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ABSTRACT

Data-Driven High-Throughput Materials Discovery

and Knowledge Extraction

Vinay Ishwar Hegde

Recent advances in high-performance computing have resulted in massive databases of

materials properties calculated with techniques such as ab initio density functional theory.

In fact, some of the largest of such databases have calculations of nearly all distinct,

ordered, experimentally-reported compounds. This thesis discusses the application of

data in one such database, the Open Quantum Materials Database (OQMD), along three

broad fronts. (a) High-throughput materials discovery: prediction of hitherto unreported

ternary oxyfluorides and Heusler-based compounds using techniques such as prototype

decoration and cluster expansion to generate novel hypothetical structures, in conjunction

with convex hull-based phase stability analysis. (b) Fingerprinting the high-pressure

materials genome: exploration of the enthalpy landscape of all materials at high-pressure

using a simple linear approximation for compound enthalpy, and ambient-pressure energy

and volume data in the OQMD; using the framework to predict novel high-pressure-stable
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phases in ambient-immiscible systems. (c) Network representation of all materials: a top-

down view of phase diagrams through the lens of complex network theory, unraveling

the complete thermodynamic network of all materials, and using it to extract otherwise-

intractable knowledge—a quantitative scale of material reactivity, the “nobility index”—

and thereby identifying the noblest materials in nature.
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CHAPTER 1

Introduction and motivation

The Materials Genome Initiative (MGI) for Global Competitiveness was launched in

2011 with a vision to at least double the pace of discovery, development, and deployment

of advanced materials, at a fraction of current costs [1]. The MGI recognized that a

close integration of computational, experimental, and data informatics tools is central

to achieving its vision (Figure 1.1). On the topic of materials discovery in specific, the

initiative identified the following: (a) the traditional process of materials discovery has

been largely based on scientific intuition and Edisonian trial-and-error experiments—

often expensive and time-consuming, and (b) state of the art computational tools can

Figure 1.1. An overview of the vision of Materials Genome Initiative (MGI);
central to the vision is the close integration of computational, experimen-
tal and digital data tools for the acceleration of materials discovery and
development. (Source: Ref. [1])



25

perform virtual experiments in silico and greatly aid in guiding, and reducing the need

for, physical experimentation. Indeed, computational materials discovery and design has

become fairly widespread, across a variety of material types and applications, and is a

rapidly burgeoning field.

The tools and techniques employed for computational materials discovery are many

and varied, and depend on the class of materials being studied and their properties.

Nonetheless, all the current approaches can be broadly classified into the following three

emergent paradigms:

A. High-throughput databases and data mining:

This approach is characterized by the combination of computational quantum-mechanical–

thermodynamic approaches and techniques rooted in database construction and intelligent

mining of data. The practical implementation of computational high-throughput (HT) is

highly non-trivial and involves the following connected steps: (i) materials growth: ther-

modynamic and electronic structure calculations of hundreds of thousands of materials,

both currently known and hypothetical, with a consistent, transferable set of parame-

ters across all calculations, (ii) materials storage: systematic storage of the previously-

calculated materials properties in databases that enable quick and structured retrieval of

data, and (iii) materials selection: thermodynamic analysis and/or intelligent mining of

the previously-stored data to identify novel materials with the desired properties and/or

gain new physical insights into existing materials.
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Due to rapid advances in high-performance computing, several large HT computa-

tional databases have emerged over the past decade: the Open Quantum Materials Data-

base (OQMD) [19, 20], the Materials Project [21], the AFLOWLIB.org consortium [22],

are among the prominent ones. While density functional theory (DFT) is the common

workhorse for the atomistic calculation of materials properties in most such HT databases,

the two key features differentiating them are the number of materials calculated, and the

variety of properties evaluated for each material. For instance, both the OQMD and the

Materials Project have calculated most of the currently reported inorganic compounds,

∼50,000 unique ordered ones in total, sourced from a database such as the Inorganic Crys-

tal Structure Database (ICSD) [23]. However, the OQMD has more than 400,000 hypo-

thetical compounds generated by decorating common structural prototypes (see Sec. 3.1.3,

and Ref. [24] for details of the decoration of prototypes approach), while the Materials

Project has fewer, close to 20,000 hypothetical compounds. On the other hand, the

OQMD has calculated properties such as formation energy, phase stability, electronic

density of states, magnetic moment, etc., for all the materials in the database, while the

Materials Project, in addition to those properties, has more complex quantities calculated

for a subset of compounds, e.g., band structures for ∼54,000, elastic tensors for ∼4,700,

and piezoelectric tensors for ∼1,000 compounds.

Such HT DFT databases have been used to search for materials for a variety of ap-

plications: new battery electrodes [25–27], electrode coatings [28–30], water-splitting ma-

terials [31, 32], strengthening precipitates in alloys [24, 33, 34], thermoelectrics [35–37],

transparent conducting oxides [38–40], photovoltaics [39, 41], scintillators [42, 43], topo-

logical insulators [44, 45], and others.
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B. Global structural searches

The HT DFT approach involving involving databases with decorations of known struc-

tural prototypes has a limited success rate when the ground state structure is uncommon

or previously unknown. More advanced methods for crystal structure prediction exist

which allow for a systematic search of the entire potential energy surface of the system.

Such structural search methods can be broadly distinguished by the level of restriction

imposed on the structural degrees of freedom being optimized: (a) neither the underlying

lattice type nor the atomic configuration is known, and (b) the underlying Bravais lattice

is known but the atomic configuration is unknown.

Some of the commonly used methods in the former category (both lattice type and

atomic configuration unknown) are: (a) Simulated Annealing [46] — a Monte Carlo tech-

nique in which a random new state close to the current solution is accepted with a prob-

ability of 1 if the new state is lower in energy, and a probability e
−∆E
kBT , where ∆E is

the difference in energy, kB is the Boltzmann constant, and T is temperature, if its en-

ergy is higher. (b) Metadynamics [47] — a steepest-descent-like discrete evolution of the

history-dependent Gibbs potential representing the potential energy landscape in order

parameters (usually, the lattice vectors) space. (c) Minima Hopping [48] — the random

steps of simulated annealing are replaced by local optimization to find the local minimum

and molecular dynamics based moves are used to escape it via low-energy saddle points.

(d) Random Structure Searching [49] — using random but sensible initial configuration

of atoms-in-a-box, and “shaking” such structures so that they “fall” into nearby minima.

(e) Evolutionary Algorithms [50, 51] — an initial population of structures, each with a

fitness (usually energy or enthalpy), is used to derive a new generation of structures based
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on genetic principles of heredity and mutation of parent structures followed by selection,

and the entire process is repeated. Such structural methods have been used to success-

fully predict the cystal structure of a variety of materials, e.g., framework materials [52],

benzene [53], polymorphs of MgSiO3 [54], silicon and gold clusters [55, 56], high-pressure

phases of silane [49], lithium alloys [49, 57], stable and metastable phases of CaCO3 [51],

and many others.

In the latter category of problems where the underlying lattice type is known but

the atomic configuration is unknown, perhaps the most common optimization method of

choice is cluster expansion [58], a technique based on a generalized Ising-like Hamiltonian,

using interaction energies extracted for a set of unique sub-configuration of atoms (“clus-

ters”) to identify the ground state structures (see Section 2.3 for a brief formalism of the

method as employed in this work). Cluster expansion based methods have been used to

predict the ground state structures of II-III spinel oxides [59], vacancy order-disorder in

battery electrodes [60], structural order in Heusler alloys [61], ground state of adsorbed

species on substrates [62], a variety of intermetallic systems [63–67], among others.

C. Machine learning

This paradigm of materials discovery is characterized by the use of machine learning

(ML) techniques to extract knowledge from large materials datasets. Approaches under

this umbrella typically have the following three components: (a) source of, preferably

curated and consistent, materials properties data, (b) quantitative representation of each

material in the dataset (often referred to as “attributes” or “descriptors”), and (c) ML

algorithm(s) to be trained on the data. A host of ML algorithms, ranging from linear and
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ridged regression, principal component analysis, decision trees, support vectors machines,

neural networks, etc., are used depending on the nature of the dataset available and the

property under study. However, the distinctive feature of each approach is arguably its

second component, i.e., quantitative representation of a material—composed of descrip-

tors based solely on the composition or, in addition, the crystal and electronic structure

of a material. A few relevant examples of the application of ML techniques include pre-

dicting the crystal structure of binary alloys [68–70], classification of wide band gap AB

compounds [71], composition-only models of thermodynamic stability of ternary com-

pounds [72], data-mined structural similarity to predict ternary oxides [73], and models

to predict the DFT total and/or formation energies [74, 75].

It should be noted here that the three paradigms mentioned above very effectively

complement each other. For example, a high-throughput DFT approach via decoration

of known structural prototypes (A., above) can help identify regions in the composition-

structure space of a chemical system which merit further detailed investigations using a

structural search method (B., above). Further, new structure types discovered by global

structure searches can be used as input to a secondary round of HT DFT for a quick

sampling of chemistries, and this entire process can be repeated in a constant feedback-

loop increasing the extent and efficiency of materials discovery. An example of such a

feedback mechanism is discussed in Section 3.2.5.

This rest of this thesis is organized as follows: Chapter 2 briefly discusses relevant

methods and formalisms that are referred to throughout the thesis (the more specific

methods and computational details are relegated to the corresponding chapters). Chap-

ter 3 demonstrates the use of the Open Quantum Materials Database (OQMD) and
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related resources in discovering new materials—ternary oxyfluoride compounds via high-

throughput prototype decoration, and Heusler-based compounds via cluster expansions.

Chapter 4 presents a method to extend the applicability of high-throughput computa-

tional databases to explore the high-pressure phase stability landscape of materials by

leveraging already available zero-temperature/zero-pressure data within a simple approx-

imation to compound enthalpy; it also uses the newly-developed method to find stable

binary high-pressure phases in ambient-immiscible systems. Lastly, Chapter 5 introduces

a completely novel paradigm of marrying complex network theory and material science.

It presents a graph-based representation of materials phase diagrams, and uses this top-

down approach to extract new knowledge, namely, a quantitative metric for material

reactivity in the form of a nobility index. Some relevant supplemental data and crystal

structures are made available in the Appendix.
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CHAPTER 2

Methods and formalisms

2.1. Density functional theory

Density functional theory (DFT) has become the primary tool for electronic structure

calculations of materials. The fundamental tenet of DFT is that any property of a system

of many interacting particles can be viewed as a functional of the ground state density

n0(r) [76]. The Hamiltonian for any system of interacting nuclei and electrons in an

external potential Vext(ri) can be written as

(2.1) Ĥ = − ℏ2

2me

∑
i

∇2
i −

∑
i

Vext(ri) +
1

2

∑
i ̸=j

e2

|ri − rj|
+

1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |

where electrons are denoted by lower case subscripts and nuclei, with charge ZI , at posi-

tions RI are denoted by upper case subscripts, and the kinetic energy of nuclei has been

ignored according to the adiabatic approximation. A universal functional for the energy

E[n] in terms of the density n(r), valid for any external potential Vext(r) can then be

written as

(2.2) E[n] = T [n] + Ee−e[n] + ENN +

∫
Vext(r)n(r)

where T [n] and Ee−e[n] are the kinetic and potential energy (due to electron-electron

interaction) functionals, and ENN is the Coulombic energy of nuclei-nuclei interaction.

The proof for the existence of such functionals of the ground state electronic density,
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uniquely determined for a given external potential, was originally given by Hohenberg and

Kohn [77]. Further, the above problem of an interacting many-body system was made

tractable by the Kohn-Sham ansatz [78] which replaces the exact ground state density by

the ground state density of an auxiliary system of non-interacting electrons, with all the

many-body effects grouped into the exchange-correlation energy functional, Exc[n]. This

results in independent-particle equations of the Kohn-Sham auxiliary system for which the

ground state density n(r) must be solved for self-consistently with the effective external

potential Vext(r).

This reformulation of DFT is, in principle, exact—the ground state energy and energy

of the many-body electron problem can be found by solving the Kohn-Sham equations for

independent particles. However, the exact form of the exchange-correlation functional Exc

is unknown, and thus the method is a feasible approach to calculating the ground state

properties of a system to the extent that an approximate form for Exc[n] can describe

the true exchange-correlation energy. In addition to the approximation for Exc[n], a

practical solution of the Kohn-Sham equations involves several other factors that influence

the accuracy of a calculation: the use of pseudopotentials to approximate electron-nuclei

interactions, finite size of basis sets, fineness of the grids used for representation of physical

quantities, and others.

All DFT calculations reported in this work were performed using the Vienna Ab initio

Simulation Package (VASP) [79, 80], with projector augmented wave (PAW) [81, 82] po-

tentials, and the Perdew-Burke-Ernzerhof (PBE) [83] formulation of a generalized gradient

approximation (GGA) to the exchange-correlation energy functional. We use a constant

energy cutoff of 520 eV for the plane-wave basis set, and Γ-centered k-point meshes with a
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density of ∼8,000 k-points per reciprocal atom (KPPRA). All structures were completely

relaxed with respect to volume and cell-internal degrees of freedom by minimizing the en-

ergy till forces on all atoms were less than 0.01 eV/Å and stresses on the cell were within

a few kbar. All elements with a half-filled d- or f -shell were given an initial magnetic

moment of 5 or 7 µB/atom respectively, in a ferromagnetic spin configuration, and then

allowed to relax to self-consistency.

2.2. Calculation of energetic quantities

2.2.1. Formation energy

The formation energy of a compound (AaBbCc . . .) is defined as

(2.3) ∆Ef (AaBbCc . . .) = E(AaBbCc . . .)−
∑

i=A,B,...

xi µi

where E(AaBbCc . . .) is the DFT total energy of the compound, xA = a
a+b+...

and µA are

the mole fraction and chemical potential of component A, respectively. For most elements,

the chemical potential µA is simply the DFT total energy of the respective ground state

structure of the element. However, for elements that are solid or liquid at, or exhibit a

solid-solid phase transformation below, room temperature, the chemical potentials have

been fit to experimental formation energies data (see Ref. [20] for details).

2.2.2. Thermodynamic stability

We calculate the thermodynamic stability of a compound by constructing the so-called

convex hull of formation energies of all phases in the respective chemical space. Every

phase on the convex hull has the following property: its formation energy is lower than
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any other phase or linear combination of phases at that composition. Thus, all phases

on the convex hull are, by definition, thermodynamically stable (e.g., phases S1, S2, S3,

and S4 in in Figure 2.1). Conversely, any phase that does not lie on the convex hull is

thermodynamically unstable — there is another phase or combination of phases on the

convex hull which is lower in energy. For example, in Figure 2.1, phase U1 is unstable

because there exists another phase (S2) at the composition that has a lower formation

energy; similarly, phase U2 is unstable because a linear combination of phases S2 and S3

has a lower energy at that composition (“Ehull”).

A measure of thermodynamic stability of a phase is its distance from the convex hull.

In other words, the farther away a phase is from the convex hull, higher is the thermody-

namic driving force for it to transform or decompose into another phase or combination

of phases. The distance from the convex hull ∆EHD for a phase with formation energy

∆Ef can be calculated as

(2.4) ∆EHD = Ehull −∆Ef

where Ehull is the energy of the convex hull at the composition of the phase (see Figure 2.1

for an illustration). The energy of the convex hull at any composition is given by a linear

combination of energies of stable phases. This is thus a linear composition-constrained

energy minimization problem [25, 84], and is available as a tool called “grand canonical lin-

ear programming” (GCLP) on the OQMD website (http://oqmd.org/analysis/gclp).

Thus, by definition, the hull distance EHD for a phase on the convex hull (hence thermo-

dynamically stable) is 0, and for all unstable phases is greater than 0.
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S2

S3

U2

U1

S1 (A) S4 (B)

ΔEHD

Ehull

Figure 2.1. A schematic convex hull in the A–B chemical space. Phases Si

lie on the convex hull and are thermodynamically stable, i.e., for each phase
Si, there is no other phase or combination of phases at its composition lower
in energy. Phases Ui are off the convex hull and thus unstable. For example,
the formation energy of phase U2 is higher than that of a linear combination
of phases S2 and S3. The distance from the convex hull (∆EHD) of phase
U2 is given by the difference between its formation energy and the energy of
the convex hull at its composition (Ehull, represented by the crimson star).
(Source: Ref. [2])

We note here that the distance from the convex hull of a compound depends on

the completeness of the set of phases considered in the construction of the convex hull.

Ideally, for calculating the convex hull of a system A–B–C, one would have to investigate

all possible compounds that can be formed from elements A, B, and C, which is not

feasible. A practical approach is to construct the convex hull with all the currently

reported compounds in the A–B–C phase space. For all thermodynamic stability analyses

reported in the present work, we have limited our universe of considered phases to those in
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the OQMD—almost all unique, ordered compounds reported in the ICSD, and a further

∼400,000 hypothetical compounds based on common structural prototypes.

2.2.3. Significance of calculated thermodynamic stability

A negative value of formation energy ∆Ef of a compound, indicates that at zero tempera-

ture, the compound is more stable than its constituent elements. This is a necessary but far

from sufficient condition for ground state thermodynamic stability. As discussed above,

a phase is thermodynamically stable only if its distance from the convex hull ∆EHD = 0.

Further, we assert that the distance of a phase from the convex hull (or simply its “hull

distance”) ∆EHD is an indicator of the likelihood of its synthesis in experiments.

In a recent study [2], we compiled all the experimentally synthesized XYZ compounds

reported in the ICSD (X = Cr/Mn/Fe/Co/Ni/Ru/Rh, Y = Ti/V/Cr/Mn/Fe/Ni, and

Z = Al/Ga/In/Si/Ge/Sn/P/As/Sb), if any, and tabulated their formation energies and

hull distances as calculated in the OQMD — a total of 110 compounds (with 98 distinct

compositions). From a plot of the formation energies and hull distances (Fig. 2.2), we

see that the vast majority of the reported compounds that have been experimentally

synthesized (green diamonds) lie on or close to the calculated convex hull — 37 compounds

are on the convex hull (i.e., a hull distance of 0) and an additional 53 lie relatively close

to it (i.e., a hull distance less than about 0.1 eV/atom). Overall, most experimentally

reported compounds in the XYZ compositions considered (90 of 99) were found to have

a hull distance less than about 0.1 eV/atom. A similar trend of most known compounds

being close to the convex hull of formation energies has been documented for other systems

(e.g., for half-Heuslers, see Fig. 2.3).
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Figure 2.2. DFT-calculated formation energy vs. hull distance of all XYZ
compounds reported in the ICSD (X = Cr/Mn/Fe/Co/Ni/Ru/Rh, Y =
Ti/V/Cr/Mn/Fe/Ni, and Z = Al/Ga/In/Si/Ge/Sn/P/As/Sb). A hull dis-
tance ∆EHD = 0 indicates a stable ground state compound. (Yellow circles
= phases sourced into ICSD from electronic structure calculations, green
diamonds = experimentally synthesized phases, red pentagons = phases
reported to be stable at high temperature or pressure, light-blue squares =
phases with site occupations that differ from the DFT calculation.)

We also note that since we use 0 K DFT energies in our analysis, a phase that is

above the convex hull may be either actually metastable or stabilized (i.e., moved on to

the convex hull, and thus become experimentally accessible) due to (a) finite tempera-

ture contributions to the free energy such as phonons, magnons, configurational entropy,

and/or (b) other external conditions such as pressure. Thus, while a phase that is above

the convex hull may be experimentally realizable under carefully controlled conditions,
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Figure 2.3. DFT-calculated formation energy vs. hull distance of 378 XYZ
half-Heusler compounds considered in Ma et al. [2]. Almost all the exper-
imentally reported half-Heusler compounds (green squares, “In ICSD [e]”)
have a hull distance less than 0.1 eV/atom (the window represented by
the two horizontal dashed lines); half-Heusler compounds sourced into the
ICSD from previous computational work are represented by red diamonds
(labeled “In ICSD [c]”); the two compounds in the ICSD that are possibly
mischaracterized to be in the AlLiSi half-Heusler structure, RhTiSb and
RhTiSn, as represented by yellow pentagons (labeled “Rh(Ti,X) AlLiSi”).

and although free energy at the processing temperature may be more relevant in deter-

mining phase stability, the 0 K hull distance is still a very good measure available of the

likelihood of its experimental synthesis.
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2.3. Cluster expansion

A cluster expansion for a binary alloy AxB1−x with N lattice sites can be viewed as

a generalized Ising model in which a property F for any arbitrary configuration {Ŝi} is

expressed as a linear combination of basis functions defined as the product of occupation

variables of the lattice sites:

(2.5) F
(
{Ŝi}

)
= J0 +

∑
i

JiŜi +
1

2!

∑
i≠j

JijŜiŜj +
1

3!

∑
i ̸=j ̸=k

JijkŜiŜjŜk + . . . ,

where the configuration {Ŝi} is the vector of all occupation variables (= {Ŝ1, Ŝ2, . . . , ŜN}),

and the occupation variables Ŝi = +1 or −1, depending on whether the site i is occupied

by an atom of type A or type B. The expression in Eq. (2.5) is essentially exact for any

property uniquely determined by the atomic configuration, if all the terms are included

in the series, and by extension should hold for a truncated series, if the cluster expansion

is well converged. Further, Eq. (2.5) can be rewritten as

(2.6) F
(
{Ŝi}

)
= J0 +

∑
f

DfJf
∏

f

(
{Ŝi}

)

where f is a set of lattice sites (called a “cluster”). The sum is defined over all clusters

f that are not equivalent by symmetry, while the product average
∏

f is taken over all

Df clusters that are equivalent to f by symmetry. The unknown parameters {Jf}, called

effective cluster interactions (ECI), can then be obtained by fitting them to known values

of the property F for a set of configurations, by the structure inversion method [85].
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The transferability of the fit to unknown configurations is measured by a leave-one-out

cross-validation (CV) score, defined as:

(2.7) CV score =

(
1

n

n∑
i=1

(
F direct

i −F CE
(i)

)2) 1
2

where the FCE
(i) are predicted by a least-squares fit to (n − 1) directly calculated values

of the property, excluding Fdirect
i . The set of clusters and ECI that minimizes the CV

score is termed the optimum cluster expansion. The usefulness of the cluster expansion

approach relies on the ECI being rapidly decreasing functions of the number of sites and

intersite separation, so that only a few clusters can be included in Eq. (2.6) without a

significant loss in accuracy.

All cluster expansions reported in this work were constructed using the implementation

of the above methodology in the maps utility of the Alloy Theoretic Automated Toolkit

(ATAT) [86, 87].
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CHAPTER 3

High-throughput materials discovery using database-screening

3.1. Novel ternary oxyfluorides via high-throughput prototype decoration

3.1.1. Background

In comparison to single-anion compounds such as oxides, chalcogenides, fluorides, and

nitrides, compounds containing multiple anions (referred to as “mixed-anion” or “het-

eroanionic”) have not been as widely studied [88]. Heteroanion compounds are broadly

classified into various families based on the combination of anions present, e.g. oxyhalides,

oxychalcogenides, oxypnictides, chalcohalides, and so on (see the leftmost subpanel in

Fig. 3.1).

The presence of two anions with different properties such as electronegativity, polar-

izability, charge, and size, and the various ways in which they can be ordered opens up

new ways to engineer the properties of a compound. Similarly, the varying solubility of

different elements can be used to fine-tune the doping/defect levels to control the elec-

tronic properties in heteroanion compounds. Locally asymmetric coordination can lead

to noncentrosymmetric and/or natural heterostructures (schematics in Fig. 3.1).

It is therefore not surprising that many of the known heteroanionic compounds have

various compelling properties, making them potential candidates for a wide variety of

applications. For example, BiXO (X = Cl, Br, and I) and LaTiNO2 are high-efficiency

photocatalysts in the visible light region [89, 90], BiCuSeO and Bi2SeO2 show promise for
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Figure 3.1. The various heteroanion family of compounds, categorized by
the combination of anions in them. The diversity in the properties of in-
dividual anions provides opportunities to tune those of the heteroanion
compound for desired applications.

thermoelectric applications [91, 92], Bi4S3O4 and LaFeAsO family show superconductiv-

ity [93, 94], LaCuSO is an excellent p-type transparent conductor oxide [95], FeOF [96] is

a potential cathode for conversion batteries, and so on.

In this chapter, we focus on ternary oxyfluoride compounds. Oxyfluoride materials

have shown improved performance over their oxide and fluoride counterparts in appli-

cations such as electrochemical cells and solid-state lighting. They also show a myriad

of technologically useful properties such as nonlinear optical behavior and superconduc-

tivity. We propose to use the prototype decoration followed by high-throughput DFT

calculations to discover novel hitherto unreported single-metal oxyfluorides.

Our approach to discovering novel single-metal oxyfluoride compounds involves the

following steps: (a) systematic survey and analysis of compounds reported in the litera-

ture to identify common structural prototypes, (b) decorating such structural prototypes
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with all the elements in the periodic table on the cationic sites to generate new hypo-

thetical heteroanionic compounds, (c) performing HT DFT calculations of the prototype

decorations to determine their formation energy, and (d) calculating the phase stability of

the prototype decorations against all the phases to identify new heteroanionic compounds

that are likely to be thermodynamically stable.

3.1.2. Survey of the ICSD and data curation

We queried the Inorganic Crystal Structure Database (ICSD) for all single-metal oxyflu-

orides of the form MaObFc (where M = one of 66 metals/semi-metals: 2− 6s block alkali

metals, 4−6d transition metals, lanthanide elements, those belonging to the boron group

(Al, Ga, In, Tl), carbon group (Si, Ge, Sn, Pb), nitrogen group (As, Sb, Bi), and Te).

The resulting 165 entries were used to create a curated dataset as follows (schematic

summarizing data curation in Fig. 3.2):

(1) All materials in which either O or F is not anionic are discarded.

(2) Any structure exhibiting site disorder, i.e., one or more crystallographic sites

statistically occupied with an occupancy factor of less than unity for one or more

species, was discarded. 73 of the structures queried from the ICSD had occupancy

disorder on one or more sites.

(3) Only unique structures, i.e., structures which were not a duplicate of another

structure in the dataset at the same composition, were considered. Structural

similarity algorithms implemented in the MINT package [97, 98] were used to
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Query for all XaObFc compounds in the 
Inorganic Crystal Structure Database (ICSD)*

Filter for structures where O and F are 
both anions (mixed-anion)

Exclude all structures with O/F/Vac 
partial site occupancy/disorder

Exclude all duplicate structures

63 unique, ordered 
ternary oxyfluorides

166

151

85

Figure 3.2. Schematic describing the steps in curating the ICSD dataset to
retain only distinct, ordered ternary oxyfluorides.

compare structures with a tolerance factor of 0.2. Of all the entries queried from

the ICSD, 31 were duplicates, and hence discarded.

The final curated dataset of 63 ordered single-metal oxyfluorides was considered for all

subsequent analysis. A distribution of site-ordered MaObFc compounds in the ICSD is

shown in Figure 3.3.

3.1.3. Summary of reported compounds and prototype calculations

The compounds reported in the ICSD occur with∼24 different stoichiometries, and several

structural prototypes (see Table 3.1 for a summary). We identify the more frequently

occurring prototypes with simple stoichiometries, grouped according to the oxidation

state of the cation (examples of the structures used for prototype decoration in Fig. 3.4):

(a) M2O1F2 (M2+): Pb2OF2 (P42/ncm), Ba2OBr2 (Ibam)
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Figure 3.3. Distribution of single-metal oxyfluoride compounds in the In-
organic Crystal Structure Database (ICSD). The background color of each
element M represents the number of distinct, ordered compound MaObFc

reported in the ICSD.

Figure 3.4. Some common prototype oxyhalide structures at simple sto-
ichiometries used for generating hypothetical oxyfluoride compounds via
prototype decoration.

(b) M1O1F1 (M3+): NdOF (R3m), YOF (P4nmm), VOCl (Pmmn)

(c) M1O1F2 (M4+): RuOCl2 (Immm), NbOI2 (C2)
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Ma Ob Fc Number
all entries in the ICSD 165
unique, ordered entries in the ICSD 63
entries from the ICSD calculated in the OQMD 49
compounds on the OQMD convex hull 29
compounds on or < 0.1 eV/atom of the OQMD convex hull 44
unique stoichiometries in the ICSD 24
possible decorations 24× 66 = 1584
unique (named) structural prototypes in the ICSD 17
possible decorations 17× 66 = 1122

Table 3.1. A summary of the reports of single-metal oxyfluoride compounds
in the Inorganic Crystal Structure Database (ICSD). Number of all possible
prototype decorations, based on the unique stoichiometries and structural
prototypes in the ICSD, are also listed.

3.1.4. Assessment of thermodynamic stability of known ternary oxyfluorides

We first investigate the accuracy of using distance to the convex hull to quantify ther-

modynamic stability of a given compound. We see that the vast majority of experimen-

tally reported oxyfluorides in the ICSD are either predicted to lie on the convex hull or

within 0.1 eV/atom of it according to the formation energies calculated in the OQMD (see

Fig. 3.5). This gives us confidence in our approach towards finding new stable oxyfluorides

using the same hull distance metric.

3.1.5. High-throughput prototype decoration

For each structural prototype, we replace the metal M with all elements in the periodic

table that can assume the corresponding oxidation state, i.e., elements that can exist in

3+, 4+, 2+ states for M in the M1O1F1, M1O1F2, and M2O1F2 prototypes respectively.

We perform HT DFT calculations of all such decorations of the structural prototypes,
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T=0 stable

T=0 metastable/unstable

Figure 3.5. Formation energy vs distance from the convex hull for all the
ternary oxyfluoride compounds calculated in the OQMD. Most compounds
lie on or close to the convex hull.

Figure 3.6. A summary of the high-throughput DFT workflow for the pro-
totype decoration paradigm.

spanning a wide range of chemistries, and calculate their stability against all other phases

in the OQMD. A summary of this approach is shown as a schematic in Fig. 3.6.
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Figure 3.7. Formation energy vs distance from the convex hull for hypo-
thetical ternary oxyfluorides generated by decorating common structural
prototypes. There are several new oxyfluorides predicted to be stable (green
circles) or nearly so (blue circles).

3.1.6. Predictions of thermodynamically stable ternary oxyfluorides

Our approach predicts a number of novel hitherto unreported oxyfluoride compounds to

be thermodynamically stable or nearly so in each of the stoichiometries sampled (see

Fig. 3.7). Some of the compounds predicted include CrOF, VOF, NiOF, RuOF2, MoOF2,

Fe2OF2, and Co2OF2. A summary of the compounds predicted to lie on the OQMD convex

hull, i.e., to be thermodynamically stable, by our calculations is given in Table 3.2, and

schematics of their crystal structure are shown in Figs. 3.8, 3.9 and 3.10.
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Cation Compound Structural Space group Eg EHD Competing
prototype (eV) (eV/atom) phases

M2+

Mn2OF2 Ba2OBr2 Ibam 0.5 −0.142 MnO–MnF2
Fe2OF2 Ba2OBr2 Ibam 1.1 −0.169 FeO–FeF2
Co2OF2 Ba2OBr2 Ibam 1.7 −0.179 CoO–CoF2
Ni2OF2 Ba2OBr2 Ibam 2.2 −0.090 NiO–NiF2

M3+

CrOF VOCl Pmmn 2.2 −0.110 Cr2O3–CrF3
VOF VOCl P41212 1.5 −0.127 V2O3–VF3
MnOF VOCl P41212 0.5 −0.072 Mn2O3–MnF3
CoOF VOCl P41212 0.0 −0.041 Co3O4–CoF3 –O2
NiOF ScOF P21/c 2.7 −0.075 NiO2F2–O2

M4+

RuOF2 RuOCl2 Immm 0.0 −0.007 RuO2–RuF4
MoOF2 NbOI2 C2 0.0 −0.026 MoO2–MoF6 –MoF3
OsOF2 NbOI2 P2 0.0 −0.012 OsO2–OsF6 –Os

Table 3.2. A summary of single-metal oxyfluoride compounds predicted to
lie on the convex hull of stable phases by our calculations. The columns
respectively represent the stable compound predicted, the structural pro-
totype which was decorated, the space group, the calculated DFT band
gap, the distance of the compound from the convex hull of currently known
phases, the lowest energy phase/combination of phases at the composition
according to currently known compounds in the OQMD. Only predictions
without lanthanide/actinide/radioactive elements are shown.

Figure 3.8. Novel, hitherto-unreported ternary oxyfluoride compounds with
the 1:1:1 stoichiometry predicted to be stable.
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Figure 3.9. Novel, hitherto-unreported ternary oxyfluoride compounds with
the 1:1:2 stoichiometry predicted to be stable.

Figure 3.10. Novel, hitherto-unreported ternary oxyfluoride compounds
with the 2:1:2 stoichiometry predicted to be stable.
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3.2. Novel Heusler-based compounds from cluster expansion

3.2.1. Background

Half-metallic ferromagnets (HMFs) have an energy gap in the minority-spin channel and a

finite density of states in the majority-spin channel leading to complete spin polarization

at the Fermi level, and thus are attractive for spintronic applications. Many full- and

half-Heusler phase compounds are HMFs and are particularly promising due to their

relatively high Curie temperatures. A simple screen over all Heusler-related phases in the

OQMD yielded, among other candidates, half-Heusler FeTiSb and full-Heusler Fe2TiSb

phases that are both near half-metals and both predicted to on or close to the Fe–Ti–

Sb convex hull, making them good candidates for spintronic applications. However, it

is known that defects such as vacancies (on the X site of an X2Y Z Heusler phase) can

lead to a loss of half-metallic character. While this effect has been reported in Co-, and

Mn-based Heusler compounds, it has not been studied in Fe-based Heusler compounds.

Moreover, the effect of vacancies on the stability and order of these compounds has not

been adequately explored. Here we propose to use the cluster expansion method to study

such effects in the Fe–Ti–Sb system.

3.2.2. Constructing the cluster expansion

We calculate the formation energy ∆Ef (per mixing atom) of a compound with compo-

sition Fex□1−xTi0.5Sb0.5 with respect to the end members FeTi0.5Sb0.5 and □Ti0.5Sb0.5

using

(3.1) ∆Ef = E
(
Fex□1−xTi0.5Sb0.5

)
−
{
xE
(
FeTi0.5Sb0.5

)
+ (1− x)E

(
□Ti0.5Sb0.5

)}
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where all the required energies are calcuted using DFT. The parameters used for all

calculations, and other details are discussed in Section 2.1.

We fit a binary CE to the formation energies calculated using Eq. (3.1) by minimiz-

ing the sum of squares of the residuals (see Section 2.3 for details). We generate new

structures, use their formation energies in the fit, and add terms to the CE till the cross-

validation (CV) score is minimized, and adding further structures results in overfitting.

We find a well-converged CE, with a CV score of ∼20 meV/mixing atom by using 66

Fex□1−xTi0.5Sb0.5 structures and their formation energies (Figure 3.11).
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Figure 3.11. (a) Energies of 66 different arrangements of Fe and □ on the
Fe sublattice of Fe2TiSb in the L21 structure, calculated using DFT, and
those predicted by a binary cluster expansion (CE) fit to the DFT energies.
The DFT convex hull is captured well by the CE, with a cross-validation
error of ∼20 meV/mixing atom.



53

The effective cluster interactions (ECI) decrease rapidly with increase in the inter-

site distance for clusters of all types (i.e., two-, three-, and four-point clusters; see Fig-

ure 3.12a), implying that excluding larger sized clusters does not result in a significant

loss in accuracy. A comparison between the energies predicted by the CE and those

calculated by DFT (Figure 3.12b) show excellent agreement, giving us confidence in our

approach. All symmetrically unique clusters with corresponding effective cluster interac-

tions (ECI) greater than 0.005 eV/mixing atom in magnitude are listed in Table 3.3, and

depicted schematically in Figure 3.13. We note that the cluster with the dominant ECI

is a two-point antiferromagnetic cluster (J2,4 in Table 3.3) that favors the ordering of Fe

and □ in the ⟨111⟩ direction on the Fe sublattice.

Figure 3.12. (a) Variation of effective cluster interactions (ECI) with in-
creasing intersite distance for various two-, three-, and four-point clusters
used in the CE. (b) Comparison of formation energies calculated with DFT
with that predicted by the CE; shows excellent agreement.
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Figure 3.13. All symmetrically unique clusters with corresponding ECI
greater than 5 meV/mixing atom (see Table 3.3) included in the binary
CE; (a) pairs, (b) triplets, and (c) four-point clusters. Jk,m refer to the ECI
corresponding to a cluster f = (k,m) with k vertices, and separated by
m-th nearest neighbor distance. Light and dark gray filled circles represent
sites belonging to the Fe sublattice, whereas unfilled circles represent sites
belonging to the Ti/Sb sublattices.

3.2.3. Low-energy crystal structures from cluster expansion

From our cluster expansion, we predict the energy of 66 configurations, a complete enu-

meration of all possible Fe/□ orderings with 20 atoms or less per cell. Out of this ex-

premely large configuration space, we find that the lowest energy structure corresponds

to a composition of Fe0.75□0.25Ti0.5Sb0.5, i.e., between the full-Heusler and half-Heusler

compositions, belongs to the trigonal R3m space group, and has a formation energy of

−0.223 eV/mixing atom. We also find structures on or within a few meV/mixing atom of

the convex hull at other compositions: (a) at the composition of the half-Heusler phase

(Fe0.5□0.5Ti0.5Sb0.5), we find two structures in space groups C1m1 and Amm2 (labeled as

such in Figure 3.14), 1 and 2 meV/mixing atom above the convex hull respectively, while

the half-Heusler phase (‘C1b’ in Figure 3.14) itself is ∼20 meV/mixing atom above the
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Cluster (coordinates) # Sites Diameter Multiplicity ECI
(Å) (eV/mixing atom)

J0,1: empty 0 0 1 -0.130
J1,1: 000 1 0 2 -0.055
J2,1: 1

2
1
2
1
2
, 01

2
1
2

2 3.009 6 0.016
J2,2: 1

2
1
2
1
2
, 01

2
1 2 4.255 12 -0.008

J2,3: 1
2
1
2
1
2
, 101 2 5.212 4 -0.023

J2,4: 1
2
1
2
1
2
, 011 2 5.212 4 0.056

J2,5: 000, 010 2 6.018 6 0.012
J2,6: 000, 1

2
11
2

2 7.371 24 -0.006
J3,1: 1

2
1
2
1
2
, 11

2
1
2
, 101 3 5.212 24 0.007

J3,2: 000, 01
2
0, 010 3 6.018 6 0.014

J4,1: 1
2
1
2
1
2
, 01

2
1
2
, 001

2
, 01

2
1 4 4.255 8 -0.017

J4,2: 1
2
1
2
1
2
, 1

2
01, 001

2
, 01

2
1 4 4.255 2 -0.026

J4,3: 1
2
1
2
1
2
, 01

2
1
2
, 011

2
, 01

2
1 4 4.255 8 0.018

J4,4: 1
2
00, 11

2
0, 01

2
0, 1

2
10 4 6.018 6 -0.009

Table 3.3. List of symmetrically unique clusters included in the binary clus-
ter expansion, the number of sites in each of them, the cluster diameter,
multiplicity and the corresponding effective cluster interactions (ECI). All
atomic coordinates are in units of the lattice vectors of the Fe2TiSb L21
structure.

convex hull, and (b) at a composition of Fe0.25□0.75Ti0.5Sb0.5, we find a structure in the

space group R3m (labeled as such in Figure 3.14) to be on the convex hull. We discuss in

detail, the common structural motifs in the arrangement of Fe and □ in several compet-

ing structures at the composition of the lowest energy structure, i.e., Fe0.75□0.25Ti0.5Sb0.5,

below.

We find three tetragonal structures (I.)—(III.), and one trigonal structure (IV.) within

100 meV (per mixing atom) of the CE convex hull:

(I.) In the space group P4m2 (No. 115 in the International Tables of Crystallog-

raphy), ∼85 meV/mixing atom above the convex hull. It has an ABA′B′-type
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Figure 3.14. Various stable and nearly stable (within
∼100 meV/mixing atom of the convex hull) structures, and their
formation energies calculated with DFT.

stacking along the ⟨001⟩ direction, where planes A and A′ make up the interpen-

etrating fcc sublattices of Ti and Sb, plane B has completely occupied Fe sites,

and plane B′ has Fe and □ occupying alternating sites on the Fe sublattice of

the L21 structure (Figure 3.15a).

(II.) In the space group P42/nmc (No. 137 in the International Tables of Crystallogra-

phy), ∼61 meV/mixing atom above the convex hull. It has an AB′A′BAB′′A′B-

type stacking along the ⟨001⟩ direction, where planes A and A′ make up the

interpenetrating fcc sublattices of Ti and Sb, plane B has completely occupied

Fe sites, and planes B′ and B′′ have alternating chains of Fe and □ in the ⟨110⟩

direction on the Fe sublattice of the L21 structure (Figure 3.15b).
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Figure 3.15. Competing structures at a composition of Fe0.75□0.25Ti0.5Sb0.5

belonging to space group (a) P4m2, (b) P42/nmc, (c) I42d, (d) R3m, that
are ∼85, ∼60, ∼30, and 0 (stable) meV/mixing atom above the convex hull
respectively. (Fe = orange, □ = light gray, Ti = blue, and Sb = green)

(III.) In the space group I42d (No. 122 in the International Tables of Crystallography),

about 30 meV/mixing atom above the convex hull. It has an AB′A′BABA′B′′-

type stacking in the ⟨001⟩ direction. While the planes A and A′ make up the

interpenetrating fcc sublattices of Ti and Sb, plane B has completely occupied

Fe sites, planes B′ and B′′ have alternating chains of (i) Fe atoms, and (ii) Fe

and □ occupying alternate sites, on the Fe sublattice of the L21 structure but are

shifted from each other by half a lattice vector along ⟨100⟩ (Figure 3.15c).

(IV.) In the space group R3m (No. 160 in the International Tables of Crystallography),

on the convex hull (‘GS,R3m’ in Figure 3.14). It has chains of Fe and □ arranged

alternatingly along the ⟨111⟩ direction (Figure 3.15d) on the Fe sublattice of the
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L21 structure, consistent with our previous observations based on the ECI of the

CE.

We list all the stable and nearly stable structures at various compositions, their for-

mation energies, and their distance from the convex hull in Table 3.4. In addition, we list

the correlation coefficients of the above discussed competing structures and the perfectly

disordered structure at composition x = 0.75 in Table 3.5.

Composition Space group ∆Ef ∆EHD Eg M
(x) (eV/mixing atom) (eV) (µB)
0.0 Fm3m 0 0 0 0
0.25 R3m −0.129 0 0.439 0

0.50
F43m (C1b) −0.155 0.021 0 0.92
Amm2 −0.174 0.002 0.08 0
C1m1 −0.175 0.001 0.15 0

0.75
P4m2 −0.138 0.085 0.23 0
P42/nmc −0.162 0.060 0.25 0
I42d −0.193 0.030 0.40 0
R3m −0.223 0 0.64 0

1.0 Fm3m (L21) 0 0 0.72 ↓ 1.04
Table 3.4. List of stable and nearly stable structures at various composi-
tions x, for x in Fex□1−xTi0.5Sb0.5, the space group they belong to, their
formation energy ∆Ef as defined in Eq. (3.1), distance from the convex
hull ∆EHD (“stability”), band gap Eg (gap present in both spin channels
unless specified; ↓ indicates gap only in the minority spin channel), and
magnetization M ; all properties are calculated with DFT.
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P4m2 P42/nmc I42d R3m R
J2,1 0.000 0.000 0.000 0.000 0.250
J2,2 0.333 0.333 0.333 0.500 0.250
J2,3 0.000 0.000 0.000 0.000 0.250
J2,4 0.000 0.000 0.000 0.000 0.250
J2,5 1.000 0.667 0.667 0.000 0.250
J2,6 0.333 0.000 0.667 0.500 0.250
J3,1 -0.167 -0.167 -0.167 0.000 0.125
J3,2 0.500 0.167 0.167 -0.500 0.125
J4,1 0.000 0.000 0.000 0.000 0.062
J4,2 1.000 1.000 1.000 0.000 0.062
J4,3 0.000 0.000 0.000 0.000 0.062
J4,4 1.000 0.333 0.333 1.000 0.062

Table 3.5. Correlation coefficients of competing structures at a composition
of Fe0.75□0.25Ti0.5Sb0.5 labeled by their space group (P4m2, P42/nmc, I42d,
and R3m), compared with those of the perfectly disordered structure R.

3.2.4. Interplay between ordering of vacancies, thermodynamic stability, and

electronic structure

To understand the effect of the ordering of vacancies on the electronic structure of the

Fex□1−xTi0.5Sb0.5 compounds, we calculated the density of electronic states in these com-

pounds. First, our calculations show that (a) the Fe2TiSb full-Heusler compound is a

half-metallic ferromagnet with the Fermi energy falling at the edge of the gap in the mi-

nority spin channel (Figure 3.16a), (b) the Fe□TiSb half-Heusler is a nearly half-metallic

ferromagnet with the Fermi energy falling at the edge of the valence band in the majority

spin channel (Figure 3.16b), consistent with previous experimental and theoretical stud-

ies [99, 100], and (c) the □2TiSb compound in the L21 structure is a non-magnetic metal

(Figure 3.16c).
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Figure 3.16. Orbital-projected density of electronic states (DOS) of (a)
Fe2TiSb (full-Heusler phase), (b) Fe□TiSb (half-Heusler phase), (c) □2TiSb
in the L21 structure. ↑ and ↓ represent majority and minority spin channels
respectively.

Figure 3.17. Comparison of orbital-projected density of electronic states
(DOS) of four competing structures at composition Fe0.75□0.25Ti0.5Sb0.5

(corresponding to Figures 3.15a–d). While the distance from the convex
hull of the structures decreases (i.e., they become increasingly stable) from
(a) to (d), this corresponds to opening of increasingly larger gaps, ↑ and ↓
represent majority and minority spin channels respectively.
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Figure 3.18. Correlation between band gap and stability for structures at
various Fex□1−xTi0.5Sb0.5 compositions: size of a marker is directly pro-
portional to the band gap of the corresponding structure (band gaps vary
from 0.0 to 0.75 eV). Tiny circles indicate a band gap of zero, bigger circles
indicate gaps in both the spin channels, upward and downward facing trian-
gles indicate gaps in the majority and minority spin channels respectively.
Structures with a large band gap lie closer to the convex hull than those
with a small or no gap. (Inset) The relationship between band gap and
stability for structures with composition x = 0.75 is almost linear.

Second, we compare the orbital-projected density of electronic states of stable and

nearly stable structures (within 100 meV/mixing atom of the convex hull) at the compo-

sition of the lowest energy structure, i.e., Fe0.75□0.25Ti0.5Sb0.5 and find that (a) the top

of the valence band and and bottom of the conduction band are predominantly Fe d in

character (Figure 3.17), as in the full- and half-Heusler compounds, (b) gaps open in both

the spin channels (Figure 3.17a-d) — unlike both the full-Heusler which has a gap in the
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minority spin channel, and the half-Heusler which has a gap in the majority spin channel,

and (c) this opening of gaps in both the spin channels seems to contribute to the stability

of the structure, i.e., the structure with a larger band gap is also the more stable one. We

observe that this correlation between band gap and stability is followed across almost all

Fex□1−xTi0.5Sb0.5 compositions (Figure 3.18): structures with larger band gaps seem to

lie closer to the convex hull than those with small or no band gap, in general. It is also

interesting to note that structures with gaps only in one spin channel (‘half-metals’) are

slightly above the convex hull at all compositions (e.g., see the region between x = 0.75

and x = 1.0 in Figure 3.18). We provide a list of stable or nearly stable structures at

various compositions, their band gaps and magnetizations in Table 3.4.

Extending the discussion of thermodynamic stability of a compound from Section 2.2.3

to the context of a cluster expansion, a negative formation energy of a substitutional

compound with respect to the end members is a necessary but not sufficient condition for

overall phase stability. Accordingly, we construct the convex hull of the Fe–Ti–Sb phase

space with all the compounds reported in the ICSD and other hypothetical compounds

derived from decoration of common structural prototypes, all energetic quantities queried

from the OQMD. The addition of the ground state structures predicted from the clus-

ter expansion alters the 0 K phase diagram—Fe1.5TiSb is now on the convex hull (i.e.,

predicted to be thermodynamically stable), rendering the half-Heusler FeTiSb unstable

(off the convex hull by ∼35 meV/atom) (see Figure 3.19). Our approach and prediction

were validated by the recent experimental synthesis of the Fe1.5TiSb compound [101].

In fact, attempts to synthesize the half-Heusler FeTiSb phase via arc-melting resulted
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in a two-phase mixture of Fe1.5TiSb and a Fe-deficient phase whose structure was not

characterized [101].

Figure 3.19. The 0 K phase diagram of the Fe–Ti–Sb system constructed
using compound energies from the OQMD before (left) and after (right)
including the ground state structures from cluster expansion. Green and red
circles represent stable and unstable compounds respectively. Fe1.5TiSb is
now on the convex hull (stable) rendering the half-Heusler FeTiSb unstable,
and altering two neighboring three-phase regions.

3.2.5. Feedback between HT DFT and cluster expansion approaches

The successfully predicted Heusler-based compound Fe1.5TiSb occurs in a novel R3m

structure-type based on layering of the full- and half-Heusler primitive cells in the ⟨111⟩

direction (see Fig. 3.20). This novel structure-type can now be used as input to a prototype

decoration + HT DFT approach to rapidly sample other chemistries to discover new stable

compounds. We decorate the X1.5YZ R3m prototype with elements from the periodic

table such that the total number of electrons per formula unit (e−/f.u.) is identical to the

original Fe1.5TiSb compound (21 e−/f.u.). We calculate the DFT formation energy of all

such hypothetical compounds, a total of 1,470, within the framework of the OQMD and

predict their thermodynamic stability against all other phases via construction of convex



64

Figure 3.20. The Fe1.5TiSb compound, the “three-quarter Heusler” phase
has a crystal structure that is a layering of the half- and full-Heusler prim-
itive unit cells along the ⟨111⟩ direction.

hulls. Our preliminary non-exhaustive search yields 16 X1.5YZ compounds that lie on the

respective convex hull (thermodynamically stable; see Table 3.6 for a partial list), and

further 98 compounds that lie within 0.1 eV/atom.

Once interesting compounds have been identified, a more sophisticated structure

search, e.g., cluster expansion or crystal structure prediction, can be performed for the

system to accurately identify the ground state structures, if different from the R3m pro-

totype. Any such ground states occurring in new structure types can again be fed into a

HT DFT loop, in a constant feedback mechanism.
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X1.5YZ ∆Ef ∆EHD Eg

(eV/atom) (eV)
Ru1.5GeNb −0.386 −0.082 0.33
Ru1.5GeTa −0.414 −0.080 0.55
Fe1.5GeV −0.310 −0.065 0.29
Ru1.5SiTa −0.551 −0.042 0.51
Ru1.5SiNb −0.509 −0.037 0.32
Co1.5TiSn −0.450 −0.035 0.00
Ni1.5MgSn −0.348 −0.030 0.00
Pd1.5SrSn −0.680 −0.029 0.00
Pd1.5MgSn −0.675 −0.019 0.00
Pd1.5BaSn −0.650 −0.013 0.00

Table 3.6. X1.5YZ compounds predicted to be stable in the R3m structural
prototype. Columns correspond to the composition, formation energy, dis-
tance from the convex hull of currently known phases, and band gap.
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CHAPTER 4

Exploring the high-pressure materials genome

4.1. Background

The laws of thermodynamics dictate that only compounds corresponding to global

minima of the Gibbs free energy for a given set of external conditions are viable ground

states with infinite lifetimes [102]. For such materials, there always exists a synthetic route

that follows an overall exothermic chemical reaction pathway, and all systems at finite

temperature will ultimately attain a Boltzmann distribution with a high occupation of

the ground state in thermodynamic equilibrium. In practice, however, materials in many

industrially relevant applications are metastable, i.e., they have higher energies than the

equilibrium ground states. Such metastable phases, or polymorphs, correspond to local

minima on the energy landscape and are surrounded by sufficiently high barriers to render

them kinetically persistent on a finite time scale [103, 104].

Synthesizing metastable materials essentially requires finding, in some manner, a path

in configurational space such that precursors undergo chemical reactions along a downhill

trajectory with sufficiently low activation barriers, until the desired product is formed and

quenched [105, 106]. A plethora of thermodynamic parameters can be tuned to design

such a pathway, including temperature, pressure, electromagnetic fields, compositional

variations, choosing specific precursor materials, etc. A special case of this design proce-

dure is to choose a set of thermodynamic parameters such that the desired phase becomes
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the thermodynamic ground state at the chosen conditions, where it forms at equilibrium,

and can be recovered as a metastable phase at ambient conditions if all transition barriers

leading away from it are sufficiently high [107].

This problem of identifying the ground states for a given set of external conditions is

commonly tackled in the computational materials discovery community through global op-

timization of a target fitness function, using advanced crystal structure prediction (CSP)

methods [108]. Ideally, this fitness function corresponds to the Gibbs free energy, but

it is often approximated by the potential energy (at zero pressure, temperature) or the

enthalpy (at zero temperature) or some other biased energy landscape, and is sampled in

an unconstrained manner in the configurational space. Many novel materials and their

structures have been resolved using CSP at high pressures [109–118], using chemical pres-

sure and thermal degassing [119, 120], as 2-dimensional materials [121–123], or at surfaces

and interfaces [124–128]. However, CSP approaches are computationally demanding and

their applications are therefore often limited to small subsets of chemical spaces.

On the other hand, data-driven approaches using large materials databases in con-

junction with high-throughput (HT) density functional theory (DFT) calculations have

become increasingly popular in materials science [21, 129–133]. Such HT databases usu-

ally contain DFT-calculated properties such as formation energy, equilibrium volume,

and relaxed atomic coordinates for experimentally reported phases available in reposito-

ries such as the Inorganic Crystal Structure Database (ICSD) [134]. These datasets are

sometimes augmented with hypothetical compounds constructed by decorating common

structural prototypes with elements in the periodic table. Subsequent phase stability

analysis is often performed to identify stable phases in every chemical space. Although
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approaches using such HT-DFT databases are useful for efficient large-scale analysis of

energetics across a wide range of chemistries, they lack the power to predict novel materi-

als with unknown crystal structures, and phases beyond ambient conditions since all such

databases currently contain only materials properties calculated at zero temperature and

zero pressure.

In particular, vast unexplored pressure-composition space is becoming increasingly ac-

cessible through large-volume press and diamond-anvil cell techniques [135], and improv-

ing predictive methods for high-pressure phases is, e.g., relevant to geophysical studies of

planetary interiors where there can be numerous polymorphs energetically in close prox-

imity, even in relatively simple compositional systems [136]. Increasingly, many phases

created at high pressure can be recovered to ambient conditions (e.g. diamond, silicate

perovskite, etc.), where they survive as metastable materials. Further, materials at high

pressures show remarkable properties such as exotic stoichiometries and physics, high-

temperature superconductivity, high energy density, superhardness, etc. [112]. Thus, a

framework to rapidly assess phase stability and predict new materials at high-pressure

has the potential for a broad impact ranging from geophysical sciences to uncovering new

materials physics.

In this work, we effectively combine big-data in HT-DFT databases with CSP meth-

ods to unravel the “high-pressure fingerprint” of all materials and discover novel materials

stable at non-ambient pressure conditions. Using the implicitly-available high-pressure

information in a HT-DFT database, the Open Quantum Materials Database (OQMD),

together with a simple approximation to the formation enthalpy of a compound, we study

the effect of pressure on the thermodynamic scale of stability/metastability of inorganic



69

compounds. Our model correctly predicts most experimentally reported high-pressure

elemental and binary phases to become thermodynamically stable at non-ambient pres-

sures. Our statistical analysis of the data in the OQMD shows a large fraction (up to

60%) of ambient-metastable compounds to be thermodynamic ground states at non-zero

pressures. Further, we use our model to sample all binary intermetallic chemical spaces

with no experimentally reported compound in the OQMD (∼1780 chemical spaces) and

predict nearly 3800 new compounds to be stable at some finite pressure. Finally, we

demonstrate the power of our predictive framework in guiding sophisticated CSP meth-

ods by explicitly exploring ten binary-immiscible systems, and discover that our model

correctly predicts phase spaces containing novel high-pressure materials, which could be

potentially recovered to ambient conditions as metastable compounds.

4.1.1. Linear approximation to enthalpy

The thermodynamic stability of solids determined by the Gibbs free energy G = E +

pV −TS (where p and T are pressure and temperature, while E, V and S are the internal

energy, volume, and entropy of a phase) is predominantly affected by entropic effects

(TS) at ambient pressure since the energy scale of the pV term is rather small: p∆V

at atmospheric pressure (p = 0.0001 GPa) is merely 0.006 meV/atom even for a volume

change of ∆V = 10 Å3/atom. However, this behavior shifts rapidly with pressures in the

GPa range, where the effect of pV increases by orders of magnitude compared to entropic

contributions. Hence, at zero temperature (neglecting TS), the Gibbs free energy for a

given phase reduces to the enthalpy H = E+pV . Expanding H as a function of p around



70

the equilibrium pressure p0 yields

H(p) = H(p0) + ∆pH ′(p0) +
(∆p)2

2
H ′′(p0) + · · ·

= H(p0) + ∆p V (p0)−
(∆p)2

2

V (p0)

B(p0)
+ · · ·(4.1)

where ∆p = (p − p0), and B = 1
β
is the bulk modulus of the phase, where β = − 1

V
∂V
∂p

is its compressibility. If we neglect all terms higher than second order and consider all

phases to be incompressible (i.e., B(p0) → ∞), for equilibrium pressure p0 = 0, we can

approximate the enthalpy of a phase simply as

(4.2) H(p) = E0 +∆p V (p0)

where E0 is the internal energy at the equilibrium volume V0. This approximation is

used in CSP approaches to quickly screen large sets of generated candidate structures,

and was first mentioned by Pickard and Needs [109]. Conveniently, both E0 and V0 are

quantities that are also readily available for hundreds of thousands of phases in most

HT-DFT materials databases such as the OQMD [129, 130], Materials Project [21], and

AFLOWlib [131].

The above linear approximation to enthalpy (henceforth referred to as “LAE”) is

illustrated in an energy-volume diagram in Fig. 4.1a, where the ground state and two

metastable states are each represented by their respective equation of states (EOS) E(V ),

i.e., their energy as a function of volume, approximated by parabola. The negative slopes

of the common tangents connecting the EOS of neighboring phases represent the pressure

at which both phases are in equilibrium (“transition pressures”, grey dashed lines). With
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Figure 4.1. (a) A schematic energy-volume (V –E) diagram with three
phases (the ground state GS, and two metastable phases A and B) and their
EOS, each represented by a parabola. The negative slope of the common
tangent to two adjacent EOS (dashed grey line) represents the pressure
at which the two phases are in equilibrium. The LAE approximates the
common tangent with a line connecting the ambient-condition equilibrium
volumes/energies of two adjacent phases (solid black line connecting filled
circles). (b) A schematic N–V –E convex hull for a model binary system.
Individual phases are represented by spheres, and convex hull boundaries
are indicated with solid red and dotted black lines. On the left is the con-
ventional zero-pressure N–E hull, a projection of the extended N–V –E
convex hull on the right. Phases that are thermodynamically stable at zero
pressure lie on the N–E convex hull (blue spheres). Metastable phases that
are stable at some non-ambient pressure lie above the N–E hull but on the
N–V –E convex hull (teal spheres). A phase that is truly unstable at any
pressure lies above the N–V –E hull (orange sphere).

our approximation of the bulk moduli B(p0) → ∞, the EOS curve of each phase would

have infinitely large curvature, reducing the parabola to a vertical line originating at the

corresponding equilibrium volumes V0 and energies E0. Essentially, all information of

each phase is then contained in a single point at (V0, E0), represented by filled points.

Although the LAE is rather crude, it is reasonably accurate up to pressures in the

range of tens, or even hundreds of GPa. As we will show in the rest of this work, the

LAE can be used as a powerful tool to enable quick analyses of phase stability of a large
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number of materials at non-ambient pressures. Note that we will hereafter use the terms

“zero pressure” and “ambient pressure” interchangeably, since the pV contribution to

the free energy at atmospheric pressure is insignificant for most inorganic compounds,

as discussed earlier. E.g., at one atmosphere the energy contribution of pV in diamond

silicon with a volume of ∼20 Å3/atom is merely 0.012 meV/atom, far smaller than the

error bars encountered in DFT calculations.

4.1.2. Thermodynamic stability: the convex hull

The thermodynamic stability of a phase at zero temperature can be determined by the con-

struction of the so-called convex hull of all phases in the chemical space. At zero pressure,

the convex hull is constructed from the composition and formation energy (composition-

energy hull, or simply “N–E convex hull”) of all the phases. By definition, a phase on

the convex hull has a formation energy lower than that of any other phase (or linear

combination of phases) at that composition, and is therefore thermodynamically stable.

At non-ambient pressures, thermodynamic stability is determined by a convex hull which

also takes into account the energy as a function of volume of all phases, given by their

respective EOS E(V ). The LAE introduced in Section 4.1.1 allows us to simplify the

construction of the convex hull by taking into account the ambient volume of each phase,

in addition to their composition and formation energy (compositon-volume-energy hull,

or simply “N–V –E convex hull”). A phase on the extended N–V –E hull has a formation

energy lower than any other phase or combination of phases at that composition and vol-

ume, and is therefore thermodynamically stable at some pressure. Further, a tie line on
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the convex hull represents a two-phase equilibrium, a triangular facet represents a three-

phase equilibrium, and so on—a facet with n vertices represents an n-phase equilibrium.

A schematic N–V –E convex hull is shown in Fig. 4.1b. A projection of the extended

N–V –E convex hull taking into account only the energy and volumes leads to the N–E

hull (indicated by solid red lines). Phases that lie above the N–E hull, but on the N–

V –E hull, are metastable at zero pressure but thermodynamically stable at some finite

pressure. For example, in Fig. 4.1b, only two elemental phases and one binary compound

(blue spheres) lie on the N–E hull (solid red lines), i.e., are thermodynamically stable at

zero pressure, and all other phases are metastable. However, all elemental phases and all

binary compounds except one lie on the extended N–V –E hull (teal spheres connected

by dotted black lines), i.e., are thermodynamically stable at some non-ambient pressure.

Only one phase shown (orange sphere at composition 0.2) is truly unstable at all pressures.

4.1.3. Pressure range of stability

For a system in thermodynamic equilibrium at zero temperature, dE = −p dV +
∑

i µi dNi,

where dE, dV are infinitesimal changes in internal energy E, volume V of the system,

respectively, and dNi is the infinitesimal change in the composition Ni of species i. The

equilibrium pressure is thus given by p = −
(
∂E
∂V

)
Ni
, i.e., the derivative of energy with

respect to volume at constant composition. Hence, the pressure range of stability of

a phase P with ambient equilibrium volume and energy of V0 and E0, respectively, is

governed by the phase equilibria at volumes (V0 + dV ) and (V0 − dV ) 1. In other words,

1This procedure is analogous to calculating the range of thermodynamic stability of a compound with
respect to the chemical potential of a given species. Since the chemical potential of species i, at p,
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the window of pressures [p−, p+] where P is stable is given by

(4.3) p± = −E0 − E(V0 ∓ dV )

dV

E(V0 ± dV ) can be calculated by minimizing the free energy of the system at the target

composition and volume. Grand canonical linear programming (GCLP) [84] techniques

using efficient linear solvers are routinely employed to calculate phase stabilities and

equilibrium reaction pathways at 0 K and 0 GPa [2, 25, 31, 137, 138]. In this work, in

addition to the average composition of the system being constrained to that of P , the

volume is constrained to V0 ± dV during energy minimization. Thus, a pressure range of

stability can be calculated for every phase that lies on the extended N–V –E convex hull.

As discussed in Sec. 4.1.1, the negative slope of the common tangent to the EOS of

two phases is the pressure at which the respective phases coexist, or in other words, one

phase transforms into the other under the effect of pressure. In the LAE, the common

tangent is reduced to a line connecting the local minima of the two phases (solid black

line connecting filled circles in Fig. 4.1a). The LAE introduces errors compared to the

real transition pressure, which depend on the overall features of the energy landscape. If

we assume that all phases are compressible with identical, finite bulk moduli, the LAE

will consistently lead to an underestimation of the magnitude of the transition pressures.

In practice, however, high-pressure phases often exhibit shorter, stronger bonds that lead

to higher bulk moduli. Hence, the LAE would lead to a better agreement with the real

transition pressures for phases stable at very high pressures. On the other hand, if the bulk

T = 0, is given by µi =
(

∂E
∂Ni

)
Nj ̸=i

, the window of stability [µ−
i , µ+

i ] of the phase can be calculated using

µ±
i = E0−E(Ni∓dNi)

dNi
, i.e., as a perturbation of energy with respect to the composition of the species i.
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moduli significantly decreased with pressure, the LAE would lead to an overestimation of

the magnitude of the transition pressures. We also note that transition pressures, based on

the above definition, can be positive or negative (e.g., the common tangents connecting the

ground state GS with metastable phases A and B, respectively in Fig. 4.1a). A negative

pressure can be physically interpreted as a tensile stress, leading to the expansion of a

phase toward volumes exceeding its ambient ground state equilibrium volume.

4.2. Results and Discussion

4.2.1. Model assessment

We first evaluate the accuracy of the linear approximation to enthalpy by investigating

two elements and five binary systems in detail.

4.2.1.1. Elemental solids. We choose two elements whose high-pressure phase dia-

grams are among the most complex as well as the most well-studied: silicon and bismuth.

Both elements have intricate energy landscapes with several high-pressure allotropes.

a. Silicon

The phase diagram of silicon has been well explored experimentally, partially due to

its importance in the semiconductor industry. The ambient ground state is Si-I, which

crystallizes in a cubic diamond structure [5]. It transforms around 11 GPa to the Si-II

phase, which has a β-Sn structure [6]. This is followed by a transformation to Si-XI with

Imma symmetry [7] at 13 GPa. Above 16 GPa, Si-V forms in the simple hexagonal

structure [8], and at 38 GPa, Si-VI forms in an orthorhombic Cmcm structure [9]. The
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hexagonal close-packed Si-VII forms above 42 GPa [10], and finally, cubic close-packed

Si-X forms at pressures above 78 GPa [11].

We first compute the pressure range of stability of the various silicon allotropes using

DFT calculations (see the top bar labeled “DFT” in Fig. 4.2a). For each phase, we

calculate the enthalpy explicitly at various pressures at intervals of 2 GPa and 10 GPa in

the range of 0–20 GPa and 20–100 GPa, respectively. The transition pressures are then

computed by minimizing the interpolated formation enthalpies as a function of pressure.

This approach is more accurate than fitting an equation of state (EOS) using energies

computed at scaled volumes, since (a) the EOS fit would depend on the functional form

(e.g., Vinet, Murnaghan, Birch-Murnaghan, etc.), and (b) the simple scaling of volume

assumes isotropic compressibility. We employ above approach for all phase diagrams

denoted hereafter with “DFT”.

The experimentally reported sequence of formation and transition pressures of high-

pressure Si allotropes are well reproduced, with the exception of Si-II, which is effectively

degenerate in enthalpy to Si-XI. The discrepancy between experiment and theory for the

transition from Si-I to Si-II has been well studied [139, 140], and is attributed to the errors

associated with the PBE approximation to the DFT exchange correlation potential.

We then calculate the pressure range of stability of all the allotropes using only the

respective equilibrium energies and volumes at 0 GPa, extrapolated linearly as described

in Sections 4.1.1–4.1.3 (see the second bar labeled “LAE” in Fig. 4.2a). The agreement

between the “DFT” and “LAE” phase diagrams is remarkable: (a) the sequence of the

phases is correctly reproduced, with the only exception of Si-X, which the linear approx-

imation model predicts to be unstable even at 100 GPa, and (b) the overall errors in the
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Figure 4.2. The pressure range of stability of high-pressure phases of el-
emental (a) silicon and (b) bismuth, respectively. Explicitly computed
transition pressures using DFT-calculated formation enthalpies are labeled
“DFT” (top bar in each panel), and those based on the LAE are denoted
with “LAE” (second bar in each panel). In addition, we show transition
pressures calculated using the expansion of the enthalpy to second order
(“QUA”), and the Murnaghan EOS (“MUR”) [3, 4], for comparison. The
crystal structures of the silicon and bismuth allotropes were taken from the
Refs. [5–11] and [12–18], respectively.

transition pressures predicted by the approximate model are within around 10% of those

calculated explicitly.

Additionally, we compare the results from LAE with those from fitted EOS. For

this purpose, we scale the lattice vectors of every structure relaxed at 0 GPa by factors
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of x = {0.95, 0.97, 0.98, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05} and compute the corresponding

energies with a single point DFT calculation. The energy-volume data obtained in this

way is used to fit two EOS: (a) a quadratic polynomial corresponding to the second order

expansion in Equation (4.1) (“QUA”, third bar), and (b) the well-known Murnaghan

EOS [3, 4] (“MUR”, bottom bar). The pressure range of stability calculated using the

EOS shows an overall trend and errors comparable to that calculated using the LAE. The

quadratic fit fails to predict the stability of Si-VI, while it correctly assigns a pressure

range below 100 GPa for Si-X. The Murnaghan EOS performs even worse: it both misses

the stability of Si-VI and the onset pressure of Si-X. In other words, using sophisticated

EOS does not necessarily improve the predicted phase diagram compared to the LAE,

especially given the addition computational cost associated with it 2.

2On our HPC infrastructure, the explicit calculation of the enthalpies at different pressures for all rel-
evant Si phases requires ≈ 1120 core hours. This is by far the most expensive, but also most accurate
approach, since all degrees of freedom (atomic coordinates and cell parameters) are fully relaxed at rel-
evant pressures. The LAE on the other hand only requires the relaxed cell parameters and energies at
0 GPa, which are computed within ≈ 70 core hours. For fitting the EOS, these relaxed cells are scaled
to discrete volumes and the corresponding energies calculated with single-point DFT calculations, a task
completed within ≈ 70 + 140 = 210 core hours (i.e., including the initial relaxation at 0 GPa).
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b. Bismuth

At ambient condition, bismuth crystallizes in a rhombohedral Bi-I phase with space group

R3̄m. It transforms at a pressure of around 2.55 GPa to Bi-II with a C2/m struc-

ture [12, 13] and a very narrow range of stability at low temperatures. Upon increasing

the pressure, Bi-III forms in a complicated, incommensurate host-guest structure with

P4/ncc symmetry [14–16]. A Bi-IV phase with space group P21/n has been reported

between 2.4 GPa and 5.3 GPa at temperatures above around 450 K [17]. Finally, the

Bi-V bcc phase is observed at pressures above 7.7 GPa [18].

Similar to the case of silicon, we first compute the pressure range of stability of the

various bismuth allotropes using enthalpies calculated explicitly at various pressures at

intervals of 1 GPa in the range of 0–20 GPa (see the top bar labeled “DFT” in Fig. 4.2b).

Although the experimentally reported sequence of allotropes formed is well reproduced,

the transition pressures between Bi-III/Bi-IV and Bi-IV/Bi-V are severely overestimated.

This behavior has been reported previously by Häussermann et al. [16], and corroborated

in our recent work on Cu–Bi intermetallics [141, 142].

The pressure range of stability of all allotropes calculated using the LAE reproduces

the correct sequence of formation (see the second bar labeled “LAE” in Fig. 4.2b). How-

ever, the agreement between the transition pressures predicted by the approximate model

and those calculated explicitly are worse than that for silicon allotropes. We attribute

these larger errors to the strong changes in the chemical bonds between the different

bismuth phases, especially since ambient Bi-I has a layered structure, in contrast to the

high-pressure phases. Hence, our approximation of equal, infinitely large bulk moduli for

every phase is perhaps less reasonable for elemental phases of bismuth.
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Similar to silicon, more advanced EOS fitted to energy-volume data do not significantly

improve the description of the phase diagram. Neither the fit to a quadratic polynomial

(QUA) nor the Murnaghan EOS (MUR) provides a much better agreement with the exact

DFT transition pressures: the transition pressures between Bi-III/Bi-IV and Bi-IV/Bi-V

are in a similar range as the ones from LAE. Overall, these results clearly demonstrate

that the LAE can capture the general features that determine high-pressure phase sta-

bility at a comparable accuracy to fits of EOS, at a significantly lower computational cost.

4.2.1.2. Binary intermetallics. When compared to pure elements, the high-pressure

phase space of binary/higher-order chemical systems have been experimentally relatively

unexplored. Including composition and pressure as additional degrees of freedom signifi-

cantly increases the complexity of the phase space. In this section, we focus on a unique

subset of chemistries: intermetallic systems of elements that are not miscible at ambi-

ent conditions but form compounds under pressure. Many of these so-called ambient-

immiscible systems involve bismuth in combination with other elements. Recently, we

investigated three such systems in detail, namely Fe–Bi [143], Cu–Bi [141, 142], and Ni–

Bi [144], by performing extensive global structure searches. Here, we use these three

systems to further evaluate the performance of the linear approximation to enthalpy.

a. Fe–Bi

Using the minima hopping crystal structure prediction method (MHM), we recently pre-

dicted a high-pressure FeBi2 phase with I4/mcm symmetry at pressures above 36 GPa [143],

which was subsequently experimentally confirmed through evidences found in the in-situ
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X-ray diffraction pattern at above 30 GPa [111]. We note that the discovery of FeBi2

resulted from extensive MHM structural searches performed at pressures of 0, 50 and

100 GPa. The most promising candidate structures were then relaxed at pressure inter-

vals of 10 GPa to compute enthalpies, which were in turn used to calculate the pressure

range of stability of various phases (see top panel in Fig. 4.3a). Besides the FeBi2 I4/mcm

phase, we find a FeBi3 phase with the Cmcm symmetry to be stable in a very small pressure

window slightly below 40 GPa. This phase has so far not been observed in experiment.
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Figure 4.3. Comparison between the explicitly computed phase diagrams
with the ones derived from the LAE model for binary systems. The panels
(a), (b) and (c) correspond to the Fe–Bi, Cu–Bi and Ni–Bi systems, respec-
tively. Explicitly calculated transition pressures using DFT are denoted
with “DFT” (top bar), and results based on the LAE are denoted with
“LAE” (bottom bar).

We now compare the pressure range of stability calculated explicitly above against that

calculated using the linear approximation to enthalpy, using only the ambient equilibrium
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energies and volumes of the phases. The phase diagram predicted by the approximate

model (bottom panel in Fig. 4.3a) is qualitatively similar to the exact one: the FeBi2

I4/mcm phase becomes stable at comparable pressures. This finding can be conveniently

exploited in structural searches: since the MHM samples many low-lying metastable struc-

tures at a fixed pressure p0, one could use the energies and volumes at p0 of such phases

within the LAE to quickly predict if any of the metastable phases become stable at a dif-

ferent pressure p ̸= p0. Even for immiscible systems at p0, potential candidate structures

are found if the simulation cells are sufficiently small to prevent phase segregation. This

means that a structural search conducted solely at 0 GPa might have been sufficient to

uncover the I4/mcm structure and correctly predict the experimentally observed FeBi2

phase. The FeBi3 phase, on the other hand, with the narrow pressure window of stability

is predicted to be unstable at all pressures by the approximate model; this behavior can

be attributed to the approximations inherent to the LAE. The overall good agreement

between the exact and approximate phase diagrams is however rather surprising: FeBi2

undergoes a series of magnetic transitions between 0 and 40 GPa, accompanied by abrupt

changes in the unit cell volume [143], all of which are neglected in the linear approxima-

tion to enthalpy.

b. Cu–Bi

In the ambient-immiscible Cu–Bi system, at least two compounds, with compositions

Cu11Bi7 and CuBi, have been recently discovered in diamond anvil cell (DAC) experiments

between 3 and 6 GPa [141, 142]. Both phases can be recovered to ambient conditions,

and exhibit exciting superconducting and structural properties. For example, CuBi has a
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layered structure, rather uncommon for high-pressure phases, and is calculated to have an

extremely low energy cost associated with exfoliation from bulk into single sheets [145].

Further, more recent structural searches predict additional, dense Cu2Bi phases to become

thermodynamically accessible at pressures of above 50 GPa [146] (recent, unpublished

results show that a Cu7Bi2 phase with C2/m symmetry might be even lower in enthalpy.

However, this structure has not been included in the current phase analysis and will be

published separately).

The top panel in Fig. 4.3b shows the pressure range of stability of the various high-

pressure Cu–Bi phases computed using explicitly calculated enthalpies for each phase.

The CuBi phase is not thermodynamically stable at any pressure at zero temperature,

consistent with recent reports of vibrational entropy playing a crucial role in rendering

this phase synthesizeable [142]. The Cu11Bi7 phase is thermodynamically accessible at

high pressures up to around 60 GPa, when it starts to compete with two dense Cu2Bi

phases [146].

The bottom panel in Fig. 4.3b shows the Cu–Bi phase diagram computed from the

LAE, using only the respective equilibrium energy and volume of each phase at 0 GPa.

All phases are correctly predicted to be stable by the approximate model, consistent with

the exact phase diagram. As expected, the transition pressures predicted by the approx-

imate model are underestimated overall when compared to those calculated explicitly—a

trend that is presumably increased due to the significant structural changes in elemental

bismuth as a function of pressure (see Section 4.2.1.1). Nonetheless, it is striking that,

using the simple linear approximation to enthalpy, we could have correctly predicted all
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the high-pressure phases in the Cu–Bi system from a structural search only at 0 GPa.

c. Ni–Bi

We tested for the first time the predictive power of our model by investigating the

high-pressure phases in the Ni–Bi binary intermetallic system. Two compounds have

been experimentally reported at ambient pressures: NiBi in the hexagonal NiAs struc-

ture [147], and NiBi3 in the orthogonal RhBi3 structure [148, 149]. Both compounds

are superconductors with transition temperatures of 4.25K and 4.06K in NiBi [150] and

NiBi3 [151, 152], respectively. To generate phase data to be used within the LAE to

construct the convex hull and predict transition pressures, we used prototypes from our

previous structural searches of the Fe–Bi and Cu–Bi systems, and substituted the Fe/Cu

sites with Ni atoms, followed by structural relaxation at ambient pressures. Using this

ambient-pressure dataset of energies and volumes, the LAE model predicted stable com-

pounds at high-pressure for the compositions Ni3Bi and NiBi2. Based on this prediction,

we performed a thorough investigation of the Ni–Bi system using MHM simulations at

pressures of 10 and 50 GPa, which indeed revealed a number of high-pressure phases.

In particular, our calculations predict new compounds stable at high-pressure at com-

positions of the previously reported ambient-pressure phases, i.e., NiBi and NiBi3. The

hexagonal α-NiBi phase undergoes a structural transition to a TlI-type structure with

Cmcm symmetry at pressures above around 20 GPa. Similarly, the orthorhombic NiBi3

phase is thermodynamically unstable above 7.5 GPa, and a Cmcm structure is stable

above 62 GPa. Further, we discover additional stable phases at previously unexplored

compositions. We find that a NiBi2 phase with C2/m symmetry in the PdBi2 structure
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type is in fact thermodynamically stable at ambient pressures, a finding that was reported

earlier by Bachhuber et al. [153]. At the same composition, a second C2/m phase becomes

stable above 52 GPa, over a very small pressure window of less than 1 GPa, followed by

a I4/mcm phase, isostructural to FeBi2. Finally, a Ni3Bi compound with Pmmn sym-

metry, isostructural to Ni3Sb in the Cu3Ti structure type, is predicted to be stable at

pressures above 25 GPa.

One of our predictions was very recently verified by compressing NiBi in a DAC.

Heating to temperatures above 700◦C at pressures above ≈ 28 GPa, the hexagonal α-

NiBi transforms into β-NiBi in the predicted TlI structure type [144]. The experimental

transition pressure is somewhat higher than the calculated value of 20 GPa. This discrep-

ancy could be attributed to the presence of high kinetic reaction barriers in the first-order

phase transition, which requires heat to induce the phase change and inevitably leads

to calculated transition pressures being lower than those observed in experiment. This

hypothesis is supported by detectable evidences of the β-NiBi phase in the XRD pattern

upon decompression: the β-NiBi is kinetically persistent as low as 11.62 GPa, hence the

equilibrium pressure lies anywhere between 11.62 and 28.3 GPa. In addition, errors in-

herent to the approximations used in DFT calculations could also explain the difference

in the observed and computed transition pressures. The approximations to the exchange

correlation potential alone can make a noticeable difference. E.g., the PBE functional

predicts that both the experimentally observed NiBi and NiBi3 phases (in their reported

structures) are not thermodynamically stable at 0 GPa and 0 K. However, we find that

LDA correctly places the two experimental phases on the 0 GPa convex hull, and if we

additionally take into account the vibrational entropy contributions to the free energy,
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NiBi2 becomes unstable at elevated temperatures. A detailed investigation of the influ-

ence of different exchange correlation potentials and temperature effects on the calculated

phase stability of Ni–Bi compounds and their properties will be reported elsewhere.

After exploring the high-pressure Ni–Bi system with the MHM, we a posteriori com-

pare the phase diagram of Ni–Bi computed using the explicitly calculated enthalpies

against that predicted from our LAE model (Fig. 4.3c), and find remarkable agreement.

Most phases, and the sequence in which they form under pressure, are correctly predicted

by the approximate model. The only exceptions are the Cmcm phase at the NiBi3 com-

position and the second C2/m compound at the NiBi2 composition at around 50 GPa.

To assess the source of this discrepancy we investigate the convex hull of the Ni–Bi

system at 70 GPa, a pressure where the Cmcm phase of NiBi3 and I4/mcm phase of

NiBi2 overlap the most (see Fig. 4.4). We see that the Cmcm and I4/mcm phases barely

lie on the convex hull of stability, and the energy difference compared to the two-phase

mixture of elemental Bi and the Cmcm phase of NiBi is extremely small. This delicate

feature of the enthalpy landscape in the Ni–Bi system is hard to capture even with higher

order approximations to the enthalpy. As an additional challenge, the Cmcm NiBi phase

has a strongly anisotropic compressibility: at 100 GPa, the lattice parameters a, b and c

are reduced by factors of 0.813, 0.830 and 0.890, respectively, when compared to those at

0 GPa. Therefore, neither the LAE nor any simple EOS fit can correctly reproduce the

exact DFT enthalpy at high pressure—they overestimate the enthalpy, moving the phase

off the convex hull. Nevertheless, we recompute the complete phase diagram of the Ni–Bi

system by fitting the Murnaghan EOS to the energies at scaled volumes of every relevant



87

phase (see Fig. 4.5). As expected, the Murnaghan EOS fails to capture the phase stability

of Cmcm NiBi3, similar to the LAE.
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Figure 4.4. The convex hull of stability of the Ni–Bi system at 70 GPa.
Note how Bi3Ni and Bi2Ni barely lie on the convex hull.

As discussed earlier, the C2/m phase at the NiBi2 composition has a very small pres-

sure range of stability of <1 GPa, so its absence in the phase diagram predicted by the

LAE is not surprising. The phase diagram computed using the Murnaghan EOS misses

this phase as well. In fact, similar to the Cmcm FeBi3 phase that was predicted to be sta-

ble in a narrow pressure window of less than 3 GPa but not yet observed experimentally,

synthesis of the NiBi2 phase is likely to be challenging, if possible at all. Overall, stability

predictions using the LAE and the Murnaghan EOS are very comparable, similar to our

findings for the elemental phase diagrams.
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4.2.1.3. Binary oxides. Next, we assess the performance of the LAE in predicting the

stability and the transition pressures of phases in two ceramic oxide systems with several

experimentally studied high-pressure phases: Zr–O and Ge–O.

a. Zr–O

The phase diagram of Zr–O is complex, where the constituent elements themselves exhibit

various thermodynamically stable phases as a function of pressure. Experimentally, oxy-

gen crystallizes in the monoclinic α-phase at ambient pressure and low temperatures [154],

transforming into the orthorhombic δ-phase at 3 GPa [155], followed by the monoclinic

ϵ-phase at 10 GPa [156, 157], and finally the ζ-phase above 96 GPa through a continuous

displacive and isosymmetric transition (ϵ-O is essentially isostructural to ζ-O) [158, 159].
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However, based on our PBE-DFT calculations, only the ϵ-phase (ζ-O) is thermodynami-

cally stable over the whole pressure range as we neglect magnetic ordering which persists

in the condensed low-pressure regimes of O2 (see Fig. 4.6).

At ambient pressure, elemental Zr crystallizes in its low-temperature phase II, which

has an hcp structure. At 2.2 GPa, a transformation to phase III with a so-called ω

structure of hcp type [160] is observed, and at around 30 GPa Zr adopts a bcc struc-

ture (phase I) [161]. The top panel in Fig. 4.6a shows that our exact DFT calculations

reproduce these two transitions with reasonable accuracy.

In the binary Zr–O system, ZrO2 adopts a baddeleyite type structure with P21/c

symmetry at ambient pressure, which transforms into the orthorhombic Pbca and Pnma

phases at pressures of 3 GPa and 13-30 GPa, respectively [162, 163]. Further, the suboxide
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Zr3O was observed in two structure types with R-3c and R32 symmetries, while the

formation of ZrO was reported in the NaCl structure with Fm-3m symmetry [164]. The

latter phase becomes indeed thermodynamically stable, but only at pressures above ≈

45 GPa.

A comparison between the exact phase diagram of the Zr–O system with that cal-

culated using the LAE (Fig. 4.6a) shows agreement. The only major discrepancy is

found for Zr3O: from the explicit calculations of enthalpy, the thermodynamically sta-

ble low-pressure phase with R-3c symmetry loops back and becomes stable again, above

≈ 55 GPa. By definition, such a behavior cannot be predicted within the LAE model.

b. Ge–O

The phase diagram of elemental Ge has been experimentally extensively explored, but the

exact sequence and structures of some high-pressure phases have not yet been conclusively

determined. At ambient pressure, phase I adopts the diamond structure [165], which

transforms to phase II with a β-Sn structure type between 6.7 and 10.5 GPa, depending

on the amount of shear stress [166]. Above 74 GPa, phase V forms in the simple hexagonal

structure [167], which transforms to an orthorhombic structure with Cmcm symmetry

(phase VII) around 100 GPa [168], and subsequently to an hcp structure at 160-180 GPa

(phase VIII) [169]. Additionally, a series of metastable, intermediate Ge phases have been

reported [170]. The formation sequence of the high-pressure phases computed from the

exact enthalpies in Fig. 4.6b agrees well with results in the literature [171]. However,

the approximate LAE phase diagram incorrectly predicts phase II to be stable up to

>100 GPa.
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Similar to SiO2, there are several polymorphs of GeO2. At ambient pressure, the

most stable form is the α-quartz ground state structure [172], which transforms to the

rutile-type structure with P42/mnm symmetry below 2 GPa [173]. A displacive phase

transformation to a CaCl2-type structure with Pnnm symmetry has been reported at

≈ 20 GPa, followed by a transition to a α-PbO2-type structure (Pbcn symmetry) above

≈ 33 GPa and a Pyrite-type structure (Pa-3 symmetry) [174, 175].

The top panel in Fig. 4.6b shows that the exact DFT results are in excellent agreement

with the experimental observations. The LAE closely reproduces the exact phase diagram,

with the exception of the transition from the P42/mnm to the Pnnm phase. This is

expected as the phase transition is of second order and a DFT relaxation of both structures

at 0 GPa results in identical equilibrium energies and volumes.

4.2.2. Large-scale analysis of phase stability at high pressure

4.2.2.1. Elements and binary compounds. The power of our linear enthalpy model

lies in its capability to efficiently assess the pressure range of stability of hundreds of

thousands of phases. Since the linear approximation requires only equilibrium energies

and volumes of phases calculated at ambient pressure, it can be used to leverage the

large materials datasets available in HT-DFT databases such as the OQMD [129, 130],

Materials Project [21], and AFLOWlib [131]. Here, we present large-scale analysis and

statistics of thermodynamic phase stability of materials at high pressure using ambient-

pressure phase data calculated in the OQMD.
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First, we focus on elemental high-pressure phases, and begin by compiling a “validation-

dataset” of experimentally reported high-pressure elemental phases. The crystal struc-

tures of many high-pressure phases reported in the Inorganic Crystal Structure Database

(ICSD) [134] have been calculated in the OQMD, albeit at ambient pressure. For every

element, we filter all entries in the ICSD using the “External Conditions → Pressure”

metadata available for each entry. Further, Tonkov et al. [170] compiled a comprehen-

sive list of phase transformations under pressure for nearly 100 elements, on which we

rely heavily as a second reference to cross-validate and augment the list of high-pressure

phases calculated in the OQMD. Our final compiled dataset contains 132 distinct ele-

mental high-pressure phases. The dataset entire dataset is provided in Table A.1, and a

comparison of LAE-predicted vs experimental transition pressures is shown in Fig. 4.7.

For each element in the periodic table, we use the ambient-pressure energy and volume

data for all ICSD phases (i.e., not limited to high-pressure phases) calculated in the

OQMD within the LAE model to predict (a) the number of phases from our validation-

dataset that lie on the extended N–V –E convex hull, i.e., the number of phases stable at

some finite pressure, and (b) the pressure range of stability of every phase that lies on the

N–V –E hull. Fig. 4.8 shows a summary of this analysis in the form of a periodic table: for

every element with at least one experimentally reported high-pressure phase, we indicate

the number of high-pressure phases in our compiled dataset from the OQMD (bottom-left

half) and the number of phases predicted by the linear enthalpy model to lie on theN–V –E

hull (top-right half), represented on a color scale. That is, the number of phases reported

experimentally and those predicted to be stable at some finite-pressure match exactly

whenever the colors in both the left and right segments are identical. This is indeed the
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Figure 4.7. Accuracy of the linear enthalpy model in predicting the stabil-
ity of experimentally reported elemental high-pressure phases. For each
element, observed high-pressure phases with transition pressures within
100 GPa are shown as filled circles (different colors are used for differ-
ent phases). The phases which are correctly predicted by our approximate
model to be thermodynamically stable at some finite pressure are indicated
by black outlines around the respective circles. The vertical bars represent
the pressure range of stability (of the correspondingly colored phase) as
predicted by the approximate model.

case for most elements, with a few exceptions. Overall, 75% of all experimentally reported

high-pressure phases are predicted to lie on the N–V –E convex hull (see the top panel

of Table 4.1). In addition, for around 35% of the phases, the predicted pressure range of

stability overlaps with the respective transition pressures reported in experiment. The low

success rate in correctly predicting the transition pressure is somewhat expected following
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the model validation on Si and Bi in Section 4.2.1. We discuss the possible sources of

discrepancy between predictions and experiment toward the end of this Section.

ICSD

Prediction

Number of phases thermodynamically stable at nonambient pressures

Figure 4.8. Comparison of predictions of high-pressure elemental phases
from the LAE model against experiment. For each element, the number of
(a) unique phases reported experimentally and (b) predicted by the linear
enthalpy model to be thermodynamically stable at non-ambient pressures,
are indicated by the color of the bottom-left and top-right halves, respec-
tively, of the corresponding tile in the periodic table. Overall, the model
correctly predicts ∼75% of the high-pressure phases in the ICSD to be
thermodynamically stable at non-ambient pressures.

Next, we perform a similar large-scale analysis for all experimentally reported binary

phases. Using calculations of experimentally reported compounds in the OQMD, curated

using pressure-related metadata in the ICSD (in a manner similar to that employed for

elemental phases), we compile a dataset of 343 unique binary compounds in total as a

validation-dataset (the entire list is available in Table A.2 in the Appendix, along with a
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Table 4.1. Accuracy of the linear enthalpy model in predicting the stability
(at some finite-pressure) of experimentally reported elemental and binary
high-pressure phases.

Elements
Experimentally reported HP phases 132
Predicted to be stable at finite pressure 97 (75%)
Predicted pressure range of stability 45 (35%)matches experiment

Binaries
Experimentally reported HP phases 343
Predicted to be stable at finite pressure 273 (80%)
Predicted pressure range of stability 125 (35%)matches experiment

comparison of LAE predictions vs experiment in Fig. 4.9). This number is significantly

lower than that expected from a simple combinatorial estimation. For elemental solids,

we found in average more than one high-pressure phase per element. If we extend this

observation to binaries and assume that every binary system has in average more than

one high-pressure phase, the number of potential high-pressure phases considering 90

elements is 90C2 = 4005. We note that our estimation is very conservative, since binary

A–B systems introduce an additional, compositional degree of freedom, which allows

multiple high-pressure phases to exist at the same pressure, ApBq, as we have seen in

Sec. 4.2.1.2. This indicates that the high-pressure phase diagrams of binary systems in

general have been relatively underexplored. The linear enthalpy model performs equally

well for binary compounds—80% of experimentally reported high-pressure binary phases

are predicted to be stable at some finite pressure (see lower panel of Table 4.1). For around

35% of the phases, the predicted pressure range of stability overlaps with the respective

transition pressures reported experimentally.



96

H

H

Li

Li

Be

Be

B

B

C

C

N

N

O

O

F

F

Na

Na

Mg

Mg

Al

Al

Si

Si

P

P

S

S

Cl

Cl

K

K

Ca

Ca

Sc

Sc

Ti

Ti

V

V

Cr

Cr

Mn

Mn

Fe

Fe

Co

Co

Ni

Ni

Cu

Cu

Zn

Zn

Ga

Ga

Ge

Ge

As

As

Se

Se

Br

Br

Rb

Rb

Sr

Sr

Y

Y

Zr

Zr

Nb

Nb

Mo

Mo

Ru

Ru

Rh

Rh

Pd

Pd

Ag

Ag

Cd

Cd

In

In

Sn

Sn

Sb

Sb

Te

Te

I

I

Cs

Cs

Ba

Ba

Hf

Hf

Ta

Ta

W

W

Re

Re

Os

Os

Ir

Ir

Pt

Pt

Au

Au

Hg

Hg

Tl

Tl

Pb

Pb

Bi

Bi

Prediction

Experiment

0 1 3 5 7 9
# of high-pressure phases

Figure 4.9. High-pressure binary phases reported experimentally compared
with predictions using the linear enthalpy model. Each square represents
a binary family (e.g., Si-O). The color of the lower left (upper right) tri-
angle indicates the number of observed (predicted) high-pressure phases
in that family. The heat map is rather sparse: only a few families have
experimentally reported high-pressure phases.



97

Overall, our “crude” linear enthalpy model performs surprisingly well, with a success

rate of 75–80%, in predicting the stability of both elemental and binary high-pressure

phases. We identify four potential sources of error that could explain the discrepancy

between the number of high-pressure phases reported experimentally and that predicted

by our approximate model:

(a) The crystal structure reported experimentally for the phase is erroneous. Re-

solving the crystal structure, e.g., from in-situ XRD measurements, under high

pressure is a difficult and tedious task that can lead to incomplete/incorrect

structural characterization. A prominent example is the Bi-III phase, the crys-

tal structure of which was experimentally resolved only after several failed at-

tempts [14]. In fact, Bi-III has an incommensurate host-guest structure and the

reported structure is only a representative ordered model with P4/nnc symme-

try [16]. A similar incommensurate structure has been reported for phase IV of

phosphorus in the pressure range of 107–137 GPa [176].

(b) The high-pressure phase emerges via a phase transition of second order. In this

case, the structural relaxations performed using DFT will inevitably transform

the high-pressure phase to a lower-pressure structure. Therefore, our linear en-

thalpy model, which relies on the equilibrium energy E0 and volume V0 at ambient

pressure of a high-pressure phase, will expectedly not capture its stability.

(c) Errors inherent to DFT calculations and numerical noise, e.g., due to the ap-

proximation to the exchange correlation potential, pseudization of core electrons
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(which might be important especially at high pressures), unconverged basis sets

and sampling meshes, insufficient tolerances during structural relaxations, etc.

(d) Finally, there is the inherent error due to applying a linear approximation to the

enthalpy of each phase (i.e., assuming all phases to be perfectly incompressible),

which might be unreasonable for some materials at large values of pressure. In

particular, the LAE, like all commonly used empirical EOS, assumes isotropic

compressibility, which leads to issues with strongly anisotropic phases, as we

discuss in detail for the Cmcm phase of NiBi3.

One way to address some of the above limitations in the LAE for practical materials

discovery efforts is to take into account phases within a small distance ∆H off the N–V –E

convex hull, in addition to the ones that lie on it. For example, an enthalpic tolerance of

∆H = 25 meV/atom can be used to account for the influence of entropic effects at room

temperature on thermodynamic phase stability [107]. Phases that are not on the hull, but

sufficiently close to it, can then be included in explicit enthalpy calculations to obtain reli-

able predictions of accurate high-pressure phase diagrams to guide experimental synthesis.

4.2.2.2. All experimentally reported compounds. We now use our linear enthalpy

model to analyze the phase stability of all experimentally reported compounds calculated

in the OQMD (not limited to high-pressure phases), a total of around 33,000 unique

ordered compounds. As earlier, using the equilibrium energy and volume at ambient

pressure of each phase in our dataset, we predict the number, and the pressure range
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of stability, of all phases that lie on the extended N–V –E convex hull (i.e., presumably

thermodynamically stable at some finite-pressure).

First, we find that only around 55% of the 33,000 compounds in our dataset lie on

the N–E convex hull, i.e., are thermodynamically stable at ambient pressure conditions,

consistent with a previous report on a similar dataset from the OQMD [130]. A recent

study by Sun et al. [107] on a dataset of 29,900 experimentally reported compounds

calculated in the Materials Project also finds around 50±4% of the phases to be ambient-

metastable. In the latter study, it is proposed that the observed metastable compounds

are generally remnants of thermodynamic conditions where they were once the stable

ground states.

We next test this hypothesis of “remnant metastability” by using pressure as a ther-

modynamic handle and tracking the number of metastable phases that become stable with

incremental increase/decrease in pressure, with respect to ambient conditions. Fig. 4.10a

shows the fraction of metastable phases as a function of positive (compressive) or nega-

tive (tensile) pressure, separated into binary, ternary, quaternary and higher-component

systems. We observe a range of trends based on our statistical analysis.

First, the number of metastable phases decreases with incremental application of both

positive and negative pressures, relative to 0 GPa. In other words, a significant fraction of

the ambient-metastable phases are in fact thermodynamically stable ground states at non-

ambient pressure conditions. For example, in the case of binary compounds (top left in

Fig. 4.10a), the fraction of phases that are metastable at ambient pressure decreases from

around 0.45 at 0 GPa to around 0.30 at 100 GPa—33% of the ambient-metastable phases

are rendered thermodynamically stable at some pressure p ∈ (0, 100] GPa. However, in
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Figure 4.10. (a) Fraction of metastable phases that become thermodynam-
ically stable with incremental increase/decrease in pressure, with respect
to 0 GPa. The horizontal dashed lines indicate the fraction of metastable
phases that do not lie on the N–V –E convex hull at any pressure. (b)
Fraction of ambient-metastable phases that cannot be accessed thermody-
namically at any pressure larger than pressure p, equivalent to 1− (fraction
of phases that can be accessed at some pressure larger than pressure p).
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each case, a sizeable fraction of metastable phases remain metastable at all pressures, i.e.,

they are not equilibrium ground states at any pressure (represented by horizontal dashed

lines in Fig. 4.10a). For example, around 21% of all binary phases remain metastable and

cannot be accessed thermodynamically via pressure alone.

Second, the rate of decrease in the number of metastable phases (or increase in the

number of metastable phases made stable) with pressure is maximum near zero and decays

rapidly toward higher positive/negative pressures. This is most likely due to a bias toward

small values of pressure in our compiled set of phases—after all, most compounds reported

experimentally are likely observed in near-ambient conditions—but could be also due to

a fundamental property of materials, namely, the density of stable ground states as a

function of volume/pressure is maximum near zero pressure.

Third, we find considerable differences concerning the “character” of metastability in

binary, ternary, and higher order compositional systems. We distinguish two subsets for

each n-component dataset (n = 2, 3, 4, ≥5)—“polymorphs” and “phase separation”—

depending on whether a given phase is metastable with respect to another phase at the

same composition or a combination of phases, respectively, at ambient conditions. We

note that the higher the number of components present in a metastable compound, the

more likely it is to phase-separate rather than transform into a polymorph, in agreement

with previous observations [107]. Further, the lower the number of components in a

metastable compound, the more likely it is to be stabilized with pressure. Considering

the subset of all metastable phases that phase-separate at ambient pressure, 58%, 47%,

42%, and 27% become thermodynamically stable at some finite positive/negative pressure

in the case of binary, ternary, quaternary, and higher-component systems, respectively.
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Additionally, we observe that the effects of positive and negative pressures on the

metastability of phases are not symmetric about zero pressure: a much larger portion of

ambient-metastable phases become thermodynamically stable under positive (compres-

sive) pressure when compared to negative (tensile) pressure. A difference is perhaps

expected considering that the limiting behaviors are very different: large positive pres-

sures favor the formation of close-packed phases before eventual overlap of atomic cores,

while the limit of large negative pressures is simply the individual non-interacting atoms

of each species in the phase.

Finally, we probe a complementary question: if one were to incrementally tune external

conditions from large positive to large negative pressures, how many observed metastable

phases N can be accessed thermodynamically below any given pressure p? We calculate

at pressure p, the number of experimentally observed phases from our dataset that cannot

be thermodynamically accessed at any pressure > p. We present this data as a cumulative

histogram of the fraction of phases, integrated from pressures p to +∞, separated into

elements, binaries, ternaries, etc. in Fig. 4.10b. Hypothetically, if all experimentally re-

ported compounds were thermodynamically stable ground states at some finite pressure,

one would expect this cumulative fraction of unstable phases to be 1 and 0 for p → ∞

and p → −∞, respectively. Consistent with our previous observations, we find that (a) a

sizable fraction of the phases do not lie on the extended N–V –E convex hull at all, i.e.,

they are not ground states under any pressure (represented by horizontal dashed lines

in Fig. 4.10b), and (b) the rate at which additional metastable phases can be thermody-

namically accessed is maximum near zero pressure (given by the slopes of the curves). In

other words, the pressure density of thermodynamic ground states, dN
dp

, is maximum near
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p = 0. Whether this is an artifact of using a dataset of experimentally observed phases

or is a fundamental property of matter, needs further analysis, and will be the subject of

future work.

4.2.3. Discovery of new high-pressure compounds

So far, we have used the LAE to analyze the phase stability of experimentally reported

high-pressure elemental and binary phases, and to probe the accessibility of ambient-

metastable phases using pressure as a thermodynamic handle. Now, we go a step further

by using the LAE to predict new intermetallic compounds by combining it with CSP

methods. For this purpose, we focus on a unique subset of binary systems, namely, the

combination of elements that are immiscible at ambient pressures. According to the

data we compiled from the OQMD, there currently exist ∼1780 binary systems that do

not contain any experimentally observed compounds. Any high-pressure phases that we

identify in these systems are therefore true predictions of new materials.

For the dataset to be used for construction of the convex hull and calculation of tran-

sition pressures within the LAE, we use ambient-pressure formation energies and volumes

of phases calculated in the OQMD. As mentioned in Section 4.4.1, the OQMD contains

calculations of more than 450,000 compounds including experimentally reported com-

pounds from the ICSD, and hypothetical compounds generated by decoration of common

structural prototypes with all the elements in the periodic table. The Strukturbericht

symbols of the prototype structures considered in this section are listed below [130, 177]:
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immiscible binary systems calculated using structural search at 50 GPa
via the MHM. Each cross denotes a phase sampled with the MHM. In all
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(a) elemental prototypes: A1 (fcc), A2 (bcc), A3 (hcp), A3’ (α-La), A4 (diamond),

A5 (β-Sn), A7 (α-As), A9 (graphite), A10 (α-Hg), A11 (α-Ga), A12 (α-Mn),

A13 (β-Mn), Ab (β-U), Ah (α-Po), C19 (α-Sm)

(b) binary AB: B1 (NaCl), B2 (CsCl), B3 (zincblende ZnS), B4 (wurtzite ZnS), B19

(AuCd), Bh (WC), L10 (AuCu), L11 (CuPt)

(c) binary A3B: L12 (Cu3Au), D019 (Ni3Sn), D022 (Al3Ti), D03 (AlFe3)

We screen for promising chemical systems that contain high-pressure phases in the

following manner: for every ambient-immiscible binary system, we use the LAE to predict

the thermodynamic phase stability and pressure range of stability of each hypothetical

compound in that chemical space. We select systems that contain at least one hypothetical

compound predicted to become stable below an arbitrary pressure threshold of 50 GPa.

We then rank these systems according to the predicted transition pressures, from lowest

to highest, and select 10 of the most promising systems for further investigation. For

each system, we further verify that no compound in that chemical space is reported in the

ICSD or in phase diagrams available in the ASM Alloy Phase Diagram Database [178].

At each composition where our model predicts a stable high-pressure phase we perform

structural searches using the MHM, starting from the respective prototype structure from

the OQMD, using simulation (super) cells with up to 10 atoms/cell. Due to the set of

binary prototypes currently calculated in the OQMD (see list above), the compositions we

sample are limited to A3B, AB and AB3. Note that both the system size and the number

of sampled compositions are far too low to give accurate predictions of the true high-

pressure ground states. The structural searches are merely intended as proof-of-concept,
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i.e., to provide a sampling of configurations beyond the limited number of prototype

structures.

Fig. 4.11 shows the convex hulls of stability at 50 GPa for the ten selected ambient-

immiscible binary systems, namely, As-Pb, Al-Si, Sn-Bi, Fe-In, Hg-In, Hg-Sn, Re-Sn,

Re-Br, Re-Ga, and Zn-Ga, after performing structural searches using the MHM. We also

provide the approximate LAE convex hulls at the same pressure (extrapolated from the

equilibrium volumes and energies of the prototype structures in the OQMD) in Figs. A.1–

A.10 in the Appendix. For each binary system, a comparison of the MHM and LAE

convex hulls shows a good agreement of the overall features. Note however that the

ground state structures found by the MHM calculations are different from the binary

prototype structures in the OQMD, often significantly lower in enthalpy.

For all but the Zn-Ga system the MHM searches confirm the existence of at least one

new stable high-pressure phase. In fact, in nine out of the ten ambient-immiscible binary

systems the LAE correctly predicts that new compounds can be formed at sufficiently

high pressures. All thermodynamically stable structures at 50 GPa are provided in the

Appendix Section A.3, together with the OQMD ID of the seed structures. Our results

show that the LAE is an effective tool to identify “seed” compositions and structures for

sophisticated CSP methods. The high-pressure phases predicted here present a number

of avenues for experimental synthesis and verification. Overall, the success of the linear

enthalpy model in guiding unbiased search techniques based on crystal structure prediction

in discovering novel high-pressure phases is remarkable.
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4.3. Conclusions

In summary, we present a method that allows an efficient screening for materials that

are thermodynamically stable at non-ambient pressures using a simple linear approxima-

tion to the formation enthalpy of a phase. Using a generalized convex hull construction,

the stability of thousands of compound can be evaluated at a low computational cost based

on ambient-pressure data that is currently available in many materials databases without

performing any additional DFT calculations. A comparison with higher order EOS fitted

to energy-volume data shows that the LAE performs similarly well at significantly lower

computational cost.

Through a large-scale analysis of experimentally reported compounds, we show that

a large fraction of the observed ambient-metastable phases are in fact thermodynamic

ground states at some finite pressure. This results strongly suggests that many phases

are likely remnants of high-pressure conditions where they were stable ground states,

even if the synthesis occurred at atmospheric pressure—potentially through local pres-

sure fluctuations, chemical pressure, etc. Our method can be readily extended by further

generalizing the convex hull construction and taking into account additional thermody-

namic degrees of freedom, including temperature or surface areas of finite particles.

Finally, we demonstrate the predictive power of this model when combined with a

crystal structure prediction technique by discovering novel high-pressure phases in a set

of ambient-immiscible binary intermetallic systems.
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4.4. Computational Methods

4.4.1. Calculation of thermodynamic quantities

The equilibrium formation energy and volume data for all the phases considered in our

analysis using the LAE were retrieved from the Open Quantum Materials Database

(OQMD) [129, 130]. The dataset consists of DFT-calculated properties of over 450,000

compounds which include (a) unique, ordered experimentally reported compounds from

the Inorganic Crystal Structure Database (ICSD), and (b) hypothetical compounds gen-

erated by the decoration of common structural prototypes with all the elements in the

periodic table. Details of the settings used to calculate the equilibrium formation energy

and volume of compounds in the OQMD can be found in Ref. [130].

All other DFT calculations reported in this work, i.e., those performed as part of

global structure searches, were performed using the Vienna Ab initio Simulation Package

(VASP) [179–181]. We use the projector augmented wave (PAW) formalism [182, 183]

and the PBE parameterization of the generalized gradient approximation to the exchange

correlation functional [184] throughout. For all calculations, we use Γ-centered k-point

meshes with about 8000 k-points per reciprocal atom and a plane-wave cutoff energy of

520 eV. All atomic and cell degrees of freedom of a structure are relaxed until the force

components on all the atoms are within 0.01 eV/Å, and stresses are within a few kbar.

4.4.2. Structural searches

The minima hopping method (MHM) [185, 186] implements a highly reliable algorithm

to explore the low enthalpy phases of a compound at a specific pressure given solely the

chemical composition [187–189]. The low lying part of the enthalpy landscape is efficiently
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sampled by performing consecutive, short MD escape steps to overcome enthalpy barriers,

followed by local geometry optimizations. The Bell-Evans-Polanyi principle is exploited

through a feedback mechanism on the MD escape trials, and by aligning the initial MD

velocities along soft-mode directions in order to accelerate the search [190, 191]. The

MHM has been successfully applied to identify the structure and composition of many

materials, also for systems at high pressures [113, 142, 143, 146, 192, 193]. In this work,

we performed MHM simulations only at the compositions where a high-pressure phase is

predicted to be stable by the linear enthalpy model.

4.4.3. Software implementation

All convex hull constructions in this work were performed using the Qhull library [194]

with the quickhull algorithm as implemented in the SciPy Python package [195]. The

GCLP calculations reported in this work were performed using the Cbc solver distributed

with the PuLP Python library [196]. An implementation of the framework described in

Sections 4.1.1–4.1.3 has been made available as an open-source Python module [197]. An

implementation of the MHM is available through the Minhocao package [185, 186].
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CHAPTER 5

The Phase Stability Network of All Inorganic Materials

5.1. Background

Several diverse complex systems are modeled as networks of discrete components linked

together: man-made systems such as electrical power grids and the world-wide web [198,

199], social systems such as friendship and scientific collaborations [200, 201], and natural

systems such as metabolism in a cell and food-webs [202, 203]. Despite significant variation

in the nature of individual components and interconnections, many of these networks show

striking similarities in their topology [204, 205], often providing new insights into each

respective domain of knowledge. For instance, disparate systems such as the world-wide

web and metabolic reactions in cellular organisms both have been shown to follow the

organizational principles of robust, error-tolerant scale-free networks, with implications

for the resilience of the internet and the design of therapeutics [205, 206], respectively.

Recent developments in high-throughput density functional theory (HT-DFT) [132]

have resulted in massive computational databases of materials properties [21, 129–131,

207], containing the calculated properties of hundreds of thousands of experimentally

reported and hypothetical materials. Such databases have led to new data-driven ap-

proaches toward understanding materials. Here we introduce a novel paradigm of viewing

materials, and equilibrium phase diagrams in particular, via the lens of complex network

theory, i.e. studying the similarities and interactions between materials themselves, in
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striking contrast to the traditional bottom-up approaches toward unlocking structure-

property relationships in materials [208, 209].

We use the Open Quantum Materials Database (OQMD) [129, 130], a HT-DFT data-

base containing calculations of nearly all crystallographically ordered, structurally unique

materials experimentally observed to date (as collected in the Inorganic Crystal Struc-

ture Database [210] repository) and a large number of hypothetical materials constructed

using commonly occurring structural prototypes—a total of more than half a million

materials—to extract the “universal phase stability network” or the “universal T=0 K

phase diagram”. We accomplish this by using all the phase data in the OQMD within

a convex-hull formalism, and identifying all thermodynamically stable materials and all

two-phase equilibria between them. We then represent stable materials as nodes and two-

phase equilibria (tie-lines) as edges, thus describing a T=0 K phase diagram as a network

encoding thermodynamic stability (illustrated with schematics in Fig. 5.1).

5.2. Results

5.2.1. Overall network connectivity

We find that the phase stability network of all inorganic materials consists of ∼21,300

nodes and is remarkably dense with a total of nearly 41 million edges, and extremely well-

connected with ∼3,850 edges per node on average (“mean degree” ⟨k⟩). This means that

every stable inorganic compound can form a stable two-phase equilibrium with 3,850 other

compounds on average. For comparison, ⟨k⟩ for other widely-studied networks range from

1.4 (network of email messages) to 113.4 (collaboration network of film actors) [211]. The

connectance of the materials network, or the fraction of the maximum possible number
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Figure 5.1. Network representation of T=0 K materials phase diagrams.
Stable phases and two-phase equilibria (tie-lines) in a phase diagram are
represented as nodes and edges, respectively, to create the corresponding
network: (a) Schematic A-B binary system represented as a typical two-
dimensional convex hull of compound formation energies. (b) Ti-Ni-Al as
an example ternary system, with the T=0 K phase diagram shown as a
Gibbs triangle. (c) Schematic A-B-C-D quaternary phase diagram shown
as a Gibbs tetrahedron. (d) The 3d transition metal-chalcogen (i.e. 14-
dimensional chemical space) materials network. No conventional visual
representations exist of phase diagrams at higher than 4 dimensions. Node
sizes shown are proportional to node degree.

of edges that are actually present is 0.18. This is an important statistic for the design

of “systems of materials”, such as electrodes and electrolytes making up batteries [212],

or coating materials separating two reactive components [213], where the longevity of the

system relies on stable coexistence of such components. Using a lithium-ion intercalation

battery as an example “system of materials”, a common approach to tackling electrode

degradation is to apply protective coatings on electrode particles. In such a battery, the

material in the electrode coating should not react with/be consumed by materials in the
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electrode as well as those in the electrolyte [214, 215]. Thus, the coating–electrode and

the coating–electrolyte material pairs must both have tie-lines with each other in order to

stably coexist in the system. In other words, both pairs must be neighboring, connected

nodes in the materials network.

The degree distribution in the complete phase stability network, specifically the prob-

ability p(k) that a material has a tie-line with k other materials in the network follows

a lognormal form (Fig. 5.2a; details of the fit in Fig. 5.7 and related discussion in Sec-

tion 5.4.2). While many widely-studied networks are known to have scale-free power-law

degree distributions, lognormal distributions are another member of the “heavy-tail” fam-

ily, are also relatively common, and behave quite similar to power-laws [216]. In fact,

sparsity has been shown to be a necessary condition for the emergence of an exact power-

law behavior [217], and densification in sparse, scale-free networks leads to distributions

that deviate from a power-law and become closer to lognormal. Thus, the lognormal

behavior of the materials network can be understood to result from its extremely dense

connectivity, in contrast to the general sparsity of commonly-studied networks.

5.2.2. Network topology

The characteristic path length or mean node-node distance in a network, L, is defined as

the number of edges in the shortest path between two nodes, averaged over all pairs of

nodes. The longest node-node distance in the network defines its diameter, Lmax. The

characteristic path length of the materials network L = 1.8, and its diameter Lmax =

2. This remarkably short path length indicates that the materials network has “small-

world” characteristics [198], i.e. despite its large size, the number of edges that need to be
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Figure 5.2. Overall structure and topology of the materials network. (a)
The distribution of node degree in the materials network (grey circles) shows
a heavy tail, i.e. a sizeable fraction of materials have tie-lines with nearly
all other materials. A lognormal fit is shown as a solid grey line. (b) The
mean local clustering coefficient ⟨Ci⟩ (green) decreases with node degree k
indicating that stable materials form local, high-connected communities.
The mean neighbor degree ⟨kNN⟩ (red) also decreases with k, implying a
weakly-dissortative network behavior, i.e. materials with a large number of
tie-lines connect with those with fewer tie-lines in the network. In both sub-
plots, the vertical dashed line represents the total number of nodes (stable
materials) in the network.

traversed from a given node to any other node is relatively small. The extremely small

L for the materials network can be intuitively understood to be a consequence of the

almost complete lack of reactivity of noble gases. The non-participation of noble gases

in the formation of compounds (and thus having tie-lines with nearly all materials in

the network) places an upper bound of 2 on Lmax, and since some material pairs already

have tie-lines that connect them immediately, the mean path L is slightly smaller than 2.

Even if noble gases are disregarded, the mean path length and diameter of the materials

network remain small due to the presence of a few other very-highly connected nodes

corresponding to extremely stable and non-reactive materials, e.g. binary halides.
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Another metric of interest in a real-world network is transitivity or clustering, quan-

tified by its clustering coefficient, C, which is the probability that two nodes connected

to the same third node are themselves connected. In other words, given that there exist

stable two-phase equilibria A–C and B–C, what is the probability that A and B can sta-

bly coexist? Depending on how the averaging is performed, a global (Cg) or mean local

(C̄i) cluster coefficient of a network can be defined [198, 211]. For the materials network,

the clustering coefficients are Cg = 0.41 and C̄i = 0.55, comparable to other real-world

networks, and much higher than random networks of the same density. The mean local

clustering coefficient of the materials network decreases with increasing node connectivity

(Fig. 5.2b), indicating that stable materials form local highly-connected communities in

the network, and such behavior often suggests a hierarchical network structure [218]. The

assortativity coefficient or the Pearson correlation coefficient of degree between pairs of

connected nodes in the materials network is −0.13, indicating weakly dissortative mixing

behavior. This is also confirmed by the distribution of the mean degree of neighbors of a

node of degree k being a decreasing function of k (Fig. 5.2a). In other words, materials

with a high k (i.e. large number of tie-lines) tend to connect with materials with a lower

k (i.e. smaller number of tie-lines). This weakly dissortative behavior of the materials

network is similar to that observed in most other technological, information, biological

networks, and is likely a virtue of such networks being simple graphs [219].

5.2.3. Hierarchy in the materials network

The mean degree or the average number of tie-lines per material ⟨k⟩ decreases with the

number of components, N (N = 2 for binary, N = 3 for ternary, etc. See Fig. 5.3a),
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indicating a chemical hierarchy in the materials network. This can be understood to

result from an inherent competition for tie-lines that high-N materials face with low-N

materials in their chemical space, but not vice-versa. In other words, ternary compounds

XaYbZc compete not only with other compounds in the X-Y -Z chemical space but also

with binary compounds in the X-Y , Y -Z, Z-X spaces for tie-lines.
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Figure 5.3. Hierarchy in the materials network, and underlying energetic
considerations. (a) The mean node degree or average number of tie-lines
⟨k⟩ (green, open) decreases as a function of number of components N (i.e.
binary, ternary, and so on), which results from high-N materials having to
compete with low-N materials for stability. The number of known stable
N -ary materials (red) itself actually peaks at N = 3 (ternaries). (b) Gauss-
ian kernel density estimates of compound formation energies for all stable
materials separated by number of components in the material. Dotted ver-
tical lines indicate the respective median of each distribution. High-N need
significantly lower formation energies than low-N materials to become sta-
ble, e.g. −2.08 versus −0.47 eV/atom for quaternary and binary materials,
respectively.

We note that this decrease in ⟨k⟩ with N is distinct from the distribution of number of

stable N -ary materials itself (Fig. 5.3a), which shows a peak at N = 3. Does this peak in

the distribution of stable materials imply the existence of infinite, underexplored space for

the discovery of new materials beyond ternaries? The distribution of formation energies
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of materials as a function of number of components N (Fig. 5.3b) reflects the consequence

of competition between low- and high-component materials: high-N compounds appear

to need significantly lower formation energies than low-N ones to become stable. Since

there is no obvious underlying reason for the distribution of T = 0 K formation energies

(with entropic effects neglected) to differ significantly with N , only a few high-N mate-

rials can “survive” as stable phases if the corresponding lower-N systems already have

several stable phases. This is consistent with the recent reports of a “volcano plot” that

emerges for stable inorganic ternary nitrides as a function of energetic competition with

their corresponding binary nitrides [220], and an increased probability of phase separation

with increasing number of components in the system [221]. Widom [222] further argued

that the a peak near N = 3 or 4 in such distributions arises from a competition between

combinatorial explosion and diminishing volume-to-surface ratio in the composition sim-

plex, as N increases. Thus, although we do not know of a fundamental law limiting

access to thermodynamically stable materials with higher components, a combination

of the hierarchy observed in the phase stability network, the distribution of formation

energies, and the topology of the convex energy surface all suggest that the scarcity of

known high-N stable materials is not merely a consequence of those chemical spaces being

underexplored.

5.2.4. Knowledge extraction: material nobility index

Since the phase stability network practically encompasses all known inorganic crystalline

materials as well as a large number of predicted hypothetical materials, the number of

tie-lines emerges as a natural metric of nobility of a crystalline material—it is simply
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the count of other materials it is determined to have no reactivity against. Thus, while

material reactivity or nobility have no standard definitions, a network representation of

materials enables us to tackle the chemical nobility of inorganic materials in solid-solid

and solid-gas reactions in a completely data-driven fashion, instead of the traditional

intuitive or heuristic approaches. Since the number of tie-lines in the materials network is

lognormally distributed, we devise a new standard score of material nobility, the “nobility

index”:

(5.1) Zn =
ln(k)− µ

σ

where k is the node degree or the number of tie-lines a material has, and µ = 8.06 and

σ = 0.65 are the mean and standard deviation of the underlying lognormal distribution.

The nobility index is thus agnostic of textbook classifications such as metal, nonmetal,

metalloid, ionic, covalent, and so on, and works equally well for any given material. Since

the tie-lines in the network are as computed with DFT, the nobilities of materials predicted

herewith are only limited by DFT accuracy in estimating relative stabilities of inorganic

materials [130, 221, 223].

First, we tackle the reactivity or nobility of elements. Noble gases and fluorine form

the bounds of the nobility index (Fig. 5.4), as the noblest and the most reactive, respec-

tively, not only among the elements but in fact among all materials in the network. The

most reactive elements following F are P, S, and Cl. Alkali and alkaline earth metals, of-

ten considered to be highly reactive metals, are relatively noble in solid-solid and solid-gas

reactions, in comparison to early d-block or lanthanide elements, which are, along with
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Al, the most reactive metals. The nobility index increases down a group for metals, and

increases (decreases) from left-to-right along a row of the periodic table within the d-block

(s-block). But what is the noblest metal of them all? Ag emerges as the noblest of all

elements after noble gases, followed closely by Hg, Os, Re, W, and Cu, all having more

than 14,000 tie-lines. Gold, traditionally considered the noblest element [224], despite

being relatively densely connected with 10,000 tie-lines, is less noble in solid-state reac-

tions. Finally, we find that Zn is not correlated with other common elemental properties

such as electronegativity, atomic radii, melting point, and others [225], indicating that

the nobility index encodes new information not readily captured by those properties (see

Fig. 5.5 and related discussion below).

Figure 5.4. Nobility index of all elements. The standard score, Zn, derived
in this work using material connectivity in the phase stability network, as
a measure of nobility against solid-solid and solid-gas reactions. Nobility
increases up the scale. Numerical values of elemental Zn are given below
the respective symbols.

Beyond elements, what are the noblest inorganic compounds of all? The compounds

at the top of the nobility list are IA/IIA-VIIA compounds such as LiF, NaCl, KCl, CsCl,
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KBr, CsBr, KI, RbI, CaF2, SrF2, CsYbF3, RbYbF3, and others, their inertness likely due

to stability from strong ionic bonding between their constituents. We exclude rareearth-

and actinide-containing compounds from the previous analysis of compound nobility in

order to account for any shortcomings in the DFT description of f -block elements and

compounds containing them.

5.2.5. New information encoded in the “nobility index”

A comparison of the nobility index Zn of elements against elemental properties such

as electronegativity, boiling point, melting point, atomic volume, etc., as collected by

Ward et al. [225] shows little correlation between Zn and other properties, with Pearson

correlation coefficients close to 0 for most properties (see Fig. 5.5 for a sample com-

parison set). This indicates that the nobility index defined in this work truly encodes

new information about an element/a material not adequately captured by other common

properties.

Further, data-driven metrics such as nobility index capture materials knowledge that is

not immediately intuitable or is sometimes even counter-intuitive. For instance, intuition

derived only from a few elements and some of their compounds may imply that multivalent

elements (e.g. transition metals) are likely to have a higher number of tie-lines than

monovalent elements (e.g. alkali metals) simply by the virtue of a higher number of

compound-forming possibilities. However, data from all materials known so far shows no

correlation between number of compounds formed by an element and its total number

of tie-lines (i.e. nobility; see Fig. 5.6). In fact, monovalent metals seem to form more

compounds on average than their multivalent counterparts!
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Figure 5.5. Comparison of nobility index versus common elemental proper-
ties. There is little to no correlation between the nobility index of an element
and any of its properties such as (counterclock-wise from top-left) boiling
point, density, electronegativity, first ionization energy, atomic number,
atomic volume, group in the periodic table, and melting point. The Pear-
son correlation coefficient ρ for each comparison is on the top-left of the
corresponding panel.

5.3. Discussion

While some of our findings above are in line with chemical intuition, relative nobilities

in certain cases, e.g. silver vs gold, deviate from it. This deviation is in part due to the

historical context in which these materials have been considered noble or reactive, e.g.

whether an element oxidizes or corrodes readily in air, reacts with water and/or certain

acids, dissolves in water or electrolytes, and how vigorous such reactions seem. More

fundamental approaches to finding descriptors for reactivity go back to electronegativity

related concepts, followed by interrelated theories based on perturbation theory, deriva-

tives of electronic energy such as hardness and softness, and others largely developed for

molecules [226–228]. In contrast, the nobility index, Zn, as derived from the tie-lines in
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Figure 5.6. Comparison of number of compounds formed by an element
versus its node degree. Multivalent metals indicated are all transition metals
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indicated are mostly alkali/alkaline earth metals (Li, Na, K, Rb, Be, Mg,
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the network of all inorganic materials represents a general metric emerging directly from

bulk thermodynamic data.

High-throughput experimental and computational techniques are leading to an explo-

sive growth in the size of materials databases. Representation and interpretation of the

data at a large-scale, however, remains a challenge. Here we show that tools from complex

network theory enable us to access otherwise-difficult-to-extract information from such

large datasets. In other words, the emergence of material reactivity from the collective

behavior of all materials in the phase stability network serves as a simple, preliminary
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example of knowledge extraction out of complex networks of materials. Other similar ap-

proaches can be used to discover other hidden knowledge, e.g. analysis of “communities”

or “cliques” in the network of all materials can uncover hitherto-unknown relationships

between various known materials.

Further, there are various ways our graph theoretic approach to materials data can be

used to immediately applied to new materials discovery and design: (a) direct techniques,

e.g. metrics from network theory such as local clustering and similarity can be used to

identify “holes” in the current network—where nodes (i.e. materials) are expected to exist

but currently do not, and (b) indirect techniques, e.g. using the extracted knowledge or

quantities derived from the network as input to other approaches such as in materials

informatics. For example, using temporal materials discovery information in combina-

tion with thermodynamic phase stability networks can help predict synthesizability [229].

Furthermore, while some of its features resemble other complex networks, the extremely-

high connectance and the lognormal degree distribution of the presented phase stability

network imply that its underlying generative mechanisms may be unique, and develop-

ing generative models for such materials networks can have significant impact on the

knowledge discovery of materials in the future.

5.4. Computational Methods

All convex hull constructions were performed using the Qhull library [230] as imple-

mented in the qmpy (pypi.org/project/qmpy) package. All network analyses were per-

formed using the graph-tool [231] and powerlaw [232] packages. We describe the approach

https://pypi.org/project/qmpy
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used to calculate the universal phase diagram, its network representation and determining

the node degree distribution in the network in the following sections.

5.4.1. Calculation of the T = 0 K universal phase diagram

The T = 0 K phase diagram for a given chemical space is determined by the so-called

convex hull construction. A phase is thermodynamically stable iff it lies on (i.e. is a vertex

of) the convex hull of T = 0 K formation energies of all phases in the chemical space.

And phases that are directly connected by a tie-line, i.e., phases that lie on the same

facet of the convex hull, are in equilibrium with one another. Determining a binary A-B

phase diagram requires constructing a 2-dimensional convex hull of formation energies of

all AxBy compounds (composition x and formation energy being the two dimensions),

a ternary A-B-C phase diagram requires constructing a 3-dimensional convex hull of

formation energies of all AxByCz compounds (compositions x and y, and formation energy

being the three dimensions), and so on. The determination of an d-nary phase diagram

requires the construction of an d-dimensional convex hull of formation energies of all the

N phases in the chemical space.

For low dimensions, i.e. d = 2 or 3 (binary or ternary systems), finding the convex hull

of N points (total number of phases) has a worst-case time complexity of O(N log N). For

higher dimensions, standard methods of determining convex hulls such as the Quickhull

algorithm, have worst-case time complexities of O(N [d/2]) [230]. For random data, even

the average-case time complexity at higher dimensions scales as O(logd−1N), i.e. expo-

nentially with d [233]. Such scaling behaviors mean that for moderately large number

of points N and dimensions d, finding the convex hull becomes increasingly practically
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challenging. For instance, to find the convex hull of all known inorganic materials, even

restricting ourselves to experimentally reported compounds in the Open Quantum Mate-

rials Database (OQMD), N ≈ 40, 000 and d = 89, making the calculation of the convex

hull practically impossible with a traditional single-shot approach.

We tackle this challenge of calculating the convex hull at high-dimensions by using a

divide-and-conquer approach. While the representational complexity of the convex-hull

increases at least exponentially with d, we know from the set of existing materials that

not many of them are high-dimensional by themselves. In fact, 99.5% of materials in the

OQMD have 4 unique elemental components or fewer. Since the stability of a material

is determined only within the chemical subspace of elements that it is made of, we first

determine the vertices (i.e. stable materials) of the 89-dimensional convex hull at a reduced

computational cost by computing the convex hulls in low-dimensional subspaces for each

individual material separately. For instance, to determine if the compound CaMnO3 is

stable, it is sufficient to construct the convex hull of all phases CaxMnyOz in the Ca-Mn-O

subspace. This process of constructing convex hulls separately for each unique chemical

subspace yields all the vertices of the full convex hull: ∼2.1× 104 stable materials out of

the >5.5× 105 total materials calculated in the OQMD. Having determined the vertices

of the full convex hull, in the second stage, we exhaustively evaluate the existence of a

tie-line between any given pair of stable compounds in the OQMD by constructing the

convex hull of formation energies in the combined chemical spaces of such candidate pairs,

rather than the full 89-dimensional space itself. For example, to determine whether there

exists a tie-line between Li2O and NaCl, we construct the Li-Na-Cl-O convex hull, and

find that there indeed exists a Li2O-NaCl tie-line. In contrast, from a Na-K-F-Cl convex
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Phase 1 Phase 2 # Components Time (s)
Na2O KCl 4 ∼3
Fe2S3 Li2MnO4 5 ∼6
Li3PS4 SrTiO3 6 ∼8
Ba2Li3TaN4 LiCoO2 6 ∼14
Ba2Li3TaN4 NaCoO2 7 ∼32
Mn2Hg2SF6 Li4CrCoO6 8 ∼34
Mn2Hg2SF6 Ba2Ca3Tl2Cu4O12 9 ∼65

Table 5.1. Sample compute times for calculating the existence of a tie-line
between two phases. The time required is highly dependent on the number
of components, i.e. unique elements in the combined chemical space, and
further depends on the number of all known compounds in the chemical
space. Each calculation was performed on a standard desktop computer
utilizing a single core.

hull we find that NaCl and KF, in fact, “react” to form a NaF-KCl two-phase equilibrium.

Overall, we construct convex hulls for all 2.1×104C2 ≈ 2.3× 108 stable phase combinations,

and find a total ∼41× 106 tie-lines.

The computational cost of constructing a convex hull for a unique chemical subspace

is expectedly highly dependent on the number of components, and ranges from a few

seconds to a few minutes on a standard desktop computer utilizing a single core (some

sample times for checking if a tie-line exists between two known materials are provide

in Table 5.1). With a conservative estimate of 15–20 seconds per tie-line, the total time

required to exhaustively evaluate all possible tie-lines is more than 1 million CPU hours.

We then represent stable compounds as nodes and tie-lines as edges, thereby generating

the “universal phase diagram” as a complete thermodynamic phase stability network of all

inorganic materials. We use the Qhull library [230] as implemented in the qmpy package

(pypi.org/project/qmpy) for all the convex hull calculations reported in this work.

https://pypi.org/project/qmpy
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5.4.2. Degree distribution of the network of all materials

The probability distribution of node connectivity (number of tie-lines a material has)

in the phase stability network of all inorganic materials is heavy-tailed. We examine

which of the common heavy-tailed distributions best fit our empirical data. In particular,

several well-studied technological, social, and biological networks are thought to have

power-law distributions. Is the thermodynamic network of materials similar to other

common natural/man-made networks exhibiting power-law behavior or not? To answer

this question, we directly compare pairs of heavy-tailed distributions using the method of

log likelihood ratios as described in Clauset et al. [234]. For the full materials network, we

find that a lognormal distribution (µ = 8.06, σ = 0.65) is the best fit by far (see Fig. 5.7).

We note that most empirical phenomena obey power-laws only for values greater

than some minimum value, i.e. only the tail of the distribution follows a power-law. We

investigate if this is indeed the case for the materials network. We find the optimal

lower-bound for a power-law behavior, kmin, for the materials network as the value that

minimizes the Kolmogorov-Smirnov distance between the data and the fit [234]. We find

kmin for the materials network = ∼5800, and the power-law scaling parameter α = 4.4.

We note that a kmin of 5800 retains only 17% of the overall materials network (i.e. only

17% of all materials have more than 5800 tie-lines each). Furthermore, even over this tail

region of the degree distribution, a lognormal distribution is a better fit (see the inset in

Fig. 5.7): the log likelihood ratioR for power-law versus lognormal is −7.15 with a p-value

of 0. In other words, even in the kmin = 5800 region (tail) of the materials network, the

lognormal distribution fits the data far better than a power-law.
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Figure 5.7. Fitting node connectivity data to candidate distributions. The
complementary cumulative distribution function of the node degree in the
network of all materials is shown as dashed black lines. Power-law (PL),
lognormal (LogN), and exponential (Exp) distributions fit to the data are
shown as solid red, blue, and grey lines, respectively. The inset shows
power-law and lognormal fits to the tail of the degree distribution for degree
k > kmin = 5800.

All analyses of fits of degree distributions mentioned above were performed with the

powerlaw package [232]. We note that the graph-theoretic analyses reported in this work

(e.g. local clustering and centrality meaures) performed with the graph-tool package [231],

while requiring more than 8 G of memory, take a few hours on a standard desktop utilizing

up to 4 cores.
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CHAPTER 6

Summary and outlook

In this thesis, I present work in three areas at the fore-front of data-driven materials

science. I summarize the main conclusions from each area, and list a few themes that

I expect to be the natural “next-steps” from the work presented here. I also present

scientific tangents from here that, in my opinion, have a potential for high impact:

(I) Traditional high-throughput computational materials discovery:

I have used the term “traditional high-throughput” to mean the paradigm of

screening computational databases of hundreds of thousands of structures to find

stable materials with the properties of interest, and all the related machinery in

this approach. I demonstrate the application of such a paradigm to predict new

ternary oxyfluorides with simple stoichiometries, and Slater-Pauling semicon-

ductors in between the half- and full-Heusler compositions (the “three-quarter”

Heusler compounds). While this technique is conceptually already a few years

old, it remains a straightforward way to search for new materials/narrow down

the possibilities from an intractable candidate space. I anticipate that instead

of decorating structure types with all elements from the periodic table or from

conventional intuition, using machine learning or active learning to determine

what calculations to perform can significantly increase the speed and efficiency

of materials discovery. The logical conclusion of the above line of argument is
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that we would be able to calculate the properties only for the materials that

are of interest, and those that can be experimentally realized. While the former

has been a well-formed problems with promising results from recent materials

informatics efforts, the latter case of predicting synthesizability of compounds

is currently a hotbed of activity, and even the problem formulation is stil quite

amorphous. While being able to accurately determine apriori what materials

should be calculated seems like the ideal scenario, I do have a word of caution:

since brute-force high-throughput computation still remains the largest source of

properties data, biasing the dataset (e.g. calculating only stable or nearly stable

compounds) is bound to bias what and how we learn from the materials data in

the future. There is significant merit to having negative examples in any dataset

we want to learn from, and the easiest way to ensure that is to (at least partly/on

a smaller scale) continue calculating enumerated and decorated structures in an

unfiltered way, even when such structures do not make physical/chemical sense.

(II) Fingerprinting the materials genome at high-pressure:

I have presented how a simple linear approximation to enthalpy can be used

in conjunction with density functional data calculated at ideal conditions of

zero pressure can be used to quite reliably (and extremely cheaply) assess high-

pressure phase stability. With pressures of hundreds of GPa becoming increas-

ingly accessible in laboratories, the method presented here can be used to rapidly

identify phases that are stable at high-pressure. I show examples of this approach

via predictions of binary ambient-immiscible systems which become compound
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forming at high-pressure. These are predictions in the “truest sense”—we predict

compounds in systems without a single previously reported compound! Extend-

ing the model to include computed bulk modulus data can significantly improve

the accuracy of the method presented here without much additional cost. Incor-

porating such a framework (e.g. using the software tool built here) into open high-

throughput databases can be immediately impactful—high-pressure researchers

can use the tool as a preliminary screen before investing significant resources

into synthesizing a material. A somewhat orthogonal direction of very high po-

tential impact is to devise a framework similar to the one developed here, but

for Helmholtz free energy, instead of enthalpy. The challenge there is the lack

of large datasets of entropy (analogous to volume for enthalpy). However, the

payout for developing such a framework is huge—we would be able to combine

the two frameworks to access the full free energy landscapes of materials using

only calculations performed at zero temperature and zero pressure!

(III) Complex network theory meets materials science:

I introduce a completely novel way to look at materials data: viewing ensembles

of materials as networks instead of single crystal structures. While there is an

inherent loss in information by ignoring the properties of each individual mate-

rial, there is much to be gained from the properties that are emergent from the

interaction between the materials themselves. I show how the “universal phase

diagram” of all materials can be naturally represented as a complex network. I

also show the emergence of material reactivity from the collective behavior of
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all materials in the phase stability network as a simple, preliminary example of

knowledge extraction out of networks of materials. Other similar approaches

can be used to discover other hidden knowledge, e.g. analysis of “communities”

or “cliques” in the network of all materials can uncover hitherto-unknown rela-

tionships between various known materials. Further, there are various ways this

graph theoretic approach to materials data can be used to immediately applied

to new materials discovery and design: (a) direct techniques, e.g. metrics from

network theory such as local clustering and similarity can be used to identify

“holes” in the current network—where nodes (i.e. materials) are expected to ex-

ist but currently do not, and (b) indirect techniques, e.g. using the extracted

knowledge or quantities derived from the network as input to other approaches

such as in materials informatics. Furthermore, while some of its features resem-

ble other complex networks, the extremely-high connectance and the lognormal

degree distribution of the presented phase stability network imply that its under-

lying generative mechanisms may be unique, and developing generative models

for such materials networks can have significant impact on the knowledge discov-

ery of materials in the future.
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APPENDIX A

Exploring the high-pressure genome: supplemental data

A.1. Experimentally reported high-pressure elemental phases

Table A.1: List of experimentally reported high-pressure

elemental phases calculated in the OQMD. For each

phase, we report its composition, space group, the ICSD

Collection Code, OQMD ID, experimentally reported

pressure (pICSD), pressure range of stability predicted

from the linear approximation to enthalpy based model

(pmin, pmax), and formation energy at ambient pressure

(∆Ef ).

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

Ar P63/mmc 77918 604613 6.5 (−∞, 2.0) 0.009

As Pm3̄m 162842 685982 30.0 (7.7, ∞) 0.111

B Pnnm 165132 630765 9.0 (16.9, ∞) 0.027

Bi C12/m1 409752 689171 2.5 (2.7, 5.8) 0.042
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Table A.1 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

Im3̄m 52725 676488 9.0 (5.8, ∞) 0.127

Br I4/mmm 168174 632558 145.0 (10.3, 21.1) 0.172

Fm3̄m 168175 686736 165.0 (21.1, ∞) 0.638

Ca Im3̄m 52749 592558 26.5 (−22.0, −5.4) 0.015

Cmmm 168759 632881 47.0 (26.9, ∞) 0.313

Pn21a 168757 632879 172.0 (1.7, 26.9) 0.015

Ce Cmcm 601481 594082 5.6 (−∞, −24.9) 0.027

I4/mmm 52844 592229 17.5 (−24.9, −4.9) 0.006

Cs I41/amdS 109021 620946 5.0 (−∞, −2.6) 0.055

P42/mbc 173928 635511 18.0 (0.4, ∞) 0.004

Pnma 173929 635512 18.0 (−2.6, −0.7) 0.007

P63/mmc 57180 676673 92.0 (−0.7, 0.1) 0.000

Dy R3̄mH 629537 593928 7.0 (−3.0, 18.0) 0.000

Cmmm 157920 626575 87.0 (18.0, ∞) 0.017

Eu P63/mmc 604034 676509 13.0 (13.4, ∞) 0.028

Fe P63/mmc 53450 51781 12.7 (12.4, ∞) 0.086

Ga I4̄3d 12173 2814 2.6 (6.1, ∞) 0.026
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Table A.1 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

I4/mmm 12174 675527 2.8 (3.0, 6.1) 0.024

Gd R3̄mH 635711 9312 3.5 (1.5, ∞) 0.001

Ge I41/amdS 53643 676517 80.0 (8.0, 124.6) 0.233

Imma 246628 676517 80.0 (8.0, 124.6) 0.233

Cmca 94305 16307 135.0 (124.6, ∞) 0.317

He P63/mmc 44394 8392 0.0 (−∞, −3.3) 0.009

Hf Im3̄m 53023 676496 71.0 (79.5, ∞) 0.180

Hg I4/mmm 43558 676237 1.0 (10.3, ∞) 0.056

C12/m1 157861 20117 20.0 (2.5, 10.3) 0.032

I I4/mmm 109040 19480 49.0 (6.5, ∞) 0.100

Fmm2 151434 19480 49.0 (6.5, ∞) 0.100

In Fmmm 57392 676455 93.0 (−0.0, ∞) 0.000

K Fm3̄m 44669 676282 12.4 (0.1, ∞) 0.000

I4/mcm 157564 100324 19.5 (−∞, −7.0) 0.105

Pnma 165995 21103 58.0 (−7.0, −1.8) 0.035

Kr P63/mmc 9785 2562 3.2 (−∞, 1.8) 0.000

La Fm3̄m 104655 17557 2.3 (12.3, ∞) 0.013
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Table A.1 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

Li P63/mmc 44760 676289 3.0 (2.3, 3.2) 0.005

Fm3̄m 57408 13862 8.0 (1.7, 2.3) 0.001

R3̄mH 109011 13862 8.0 (1.7, 2.3) 0.001

I4̄3d 109012 18968 45.0 (3.2, 23.7) 0.027

P4132 161377 20426 400.0 (23.7, ∞) 1.356

Lu R3̄mH 642415 668371 23.0 (8.1, ∞) 0.013

Mg Fm3̄m 180453 687441 50.0 (−∞, −8.1) 0.013

Im3̄m 642652 8597 58.0 (349.5, ∞) 0.029

N R3̄cH 40936 7386 7.8 (6.5, 39.9) 0.070

P213 24893 4724 37.9 (174.1, 563.4) 3.461

P42/mnm 24891 4722 40.1 (2.6, 6.5) 0.010

Na Im3̄m 44757 8534 0.2 (1.7, 11.1) 0.003

I4̄3d 159431 20238 108.0 (11.1, ∞) 1.257

Nd Fm3̄m 76591 677940 5.0 (−127.1, −9.3) 0.007

O P63/mmc 164724 20846 15.9 (28.3, ∞) 0.098

P Cmca 36436 4437 1.3 (1.6, 2.0) 0.036

R3̄mH 600019 9540 9.0 (2.0, 5.6) 0.080
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Table A.1 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

Pm3̄m 600029 20542 124.0 (5.6, ∞) 0.132

Amm2 162244 20542 124.0 (5.6, ∞) 0.132

Pb P63/mmc 77864 682982 13.9 (−∞, −25.2) 0.014

Im3̄m 54314 676681 171.0 (87.0, ∞) 0.043

Pr R3̄mH 54338 9789 13.8 (−115.5, −7.8) 0.007

P3121 108682 18882 14.4 (2.0, ∞) 0.019

Cmcm 164283 686415 23.3 (−∞, −115.5) 0.028

Rb Cmca 109019 18973 48.1 (−1.5, −0.8) 0.006

S R3̄mH 57164 676672 206.5 (17.9, ∞) 1.111

Sb Pm3̄m 52227 51014 7.0 (4.2, 10.3) 0.043

Im3̄m 108182 18780 28.0 (10.3, ∞) 0.228

Sc I4/mmm 246446 122328 23.0 (27.1, 29.6) 0.212

P6122 153837 19753 242.0 (29.6, ∞) 1.936

Se Pm3̄m 52418 9277 0.0 (6.7, 28.2) 0.166

P3121 23073 38563 8.6 (0.8, 1.2) 0.004

Im3̄m 659257 684882 150.0 (28.2, ∞) 0.578

Si I41/amdS 109025 18979 13.0 (9.2, 10.2) 0.291
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Table A.1 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

I41/amdS 52460 18979 13.0 (9.2, 10.2) 0.291

P6/mmm 109035 18984 16.2 (10.2, 43.6) 0.308

Cmca 89414 15748 42.5 (43.6, 45.1) 0.434

P63/mmc 52459 9288 43.0 (45.1, ∞) 0.508

Sm P63/mmc 652632 676475 2.0 (−47.9, 3.5) 0.000

P3121 246657 23315 77.0 (3.5, ∞) 0.011

Sn Im3̄m 52487 92397 53.0 (5.5, ∞) 0.073

I4/mmm 108748 92397 53.0 (5.5, ∞) 0.073

Sr Im3̄m 52490 8520 4.2 (0.7, ∞) 0.005

I4/mcm 109026 18980 56.0 (−∞, −5.8) 0.143

Tb R3̄mH 652942 9303 6.0 (−4.6, 7.7) 0.658

P63/mmc 52496 9302 28.8 (7.7, ∞) 0.665

Te C12/m1 97742 16685 8.0 (3.1, 10.1) 0.045

R3̄mH 52500 676480 11.5 (10.1, ∞) 0.308

Th I4/mmm 104198 17355 102.0 (−60.8, 0.1) 0.000

Ti P63/mmc 183409 8079 2.0 (−∞, −8.5) 0.014

Tl Fm3̄m 60650 676841 6.0 (11.6, ∞) 0.018
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Table A.1 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

Tm R3̄mH 653347 671018 11.6 (2.6, ∞) 0.006

Xe P63/mmc 9786 675519 3.0 (0.8, ∞) 0.004

Y Fm3̄m 106221 676150 46.0 (−∞, −256.3) 0.024

Yb Fm3̄m 43585 8144 0.3 (−3.9, 3.0) 0.000

Im3̄m 43572 8134 4.0 (3.0, ∞) 0.006

P63/mmc 104205 9319 34.0 (−∞, −3.9) 0.007

Zr Im3̄m 169452 9320 30.0 (19.9, ∞) 0.080
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A.2. Experimentally reported high-pressure binary phases

Table A.2: List of experimentally reported high-pressure

binary phases calculated in the OQMD. For each phase,

we report its composition, space group, the ICSD Collec-

tion Code, OQMD ID, experimentally reported pressure

(pICSD), pressure range of stability predicted from the lin-

ear approximation to enthalpy based model (pmin, pmax),

and formation energy at ambient pressure (∆Ef ).

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

TeO2 P212121 26844 5143 2.0 (−57.9, 3.4) −1.300

CeBi P4/mmm 58765 10917 11.0 (−65.0, 7.8) −0.988

FeO Bbmm 82236 14796 41.0 (−15.3, 92.7) −1.519

FeO Pbcn 82236 14796 76.0 (−15.3, 92.7) −1.519

In3Pd2 I4/mmm 59478 11131 0.0 (−40.8, 8.1) −0.481

ZnTe Cmcm 31840 6116 15.7 (9.5, 24.7) −0.176

AgBr P121/m1 52246 646867 9.3 (−474.7, 4.0) −0.493

SnTe Pnma 52489 646930 2.0 (−2.9, 11.1) −0.332

LaAg P4/mmm 58288 10639 6.0 (−∞, 57.5) −0.265

KBr Pm3̄m 61556 11512 2.2 (2.5, ∞) −1.856
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

H3N Fm3̄m 29321 5723 1.3 (−25.6, 5.2) −0.374

GdGa P6/mmm 109240 19090 14.8 (−59.8, 16.2) −0.622

CaCl2 Pnam 51238 646691 8.0 (−∞, ∞) −2.636

Sm3Te4 Pm3̄m 652658 31077 11.0 (−17.4, 24.2) −1.390

KCl Fm3̄m 18014 3683 1.6 (−12.8, 3.3) −2.141

KCl P63/mmc 18014 3683 20.0 (−12.8, 3.3) −2.141

PbS Cmcm 62192 11589 3.7 (−0.1, 15.3) −0.685

RbTe P63/mmc 73179 13118 1.3 (−8.3, 0.6) −0.847

MnSe P63/mmc 76218 13692 9.0 (0.2, 12.7) −0.355

KI Pm3̄m 22158 4108 2.0 (−18.5, 2.1) −1.584

TmTe2 P4mm 653106 31101 12.0 (−25.4, 41.7) −1.074

SrF2 P63/mmc 168801 21431 44.4 (−∞, 49.6) −4.001

HgS Fm3̄m 24094 4523 23.4 (−41.5, 2.0) −0.249

HgS P3221 24094 4523 0.4 (−41.5, 2.0) −0.249

BaF2 Fm3̄m 41651 7546 1.5 (−∞, 40.5) −3.966

MnF4 P4̄2m 62068 11563 3.5 (−168.2, 248.9) −2.496

Y2S3 Fm3̄m 67502 12316 12.5 (−9.2, 8.2) −2.251

SrS Pm3̄m 28900 5624 23.0 (−24.5, 15.4) −2.295

AgN3 I4/mcm 27135 5254 13.8 (29.1, 107.9) 0.491
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

SiO2 P41212 100279 87467 0.2 (4.8, 5.3) −3.039

Bi4O7 P31c 51778 646777 0.3 (−7.2, 11.2) −1.399

In2Te5 Fm3̄m 1385 1910 7.4 (1.0, 3.0) −0.219

FeSb I4/mcm 53535 647220 21.0 (8.5, ∞) 0.009

EuTe Pm3̄m 631697 30151 11.0 (−∞, 23.0) −1.599

EuF3 P3̄c1 95244 16411 8.2 (9.2, 2311.0) −3.404

ZnTe P3121 67779 12375 8.9 (−∞, −14.0) −0.466

SnSb Fm3̄m 52302 646878 7.5 (8.5, 74.2) 0.081

CuBr2 Pa3̄ 409450 25011 7.3 (−∞, 16.7) −0.511

CuBr2 P4/nmmS 409450 25011 5.1 (−∞, 16.7) −0.511

SiO2 Pbcn 100279 87467 129.0 (4.8, 5.3) −3.039

CdTe Pmm2 150941 19425 19.3 (3.3, 3.9) −0.461

Pb2O Pnam 28838 5612 62.7 (−∞, −19.2) −0.546

CdTe Cmcm 150941 19425 11.7 (3.3, 3.9) −0.461

SbO2 C12/c1 31103 42222 9.2 (61.0, ∞) −1.189

SbO2 Pna21 31103 42222 9.8 (61.0, ∞) −1.189

CsI3 Pm3̄m 27252 5285 1.5 (−3.3, 2.9) −0.969

LaAs P4/mmm 106265 18199 27.1 (−208.3, 15.1) −1.570

BaBr2 P1121/a 79892 14425 25.4 (−49.5, −4.0) −2.432
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

Fe3O4 Fd3̄mZ 65338 11962 11.0 (−∞, −65.7) −1.033

Fe3O4 Cmcm 65338 11962 64.6 (−∞, −65.7) −1.033

ReO3 P4/mbm 105546 17897 0.5 (−89.3, 4.1) −1.901

CaSi2 P3̄m1 32006 6152 9.8 (−0.2, 2.3) −0.390

SnTe Pm3̄m 52489 646930 32.0 (−2.9, 11.1) −0.332

BaC2 R3̄mH 168408 21391 6.9 (9.1, ∞) 0.409

RbCl Pm3̄m 61521 56986 0.8 (2.0, ∞) −2.071

BaC2 I4/mmm 168408 21391 1.0 (9.1, ∞) 0.409

HgTe Fm3̄m 31842 6117 8.2 (5.1, 11.7) 0.014

Cs2S3 Pnma 14094 2839 7.4 (−1.0, 29.2) −0.994

Na3N P6/mmm 165991 21099 1.7 (3.9, 5.2) 0.148

HgTe Cmcm 31842 6117 18.5 (5.1, 11.7) 0.014

Zr3O Pnam 27023 5214 24.6 (−16.2, 1.5) −1.479

ReO3 Im3̄ 105546 17897 6.4 (−89.3, 4.1) −1.901

FeSe Pbnm 169305 110581 23.0 (52.7, ∞) −0.036

FeS2 P63mc 10422 2742 5.2 (2.7, ∞) −0.694

SrH2 Pnma 33160 6231 5.0 (7.0, ∞) −0.495

LaN Fm3̄m 162194 20522 2.6 (33.5, ∞) −0.832

SiO2 Fd3̄mZ 100279 87467 3.0 (4.8, 5.3) −3.039
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

NaCl Pm3̄n 18189 3735 60.0 (−22.0, 16.5) −2.050

InNi P6/mmm 59434 55518 15.0 (10.0, ∞) −0.115

CdTe P3121 150941 19425 3.5 (3.3, 3.9) −0.461

Ga7Te10 R3̄mH 400668 24628 5.5 (−∞, 3.1) −0.325

FeS2 Pa3̄ 10422 2742 3.9 (2.7, ∞) −0.694

Na4Si23 C12/c1 50796 646594 12.0 (4.0, 12.5) −0.014

MgH2 Pbca 155811 19965 13.9 (6.9, 9.4) −0.140

MgH2 Pbc21 155811 19965 13.9 (6.9, 9.4) −0.140

BaO2 P63/mmc 180398 22213 13.9 (45.8, ∞) −1.980

KCl Pm3̄m 31232 5995 2.1 (3.2, ∞) −2.065

BaO2 P4/nmmS 180398 22213 18.8 (45.8, ∞) −1.980

Ti3O5 P121/c1 20361 3884 34.0 (−5.5, −2.2) −3.164

Tb2Co17 Fd3̄mS 625364 29507 4.1 (11.1, 29.8) −0.037

CaTe Pm3̄m 41959 7650 39.5 (−48.3, −46.6) −1.626

CdS PmmnZ 31074 5970 61.0 (−∞, 2.0) −0.790

FeF3 R3̄cH 29132 5688 1.5 (45.0, 195.1) −2.339

FeS2 P121/a1 10422 2742 7.5 (2.7, ∞) −0.694

Y2O3 C12/m1 160219 20300 16.2 (6.7, 11.4) −3.762

As4S5 C12/c1 16107 3319 0.8 (−6.8, −0.6) −0.287
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

Cr3Te4 Pbnm 626888 29597 50.5 (−6.1, −4.9) −0.189

Sm2O3 P3̄m1 40475 7283 5.6 (−106.6, 3.9) −3.701

AgBr Fm3̄m 52246 646867 3.9 (−474.7, 4.0) −0.493

MnS Fm3̄m 18007 3678 7.2 (0.2, 19.6) −0.633

SrTe Pm3̄m 602931 656717 19.8 (−33.9, 10.1) −1.747

YbGa2 P63/mmc 107552 18667 9.9 (−17.5, 0.0) −0.618

FeCl2 P3̄m1 4059 2349 0.6 (−13.2, 1.8) −0.957

CuCl2 Pa3̄ 26667 5084 9.2 (−10.7, 49.3) −0.711

CuCl2 Fm3̄m 26667 5084 10.5 (−10.7, 49.3) −0.711

Fe3O4 Pbcm 65338 11962 24.0 (−∞, −65.7) −1.033

CrO2 P42/mnm 9423 2509 7.7 (−∞, 96.6) −2.110

FeS2 P6̄2c 10422 2742 0.0 (2.7, ∞) −0.694

ReN P63/mmc 181298 22305 31.0 (2858.7, ∞) 1.071

NaCl Pm3̄m 18189 3735 30.6 (−22.0, 16.5) −2.050

ReN P6̄m2 181298 22305 13.0 (2858.7, ∞) 1.071

PbF2 Pnma 14324 2917 1.6 (3.0, ∞) −2.630

CeSb2 P4/mmm 622083 29184 11.0 (−1.3, 26.8) −0.820

Na2S P63/mmc 56024 10058 9.6 (−23.6, 3.2) −1.247

Na2S Pnma 56024 10058 8.2 (−23.6, 3.2) −1.247
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

FeO R3̄cH 82236 14796 5.2 (−15.3, 92.7) −1.519

PrN P4/nmmS 45161 646232 48.0 (−5.1, 62.4) −1.393

Y2O3 Ia3̄ 160219 20300 0.4 (6.7, 11.4) −3.762

Fe3O4 Cmcm 65338 11962 10.0 (−∞, −65.7) −1.033

TlF Pbcm 90993 15947 3.5 (−4.0, 3.0) −1.922

SiNi3 Pbnm 105343 17803 67.0 (−13.4, 3.7) −0.465

BaSe Pm3̄m 43655 8173 8.2 (−29.5, 6.5) −2.052

HgTe P3221 31842 6117 2.6 (5.1, 11.7) 0.014

SiO2 P42/mnm 100279 87467 15.0 (4.8, 5.3) −3.039

LaN P4/nmmS 162194 20522 39.9 (33.5, ∞) −0.832

CuBr2 Fm3̄m 409450 25011 9.3 (−∞, 16.7) −0.511

NiP2 Cmc21 22221 4131 5.8 (−1.0, 75.6) −0.532

WO3 P121/c1 50728 646576 0.6 (1.4, 2.9) −2.439

CrO2 R3̄cH 9423 2509 1.9 (−∞, 96.6) −2.110

PbCl2 P1121/a 15806 3228 25.4 (−20.8, 1.0) −1.393

CaSi2 R3̄mH 32006 6152 5.0 (−0.2, 2.3) −0.390

CoSn P6/mmm 55564 9977 5.0 (−4.0, 25.4) −0.162

In3Pd2 Pm3̄m 59478 11131 0.0 (−40.8, 8.1) −0.481

SnCl2 Pnam 81979 14768 4.0 (−∞, ∞) −1.256
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

PbS Pnma 62192 11589 2.5 (−0.1, 15.3) −0.685

SnCl2 P1121/a 81979 14768 25.0 (−∞, ∞) −1.256

SiO2 C12/c1 100279 87467 20.3 (4.8, 5.3) −3.039

In2Te5 R3̄mH 1385 1910 6.4 (1.0, 3.0) −0.219

FeCl2 R3̄mH 4059 2349 0.1 (−13.2, 1.8) −0.957

GaAs Imm2 41674 7551 28.1 (−∞, 11.9) −0.353

GaAs Pmm2 41674 7551 22.9 (−∞, 11.9) −0.353

Sb2S3 Pnma 22176 4112 3.2 (0.5, 36.3) −0.429

NdSb P4/mmm 92168 16038 21.0 (11.0, ∞) −0.939

CsI3 P4/mmm 27252 5285 55.0 (−3.3, 2.9) −0.969

SiO2 P121/c1 100279 87467 4.9 (4.8, 5.3) −3.039

NiP2 Pbca 22221 4131 1.3 (−1.0, 75.6) −0.532

Gd2O3 C12/m1 40473 7281 3.5 (−127.9, 4.9) −3.793

Pr5Sb3 P4/mmm 649315 30959 15.0 (−4.9, 49.1) −0.976

Na3N Pm3̄m 165991 21099 0.5 (3.9, 5.2) 0.148

Ca3N2 C12/m1 162794 20601 15.6 (9.4, 19.0) −0.843

Ca3N2 P3̄m1 162794 20601 23.3 (9.4, 19.0) −0.843

As4S5 P121/n1 16107 3319 4.0 (−6.8, −0.6) −0.287

InP Fm3̄m 41443 646115 10.8 (−65.2, 7.6) −0.351
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

BaO2 I4/mmm 180398 22213 6.8 (45.8, ∞) −1.980

BaO2 Cmmm 180398 22213 49.4 (45.8, ∞) −1.980

In2Te5 Pnnm 1385 1910 3.8 (1.0, 3.0) −0.219

Zr3O P121/c1 27023 5214 1.5 (−16.2, 1.5) −1.479

Cu2O C12/c1 261853 643065 2.2 (−56785.9, 10.9) −0.684

As2O3 Fd3̄mZ 27588 5363 0.5 (1.9, 33.4) −1.436

Zr3O P42/nmcZ 27023 5214 21.4 (−16.2, 1.5) −1.479

ZnO P63mc 182360 117131 2.2 (−∞, 79.7) −0.934

ZnTe P31 67779 12375 11.5 (−∞, −14.0) −0.466

SnO2 Pa3̄ 181278 22299 49.0 (16.2, 37.9) −1.851

SF6 Im3̄m 63360 11802 0.8 (10.5, 170.6) −2.024

YbAl3 Fd3̄mS 58224 10618 2.0 (68.9, ∞) −0.173

BaTe Pm3̄m 108097 91935 12.3 (4.8, ∞) −1.623

BaI2 P1121/a 79893 14426 40.0 (0.1, 1.9) −1.910

Fe3O4 C12/m1 65338 11962 135.0 (−∞, −65.7) −1.033

RbF Pm3̄m 53828 647290 1.2 (−14.8, 5.6) −2.857

MgF2 Pnnm 94282 16306 9.4 (−∞, 173.8) −3.724

Co9S8 Pa3̄ 23929 4474 2.2 (−19.2, 24.6) −0.626

CuBr2 F4̄3m 409450 25011 4.8 (−∞, 16.7) −0.511
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

SeO2 Pbam 99464 16878 9.0 (5.6, 22.1) −0.939

SeO2 Pm3̄m 99464 16878 5.0 (5.6, 22.1) −0.939

InN Fm3̄m 25677 4825 18.2 (−0.5, 11.3) −0.019

InSb Pmm2 10022 2631 4.3 (6.2, 21.5) 0.006

Cr3Te4 P63/mmc 626888 29597 10.0 (−6.1, −4.9) −0.189

Ag3O4 Pn3̄mZ 202218 638387 0.0 (−6.7, 13.7) −0.241

CdTe Fm3̄m 150941 19425 3.6 (3.3, 3.9) −0.461

RuO2 Pnnm 15071 2972 5.3 (−27.0, 10.6) −1.266

GeS I4̄2d 1256 1877 5.2 (−0.2, 9.9) −0.397

AgCl Fm3̄m 56545 53898 3.9 (−∞, 7.7) −0.576

InSb Cmcm 10022 2631 5.1 (6.2, 21.5) 0.006

Al2O3 R3̄cH 161062 20393 6.1 (−∞, ∞) −2.985

ZnF2 Pbcn 9169 2482 5.0 (−3059.3, 4.1) −2.567

SiO2 P3221 100279 87467 2.3 (4.8, 5.3) −3.039

BaF2 Pnam 41651 7546 20.5 (−∞, 40.5) −3.966

CaH2 P63/mmc 157943 20130 22.9 (12.1, ∞) −0.514

Ca3N2 Ia3̄ 162794 20601 0.4 (9.4, 19.0) −0.843

Tl6S Pm3̄m 30238 673576 35.5 (−∞, −20.9) −0.101

InSb Fm3̄m 10022 2631 2.5 (6.2, 21.5) 0.006
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

InSb Pm3̄m 10022 2631 35.3 (6.2, 21.5) 0.006

FeSe Cmma 169305 110581 0.2 (52.7, ∞) −0.036

MgF2 Pa3̄ 94282 16306 16.5 (−∞, 173.8) −3.724

Bi4O7 P121/c1 51778 646777 0.1 (−7.2, 11.2) −1.399

HgBr2 P3 151889 19529 5.4 (2.1, 34.0) −0.610

HgSe P3221 56211 10103 1.5 (4.3, 32.0) −0.025

P2Rh P121/c1 42615 7836 3.6 (−7.5, 62.8) −0.816

PrTe Pm3̄m 29402 5737 9.0 (−86.9, 4.7) −1.443

Zr3O Fm3̄m 27023 5214 37.3 (−16.2, 1.5) −1.479

FeS2 Pnma 10422 2742 6.3 (2.7, ∞) −0.694

CeBi Pm3̄m 58765 10917 13.7 (−65.0, 7.8) −0.988

Pr4As3 P4/mmm 44045 8267 45.0 (−∞, 28.0) −1.264

CaF2 Pnma 28730 5585 9.5 (−92.8, 8.1) −4.219

YbGa2 P6/mmm 107552 18667 27.0 (−17.5, 0.0) −0.618

EuS I4̄3d 85577 15258 7.0 (−∞, −1.7) −2.312

AgI Fm3̄m 28230 5478 1.5 (1.6, 3.3) −0.335

AgI P121/m1 28230 5478 11.3 (1.6, 3.3) −0.335

MnS Pnnm 18007 3678 16.8 (0.2, 19.6) −0.633

GeSe P4̄ 53906 647320 6.0 (1.3, 31.1) −0.215
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

RbTe Fm3̄m 73179 13118 0.5 (−8.3, 0.6) −0.847

Ti3O5 P42/mnm 20361 3884 7.6 (−5.5, −2.2) −3.164

RbBr Pm3̄m 18017 3686 0.5 (−14.2, 1.5) −1.928

PrN Fm3̄m 45161 646232 30.0 (−5.1, 62.4) −1.393

Ag2S P121/n1 98452 16747 4.7 (0.3, 20.9) −0.152

In2Te5 Pm3̄m 1385 1910 20.0 (1.0, 3.0) −0.219

YbH2 P63/mmc 56195 10098 24.5 (−22.2, −5.7) −0.556

PbS Pm3̄m 62192 11589 25.0 (−0.1, 15.3) −0.685

SbI3 R3̄H 30906 5946 1.6 (−13.2, −0.5) −0.484

BiS Pnma 79515 70066 1.0 (−∞, −1.8) −0.206

SnS P3̄m1 79374 69959 1.2 (−∞, −0.1) −0.584

SrF2 Fm3̄m 168801 21431 1.2 (−∞, 49.6) −4.001

AlN Fm3̄m 163950 20758 20.0 (−∞, 148.5) −1.394

MnS Pa3̄ 18007 3678 4.0 (0.2, 19.6) −0.633

AgI Pm3̄m 28230 5478 0.3 (1.6, 3.3) −0.335

MnS P121/c1 18007 3678 20.0 (0.2, 19.6) −0.633

FeSe P63/mmc 169305 110581 1.9 (52.7, ∞) −0.036

AgCl Cmcm 56545 53898 1.6 (−∞, 7.7) −0.576

BaCl2 P1121/a 2190 2091 37.0 (−∞, 39.9) −2.774
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

AgCl P121/m1 56545 53898 10.0 (−∞, 7.7) −0.576

TbH2 Fm3̄m 56175 10089 0.0 (−33.6, 34.2) −0.468

GeO2 P3121 94241 16305 1.6 (−∞, ∞) −1.665

NiP2 Pnma 22221 4131 16.3 (−1.0, 75.6) −0.532

Pb2O Pbam 28838 5612 13.3 (−∞, −19.2) −0.546

MoO3 Pbnm 30258 5790 0.1 (12.7, 26.8) −2.129

CeP2 Pm3̄m 108172 18775 19.0 (0.1, 47.6) −1.177

GeO2 Pnnm 9162 2476 29.0 (−0.0, 27.9) −1.889

Re3P4 Pnma 43210 8007 37.0 (−12.3, 84.4) −0.511

GeO2 Pa3̄ 94241 16305 108.0 (−∞, ∞) −1.665

AgI P4/nS 28230 5478 30.0 (1.6, 3.3) −0.335

Gd2O3 P3̄m1 160211 20292 14.7 (−∞, 71.3) −3.742

TiF3 R3̄cH 52160 50979 2.4 (3.2, 159.7) −3.554

H2S I41/acdS 168207 21357 14.0 (5.4, 28.4) −0.221

Al2O3 Pbcn 161062 20393 113.0 (−∞, ∞) −2.985

AlAs P63/mmc 56967 10263 18.0 (8.0, 234.1) −0.242

H2S P1c1 168207 21357 11.4 (5.4, 28.4) −0.221

InS Pmnn 15931 3269 3.6 (−36.9, 3.0) −0.653

ErN Fm3̄m 167759 21306 5.4 (121.8, ∞) −0.929
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

SrF2 Pnam 168801 21431 15.2 (−∞, 49.6) −4.001

La5Sb3 P4/mmm 641888 30667 11.0 (−3.2, 0.6) −1.010

SF6 C12/m1 63360 11802 3.8 (10.5, 170.6) −2.024

FeAs2 Pna21 41724 7566 0.0 (−∞, 33.4) −0.269

CuS P63/mmc 63328 11799 1.8 (−17.5, 9.1) −0.344

FeSb Pnnm 53535 647220 5.3 (8.5, ∞) 0.009

HgI2 P42/nmcZ 18126 3712 1.1 (−0.5, 0.4) −0.400

Cu3N Pm3̄m 25675 4824 0.9 (−∞, −38.7) 0.237

K2S Pmma 412535 25623 4.4 (2.8, ∞) −1.076

CdS P63mc 620322 29026 2.3 (4.2, 101.5) −0.658

Na3N Pnma 165991 21099 3.9 (3.9, 5.2) 0.148

Na3N P63cm 165991 21099 16.6 (3.9, 5.2) 0.148

RbI Pm3̄m 61559 57018 0.5 (−∞, 10.5) −1.551

Na3N Fm3̄m 165991 21099 35.6 (3.9, 5.2) 0.148

Na3N R3̄cH 165991 21099 26.1 (3.9, 5.2) 0.148

La2C3 I4̄3d 26588 5052 5.0 (−1.9, 398.7) −0.170

CaSi2 I41/amdZ 32006 6152 10.1 (−0.2, 2.3) −0.390

Tl5Se3 Pm3̄m 30376 5830 35.7 (−24.0, 21.8) −0.331

BeO P63mc 18147 3721 2.2 (−195.4, −11.9) −2.950
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Table A.2 — Continued

Composition Space ICSD OQMD pICSD (pmin, pmax) ∆Ef

group (Collection Code/ID) (GPa) (GPa) (eV/atom)

SnSb Pm3̄m 52302 646878 19.0 (8.5, 74.2) 0.081

SiO2 Pa3̄ 100279 87467 268.0 (4.8, 5.3) −3.039

Fe3O4 P121/n1 65338 11962 54.3 (−∞, −65.7) −1.033

Ag2S P212121 98452 16747 6.9 (0.3, 20.9) −0.152

CaTe Pbnm 41959 7650 24.7 (−48.3, −46.6) −1.626

SrH2 P63/mmc 33160 6231 95.0 (7.0, ∞) −0.495

HgSe Fm3̄m 56211 10103 21.0 (4.3, 32.0) −0.025

CoAs3 Pnam 9188 2483 2.8 (−16.6, 17.9) −0.308

PbCl2 Pnam 15806 3228 11.0 (−20.8, 1.0) −1.393

AlAs F4̄3m 56967 10263 11.0 (8.0, 234.1) −0.242

TmTe2 P63/mmc 653106 31101 15.0 (−25.4, 41.7) −1.074

GeO2 Pbcn 94241 16305 70.7 (−∞, ∞) −1.665

MgH2 Pnma 155811 19965 21.9 (6.9, 9.4) −0.140

CsF Pm3̄m 44288 8354 4.8 (−11.7, 5.7) −2.833

MnF4 P42/mnm 62068 11563 1.0 (−168.2, 248.9) −2.496

SrS I4/mcm 164144 20780 2.0 (15.4, ∞) −1.996

PbS Fm3̄m 62192 11589 2.1 (−0.1, 15.3) −0.685

NaCl Fm3̄m 18189 3735 3.4 (−22.0, 16.5) −2.050
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A.3. Novel high-pressure phases in ambient-immiscible systems

A.3.1. As–Pb

Predictions based on OQMD prototypes
Composition OQMD ∆Ef pmin pmax

(eV/atom) (GPa) (GPa)
As3Pb 314710 0.392 88.837 ∞
AsPb3 312325 0.204 38.082 ∞
AsPb3 349738 0.134 9.447 11.080
AsPb3 301783 0.159 11.081 38.083

MHM predicted structure for AsPb at 50 GPa, SPG: Imma (74)
Unit cell dimensions a = 3.23238 b = 4.69989 c = 9.20304

α = 90.00000 β = 90.00000 γ = 90.00000
Atom x y z
As(1) 0.00000 0.25000 0.64824
Pb(1) 0.00000 0.25000 0.10942
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Figure A.1. LAE-predicted convex hull for the As–Pb system at 50 GPa.
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A.3.2. Hg–In

Predictions based on OQMD prototypes
Composition OQMD ∆Ef pmin pmax

(eV/atom) (GPa) (GPa)
InHg3 300764 0.111 7.101 ∞
In3Hg 346334 0.050 3.650 6.289
In3Hg 299889 0.078 6.288 ∞

MHM predicted structure for HgIn, SPG: P4/mmm (123)
Unit cell dimensions a = 2.92133 b = 2.92133 c = 4.02749

α = 90.00000 β = 90.00000 γ = 90.00000
Atom x y z
Hg(1) 0.50000 0.50000 0.50000
In(1) 0.00000 0.00000 0.00000

MHM predicted structure for HgIn3, SPG: Immm (71)
Unit cell dimensions a = 4.33198 b = 4.08785 c = 7.88558

α = 90.00000 β = 90.00000 γ = 90.00000
Atom x y z
Hg(1) 0.50000 0.00000 0.50000
In(1) 0.00000 0.00000 0.24986
In(2) 0.00000 0.50000 0.50000

MHM predicted structure for Hg3In, SPG: I4/mmm (139)
Unit cell dimensions a = 4.07722 b = 4.07722 c = 8.18543

α = 90.00000 β = 90.00000 γ = 90.00000
Atom x y z
Hg(1) 0.00000 0.00000 0.50000
Hg(2) 0.00000 0.50000 0.25000
In(1) 0.00000 0.00000 0.00000
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Figure A.2. LAE-predicted convex hull for the Hg–In system at 50 GPa.
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A.3.3. Hg–Sn

Predictions based on OQMD prototypes
Composition OQMD ∆Ef pmin pmax

(eV/atom) (GPa) (GPa)
Sn3Hg 348253 0.022 0.484 2.997
Sn3Hg 302858 0.052 2.997 147.627
Sn3Hg 313400 0.056 147.627 ∞
SnHg3 302683 0.147 11.475 ∞

MHM predicted structure for Hg3Sn, SPG: C2/m (12)
Unit cell dimensions a = 9.64991 b = 2.89304 c = 5.05054

α = 90.00000 β = 100.17130 γ = 90.00000
Atom x y z
Hg(1) 0.75186 0.00000 0.25184
Hg(2) 0.00000 0.50000 0.50000
Sn(1) 0.00000 0.00000 0.00000
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Figure A.3. LAE-predicted convex hull for the Hg–Sn system at 50 GPa.
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A.3.4. Fe–In

Predictions based on OQMD prototypes
Composition OQMD ∆Ef pmin pmax

(eV/atom) (GPa) (GPa)
InFe3 324752 0.099 13.470 23.610
In3Fe 303668 0.320 138.215 ∞
InFe 306831 0.325 20.819 ∞

MHM predicted structure for In3Fe, SPG: Cmcm (63)
Unit cell dimensions a = 3.13742 b = 9.40627 c = 8.06256

α = 90.00000 β = 90.00000 γ = 90.00000
Atom x y z
In(1) 0.00000 0.54711 0.25000
In(2) 0.00000 0.13794 0.54442
Fe(1) 0.00000 0.25703 0.25000
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Figure A.4. LAE-predicted convex hull for the In–Fe system at 50 GPa.
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A.3.5. Re–Br

Predictions based on OQMD prototypes
Composition OQMD ∆Ef pmin pmax

(eV/atom) (GPa) (GPa)
ReBr3 298763 1.141 39.970 ∞
ReBr3 325023 0.186 9.585 30.275
ReBr 305074 1.615 168.752 ∞
ReBr 326158 1.215 45.999 168.774

MHM predicted structure for ReBr3, SPG: C2/m (12)
Unit cell dimensions a = 4.94513 b = 9.91552 c = 5.36688

α = 90.00000 β = 102.03314 γ = 90.00000
Atom x y z
Re(1) 0.00000 0.69144 0.00000
Br(1) 0.75167 0.00000 0.21595
Br(2) 0.23444 0.14835 0.31348
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Figure A.5. LAE-predicted convex hull for the Re–Br system at 50 GPa.
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A.3.6. Re–Ga

Predictions based on OQMD prototypes
Composition OQMD ∆Ef pmin pmax

(eV/atom) (GPa) (GPa)
GaRe 327316 0.212 59.768 89.115
GaRe 306232 0.345 89.119 ∞
GaRe3 322144 0.205 204.998 ∞
Ga3Re 301060 0.186 11.336 4853.546
Ga3Re 320470 0.253 4853.549 ∞

MHM predicted structure for ReGa, SPG: P4/nmm (129)
Unit cell dimensions a = 2.96485 b = 2.96485 c = 5.69732

α = 90.00000 β = 90.00000 γ = 90.00000
Atom x y z
Re(1) 0.25000 0.25000 0.86337
Ga(1) 0.25000 0.25000 0.38123

MHM predicted structure for ReGa3, SPG: C2/m (12)
Unit cell dimensions a = 8.58183 b = 3.17807 c = 7.81840

α = 90.00000 β = 111.78545 γ = 90.00000
Atom x y z
Re(1) 0.63290 0.00000 0.70306
Ga(1) 0.87077 0.00000 0.04567
Ga(2) 0.87745 0.00000 0.55519
Ga(3) 0.37776 0.00000 0.79502
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Figure A.6. LAE-predicted convex hull for the Re–Ga system at 50 GPa.
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A.3.7. Re–Sn

Predictions based on OQMD prototypes
Composition OQMD ∆Ef pmin pmax

(eV/atom) (GPa) (GPa)
ReSn3 302922 0.718 45.996 ∞
ReSn 304519 0.604 27.398 ∞
Re3Sn 308129 0.546 296.697 ∞

MHM predicted structure for ReSn3, SPG: Cmcm (63)
Unit cell dimensions a = 3.24850 b = 9.59949 c = 8.56114

α = 90.00000 β = 90.00000 γ = 90.00000
Atom x y z
Re(1) 0.00000 0.23106 0.25000
Sn(1) 0.00000 0.36635 -0.03189
Sn(2) 0.00000 -0.05211 0.25000
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Figure A.7. LAE-predicted convex hull for the Re–Sn system at 50 GPa.
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A.3.8. Al–Si

Predictions based on OQMD prototypes
Composition OQMD ∆Ef pmin pmax

(eV/atom) (GPa) (GPa)
AlSi3 347070 0.367 37.878 ∞
AlSi 337976 0.220 29.173 93.707
Al3Si 301500 0.109 20.866 ∞

MHM predicted structure for SiAl, SPG: C2/m (12)
Unit cell dimensions a = 16.37599 b = 2.54607 c = 4.31791

α = 90.00000 β = 93.89323 γ = 90.00000
Atom x y z
Si(1) 0.06132 0.00000 0.68611
Si(2) 0.18753 0.00000 0.06466
Al(1) 0.56327 0.00000 0.18609
Al(2) 0.31308 0.00000 0.42989

MHM predicted structure for SiAl3, SPG: I4/mmm (139)
Unit cell dimensions a = 3.57383 b = 3.57383 c = 14.49798

α = 90.00000 β = 90.00000 γ = 90.00000
Atom x y z
Si(1) 0.00000 0.00000 0.87620
Al(1) 0.00000 0.50000 0.00000
Al(2) 0.00000 0.00000 0.62524
Al(3) 0.00000 0.50000 0.25000

MHM predicted structure for Si3Al, SPG: P4/nmm (129)
Unit cell dimensions a = 2.48017 b = 2.48017 c = 14.13708

α = 90.00000 β = 90.00000 γ = 90.00000
Atom x y z
Si(1) 0.25000 0.25000 0.06179
Si(2) 0.25000 0.25000 0.56209
Si(3) 0.25000 0.25000 0.81583
Al(1) 0.25000 0.25000 0.31124
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Figure A.8. LAE-predicted convex hull for the Si–Al system at 50 GPa.



181

A.3.9. Sn–Bi

Predictions based on OQMD prototypes
Composition OQMD ∆Ef pmin pmax

(eV/atom) (GPa) (GPa)
Sn3Bi 313053 0.049 4.545 ∞
Sn3Bi 323095 0.010 0.194 4.545
SnBi3 312553 0.113 5.546 ∞

MHM predicted structure for Sn3Bi, SPG: C2/c (15)
Unit cell dimensions a = 6.65344 b = 13.55695 c = 4.83451

α = 90.00000 β = 134.82124 γ = 90.00000
Atom x y z
Sn(1) 0.00000 0.56575 0.25000
Sn(2) 0.00000 0.80932 0.25000
Sn(3) 0.00000 0.31025 0.25000
Bi(1) 0.00000 0.06463 0.25000
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Figure A.9. LAE-predicted convex hull for the Sn–Bi system at 50 GPa.
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A.3.10. Zn–Ga

Predictions based on OQMD prototypes
Composition OQMD ∆Ef pmin pmax

(eV/atom) (GPa) (GPa)
ZnGa3 343588 0.056 10.162 ∞
Zn3Ga 346113 0.046 15.079 ∞
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Figure A.10. LAE-predicted convex hull for the Ga–Zn system at 50 GPa.
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APPENDIX D

Software Frameworks and Implementations

qmpy* Python, Django-based framework that powers the Open Quantum Materials
Database (OQMD). github.com/wolverton-research-group/qmpy

kelpie Python package for server-side management of density functional calculations us-
ing Vienna Abinitio Simulation Package (VASP). github.com/hegdevinayi/kelpie

nve Fast convex hull and ground state phase stability analysis at non-ambient pres-
sures, using QHull and PuLP libraries. github.com/wolverton-research-group/nve

htdefects Python framework for high-throughput density functional calculations of dilute
mixing defects in materials. (Under development; to be open-sourced soon.)

icsd-queryer A Selenium wedriver based data retriever for the Inorganic Crystal Structure
Database (ICSD). github.com/hegdevinayi/icsd-queryer

janaf-scraper A Selenium webdriver based data retriever for the NIST-JANAF Thermochemical
Tables. github.com/hegdevinayi/janaf-scraper

*qmpy is a collaborative effort. I was the primary developer and maintainer of the package

from late-2014 to mid-2019.

https://github.com/wolverton-research-group/qmpy
https://github.com/hegdevinayi/kelpie
https://github.com/wolverton-research-group/nve
https://github.com/hegdevinayi/icsd-queryer
https://github.com/hegdevinayi/janaf-scraper
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