
10/15/2018 Geometric programming - optimization

https://optimization.mccormick.northwestern.edu/index.php?title=Geometric_programming&printable=yes 1/9

Geometric programming
From optimization

Authors: Helen Wu (ChE345 Spring 2015)
Steward: Dajun Yue and Fengqi You

Contents

1 Introduction
2 Model Formulation

2.1 Standard Form
2.2 Example

3 Solution Approaches
3.1 Convex Form
3.2 Feasibility
3.3 Generalized GP
3.4 Methods

4 Illustrative Example
5 Applications
6 Conclusion
7 References

Introduction
Geometric programming was introduced in 1967 by Duffin, Peterson and Zener. It is very useful in the applications
of a variety of optimization problems, and falls under the general class of signomial problems[1]. It can be used to
solve large scale, practical problems by quantifying them into a mathematical optimization model. Geometric
programs (GP) are useful in the context of geometric design and models well approximated by power laws.
Applications of GP include electrical circuit design and other topics such as finance and statistics[2].

Model Formulation
Standard Form

A geometric program is composed of an objective function that is subjected to constraints. All of the components
must be in the nature of monomials and posynomials. A monomial is a single term and takes the form of

where the coefficient C>0 and the exponents, . Note that use of “monomial” is different from the meaning
in algebra; here, monomials can have negative exponents. A posynomial takes the form of the sum of one or more
monomials:

10/15/2018 Geometric programming - optimization

https://optimization.mccormick.northwestern.edu/index.php?title=Geometric_programming&printable=yes 2/9

A geometric program in standard form looks like this:

where fi are posynomials, gi are monomials, and xi are optimization variables. The objective must be to minimize a
posynomial. Often times the geometric program must be reformulated into standard form. If presented with a
maximizing problem, the inverse can be taken to convert it into a minimizing problem[2].

Example

Consider the following example problem:

with variables .

The equivalent standard form GP is as follows

Solution Approaches
In order to solve a GP, there are many factors to consider. The GP must be in a specific form in order to solve, and
we must determine the feasibility of the problem.

Convex Form

10/15/2018 Geometric programming - optimization

https://optimization.mccormick.northwestern.edu/index.php?title=Geometric_programming&printable=yes 3/9

In order to solve a geometric program, it must be reformulated into a nonlinear, convex optimization problem via a
change in variables. By applying a logarithmic transformation, GP can be seen as an extension of linear
programming. Setting yi = log xi results in the following GP:

By transforming the GP into this form, it can be solved more efficiently[2].

Feasibility

In order to solve the GP, the problem must be feasible. If it is not feasible, then no optimal solution will be found.
In this case, at least one constraint must be relaxed. This can be done by adding a new scalar variable, s, to find a
value x̂ that is “close to feasible.” The GP now looks like this:

This problem can be solved to find the optimal values of x̄ and s̄. S̄ is indicative of how feasible the original GP is.
For example. If s̄=1, then x̄ is feasible for the original problem. If s̄ is greater than 1, then we set x̂ equal to x̄.

Solvers also may use a trade-off analysis of the GP, where the constraints are varied to see how they may affect the
optimal solution. This results in a “perturbed” GP, and can be modeled as:

Instead of having the constraints less than or equal to 1 or equal to 1, it is instead replaced with parameters u and v
which are positive constants. If u is greater than one, then the inequality constraint is loosened; if u is less than 1,
then the inequality constraint is tightened. Solving this perturbed model for different values of u and v allows
analysis on how these values relate to the optimal solution. An optimal trade-off curve can be formed by plotting
p(u,v) versus ui, with all other ui and vj equal to one. This will display the “optimal trade-off” of the i th inequality
constraint and objective.

Similarly, a sensitivity analysis allows the examination of how small changes in the constraints affects the optimal
solution[2].

Generalized GP

In the case that the polynomials are taken to a fractional power, they can be handled by introducing a new variable
and a bounding constraint. If, for example, f1 and f2 are posynomials taken to a fractional power, then we can
introduce new variables t1 and t2 which represent the upper bounds of the posynomials. We can set

10/15/2018 Geometric programming - optimization

https://optimization.mccormick.northwestern.edu/index.php?title=Geometric_programming&printable=yes 4/9

Adding these new variables will now make the problem compatible with GP[2].

Methods

There have been many different methods that have been proposed to solve different types of GPs, and all have their
own advantages and disadvantages. Some examples include:

To solve a engineering optimization problem, Coello
and Cortés created a method using a genetic algorithm
with an artificial immune system. A limitation of this
method includes that you can only obtain local optima
solutions.
To solve a Lipschitzian problem, Horst and Tuy created
an analytical approach. A limitation of this method is
that it is only feasible for problems that contain
variables that can be reduced by analytical techniques.
Sherali and Tuncbilek proposed a reformulation-
linearization technique. This technique linearizes the
problem by adding new variables, and creates new
constraints. A limitation of this method is that it
requires a long trial-and-error process and therefore can
be harder to use.
Li and Chang suggested using the approach of a using a
logarithmic transformation of the problem, followed by
a piecewise-linearization. This method is easy to
implement, and can be used to calculate global minima.
However, a limitation is that the addition of extra
binary variables may cause it to become very complex.

Huang and Kao expand on the Li and Chang's proposed
method of a logarithmic piecewise-linearization, and attempt
to reduce the number of binary variables. Considering the
posynomial function This process includes the following
steps:

1. Considering posynomial function ,
take the logarithm to get .

2. The expression can be represented in a different way to
obtain "break points" which are used to linearize the problem. Here, can also be
expressed as

where are the break points, and

where are the break points for . Refer to Figures 1 and 2.

https://optimization.mccormick.northwestern.edu/index.php/File:GP_Fig1.png
https://optimization.mccormick.northwestern.edu/index.php/File:GP_Fig2.png

10/15/2018 Geometric programming - optimization

https://optimization.mccormick.northwestern.edu/index.php?title=Geometric_programming&printable=yes 5/9

3. Let represent a set of binary variables where . Then, the
following will be true:
 ,

.

4. Rewriting the expressions in the way allows us to calculate the slopes of the piecewise-linearization
function. The slope between points and can be calculated as:

where .

5. A similar process is used when linearizing . Let represent a set of binary variables
 where . Then, the following will be true:

 ,

Therefore the slope between points and can be calculated as:

 ,

where .
6. By rewriting all these expressions, the number of binary variables is reduced, and the GP may be simpler to

solve[1].

Illustrative Example
Here is an example taken from a paper written by Huang and Kao regarding their method[1].

Given this problem, we can set:
 and .

10/15/2018 Geometric programming - optimization

https://optimization.mccormick.northwestern.edu/index.php?title=Geometric_programming&printable=yes 6/9

Assuming that we would like to calculate three break points for within the upper and lower bounds of
 which are [0, 4.3455]. Following the method previously explained, the break points, can be

calculated in the following way:

The slopes can then be calculated:

We can also rewrite the expressions of as:

and we can express as:

where and

10/15/2018 Geometric programming - optimization

https://optimization.mccormick.northwestern.edu/index.php?title=Geometric_programming&printable=yes 7/9

Now we can use the same method to calculate the break points of within the range of [1,5].

. The slopes are then calculated as:

We can also rewrite the expressions of as:

and we can express as:

where and

10/15/2018 Geometric programming - optimization

https://optimization.mccormick.northwestern.edu/index.php?title=Geometric_programming&printable=yes 8/9

The problem then becomes

This new problem now has 8 binary variables, rather than the 16 binary variables originally using Li and Chang's
approach described above. The answer to this problem is with a minimal value
of 9.446[1].

Applications
There are many different applications of GPs in different fields. Here are some examples:

1. Engineering
Membrane separation process design
Chemical equilibrium problems
Statistical mechanics
Minimum weight design
Entropy maximization
Optimizing nuclear systems
Structural design

2. Other
Regional planning of economic models
Inventory models in management science
Transportation planning
Maximizing reliability[3]

Conclusion
In conclusion, geometric programming is a very powerful type of application that can be used to solve a variety of
different optimization problems. There are many different methods to solve GPs, and it depends on the different
constraints and conditions for the specific GP. Although it may be difficult to quantify a problem into a GP, doing
so can be very useful to get an approximate answer, if not an exact answer, which still can be valuable. This kind of
programming has applications across a variety of fields from engineering to economics, and will continue to be
useful in the future as more problems are formatted into GPs.

References
1. Huang, C. H.; Kao, H. Y. (2009). An effective linear approximation method for geometric programming
problems. IEEE Conference Publications. 1743-1746.

10/15/2018 Geometric programming - optimization

https://optimization.mccormick.northwestern.edu/index.php?title=Geometric_programming&printable=yes 9/9

2. Boyd, S.; Kim, S. J.; Vandenberghe, L.; Hassibi, A. (2007). A tutorial on geometric programming. Springer
Science+Business Media, LLC, 1-11.

3. Ecker, J. G. (1980). Geometric programming: methods, computations and applications. Society for Industrial
and Applied Mathematics, 22(3), 338-341, 351- 352.

Retrieved from "https://optimization.mccormick.northwestern.edu/index.php?
title=Geometric_programming&oldid=4601"

This page was last modified on 7 June 2015, at 22:44.
This page has been accessed 116,285 times.

https://optimization.mccormick.northwestern.edu/index.php?title=Geometric_programming&oldid=4601

