;

• The absence of in-vivo measurements to reveal mechanical properties of bi-

ological tissue;

• The unavailability of measuring mechanical features such as stress distribu-

tion through the whole system;

• The noises of medical images make it hard to extract meaningful information

and track measurements within different time frames;

• The lack of understanding of the governing physical equations for the system;

• The inefficient process of generating detailed PS computational model that

captures PS features; and
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• The time difference between two consecutive data sets does not stay the

same.

In the presented framework we aim at addressing the aforementioned challenges.

As mentioned, traditional ML algorithms require a large amount of data to discover

the system’s underlying behavior. However, in the case of a PS investigation, the

volume of data available for each patient is restricted, and typical ML algorithms will

fail to capture the model’s behavior. On the other hand, the anticipated data may be

much enhanced if the governing physical equation of the system is considered since

it provides insights into the expected data. However, there are several aspects to

consider when employing governing physical equations. The model must be validated

over a large population, and some PS time dependent constants must be calibrated

for each individual patient at each time step if these models are used in computational

simulations as well as ML frameworks.

The underlying physical equation that governs the progression of the spine is the

bone growth model. Because AIS occurs during adolescence, when bone growth is at

its peak [83]. It is believed that bone formation is a consequence of the stress imposed

on each vertebra’s growth plate [84] located on the top and bottom of each vertebra.

On the other hand, this assumption may not be adequate to correctly depict bone

growth, since other factors such as age, sex, and bone mineral density also affect bone

formation. In the presented approach, we describe bone growth as follows:

(4.1) G = A+Bσ̄
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where G = [GX , GY , GZ ] are the growth rates (mm/month) along three normal direc-

tions and σ̄ is the von Mises stress. Vectors A and B are PS parameters that should

be calibrated for each patient, where A = [AX , AY , AZ ] are considered as growth

rate for non-scoliotic spine and B = [BX , BY , BZ ] are the regulating growth model

parameters.

4.3. Modified growth model

We aim to make the most use of all available data by exploiting medical features

acquired from X-ray data, mechanistic features extracted from computational models,

and addressing data scarcity while leveraging the underlying physical equation. The

objective of the bio-informed mechanistic machine learning method is to reconstruct

the curvature of the spine throughout time. However, the calibrated parameters gen-

erated by the system may be implemented into a computational model for monitoring

and assessing bone formation on a local level.

4.3.1. Framework explanation and notation

The parameters of the physical growth equation are patient-specific, time-dependent,

and position-dependent. Thus, Eq. (4.1) for any arbitrary landmarks on the growth

plates for time t and vertebra v can be rewritten as

(4.2) Gtv = Atv +Btvσ̄tv

where Atv = [Atv
X , A

tv
Y , A

tv
Z ] and Btv = [Btv

X , Btv
Y , Btv

Z ] are PS time dependent, position

dependent parameters that should be calibrated for each patient at a given time to
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calculate growth rates Gtv = [Gtv
X , G

tv
Y , G

tv
Z ] using the von Mises stress at time t for

vertebra v. Indices X, Y and Z correspond to the global coordinate system shown in

Fig. 2.10.

Local and global coordinate systems : To obtain the growth model parameters that

correspond to the growth deformation of the vertebrae without taking into account

the rigid body motion caused by the movement of the bottom vertebrae, a local

coordinate system is set up at the center point of each vertebra. The axes of the local

coordinates have the same direction as the axes of the global coordinate system (as

mentioned in Section 3, the center of global coordinate system is at the center point

of L5 (the fifth lumbar vertebra)). Fig. 4.1 (a) shows the global coordinate systems

corresponding to the time t and the local coordinate system for the vertebra L3 at

the same time (Fig. 4.1 (b)). The landmarks that surround each vertebra are divided

into two categories: those that are positioned on the growth plates (XG) and those

that dictate the vertebra’s side shape (XS) as shown in Fig. 4.1 (c).

Growth parameters : The parameters are intended to be patient-specific, time-

dependent, and position-dependent, as previously stated. The growth landmarks

with comparable motion directions (due to growth) within the same vertebra should

be analyzed together to represent the growth deformation of XG landmarks. In the

first step, nodes that behave similarly in each direction will be grouped together, as

indicated in Table 4.1. In the y-axis, for example, landmarks 1, 3, 5 and 7 have the

same growth order (positive local y), whereas landmarks 3, 4, 7 and 8 have the same

growth direction in the z-axis (negative local z) as visualized in Fig. 4.2. The growth

equation of each landmark (j) in local coordinates (x, y, z) for time (t) and vertebra
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Figure 4.1. Description of the coordinate systems and landmarks. (a)
Global coordinate system in AP view, (b) local coordinate system of
the vertebra L3 in AP view and (c) labeling landmarks to growth (XG)
and side (XS) [1].

Table 4.1. Landmarks with the same growth behavior are clustered into
the same group.

Local growth direction Clustered landmarks
x F = [1, 2, 3, 4] B = [5, 6, 7, 8]
y R = [1, 3, 5, 7] L = [4, 2, 6, 8]
z U = [1, 2, 5, 6] D = [3, 4, 7, 8]

(v) can be written as:

(4.3) Gtv
j = Atv

j +Btv
j σ̄tv

j

whereAtv
j = [Atv

xj
, Atv

yj
, Atv

zj
] andBtv

j = [Btv
xj
, Btv

yj
, Btv

zj
] are PS time dependent, position

dependent parameters for landmark (j) that should be calibrated for each patient at

a given time for every vertebra and for every landmark point. Indices x, y and z
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Figure 4.2. (a) Global coordinate system in AP view, (b) labeling of the
growth landmarks on vertebrae in local coordinate system in 2D view,
(c) labeling of the growth landmarks on vertebrae in local coordinate
system in 3D view [1].

represent the three directions of local coordinate system shown in Fig. 4.2. It should

be noted that σ̄tv
j is the von-Mises stress on landmark j of the vertebra v at time t

which is independent of the coordinate system. Detailed explanation on calculating

growth parameters is explained in App. B.

4.4. Spinal deformity prognosis framework

A bio-informed machine learning framework is introduced in the proposed frame-

work by incorporating our knowledge from clinical data (X-ray images) and the mod-

ified bone growth computational model explained in section 4.3. The neural networks

notations are introduced in Table 4.2.
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Table 4.2. Notation table of variables used in the feed forward neural
network.

t Counting index for number of time steps
It
s Vector of input , s = 1, ..., NT

Ij,s jth entry of I vector of input , s = 1, ..., NT

Ot
s Vector of output , s = 1, ..., NT

s Counting index for number of samples (training or validation, depending
on context)

m Counting index for number of landmarks on each vertebra
Nm Number of landmarks on each vertebrae
l Counting index for number of layers
i Counting index for neurons in a given layer
j Counting index for neurons in another layer
NT Number of training samples
NL Number of layers in the neural network

NN(l) Number of neurons in layer l
alj,s Neuron value for jth neuron in lth layer and for sth sample
W l

ji Weight connecting the ith neuron in layer l to the jth neuron in layer l+1
blj Bias of the jth neuron in layer l
A Activation function

FFFNN Feedforward neural network function
H The height of the spine

4.4.1. Feed forward neural networks

4.4.2. Machine learning framework explanation

In order to illustrate the structure of feed forward neural networks (FFNNs), a sim-

plified one-dimensional example is presented. In the proposed chapter, we aim at

predicting spine shape using the PS clinical and mechanistic features. The landmark

position X is related to the features I at a given time by an unknown bio-physics

equation which can be generically defined as a mapping. The overall structure of a

neural network can also be described as a mapping, i.e.:
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(4.4)


Unknown bio− physics equation : X = FUnknown−BioPhy(I)

Neural network mapping : X = FFFNN(I)

where FFFNN is the feed forward neural network (FFNN) that uses clinical and

mechanistic features I as input, and generates landmark coordinatesX as the output.

The structure of a simple FFNN is shown in Fig. 4.3(a). The notation used in this

figure and throughout this section is defined in Tab. 4.2. For this illustration case,

only one sample in 1D is considered, hence s = 1 and all variables are written without

the superscript s. A general FFNN contains neurons (the circles) and weights (black

lines).

In general, an FFNN has one input layer, one output layer, and multiple hidden

layers. Each layer may have multiple neurons; for the input and output layers, these

are simple the input and output values. In the simplest case, an FFNN would have one

input neuron, one hidden neuron, and one output neuron. To predict the position of

a landmark, the input neurons would be clinical and mechanistic features, the hidden

neurons would act as a multiplicative, functional decomposition of the unknown bio-

physics equation that estimates the unknown function required to map input features

to coordinates in the output neurons. Generalizing this slightly, we might consider

an FFNN with three hidden neurons, as shown in Fig. 4.3. Each neuron has only

one value. The first neuron is the input features I :

(4.5) al=1
i=1 = I (input layer)
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Figure 4.3. Illustration of an FFNN network with one hidden layer; the
collective function of the weights and biases connecting the input layer
(green), the hidden layer (blue), and the output layer (red) is estimating
the unknown governing bio-physics equation [3].

The three neurons in the hidden layer take in this value, and each take on the value

given by:

(4.6) al=2
j=1,2,3 = A (bl=2

j +
1∑

i=1

W l=1
ij al=1

i ) (hidden layer)

where A is an activation function. In the training part, this research uses ReLU

(Rectified Linear Unit) function defined as the positive part of its argument, [85]:

f(x) = x+ = max(0, x), and each neuron is computed using a different weight W l=1
ij
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and bias bl=2
j , where i is the neuron in the previous layer (in this case, the input later)

and j is the neuron in the current layer (in this case, the hidden layer). Finally, the

overall response – the predicted landmark coordinates – is given by:

(4.7) Xpredicted = al=3
k=1 = bl=3

k +
3∑

j=1

W l=2
jk al=2

j (output layer)

The combination of all the W and b terms, as well as the activation function, work

as the fitting factors in a regression analysis. The activation function A is fixed for

all neurons, and is used to condition the weighting factors. Another example shown

in Fig. 4.4 extends the previous example to consider a multi-dimensional input and

output, with many neurons per layer and several layers. The inputs can be defined as

I1, I2 and I3 corresponding PS features extracted from images and mechanistic model

such as coordinates and global angles explained in chapter 2. The outputs are the

three components of the predicted landmarks as X1, X2 and X3. The samples from

the database outlined above are used to train the neural network. After training,

the FFNN can predict landmark coordinates when given corresponding inputs. In

this project, MATLAB is used to build the FFNN and to train the neural network

parameters [86].

Each neuron within every layer of a generic FFNN receives the output value

from each neuron in the previous layer as input and produces a single output. This

procedure is carried out for each layer. For an arbitrary number of layers and neurons

per layer, the value of the jth neuron in layer l for the sth sample (either a training

sample or prediction) may be written as:
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Figure 4.4. Illustration of an FFNN with multiple hidden layers; NL:
index of layers, NN(l): number of neurons in layer l. The formulation
of the FFNN is given in Eq. (4.8) with associated interpretation of the
FFNN structure. The indices i and j representing neuron id in previous
layer and current layer, e.g., Wl=1

12 is the weight between neuron 1 in
layer l = 1 and neuron 2 in layer l = 2 [3].

(4.8) alj,s =



Ij,s, if l = 1 (input layer)

A (blj +
∑NN (l−1)

i=1 W l−1
ji al−1

i,s ), if , l ∈ {2, ..., NL − 1} (hidden layers)

blj +
∑NN (l−1)

i=1 W l−1
ji al−1

i,s , if l = NL (output layer)

where the final layer gives the estimated stress:

(4.9) Xpredicted
j,s = aNL

j,s .
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The outputs alj,s of each layer possesses similar physical meaning as explained for

the simplified case with one input and one output. The input feature components

are represented by l = 1,alj,s for the sth sample, and l = 2, ..., NL − 1, alj,s represents

an estimate of the the predicted landmarks. The hidden layers take in input features

components and produce a estimate of the non-linear landmark coordinate responses

by implementing the activation functions and weights of layer l = 1, ..., NL − 1.

During the training process, the non-linear unknown relationship between landmark

coordinates and input features is gradually “learned” by those hidden layers. In the

last layer, l = NL, a
l
j,s represents the predicted landmark coordinate.

The predicted result are produced through the regression operation in the output

layer, as shown in Eq. (4.8). The weights and bias of the output layer correct the

prediction generated from hidden layers, and produce accurate responses. The FFNN

can learn the unknown governing bio-physics governing equation based on the loss

function, input and output features. The loss function can be defined in a way to train

the FFNN in a way to provide accurate estimation while providing patient specific

parameters that can be considered as the hyper parameter of the network. In the

following section, multiple FFNN approaches are described by implementing different

loss function and different input-output features .

4.4.3. Feed forward neural network explanation with patient-specific data-

base generated

3D-Clinical Neural Network (FFNNCL): Given the coordinates of a vertebra’s

landmarks at time t, the clinical neural network attempts to predict the vertebra’s
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landmark coordinates at time t + ∆t; see Fig. 4.5. The input vectors are I t
s =

[X̄
t
s,α

t
s, t,∆t], where X̄

t
s indicates the landmark coordinates of sample s at time t

and αt
s denotes the global angles characterizing the 3D shapes of the spine at that

time. The outputs are vectors Ot
s = [X t+∆t

s ], where X t+∆t
s denotes the expected

3D coordinates of the vertebra’s corner points at time t + ∆t. The corresponding

equations are explained in App. C. The relative approximation error for this model

is calculated as

(4.10) δCL =
1

H.NT .Nm

NT∑
s=1

Nm∑
m=1

∥∥∥X t+∆t
sm − X̄

t+∆t
sm

∥∥∥2

,

where δCL denotes the relative error of the clinical neural network, X t+∆t
sm is the

coordinates of the landmark m of vertebra s predicted by the neural network, and

X̄
t+∆t
sm is from clinical dataset.

Center Point Predictor Neural Network (FFNNCR): Given the set of land-

marks’ coordinates X̄
t
s, global angles αt

s, and von Mises stress σ̄t
s at landmarks at

time t, FFNNCR predicts the coordinates of the center of the sample at time t+∆t;

see Fig. 4.6. More formally, the input to FFNNCR is I t
s = [X̄

t
s,α

t
s, t,∆t, σ̄t

s] and its

output vector is Ot
CR,s = [Ct+∆t

s ], where Ct+∆t
s denotes the center coordinates of the

sample s at time t + ∆t. The results of this network is used to 3D reconstruct the

geometry. Synthetic data is created to achieve a more accurate result, and 20% of it

is used in the training step.

Bio-informed Clinical Neural Network (FFNNBC): Using the clinical data

to predict bone growth parameters, FFNNBC predicts the parameters of the physical

growth equation given the set of landmark coordinates, global angles, and von Mises
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Figure 4.5. The structure of the 3D-clinical feed forward neural network
FFNNCL developed to predict the coordinates of the landmarks at
time t+∆t [1].

stress at the landmarks; see Fig. 4.7. Input vectors are I t
s = [X̄

t
s,α

t
s, t,∆t, σ̄t

s], where

X̄
t
s is the landmarks’ coordinates at time t, αt

s is the set of global angles, and σ̄t
s is the

set of Von Mises stress. The outputs of the network are vectors Ot
s = [At+∆t

s ,Bt+∆t
s ]

predicting the growth model parameters in 3D for each landmark. Combining the

results of FFNNBC with the center points resulted from FFNNCR, we are able

to predict the coordinates of the landmarks of the sample at time t + ∆t. The

corresponding algorithm is explained in App. C.
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Figure 4.6. The structure of the center point prediction feed forward
neural network FFNNCR developed to predict the location of the cen-
ter point of the vertebra at time t+∆t [1].

For any sample s and any landmark m on s, define the landmark X t+∆t
BC predicted

by FFNNBC as

(4.11) X t+∆t
BC = X̄

t
BC +∆Ct

s + (At+∆t
BC + Bt+∆t

BC σt
BC)∆t,

where At+∆t
BC and Bt+∆t

BC are obtained from At+∆t
s and Bt+∆t

s , which are the outputs

of the second model, X̄
t
BC is the coordinates of landmark m of sample s at time t

obtained from clinical dataset, and ∆Ct
s is the change in the center of sample s from

time t to time t +∆t, obtained from the results of the first neural network. By this
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definition, this model’s relative approximation error, δBC , is calculated as

(4.12) δBC =
1

H.NT .Nm

NT∑
s=1

Nm∑
m=1

∥∥∥X t+∆t
sm − X̄

t+∆t
sm

∥∥∥ .
Bio-informed Mechanistic Neural Network (FFNNBM): Similar to FFNNBC ,

in the first step of this model, FFNNCR predicts the coordinates of the center point

of the vertebra at time t+∆t, followed by computing the transition vector from the

center point of the sample from time t to t+∆t. The neural network FFNNBM then

predicts the set of growth model parameters as an output using a mechanistic loss

function; see Fig. 4.7. The input vectors are I t
s = [X̄

t
s,α

t
s, t,∆t, σ̄t

s] with the same

definitions for X̄
t
s,α

t
s, and σ̄t

s. The output of FFNNCR is Ot
CR,s = [Ct+∆t

s ] which

remains the same and the output vectors to the second step is Ot
s = [At+∆t

s ,Bt+∆t
s ],

with At+∆t
s and Bt+∆t

s representing the parameters of the physical growth equation.

The corresponding algorithm is explained in App. C.

Similar to the FFNNBC , we define the predicted landmark m of sample s, for

each m and s, as

(4.13) X t+∆t
BM = X̄

t
BM +∆Ct

s + (At+∆t
BM + Bt+∆t

BM σt
BM)∆t.

The definitions are identical to those stated in the FFNNBC formulation. The rel-

ative approximation error for FFNNBM model, represented by δBM , is calculated

using

(4.14) δBM =
1

H.NT .Nm

NT∑
s=1

Nm∑
m=1

∥X t+∆t
BM − X̄

t+∆t
BM ∥2.
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Figure 4.7. The architecture of a neural network for predicting the
physical growth equation parameters. This structure is used in both
FFNNBC and FFNNBM by defining two separate loss functions (one
mechanistic and one non-mechanistic) [1].

4.4.4. Implementing the machine learning frameworks for prognosis spinal

deformity

Data collection and feature selection: This part aims to provide a framework for

prediction spinal deformity using the snake algorithm discussed in section 2. The

database is comprised of clinical x-ray images. The snake algorithm is capable of
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Table 4.3. Neural network setup for neural networks.

NN components
3D-Clinical Bio-inf. Clinical Bio-inf. Mechanistic
FFNNCL FFNNCR FFNNBC FFNNCR FFNNBM

# training samples 68 68 68
Size of training samples 31 39 39

# test samples 51 51 51
Size of test samples 24 3 12 3 12
# Hidden layers 2 2 2 2 2
Neurons in layer 1 20 20 20 20 20
Neurons in layer 2 10 10 10 10 10
Activation function ReLU function

generating an infinite number of landmarks around each vertebra using x-ray images.

Landmarks are classified into two types: those located on growth plates (XG) and

those that determine the vertebral sides (XS), as illustrated in Fig. 4.1. The number

of XG landmarks on each 2D plane in this application is four, signifying the corner

points that are expected to be on the growth plates. As a result, in the 3D framework

presented (XG = 8 and XS = 8) as shown in Fig. 4.8. At t0 = 124 months, the

patient’s first x-ray image is obtained. The next four x-ray images are obtained at

t = 139, 149, 156, 168 months and used to train the neural network. The remaining

three x-ray images, collected at t = 160, 179, 187 months, are utilized to compare

with the neural network findings as shown in Table 4.4. Each x-ray image depicts

the form of the patient’s spine at a specific age. Based on the explained machine

learning framework explained in section 4.4.2 the 3D-Clinical, Bio-informed Clinical

and the Bio-informed Mechanistic NN are setup as explained in Table 4.3. It should

be noted that the growth landmarks are tesed for each framework, and the relative

approximation error indicated in Table 4.5 is determined for all landmarks, including
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growth and side landmarks. The data is normalized before being fed to the model

since the range and units of the input matrix are not the same.

Table 4.4. Data collection for the clinical, semi-mechanistic and mech-
anistic neural network.

Identification of x-ray images Age (months)
Initial x-ray image 124

Output training x-ray images {139, 149, 156, 168}
Output testing x-ray images {160, 179, 187}

Figure 4.8. Illustration of the growth landmarks and side landmarks.
There are 8 growth landmarks (XG = 8) and 8 side landmarks(XS = 8)
[1].

Results and cross validation on the data: The findings obtained from the patient

described in Table 4.4 are presented here to illustrate the accuracy of the bio-informed

mechanistic neural network prediction. The NN reconstruction process is the same as
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that explained in section 4.4.2. A breakdown of the data used for training and testing

can be seen in Table 4.4. Fig. 4.9 shows a comparison of the ground truth (actual

data acquired from X-ray scans) and FFNNCL for the age of 160 months which is

inside of the range of the training data and 179 and 187 for the outside of the range

of the training data. The results are visualized for the eight corner points signifying

the growth landmarks. Due to the 3D-Clinical NN’s nature, the framework fails to

forecast the ground truth. This framework is built on interpolation, and when it

comes to the PS prediction, where the available data is insufficient, the model cannot

learn from the available data, hence it fails to predict both inside and outside of the

range. Fig. 4.10 shows the results for the FFNNCR−BC framework applied on the

same dataset. FFNNCR−BC is the series architecture of FFNNCR and FFNNBC

as explained in Appendix C. The results are 3D reconstructed based on the growth

parameters obtained by FFNNCR−BC (Figs. 4.10 a,c and e) and the corresponding

AP views are visualized in Figs. 4.10 b,d and f respectively. Because the findings

are recreated using the bone growth model, this framework delivers a more accu-

rate prediction than FFNNCL. The data are next examined for the FFNNCR−BM ,

as illustrated in Fig. 4.11. Similar to FFNNCR−BC , FFNNCR−BM is the series

architecture of FFNNCR and FFNNBM as explained in Appendix C. Due to the

implementation of the mechanistic loss function, the results are the best when com-

pared to the FFNNCL and FFNNCR−BC and are compatible with the ground truth

obtained from X-ray images.

A cross validation study is carried out to see how the input and output data impact

the framework error, as shown in Table 4.5. The term “cross validation” refers to
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the process of determining how well a prediction model will work in practice [87].

We preserve the past two ages as test cases and rotate the test case inside the prior

age span since we are more interested in prediction outside of the range. We can see

from Table 4.5 that the prediction error of FFNNCR−BM is always lower than that

of FFNNCL and FFNNCR−BC , and that it can predict future spine curvature with

a small error. The relative errors are calculated based on the Eqs. (4.10), (4.12) and

(4.14) for FFNNCL, FFNNCR−BC and FFNNCR−BM respectively. Table 4.6 refers

to the cross validation on the 2D data using the existing Mechanistic framework [6]

and FFNNCR−BM . As it is shown, for each testing case, the present structure is

more efficient. The suggested FFNNCR−BM enhances prediction accuracy by 40%

for the inside of the range and 84.3% for the outside of the range.
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Figure 4.9. Differences between pure data science prediction
(FFNNCL) and ground truth (the results obtained by X-ray im-
ages) at age of (a) 160 Months (inside of the range of the trained data),
(b) 179 Months (outside of the range of the trained data) and (c) 187
Months (outside of the range of the trained data). The landmarks
are eight corner points of each vertebra. It is obvious that FFNNCL

cannot predict the ground truth [1].
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Figure 4.10. Differences between Bio-informed Clinical prediction
(FFNNCR−BC) and ground truth (the results obtained by X-ray im-
ages) at age of 160 Months (inside of the range of the trained data,
a-b), 179 Months (outside of the range of the trained data, c-d), and
187 Months ( outside of the range of the trained data, e-f). (a, c, e)
show the 3D view and (b, d, f) show the 2D view on AP plane. The
landmarks are eight corner points of each vertebra. It is obvious that
FFNNCR−BC can predict the results close to ground truth [1].
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Figure 4.11. Differences between Bio-informed Mechanistic prediction
(FFNNCR−BM) and ground truth (the results obtained by X-ray im-
ages) at age of 160 Months (inside of the range of the trained data,
a-c), 179 Months (outside of the range of the trained data, d-f) and
187 Months ( outside of the range of the trained data, g-i). (a, d, g)
show the 3D view, (b, e, h) show the 2D view on AP plane and (c, f,
i) show the 3D reconstructed detailed geometry. The landmarks are
eight corner points of each vertebra. FFNNCR−BM can clearly predict
outputs that are close to ground truth [1].
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Table 4.5. Cross validation study for three different neural networks.
For each case, the testing data (blue cells) and training data (white
cells) are shown. The relative approximation error is calculated for
each prediction case [1].

Type of NN
Prediction performance

139 149 156 160 168 179* 187*

FFNNCL 2.74 1.68 2.72
FFNNCR−BC 1.09 0.10 0.18
FFNNCR−BM 0.68 0.02 0.04

FFNNCL 0.94 0.31 0.23
FFNNCR−BC 0.19 0.05 0.13
FFNNCR−BM 0.10 0.02 0.03

FFNNCL 0.4 0.20 0.23
FFNNCR−BC 0.090 0.091 0.16
FFNNCR−BM 0.08 0.02 0.032

FFNNCL 0.25 0.11 0.45
FFNNCR−BC 0.03 0.08 0.18
FFNNCR−BM 0.01 0.02 0.03

FFNNCL 0.14 0.23 1.18
FFNNCR−BC 0.03 0.09 0.13
FFNNCR−BM 0.015 0.018 0.02

* Prediction at age outside of the range of trained data.
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Table 4.6. Cross validation study for two different neural networks on
2D data for AP view (the mechanistic framework FFNNME is bor-
rowed from [6]). For each case, the testing data (blue cells) and train-
ing data (white cells) are shown. The relative approximation error is
calculated for each prediction case. For each case, the Bio-informed
Mechanistic approach has better performance [1].

Type of NN
Prediction performance

139 149 156 160 168 179* 187*

FFNNCR−BM 0.14 0.08 0.03
FFNNME 0.30 0.12 0.67

FFNNCR−BM 0.05 0.07 0.02
FFNNME 0.07 0.3 0.53

FFNNCR−BM 0.03 0.06 0.03
FFNNME 0.04 0.17 0.20

FFNNCR−BM 0.04 0.08 0.03
FFNNME 0.08 0.24 0.32

FFNNCR−BM 0.04 0.06 0.03
FFNNME 0.03 0.24 0.44

* Prediction at age outside of the range of trained data.
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CHAPTER 5

Conclusions and future works

5.1. Conclusions

The proposed work combines biomechanics, finite element analysis, advanced data

science and image analysis technique to develop a predictive, patient-specific model

for spine curvature in pediatric spinal deformity patients. Specifically, by taking

advantage of the modified bone growth model, the iterative optimization of the deep

learning framework consists of time-varying geometry-based parameters considered

in the mechanistic loss function to minimize the error prediction while optimizing the

dynamic parameters.

This research addresses the issues of limited data for validation of PSD model,

variability of spinal growth among different patients and complexity of geometrical

features of spines for predicting curvature. To develop the system, Lurie Hospital pro-

vided the anteroposterior and lateral views X-ray images of spine from PSD patients

at different ages, treatment stages, and physical conditions. By adjusting geometric

and fitting parameters in the active contour model, this study addressed one bottle-

neck of image segmentation. The segmented data are used to generate a 3D detailed

model.

Patient-specific models of the spines are generated through image segmentation

and surface registration methods with the help of clinical x-ray image data from Lurie
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Hospital. These techniques can handle the complex geometry of vertebrae in human

spine for 3D reconstructions. Thus, the proposed method has improved capability

to capture progressive change in spine curvature for a specific patient compared to

the existing models. It is a completely automated approach for detecting progressive

change in spine curvature in detail for a single patient. A spine surrogate finite element

model is generated along with the mesh generation. This framework incorporates

time-dependent material models and time-dependent boundary conditions to reflect

the effect of age and bone maturity in the surrogate model.

By merging medical data knowledge with a computational model, the presented

framework addresses the problem of limited data for PS study. By incorporating

a mechanistic learning and physical simulation model along with clinical data, we

design a bio-informed mechanistic neural network that can predict the spinal curve

progression with time for a specific patient. The novelty of the proposed method lies

in its generality in predictive capability i.e. unlike the traditional neural networks, it

can predict outside the range of conditions specified in the training data.

5.2. Suggested on future works

5.2.1. Further improvement on diagnosis and prognosis steps

In the future work, calibration of material properties and boundary conditions can

be performed to study their effect on the prediction error along with improving the

robustness of the surrogate model using the ample number of in-vitro and in-vivo

results from experiments. To investigate the effect of each contributing factor on

the prediction error of the bio-informed mechanistic framework, further sensitivity
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analysis is required regarding the noise in the input data of the machine learning

framework and the mesh size of the surrogate model. For each kind of spinal ab-

normality, separate reference models may be created ( i.e. kyphosis and lordosis).

As a result, the corresponding reference model can be chosen based on the deformity

type, and landmark registration can be performed on them to provide patient-specific

volumetric mesh. To address this procedure, for a given X-ray data, cross correlation

can be performed between the input data and the reference data sets. One potential

method to perform cross correlation between images would be dynamics time warping

(DTW) [88]. By applying cross correlation, the most similar image to the input data

will be find among the reference data set images and the landmarks corresponding to

the correlated image will be implemented as the reference model of the ICP method.

The detailed 3D geometry will be generated by deforming the most similar reference

model.

The introduced framework contains PS dynamic parameters. These characteristics

may be used in dynamic finite element analysis of various tissues at a smaller scale.

The suggested framework can also be used for other image-based study including

tumor progression and cardiovascular applications. The whole process is computa-

tionally helpful for early detection and treatment planning of spinal illnesses such as

Lordosis and Kyphosis. Future research might look at the same framework over a

larger dataset to construct a real-time, patient-specific, optimal treatment plan based

on the first visit.
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5.2.2. Further improvement on treatment step

The physicians require real-time prediction of curvature in spine of PSD patients to

prescribe most suitable path of treatment. If braces are to be designed for treatments,

the design must consider the change in the shape of PSD patient’s spine over the

period of treatment. Therefore, the brace designers also require a real-time predictive

scheme for proper design. Our proposed methodology offers a predictive scheme while

considering all the complex factors including geometry, material property, physical

conditions, etc. For fast calculation a physics-based reduced order model can be

developed into our computational framework. Moreover, the geometric update will

also be performed based on unsupervised learning assisted clusters on vertebral growth

plates. Thus, the model will be able to calculate and predict the shape of vertebrae

very quickly and the physicians can visualize the progression of spine in real time.

The treatment forces can be designed along with the reduced order model to

come up with the optimized treatment plan. One potential approach is shown in

Fig. 5.1. Predicted results of the bio-informed mechanistic NN would be the input of

the treatment phase. Meanwhile, desired 3D features for correcting spinal deformity

are introduced to the system. The error between the desired output and the bio-

informed mechanistic NN output will be calculate and the result will be passed to

a feedback controller. This controller will design treatment forces as a function of

time to reach the desires. One example of the potential controller that can be used

would be proportional–integral–derivative controller (PID controller or three-term

controller. The output would be treatment force based on time. This framework can

be replaced by a NN once the system is trained based on the error and treatment force
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Figure 5.1. Future project plan. The clinical features will be extracted
from X-ray data and mechanical data is obtained from the surrogate
model. The predicted output will be compared to the desired one and
the treatment force can be designed accordingly and pass it to the finite
element model. The loop can be repeated until convergence.

as a function of time (the controller can be recruited as the supervisor of the NN).

This treatment force will be applied to the FE model to get mechanistic data and the

result will be passed to the Mechanistic NN. This loop will repeat until convergence.
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APPENDIX A

Validation of the Surrogate Finite Element Model of Spine

The results of the generated finite element model are used to calculate the stress

located on the top and bottom surfaces of each vertebra, which can provide a trend

for prediction. The calculated stress will be used as an input for the mechanistic

neural network for the prediction of curve progression. There are some methods to

validate the results obtained by the spine finite element model. In this paper, the

intervertebral disc (IVD) pressure is validated with the in-vitro results provided in

[89].

One critical parameter to characterize spinal load and effect on the spine curve

progression is IVD pressure. This parameter is among the few criteria that are directly

controlled by the axial spinal load [90]. Maximum physiological IVD pressure is

assumed to be between 0.1 MPa and 0.24 MPa [89]. However, scoliotic spine has

higher pressure compared to the control patients. Figure A.1 demonstrates the von

Mises stress distribution on IVD generated using ABAQUS software. As can be seen,

the stress distribution is not symmetric on IVD (as it is expected) which leads to

non-uniform growth of the vertebra and progression of scoliosis. The distribution of

the von Mises stress can be compared with the experimental data provided in [4] in

the intervertebral disc between L1-L2 vertebrae (Figure A.2). The stress is plotted

along the path between concave and convex edges in the absence of muscle load.

Since the experimental data is not taken from the same patient as the geometry in
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Figure A.1. Von Mises stress distribution on intervertebral disc between
a) L3 and L4 vertebrae, b) L3 and L4 vertebrae, c) T1 and T2 vertebrae,
and (d) T2 and T3 vertebrae (102Pa) [2].

the finite element simulation, the maximum stress value is not the same. However,

the distribution and range of the stresses are similar. The only purpose to visualize

the comparison with the experimental data is demonstrating the not-symmetry trend

of the stress distribution, and the magnitude of the stress should not be compared

since the results are taken from different geometry with different material properties.

As mentioned earlier in chapter 3, the generated model is a surrogate model and

we used the indirect validation method described in [70]. Indirect validation uses

the experimental data that is not controlled by the user. This type of validation

may seem unfavorable but it is unavoidable in this study since the in-vivo IVD stress

distribution results of the distinct geometry is not available. Moreover, in this study

the sensitivity analysis on the mesh size is not required in the surrogate model since



109

the results extracted from the surrogate model provides the trend of the output data

used in the FFNNBC and FFNNBM .

Figure A.2. Comparison of von Mises stress distribution of simulation
and experimental data on disc L12 [4, 2].
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Table A.1. Number of elements (NE) and nodes (NV ) based on the
optimally designed size of face triangle meshes in Appendix A, and the
optimally designed mesh size (S) of the 3D finite element meshes of
each vertebra and intervertebral disc (IVD).

Vertebra NE NV S(mm)
L1 16,658 3,761 1.33
L2 16,168 3,685 1.19
L3 16,852 3,612 1.09
L4 16,165 3,687 1.24
L5 16,999 3,830 1.18
T1 22,845 4,762 1.07
T2 24,132 4,960 1.11
T3 22,631 4,762 1.18
T4 24,388 5,012 0.958
T5 24,221 5,005 0.956
T6 25,404 5,187 0.984
T7 25,808 5,255 0.953
T8 24,151 4,979 1.17
T9 22,475 4,729 0.954
T10 17,830 3,949 1.02
T11 17,549 3,919 1.15
T12 17,024 3,834 1.14

IVD NE NV S(mm)
L1,2 15,572 3,393 1.24
L2,3 14,988 3,251 1.36
L3,4 15,678 3,444 1.16
L4,5 17,106 3,788 1.42
T1,2 14,995 3,356 1.40
T2,3 15,225 3,296 0.909
T3,4 14,842 3,263 1.09
T4,5 16,246 3,551 1.14
T5,6 14,167 3,078 0.983
T6,7 16,249 3,514 1.09
T7,8 15,104 3,260 0.844
T8,9 14,680 3,217 0.960
T9,10 14,962 3,266 0.783
T10,11 13,721 2,957 0.949
T11,12 13,453 2,916 1.03
T1L5 18,257 3,726 0.950
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Table A.2. Mechanical properties of cortical bone with time (data given
as mean) for infant [7, 8, 9].

Age (months) Elastic Modulus (MPa)
1 451.7

(1, 2] 645.8
(2, 3] 768.8
(3, 4] 768.8
(4, 5] 796.4
(5, 6] 886.1
(6, 7] 992.6
(7, 8] 1,980.3
(8, 9] 1,467.12
(9, 10] 1,417.9
(10, 11] 1,232.5
(11, 24] 1,848
(24, 36] 1,909
(36, 48] 1,883
(48, 60] 2,068
(60, 72] 2,155
(72, 120] 1,988
(120, 158] 1,995
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APPENDIX B

Calculating growth parameters

Nodes with comparable growth behavior have the same growth parameters, as

listed in Table 4.1. These parameters are considered to be the same for each vertebra.

The first step in determining growth parameters for each vertebra v is to create growth

equations for all nodes as presented in Eq. (4.3).

The equations are rewritten to represent the clustered label in each direction,

using the same growth parameter assumption as mentioned before as

Gtv
xj

=


Atv

xF
+Btv

xF
σ̄tv
j xtv

j < 0,

Atv
xB

+Btv
xB
σ̄tv
j xtv

j ≥ 0,

(B.1)

Gtv
yj
=


Atv

yR
+Btv

yR
σ̄tv
j ytvj < 0,

Atv
yL

+Btv
yL
σ̄tv
j ytvj ≥ 0,

(B.2)

Gtv
zj
=

Atv
zU

+Btv
zU
σ̄tv
j ztvj < 0,

Atv
zD

+Btv
zD
σ̄tv
j ztvj ≥ 0

(B.3)

where xtv
j , y

tv
j and ztvj are the coordinates in the local system of landmark j for the

vertebra v at time t. The vectors A and B will be defined as

(B.4)
A = [AF , AB, AR, AL, AU , AD],

B = [BF , BB, BR, BL, BU , BD]
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to define the position dependent scalar value of growth parameters for each vertebra.

To discretize the growth parameters in each direction, the vectors

Ax = [AF , AF , AF , AF , AB, AB, AB, AB],

Ay = [AR, AL, AR, AL, AR, AL, AR, AL],

Az = [AU , AU , AD, AD, AU , AU , AD, AD],

(B.5)



Bx = [BF , BF , BF , BF , BB, BB, BB, BB],

By = [BR, BL, BR, BL, BR, BL, BR, BL],

Bz = [BU , BU , BD, BD, BU , BU , BD, BD],

are defined corresponding to the growth parameters in each direction for all the growth

landmarks. In the presented frame work, the number of growth landmarks is XG = 8,

corresponding to 8 corner points shown in Fig. 4.2. To represent the matrix form of

growth parameters for each vertebra, matrices A and B are developed as

(B.6) A = [AT
x AT

y AT
z ] and B = [BT

x BT
y BT

z ].

The dimension of A and B are 8 × 3 corresponding to 8 growth landmarks and 3

local coordinate directions (x, y and z). Calculating the growth parameters in each

direction for all the 8 landmarks located on the growth plate can be obtained by
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(B.7)



G1
x G1

y G1
z

G2
x G2

y G2
z

G3
x G3

y G3
z

G4
x G4

y G4
z

G5
x G5

y G5
z

G6
x G6

y G6
z

G7
x G7

y G7
z

G8
x G8

y G8
z



=



AF AR AU

AF AL AU

AF AR AD

AF AL AU

AB AR AU

AB AL AU

AB AR AD

AB AL AD



+



BF BR BU

BF BL BU

BF BR BD

BF BL BU

BB BR BU

BB BL BU

BB BR BD

BB BL BD



⊙



σ̄1 σ̄1 σ̄1

σ̄2 σ̄2 σ̄2

σ̄3 σ̄3 σ̄3

σ̄4 σ̄4 σ̄4

σ̄5 σ̄5 σ̄5

σ̄6 σ̄6 σ̄6

σ̄7 σ̄7 σ̄7

σ̄8 σ̄8 σ̄8


where ⊙ is the hadamard product.
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APPENDIX C

Machine learning framework explanation

C.1. 3D-Clinical Neural Network (FFNNCL):

The algorithm implemented for the FFNNCL is explained in the following equa-

tions.

3D-Clinical neural network (FFNNCL):

Input: I t
s = [X̄

t
s,α

t
s, t0, t].

Output: Ot
s = [X t+∆t

s ].

Find W l
ij(l ∈ {1, 2, 3}), blj(l ∈ {2, 3, 4}) for each patient to minimize

(C.1) losstCL =
1

NT

1

Nm

NT∑
s=1

Nm∑
m=1

∥∥∥X t+∆t
s − X̄

t+∆t
s

∥∥∥2

,

where Ot
s = [X t+∆t

s ] =
[
bl=4
q +

∑NN [l=3]
k=1 W l=3

qk A
(
al=3
k,s

)]NN [l=4]

q=1
,

al=3
k,s = bl=3

k +
∑NN [l=2]

j=1 W l=2
kj A

(
al=2
j,s

)
,

al=2
j,s = bl=2

j +
∑NN [l=1]

i=1 W l=1
ji I ti,s,

X̄
t+∆t
s is from clinical dataset.

C.2. FFNNCR−BC

The algorithm used for the FFNNCR−BC is explained in the following equations.
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FFNNCR−BC

Step 1 (FFNNCR):

Input: I t
s = [X̄

t
s,α

t
s, t,∆t, σ̄t

s].

Output: Ot
CR,s = [Ct+∆t

s ].

Find W l
ij(l ∈ {1, 2, 3}), blj(l ∈ {2, 3, 4}) for each patient to minimize

(C.2) losstCR =
1

NT

NT∑
s=1

∥∥∥Ct+∆t
s − C̄

t+∆t
s

∥∥∥2

,

where Ot
CR,s = [Ct+∆t

s ] =
[
bl=4
q +

∑NN [l=3]
k=1 W l=3

qk A
(
al=3
k,s

)]NN [l=4]

q=1
,

al=3
k,s = bl=3

k +
∑NN [l=2]

j=1 W l=2
kj A

(
al=2
j,s

)
,

al=2
j,s = bl=2

j +
∑NN [l=1]

i=1 W l=1
ji I ti,s,

C̄
t+∆t
s is from clinical dataset.

Step 2 (FFNNBC):

Input: I t
s = [X̄

t
s,α

t
s, t,∆t, σ̄t

s].

Output: Ot
s = [At+∆t

s ,Bt+∆t
s ]

Find W l
ij(l ∈ {1, 2, 3}), blj(l ∈ {2, 3, 4}) for each patient to minimize

(C.3) losstBC =
1

NT

NT∑
s=1

∥∥∥At+∆t
s − Ā

t+∆t
s

∥∥∥2

+
∥∥∥Bt+∆t

s − B̄
t+∆t
s

∥∥∥2

,

where Ot
s = [At+∆t

s ,Bt+∆t
s ] =

[
bl=4
q +

∑NN [l=3]
k=1 W l=3

qk A
(
al=3
k,s

)]NN [l=4]

q=1
,

al=3
k,s = bl=3

k +
∑NN [l=2]

j=1 W l=2
kj A

(
al=2
j,s

)
,

al=2
j,s = bl=2

j +
∑NN [l=1]

i=1 W l=1
ji I ti,s,

Ā
t+∆t
s and B̄

t+∆t
s are from clinical dataset.

C.3. FFNNCR−BM

The algorithm implemented for the FFNNCR−BM is explained in the following

equations.
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FFNNCR−BM

Step 1 (FFNNCR):

Input: I t
s = [X̄

t
s,α

t
s, t,∆t, σ̄t

s].

Output: Ot
CR,s = [Ct+∆t

s ].

Find W l
ij(l ∈ {1, 2, 3}), blj(l ∈ {2, 3, 4}) for each patient to minimize

(C.4) losstCR =
1

NT

NT∑
s=1

∥∥∥Ct+∆t
s − C̄

t+∆t
s

∥∥∥2

,

where Ot
CR,s = [Ct+∆t

s ] =
[
bl=4
q +

∑NN [l=3]
k=1 W l=3

qk A
(
al=3
k,s

)]NN [l=4]

q=1
,

al=3
k,s = bl=3

k +
∑NN [l=2]

j=1 W l=2
kj A

(
al=2
j,s

)
,

al=2
j,s = bl=2

j +
∑NN [l=1]

i=1 W l=1
ji I ti,s,

C̄
t+∆t
s is from clinical dataset.

Step 2 (FFNNBM):

Input: I t
s = [X̄

t
s,α

t
s, t,∆t, σ̄t

s].

Output: Ot
s = [At+∆t

s ,Bt+∆t
s ].

Find W l
ij(l ∈ {1, 2, 3}), blj(l ∈ {2, 3, 4}) for each patient to minimize

(C.5) losstBM =
1

NT

1

Nm

NT∑
s=1

Nm∑
m=1

∥(X̄ t
sm+∆C̄

t
s+(At+∆t

sm +Bt+∆t
sm σt

sm)∆t)− X̄
t+∆t
sm ∥2,

where Ot
s = [At+∆t

s ,Bt+∆t
s ] =

[
bl=4
q +

∑NN [l=3]
k=1 W l=3

qk A
(
al=3
k,s

)]NN [l=4]

q=1
,

al=3
k,s = bl=3

k +
∑NN [l=2]

j=1 W l=2
kj A

(
al=2
j,s

)
,

al=2
j,s = bl=2

j +
∑NN [l=1]

i=1 W l=1
ji I ti,s,

At+∆t
sm and Bt+∆t

sm are obtained from At+∆t
s and Bt+∆t

s , and

X̄
t
sm, X̄

t+∆t
sm , ∆C̄

t
s are from clinical dataset and σt

sm is from surrogate
model.
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