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ABSTRACT

The goal of this thesis is to develop an experimental setup to evaluate and analyze the effect of

crack-parallel stress on the fracture response of materials. In standard fracture test configurations,

the crack-parallel normal stress is negligible. However, a new type of experiment, briefly named

the gap test, revealed that it was not the case for many quasibrittle and ductile materials. This

experiment consists of a simple but new modification of the standard three-point-bend test. Plastic

pads with a near-perfect yield plateau are used to generate a constant crack-parallel stress, and the

end supports are installed with a gap that closes only when the pads yield. This way, the test beam

transits from one statically determinate loading configuration to another, making evaluation easy

and accurate. In addition to the gap test, the size effect method, devised in the 1990s, was used to

obtain an unambiguous fracture energy based on the geometric scaling of cracked structures with

positive geometry. Unlike the work-of-fracture method which measures the total fracture energy

on structures of one size, the size effect method was shown in 2014 to give a unique value of the

initial fracture energy. It can be widely applied.

For quasibrittle materials, i.e. heterogeneous materials consisting of brittle phases, concrete

was used as a typical example. The gap test showed that a moderate crack-parallel compressive

stress could increase up to ≈ 2 times the Mode I (opening) fracture energy of concrete, and reduce it

to almost zero when approaching the compressive stress limit. Behavior with a similar trend can be

observed within the characteristic length scale, which may be explained by the interplay between

friction, interlocking and dilation of microcracks and microsurfaces. To explain this phenomenon,

computational models were used, but not all of them could reproduce the results. In particular,

the line-crack models, including the basic and enhanced phase-field models with one or two phase

variables (PFM), cohesive crack models (CCM), and extended finite element method (XFEM)
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cannot capture such an effect. The reason lies in the inability of these methods to generate a fracture

process zone (FPZ) with finite width. Consequently, the FPZ (if it exists) is one dimensional

and cannot interact with the crack parallel stress. On the contrary, finite elements (FE) or any

method that does not confine the energy dissipation within a line in theory can capture the effect

of crack -parallel stresses (both in-plane and out-of-plane). However, they must be characterized

by a realistic tensorial softening damage model whose vectorial constitutive law captures oriented

mesoscale frictional slip, microcrack opening and splitting with microbuckling (i.e. the scalar

stress-displacement softening law of CCM and tensorial models with a single-parameter damage

law are inadequate). This is best accomplished by the rack band model which, when coupled with

microplane model M7, fits the test results satisfactorily. Other standard tensorial strength models

such as Drucker-Prager cannot reproduce these effects realistically. Alternatively, one can think of

using an equation to describe the dependence of Gf as a function of σxx (as well as σzz and σxz

in general). However, this is an approximation that ignores stress tensor history and can only be

accepted in some special cases where the crack-parallel stresses are negligible.

For ductile materials, even though the small-scale yielding fracture of plastic-hardening metals

(conceived by Hutchinson, Rice and Rosengren) is a well-established theory, their scaling law is

not fully understood. Therefore, it must be evaluated before proceeding to the effect of crack-

parallel stresses. Unlike the fracture of quasibrittle materials, the fracture of plastic-hardening

materials is complicated by a millimeter scale singular yielding zone (YZ) that forms between

the micrometer-scale FPZ and the elastic (unloading) material on the outside. Essential for the

large-scale transitional size effect is the YZ size, which is here calculated from the condition of

equivalence of the virtual works of the plastic-hardening and elastic singular stress fields within the

transition zone. The size effect analysis requires taking into account not only the dissipation in the

FPZ delivered by the J-integral flux of energy through the yielding zone, but also the energies re-
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leased from the structure and from the unloaded band of plasticized material trailing the advancing

yielding zone. Consequently, to describe the transition from micron-size to structure-size speci-

mens (in which both large-scale and small-scale yielding are present), we develop a modified size

effect method that includes three asymptotes and requires nonlinear optimization. The size effect

law is verified by scaled tests of notched specimens of aluminum.

The gap test is again applied to evaluate the effect of an extrinsically applied σxx on the initial

fracture energy of aluminum alloy, an example of a ductile material. The “extrinsic” nature of

σxx should be emphasized to highlight the novelty of this work. In fact, the crack parallel stress

can arise “intrinsically” due to the constraint arising at the tip, which is a result of plastic strain

in this area and the geometry of the specimen. This phenomenon was extensively studied in the

1990s by Shih, Hutchinson and many other authors under the name of J-T (or J-Q) theory. To

avoid such “intrinsic” effect, the thickness, the length-to-depth ratio and the notch length ratio of

the specimens in this study were chosen so that such “intrinsic” parallel stress can be negligible.

Using the size effect method as previously described, it is found that, at crack-parallel stress σxx

= 40% of the yield strength, the Gf of aluminum (or Jcr) is roughly doubled and the rp, which

represents collectively the effective radius of the YZ and the characteristic length (or size) of the

FPZ, is roughly tripled. To reproduce these results in finite element analysis, one must again

consider a realistic tensorial elastic-plastic-damage constitutive law. Such analysis is essential to

distinguish the changes in FPZ and in YZ, in which the former must be simulated with a finite

width, as in the crack band model.

The results in this thesis have broad implications for many materials, e.g., shale, fiber compos-

ites, sea ice, foams, bone, and metallic structures that possess the grain boundary comparable to the

structural size. These results challenge the century-old hypothesis of constancy of materials frac-

ture energy and set a new paradigm to define the adequacy of the experiments to fully describe the
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mechanical properties of a material. In addition, these results can be used as a source of validation

to evaluate the performance of a damage/fracture model.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Fracture mechanics’ origin dates back to a paper by Inglis [1] in which he attempted the elastic

solution for stresses at the vertex of an ellipsoidal cavity in an infinite solid and observed that,

as the ellipse approached a line crack (i.e., as the shorter axis tended to zero), the stress at the

vertex of the ellipse tended to infinity. Noting this fact, Griffith [2] concluded that, in presence

of a crack, the stress value could not be used as a criterion of failure since the stress at the tip

of a sharp crack in an elastic continuum is infinite no matter how small the applied load. The

propagation of cracks therefore relies on an energy criterion of failure, which serves as the basis

of the classical elastic fracture mechanics (or EFM). This form of fracture mechanics, however,

was applicable only to homogeneous brittle materials, such as glass at the scale larger than several

millimeters. The question of applicability of these classical theories to other materials was explored

long ago on quasibrittle [3] and ductile materials [4], [5]. Now, we understand that the physical

processes occurring in the fracture of these materials are very different from those taking place

in the fracture of the homogeneous brittle materials and so are their relevant length scales. The

new developments of fracture mechanics that can be applied to these kinds of fracture, therefore,

appeared only during the late 1970s and the 1980s. While there are many fracture mechanics

theories based on the diversity of materials behavior, in this thesis, only quasibrittle and elastic-

plastic fracture mechanics will be discussed.
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1.1 Length scale of quasibrittle and elastic-plastic fracture mechanics

What sets the new forms of fracture apart from the classical EFM? Fig.1.1 illustrates this difference

by the emergence of the fracture process zone (FPZ) and the yielding zone (YZ). The FPZ often

arises in quasibrittle materials, i.e., heterogeneous materials consisting of brittle constituents and

inhomogeneities not negligible compared the structure dimensions. The FPZ is a nonlinear zone

characterized by progressive softening for which the stress decreases at increasing deformation.

The YZ, on the other hand, is a non-softening nonlinear zone characterized by hardening plasticity

or perfect plasticity, for which the stress increases at increasing deformation or remains constant.

Depending on the relative sizes of these two zones and of the structure, one may distinguish three

types of fracture behavior. In the first type of behavior (Fig.1.1a), the whole nonlinear zone (and

thus also the FPZ) is small compared to the structure size. Then, the entire fracture process takes

place almost at one point-the crack tip. The whole body is elastic, and elastic fracture mechanics

(EFM) described before can be applied. This type of model is a good approximation for perfectly

brittle materials such as Plexiglas, glass, brittle ceramics, and metals embrittled by hydrogen dif-

fusion. It must be emphasized that the applicability of EFM is relative, i.e., the structure must be

sufficiently large compared with the FPZ. Thus, the overall behavior of extremely large concrete

structures, such as gravity dams, can be described by EFM, while the behavior of a very small

part made of a brittle fine-grained ceramic cannot. In the second and third types of behavior (Figs.

1.1b,c), the ratio of the nonlinear zone size to the structure size is not sufficiently small, leading to

the inapplicability of the EFM theory. Although it can still be applied in a certain equivalent sense

if the nonlinear zone is not very large.

In the second type of behavior (Fig.1.1b), we include situations where most of the nonlinear

zone consists of elastoplastic hardening or perfect yielding, and the size of the actual FPZ in which
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Figure 1.1: The emergence of the nonlinear zone in the crack front in elastic-plastic (ductile) (b)
and in quasibrittle materials (c), compared with homogeneously brittle materials (a).

the breaking of the material takes place is still small. Many metals, especially various tough al-

loys, fall into this category. and its general type may be defined as ductile. This kind of behavior

is best treated by a specialized branch of fracture mechanics–the elastic-plastic fracture mechanics

[4], [5]. The third type of behavior (Fig.1.1c) includes situations in which a major volume of the

nonlinear zone undergoes progressive damage with material softening, due to microcracking, void

formation, interface breakages and frictional slips, and other similar phenomena (e.g., crystallo-

graphic transformation in certain ceramics). The zone of plastic hardening or perfect yielding in

this type of behavior is often negligible, i.e., there is a rather abrupt transition from elastic response

to damage. This happens for concrete, rock, ice, cemented sands, stiff clay, various ceramics with

hard inclusion, fiber composites, wood particle board, paper, shale with arresting bedding plan, and

many more materials. We call these materials quasibrittle because even if no appreciable plastic

deformation takes place, the size of the FPZ is large enough to have to be taken into account in
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calculations. A special case in which both nonlinear zones have non-negligible sizes will also be

discussed.

1.2 Why crack-parallel stresses matter?

Depending on the type of nonlinear zone arising at the crack front, various methods have been

used to compute the fracture energy of materials, including both experimental and numerical ap-

proaches. In many cases, the nonlinearity is condensed to the interactions between cracked sur-

faces. The crack is, therefore, represented by a zero-width interface (via a line or surface) within

which any material behaviors are described based on the separation, normal contact and sliding

motions. This approach, however, fails to consider the finite-size nature of the nonlinear zone

in the crack front and reduces the number of relevant length scales to one, which is measured

along the interface. Consequently, this approach completely ignores the interaction between the

stress/strain components that are parallel to the crack and the microstructure in the nonlinear zone.

Note that, due to the absence of any length scale in the EFM, these crack-parallel stresses would

cancel each other due to the superposition principle and result in a more severe misrepresentation

of the fracture energy.

In reality, crack-parallel stresses are important for many scenarios. The importance of consid-

ering a finite width of the FPZ is supported by futile experience with the cohesive crack modeling

of size effect in shear failure of reinforced concrete beams and slabs, which has been a formidable

problem for decades. A crack of nearly mode I type, driven by shear force, propagates in a stable

manner through about 80% of the cross section depth, and the failure eventually occurs because of

crack-parallel compression at the crack front (Fig.1.2a). Also, this stress may be the gross overes-

timation of the forces exerted by sea ice on the legs of oil platforms (Fig.1.2c). In another case, the

increase of deviatoric stress state in shale may be the cause for the crumbling of materials ahead
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of the tip (Fig.1.2b), leading to a more uniform pressure field in a hydraulic crack, which prevents

the localization of parallel cracks.

The effect of crack-parallel stresses also have important implications on the validity of nu-

merical models in the presence of damage and cracks. For example, two prime representatives

of the modeling approach that idealizes fracture as zero-width interface are the cohesive crack

method (CCM, introduced by Barenblatt in 1959 [6]) and extended finite element method (xFEM,

introduced by Belytschko in 1999 [7]). These so-called line crack models do not include the crack-

parallel normal strain ϵxx (as well as ϵzz and ϵxz) among the basic thermodynamic variables, and

thus cannot take the crack-parallel normal stress σxx properly into account. As a zero-width FPZ

(or the interface mentioned above) is considered, the effect of the crack-parallel normal stress σxx

on the microstructure that happens at the continuum material points outside of this FPZ could be

captured. Therefore, a FPZ of finite width must be modeled, reflecting its meso-scale physical

behavior. The possibilities are a tensorial damage softening constitutive law coupled with crack

band model (CBM) [8], the nonlocal models [9], or the lattice discrete particle model (LDPM)

[10]–[12]. The CB model, however, must be accompanied by a sufficiently realistic damage model

such as the microplane model, particularly its latest version M7 [13]. This speculation was con-

firmed by the capability of the CBM (with M7) [14]–[18] and the LDPM [19], [20] in capturing

the correct behavior of the problem in Fig.1.2b. This experience is what partly inspired this thesis.

Despite the importance of these crack-parallel stresses in fully describing the fracture char-

acteristics of materials, most of the existing experimental configurations have failed to include or

capture them. Such an effect could not be captured because all standard notched fracture specimens

(three-point-bend (3PB), single-edge-notched tension (SENT), circumferentially notched tension

(CNT), compact tension (CT), double cantilever (DC), edge-notched eccentric compression, etc.;

see Figs. 1.3a-f) have a negligible normal stress parallel to the crack. The wedge-splitting spec-
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Figure 1.2: (a) A sketch of the mechanics governing the strength of scaled RC beams, reproduced
from [21]; (b) The effect of the crack-parallel stress on the microcracks pattern leading to the
difference in pressure profile; and (c) the fracture of sea ice near the legs of oil platforms.

imen (Fig.1.3g) might seem to be an exception, but the |σxx| is insignificant compared with the

uniaxial compressive strength, fc, and such a stress is non-uniformly distributed throughout the

specimens. In addition, cracks appear experimentally as lines (albeit rough), and it is obvious that

a line cut in direction x in a specimen under homogeneous uniaxial stress σxx causes no stress
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change in the classical EFM as already mentioned above.

Figure 1.3: Standard notched fracture specimens that neglect the effect of crack-parallel stress.

On the other hand, experiments with non-negligible σxx have not been usually considered due

to the complexity of applying additional loads, which leads to ambiguities in performing the tests

and analyzing the results. In structural engineering labs, tests with multiple loads are, of course,

commonplace, but they require the use of multiple hydraulic jacks, which introduce undesirable

self-weight loads and lead to a statically indeterminate support system in which stress evaluation

requires a damage constitutive law which may be well understood. Hydraulic jacks causing crack-

parallel compression were used in 1995 by Tschegg et al. [22] in an elaborate modification of the

wedge-splitting test. The results confirmed the hint from the 1987 microplane model that crack-

parallel compression should matter. Despite a trend similar to this thesis was observed, several
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ambiguities emerged, including the incapability to distinguish the effect of crack parallel stress on

the total fracture energy and the initial fracture energy and the complexity of the stress field due

to the weight of heavy clamping frames, and to friction under the jacks. Such a difference will be

discussed next.

1.3 The non-uniqueness of the cohesive law and the importance of the scaling test in deter-

mining a unique fracture energy

In discussing the fracture energy, we must first clarify what kind. The typical softening stress-

separation curve of concrete begins with a steep initial tangent, followed by a very long tail, as

shown in Figs.1.4a,b. Accordingly, two fracture energies are distinguished: (a) the initial fracture

energy, Gf , given by the area under the initial tangent, and the total fracture energy, GF , repre-

senting the area under the complete softening curve, including its tail [14], [23]–[25]. Typically,

GF/Gf ≈ 2 to 6 for concrete. TheGf alone governs the load capacity of most structures, while the

GF governs the energy absorption in dynamic failures such as impact. We note that the work-of-

fracture method often used to determine the value of GF gives ambiguous results [26], due to the

FPZ size variation near notch tip and near opposite boundary; see Fig.1.4c. This can severely un-

derestimate the steady-state energy dissipation and cause a major error. Therefore, the GF suffers

from high uncertainty unless the work-of-fracture tests are conducted at various specimen sizes

[26].

Fortunately, unambiguous determination of Gf (and characteristic size cf ) from the present ex-

periments and numerical simulations is made possible by the size effect method. This method [14],

[27], embodied in the international standard recommendation of RILEM [28], endorsed recently by

ACI-446 committee, and improved in [24], [25], [29], was devised in 1990 (and without cf in 1987

[23]). It is an effective way to circumvent the impossibility of determining, optically or acousti-
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cally, the precise location of the tip of a macroscopically equivalent EFM crack within the large

FPZ of quasibrittle materials. In this method, based on asymptotic matching, it suffices to measure

the maximum loads, P , of notched specimens of several sufficiently different sizes, preferably, but

not necessarily, geometrically similar. The details of this method on both quasibrittle and ductile

materials will be discussed in the next chapters.

Figure 1.4: (a) A traction-separation curve without crack-parallel stress; (b) A linear approximation
of the initial fracture energy; (c) The effect of the boundary on the fully developed FPZ, which
leads to ambiguity in the work-of-fracture and the GF measurement.

1.4 T-stress in metal–the current progress

Unlike quasibrittle materials, the effect of σxx, called the T-stress, was long considered in fracture

of plastic metals [30]–[33]. Important studies on the size and behavior of the YZ with respect to Q

(or T ) have been supported by extensive finite element analyses, but not experimental efforts. In

particular, O’Dowd and Shih [30], [31] proposed the concept of J-Q-annulus surrounding the crack

tip, in which the J-integral characterizes the remote stress field corresponding to a −1/2-power

stress singularity, while Q corresponds to the second, non-singular, term of the near-tip asymptotic

expansion, which represents a uniform stress field of crack-parallel T -stress. Triaxiality of stress

state in a tip-surrounding annulus, described by this parameterQ as the relative difference between
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stress fields when T is not zero and when T vanishes, led to a monotonic increase of the critical J-

integral value based on the Hutchinson-Rice-Rosengren (HRR)[4], [5] field. This stress was shown

to act as a crack tip constraint, suppressing cleavage.

The J-Q concept, however, has not been extended to a simple analytical scaling law, which

makes the measurement more complicated. Similar comments apply to the studies of Betegón and

Hancock [32], Xia, Wang and Shih [34], and Gao, Shih, Tvergaard and Needleman [35]. The

apparent question on whether T -stress will affect the form of the scaling law and the size of the

YZ, therefore, remains unanswered.

It should be noted that, in the field of metals, the term ”size effect” has been applied to a

variety of different phenomena. E.g., the well-known Hall-Petch effect [36]–[38] is not a size

effect on structure strength but the effect of grain-size on the yield strength of metal, explained

by dislocation arrest at grain boundaries. In crystal plasticity, the term is used for the strength

variation of miniaturized single-crystal specimens [39]. The term has also been used for the effect

of geometrically necessary dislocations and of strain gradients on the yielding strength of metals.

Further the term has been used for the increase of specific cutting force with a decreasing depth of

a cut [40].

In addition, these T-stresses that have been studied emerge intrinsically at the crack tip due to

the constraint caused by either the geometry of specimens or the loading configuration. The impact

of externally applied in-and-out-of-plane crack-parallel stresses (i.e. the extrinsic effect) has not

been studied yet.
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CHAPTER 2

SIZE EFFECT METHOD AND THE EFFECT OF CRACK PARALLEL STRESSES ON

QUASIBRITTLE MATERIALS

2.1 Scaling of structural strength for quasibritlle materials

As mentioned in the previous chapter, the classical methods to measure fracture energy, including

the work-of-fracture method, are applied only to one size, which suffers from high uncertainty.

Therefore, the size effect method is used to compute the initial fracture unambiguously [26]. In

the classical theories based on plasticity or limit analysis, the strength of geometrically similar

structures is independent of the structure size. As already pointed out [41], however, concrete

structures and, in general, structures made of brittle or quasibrittle materials, do not follow this

trend. In this section we first define what is understood by the strength and size of a structural

element and then examine how the strength depends on the size. To observe the size effect, the

strength of geometrically similar structures of different sizes are compared. It is conveniently

characterized in terms of the nominal strength, σNu, representing the value of the nominal stress,

σN , at maximum (ultimate) load, Pu. The nominal stress serves as a load parameter and may,

but need not, represent any actual stress in the structure, which can be defined as: σN = P/bD

when the similarity is two-dimensional or as P/D2 when the similarity is three-dimensional; b =

thickness of a two-dimensional structure, and D = characteristic dimension of the structure, which

may be chosen as any dimension, e.g., the depth of the beam, or the span, or half of the span, since

only the relative values of matter. The nominal strength is then σNu = Pu/bD or Pu/D
2.

Since crack growth in EFM is defined by the condition G = Gf = or KI = KIc, we need to
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know the structure of the equations for KI and G if we want to investigate the influence of the

size. And since size effect is one of the main topics of this book, it is also convenient to define

the conventional forms of the equations we are going to use so that the size D is made explicit.

Systematization of the presentation of the existing results also requires using general mathematical

forms of the equations for KI and G, so that a single experimental or numerical result may be

used for any similar specimen or structure. To determine the general form, we consider a family

of geometrically similar structures subjected to the same type of loading (for example, the center

cracked panel in Fig. 2.1a. Let D be a characteristic dimension (for example, the panel width)

to which all the remaining dimensions are proportional (for example, the height-to-width ratio),

except for the crack-to-depth ratio a/D, which is free to vary. The purpose of the analysis is to

obtain the general expression for KI and G showing explicitly the dependence on the variables P

(or σN ), D and α = a/D.

The early researchers on concrete fracture often attempted to apply EFM directly to evaluate

the fracture tests. In this case, the fracture toughness KIc is calculated from the peak load Pu (or

the nominal strength σNu) using the EFM formula for a propagating crack in a specimen. If the

geometry is so-called positive (KI at constant load increasing with the crack length, or ∂KI/∂a),

the onset of crack extension coincides with the peak load and :

KIc = σNu

√
Dk (α0) (2.1)

where α0 is the relative initial crack depth (usually the notch depth in concrete). The condition

of positiveness of the geometry is the same as k′ (α0) > 0, where the prime indicates the derivative.

Most of the specimens used in fracture testing have positive geometry. It turned out, however, that

the toughness values thus determined were not invariant with respect to the beam size, shape, or

notch depth. This means that Eq. 2.1 did not supply the true fracture toughness, but an apparent
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Figure 2.1: (a) Geometrically scaled compact-tension specimens; (b) The FPZ with finite length
and width; and (c) The applicability of the size effect method on different quasi-brittle materials
and on different configurations, reprinted with the authors’ permission [21].
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fracture toughness that varied with testing conditions. To emphasize this fact, we use in this book

a special notation for the apparent fracture toughness: first, we define the nominal stress intensity

factor KIN as the stress intensity factor computed for the actual load and the initial crack length,

i.e.,

KIN = σN
√
Dk (α0) (2.2)

Then, the apparent fracture toughness KINu is defined as the value of KIN at peak load:

KINu = σNu

√
Dk (α0) (2.3)

Eq. 2.3 is nearly identical to Eq. 2.1, but the conceptual difference is huge: KIc in Eq. 2.1,

must be a material property, independent of testing details; KINu need not. Of course, for positive

geometries:

KINu = KIc (2.4)

Let us now examine how the apparent toughness KINu deviates from the EFM prediction. For

a large, but not infinitely large specimen, we use the definition of critical equivalent crack and write

the condition that the stress intensity at peak load for the equivalent crack must be the true fracture

toughness, i.e.

KIc = σNu

√
Dk (αec) ⇒ σNu =

KIc√
Dk2 (αec)

(2.5)

Now, recalling that all our reasoning in the preceding sections refers to a specimen much larger

than the fracture process zone, we see that ∆aec ≈ cf ≪ D; see Fig. 2.1b. Because α =
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α0 +∆aec/D, we may use a two-term Taylor expansion for k2(α):

k2(αec) = k2(α0) + 2k(α0)k
′(α0)

cf
D

= k20 + 2k0k
′
0

cf
D

as
cf
D

→ 0 (2.6)

Substitution of Eq. 2.6 into Eq. 2.5, followed by series expansion of the result, leads to the

asymptotic two-term expression:

σNu =
KIc√

k20D + 2k0k′0cf
=

KIc√
2k0k′0cf

√
1 +D/ (2k′0cf/k0)

=

√
E ′Gf

g′0cf + g0D
(2.7)

where g0 = k20 , g′0 = 2k0k
′
0. If we set Bft = KIc/

√
g0cf and D0 = g′0/g0cf :

σNu =
Bft

1 +D/D0

(2.8)

This form can be turned into the linear form:

Y = AD + C; Y = 1/σ2
Nu, C = 1/(Bft)

2, A = C/D0 (2.9)

The fracture energy Gf and the characteristic size cf can be computed:

KIc = k0/
√
A, Gf = k20/E

′A, cf = k0/2k
′
0C/A (2.10)

The performance of size effect method has been shown in Fig. 2.1c.
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Figure 2.2: (a) Schematic experimental set-up (with coordinates x, y, z); (b) Real set-up; and (c)
Stress-strain behavior of plastic pad corresponding to two values of tested σxx (note that only a
short segment of the quasi-plateau intervened during the rise of bending moment
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2.2 Gap test - a new setup to investigate the effect of crack-parallel stress on the fracture

energy of materials

To investigate the effect of crack-parallel stresses on the material fracture energy, a novel, yet sim-

ple, gap test [42], depicted in Fig. 2.2a, has four key features:

1) A pair of compressible pads (Fig. 2.2a,b) capable of nearly perfect plastic yielding (Fig.

2.2c) is installed next to the notch mouth to produce notch-parallel compression of desired magni-

tude (Fig. 2.2c), with no bending moment (Fig. 2.3a-i).

2) Rigid supports at beam ends are installed with a gap (of about 2 to 4 mm) so as to engage

in contact and apply the crack-producing bending moment (Fig. 2.2a,b) only after the pads start

plastic yielding (Fig. 2.3a-ii,iii).

3) This way the test beam passes from one statically determinate system to another, which

makes evaluation simple and unambiguous.

4) The static determinacy of loading and the constancy of crack-parallel compression make

it possible to use the size effect method, which is an easy and robust way to measure Gf , with its

dependence on σxx.

The deflection relative to the end supports causes the load-deflection curve to rise above the

yield plateau, peak and then descend back to the plateau, as seen in Fig. 2.3b. The area between

this up-and-down curve is the energy dissipated by fracture, which is exploited in the work-of-

fracture method of measuring fracture energy. However, only the peak loads, for several different

specimen sizes, are needed to determine Gf ; Fig. 2.3c. Typical measured curves of load P versus

load-point displacement u, and of P versus the crack tip opening displacement, δCTOD, are shown

for D = 101.6 mm in Fig. 2.3b,c.

The statical determinacy of the beam when the pads are yielding is gained from the constancy
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Figure 2.3: (a) Experimental procedure; (b) A load-machine displacement behavior (note that
within the segment F , which is what matters for Gf , the change in pad reaction (dashed line), is
negligible); and (c) Extracted load-CTOD.

of the reactions of the pads. It makes the pad reactions equivalent to applied dead loads. Hence,

after the pads begin to yield, there is again three-point bending, in which the deformation of the

beam cannot break symmetry of the left and right halves of the beam, even in postpeak softening.

Therefore, any small initial imperfection (such as a small Mode II component) must remain small,

i.e., there is no equilibrium path bifurcation. The magnitude of the yield force is controlled by the

area of the pad. Smaller yield forces are obtained by drilling holes in the pads.
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2.3 Further aspects and details of the gap test

The size effect method, a robust and simple method developed in (1990) [27], is what allows iden-

tifying Gf from the maximum load of fracture specimens of different sizes. Based on the Type 2

(energetic, non-statistical) size effect law of quasibrittle fracture [14], [15], [27], [43]–[45], it has

been adopted as an international standard recommendation [28], and endorsed by ACI-446 [46]. It

has become the most widely used method for testing Gf of concrete and geomaterials. One advan-

tage is that it necessitates measuring only the maximum loads, Pmax, postpeak being superfluous,

but Pmax must be measured for at least three sufficiently different specimen sizes [27] (preferably,

but not necessarily [14] scaled geometrically). As another advantage, the identification of Gf ,

along with the material characteristic length cf , is reducible to linear regression. Importantly, the

derivation of this method [14], [27] is not affected by the crack-parallel stress, neither in-plane σxx

nor anti-plane σzz.

The test specimens are analyzed as four-point-bend beams, although the two center-span loads

are spaced so closely that the beams are almost equivalent to the standard three-point bend beams.

To keep the evaluation simple, the separation of center span loads was scaled with the beam size

D.

Beams of three depthsD = 101.6 mm (4 in.), 203.2 mm (8 in.) and 406.4 mm (16 in.), measured

from top face to the bottom face, were tested. The span-to-depth ratio was 2L/D = 3.75, and

notch depth ratio a/D = 0.3. The beam thickness was 101.6 mm for all sizes. The beams were

scaled geometrically in two dimensions (2D). Normal concrete with mean cylindrical compression

strength fc = 40.5 MPa was used. The maximum aggregate size was da = 18 mm. The notch width

was 3 mm, which is known to be well within the admissible range compared to da.

The negative bending moment caused by self-weight before the pads engage is negligible (for
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the heaviest beam, < 3% of the maximum bending moment). A small restraint against rotation

ensures stability before the end supports engage [47]–[49].

The pads consist of a layer of polypropylene. Once plasticized, its tangential hardening shear

modulus µ is very small, about 20 MPa (see Fig. 2.2c) (it must be nonzero, or else the plastic

would escape from the pads like a fluid). During plastic compression, the polymer behaves as

incompressible. The compression causes the polypropylene to be laterally squeezed out, though

imperceptibly so. The lateral squeezing governs the tangential hardening stiffness H of the yield-

ing pads, which is also very small but nonzero. The pair of elasto-plastic pads is placed next to the

notch mouth (Fig. 2.2a), and a pair of symmetric loading pads on the opposite beam face. Fig. 2.2c

documents that the measured load-deflection diagram of the pads exhibits a long near-horizontal

yield plateau. To lower the value of the tangential pad stiffness, H (with limited shortening of

the yield plateau), regularly spaced holes are drilled through the pads (this also reduces the elastic

stiffness); Fig. 2.2c.

To prevent shear failure of concrete under the elasto-plastic pads, a 2 mm laminate layer has

been glued to the concrete surface, and it has been calculated that its effect on the stress intensity

factor is negligible. The loading rate is scaled so as to reach the maximum load within approx-

imately the same time. An extensometer crossing the crack tip is used to measure the crack tip

opening displacement, δCTOD (Fig. 2.2a or 2.3a). The complete set-up is seen in Fig. 2.3b.

Compression stiffness of plastic pads and their optimization

For simplicity, consider a circular pad with radius r and polymer layer thickness h (Fig. 2.4). In the

plastic regime, we assume the polymer is incompressible and has a very small but non-zero shear

modulus µ (if µ were zero, the plasticized polymer would flow out). The boundaries of the layer

are confined and behave as rigid. Volume conservation in the disc of radius x ≤ r requires that
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πx2w − 2πshu where w - relative displacement of decrease of thickness and u - average increase

of radius x. Hence uwx/2h. Given that the polymer does not slide on the layer surfaces, we may

assume the radial displacement profile across layer thickness to be parabolic Fig. 2.4). In that case,

the maximum displacement is 1.5× higher than u, the mean, and thus the profile of shear angle

is ga = ∂u/∂y = 3wxy/h3, where y is the transverse coordinate. The strain energy density with

respect to radial coordinate x then is W̄ (x) = 2
∫ h/2

0
µγ2/2dy = 3µw2x2/8h3. Conservation of

energy requires the work of compression of the layer by w to equal the strain energy increment of

the whole layer, i.e., W = Hw2/2 =
∫ r

0
W̄ · 2π dx where H = compression stiffness of the layer.

Integration yields:

H = kpµA
2/h3, kp = 3/8π (2.11)

where A = πr2 = area of the pad. This equation may also be used as an approximation for a square

pad of the same area (an accurate solution is more complicated). The pads should be shaped so

as to minimize H (subject to Haringx’s critical load formula [50] for shear buckling governing the

elastomeric bearings of bridges), or minimizing A, which means replacing one pad with several

small ones (or drilling big holes). Haringx’s formula gives the critical ratio λcr =
√
A/h for

buckling.

Second, let us analyze an elongated l × L rectangle (the pad in Fig. 2.4), with L ≫ l,

approximately in 1D, coordinate x. Due to incompressibility, the axial strains are distributed

as u = (w/h)x, and the strains are γ = (6u/h3)y. The work per unit length in x is W̄ =

2
∫ h/2

0
1
2
µγ2dy = 3µw2x2/2h3. By integration, W = 2b

∫ l/2

0
W̄dx = bµw2l3/8h3. Setting

W = 1
2
Hw2, we get

H/L = (µ/4)(l/h)3 (2.12)

The same formula approximately applies to an annular pad with internal and external radii r1mr2
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Figure 2.4: (a) A circular plastic pad under compressive force; and (b) The shape of the pad should
be designed to minimize H .
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provided that l = r2 − r1 < r1/4. It also roughly applies to a pad with many sufficiently big

regularly spaced holes (Fig. 2.4) of radius r provided that approximately
√
A/As − 1 < 1/4

where A = total area and As = area of the holes. If > 1/4, one can interpolate. Other polymers,

e.g. polyethylene, PDMS, can be also used to get a different µ. A possible alternative to the plastic

pads are blocks of perfectly plastic metal, e.g., tin (Sn).

2.4 Functions for stress intensity factor and energy release rate of the gap test

To determine Gf , one needs the LEFM stress intensity factor, KI [14], [27]. Although the load

configuration is close to 3-point bending, four-point-bending with a small but finite distance be-

tween the loads gives better accuracy (Fig. 2.2c). According to [51]:

KI = σN
√
Dk(α) where σN = P/bD (α = a/D) (2.13)

k(α) =
1.1682(2l − s)

√
πα

8β3/2

(
5− 10α/3 + α2 + 40α2(1− α)6 + 3e−6.134α/(1−α)

)
(2.14)

where P = total load (sum of two loads) applied at center-span, σN = nominal strength of beam; 2L

= span between the supports, S = distance between the two center-span loads; l = L/D, s = S/D;

b,D = thickness and depth of beam; a = crack (or notch) length, α = a/D = relative crack length;

σN = nominal bending strength of each size; f(α) = dimensionless stress intensity factor. The size

effect law (SEL) reads:

σN = Bft(1 +D/D0)
−1/2 (2.15)

1/σ2
N = (1/B2f 2

t +D/B2f 2
t D0) ⇒ Y = C + AD (2.16)
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For data fitting, the SEL may be converted to a linear regression plot of 1/σ2
N versus D as in 2.16

[14], [52]. To determine the size effect parameters, we need not only k(α) but also its derivative

[14], [27]:

k′(α) =
dk(α)

dα
=

0.8411(2l − s)
√
π

8(1− α)3/2
√
α

(
5− 10α/3 + α2 + 40α2(1− α)6 + 3 e−6.134α/(1−α)

)
+
2.523(2l − s)

√
πα

8(1− α)5/2
(
5− 10α/3 + α2 + 40α2β6 + 3 e−6.1342α/(1−α)

)
+
1.6823(2l − s)

√
πα

12(1− α)3/2
(−5 + 3α + 120α((1− α)6 − 360α2(1− α)5 (2.17)

−27.6(1/(1− α) + α/(1− α)2) e−6.134α/β)

Upon rearranging Eq. (2.15) as linear regression and fitting maximum load data, Eq. (2.16), the

fracture energy and the characteristic material length (roughly 40% of actual FPZ length) can then

be computed from [14], [27]:

Gf = K2
f/E, Kf = Bft

√
D0k(α0) (2.18)

cf =
D0k(α0)

2k′(α0)
(2.19)

Note that the crack-parallel compression is not a parameter in LEFM, and so, in LEFM, it cannot

affect function k(α) and the equations relating Gf and cf to k(α).

2.5 Concrete mix design and dimensions of tested specimens

To minimize the scatter of mechanical properties, all the specimens were cast within a few hours

from the same batch of concrete delivered by a ready-mix supplier (Ozinga co.). Normal concrete

of specific compression strength f ′
c = 27.58 MPa (4000 psi) at 28 days of age was used. The slump

range was 7.62–12.70 cm (3.00−5.00 in.), and the specific air content 0–3%. In the mix, one cubic
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yard contained 470 lb. of cement (ASTM C150, 100 lb. of blast-furnace slag (labeled C989), 1750

lb. of coarse aggregate (ASTM C33#67), 1500 lb. of fine agreegate (ASTM C33#2); water-cement

ratio w/c = 0.45.

The specimens for material characterization and model calibration include: cylinders for com-

pression tests of diameter 101.6 mm and length 203.2 mm; square prisms for compression tests

of side 76.2mm and length 152.4 mm; cylinders for splitting tests of diameter 101.6 mm and

length 203.2 mm; and prisms for splitting tests of side 76.2 and length 152.4 mm. The beams

for fracture tests, geometrically scaled, were of three sizes; small: 101.6 × 101.6 × 406.4mm;

medium: 101.6× 203.2× 812.8 mm; and large: 101.6× 203.2× 812.8 mm. The notch/depth and

span/depth ratios were a/D = 0.3 and 2L/D = 3.75, respectively. For tests with various crack-

parallel pressures, the beam dimensions were 76.2× 101.6× 406.4 (all dimensions were in mm).

The elasto-plastic loading pads had sides S of ratio S/D = 1/4 (Fig. 2.2a). All the specimens were

test within 3 weeks, but the effect if this age difference on the degree of hydration and strength was

negligible since the specimens were 1 year old. The specimens were all cured in a fog room until

the time of test.

2.6 Material calibration results

Aside from the results of the gap tests for different specimen sizes at zero σxx, the properties

of concrete were calibrated by tests of uniaxial compression of cylinders and prisms Fig. 2.5a,b.

These calibrations are sufficient for M7 to characterize the behavior of normal concrete, which was

validated by Brazilian splitting tests on both cylinders and prisms (see Fig. 2.5c, where the error

bars indicate one standard deviation based on 4 tests for each case). The same model was utilized

to predict the results of the gap test at non-zero σxx. For uniaxial compression, the specimens were

capped with sulfur to make sure the loaded surface would be flat and almost frictionless. Linear
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Figure 2.5: Calibrations and validations to obtain parameters for M7-CBM: (a) Uniaxial compres-
sion of cylinders; (b) Uniaxial compression of square prisms; and (c) Brazilian splitting tests.

Variable Differential Transformers (or LVDT) were used to record two crack-parallel displace-

ments, as well as one lateral displacements used to control the loading, see Figs. 2.5a,b (ASTM

C39). In the Brazilian tests (Fig. 2.5c), the loading strip was 12.7 mm wide and the samples were

held in place at the beginning by a mild pressure (ASTM C496). The uniaxial tests of specimens

of both types were conducted in the Tinus Alson frame with maximum load of 1000 kips, and the

Brazilian split experiments the MTS loading frame of capacity 50 kips, both at the loading rate of

0.00635 mm/sec. Every test took for approximately ≈ 0.5 hour.

Fig. 2.5 shows the results on uniaxial compression strength of cylindrical and prismatic spec-

imens (Figs. 2.5a,b) and their corresponding Brazilian splitting tensile strength (Fig. 2.5c). In

Fig. 2.5a,b, the dashed curve shows the upper and lower envelope of data from three tests, whose

average is represented by the dotted curve. This result is consistent with the average strength f ′
c

= 42.74 MPa reported by concrete supplier. Optimum fits of these results were obtained with the

microplane constitutive model M7 [13], [53] shown by solid curves. The M7 was implemented

in Abaqus using the crack band model with element size 12 mm. The dotted and solid curves are

consistent and serve to indicate the level of compression on notched beams.
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Figure 2.6: (a) Linear regression of size effect method and (b) The size effect curve plotted in
log-log scale.

2.7 The effect of crack-parallel stress on Gf

Each of the three data points for different σxx has been obtained by linear regression of experi-

ments on three sizes (see Fig. 2.6) and shown as the empty circles in Fig. 2.7a, . The coefficients

of variation of the regressions (i.e., the root-mean-square of the deviations from the regression line

divided by the data mean) were only 0.087%, 0.113%, 0.211%. These data points represent the

effective values of fracture energy Gf as a function of three levels of compression stress σpad ap-

plied at the yielding pads. These experimental results reveal an important fact—Gf is not constant

but depends on σpad, in fact, strongly. This raises doubts about the applicability of both the LEFM

and the CCM, each of which requires constancy of Gf .

To get the effective Gf as a material property, σpad must be transformed to the crack-parallel

normal stress σxx at the at the notch tip. FE analysis was used to get the ratio rc = σxx/σpad.

Elastic analysis gave rc = 0.962, while crack band finite element analysis with M7 gave rc = 0.942

for medium samples. The elastic values is seen to be a good enough approximation, with an error
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Figure 2.7: (a) Gf (Gf0 = 86.7 N/m) as a function of σpad (dashed curve) and of σxx (solid curve);
(b) cf (cf0 = 8.8 mm) as a function of σpad (dashed curve) and of σxx (solid curve).
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less than 3%. That σxx must be less than σpad is intuitively obvious from the field of principal

stress vectors in Fig. 2.7c obtained by FE. The data points of σxx obtained after transformation

with rc are shown as the solid squares in Fig. 2.7a.

For zero crack-parallel compression, the gap test gave Gf = 86.7 N/m, which is within the

range of values reported by many authors [14]. The characteristic length in this case is approxi-

mately 18 mm. This is about 1.5 times the average coarse aggregate size.

For a moderate crack-parallel compression, σxx ≈ 0.4σc, the size effect analysis of the present

test data yields Gf = 154.2N /m, which roughly doubles the value at zero compression (Fig. 2.7a).

The material characteristic length is also nearly doubled, to cf = 37.1 mm, and the FPZ gets

more elongated. Another consequence is that the postpeak softening slope gets less steep or that

the snapback is suppressed.

For high crack-parallel compression at σxx = 0.9σc, the fracture energy is, by contrast, dras-

tically reduced—to Gf = 51.2 N/m (Fig. 2.7a). So is the value of characteristic length, cf = 11.2

mm, which indicates a shorter and wider FPZ, and a reduced cf . As D → ∞, the final asymptotic

slope of LEFM, −1/2, is approached more quickly. Hence, the brittleness number D/D0 [14],

[23] for a given D increases.

Alternatively, according to the classical work-of-fracture method [54]–[56], one could estimate

the total fracture energy, GF , via the area between the entire up-and-down curve and the horizontal

yield line in Fig. 2.3c. However, this method requires stabilizing the postpeak softening and is

rather ambiguous if the correct shape of the cohesive law, Fig. 1.4a, is not known a priori [26].

To avoid ambiguity of GF , the work-of-fracture test would have to be also conducted for several

sufficiently different specimen sizes [26].
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2.8 Physical mechanism of crack-parallel stress effect on Gf

The mechanism was briefly discussed in [42] and here we are more specific. Depending on the

magnitude of crack parallel compressive stress σxx (negative for compression), we can distinguish

two different regimes of FPZ behavior, explained by two different mesoscale mechanisms:

Regime 1: Friction: Moderate σxx increases static friction which prevents slip, and provides

confinement without damage. This tends to increase strength and may be explained by the increase

of interlocking and increase of static friction on rough inclined surfaces. For σxx = 0, the deviatoric

(or shear) stress intensity τ = τa, shown in the figure, corresponds to hydrostatic pressure is

p = pa = −σyy/3, where σyy is the tensile normal stress caused by beam bending in the FPZ at

crack or notch front; see Fig. 2.8a (τ =
√
J2 where J2 = second invariant of the stress deviator.

By applying a not too high compressive stress σxx, the hydrostatic pressure increases from pa

to p = pb = (σxx − σyy)/3 and the stress state corresponds to an expanded circle. Thus pb

provides confinement, which increases the resistance τ from τa to τb, as shown in Fig. 2.8b.

Moreover, the numerical simulations show the active FPZ to become longer and narrower, which

may be explained by a reduction of the average inclination of the microcracks from the macrocrack

direction.

Regime 2: Expansive Slipping and Splitting: When, however, compression σxx is raised to

approach the compressive stress limit, one must consider the Mohr circle shifted to the left in

Fig. 2.8c. The minim principal stress indicates the uniaxial splitting strength of concrete, where,

FPZ is failing in compression due to σxx. The static friction on inclined microcracks in the FPZ

is overcome and the cracks slip, which tends to widen the active FPZ and reduce the resistance

to tensile stress σyy caused by bending, as intuitively explained by sliding over the entire FPZ

portrayed in Fig. 2.8c. This kind of failure mechanism has been observed in simulations with the
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crack band microplane model, by inspecting the stresses and deformations in FPZ on microplanes

of inclined orientations. Another possible mechanism is the arise and collapse of splitting micro-

cracks between micropillar of width s [57], which also leads to lateral widening (Fig. 2.8b) and

shortening of FPZ. The widening and shortening of the FPZ in this regime in manifested in a

decrease of cf obtained from the size effect method.

The widening of the FPZ is accompanied by widening of the crack or notch behind it, which

further allows the compressed material at crack faces to expand into the crack space and thus

reduce the resistance to compression.

After the experiments, the fractography showed small, crumbly pieces of nearly detached con-

crete, demonstrating the formation of small splitting microcracks and slip expansion. Another

consequence is that the postpeak softening slope gets steeper or that snapback gets promoted.

Does Mohr failure envelope exist? The Mohr circles for different stress states in the FPZ are

plotted in Figs. 2.8b,c (σ = hydrostatic stress, τ = maximum shear stress). The first slip mechanism,

frictional resistance with no damage, seems to follow a curved Mohr failure envelope with strength

expanding at moderate increase of hydrostatic pressure (Fig. 2.8b). However, when the second

mechanism with expansive damage takes over, the Mohr envelope concept breaks down. This is

blatantly demonstrated by zooming in Fig. 2.8c, on the critical region of small σ and τ . Obviously,

no envelope exists. This is not surprising since the plasticity-type failure criteria based on tensor

invariants are inherently incapable of capturing the concentration of slip into planes of distinct

orientations, which represent the reality.

We note that, a reasonable prediction of the numerical models to explain the experimental

results (in Figs. 2.7, 2.8) was made available through the microplane model along with the crack

band theory in its M7 version. The detail of such model will be discussed next.
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Figure 2.8: (a) Suggested mechanisms for enhancement and diminishing of Gf ; (b) Mohr circles
corresponding to the M7-CBM predictions in Fig. 2.5a), with σyy = nominal strength at peak load
for samples of medium size; and (c) A closer look to the region of small σxx.
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2.9 Basic features of microplane model

The classical plasticity and damage models use the stress and strain tensors with tensorial invari-

ants and their constitutive law is defined by loading surfaces, normality rules, plastic-hardening

parameter(s) and damage parameter(s). Such models are called tensorial. The microplane con-

stitutive model also relates the stress and strain tensors. But the constitutive law is vectorial [8],

[13], [14], [21], [58]. It is defined as a relation of the stress vectors to the strain vectors, the latter

representing the projections of the strain tensor onto a generic plane of arbitratry orientation within

the material, called the microplane. The use of vectors helps physical insight, intuitively reflecting

the microcrack openings, compression splitting cracks, shear slip and frictional dilatancy. M7 is

the latest in a series of progressively improved models M1–M7. In M7, as well as M3 and M4,

all the inelastic behavior is characterized by the stress-strain boundaries. The return (or drop) to a

boundary is in each loading step done at a constant strain (which amounts to a special case of the

radial return algorithm). The drop to the boundary on the microplane level suffices to guarantee

non-negativeness of energy dissipation. There is no need for non-associated plasticity violating

the normality rule. Unequal friction and dilatancy angles on the continuum level are reproduced

automatically, with no possibility of negative energy dissipation (the non-associatedness is a non-

issue for microplane model). The stress tensor is obtained variationally according to the principle

of virtual work, by properly weighted integration over all spatial orientations. The integration is

carried out numerically over a hemispherical surface according to one of optimal Gaussian formu-

las. It amounts to weighted summation over a set of discrete microplanes (whose number must be

at least 21 but typically is 37, see Fig. 2.9).

The boundaries of negative slope define the evolution of damage, and the horizontal ones de-

fine plasticity. There is no need for hardening plasticity, since it is automatically generated by
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interaction of the microplanes. Also, there is no use for a separate damage parameter per se, and

there exists no single damage variable (they are many). There are one normal component and two

shear components on each microplane. Using 37 microplanes per hemisphere, one has effectively

37 x 3 = 111 possible damage and plasticity sources. In effect this is a sort of analog of multi-

surface plasticity with 111 independent loading surfaces which are, however, vectorial rather than

tensorial. This feature explains why the vertex effect is endemic, why it can occur at any point of

the 9D space of stress tensor components. Beginning with Koiter [59], [60] and Phillips [61], it has

been widely acknowledged that multisurface plasticity is more realistic, but 111 (even 10) plastic

loading surfaces in the tensorial, rather than vectorial, space would be virtually intractable, both

for model development and computer modeling (an omnipresent vertex effect nevertheless exists

also in the tensorial endochronic theory [62] which, however has other limitations).

The fact that all the response within the boundaries is treated as elastic is a significant simpli-

fication. Curved rising stress-strain response is nevertheless automatically reproduced, thanks to

different boundaries kicking in gradually in different loading steps. The damage is generated on

softening stress-strain boundaries at some microplanes but not at others, which is what creates the

strong path dependence of the constitutive law at continuum level. The generation of damage on

a microplane does not proceed monotonically. The damaged material can even stiffen when, e.g.,

hydrostatic pressure or transverse compression gets superposed on damage in shear (Figs. 2.9).

During unloading and reloading, different microplanes become active. This is what reproduces

the Bauschinger effect and the correct response under load cycleskirane2015microplane. Even

though the plentiful test data on cyclic and fatigue fracture are not covered here, the ability to

capture the opening and closing of microcracks and sequential microplane activation in a material

experiencing multiple loading cycles is also an important capability of model M7. The M7 crack

band model [53], [63] has been shown to possess such a capability. It can predict the behavior up
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to several thousand load cycles. The explicit description of damage on each microplane helps.

One feature that simplifies model formulation is that one-to-one relations between the conju-

gate stress and strain components on the microplanes are sufficient. There appears to be no need

for cross-interactions such as the Poisson effect on the microplanes. The reason is that such cross

effects are automatically generated by interaction of microplanes of different orientations.

What matters for the good performance of CB-M7 is that this model implies three independent

material characteristic lengths. The M7 correctly captures the fact [14], [21] that the tensile post-

peak softening curve begins with a steep softening slope and ends with a very long tail (Fig. 1.4).

The area under the initial slope is called the initial fracture energy Gf . The total area including

the whole tail is called the total fracture energy GF . The corresponding Irwin’s lengths, which are

lf = EGf/f
2
t and lF = EGF/f

2
t matter mainly for the length of the FPZ, while the w0 is a mate-

rial length characterizing the FPZ width, considered as the crack band width. The ability to capture

all the three material characteristic lengths is an advantage of the crack band model compared to

others.

Normally, the microplane model for concrete is calibrated by adjusting its three scaling param-

eters to fit the tensile strength and Young’s modulus. Four more parameters can be easily adjusted

to fit the confined compression data. The initial fracture energy Gf is obtained through the fitting

of the maximum loads for scaled notched fracture specimens using the size effect law (if such data

exist). If Gf is specified , the scaling parameters of M7 are best adjusted so as to fit the size effect

law (SEL) that corresponds to the Gf value [14], [21]. Alternatively, a given Gf can be matched

as the area under the initial tangent of the postpeak softening load-displacement curve (corrected

for dissipation away from the FPZ, if any). The total fracture energy GF is obtained as Gf times

the ratio of the total areas under the total load-displacement curve and under its initial tangent.
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Figure 2.9: (a) The planes of inelastic deformations in a representative volume element of particu-
late composite are imagined to be lumped into one continuum point. (b) Decomposition of strain
vector into its normal and shear components along basis vectors (n, l,m). (c) The normals to
radial rays through the circled points on this icosahedron define the system of microplanes. (d)
The mechanisms that can be captured by microplane model. (e) Predictor-corrector method for
each component on one microplane allows the damage to emerges naturally without using a dam-
age variable. (f) The constitutive algorithm to compute stresses from strain tensor via microplane
decomposition.
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Essential features of microplane model to correctly predict the effect of crack-parallel

stresses on Gf

The microplane model used in the present simulations is described in detail in [13]. Let us list here

briefly the features of microplane model that are advantageous for the modeling of crack-parallel

compression effects and distinguish it from the models based on tensors and their invariants.

1) Whereas the microplane model calculates the strain tensor from the stress tensor, the con-

stitutive equation is vectorial, calculating the stress vector from the strain vector on a generic plane

of any orientation, called the microplane. The vectors, unlike tensors, can be intuitively related to

tensile crack opening, compression splitting or frictional slip.

2) A big advantage is that one can capture the vertex effect, e.g., the fact that a shear stress

increment applied after compressive stress in the inelastic range has incremental stiffness much

softer than elastic (even three-times lower, for concrete), while in all the classical tensorial models

(Mohr-Coulomb, Drucker-Prager, von Mises, etc.) a stress increment parallel to the loading sur-

face gives incorrectly an elastic incremental stiffness, even in damage states.

3) Another advantage is that, in M7, the hydrostatic or uniaxial strain compression is always

hardening, while the uniaxial compressive stress has a peak and postpeak softening.

4) M7 also delivers correct hysteretic loops under cyclic loading, and reproduces subcritical

fatigue crack propagation up to several thousand cycles (in agreement with Paris law).

Early on it was thought that the microplane model was computationally too demanding. For

one material point it may run ten-times longer than a tensorial constitutive law. But for a system

of millions finite elements, tractable today, the difference in running time is imperceptible because

the computational work increases, with the number of displacements, quadratically, but on the

constitutive law only linearly.
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The confirmation of the variation of FPZ using crack band microplane model M7

As the M7-version of microplane model does not have explicit definitions of damage variables,

any inelastic strain arises when an incremental vector in the stress-strain space goes beyond the

boundary. Therefore, to describe the change of FPZ as a function of σxx, we used the J-integral [64]

technique to calculate the energy release rate at the peak load. This value indicates the amount of

energy dissipated along a unit length of crack and is equal to ofGf at any structural size. However,

in finite element method, calculate a contour integral is challenging, so Li et al. [65] proposed a

method to convert the contour integral to a domain integral with the following relation (Fig. 2.10):

J = −
∮
C

[
(σij − σij0)

∂ui
∂x1

− (W −W0)δ1j

]
njds (2.20)

=

∫
A

[
(σij − σij0)

∂ui
∂x1

− (W −W0)δ1j

]
∂q1
∂xj

dA

where the flux is meant with respect to crack length a, not time; C is a closed contour around the

crack tip, s is the length coordinate of that contour, ni its unit outward normal, x = x2, y = x1

(x1 is always aligned with the propagating direction), ∂1 = ∂/∂x1, and 1
2
sijeij is the stored strain

energy recoverable upon unloading and W is the nonlinear strain energy density. A is the domain

between two contours Cinner and Couter so that it contains the entire contour C. q is a function that

has a value of 1 on and outside of Couter , 0 on and inside of Cinner and continuous otherwise (see

Figs. 2.10a,b). The material is considered nonlinearly elastic, as if the unloading would follow the

same curve as loading. This hypothesis is acceptable if the J contour avoids the zone of unloading

in the wake of the advancing yielding zone. Elasticity, whether linear or nonlinear, is essential for

the path independence of J-integral.

The hypothesis is confirmed by the results in Fig. 2.10c, in which contour 1 represents a
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Figure 2.10: (a) The conversion of contour integral to domain integral and how it is calculated using
FEM (b). (c) The results from a non-converged and converged contour. (d) An approximation of
the variation of FPZ using J-integral contour and M7 model.
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contour that crosses the softening zone. Contour 2, on the other hand, is taken completely outside

of the FPZ and therefore represents a converged value of Gf at different σxx. It can be seen that

there are a few deviations in Fig. 2.10c compared with Fig. 2.7a (at −σxx/σc = 0.1 − −0.3),

probably due to the inevitable numerical issues when comparing the stress field.

The smallest contour where Jcr = Gf converges can be an considered an approximated image

of the FPZ; see Fig. 2.10d. The hypothesis on the variation of the FPZ due to σxx (2.8a) is

confirmed by the expansion in size of this contour when the crack parallel stress increases to an

intermediate value. However, such a contour significantly reduces when σxx comes closer to σc and

expands in the laterial direction, indicating the dilation of microcracks by the compressive stress.

2.10 Further simulations of crack-parallel stress effect on Gf

Plane strain and anti-plane normal strain effects

Another interesting aspect is the effect of the antiplane stress σzz. For σzz applied on the entire side

faces of the present specimens of three sizes, several simulated curves of Gf (σxx) are plotted in

Figs. 2.11 a,b for various ratios σzz/σc. Obviously, in this case (apparently never studied before),

σzz, too, has a significant effect.

History-dependence of the crack-parallel stress

To demonstrate the path dependence, which is ignored by any formula for Gf (such as Eq. (2.21),

Fig. 2.12 presents, for the mid-size concrete specimen, the M7 simulations for four different paths

(or histories) of 2R/bD versus σxx, where R is the beam end reaction that produces the bending

moment, M , to which the stress-intensity factor KI is proportional. 1) The first path is a simple

increase of R at σxx = 0 up to failure, which defines the nominal strength σN . 2) In the gap test

path, as already described, a high crack-parallel compression σxx = 0.9σc is applied first, and the
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Figure 2.11: Gf and cf as functions of σxx subject to different values of anti-plane stress σzz (with
results approximated by Eqn. 2.21).

subsequent path segment with increasing R ends up with the failure value of 2R/bD = 0.62σN ,

as seen in Fig. 2.12. 3) When, however, the end reaction, R = 0.62σN is applied first (which

would require a more complex test setup and controls), and the crack-parallel compression σxx

is subsequently increased up to failure, the failure occurs at significantly higher compression σxx

(because FPZ was less damaged during the first segment of the path. 4) When only a moderate

crack-parallel compression σxx ≈ 0.4σc is applied first, the reaction R can be increased to a much

higher value, with 2R/bD = 1.81σN .

Comparisons with tensorial plastic-failure models

1) Model CDPM2 – constitutive damage plastic model for concrete of the classical type, defined in

terms of stress and strain tensors and their invariants. This is an excellent model that has recently

been developed by Grassl et al. [66], within the framework of tensorial plasticity with damage.

The Gf variation obtained with this model is shown in Fig. 2.12b. The qualitative trend obtained

reflects both strengthening and weakening phases of Gf evolution, but the differences from M7 are

significant and the deviations from the gap test in the last weakening phase is large.
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Drucker-Prager and Mohr-Coulomb model from Abaqus: The Gf evolution calculated with

the classical Drucker-Prager’s (D-P) model [67] is presented in Fig. 2.12c. The strengthening

phase is represented, but there is no weakening phase. For this model, the uniaxial compression

stress test produces bulging at mid-length of the specimen rather than formations of splitting cracks

and inclined shear bands. The strengthening phase gets captured because the D-P described well

the frictional resistance to slip and interlock under under triaxial confinement. It should also be

mentioned that, at high compression σxx, the size effect method is inapplicable because there is

premature compression failure at the crack front. This gets manifested as a macro-crack in front

of the notch, which significantly lowers the peak load, especially in the largest specimens (Fig.

2.12d). This stems from the fact that the largest specimens are less confined by the boundary.

Therefore, at higher compression, the size effect Gf had to be computed from linear regression

of the results for only the small-size and mid-size specimens, as represented by the dashed curve

segment in Fig. 2.12c.

Mohr-Coulomb concrete model with a cap, from Abaqus: Unlike the D-P, the Mohr-Coulomb’s

model [68] produces an artificial stiffening effect at the crack tip, even at zero σxx. Therefore, it

appears inapplicable for fracture analysis.

2.11 Limitations of cohesive crack model and contrast with crack band model

The present results highlight the limitations of the cohesive crack model for quasibrittle materials.

In the case of Mode I fracture, this model is defined by a scalar relation between the crack-bridging,

or cohesive, normal stress and the relative normal displacement across the crack. In the case of

mixed mode fracture, the model is defined by a relation of crack-bridging normal and shear stresses

to the relative normal and shear displacement. But the crack-parallel normal stresses (and strains)

cannot be included as the basic force and displacement variables. They can be considered only as
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parameters affecting the material fracture properties. For the effect of σxx, [42] gives the formula

Gf

Gf0

= 1 +
a

1 + b/ξ
− 1 + a+ b

1 + b
ξs (2.21)

where ξ = σxx/σxx,c, and σxx,c at σpad = σc. The curve in Fig. 2.2A,B is well approximated by a =

1.038, b = 0.245, s = 7.441 (as shown by dashed curves). These values will, of course, be different

for different materials, structure sizes, load histories, σzz/σxx ratios, etc.

A fully realistic model for quasibrittle fracture must, therefore, well describe the microscale

mechanisms mentioned above. This can be either a tensorial, with the FPZ described by a tensorial

damage constitutive model with strain softening, coupled with some form of a localization limiter

or mesoscale descriptive. The simplest and most widely used model is the crack band model

coupled with a physically realistic form of the continuum damage model, here the microplane

model, underlying the present simulations.

It should be noted in Fig.2.7a that there exists a threshold at which the crack-parallel compres-

sive stress σxx turns from strengthening to weakening of the fracture resistance. For the present

concrete, it is σxx ≈ −0.75σc. No doubt this threshold varies among different materials, and for

some the strengthening phase might not exist. This might be the case for some uniaxial laminate

fiber composites, notoriously weak in compression.

From the microplane simulations it is clear that the microcracking in the FPZ produced by

high crack-parallel compressive stress σxx must increase permeability in the FPZ and in its wake

as the crack propagates. This is important for various geomechanics problems, and particularly for

hydraulic fracturing (or fracking) of gas or oil shale. In [69] is was shown that the permeability and

reduced transverse Biot coefficient due to preexisting microcracks with its Biot coefficient is what

causes the hydraulic cracks to branch sideways from the wall of a primary hydraulic crack. The
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Figure 2.12: (a) History dependence of the stress path; (b) Gf as a function of σxx predicted by
tensorial models by Grassl et al. [66] σxx; (c) Gf as a function of σxx predicted by tensorial
Drucker-Prager model [67] a; and (d) A premature failure predicted by D-P ahead of the main
crack tip before moment M is applied.
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present analysis shows that the propagations of the primary crack and secondary branched cracks

must be strongly affected by the crack-parallel overburden and tectonic stresses, which are about

80 MPa and 40 MPa at the typical depth of fracking, about 3 km.

Because of their simplicity, scalar models for softening damage have become popular for crack

band representation of fracture. Some examples are Mazars’ isotropic damage model for concrete

[70], the nonlocal damage model [71]. and all other models using the Kachanov-Hult-Lemaitre

type scalar damage measure ω. These damage laws may be unrealistic for two reasons—they

have not been calibrated by various types of triaxial material tests on specimens of sizes nearly

equal to the FPZ (or RVE) size (see 21 types of such tests used to calibrate M7 in [53]). Their

use of a single scalar damage parameter, φ, varying between 0 and 1, appears too restrictive (the

microplane model and fracture characteristics has several independent damage parameters). All

these models are usable only if the crack-parallel normal stress is a priori known to be negligible

(or below about 10% of compressive strength) in all the finite elements within the damage zone.

As for peridynamics, no comments are necessary [72].

The fracture models characterized only by Gf can be used if reprogrammed to vary Gf as

a function of the crack-parallel stresses, σxx and σzz. This, of course, ignores history effects,

whose severity has not yet been clarified. As for the cohesive crack model, its softening stress-

displacement law would have to be varied depending on σxx and σzz. But this brings up the

questions of whether the cohesive softening curve should be scaled as a whole (which would scale

both GF and Gf , or only in its initial part (controlled by Gf only), what should be the proportion

of such scalings, and whether a horizontal scaling is also necessary. Again, this would miss history

effects.
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2.12 Gap test for crack-parallel tension

Finally, it may be pointed out that the gap test may be easily adapted to measure the effect of

crack-parallel tension on Gf . The setup shown in Fig. 2.13 is self-explanatory.

2.13 Alternative test methods

As an alternative to the present test, a system of two balance beams shown in Fig. 2.14, was

fabricated and tried to provide reactions at both beam ends and notch corners, the ratio of these

reactions being controlled by moving the locations of the supports at base. But it proved tricky to

keep the system stable and properly aligned before applying the load. Another bigger problem was

seen in the evaluation. This test would have to be conducted for several different specimen sizes

D and heavy I-sections, which must provide a much larger stiffness than the largest specimen size.

The self-weight of these I-sections would add up to σxx or bending moment non-proportionately,

which will create complication to the fracture analysis. The biggest problem is that the compressive

force would not be constant but (in theory) raised proportionally that would make it difficult to

deduce the effect of σxx on Gf . Since σxx does not matter for the size effect method, this method

could still be used, but it would deliver a fracture energy corresponding to a certain history of σxx

rather than to any specific value ofGf . Complex optimization of tests with many different histories,

using an assumed constitutive damage law, would be required, to obtain a rather uncertain result for

the effect of σxx on Gf . The constancy of σxx is what makes the gap test simple and unambiguous.

As another alternative, one might also think of imposing a compressive displacement with pair

of stiff clamping frames mounted on the beam. But the stress induced would relax (by about

30%), due to concrete creep and shrinkage during the test. To get Gf as a function of strain ϵxx
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Figure 2.13: Gap test for crack-parallel tension.
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Figure 2.14: An alternative test method considered to generate σxx with proportional loading.
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instead of σxx, the clamping frames would have to be very stiff and heavy, to maintain constant

ϵxx, and would have different relative weights for different specimen sizes. Another possibility

would be hydraulic flat jacks within these frames, similar to those of Tschegg [22] but equipped

with computer control. Interpretation would anyway be fraught with ambiguity.
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CHAPTER 3

SCALING OF STRUCTURAL STRENGTH FOR DUCTILE MATERIALS

3.1 Scaling tests - a missing piece in understanding the fracture of ductile materials

The theory of small-scale yielding in fracture of plastic-hardening metals is by now a well-developed

classical subject. Nevertheless, the analytical laws governing its scaling properties have apparently

not been formulated, although they may be useful for fracture testing and for predicting structure

strength. Their formulation is the main goal of this study.

The foundation of the small-scale yielding fracture mechanics was laid down by Hutchinson

[5], [73] and Rice and Rosengren [4]. They calculated the near-tip singular field, generally called

the HRR field, in which the strain energy density exhibits a 1/r singularity (r = radial distance

from crack tip). Essential for this advance was Rice’s J-integral [64], which allowed calculating

the energy flux into the crack tip under the hypothesis of negligible elastic strains and no unloading

in the near-tip yielding zone. A critical value of the J-integral, Jcr, thus became the criterion of

crack propagation, and an effective method of measuring Jcr was developed [64], [74], [75].

What distinguishes metals most from quasibrittle materials, such as concrete, rocks, tough

ceramics and fiber composites, is that the fracture process zone (FPZ), which is of micrometer-

scale width and length, is surrounded by a plastically hardening zone. In this respect, though not

in others, the fracture of plastic-hardening materials is more complicated than it is for quasibrittle

materials, in which the FPZ borders directly on an unloading material undergoing damage.

In fracture of quasibrittle materials, the scaling, particularly the energetic size effect on the

strength of specimens or structures, proved to be an essential property, not only for structural
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design but also for the testing of material fracture properties, including both the material fracture

energy, Gf , and the characteristic FPZ size, cf . Strangely, though, for ductile fracture of plastic-

hardening metals, the problem of an asymptotically matched size effect law for the strength of

geometrically similar cracked specimens or structures and for identification of material fracture

properties has apparently not been studied.

Important studies of the size and behavior of the yielding zone in ductile fracture have neverthe-

less been contributed, and supported by extensive finite element analyses. In particular, O’Dowd

and Shih [30], [31] proposed the concept of J-Q-annulus surrounding the crack tip, in which the

J-integral characterizes the remote stress field corresponding to a −1/2-power stress singularity,

while Q corresponds to the second, non-singular, term of the near-tip asymptotic expansion, which

represents a uniform stress field of crack-parallel T -stress. This stress was shown to act as a crack

tip constraint, suppressing cleavage. The J-Q concept, however, has not been extended to a sim-

ple analytical scaling law which is the objective here. Similar comments apply to the studies of

Betegón and Hancock [32], Xia, Wang and Shih [34], and Gao, Shih, Tvergaard and Needleman

[35]. Although the T -stress will not affect the form of the scaling law derived here, it will affect

the prediction of the effective size, rp, of the yielding zone, which figures as a parameter in this

law, identifiable by size effect tests.

The effect of crack-parallel stresses on rp is relegated to a subsequent chapter. So is the likely

effect of T -stress on the Gf and on the transverse width of the (micrometer-scale) fracture process

zone in metals. Such effects have recently been demonstrated for quasibrittle materials [42], [76].

Finally, it should be noted that, in the field of metals, the term ”size effect”, has been applied

to a variety of different phenomena. E.g., the well-known Hall-Petch effect [36]–[38] is not a size

effect on structure strength but the effect of grain-size on the yield strength of metal, explained

by dislocation arrest at grain boundaries. In crystal plasticity, the term is used for the strength
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variation of miniaturized single-crystal specimens [39]. The term has also been used for the effect

of geometrically necessary dislocations and of strain gradients on the yielding strength of metals.

Further the term has been used for the increase of specific cutting force with a decreasing depth of

a cut [40].

Another point needs to be clarified. In quasibrittle fracture, two types of size effect on structure

strength [45] must nowadays be distinguished. Here we deal only with Type 2, which occurs when

geometrically similar structures of different sizes contain at maximum load large similar cracks or

notches. Type 1, to which most of the present analysis doe not apply, occurs for failures at fracture

initiation from a smooth surface, and has, for large structures, a strong statistical component.

The present objective is to find the law governing the size effect in metallic structures with

large cracks propagating in the opening mode, i.e., mode I.

3.2 Scaling of near-tip field and of structure strength in absence of a characteristic length

Assuming homogeneous plasticity, the field of any continuum variable close enough to a perfectly

sharp tip of a crack (or notch) possesses no characteristic length. Therefore, the field must be self-

similar in the radial polar coordinate r centered at the tip. In other words, any response f(r, θ),

such as the displacement or stress, must be such that, for any two radii r and ξr, the scaling ratio

f(ξr, θ)/f(r, θ) = ρ would be independent of the polar angle θ. Hence, function f(r, θ) must

satisfy the functional equation:

f(ξr, θ) = ρ(ξ)f(r, θ) (3.1)

To solve it, note that it will be true for all r if and only if it is true for every interval (r, r+ dr). So

we differentiate Eq. (3.1) with respect to ξ and get

rf,ξr(ξr, θ) = ρ′(ξ)f(r, θ) (3.2)
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where f,ξr and ρ′ denote the derivatives on ξr and ξ. Now we may consider ξ → 1 and denote

ρ′(1) = m = constant. This converts the functional equation into a differential equation solvable

by separation of variables:

r
df(r, θ)

dr
= mf(r, θ) (3.3)

Its solution is ln f(r, θ) = m ln r + lnψ(θ) where lnψ(θ) = integration constant independent of r

but dependent on θ. So we conclude that the near-tip field must be a power law in r:

f(r, θ) = rmψ(θ) (3.4)

Substitution into the field equation yields an eigenvalue problem in θ with an infinite series of

eigenvalues m. The eigenfield of the lowest eigenvalue dominates near the tip.

Based on Eq. (3.4), we conclude that any field variable near the tip of a crack (as well as or

V-notch) must have a separated form in polar coordinates, and that the radial dependence must be

a power function (this conclusion also applies to various singularities in hydrodynamics, electro-

magnetism, electrostatics, etc.).

As a particular case, the foregoing argument applies to the nominal strength, σN , of geomet-

rically similar structures with similar cracks and loadings but different characteristic sizes D (see

Eq. 1–3 in [77] or Eqs. 1.2–1.4 in [15]); σN is a load parameter with the dimension of stress,

defined as σN = P/bD where P = load and b = thickness of two-dimensional (2D) structure. The

conclusion is that, in absence of characteristic structure size D0, which is the case for linear elastic

fracture mechanics (LEFM), σN must scale as a power law of D multiplied by some constant cS

that depends only on the shape (or geometry) of the structure with crack:

σN = cS D
m (3.5)
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3.3 Review of power-law stress-strain relation for plastic-hardening metals

According to the deformation theory of plasticity, it has generally been assumed that plastic-

hardening metals can be adequately described by the Ramberg-Osgood [78] uniaxial stress-strain

law:
ϵ

ϵy
=

σ

σy
+ αp

(
σ

σy

)n

(3.6)

where n = plastic hardening exponent; σy = yield strength, ϵy = yield strain limit; αp = empirical

parameter (usually denoted as α, but α is generally used for dimensionless crack length); and

n = plastic hardening exponent, typically 3 to 20 [4], [5]. Note that the material is considered

plastically incompressible by volume, which means that the material yields only in shear, which

allows us to deal only with deviatoric stress and strain tensors sij and eij .

Beginning with the HRR (Hutchinson-Rice-Rosengren [4], [5]) theory, the elastic strain is

neglected, which has the advantage that stress-strain relation, too, becomes a power law:

ϵ

ϵy
= αp

(
σ

σy

)n

(3.7)

The power law is assumed to start at 0, which ignores the initial elastic response. The benefit

stemming from a power law is that it enables an analytical solution [4], [5]. As shown in Fig.

3.1, for high exponents n the initial plastic deformations are negligible, and σy represents only an

equivalent yield limit characterizing the point where the power law takes off.

The simplest and apparently quite realistic tensorial generalization is [4], [5], [74], [75]:

eij =
3αpϵy
2σy

(
σef
σy

)n−1

sij (3.8)

where σef =
√

3
2
sklskl (3.9)
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Figure 3.1: (a) Stress-strain behavior of the deformation theory of plasticity (nonlinear elasticity);
(b) Elasto-plastic constitutive law with different n; (c) Approximation of total stress-strain by
plastic stress-strain relation (elastic strain is neglected); and (d) Partition of strain energy into
released and dissipated.
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σef = scalar effective stress, of von Mises type (conceivable higher-order terms such as σ3
ef ∝

skmsmnsnk are omitted). The numerical subscripts refer to Cartesian coordinates (x1, x2) and the

summation rule applies. Note that the use of the deformation theory of plasticity in the HRR theory

is a simplifying hypothesis. It is acceptable if no unloading occurs, and Hutchinson and Paris [79]

showed it to be quite accurate.

3.4 Large-scale yielding in small structures

First we consider the case of large-scale yielding, in which the specimen or structure is so small that

all of the fracture cross section is plastically yielding and full development of the yielding zone is

prevented by the cross section size. We consider geometrically similar specimens of various sizes

D, with similar cracks or notches. Based on the preceding arguments (Eq. 3.4), the absence of any

characteristic length implies the near-tip stress field to have separated form:

sij = σy(r/rp)
mψij(θ) (3.10)

where function ψij cannot be expressed by an exact explicit form but can be approximated by

several methods, e.g. finite difference method [80], [81], complex solution via conformal map-

ping [82], [83], and finite element method [84]. It is dimensionless and thus σy is required for

dimensional consistency. Exponent m is a constant to be determined later, and rp represents the

effective size (or radius) of the yielding zone. Substitution (3.10) into the constitutive law, Eq.

(3.8), furnishes:

eij = αpϵy(r/rp)
mnφij(θ) (3.11)

where φij(θ) =
3
2
ψij(θ)

(
3
2
ψkl(θ)ψkl(θ)

)n−1
2 (3.12)
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where φij is also a dimensionless function. Since eij is expressed in terms of the gradient of

displacement ui, and since an integration increases the r-exponent by 1, the displacement field

must have the separated form:

ui = αpϵyrp(r/rp)
mn+1Fi(θ) (3.13)

where Fi are dimensionless functions. Evaluating the expression ϵij = eij =
1
2
(ui,j + uj,i), we can

check that it agrees with Eq. (3.11). At the same time, we get an expression for the function Fi(θ)

in terms of φij(θ) (the subscripts preceded by a comma denote derivatives).

It is now useful to recall Rice’s J-integral [64] giving the energy flux through the yielding zone

into the fracture process zone:

J =

∫
Γ

(
W̄dy − νj sijui,1ds

)
, W̄ =

∫
sijdϵij (3.14)

where the flux is meant with respect to crack length a, not time; Γ is a closed contour around the

crack tip, s is the length coordinate of that contour, νi its unit outward normal, y = x2, ∂1 = ∂/∂x1,

and 1
2
sijeij is the stored strain energy recoverable upon unloading and W̄ is the nonlinear strain

energy density. The material is considered as nonlinearly elastic, as if the unloading would follow

the same curve as loading. This hypothesis is acceptable if the J contour avoids the zone of

unloading in the wake of the advancing yielding zone. Elasticity, whether linear or nonlinear, is

essential for the path independence of J-integral.

Consider now the J-integral for a circular path, for which ds = rdθ and dy = rdθ cos θ.

From this and from Eqs. (3.18)–3.20) it follows that the radial dependence of the the first term of

J-integral is ∫ π

−π

W̄dy ∝ rmrmnr = rm(n+1)+1 (3.15)
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(∝ is the proportionality sign). The same must occur for the second term of J integral. Indeed,

∫ π

−π

νjsijui,1ds ∝ rmrmn+1r−1r = rm(n+1)+1. (3.16)

Since the J-integral is path independent, the exponent of r must be zero, i.e., m(n + 1) + 1 = 0,

or

m = − 1

n+ 1
(3.17)

as noted in 1968 by Hutchinson [5] and Rice and Rosengren [4]. As a check, for the case of a

linear elastic behavior, n = 1, and Eq. (3.16) gives m = −1/2. As another check, sijeij is known

[4], [5] to be proportional to 1/r as the crack tip is approached, and this is obviously also satisfied.

It should be noted that the power-law hardening is not realistic when n > 20 [4] and, although

−1/(n + 1) → 0 for n → ∞, a different solution is required for non-hardening plastic materials

[73]. In practice, though, n ≤ 20 suffices for most situations.

According to Eq. (3.17), Eqs. (3.10)–(3.13) for large-scale yielding in small structures now

take the following particular form (same as Eqs. 5.3.10 in [75]):

sij = σy

(
r

rp

)− 1
n+1

ψij(θ) (3.18)

eij = αpϵy

(
r

rp

)− n
n+1

φij(θ) (3.19)

ui = αpϵyrp

(
r

rp

) 1
n+1

Fi(θ) (3.20)

The structure strength is normally characterized in terms of the nominal strength of structure,

defined as σN = P/bD, where P is the applied load or load resultant, b is the structure width

(for a two dimensional structure or specimen), and D is the characteristic structure size, measured
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homologously on geometrically similar structures of different sizes. Thus σN is a load parameter

with the dimension of stress. Obviously σN ∝ sij and r ∝ D, considering small enough structures

with large-scale yielding, in which the plastic yielding zone occupies the entire fracture cross

section. Eq. (3.18) thus yields the size effect law (or scaling law):

σN ∝ σy

(rp
D

) 1
n+1

(for large-scale yielding, small D) (3.21)

where proportionality constants irrelevant to size effect are omitted. Note that in the limit of n→ 1,

this scaling law reduces to σN ∝ D−1/2, which is the case of linear elasticity (or LEFM) except that

the material stiffness approaches zero. Although specimens or structures small enough to undergo

large-scale yielding may be too small for current practical interest, Eq. (3.21) is nonetheless useful

for anchoring the asymptotic matching of the small-to-large-scale yielding transition, which we

pursue later.

3.5 For comparison—derivation of scaling law for quasibrittle structures with no plasticity

To derive the scaling law for small-to-large structure transition, we will need to generalize and

reinterpret the approach used for quasibrittle materials [14], [15], [43], [77], [85], [86], and so we

review it first. We begin by the expression for energy release rate in linear elastic fracture mechan-

ics (LEFM): G = (σ2
N/E

′)Dg(α) where α = a/D, a = crack or notch length, D = characteristic

structure size, and g(α) = K2
I /(Dσ

2
N) = dimensionless energy release function of LEFM reflect-

ing the structure shape (KI = mode I stress intensity factor, E ′ = E for plane stress or E/(1− ν2)

for plane strain, E = Young’s modulus, ν = Poisson ratio). Replacing the crack length a with the

effective crack length a = a0 + cf where cf is a material property characterizing the effective

length of the FPZ, we have G = (σ2
N/E

′)Dg(α0+ cf/D) where α0 = a0/D and a0 = length of the
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stress-free crack (or notch). Taking the first two terms of the Taylor series expansion, and denoting

g0 = g(α0) and g′0 = dg(α0)/dα, we get G = (σ2
N/E

′)D(g0 + g′0(cf/D)), or

G = Gs + Gb (3.22)

where Gs = (σ2
N/E

′)Dg0 (3.23)

Gb = (σ2
N/E

′)cfg
′
0 (3.24)

where g0 = g(α0), g
′
0 = [dg(α)/dα]α0 . Setting G = Gf (material fracture energy), and solving for

σN , we obtain, after rearrangements, the classical size effect law [43], [85], [86] (of Type 2) for

geometrically similar quasibrittle structures with similar cracks or notches:

σN =

√
E ′Gf

g′0cf + g0D
=

σ0√
1 +D/D0

(3.25)

in which D0 = (g′0/g0)cf (transitional size), σ0 = (E ′Gf/cfg
′
0)

1/2 (this law now underlies the

ACI standard code provisions for scaling of strength of concrete structures; the material charac-

teristic length, cf , of concrete has been shown to be about 0.4l0, where l0 = E ′Gf/σ
2
y = Irwin’s

characteristic length [24], [25]).

For test data fitting, it is useful that Eq. (3.25) can be rearranged to linear regression plot

Y = AX + C where X = D, Y =
1

σ2
N

(3.26)

A =
1

σ2
0D0

, C =
1

σ2
0

(3.27)

Obtaining A and C by regression of test data, we can calculate Gf and cf from the last equation.

This method of measurement of materials fracture characteristics has become widely used for
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concrete and geomaterials and has been embodied in the international standard recommendation

of RILEM [28] (recently also endorsed by the ACI-446 Committee). Eqs. (3.25)–(3.27) apply

even when the structures or cracks for different sizes D are not geometrically similar, but function

g(α) is then different for each size.

3.6 Energy dissipation rates of small-scale yielding in large structures

Having reviewed the theory of fracture of plastic-hardening metals, we can now embark on a

study of scaling. We will need the strain energy density W̄ of the nonlinearly elastic material

approximating the plastic-hardening metal. It is defined as

W̄ =

∫
sijdeij (3.28)

To calculate it, we multiply the right-hand side of Eq. (3.18) for sij by loading parameter µ. In

addition, we must multiply the right-hand side of Eq. (3.11) by µn, and the expression for deij by

nµn−1. Integrating from µ = 0 to µ = 1, we obtain the energy density

W̄ (r, θ) =
n

n+ 1
αpσyϵy

rp
r
φij(θ)ψij(θ) (3.29)

Note that here and further we must use the effective radius rp of the yielding zone instead of the

radius r′p of the larger energy matching zone. Evaluating
∫ ∫

[Eq. (3.29)] r dθ dr, one finds that

the total strain energy in the circle of radius rp (per unit width in the transverse direction x3) is:

W =
n

n+ 1
αpσyϵyr

2
p

∫ π

−π

φij(θ)ψij(θ)dθ (3.30)

After the entire yielding zone advances beyond a given point, the material gets unloaded. Al-
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though the unloaded elastic strain energy W̄e may be small and negligible, it is easy to include it

in our calculations. Considering only the deviatoric stresses and strains, the elastic energy density

is sijsij/2G. Since the elastic shear modulus G = σy/ϵy, substitution of Eq. (3.10) shows that the

strain energy density at point (r, θ) of the yielding zone is:

W̄e(r, θ) =
1
2
σyϵy(rp/r)

2/(n+1)ψij(θ)ψij(θ) (3.31)

To obtain the strain energy release rate, Gb, due to unloading of the entire yielding zone, the

strain energy contained in this zone must be divided by the distance of travel to the next non-

overlapping position of the zone (Fig. 3.2), which is the distance 2rp, equal to the diameter of the

yielding zone approximated as circular. So,

Ge =
1

2rp

∫ π

−π

∫ rp

0

W̄e(r, θ)r dθ dr = rp σyϵyQe (3.32)

Qe =
n+ 1

8n

∫ π

−π

ψijψij dθ (3.33)

After the passage of the yielding zone through a fixed station, the irreversible work of plastic

yielding does not flow into the crack tip but is dissipated by unloading of the plasticized material.

Over the effective width, 2rp, of the yielding zone, the energy dissipation rate is

Gp =
1

2rp

∫ π

−π

∫ rp

0

[W̄ (r, θ)− W̄e(r, θ)]r dθ dr

= σyϵy rp (Qp − Qe) (3.34)

where Qp =
nαp

2(n+ 1)

∫ π

−π

φij(θ)ψij(θ)dθ (3.35)
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3.7 Size effect on fracture strength of plastic-hardening structures

To exploit an analogy with the size effect mechanism in quasibrittle structures, we need to interpret

Eqs. (3.22)–(3.24) physically. The energy release rates Gs and Gb correspond to two different zones

in the structure: (i) Gs is the energy release from the undamaged, elastic, zone of the structure,

which is proportional to D (approximately, though for D → ∞ exactly), and (ii) Gb is the rate of

energy release from the damage band, which is independent of D (the rates are considered with

respect to crack length a, not time). This band is the zone trailed by the advancing FPZ of finite

width 2rp if the yielding zone is approximated as circular. Before fracture, the material in this band

is under transverse tension proportional to σN .

Compared to quasibrittle materials, which are incapable of plastic yielding, the situation in

metals is complicated by the presence of a plastic-hardening yielding zone, inserted between the

damage zone and the elastic zone. The yielding zone (typically of millimeter dimensions) plays

a triple role—first, it conveys energy flux J through the yielding zone to the FPZ (typically of

micrometer dimensions) and, second, it also dissipates energy, at the rate Gp, as the plastically

deformed material unloads in the wake of the yielding zone. However, aside from these two dis-

sipation roles, there is a third role: as the yielding zone travels forward, it unloads, at the rate Gb,

the strain energy (γcσN)
2/2E ′ initially stored in the band of width 2rp trailed by the yielding zone

(here γc is a certain stress concentration factor, which is independent of structure size D and which

we absorb into the definition of σN ).

The rates of energy release from the elastic part of the structure and from the band swept by

the yielding zone must be equal to the rates of energy dissipation at the crack tip and in the trail of

the yielding zone, Therefore,

Gs + Gb = Gf +Gp (3.36)
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Figure 3.2: (a) Actual and equivalent yielding zones with the same area (or volume), as indicated
by FE analysis using von-Mises type plastic-hardening constitutive law; (b) Propagation of the
equivalent yielding zone as crack grows.
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For Gb we can take the same expression as in Eq. (3.24) but with the damage band width, cf ,

replaced by 2rp, i.e.,

Gb = (σ2
N/E

′) 2rp (3.37)

For Gs we can co-opt Eq. (3.23) (this is a simplification which may be supported by the thermo-

dynamic theory of material (or configurational) forces used by Herrmann et al. [87], [88] who

observed, on that basis, that the crack widening gives approximately the same LEFM energy re-

lease rate as the crack extension; see Fig. 12.8 in [49] and [25] where this concept was refined

and calibrated). Substitutions of Eqs. (3.23), (3.34), and (3.37) into (3.36) then yield the energy

balance equation:
σ2
N

E ′ Dg0 +
σ2
N

E ′ 2rp = Gf +Gp (3.38)

Solving for σN finally furnishes the size effect law:

σN =
σ0√

1 +D/D0

(3.39)

This law has the same form as the size effect law, SEL, for quasibrittle materials (Eq. 3.25) but its

coefficients are expressed differently and depend on the hardening exponent n:

D0 =
2rp
g0
, σ2

0 =
E ′Gf

2rp
+ σ2

p, (3.40)

σ2
p =

E ′σyϵy
2

(Qp −Qe) (3.41)

The asymptotes of size effect are also the same:

σN ⇒
D → 0

σ0 = constant, σN ⇒
D → ∞

D−1/2 (3.42)
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3.8 Size effect method for testing material fracture properties in large enough structures in

small-scale yielding range

Like Eq. (3.25), Eq. (3.39) can again be transformed to linear regression

Y = AX + C where X = D, Y = 1/σ2
N (3.43)

A = 1/σ2
0D0, C = 1/σ2

0 (3.44)

If σN -values are measured for various D, and σy, ϵy, αp, E
′, n, and if functions φij(θ), ψij(θ) are

all known, at least numerically, and if their integrals in Qp and Qe are evaluated (which could be

done once for all), then the fracture energy Gf (equal to Jcr) and the effective width 2rp of the

yielding zone can be identified by testing the size effect. To this end, one must first determine

the value of g0 (and E ′). Then one conducts linear regression of the measured data pairs (X, Y )

according to Eq. (3.43), to get A and C, and calculates: σ0 = 1/
√
C and D0 = C/A. Finally, if if

even the smallest tested specimen is large enough to be in the small-scale yielding range, we have

rp =
g0

2σ2
0A
, Gf =

2rp
E ′

(
1√
C

− σp

)
(3.45)

3.9 Simple asymptotic matching of small-to-large-scale yielding

The small-size asymptote of Eq. (3.39), i.e. σN = constant, does not match the small-size large-

scale yielding σN ∝ D−1/(n+1) in Eq. (3.17) or (3.21). This is caused by considering, in our

analysis, a different physical mechanism which is inappropriate for the range of transition from

large-scale yielding to small-scale yielding. As the simplest, phenomenological, way to make the

small-size asymptote match the power law D−1/(n+1) instead of D0 without spoiling the large-size
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asymptote D−1/2, Eq. (3.39) may be modified as follows:

σN = σ0

(
D

D0

)− 1
n+1

(
1 +

D

D0

)− n−1
2n+2

(3.46)

or σN = σ0

(
D0

D

) 1
2
(
1 +

D0

D

)− n−1
2n+2

(3.47)

This asymptotic matching formula cannot be derived by the previous asymptotic argument,

and so it cannot be used for small specimens for which D is not much larger than rp. This is not

surprising because the derivation was purely phenomenological as it was not anchored in the rate

of energy release from unloading of the material swept by the advancing yielding zone. We will

try to remedy it next.

3.10 Small-to-large-scale asymptotic matching anchored in yielding zone

When the specimen or structure cross section, of size D, is smaller than the width, i.e, D < 2rp,

of the fully developed yielding zone, we have large-scale yielding, for which we must consider

the restricted yielding zone width, which we denote as 2r = h0D where h0 is a dimensionless

constant. Similar to the argument for Eq. (3.21), we recognize proportionality to σN by replacing

sij in Eq. (3.18) with σN , but replace now 2rp with the restricted width h0D. This yields σN =

σ0(2r/h0D)
1

n+1 , from which

2r = (σN/σ0)
n+1h0D (3.48)

The linear elastic strain energy that was initially stored in the material and was subsequently re-

leased by the passage of the yielding zone is, per unit length in the x direction, Gb = (σ2
N/E

′)(2r).
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Replacing 2r in Eq. (3.48), we obtain

Gb =
σ2
0

E ′

(
σN
σ0

)n+1

h0D (3.49)

If we substitute this equation, instead of Eq. (3.37), into the energy balance equation (3.36), we

obtain, instead of Eq. (3.38), the following equation

σ2
0

E ′

(
σN
σ0

)2

g0D +
σ2
0

E ′

(
σN
σ0

)n+1

h0D = Gf +Gp (3.50)

in which only the second term differs from Eq. (3.38). The above equation may be rewritten as

AXn+1 +BX2 = C in which (3.51)

A = (σ2
0/E

′)h0D, B = (σ2
0/E

′)g0D, C = Gf +Gp, X = σN/σ0 (3.52)

It is proper to acknowledge that Eq. (3.48) was previously obtained in a different way by

Kanninen and Popelar [75, pp.c314-317]. They replaced the fixed limiting width of the yielding

zone (here denoted as 2rp) by a reduced width restricted by the specimen size (Eqs. 5.4-9 and

5.4-11 in [75]). With their empirical function ϕ they achieved a smooth transition. For notched

three-point bend specimens, they calculated by finite elements and tabulated a function, h1(α, n),

that describes this transition for various relative crack lengths α. The present constant h0 may be

taken as equal to αp(1− α)h1(α0, n).

To obtain the size effect of D on σN , one needs to solve X as a function of A,B,C from Eq.

(3.51). Since an exact solution is not possible for n > 4 (according to Abel-Galois theorem), a

numerical solution may be easily obtained by Newton iterations or, more effectively, by minimizing
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the quadratic expression

Φ = (AXn+1 +BX2 − C)2 (3.53)

with an optimization algorithm such as Levenberg-Marquardt. Nevertheless, a very accurate

closed-form analytical approximation is possible, as shown in the next section.

A tentative iterative procedure to identify theGf and h0 values from size effect tests may begin,

in the first iteration, with a guess of the values of Gf +Gp, σ0 based on a preliminary estimate by

linear regression according to Eq. (3.43). Minimization of Φ then yields the optimum values.

3.11 Closed-form approximation of small-to-large-scale yielding and evaluation of size ef-

fect tests

We denote:

XA = (C/A)
1

n+1 , XB = (C/B)
1
2 , Y = X/XA, m = XA/XB (3.54)

by which Eq. (3.51) becomes

Y n+1 +m2Y 2 = 1 where m =
(
1− Y n+1

) 1
2 /Y (3.55)

The real solution of this equation can be closely approximated by:

m =
(
Y −d − 1

) 1
d with d =

√
2(n+ 1) (3.56)

and Y then follows from Eq. (3.54). Fig. 3.3 shows how close this approximation is. Note that

this approximation does not depend on A, B and C. The maximum error occurs when X → XA
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Figure 3.3: Comparison of accuracy of Eq. (3.56) in approximating the exact solution, Eq. (3.55).

or D → 0 but these are not realistic cases.

The ratio σN/σ0 obtained from this solution converges to LEFM (though not SEL) as n → 1.

It may further be checked that σN/σ0 → (kD/D0)
− 1

n+1 for D → 0, and σN/σ0 → (D/D0)
− 1

2 for

D → ∞.

Identification of fracture properties from size effect tests is done by directly optimizing σ0 and

Gf + Gp based on Eq. (3.53). The standard algorithm for nonlinear optimization in commercial

software, such as Matlab, can be used.

3.12 Tests of notched specimens of aluminum and comparisons

A total of 12 notched three-point-bend (3PB) fracture specimens of aluminum (of type Al 6061-

T651) have been manufactured (Fig. 3.4). The experiments involved 4 different sizes with the size

range of 1 : 2 : 4 : 8. Three identical specimens were tested for each size. The span-to-depth

ratio was 6.0 and the relative notch depth was a/D = 0.5. The specimens of all sizes and their

notches were geometrically similar in two dimensions but the transverse thickness, b = 10 mm,

was kept constant (in order to avoid having to separate the size effects of plastic shear lip and of
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3D singularity of stress field at the intersections of the crack front edge with the side faces).

The tests have been conducted in a MTS servo-controlled testing machine with load capacity

of 10 kN and digital closed-loop controls. The built-in three-point-bend fixture of the system has

been used as the test setup. Steel rollers have been placed at the load point and at end supports.

The built-in load-cell and linear variable differential transformer (LVDT) have been employed and

calibrated before testing. Displacement controlled loading was used. The loading rate was 0.002

mm/s for the smallest-size specimens. For larger sizes, the loading rate has been scaled so as

to keep the strain rate approximately the same for all the sizes. The loading continued into the

postpeak until the load dropped to 80% of the peak load.

Similar tests of aluminum have been conducted already in 1987 by Bažant, Lee and Pfeiffer

[85], before the size effect theory was fully developed. Fig. 3.5 demonstrated that the size effect

derived here matches these tests quite well.

3.13 The optimum fit of size effect law for ductile materials

The optimum fits of the results of the present tests of geometrically scaled aluminum specimens

(the details of the experiments are presented in a later section), obtained with Eqs. (3.39), (3.46)

and (3.53), are presented in Fig. 3.5 a,b,c. The transverse thickness of all specimens was not

scaled and was kept as 10 mm (for the specimen details see the next section). For comparison, the

results of the tests performed on the same type of aluminum by Bažant, Lee and Pfeiffer [85] (in

1987, before the size effect theory was sufficiently developed) are also shown and analyzed; see

Fig. 3.5d,e,f. The specimen dimensions in those tests were in the same range as here, except for

the transverse thickness which was 25.4 mm (1 in.).

The plastic dissipation Gp can be calculated directly if one has the data from the standard

uniaxial tensile test and if one determines the angular variations ψij and φij of stress and strain
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Figure 3.4: (a) Schematic and (b) actual setup of notched three-point-bend tests; (c)
Geometrically-scaled specimens with the same transverse thickness and various depths, D =
6, 12, 24 mm (specimens with D = 48 mm were tested but not shown here).



93

Figure 3.5: Optimum fits of size effect law to test result on aluminum beams based on: Eq.(3.39)
(a,d), Eq.(3.46) (b,e), Eq.(3.50) (c,f). The transverse thickness of specimens was 10 mm (a,b,c),
and 25.4 mm (1 in.) [85] (d,e,f).
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(which can be done once for all for a given specimen geometry, e.g., the 3PB test). If this is

unavailable, one can obtain only the sum Gf +Gp as a whole, which is what is done here.

Even though the values of Gf + Gp of the tested material (Al 6061-T651) obtained from Eqs.

(3.39), (3.46) and (3.53) were in a reasonable range, some discrepancies need to be noted. Eq.

(3.46) tends to give a higher Gf +Gp than the other two. Due to the assumption of a fixed rp in Eq.

(3.39), choosing the data points in which the yielding zone is fully developed matters. This was

reflected in Fig. 3.5a, in which the fitting of three larger sizes captured the data trend better and its

resulting fracture energy was in agreement with Fig. 3.5c. So we consider this to be the true value

of Gf +Gp. The same conclusion can be drawn from Fig. 3.5d,f. In this case, however, including

or excluding the anomalous test result from the smallest specimen did not make a big difference.

According to [89], the transverse thickness has an appreciable effect. In large-scale yielding,

the material at mid-thickness will begin yielding first. Because the material on the sides has not yet

yielded, a plane-strain constraint develops at the middle part of the crack front edge, which creates

a triaxial stress state. The larger the transverse thickness, the stronger the plane strain effect. This

tends to increase Gf + Gp. Further tests are necessary to assess the magnitude of this effect as an

envelope of fracture equilibrium curves.

The standard ASTM-E1820 [90] provides a guideline to measure the fracture energy of plastic-

hardening materials. This includes the procedures for (a) the basic test of JIc and (b) the resistance

curve (R-curve). The former requires a number of identical specimens to be loaded to different

load levels, with several load-displacement curves to be recorded. This results in a J–∆a curve,

based on which the JIc is obtained by interpolation. The latter method, on the other hand, demands

only one specimen, but the loading procedure includes multiple loading-unloading cycles to keep

track of the structure compliance. The proposed method which requires testing only the maximum

loads of geometrically-scaled specimens of at least three different sizes seems relatively simpler.
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Figure 3.6: J-integrals on different contours, computed on the specimens with D = 24 mm and
transverse thickness b = 25 mm (d,e,f). Path 3 and 4 indicate path-independence, but 1 and 2 not.

It is also related to the R-curve method, as documented in 1967 in [85] where the way to calculate

the R-curve from the size-effect was shown.

To confirm the validity of the present method, finite element simulations of the tested material

have been performed using a well established material model for metals presented in [91], [92].

Calibrating the material model with uniaxial tensile test data and the load-displacement curve of a

specimen of one depth (D = 24 mm), J-integral calculations were run for various contours.

It is important to choose contours for which the J-integral is path-independent. They are those

on which there is no inelastic unloading. For the contours in Fig. 3.6, if the contour crosses the

plastically unloaded region or the damage region of the FPZ (e.g. 1 and 2), the calculated J-integral

will be path-dependent. However, if the contour passes entirely through the HRR field, and not

the FPZ, its value will be path-independent and will be the same as for an integral lying outside

both zones. It is this value that is selected as the correct JIc of the material. This JIc (128.4 kN/m)

differs by 16% from the JIc value obtained using the size effect method (112.2 kN/m).
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3.14 Scaling for the FPZ-to-yielding transition and intermediate asymptote

When the specimen becomes smaller than the FPZ, which has a size in the micrometer range, the

scaling is that of damage mechanics and is the same as for quasibrittle materials. Based on what

is known for these materials [15], [93], the approach of the size effect curve to zero size must be

linear. This translates, in the log-log scale, to an exponential, with a horizontal asymptote in that

scale.

When the specimen becomes much larger than the FPZ but still significantly smaller than the

yielding zone which (being of millimeter dimensions) is three order of magnitude larger, the large-

size asymptote must be of the type D− 1
n+1 . The simplest asymptotic matching formula then is

σN = σ1

(
1 +

D

D1

)− 1
n+1

(3.57)

where σ1 and D1 are constants. This equation is valid only when D is smaller by at least one order

of magnitude than the yielding zone size.

Considering the full size range from the FPZ to the specimen much larger than the yielding

zone, we thus have three asymptotic regimes:

σN ∝ D0, D− 1
n+1 , D− 1

2 (3.58)

The second is what Barenblatt named, and rigorously defined, as the intermediate asymptote [94]

(Fig. 3.4). The intermediate asymptote D− 1
n+1 serves both as the large-size asymptote for the

FPZ-to-yielding transition and as the small-size asymptote for the yielding-to-elasticity transition.
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Figure 3.7: (a) Micron-scale asymptote for specimens with sizes comparable to process zone size
(volume confined within slip planes or grain boundaries). (b) Simulated and extrapolated results
by Bai–Wierzbicki [95] plasticity-damage model.

3.15 Numerical predictions

3.15.1 The Bai-Wierbiczki model and its prediction

To understand the mechanical behavior of the aluminum alloy for different structural sizes and

crack-parallel stress levels (presented in the next chapter), we used a model that was claimed to

capture the fracture behavior when the notch subjected to complex stress state, developed by Bai

and Wierbiczki [95]. Even though more details can be found in Appendix A, the key of this model

can be summarized below.

In this model, the Mohr–Coulomb (M–C) fracture criterion is revisited with an objective of

describing ductile fracture of isotropic crack-free solids. This criterion has been extensively used in

rock and soil mechanics as it correctly accounts for the effects of hydrostatic pressure as well as the

Lode angle parameter. It turns out that these two parameters, which are critical for characterizing

fracture of geomaterials, also control fracture of ductile metals [96]–[99]. The local form of the

M–C criterion is transformed/extended to the spherical coordinate system, where the axes are the
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equivalent strain to fracture ϵ̄f , the stress triaxiality η, and the normalized Lode angle parameter θ̄.

For a proportional loading, the fracture surface is shown to be an asymmetric function of θ̄. It was

found that the M–C fracture locus predicts almost exactly the exponential decay of the material

ductility with stress triaxiality, which is in accord with theoretical analysis of Rice and Tracey

[100] and the empirical equation of Hancock and Mackenzie [101], Johnson and Cook [102].

The M–C criterion also predicts a form of Lode angle dependence which is close to parabolic.

Test results of two materials, 2024-T351 aluminum alloy and TRIP RA-K40/70 (TRIP690) high

strength steel sheets, were used to calibrate and validate the proposed M–C fracture model [95].

Another advantage of the M–C fracture model is that it predicts uniquely the orientation of the

fracture surface. It is shown that the direction cosines of the unit normal vector to the fracture

surface are functions of the ”friction” coefficient in the M–C criterion. The phenomenological and

physical sound M–C criterion has a great potential to be used as an engineering tool for predicting

ductile fracture.

The scaling law predicted by this model were plotted against the experimental data in Fig. 3.7b.

The model tends to result in a higher fracture energy, using either Eqs. (3.39), (3.46), or (3.50).

Note that, even though the hardening YZ size is independent of the element size, the FPZ size is

not. In fact, the element size should approximate the heterogeneity size, which is the size of poly-

crystal grains. In fact, the void nucleation that causes softening is triggered by the mismatch in

grain boundary excessive glide and climb. However, depending on the manufacturing method and

how the materials are processed, this size may vary from 5-200 µm [103], [104]. In this case, the

grain size encountered in the usual processing method, 40 µm [103], is considered. Consequently,

the notch is considered blunt as its radius is one order magnitude larger than the element size.
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3.15.2 The extrapolation to the micrometer scale

To observe the prediction of fracture behavior at the scale approaching the grain size mentioned

above, the same set of parameters was applied to structures in which the ligament length was a

few to several hundreds of micrometers. Note that the same notch radius and element size must

be used based on the crack band theory [8]. This finding confirms the hypothesized micron scale

asymptote; see Fig. 3.7b with a plastic hardening with power n = 7.1.
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CHAPTER 4

THE EFFECT OF CRACK PARALLEL STRESSES ON DUCTILE MATERIALS

4.1 Yielding zone size under crack-parallel stress via energy matching of singular fields

Previously, we treated the effective radius of the yielding zone as a parameter to be fitted in the size

effect formulation. In this section, we will present a method to approximate such a characteristic

size based on the loading configuration and the crack parallel stresses.

Before studying the size effect, we also need an estimate of the effective size of the yielding

zone, which we approximate as a circle of radius rp. Furthermore, we must include the dependence

of rp on the crack-parallel stress σ11 = T (in the case of plane stress), which represents the second

term in the LEFM near-tip asymptotic series expansion. The first two terms of this expansion read

[105]:

σ11 =
KI√
r
f11(θ) + T (4.1)

where f11(θ) = cos θ′(1 − sin θ′ sin 3θ′)/2π, θ′ = θ/2 (e.g. p. 86 in[14]), and KI =
√
E ′Gf =

mode I stress intensity factor of the elastic field. The T -field in the second term is nonsingular

and uniform. In small-scale yielding, the σij field in Eq. (4.1) prevails at sufficient distance from

the yielding zone (YZ). At closer range its interference with the plastic-hardening singular near-tip

field given by Eq. (3.10) is complicated, and requires elasto-plastic finite element analysis (the

typical contour of the small-scale yielding zone for plane stress, obtained by finite elements [5], is

shown in Fig. 3.2).

As a simplification, the boundary between these two fields could be estimated by the intersec-

tion of radial profiles at which the stresses from both fields are equal (as suggested by Hutchinson
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Figure 4.1: Schematic radial stress profiles; (a) intersection of yielding and elastic zones; and (b)
mismatch areas (cross-hatched) for equilibrium matching of both zones by virtual work.

and Rice, and previously for perfect plasticity by Irwin). But this would still be complicated, giving

rp as a function of θ and T . Such a complication, though, is unnecessary for the global behavior

such as the failure load and size effect. Besides, a dependence or rp on θ would prevent us getting

a clear result for the size effect.

In this light, we try (similar to [75] ) to determine one effective constant value of transition

radius rp. To this end, we introduce a different approach—the use of the variational principle of

virtual work to enforce global equilibrium, or overall energy equivalence, of the two interfering

fields, Eqs. (3.18) and (4.1). With rp defined as a constant, the stress at the intersection of the

fields given by these two equations would, of course, not be equal to σy at each ray θ. The yield

stress, σy, would be matched only in the average sense for all θ, and based on equilibrium in the

crack direction (see Fig. 4.1).

Since T works on crack-parallel strain ϵxx = ϵ11 in the case of plane stress, we match the two
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singular fields by imposing, for a circle of a certain larger radius r′p (> rp, to be estimated later),

the virtual work condition of overall equivalence of the stress resultants in crack direction x1:

∫ π

−π

∫ r′p

0

(σ11 − T ) r dθ dr δϵ11 =
∫ π

−π

∫ r′p

0

ŝ11 r dθ dr δϵ11 (4.2)

where ŝ11 = KI r
− 1

2f11(θ) (4.3)

In the yielding zone, σ11 can be represented by s11 and expressed according to Eq. (3.18). Integrat-

ing, and noting that the resulting equation must be valid for any variation, we set the the multiplier

of δϵ11 to zero. This gives:

r′p
ζ

= rp =
C2

e l0
ζ (CnCp − πT/σy)2

(4.4)

where Cn = ζ−
1

n+1
n+ 1

2n+ 1
, l0 =

E ′Gf

σ2
y

(4.5)

Ce =
2

3

∫ π

−π

f11(θ) dθ, Cp =

∫ π

−π

ψ11(θ) dθ (4.6)

Note that, for T = 0, the proportionality to l0 is the same as in Eq. (5.4-10) of [75] but dimension-

less factors Cn, Ce, Cp are different.

To estimate the factor ζ , we must give equal weights to the mismatches in the yielding and

elastic zones. So we require that a half of the matching zone would lie within the yielding zone

and the other half in the elastic zone, i.e., πr′2p = 2πr2p. This yields r′p ≈ rp
√
2. However, because

of the approximate nature of energy matching, the factors Ce, Cp may best be determined by FEM

or experiment. Note that, for the special case of T = 0, an estimate of rp can be obtained in a

different way in 1976 by Shih and Hutchinson [106]; they used the J-integral and superposed the

displacements for the plastic-hardening and linear elasticity.

In addition to rp, the effect of T will probably also change the energy dissipation in the FPZ,
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represented by Jcr (or Gf ), as confirmed for quasibrittle materials by the gap test [42], [76]. This

is a separate question, which will be addressed theoretically and experimentally in a subsequent

study.

Alternatively, Eq. (4.4) for r′p can be obtained by least-square optimization of the matching of

both singular fields, i.e., by minimizing the square of the difference between the two integrands

in Eq.(4.2), integrated over the area of circle of radius r′p. The minimizing condition based on the

squares of the differences of stress resultant differences in the x1 direction then is:

d
dr′p

∫ π

−π

∫ r′p

0

[σ11 − T − ŝ11]
2 r dθ dr = 0 (4.7)

We note that, rp depends on the polycrystalline grain size indirectly via Hall-Petch effect [36],

[107]. However, unlike the FPZ, YZ size is also affected by the loading configuration and the

specimen’s geometry.

4.2 Calculation of dimensionless angular functions and work expressions

The expressions for angular functions in Eqs. (3.18–3.20) were not presented in the preceding

study [108]. However, they are needed to predict the mechanical response and size effect of the

structural-scale strength when experimental data for calibration are unavailable or scant. Calcu-

lating the partial derivatives in the linearized strain expression eij = 1
2
(ui,j + uj,i), one finds the

dimensionless angular function in Eq. (3.19) is:

φij(θ) =
1

2

{
Fi(θ)ξj(θ) + Fj(θ)ξi(θ)

n+ 1
+ F ′

i (θ)ξ
⊥
j (θ) + F ′

j(θ)ξ
⊥
i (θ)

}
(4.8)

where ξ(θ) and ξ⊥(θ) are the unit position vector and its orthogonal counterpart. Functions Fi

could, in theory, be also calculated from functions φij . However, it would involve solving a stress



104

function that satisfies Eqs. (3.20–3.18) and boundary conditions numerically.

Because the Ramberg-Osgood constitutive law, Eq. (3.8), does not allow expressing sij in

terms of eij explicitly, the calculation of strain energy density, W̄ =
∫
sijdeij , is easier if we first

calculate the density of complementary strain energy (or Gibbs free energy), which is defined as

W ∗ =
∫
eijdsij . Since it is path-independent, we get a general result even if we conveniently inte-

grate along a proportional loading path, sij = Sijη where Sij are constants, the loading parameter,

η, runs from 0 to 1, and Sij = [sij]η=1. This way, W̄ becomes an integral over η only. Noting Eqs.

(3.19) and (3.18) and integrating, we get

W ∗ =
αpϵy

(n+ 1)σn
y

(
3

2
sijsij

)n+1
2

(4.9)

The density W̄ of strain energy (or Helmholtz free energy) is a function of eij . However, since

it is impossible to invert Eq. (3.8) in a closed form, we must express W̄ in terms of sij . We can do

so exploiting Legendre transformation W̄ = sijeij −W ∗, which is derived by integrating
∫
eijdsij

by parts. This gives

W̄ =
nαpϵy

(n+ 1)σn
y

(
3

2
sijsij

)n+1
2

(4.10)

Here sij must be regarded as functions of eij , given implicitly by Eq. (3.8). To obtain the J-

integral, we must also evaluate

νjsijui,1 = νjαpϵyσy

(
r

rp

)−1

ψij(θ)χi(θ) (4.11)

where χi(θ) =
Fi(θ)

n+ 1
ξ1(θ) + F ′

i (θ)ξ
⊥
1 (θ) (4.12)
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The J-integral may now be calculated at r = rp:

J = αpϵyσyrpκ (4.13)

where κ =

∫ π

−π

[
ν1

n

n+ 1

(
3

2
ψij(θ)ψij(θ)

)n+1
2

− νjψij(θ)χi(θ)

]
dθ (4.14)

4.3 Gap Tests of Aluminum

All the standard fracture specimens happen to have zero or negligible normal stresses σxx, σzz, σxz

parallel to the crack plane (x, z). The obvious reason is that cracks are normally imagined as

planes, having zero thickness. If that were true, then σxx, σzz, σxz could have no effect on crack

propagation. In reality, however, the fracture process zone (FPZ) at the front of every crack (prob-

ably even cracks in an atomically perfect lattice) has a finite width δy. This is the basic feature of

the blunt crack [109] and crack band [8], [110] models, which indicated already in 1979 that, if δy

is finite, the effect of σxx, σzz, σxz ought to be significant, that the damage tensor in the FPZ must

play a role, and that the scalar stress-displacement law of the cohesive (or fictitious) crack model

is an insufficient characterization of fracture. Some role of the crack-parallel stress in concrete has

long been suspected by a few investigators [8], [22], [109], [110], but a simple unambiguous test

was lacking until the development of the gap test in 2020 [42], [76], [108].

For a detailed description of the gap test, see [76]. Briefly, the end supports of a standard

notched three-point bend beam are installed with suitable gaps and, next to the notch, the speci-

men is supported by elastoplastic pads (Fig. 4.2a). Under vertical load at midspan, the pads first

generate a field of crack-parallel compressive stress σxx, which is almost uniform near the notch

tip. When the pads begin yielding, at nearly constant load, the end gaps close (Fig. 2.2a) and then

the end reactions begin applying a bending moment, which produces mode I loading at the crack
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tip. For evaluation it is advantageous that the load-support system is statically determinate, both

initially and after the gaps close while the pads yield.

Another advantage is that one can apply the size effect method [86], [108] to determine the

fracture energy, Gf , and the combined size of the yielding zone and the FPZ. To this end, the test

must be carried out on scaled specimens of several sufficiently different sizes.

The gap test has originally been applied to concrete [42], [76]. Soon it was extended to metal

[108] using the theory summarized above (gap tests of shale, fiber concrete and fiber composites

are also under way). The limited preliminary gap tests of aluminum mentioned in [108] have now

been extended and are reported here.

Polypropylene pads of the right shape were found to yield at the right stress level for concrete

[42]. But, for the aluminum, supporting pads made of PVC and pure copper (Cu) had to be used

to provide the right yield limits for the smaller and larger specimens, respectively. To character-

ize their basic properties, these three elastoplastic materials were tested according to the ASTM

standards—E9-19 for Al and Cu, and D695-15 for PVC. Fig. 4.2a shows the stress-strain results

of the cylindrical specimens with diameter 2r = 20mm and height H = 60mm for Al and Cu,

and 2r = 15mm and H = 30mm for PVC. The strain rates were 0.005 mm/s for the metals, and

0.0008 mm/s for the PVC. The deformed shapes are shown in Fig. 4.2b. The plastic buckling and

bulging seen in the figures occurred after the peak load, which is for the gap test irrelevant.

Additional compression tests of Cu and PVC were carried out on specimens of the same shape

as the pads used. The stress-strain curves recorded are shown in Fig. 4.2c,d for the PVC and Cu.

The plastic plateaus of the pad materials, required for the crack parallel stress levels in the notched

Al beams, were −67 MPa and −172 MPa. Since the yield strength of Cu, 355 MPa, is much

higher then 172 MPa, the average stress in the pads had to be reduced. This was achieved simply

by drilling holes in the Cu pad, as seen in Fig. 4.2d.
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The notched beam specimens of aluminum, scaled geometrically in 2D, with the same width

of 10 mm, are shown in Fig. 4.3a,b. Their depths are 12, 24, 48 and 96 mm. Figs. 4.3c,d show

the results of standard three-point bend tests (with no gaps, no pads). The largest specimen, as

deformed in postpeak softening, is seen in Fig. 4.3d. It is restrained by stiff vertical straps to

prevent lateral buckling. In smaller specimens the buckling restraint was unnecessary.

Stronger supports against lateral buckling had to be used in the specimens with pads, as seen in

Fig. 4.4a and 4.5a on the left. On the right, one can see 8 recorded load-deflection curves with Al

and Cu pads, generating compressive crack-parallel stresses −67 MPa and −172 MPa. The second

rising portions of the curves represent the effect of the bending moments after the gaps at beam

ends have closed (the initial convex curvatures are due to gradual seating of the pads or beam end

supports, which must be disregarded).

Ideally, a near-horizontal plateau controlled by the pads should have developed on these curves

before reaching the ”hill” with the second rise of load. Such a plateau, however, has been attained

at only 4 of the 8 curves in Figs. 4.4–4.5, but unfortunately not in the remaining 4 curves. It was not
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possible (due to funding limitations) to repeat these tests with bigger gaps or with some different

pads, so as to achieve a plateau. However, what matters is the stress on the pads at the peak load

(hidden below the ”hill”). Though unidentifiable from these diagrams, it was assumed that an

invisible plateau has been reached under the peak loads in these three diagrams. This assumption

is supported by the systematic trend of the results plotted in Fig. 4.6a,b.

4.4 Aluminum test results and their discussion

The data points in Fig. 4.6a show the measured nominal strengths σN for scaled gap tests of 4

different sizes D = 12, 24, 48, 96 mm, and for 3 different levels of crack-parallel stress for the

three nominal stress levels σxx relative to the yield strength fy (note that compression is negative

while fy is considered positive). The 3 solid curves represent the optimal fits of the data points

with the size effect law, Eq. (3.25) (based on the parameters obtained from the linear regression

plots in Fig. 4.6a,b). Note the systematic trends of the data points. For the three stress levels, the
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coefficients of variation of regression errors (defined as the root-mean-square error divided by data

mean) are 9.7%, 1.5% and 6.2%, which is quite low. The fact that these trends are so systematic

lends credence to our assumption that the lack of visible plateau in Fig. 4.5 did not spoil the results

significantly.

Further note in Fig. 4.6a that the LEFM size effect slope of −1/2 is still far from being attained,

even for the largest specimens. This means that a much larger size would be needed to attain LEFM

behavior (i.e., the small-scale yielding range). Also note that what determines the fracture energy

Gf is the position of the LEFM asymptote of slope −1/2, which is marked by a dashed line for

each curve. The shift of the asymptote to the right means an increase of Gf . Obviously, these

asymptotes for the three levels of σxx are shifted relative to each other (Fig. 4.6a), which means

that the Gf values for different σxx are quite different (Fig. 4.6).

Fig. 4.6b shows the same test results in the linear regression plot of 1/σ2
xx versus D [86]. The

slope of the regression line is 1/Gf . Once Gf is determined, one can get from the intercept the

effective size rp of the yielding zone ([86]). The fracture energy values obtained in this manner are



112

0

100

200

300

-0.1 0 0.1 0.2 0.3 0.4

G
f/ 

kN
m

-1

-σxx / σy

a)

σy = 450 MPa

σxx / σy = 38.6%

14.4%

0.0%

0

30

60

-0.1 0 0.1 0.2 0.3 0.4

r p
/ g

0
/ m

m

-σxx / σy

b)

0.0%

14.4%

σxx / σy = 38.6%

Figure 4.7: Experimentally obtained data on (a) the dependence of fracture energy Gf of alu-
minum on the ratio of crack-parallel compressive stress σxx to yield strength σy; and (b) ditto for
the dependence of the characteristic size rp of the fracture process zone.

plotted in Fig. 4.7 for the three levels of crack-parallel stress σxx used in the tests. From the linear

regression shown in Fig. 4.6b, we may also infer a strong variation of the combined effective width

rp of the millimeter-scale yielding zone and the micrometer-scale fracture process zone.

The increase ∆Gf of Gf with increasing crack-parallel compression σxx, as seen in Fig. 4.7a,

is remarkably strong (stronger than for concrete). A major part of ∆Gf variation is due to the effect

of σxx (or T -stress) on the yielding zone of a millimeter-scale width, which has been well known

since the 1980s [30], [31], [35]. The question is whether a part of ∆Gf , if any, may be due to

the interaction of σxx with the micrometer-scale fracture process zone (FPZ), which is embedded

within the yielding zone. Doubtless the FPZ has a finite width of micrometer dimensions, several

times larger than the crystal size (but still 3 orders of magnitude smaller than the yielding zone).

To assess what part GFPZ of the ∆Gf gets dissipated within the micrometer-scale FPZ, one

could, in theory, use the nano-to-micro scaling law σN = σ1(1 + D/D1)
−1/(n+1), given by Eq.

64 in [108], and then proceed in the same way as in [86]. To that end, however, one would need

to calculate the hardening-plastic energy release rate of a theoretically sharp line crack (or slit)

within a plasticized specimen of the given geometry, which is not available and would be quite
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tedious to determine. To do it experimentally, one would need to fabricate geometrically scaled

notched specimens of several sizes, with cross sections ranging roughly from 0.01 mm to 0.1

mm. One could also use finite element analysis on the micrometer scale. But that would require

developing a realistic micrometer-scale constitutive damage model for the metallic polycrystal. All

these studies would be quite demanding and are beyond the scope of this study.

Nevertheless, the part GFPZ of the ∆Gf can be estimated from the observed size effect curves

in Fig. 4.6, based on the fact that, for the same T -stress, the size of the yielding zone for specimens

of different sizes D is about the same (as transpires from finite element simulations). This means

that the energy dissipation in the wake of the yielding is, for the same T , independent of D.

Hence, the difference in the size effect curves from the gap tests, seen in Fig. 4.6a, must be

ascribed to a change in the energy dissipation in the micrometer scale fracture process zone of the

polycrystal. So the variation of Gf and rp shown in Fig. 4.7a,b (for σxx ≤ 0.4fy) must be due to

a change of both the FPZ (at the micrometer scale) and the yielding zone. However, this change

was approximately 10-30 mm, indicating a much more significant contribution from the yielding

zone. To distinguish the contributions from these two zones requires either micrometer-scale gap

tests or numerical simulation results from a reliable constitutive law. The latter is presented in the

following section.

A noteworthy point is that the size effect curves in Fig. 4.6a and b cross each other, and the

effect of σxx gets reversed at the small size limit (as also marked in Fig. 4.8a). The reason doubtless

is that the small size asymptotic limit of the size effect law is a crack filled by a perfectly plastic

material, which may be reasonably described by the Mohr or von Mises yield envelope; see Fig.

4.8b. On the envelope one can see that increasing the magnitude of compression, |σ1|, causes a

drop in the transverse principal stress, σ2 = σyy, which controls the small-size asymptote.

A comparison with concrete is instructive. Fig. 4.8d shows the diagram of the dependence
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Figure 4.9: (a) The fitted fracture energy resulted from Eq. 3.50; (b) The variation of Gf with
different σxx.

of Gf of concrete on σxx/fc recently obtained experimentally [42], [76] (here fc = compressive

strength of concrete). At the compression limit, σxx = fc, this diagram drops to a zero value of

Gf . Could the same behavior be expected for aluminum? Certainly not. Although no tests for

|σxx| > 0.4fy have been conducted for aluminum, the diagram of Gf versus σxx must end at the

yield limit |σxx| = fy with a significant value of Gf .

Another difference is seen in the size effect curves. For concrete, these curves, shown in Fig.

4.8c, do not cross on approach to the small-size limit, unlike those for aluminum. Again, the reason

is that in concrete, at the uniaxial tensile strength limit there is no yielding plastic material bridging

the crack, regardless of the size.

Note that we also used Eq. 3.50 to fit these results and by no surprise, the Gf at zero σxx

resulted from both approaches are quite close (see Fig. 4.9). This is owing to the fact that, unlike

the experiment mentioned in the previous chapter, we used the smallest size (D = 12mm) that has

the ligament length is approximate to the size of the YZ.
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However, the difference seems to arise at different σxx’s. In particular, fitting to Eq. 3.50

would result in a higher values of Gf than Eq. 3.38. This is due to the fact that, as σxx increases,

the effective yielding zone, rp would evolve and exceeds the ligament length of smaller sizes. This

will shift the nature of the problem from small-scale to large-scale yielding and a transitional fitting

is necessary. In addition, fitting to Eq. 3.50 is more informative in a sense that, when such a small-

to-large-scale yielding happens, the power law portion of the optimized curves are extended to a

larger D regime, hinting the extension of the power-law −1/(n+ 1) applicability.

4.5 The effect of T-stresses via Bai-Wierbiczki model

4.5.1 The prediction with σxx

In this section, the experimental results will be fitted using the Bai-Wierbiczki plasticity-damage

model mentioned in the previous chapter. The results show an increase of the fracture energy Gf

with no presence of a crossing point when size increases. However, neither the fitted Gf using the

nominal strength of structure with different sizes nor the change of such value with different σxx

is quantitatively correct. Therefore, only the trend is discussed here. Fig. 4.10a shows that the

presence of σxx increases the nominal strength of structures at any size.

When σxx increases, the energy release rate will increase due to the enlargement of the YZ size

(or rp). This increase is monotonic because the constraint is further enhanced with the hardening

plasticity in the crack front; see Fig. 4.10a,b. This is evidenced by the plot of the yielding zone of

the beam of size D = 48mm. The slope of these curves, however, follows strictly the slope of the

material point’s constitutive law −1/(7.1 + 1) with an extension of this regime to a larger D.
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Figure 4.10: (a) The prediction of the size effect of aluminum alloy using Bai-Wierbiczki’s model;
(b) The corresponding change of the YZ as σxx increases.
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CHAPTER 5

THE EFFECT OF THE CRACK-PARALLEL STRESS IN OTHER MATERIALS AND

THE IMPLICATION OF THE GAP TEST RESULTS IN DIFFERENT ENGINEERING

PROBLEMS

5.1 The applicability to other materials

5.1.1 Fiber reinforced concrete (FRC)

Short random fibers change significantly the post-peak softening damage in concrete. Microplane

model M7f was calibrated to capture it [111] and has been used to simulate Gf for the present

specimen geometry; see Fig. 5.1a,b. Due to the lack of material for calibration, we extrapolated

the currently used model to account for the presence of fibers. First, the parameters for plain

concrete were determined from calibration as described in section 2. Later, the parameters related

to fibers were obtained from [111] as if 3% Dramix fiber was mixed to the same batch of concrete.

Later, the same set of different specimen sizes were numerically tested and results were provided

in Fig. 5.1a,b. Note that, this procedure is compliant with the calibration of M7f for FRC.

The presence of fibers enhanced the cohesive strength and the crack bridging effect, which

gives a higher Gf at zero σxx. Therefore, a mild increase of σxx also showed a relative increase in

Gf , but with a lower magnitude. This was probably stemming from the fact that the effect of fiber

on the friction boundary is weaker than on the normal boundary of M7, i.e., the fibers are more

effective in bridging the opening micro-cracks rather than preventing their sliding. Furthermore,

the decline ofGf towards zero is more gradual than in plain concrete. This phenomenon originates

from the inhibition of splitting micro-cracks, so that a higher σxx is needed to cause slip expansion
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and energy dissipation becomes more gradual (see Fig. 2.8).

5.1.2 Shale

The recently developed sphero-cylindrical microplane model for shale [112], intended for the sim-

ulation of hydraulic fracturing, can capture the effect of anisotropy due to bedding layers on the

damage development in shale. The orientation of the crack plane relative to bedding layers mat-

ters. Because the overburden pressure is about the double of the horizontal tectonic stresses and

the bedding layers are nearly horizontal, we simulate a shale specimen of the present geometry

with a crack normal to the bedding layers. For comparison, we add the case of a crack parallel to

the bedding layers. The resulting curve of Gf versus σxx is shown in Fig. 5.1c,d. In the case of the

crack normal to the bedding plane, the crack must cut through these layers which are stronger than

the interlayer material. Thus a higher energy release is required, which explains why compressive

σxx leads to much higher relative Gf -values than those for cracks parallel to bedding layers, as

seen in Fig. 5.1c.

5.2 Crack-parallel stresses at nanoscale

5.2.1 The fracture response of pristine transition metal dichalcogenides and the brittleness

of covalent bonds

Not until recently, an accurate measurement of J-integral have been achieved for 2D materials. This

study uses MoSe2 and MoS2 (both belong to a group of semiconducting materials called transition

metal dichalcogenides, or TMDs) as case study. The results are accompanied by an optimizing

framework that combines the thorough optimizing power on the global scale of a multi-objective

genetic algorithm–NSGA [113] and the stability of a local optimizer [114] which uses the corre-

lation between the optimized physical properties on the Pareto front. Note that the optimization
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Figure 5.1: (a–b) The variation of Gf and cf of 3% Dramix-fiber-reinforced concrete as functions
of σxx ; (c–d) The variation of Gf and cf of shale with bedding plane normal and parallel to the
crack as functions of σxx.
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only uses ab-initio data (obtained by the density functional theory code, or DFT) that are useful for

large-strain regime [113]. The excellent match between high-resolution images using transmission

electron microscope (HR-TEM) of the highly nonlinear zone (crack front and crack tip) enables

a direct comparison between two sources of data and enhances the confidence of the potential in

predicting the behavior of the studied TMDs in presence of vacancies, reported in the following

section.

5.2.2 The emergence of heterogeneous structures due to the presence of vacancies

It can be seen from the near-tip stress mapping and from the load-displacement curve that the

behavior of the material is quite brittle, except for a small nonlinear area; see Fig. 5.2. It is the

nature of the covalent bonds breakage that abruptly releases the energy from a stretching state and

the homogeneity of the material. However, the emergence of vacancies break that symmetry and

creates heterogeneity on the structural level. Without these vacancies, a crack parallel stress would

not have any effect.

In this section, we used MD simulations, with a Tersoff potential optimized by the framework

mentioned above, to examine the behaviors of atoms at the crack tip and at the crack edges in the

presence of vacancies. The model consisted of an 80×40 nm rectangular monolayer and a 20-nm

long crack, which was loaded along the y direction (see Fig. 5.2a). The boundary conditions were

set to be free or a fixed displacement value corresponding to a prescribed strain at the left and right

edges and periodic at the top and bottom. To prevent the curling-up of the free edges, repulsive

walls were placed parallel to the x-y plane at a distance of 10 Å away from the monolayer. This

is consistent with the fact that in a typical in-situ electron microscopy experimental setup, the

monolayer specimen is not completely freestanding but restrained by adhesion to the substrate. A

fast-loading rate was applied up to a point close to failure and then reduced to avoid rate effects in
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bond breakage when the energy stored in the strained monolayer was released abruptly. The atomic

positions at the onset of crack propagation were used in a discrete-to-continuum mapping scheme,

which was in turn used to compute the critical J-integral. A snapshot of the crack tip and crack

edges, on a pristine monolayer when the crack propagated to half of the domain size, is shown in

Fig. 5.2b. Along the crack, edges with single Se atoms and distorted hexagonal rings are observed

in both experiments and simulations17. We note that these types of edge structures could not be

formed by the mere removal of atoms, but only through a stress-assisted dissociating process. The

crack tip depicted in Fig. 5.2b also exhibits several features resembling those observed in atomic

configurations revealed by HRTEM and DFT, such as rotation of the Se-Mo-Se angular structure

and stretching of the bonds at the crack tip17. The agreement between experiments and ab-initio-

informed atomistic simulations, in fracture responses of pristine MoSe2 monolayers, enables us

to make predictions about the interaction of defects and the dominating cracks depicted in Figs.

5.2c-g. Building on this development, we aimed at understanding the fundamental role of each

vacancy type and their density on MoSe2 fracture. However, as presented earlier, due to the low

density of two vacancy types, iSe2 and iMo, these values were raised to be equal to the density of

iSe for comparison purposes.

The qualitative and quantitative effects of four vacancy types are summarized in Figs. 5.2c-g.

If iSe vacancies are present in the vicinity of a crack tip (Figure 3c and Movie 1), they mildly

deflect the crack path but barely change the fracture resistance, as presented in Fig. 5.2f. On

the other hand, other types of defects have more impact on the fracture response and associated

fracture energy. We note that due to their similar effects on fracture, iMo and iSe2 were considered

together. When vacancies of these types appeared ahead of the crack, they blunt the tip, which

locally decreases the stress singularity and triggers an edge-nucleated slip motion in the ±60◦

directions (Fig. 5.2d). This motion is enabled by the shear stress at ±60◦ of the tip and the
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presence of another isolated vacancy appearing along the slip plane. The deformation process

lowers the associated energy and stress barriers, allowing Se atoms to hop to a nearby location

and create a slip plane. At the same time, the decrease in stress singularity increases the energy

barrier for the crack to propagate at 0◦. As this barrier becomes larger than the one needed for

slip, a locally strengthening structure is nucleated. Interestingly, this local structural change traps

the propagating crack tip. As a result, the crack must proceed in a different path, which required

an increase in driving force and a higher fracture energy. By performing simulations on multiple

replicas, we found that the probability of these events is about 20%. This percentage implies that

the probability of such an event is relatively low even though the increase of the fracture energy

was significant. This leads to a more moderate increase of the average value obtained by simulating

several different replicas (see Figs. 5.2f,g).

On the other hand, when Se vacancy lines were present at the crack tip, they deflected the

crack towards the direction of the line, resulting in a tortuous kinked crack path (Fig. 5.2e). In

some cases, when two vacancy lines intersected, extra free edges were created, leading to a higher

dissipated energy. In addition, the crack tortuosity resulted in a more gradual release of energy

(see Fig. 5.2f). However, due to the loss of one layer of Se atoms and the brittle nature of covalent

bonds, the strength and overall fracture energy decreases when compared to pristine MoSe2 (see

Fig. 5.2g). We note that in all cases, the error bars in monolayers with vacancies are larger as we

accounted for both errors from various contours and various replicas with randomly generated va-

cancies. The fracture behavior in the presence of vacancies brought up two contrasting behaviors.

In the presence of iMo and iSe2 vacancies, the crack propagation occurs in the direction opposite

to the direction of the vacancies. In other words, vacancies repelled the crack. On the contrary, a

Se vacancy lines attracted and guided the crack along their orientations.
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Figure 5.2: (a) Domain sizes used in the uniaxial and fracture tests, D = 40nm; (b) A comparison
between HR-TEM and atomically simulated images of the crack tip and crack edges on a pristine
monolayer; (c) The stress distribution of σyy in front of the tip; (d-f) The interaction of the main
crack with isolated Se, Mo/Se2, and Se vacancy lines (red arrows show the propagating direction
of the crack); (g) Typical nominal stress-strain curves for pristine and in the presence of these types
of vacancies; and (h) The effect of these vacancies on MoSe2 fracture energy (yellow bar indicates
the experimental value).
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5.2.3 The effect of crack parallel tensile stress

Due to the single-atom thickness of TMDs, compressive normal stress will lead to the buckling

of a monolayer. Therefore, only crack-parallel tensile stress is considered here. When such a

stress is applied to the structure with iMo vacancy type, the phase transition which depends on the

dislocation glide is restricted, i.e., the atoms cannot displace to form the strengthening boundary

at the tip. Therefore, instead of being deflected, the cracks continues to grow in the x-direction;

see Fig. 5.3. This ultimately leads to a lower fracture energy and diminishes the role of the iMo

vacancy. Therefore, biaxial stress state needs to be considered in vacancy engineering problems.

5.3 The implications of the crack-parallel stress in engineering problems

5.3.1 Crack-parallel stresses: where do they matter in practice?

Aside from the cases mentioned in chapter 1, other practical situations may be affected by the

crack-parallel stresses.

1. Shear failure of RC beams and slabs, prestressed concrete

2. Longitudinal crack in pressurized aircraft fuselage

3. Crack in casing of solid-fuel rocket

4. Shear crack in aircraft wing, wing box, rudder, stabilizer

5. Fracking, esp. with poromechanical stress transfer to solid

6. Sea ice sheet pushing on a fixed structure

7. Pressure vessel fractures

8. Fracture in arch dam or arch bridge abutments, in footings

9. Crush cans for automobile crashworthiness

10. Cracks caused by projectile impact
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Figure 5.3: (a-b) Two possible atomic changes when the heterogeneous structure arises at the crack
front due to the isolated vacancies, leading to the formation of a strengthening phase and ultimately
a crack deflection (c). (d) The energy difference between path-a and path-b transitions without
(left0 and with (right) a crack-parallel tension σxx = 0.1σt in which such a stress suppresses the
formation of the strengthening phase.
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11. Cracks in inflatable shells

12. Most thermal cracks

13. Cracks in geology, in seismic events

14. Pullout fracture of anchors from rock or concrete

15. Fuselage cracks, shear cracks in fiber composite wings, wing box,rudder

16. Shear crack in fiber composite wind turbine leafs;

17. Particle comminution in projectile impact;

18. Many situations in fracture of fatigued plastic-hardening polycrystalline metals; mine open-

ings; bio-materials; , etc.

5.3.2 Gap test as an indicator of a model capability to describe damage and fracture prop-

erly

In this section, the ability of a few damage/fracture models to capture the results of the gap test

was assessed and presented in Fig. 5.4 (the description of each model was presented in Appendix).

Due to differences in accuracy of various numerical models, the size effect method, when applied

to different models, yields for the same material different values of fracture energyGf 0 at σxx = 0;

see Fig. 5.4a. Therefore, to facilitate comparisons, ratios Gf/Gf0 are used as the coordinate in the

diagram of Fig. 5.4b.

• The crack band model with microplane M7 damage law (CB-M7) and a tensorial plasticity-

damage law (CB-Gr) both follow the trend of gap test, which is an increasing Gf through

low to medium σxx and weakening at high σxx. Quantitatively, though, the CB-M7 captures

the variation of fracture energy Gf with σxx better than CB-Gr (Fig. 5.4).

• The PD models cannot predict the effect of crack parallel stress on Gf at all. Furthermore,

due to their excessive brittleness, the basic peridynamic model (bPD) incorrectly shows
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Figure 5.4: a) The deviations from the experimental fracture energy of CB, PF, and PD models.
b) Gap test results showing the relative change of measured concrete fracture energy Gf versus
crack-parallel compression σxx, normalized by uniaxial compression strength σc, and comparisons
to CB, PF, and PD models.

a monotonically decreasing Gf , explained by sudden bond breakages upon reaching their

compression strength limit). This model predicts a premature failure (indicated by the x

point) much before reaching the material compression strength σc. Among the PD models,

the bond-associated peridynamic model (PDba-Gr) shows the least error and captures at

least the increasing trend of Gf as σxx increases.

• As σxx increases, the basic phase-field model (bPF) shows incorrectly no change in Gf ,

which confirms it is a LEFM model. The formulation of an enhanced phase-field model

(PF-Wu), however, generates an FPZ with non-zero width that can interact with σxx. Yet this

model gives an insufficient monotonic growth ofGf which terminates prematurely (indicated

by another x point) because, in using the size effect method, the gap test fails by compression

before the gaps close. This is similar to what happens in the compression test of 2D confined

specimens in which the biaxial stress state actually weakens the calculated response.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTION

6.1 For quasibrittle materials

1. Moderate crack-parallel compressive stress, in-plane or out-of-plane, drastically increases,

even doubles, the Mode I fracture energy Gf (or fracture toughness KI c) of concrete, and

probably also shale and various rocks, coarse-grained ceramics and sea ice. This can be

explained by increase of hydrostatic pressure raising friction on inclined planes.

2. High crack-parallel compressive stress close to the compression strength limit drastically

decreases Gf and eventually reduces it to zero. This can be explained by frictional slip on

inclined planes and splitting microcracks, causing lateral dilation.

3. The cohesive crack model (CCM), as a line crack model with a scalar relation between crack-

bridging stress and relative displacement of crack faces, cannot capture these phenomena,

since the crack-parallel strains are not the thermodynamic variables in this model. So σxx and

σzz must be used as parameters which, however, appears to be only a crude approximation

which cannot capture the effect of the triaxial stress and strain history. The same objection

also applies to the recent cohesive crack model that is enriched with crack-parallel strain by

shrinking a crack band into a line [115] .

4. To capture the experimentally evidenced effect of crack-parallel compression in general,

either a microscale descriptive or a tensorial constitutive model for softening damage must

be used. This is effectively done with the crack band model coupled with the microplane

damage constitutive law. This law can mimic the effects of inelastic frictional slips and

microcracks separately on planes of different orientations. The damage laws in the phase-
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field models restricted to only a single damage parameter do not appear to be realistic.

5. Linear elastic fracture mechanics cannot capture the effect of crack-parallel compression.

As a line crack model, CCM can neither. Nor can the computational models based on LEFM

or CCM.

6. An effective method for fracture testing with crack-parallel compression is the gap test, in

which the compression is generated by plastic pads capable of perfectly plastic yielding, and

the supports are installed with a gap that closes only after the pads begin yielding.

7. The results are of particular interest for: a) the shear failure of reinforced concrete beams and

punching of slabs; b) fracture of prestressed concrete, c) for hydraulic fracturing of shale, at

which the overburden and tectonic stress introduce significant crack-parallel compression;

c) fiber composites, where buckling of embedded fibers reduces compression strength; d)

propagation of the front of slip on earthquake fault, subjected to enormous crack-parallel

tectonic and overburden stresses; e) splitting fracture of sea ice plates pushing against fixed

objects; f) cyclic and static fatigue crack growth under crack-parallel in-plane and out-of-

plane stresses; h) high biaxial tensile stresses in composite aircraft fuselage.

8. The Mohr circles for various levels of crack parallel stress in shale do not have an envelope.

Therefore, the use of Mohr-Coulomb failure criterion for shale or other quasibrittle materials

is unwarranted.

6.2 For ductile materials

1. In contrast to quasibrittle fracture, the analysis of ductile fracture of plastic-hardening ma-

terials is complicated by the existence of a millimeter-scale yielding zone separating the

unloading elastic zone of structure from the micrometer-scale damage zone of fracture pro-

cess.
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2. The effective size of the yielding zone is properly determined by using the principal of virtual

work to enforce equilibrium in the zone of transition between the plastic hardening zone and

elastic zone. Alternatively, the same effective size is obtained by minimizing the squared

difference of these fields integrated over this zone. This furnishes the yielding zone size as a

function of the crack-parallel T -stress.

3. In addition to the energy released from the structure, further energy is released from the

unloaded band of material trailing the advancing yielding zone. In addition to the energy

dissipated at fracture front, further energy is dissipated by irreversible unloading of the ma-

terial behind the advancing yielding zone. The energy flux described by the J-integral deliv-

ers energy through the yielding zone to the fracture process zone at crack front, but neither

releases nor dissipates any energy within the yielding zone.

4. Balance of energy release and energy dissipation leads to an approximate size effect law

for plastic-hardening fracture matching the asymptotic behaviors on both sides of the size

scale. The law is of the same form as the classical size effect law (of Type 2) for quasibrittle

materials such a concrete. However, the coefficients in this law are related to the material

properties in a different way.

5. Based on the size effect law derived, the identification of fracture energy and effective size

of the yielding zone for specimens significantly larger than the yielding zone is reducible to

linear regression.

6. When the test data range reaches into specimens so small that the development of the crack

tip yielding zone is restricted by the boundaries, a modification of the size effect law is

required. Linear regression is then impossible but identification of fracture properties is still

possible.

7. The derived size effect law is verified by two series of tests of scaled notched three-point
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bend specimens of aluminum.

8. The size effect method is a relatively simple method to estimate the fracture energy of plastic-

hardening materials. It is simpler than the elaborate procedure specified in ASTM-E1820

[90]. However, broader experimental verification is appropriate and some details might still

need to be worked out.

9. Extension of the gap tests of aluminum to three different levels of the crack-parallel com-

pressive stress σxx provides a clear evidence of the effect of σxx on the size effect, which is

found to be strong.

10. Regression analysis of the gap tests of different sizes for the same σxx level yields unambigu-

ous evidence of the σxx effect on the fracture energy Gf and effective radius of the yielding

zone rp.

11. Increasing σxx from 0 to 0.4fy approximately causesGf to double and rp to tripple. Although

no tests were made at |σxx| > 0.4fy, the extension of the curve of Gf versus σxx is expected

not to tend to 0 at σxx → −fy because in contrast to concrete, aluminum under compression

yielding in x-direction still has a significant tensile yield strength in the y-direction.

12. The results of the gap test of aluminum are rather systematic, with low scatter. This makes

the evidence clear.

13. The slope of −1/2 in the log-log size effect plot is an indicator of small-scale yielding and

applicability of linear elastic fracture mechanics in metals. The present specimen sizes are

not large enough to approach this asymptotic slope closely. One might see it as a disad-

vantage but it is actually an advantage because the material characteristic length rp can be

identified only by testing in the transitional size range between the small-size and large-size

asymptotes.

14. Unlike quasibrittle material such as concrete, the size effect curves of nominal strength of

geometrically similar notched specimens under various levels of crack parallel stress cross



133

each other and produces at the small size asymptotic limit a reverse trend, such that the

small-size asymptotic strength for a compression magnitude |σxx|) occurs at smaller σN .

15. To reproduce the present experiments mathematically, a fracture process zone of correct fi-

nite width, described by a realistic tensorial damage constitutive model, must be considered.

The finite element crack band model can do that.

6.3 Opportunities for future research

Aside from the studied materials, this thesis initiates multiple collaborations with Dr. Hubler at

University of Colorado-Boulder, Dr. Salviato at University of Washington-Seattle and Dr. Czabaj

at University of Utah to investigate the effect of crack-parallel stresses on fiber-reinforced concrete

and carbon-fiber composites with different weaving and laminate designs. As mentioned above,

the results of these tests have broad implications on the safety of the structures made of these

materials if their service conditions involve being frequently subjected to complex stress state.

Despite the speculation and the estimation of the changes in size of FPZ with different σxx,

an experimental technique is still needed to visualize such changes. This open opportunities for

the use of X-Ray and Micro Computed Tomography (µCT) to observe the microstructural change

at the crack tip. On the other hand, discrete particle methods such as LDPM [11], [12] can also

provide more insights into these mechanisms and the entire fracture process.

The FPZ with finite width begs the question of how the permeability of a hydraulic crack

changes when it propagates through the regions with different crack parallel stress levels. Some

of the microcracks may be suppressed, indicating a reduced permeability, while their dilation en-

hances the fluid flow. In a highly permeable reservoir, leakoff water may diffuse from the crack

into the matrix and alter the stress state at the tip. All of these questions require further research.
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[15] Z. P. Bažant, Scaling of structural strength. CRC Press, 2002.
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[93] Z. P. Bažant, “Scaling theory for quasibrittle structural failure,” Proceedings of the National
Academy of Sciences, vol. 101, no. 37, pp. 13 400–13 407, 2004.

[94] G. Barenblatt, Similarity, Self-similarity, and Intermediate Asymptotics. New York: Con-
sultants Bureau, 1979.



142

[95] Y. Bai and T. Wierzbicki, “Application of extended mohr–coulomb criterion to ductile
fracture,” International Journal of Fracture, vol. 161, no. 1, pp. 1–20, 2010.

[96] ——, “A new model of metal plasticity and fracture with pressure and lode dependence,”
International journal of plasticity, vol. 24, no. 6, pp. 1071–1096, 2008.

[97] L. Xue, “Ductile fracture modeling: Theory, experimental investigation and numerical ver-
ification,” Ph.D. dissertation, Massachusetts institute of technology, 2007.

[98] I. Barsoum, “Ductile failure and rupture mechanisms in combined tension and shear,”
Ph.D. dissertation, Hållfasthetslära, 2006.
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APPENDIX A

BAI-WIERBICKZKI MODEL FOR METALS

Even though one can find the relevant details of this model in the original paper [96], its essen-

tial equations are summarized here. First, the three invariants of a stress tensor σ are defined

respectively by:

p = −σm = −1

3
tr([σ]) = −1

3
(σ1 + σ2 + σ3) (A.1)

q = σ̄ =

√
3

2
S : S =
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1

2

[
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2
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=
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]1/3
(A.2)

where S is the deviatoric tensor. The dimensionless hydrostatic pressure η and the normalized

Lode angle are defined by:

η =
−p
q

=
σm
σ̄

(A.3)

θ̄ = 1− 6θ

π
= 1− 2

π
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r

q
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The extend plasticity is described by:

2σ̄2k
y = (σ1 − σ2)

2k + (σ2 − σ3)
2k + (σ3 − σ1)

2k (A.5)

σ̄ = Aε̄n [1− cη (η − η0)] [c
s
θ + (caxθ − csθ) γ] (A.6)

caxθ =

 1 for θ̄ ≥ 0

ccθ for θ̄ < 0
(A.7)

The constitutive relation can be summarized as:

ε̄f =
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Figure B.1: The constancy of the YZ’s size.

APPENDIX B

THE APPROXIMATE CONSTANCY OF THE YIELDING ZONE IN SCALED

STRUCTURES WITH SMALL-SCALE YIELDING

In the case of small-scale yielding, the first approach for scaling (Eq.3.38) assumes a constant size

of the yielding zone (YZ). To confirm this, we plot the characteristic size of the YZ (which is the

cubic root of such zone’s volume) of structures at different sizes. These values are measured at the

moment when J-integral on the structure at each scale reaches the same value, and the von Mises

constitutive law would suffice for this purpose (no crack growth).

The results in Fig. B.1 show that such an assumption is reasonable for the case of the gap test

geometry. However, as stated in the chapter 4, the smallest structure must be selected so that its

ligament length encloses the whole YZ.
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APPENDIX C

DISTINGUISH BETWEEN THE INTRINSIC VS. EXTRINSIC CRACK-PARALLEL

STRESS

The effect of the crack parallel stresses on the fracture energy of plastic material was studied

by many authors, via analytical and numerical analyses [30], [31]. However, we note that these

stresses are considered intrinsic, as they arise from the interaction between the loading configura-

tion and the crack tip constraint stemming from plasticity. Also, their effect is usually quantified

by an equivalent elastic annulus surrounding a yielding tip, with an implicit assumption of small-

scale yielding. Therefore, the T-stresses (or their normalized version Q in the J-Q theory) increase

proportionally with the applied load [116] and consequently, the effect of constant T-stresses is not

well-defined.

In our experiments, we intentionally selected a notch-to-length ratio that resulted in zero in-

trinsic crack-parallel stresses. Note that this is only feasible in bending-tensile specimens. In pure

tensile specimens such as single-etch-notch, σxx is non-zero and does not change sign. Therefore,

one should be careful in evaluating the fracture energy of geometrically scaled specimens for this

configuration because the peak loads at different sizes would correspond to different values of in-

trinsic σxx and hence different rp. The total σxx in such analysis should be the sum of the intrinsic

and the extrinsic value.

It can be seen in [117, Fig. 4] that not only the intrinsic σxx is zero at any size, such a value

also does not vary with the thickness-to-depth ratio. Therefore, in this study, the total σxx coincides

with the extrinsic values applied by the pad.
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APPENDIX D

THE CALIBRATION PROCESS FOR MICROPLANE MODEL, BAI-WIERBICZKI

MODEL AND OTHERS

In view of their diverse features, each model in this study had to be calibrated differently. The

finite element discretization (which serves as the geometry for all methods) began by selecting

the element size. For CB models applied to experiments lacking size effect data (which are what

matters most), the element size was initialized as the maximum aggregate size of concrete, da, and

then updated between da and 3da based on the optimum fitting of existing data. For PF models,

a sufficient number of elements need to be included in the band width w0 to avoid mesh bias and

ensure the convergence, which normally range from 3 to 6 elements. For PD models, the horizon

size was chosen to be 2.5−3 times the element size. For fairness of comparison, the horizon radius

was chosen to be 1/2 of the crack band width. This ensured that the same RVE volume would be

involved in the energy dissipation and that the PD results would be as close as possible to CB

results (note that the PD models behave strangely when the element sizes are spatially graded to

vary between a chosen minimum and maximum; e.g., in the unnotched three-point-bend specimens

in , the crack tends to form where small elements transit to larger elements rather than at midspan).

In the next step, the model parameters have been calibrated to fit best the data for each ex-

periment. In the case of size effect tests, the calibration was based on the peak loads and the

load-displacement curve for the smallest specimen, and then adjustments were made for larger

sizes. The size effect data, if available, were prioritized over the postpeak data for one size, as

they are more unambiguous [26]. Whenever available, data of other tests for the same concrete

were also considered; e.g., Hoover et al. [118], [119] performed uniaxial compression of cylinders
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and prisms, Brazilian tests, size effect tests on beams with different notch-to-depth ratios, etc.,

on the same concrete with a high consistency. For experiments with more limited material data,

qualitative characteristics like crack patterns were also taken into account.

One must also note that each model requires different amount of data. The bPF model uses

only three parameters—E,Gf and Poisson ratio ν. Hence it requires fewer data than the CB-M7

model which involves 8 free parameters E, ν, k1, ...k6 (also, some parameters are more relevant

than others, e.g, ν is unimportant for the Type 2 size effect tests).

For example, in the case of microplane model for concrete the calibration starts with the ad-

justment of its three scaling parameters to fit the tensile strength and Young’s modulus. Four more

parameters can be easily adjusted to fit the confined compression data. The initial fracture energy

Gf is obtained through the fitting of the maximum loads for scaled notched fracture specimens

using the size effect law (if such data exist). If Gf is specified , the scaling parameters of M7 are

best adjusted so as to fit the size effect law (SEL) that corresponds to theGf value [14], [21]. Alter-

natively, a given Gf can be matched as the area under the initial tangent of the postpeak softening

load-displacement curve (corrected for dissipation away from the FPZ, if any). The total fracture

energy GF is obtained as Gf times the ratio of the total areas under the total load-displacement

curve and under its initial tangent.
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APPENDIX E

DESCRIPTION OF MODELS USED IN CHAPTER 5

E.1 Basic phase-field model

The phase-field concept was introduced more than half a century ago in physical chemistry, as a

way of ”spreading out”, for numerical purposes (e.g. [120, Fig. 2.2]), the Heaviside step function

that represents a sharp interface between, for example, the solid and liquid phases of the material

(see [120, Fig. 4.1]). Similarly, a sharp crack may be regarded as a Dirac delta function, and the

idea is to ”spread it out” via a smooth ”phase field”, φ, as shown in Fig. E.1a) [121]. In the simplest

form, the function φ is chosen so that the energy minimization would cause the φ to decay from

1 at the crack line to 0 and φ ∝ e±x/w0 . However, φ physically represents no material damage

characterized by some constitutive law and there is no associated Irwin’ material characteristic

length lc. The length scale w0 merely serves the numerical purpose of anchoring a sharp line crack

with a point-wise tip to the mesh of elastic finite elements, so as to achieve mesh independence of

crack direction. The phase parameter φmust be applied as a stiffness reduction factor in the phase-

field band of a width w0 spanning over a sufficient number of finite elements. Thus w0 represents

a ”fictitious” damage (or stiffness loss) of the finite element system, as shown in Fig. E.1a by the

exponential decay across the imagined (shaded) damage field toward the line crack. Typically, the

elasticity matrix of the material is multiplied by c = 1 − φ at all finite element integration points

in that band.

In each loading step (tn−1, t), n = 1, 2, ..., one calculates the state vector Xn = [un, φn]
T

from the preceding state vector Xn−1 = [un−1, φn−1]
T by a variational algorithm (Fig. E.1a)
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described as follows:

 un−1

φn−1

 ⇒ ↓


[Ψe]Ψc=const. ⇒ min

[Ψc]Ψe=const. ⇒ min

↑ ⇒

 un

φn

 (E.1)

Starting with Xn−1 = [un−1, φn−1]
T , the free energy Ψe (Helmholtz’s, isothermal) of the finite

element system with its applied loads and imposed displacements is minimized while keeping the

phase-field parameter φ = φn−1 (or its free energy Ψcn−1) constant. This yields a system of linear

equations for u. Then the free energy Ψc of the phase-field φ is minimized while keeping Ψe

constant. This yields another system of equations for the discrete values of φ. These minimization

may but need not be iterated. The result is the new vector Xn = [un, φn]
T at the end of the loading

step. This alternative minimization (which is usually referred to as the ”staggered scheme”) makes

the algorithm efficient.

The key feature of the phase field is the expression for the free energy. Its convenient form is:

Ψc =

∫
Ω

Gf

2w0

(
φ2 + w2

0|∇φ|2
)

dV (E.2)

where Gf is the fracture energy of the material which, together with the elasticity matrix, forms

the complete input of material properties; V is the volume of the body domain Ω, and ∇ is the

gradient operator.

Upon minimization of Ψc, in which the expression in the parenthesis was postulated in 1998

by Francfort and Marigo [121], leads to the vanishing of the following expression as a function of

the transverse coordinate, x:

w2
0|∇φ|2 − φ2 = 0 (E.3)
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Figure E.1: Schematic concept of phase-field φ, chosen with w0 or supporting band, and profile
of damage c = 1− φ.
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This is a differential equation for phase-field variable φ. Its solution for φ = 1 at the crack line is:

φ = e−|x|/w0 . Some other expressions, giving more complicated decay functions φ, have also been

introduced [122] to improve the representation of a certain type of fracture.

To validate the phase-field models, good fits of a few selected experiments, such as propagating

curved cracks, have often been presented as supportive evidence. For example, [123, Figs. 19,

20] presented an experimental validation for a standard compact tension specimen with a hole

drilled on the side of the notch extension line including 1) the up-and-down curve of load versus

deflection along with the curve of crack length versus the crack opening displacement; and 2)

the crack path in the same specimen. The hole causes the crack to run toward it, and the phase-

field predictions matched these observations, qualitatively as well as quantitatively. However, the

question of scaling was left unanswered.

Another validation attempt used a standard double-edge-notched tensile specimen under axial

tensile loads at the ends. Without a check of instability breaking symmetry, two opposite curved

cracks are predicted to propagate from both sides symmetrically [124, Fig. 4]. Even though the

load versus displacement curve agreed with the test, the overall failure prediction was unsatisfac-

tory since the energy analysis of the stability of the of post-bifurcation path [49], [125] showed

that only a crack from one side can propagate.

An obvious weakness of the phase-field model is that the existing validated constitutive laws

cannot be used directly. Instead, they need to be approximated in terms of free or potential energy

functions, which cannot be fully equivalent and lead to complicated material characterizations in

terms of multiple inelastic functions and complex loading/unloading responses.

Another weakness of the phase-field models is the arbitrariness in the choice of boundary

condition imposed upon the microscopic force (i.e., the state variable that is work-conjugated with

the phase variable). Mostly the Neumann boundary condition is chosen, but with no meaningful
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physical justification.

E.2 Phase-field modifications by Feng and Wu

Feng and Wu [126] modified the degradation and the dissipation functions of the original PF model

[121] to approximate the energy dissipation by the cohesive force acting along the FPZ. His energy

density reads:

Ψ(ε(u), g(φ)) = g(φ)Ψ+
0 (ε(u)) + Ψ−

0 (ε(u)) +
Gf

4cww0

(
w(φ) + w2

0|∇φ|2
)

(E.4)

where g(φ) =
(1− φ)d

(1− φ)d + aφ(1 + bφ)
, a =

4EGf

πw0f 2
t

(E.5)

Ψ+
0 =

⟨σ1⟩2+
2E

; Ψ−
0 =

1

2E

[
σI ⟨σI⟩− + σ2

II + σ2
III − 2ν (σIIσIII + σIσIII + σIσII)

]
(E.6)

w(φ) = 2φ− φ2, cw =

∫ 1

0

√
w(ζ)dζ (E.7)

Using calculus of variations, one can find the solution [u, φ]T that minimizes the integral of the

energy function (E.4) over the entire domain.
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E.3 Phase-field modifications by Fei and Choo

Fei and Choo separated the energy density into three parts: elastic, fracture and interfacial friction,

separated by a threshold fracture energy Ht:

Ψ = Ψe +Ψf +
3GfII

8w0

(
φ+ w2

0|∇φ|2
)

(E.8)

where Ψe =

∫ t

tp

σbulk : ε̇dt−
∫ t

tp

[1− g(φ)]τbulkγ̇dt (E.9)

Ψf =

∫ t

tp

[1− g(φ)]τrγ̇dt (E.10)

g(φ) =
(1− φ)n

(1− φ)n +mφ(1 + pφ)
, n = 2, p ≥ 1, m =

3GfII

8w0

1

Ht

(E.11)

E.4 Overview of the concept of peridynamics

The theory of peridynamics was formulated (and the new term conceived) in 2000 by Silling [127].

Later it branched into several versions [128], [129]. The original and simplest version of peridy-

namics, the bond-based model [128], is characterized by the integral:

ρ(x)ü(x, t) =

∫
H

f (u′ − u,x′ − x, t) dH + b(x, t) (E.12)

where t = time, x = coordinate vector of material point, u = displacement vector at the center

point, ρ = mass density, b = body force vector; H = volume or area within the assumed horizon, f

= assumed function characterizing the central interacting force between material points. The bond-

based version assumes that all central-force bond interactions are independent of each other. This

assumption leads to a fixed Poisson’s ratio equal to 0.25 [130] and limits further generalizations.

To overcome this problem, a version of peridynamics called ”state-based” [129] was created
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upon introducing the assumption that the interacting forces within a horizon are inter-dependent

and could be characterized by means of the states of forces T and states of deformation vectors in

all the bonds emanating from the same center Y:

ρ(x)ü(x, t) =

∫
H

[T(x, t) ⟨x′ − x⟩ −T (x′, t) ⟨x− x′⟩] dH + b(x, t) (E.13)

It has been generally overlooked that (as pointed out in [72]) peridynamics actually represents

a mathematically rigorous refinement and generalization of the ”network model” proposed in 1977

by Burt and Dougill [131]. In that model, a field of random nodes is created and each node is

connected by bars to all adjacent nodes up to a certain maximum distance (which is what is in

peridynamics called the horizon radius). After criticisms at conferences, these authors promptly

switched to another approach.

In 2016 [72], several fundamental problems with the concept of peridynamics were identified,

as follows:

1) Lattice microstructure: The basic physical problem with peridynamics is that it implies a

lattice microstructure (Fig. E.2a), which leads to a particle-skipping potential and a neglect of

shear interactions that resist particle rotations. The lattice microstructure is unrealistic even for

the state-based version. Although that version allows the equivalent continuum strain and stress

tensors for each center point to be calculated and thus any constitutive damage model including the

microplane model M7 to be applied, the underlying lattice characterized by central forces exists

nonetheless.

2) Particle skipping interactions are another physically unrealistic feature of peridynamics.

These fictitious interactions are particularly detrimental for the modeling of compression-shear

damage and fracture. In reality, the material contains finite particles which not only displace but
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Figure E.2: a) Central forces (or lattice bonds) connecting each material point to all other material
points within its horizon, shown as two dashed circles, and the same for the horizon (unreduced)
of a point at the boundary (note the reduced density of connections near the boundary) [130]. b)
Particles (or grains) in a quasibrittle material and their interactions by contact normal and shear
forces. c) Horizons spanning a crack or fracture process zone, with interactions AA′, AA′′, AA′′′,
BB′, CC′, DD′ when considered undisturbed by the crack (note that CC′′, DD′′ must be eliminated,
while BB′′ is getting progressively weaker while moving along the FPZ closer to crack tip.
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also rotate (Fig. E.2b). Above the atomic scale, no potential communicating particle-skipping

interactions exists. Indeed, interactions with the second and farther neighbors are communicated

through the intermediate particles, by interparticle normal and shear forces. The shear forces

resist relative rotations of particles (which is the basis of the LDPM model [10], [11]. Another

oddity of the particle skipping interactions is that, in the bond-based version of peridynamics, the

micromodulus governing the overall material stiffness has the queer dimension of MN/m6.

3) Boundary conditions: The peridynamic horizon that skips several particles inevitably leads

to unphysical boundary conditions, as well as crack face conditions and and FPZ border conditions

(Fig. E.2 ). The horizon of the nodes located near the boundary protrudes outside the boundary

or across the open crack. To prevent it, such interactions must be deleted. This alone would, of

course, significantly decrease the stiffness and strength of the boundary layer or crack surface layer

(of thickness δB = horizon radius).

To clarify the last point graphically, consider the diagrams in Fig. E.2a, which shows the central

force interactions within a circular horizon that emanate from the central point. When the horizon

reaches beyond the boundary, the protruding central force interactions must be deleted. But this

causes a major decrease of the stiffness and strength of the boundary layer. Also, it degrades the

accuracy of the calculation of the deformation gradient in the correspondence state-based method.

To counter this problem, surface-correction factors have been applied, as reported in [130]. But

again this is only a partial remedy.

Another problem arises in applying the free surface boundary conditions. Since the displace-

ment derivatives are unavailable for PD, a surface traction needs to be smeared over a certain

volume. The displacement and velocity boundaries, however, are usually applied indirectly onto

an imagined no-fail zone [130] considered as an undamaged zone of the material.

4) Boundary conditions at crack faces and the FPZ dilemma: The boundary problem is more
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severe and more complicated at the crack faces, and even more so at the boundary of the FPZ

or the cohesive crack zone. Ahead of the crack and of its FPZ (Fig. E.2c), the central force

interaction along segment AA′′ crossing the crack extension line is, of course, undisturbed. The

interaction along segments or CC′′ or DD′′ crossing the open crack must be deleted, and the same

surface correction factor must be introduced. A tougher predicament arises for the interactions

along segment BB′′ crossing the FPZ, for which the central forces crossing the FPZ get weakened

only partly—strongly near the crack tip, where the damage is high, but weakly near the front of

damage zone (dashed ellipse in the figure), where the damage is still developing. A satisfactory,

physically realistic resolution of the FPZ predicament looks impossible (this will be shown in the

following comparisons with experiments).

5) Homogenization, localization, wave dispersion, fatigue: Another physical problem, high-

lighted in [72], is that the same material length, the horizon, governs both the elastic homoge-

nization and damage localization. Dispersion of waves by damage or plastic zones, and by innate

heterogeneity cannot be distinguished and independently controlled. However, experimental com-

parisons with wave propagation experiments are beyond the scope of this study. So is the fatigue

loading of materials such as concrete [132], which is another unresolved problem.

The previous criticism of peridynamics [72] was strictly theoretical. No support by compar-

isons with experiments was given. This is remedied here. Comparisons are given not only for

PD but also for PF models. In many cases, different versions of PD models, i.e., bond-based and

state-based, give very different predictions for the same experiment. Even worse, subcategories

of state-based models, which are ordinary and non-ordinary (the latter are usually misnamed as

the ”correspondence-based” models) [130], suffer from the same deficiency. In this study, both

”state-based” model types have been investigated. The performance of a bond-based model [133]

will be briefly discussed in Appendix B.
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E.5 The mathematical basis of bond-associated PD

The PD deformation gradient is originally defined in [129], [130]. If combined with nodal quadra-

ture, it permits zero-energy deformation modes [134], [135]. Therefore, in a recent development

[136], [137], a new Lagrangian correspondence-based deformation gradient associated with bonds

connecting material points X and X′ has been proposed:

F (X,X′) = Favg (X,X′) + Fcorr (X,X′) (E.14)

Favg (X,X′) =
F(X) + F (X′)

2
(E.15)

Fcorr (X,X′) = ((x′ −X)− Favg (X,X′) · (X′ −X))⊗ (X′ −X)

|(X′ −X)|2
(E.16)

the authors computed the basis-function gradient by methods commonly used in the mesh-free

formulation. The accuracy of the gradient calculation is assured by the polynomial-reproducing

conditions imposed on these basis functions.

E.6 The mathematical form of CDPM2 model by Grassl et al. [66]

The stress tensor at a material point is computed by:

σ = (1− ωt)σt + (1− ωc)σc; σ = De : (ε− εp) (E.17)

The plasticity part of the model can be written as:

fp (σ, κp) = F (σ, qh1, qh2) (E.18)

ε̇p = λ̇
∂gp
∂σ

(σ, κp) (E.19)
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Figure E.3: a) A curved crack on the compact-tension specimen with a hole in front of the notch is
captured by the CB model in (b). c) The load versus crack-opening-displacement (COD) curve of
the specimen in (a).

Note that the plastic potential gp and plastic loading function fp are different. The growth of

compressive and tensile damages is described as:

fdt = ε̃t(σ)− κdt (E.20)

fdt ≤ 0, κ̇dt ≥ 0, κ̇dtfdt = 0 (E.21)

ωt = gdt (κdt, κdt1, κdt2) (E.22)

fdc = αcε̃c(σ)− κdc (E.23)

fdc ≤ 0, κ̇dc ≥ 0, κ̇dcfdc = 0 (E.24)

ωc = gdc (κdc, κdc1, κdc2) (E.25)

E.7 The ability of the crack-band microplane model in describing curved crack

For a finite crack front width, the direction of crack growth is significantly affected by the triaxial

stress state at the front. This effect plays a role in the curved propagation of a crack band in a
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compact tension specimen in which a hole has been drilled on the side of the crack extension

line. As mentioned in Sections 3 and 4, both PF and PD [123], [138] predict a smoothly curved

crack running into the hole. Despite the ruggedness imposed by the mesh, the M7 crack band

model, too, predicts a similar curved path into the hole; Fig. E.3. Note that, even if the band were

not rugged, the path could not be identical. The reason is that the aforementioned triaxial stress

effect, influencing the crack path direction, cannot be captured correctly by the PD and PF models.

Therefore, and also because of missing the crack-parallel compression, the PD and PF crack paths

cannot be quite realistic. This triaxiality effect in the FPZ is best manifested by sideways crack

propagation in orthotropic fiber composites, making a sharp angle on the crack path. Such as path

is correctly predicted correctly by the crack band model [139] but not by LEFM, PF and PD models

(nor by the cohesive crack model).
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