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ABSTRACT

Large-scale Geometry of First Passage Percolation on Graphs of Polynomial Growth

Christian Gorski

This dissertation proves several results for first passage percolation on graphs of polyno-

mial growth. The class of limit shapes for first passage percolation with stationary weights on

Cayley graphs of virtually nilpotent groups is characterized. Then strict monotonicity theo-

rems for independent first passage percolation on graphs of polynomial growth and quasi-trees

are given. Specifically, for such graphs, when we compare the expected passage time metrics

with respect to two different weight measures, strict stochastic domination of weight measures

implies (an analogue of) strict inequality of the associated “time constants” as long as the dom-

inating measure satisfies an appropriate subcriticality condition. This is proven by showing that

in the subcritical regime, long geodesics “use all possible weights linearly often in expectation,”

which is a result of independent interest. Moreover, a similar strict monotonicity theorem with

respect to variability of measures holds for such graphs if and only if the graphs satisfy a geo-

metric condition we call admitting detours. Lastly, we show that for Cayley graphs of virtually

nilpotent groups, in the supercritical regime, there is a nontrivial “percolation cone” where strict
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monotonicity with respect to stochastic domination fails; that is, the subcriticality assumption

in our strict monotonicity theorems is necessary.
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CHAPTER 1

Introduction

This thesis exposits some results on the large scale geometry of first passage percolation

(FPP) on graphs more general than the “hypercubic lattice” (i.e. the standard Cayley graph

of Zd, or the “d-dimensional grid”), particularly graphs of polynomial growth. First-passage

percolation is a natural random metric on a graph which can be thought of as a perturbation of

the usual graph metric. Most of the work in FPP has been done on the standard Cayley graph of

Zd, which has polynomial growth of degree d; thus studying more general graphs of polynomial

growth is a natural generalization. If one wishes to study Cayley graphs of polynomial growth,

then by a famous theorem of Gromov [16] these are precisely the Cayley graphs of virtually

nilpotent groups, so these also form a natural class of graphs to study.

One way of understanding the large-scale geometry of this random metric is to consider

scaling limits. The famous “shape theorem” of Cox and Durett [10] tells us that the random

metric given by FPP on Zd has a deterministic scaling limit given by a norm on Rd. Moreover, it

was shown in work of Benjamini-Tessera [5] and Cantrell-Furman [8] that many classes of ran-

dom stationary metrics on Cayley graphs of virtually nilpotent groups have deterministic scaling

limits given by Carnot-Carathéodory metrics on a nilpotent Lie group. (More information on

Carnot-Caratheéodory metrics is given in Section 3.8).

Existence of such scaling limits is guaranteed in rather general settings, but explicit de-

scriptions of the limit metrics remain elusive in almost all non-trivial cases. Many expected

qualitative aspects of the limit metric also remain unproven. For instance, it is conjectured that
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the unit ball of the limit norm associated to any independent FPP on Zd with a continuous weight

distribution is strictly convex, but this is not known. On the other hand, the limit metric for sta-

tionary FPP on Zd is essentially unrestrained; by a theorem of Häggström and Meester [20],

any norm on Rd is the scaling limit of some FPP metric with stationary weights. Thus, the set

of norms attainable as scaling limits of FPP metrics on Zd is precisely the set of norms on Rd.

The first main theorem of this dissertation extends this theorem of Häggström and Meester to

the setting of arbitrary Cayley graphs of arbitrary virtually nilpotent groups, that is, the theorem

characterizes which Carnot-Carathéodory metrics (CC-metrics) on a nilpotent Lie group L∞

actually arise as the scaling limit of some stationary FPP metric on a particular Cayley graph

of a finitely generated virtually nilpotent group Γ. The answer is all CC-metrics if Γ is itself

nilpotent. If Γ is only virtually nilpotent, then the set consists of precisely those CC-metrics

which are conjugation-invariant. This is proven in Chapter 3. The work in this chapter is

adapted from [3] and is joint work with Antonio Auffinger.

Since limit shapes are hard to describe explicitly for a fixed weight measure, another way

one might try to understand them is by trying to understanding the relationship between dif-

ferent limit shapes as we vary the parameters of our FPP model. The theorems of Chapter 4

concern comparison of limit shapes in the setting of independent FPP. For two weight measures

ν̃, ν, if we have ν̃ ≺ ν for some partial order on measures, can we conclude anything about the

corresponding limit metrics, e.g. some sort of strict inequality? Theorems to this effect were

proven by van den Berg and Kesten [36] in the classical case of the hypercubic lattice. The

theorems in Chapter 4 of this dissertation are of this type, but apply to general bounded degree

graphs which either have polynomial upper and lower growth bounds of the same degree, or

which are quasi-isometric to trees. In this coarse-geometric setting, in a subcritical regime we
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have “strict monotonicity” with respect to stochastic domination. “Strict monotonicity” with

respect to variability in the subcritical regime is shown to be equivalent to a fine-geometric

condition which we call “admitting detours.” We give sufficient conditions for a Cayley graph

of a group to admit detours. In particular, we find that for any Cayley graph of any virtually

nilpotent group, if the graph is not isomorphic to the standard Cayley graph of Z, then we

have strict monotonicity with respect to variability in the subcritical regime. The proof of the

strict monotonicity theorem for stochastic domination proves roughly that “the weight measure

is absolutely continuous with respect to the expected empirical measure,” that is, “all possi-

ble weights are used by the geodesic linearly often in expectation.” This chapter is adapted

from [14].

Lastly, in Chapter 5, we show that the subcriticality assumption in our strict monotonicity

theorems is necessary for Cayley graphs of virtually nilpotent groups, at least in the restricted

setting that our weight measures have an exponential moment. That is, if the weight measure

has an exponential moment but is supercritical, then there is some direction for which strict

monotonicity of the time constant with respect to stochastic domination fails. Failure of strict

monotonicity is related to the existence of “percolation cones,” roughly speaking, directions in

which there exist infinite edge-geodesics with all edges having minimal weight.
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CHAPTER 2

Basics of first passage percolation

The purpose of this chapter is primarily to fix definitions and review basic facts related to

graphs, Cayley graphs, groups, and first passage percolation.

2.1. Graphs, Cayley graphs, virtually nilpotent groups

By a graph we mean a pair G = (V, E) of sets and an “endpoint” or “boundary” map from E

to the set of subsets of V of size 2. In particular, we allow more than one edge between each pair

of vertices but we do not allow self-loops. (Disallowing self-loops is simply a matter of conve-

nience; virtually all questions considered in this dissertation are easily seen to be equivalent for

a graph G with self-loops and the graph G′ obtained from G by deleting all self-loops). A graph

is called simple if there are no parallel edges, that is, each pair of vertices has at most one edge

between them. Throughout, the “ambient graph” G is tacitly assumed to be connected, locally

finite (i.e. each vertex has finite degree) and infinite (that is, V is countably infinite); we will

often however consider subgraphs of G which are finite and/or disconnected.

A path π in G is an alternating sequence of vertices and edges (starting and ending with a

vertex) such that the vertices immediately preceding and following an edge comprise the edge’s

boundary. If π starts at x ∈ V and ends at y ∈ V , we often write π : x → y. We will typically

abuse notation and use the same symbol π to refer to the set of edges appearing in the path π (so

π ⊂ E). |S | denotes the cardinality of the set S , so in particular, if π is a path, |π| is the number

of edges appearing in the path (again abusing notation and considering π as a subset of E). If π
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does not contain any repeated edges, then this agrees with the usual notion of length of a path.

In fact, we will mostly be concerned with paths which do not have any repeated vertices; we

call such paths self-avoiding (or vertex-self-avoiding).

One of the most important classes of graphs we will consider are Cayley graphs of finitely

generated groups. Given a finitely generated group Γ and a finite generating set S , the Cayley

graph of Γ with respect to S is the graph which has vertex set V = Γ and which has an edge

connecting x, y ∈ Γ whenever x = ys for some s ∈ S .1 For instance, the “hypercubic lattice”,

or standard Cayley graph of Zd, is the Cayley graph associated to the standard generating set

{(1, 0, ...0), (0, 1, 0, ..., ), ..., (0, ..., 0, 1)}. The triangular lattice is isomorphic to the Cayley graph

of Z2 associated to the generating set {(1, 0), (1, 1), (0, 1)}.

Cayley graphs are examples of transitive graphs. A graph is called (vertex)-transitive if the

group of automorphisms Aut(G) of G acts transitively on V , i.e. for any v,w ∈ V , there is an

automorphism φ of G such that φ(v) = φ(w). In other words, the action of Aut(G) on V only

has one orbit. In transitive graphs “all points look the same.” We call a graph almost-transitive

if the action of Aut(G) on V has only finitely many orbits, that is, “there are only finitely many

types of points.” Some theorems in this dissertation are restricted to Cayley graphs, but others

apply to transitive graphs, almost transitive graphs, or even more general graphs of bounded

degree. (Recall that a graph has bounded degree if there is some D < ∞ such that each vertex

has degree at most D, i.e. the vertex is an endpoint of at most D edges).

1There are actually two slightly different natural definitions of Cayley graph, depending on whether one wishes to
restrict to simple graphs or allow parallel edges, see Section 4.5. All the theorems in this dissertation apply to both
reduced and unreduced Cayley graphs, although Chapter 3 was written assuming all Cayley graphs are reduced,
for simplicity.
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A graph G gives a natural metric on V by

d(x, y) := inf{|γ| : γ : x→ y} = inf{|γ| : γ : x→ y self-avoiding}.

We write B(x,R) for the ball {y ∈ V : d(x, y) ≤ R} in this metric and write S (x,R) for the

sphere {y ∈ V : d(x, y) = R}. Note that if G has degree bounded by D, B(x,R) contains at

most DR vertices. An almost-transitive graph is said to have polynomial growth if the function

R 7→ |B(x,R)| is bounded above by a polynomial in R. For example, the standard Cayley graph

of Zd has polynomial growth of degree d. In Chapter 4 we will also consider graphs which are

not necessarily almost-transitive but have strict polynomial growth, that is, uniform upper and

lower bounds on the volume growth by polynomials of the same degree.

A famous theorem of Gromov [16] says that a Cayley graph has polynomial growth if and

only if the underlying group is virtually nilpotent. A group Γ is nilpotent if Γk = {1} for some

finite k, where Γ0 = Γ and Γi+1 = [Γ,Γi] is the lower central series for Γ. (Here the notation

[H,K] denotes the subgroup generated by the set of all commutators [h, k] := hkh−1k−1 with

h ∈ H and k ∈ K). Note that abelian groups have Γ1 = {1} and are thus nilpotent. The

simplest example of a nonabelian nilpotent group is the Heisenberg group, that is, the set of

upper triangular 3 × 3 matrices with integer coefficients and ones along the diagonal. A group

Γ is virtually nilpotent if it contains a finite index subgroup Γ′ which is nilpotent. (Recall that a

subgroup Γ′ ≤ Γ has finite index if Γ contains only finitely many cosets of Γ′; equivalently, the

action of Γ′ on Γ by right multiplication has only finitely many orbits).

One feature of nilpotent groups that will be useful for many of our results is that they always

have nontrivial center. Recall that the center Z(Γ) of a group Γ is the set of elements that
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commute with every other element (sometimes called central elements), i.e.

Z(Γ) = {z ∈ Γ : gz = zg for all g ∈ Γ}.

A group Γ is abelian if and only if Γ = Z(Γ). It will turn out that many geometric constructions

on the standard Cayley graph of Zd can be adapted to constructions on general Cayley graphs

of nilpotent group by using central elements of Γ.

2.2. First-passage percolation

First passage percolation (FPP) was introduced by Hammersley and Welsh [22] in 1965 as a

model for the spread of a fluid through a porous medium. It is a random perturbation of a given

graph distance, where random lengths are assigned to edges of a fixed graph. For a survey on

this model, the reader is invited to read [2, 26] and the references therein.

Mathematically, FPP is is simply a natural procedure for producing random metrics on a

fixed graph. Let G be a graph with vertex set V and edge set E. Given a random function

w : E → [0,∞), we say that w(e) is the weight of the edge e, and for any path of edges π we

define its total weight or passage time to be

T (π) :=
∑
e∈π

w(e).

(Note that if w(e) = 1 for all e, we have that T = d, the usual graph metric).

The idea is that if w(e) is the amount of time it would take a stream of fluid to cross e, then

T (π) is the amount of time it would take to pass through the whole path π. We further define



17

the first passage percolation (FPP) (pseudo)metric T to be the (pseudo)metric on V given by

T (x, y) := inf{T (π) : π : x→ y is an edge path }.

So if fluid flows from a source at site x, T (x, y) is the first time it reaches site y. One readily

checks that T is symmetric and satisfies the triangle inequality. If P(w(e) = 0) > 0 for some

edge then T is a pseudometric, i.e. we have with positive probability that T (x, y) = 0 for some

x , y; otherwise T is a genuine metric.

The central focus of the study of first-passage percolation is studying T , particularly its

large-scale geometry, and the behavior of T-geodesics, that is, paths π : x → y such that

T (π) = T (x, y).

Without restrictions on w, this problem is, of course, very underdetermined. The most com-

mon setting is independent first passage percolation, that is, the case that {w(e)}e∈E is a family

of independent random variables sampled from some common probability measure ν supported

on [0,∞). This is the setting of Chapter 4 and Chapter 5. If (as is the case for Chapter 4) we

are considering other possible weight measures, e.g. ν̃, then the associated random weights are

denoted by w̃ : E → [0,∞), and the induced FPP metric is denoted by T̃ ; we proceed similarly

for other diacritics.

More generally, one could simply require w to be stationary; that is, there may be correla-

tions between the weights w(e) of different edges, but the joint distribution of the w(e) must be

invariant under the action of some group Γ which acts on G by graph isomorphisms. This is the

setting of Chapter 3. In fact, for that chapter, we restrict to the case that Γ is a finitely generated

virtually nilpotent group and G is a Cayley graph for Γ.
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CHAPTER 3

Asymptotic shapes for stationary first passage percolation on Cayley

graphs of virtually nilpotent groups

3.1. Introduction

3.1.1. Main result

Consider first-passage percolation on Zd where the edge weights are i.i.d. random variables.

Under suitable moment conditions on the weight distribution, one obtains the famous shape

theorem of Cox and Durrett (d = 2) [10] and Kesten (d > 2) [26]: there exists a norm µ on

Rd such that FPP on Zd has almost surely a deterministic scaling limit given by the normed

vector space (Rd, µ). The limiting norm µ depends on the distribution of the edge weights. It

is a famous open question to determine which possible metrics arise as FPP limits on Zd with

i.i.d. edge weights. In particular, it is expected that the limit unit ball should be strictly convex,

ruling out trivial metrics such as `1 or `∞.

In 1995, Haggstrom and Meester [20] showed that if the assumption of i.i.d. edge weights

on Zd is relaxed, some of the expected restrictions on the limit norm disappear. Precisely, they

showed that for any norm ρ on Rd there exist stationary edge weights on Zd which give a

FPP model whose scaling limit is (Rd, ρ). In this chapter, we explore this direction for FPP in

different (non-abelian) graphs.

Benjamini and Tessera [5] explored i.i.d. FPP models on Cayley graphs of finitely generated

virtually nilpotent groups. This class of groups is precisely the class of groups with polynomial
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growth, due to a famous theorem of Gromov [16], and includes the classical example of Zd.

The question of scaling limits of such groups was first answered in the deterministic setting by

Pansu [30], who proved that, for a large class of invariant metrics on such groups, the scaling

limit is given by a Carnot-Carathéodory metric on a certain nilpotent Lie group. (See Sections

3.1.2 and 3.8 for an explanation of Carnot-Carathéodory metrics).

Benjamini and Tessera prove that, under mild conditions, an i.i.d. FPP on a virtually nilpo-

tent Cayley graph also has a deterministic scaling limit given by a Carnot-Carathéodory metric

on a nilpotent Lie group. Later Cantrell and Furman [8] proved an analogous theorem for sta-

tionary edge weights. Again, in all these cases, the limit shape depends on the distribution of

the edge weights, and in the i.i.d. case, restrictions on realizable metrics are conjectured but

largely unproven.

A natural question then arises, in the spirit of Haggstrom and Meester [20] : for stationary

FPP on virtually nilpotent groups, are all possible limit shapes realizable? What are the required

symmetries for the limit metric? More explicitly, given a Cayley graph of some finitely gener-

ated virtually nilpotent group and a Carnot-Carathéodory metric on the associated nilpotent Lie

group, do there exist stationary edge weights which give a FPP with a scaling limit given by

that Carnot-Carathéodory metric? The goal of this chapter is to provide an affirmative answer to

this last question in the nilpotent case and to obtain a similar characterization of all limit shapes

of stationary FPPs in the virtually nilpotent case. Our main theorem is the following.

Theorem 3.1.1. Let Γ be a finitely generated virtually nilpotent group with generating set S ,

and let E be the edge set of the corresponding Cayley graph. Let dΦ be a Carnot-Carathéodory

metric on the associated graded Lie group L∞. If Φ is conjugation invariant, then there exist
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Figure 3.1. A portion of the Cayley graph of H(Z) with respect to the generating
set {X,Y,Z}. Source: Wikipedia; image by Gabor Pete. Colors are for visual
contrast only.

stationary weights w : E → R≥0 such that the associated metric space (Γ,T ) satisfies

(
Γ,

1
n

T
)
−−−→
n→∞

(L∞, dΦ)

in the sense of pointed Gromov-Hausdorff convergence.

To make the theorem more concrete, let us consider the example of the Heisenberg group,

the simplest nonabelian nilpotent group. The integer Heisenberg group H(Z) has presentation

〈X,Y,Z|[X,Y] = Z, [X,Z] = [Y,Z] = 1〉,

and can be realized as the subgroup


1 a b

1 c

1


: a, b, c ∈ Z


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of GL3(R). It sits as a cocompact lattice inside the real Heisenberg group H(R), the group of

real upper triangular matrices with 1s on the diagonal. Given any norm Φ on the subspace

V :=




a

c


: a, c ∈ R


of the Lie algebra of H(R), there exists a metric called the Carnot-Carathéodory metric dΦ on

H(R) associated to Φ (see Section 3.8). So in the special case of the Heisenberg group, our

theorem is as follows:

Theorem 3.1.2. Let Φ be any norm on V, dΦ the associated Carnot-Carathéodory metric on

H(R). Then, given any Cayley graph of H(Z), there exist stationary edge weights w : E → R≥0

(E the edge set of the Cayley graph) such that the resulting FPP metric T is such that

(
H(Z),

1
n

T
)
−−−→
n→∞

(H(R), dΦ)

in the sense of pointed Gromov-Hausdorff convergence.

3.1.2. Definitions, notations, and background

We now provide the definitions and the setup for Theorem 3.1.1. Let Γ be a finitely generated

virtually nilpotent group, and let S be a finite generating set. The Cayley graph associated to

(Γ, S ) is the graph with vertex set Γ and edge set E := {{g, gs} : g ∈ Γ, s ∈ S }. For an element

g ∈ Γ, set

|g| := inf{n ≥ 0 : ∃s1, ..., sn ∈ S ∪ S −1 such that s1 · · · sn = g},
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and denote by d the word metric

d(x, y) := |x−1y|

on Γ. Note that d is a left-invariant metric on Γ. If γ is an edge path in E, we will denote by |γ|

the number of edges in γ. Thus we have

d(x, y) = inf{|γ| : γ is a path from x to y}.

Let w be a random function w : E → [0,∞). We call w(e) the weight of the edge e. The

collection of weights w is called stationary if the distribution is invariant under the left action of

Γ, that is, for every finite collection of edges f1, ..., fk ∈ E and every g ∈ Γ, the joint distributions

of (w( f1), ...,w( fk)) and (w(g−1 f1), ...,w(g−1 fk)) are equal. The weights are called ergodic if the

underlying probability space is ergodic, that is, if all Γ-invariant events have probability 0 or 1.

For an edge path γ = ( f1, ..., fk), we define

T (γ) :=
k∑

i=1

w( fi)

and for two x, y ∈ Γ we define the passage time from x to y to be

T (x, y) := inf{T (γ) : γ is a path from x to y}.

T is a random pseudo-metric on Γ and the pseudo-metric space (Γ,T ) is called first passage

percolation or FPP on Γ. Taking expectations we see that ET also gives a metric on Γ; if w is

stationary, then this metric is left-invariant.

Let N be a finite index normal torsion-free nilpotent subgroup of Γ. Such a subgroup is

constructed in Proposition 3.9.1 in Section 3.9. We denote the abelianization N/[N,N] of N by
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Nab. This is a finitely generated abelian group, and so its torsion elements form a finite subgroup

Nab
tor. We define Nab

f ree := Nab/Nab
tor.

There is a graded nilpotent Lie group L∞ associated to Γ (via N), and a certain subalgebra of

its Lie algebra, which we denote by gab, is equipped with a natural isomorphism Nab ⊗ R � gab.

Each norm Ψ on gab determines a metric dΨ on L∞ which is called the Carnot-Carathéodory

metric associated to Ψ; conversely, every Carnot-Carathéodory metric on L∞ comes from a

unique norm on gab. More explicit descriptions and constructions of these objects can be found

in Section 3.8, as well as [8].

Lastly, there is a construction which plays a central role in our proof, which associates a

norm on gab to a metric on Γ. Since |·| is a symmetric subadditive function on Γ (i.e. |ab| ≤ |a|+|b|

for all a, b ∈ Γ), and hence a symmetric subadditive function on N, it induces a symmetric

subadditive function on Nab
f ree � Z

d via the quotient map N → Nab
f ree, x 7→ xab

f ree:

|y|ab := inf
x∈N,xab

f ree=y
|x|.

As a symmetric subadditive function on Nab
f ree � Z

d, | · |ab is asymptotically equivalent to a unique

seminorm on Rd � Nab
f ree ⊗ R � Nab ⊗ R. That is, there is a unique seminorm ‖ · ‖ on Nab ⊗ R

such that

‖y‖ − |y|ab = o(y)

where the in the little-o notation we may take any norm on Nab ⊗ R to measure y. Similarly,

assuming our weights are integrable, ET (1, ·) is also subadditive, and hence it induces a subad-

ditive fuction T̃ on Nab
f ree which is asymptotically equivalent to a unique seminorm Φ on Nab⊗R.



24

The conjugation action of Γ on N induces an action of Γ on Nab ⊗ R, hence induces an

action on the set of norms on Nab ⊗ R. We call a norm on Nab ⊗ R conjugation-invariant if it

is invariant under this action. The conjugation action is discussed further in Section 3.4, but in

the case that Γ itself is already nilpotent, the action is trivial, and hence in this case all norms

on Nab ⊗ R are conjugation invariant. In Section 3.4 (see Proposition 3.4.2), we also show that

conjugation-invariance is a necessary restriction, that is, if Φ is a norm associated to an invariant

metric (such as ET when each T (x, y) is integrable), then Φ is necessarily conjugation-invariant.

In the notations above, it is known that (L∞, d‖·‖) is the scaling limit of (Γ, d) [30] and that

(Γ,T ) almost surely has scaling limit (L∞, dΦ) for many choices of edge weights [5,8]. Theorem

3.1.1 above shows that any Carnot-Carathéodory dΨ as in (3.8.1) is the scaling limit of some

stationary FPP model on any Cayley graph of Γ, so long as Ψ is conjugation-invariant.

3.1.3. Proof strategy and organization of the chapter

The following theorem of Cantrell and Furman [8] provides a starting point for us:

Theorem 3.1.3. ( [8]) Let w be ergodic stationary weights such that T is bi-Lipschitz to d,

that is, there exist 0 < k < K < ∞ such that

kd(x, y) ≤ T (x, y) ≤ Kd(x, y)

for all x, y ∈ Γ almost surely. Let Φ be the norm on gab associated to the metric ET on Γ, and

let dΦ be the Carnot-Carathéodory metric on L∞ associated to Φ, as above. Then almost surely

(3.1.1)
(
Γ,

1
n

T
)
−−−→
n→∞

(L∞, dΦ)
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is the sense of pointed Gromov-Hausdorff convergence.

Remark 3.1.1. The fact that the norm Φ we describe above is the same norm constructed

in [8] is perhaps not obvious except in the case that Γ = N is torsion-free with torsion-free

abelianization. A proof that the two constructions do give the same answer is given in Section

3.9.

Remark 3.1.2. We take the identity as the base point in the above pointed Gromov-Hausdorff

convergence. We omit the base point in our notation throughout.

Remark 3.1.3. Cantrell and Furman don’t require the random metric T to come from edge

weights but require it to be inner (see Section 3.9) in addition to being bi-Lipschitz to d. On

the other hand, if T comes from edge weights which are uniformly bounded above (implied by

the bi-Lipschitz condition on T), then T is inner, so the above statement is implied by the main

theorem of [8]. Thus our theorem shows that the collection of scaling limits of FPPs coming

from stationary edge weights on a fixed Cayley graph is no smaller than the collection of scaling

limits of stationary inner metrics which are bi-Lipschitz to d.

Remark 3.1.4. In Section 3.10 we provide a step that was omitted in the proof of Theorem

3.1.3 in [8]. It guarantees that the convergence in (3.1.1) is indeed in Gromov-Hausdorff sense.

See Remark 3.10.1 for more details.

In view of Theorem 3.1.3 and the correspondence between Carnot-Carathéodory metrics

and norms on gab, in order to prove Theorem 3.1.1, it suffices to prove:

Theorem 3.1.4. Let Γ be a finitely generated virtually nilpotent group with generating set

S , and let E be the edge set of the corresponding Cayley graph. Let Ψ be a norm on Nab ⊗ R
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which is conjugation-invariant. Then there exist ergodic stationary weights w : E → R such

that T is bi-Lipschitz to d, and such that the subadditive function on Nab
f ree induced by ET (1, ·)

is asymptotically equivalent to Ψ.

Proof of Theorem 3.1.1 given Theorem 3.1.4. Let dΦ be a Carnot-Carathéodory metric on

L∞ and suppose that the associated norm Φ on gab is conjugation-invariant. Given any Cayley

graph of Γ, use Theorem 3.1.4 to choose ergodic stationary weights w such that the resulting T

is bi-Lipschitz to d and such that the norm on gab associated to the metric ET on Γ is equal to

Φ. Applying Theorem 3.1.3 to w then gives

(
Γ,

1
n

T
)
−−−→
n→∞

(L∞, dΦ)

in the sense of pointed Gromov-Hausdorff convergence, as desired. �

Thus, our main theorem is reduced to the problem of constructing stationary weights which

induce a given norm Ψ on gab. Haggstrom and Meester [20] give a construction for inducing

the correct norms in the Zd case, and in the simplest case, the core of our work is “lifting”

the Haggstrom-Meester construction from the abelianization of the finitely generated nilpotent

group to the group itself, and then checking that everything goes through. Therefore, to give

an idea of the construction we start by proving Theorem 3.1.4 in this simplest case—namely,

the case that Γ = N is a torsion-free nilpotent group with torsion-free abelianization, and the

generating set S projects to the standard generating set of Zd � Nab = Γab. As mentioned above,

in this case conjugation-invariance does not play a role, and any norm Ψ is attainable. This is

done in the next two sections.
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In Section 3.4, we discuss the restriction of conjugation-invariance and the nontrivial sub-

tleties that arise when treating the general virtually nilpotent case. The rest of the chapter is then

dedicated to proving Theorem 3.1.4 in full generality. In particular, this involves understanding

a virtually abelian “almost-abelianization” of Γ, and then again “lifting” a construction from

the “almost-abelianization” to Γ. In order to accommodate all possible Cayley graphs as well

as the slightly non-abelian nature of the “almost-abelianization”, the general construction has a

“coarser” flavor than the original construction and requires some non-trivial modifications. This

completes the main body of the proof.

The last three sections give supplementary results and information (and formed the appendix

of [3]). Section 3.8 provides more background on the associated graded nilpotent Lie group and

Carnot-Carathéodory metrics. Section 3.9 shows that the construction at the end of Section

3.1.2 coincides with the construction in Cantrell-Furman’s theorem [8]. In Section 3.10, we

review the notion of Gromov-Hausdorff convergence and we also provide a missing step in

Cantrell-Furman’s theorem so that it guarantees Gromov-Hausdorff convergence.

3.2. Construction of the edge weights when Γ is nilpotent and torsion-free with torsion

free abelianization

Assume that Γ = N is a finitely generated torsion-free nilpotent group with torsion-free

abelianization. Moreover, assume that S = {s1, ..., sd} is such that the image of S under the

quotient map Γ → Γab is a basis, and we choose an isomorphism Γab � Zd such that S maps

to the standard basis for Zd. In this and the next section we prove the result of Theorem 3.1.41

1Technically we prove a weaker version of Theorem 3.1.4 which still implies the conclusion of Theorem 3.1.1; see
Remark 3.2.1 below.
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under these extra assumptions, which then implies the result of Theorem 3.1.1 under these extra

assumptions, as shown above.

First, let us note that since Γ is nilpotent, we cannot have d = 0, and if d = 1 then in fact

Γ � Z. (For this latter fact, let a ∈ Γ be such that 〈a〉[Γ,Γ] = Γ; then also 〈a〉 = Γ by Theorem

16.2.5 in [25]). It is easy to induce any norm on Z no matter what the finite generating set is

using deterministic weights, so from here on we assume d ≥ 2.

We are given a norm Φ on Γab ⊗ R � Rd. We want to find weights w : E → R≥0 for Γ

such that the subadditive function T̃ on Γab � Zd induced by ET via Γ → Γab is asymptotically

equivalent to Φ. Let B ⊂ Rd � Γab ⊗ R be the unit ball of Φ. Note that B is a compact, convex,

and symmetric (i.e. x ∈ B implies −x ∈ B) subset of Rd which contains an open neighborhood

of 0. The construction below is a “lift” of the construction of Haggstrom and Meester [20].

We first recall the following geometrc result from [20].

Proposition 3.2.1. There is a constant C0 depending only on d such that, for any u ∈ Rd, if

z is a point in Zd with minimal Euclidean distance to u, there exists a directed edge path γ from

0 to z in the standard Cayley graph Zd with the following properties:

(1) Any point on γ is at Euclidean distance at most C0 from some point on the line through

0 and u in Rd

(2) If a subpath of γ starts at x ∈ Rd and ends at y ∈ Rd, then 〈y − x, u〉 > 0.

(3) The number of edges in γ is the least possible, i.e.
∑d

i=1 |πi(z)|, where πi : Rd → R is

projection onto the ith coordinate.

We will use the Proposition above as follows. Let {bn}
∞
n=1 be a countable dense subset of the

boundary of B ⊂ Rd. For each n ≥ 1, let zn be a point in Zd with minimum possible distance
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to 2n bn
‖bn‖2

∈ Rd, where ‖ · ‖2 is the standard Euclidean norm on Rd. Let γn be the path in Zd

associated to bn from Proposition 3.2.1. In short, these nice paths γn have the property that they

(1) stay close to the straight line through bn, and (2) they travel “monotonically forward” along

bn.

We lift each of these nice paths γn to an edge path γ̄n in the Cayley graph of Γ that shares

similar properties. The quotient map Γ→ Γab � Zd induces a covering map of Cayley graphs, so

just let γ̄n be the unique lift of γn starting at 1 ∈ Γ. Equivalently, paths in Cayley graphs starting

at the identity are naturally in correspondence with words in the generating sets. The path γn

then corresponds to a word in e1, ..., ed, which we lift to a word in s1, ..., sd, which corresponds

to a path γ̄n in our Cayley graph for Γ.

For each n ≥ 1, set En ⊂ E to be the set of edges of the Cayley graph of Γ which share at

least one vertex in common with an edge of γ̄n. Note that |En| . 2n, where the implied constant

depends on |S | but is independent of n.

Now we define a configuration of edge weights ηn : En → R+. First choose h > 0 sufficiently

small so that {x ∈ Rd : ‖x‖2 ≤ h} ⊂ B. Next, choose K < ∞ sufficiently large so that 1
K−2h−1·C0

≤ h

and K ≥ h−1. We then define

ηn( f ) =


|πi(bn)|
‖bn‖

2
2

f ∈ γ̄n, f labeled by si,

K, otherwise

where πi is again the projection onto the ith coordinate. If x ∈ Γ, then we can also define the

translated configuration Txηn : xEn → R+ by Txηn( f ) = ηn(x−1 f ). The reason for these choices

will hopefully become clearer later, but in short we want the weights along the paths γ̄n to yield

fast passage times (with correct asymptotic speed) in the direction bn
‖bn‖2

. Moreover, En \ γ̄n
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forms a “shell” of slow weight K edges around the fast “highway” γ̄n; when we have defined

our weights, these “shells” will discourage paths from leaving the “highways.”

Let (Yx)x∈Γ and (Zx)x∈Γ be collections of i.i.d. random variables with distributions that satisfy

P(Yx = 0) = 1
2 ,P(Yx = n) = 3−n for n ≥ 1, and Zx is uniformly distributed on [0, 1]. We also

assume that the collections (Yx)x∈Γ, (Zx)x∈Γ are independent.

Finally, the weights w : E → R+ are defined as follows: if Yx = n > 0, assign the edges in

xEn according to Txηn. If two configurations compete for the same edge, then the configuration

with the larger value of n wins; if both configurations have the same value of n, then the one

with the larger value of Zx wins. Any remaining edges with no assigned weight are given weight

K.

More formally: for each f ∈ E, let X f := {x ∈ Γ : f ∈ xEYx} be the set of starting points

of configurations competing for the edge f . Let n f := max{Yx : x ∈ X f } be the largest value

of n among these competing configurations, and let x f ∈ Γ be the element of X f which attains

the maximum (that is, Yx f = n f ) and has the largest value of Zx among such elements, that is,

Zx f = max{Zx : x ∈ X f ,Yx = n f }. Then

w( f ) =


Tx f ηn f ( f ) X f , ∅

K otherwise.

Note that x f is a.s. unique since all the Zx are uniform, and it exists since |X f | < ∞ a.s. by

the calculation

E|X f | =
∑
x∈Γ

P( f ∈ xEYx) =

∞∑
n=1

∑
x∈Γ

1{ f∈xEn}P(Yx = n) ≤
∞∑

n=1

|En|3−n .

 ∞∑
n=1

2n · 3−n

 < ∞.
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Here we used that Γ acts freely on E and so #{x ∈ Γ : x−1 f ∈ En} ≤ |En|. Hence the weights are

well-defined. They are also evidently stationary and a.s. bounded above by K < ∞. The weights

are also ergodic, since we can take our probability space Ω to be (N × [0, 1])Γ, corresponding

to the outcomes of Yx and Zx, which is clearly ergodic as a direct product of probability spaces

over Γ.

Remark 3.2.1. These weights do not give a metric which is bi-Lipschitz to a word metric,

since πi(bn) will typically cluster around 0 and a uniform lower bound on the edge weights is

not available.

By the remark above, this construction does not suffice to prove Theorem 3.1.4. There are

two ways around this. In Section 3.5, we provide a different construction in the general virtually

nilpotent case which is bi-Lipschitz to the word metric, and implies Theorem 3.1.4 as stated.

Secondly, the weights constructed above do satisfy a weaker condition which one might call

“bi-Lipschitz away from the diagonal.” That is, we have a uniform upper bound K on the edge

weights, and there exist some constants 0 < C < ∞ and k > 0 such that for any x, y ∈ Γ with

d(x, y) ≥ C, we have

(3.2.1) T (x, y) ≥ kd(x, y)

almost surely. This fact follows from Lemma 3.7.2 proven in Section 3.7 below. Taking M and

k′ as in Lemma 3.7.2, and doing a similar analysis as in the next section, one sees that if a path γ

with |γ| ≥ M contains no edges of weight K, then it (or its reverse) is a subpath of a “highway”
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xγ̄n (Yx = n) and hence has passage time

T (γ) =
1
‖bn‖

〈
D(γ),

bn

‖bn‖2

〉
≥

(
inf
b∈B

1
‖b‖2

)
k′|γ|.

On the other hand, if a path γ with M ≤ |γ| ≤ 2M does contain an edge of weight K, then

T (γ) ≥ K ≥ K
2M |γ|. One then concludes (3.2.1) with k := min

((
infb∈B

1
‖b‖2

)
k′, K

2M

)
and C := M.

Under this weaker assumption, the proof of Theorem 3.1.3 given in [8] goes through un-

changed. Thus, although we prove a weaker version of Theorem 3.1.4 in the next section,

namely Theorem 3.1.4 with the conclusion “T is bi-Lipschitz to d” replaced by the conclu-

sion “T is bi-Lipschitz to d away from the diagonal”, we can then use the stronger version of

Theorem 3.1.3 to still conclude the result of Theorem 3.1.1 in this restricted setting.

3.3. Proof of Theorem 3.1.4 when Γ is nilpotent and torsion-free with torsion free

abelianization

Using the weights w defined in the previous section, let T be the metric associated to w

as defined in Section 3.1.2. Let T̃ be the subadditive function on Γab induced by ET via the

abelianization map Γ → Γab as above. In order to prove our version of Theorem 3.1.4, all that

remains is to show that as x ∈ Γab tends to infinity,

T̃ (x) − Φ(x) = o(x),

where in the little o notation we may use any norm on Rd to measure x. We use the following

proposition which is used in [20] (where they take Q = [−1/2,+1/2]d ⊂ Rd, but the exact form

that Q takes does not matter):

Proposition 3.3.1. To show that T̃ (x) − Φ(x) = o(x), it suffices to show the following
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(1) For all y < B, y < 1
t B̄(t) for all sufficiently large t.

(2) For all y in the interior of B, y ∈ 1
t B̄(t) for all sufficiently large t.

Here we define

B̄(t) :=
⋃

{x∈Γab:T̃ (x)≤t}

x + Q,

where Q ⊂ gab is a compact connected neighborhood of 0 such that the quotient map Q →

gab/Γab is surjective.

First, we prove (1). To do this, we must establish some facts about the relationship between

the T -lengths of paths in E and their “displacements” in Γab. In proving these we will repeatedly

use the following easily verifiable lemma from [20]:

Lemma 3.3.1. Let B be a convex subset of Rd and let x1, ..., xm ∈ R
d, α1, ..., αm ≥ 0 be such

that each α−1
i xi ∈ B. Then x1+···+xn

α1+···+αn
∈ B.

Let us call an edge f ∈ E “slow” if w( f ) = K and “fast” otherwise. Let us also call an edge

path in E “fast” if all its edges are fast and “slow” if all its edges are slow. For an edge path γ in

E from x ∈ Γ to y ∈ Γ denote by D(γ) its “displacement” yab − xab ∈ Rd. Note that displacement

is preserved by left translations:

D(zγ) = (zy)ab − (zx)ab = (zab + yab) − (zab + xab) = yab − xab = D(γ).

Let us first consider fast paths γ. Note that by construction of the weights, each fast path is

a subpath of xγ̄n for some x ∈ Γ, n ≥ 1 (because of the “shell” of slow edges surrounding each

fast xγ̄n). We can then decompose D(γ) as

D(γ) = D‖(γ) + D⊥(γ),



34

where D‖ is the orthogonal projection of D(γ) onto the line passing through 0 and bn and D⊥(γ)

is orthogonal to that line. Note that the construction of the edge weights guarantees precisely

that if f is a fast edge in xγ̄n labeled by si then

D‖( f )
T ( f )

=

〈
±ei,

bn
‖bn‖2

〉
bn
‖bn‖2

|πi(bn)|
‖bn‖

2
2

= ±bn ∈ B.

Then by Lemma 3.3.1 we have

D‖(γ)
T (γ)

=

∑
f∈γ D‖( f )∑
f∈γ T ( f )

∈ B.

We also know by Proposition 3.2.1 that

‖D⊥(γ)‖2 ≤ 2C0,

and hence
D⊥(γ)

h−1 · 2C0
∈ {x ∈ Rd : ‖x‖2 ≤ h} ⊂ B.

So again by Lemma 3.3.1,

D(γ)
T (γ) + 2h−1C0

=
D‖(γ) + D⊥(γ)

T (γ) + h−1 · 2C0
∈ B.

On the other hand, if f is a slow edge, then by our choice of K

D( f )
T ( f ) − 2h−1C0

∈ {x ∈ Rd : ‖x‖2 ≤ h} ⊂ B,
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and so for a slow path γ, by Lemma 3.3.1 we have

D(γ)
T (γ) − 2|γ|h−1C0

∈ B.

Now, a general path in E is an alternating concatenation of fast and slow paths. That is,

γ = γ0
fγ

1
s · · · γ

n
sγ

n
f , where the γi

f are fast, the γi
s are slow, and we may take γ0

f or γn
f to be empty,

but all the γi
s consist of at least one edge. Then by our previous arguments and Lemma 3.3.1 we

have ∑n
i=0 D(γ f

i ) +
∑n

i=1 D(γs
i )∑n

i=0(T (γ f
i ) + 2h−1C0) +

∑n
i=1(T (γs

i ) − 2|γs
i |h−1C0)

∈ B.

The numerator in the above expression is D(γ), and the denominator is at most T (γ) + 2h−1C0,

so we have
D(γ)

T (γ) + 2h−1C0
∈ B

for any path γ in E.

Finally, let y < B. Since B is closed, there is some ε > 0 such that for any c > 0, cB(y, ε)∩B ,

∅ implies that 1
c > 1 + ε. Now for any t > 0 let z ∈ Γ be such that ty ∈ zab + Q, where Q is the

fixed compact set in Proposition 3.3.1. If we choose γ to be a T -minimal path from 1 to z in Γ,

by our above arguments we have that

zab

T (γ) + 2h−1C0
=

t[y − 1
t (zab − ty)]

T (1, z) + 2h−1C0
∈ B.

Therefore, whenever diam(Q)
t < ε, we have 1

t ‖z
ab − ty‖2 < ε and hence

T (1, z) + 2h−1C0

t
> 1 + ε;
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and so whenever also 2h−1C0
t < ε/2, we have

T (1, z)
t

> 1 +
ε

2
,

and then taking expectation gives
ET (1, z)

t
> 1 +

ε

2
;

since this argument did not depend on our choice of z, we conclude that, for all t sufficiently

large, T̃ (zab) > t(1 + ε
2 ) whenever ty ∈ zab + Q, and hence

y <
B̄(t)

t
.

Now we prove (2).

It is sufficient to prove that for every ε > 0, for all but finitely many n,

‖bn‖2T̃ (zn)
2n < 1 + ε.

Fix ε > 0. We give an upper bound on the T̃ -distance from 0 to zn by constructing a path γ

from 1 to a lift of zn in Γ. The lift we choose is the endpoint of the path γ̄n, which we denote by

z̄n. Note that although the path we construct is random, the endpoints 1 and z̄n are not.

Denote by Z the center of Γ, and fix a total ordering < on Z such that if d(1, x0) < d(1, x1),

then x0 < x1 (recall that here d denotes the word metric on Γ with respect to S ). Then choose x

to be the least element of Z with respect to this ordering such that Yx = n. Note that x is then a

well-defined Z-valued random variable with minimal distance from 1, and that

(x = x0)⇔ (Yx0 = n and Yx1 , n for all x1 < x0).
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That is, x is the nearest central starting point of a “highway” in the bn direction.

Now, to construct our path γ, first, take a path of minimal d-length from 1 to x in Γ. Then,

travel along xγ̄n (even if some of the edges are overwritten by slow edges) to xz̄n. Finally, travel

back to xz̄nx−1 = z̄n by traveling backwards along a translate of the path you took from 1 to x.

Note that we have used the fact that x is central to conclude that xz̄nx−1 = z̄n and in particular

that the d-distance from xz̄n to z̄n is no larger than the d-distance from 1 to x.

If xγ̄n was not overwritten by any slow edges, the passage time of the path would be equal

to ∑
f∈γ̄n

ηn( f ) =
∑
f∈γ̄n

〈D( f ), bn〉

‖bn‖
2
2

=
〈D(γ̄n), bn〉

‖bn‖
2
2

=
〈zn, bn〉

‖bn‖
2
2

.

(Here we have used the fact that, by construction, all edges f in γ have positive inner product

with bn.) Since zn is less than distance
√

d
2 from 2n bn

‖bn‖
, the above is bounded above by

〈
2n bn
‖bn‖

, bn

〉
‖bn‖

2
2

+

√
d

2 · ‖bn‖2

‖bn‖
2
2

=
2n

‖bn‖

1 +

√
d

2n+1

 .
Taking into account the travel from 1 to x and from xz̄n to z̄n, as well as the fact that some of the

edges of xγ̄n may be overwritten by slow edges, we have

(3.3.1) ET (γ) ≤ K
[
2Ed(1, x) + E#{e ∈ xγ̄n : e is slow}

]
+

2n

‖bn‖

1 +

√
d

2n+1

 .
To bound the first term, we calculate

Ed(1, x) =

∞∑
i=0

P(d(1, x) > i) =

∞∑
i=0

P(Yξ , n for all ξ ∈ Bd(i) ∩ Z).
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Since we have assumed that Γ � Z, the growth of the center is at least 2-dimensional, that is,

we have some C > 0 depending only on Γ and S such that

|Bd(i) ∩ Z| ≥ Ci2

for all i ≥ 0. This is proved in Lemma 3.3.3 below, but for now we take it for granted.

Then, since the Yξ are iid, we continue the above computation to get

EdS (1, x) ≤
∞∑

i=0

(1 − 3−n)Ci2 ≤ 1 +

∫ ∞

0
(1 − 3−n)Cs2

ds.

Using the substitution σ =
[

ln(1−3−n)
ln(1−3−1)

]1/2
s, we get

∫ ∞

0
(1 − 3−n)Cs2

ds =

[
ln(1 − 3−n)
ln(1 − 3−1)

]−1/2 ∫ ∞

0
(1 − 3−1)Cσ2

dσ,

which is to say that

Ed(1, x) ≤ 1 + C′[− ln(1 − 3−n)]−1/2

for some C′ > 0 independent of n. By convexity, − ln(1 − s) ≥ s for all s < 1, and so

[− ln(1 − 3−n)]−1/2 ≤ (3−n)−1/2 = 3n/2,

thus

(3.3.2) Ed(1, x) . 3n/2,

the implied constant of course independent of n.
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Now, we bound

E#{e ∈ xγ̄n : e is slow } =
∑
e∈γ̄n

P(xe is slow);

since xe will only be slow if another TzEYz with Yz ≥ n competes for it, the above quantity is

bounded above by

∑
e∈γ̄n

P(xe ∈ zEYz and Yz ≥ n for some x , z ∈ Γ)

≤
∑
e∈γ̄n

∑
x0∈Γ

∑
z∈Γ\x0

∞∑
i=n

P(x = x0, x0e ∈ zEi,Yz = i)

=
∑
e∈γ̄n

∑
x0∈Γ

∞∑
i=n

∑
z∈Γ:x−1

0 ze∈Ei

P(x = x0,Yz = i);

we claim that for i ≥ n and x0 , z, P(x = x0,Yz = i) ≤ 3
2P(x = x0)P(Yz = i), and hence we

continue

E#{e ∈ xγ̄n : e is slow } ≤
∑
e∈γ̄n

∑
x0∈Γ

∞∑
i=n

∑
z∈Γ:x−1

0 ze∈Ei

3
2
P(x = x0)P(Yz = i)

≤
3
2

∑
e∈γ̄n

∑
x0∈Γ

∞∑
i=n

|Ei|P(x = x0)P(Yz = i) =
3
2

∑
e∈γ̄n

∞∑
i=n

|Ei|P(Yz = i)

.
∑
e∈γ̄n

∞∑
i=n

2i · 3−i =
∑
e∈γ̄n

3
(
2
3

)n

= 3|γ̄n|

(
2
3

)n

.

(
4
3

)n

.(3.3.3)

To prove the claim, note that for x0 , z, i ≥ n,

P(x = x0,Yz = i) = P(Yx1 , n for all x1 < x0,Yx0 = n,Yz = i);
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if x0 < z, then all these events are independent, and hence P(x = x0,Yz = i) = P(x = x0)P(Yz =

i). Otherwise z < x0, and then

P(x = x0,Yz = i) =

 ∏
x1<x0,x1,z

P(Yx1 , n)

P(Yx0 = n)P(Yz , n,Yz = i).

If i = n, then this is equal to 0. Otherwise, i > n, and

P(Yz , n,Yz = i) = P(Yz = i) =
P(Yz = i)
P(Yz , n)

P(Yz , n) ≤
3
2
P(Yz = i)P(Yz , n),

where we used that P(Yz , n) = 1 − 3−n ≥ 2
3 . Hence

P(x = x0,Yz = i) ≤
3
2

 ∏
x1<x0,x1,z

P(Yx1 , n)

P(Yx0 = n)P(Yz , n)P(Yz = i)

=
3
2
P(x = x0)P(Yz = i),

as desired.

Hence, applying (3.3.1), (3.3.2), and (3.3.3),

‖bn‖2T̃ (zn)
2n ≤

‖bn‖2ET (γ)
2n ≤ K‖bn‖2

[
2O

((
31/2

2

)n)
+ O

((
2
3

)n)]
+ 1 +

√
k

2n+1 ,

which is less than 1 + ε for sufficiently large n, as desired.

To tie up the final loose end, we prove that the volume growth of the center of Γ is at least

2-dimensional. This is a simple corollary of the following lemma from the notes of Drutu and

Kapovich [11]:

Lemma 3.3.2 (Lemma 14.15 from [11]). Let Γ be a finitely generated nilpotent group of

class k and let CkΓ be the last nontrivial term in its lower central series. If S is a generating set
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for Γ, and g ∈ CkΓ, then there exists a constant λ = λ(S , g) such that for all m ≥ 0,

dS (1, gm) ≤ λm1/k.

Lemma 3.3.3. Let Γ be a nontrivial finitely generated torsion-free nilpotent group which is

not isomorphic to Z, S a finite generating set for Γ. Denote the center of Γ by Z. Then, there

exists a constant C > 0 depending only on Γ and S such that

#{z ∈ Z : d(1, z) ≤ i} ≥ Ci2

for all i ≥ 0.

Proof. We know that Z is a nontrivial finitely generated free abelian group. First, assume

that Z � Z. Then Z � Zk for some k ≥ 2. Then the lemma follows, since the quantity in question

grows at least as fast as Z does as a finitely generated group. More explicitly, if S ′ is a finite

generating set for Z � Zk, we know that there exists C′ > 0 depending only on S ′ such that

#{z ∈ Z : dS ′(1, z) ≤ i} ≥ C′ik.

Take m = maxs∈S ′ d(1, s) < ∞. Then for all z ∈ Z, d(1, z) ≤ mdS ′(1, z), and hence

#{z ∈ Z : d(1, z) ≤ i} ≥ #
{
z ∈ Z : dS ′(1, z) ≤

i
m

}
≥

C′

mk ik.

Now, suppose Z � Z. Then Γ is not abelian (otherwise we would have Γ = Z � Z, con-

tradicting our assumption). So Γ is nilpotent of step k for some k ≥ 2, and CkΓ is a nontrivial

subgroup of Z. Take a generator g for CkΓ. By Lemma 3.3.2, we get λ = λ(g, S ) > 0 such that
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d(1, gm) ≤ λm1/k for all m ≥ 0. Therefore

{z ∈ Z : d(1, z) ≤ i} ≥ {m ≥ 0 : d(1, gm) ≤ i} ≥ {m ≥ 0 : λm1/k ≤ i} ≥
⌊

1
λk ik

⌋
≥ Cik

for some C > 0. �

3.4. Restrictions in the virtually nilpotent case

Any finitely generated virtually nilpotent group Γ will contain a finite index subgroup H

which is finitely generated, nilpotent, torsion free, and which has torsion-free abelianization

(see Section 3.9). We often think of the H and Γ as having the same coarse geometry; indeed:

Proposition 3.4.1. Let Γ be a group endowed with a metric T , let H be a finite index sub-

group, and let (X,D) be a metric space. If T . d (d the word metric) and (H, 1
t (T |H))

GH
−−→ (X,D),

then also (Γ, 1
t T )

GH
−−→ (X,D).

Proof. Since (H, 1
t T |H) is a metric subspace of (Γ, 1

t T ), the Gromov-Hausdorff distance

between the two spaces is bounded—up to an absolute constant—by

inf{ε > 0 : T (g,H) < ε for all g ∈ Γ},

which is itself bounded up to a constant by

1
t
[Γ : H] = O(1/t).

Thus (Γ, 1
t T ) and (H, 1

t T ) must tend to the same limit. �

Thus, it might seem trivial to pass from the simplified case we just proved to the general

case. However, perhaps surprisingly, the answer to the question we consider is not the same for
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Figure 3.2. A portion of the Cayley graph of 〈ρ〉 n Z[i] with respect to the gen-
erating set {ρ, 1 + 0i}. Edges labeled by ρ are red, while edges labeled by 1 + 0i
are blue.

Γ and H. In general, there may be some limit shapes for stationary FPPs on H which are not

attained by stationary FPPs on Γ. Consider the following example.

Let Γ := 〈ρ〉 n Z[i], the semidirect product of the Gaussian integers with a cyclic group of

order four, the generator of the cyclic group acting by multiplication by i. Γ contains the abelian

(hence nilpotent) group Z[i] � Z2 =: H as a subgroup of index 4. We know from our work

above (and from [20]) that any norm on R2 is attainable as a limit shape for H. However, we

claim that the scaling limit of any invariant metric on Γ which is . d (such as ET for a stationary

FPP T with integrable weights) must be a norm on R2 which has π
4 rotational symmetry. Take

any (x + iy) ∈ Z[i]. Then

ET (1, i(x + iy)) = ET (1, ρ−1(x + iy)ρ)

≤ ET (1, ρ−1) + ET (ρ−1, ρ−1(x + iy)) + ET (ρ−1(x + iy), ρ−1(x + iy)ρ)

= ET (1, ρ−1) + ET (1, (x + iy)) + ET (1, ρ) ≤ ET (1, (x + iy)) + 2(const.).
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Iterating this inequality four times and taking a scaling limit gives

lim
n→∞

ET (1, n(x + iy))
n

= lim
n→∞

ET (1, ni(x + iy))
n

= lim
n→∞

ET (1,−n(x + iy))
n

= lim
n→∞

ET (1,−ni(x + iy))
n

,

which is precisely the statement that the limit norm has quarter-turn symmetry.

A similar restriction arises in any virtually nilpotent group. As in Section 3.1.2, let Γ be a

finitely generated virtually nilpotent group, and let N be a torsion-free nilpotent normal sub-

group of finite index (for the construction of such a subgroup see Section 3.9). The conjugation

action of Γ on N induces an action of Γ/N =: Q on Nab
f ree. It will be convenient later to phrase

things in terms of the right conjugation action, and so we think of the action as a homomorphism

φ : Q → Aut(Nab
f ree)

op. This further induces a right action of Q on Nab ⊗ R � Nab
f ree ⊗ R � gab,

which, by abuse of notation, we also denote by φ : Q → Aut(gab)op. We say that a norm on Φ

on gab is conjugation-invariant if it is φ-invariant, that is,

Φ(xφ(q)) = Φ(x)

for all x ∈ Nab ⊗ R, q ∈ Q.

Proposition 3.4.2. Let Γ,N, φ be as above. If T is a stationary integrable FPP on Γ such

that the scaling limit of ET is a Carnot-Carathéodory metric on a nilpotent Lie group L∞, then

the norm on gab associated to this metric is φ-invariant.

Proof. The proof is very similar to our example. First, let Q̃ be a finite set of coset rep-

resentatives of N, that is, a finite subset Q̃ ⊂ Γ such that the quotient map Γ → Q induces a

bijection Q̃↔ Q; Since Q̃ is finite and the FPP is integrable, there exists some constant C < ∞
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such that ET (1, q̃),ET (1, q̃−1) ≤ C for all q̃ ∈ Q̃. Then, for any x ∈ N and any q̃ ∈ Q̃,

ET (1, xq̃) ≤ ET (1, q̃−1) + ET (1, x) + ET (1, q̃) ≤ ET (1, x) + 2C

where we have used the fact that ET is left-invariant. Similarly, we have

ET (1, x) = ET (1, (xq̃)q̃−1
) ≤ ET (1, xq̃) + 2C,

and thus

|ET (1, x) − ET (1, xq̃)| ≤ 2C.

Since φ respects the quotient map N → Nab
f ree, taking infima over x ∈ N such that xab

f ree = z for

some fixed z ∈ Nab
f ree gives

|T̃ (z) − T̃ (zφ(q))| ≤ 2C = o(z);

that is, T̃ is asymptotically equivalent to T̃ φ(q) for all q ∈ Q, and hence the norm Φ it induces on

gab is φ(q)-invariant. Pansu’s theorem [30] tells us that Φ is the norm in the Carnot-Carathéodory

construction of the scaling limit of (Γ,ET ), so we are done. �

Although there is certainly more work to be done in exploring necessary conditions for the

existence of a limit shape, in all cases which we know how to prove ( [5], [8]), the scaling limit

of the random space (Γ,T ) coincides with the scaling limit of its mean (Γ,ET ), so this tells us

that conjugation invariance is a necessary feature of a limit shape at least in all cases in which

we can prove there is a scaling limit.

Theorem 3.1.1 then states that this is the only obstruction to a Carnot-Carathéodory metric

on L∞ being the limit shape of a stationary FPP on Γ; that is, as long as the Carnot-Carathéodory
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metric comes from a norm which is conjugation-invariant, it is the scaling limit of some FPP

with stationary weights.

3.5. Construction of the edge weights in the virtually nilpotent case

Transferring our theorem to the general virtually nilpotent case is far from automatic, es-

sentially since our Cayley graph may not be nice with respect to the the finite index subgroups

we wish to pass to. Recall that N is a finite-index torsion-free nilpotent normal subgroup of

Γ. Instead of keeping track of “displacements” of paths by looking at the projection to Γab, we

want to instead look at Nab
f ree, and there is typically no nice homomorphism from Γ to Nab

f ree. Nor

is there a nice embedding Nab → Γab; the natural map can have very large kernel (e.g. in our

example Γ := 〈ρ〉 n Z[i] above, Γab is finite, while N = Nab = Z[i]). Ultimately, we resolve this

by looking at a slightly nonabelian notion of “displacement” via the projection Γ → Γ/ ˜[N,N],

where we define ˜[N,N] to be the kernel of the projection N → Nab
f ree. Note that ˜[N,N] is indeed

normal in Γ: an element x ∈ Γ is in ˜[N,N] if and only if x ∈ N and for some 1 ≤ k < ∞,

xk ∈ [N,N]; since N is normal in Γ, both these properties are preserved under conjugation by

any element g ∈ Γ. Note also that Γ/ ˜[N,N] contains Nab
f ree as a subgroup of finite index.

In spite of these complications, the spirit of the proof exactly the same. Heuristically, we

want to ensure that every direction has the correct “speed” at large scales, and we do this by

sprinkling long “fast” paths throughout the graph which travel at a certain speed in a certain

direction; the rest of the edges are “slow” so that any long geodesic must largely avoid them.

It is clear from our above proof that the weight K of the slow edges can be as large as we

like, as long as it is finite. We use the slowness of the edges to account for any error in the fast
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paths–that is, to guard against the fact that a subpath of a fast path might not go in exactly the

right direction or exactly at the right speed.

In our first proof, we used the existence of nice paths (Proposition 3.2.1) which had the

property that they (1) stayed close to the straight line through bn, and (2) traveled “monotoni-

cally forward” along bn. In the general case, we will want to find nice paths in Γ/ ˜[N,N] which

satisfy these properties in a certain “coarse” sense to be described below.

Let us now go into more detail understanding the group Γ/ ˜[N,N], especially considering

it as a finite extension of Nab
f ree. First, take a finite set of coset representatives Q̃ ⊂ Γ/ ˜[N,N]

for N/ ˜[N,N]; we assume for convenience that Q̃ contains the identity. The quotient map

Γ/ ˜[N,N] → Q := (Γ/ ˜[N,N])/(N/ ˜[N,N]) � Γ/N induces a bijection Q̃ → Q, and we de-

note its inverse by s : Q→ Q̃. If s were a homomorphism, we would have a semidirect product,

but this is not always possible in general. In general, define a function η : Q × Q → Nab
f ree

satisfying

s(q1)s(q2) = s(q1q2)η(q1, q2).

This then allows us to understand Γ/ ˜[N,N] more explicitly thus: note that Q×Nab
f ree → Γ/ ˜[N,N],

(q, n) 7→ s(q)n is a bijection. Pulling back the multiplication from Γ/ ˜[N,N] to the set Q × Nab
f ree

then gives the multiplication

(Q × Nab
f ree) × (Q × Nab

f ree)→ Q × Nab
f ree

(q1, n1) · (q2, n2) := (q1q2, η(q1, q2) + nφ(q2)
1 + n2).

Thus, Γ/ ˜[N,N] looks like a semidirect product up to the “finite error” introduced by η.
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Remark 3.5.1. η is in fact a cocycle; the cocycle condition comes precisely from the as-

sociativity of the above multiplication. However, we will not use this fact. Rather, we will

repeatedly use the simple fact that η is a map from the finite set Q×Q, and thus has finite image

and hence uniformly bounded image.

Remark 3.5.2. The cocycle η of course depends on our choice of Q̃, and the choice is

non-unique.

We will now introduce two modified notions of displacement which will be convenient for

us. Let γ be a path in E (the Cayley graph of Γ) starting at x ∈ Γ and ending at y ∈ Γ. We define

D̃(γ) := x̄−1ȳ ∈ Γ/ ˜[N,N],

where x̄, ȳ are the images of x, y under the projection Γ→ Γ/ ˜[N,N]. Note that D̃ is invariant with

respect to the action of Γ on paths in E by left multiplication. Note also that for concatenations

of paths γ = α ∗ β we have

D̃(γ) = D̃(α)D̃(β).

It will also be helpful for us to have a notion of displacement which lives in Nab
f ree rather than

Γ/ ˜[N,N]; for this, we take a particular choice of point in Nab
f ree nearby (in the Cayley graph of

Γ/ ˜[N,N]) to D̃(γ):

D(γ) := D̃(γ)q̃(γ)−1 ∈ Nab
f ree,

where q̃(γ) is the image of D̃(γ) under the composition Γ/ ˜[N,N] → Q
s
−→ Q̃; put another way,

using the identification Γ/ ˜[N,N] ↔ Q × Nab
f ree, if D̃(γ) = (q, n), then D(γ) = (q, n)(q−1, 0) =

nφ(q)−1
. Note also that if D̃(γ) ∈ Nab

f ree, then D̃(γ) = D(γ).
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D(γ) is convenient because it always lands in Nab
f ree, the space we are trying to induce the

correct norm on; however, instead of being additive on paths, using the definition and the con-

catenation property for D̃, we instead get the slightly more complicated equation

(3.5.1) D(αβ) = D(α) + D(β)φ(α) + η(α, β)φ(αβ)−1
,

where in an abuse of notation, we define η(α, β) := η(q(α), q(β)), φ(α) := φ(q(α)), where q(α) is

the image of D̃(α) under the quotient map Γ/[N,N] → Q. Iterating the above fact easily gives

the following by induction:

Proposition 3.5.1. For any paths α1, ..., αN in E, we have

D(α1 · · ·αN) = D(α1) +

N−1∑
i=1

(
D(αi+1) + η(α1 · · ·αi, αi+1)φ(αi+1)−1)φ(α1···αi)−1

Thus, although the displacements do not add, besides the twisting of φ we only accumulated

at most one uniformly bounded error term per path concatenated, which will end up being

enough later.

From now on we fix an isomorphism gab � Rd such that Nab
f ree is identified with Zd ⊂ Rd via

the map Nab
f ree → Nab

f ree ⊗ R � g
ab � Rd. We will often thus identify D(γ) with its image in Rd.

We are now ready to state the properties we want for our “nice” paths in E (which will

become “fast” paths).

Lemma 3.5.1. There exists a constant C′0 > 0 depending only on Γ, S , N, and Q̃ such that,

for any vector u ∈ Rd and any n ∈ Z≥0 there exists a simple path γ in E such that

(1) γ starts at 1 ∈ Γ and ‖D(γ) − 2nu‖2 ≤ C′0.

(2) |γ| . |D(γ)| . 2n‖u‖2.
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(3) γ stays near the line through u: If α is a subpath of γ starting at 1, then ‖D(α) −

projuD(α)‖2 ≤ C′0.

(4) γ is a finite concatenation of paths βi where for each i, |βi| ≤ C′0, ‖D(β′)φ(q)‖2 ≤ C′0 for

all q ∈ Q and every subpath β′ of βi, and

〈
D(β0 · · · βi+1) − D(β0 · · · βi),

u
‖u‖2

〉
≥

1
C′0
,

that is, γ is “coarsely monotone.”

We also assume that maxq1,q2,q3∈Q ‖η(q1, q2)φ(q3)‖2 ≤ C′0.

This lemma will be proven in Section 3.7.

For now, we define the edge weights, very similarly to the first construction. First, given a

Carnot-Carathéodory metric with associated norm Φ on gab, let B ⊂ gab � Rd be the unit ball of

Φ. Let {bn}n≥0 be a countable dense subset of the boundary of B. For each n, let γn be the path

given in Lemma 3.5.1 associated to the vector bn and the natural number n. Let En be the set of

edges in E which share at least one vertex with the path γn.

Pick h > 0 small enough so that B2(0, h) ⊂ B and then choose K > 0 large enough so that

max
f∈S ,q,q1,q2,q3∈Q

‖D( f )φ(q)‖2 + ‖η(q1, q2)φ(q3)‖2

K − 9C′0h−1 ≤ h.

Then define ηn : En → R+ by

ηn( f ) =


〈
D(β0···βi)−D(β0···βi−1), bn

‖bn‖2

〉
‖bn‖2 |βi |

f ∈ βi,

K, otherwise.
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where the βi are the subpaths of γ = γn alluded to in Lemma 3.5.1 (the dependence of βi on n is

suppressed in the notation).

Lastly, we superimpose randomly sprinkled translated copies of the ηn exactly as in the first

construction; that is, define {Zx}x∈Γ, {Yx}x∈Γ, X f , x f , and n f exactly as above and then define

w : En → R+

w( f ) =


Tx f ηn f ( f ) X f , ∅

K otherwise.

By the same arguments as above, these weights are well-defined, ergodic, and uniformly bounded

above. Moreover, the monotonicity condition in Lemma 3.5.1 implies that each edge has weight

at least

min
b∈B

1
C′20 ‖b‖2

> 0,

which is to say that T is bi-Lipschitz to the word metric, and we can apply Theorem 3.1.3.

3.6. Proof of Theorem 3.1.4 in the general case

Once again, the proof that the correct norm is induced on gab can be reduced to showing

the conditions in Proposition 3.3.1. The proof of the second condition is the same argument

as in the simplified case. (We construct the desired paths by traveling along the center of N

until we reach the first fast path that goes in the correct direction, and then we travel back along

the center of N. We have the same volume growth estimates that we used above as long as we

assume Γ is not virtually Z. In the virtually Z case, our limit shapes are norms on R, and since

all norms on R are scalar multiples of each other, we can achieve any desired norm we like by

appropriately scaling the weights of, say, the deterministic FPP which assigns weight 1 to each

edge and gives T = d.)
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For the first condition of Proposition 3.3.1, the spirit of the proof is the same, but we have

to deal with more error terms.

First, we consider a fast subpath γ of E (that is, a path which does not contain any edges of

length K), and again we note that it is (up to translation) a subpath of some γn. First consider

the case that γ travels forward rather than backward along γn. Then we write

γ = αβ j · · · βiω,

where the βi are the subpaths alluded to in Lemma 3.5.1 and α and ω are subpaths of β j−1 and

βi+1 respectively.

Now, by Equation (3.5.1), we know that

D(β j · · · βi)φ(β0···β j−1) = [D(β0 · · · βi) − D(β0 · · · β j−1)] − η(β0 · · · β j−1, β j · · · βi)φ(β0···βi)−1
.

We can further decompose [D(β0 · · · βi) − D(β0 · · · β j−1)] into its components parallel to bn and

perpendicular to bn:

[D(β0 · · · βi) − D(β0 · · · β j−1)] = [D(β0 · · · βi) − D(β0 · · · β j−1)]‖ + [D(β0 · · · βi) − D(β0 · · · β j−1)]⊥.

Now, by our definition of ηn we have

T (β j · · · βi) =
1
‖bn‖2

〈
D(β0 · · · βi) − D(β0 · · · β j−1),

bn

‖bn‖2

〉
,

where we have used coarse monotonicity of γ. Thus, we have

[D(β0 · · · βi) − D(β0 · · · β j−1)]‖
T (β j · · · βi)

= bn ∈ B.
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Moreover, since γ stays near to the line through bn we have

[D(β0 · · · βi) − D(β0 · · · β j−1)]⊥
2C′0h−1 ∈ B2(0, h) ⊂ B,

and by assumptions on C′0 we have

−η(β0 · · · β j−1, β j · · · βi)φ(β0···βi)

C′0h−1 ∈ B2(0, h) ⊂ B.

Hence by Lemma 3.3.1
D(β j · · · βi)φ(β0···β j−1)

T (β j · · · βi) + 3C′0h−1 ∈ B,

and then by conjugation-invariance of B we have

D(β j · · · βi)
T (β j · · · βi) + 3C′0h−1 ∈ B.

Now, since α and ω are subpaths of βi−1 and β j+1, we have

D(α)
C′0h−1 ,

D(ω)
C′0h−1 ∈ B2(0, h) ⊂ B,

and hence by Lemma 3.3.1

D(αβ j · · · βiω)
T (β j · · · βi) + 7C′0h−1 =

D(α) + D(β j · · · βi)φ(·) + η(·, ·)φ(·) + D(ω)φ(·) + η(·, ·)φ(·)

C′0h−1 + T (β j · · · βi) + 3C′0h−1 + C′0h−1 + C′0h−1 + C′0h−1 ∈ B,

where we have again used conjugation-invariance of B.
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Now, if γ travels backwards rather than forwards along γn, we apply the above argument to

γ (the reverse of γ) to obtain

D(γ)
T (γ) + 7C′0h−1 =

D(γ)
T (γ) + 7C′0h−1 ∈ B.

Since we chose Q̃ to contain 1, D(γγ) = 0 and so by Equation (3.5.1) we have that

D(γ) = −D(γ)φ(γ) − η(γ, γ).

So again using symmetry and conjugation invariance of B, together with assumptions on C′0 and

Lemma 3.3.1, we conclude
D(γ)

T (γ) + 8C′0h−1 ∈ B.

Now, for slow edges f , by choice of K we have

D( f ) + η(·, ·)φ(·)

T ( f ) − 9C′0h−1 ∈ B2(0, h) ⊂ B.

Writing an arbitrary path γ as a concatenation of fast paths and slow edges and using

Propositon 3.5.1 gives

D(γ) =
∑

f slow edges
(D( f ) + η(·, ·)φ(·))φ(·) +

∑
γ′ fast paths

(D(γ′) + η(·, ·)φ(·))φ(·),

and so using the above and Lemma 3.3.1 gives

D(γ)∑
f slow edges(T ( f ) − 9C′0h−1) +

∑
γ′ fast paths(T (γ′) + 9C′0h−1)

∈ B,
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and since there is at most one more fast path than there are slow edges, we conclude

D(γ)
T (γ) + 9C′0h−1 ∈ B.

The rest of the proof is just as in the above argument.

3.7. Proof of Lemma 3.5.1

To prove the existence of “nice paths” we want to approximate the nice paths in Zd � Nab
f ree

from Proposition 3.2.1 and prove that our approximation retains the nice properties “coarsely”.

First, we prove a lemma which will help control error terms:

Lemma 3.7.1. There exists a constant K′ such that for any paths α, β in E, we have

‖D(αβ) − D(α)‖2 ≤ K′|β|.

Proof. By Equation (3.5.1), we know that

D(αβ) − D(α) = D(β)φ(α) + η(α, β)φ(αβ)−1
.

First, since the image of Q in Aut(Nab
f ree) � S L±d (Z) is a finite family of bounded operators on

Rd, there is some constant M < ∞ such that

‖vφ(q)‖2 ≤ M‖v‖2

for all q ∈ Q, v ∈ Rd. Thus we have ‖D(β)φ(α)‖2 ≤ M‖D(β)‖2.

Next, since Nab
f ree is finite index in Γ/ ˜[N,N], it is undistorted, which is to say that any word

metric on Nab
f ree is bi-Lipschitz to the restriction to Nab

f ree of any word metric on Γ/ ˜[N,N]. (This



56

can be seen using Schreier generators for Nab
f ree, see e.g. Theorem 14.3.1 in [25]). In particular,

this means that the Euclidean norm ‖ · ‖2 on Nab
f ree is bi-Lipschitz to the metric induced by the

Cayley graph on Γ/ ˜[N,N]. Hence

‖D(β)‖2 ≤ K′′|D(β)| = K′′|D̃(β)q̃(β)−1| ≤ K′′(|β| + max
q̃∈Q̃
|q̃|).

Lastly, since Q is finite, we have a uniform bound on the norm of the second term, that is,

max
q1,q2,q3∈Q

‖η(q1, q2)φ(q3)‖2 < ∞.

Putting everything together gives

‖D(αβ) − D(α)‖2 ≤ MK′′|β| + const.,

and since every nonempty β has |β| ≥ 1 we can easily adjust to get a finite K′ which satisfies the

desired inequality. �

Now, we construct the paths. Given u and n, first consider the path γn in Zd � Nab
f ree using

the standard generators ei of Zd given by Proposition 3.2.1. Next, for each edge e of the path in

the standard generators, choose a path β′ in the Cayley graph for Γ/ ˜[N,N] induced by the image

of S which starts one vertex of e and ends at the other; pick these paths to satisfy

(3.7.1) |β′| ≤ max
i=1,...,d

d′(1, ei) =: C
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where d′ is the word metric on Γ/ ˜[N,N] induced by the image of S . We then lift to a path

β̃′0 · · · β̃
′
N−1 in E. Note that by the properties guaranteed by Proposition 3.2.1 we have that:

(3.7.2) ‖D(β̃′0 · · · β̃
′
N−1) − 2nu)‖2 ≤

√
d

2
,

(3.7.3) |β̃′0 · · · β̃
′
N−1| . 2n‖u‖2,

and

(3.7.4) ‖D(β̃′0 · · · β̃
′
i) − projuD(β̃′0 · · · β̃

′
i)‖2 ≤ C0

for all i. If α is a general subpath of β̃′0 · · · β̃
′
N−1 starting at 1, it is of the form α = β̃′0 · · · β̃

′
iα
′

where α′ is a subpath of β̃′i+1, and hence combining Lemma 3.7.1 together with Equations (3.7.1)

and (3.7.4) gives

(3.7.5) ‖D(α) − projuD(α)‖2 ≤ C0 + K′C.

Thus, β̃′0 · · · β̃
′
N−1 satisfies many of the properties we desire. However, it may contain loops,

and it may not satisfy coarse monotonicity. So first erase loops to get a simple path β̃0 · · · β̃N′−1.

The particular manner in which loops are erased does not matter, so long as the resulting path

is a simple path with the same starting and ending point which is obtained from the original

path by deleting subpaths. If entire segments β̃′i are deleted, the number N′ of new segments

β̃0, ..., β̃N′−1 need not be the same as N the number of original segments, and some reindexing

may be required so that we don’t skip indices; however, every β̃i is composed of subpaths of a
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Figure 3.3. Construction of “nice paths”. (The “lifting” step is omitted here to
aid visualization).

single β̃′j, j depending on i. Thus, each segment β̃i of the new path still consists of at most C

edges.

Moreover, since the set of displacements of subpaths of the loop-erased path is a subset of

the set of displacements of subpaths of the original path, Equation (3.7.5) holds for the new path

as well. Equations (3.7.2) and (3.7.3) also clearly pass to the loop-erased path as well.

Now we obtain coarse monotonicity. First we prove the following version of coarse mono-

tonicity for the original Euclidean paths:

Lemma 3.7.2. There exists some k′ > 0 and M < ∞ such that any subpath γ of γn (γn the

path in the standard Cayley graph of Zd from Proposition 3.2.1 associated to u = bn) of length

at least M satisfies 〈
D(γ),

u
‖u‖2

〉
≥ k′|γ|.
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Proof. First, we claim that there is a constant C depending only on d such that for any

subpath of any γn of edge-length at least C, at least one edge f of the path satisfies

〈
D( f ),

u
‖u‖2

〉
≥

1
√

d
.

Heuristically, this is because the path cannot travel too long in directions perpendicular to u

while staying close to the line through 0 and u. More rigorously, for some coordinate i0 ∈

{1, ..., d} we have

|πi0(u)| ≥
‖u‖2
√

d
.

For notational convenience, let’s replace some of the standard basis vectors with their opposites

to ensure that 〈u, ei〉 = |πi(u)| ≥ 0 for all i, and further, let’s reindex so that e1, ..., el satisfy

ci :=
〈
ei,

u
‖u‖2

〉
< 1
√

d
and el+1, ..., ed satisfy ci ≥

1
√

d
for some 0 ≤ l < d.

Now let γ be a subpath of γn starting at x ∈ Zd and ending at y ∈ Zd, and assume that for

every edge f in γ, 〈
D( f ),

u
‖u‖2

〉
<

1
√

d
.

By Proposition 3.2.1, x and y must be within Euclidean distance C0 of the line L passing through

0 and bn in Rn. Moreover, since we only travel in directions with low weights, we have y =

x + n1e1 + · · · + nlel for some positive integers ni. Now, the distance from y to L is

dist(y, L) =

∥∥∥∥∥∥x + n1e1 + · · · + nlel −

〈
x + n1e1 + · · · + nlel,

u
‖u‖2

〉
u
‖u‖2

∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥n1e1 + · · · + nlel −

〈
n1e1 + · · · + nlel,

u
‖u‖2

〉
u
‖u‖2

∥∥∥∥∥∥
2

− dist(x, L),
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so, since both distances are less than C0, we have

2C0 ≥

∥∥∥∥∥∥n1e1 + · · · + nlel −

〈
n1e1 + · · · + nlel,

u
‖u‖2

〉
u
‖u‖2

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥n1e1 + · · · nlel − (n1c1 + · · · nlcl)

 d∑
i=1

ciei


∥∥∥∥∥∥∥

2

≥

√√
l∑

i=1

(
ni − (n1c1 + · · · + nlcl)ci

)2

≥ C′
l∑

i=1

(
ni − (n1c1 + · · · + nlcl)ci

)
≥ C′

l∑
i=1

(
ni − (n1 + · · · + nl)

1
d

)
= C′

(
1 −

l
d

) l∑
i=1

ni

≥
C′

d

l∑
i=1

ni =
C′

d
|γ|.

To go from the third to the fourth line, we used that the Euclidean norm is equivalent to the `1

norm on Rd, to go from the fourth to the fifth line, we used that 0 < ci <
1
√

d
for i = 1, ...l, and

to get to the final line we used that l ≤ d − 1.

Thus, any subpath of γn which consists of at least C := b 2C0d
C′ c+ 1 edges contains at least one

edge with displacement at least 1/
√

d in the u direction.

Finally, this implies that, for any subpath γ of γn with length at least 2C we have

〈
D(γ),

u
‖u‖2

〉
≥ kb
|γ|

C
c ≥

k
2C
|γ|.

That is, we have the lemma with M = 2C and k′ = k
2C .

�
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Now take M′ = max(M,
⌈

2K′C+1
k′

⌉
). We then define a new segmentation β0, ..., βbN′/M′c−1 of

the path by

βi = β̃M′iβ̃M′i+1 · · · β̃M′i+(M′−1)

if i < bN′/M′c − 1 and

βi = β̃M′i · · · β̃N′−1

if i = bN′/M′c − 1. Note that we have

|βi| ≤ 2M′C.

To show that this segmentation of the path gives coarse monotonicity, we have to compare with

the original path before erasing loops. To this end, for a given i < bN′/M′c − 1, let I be such

that β̃(M′+1)i is a subpath of β̃′I; that is, the index such that the next edge in β1 · · · βbN′/M′c−1 after

the segment βi lies in β̃′I . For i = bN′/M′c − 1, we set I = N. We also set J to be such that the

last edge in the path βi−1 lies in β̃′J; that is, β̃(i−1)M′−1 is a subpath of β̃′I . If i = 0, we set J = 0.

Now note that there exists some (possibly empty) subpath α of β̃′J such that

D(β0 · · · βi−1α) = D(β̃′0 · · · β̃
′
J)

and there exists some subpath ω of β̃′I such that

D(β0 · · · βiω) = D(β̃′0 · · · β̃
′
I).

Hence, by Lemma 3.7.1 and Equation (3.7.1), we have that

(3.7.6) ‖D(β0 · · · βi) − D(β̃′0 · · · β̃
′
I)‖2, ‖D(β0 · · · βi−1) − D(β̃′0 · · · β̃

′
J)‖2 ≤ K′C,
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which then implies that

〈
D(β0 · · · βi) − D(β0 · · · βi−1),

u
‖u‖

〉
≥

〈
D(β̃′0 · · · β̃

′
I) − D(β̃′0 · · · β̃

′
J),

u
‖u‖2

〉
− 2K′C.

Now, by construction each D̃(β̃′0 · · · β̃
′
i) ∈ Nab

f ree, and hence we have

D(β̃′0 · · · β̃′I) − D(β̃′0 · · · β̃
′
J) = D(β̃′J+1 · · · β̃

′
I),

and then since D(β̃′J+1 · · · β̃I) is the displacement of a subpath of the path γn (in the standard

Cayley graph of Zd) with edge length at least I − (J + 1) ≥ M′ ≥ M, Lemma 3.7.2 then gives

〈
D(β̃′0 · · · β̃

′
I) − D(β̃′0 · · · β̃

′
J),

u
‖u‖2

〉
≥ k′M′ ≥ 2K′C + 1,

and so combining with Equation (3.7.6) gives

〈
D(β0 · · · βi) − D(β0 · · · βi−1),

u
‖u‖

〉
≥ 2K′C + 1 − 2K′C = 1.

Thus, taking

C′0 := max
(
√

d/2,C0 + K′C, 2M′C, 1, max
q1,q2,q3∈Q

η(q1, q2)φ(q3)
)

and γ := β0 · · · βbN′/M′c−1 gives the Lemma as desired. �

3.8. Carnot-Carathéodory metrics and the associated graded Lie group

In this section we explain the construction needed to describe continuum limits of nilpotent

groups, i.e. the associated graded nilpotent Lie group associated to a finitely generated virtually

nilpotent group, and Carnot-Carathéodory metrics on this group. As above, let Γ be a finitely
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generated virtually nilpotent group, and let N be a torsion-free nilpotent group of finite index.

A theorem of Mal’cev ( [27], see also Theorem 2.18 in [31]) says that there exists a simply

connected nilpotent Lie group L such that N is (isomorphic to) a cocompact lattice in L. Let g

be the Lie algebra of L. Let g∞ be the associated graded nilpotent Lie algebra, that is

g∞ :=
⊕

i≥1

g
i/gi+1,

where g1 := g, gi+1 := [gi, g] is the descending central series for g. Let L∞ be the unique simply

connected Lie group which has g∞ as its Lie algebra. We will refer to L∞ as the graded nilpotent

Lie group associated to Γ.

The map

N ↪−→ L→ L/[L, L] � g/[g, g] =: gab

induces an inclusion Nab
f ree → g

ab and an isomorphism Nab ⊗ R → gab. Now consider a norm Ψ

on Nab ⊗R � gab. Note that gab = g/[g, g] = g1/g2 is a vector subspace of g∞. By left translation

in L∞, the subspace gab ⊂ g∞ gives a left-invariant distribution on T L∞, and we can extend the

norm to any vector in the distribution. Let us call a path ξ : [a, b] → L∞ admissible if it is

differentiable a.e. and a.e. ξ′ belongs to the support of the distribution. We can then define the

Ψ-length of ξ to be

Ψ(ξ) :=
∫ b

a
Ψ(ξ′(t))dt,

and this gives a metric on L∞ by

(3.8.1) dΨ(x, y) := inf{Ψ(ξ) : ξ is an admissible path from x to y}.
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The metric dΨ is called the Carnot-Carathéodory metric on L∞ associated to Ψ. Since gab gener-

ates g∞ as a Lie algebra, by Chow’s theorem [17], the topology induced on L∞ by dΨ coincides

with the usual topology on L∞.

The above information is sufficient to understand the statement of the main theorem. The

following further data is required to understand Section 3.10. The Lie algebra g∞ has a one-

parameter family of automorphisms δt : g∞ → g∞, t > 0 given by setting

δt(X) = tiX

if X ∈ gi/gi+1 and extending by linearity. This of course integrates to a 1-parameter family of

automorphisms of L∞, which we also denote by δt. We refer to δt as dilations.

Note that dΨ is homogeneous in the sense that dΨ(δt(x), δt(y)) = tdΨ. In the abelian case,

Γ = Zd, L∞ = Rd, the dilations are scalar multiplication by t, and dΨ is the usual metric induced

by the norm Ψ on Rd.

We now describe a sequence of maps Γ→ L∞ which will be Gromov-Hausdorff approxima-

tions (see Section 3.10) when Γ and L∞ are endowed with the appropriate metrics. First, choose

a collection of linear subspaces V1, ...,Vk of g such that for each i

g = V1 ⊕ · · · ⊕ Vi ⊕ g
i+1.

Note that for each i, Vi ⊂ g
i and the natural map Vi → g

i/gi+1 is in isomorphism of vector spaces.

Let

M : g = V1 ⊕ · · · ⊕ Vk → ⊕
k
i=1g

i/gi+1 = g∞
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be the associated linear isomorphism. Then we define a family of maps

sclt : Γ ↪→ L
log
−−→ g

M
−→ g∞

δt
−→ g∞

exp
−−→ L∞.

(Here log is the inverse of exp : g → L, which is a diffeomorphism, since L is a simply

connected nilpotent Lie group).

3.9. Understanding the limit norm Φ via Nab
f ree

Our description of the construction of the limit norm Φ on gab differs slightly from the de-

scription in [8]. The two descriptions certainly coincide in the case that Γ = N is a torsion-free

finitely generated nilpotent group with torsion-free abelianization. However, it’s not immedi-

ately obvious that their description matches ours in the general virtually nilpotent case. This

section is primarily intended to show how our statement of Theorem 3.1.3 follows from the

following:

Theorem 3.9.1. [8] Let H be a finitely generated nilpotent group which is torsion-free and

has torsion-free abelianization. Let T be a stationary random metric on H which is inner (see

below) and bi-Lipschitz to a word metric on H. Let dΦ be the Carnot-Carathéodory metric on

L∞ associated to the metric ET, as in Section 3.1.2 (with Γ = N = H). Then almost surely

(H,
1
n

T, 1) −−−→
n→∞

(L∞, dΦ, 1)

is the sense of pointed Gromov-Hausdorff convergence.

First let us construct relevant finite-index subgroups.
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Proposition 3.9.1. Let Γ be a finitely generated virtually nilpotent group. Then there exists a

finite index subgroup H of Γ which is nilpotent, torsion-free, and has torsion-free abelianization.

Proof. By definition, Γ contains a nilpotent subgroup Γ′ of finite index, and this is also

finitely generated by Schreier’s lemma (see e.g. [25] Theorem 14.3.1). Thus Γ′ contains a

torsion-free subgroup Γ′′ of finite index (see [25], Theorem 17.2.2).

Take N to be the kernel of the map Γ → Sym(Γ/Γ′′) given by the action of Γ on the cosets

of Γ′′ by left multiplication. Since N ≤ Γ′′, N is nilpotent and torsion free, and since N is the

kernel of a map to a finite subgroup, it is a finite index normal subgroup of Γ.

Now we extract a finite index subgroup H of Γ which is nilpotent, torsion-free, and has

torsion-free abelianization as follows. One explicit construction is given by Yves Cornulier in

the MathOverflow post [24]; this construction also has the advantage that that the natural map

Hab → Nab induced by the inclusion H ↪−→ N is itself an inclusion (also of finite index).

Here is the construction: recall that we have a projection map N → Nab → Nab/Nab
tor =:

Nab
f ree. Take a basis of d generators e1, ..., ed for Zd � Nab

f ree, and lift them to s1, ..., sd ∈ N; then

we claim that H := 〈s1, ..., sd〉 ≤ N is a finite index subgroup with torsion free abelianization.

To see that H has torsion-free abelianization, consider the natural map Hab → Nab
f ree induced

by the map H ↪→ N → Nab
f ree. We claim this is an injection. For if n1 s̄1 + · · · + nd s̄d is in the

kernel of this map, by the choice of s1, ..., sd this means that n1e1 + · · ·+ nded = 0, which implies

that n1, ..., nd = 0, since e1, ..., ed is a basis. The map is also clearly surjective by construction,

so Hab � Nab
f ree and so H has torsion-free abelianization.

To see that H is finite index and finish the proof of Proposition 3.9.1, first note that, from

the above, Hab ≤ Nab is finite index. We then use the following lemma below; the proof is taken

from Cornulier’s argument in [24].
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Lemma 3.9.1. Let N be a finitely generated nilpotent group, and let H be subgroup of N

such that H[N,N] is finite index in N (equivalently, Hab → Nab has finite-index image in Nab).

Then H is finite index in N.

Proof. We proceed by induction on the nilpotency degree of N. If N is abelian, then the

statement is immediate.

Suppose the statement holds for all nilpotent groups of degree k−1, and suppose N is degree

k. Let Nk be the kth subgroup in the descending central series for N. By our inductive hypothesis

applied to N/Nk, HNk is a finite index subgroup of N. So all that remains is to show that H is

finite index in HNk.

For this, first note that since all (k+1)-fold commutators vanish, the k-fold commutator map

N × · · · × N → Nk is “multilinear” in the sense that

[a1, · · · , xy, · · · , ak] = [a1, · · · , x, · · · , ak] · [a1, · · · , y, · · · , ak];

we also see that the output only depends on the abelianizations of a1, ..., ak, and thus the k-fold

commutator map induces a surjective homomorphism from the tensor product Nab⊗· · ·⊗Nab →

Nk. We claim that the map
⊗k Hab →

⊗k Nab induced by the finite index inclusion H → N

has image which is finite index in
⊗k Nab. Once we know this, since Hk is precisely the

composition of the map
⊗k Hab →

⊗k Nab → Nk, Hk is finite index in Nk, and hence H is

finite index in HNk.

Now, to see that the image of
⊗k Hab →

⊗k Nab is finite index, we use the following

general fact: If A is a finitely generated abelian group and B ≤ A is a subgroup of finite index,
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then for any i ≥ 1,
⊗i B ≤

⊗i A is finite index. For i = 1, this is immediate. Now, inductively

assume T ′ is a finite set such that T ′ +
⊗i B =

⊗i A, and let S ′ be a finite generating set for⊗i B. Also let T be a finite set such that T + B = A and let S be a finite generating set for B.

We claim that the set∑
σ∈S ′

tσ ⊗ σ +
∑
τ∈T ′

tτ ⊗ τ +
∑
s∈S

s ⊗ t′s,τ

 : tσ, tτ ∈ T, t′s,τ ∈ T ′


forms a finite set of coset representatives for
⊗i+1 B in

⊗i+1 A.

To see this, first consider a general element of
⊗i+1 A. It is a sum of elements of the form

(
∑
s∈S

mss + t) ⊗ (
∑
s′∈S ′

ms′ s′ + t′)

where t ∈ T, t′ ∈ T ′, ms,ms′ ∈ Z, and hence, by expansion, equal to

∑
σ∈S ′

(
∑
s∈S

mσ,ss + tσ) ⊗ σ +
∑
τ∈T ′

(
∑
s∈S

mτ,ss + tτ) ⊗ τ

for some mσ,s,mτ,s ∈ Z, tσ, tτ ∈ T . Since every s ⊗ σ ∈ ⊗k+1B, the element

∑
σ∈S ′

tσ ⊗ σ +
∑
τ∈T ′

tτ ⊗ τ +
∑
s∈S

s ⊗ mτ,sτ


represents the same coset of ⊗k+1B. For each s, τ, by the inductive hypothesis, we have

s ⊗ mτ,sτ = s ⊗

∑
s′∈S ′

ns′,τs′ + t′s,τ


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for some ns′,τ ∈ Z and t′s,τ ∈ T ′, and this is equivalent modulo ⊗kB to

∑
s′∈S ′

s ⊗ t′s,τ.

That is, an arbitrary element is equivalent to one in the set provided, as desired. �

In sum, by Proposition 3.9.1, we have H ≤ NEΓ finite index inclusions, where N is torsion-

free and H is torsion-free with torsion-free abelianization.

Now, let T be a stationary random metric on Γ which is almost surely inner and bi-Lipschitz

to a word metric on Γ. Recall that a metric space is called inner if for all ε > 0, there exists

0 < R < ∞ such that for any x, y ∈ Γ, there exists an (ε,R)-coarse geodesic from x to y, that is,

a sequence x = p0, p1, ..., pM = y in Γ such that each d(xi−1, xi) ≤ R and

M∑
i=1

d(pi−1, pi) ≤ (1 + ε)d(x, y).

(Note that, in Chapter 3, we consider T an FPP with edge weights w uniformly bounded above;

such T is automatically inner). We want to show that

(Γ,
1
n

T )→ (L∞, dΦ).

By Proposition 3.4.1, it suffices to show that

(H,
1
n

T |H)→ (L∞, dΦ).

Thus, we want to apply Theorem 3.1.3 to H, so first we must check that the hypotheses are

satisfied.
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Proposition 3.9.2. Let Γ,H,T be as above. Then T |H is bi-Lipschitz to a word metric on H

and T |H is inner.

Proof. T |H is bi-Lipschitz to d|H, and since H ≤ Γ is finite index, any word metric on H is

bi-Lipschitz to d|H (this can be seen using Schreier generators for H, see e.g. Theorem 14.3.1

in [25]), so we have the first claim.

Next, we show innerness. Let ε > 0. First, using the innerness of T on Γ, choose r > 0 so

that any x, y ∈ Γ can be joined by an ( ε2 , r)-coarse geodesic. Next, note that since H ≤ Γ is finite

index and T ≤ Kd a.s. for some K < ∞, we have

max
g∈Γ

T (g,H) ≤ K max
g∈Γ

d(g,H) =: C

for some non-random constant 0 < C < ∞. Now choose 0 < R < ∞ sufficiently large so that

0 < 4C
R−r ≤

ε
2 . We claim that any h, h′ ∈ H can be joined by an (ε,R + 2C)-coarse geodesic in H.

To construct such a coarse geodesic, first take an ( ε2 , r)-coarse geodesic h = p′0, p′1, ..., p′M′ =

h′ in Γ. By deleting points, we can construct a ( ε2 ,R)-coarse geodesic h = p0, ..., pM = h′ with

M ≤
⌈
T (h, h′)
R − r

⌉
≤

2T (h, h′)
R − r

,

where the last inequality only holds for T (h, h′) ≥ R − r, but if T (h, h′) ≤ R + 2C then p0 =

h, p1 = h′ trivially gives an (ε,R+2C)-coarse geodesic, so we may assume this inequality holds.
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Lastly, for each pi, choose qi ∈ H with T (pi, qi) ≤ C (and of course q0 = p0 = h, qM = pM =

h′). Then each T (qi−1, qi) ≤ T (pi−1, pi) + 2C ≤ R + 2C and

M∑
i=1

T (qi−1, qi) ≤
M∑

i=1

T (pi−1, pi) + 2CM ≤ (1 +
ε

2
)T (h, h′) + 2CM

≤ (1 +
ε

2
)T (h, h′) + 2C ·

2T (h, h′)
R − r

≤ (1 + ε)T (h, h′),

so q0, ..., qM is an (ε,R + 2C)-coarse geodesic in H, as desired. �

Now, note that the Malcev completions of H and N coincide; if N is a cocompact lattice in

G, then as a finite-index subgroup of N, H is also cocompact in G. Therefore H and N have the

same associated graded nilpotent Lie group L∞ as well. Thus, Theorem 3.1.3 tells us that

(H,
1
n

T |H)→ (L∞, dΦH ),

where we define ΦH to be the unique norm on gab asymptotically equivalent to the subadditive

function

T̃H(h) := inf
t∈H:tab=h

ET (1, t)

on Hab. (Recall that we can relate functions on Hab and gab, since we have a map Hab → gab

and an isomorphism Hab ⊗ R � gab induced by the composition

H ↪→ G → G/[G,G] � g/[g, g] =: gab.)

Thus, to deduce our statement of Theorem 3.1.3, it only remains to show that ΦH = Φ,

where recall that we define Φ to be the unique norm on gab which is asymptotically equivalent
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to the subadditive function

T̃ (n) := inf
t∈N:tab

f ree=n
E(1, t)

on Nab
f ree.

Proposition 3.9.3. ΦH = Φ.

Proof. Note that Hab and Nab
f ree are identified with the same subgroup of gab since the in-

clusion Hab → gab is exactly equal to the composition of the isomorphism Hab � Nab
f ree and the

inclusion Nab
f ree → g

ab. Using the isomorphism Hab � Nab
f ree to consider T̃H as a subadditive

function on Nab
f ree, we have

T̃H(n) = inf
t∈H:tab

f ree=n
ET (1, t).

From this it is clear that T̃ ≤ T̃H.

To show a lower bound, first note that since H is finite index in N, H ∩ ˜[N,N] is finite-index

in ˜[N,N]. Let R be a finite set of right coset representatives for H ∩ ˜[N,N] in ˜[N,N], that is,

N ∩ ˜[N,N] =
⋃

r∈R H ∩ ˜[N,N]r. Set C := maxr∈R |r|, where | · | = d(1, ·) is, as always, the word

length in Γ with respect to the generating set S . Then we have

T̃ (n) = inf
t∈H,r∈R:tab

f ree=n
ET (1, tr) ≥ inf

t∈H,r∈R:tab
f ree=n

ET (1, t) − ET (1, r) ≥ ΦH(n) − KC,

where we have used that T ≤ Kd. Thus |T̃ (n)−T̃H(n)| ≤ KC = o(n) and Φ = ΦH, as desired. �

3.10. Gromov-Hausdorff convergence to the limit shape

Recall the notion of pointed Gromov-Hausdorff convergence ( [18]). There are many equiv-

alent conditions for this convergence, but here we use a particular sufficient condition. Let

(Xn, dn, on), (X0, d0, o0) be metric spaces with distinguished basepoints on, o0. A sequence of
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maps fn : Xn → X0 is called a sequence of of pointed Gromov-Hausdorff approximations if for

every ε > 0, for all sufficiently large n we have

(1) d0( fn(on, o0)) < ε,

(2) every point of B(o0, 1/ε) is within distance ε of fn(B(on, 1/ε)),

(3) (1 − ε)dn(x, y) − ε ≤ d0( fn(x), fn(y)) ≤ (1 + ε)dn(x, y)ε for all x, y ∈ B(on, 1/ε).

If fn : Xn → X0 is a sequence of pointed Gromov-Hausdorff approximations, then Xn pointed

Gromov-Hausdorff converges to X0. Here, our metric spaces are groups with various metrics,

and the basepoint will always be the identity element.

In [8], Section 4.4, Cantrell and Furman prove the following: for any fixed g, g′ ∈ G∞,

almost surely

(3.10.1)

lim
ε→0

lim sup
t→∞

sup
{

1
t
|T (γ, γ′) − dΦ(g, g′)| : γ, γ′ ∈ Γ, d‖·‖(scl 1

t
γ, g), d‖·‖(scl 1

t
γ′, g′) < ε

}
= 0,

where Γ, L∞,T, dΦ, d‖·‖ are all as defined in Section 3.1.2, and the maps scl 1
t

: N → L∞ are as

defined in Section 3.8. In particular, (L∞, d‖·‖) is the scaling limit of Γ endowed with the word

metric as given by Pansu’s theorem:

Theorem 3.10.1. (Pansu, [30])

scl 1
t

: (Γ,
1
t
d)→ (L∞, d‖·‖)

is a sequence of Gromov-Hausdorff approximations.

To prove that scl 1
t

: (Γ, 1
t T )→ (L∞, dΦ) is a sequence of Gromov-Hausdorff approximations,

by homogeneity of the norm dΦ, it suffices to show that, for any ε > 0, there exists R > 0 such
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that for any |γ|, |γ′| ≥ R,

|T (γ, γ′) − dΦ(scl1(γ), scl1(γ′))| ≤ ε max(|γ|, |γ′|).

The rest of this section is devoted to proving this fact.

Remark 3.10.1. In [8], it is shown that the event of failure of Gromov-Hausdorff conver-

gence is contained in an uncountable union of null-sets. More specifically, they show that failure

of Gromov-Hausdorff convergence entails the existence of some pair g, g′ ∈ L∞ for which Equa-

tion (3.10.1) fails, but a priori (g, g′) ranges over the uncountable set L∞ × L∞. It is necessary

to show that it is contained in a countable union of null-sets.

Now, let {(gn, g′n)} be a countable dense subset of L∞ × L∞. With probability 1, Equation

(3.10.1) holds for all (gn, g′n) simultaneously. We show that on this probability 1 subset Gromov-

Hausdorff convergence holds.

Suppose that Gromov-Hausdorff convergence fails, that is, there exists ε0 > 0 and some

sequence (γn, γ
′
n) ∈ Γ × Γ with min(|γn|, |γ

′
n|)→ ∞ such that

1
tn
|T (γ, γ′) − dΦ(scl1(γ), scl1(γ′)| ≥ ε0,

where we define tn := max(|γn|, |γ
′
n|). By homogeneity of dΦ, this is equivalent to

(3.10.2)
∣∣∣∣∣ 1
tn

T (γ, γ′) − dΦ(scl 1
tn
γn, scl 1

tn
γ′n)

∣∣∣∣∣ ≥ ε0.
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Since the sequence (scl 1
tn
γn, scl 1

tn
γ′n) lies in the product of the unit d‖·‖ balls of L∞, by compact-

ness we may pass to a subsequence and assume that

(scl 1
tn
γn, scl 1

tn
γ′n)→ (g0, g′0)

for some (g0, g′0) ∈ L∞ × L∞. Convergence holds in the d‖·‖ metric as well as the dΦ metric.

Now choose N sufficiently large so that

(3.10.3) |dΦ(scl 1
tn
γn, scl 1

tn
γ′n) − dΦ(g0, g′0)| ≤

ε0

2

for all n ≥ N. Combining Equations (3.10.2) and (3.10.3) gives

(3.10.4) |
1
tn

T (γn, γ
′
n) − dΦ(g0, g′0)| ≥

ε0

2
.

Fix δ′ > 0 (to be chosen later). Now choose (gm0 , g
′
m0

) from our countable dense set such that

max(d‖·‖(gm0 , g0), d‖·‖(g′m0
, g′0), dΦ(gm0 , g0), dΦ(g′m0

, g′0)) ≤ δ′.

For each k ≥ 1 define γk
m0

to be the γ ∈ Γ such that scl 1
k

has minimal distance to gm0 , and

similarly define γ′km0
. Then by Equation (3.10.1) we have

∣∣∣∣∣1k T (γk
m0
, γ′km0

) − dΦ(gm0 , g
′
m0

)
∣∣∣∣∣ −−−→k→∞

0,

and so we can choose N also sufficiently large that for all n ≥ N,

∣∣∣∣∣ 1
tn

T (γtn
m0
, γ′tnm0

) − dΦ(gm0 , g
′
m0

)
∣∣∣∣∣ ≤ δ′.
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By Theorem 3.10.1 we can also choose N so that for all n ≥ N,

∣∣∣∣∣ 1
tn

d(γn, γ
tn
m0

) − d‖·‖(g0, gm0)
∣∣∣∣∣ ≤ δ′,

∣∣∣∣∣ 1
tn

d(γ′n, γ
′tn
m0

) − d‖·‖(g′0, g
′
m0

)
∣∣∣∣∣ ≤ δ′.

Thus we have (again taking k = max(|γn|, |γ
′
n|))∣∣∣∣∣ 1

tn
T (γn, γ

′
n) − dΦ(g0, g′0)

∣∣∣∣∣ ≤
∣∣∣∣∣∣T (γn, γ

′
n) − T (γtn

m0 , γ
′tn
m0)

tn

∣∣∣∣∣∣
+

∣∣∣∣∣ 1
tn

T (γtn
m0
, γ′tnm0

) − dΦ(gm0 , g
′
m0

)
∣∣∣∣∣

+ |dΦ(gm0 , g
′
m0

) − dΦ(g0, g′0)|.

By our choice of (gm0 , g
′
m0

), we have that the last term is bounded by 2δ. If n ≥ N, we have that

the second term is bounded by δ. To bound the first term, recall that by assumption, T ≤ Kd

and hence

|T (γn, γ
′
n) − T (γtn

m0
, γ′tnm0

)| ≤ T (γn, γ
tn
m0

) + T (γ′n, γ
′tn
m0

) ≤ K(d(γn, γ
tn
m0

) + d(γ′n, γ
′tn
m0

)),

and so

∣∣∣∣∣∣T (γn, γ
′
n) − T (γtn

m0 , γ
′tn
m0)

tn

∣∣∣∣∣∣ ≤ K
(

1
tn

d(γn, γ
tn
m0

) +
1
tn

d(γ′n, γ
′tn
m0

)
)

≤ K
(
d‖·‖(g0, gm0) + δ + d‖·‖(g′0, g

′
m0

) + δ
)
≤ 4Kδ.

All in all we have ∣∣∣∣∣ 1
tn

T (γn, γ
′
n) − dΦ(g0, g′0)

∣∣∣∣∣ ≤ 4Kδ + 3δ,
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and for a sufficiently small choice of δ, this contradicts Equation (3.10.4), and so we are done.
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CHAPTER 4

Strict monotonicity for independent first passage percolation

4.1. Introduction

Recall from the last chapter that if T is an independent FPP metric on G = (V, E) a Cayley

graph of a virtually nilpotent group, then under mild assumptions, the random metric space

(V,T ) has a deterministic scaling limit (L∞, dΦ), which coincides with the scaling limit of the

deterministic metric space (V,ET ). However, it is very difficult to understand the relationship

between the weight measure ν and the limit metric dΦ for nontrivial ν, since the proofs of

existence of such scaling limits depend on ergodic theorems and are not constructive. Therefore,

instead of trying to determine dΦ explicitly for a given ν, in this chapter we try to understand

the map ν 7→ dΦ by asking whether it is in some sense strictly monotonic.

In the classical case of the standard Cayley graph of Zd, recall that the limiting space is

(Rd, µ), where µ is a norm defined by the “time constants”

µv := lim
n→∞

T (0, nv)
n

= lim
n→∞

ET (0, nv)
n

.

In this setting, van den Berg and Kesten [36] proved a strict monotonicity theorem. That is, they

proved that if a probability measure ν̃ is “strictly more variable” than a probability measure ν,

both have finite mean, and ν is subcritical (in a sense to be described later), then for G the

standard Cayley graph of Zd, d ≥ 2, we have a strict inequality of time constants µ̃v < µv for all
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v , 0. In fact, their proof shows that

lim inf
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

> 0,

where d(x, y) :=
∑d

i=1 |xi − yi| is the graph distance between the vertices x, y ∈ Zd in the standard

Cayley graph of Zd. If one showed this inequality above for Cayley graphs of virtually nilpotent

groups, it would translate to an analogous strict inequality of CC-metrics dΦ̃(ξ) < dΦ(ξ) for all

ξ , 1. But note that this inequality also makes sense for any graph; one does not require the

existence of any scaling limits or even “time constants.”1 We will often abbreviate the above

inequality as ET̃ � ET . This naturally raises the question: for which other graphs G does the

same conclusion hold?

More explicitly, we call a measure ν exponential-subcritical if the mass it assigns to the

infimum of its support is less than a certain threshold, as defined in Section 4.2.2 A measure ν̃ is

strictly more variable than ν if ν̃ , ν and
∫

f dν̃ ≤
∫

f dν for any concave nondecreasing f such

that both integrals converge absolutely. We say that a graph has the van den Berg-Kesten (vdBK)

property if the following holds: For any ν, ν̃ with finite mean, if ν is exponential subcritical and

ν̃ is strictly more variable than ν, then ET̃ � ET . The main theorem of [36] is precisely the

statement that the standard Cayley graph of Zd, d ≥ 2 is vdBK. In this chapter we explore the

question of which other graphs are vdBK.

The first main theorem of this chapter extends the strict monotonicity theorem of van den

Berg and Kesten to the setting of Cayley graphs of virtually nilpotent groups:

1Note for future reference that lim infd(x,y)→∞ = limR→∞ inf(x,y)∈V2:d(x,y)≥R. In particular, neither x nor y is fixed,
which is a relevant point when considering inhomogeneous graphs.
2The extent to which such an assumption on ν is necessary for strict monotonicity is discussed in Section 4.2.1 as
well as Chapter 5.
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Theorem 4.1.1. Let G be any Cayley graph of a finitely generated virtually nilpotent group

which is not isomorphic as a graph to the standard Cayley graph of Z. Then G has the vdBK

property.

A way of rephrasing this result (using Gromov’s theorem [16]) is that any Cayley graph

which has polynomial growth is either isomorphic to the standard Cayley graph of Z or has the

vdBK property. Moreover, a theorem of Trofimov [35] establishes a close relationship between

transitive graphs (graphs G such that Aut(G) acts transitively on the vertex set V) of polynomial

growth and virtually nilpotent Cayley graphs, so this result goes a long way towards resolving

the question of which transitive graphs of polynomial growth are vdBK.

One might wonder if all graphs have the vdBK property. This is not true; the easiest coun-

terexample is when the graph G is a tree. In this case, since there is only one self-avoiding path

between any two points, we have that ET (x,y)
d(x,y) is a constant equal to the mean of ν. It is easy to

produce two different probability measures ν, ν̃ with the same mean such that ν̃ is more variable

than ν (see the proof of Theorem 4.4.1). This is, of course, why the standard Cayley graph of Z

had to be excluded from the above theorem.

However, trees are not the only counterexample. Consider the Cayley graph of the free

group F(a, b) on the two letters a, b which is associated to the [redundant] generating set

{a, b, ab} (see Figure 4.1). It is not hard to see that, although there is more than one self-avoiding

path between any two points, each self-avoiding path between two points must pass through ev-

ery vertex of the edge-geodesic path between those two points, and that each step, one only has

the choice to travel along the edge lying in the geodesic, or to take a particular path of length

two. Hence, in this case ET (x,y)
d(x,y) is a constant given by Emin(w1,w2 + w3), where w1,w2,w3 are

independent variables with distribution ν. One can again produce two distinct distributions, one
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Figure 4.1. The Cayley graph of the free group F(a, b) with respect to the gen-
erating set {a,b,ab}. In green is the unique edge-geodesic path from 1 to ab−1ab.
Every self-avoiding path from 1 to ab−1ab in this graph must visit all the vertices
of the green path and can only use green or black edges.

more variable than the other, such that their “time constants” are equal, contradicting the vdBK

property.

It turns out that the crucial property for determining whether a graph is vdBK is a property

of the graph which we call “admitting detours” (defined in Section 4.4). If a bounded degree

graph does not admit detours, then it is not vdBK, by Theorem 4.4.1 below. (One should

note, however, that if the graph in question has few symmetries, the vdBK property is quite a

strong property; this is discussed in more detail in Section 4.4.1). On the other hand, our main

theorems prove that given one of two quite different “large scale” assumptions on the geometry

of G, admitting detours implies the vdBK property.

For the first coarse-geometric setting, we say that a graph has strict polynomial growth if

the number of vertices in a ball of radius R in the graph metric is bounded above and below by

polynomials in R of the same degree. We have:
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Theorem 4.1.2. Let G be a graph of strict polynomial growth. Then G is vdBK if and only

if G admits detours.

To explain the second setting, we say that a (set) map f : X → Y between metric spaces

is a quasi-isometry if there exists 0 < C < ∞ such that 1
C dX(a, b) − C ≤ dY( f (a), f (b)) ≤

CdX(a, b) + C for all a, b ∈ X and dY(y, f (X)) ≤ C for all y ∈ Y . If a quasi-isometry f : X → Y

exists, then X and Y are said to be quasi-isometric; this is an equivalence relation on metric

spaces. When we say that two graphs are quasi-isometric, we mean that the graph metrics on

their vertex sets are. We then have:

Theorem 4.1.3. Let G be a bounded degree graph which is quasi-isometric to a tree. Then

G is vdBK if and only if G admits detours. In fact, if G admits detours, then even if ν is not

exponential-subcritical, whenever ν̃ is strictly more variable than ν, we have ET̃ � ET.

Theorem 4.1.2 is used to prove Theorem 4.1.1: the latter follows from the former once

we prove that all Cayley graphs of virtually nilpotent groups which are not isomorphic to the

standard Cayley graph of Z admit detours, which is proven in Section 4.5. Theorem 4.1.3 can

be combined with results proved in Section 4.5 to give many examples of Cayley graphs which

are quasi-isometric to trees and are vdBK:

Theorem 4.1.4. Let Fk be the free group on k ≥ 1 letters, and let F be a nontrivial finite

group. If Γ contains F × Fk as a finite-index subgroup or if Γ is a semidirect product F o Fk,

then any Cayley graph of Γ is vdBK. More generally, if Γ has a finite-index free subgroup, is not

isomorphic to Z or Z/2 ∗Z/2, and either contains a finite index subgroup with nontrivial center

or contains a nontrivial finite normal subgroup, then any Cayley graph of Γ is vdBK.
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Finally, as noted in [36], the question of strict monotonicity with respect to stochastic dom-

ination is related to “absolute continuity with respect to the expected empirical measure.” What

precisely we mean by this is explained in Section 4.8; note that this condition does not imply

existence of a limiting expected empirical measure. In any case, the methods of our chapter eas-

ily prove absolute continuity of the weight distribution with respect to the expected empirical

measure under the same “large-scale” assumptions:

Theorem 4.1.5. Let G be a bounded degree graph which is quasi-isometric to a tree. Then

for any probability measure ν on [0,∞) with finite mean, ν is absolutely continuous with respect

to the expected empirical measure of the associated first passage percolation T . Moreover, if ν

strictly stochastically dominates a measure ν̃, then ET̃ � ET.

Theorem 4.1.6. Let G be a graph of strict polynomial growth. Suppose that ν has finite

mean and is exponential-subcritical. Then ν is absolutely continuous with respect to the ex-

pected empirical measure of the associated first passage percolation T . Moreover, if ν strictly

stochastically dominates a measure ν̃, then ET̃ � ET.

Note that these strict monotonicity theorems for stochastic domination hold whether or not

the graph in question admits detours.

The layout of the chapter is as follows: in Section 4.2 we establish definitions and notations.

In Section 4.3 we collect various lemmata, most of which are essentially proven in [36], which

we will need to prove our main theorems. The key conclusion of this section is that, in order

to prove that ET̃ � ET , it suffices to show that the expected number of times the T -geodesic

between two points x and y passes through a certain type of configuration called a “feasible

pair” is linear in d(x, y). In Section 4.4 we introduce the concept of “admitting detours” and
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show that this is a necessary condition for a graph to be vdBK (although we note that the vdBK

property is quite a strong one in the inhomogeneous case). We also give examples of graphs

which admit detours. In Section 4.5 we prove sufficient conditions for Cayley graphs to admit

detours, particularly those that we will need to prove Theorem 4.1.1. This section is entirely

group-theoretical and combinatorial, so some readers may choose to skip it on first reading. In

Section 4.6 we prove Theorem 4.1.3, which will follow almost immediately from the results of

Section 4.3 combined with a characterization of graphs quasi-isometric to trees. Because paths

are so constrained in this setting, it is not hard to produce local events which imply that the

T -geodesic from x to y passes through a feasible pair, and this makes the proof quite simple.

We also prove Theorem 4.1.4 as corollary.

In Section 4.7 we prove Theorem 4.1.2, which is much more involved. The three key com-

ponents are a Peierls-type lemma, a resampling argument, and a “geometric construction” (a

construction of a set of weights suitable for use in the resampling argument). Although this

general strategy is the same as in [36], the methods given here apply to general graphs of strict

polynomial growth which are not necessarily almost-transitive. The geometric constructions

in particular are rather different from those of [36] and are quite intricate, since we are given

the task of manipulating the geodesic while remaining largely agnostic to the fine geometry

of the graph. By far, these geometric constructions are the most involved part of the proof of

Theorem 4.1.2. At the end of this section we give some examples of graphs which are not

almost-transitive to which our results apply.

Lastly, in Section 4.8 we prove absolute continuity with respect to the expected empiri-

cal measure for graphs of strict polynomial growth and for graphs quasi-isometric to trees,

which implies a strict monotonicity theorem with respect to stochastic domination, regardless
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of whether the graph in question admits detours. The proofs are just easier versions of the proofs

of the main theorems of this chapter.

4.2. Variability, subcriticality, and the van den Berg–Kesten property

Let ν and ν̃ be two probability measures on [0,∞). We say that ν̃ is more variable than ν if

for every concave nondecreasing function f : R→ R we have

∫
f dν̃ ≤

∫
f dν

as long as both integrals converge absolutely. We say that ν̃ is strictly more variable than ν if ν̃

is more variable than ν and ν̃ , ν.

We now define some percolation thresholds associated to a graph G. For p ∈ [0, 1], denote

by Gp the random subgraph of G given by including each edge e ∈ E(G) in Gp independently

with probability p, excluding with probability 1 − p. We define the exponential percolation

threshold for G to be

pc := sup
{

p ∈ [0, 1] : lim sup
R→∞

sup
o∈V

1
R

logP(Gp contains an edge path from o to BG(o,R)c) < 0
}

and we define the exponential geodesic percolation threshold for G to be

~pc := sup

p ∈ [0, 1] : lim sup
R→∞

sup
o∈V

1
R

logP

 Gp contains an edge path from o to

BG(o,R)c which is edge-geodesic in G

 < 0

 .
Below the exponential percolation thresholds, we have uniform exponential upper bounds on

connection events. We call a measure ν exponential-subcritical if either inf := inf supp ν = 0

and ν({0}) < pc or inf > 0 and ν({inf}) < ~pc.
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Definition 1. We say that an infinite graph G has the van den Berg–Kesten (vdBK) property

if for every ν, ν̃ with finite mean such that ν is exponential-subcritical and ν̃ is strictly more

variable than ν, we have

(4.2.1) lim inf
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

> 0.

We will often abbreviate the “asymptotic strict inequality” (4.2.1) as ET̃ � ET . The main

theorems of this chapter give sufficient or necessary conditions for a graph to be vdBK.

4.2.1. Remarks on the condition of exponential subcriticality

Here are some remarks which, while not necessary to the proofs below, are worth noting, on the

condition of exponential subcriticality, its relationship to various other percolation thresholds,

and the extent to which it is a necessary assumption to get a strict monotonicity result.

First, it is clear from the definitions that for any graph, ~pc ≥ pc, and a simple union bound

(counting self-avoiding paths from a fixed vertex) shows that if G has degree at most D, then

pc ≥ 1/D > 0. It is also clear that for any connected graph, pc ≤ pc, where pc is the percolation

threshold as usually defined:

pc := inf{p ∈ [0, 1] : P(Gp contains an infinite edge path from o) > 0}.

For almost-transitive graphs, the sharpness of the percolation threshold [12] shown by Duminil-

Copin and Tassion implies that pc = pc. (The proof of sharpness in [12] is stated for transitive

graphs, but is not hard to generalize to almost-transitive graphs; here by almost-transitive graph

we mean a graph G such that the action of Aut(G) on V has finitely many orbits.)
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Furthermore, on amenable almost-transitive graphs (in particular graphs of polynomial growth),

the original argument of Burton-Keane ( [7], see also [19] for an explicitly general proof) shows

that pc = pu, where pu is the uniqueness threshold

pu := inf{p ∈ [0, 1] : P(Gp contains a unique infinite connected component ) = 1}.

If ν({0}) ≥ pu, then one expects that limd(x,y)→∞
ET (x,y)
d(x,y) = 0 (although this has only been proven

in certain cases, see e.g. Theorem 6.1 of [26]). In that case, it is impossible that ET̃ � ET ,

so for polynomial growth almost-transitive graphs, the assumption on the atom at 0 is really as

weak as one could hope for.

In the case of the standard Cayley graph of Zd, ~pc is the classical oriented percolation

threshold ~pc; this is because of the nature of edge-geodesics in this graph, combined with

the sharpness results of Aizenman and Barsky [1]. In fact, if G is the standard Cayley graph

of Zd, the condition here of being exponential-subcritical is precisely the condition of being

“useful” in [36]. Furthermore, in this case, if inf supp ν =: inf > 0 and ν({inf}) ≥ ~pc, then

limn→∞
ET (0,(n,...,n))

dn = inf [13, 29]. So if ν , δinf , we can take ν̃ = δinf to get ν̃ strictly more

variable than ν but ET̃ 3 ET . Thus, the assumption ν({inf}) < ~pc in the definition of the vdBK

property is also necessary at least in this setting.3

In fact, similar behavior happens more generally, i.e. if G is transitive graph of polynomial

growth, one has lim infd(x,y)→∞
ET (x,y)
d(x,y) = inf whenever inf > 0 and ν({inf}) > ~pc. This shows that

the subcriticality assumption on ν is needed for strict monotonicity in the exact same way as

above. This is proven in Chapter 5.
3Of course, this is because ET̃ � ET is equivalent to a strict inequality of time constants in all directions simul-
taneously; if one instead only cares about strict inequality of a time constant in a fixed direction, the assumption
ν(a) < ~pc may not be necessary; for instance Marchand [29] proved that for G the standard Cayley graph of Z2, we
get strict inequality in the e1 direction without that assumption (as long as still ν({0}) < pc).
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On the other hand, for graphs quasi-isometric to a tree, we will see in Theorem 4.1.3 that

exponential subcriticality as defined here is not necessary at all. In fact, in this setting, if G

admits detours (see Section 4.4), then ET̃ � ET whenever ν̃ is strictly more variable than ν,

with no further assumptions needed on either measure. This is consistent with the perspective

that generally the uniqueness threshold, rather than pc, is the correct threshold to consider for

the atom at 0, since almost-transitive graphs quasi-isometric to trees can have pc < 1 but always

have pu = 1 (since they have more than one end, see page 86 of [21]). The proper “uniqueness”

analogue of ~pc outside of the amenable case is unclear.

Finally, percolation on graphs which are not almost-transitive is poorly understood, and

so it is entirely unclear how close exponential subcriticality is to the “right” condition on ν

to consider in this general setting. However, if G has degree at most D then the inequalities

~pc ≥ pc ≥ 1/D > 0 tell us that our main theorems are never vacuous for bounded degree

graphs; in particular, we get sufficient conditions to conclude strict monotonicity (e.g. that ν is

atomless), even if the parameters ~pc and pc are quite mysterious.

4.3. Reduction to a lower bound on expected number of traversed “feasible pairs”

In this section, we reduce the task of deducing a strict inequality ET̃ � ET to the task of

showing that the T -geodesic traverses linearly many “feasible pairs” in expectation. Most of

the argument from this section can be transferred directly from [36], with the main difference

being that we define a weaker notion of “feasible pair.” Proofs are given where the necessary

modifications from [36] are not obvious. Note that the arguments of this section allow us to

stop considering w̃ or T̃ and simply focus on understanding the T -geodesic.

First, note that we have the following theorem of van den Berg and Kesten:
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Theorem 4.3.1 ( [36], Theorem 2.9a). Let ν and ν̃ be probability measures on [0,∞) with

finite mean such that ν̃ is more variable than ν. Then for all x, y ∈ V

ET̃ (x, y) ≤ ET (x, y).

Although the proof in [36] is stated only for G = Zd, it easily extends to all locally finite graphs.

We also have

Theorem 4.3.2 ( [32, 37]). Let ν and ν̃ be probability measures on [0,∞) with finite mean

such that ν̃ is strictly more variable than ν. Then there exists a coupling (w(e), w̃(e)) such that

w(e) is ν-distributed, w̃(e) is ν̃-distributed, and

E[w̃(e)|w(e)] ≤ w(e)

almost surely.

Another lemma from [36] which we will need is the following:

Lemma 4.3.1 ( [36], Lemma 4.5). We may assume without loss of generality that in our

coupling

(4.3.1) P(w̃(e) > w(e)) > 0.

Explicitly, either this holds, or there exists some w̄(e) such that ET̃ (x, y) ≤ ET̄ (x, y) for all

x, y ∈ V, the distribution of w̄(e) is strictly more variable than ν, and such that (4.3.1) holds

with w̃ replaced by w̄, i.e. P(w̄(e) > w(e)) > 0.

A key technical lemma we will use is the following:
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Lemma 4.3.2 ( [36], Lemma 4.8). Let ν, ν̃ be probability measures with finite mean such

that ν̃ is more variable than ν and such that (4.3.1) holds. Then there exist ε > 0, a > 0, b > 0,

g > 0, and a bounded Borel set I0 ⊂ [0,∞) and y0 ∈ I0 with the following properties:

• For all δ > 0, ν(I0 ∩ (y0 − δ, y0 + δ)) > 0.

• For all y ∈ I0,

P(w̃(e) > y + a|w(e) = y) ≥ b.

• For any k ≥ 1 and any y1, ..., yk, y′1, ..., y
′
b(1+ε)kc ∈ I0, we have

k∑
i=1

(yi + a) −
b(1+ε)kc∑

i=1

y′i > kg ≥ g.

Proof. The proof is essentially the same as that given in [36], but simpler since we do not

actually need as many conditions. By (4.3.1), for some sufficiently small a, b > 0 there is some

Borel set B ⊂ [0,∞) such that ν(B) > 0 and for all y ∈ B,

P(w̃(e) > y + a|w(e) = y) ≥ b.

Let y0 be a point of support for B, that is, a point such that ν(B ∩ (y0 − δ, y0 + δ)) > 0 for all

δ > 0. Choose ε > 0 sufficiently small such that εy0 < a. Then choose δ0 > 0 sufficiently small

that

εy0 + 2δ0 + εδ0 < a,

and choose

0 < g < a − (εy0 + 2δ0 + εδ0).
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Then we can take I0 := B∩ (y−δ0, y+δ0). The first two conditions clearly hold by construction;

let us show the last condition:

k∑
i=1

(yi + a) −
b(1+ε)kc∑

i=1

y′i ≥ k(y0 − δ0 + a) − k(1 + ε)(y0 + δ0)

= k(a − 2δ0 − εy0 − εδ0) > kg ≥ g.

�

Definition 2. Let π, π′ be a pair of paths with the same starting and ending point such that

π , π′ (as edge sets). We say that π′ is a ε-detour for π if

|π′ \ π| ≤ (1 + ε)|π \ π′|.

Here, π′ and π are identified with the sets of edges they contain, \ denotes set difference, and | · |

is the cardinality of a set.

Note that the condition that π′ , π implies that |π \ π′| ≥ 1. For otherwise we would have

that |π′ \ π| ≤ (1 + ε)|π \ π′| = (1 + ε) · 0 = 0, that is, |π′ \ π| = |π \ π′| = 0 and hence π′ = π.

Intuitively, one should think of π′ as an “alternate path” which misses a fair number of edges of

the original path but is not much longer than the original path. A simple but useful observation

is:

Proposition 4.3.1. π′ is an ε-detour for π if and only if π and π′ have the same endpoints,

π , π′, and

|π′| − |π| ≤ ε |π \ π′|.
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Proof. This follows immediately from the facts that |π \ π′| = |π| − |π ∩ π′| and |π′ \ π| =

|π′| − |π ∩ π′|, together with some algebraic manipulation. �

Definition 3. Let ε and I0 all be as in Lemma 4.3.2, and let C be a constant. We call (α, γ) a

feasible pair with respect to the T-geodesic4 π from x to y if both α and γ are self-avoiding, γ is

an ε-detour for α of length at most C(1 + ε), α is a subpath of π, and for all e ∈ (α∪γ) \ (α∩γ),

w(e) ∈ I0.

This notion of course depends on C, ε, and I0 even though this is suppressed in the notation.

Here C is an unspecified constant, but in practice there will be one particular C = C(ε) that

we end up using. These detours turn out to be key to proving the strict inequalities we want to

show, as we shall see in the next lemma.

The following lemma is essentially contained within Lemma 5.19 and the proof of Theorem

2.9(b) from Proposition 5.22 in [36], but we write it here to be explicit about what the necessary

modifications are.

Lemma 4.3.3. Let ν, ν̃ have finite mean and be such that ν̃ is strictly more variable than ν

and (4.3.1) holds. Let ε and I0 be given as in Lemma 4.3.2 and let C be fixed. Then there exists

some constant c0 > 0 such that if G = (V, E) is a graph and {Bi}i∈I ⊂ E is a family of disjoint

4A T -geodesic from x to y is a path π : x → y with T (π) = T (x, y). In general there may be more than one
T -geodesic; we implicitly fix an arbitrary well-ordering on self-avoiding paths in G and define “the” T -geodesic π
from x to y to be the T -geodesic which is least in this ordering. On the other hand, it is not a priori obvious that a
T -geodesic exists. If ν({0}) < pc(G) and G is locally finite, then it is easily shown (see Proposition 4.4 in [2]) that
all pairs of points x, y ∈ V admit a T -geodesic; in particular, if ν is exponential-subcritical, T -geodesics exist. In
Section 4.6 we do not assume that ν is exponential-subcritical, but the arguments are easily modified to avoid the
assumption that T -geodesics exist, by considering paths π : x→ y with T (π) ≤ T (x, y) + ε and letting ε → 0.
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subsets, for any x, y ∈ V we have

ET (x, y) − ET̃ (x, y) ≥ c0

∑
i∈I

P(Bi contains a feasible pair for the T-geodesic π : x→ y).

Proof. As in [36], let ŵ : E → [0,∞) be given by

ŵ(e) := 1ξ(e)=0w(e) + 1ξ(e)=1w̃(e),

where {ξ(e)}e∈E is a family of i.i.d. Unif({0, 1}) variables, also independent of w, w̃. As shown

in Lemma 5.19 of [36], ET̃ (x, y) ≤ ET̂ (x, y) for all x, y ∈ V , so it suffices to show the desired

inequality with T̃ replaced by T̂ .

We will call a pair (α, γ) advantageous for the T -geodesic π : x → y if it is feasible for π

and furthermore ξ(e) = 0 for all e ∈ γ \ α, ξ(e) = 1 for all e in a subset S ⊂ α \ γ of size at least

|S | ≥ 1
1+ε
|γ \ α|, and if for all e ∈ S we have w̃(e) > w(e) + a, where a > 0 is as given in Lemma

4.3.2. Note that, by Lemma 4.3.2, if (α, γ) is advantageous then

T̂ (α) − T̂ (γ) = T̂ (α \ γ) − T̂ (γ \ α) ≥ T̃ (S ) − T (γ \ α) ≥ g,

where g > 0 is as in the lemma. Furthermore, for any pair (α, γ) we have

E
[
1
{(α,γ) is advantageous}

∣∣∣∣w]
≥ 2−(C(1+ε)+C)bC

1
{(α,γ) is feasible}.

(Here we have used that |γ| ≤ C(1 + ε)).

Therefore, consider a T -geodesic π from x to y. Construct another (random) path π′ by

starting with π and, for each Bi, if Bi contains an advantageous pair (αi, γi) for π, replacing the

subsegment αi with γi. (If Bi contains more than one advantageous pair, choose the least one in
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some arbitrary ordering). We then have

T̂ (π) − T̂ (π′) ≥ g
∑

i

1
{Bi contains an advantageous pair for π}

.

Since, as shown in Lemma 5.19 of [36], ET (π) ≥ ET̂ (π), we have

ET (x, y) − ET̂ (x, y) ≥ ET̂ (π) − ET̂ (π′) ≥ g
∑
i∈I

P(Bi contains an advantageous pair for π).

But (again using some fixed ordering on pairs inside Bi) we have

P(Bi contains an advantageous pair for π)

≥
∑

(α,γ)⊂Bi

E
[
1
{(α,γ) is the least pair in Bi which is feasible}1{(α,γ) is advantageous}

]
=

∑
(α,γ)⊂Bi

E
[
1
{(α,γ) is the least pair in Bi which is feasible}E[1

{(α,γ) is advantageous}|w]
]

≥2−(C(1+ε)+C)bC
∑

(α,γ)⊂Bi

E
[
1
{(α,γ) is the least pair in Bi which is feasible}

]
=2−(C(1+ε)+C)bCP(Bi contains a feasible pair for π).

Thus we have the lemma with c0 := g · 2−(C(1+ε)+C)bC > 0. �

Inequalities up to a constant factor will appear many times in this chapter, so from here we

fix the following notation. For two functions f and g of a parameter t, we will write f (t) . g(t)

or g(t) & f (t) if there is some constant c > 0 and t0 < ∞ such that f (t) ≤ cg(t) for all t ≥ t0. In

this chapter our parameter t is typically either d(x, y) or R, and which it is should be clear from

context.
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Finally, we can weaken the disjointness assumption on the {Bi} in Lemma 4.3.3 and obtain

the following key lemma (where the same hypotheses on ν and ν̃ are assumed as in Lemma

4.3.3):

Lemma 4.3.4. Let {Bi}i∈I be a family of subgraphs of G and suppose that

sup
i∈I

#{ j ∈ I : B j ∩ Bi , ∅} < ∞.

Then, if

∑
i∈I

P(Bi contains a feasible pair for the T-geodesic π : x→ y) & d(x, y)

for all x, y ∈ V with d(x, y) sufficiently large, then

lim inf
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

> 0.

Proof. First, consider the graph whose vertex set is I and whose edges are {i, j} such that

Bi ∩ B j , ∅. Our first assumption states precisely that this graph has degree bounded by some

constant, let’s call it D′ < ∞. Then this graph can be colored by D′ + 1 colors using a greedy

coloring. Hence we get a decomposition I =
⊔D′+1

`=1 I` such that for each fixed `, for all i, j ∈ I`,

if i , j then Bi ∩ B j = ∅. Moreover, we have

max
`∈{1,...,D′+1}

∑
i∈I`

P(Bi contains a feasible pair for the geodesic π : x→ y)

≥
1

D′ + 1

∑
i∈I

P(Bi contains a feasible pair for the geodesic π : x→ y) & d(x, y).
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Thus we will have our lemma once we show that for each `

ET (x, y) − ET̃ (x, y) &
∑
i∈I`

P(Bi contains a feasible pair for the geodesic π : x→ y).

But since the {Bi}i∈I` are disjoint families, this follows immediately from Lemma 4.3.3. �

In light of the previous lemma, our strategy for proving our main theorems will be to find

suitable subgraphs Bi of G and then prove that the expected number of Bi containing a feasible

pair for the T -geodesic from x to y is at least a constant times d(x, y).

4.4. Graphs that admit detours

Here we introduce and prove facts about the key fine-geometric condition on our graphs.

Recall (Definition 2) that we call π′ an ε-detour for π if π , π′, π and π′ have the same endpoints,

and |π′ \ π| ≤ (1 + ε)|π \ π′|.

Definition 4. We say that a graph G admits detours if for every ε > 0, there exists some C

such that for every self-avoiding path π in G of length C, there exists a self-avoiding ε-detour

π′ for π.

Note that this is equivalent to the (a priori stronger) condition that any self-avoiding path of

length at least C admits a self-avoiding ε-detour; given a self-avoiding path π of length greater

than C, replace some subpath π1 of length C with an ε-detour π′1 for π1, and we obtain an ε-

detour π′ for π. π′ can be made into a self-avoiding ε-detour for π simply by loop-erasing if

necessary.

Our main theorems say that at least in certain coarse-geometric settings, this fine-geometric

condition on the graph is equivalent to the vdBK property. We first give an equivalent condition
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and show that this condition is necessary for a graph to have the vdBK property. We then

discuss a subtlety in interpreting the negation of the vdBK property for inhomogeneous graphs.

We then give examples of graphs which admit detours.

4.4.1. vdBK graphs admit detours

Recall that a path π from v to w is called an edge-geodesic if for all paths π′ from v to w,

|π| ≤ |π′|. π is called a unique (edge)-geodesic if for all π′ , π from v to w, |π| < |π′|.

Proposition 4.4.1. G admits detours if and only if G admits detours along unique geodesics

in the following sense: for all ε > 0, there exists C < ∞ such that for every unique edge-geodesic

π of length C, there exists an ε-detour π′ for π.

Proof. The forward implication is clear. Now assume that G admits detours along unique

geodesics. Note that the ε-detour π′ for a unique geodesic π can be made self-avoiding simply

by loop erasing; the resulting path is still an ε-detour for π because the process of loop erasing

cannot increase |π′ \ π| and cannot decrease |π \ π′| ≥ 1. So it only remains to construct self-

avoiding ε-detours for self-avoiding paths which are not unique geodesics. Let π be a self-

avoiding path which is not a unique geodesic, and let π′ be an edge-geodesic connecting the

endpoints of π which is not equal to π. Since π′ is a geodesic, we have

0 ≤ |π| − |π′| = |π \ π′| − |π′ \ π|,

so that

|π′ \ π| ≤ |π \ π′| ≤ (1 + ε)|π \ π′|

for all ε > 0. �
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We can now easily prove that admitting detours is a necessary condition for a graph to be

vdBK.

Theorem 4.4.1. Let G be a graph which does not admit detours. Then there exists a se-

quence of pairs (xn, yn) ∈ V2 with d(xn, yn) −−−→
n→∞

∞ and a pair of atomless measures ν, ν̃ with

finite mean which are supported away from 0 and such that ν̃ is strictly more variable than ν

but

ET (xn, yn) = ET̃ (xn, yn)

for all n. In particular, if G has bounded degree, then G does not satisfy the vdBK property.

Proof. Since G does not admit detours, by Proposition 4.4.1 there exists ε0 > 0 such that

for each n we have a unique geodesic πn of length n which does not admit a ε0-detour, which

is to say that, if xn and yn are the endpoints of πn, then any other self-avoiding π′n from xn to yn

satisfies

|π′n \ πn| ≥ (1 + ε0)|πn \ π
′
n|.

Note that, canceling a term of T (πn ∩ π
′
n), we always have

T (π′n) − T (πn) = T (π′n \ πn) − T (πn \ π
′
n).

Now assume ν is supported on [1, 1 + ε0]. Then for any π′n , πn we have

T (π′n \ πn) − T (πn \ π
′
n) ≥ 1 · |π′n \ πn| − (1 + ε0)|πn \ π

′
n|

≥ (1 + ε0)|πn \ π
′
n| − (1 + ε0)|πn \ π

′
n| = 0.
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That is, when ν is supported on [1, 1 + ε0], πn is almost surely has optimal passage time, that is,

T (xn, yn) = T (πn) a.s.

But then

ET (xn, yn) = ET (πn) = (Ew)d(xn, yn).

In particular, if both ν and ν̃ are supported on [1, 1 + ε0] and Ew = Ew̃, we get

ET (xn, yn) = (Ew)d(xn, yn) = (Ew̃)d(xn, yn) = ET̃ (xn, yn),

so to complete our proof we just need to find two such ν, ν̃ such that ν̃ is strictly more variable

than ν. For example, we can take ν̃ to be the uniform measure on [1, 1 + ε0] and ν to be the

uniform measure on [1 + (ε0/4), 1 + (3ε0/4)] (see Example 2.17 in [36]). Finally, if G has

bounded degree, then ν({1 + (ε0/4)}) = 0 < 1/D ≤ ~pc, so ν is exponential-subcritical and the

pair ν, ν̃ contradicts the vdBK property. �

Although this theorem applies to any bounded degree graph, one should note that the vdBK

is quite a strong property to ask of an inhomogeneous graph. That is, the condition ET̃ � ET ,

or

lim inf
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

> 0,

requires that we have a discrepancy of linear order for any pair of points x, y ∈ V which are

sufficiently far apart. This implies, but is in general stronger than, another natural condition:

fixing a basepoint o ∈ V , we may ask that

lim inf
x→∞

ET (o, x) − ET̃ (o, x)
d(o, x)

> 0.
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Note that by the triangle inequality, when ν, ν̃ have finite mean, the above limit is actually inde-

pendent of the choice of basepoint o. This is the relevant strict inequality if one is considering

scaling limits based at o.

The difference in these two notions means that the negation of the vdBK property is not as

strong of a property as we would like it to be. For instance (see Section 4.7.6), supercritical

percolation clusters in Zd almost surely do not satisfy the vdBK property, but it seems very

likely that they should satisfy “the vdBK property with one endpoint fixed.”

On the other hand, it should be emphasized that if G is almost-transitive (i.e. the action

of Aut(G) on V has finitely many orbits), then the two above notions of strict inequality are

equivalent. This is because if we take a finite fundamental domain F ⊂ V for the action of

Aut(G) on V , using Aut(G)-invariance of ET,ET̃ , and d, we have that

lim inf
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

= lim
R→∞

min
u∈F

inf
x∈V

d(u,x)≥R

ET (u, x) − ET̃ (u, x)
d(u, x)

= min
u∈F

lim inf
x→∞

ET (u, x) − ET̃ (u, x)
d(u, x)

= lim inf
x→∞

ET (o, x) − ET̃ (o, x)
d(o, x)

.

Thus, while the vdBK property may be “too strong” for general inhomogeneous graphs, it is

“the right” property for almost-transitive graphs. Moreover, there are several inhomogeneous

graphs which are nonetheless vdBK; see Section 4.7.6.



101

4.4.2. Examples of graphs which admit detours

Proposition 4.4.1 gives us an easy way to produce graphs which admit detours, namely by

“doubling” edges. Simply take any graph G and create a new graph G′ by taking the edge set of

G and adding an extra edge between each v,w ∈ V which are connected by an edge in G. Since

every edge has a “parallel” edge, G′ has no unique geodesics, and hence by Proposition 4.4.1

admits detours.

This is a rather “cheap” way to get a graph that admits detours, especially since in first-

passage percolation often the graphs one is interested in are simple, i.e. contain no parallel

edges. However, this is a simple way to see that the property of admitting detours is not a

quasi-isometry invariant; every graph G is quasi-isometric to a graph G′ which admits detours,

so admitting detours is a “fine” rather than a “coarse” geometric property.

The property is not group-theoretic either; that is, for some groups Γ, some Cayley graphs

of Γ admit detours and others do not. This can be seen using the same technique as above if

one allows Cayley graphs to have double edges (for discussion on what exactly is meant by

“Cayley graph” see Section 4.5). But even if one restricts to simple Cayley graphs, there are

counterexamples. The standard Cayley graph of Z does not admit detours (since it is a tree), but

every Cayley graph of Z not isomorphic to this one does. Similarly, Cayley graphs of Z/2 ∗Z/2

which are isomorphic to the standard Cayley graph of Z do not admit detours, but all others do.

This is proven in Section 4.5.

On the other hand, there are several properties of groups which ensure that all of their

Cayley graphs admit detours. For instance, we have
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Proposition 4.5.1. Let Γ be a finitely generated group, and suppose that Γ contains F E Γ a

nontrivial finite normal subgroup. Then any Cayley graph of Γ admits detours.

Proposition 4.5.4. Let Γ be a finitely generated group not isomorphic to Z or Z/2 ∗ Z/2 �

Z o Z/2 with a finite index subgroup H such that H has nontrivial center. Then any Cayley

graph G of Γ admits detours.

These allow us to conclude:

Theorem 4.5.1. Let G be a Cayley graph of a virtually nilpotent group. If G is not isomor-

phic as a graph to the standard Cayley graph of Z, then G admits detours.

The proofs of all of these facts are entirely combinatorial and group-theoretic and are given

in Section 4.5. There may be many weaker group-theoretic conditions which ensure that every

Cayley graph of a group admits detours; the ones proven here were mostly chosen in order to

prove Theorem 4.5.1, since this is needed to prove Theorem 4.1.1. Of course, they readily apply

to many groups which are not virtually nilpotent.

4.5. Cayley graphs which admit detours

In this section we prove sufficient conditions for a Cayley graph of a group to admit detours,

and in particular Theorem 4.5.1, which will allow us to conclude Theorem 4.1.1 from Theorem

4.1.2. The arguments here involve no probability, only combinatorics and group theory. They

are independent of the rest of the chapter, so some readers may choose to skip this section upon

first reading.
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4.5.1. Paths in Cayley graphs

We begin by defining two slightly different notions of Cayley graph. Both definitions are natu-

ral, and the distinction between the two does not make a difference to geometric group theorists

(i.e., the two constructions produce quasi-isometric graphs, and the metric induced on the group

is the same) but it will make a slight difference in the study of FPP.

Let Γ be a finitely generated group, S a finite set, and f : S → Γ \ {1} a map whose

image generates Γ. We define the unreduced Cayley graph associated to (Γ, S ) to be the graph

G = (V, E) with vertex set V = Γ and edge set E = Γ × S , where the boundary of the edge

e = (g, s) is {g, g f (s)} ⊂ V . We define the reduced Cayley graph associated to (Γ, S ) to be

the graph G = (V, E) whose vertex set is V = Γ, whose edge set is the set E = {{x, y} ⊂ Γ :

x , y,∃s ∈ S ∪ S −1 s.t. y = x f (s)} and the boundary map is the natural inclusion. The reduced

Cayley graph is the simple graph obtained from the unreduced Cayley graph by deleting parallel

edges. Typically the two graphs are isomorphic unless some f (s) ∈ Γ is of order two, but the

two graphs may also be nonisomorphic if one takes f : S → Γ to be a “redundant” generating

set, containing repeated elements or inverses of elements already included. We call a graph a

Cayley graph it is a reduced or unreduced Cayley graph.

Note that the action of Γ on itself by left multiplication induces an action of Γ on G by graph

isomorphisms whenever G is a Cayley graph. So Γ acts on the set of vertices of G, the set of

edges of G, the set of geodesics of G, the set of unique geodesics of G, etc. The action of Γ on

the vertex set V = Γ is transitive, and so any path and in particular any unique geodesic is the

translate of some path (unique geodesic) starting at 1 ∈ Γ = V .

Finite paths in the unreduced Cayley graph associated to (Γ, S ) starting from the identity

vertex are in one-to-one correspondence with finite words in S t S −1. (Here, S is considered
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as an abstract set, and S −1 consists of symbols of the form s−1 where s ∈ S ). In the case of

a reduced Cayley graph, there is a bijection between finite paths starting at the identity and

elements of ( f (S ) ∪ f (S )−1)∗ (i.e. finite words in the subset f (S ) ∪ f (S )−1 ⊂ Γ). We use A to

denote S t S −1 in the case that G is the unreduced Cayley graph associated to (Γ, S ) and we

use A to denote f (S ) ∪ f (S )−1 ⊂ Γ in the case that G is the reduced Cayley graph associated

to (Γ, S ). So in either case, paths starting from 1 ∈ V = Γ correspond to finite words in A; we

denote the set of finite words in A by A∗.

A∗ together with the operation of concatenation is the free monoid on A. Since A has a

natural “formal inverse” map A → A, a 7→ a−1 in both cases, this induces a “formal inverse”

map on A∗ given by (a1 · · · an)−1 := a−1
n · · · a

−1
1 . Note that α−1 is not a true inverse of α; the word

αα−1 ∈ A∗ represents the concatenation of the path represented by α with its reverse, which is

in particular not equal to the trivial path (consisting of no edges) represented by the empty word

in A∗.

We have an “evaluation map” ρ : (S t S −1)∗ → Γ induced by f : S → Γ given by

ρ(sε1
1 · · · s

εk
k ) := f (s1)ε1 · · · f (sk)εk ,

where the si ∈ S , εi ∈ {+1,−1}. We also have an evaluation map ρ : ( f (S ) ∪ f (S )−1)∗ → Γ just

given by group multiplication in Γ; ρ(g1 · · · gk) is the product g1 ∗ · · · ∗ gk ∈ Γ. (Typically the

group multiplication in Γ is denoted in the same way as concatenation in A∗; we only write it

with ∗ here to emphasize that ρ : A∗ → Γ is not the identity map).

Note that in either case ρ : A∗ → Γ is a homomorphism of monoids which respects the

inverse operation, i.e. ρ(αβ) = ρ(α)ρ(β), ρ(α−1) = ρ(α)−1 for all α, β ∈ A∗. Geometrically, if

α ∈ A∗ represents a path in G starting from 1 ∈ V = Γ, ρ(α) ∈ Γ = V is the endpoint of that
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path. If α, β ∈ A∗, then the path represented by αβ is the concatenation of the path represented

by α with the left-translate by ρ(α) of the path represented by β. The path represented by α−1 is

the left-translate by ρ(α)−1 of the reverse of the path represented by α.

The condition that π ∈ A∗ corresponds to a geodesic in G is exactly the condition that for

any π′ ∈ A∗ such that ρ(π′) = ρ(π) we have |π′| ≥ |π| (where here | · | is the length of a word).

The condition that π ∈ A∗ corresponds to a unique geodesic is precisely the condition that π

corresponds to a geodesic, and for any π′ such that ρ(π′) = ρ(π) and |π′| = |π| we have π = π′.

Recall also that the properties of being geodesic and uniquely geodesic pass to subpaths and are

invariant under translations, and so the above properties pass to subwords. In what follows we

will use the same symbol to denote a word in A∗ and the path in G starting from the identity

which it corresponds to. For instance, for α, β ∈ A∗, ρ(α)β is the left-translate by ρ(α) ∈ Γ of

the path in G represented by β; ρ(α)β is a path in G starting at ρ(α) and ending at ρ(αβ), and the

path αβ is the concatenation of the paths α and ρ(α)β.

4.5.2. Sufficient conditions for a Cayley graph to admit detours

In many groups, there are relatively explicit constructions for constructing an ε-detour for a

given unique geodesic. All the constructions given in this section are very similar, and come

from intuition from Zd, d ≥ 2. In the standard Cayley graph of Zd, unique geodesics are just

long straight lines; one can construct a path with the same endpoints which is totally edge-

disjoint from the original and only two edges longer by simply first taking a step perpendicular

to the original path, following a translated version of the original path, and then taking a step

back. Our basic strategy will be: given a unique geodesic with some nice properties, find two

words of bounded length which when appended to the beginning and end of this path give a path
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which has the same endpoints but misses a positive proportion of the edges in the original path;

this constructs detours for “nice” unique geodesics. Then, if every unique geodesic contains a

subpath with nice properties with length at least a positive proportion of the original length, we

can now construct a detour for a general unique geodesic simply by replacing the nice subpath

with its detour.

The first large class of groups for which we prove that all Cayley graphs admit detours is

the following:

Proposition 4.5.1. Let Γ be a finitely generated group, and suppose that Γ contains F E Γ a

nontrivial finite normal subgroup. Then any Cayley graph of Γ admits detours.

Proof. Set ` := max f∈F | f | (where | f | is the minimum length of a word w ∈ A∗ with ρ(w) =

f ). Let π ∈ A∗ be a uniquely geodesic word. We first claim that there exists a subword π′ of

π with |π′| ≥ |π|−`
`+1 such that no nonempty subword v of π′ has ρ(v) ∈ F. To see this, consider

the path in the Cayley graph of Γ/F corresponding to π. A subword v of π with ρ(v) ∈ F

corresponds exactly to a loop in the path in Γ/F. We then loop-erase; that is, we can find a

collection of disjoint subwords β1, ..., βk of π, corresponding to loops in the path in Γ/F, such

that if we take the word π′′ obtained from π by removing these subwords, we get a path in Γ/F

with the same endpoints (that is, ρ(π′′) and ρ(π) have the same image under the map Γ→ Γ/F)

and this path does not have any loops (that is, for all nonempty subwords v of π′′, we have

ρ(v) < F). Note that since π represents a geodesic path in the Cayley graph of Γ, we have

|ρ(π)| = |π| = |π′′| +
k∑

i=1

|βi|,
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but on the other hand, since ρ(π) and ρ(π′′) have the same image in Γ/F, there exists f ∈ F such

that fρ(π′′) = ρ(π), and therefore

|ρ(π)| ≤ | f | + |ρ(π′′)| ≤ ` + |π′′|,

whence we conclude that
k∑

i=1

|βi| ≤ `

and hence (assuming without loss of generality that the βi are nonempty) also that k ≤ `. Since

π′′ was obtained from π by deleting k subwords from π, it is equal to the concatenation of at

most k +1 subwords of π. Thus, by the pigeonhole principle, there exists a subword π′ of π with

|π′| ≥
|π′′|

k + 1
≥
|π| − `

` + 1
,

and such that no nonempty subword v of π′ has ρ(v) ∈ F, as desired.

Now, we construct a detour for π′. Let f ∈ F\{1}. Since F is normal, f ρ(π′) := (ρ(π′))−1 fρ(π′) ∈

F. Taking geodesics γ1 ∈ A∗ from 1 to f and γ2 ∈ A∗ from 1 to ( f ρ(π′))−1 and setting

π̃′ := γ1π
′γ2

gives a path with ρ(π̃′) = fρ(π′)( f ρ(π′))−1 = ρ(π′) (that is, π̃′ has the same endpoints as π′), and

|π̃′| = |π′| + |γ1| + |γ2| ≤ |π
′| + 2`.

We now show that if π̃′ intersects π′ it only does so in the first ` or the last ` edges of π′. Note

that it suffices to show that the vertex sets V(π′) and V(π̃′) only intersect in the first ` + 1 or the

last ` + 1 vertices of V(π′). (Recall that if S ⊂ E, then V(S ) ⊂ V is the set of vertices which are
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endpoints of some edge e ∈ S .) Note also that intersections of V(π′) and V(π̃′) correspond to

initial subwords of π′ and π̃′ which have the same image under ρ : A∗ → Γ.

So first, suppose that for some initial subword v of γ1 and some initial subword π1 of π′ we

have that

ρ(v) = ρ(π1);

geodesicity of π′ implies that |π1| ≤ |v| ≤ `; that is, the intersection of V(π′) and V(π̃′) has

happened in the first ` + 1 vertices of V(π′). Similarly, if for some initial subword v of γ2 and

some initial subword π1 of π′ we have

ρ(γ1π
′v) = ρ(π1);

taking the v′ to be the subword of γ2 such that γ2 = vv′ we get

ρ(π′) = ρ(γ1π
′γ2) = ρ(π1)ρ(v′),

and taking π2 to be the subword of π′ such that π′ = π1π2 we get

ρ(π1)ρ(π2) = ρ(π′) = ρ(π1)ρ(v′)⇒ ρ(π2) = ρ(v′)

by cancellation, and so by geodesicity of π′ we conclude that |π2| ≤ |v′| ≤ `; that is, the intersec-

tion of V(π)′ and V(π̃′) has happened in the last ` + 1 vertices. The only remaining case is that

there exist initial subwords π1 and π2 of π such that

ρ(γ1π1) = ρ(π2),
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and hence

fρ(π1) = ρ(π1) f ρ(π1) = ρ(π2)⇒ f ρ(π1) = ρ(π1)−1ρ(π2) ∈ F \ {1}.

But since π1 and π2 are both initial subwords of π′, there exists some subword π3 of π such that

ρ(π1)−1ρ(π2) = ρ(π3)±, but then π3 is a subword of π′ with ρ(π3) ∈ F \ {1}, which contradicts our

construction of π′, so this case cannot occur. Thus we have proven that V(π′) and V(π̃′) only

intersect in the first `+1 or the last `+1 vertices of V(π′), and so in particular |π′ \ π̃′| ≥ |π′|−2`.

Finally, if π = απ′ω, set π̃ = απ̃′ω. We then have that ρ(π) = ρ(π̃), that is, π and π̃ have the

same endpoints, and

|π̃| − |π| = |π̃′| − |π′| ≤ 2`,

while

|π \ π̃| ≥ |π′ \ π̃′| ≥ |π′| − 2` ≥
|π| − `

` + 1
− 2`.

Thus, given ε > 0, if we choose C large enough that (2`)
(

C−`
`+1 − 2`

)−1
≤ ε, then for any unique

geodesic π with |π| ≥ C, we have that

|π̃| − |π| ≤ ε |π \ π̃|,

that is, π̃ is an ε-detour for π. �

For other classes of groups, we will need to treat two cases separately: either we can con-

struct a detour for our unique geodesic with a simple construction, or our unique geodesic has

a very special form. This is made precise in the following lemma, which we use several times

below:
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Lemma 4.5.1. Let Γ be a finitely generated group and let H ≤ Γ be a subgroup of finite

index. Let G be a Cayley graph associated to a generating set S for Γ, A be the relevant

alphabet. Suppose that there exists some z ∈ H \ {1} such that for all h ∈ H

|zh| := |h−1zh| = |z|.

Fix w ∈ A∗ a geodesic from 1 to z, and for each H-conjugate zh of z fix wh ∈ A∗ a geodesic from

1 to zh (note the property of z ensures that |w| = |wh| for all h ∈ H). Let π ∈ A∗ be a unique

geodesic in G such that ρ(π) ∈ H. Then:

(1) If there exist α, ω ∈ A∗, h ∈ H such that ρ(α), ρ(ω) ∈ H and π = αwhω, then π is an

initial subpath of (wh′)N for some h′ ∈ H, N < ∞. If π = α(wh)−1ω then π is an initial

subpath of ((wh′)−1)N for some h′ ∈ H,N < ∞.

(2) Suppose that the condition above fails, that is, for all choices of α, ω ∈ A∗ and h ∈ H

with ρ(α), ρ(ω) ∈ H, we have π , αwhω and π , α(wh)−1ω. Then the path

π′ := wπ(wρ(π))−1

has the same endpoints as π and satisfies

|V(π′) ∩ V(π) ∩ H| ≤ 2(|w| + 1),

and hence

|V(π) \ V(π′)| ≥ |(V(π) \ V(π′)) ∩ H| = |V(π) ∩ H| − |V(π′ ∩ π ∩ H)|

≥ |V(π) ∩ H| − 2(|w| + 1)
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so that

|π \ π′| ≥
1
2
|V(π) \ V(π′)| ≥

1
2
|V(π) ∩ H| − |w| − 1.

Before proving the lemma, we give context by proving the implications we need it for.

Proposition 4.5.2. Let G be a Cayley graph of Z. Either A = {a, a−1} for some a ∈ A, in

which case G is isomorphic to the standard Cayley graph of Z, or G admits detours.

Proof. If A = {a, a−1}, then clearly G is isomorphic to the standard Cayley graph of Z.

Assume that there exists s ∈ A \ {a, a−1} for some a ∈ A. Letting H = Γ = Z, w = a, we see that

the assumptions of the lemma are satisfied, since Z is abelian and hence the conjugation action

is trivial (we also set wh = a for all h ∈ H). Therefore, if π is any unique geodesic in Γ, either

π = aN , π = (a−1)N , or π does not contain a or a−1. By part (2) of the lemma, in the latter case,

setting π′ := aπa−1 gives a path with the same endpoints such that5

|π \ π′| ≥
1
2
|π| − 2.

Now consider the former case, i.e. π = aN or π = (a−1)N . Note that taking H = Γ = Z and w = s

also satisfies the hypotheses of the lemma, and since s, s−1 do not appear in π, by part (2) of the

lemma, taking π′ := sπs−1 gives a path with the same endpoints as π and

|π \ π′| ≥
1
2
|π| − 2.

5By looking more closely at the paths, one can see that the prefactor of 1
2 is not necessary; the crude bound

|π \ π′| ≥ 1
2 |V(π) \ V(π′)| from which it comes could be avoided by a more careful argument, but this is not

necessary for our purposes.



112

Thus, for any ε > 0, if C is sufficiently large that 2 ≤ ε(C
2 − 2) then we have that if π is a unique

geodesic with |π| ≥ C then with the above construction of π′ we have

|π′| − |π| = 2 ≤ ε |π \ π′|,

as desired. �

Proposition 4.5.3. Let G be a Cayley graph of Γ := Z/2∗Z/2. Either G is a reduced Cayley

graph associated to a generating set S such that f (S ) consists of exactly two elements of order

2, in which case G is isomorphic to the standard Cayley graph of Z, or G admits detours.

Proof. If G is a reduced Cayley graph with A = f (S ) consisting of exactly two elements of

order 2, then G is a connected regular infinite graph of degree 2, and so it is isomorphic to the

standard Cayley graph of Z. We want to show that in any other case, G admits detours.

Recall that all nonidentity elements of Γ = Z/2 ∗ Z/2 � Z o Z/2 have either infinite order

or order two. Hence, the remaining cases to check are (1): f (S ) contains an element of infinite

order; (2): f (S ) contains only elements of order 2 but G is an unreduced Cayley graph; (3):

f (S ) contains only elements of order 2, G is a reduced Cayley graph, and | f (S )| ≥ 3. Also

recall that any product of two distinct elements of order 2 is an element of infinite order, and

that for any element x ∈ Γ of infinite order, for any g ∈ Γ we have g−1xg = x−1 if g has order 2

and g−1xg = x otherwise.

So assume that for some z ∈ A, ρ(z) has infinite order. Then for any g ∈ Γ we have

ρ(z)g = ρ(z) or ρ(z)g = ρ(z)−1 = ρ(z−1). Therefore if we take H = Γ and w = z, the hypotheses

of the lemma are satisfied, and for each h ∈ H we can choose wh to be either z or z−1. Let π be

a unique geodesic in G. By the lemma, either π = zN , π = (z−1)N or π does not contain z or z−1.
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In the latter case, by the lemma, taking π′ := zπz−1 gives a path with the same endpoints and

|π \ π′| ≥ 1
2 |π| − 2. In the former cases, take a ∈ A with ρ(a) of order 2 (any generating set of Γ

must contain such an element). Taking π′ := aπ−1a then gives a path with the same endpoints

as π, and V(π) ∩ V(π′) is equal to the endpoints of π and π′, since for any 0 ≤ n,m ≤ N,

ρ(az±n) , ρ(z±m), since the two elements lie in distinct cosets of 〈ρ(z)〉 ≤ Γ. Hence in fact

|π \ π′| = |π|.

Next, assume that f (S ) contains only elements order 2, but G is an unreduced Cayley graph.

In this case, every edge of G is a double edge, so there are no unique geodesics, and so G admits

detours.

Lastly, assume that f (S ) contains only elements of order 2, G is a reduced Cayley graph,

and | f (S )| ≥ 3. Pick a, b, c ∈ A such that ρ(a), ρ(b), ρ(c) are all distinct. Since ρ(ab) has infinite

order, again taking w = ab, H = Γ satisfies the hypotheses of the lemma, and we can choose

for each h ∈ H either wh = ab or wh = ba. Hence, letting π be a unique geodesic in G, we have

that either π does not contain ab or ba as a subword, or that π is a subword of (ab)N for some

N. In the first case, by the lemma, we have that taking π′ := (ab)π(ba)(−1)|π| gives a path with the

same endpoints as π with |π \ π′| ≥ 1
2 |π| − 3. In the second case, take π′ := (ac)π(ca)(−1)|π| . Then

π and π′ have the same endpoints, and we claim that |V(π′) ∩ V(π)| is contained in the union of

the first two and last two vertices of V(π′), implying that |π \ π′| ≥ |π| − 3. To see this, suppose

to the contrary that for some initial subpaths π1, π2 of π we had

ρ((ac)π1) = ρ(π2).
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We have ρ((ac)π1) = ρ(π1(ac)(−1)|π1 |). Moreover, there is some subpath π̃ of π such that either

π2π̃ = π1 or π1π̃ = π2. Then in the first case, by cancellation we have

ρ((ac)(−1)|π1 |) = ρ(π̃).

As a subpath of π, π̃ is uniquely geodesic, but (ac) and (ca) are both geodesics, since f (S ) only

contains elements of order 2 and hence any path to an element of infinite order has length at

least 2. Hence we have that π̃ = (ac)(−1)|π1 | , contradicting our assumption that π is a subpath of

(ab)N . In the case that π1π̃ = π2, we similarly conclude that π̃ = (ac)(−1)|π1 |+1
, which is similarly

a contradiction.

Thus, in any of these three cases, given a unique geodesic π, we can produce a path π′ with

the same endpoints such that |π \π′| ≥ 1
2 |π| −3 and |π′| ≤ |π|+ 4. Thus, given ε > 0, if we choose

C sufficiently large that 4 ≤ ε( 1
2C − 3), then for any self avoiding path π of length at least C

have have π′ with

|π′| − |π| ≤ 4 ≤ ε |π \ π′|,

as desired. �

Proposition 4.5.4. Let Γ be a finitely generated group not isomorphic to Z or Z/2 ∗ Z/2 �

Z o Z/2 with a finite index subgroup H such that H has nontrivial center. Then any Cayley

graph G of Γ admits detours.

Proof. First, we show that we can assume without loss of generality that H is not cyclic.

Suppose that H were cyclic; then Γ would be virtually Z, and therefore (see Lemma 11.4 on

page 102 of [23]) there is a finite normal subgroup FEΓ such that Γ/F is isomorphic to either Z

or Z/2 ∗Z/2. If F is not trivial, then Proposition 4.5.1 tells us that any Cayey graph of Γ admits
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detours. If F is trivial, then Γ itself is isomorphic to either Z or Z/2 ∗ Z/2, and these cases are

excluded by assumption.

So assume that H is a non-cyclic finite index subgroup of Γ with nontrivial center. Fix z , 1

a nontrivial central element of H of minimal distance to 1 and consider a geodesic path w ∈ A∗

from 1 to z. Since by definition zh = z for all h ∈ H, this choice of w and H satisfy the conditions

of the lemma; we also set wh = w for all h ∈ H.

Take a unique geodesic π̃ in G. By the pigeon-hole principle, there is some t ∈ Γ such that at

least 1
[Γ:H] |V(π)| of the vertices in V(π) lie in the coset tH. Denote by ηi the subpath of π̃ starting

at the ith such vertex and ending at the (i + 1)th such vertex. Set π := η1 · · · ηM, the subpath of π̃

from the first such vertex to the last such. Note that each ρ(ηi) ∈ H, ρ(π) ∈ H, and that the ηi

are minimal in the sense that if α is a proper initial or final subword of some ηi, then ρ(α) < H.

Now, by the lemma, either π is an initial subpath of wN or (w−1)N for some N < ∞ or there

are no α, ω ∈ A∗ with ρ(α), ρ(ω) ∈ H and either π = αwω or π = αw−1ω. In the latter case, the

lemma also tells us that taking π′ := wπw−1 gives a path with the same endpoints as π and

|π \ π′| ≥
1
2
|V(π) ∩ H| − |w| − 1.

So consider the case that π is an initial subpath of wN (the case that π is an initial subpath of

(w−1)N is exactly analogous). First note that as long as |π| > |w|, this implies that all the ηi are

equal. For suppose that η1 · · · ηl = w; then we have

ρ(π) = ρ(wηl+1 · · · ηM) = ρ(ηl+1wηl+2 · · · ηM) = ρ(ηl+1η1 · · · ηlηl+2 · · · ηM),

so unique geodesicity, together with the fact that the decomposition w = η1 · · · ηM is uniquely

specified by w and H, implies that ηi = ηi+1 for all i = 1, ..., l − 1, so w = ηl
1, and hence π = ηM

1 .
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Now take a geodesic path α from 1 to some element of H \ 〈ρ(η1)〉 (which is possible since H

is not cyclic) with minimal distance to 1. Let 0 ≤ r < l be minimal such that M + r is a multiple

of l. Then we set

π′ := αηM+r
1 α−1η−r

1 .

Since ρ(ηM+r
1 ) is a power of ρ(ηl

1) = ρ(w) = z, it is central in H, and hence we see that π and π′

have the same endpoints. We further claim that

V(π′) ∩ V(π) ∩ H ⊂ V(α) ∪ ρ(αηM+r
1 )V(α−1η−r

1 ),

which implies that

|V(π′) ∩ V(π) ∩ H| ≤ 2|α| + |w| + 2,

hence |V(π \ π′)| ≥ |V(π) ∩ H| − (2|α| + |w| + 2) and

|π \ π′| ≥
1
2
|V(π) \ V(π′)| ≥

1
2
|V(π) ∩ H| − |α| − |w| − 1.

To see this, suppose to the contrary that for some 0 ≤ i ≤ M + r, 0 ≤ j ≤ M we had

ρ(αηi
1) = ρ(η j

1).

Then cancellation gives us

ρ(α) = ρ(η1) j−i ∈ 〈ρ(η1)〉,

contradicting our choice of α.

Thus, in either case, given π, we get π′ with the same endpoints satisfying

|π′| ≤ |π| + 2(|α| + |w|)
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and

|π \ π′| ≥
1
2
|V(π) ∩ H| − |α| − |w| − 1.

If π̃ = π1ππ2, set π̃′ := π1π
′π2. Then we again have

|π̃′| − |π̃| = |π′| − |π| ≤ 2(|α| + |w|)

and

|π̃ \ π̃′| = |π \ π′| ≥
1
2
|V(π) ∩ H| − |α| − |w| − 1

=
1
2
|V(π̃) ∩ tH| − |α| − |w| − 1 ≥

1
2[Γ : H]

|V(π̃)| − |α| − |w| − 1.

Note that |w| = |z| is a constant independent of the path π̃. Moreover,

|α| ≤ sup
h∈H

inf
h′∈H\〈h〉

|h′| =: K < ∞,

where K is a constant also independent of the path π̃. To see that K is finite, take a finite

generating set S ′ for H (H is finitely generated by Schreier’s lemma, as a finite index subgroup

of the finitely generated group Γ.) Since H is not cyclic, for every h ∈ H, there is some s ∈ S ′

such that s < 〈h〉, and so K ≤ sups∈S ′ |s| < ∞, as desired.

Thus, given ε > 0, if we choose C > |w| sufficiently large that

2(K + |w|) ≤ ε
(

1
2[Γ:H]C − K − |w| − 1

)
, then for any unique geodesic π̃ in G of length at least C

we have π̃′ with the same endpoints such that

|π̃′| − |π̃| ≤ ε |π̃ \ π̃′|,
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as desired. �

Remark 4.5.1. The preceding three propositions are in some sense as far as we can push

the lemma. If there exists z , 1 such |zh| = |z| for all h ∈ H, in particular the H-orbit of z under

the conjugation action is finite; hence by the orbit stabilizer theorem, StabH(z) ≤ H is a finite

index subgroup of H with nontrivial center (the center contains z). Thus if H is itself finite index

in Γ, Γ has a finite index subgroup with nontrivial center, and one of the preceding propositions

apply. The lemma still holds if H is not finite index, but in that case it is not clear how to use it

to construct detours for G.

Now to prove the lemma.

Proof of Lemma 4.5.1. Let π be a unique geodesic with ρ(π) ∈ H and suppose that for some

α, ω ∈ A∗, h ∈ H, we have ρ(α), ρ(ω) ∈ H and π = αwhω. (The case that π = α(wh)−1ω is

exactly analogous). Note that since ρ(α), ρ(wh), ρ(ω) ∈ H, we have decompositions

α = ι1 · · · ι j,

wh = η1 · · · ηl

ω = κ1 · · · κm,

where each ρ(ιi), ρ(ηi), ρ(κi) ∈ H and if γ is an initial or final proper subpath of some ιi, ηi, or κi,

then ρ(γ) , H. Note that this property also uniquely specifies the decomposition.

Now we will show that α is a final subword of some (wh)N and that ω is an initial subword

of some (wh)N . First, suppose that j ≤ l. We have that

ρ(αη1 · · · ηl) = ρ(αwh) = ρ(whρ(α)−1
α) = ρ(whρ(α)−1

ι1 · · · ι j)
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where |whρ(α)| = |wh|; hence by unique geodesicity we have that the above paths are equal. By

the uniqueness of the decomposition, we then have that ιi = ηi+l− j for i = 1, ..., j, that is, α is a

final subword of w If j > l, we have

ρ(ι1 · · · ι jwh) = ρ(ι1 · · · ι j−lwhρ(ι j−l+1···ι j)−1
ι j−l+1 · · · ι j),

so that by unique geodesicity, ι j−l+1 · · · ι j = wh, that is α = α′w for some α′ of shorter length.

Thus, by induction, α is a final subword of (wh)N for some N. The argument that ω is an initial

subword of some (wh)N is exactly analogous.

Thus, π = αwω is a subword of some (wh)N; even more than that, α starts with ηi for some

i, so we see that π is an initial subword of some w′N , w′ := ηiηi+1 · · · ηlη1 · · · ηi−1. Note that

ρ(w′) = ρ(wh)ρ(η1···ηi−1) = ρ(whρ(η1···ηi−1)), and w′ is a subword of π, so by unique geodesicity

w′ = whρ(η1···ηi−1), so we have proven (1).

Now to prove (2). Let π be a unique geodesic with ρ(π) ∈ H and such that no decomposition

of the form π = α(wh)±1ω holds for any ρ(α), ρ(ω), h ∈ H. Then take π′ := wπw−1. We claim

that

V(π′) ∩ V(π) ∩ H ⊂ V(w) ∪ ρ(wπ)V(w−1),

which then clearly implies that |V(π′) ∩ V(π) ∩ H| ≤ 2(|w| + 1).

To prove our claim, suppose that to the contrary there were two initial subpaths π1, π2 of π

with ρ(π1), ρ(π2) ∈ H such that

ρ(wπ1) = ρ(π2).

Then we have

ρ(wπ1) = ρ(π1wρ(π1)) = ρ(π2).
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There is some subpath π̃ of π such that ρ(π̃) ∈ H and either π1 = π2π̃ or π2 = π1π̃. In the second

case, cancellation and unique geodesicity give

ρ(wρ(π1)) = ρ(π̃)⇒ wρ(π1) = π̃

which contradicts our assumption on π, since π = π1π̃ω for some ρ(ω) ∈ H and the above

equation says that π̃ is a geodesic from 1 to zρ(π1). The first case gives ρ(π̃) = ρ(wρ(π̃))−1, which

is similarly a contradiction. So we are done.

The final inequalities are consequences of straightforward algebraic manipulations, together

with the inequality

|π \ π′| ≥
1
2
|V(π) \ V(π′)|,

which follows from the fact that we can construct a map V(π) \ V(π′) → π \ π′ with fibers of

size at most 2 as follows: take each v ∈ V(π) \ V(π′) and associate to it an edge e ∈ π such that

v is an endpoint of e; such an edge exists since v ∈ V(π) and e < π′ because v < V(π′). �

Theorem 4.5.1. Let G be a Cayley graph of a virtually nilpotent group. If G is not isomor-

phic as a graph to the standard Cayley graph of Z, then G admits detours.

Proof. If G is a Cayley graph of a group which is not isomorphic to Z or Z/2 ∗ Z/2, this

follows from Proposition 4.5.4, since nilpotent groups have nontrivial center. If G is a Cayley

graph of Z, this follows from Proposition 4.5.2. If G is a Cayley graph of Z/2∗Z/2, this follows

from Proposition 4.5.3. �

4.6. Proof of Theorem 4.1.3

In this section, we prove the following:
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Theorem 4.1.3. Let G be a bounded degree graph which is quasi-isometric to a tree. Then

G is vdBK if and only if G admits detours. In fact, if G admits detours, then even if ν is not

exponential-subcritical, whenever ν̃ is strictly more variable than ν, we have ET̃ � ET.

A metric space which is quasi-isometric to a tree (where the tree is given the usual graph

metric) is called a quasi-tree. The following is a well-known equivalent condition for a geodesic

metric space to be a quasi-tree (the original, slightly weaker condition is due to Manning [28];

the following extension is a well-known consequence, see e.g. [6]):

Theorem 4.6.1 (Manning’s bottleneck criterion). A geodesic metric space X is a quasi-tree

if and only if there exists some ∆ < ∞ such that for every x, y ∈ X, for every geodesic [x, y] from

x to y, for every z ∈ [x, y], any path π from x to y intersects B(z,∆).

Corollary 4.6.1. Let G = (V, E) be a graph which is a quasi-tree. Then there exists R < ∞

such that for any x, y ∈ V, for any edge geodesic [x, y] from x to y and any z ∈ V([x, y]), every

path π from x to y intersects E(B(z,R)).

Here (and later in this chapter), if S ⊂ V , then E(S ) ⊂ E is defined to be the set of edges of

G which have both endpoints lying in S , and if S ⊂ E, then V(S ) ⊂ V is defined to be the set of

vertices which are an endpoint of an edge in S .

Proof. (V, d) is naturally a subspace of the geodesic metric space (G, d) given by the geo-

metric realization of G (i.e. the 1-dimensional metric cell complex where each e ∈ E corre-

sponds to 1-cell in G isometric to [0, 1], joining 0-cells corresponding to the endpoints of e).

The combinatorial edge-geodesics we study here correspond to geodesics in (G, d), and one

quickly sees that the corollary holds with R = ∆ + 1. �
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Proof of Theorem 4.1.3. We only need to prove that, if G admits detours, then we have

ET̃ � ET whenever ν̃ is strictly more variable than ν, since the other direction is given by

Theorem 4.4.1.

To this end, let ν, ν̃ have finite mean with ν̃ strictly more variable than ν and first assume that

(4.3.1) holds. Then let ε > 0, I0 be given as in Lemma 4.3.2. Since G admits detours, there is

some C such that every self-avoiding path π of length C admits a self-avoiding ε-detour (which

is necessarily of length at most (1 + ε)C). Since G is a quasi-tree, take R < ∞ such that for all

x, y ∈ V , for any geodesic [x, y] from x to y, any path π : x → y intersects E(B(z,R)) for all

z ∈ V([x, y]).

Now, define the family {Bv := B(v,R + C(2 + ε)) : v ∈ V}. First we claim that for any v,

P(Bv contains a feasible pair for the geodesic π : x→ y)

≥P(π visits B(v,R) and leaves Bv,w(e) ∈ I0 for all e ∈ E(Bv)).

To see this, note that if π visits B(v,R) and exits Bv, there is a segment α of π of length at

least C contained in B(v,R + C); this segment admits a self-avoiding ε-detour γ contained in

B(v,R + C(2 + ε)). Then, if also w(e) ∈ I0 for all e ∈ E(Bv), (α, γ) forms a feasible pair.

Next note that if v ∈ V([x, y]) \ By then any path from x to y visits B(v,R) and exits Bv, and

so for such v we have

P(Bv contains a feasible pair for the geodesic π : x→ y)

≥P(w(e) ∈ I0 for all e ∈ E(Bv)) = ν(I0)|E(Bv)| ≥ (ν(I0))(D+1)R+C(2+ε)+1
=: c
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where D is the maximum degree of G. Therefore for d(x, y) sufficiently large we have

∑
v∈V

P(Bv contains a feasible pair for the geodesic π : x→ y)

≥
∑

v∈V([x,y])\By

P(w(e) ∈ I0 for all e ∈ E(Bv))

≥|V([x, y]) \ By|c ≥ cd(x, y) − c(D + 1)R+C(2+ε) & d(x, y).

Moreover, we have that

sup
v

#{w : Bw ∩ Bv , ∅} ≤ sup
v
|B(v, 2(R + C(2 + ε)))| ≤ (D + 1)2(R+C(2+ε)) < ∞,

and so by Lemma 4.3.4 we have that

lim inf
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

> 0,

as desired.

On the other hand, if w and w̃ do not satisfy (4.3.1), then take w̄ as in Lemma 4.3.1; applying

our above argument to w̄ gives

lim inf
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

≥ lim inf
d(x,y)→∞

ET (x, y) − ET̄ (x, y)
d(x, y)

> 0,

and so we are done. �

As a corollary we also obtain Theorem 4.1.4:

Proof of Theorem 4.1.4. Let Γ be a virtually free group (i.e. Γ contains a finite index free

subgroup). Since free groups have Cayley graphs which are regular trees, any Cayley graph of
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Γ is quasi-isometric to a regular tree, and so by Theorem 4.1.3 a Cayley graph of Γ is vdBK if

and only if it admits detours. If Γ has a finite index subgroup with nontrivial center and is not

isomorphic to Z or Z/2 ∗ Z/2, then by Proposition 4.5.4, all its Cayley graphs admit detours. If

Γ has a finite normal subgroup, then by Proposition 4.5.1, all its Cayley graphs admit detours;

hence under either condition all Cayley graphs of Γ are vdBK.

If Γ is a semidirect product FoFk then F is a nontrivial finite normal subgroup, and hence its

Cayley graphs are vdBK by the above. If Γ contains F×Fk as a finite index subgroup, let A ≤ F

be a nontrivial cyclic (hence abelian) subgroup; then A × Fk has nontrivial center (containing

A × {1}) and A × Fk is finite index in Γ, and so the Cayley graphs of Γ are vdBK by above. �

4.7. Proof of Theorem 4.1.2

We say that a graph has strict polynomial growth if there exists some 0 < d < ∞ and some

0 < c1 ≤ C1 < ∞ such that for all R ≥ 1,

c1Rd ≤ inf
v∈V
|B(v,R)| ≤ sup

v∈V
|B(v,R)| ≤ C1Rd.

(Note that this in particular entails that G has bounded degree). It is well known that Cayley

graphs of finitely generated virtually nilpotent groups are of strict polynomial growth; in fact,

|B(R)|/Rd converges to a constant as R→ ∞ [30]. Moreover, it is clear that half-planes, sectors,

and many other subgraphs of the standard Cayley graph of Zd have strict polynomial growth.

The goal of this section is to prove the following:

Theorem 4.1.2. Let G be a graph of strict polynomial growth. Then G is vdBK if and only

if G admits detours.

Given Theorem 4.1.2, we can quickly prove Theorem 4.1.1 as follows:
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Proof of Theorem 4.1.1 given Theorem 4.1.2. Let Γ be a virtually nilpotent group. Then

any Cayley graph for Γ has strict polynomial growth [30]. If a Cayley graph G of Γ is not

isomorphic as a graph to the standard Cayley graph of Z, then G admits detours, by Theorem

4.5.1. So Theorem 4.1.2 implies that G is vdBK. �

4.7.1. A Peierls argument for graphs of strict polynomial growth

In the previous case, where G was quasi-isometric to a tree, we benefitted from the fact that we

could find areas which the geodesic visited with probability 1, and hence for such an area A and

any event C, P({π visits A} ∩ C) = P(C). Here we have to deal with graphs which may have

many paths with mostly disjoint support between each pair of points, and so a generic event C

will not have P({π visits A} ∩ C) = P(C). In fact, there are very few events C for which we can

get nontrivial inequalities for P({π visits A} ∩ C). Therefore, a key tool will be Lemma 4.7.1

below, which ensures that, for certain types of local events, the geodesic will in expectation

visit & d(x, y) many regions where the prescribed events hold. This is a Peierls-type argument,

similar to the one used in [36], but with a different choice of coarse-graining.

Before we can state the lemma, we must describe a specific coarse-graining construction

which has desirable properties if our graph G has strict polynomial growth. First, for each

R, choose a maximal subset {oR
i }i ⊂ V which is R-separated, that is, such that if i , j, then

d(oR
i , o

R
j ) ≥ R. (From here on we will suppress the dependence on R and write oi for oR

i ).

Maximality implies that for each vertex v ∈ V , there exists some i such that d(oi, v) ≤ R.

Also fix an arbitrary well-ordering on the indices i, and for each i, let BR
i be the “Voronoi tile”
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containing oi, that is, set

BR
i := {v ∈ V : d(oi, v) < d(o j, v) for all j < i, d(oi, v) ≤ d(o j, v) for all j ≥ i}.

(BR
i consists of the vertices which are closer to oi than any other o j, but we “break ties” when

v is equidistant from oi and o j using the ordering on indices). We see that V =
⊔

i BR
i and that

supi diamBR
i ≤ 2R (since each BR

i ⊂ B(oi,R)). That is, {BR
i } forms a partition of V , and the

partition elements have bounded diameter.

Next, we fix 0 < Σ < ∞ (a scaling parameter that will be chosen to suit our separate

constructions below). The following proposition says that the vertex sets BR
i and the edge sets

E(B(oi,ΣR)) have “degree” uniformly bounded in R if G has strict polynomial growth:

Proposition 4.7.1. Suppose that G has strict polynomial growth. Then there exists D < ∞

independent of R such that the following holds. For each R let GR be the simple graph whose

vertex set is {oi} and is such that oi ∼ o j if and only if there is an edge in G with one endpoint in

BR
i and the other endpoint in BR

j . Let G̃R be the simple graph whose vertex set is {oi} and such

that oi ∼ o j if and only if E(B(oi,ΣR))∩E(B(o j,ΣR)) , ∅. Then for all sufficiently large R, both

GR and G̃R have degree at most D.

Proof. Fixing some oi, we have

{ j : o j ∼ oi in GR} ⊂ { j : d(oi, o j) ≤ 2R + 1} ⊂ { j : BR
j ⊂ B(oi, 3R + 1)},

as well as

{ j : o j ∼ oi in G̃R} ⊂ { j : d(oi, o j) ≤ 2ΣR} ⊂ { j : BR
j ⊂ B(oi, (2Σ + 1)R}.
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Thus in order to bound both degrees it suffices to show that, given any constant Σ′, the quantity

#{ j : BR
j ⊂ B(oi,Σ

′R)}

is uniformly bounded in both i and R. To this end, note that, since oi is R-separated, it follows

that B(oi, (R/2) − 1) ⊂ BR
i . So using our volume bounds and the fact that the BR

j are disjoint we

have

#{ j : BR
j ⊂ B(oi,Σ

′R)}c1

[R
2
− 1

]d

≤
∑

BR
j ⊂B(oi,Σ′R)

|BR
j | ≤ |B(oi,Σ

′R)| ≤ C1(Σ′R)d,

so that

#{ j : BR
j ⊂ B(oi,Σ

′R)} ≤
C1(Σ′R)d

c1[(R/2) − 1]d −−−−→R→∞

C1

c1
(2Σ′)d,

so we are done. �

Remark 4.7.1. This is actually the only point in the proof where we use strict polynomial

growth. In every other part of the proof, we will only use that G has a uniform strictly subexpo-

nential volume bound and bounded degree (which is equivalent to a uniform bound on |B(v, 1)|).

If one could find a suitable coarse-graining for more general subexponential growth graphs, the

methods in this chapter would immediately show that such graphs are vdBK if and only if they

admit detours. However, constructing such a coarse-graining would take some ingenuity; if

for instance we attempt to do the Voronoi construction for a graph with growth of order e
√

R,

the degree bounds we get from the above analysis are superpolynomial in R, and the proof of

Lemma 4.7.1 does not go through.

Now we can state and prove the Peierls lemma:
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Lemma 4.7.1. Let G = (V, E) be a graph of strict polynomial growth. Suppose that for each

sufficiently large R < ∞ we have a family of events {AR
i } which depend only on the edges in

E(B(oi,ΣR)). Suppose also that

ρ(R) := sup
i
P
(
(AR

i )c
)
−−−−→
R→∞

0.

Then, for all sufficiently large R, there exist c2(R), ε2(R) > 0 such that for all x, y ∈ V with

d(x, y) sufficiently large,

P

 ∃γ : x→ y visiting at most c2d(x, y) distinct

BR
i such that AR

i holds

 ≤ e−ε2d(x,y)

Proof. Recall the graphs GR and G̃R defined in Proposition 4.7.1. Let γ be a path from x

to y in G. This induces a path γ̃ in GR in a natural way: γ̃ starts at the oi1 corresponding to the

unique BR
i1 containing x, and each time γ crosses an edge from a vertex in some BR

i to a vertex

in some distinct BR
i′ , γ̃ crosses an edge from oi to oi′ . Note that since the diameter of the BR

i is

bounded uniformly in i, there exists η(R) > 0 such that if γ : x→ y, then γ̃ visits at least ηd(x, y)

distinct BR
i . We want to bound the probability that (for some c2(R) to be chosen later) some such

γ̃ visits at most c2d(x, y) oi such that AR
i holds. First, note that if γ̃ visits at most c2d(x, y) oi such

that AR
i holds, a self-avoiding path obtained from γ̃ from erasing loops has the same property.

So if BR
i1 is the unique tile containing x and BR

i2 the unique tile containing y, it suffices to bound

the probability that some self-avoiding path γ̃ in GR which starts at oi1 and ends at oi2 visits at

most c2d(x, y) oi such that AR
i holds; to reduce clutter, let us write Ai instead of AR

i .
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Now, for a fixed self-avoiding path γ̃ visiting k distinct oi, we have

P

 γ̃ visits at most c2d(x, y)

oi such that Ai holds

 ≤
∑

S⊂V(γ̃),|S |=k−c2d(x,y)

P

⋂
oi∈S

Ac
i

 .
Since G̃R has degree bounded by D (where D is as in Proposition 4.7.1) each such S ⊂ {oi}i

contains a subset S ′ which is independent in G̃R (that is, no two elements of S ′ are joined by an

edge of G̃R) and which has size at least |S ′| ≥ 1
D+1 |S |. From the definition of G̃R we see that if

S ′ is an independent set in G̃R then the collection of events {AR
i }oi∈S ′ is independent. Hence the

above is bounded by

∑
S⊂V(γ̃),

|S |=k−c2d(x,y)

P

⋂
oi∈S ′

Ac
i

 =
∑

S⊂V(γ̃),
|S |=k−c2d(x,y)

∏
oi∈S ′

P(Ac
i ) ≤

(
k

c2d(x, y)

)
ρ

k−c2d(x,y)
D+1 .

On the other hand, the number of self-avoiding paths of length k in GR starting at oi1 is at most

Dk (since GR has degree at most D). Thus we have

P

 ∃γ : x→ y visiting at most c2d(x, y) distinct

BR
i such that AR

i holds

 ≤
∞∑

k=dηd(x,y)e

Dk

(
k

c2d(x, y)

) (
ρ

1
D+1

)k−c2d(x,y)

≤
(
ρ

1
D+1

)−c2d(x,y)
∞∑

k=dηd(x,y)e

(
2Dρ

1
D+1

)k
;

for R sufficiently large we have 2Dρ
1

D+1 < 1, and then the right hand side above is equal to

(
ρ

1
D+1

)−c2d(x,y) (
2Dρ

1
D+1

)dηd(x,y)e
·

1

1 − 2Dρ
1

D+1

.
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If we choose c2 > 0 sufficiently small that

−c2 log(ρ1/(D+1)) + η log(2Dρ1/(D+1)) > 0

then our upper bound decays exponentially in d(x, y), and so we are done. �

Remark 4.7.2. If we assume that ρ(R) ≤ Ce−cR (as will be the case in the proof of Theorem

4.1.2), then Lemma 4.7.1 holds for slightly larger class of graphs, i.e. those which have

Rd′ . inf
v
|B(v,R)| ≤ sup

v
|B(v,R)| . Rd

for some d, d′ with d − d′ < 1. This is because for such graphs, the proof of Proposition 4.7.1

shows that GR and G̃R have degree bounded by D(R) = o(R), and then the proof of Lemma 4.7.1

goes through. This allows us to extend Theorem 4.1.2 to such graphs. However, it is difficult

to come up with a natural example of a graph which has such a property but is not already of

strict polynomial growth.

Lastly, let us use Lemma 4.7.1 to prove the following, which will be very important to our

later constructions.

Lemma 4.7.2. Let G be a graph with strict polynomial growth, and suppose that ν is

exponential-subcritical. Then, there exist q, c > 0 such that, for all x, y ∈ V with d(x, y) suffi-

ciently large,

P(T (x, y) < (inf +q)d(x, y)) ≤ e−cd(x,y).
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Remark 4.7.3. The conclusion of the above lemma also holds for any graph G of degree

at most D if one assumes ν({inf}) < 1/D; this is proved in the course of proving Lemma A.1

in [34].

Proof. First, suppose inf = 0; since ν is exponential-subcritical, ν({0}) < pc, and we can

pick q′ > 0 sufficiently small that if ν([inf, inf +q′]) < pc. Then, by the definition of pc, there is

some c′ > 0 such that for any R sufficiently large, for any v ∈ V ,

P(v is connected to B(v,R)c by a path of edges which each have weight < inf +q′) ≤ e−c′R.

In particular, for any Σ ≥ 2, we have that

P(∃p ∈ S (v,ΣR), x ∈ B(v,R), path α : p→ x in B(v,ΣR) s.t. w(e) < inf +q′ for all e ∈ α)

≤ P(∃x ∈ B(v,R), p′ ∈ S (x, (Σ − 1)R), path α : x→ p′ s.t. w(e) < inf +q′ for all e ∈ α)

≤ |B(v,R)|e−c′(Σ−1)R ≤ C1Rde−c′(Σ−1)R −−−−→
R→∞

0.

In particular,

inf
v∈V

P

 all paths from S (v,ΣR) to B(v,R)

contain at least one edge of weight ≥ inf +q′

 −−−−→R→∞
1,
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and so by Lemma 4.7.1, for all sufficiently large R, there exist c2(R) > 0, ε2(R) > 0 such that for

all sufficiently large d(x, y),

P


∃γ : x→ y visiting at most c2d(x, y) distinct Bi such that

all paths from S (oi,ΣR) to B(oi,R) contain at least one

edge of weight ≥ inf +q′


≤ e−ε2d(x,y).

Now, each B(oi,ΣR) intersects at most D′ other B(o′i ,ΣR) by Proposition 4.7.1, and so if a path

γ visits at least c2d(x, y) Bi such that all paths from S (oi,ΣR) to B(oi,R) contain at least edge

with weight at least inf +q′, there is some collection of at least 1
D′+1c2d(x, y) disjoint B(oi,ΣR)

with this property such that γ visits Bi. If x < B(oi,ΣR) then in particular γ starts outside of

B(oi,ΣR) and so since γ visits Bi ⊂ B(oi,R), some subpath of γ joins S (oi,ΣR) to B(oi,R) and

so some edge of γ ∩ E(B(oi,ΣR)) has weight at least inf +q′. So by disjointness we conclude

that γ has at least c2
D′+1d(x, y) − 1 edges of length at least inf +q′, and so

T (γ) ≥ (inf)d(x, y) + q′
( c2

D′ + 1
d(x, y) − 1

)
in this case. So taking q := q′c2/(2(D′ + 1)), we see that whenever d(x, y) ≥ 2(D′ + 1)/c2 we

have

P(T (γ) < (inf +q)d(x, y)) ≤ e−ε2d(x,y),

and the lemma follows.
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Now, suppose that inf > 0. Then choose q′ > 0 such that ν([inf, inf +q′]) < ~pc to obtain

c′ > 0 such that for any R sufficiently large, for any v ∈ V we have

P

 v is connected to B(v,R)c by an edge-geodesic path

of edges which each have weight < inf +q′

 ≤ e−c′R.

Then arguing similarly as above, by Lemma 4.7.1, for all sufficiently large R, there exist c2(R) >

0, ε2(R) > 0 such that for all sufficiently large d(x, y),

P


∃γ : x→ y visiting at most c2d(x, y) distinct Bi such that

all edge-geodesic paths from S (oi,ΣR) to B(oi,R) contain

at least one edge of weight ≥ inf +q′


≤ e−ε2d(x,y).

Similar to above, we then see that (except on an exponentially small event) every path γ from

x to y contains at least c2
D′+1d(x, y) − 1 disjoint subpaths which are either not edge-geodesic,

or contain an edge of weight at least inf +q′. Each such subpath γi has passage time T (γi) ≥

(inf)|γi|+min(inf, q′). So taking q := min(q′, inf)c2/(2(D′+1)) > 0 and c = ε2 gives the lemma.

�

Remark 4.7.4. This is the only part of the proof where we use the exponential subcriticality

of ν.

Remark 4.7.5. This lemma implies in particular that if G is a Cayley graph of a finitely

generated virtually nilpotent group and if ν({0}) < pc, then there exists a > 0 such that for

all x, y ∈ V, ET (x, y) ≥ ad(x, y). This means, for instance, that the results of [5] giving the

existence of a scaling limit apply when ν has an exponential moment and ν({0}) < pc (a weaker

condition than the condition ν({0}) < 1/D quoted in that paper).
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4.7.2. Proof strategy: a resampling scheme

Note that if we have any family of events AR
i as in Lemma 4.7.1, for fixed R sufficiently large,

we have that in particular

∑
i

P({the geodesic π : x→ y visits BR
i } ∩ AR

i )

=E[#BR
i such that π visits BR

i and AR
i holds]

≥(c2d(x, y))P(π visits at least c2d(x, y) BR
i such that AR

i holds)

≥(c2d(x, y))(1 − e−ε2d(x,y)) & d(x, y).

We will say that π crosses B(oi,ΣR) if π starts at a vertex outside B(oi,ΣR), ends at a vertex

outside B(oi,ΣR), and visits Bi. Since the number of oi such that x ∈ B(oi,ΣR) or y ∈ B(oi,ΣR)

is bounded independent of x and y, we see also from the above that

∑
i

P({the geodesic π : x→ y crosses B(oi,ΣR)} ∩ AR
i ) & d(x, y).

Thus, if we find a family of events {AR
i } such that for each i, P(B(oi,ΣR) contains a feasible pair)

is at least a positive constant (independent of x, y, i, but possibly depending on R) times

P({π crosses B(oi,ΣR)} ∩ AR
i ), we will have

∑
i

P(B(oi,ΣR) contains a feasible pair for π : x→ y) & d(x, y),

and hence by Lemma 4.3.4 we will have our theorem. (Note that here the role of the Bi from

Lemma 4.3.4 is played by B(oi,ΣR), not the Voronoi tiles BR
i we defined in the last section).
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We will obtain a bound of the form

P(B(oi,ΣR) contains a feasible pair) ≥ c(R)P({π crosses B(oi,ΣR)} ∩ AR
i )

by introducing a resampling scheme, as in [36]. Explicitly, fix some oi; throughout the rest

of the chapter, we abbreviate B(s) := B(oi, s). Define new random weights w∗ : E → [0,∞)

as follows: w∗|E(B(ΣR)c = w|E(B(ΣR)c , but the w∗(e), e ∈ E(B(ΣR) are i.i.d. ν-distributed random

variables, also independent of w. (Recall that for S ⊂ V , we define E(S ) ⊂ E to be the set of

edges of G with endpoints lying in S ). Note that w and w∗ are equal in distribution. For each R

we will define a w-measurable random set of configurations Ew ⊂ [0,∞)E(B(ΣR)) such that

(4.7.1) {π crosses B(ΣR)} ∩ AR
i ∩ {w

∗|E(B(ΣR)) ∈ Ew} ⊂ {B(ΣR) contains a feasible pair for π∗},

where π is the T -geodesic from x to y and π∗ is the T ∗-geodesic from x to y. To reduce clutter,

let us abbreviate the event {w∗|E(B(ΣR) ∈ Ew} by {w∗ ∈ Ew}. If in addition we ensure that the

conditional probability P(w∗ ∈ Ew|w) ≥ c(R) > 0 on the event {π crosses B(ΣR)} ∩ AR
i (where

c(R) is some non-random constant), we get

P(B(ΣR) contains a feasible pair for π) = P(B(ΣR) contains a feasible pair for π∗)

≥ P({π crosses B(oi,ΣR)} ∩ AR
i ∩ {w

∗ ∈ Ew})

= E
[
1{π crosses B(oi,ΣR)}∩AR

i }
E[1{w∗∈Ew}|w]

]
≥ c(R)P({π crosses B(oi,ΣR)} ∩ AR

i ),

as desired. The discussion in this section is summarized in following proposition:
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Proposition 4.7.2. Suppose there exist w-measurable events AR
i satisfying the conditions of

Lemma 4.7.1 and w-measurable random sets of configurations Ew such that for sufficiently large

R (4.7.1) holds and P(w∗ ∈ Ew|w) ≥ c(R) on the event {π crosses B(ΣR)} ∩ AR
i , where c(R) > 0

is a constant depending only on R, ν, ν̃, and G. Then

lim inf
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

> 0.

Thus the meat of the proof of Theorem 4.1.2 consists of performing a “geometric” construc-

tion to obtain suitable AR
i and Ew.

4.7.3. Geometric construction: bounded case

First, suppose that ν has bounded support. We want to construct AR
i and Ew satisfying the

hypotheses of Proposition 4.7.2. Denote by inf the infimum of the support of ν and denote by

sup the supremum of the support of ν. Assume that (4.3.1) holds, and then choose ε > 0, y0, I0

as in Lemma 4.3.2. Assuming that G admits detours, let C be such that every self-avoiding path

of length C admits a self-avoiding ε-detour. Set C′ := C(3 + 2ε). Assume that ν is exponential-

subcritical, and then let q > 0 be the parameter given by Lemma 4.7.2. Denote by D the

maximum degree of G.

First, let us consider the case that y0 = sup; in fact this allows us to do a much simpler

construction. In this case, choose Σ > 2 large enough that (inf +q)
(
1 − 1

Σ

)
> inf and choose

δ > 0 such that inf +δ < (inf +q)
(
1 − 1

Σ

)
. Choose a sequence δsup(R) −−−−→

R→∞
0 such that for each

R ν([sup−δsup(R), sup]) > 0 but limR→∞ ν([inf, sup−δsup(R)])DC1(ΣR)d
= 1. Then let AR

i := A1∩A2



137

Figure 4.2. A schematic diagram of the prescribed set of configurations Ew in
the case that ν has bounded support and y0 = sup.

where A1 and A2 are as follows:

A1 :=


For all vertices v,w ∈ B(ΣR) with d(v,w) ≥ R,

all paths γ from v to w in B(ΣR) have T (γ) ≥ (inf +q)d(v,w)

 .
A2 :=

{
w(e) ≤ sup−δsup for all e ∈ E(B(ΣR))

}
.

We see that both events only depend on the weights of edges in B(ΣR), by choice of δsup(R) we

have P(A2) −−−−→
R→∞

1, and by Lemma 4.7.2 we have that for sufficiently large R

P(Ac
1) ≤

∑
v,w∈B(ΣR),
d(v,w)≥R

P(T (v,w) < (inf +q)d(v,w)) ≤ (C1Rd)2e−ε2R −−−−→
R→∞

0

uniformly in i, so the hypotheses of Lemma 4.7.1 are satisfied.

Now in this case set of configurations Ew does not actually depend on w; we simply set

Ew :=

ω ∈ [0,∞)E(B(ΣR)) : ω(e) ∈
[inf, inf +δ) if e ∈ E(B(ΣR −C′)),

[sup, sup−δsup] ∩ I0 otherwise

 .
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Let us show that, for sufficiently large R, on the event {π crosses B(ΣR)}∩A1∩A2∩{w∗ ∈ Ew},

B(ΣR) contains a feasible pair for any T ∗-geodesic.

For a subset S ⊂ E, denote by TS (p, q) the infimal weight of a path from p to q which

only uses edges lying in S . First, let a and b be points of S (ΣR) such that TE(B(ΣR))c(x, a) and

TE(B(ΣR))c(b, y) are infimal. Fix a T -geodesic α ⊂ E(B(ΣR))c from x to a, an edge geodesic [a, oi]

from a to oi, an edge-geodesic [oi, b] from oi to b, and a T -geodesic β ⊂ E(B(ΣR))c from b to y,

and define π′ := α ∗ [a, oi] ∗ [oi, b] ∗ β. We claim that T ∗(π′) < T (π) when R is sufficiently large.

To see this, first note that, if v and w are the first and last vertices of π lying on S (ΣR), we have

T ∗(π′x,a) + T ∗(π′b,y) = T (π′x,a) + T (π′b,y) ≤ T (πx,v) + T (πw,y),

where here and elsewhere, for a path γ and vertices p, q ∈ V(γ), γp,q denotes the subpath of γ

starting at p and ending at q.

Next, since π crosses Bi, πv,w contains at least two subsegments connecting S (ΣR) and S (R),

and so since A1 holds we have

T (πv,w) ≥ 2(inf +q)(Σ − 1)R = (inf +q)
(
1 −

1
Σ

)
2ΣR,

while if w∗ ∈ Ew, we have

T ∗(π′a,b) ≤ 2ΣR(inf +δ) + (sup)C′.

Since by construction inf +δ < (inf +q)
(
1 − 1

Σ

)
and (sup)C′ = o(R), for sufficiently large R we

have T ∗(π′) < T (π).
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Now, consider a T ∗-geodesic π∗ from x to y. On our event, we have w∗ ≥ w on E(B(ΣR −

C′))c, so if π∗ did not intersect E(B(ΣR − C′)), we would have T ∗(π∗) ≥ T (π) > T ∗(π′), a

contradiction. Thus, π∗ must visit B(ΣR − C′). In particular, it contains a subpath connecting

S (ΣR) and S (ΣR−C′), and so a subpath connecting S (ΣR−C(1 + ε)) and S (ΣR−C′+C(1 + ε)),

which must have length at least C′ − 2C(1 + ε) = C. Choose a self-avoiding ε-detour γ for such

a segment. Since γ has length at most C(1 + ε), it is contained in E(B(ΣR)) \E(B(ΣR−C′)). But

since w∗ ∈ Ew, this means that all the edges of both γ and the subsegment of π∗ have weights in

I0. Hence B(ΣR) contains a feasible pair for π∗.

Furthermore, since y0 = sup, by the construction of I0 we have

P(w∗ ∈ Ew) ≥ min
(
ν([inf, inf +δ)), ν([sup−δsup, sup] ∩ I0)

)DC1(ΣR)d

> 0

independent of oi, so both hypotheses of Proposition 4.7.2 hold.

Now we suppose that y0 < sup and do a different construction of the AR
i and Ew. Again take

ε, y0, I0,C,C′, q as above. Then take some large Σ0 > 2 such that

inf <
(
1 −

1
Σ0

)
(inf +q) < sup;

then take some δ0 > 0 sufficiently small that

inf +δ0 <

(
1 −

1
Σ0

)
(inf +q) < sup,

sup−Ew − 2δ0 > 0,

and

sup−y0 − 2δ0 > 0.
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(Note that Ew < sup since in the case that ν is Dirac, y0 = sup). Next, fix some 0 < s <(
1 − 1

Σ0

)
(inf +q)

sup such that

(inf +δ0) + s sup <
(
1 −

1
Σ0

)
(inf +q).

Then fix some Σ ≥ Σ0 such that sΣ > 1. Also fix some some 0 < κ < sup−δ0−Ew
sup− inf s.

The event AR
i will be defined as the intersection of three events A1 ∩ A2 ∩ A3. We set

A1 :=


For all vertices v,w ∈ B(ΣR) with d(v,w) ≥ R,

all paths γ from v to w in B(ΣR) have T (γ) ≥ (inf +q)d(v,w)

 ,
just as in the first case. We set

A2 :=


For all vertices v,w ∈ B(ΣR) with dE(B(ΣR))(v,w) ≥ R,

TE(B(ΣR))(v,w) ≤ (Ew + δ0)dE(B(ΣR))(v,w)

 .
For this, note that for each fixed pair of points v,w with dE(B(ΣR))(v,w) ≥ R, fixing an edge-

minimal path γ : v→ w in B(ΣR), we have

P(TE(B(ΣR))(v,w) > (Ew + δ0)dE(B(ΣR))(v,w)) ≤ P(T (γ) > (Ew + δ0)|γ|),

which, since T (γ) is just a sum of |γ| i.i.d. ν-distributed random variables, decays exponentially

in |γ|, (hence R), by a standard Chernoff bound (ν has bounded support and hence exponential

moments). Since the number of pairs of such (v,w) is strictly subexponential in R, we have

P(Ac
2) −−−−→

R→∞
0, as desired. Clearly also A2 only depends on the weights of edges in B(ΣR).
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Lastly we choose for each R some 0 ≤ δsup(R) < δ0 such that ν([sup−δsup, sup]) > 0 and

ν([inf, sup−δsup(R)])DC1(ΣR)d
−−−−→
R→∞

1, and then set

A3 :=
{
w(e) ≤ sup−δsup for all e ∈ E(B(ΣR))

}
.

Clearly A3 only depends on edges in B(ΣR) and by our construction of δsup(R), we have P(A3) −−−−→
R→∞

1 uniformly in i, as desired.

Now, let a′, b′ ∈ S (ΣR) be such that TE(B(ΣR))c(x, a′) and TE(B(ΣR))c(b′, y) are minimal. Choose

edge geodesics [a′, oi] and [b′, oi]. Let a ∈ V([a′, oi]), b ∈ V([b′, oi]) be the unique vertices such

that d(a, a′), d(b, b′) = dsΣRe. Moreover, for each t ∈ [0,ΣR−dsΣRe]∩Z, let at ∈ V([a, oi]), bt ∈

V([b, oi]) be the unique vertices such that d(a, at), d(b, bt) = t. Now, let ta ≥ 0 be minimal such

that

d(ata+1, [b, oi]) ≤ 2C′,

and let tb ≥ 0 be minimal such that

d(btb+1, [a, oi]) ≤ 2C′,

and set c := ata , d := btb . Note that minimality implies that for all 0 ≤ t ≤ ta we have

d(at, [b, oi]) ≥ 2C′ + 1 and for all 0 ≤ t ≤ tb we have d(bt, [a, oi]) ≥ 2C′ + 1. Here we have

tacitly used the fact that d(a, b) ≥ d(a′, b′)−2dsΣRe & R is strictly larger than 2C′ for sufficiently

large R. To see the bound d(a′, b′) − 2dsΣRe & R, let v and w be the entry and exit points from

B(ΣR) of the T -geodesic γ : x→ y, and note that

d(a′, b′) ≥
1

sup
T (a′, b′) ≥

1
sup

T (v,w) ≥
inf +q

sup

(
1 −

1
Σ

)
2ΣR,
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so

d(a, b) ≥ d(a′, b′) − 2dsΣRe ≥
[
inf +q

sup

(
1 −

1
Σ

)
− s

]
(2ΣR) − 1,

which is & R by choice of s. The bound T (a′, b′) ≥ T (v,w) comes from the fact that, since v,w

lie on the T -geodesic from x to y, T (x, y) = T (x, v) + T (v,w) + T (w, y) ≤ T (x, a′) + T (a′, b′) +

T (b′, y), and by definition of a′, b′ we have T (x, v) + T (w, y) ≥ T (x, a′) + T (b′, y). The bound

T (v,w) ≥ (inf +q)
(
1 − 1

Σ

)
2ΣR comes from the fact that π crosses Bi and hence contains at least

two paths connecting S (ΣR) and S (R), which, since A1 holds, have total passage time at least

2(inf +q)(Σ − 1)R.

Now consider the sets of integers

S n(C′, κ) := {nbκΣRc + j : j ∈ [0,C′] ∩ Z} ⊂ Z

and

S ′n(C′, κ) := {nbκΣRc + j : j ∈ [C(1 + ε),C(2 + ε)] ∩ Z} ⊂ Z,

where n ≥ 0, n ∈ Z. Then let αn and βn respectively be the subpaths of [a, c] and [b, d] respec-

tively induced by the vertex sets {at : t ∈ S n} and {bt : t ∈ S n}. Similarly let α′n and β′n be induced

by {at : t ∈ S ′n} and {bt : t ∈ S ′n}. For each n ≥ 0 with (n + 1)bκΣRc ≤ ta, tb, fix a self-avoiding

ε-detour γn for α′n and a self-avoiding ε-detour δn for β′n. Note that by construction each αn ∪ γn

is disjoint from [b, d] and all βm∪ δm, and vice versa. Moreover, αn∪γn is disjoint from αm∪γm

for n , m, and the same is true for the βn ∪ δn.

Finally, define

S I :=
⋃
n≥0,

(n+1)bκΣRc≤ta,tb

(αn ∪ γn) ∪ (βn ∪ δn),
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Figure 4.3. A schematic diagram of the prescribed set of configurations Ew in
the case that ν has bounded support and y0 < sup.

define

S inf := ([a, c] ∪ [b, d]) \ S I ,

and set S sup := E(B(ΣR)) \ (S inf ∪ S I). For each R we choose 0 < δinf(R) < δ0 sufficiently small

that (DC1Rd + 2)δinf < sup−δ0 − y0. We finally define our random set of configurations by

Ew :=


ω ∈ [0,∞)E(B(ΣR)) : ω(e) ∈

I0 ∩ (y0 −
δinf
2 , y0 + δinf

2 ) e ∈ S I

[inf, inf +δinf] e ∈ S inf

[sup−δsup, sup] e ∈ S sup


.

Now let us prove that A1 ∩ A2 ∩ A3 ∩ {π crosses Bi} ∩ {w∗ ∈ Ew} is contained in the event

that B(ΣR) contains a feasible pair with respect to T ∗.

First, define a path π′ by taking a T -geodesic from x to a′ in B(ΣR)c, then taking the path

[a′, c], taking an edge-geodesic from c to d, taking [d, b′] and then taking a T -geodesic from b′

to y in B(ΣR)c. For all sufficiently large R, on the event {π crosses Bi} ∩ AR
i ∩ {w

∗ ∈ Ew}, we

have that T ∗(π′) < T (π). To see this, first note that by definition of a′, b′, if v,w are the first
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entrance and last exit of π from B(ΣR) then we have T (πx,v) + T (πw,y) = T (x, v) + T (w, y) ≥

T (x, a′) + T (b′, y) = T ∗(π′x,a′) + T ∗(π′b′,y). Thus it suffices to show that T (πv,w) > T ∗(π′a′,b′) for

sufficiently large R. Since π visits Bi ⊂ B(R) and since A1 holds we have

T (πv,w) ≥ (inf +q)2(Σ − 1)R = (inf +q)
(
1 −

1
Σ

)
2ΣR,

whereas

T (π′a′,b′) ≤
[
(inf +δinf) +

C′

bκΣRc
(y0 + δ0)

]
(d(a, c) + d(b, d)) + (sup)(2sΣR + d(c, d))

≤ (inf +δinf + (sup)s)2ΣR + o(R),

so this follows from our choice to ensure inf +δinf +(sup)s < (inf +q)
(
1 − 1

Σ

)
. (We get the bound

d(c, d) = o(R) as follows: assume that ta ≤ tb; in the opposite case the argument is analogous.

By definition there exists some t′ ≥ tb + 1 such that d(ata+1, bt′) ≤ 2C′. But then

|t′ − (ta + 1)| = |d(oi, bt′) − d(oi, ata+1)| ≤ d(bt′ , ata+1) ≤ 2C′,

that is, t′ ≤ ta + 1 + 2C′ ≤ tb + 1 + 2C′, and so

d(c, d) ≤ d(c, ata+1) + d(ata+1, bt′) + d(bt′ , btb) ≤ 4C′ + 2 = O(C′) = o(R).)

Now, let π∗ be a T ∗-geodesic from x to y. We show that π∗ traverses a feasible pair.

We first show that if p, q ∈ V(π∗) ∩ V(S inf) with p and q lying in the same connected

component of S inf ∪ S I , then π∗p,q ⊂ S inf ∪ S I . To see this, note that, when w∗ ∈ Ew, if e is an
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edge in [a, c] or [b, d] with one endpoint in S (t) and one in S (t + 1), then

w∗(e) ≤ inf{w∗(e′) : e′ has one endpoint in S (t) and the other in S (t + 1)} + δinf .

This is because, if e ∈ S inf , then e′ ∈ S inf or e′ ∈ S sup and if e ∈ S I then e′ ∈ S I or e′ ∈ S sup.

Since every path from p to q must have at least one edge connecting S (t) to S (t + 1) for all

t, t + 1 between d(a, p) and d(a, q), we see that

T ∗([p, q]) ≤ T ∗(α) + δinf |α|

for any path α from p to q. If furthermore α leaves S inf ∪ S I , then it contains at least one edge

of weight at least sup−δsup; such an edge has weight at least sup−δsup − y0 − δinf greater than

any edge in [p, q]. Hence in this case we get the bound

T ∗([p, q]) + sup−δsup − y0 − δinf ≤ T ∗(α) + δinf(|α| − 1).

But applying our assumption on δinf(R) we get

T ∗(α) − T ∗([p, q]) ≥ sup−δsup − y0 − (|α| + 2)δinf ≥ sup−δ0 − y0 − (|B(ΣR)| + 2)δinf > 0.

That is, such an α is not optimal, and hence an optimal T ∗-path π∗p,q must lie in S inf ∪ S I .

Hence, if we can show that V(π∗) contains some p and q which lie in the same connected

component of S inf ∪ S I but lie in different components of S inf, then we can apply the previous

argument to deduce that π∗ passes through some αn ∪ γn or βn ∪ δn, and then use the following

proposition to conclude that π∗p,q contains a feasible pair:
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Proposition 4.7.3. Let ξ be an edge geodesic in G, and let γ be a self-avoiding ε-detour for

a subpath of ξ. Suppose that w∗(e) ∈ I0 for all e ∈ ξ ∪ γ. Let π∗ be a T ∗-geodesic, and suppose

that some subpath of π∗ has the same endpoints as ξ and that this subpath is contained in ξ ∪ γ.

Then ξ ∪ γ contains a feasible pair for π∗.6

Proof of Proposition. Let ξ′ be the subpath of ξ such that γ is an ε-detour for ξ′, and write

ξ = ξ1 ∗ ξ
′ ∗ ξ2. Let us also abuse notation and denote by π∗ the subpath of π∗ contained in ξ ∪ γ

which has the same endpoints as ξ. If π∗ = ξ, then ξ1 ∗ γ ∗ ξ2 is an ε-detour for π∗; loop-erasing

then gives a self-avoiding ε-detour γ′ for ξ (see the proof of Proposition 4.4.1), so (π∗, γ′) forms

a feasible pair. If π∗ , ξ, then since ξ is an edge geodesic, ξ is a self-avoiding ε-detour for π∗

(see the proof of Proposition 4.4.1), and hence (π∗, ξ) forms a feasible pair. �

So it only remains to find such p and q. The idea is that, in order to make up for the slow

edges π∗ runs over when it enters and exits B(ΣR), π∗ must visit many fast edges; we will then

use the pigeonhole principle to conclude that it must contain suitable p and q.

Explicitly, first note that since T ∗(π∗) ≤ T ∗(π′) < T (π) ≤ T (π∗), we have T (π∗)−T ∗(π∗) > 0.

Since w∗ ≥ w on E(B(ΣR))c ∪ S sup, π∗ must therefore contain some edges in S I ∪ S inf. But note

that by construction, any path connecting S (ΣR) and S I ∪ S inf contains a a subpath which lies

in S sup and connects two points in B(ΣR) of distance at least sΣR > R. Since π∗ starts and ends

outside of B(ΣR) and visits S inf ∪ S I , it contains at least two such subpaths, α and β. We then

have

T ∗(α) ≥ (sup−δsup)|α|,T ∗(β) ≥ (sup−δsup)|β|

6Technically we should include assumptions controlling the lengths of these paths to satisfy our definition of a
feasible pair; in our applications of this proposition it is easy to see that the length of the detour is at most C′(1+ε).
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and

T (α) ≤ (Ew)|α|,T (β) ≤ (Ew)|β|

(since A2 holds). Since w∗ ≥ w on S sup we then have

T ∗(π∗ ∩ S sup) − T (π∗ ∩ S sup) ≥ T ∗(α ∪ β) − T (α ∪ β) ≥ (sup−Ew − δsup)s(2ΣR).

Since T ∗(π∗ ∩ E(B(ΣR))c) − T (π∗ ∩ E(B(ΣR))c) = 0, in order to ensure that T ∗(π∗) − T (π∗) < 0,

it must be the case that

T (π∗ ∩ (S inf ∪ S I)) − T ∗(π∗ ∩ (S inf ∪ S I)) > (sup−Ew − δsup)s(2ΣR).

Since each edge e admits savings at most w(e) − w∗(e) ≤ sup− inf, this gives

|π∗ ∩ (S inf ∪ S I)| >
sup−Ew − δsup

sup− inf
s(2ΣR).

Moreover, since each component of S I is composed of less than 2C′ edges

|S I | ≤ 2C′
2ΣR
bκΣRc

= O(C′) = o(R),

and so

|π∗ ∩ S inf | ≥
sup−Ew − δsup

sup− inf
s(2ΣR) − o(R);

since by assumption κ < sup−δ0−Ew
sup− inf s, for sufficiently large R we have in particular

|π∗ ∩ S inf | > 2κΣR.



148

Since S inf∪S I has two connected components, at least one of the components contains more than

κΣR edges of π∗∩S inf. But each connected component of S inf contains at most bκΣRc−C′ edges,

so V(π∗) must contain some pair of points p, q which lie in different connected components of

S inf but in the same connected component of S inf ∪ S I , as desired. Thus, this construction

satisfies (4.7.1).

To see that the construction satisfies the other hypothesis of Proposition 4.7.2, note that

P(w∗ ∈ Ew|w) = ν([inf, inf +δinf))|S inf |ν(I0 ∩ (y0 −
δinf

2
, y0 +

δinf

2
))|S I |ν([sup−δsup, sup])|S sup |

≥ min
(
ν([inf, inf +δinf)), ν(I0 ∩ (y0 −

δinf

2
, y0 +

δinf

2
)), ν([sup−δinf , sup])

)DC1(ΣR)d

is bounded away from 0 independently of oi and x, y, as desired.

4.7.4. Geometric construction: unbounded case

Now, suppose ν has unbounded support. We construct the relevant events AR
i and configurations

Ew and show that they satisfy (4.7.1). The main challenge for the case that ν has unbounded

support is in ensuring that the beginning and end of our prescribed path are far enough away

from each other that we “have enough room” to make a segment and a detour which don’t

collide with the rest of the path. Once we construct our prescribed path it will not be hard to

force the resampled geodesic π∗ to take it, since we can resample the prescribed path to have

very small passage time and resample the surrounding edges to have arbitrarily large passage

time.

Again assume that (4.3.1) holds, and then choose ε > 0, y0, I0 as in Lemma 4.3.2. Assume

that ν is exponential-subcritical and let q > 0 be the parameter from Lemma 4.7.2. Then fix
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σ > max(2, 2(inf +q)
q ) and Σ > σ. The event AR

i will be constructed as the intersection of five

events AR
i := A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5. The first event is

A1 := {every path γ : v→ w in B(ΣR) with d(v,w) ≥ R satisfies T (γ) ≥ (inf +q)d(v,w)}.

This evidently only depends on the edges in E(B(ΣR)). Moreover, by Lemma 4.7.2, for all

sufficiently large R we have

P(Ac
1) ≤

∑
v,w∈B(oi,ΣR),d(v,w)≥R

P(T (v,w) < (inf +q)d(v,w))

≤ |B(oi,ΣR)|e−cR ≤ C1Rde−cR −−−−→
R→∞

0.

For the next event we choose δinf(R) −−−−→
R→∞

0 such that ν([inf, inf +δinf]) > 0 and DC1(ΣR)dδinf(R) ≤ 1

for all R, and (ν([inf +δinf(R),∞)))DC1(ΣR)d
−−−−→
R→∞

1. (Note that if there is an atom at inf, then

eventually we will have δinf(R) = 0, but δinf(R) ≥ 0 always). Note that the second condition

implies in particular that |E(B(ΣR))|δinf(R) ≤ 1. We define

A2 := {w(e) ≥ inf +δinf for all e ∈ E(B(ΣR))}.

This clearly only depends on the weights in E(B(ΣR)) and the third condition on δinf(R) implies

that

P(A2) = ν([inf +δinf,∞))|E(B(ΣR)| ≥ ν([inf +δinf ,∞))DC1(ΣR)d
−−−−→
R→∞

1.

For the third event, we choose M(R) −−−−→
R→∞

∞ such that ν∗DC1(ΣR)d
([0,M(R)]) −−−−→

R→∞
1. We set

A3 :=

 ∑
e∈E(B(ΣR))

w(e) ≤ M

 .
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It is clear by the choice of M(R) that P(A3) −−−−→
R→∞

1. Also note that since ν is assumed to have

infinite support, ν((M(R),∞)) > 0 for all R.

Let us call a value p ∈ supp ν (δ, η)-resamplable if ν([p, p + δ)) ≥ η. Set δsim(R) :=

(DC1Rd)−1. Then, using Proposition 4.7.5 below, choose η(R) > 0 such that

ν({p : p is (δsim(R), η(R))-resamplable})DC1Rd
≥ 1 − e−R.

Set

A4 :=
{
w(e) is (δsim, η)-resamplable for all e ∈ E(B(ΣR))

}
.

Clearly A4 only depends on weights of edges in E(B(ΣR)), and by our choice of η(R) we have

P(A4) ≥ 1 − e−R −−−−→
R→∞

1.

The event A5 is more complicated to describe, so we delay its description and the proof that

P(A5) −−−−→
R→∞

1 until the end of the section.

Next we describe the construction of Ew. Denote by π the geodesic from x to y, and denote

by v and w the first vertex of π which lies in B(ΣR) and the last vertex of π which lies in B(ΣR),

respectively. As will be proved in Lemma 4.7.3 at the end of the section, the event A5 implies

that, for some ΣR ≥ r ≥ σR, we have disjoint self-avoiding paths α and β with the following

properties:

(1) α starts at x and ends at a point v′ ∈ S (r); moreover V(α) ∩ B(r − 1) = ∅.

(2) β starts at a point w′ ∈ S (r) and ends at y; moreover V(β) ∩ B(r − 1) = ∅.

(3) dE(B(r))(v′,w′) > K := 4C(1 + ε).
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(4) α coincides with π until its last entrance into B(ΣR) and β coincides with π after its

first exit from B(ΣR). Explicitly, Choose ṽ to be the last entrance of α into B(ΣR), so

that αṽ,v′ is the connected component of E(B(ΣR)) ∩ α containing v′. Similarly choose

w̃ to be the first exit of β from B(ΣR), so that βw′,w̃ is the connected component of

E(B(ΣR) ∩ β containing w′. We have that ṽ, w̃ ∈ V(π), and πx,ṽ = αx,ṽ and πw̃,y = βw̃,y.

(5) Let vr ∈ S (r) be the vertex of π immediately preceding the first vertex of π which lies

in B(r − 1), and let wr ∈ S (r) be the vertex of π immediately following the last vertex

of π which lies in B(r − 1). Then |αṽ,v′ | ≤ |πṽ,vr | and |βw′,w̃| ≤ |πwr ,w̃|.

Now choose edge-geodesics [v′, oi] from v′ to oi and [oi,w′] from oi to w′. Again let C be such

that every self-avoiding path of length C admits a self-avoiding ε-detour. Let a be the vertex

of [v′, oi] which is distance C(1 + ε) from v′. Let b be the vertex of [v′, oi] which is distance

C(2 + ε) from v′. Then [a, b] := [v′, oi]a,b is a self-avoiding path of length C, and hence it admits

a self-avoiding ε-detour γ.

Proposition 4.7.4. γ is contained in B(r − 1) and V(γ) ∩ V([oi,w′]) = ∅.

Proof. The first claim follows from the fact that γ has length at most C(1 + ε); To see

the second claim, suppose to the contrary that there was some z ∈ V(γ) ∩ V([oi,w′]). Since

dB(r)(z, a) ≤ C(1 + ε) and z and a both lie on edge-geodesics to oi, we have that

|dB(r)(v′, a) − dB(r)(w′, z)| = |[dB(r)(v′, oi) − dB(r)(a, oi)] − [dB(r)(w′, oi) − dB(r)(z, oi)]|

= |dB(r)(a, oi) − dB(r)(z, oi)| ≤ dB(r)(a, z) ≤ C(1 + ε),

and therefore

dB(r)(w′, z) ≤ dB(r)(v′, a) + C(1 + ε) = 2C(1 + ε),
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hence

dB(r)(v′,w′) ≤ dB(r)(v′, a) + dB(r)(a, z) + dB(r)(z,w′) ≤ 2C(1 + ε) + 2C(1 + ε) = K,

contradicting the fact that d(v′,w′) > K. �

Set b′ to be the vertex in V([v′, oi]) which has distance C′ = C(3 + 2ε) from v′. Set o′

to be the first intersection of V([v′, oi]) with V([oi,w′]); the previous proposition shows that

o′ is strictly closer to oi than b′. Define as usual [v′, o′] := [v′, oi]v′,o′ , [o′,w′] := [oi,w′]o′,w′ ,

[v′, b′] := [v′, oi]v′,b′ . We now define the following subsets of E(B(ΣR)):

S I := [v′, b′] ∪ γ,

S inf :=
(
αṽ,v′ ∗ [v′, o′] ∗ [o′,w′] ∗ βw′,w̃

)
\ S I ,

S sim := (α ∪ β) ∩ E(B(ΣR)) \ S inf

S M := E(B(ΣR)) \ (S I ∪ S inf ∪ S sim).

Note that these sets are all pairwise disjoint and cover E(B(ΣR)). Now we can finally define our

set of configurations Ew:

Ew :=


ω ∈ [0,∞)E(B(ΣR)) : ω(e) ∈

I0 e ∈ S I

[inf, inf +δinf] e ∈ S inf

[w(e),w(e) + δsim) e ∈ S sim

[M,∞) e ∈ S M


.

(We have used the assumption that w ∈ A1∩A2∩A3∩A4∩A5 to construct Ew, and this is really

the only case we care about; off of this event we may define Ew = ∅). We now show that this
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Figure 4.4. If the T -geodesic from x to y is as in the diagram on the left, the
prescribed weights Ew might be given by the diagram on the right.

choice of Ai and Ew satisfies (4.7.1). Set

π′ := α ∗ [v′, o′] ∗ [o′,w′] ∗ β.

First we show that T ∗(π′) < T (π). By construction we have π′x,ṽ = πx,ṽ and π′w̃,y = πw̃,y. Moreover,

each edge in either of those paths is also by construction either in E(B(ΣR))c or S sim, and hence

when w∗ ∈ Ew,

T ∗(π′x,ṽ t π
′
w̃,y) ≤ T (π′x,ṽ t π

′
w̃,y) + |E(B(ΣR))|δsim

≤ T (πx,ṽ t πw̃,y) + 1.

Next, since |αṽ,v′ | ≤ |πṽ,vr |, |βw′,w̃| ≤ |πwr ,w̃|, since A2 holds, and since αṽ,v′ , βw′,w̃ ⊂ S inf, we have

T ∗(αṽ,v′ t βw′,w̃) ≤ (inf +δinf)|αṽ,v′ t βw′,w̃| ≤ (inf +δinf)|πṽ,vr t πwr ,w̃| ≤ T (πṽ,vr t πwr ,w̃).

Now, since π′v′,w′ \ [v′, b′] ⊂ S inf and [v′, b′] ⊂ S I , we have

T ∗(π′v′,w′) ≤ (inf +δinf)2r + (sup I0)C(3 + 2ε),
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while since A1 holds and πvr ,wr starts and ends at S (r) (r ≥ σR > 2R) and visits S (R), we have

T (πvr ,wr ) ≥ 2(inf +q)(r − R),

so that

T (πvr ,wr ) − T ∗(π′v′,w′) ≥ 2R[(q − δinf)
r
R
− (inf +q)] − (sup I0)C(3 + 2ε)

≥ 2R[(q − δinf)σ − (inf +q)] − (sup I0)C(3 + 2ε),(4.7.2)

For R sufficiently large we have δinf < q/2 so that

(q − δinf)σ − (inf +q) > (q/2)σ − (inf +q) > 0,

that is, the coefficient of R (4.7.2) is strictly positive. Altogether we have

T (π) − T ∗(π′) ≥ 2R[(q/2)σ − (inf +q)] − (sup I0)C(3 + 2ε) − 1 & R,

so in particular T ∗(π′) < T (π) for all sufficiently large R.

From this, we can conclude that the T ∗-geodesic π∗ must contain some edges in S inf ∪ S I .

For suppose it did not; since w∗ ≥ w on (S inf ∪ S I)c, we would have

T ∗(π∗) ≥ T (π∗) ≥ T (π) > T ∗(π′),

contradicting T ∗-geodesicity of π∗.
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Next, we know that π∗ contains no edge in S M. For suppose that it did; then, since A3 holds,

T ∗(π∗) ≥ T ∗(π∗ ∩ E(B(ΣR))c) + M

≥ T (π∗ ∩ E(B(ΣR))c) +
∑

e∈E(B(ΣR))

w(e)

≥ T (π∗) ≥ T (π) > T ∗(π′),

again contradicting T ∗-geodesicity of π∗.

Note that S inf ∪S I and S sim by construction share no vertices in common, and so we see that

π∗, as a self-avoiding path which enters S inf , does not intersect S M and eventually exits B(ΣR),

must contain π′ṽ,v′ and π′b′,w̃ or their reverses as a subpath. In particular, some subpath of π∗ has

endpoints v′, b′ and is restricted to S I = [v′, b′] ∪ γ and hence by Proposition 4.7.3 S I contains

a feasible pair for π∗, and we are done showing that (4.7.1) is satisfied.

To complete the proof that the AR
i , Ew satisfy the hypotheses of Proposition 4.7.2, it remains

to prove the “resampling lemma” relevant to A4, to describe and prove the relevant properties

of A5, and to give a lower bound on the conditional probability of {w∗ ∈ Ew}.

Proposition 4.7.5. For any fixed δ > 0, we have

lim
η→0

ν({p : p is (δ, η)-resamplable}) = 1.

Proof. By continuity of measure we have that

lim
η→0

ν({p : ν([p, p + δ)) > η) = ν({p : ν([p, p + δ)) > 0),
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so it will suffice to show that

ν({p : ν([p, p + δ)) = 0}) = 0.

Set N := {p : ν([p, p + δ)) = 0}. We claim that there is a countable subset X ⊂ N such that

N ⊂
⋃
p∈X

[p, p + δ).

Once we know this, the proposition follows, since then

ν(N) ≤ ν

⋃
p∈X

[p, p + δ)

 ≤∑
p∈X

ν([p, p + δ)) = 0.

To construct X, first set X0 := ∅. For each i ≥ 0, consider ni+1 := inf N \
(⋃

p∈Xi
[p, p + δ)

)
. If

ni+1 ∈ N, then set Xi+1 := Xi ∪ {ni+1}. Otherwise choose a (countable) sequence S i+1 of points

of N approaching ni+1 and set Xi+1 := Xi ∪ S i+1. It is simple to inductively check that each Xi

is countable and that
⋃

p∈Xi
[p, p + δ) covers at least N ∩ [0, iδ), so X := ∪∞i=1Xi is a countable

subset of N with
⋃

p∈X[p, p + δ) ⊃ N, as desired. �

Now we describe the event A5 and its properties. The intuition is as follows: considering the

T -geodesic π : x → y, for each ball B(r), if the first entrance of π into that ball is far from the

last exit of π from that ball, then we have “enough room” to do our construction, that is, we have

paths satisfying (1)-(5) above. So we want to bound the probability that, to the contrary, for all

radii r, the first entry and last exit are close. In fact, an even weaker event gives us “enough

room,” and we bound the probability of the failure of this event by showing that it would entail

that π is constrained to a “narrow” subgraph as it crosses B(oi,ΣR), making it unlikely that the

geodesic would enter so deep into B(oi,ΣR) before turning around.
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For the formal construction of the event, first, given a pair of points p, q ∈ S (ΣR), take

edge-geodesics [p, oi] and [q, oi] from p and q respectively to oi. For each ΣR ≥ r ≥ σR, let pr

and qr be the unique elements of V([p, oi]) ∩ S (r) and V([q, oi]) ∩ S (r) respectively. We then

define

S r
0(p, q) :=

(
BE(B(r))(pr, 3K) ∪ BE(B(r))(qr, 3K)

)
∩ S (r),

where K := 4C(1 + ε). Then for each ` ≥ 0 we define

S r
`(p, q) :=

{
z ∈ B(ΣR) \ B(r − 1) : dE(B(ΣR)\B(r−1))(z, S r

0(p, q)) = `
}
.

Lastly, for ΣR − 3K ≥ r ≥ σR, set

S r(p, q) :=
3K⊔
`=0

S r
`(p, q)

and define the event

Cr(p, q) :=



there exist paths γ1, γ2 in S r(p, q) such that

the endpoints a1, b1 of γ1 lie in S r
2K and

|γ1| ≤ K, one endpoint of γ2 lies in

S r
2K and the other lies in S r

0, and T (γ2) ≤ T (γ1)


.

We now define the event A5 by

A5 :=
⋂

p,q∈S (ΣR),
dB(ΣR)(p,q)≤K

ΣR−3K⋂
r=σR

Cr(p, q)

c

,

that is, A5 is the event that for each pair p, q of close points on S (ΣR), Cr(p, q) fails for at least

some r. Note that A5 only depends on the weights of edges in E(B(ΣR)).
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Proposition 4.7.6. There exists some constant ρ < 1 depending only on the degree D of G,

ν, and K such that

P(Cr(p, q)) ≤ ρ

for all R, p, q, r.

Proof. First note that, since each S r
0 lies in the union of two balls of radius 3K, S r

0 contains

at most 2(D + 1)3K vertices. Since the entirety of S r lies within distance 3K of S r
0, we further

have that

|S r| ≤ |S r
0|(D + 1)3K ≤ 2(D + 1)6K .

That is, we have a uniform bound on the possible number of vertices in S r, and so it is not

hard to see that the subgraph induced by S r(p, q) can only take on finitely many isomorphism

types as all parameters except D and K vary. Hence, to show our claim, it suffices to show

that for each fixed isomorphism type, P(Cr(p, q)) < 1. (Here “isomorphism type” includes the

relevant extra data of which subsets correspond to S r
0 and S r

2K , but even with this extra data it is

easy to see that a bound on the number of vertices implies a bound on the number of possible

isomorphism types).

To this end, fix an isomorphism type, and let E′ be the set of edges in S r which lie in

some path in S r of length at most K joining two vertices of S r
2K . Since ν is assumed to have

unbounded support (in particular it is not Dirac), there is some a > 0 such that ν([0, a)) > 0 and

ν([a,∞)) > 0. Then the event

{w(e) < a for all e ∈ E′,w(e) ≥ a for all e < E′}
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has nonzero probability. Moreover, this event entails the failure of Cr(p, q), since on it all

candidates for γ1 necessarily have edges in E′ and hence have T (γ1) < aK, while all candidates

for γ2 must have at least K edges lying in E′c, and hence T (γ2) ≥ aK > T (γ1). �

Proposition 4.7.7. P(A5) −−−−→
R→∞

1.

Proof. For each fixed p, q, note that whenever S ⊂ [σR,ΣR − 3K] ∩ Z is such that each

element has distance at least 3K from every other element, the subgraphs {S r(p, q) : r ∈ S }

are all disjoint and hence the events {Cr(p, q) : r ∈ S } are all independent. Since K, σ,Σ are

constants fixed independent of R, it is easy to see that there is some c3 > 0 such that for all large

R we can pick such an S with |S | ≥ c3R, and so

P

ΣR−3K⋂
r=σR

Cr(p, q)

 ≤ P ⋂
r∈S

Cr(p, q)


=

∏
r∈S

P(Cr(p, q)) ≤ ρc3R,

where ρ < 1 is provided by the previous proposition. But then we have

P(Ac
4) ≤

∑
p,q∈S (ΣR)

P

ΣR−3K⋂
r=σR

Cr(p, q)

 ≤ (C1(ΣR)d)2ρc3R −−−−→
R→∞

0,

as desired. �

Now we prove the key property of A5.

Lemma 4.7.3. On the event A5 ∩ {x, y < B(ΣR), π visits Bi}, for some ΣR ≥ r ≥ σR, there

exist paths α and β satisfying conditions 1 through 5 above.

Proof. Denote by v and w respectively the first and last vertices of π which lie in B(ΣR).

Now, for each ΣR ≥ r ≥ σR, define vr ∈ S (r) to be the vertex of π immediately preceding



160

the first vertex of π lying in B(r − 1), and define wr ∈ S (r) to be the vertex of π immediately

following the last vertex of π lying in B(r − 1). All of these are well defined, since π starts and

ends outside of B(ΣR) and visits Bi ⊂ B(R) ⊂ B(σR). Then define αr := πx,vr , βr := πwr ,y. If for

some r, dE(B(r))(vr,wr) > K, then we can just take α = αr and β = βr and we are done. So from

here on assume that dE(B(r))(vr,wr) ≤ K for all ΣR ≥ r ≥ σR.

Next, for each r we define the set

S̃ r :=


⋃

p∈V(αr∪βr)∩B(ΣR)

⋃
γ:p→oi

edge geodesic

V(γ)

 ∩ S (r).

Suppose that for some ΣR ≥ r ≥ σR, there is some z ∈ S̃ r with dE(B(r))(z, vr), dE(B(r))(z,wr) > K.

Then we can construct α and β as follows. z by definition lies on some edge-geodesic γ from

some point p ∈ V(αr ∪ βr) to oi. Consider the last vertex of V(γ) ∩ (V(αr ∪ βr)) (that is, the

nearest vertex to oi), and call it z′. If z′ ∈ V(αr), set α := (αr)x,z′ ∗ γz′,z and β := βr. If z′ ∈ V(βr),

set β := γz,z′ ∗ (βr)z′,y and α := αr (here an overline denotes the reverse of a path). In either

case, α and β give disjoint self-avoiding paths because the original paths were disjoint and self-

avoiding and because by construction V(γz′,z) only intersects V(αr ∪βr) at z′. Conditions (1)-(3)

are satisfied by choice of z, (4) is satisfied because α and β agree with αr and βr until one of

them reaches z′, and from that point the path follows γ; in particular, it stays inside B(ΣR) until

it reaches its endpoint. For (5), note that, since γ is an edge-geodesic from z′ to oi,

|γz′,z| = d(z′, oi) − d(z, oi) = d(z′, oi) − r.

Since (αr)z′,vr (or (βr)z′,wr , if z′ ∈ V(βr)) is a path from z′ to S (r), it must have length at least

d(z′, oi) − r by the triangle inequality, and so we get (5).
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Lastly, we show that, if both of the above conditions fail, i.e. for all ΣR ≥ r ≥ σR we have

(4.7.3) dE(B(r))(vr,wr) ≤ K

and

(4.7.4) S̃ r ⊂
(
BE(B(r))(vr,K) ∪ BE(B(r))(wr,K)

)
∩ S (r),

then the event A5 fails.

For this, first note that, since every V(αr ∪ βr) ∩ B(ΣR) contains the entry and exit points

v and w, every S̃ r contains vr,wr (in the notation used in defining the set S r(p, q) in the case

(p, q) = (v,w)). Then (4.7.4) implies that vr and wr are each distance at most K from either vr

or wr. A general element z ∈ S̃ r has the same property, and combining with (4.7.3) gives

d(z, vr) ≤ min(d(z, vr), d(z,wr)) + d(vr,wr) + min(d(vr, vr), d(wr, vr)) ≤ 3K,

and similarly d(z,wr) ≤ 3K. Hence S̃ r ⊂ S r
0(v,w). Moreover we have

Claim 1. If ΣR ≥ r + `, r ≥ σR, then vr+`,wr+` ∈ S r
`(v,w).

Proof of Claim. Since vr+`,wr+` ∈ S (r + `) and S r
0(v,w) ⊂ S (r), we have that

dE(B(ΣR)\B(r−1))(vr+`, S r
0(v,w)), dE(B(ΣR)\B(r−1))(wr, S r

0(v,w)) ≥ `,

so we only have to show the opposite inequality. For this, let (vr+`)r be as usual the intersection

of S (r) with an edge geodesic from vr+` to oi. Since vr+` ∈ V(αr+`) ⊂ V(αr), we have that

(vr+`)r ∈ S̃ r ⊂ S r
0(v,w); moreover, the geodesic from vr+` to (vr+`)r is a path of length ` which
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lies in B(ΣR) \ B(r − 1), and so we have

dB(ΣR)\B(r−1)(vr+`, S r
0(v,w)) ≤ dB(ΣR)\B(r−1)(vr+`, (vr+`)r) = l,

as desired. The argument for wr+` is the same. �

Finally, we contradict A5. For each ΣR − 3K ≥ r ≥ σR, consider γ3 := πvr+2K ,vr . Since γ3 by

construction does not visit B(r−1), and since it starts at a point with distance dE(B(ΣR)\B(r−1))(vr+2K , S r
0(v,w)) =

2K and ends at a point vr ∈ S r
0(v,w), some subpath γ2 of γ3 is contained in S r(v,w), starts at

S r
2K(v,w) and ends at S r

0(v,w). On the other hand, let γ1 be an edge-geodesic from vr+2K to

wr+2K . By assumption, d(vr+2K ,wr+2K) ≤ K, so |γ1| ≤ K; therefore γ1 does not intersect B(r− 1),

and since the endpoints of γ1 lie in S r
2K(v,w), γ1 is totally contained in S r(v,w). But since π is

a T -geodesic, we have

T (γ1) ≥ T (πvr+2K ,wr+2K ) ≥ T (γ3) ≥ T (γ2),

and so Cr(v,w) holds. But then Cr(v,w) holds for all ΣR − 3K ≥ r ≥ σR, so A5 fails. �

To apply Proposition 4.7.2 it only remains to obtain a lower bound on P(w∗ ∈ Ew|w) on the

event AR
i which is independent of oi. But on AR

i we have

P(w∗ ∈ Ew|w) ≥ ν(I0)|S I |ν([inf, inf +δinf])|S inf |η|S sim |ν([M,∞))|S M |

≥ min(ν(I0), ν([inf, inf +δinf]), η, ν([M,∞)))DC1(ΣR)d
> 0,

as desired.
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4.7.5. Proof of Theorem 4.1.2

Let G be a graph of strict polynomial growth which admits detours. Let ν be an exponential-

subcritical measure with finite mean, and let ν̃ be a measure which has finite mean and is strictly

more variable than ν. First assume (4.3.1). Then let ε > 0, I0, y0 be as in Lemma 4.3.2. In case

ν has bounded support, construct Bi, B(oi,ΣR), AR
i , and Ew as in Section 4.7.3. In case ν has

unbounded support, construct Bi, B(oi,ΣR), AR
i , and Ew as in Section 4.7.4. In their respective

sections, we prove that both constructions satisfy the hypotheses of Proposition 4.7.2, and so

lim inf
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

> 0.

Now, if w, w̃ do not satisfy (4.3.1), take w̄ as in Lemma 4.3.1. Then we have

lim inf
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

≥ lim inf
d(x,y)→∞

ET (x, y) − ET̄ (x, y)
d(x, y)

> 0.

Thus G is vdBK. The reverse implication is given by Theorem 4.4.1.

4.7.6. Non-homogeneous graphs of polynomial growth

Theorem 4.1.2 does not require almost-transitivity (although assuming almost-transitivity does

make both the hypotheses and the conclusions easier to interpret, see Sections 4.4.1 and 4.2.1).

This means that the theorem applies to a very broad class of graphs, but it can be difficult to

produce examples of non-transitive graphs which have strict polynomial growth and for which

it is easy to check whether the graph admits detours. Here we give some examples and a

counterexample.
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First, the theorem can be applied to a broad range of subgraphs of the standard Cayley graph

of Zd. For instance G := Zd1
≥0 × Z

d2 ⊂ Zd1+d2 will be vdBK whenever d1 + d2 ≥ 2. These graphs

have growth bounds BG(R) ≤ BZd1+d2 (R) ≤ 2−d1 BG(R), from which we can deduce that G has

strict polynomial growth. Moreover, the unique geodesics in G are all also unique geodesics in

Zd, (that is, they are represented by words of the form ek
i , where {ei} is the standard generating

set), and when d1 + d2 ≥ 2 one can easily see that these admit detours.

Moreover, we can apply the theorem to “sectors”, that is, graphs Gθ,θ′ induced by the vertex

subset

Vθ,θ′ := {(x, y) ∈ Z2 : θ ≤ arctan(y/x) ≤ θ′}

for fixed θ < θ′. Again we see that this is of strict polynomial growth. Moreover, the unique

geodesics in this graph are either already unique geodesics in Z2, or they run along the “bound-

ary” {(x, y) : arctan(y/x) ≈ θ or θ′} (in fact most geodesics along the boundary are also not

unique). But again it is simple to check that these admit detours, and hence G is vdBK. Similar

constructions can be done in higher dimensions, and in fact many more subgraphs of Zd satisfy

the hypotheses of the theorem.

Another example of an inhomogeneous graph which is vdBK can be constructed as follows.

Start with the standard Cayley graph of Z2, and choose some subset S of the square faces (for

instance, one can choose S randomly by independently including each face with probability p).

For each face in S , add a vertex in the center, connecting it with edges to the four corners. It

is not hard to show that the graph obtained has strict polynomial growth and admits detours,

and so again by Theorem 4.1.2 it is vdBK. One can construct many examples of such “lattices

with impurities” which are vdBK, but in general one must be a bit careful to be sure that the
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constructed graph admits detours (for instance, naı̈vely implementing the above construction in

higher dimensions may produce new unique geodesics which do not admit detours).

Next, Theorem 4.1.2 likely applies to the famous “kites and darts” Penrose tilings, although

rigorously writing out the details may take a bit of work. It is not hard to show strict polynomial

growth, e.g. by comparing number of vertices in a graph-distance ball to the total area of the

adjacent tiles. Showing rigorously that these tilings admit detours is trickier, but one should

note that unique geodesics are very constrained in these tilings, and it seems likely that some

version of the strategy used in Z2, i.e. “follow a translated version of the original path and then

come back,” should work (even though exact translates of paths typically do not exist).

Unfortunately, the most obvious candidate is in fact a counterexample. That is, consider the

infinite cluster of a supercritical Bernoulli percolation on a Cayley graph of a virtually nilpotent

group. In fact, this will not have strict polynomial growth as we have defined here, since we

require uniform volume lower bounds. But beyond that, one can see that (for p < 1) almost

surely the cluster does not admit detours, and hence by Theorem 4.4.1 it is not vdBK.

This can be seen by a simple “finite energy” type argument. For any C < ∞, choose a large

radius R ≥ C such that the probability that B(R) intersects the infinite cluster is positive; this

event is actually independent of the configuration of edges inside E(B(R)), so chose a particular

configuration in E(B(R)) such that all edges in contact with the vertex boundary of B(R) are

open, such that all these edges are connected to each other by open edges, and such that these

open edges on the boundary are connected to an open path of length ≥ 3C which is otherwise

surrounded by closed edges. The probability that the boundary of B(R) is connected to infinity

and that the restriction of the sampled configuration restricted to E(B(R)) is our prescribed

configuration, is also positive. One quickly sees that on this event, the infinite cluster contains
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a self-avoiding path of length C which does not admit a detour of length at most, say, (3/2)C.

The event that the infinite cluster contains a such a path is clearly a translation-invariant event,

and so by ergodicity, since this event occurs with positive probability, it occurs with probability

1. Intersecting all these events for a countable collection C → ∞ shows that almost surely the

infinite cluster does not admit detours.

Of course, for graphs which are not almost-transitive, the vdBK condition is quite strong.

One may ask for the following weaker condition (which is equivalent in the case of almost-

transitive graphs, see Section 4.4.1): fix o ∈ V . If ν̃ is strictly more variable than ν and ν is

exponential-subcritical, is

lim inf
x→∞

ET (o, x) − ET̃ (o, x)
d(o, x)

> 0?

It is conceivable that the answer might be “yes” in the case of supercritical percolation clusters

on nilpotent Cayley graphs, since supercritical clusters “generally behave like their underlying

graph” at large scales. Perhaps the proofs in this chapter could be adapted to this case, but it

would require “large scale” and perhaps “statistical” weakenings of the geometric properties

used, and the precise adaptation is not clear.

4.8. Absolute continuity with respect to the expected empirical measure

For a graph G and a probability measure ν on [0,∞), we say that the associated first passage

percolation has weight distribution absolutely continuous with respect to the expected empirical

measure if for any Borel set A ⊂ [0,∞) with ν(A) > 0 we have

lim inf
d(x,y)→∞

E[
∑

e∈π 1w(e)∈A]
d(x, y)

> 0,
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where π denotes the T -geodesic from x to y. Note that this does not imply or presuppose that

a literal expected empirical measure, that is, a weak limit of the expected empirical measures

1
d(x,y)E

∑
e∈π δw(e), exists,7 although it does imply that ν is absolutely continuous with respect to

any subsequential weak limit of this collection of measures. As noted in [36], the above property

implies strict monotonicity with respect to stochastic domination:

Proposition 4.8.1. Suppose that ν is absolutely continuous with respect to the expected

empirical measure. Then whenever ν strictly stochastically dominates ν̃, that is, whenever ν̃ , ν

and there exists some coupling (w̃,w) of ν̃ and ν such that w̃ ≤ w almost surely, we have

ET̃ � ET.

Proof. Fix a coupling (w̃,w) with w̃ ≤ w; since ν̃ , ν, P(w̃ < w) > 0, and so one can find

sufficiently small a > 0, b > 0, and Borel set A ⊂ [0,∞) such that ν(A) > 0 and such that for

every y ∈ A,

P(w̃ < y − a|w = y) ≥ b.

7In the G = Zd case it was recently proven by Bates [4] that for “generic” ν, the sequence of random empirical
measures 1

d(0,nv)
∑

e∈π δw(e) in a fixed direction almost surely weakly converges to a deterministic limit measure, an
even stronger result than the existence of an expected empirical measure in a particular direction.
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We thus have

ET (x, y) − ET̃ (x, y) ≥ E[T (π) − T̃ (π)]

= E
∑
e∈π

(w(e) − w̃(e))

= E

∑
e∈π

E[w(e) − w̃(e)|w(e)]


≥ E

∑
e∈π

ab1w(e)∈A


& d(x, y),

where the last inequality follows from the fact that ν is absolutely continuous with respect to

the expected empirical measure. �

If ν strictly stochastically dominates ν̃, then ν̃ is strictly more variable than ν, so our theorems

above already prove strict monotonicity with respect to stochastic domination for graphs which

admit detours and are either quasi-trees or have strict polynomial growth (in the later case, on

the condition that ν is also exponential-subcritical). However, we can prove absolute continuity

with respect to the empirical measure—and hence strict monotonicity with respect to stochastic

domination—whether or not G admits detours directly, by using essentially identical methods

to those above.

Theorem 4.1.5. Let G be a bounded degree graph which is quasi-isometric to a tree. Then

for any probability measure ν on [0,∞) with finite mean, ν is absolutely continuous with respect

to the expected empirical measure of the associated first passage percolation T . Moreover, if ν

strictly stochastically dominates a measure ν̃, then ET̃ � ET.
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Proof sketch. Let A ⊂ [0,∞) be Borel with ν(A) > 0. Set I0 = A. Set C = 1, ε = 1.

Then do the same construction as in the proof of Theorem 4.1.3. Whereas Theorem 4.1.3 gives

& d(x, y) detours in expectation, now this construction gives & d(x, y) edges of π which have

weights in I0 = A, as desired. More explicitly, the construction gives a family of subgraphs {Bi}

with

∑
i

P(the geodesic π : x→ y contains an edge e in Bi of weight w(e) ∈ A) & d(x, y).

Then arguing similarly as in the proof of Lemma 4.3.4, one gets a disjoint family {Bi} with

this property, and so one concludes that π contains & d(x, y) edges with weight lying in A in

expectation, as desired. Lastly, the stochastic domination statement follows from Proposition

4.8.1. �

Theorem 4.1.6. Let G be a graph of strict polynomial growth. Suppose that ν has finite

mean and is exponential-subcritical. Then ν is absolutely continuous with respect to the ex-

pected empirical measure of the associated first passage percolation T . Moreover, if ν strictly

stochastically dominates a measure ν̃, then ET̃ � ET.

Proof sketch. Let A ⊂ [0,∞) be Borel with ν(A) > 0 (one may without loss of generality

replace A with a bounded positive ν-measure subset). Assume ν is exponential-subcritical, and

choose q,Σ, and δ as in the first and simplest construction in the proof of Theorem 4.1.2, that

is, in the case that ν has bounded support and y0 = sup. Also define the event A1 as in that

construction. Then define Ew = E by

E :=
{
ω ∈ [0,∞)E(B(ΣR)) : ω(e) ∈ [inf, inf +δ) if e ∈ E(B(ΣR − 1)), ω(e) ∈ A otherwise

}
.
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Using this construction, we have that for sufficiently large R, whenever A1 holds, the T -

geodesic π crosses Bi, and w∗ ∈ Ew = E, there is a path entering B(oi,ΣR) which has T ∗-weight

strictly smaller than any path not entering B(oi,ΣR); hence the T ∗ geodesic enters B(oi,ΣR) and

therefore contains an edge with weight valued in A. (Note that this is much simpler than in the

proof of Theorem 4.1.2 when y0 , sup; this is because in that proof, we had to ensure that the

T ∗-geodesic made a long excursion away from the boundary of B(oi,ΣR), whereas here we only

need it to hit a single edge with weight in A).

The Peierls lemma (Lemma 4.7.1) gives, in expectation, & d(x, y) Bi such that the T -

geodesic visits Bi and A1 holds; combining this with resampling (similar to Proposition 4.7.2)

thus gives in expectation at least & d(x, y) B(oi,ΣR) which contain an edge of the T -geodesic

with weight lying in A. Again arguing similarly as in the proof of Lemma 4.3.4 then gives that,

in expectation, the T -geodesic contains & d(x, y) edges with weight lying in A, as desired. The

stochastic domination statement again follows from Proposition 4.8.1. �
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CHAPTER 5

Percolation cone for virtually nilpotent groups and failure of monotonicity

In Chapter 4, we proved several strict monotonicity theorems, but always under the assump-

tion that the dominating or less variable measure ν is exponential-subcritical. One might wonder

whether this assumption is an artifact of our proof or whether it is really a necessary assump-

tion. The purpose of this chapter is to show that the exponential-subcritical assumption on ν is

in fact in some sense necessary to obtain strict monotonicity, at least in the setting of Cayley

graphs of virtually nilpotent groups.

5.1. The case inf supp ν = 0

Firstly, in the case that inf supp ν = 0, the exponential percolation threshold pc as defined

in Section 4.2 is well-known to be equal to the usual percolation threshold for transitive graphs

and in particular Cayley graphs ( [1], see also [12]); that is, if ν({0}) > pc then with probability

1 there exists an infinite connected subset of edges which all have weight 0. The following

proposition is then an easy corollary of recent results in supercritical percolation on polynomial

growth graphs [9]:

Proposition 5.1.1. Let G be a transitive graph of polynomial growth, and let ν ∈ Prob([0,∞))

with finite mean such that ν({0}) > pc. Then

lim
d(x,y)→∞

ET (x, y)
d(x, y)

→ 0.
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Proof. It suffices to show that for fixed o, limx→∞
ET (o,x)
d(o,x) = 0. Since ν({0}) > pc, the collec-

tion of edges in E such that w(e) = 0 has a unique1 infinite component; denote the set of vertices

in this component by C. Note that we have

T (o, x) ≤ (inf
v∈C

T (o, v)) + (inf
w∈C

T (w, x))

Therefore, by transitivity,

ET (o, x) ≤ 2E[T (o,C)]

so it suffices to show that E[T (o,C)] < ∞. In fact it suffices to show that E[d(o,C)] < ∞,

since if γ is a path with a minimal number of edges from o to C, then E[T (o,C)] ≤ E[T (γ)],

and conditioning gives that E[T (γ)] ≤ (Eŵ)E[|γ|] = (Eŵ)E[d(o,C)], where ŵ is distributed as

w|w > 0 (so integrability of w implies integrability of ŵ). The fact that E[d(o,C)] < ∞ follows

from Proposition 1.3 of [9] as follows. Since ν({0}) > pc, that proposition tells us that for all

sufficiently large n,

(5.1.1) P
(
B(o,

n
10

)↔ B(o, n)c,U(
n
5
,

n
2

)
)
≥ 1 − e−

√
n,

where B(o, n
10 ) ↔ B(o, n)c means that there is a path of edges of weight 0 from some vertex in

B(o, n
10 ) to some vertex in B(o, n)c, and U(n

5 ,
n
2 ) is the event that there is at most one connected

component of edges of weight zero which intersects both B(o, n
5 ) and B(o, n

2 )c. Note that the

uniqueness event U( n
5 ,

n
2 ) allows us to “glue” the connections {B(o, n

10 ) ↔ B(o, n)} at different

1Since G has subexponential growth, it is in particular amenable. The original argument of Burton-Keane [7], then
shows that there is only one infinite cluster; see also [19] for an explicitly general proof.
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scales n, so that

∞⋂
n=N

{B(o, n)↔ B(o, 10n)c,U(2n, 5n)} ⊂ {B(o,N)↔ ∞} .

Therefore, using the layer-cake formula for expectation and using a union bound on the com-

plement, we get

Ed(o,C) =

∞∑
N=0

P(d(o,C) > N)

=

∞∑
N=0

P(B(o,N) 6↔ ∞)

≤ N0 +

∞∑
N=N0

P

 ∞⋃
n=N

{B(o, n)↔ B(o, 10n)c,U(2n, 5n)}c


≤ N0 +

∞∑
N=N0

∞∑
n=N

e−
√

n < ∞,

where N0 is such that (5.1.1) holds for all 10n ≥ N. �

Remark 5.1.1. If one is willing to assume ν has an exponential moment, one can prove the

above proposition using the same methods we will use below for the case inf supp ν > 0. That

is, one argues that the normalized point-to-sphere passage time tends to zero almost surely, and

then uses Talagrand concentration, rather than by showing that E[d(o,C)] is finite. In fact,

this gives a proof under the weaker assumption that the growth of G is subexponential, not

necessarily polynomial.

This in particular implies that strict monotonicity is impossible in this regime:
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Corollary 5.1.1. Let G, ν be as above such that ν , δ0. Then there exists ν̃ which is strictly

stochastically dominated by ν but is such that

lim
d(x,y)→∞

ET (x, y) − ET̃ (x, y)
d(x, y)

= 0.

Proof. Any ν̃which is strictly stochastically dominated by νwill suffice; stochastic domina-

tion implies that the limit in question is nonnegative, and it is at most equal to limd(x,y)→∞
ET (x,y)
d(x,y) ,

which by the above is 0. To get such ν̃, simply take a nontrivial convex combination of ν and

δ0. �

Note that we have shown that when ν({0}) > pc, strict monotonicity fails in all directions.

This will contrast the next case, where inf supp ν > 0.

5.2. The case inf supp ν > 0

Next, we cover the case that a := inf supp ν > 0 and ν({a}) > ~pc (under an extra moment

assumption on ν). This case will be a bit more subtle, since monotonicity will only fail in

some directions. To get cleaner statements in terms of scaling limits, we assume that G is the

Cayley graph of a virtually nilpotent group, but in principle the arguments should apply to any

almost-transitive graph of polynomial growth.

As in the classical case of Zd, the reason for failure of monotonicity will be that, once

ν({a}) exceeds a certain threshold, edges of weight exactly a are common enough that there

are infinite edge-geodesics in some directions with all weight a. Then exactly as above we can

produce a counterexample to monotonicity, since these paths already (up to error o(d(o, x)))

have the smallest possible passage time under ν.
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The method of proof is as follows: first, we define the geodesic percolation threshold ~pc

and show sharpness for transitive graphs (and hence equality with the exponential geodesic

percolation threshold ~pc as defined above). Then it is not hard to show that the normalized

point-to-sphere passage times T (o, ∂B(R))/R converge to a almost surely. To then conclude that

in some direction xn → ξ we have limn→∞ ET (o, xn)/d(o, xn) = a, we assume an exponential

moment and use Talagrand concentration (as well as polynomial growth of our graph). This

will give us

Theorem 5.2.1. Let G be a Cayley graph of a finitely generated virtually nilpotent group,

Let L∞ denote the associated graded nilpotent Lie group associated to G, and let d∞ denote that

CC-metric on L∞ which is the scaling limit of the graph metric d on V. If a := inf supp ν > 0,

ν({a}) > ~pc(G), and
∫

exp(αt)dν(t) < ∞ for some α > 0, then there exists some ξ ∈ L∞ with

d∞(1, ξ) = 1 and dΦ(1, ξ) = a, where dΦ is the scaling limit of the FPP metric T associated

to ν. Moreover, if ν , δa, there exists ν̃ such that ν strictly stochastically dominates ν̃ but

dΦ̃(1, ξ) = dΦ(1, ξ) = a.

This theorem shows that subcriticality is necessary for strict monotonicity, but it also has the

strange feature that the direction ξ of non-monotonicity a priori depends on ν, while in principle

it should only depend on ν({a}) (since it should be a direction in which edges of weight a are

“geodesically percolating”). With a bit more care we can formalize the idea that for each p > ~pc

there are directions which are “geodesically percolating,” and this gives a sort of “percolation

cone” analogous to the Zd case (see [29], Section 2.5.1 of [2]). This in particular allows us to

get a direction ξ which does not depend on ν:
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Theorem 5.2.2. Let G, L∞, d∞ as above. Then there exists ξ ∈ L∞, d∞(1, ξ) = 1 with the

following property. If inf supp ν = a > 0, ν({a}) > ~pc, and
∫

exp(αt)dν(t) < ∞ for some

α > 0, then dΦ(1, ξ) = a. Moreover, if ν , δa, then there exists ν̃ which is strictly stochastically

dominated by ν such that dΦ̃(1, ξ) = dΦ(1, ξ) = a.

The rest of the chapter is devoted to proving these two theorems.

5.3. Sharpness of the geodesic percolation phase transition

Let G = (V, E) be a graph, p ∈ [0, 1], and let Gp be the random subgraph of G with vertex set

V and edge set given by independently including each e ∈ E with probability p and excluding

it with probability 1 − p. We call the included edges open and the excluded edges closed. We

are concerned not just with connectivity in Gp but with connectivity by edge geodesics. Recall

that an edge path π : x → y in G is called edge-geodesic if |π| = d(x, y), that is, π uses the least

number of edges possible to connect x and y.

For two vertices x, y ∈ V , we write x ←→
geo

y if there exists an open edge-geodesic path from

x to y. We write x ←→
geo
∞ if there exists an infinite open path π starting from x such that every

finite subpath of π is edge-geodesic. We then define

~pc(G) := inf

p ∈ [0, 1] : Pp

⋃
x∈V

{x←→
geo
∞}

 > 0

 .
Note that for each x ∈ V , we have

{x←→
geo
∞} =

∞⋂
R=1

{x←→
geo

∂B(R)},
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and that the right hand side of this event is an intersection of events only depending on finitely

many edges, so the event defining ~pc(G) is measurable. Note also that the event
⋃

x∈V{x←→geo
∞}

that there exists an infinite open edge-geodesic is tail-measurable, and so for each p it has

probability either 0 or 1 by the Kolmogorov 0-1 Law. On the other hand, if G is vertex-transitive,

then in particular P(x←→
geo
∞) does not depend on x ∈ V , and so a union bound shows that, fixing

any basepoint o ∈ V , we have

~pc(G) = inf
{

p ∈ [0, 1] : Pp

(
o←→

geo
∞

)
> 0

}
.

Recall our definition of ~pc(G) from Section 4.2. It is clear from this definition that ~pc(G) ≤

~pc. The key theorem of this section shows that for transitive graphs, ~pc(G) = ~pc.

Theorem 5.3.1 (Sharpness of geodesic percolation phase transition). Let G be a transitive

graph with no parallel edges. Suppose that p < ~pc(G). Then for some C, c > 0 (depending on

p)

Pp(x←→
geo

y) ≤ C exp(−cd(x, y)).

In particular, ~pc = ~pc.

The proof of Theorem 5.3.1 follows closely the proof of sharpness of the percolation phase

transition by Hugo Duminil-Copin and Vincent Tassion [12]. Surprisingly, their method adapts

almost immediately to the geodesic percolation setting, the only technical point being that not

all edge-geodesics compose to form edge-geodesics. For completeness, we present the full

argument here, emphasizing the places where the argument is different.

Remark 5.3.1. The assumption that G has no parallel edges is only for simplicity of expo-

sition. If G has parallel edges, we can take G̃ to be the graph which has the same vertex set as
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G and whose edge set consists of pairs of vertices which have at least one edge between them

in G (so in particular G̃ has no parallel edges). If we set β > 0 such that 1 − p = e−β, then

the probability that all of k parallel edges are closed in Gp is e−kβ. Therefore, if one defines Jx,y

to be the number of edges from x to y in G, then [geodesic] connectivity on Gp is equivalent

to [geodesic] connectivity on the random graph G̃β, where G̃β is obtained from G̃ by, for each

{x, y} ∈ E(G̃), deleting the edge independently with probability e−Jx,yβ and otherwise retaining

it. In fact, the proof of sharpness for percolation in [12] is already presented in the setting that

we have a priori different coupling constants Jx,y for different edges. The modifications to go

from percolation to geodesic percolation in this setting will be identical to the modifications

presented here (essentially, a slightly different definition of the quantity ϕβ(S )).

To deal with the fact that not every composition of edge-geodesics is an edge-geodesic, we

introduce the following definition:

Definition 5. For x, y, z ∈ V, we say that y is between x and z if there exist edge geodesics

π1 : x → y, π2 : y → z such that the composition π1 ∗ π2 : x → z is also an edge geodesic. In

this case we write [x − y − z].

Note that [x− y− z] if and only if there exists an edge geodesic π : x→ z such that y ∈ V(π).

As an example, consider the standard Cayley graph Z2. For any n > 0, the points which are

between (0, 0) and (n, 0) are precisely those of the form (i, 0) with 0 ≤ i ≤ n. For any n,m > 0

the points between (0, 0) and (n,m) are those of the form (i, j) with 0 ≤ i ≤ n, 0 ≤ j ≤ m.

Proposition 5.3.1. The following are equivalent:

(1) y is between x and z.
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(2) d(x, z) = d(x, y) + d(y, z).

(3) For any edge geodesics π1 : x → y and π2 : y → z, the composition π1 ∗ π2 : x → z is

an edge geodesic.

Proof. (3)⇒ (1) is immediate from the definition of [x − y − z].

(1) ⇒ (2): Assume π1 : x → y, π2 : y → z are edge-geodesics such that the composition

π1 ∗ π2 is edge-geodesic. Then

d(x, z) = |π1 ∗ π2| = |π1| + |π2| = d(x, y) + d(y, z).

(2) ⇒ (3): Let π1 : x → y and π2 : y → z be edge-geodesics. Their composition π1 ∗ π2 is

a path from x to z of length |π1| + |π2| = d(x, y) + d(y, z). If (2) holds then this is equal to d(x, z)

and so π1 ∗ π2 is an edge-geodesic. �

Let us assume from now on that G is vertex-transitive and fix a basepoint o ∈ V . Now, for

each finite set S ⊂ V containing o we define

ϕp(S ) := p
∑
x∈S

∑
y<S
{x,y}∈E
[o−x−y]

Pp(o
S
←→
geo

x),

where {o
S
←→
geo

x} is the event that there is an open edge-geodesic from o to x all of whose edges

have both endpoints in S . Note that this quantity is the same as ϕβ(S ) from [12], except that the

sum is restricted to edges {x, y} such that x is between o and y and the connection events are by

geodesics (and there is a change of variables p = 1 − e−β).
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We now define a threshold p̃c by

p̃c := sup{p : ϕp(S ) < 1 for some finite S ⊂ V containing o}.

Again as in [12], we will prove sharpness of the threshold p̃c, which will imply that ~pc = p̃c =

~pc. That is, we prove Theorem 5.3.1 by proving the following lemma:

Lemma 5.3.1. For p > p̃c we have

Pp(o←→
geo
∞) ≥

1
p

(p − p̃c),

and for each p < p̃c we have cp > 0,Cp < ∞ such that

Pp(o←→
geo

B(o,R)c) ≤ Cpe−cpR.

Proof of Theorem 5.3.1 given Lemma 5.3.1. By the first statement in Lemma 5.3.1, we see

that ~pc ≤ p̃c; by the second statement in Lemma implies that p̃c ≤ ~pc. Since we already know

~pc ≤ ~pc, this gives

p̃c = ~pc = ~pc = p̃c.

The exponential decay statement in Theorem 5.3.1 is equivalent to the statement that ~pc =

~pc. �

Now we prove Lemma 5.3.1.

Proof of Lemma 5.3.1. First, let us prove exponential decay of geodesic connection prob-

abilities below the threshold. Fix p < p̃c. We then have some finite set S ⊂ V containing o

such that ϕp(S ) < 1. Choose r < ∞ sufficiently large that all edges having at least one endpoint
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in S have both endpoints in B(o, r). Then for R > r, if o is connected to B(o,R)c by an open

edge-geodesic, then there is an open edge-geodesic inside of S connecting o to the boundary

of S , there is an open edge-geodesic in S connecting S to S c, there is an open edge-geodesic

connecting the other endpoint of that edge to B(o,R)c, and the composition of all three of these

paths is edge geodesic. Thus, by the BK inequality (see e.g. Section 2.3 of [15])

Pp(o←→
geo

B(o,R)c) ≤
∑
x∈S

∑
y<S
{x,y}∈E
[o−x−y]

P(o
S
←→
geo

x)pP(y←→
geo

B(o,R)c)

≤ ϕp(S )Pp(o←→
geo

B(o,R − L)c),

where in the last line we have used the fact that a geodesic connecting y to B(o,R)c must neces-

sarily connect y to B(y,R − L)c, together with vertex-transitivity. By induction we have

Pp(o←→
geo

B(o,R)c) ≤ (ϕp(S ))bR/Lc

and therefore (since ϕp(S ) < 1 and L is fixed as R→ ∞) we have the desired exponential decay

in R.

Now let us prove the lower bound on connection to infinity above the threshold. We do this

by proving the following differential inequality:

d
dp
Pp(o←→

geo
B(o,R)c) ≥

1
p

(
inf

o∈S⊂B(o,R)
ϕp(S )

) (
1 − Pp(o←→

geo
B(o,R)c)

)
.(5.3.1)

Given (5.3.1), for all p > p̃c we have

d
dpPp(o←→

geo
B(o,R)c)

1 − Pp(o←→
geo

B(o,R)c)
≥

1
p

;
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so integrating over p′ ∈ (p̃c, p] gives

log


1 − P p̃c(o←→geo

B(o,R)c)

1 − Pp(o←→
geo

B(o,R)c)

 ≥ log
p
p̃c
.

Exponentiating both sides and cross-multiplying then gives

p − pPp(o←→
geo

B(o,R)c) ≤ p̃c − p̃cPp̃c(o←→geo
B(o,R)c) ≤ p̃c,

which can be rearranged to

Pp(o←→
geo

B(o,R)c) ≥
p − p̃c

p
,

and taking R→ ∞ gives the desired inequality.

So it only remains to prove (5.3.1). Since A := {o ←→
geo

B(o,R)c} is an increasing event

depending on the state of only finitely many edges, by Russo’s formula (see e.g. Section 2.2

of [15]).

d
dp
Pp(o←→

geo
B(o,R)c) =

∑
e∈E(B(o,R))

Pp(e is pivotal for A)

≥
∑

e∈E(B(o,R))

Pp(e is closed and pivotal for A).

We then note that an edge e = {x, y} is closed and pivotal for A if and only if: o is connected to

x by a geodesic, y is connected to some b ∈ B(o,R)c by a geodesic, with y between o and b, x

is between o and y, and no geodesic connects o to B(o,R)c (or the same event is true with the

roles of x and y reversed). We can fruitfully rephrase this by defining the following random set
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S ⊂ V:

S := {v ∈ V : ∀b ∈ B(o,R)c such that [o − v − b], v =
geo

b}.

That is, S is the set of vertices which are not connected to the boundary of B(o,R) by an open

edge-geodesic which is composable with an edge-geodesic from the origin. Then {x, y} is closed

and pivotal for A if and only if o ∈ S, x ∈ S, y < S, [o − x − y], and o
S
←→
geo

x (or the same event

holds with the roles of x and y reversed). Summing over the different possibilities for S, we

have

∑
e∈E(B(o,R))

Pp(e closed, pivotal for A) =
∑

e∈E(B(o,R))

∑
o∈S⊂B(o,R)

Pp(e closed, pivotal for A,S = S )

=
∑

o∈S⊂B(o,R)

∑
x∈S ,y<S
[o−x−y]

Pp({x, y} closed, pivotal for A,S = S ).

Clearly the event {o
S
←→
geo

x} depends only on edges with both endpoints in S . On the other hand,

we claim that the event {S = S } only depends on edges with at least one endpoint in S c. This is

because for any S ⊂ B(o,R),

{S = S } =


⋂
y<S

⋃
b∈B(o,R)c

[o−y−b]

{y
S c

←→
geo

b}

 ∩


⋂
x∈S ,y<S
{x,y}∈E
[o−x−y]

{{x, y} closed}

 .

Above we have used several times the fact that if [o− y− b] and [y− x− b] then [o− x− b]. For

instance, for each y < S , the fact that y < S implies that y is connected to some b ∈ B(o,R)c with

[o − y − b] by an open edge-geodesic; but such an open edge-geodesic cannot use any vertex

x ∈ S , or else we would have [o − x − b] and x←→
geo

b, implying that x < S.
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Now, since {o
S
←→
geo

x} and {S = S } depend on disjoint edges, by independence we have that

for S with o, x ∈ S and y < S that

Pp({x, y} closed, pivotal for A,S = S ) = Pp(o
S
←→
geo

x,S = S ) = Pp(o
S
←→
geo

x)Pp(S = S ).

Thus we have

∑
e∈E(B(o,R))

Pp(e closed, pivotal for A) ≥
∑

o∈S⊂B(o,R)

∑
x∈S ,y<S
[o−x−y]

Pp(o
S
←→
geo

x)Pp(S = S )

=
∑

o∈S⊂B(o,R)

Pp(S = S )
1
p

∑
x∈S ,y<S
[o−x−y]

pPp(o
S
←→
geo

x)

≥
1
p

(
inf

o∈S⊂B(o,R)
ϕp(S )

) ∑
o∈S⊂B(o,R)

Pp(S = S )

=
1
p

(
inf

o∈S⊂B(o,R)
ϕp(S )

)
Pp(o ∈ S)

=
1
p

(
inf

o∈S⊂B(o,R)
ϕp(S )

)
Pp(o =

geo
B(o,R)c),

and so we have established (5.3.1), so we are done. �

5.4. Proof of Theorem 5.2.1

Given Theorem 5.3.1, it is almost immediate that when ν({a}) > ~pc, the renormalized point-

to-sphere passage times T (o, ∂B(R))/R converge to a almost surely. Call an edge e open if

w(e) = a, closed otherwise.

Proposition 5.4.1. Suppose that ν({a}) > ~pc. Then

lim
R→∞

T (o, ∂B(R))
R

= a.
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Proof. Since inf supp ν = a, the inferior limit of the quantity in question is at least a, so we

wish to show that the superior limit is at most a. By Theorem 5.3.1, ν({a}) > ~pc, so that with

probability 1 there exists an open infinite edge geodesic π. Choose y (random) to be a starting

point of such an infinite open edge-geodesic; take y to be as close as possible to o in the graph

metric d, breaking ties according to some arbitrary ordering on vertices. Then note that we have

T (o, ∂B(R)) ≤ T (o, y) + T (y, ∂B(R)).

For each sufficiently large R, pick zR to be the first intersection of the edge-geodesic out of y

with ∂B(R). Then we have d(o, zR) = R, and following the open edge-geodesic from y to zR we

have

T (y, ∂B(R)) ≤ ad(y, zR) ≤ a(d(o, y) + d(o, zR)) = ad(o, y) + aR.

Therefore, for all R we have

T (o, ∂B(R))
R

≤
T (o, y)

R
+

ad(o, y)
R

+ a.

Since T (o, y) and d(o, y) are almost surely finite and do not depend on R, we have that the

superior limit of T (R)/R is almost surely at most a, and so we are done. �

Now we want to show that if G has subexponential growth, we can relate the point-to-

sphere passage times to expected passage times in a sequence of directions. For this we use the

following concentration result:
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Theorem 5.4.1 (Talagrand [33] Proposition 8.3). For a locally finite graph G and a measure

ν with a finite exponential moment, and ε > 0, there exist constants c,C > 0 such that we have

P

(
|T (x, y) − ET (x, y)|

d(x, y)
> ε

)
≤ C exp(−cd(x, y)).

Remark 5.4.1. Talagrand’s result is much stronger, but implies the large-deviations upper

bound needed above. In fact, we will only use that deviations below the mean happen with

probability which decays faster than any inverse polynomial in d(x, y). It is reasonable to expect

that such deviations have exponentially small probability for any graph (as is the case for all

Zd, see Theorem 5.2 in [26]), but the proofs in the literature do not seem immediately adaptable

to the general setting.

Given this concentration, we have:

Proposition 5.4.2. Let G be a transitive graph of subexponential growth, and suppose that

ν has a finite exponential moment. Then almost surely

lim sup
R→∞

T (o, ∂B(R)
R

≥ lim sup
R→∞

inf
x:d(o,x)=R

ET (o, x)
R

.
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Proof. Note that for each ε > 0,

∞∑
R=1

P

(
T (o, ∂B(R)

R
< inf

y:d(o,y)=R

ET (o, y)
R

− ε

)

≤

∞∑
R=1

∑
x:d(o,x)=R

P

(
T (o, x)

R
< inf

y:d(o,y)=R

ET (o, y)
R

− ε

)

≤

∞∑
R=1

∑
x:d(o,x)=R

P

(
T (o, x)

R
<
ET (o, x)

R
− ε

)

≤

∞∑
R=1

Ce−cR|B(R)|

≤

∞∑
R=1

Ce−c′R < ∞,

where in the second-to-last line we have used Theorem 5.4.1, and in the last line we have used

subexponential growth of G. Thus, by Borel-Cantelli, for each ε > 0 we have

lim sup
R→∞

T (o, ∂B(R)
R

≥ lim sup inf
x:d(o,x)=R

ET (o, x)
R

− ε

almost surely, and taking ε → 0 gives the desired lower bound. �

Remark 5.4.2. The subexponential growth assumption here is important; for example, if

we take G to be the standard Cayley graph of F2, then we have E[T (o, x)]/d(o, x) = Ew for

all x, but T (o, ∂B(R))/R will typically be much smaller. (See [4] for a characterization of

limR→∞ T (o, ∂B(R))/R for regular trees.)

Now we can prove Theorem 5.2.1:
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Proof of Theorem 5.2.1. By Proposition 5.4.1, we have that

lim
R→∞

T (o, ∂B(R))
R

= a

almost surely. Moreover, since each ET (o, x)/d(o, x) ≥ a, Proposition 5.4.2 then gives us that

lim
R→∞

inf
x:d(o,x)=R

ET (o, x)
d(o, x)

= a.

This implies that there exists some sequence xR ∈ V with each d(o, xR) = R such that

lim
R→∞

ET (o, xR)
R

= a.

By compactness of the unit sphere in L∞, the sequence scl 1
R
xR has a limit point ξ ∈ L∞ with

d∞(1, ξ) = 1, and the fact that scl 1
R

: (V,ET ) → (L∞, dΦ) is a sequence of Gromov-Hausdorff

approximations then gives dΦ(1, ξ) = a, as desired.

To contradict monotonicity in direction ξ, simply take ν̃ to be some nontrivial convex com-

bination of ν and δa. �

5.5. The percolation cone

A theorem of Marchand ( [29], see also the statement of Theorem 2.24 in [2]) says that

for the standard Cayley graph of Z2, the directions ξ with smallest possible time constant

(limn→∞
T (0,nξ)
|nξ|1

= a) are precisely those directions which lie in the “percolation cone”—roughly

speaking, those directions ξ such that an oriented percolation model on Z2 with parameter

p > ν({a}) almost surely has an infinite open directed path in direction ξ. The set of such

directions is nonempty if and only if ν({a}) ≥ ~pc, where ~pc is the oriented percolation threshold

on the standard Cayley graph of Z2. Note that for the case of the standard Cayley graph of Z2,
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this exactly coincides with the geodesic percolation threshold ~pc as we defined it in Section 5.3,

so our notation is consistent.

In this section, we begin building an analogous picture. That is, for G the Cayley graph of a

virtually nilpotent group, we show that for each p > ~pc = ~pc we have a set of “directions” Cp in

the unit ball of (L∞, d∞) such geodesic percolation with parameter p almost surely has infinite

open edge geodesics in direction (nearly) ξ. We show that Cp is nonempty for all p > ~pc = ~pc.

We then show that if ξ ∈ Cν({a}), then dΦ(1, ξ) = a, i.e. the “time constant” is the smallest

possible. Finally we use this to show Theorem 5.2.2. One might conjecture a sort of converse,

i.e. that if ξ has d(1, ξ) = 1 but ξ < Cν({a}) then dΦ(1, ξ) > a—in other words, the percolation

cone is the only place where we have the minimum possible time constants. Proving or refuting

this is left for future work.

We want to establish that for each p > ~pc there is a nonempty set of directions which have

time constant a for any ν with ν({a}) ≥ p. The intuition behind the argument is as follows.

Since p > ~pc, there exists some infinite open edge-geodesic. Even if this edge-geodesic does

not have a well-defined direction, by compactness of the scaling limit, there must be some set

of directions which it visits infinitely often. The set of directions which are visited infinitely

often by an infinite open edge-geodesic should be deterministic by the Kolmogorov 0-1 law,

and these will be our Cp. Lastly (assuming an exponential moment for ν) establishing that

T (o, xn) ≤ ad(o, xn) for some scl 1
d(1,xn)

xn → ξ establishes that dΦ(ξ) = a by Gromov-Hausdorff

convergence.

The main technical issue with the above argument is that the event that there exists an

infinite open edge-geodesic which visits direction ξ infinitely often is not a priori measurable.

Unlike the event that there exists an infinite open edge-geodesic, we cannot simply write it
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as an intersection of events involving the existence of finite open edge-geodesics with some

property. For instance, if we assume that we have infinitely many finite open edge geodesics

(say, starting from the same point) which visit direction ξ, if we try to take a subsequential limit

to get an infinite open edge-geodesic path, this infinite path may not visit ξ at all. Therefore,

we have to define a slightly different family of events. A second issue is making sense of what

it means to “visit direction ξ”; roughly speaking, we want there to be infinitely many rescaled

open edge-geodesics visiting any neighborhood of ξ.

To this end, let us define the following events. Let U ⊂ L∞ be a bounded open set which

intersects the unit sphere S := {ξ ∈ L∞ : d∞(1, ξ) = 1}. For each finite subset F ⊂ V and each

R ∈ N, we define

AU,F,R := {∃x ∈ F, y ∈ V, γ : x→ y open edge geodesic s.t. d(o, y) ≥ R, scl 1
R
y ∈ U}.

(Recall the map scl1/R : Γ→ L∞ defined in Section 3.8 which approximately embeds a rescaled

copy of Γ into L∞). We interpret AU,F,R as the the event that there is an open edge-geodesic with

starting point in F and endpoint in direction U at scale R. Note that since F and scl−1
1
R

(U) are

finite, there are only finitely many edge-geodesics between them in G; that is, AU,F,R depends on

only finitely many edges and hence is measurable.

Next define

AU,F := lim sup
R→∞

AU,F,R :=
∞⋂

r=1

∞⋃
R=r

AU,F,R,

the event that AU,F,R happens for infinitely many R. That is, at infinitely many scales, there is an

open edge-geodesic starting from F and landing in direction U.
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Lastly, we set

AU :=
⋃

F⊂V finite
AU,F ,

the event that there exists some finite F such that AU,F holds. Note that AU is measurable, since

it was obtained from the events AU,F,R by taking countable unions and intersections.

Proposition 5.5.1. The event AU is tail-measurable. Thus for each p, Pp(AU) ∈ {0, 1}.

Proof. Let ω ∈ {0, 1}E be a configuration of edges, and suppose that ω ∈ AU . We show that

if ω′ agrees with ω off of a finite subset of E, then ω′ ∈ AU .

Since ω ∈ AU , there exists some F ⊂ V finite such that ω ∈ AU,F , and hence there exists an

infinite collection {γR} of edge-geodesics such that each γR is open in ω, has starting point in F,

and has endpoint in scl−1
1
R

(U).

Now suppose that ω′ differs from ω only on the finite set F′ ⊂ E. Then choose r < ∞

sufficiently large that F ⊂ B(o, r − 1) and F′ ⊂ E(B(o, r − 1)). Define F′′ := S (o, r), the set of

points in V at distance r from o (note that F′′ is finite). For any R > r, since γR begins inside

B(o, r − 1) and ends outside of B(o, r), γR has a subpath γ′R starting at a point of F′′ which only

uses edges in E(B(o, r))c ⊂ F′c and still ends in scl−1
1
R

(U). Since each such γ′R is open in ω and ω′

coincides with ω on F′c, we have that each such γ′R is open in ω′ as well; thus ω′ ∈ AU,F′′ ⊂ AU .

This also shows that if ω ∈ Ac
U and ω′ agrees with ω off of a finite subset, then ω′ ∈ Ac

U .

For if ω′ ∈ AU , then the above argument shows that ω ∈ AU , a contradiction. Thus, AU is

tail-measurable, as desired. The Kolmogorov 0-1 Law then implies that Pp(AU) ∈ {0, 1}. �

Proposition 5.5.2. For each p > ~pc, the set

(5.5.1) Cp := {ξ ∈ S : ∀ε > 0,Pp(ABd∞ (ξ,ε)) = 1}
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is nonempty and compact. Moreover, Cp is increasing in the sense that p < p′ implies Cp ⊂ Cp′ .

We call Cp the percolation cone at level p.

Proof. First, let us show that S \ Cp is open in S . First note that if U ⊂ V , then AU ⊂ AV .

Now, if ξ ∈ S \Cp, then there exists some ε > 0 such that Pp(ABd∞ (ξ,ε)) = 0 (since ABd∞ (ξ,ε) is 0-1

by the previous proposition). If ξ′ ∈ Bd∞(ξ, ε), then for some ε′ > 0, Bd∞(ξ′, ε′) ⊂ Bd∞(ξ, ε), so

Pp(ABd∞ (ξ′,ε)′) ≤ Pp(ABd∞ (ξ,ε)) = 0, meaning ξ′ < Cp. Thus Cp is a closed subset of S , and hence

compact (since S is).

Next, since each Pp(AU) is increasing in p, we have that p < p′ implies Cp ⊂ Cp′ .

Finally, let us show that Cp is nonempty for p > ~pc. Since p > ~pc, Pp(∃ infinite open edge-geodesic ) =

1. Suppose to the contrary that we had Cp = ∅. Then for each ξ ∈ S , we have some ε > 0 such

that Pp(ABd∞ (ξ,ε)) = 0; by compactness of S , we have a finite subcover {Bd∞(ξ1, ε1), ..., Bd∞(ξN , εN)}

of S consisting of such balls. Note that this finite subcover covers some ε′-neighborhood of S

by the tube lemma.

We claim that

{∃ infinite open edge-geodesic } ⊂
N⋃

i=1

ABd∞ (ξi,εi).

Let ω ∈ {∃ infinite open edge-geodesic}. Then for some x ∈ V , there is an infinite open edge-

geodesic starting at x. Therefore, for all sufficiently large R, there exists yR such that x is

connected to yR by an open edge-geodesic. For all R sufficiently large, scl 1
R
yR lies in the ε′-

neighborhood of S , and hence lies in some Bd∞(ξi, εi). Then by the pigeonhole principle, some

Bd∞(ξi0 , εi0) contains scl 1
R
yR for infinitely many R. Therefore

ω ∈ ABd∞ (ξi0 ,εi0 ),{x} ⊂ ABd∞ (ξi0 ,εi0 ) ⊂

N⋃
i=1

ABd∞ (ξi,εi),
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as claimed. But then 1 = Pp(∃ infinite open edge-geodesic ) ≤
∑N

i=1 P(ABd∞ (ξi,εi)) = 0, a contra-

diction. So Cp is nonempty. �

Now we show that all directions in the percolation cone Cν({a}) have time constant a.

Theorem 5.5.1. Suppose that inf supp ν = a, ν({a}) = p ≥ ~pc, and ν has a finite exponential

moment. We have dΦ(ξ) = a for all ξ ∈ Cp, where Cp is the percolation cone as defined in

(5.5.1).

Proof. dΦ(1, ξ) ≥ a for all ξ with d∞(1, ξ) = 1, so it remains to to show that if ξ ∈ Cp,

then dΦ(1, ξ) ≤ a. Let ε > 0. By continuity of dΦ with respect to d∞, we can then choose a

bounded open neighborhood U of ξ such that for all ξ′ ∈ U we have dΦ(1, ξ′) ≥ dΦ(1, ξ)− ε and

d∞(1, ξ′) ≤ 1 + ε. Since dΦ ≤ (Ew)d∞, for sufficiently large R we have that

scl−1
1
R

U ⊂ Bd(o, 2R) ⊂ BET (o, 2EwR) ⊂ V.

Then, since scl 1
R

is a sequence of pointed Gromov-Hausdorff approximations (see section 3.10)

both from (V, 1
RET ) to (L∞, dΦ) ( [5]) and from (V, 1

Rd) to (L∞), there is some R0 such that for all

R ≥ R0 and all x, y ∈ B(o, 2R) ⊂ BET (o, 2(Ew)R) we have

(1 + ε)
1
R
ET (x, y) + ε ≥ dΦ(scl 1

R
x, scl 1

R
y)

and

(1 − ε)
1
R

d(x, y) − ε ≤ d∞(scl 1
R
x, scl 1

R
y).
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We also choose R0 sufficiently large that for all R ≥ R0, scl−1
1
R

U ⊂ Bd(o, 2R). Then in particular,

taking x = o and y ∈ scl−1
1
R

U we get

(1 + ε)
1
R
ET (o, y) + ε ≥ dΦ(1, scl 1

R
y) ≥ dΦ(1, ξ) − ε,

so

(5.5.2)
1
R
ET (o, y) ≥

dΦ(1, ξ) − 2ε
1 + ε

,

and also

(1 − ε)
1
R

d(o, y) − ε ≤ d∞(1, scl 1
R
y) ≤ 1 + ε

so that

(5.5.3)
d(o, y)

R
≤

1 + 2ε
1 − ε

.

Now, by Talagrand concentration (Theorem 5.4.1) we have that

∞∑
R=1

P(∃x s.t. d(o, x) = R,T (o, x) < ET (o, x) − εd(o, x))

≤

∞∑
R=1

|B(o,R)|Ce−cR < ∞,

where the sum is finite because G has subexponential growth. So by Borel-Cantelli, the event

Ω′ := {ω : ∃R1(ω) s.t. d(o, x) ≥ R1 ⇒ T (o, x) ≥ ET (o, x) − ηd(o, x)}

has probability 1. Next, since ξ ∈ Cp and ν({a}) ≥ p, if we call an edge e open whenever it has

weight a, we have P(AU) = 1. Since P(Ω′ ∩ AU) = 1, it is in particular nonempty.
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So let ω ∈ AU ∩ Ω′; we then have R1(ω) < ∞ as in the definition of Ω′ and a finite F ⊂ V

such that ω ∈ AU,F . By definition of AU,F , there exist infinitely many edge-geodesics γR which

have weight a in ω and which start at a point in F and end at a point in yR ∈ scl−1
1
R

U with

d(o, yR) ≥ R. For each such R we then have

T (o, yR) ≤
[
max
v∈F

T (o, v)
]

+ T (γR) =

[
max
v∈F

T (o, v)
]

+ a|γR|

≤

[
max
v∈F

T (o, v)
]

+ a
(
d(o, yR) + max

v∈F
d(o, v)

)
.

where we have used that γR is an edge-geodesic between some point of F and yR. For all such

R which are at least max(R0,R1), we further have

ET (o, yR)
d(o, yR)

− ε ≤
T (o, yR)
d(o, yR)

≤ a +
[maxv∈F T (o, v)] + a [maxv∈F d(o, v)]

d(o, yR)

≤ a +
[maxv∈F T (o, v)] + a [maxv∈F d(o, v)]

R

Since maxv∈F T (o, v) and maxv∈F d(o, v) are finite and independent of R, for all sufficiently large

such R we then have
ET (o, yR)
d(o, yR)

− ε ≤ a + ε;

rearranging and using (5.5.2) and (5.5.3), we then get

a + 2ε ≥
ET (o, yR)

R
·

R
d(o, yR)

≥

(
dΦ(1, ξ) − 2ε

1 + ε

) (
1 − ε

1 + 2ε

)
.

Finally, taking the limit as ε → 0 gives dΦ(1, ξ) ≤ a, as desired. �
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Finally, we can use this to prove Theorem 5.2.2, that is, that there is a direction ξ with

d∞(1, ξ) = 1 such that dΦ(1, ξ) = a for any ν with a finite exponential moment such that

inf supp ν = a and ν({a}) > ~pc.

Proof of Theorem 5.2.2. Since the sets Cp for p > ~pc are all nested, nonempty, and com-

pact, it follows that C :=
⋂

~pc<p≤1 Cp is nonempty and compact. But any ξ ∈ C satisfies the

desired property, by Theorem 5.5.1. As always, to get failure of monotonicity in direction ξ,

simply take a nontrivial convex combination of ν and δa. �
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[21] O. Häggström, Y. Peres, and R. H. Schonmann. Percolation on Transitive Graphs as a
Coalescent Process: Relentless Merging Followed by Simultaneous Uniqueness, pages
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