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Introduction

For many years the emphasis in private sector research and development

expenditure in the United States, as elsewhere, was on: the development of

ways of improving existing products; the discovery of new products; the devel-

opraent of improved techniques for marketing products; and the discovery of

techniques of reducing the costs of producing existing products. Attitudes

have changed in recent years. The belief has taken hold that cost savings in

the field of physical distribution can be very great and that logistical or

physical distribution management comprises "...today's frontier in business.

It is the one area where managerial results of great magnitude can be

achieved. And it is still largely unexplored territory."^ To appreciate why

this is the case, we should begin by understanding what the field of physical

distribution or logistical management is usually considered to encompass. Its

intellectual thrust is seen in some of the more popular definitions of the

field:

"...physical distribution management has emerged as the term most
generally used to describe...the total cost concept of material flow
...the total movement and storage function...(of) inbound as well as
outbound (freight) movements."

Elsewhere the field is described as:

"Physical distribution management is the term describing the inte-
gration of two or more activities for the purpose of planning,
implementing and controlling the efficient flow of raw materials,
in-process inventory, and finished goods from point of origin to
point of destination. These activities may include but are not
limited to customer service, demand forecasting, distribution commu-

nications, inventory control, material handling, order processing,
parts and service support, plant and warehouse site selection... ."^
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Efficient physical distribution can reduce a firm's costs of operation. It

also increases the time and place utility or value of the goods produced by a

firm.

"The value or utility of moving materials available in a completed
state is termed form utility. However, the product must also...be
available in the right place, at the right time, and be available
for purchase...Place and time utility are generally thought to be
provided by the distribution activity, while marketing provides
possession utility."

There are several reasons for the growing awareness of the importance of

physical distribution management in the efficient management of enterprise,

public as well as private. Surely one of these reasons is the very high

interest rate that prevailed during the recent years of high inflation. The

real cost of holding inventories of finished products and of raw materials

rose rapidly form the late seventies through 1981. It became extremely impor-

tant for firms to find ways of buying and shipping and handling materials and

finished products on as close to a continuous flow basis as possible in order

minimize the interest costs of holding inventory.

Interest rates are a good deal lower today than they were in 1980 and

1981. However, two things concerning interest rates are a virtual cer-

tainty. First, as the present recovery proceeds, they are certain to rise in

nominal terms, and there is a strong likelihood that they they will also rise

in real terms. Second, we are unlikely to see a return in secular terms to

interest rates in the five and six percent range. Hence, from both short and

long run perspectives, efficiency in the management of inventories of material

inputs and finished products will be much more important in the overall effi-

ciency of firms' operations than it was in the decades preceeding the seven-

ties.



The changes that have been occurring in transportation also make physical

distribution and the handling of input and output flows much more important in

the overall costs of firms. One of the changes is the rise in the price of

fuels relative to other inputs and the resulting increases in the real costs

of freight transport. These rates rose rapidly in real terms in the latter

half of the seventies for a number of reasons, one of them being the short run

success of the OPEC cartel in restricting the supply of petroleum and raising

its price. The power of the cartel is now waning because of some success in

conservation, a relative shift to other fuels, and a significant expansion in

the supply of non-OPEC petroleum, coal, and other energy sources. However,

the increases in the prices of fuels that have taken place since 1974 are by

no means due solely to OPEC's direct impact on petroleum and its resulting

indirect impact on substitute fuels. They are also due to a continued, strong

secular increase in the demand for petroleum and coal in many production

industries — chemicals, fertilizers, synthetics, etc. — which compete with

the transportation industries for hydrocarbons. Worldwide usage of them in

non-transport sectors is very likely to continue to grow strongly in the next

several decades. Fuel prices are likely to increase in real terms in that

period, and with them freight rates. It follows that the costs of handling

and shipping inputs and outputs will continue to increase as a share of over-

all costs in firms' operations. The need to develop techniques and new ap-

proaches to logistics that will slow the increase in costs of materials han-

dling, inventory, product distribution, etc. will continue to grow.

Above it was stated that there are several reasons for the growing impor-

tance of transportation in effective physical distribution management. One of

those reasons — the likelihood of continued secular increases in the real



costs of freight transport due to rising energy prices — has now been ex-

plained. Changes in the competitive environment in which transportation firms

function is a second reason.

In the United States and many other parts of the world there is an in-

creasing tendency to reduce the economic control and regulation of governments

and their agents over transportation firms. Competition between carriers is

increasingly being relied upon to determine rates, quality of service, market

share, etc. The social benefits from increased competition are lower rates

and service that is more diverse and offered at rates that more closely re-

fleet the true economic costs of providing alternative qualities of service.

However, the greater freedom that carriers have as to the rates they charge,

the quality of service they provide, and the routes they choose to serve can

entail costs and difficulties for shippers. These costs and difficulties can

be of different types, but many of them involve an increase in the risk of

doing business for some kinds of shippers.

Consider as an example of such a shipper, the firm that invested large

sums to develop production of a low value product in an area that is served by

only one railroad, at least for a significant part of the distance from point

of production to various markets where the product is sold. Under deregula-

tion and changes in government attitudes, the railroad that serves the area

may raise rates very significantly in an effort to achieve revenue adequacy,

i.e. to earn a normal rate of return on investment measured in current re-

placement cost terms. Moreover, the Interstate Commerce Commission (I.C.C.)

has accepted the agrument that it is both rational economics and sound public

policy for railroads to set rates in accordance with elasticities of demand as

well as marginal costs.^ This approach to railroad rate making, known as

Ramsey Pricing, calls for rates to depart from marginal costs of transporting
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individual products in a way that is inversely proportional to the elasticity

of demand for transporting them. That is, other things constant, the more

inelastic the demand for transporting a product, the higher the rate that will

be charged to transport it. Not only has the I.C.C. now accepted this

principle, it has also gone on to add that it will rely on the railroads and

shippers rather than its own staff to determine whether the principles of

Ramsey Pricing have been adequately implemented by the carriers. Thus, it is

now a matter of public policy to accept price discrimination in railroad rate

making, at least until such time as the railroads are earning a normal return

on investment. We can now return to our main theme concerning transportation

deregulation, risk, and logistical management.

In the past, shippers could choose locations for production or other

facilities that offered special advantages such as low labor or power costs,

amenities, etc. The sites selected were frequently in areas of low density of

population and economic activity. Oftentimes they were also far from the main

corridors of transportation. Such locations could be chosen with a high

degree of certainty that transport conditions would not change radically. The

Commission would not permit sudden, sharp increases in rates, radical changes

in frequency of rail service, and outright abandonment by railroads without

extensive hearings. All of these things are now possible because of the

recognition that transport must be free to function with (almost) the same

degree of entrepreneurial freedom as other industries if the transport sector

is to be socially efficient and healthy. But such freedom for carriers

implies significant risks for shippers who have low elasticities of transport

demand, whether due to the nature of the products they ship, the locations of

their sites of production in relation to markets, sources of material inputs,

etc. Such firms may face the risk of rapid and significant changes in the



cost, quality, and availability of the transport they require for material

inputs, outputs, and personnel.

There are ways of reducing the above risks, but they entail costs. So

far as site selection is concerned, shippers can reduce the chances of radical

changes in the tranport situations they face by choosing to locate facilities

with good, easy access to the main corridors of transportation, the corridors

within which there is considerable inter and intra-modal competition between

carriers. The greater the choice of transport faced by a firm, the more

elastic will tend to be its demand for the form of transport it is using,

because of the possibility of shifting partially or wholly from one mode or

carrier to another. Such a shipper is less likely to face serious economic

price discrimination. However, it is also then likely to have to pay more for

the land it requires for facilities. Land values tend to be higher in areas

of great transport competition than in remote areas. Generally speaking the

same is true of wage rates. Here we make the point that the risks associated

with a less regulated transport environment can be reduced, but only at a

cost.

Above we dealt with selection of new sites. Firms can also reduce the

risks of rapid, significant, adverse changes in the transport situations they

face at existing sites. They can do so by signing contracts with carriers

that involve guaranteed tonnages and rates. However, this way of reducing the

risks of changes in transport rates also entails costs. For example, in a

recession a firm may find that the quantity it wishes to ship falls short of

the contracted quantity. Furthermore, the firm that has signed a contract may

find that it cannot avail itself of the lower price transport alternatives

that become available in a recession.



This completes the introductory portion of this report. In it the argu-

ment has been made that the functions associated with physical distribution

have become much more important in the overall efficiency of modern enter-

prise, public as well as private, than they were in the past. It has been

argued that this growth in importance of physical distribution is due in part

to the fact that the costs of performing its various functions have been

increasing in real terms and are very likely to continue to increase in both

the short and long runs. It has also been argued that the changes in trans-

port regulation make the physical distribution function more risky for certain

categories of shippers. The remainder of this report is divided into five

parts. The titles and brief descriptions of the parts appear below.

Part 1: Physical Distribution: Progress and Shortcomings

The field's approach to efficiency is summarized, and some of its short-

comings are explained.

Part 2: Reasoning about the Firm in Time and Space

The time-space analog is developed in qualitative terms and the nature of

the direct and cross relationships that exist between temporal and geographic

variables is discussed. By way of illustration it is shown how a change in

the cost of transporting a product through space can influence a number of

temporal variables, such as the lenth of production runs at various plants and

the amount of inventory held, as well as geographic variables, such as prices

charged at markets that are more distant from production sites than other

markets.

Part 3: A Model of the Firm in Time and Space

A formal model is presented that shows the interrelationships between the

spatial distribution of plants, the temporal distribution of production,
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pricing and sales over time and space, and the geographic and temporal hold-

ings of inventories.

Part 4: Models for Use

The theoretical understandings achieved in Part 2 and 3 are cast into

solution procedures for solving some of the complex logistical problems that

arise in the real world. Results are presented for three kinds of problems.

Part 5: Future Research

The emphasis in the academic year 1983-84 will be on empirical work and

further development of solution procedures.
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Footnotes

^P.F. Drucker, "Physical Distribution: The Frontier of Modern Management" in
D.J. Bowersox, B.J. LaLonde, and E.W. Smykay, editors, Readings in Physical
Distribution Management, (New York: The Macmillan Co., 1969), p. 8.

2 ..

G.A. Gecowets, "Physical Distribution Management, Defense Transportation
Journal 35, no. 4, August 1979, p. 11.

3
D.M. Lambert, J.R. Stock, Strategic Physical Distribution Management,

(Homewood, Illinois: Richard D. Irwin Inc., 1982), pp. 10-11.

^National Council of Physical Distribution Management, NCPDM Comment 9, no. 6,
November-December 1976, pp. 4,5.

~*0n this see the submissions in I.C.C. Ex Parte 347 by Kenneth Arrow; William
Baumol and Robert Willig; Ronald J. Braeutigam and Leon N. Moses.



 



1.1

Part 1: Physical Distribution: Progress and Shortcomings

Physical distribution or logistics specialists are in quite general

agreement about the functions that fall in the domain of the field, on the

overall objective that should be pursued by them in performance of these

functions, and on the major change that has taken place in the way that this

objective is pursued. This part of the report begins with an explanation of

these three areas of agreement. The statement of functions and the broad

agreement by specialists on the objective to be pursued in the performance of

those functions is followed by a brief critique of the field. The basic point

made is that the accomplishments to date have largely been philosophical and

qualitative and what is required in the next phase of development is a growing

use of quantitative tools in which trade-offs between changes in such things

as inventory policy, locational choices, length of production runs, and choice

of transport are actually measured so that the various distribution functions

can be truly integrated.

A field and a set of functions whose role in the profitability of busi-

ness is growing in importance tends to attract intelligent, ambitious and

aggressive people. Such people tend to push out the limits of their jobs,

expanding the number and importance of the functions they perform. This has

been happening in business logistics. Because the field is growing there is

some small disagreement as to the functions it encompasses. Thus, there is

some disagreement as to whether the forecasting of demand is a function that

is a responsibility of physical distribution specialists. Some practitioners

feel that demand forecasting is today appropriately considered a part of the

field, even though it is probably performed most commonly in sales-marketing

departments of firms. Physical distribution specialists will concede to
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production people responsibility for choosing the techniques of production.

However, there is disagreement as to whether the timing of production runs for

the different products of a company should be in the hands of the distribution

or production specialist. There are such areas of disagreement as to the

functions of the physical distribution specialist, but overall there is consi-

derable agreement. The field encompasses the management and organization of

the short run temporal and geographic flows and storage of material inputs

from specified supply sources to existing plants, and of finished products

from plants to specified markets. In the long run the selection of sites for

plants and warehouses is another function that should normally be carried out

by logistics specialists.

As indicated earlier, a second area of general agreement is in the defi-

nition of the objective of the physical distribution function. The goal is

the minimization of the total costs of coordinating and integrating the var-

ious temporal and geographic stocks and flows that are required to produce

products and deliver them to customers. Logistics specialists do not normally

determine how products are to be produced, where materials are to be bought,

where and in what quantities products are to be sold. However, they are seen

as facing a large number of interrelated choices in determining the least cost

method of organizing the temporal and geographic flows that link materials

acquisition, production, and sales. The trade-offs between these various

choices must be specified so that a distribution plan is developed that mini-

mizes total system cost, all aspects of distribution being considered.

The third area of agreement among logistics specialists has to do with

the adoption of a systems approach to cost minimization. It is felt that the

systems approach really marks the change from the old to the new logistics.

Specialists assert that in the past, distribution analysis was carried out as
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a set of diverse and poorly integrated choices. As a result, the total cost

of the overall distribution function was rarely minimized. Thus, in two

recent texts on distribution we find:

"...improvements in techniques of analysis and methodologies facili-
tated the development of logistics. One such improvement was systems
analysis or the systems concept ... Cost then is very often the
criterion for evaluating system performance in logistics... (and) the
effect of a change in the system usually measured by some criterion
such as cost and the emphasis is upon the total cost of the
system....If the initial change represents an increased cost then we
may be trading off against decreased costs in other variables so that
overall costs are reduced."'''

And in another recent volume:

"Total cost analysis is the key to managing the physical distribution
function. Management should strive to minimize the total costs of
physical distribution rather than attempt to minimize the cost of
individual physical distribution activities (which)...may be subopti-
mal and lead to increased total costs.

But, is the emphasis on total costs, on the systems approach, on the

careful evaluation of trade-offs between different costs and functions a

reality? Some specialists, as well as the present writer, feel that the

achievement of a quantitatively and theoretically sound approach to the total

cost concept falls far short of what is needed, and in some cases also falls

far short of what is claimed by specialists. Thus, the authors of a recent

article state that:

"Successful implementation of integrated distribution management is
based on the analysis of cost trade-offs between and among the vari-
ous components of the logistics system. However, the total cost
concept cannot be implemented until the necessary cost data are
available to distribution decision-makers."

The authors of the article go on to say that:

"Many of the costs required for implementation of distribution cost
trade-off analysis were not reported available by many respondents."^
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The authors of the above paper feel that not enough data is collected to

allow a total cost approach to integrated physical distribution management.

The present writer believes that something much more fundamental than data is

required. What is needed is a methodology, a sound theoretical model that

deals with major components of the physical distribution system. An examina-

tion of the major writings in business logistics reveals a significant lack of

attention to formal models that develop the trade-offs between major compo-

nents of the physical distribution system in ways that are theoretically and

quantitatively sound.

Consider, for example, the much referred to volume commissioned by the

prestigious National Council of Physical Distribution.^ Productivity data in

a variety of distribution functions are considered, such as transportation,

warehousing, purchasing and inventory management. However, several things

must be said about the way in which they are treated. First, the treatment

does not represent a quantitative analysis of trade-offs between expenditures

on different kinds of functions. Second, even the treatment of the separate

functions is largely qualitative. Third, in seeking ways to improve the

efficiency of physical distribution, the authors of the report emphasize

organization rather than an improved understanding of the nature of the com-

plex trade-offs between the various cost elements and functions. Thus, the

report concludes:

"Perhaps the most effective means of impacting management producti-
vity is by changing the organization of the distribution functions...
Merely by recognizing the need for an integrated distribution depart-
ment, many organizations are able to achieve a better coordination of
all affected activities."

Better organization, centralized control over physical distribution, and

better data can certainly lead to reduced costs of the total distribution

function of a firm. However, the claim of the present writer is that more
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soundly structured approaches to cost trade-off analysis are essential. Much

of the work now done in distribution analysis amounts to little more than a

listing of cost elements. A careful and systematic layout of the various

costs that should be considered in a total cost approach to distribution

decision-making can be useful.^ The example developed below may lend both

clarity and concreteness to the point that is being made about the need for

theoretically sound models of trade-offs in distribution.

Consider a firm that has some number of plants, say two, located in

different parts of the country. The firm produces and sells two products

which it sells in some number of markets that are dispersed geographically.

Each plant is capable of producing both products. However, the two products

cannot be produced simultaneously in a single plant. Each plant can ship both

products to all markets by truck or rail. Assume initially that the quantity

of each of the two products that the firm must deliver for sale in each market

is known over some period, perhaps each day of a month. Now consider the

highly complex and interrelated kinds of production/distribution/transpor-

tation/inventory trade-offs that must be quantitatively analyzed if sound

decisions are to be made.

One possible arrangement of activities is to have each of the two plants

specialize in the production of one of the two products. Such plant-product

specialization eliminates the need for switching from production of one

product to production of another within plants, and therefore acts to reduce

costs of production. If the firm's production cost functions exhibit a stage

of increasing returns to applications of the variable factors of production,

specialization of plants to products can bring further cost savings in produc-

tion. Such specialization will also have an impact on expenditures for trans-

portation, but the impact can go either way, as is explained below.
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Specialization of plants to a single product means that more of a given

product is shipped out of each plant. Increases in tonnage can mean a lower

transport rate per unit of product shipped. Such plant specialization might,

for example, lead to a switch to carload quantities and the substitution of

lower cost rail for truck transport. On the other hand, specialization of

plants to single products means that each plant must ship to all markets. In

other words, if the firm chooses to have plants specialize in production, it

must forego another kind of specialization, that in which plants specialize in

markets they serve. If a plant must ship the product it produces to all

markets, it will in general be shipping greater distances and this raises

expenditures on transportation. Therefor, even within the transport sector,

there is a trade-off involved in plant-product allocation choices: that

between the savings that follow from larger quantities being shipped per unit

time, and the additional costs due to the greater distance products are

shipped.Specialization by product and efforts to achieve lower transport

charges per unit product shipped given distances also generally mean that

larger inventories of final product are kept, which increases the costs of

storage and inventory carrying costs.

Above I have recounted the kinds of choices and trade-offs that are

involved in a problem that involves multiple plants, multiple products, multi-

pie modes, multiple markets, and multiple periods of analysis. Were we to

present the above problem to a physical distribution specialist and ask for an

explanation of the basic trade-offs it involves, the individual would undoubt-

edly list those presented above. However, a listing is not enough. It is a

qualitatively important first step that provides significant insights. Two

additional steps must follow if management is to be provided the analytical

tools needed to improve the quality of the complex decisions that must be made
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In physical distribution. The qualitative Insights of the Interrelationships

and trade-offs between elements must be embedded In a formal quantitative

model. That model must then be empirically estimated so that the effects of

alternative decisions can be simulated, or an effort made to apply optlmi-

zation techniques.

All too frequently, writings of the academic scholars who specialize in

logistics stop at the qualitative stage. Practitioners are told the various

kinds of trade-offs that should be investigated. When advice is also given on

the kinds of formal, quantitative analysis that should be worked out, the

advice and the tools recommended are frequently much too simple for the com-

plexity of the decisions that practitioners must make. Such quantitative

modeling as is done is frequently within a given portion of the spectrum of

physical distribution issues. For example, it would not be unusual to find an

analysis of how an increase in carrying costs effects the quantities of a

product that are ordered at various points of time and the frequency of order-

ing. What is much less likely, is to find quantitative tools for measuring

trade-offs between quite different elements in the spectrum of physical dis-

tribution problems. For example, suppose the interest rate rises. The firm

decides that it may be worthwhile to reduce its holdings of finished product

inventories. Such a decision might entail at least a partial shift of ship-

ments from rail to truck. Shifts in transport may mean a reallocation of

markets to different production facilities, and a reallocation of production

between plants if total costs are to be minimized. Such trade-offs are at the

very heart of what physical distribution specialists claim is the essence of

their craft, i.e. the minimization of the costs of integrated distribution

systems. However, it is rare to find formal models for investigating complex

chains of trade-offs. When such models do appear in the literature, they are



1.8

frequently linear. Such models cannot capture the essence of many distri-

bution problems because these problems entail significant non-linearities,

i.e. economies of large scale production, of shipment, of storage, of order

size, etc. One last point remains to be made in this section of the report.

It has to do with the responsiveness of demand to prices charged, the rela-

tionship of distribution to marketing, and the validity of the total cost

criterion for physical distribution decision-making.

Some contributers to the logistical literature have expressed a concern

over what they view as the excessive concentration of physical distribution

studies on the goal of cost minimization. These writers claim that other

goals also deserve consideration. Surely one such goal is the maximization of

profits.

Most logistics specialists take the position that they manage and attempt

to minimize the costs of the flows and inventories associated with the follow-

ing: (1) the delivery of quantities of final product(s) to various markets as

specified by marketing specialists; (2) the production of quantities of vari-

ous products at alternative plants as specified by production specialists; (3)

the acquisition of required amounts of various material inputs into production

processes from alternatives cited as specified by the firm's production spe-

cialists and buying agents. The integration of these decisions into an over-

all plan is seen by most physical distribution specialists as being the re-

sponsibility of those executives in the firm who are responsible for overall

corporate decision-making. However, there are physical distribution experts

who believe that their analyses should be capable of being integrated with the

decisions of those within the firm whose responsibilities encompass objectives

that go beyond the fixed quantities-total cost approach of most business

logistics studies.
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Surely one area where such integration would be extremely valuable is

marketing and price setting. Marketing specialists such as Phillip Kotler of

Norhtwestern University accept the economist's approach to the determination

of the quantities of product sold by a firm. The economists' demand models

involve a responsiveness of quantities sold to such variables as prices

charged, advertising expenditures, and product quality. Current physical

distribution models are not capable of integrating marketing decisions as to

variables that influence quantity of product sold in different markets. Such

integration would entail an approach in which marketing and physical distribu-

tion decisions are made simultaneously and take into account the interactions

of both sets of decisions on the firm's profits. This is very different from

an approach in which marketing specialists first make decisions on the varia-

bles that determine quantities sold in different geographic or temporal mar-

kets, and physical distribution specialists then take these quantities as

given and attempt to minimize total logistical costs associated with them. A

brief summary statement of the state of the art in logistical modelling and

decision-making as seen by the present writer is now in order.

Most logistics specialists attempt to reason in terms of a fully Integra-

ted distribution systems. In their work they have the goal of minimizing the

total costs of such systems, given the quantities of product to be delivered

to various markets, the quantities of material inputs bought from various

sources, etc. The idea of trade-offs between various cost elements is an

essential part of such cost minimization. Such reasoning represents a sig-

nificant improvement over the logistical studies that were carried out prior

to the development of the systems concept. The position of the present writer

is that much remains to be done before the goal of minimizing the total cost

of integrated physical distribution systems can be achieved. Most logistical
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studies do not in fact encompass complex trade-off relationships between

diverse elements of the distribution system except in purely qualitative

terms. When quantitative models are employed they tend to be within a given

segment of the physical distribution system. The well known EOQ model is an

example. Where complex trade-offs are involved, the logistical models

currently in use tend to be linear in nature. Such models cannot really

achieve the goal of cost minimization because physical distribution systems

involve significant non-linearities. Finally, the goal of cost minimization

may not be the appropriate goal. If the goal of the firm is to maximize

profits, then it is necessary to work with demand responsive rather than fixed

quantity models. In other words, it is necessary to employ approaches in

which decisions as to the variables that influence quantities of product sold

(or quantities of inputs bought) and variables that influence distribution

cost are both considered.
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Footnotes

^J.J. Coyle and E.J. Berdi, The Management of Business Logistics, West
Publishing Company, 1980, St. Paul, Minnesota, pp. 22, 25.
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D.M. Lambert and J.R. Stock, Strategic Physical Distribution Management ,

Richard D. Irwin, Inc., Homeward, Illinois, 1982, p. 36.
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Measuring Productivity In Physical Distribution, by A.T. Kearney, Inc.,

prepared under contract to the National Council of Physical Distribution
Management, Chicago, Illinois, 1978.

5Ibid., p. 222.
£

An excellent example of such a systematic listing of distribution costs is
found in H.W. Davis and Company, Workbook for a Physical Distribution
Productivity Audit, (Marketing Publications, Inc., Washington, D.C., 1980).

^H.M. Wagner and T.M. Whitin, "Dynamic Problems in the Theory of the Firm,"
Naval Research Logistics Quarterly, March 1958, pp. 53-74 and T.M. Whitin,
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It can readily encompass cases in which storage as well as production cost
exhibit U-shaped average and marginal costs.
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The solution procedures used to solve actual problems involve algorithms
built around the techniques of non-linear programming.
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Part 2: Reasoning about the Firm In Time and Space1

The theory of the firm and its decisions as to output, prices charged

etc. is one of the most highly developed and powerful parts of the entire body

of microeconomic theory. The literature in the theory of the firm is rich and

goes back to the very beginning of economics as a field. Two important sub-

areas in the economic theory of the behavior of firms are: (1) the theory of

dynamics, or the study of behavior over time; (2) the theory of location and

spatial competition, or the study of the decisions that firms make in space.

Logistics or physical distribution attempts to deal with both of these kinds

of decisions. However, there does not exist in the field of logistics an

integrated, soundly constructed theory of how firms go about optimizing simul-

taneously across space and time. Nor is there at present an economic model of

the interactions between temporal and spatial variables. In this part of the

report, the reader is introduced to a way of looking at space-time trade-

offs. The treatment is qualitative. The kind of firm dealt with in the

entire report is explained. A general, largely intuitive explanation is

offered of how our firm can adapt to changes in a purely spatial parameter,

such as transport cost, by changing its temporal as well as its spatial plan;

or how it can adjust to a change in a purely temporal parameter, the cost of

storage, by changing its spatial as well as its temporal plan. The formal

model of space-time interrelationships and decision making is presented in

Part 3.

The firm about which we reason in this report is an imperfect competi-

tor. It faces a downward sloping demand curve(s) for its product(s) and must

therefore decide on the price(s) it should charge. The firm has a cost
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function that exhibits the typical shape of much of the reasoning in microeco-

nomics. That is, whether due to scale economies in the long run, or variable

returns to variable factors in the short run, the firms marginal and average

cost curves exhibit both declining and increasing stages. In other words, the

firm's total cost curves, short and long run, are in part concave and in part

convex. This form of the cost function causes considerable difficulty in the

theory of profit maximization over time and space, and in the solution of

actual problems. Indeed, on the latter point, it is most unusual to find

optimization procedures in the operations research literature that employ such

cost functions, and the present writers know of only one study of profit

maximization over time and none over time and space in which such cost func-
2

tions are combined with downward sloping demand functions.

In order to maximize profits, the firm with which we deal in all of our

work must combine the markets it serves from its production facilities. That

is, it must aggregate markets across time, across space, or both in order to

maximize profits. Even with such aggregation eah of its plants operates to

the left of minimum average cost at each point of time when production takes

place.

There are a number of reasons why we choose to cast our theoretical and

applied work in terms of an imperfect rather than a perfect competitor, and

also to develop our models in terms of the traditional cost function of econo-

mic theory. One reason for the choice is that we wish to develop a pure

theory of the temporal and spatial choices made by the firm about which we are

reasoning. In the present context the use of the word 'pure' is meant to

convey the idea that the temporal and spatial choices made by the firm origi-

nate largely from conditions within it rather than dfitside it. This notion

requires elaboration.
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It may be optimal for the firm about which we are reasoning to choose to

operate more than one plant, some number of markets or some market area being

served exclusively by each plant. A perfectly competitive firm may be found

to be operating more than one plant but if so it is with one major exception,

explained below, due to changes in its environment. A perfectly competitive

firm can sell as much output as it wants in its market without the need to

lower its price. Hence in static conditions the perfectly competitive firm

chooses that one plant-market combination that maximizes profits. A perfectly

competitive firm can be found to be operating more than one plant, but the

likely explanation is that something has changed since it made its original

one plant-market profit maximizing decision. Costs of production or techno-

logy may have changed or prices in different markets changed, or costs and

prices may be expected to change, so that a new one plant-market combination

is optimal. However, it may not be possible for the firm to instantaneously

begin production and sales in the new optimal plant-market combination and

discontinue operations in the old one. Hence for some period of time the firm

is found to be a multi-plant firm, but the situation is the result of changes

3
in its environment and adjustment time.

We develop our models in terms of cost functions that involve first

falling and then rising marginal and average costs because that is the tradi-

tional cost function of economic theory. We want our models to square with

and represent a natural outgrowth of the traditional economic theory of the

firm. However, there are other, equally important reasons for the choice of

cost function. Despite the assumption of a downward sloping demand function,

our firm would not choose to sell in multiple markets and to operate multiple

plants if its cost functions were strictly linear or quadratic, unless costs

or demands changed over time. Our goal, as explained earlier, is the develop-
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merit of a pure model of behavior in time and space. Our firm may choose to

sell in more than one market and operate more than one plant because that is

what it is optimal for it to do, even if demands and costs are everywhere the

same, are expected to remain unchanged over time, and are not subject to any

randomness. Our firm may choose to behave dynamically rather than statically

even in these conditions, because such behavior maximizes its profits. It

produces in excess of sales at certain times and holds inventory. It sells

off that inventory, reducing it to zero before it begins another production

run. The space-time models developed in this report are perfectly capable of

analyzing decision making when cost functions and demand functions change over

time.^ However, we wish to show that the adoption of a dynamic production

policy, including inventory accummulation, and the adoption of a multiple

market - multiple plant strategy can represent the profit maxing solution even

if demand functions and cost functions are identical over space and are invar-

iant over time.

There is nothing terribly surprising about a firm's accumulating product

inventory if it expects the demand function it faces to shift up over time, or

if it expects costs of production to rise over time. Variations over time can

cause even the perfectly competitive firm to accumulate inventories of fi-

nished products and of material inputs and, at least transitionally, to oper-

ate more than one plant. What is much more fundamental is to demonstate the

conditions under which a firm will operate in these ways even when costs and

demands are temporally and spatially invariant. We do so in this part of the

report in a largely qualitative way, the goal being to offer general insights

into the space-time analogy, and the conditions under which a firm operates

fewer plants than markets served and operates each of those plants under a

dynamic regime. We use the basic logic of profit maximization to offer
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insights into how a change in a parameter, say the cost of transporting the

product to certain markets, can have two sets of effects, direct effects and

cross effects. By a direct effect we mean an effect on some geographic varia-

ble, the most obvious one being that the firm may choose to reduce or reallo-

cate the sales from any given plant to those markets where transport cost has

not increased."' By a cross effect of a change in a temporal parameter we mean

a change in, for example, the time period over which the output of a

production run is sold. Similarly, a change in some spatial parameter, such

as the cost of storage, can also have direct effects on some temporal

variables and cross effects on spatial variables. We begin this general

discussion by dealing with the inventory problem and ignoring spatial consi-

derations.

The firm about which we are reasoning is an imperfectly competitive

firm. At each point of time it faces a downward sloping demand curve. The

general model developed in this report can handle shifts over time in the

firm's demand function, but at this stage we assume the demand function is

temporally invariant. The introduction of a regular demand function into the

analysis means that the firm may have a temporal pricing-sales policy as well

as a production-inventory policy as part of its overall profit maximizing

strategy. The former departs from what has been a long standing tradition in

inventory theory. Almost all models of inventory behavior assume that the

firm sells a fixed amount of product in each period, though that quantity can

vary deterministically over time, reflect the workings of a random distribu-

tion, or be uncertain. In other words, the great majority of inventory models

do not attribute to the firm a pricing policy even though they are clearly

dealing with firms that are not perfect competitors. In this regard, it is

worth noting that a recent, excellent and very comprehensive volume on inven-
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tory theory devotes only two of its approximately 800 pages to a review of

models in which firms make price decisions.^
The absorbtion of inventory theorists with fixed quantity models is

somewhat strange since almost a quarter century has passed since a path-

breaking article was written in which a downward sloping demand curve was

introduced into a model that had storage, interest and other costs usually

found in inventory studies.2 On the cost side, almost all production-

inventory models preclude scale economies in the long run, and the influence

of changing factor proportions on the productivity of variable factors in the

short run. The two elements that we introduce, downward sloping demand func-

tions and U-shaped average and marginal cost curves are clearly part of the

traditional, static economic theory of the imperfectly competitive firm. By

coupling them to a model in which the firm can store product we can generate

dynamic behavior in pricing, sales, production, and inventory even though the

firm's demand and cost functions are temporally invariant. The basic argument

is developed around a two period case, and is illustrated with some figures.

Our firm faces a demand function which for convenience in the graphic

treatment we assume to be linear. The inverse of this demand function is:

(1) P = P - aq

where P is price, P the intercept on the vertical (price) axis, and q is

quantity. The firm faces this demand function in each of the two periods.

The firm's cost of production is a cubic cost function that yields the tradi-

tional U-shaped average and marginal cost curves.

(2) C = bq - gq2 + jq3
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We assume initially that the firm behaves statically, producing in each period

exactly what is sold in that period and carrying no inventory of finished

products. This means that q stands for both production and sales.

The firm's total revenue function, R, is obtained by multiplying through

by q in equation (1).

(3) R = Pq - aq2 .

Profit, it , is the difference between revenue and cost of production:

- 2 2 3
(4) IT = Pq - aq - bq + gq - jq

The firm's maximum profit position is found by differentiating ir in equation

(4) and setting it equal to zero:

(5) dq" = ^ ~ 2aq ~ bq + 2gq ~ 3^q2 = °

By solving this equation for q we determine the profit maximizing rate of

output which, in the static strategy, is exactly equal to sales in each per-

iod. The optimal quantity, q, is then entered into equation (1) and the price

the firm charges is also determined. From the point of view of the graphics

of the figures employed, it is useful to explain the profit maximization in

terms of incremental or marginal cost, MC, and incremental or marginal reve-

nue, MR.

The derivative of the total cost function, equation (2), is marginal

cost:
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(6) = MC = b - 2gq + 3jq 2.

Incremental or marginal revenue, MR, is the derivative of the total revenue

function, equation (3):

JD _

(7) = MR = P - 2aq.
dq

Profits are maximized by operating at that rate of output and sales per period

at which marginal cost equals marginal revenue. That is, we set equation (6)

equal to (7) and solve for q. The graphics of the static case appear in

Figure 1.

In the Figure, AR is the firm's temporally invariant demand curve, equa-

tion (1). The firm's marginal revenue curve, equation (7) is MR. The margi-

nal cost curve, equation (6), is MC. The average cost curve is shown as AC.

It is obtained by dividing total cost, equation (2) through by q.

(8) AC = ^ = b - gq + jq2

The classical tangency solution of monopolistic competition theory is depicted

in the Figure. That is, at the optimal, static rate of output, q, and price

P, the firm earns zero monopoly profit. Since price is equal to average cost

at output rate q, the firm only earns a normal rate of return or profit in

each period. We turn now to a dynamic strategy. We consider the possibility

that the firm would be better off if it produced in period 1 and sold that

period's output in periods 1 and 2. In this strategy, the sales in period 2

are made from the stock of inventory "built up" in period 1.
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In order to carry out the analysis of the dynamic strategy, we require

some additional notation. We use s to represent the cost of storing a unit of

product over one unit of time. There is no need for our general model to
Q

assume linear storage costs. The analysis of the dynamic case requires a

second change in notation. Because output of today need not be sold today, we

require a different notation for output and sales. The letters y and q will

be used to denote sales and output respectively. The letter i will be used to

denote the interest rate.

The firm's temporally invariant demand function is exactly the same as

before except that it is now written as:

(9) P = P - ay .

Production and sales are assumed to take place instantaneously at the begin-

ning of a period. Hence, sales in period 1 involve neither storage nor dis-

counting and the revenue function of period 1 can be written:

(10) = Pyx - ay^ .

Revenue received in period 2 must be discounted by the interest rate. The

revenue function of period 2 is then:
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The firm's temporally invariant production cost function is the same as that

of equation (2). Its total expenditure on storage is:

(12) S = sy2 •

The profit function associated with the dynamic strategy is :

2 h2 ~ ay2 2 3
(13) ir = Pyx - ayx + (1 - ^ bq + gq + jq - sy2 .

This formulation assumes that storage costs are paid at the same time as costs

of production are incurred. The above function is to be maximized. A

straightforward way to explain this maximization is to recognize that all of

the sales in both periods come from production in the first period. This

means that

(14) q = yx + y2 .

Equation (13) is then rewritten with y^ + y2 being substituted for q in the

cost portion of the equation. Equation (13) is then differentiated partially

twice, once with respect to y^ and once with respect to y2. Each of the

partial derivatives is then set equal to zero. At this point we have a system

of two simultaneous equations in two unknowns, y^ and y2. With y^ and y2

known, the two prices, P^ and P2 can be determined from the basic demand

equation (9). The total revenue of period 1 and the present value of period 2

total revenue can be calculated since Pj, P2, y^, and y2 are known. Since y2

is known, the total cost of storage is simply sy2. Since output, q, is the
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sum of and y£, the total sum spent on production can be calculated by

entering the known q into the cost equation. Thus, with all of the elements

of equation (13) known, profits can be calculated.

Figure 1, which was used to depict the static strategy, can also be used

to illustrate the dynamic strategy. In the figure, AR(s) is the basic demand

curve shifted down in a parallel fashion to reflect the cost of holding a unit

of product for one unit of time. The per unit storage cost is shown as ss in

the figure. AR(s6 ) is the result of a second adjustment in the basic demand

curve, the discounting of revenues so that they are in current value terms.

This adjustment involves a change in slope of AR(s) because at a zero price,

the discounted and undiscounted revenues are of course identical. MR(si) is

the curve that is marginal to AR(si). In the tradition of monopoly theory as

applied to multiple geographic markets, MR, the basic marginal revenue curve,

and MR(S6 ), which reflects the revenue function after adjustment for storage

and discounting, are summed horizontally. The result is an aggregate temporal

marginal revenue curve, AMR. It appears as the heavy line, AMR. The profit

maximizing rate of output under the dynamic strategy is determined by the

intersection of the marginal cost (of production) curve, MC, with the

aggregate marginal revenue curve, AMR. That output rate is shown as q , and

the intersection of MC and AMR is denoted by the letter g.

The total amount of money spent on production is average cost per unit

multiplied by the output rate. This is the rectangle oabq . To this we must

add cost of storage which requires that we identify sales in period 2. This

is done by running a line from point "g", parallel to the horizontal axis and

noting the intersections of that line with the marginal revenue curves of each

of the two periods. These intersections are j and k. The sales in the two

periods are therefore y^ and y2« Expenditure on storage is therefore the
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rectangle oj^us. Total expenditure on production and storage is the sum of
this rectangle and the former one, oabq .

Revenues are depicted by running two lines, one from and one from y£,

up parallel to the vertical axis and noting the intersections of these lines

with the two demand curves, AR and AR(si). These two intersections are shown

as r and v. The revenue earned in the first period is then y^vP^o and in the
second period is y2r?20 and total revenue is the sum of the two.

Under certain circumstances it is clear that the total revenues associ-

ated with the dynamic, can exceed those of the static strategy. Whether or

not they do depends on: (1) the height of the interest rate and storage cost;

(2) on the amount of decrease in average cost that can be achieved by concen-

trating production in time and achieving cost economies. Some additional

aspects of the dynamic solution as it compares to the static solution should

be noted.

The dynamic strategy may be the more profitable over the planning horizon

but there can be losses over early intervals of time. In our example the

total costs of production and storage ( oabq plus oy2us ) exceeds period 1

revenues, oy^nP^. The dynamic solution also entails a change in prices over

time. Under the static regime the price charged in every period of time is P.

With the adoption of a dynamic strategy and the achieving of additional cost

economies in production but the need to spend money on storage, there are

different prices charged in different periods. In Figure 1 they appear as P^

and P2« Both of these prices are greater than P, the price associated with
the static strategy. The explanation is that in the present case the dynamic

strategy results in an output rate, q, at which marginal cost of production is
A

qg. This exceeds the marginal cost, qt, of the static output rate. Thus, in

the situation depicted in Figure 1, consumers are worse off under the dynamic
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strategy than they would have been under the static. By adopting the dynamic

strategy, the firm converts a part of consumer surplus into monopoly profit.

The reader will recall that the static strategy yielded zero excess profit for

the firm.

The adoption of a dynamic strategy need not necessarily result in a

reduction of consumer welfare. If the static equilibrium output occurs on the

falling portion of the firm's marginal cost function, the adding up of

temporal markets can result in a decrease in the marginal cost of

production. Then, the consumers served "today" from "today's" production will

benefit by paying a lower price under the dynamic regime than they would if

the firm behaved statically. The customers served "tommorow" from today's

production can be better or worse off than they would be with a static

strategy. They will pay a lower price and be better off than they would be

with the static solution, if the reduction in marginal cost of production

achieved under the dynamic strategy exceeds the storage cost involved in

serving them. Additionally, we may note that the price paid by "tomorrow's"

customers. The price paid by tomorrow's customers may differ from today's

price by more or less than the cost of storage, depending on the form of the

demand function. In Figure 1, P2 differs from by an amount that is less

than the cost of storage, but only because we have asumed a linear demand

function.

We have been dealing with a simple two period model. Its purpose was to

introduce the reader to the time-space trade-offs, and the direct and cross

effects of changes in spatial and temporal paramaters. In part 4 we extend

the discrete approach of this simple model. Programming techniques are pre—

sented that can help solve discrete problems in which there are many spatial,

temporal markets. The formal model of Part 3 is cast in terms of continuous
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time. The advantage of this approach is that it allows us to solve for the

optimal length of T, the production-sales cycle, with the use of calculus

techniques. At this point it is worth noting what happens to prices, sales,

and inventories in a model with continuous time when, as a result of the

interest rate, certain complications due to a fixed planning horizon do not

arise. Figure 2 shows the time patterns of these variables.
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Figure 2.2

I j me
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The first of the four panels pertains to production, which takes place

instantaneously at the beginning of the plan, and then occurs at times 2T, 3T,

etc. The on-off nature of the production pattern is the result of the assump-

tions that are being made in the present stage of the explanation of the model

to simplify the exposition. In Part 4 of this report we show, for example,

how a 30-day planning model that involves a firm with two products and costs

of production that are higher on week-ends, leads to a switching back and

forth over several days in the production of the two products, the only down

time coming on week-ends.

The second panel in Figure 2 is for sales, which fall over time. In a

profit maximizing model, prices rise over time because the cost of serving

future customers from past production involves more storage cost. There are

of course situations in which it is not possible, or in which it is too

costly, to change prices over time. In those situations, the models with

which we are working may be constrained to have a single price over time. The

cycling of production and inventory holdings can still occur, but they are

then due solely to cost economies.

The third panel shows the increases in prices over each time period T.

As explained above, they are the result of the increased storage cost

associated with serving customers whose purchases are more and more distant in

time from when the output used to serve them was produced. The final panel,

4, is for inventories. They are at a maximum at the beginning of each cycle

when production occurs, decline over time., and go to zero at T, at which point

production again takes place and a second cycle is begun. This completes the
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preliminary exposition of the purely temporal portion of our model. We turn

now to a qualitative explanation of the purely geographic component. The

exposition can be brief because the reasoning is very similar to that of the

pure temporal case.

Suppose a firm is contemplating selling a product in two markets, and

that the cost of shipping the product is quite high relative to the cost of

shipping the raw materials employed in making the product. In addition, the

prices of other factors of production employed in making the product exhibit

relatively little geographic variation. As a result, market orientation is

the optimal choice in location. However, there is still the unresolved issue

of how many plants the firm should establish. If the two markets are A and B,

there are three choices: (1) establish a plant in A; (2) establish a plant in

B; (3) become a multiple plant firm, with a plant in each market. If

transport costs on the product are quite high, or if the demand and U-shaped

production cost functions in each market are such that a plant serving each

market would operate on the rising portion of its average cost curves, the

optimal choice is to have a plant in each market.

This last is the spatial equivalent of the static strategy of our

temporal reasoning. There we saw that if storage costs are high, or each

period's equilibrium output occurs on the rising portion of the firm's average

cost function, the monopolist will find it most profitable to behave

statically, serving each period's customers form that period's production. If

transport costs are high, the monopolist may find it most profitable to adopt

the analogous spatial strategy, that of geographic isolation. Each market is

served from production in that market, and there is no transportation of the

finished product. On the other hand, if the economies of massing production

in one place are very great relative to transport costs, it may be profitable
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to establish a plant in one market and serve all customers in both markets

from that plant. This is the spatial analog of the dynamic strategy in tern-

poral reasoning. It leads to variations in prices and sales over space

because transport cost increases with distance. Hence, if it is possible and

not too costly for the firm to vary prices geographically, profit maximization

calls for a policy in which prices go up and sales go down as distance from

plant to customers increases. As was the case with storage costs in the

temporal case, prices in the geographic case increase by more than or less

than the increase in transport cost. There are of course limits to the space-

time analogy, the most obvious one being that in transport it is normally

possible to ship in all directions, though not necessarily at the same cost.

That is much less common in the temporal case. Consumption today cannot be

satisfied from future production. That is one of the reasons why most produc-

tion-inventory scheduling models do not permit back-ordering.''®
If a production process can be carried out in ways that involve high

capital intensity and economies of scale in production, there may be great

social benefits associated with massing production in time and space. Indeed,

if storage costs, the interest rate, and transport costs are such that pro-

duction and sales can only take place in temporal and spatial isolation, it

may not be economically possible to produce the product at all. We turn now

to a discussion of the effects of changes in the costs of carrying goods

through time and space on the firm's behavior.

The firm can adapt to such changes in a variety of ways. Some of them

involve short run and some long run strategies. We distinguish

between the two types on the basis of investment in plant and equipment. The
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short run is defined as a period of time that is not long enough to permit the

firm to add new plants or change the scale of old plants through investment.

We deal first with short run adaptations to a change in the cost of transport.

An increase in any cost, whether of production, of storage, or of trans-

port, must have the effect of reducing output, the sales, and the profits of

the firm. An across the board increase in, for example, the cost of shipping

the firm's product will reduce the output and total sales of each of the

firm's plants, but that does not mean that sales to every space-time market

pair must decline. The example developed below shows that sales in some

space-time market pairs can increase as a result of an increase in one of the

geographic or temporal parameters. Such reallocations and other effects of

changes in parameters are most easily explained at this stage with the aid of

a simple example.

Suppose the firm operates two plants, one located in place A and one in

B. Each of these places is also a market, and there are two other markets,

one in C and one in D. To facilitate exposition, we assume that the cost of

production and the cost of storage at A are identical to these costs at B.

There is a single discount rate. There is one demand function for the firm's

product across all geographic-time market pairs. The cost of transporting a

unit of product within A is identical to that within B. The cost of

transporting a unit of product from A to C is the same as that from B to D,

and higher than the A to A or B to B. Product can be shipped more cheaply

from A to C than from B to C. The same assumption is made about shipments

from A to D. The firm has a profit maximizing mode of time-space behavior.

Because of the assumptions made above, the plant at A serves demand at A

and C exclusively, and the plant at B serves B and D exclusively. The firm

finds that in serving the purely geographic markets and carrying no inventory,
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each plant operates on the rising portion of its marginal and average total

cost curves. Profits are maximized by operating as a static-spatial monopo-

list. Each period's demands are satisfied from that period's production. The

price of the product is equal at A and B. Prices are equal at C and D, and

these prices are higher than those at A or B because of transport cost. Sales

are of course lower in the two outlying markets than at A and B.

We now change the situation by assuming an increase in the cost of trans-

porting product to the two outlying markets. The static demand functions

associated with markets C and D shift down and the new static aggregate margi-

nal revenue functions lie below the old ones. We suppose that the increase in

transport cost is sufficiently great that each of the aggregate marginal

revenue curves intersects a plant marginal cost function on its falling por-

tion. Now, if storage costs are not too high, it may become profitable for

the firm to add a temporal strategy to its geographic strategy of serving the

demands at A and C from production at A, and serving the demands at B and D

from production at B. A production-sales cycle of duration T, as in Figure 2,

is adopted. The plant at A serves demands at A and C exclusively at each

moment of time. The plant at B is in a comparable position with regard to

demands at B and D. The price of the product at A equals the price at B at

each moment of time. However, these prices now rise over time during the

interval from production at time zero, (0), to T because of storage cost.

Sales at A and B fall over the interval, and inventory, which was highest at

the moment of production, (0), declines over time. The inventory stored at

each plant falls to zero at T. A new multi-plant production cycle is begun at

2T, just as in the non-spatial dynamic monopoly case discussed earlier. Above
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we made some comments on patterns of prices. There are some additional

effects on prices and sales that should be considered if we are to offer

meaningful comments on the direct and cross effects of the change in transport

cost.

Let us first consider the static price at A, or at B, in comparison with

the pattern of dynamic prices that are part of the new strategy that is

adopted after the increase in transport cost. It is useful to begin by com-

paring the price situation at A (or at B) under the new dynamic situation with

that under the original static equilibrium. The key comparison is between the

static price, P, and the price at time (0), Pq, the instant of production in
the dynamic case. We distinguish two cases.

In Case 1, the static aggregate marginal revenue curve, AMR, intersects

marginal cost of production at a point where output is q and where marginal

cost of production is equal to qt, as shown in Figure 3. After imposition of

an increased transport cost from A to C, as well as from B to D, the firm goes

over to a strategy in which there are dynamic as well as spatial elements.

The dynamic aggregate marginal revenue function, AMR, intersects the marginal
a

cost function at a point where output is ^ and marginal cost of production
- 24 * '

is qg. In Case 1, qg is less than qt. Total system output, q , (and of

course sales) after the imposition of the higher cost of transport from A to

C, are lower than the static output, q. When this occurs, the price paid by

consumers at A at time (0) will be less than the price, P, paid by consumers

in each period under the static regime. Of course sales will also be greater

at time (0) under the dynamic than under the static strategy. The lower price

and higher sales at A associated with the dynamic strategy at the time (0) can

persist for some periods. Eventually, however, costs of storage may cause the
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prices charged at A under the dynamic strategy to exceed those of the static

strategy. Total sales to consumers at A and the average price paid by them

over one production-sales cycle can be less than, equal to, or greater than

total sales in the comparable number of periods under the static regime. Let

us now consider the changes brought about in market C as a result of the

higher transport cost.

If the increase in the cost of shipping from A to C is high enough, there

may be no sales in market C after the change. However, even if there are

positive sales in C, it is clear that the amount sold will be less than under

the static regime. Price at C may be lower under the dynamic regime at time

(0), but they must rise above the static price over the time interval of

production and sales must be lower because of the increase in transport cost

and positive storage cost. The average price at C under the dynamic strategy

must exceed the static price. The comparison of sales under the two regimes

must be for the appropriate time interval. If the time run of production-

sales under the dynamic strategy is from (0) to T, then the sales made over

this time must be compared to sales in the same time interval under the static

regime.

Above it was stated that a change in a spatial parameter, such as the

cost of transport, will tend to have direct effects on spatial variables that

are under control of the firm, and can also have cross effects on temporal

variables. Let us now summarize the effects associated with Case 1.
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Direct (Spatial) and Cross (Temporal) Effects of the Increase in Transport

Cost: Case 1

1 The firm goes over to a strategy that combines temporal with spatial

elements. The total output, sales, and profits of the firm fall.

2. There is a geographic reallocation of sales. Sales to consumers decline

absolutely in the markets, C and D in our example, where transport cost

has risen. Average price paid by consumers in C and D over the

production-sales interval exceed the static price. However, prices in

these markets may be lower than the static price over some sub-interval in

the time from (0) to T.

3. The average price paid over the production-sales cycle by consumers in the

markets reached by unchanged transport costs, A and B in our example, may

be greater than, equal to, or less than the static price. This means that

sales in A and B under the dynamic strategy can be greater than, equal to

or less than under the static regime.

4. As a result of the increases in transport cost, the firm's demand for

storage capacity increases, and its demand for transport from A to C and B

to D declines.

5. The firm's demand for liquid funds increases because, under the dynamic

regime, time is required to recover from sales, the money spent on pro-

duction, storage, and transport.

6. In the long run, the firm might react to the increases in transport cost

by building additional plants at C and D. In a sense the firm then goes

over to a pure dynamic strategy, i.e. a strategy of concentrating produc-

tion in time and not in space.
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Case 2. An Increase in Storage Cost

The basic conditions of our second case differ from those of the first.

We now assume that our firm has been maximizing profits by operating across

time and space. In addition, the equilibrium rate of output from each produc-

tion run at each plant is on the falling portion of the marginal cost curve.

In this situation, an increase in the per unit price or cost of storage, s,

causes the output of all production runs at all plants to fall. This causes

the marginal cost of production to rise. The result of the increase in

marginal production cost is that the price of the product in every geographic

market at time (0) and for some interval of time thereafter is higher, and

sales lower than before the increase in storage cost. However, there can be

intervals of time in which the opposite is true.

The latter can occur because the increase in storage cost causes the

length of the production-sales run to be shortened. If production took place

originally at times T, 2T, 3T etc., it may take place at H, 2H, 3H afterwards,

where H < T. With the shortening of the cycle, there is zero expenditure on

storage at time H. There may also be less expenditure on storage for some

instants of time after H. It is possible for the reduced expenditure on

storage to more than compensate for the increase in the marginal cost of

production. Hence, for some instants of time, the price of the product can be

lower and sales higher than they were before the increase in per unit cost of

storage.
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The increase in the per unit cost of storage causes the firm to reduce

the amount that it produces, ships, and sells over its planning horizon.

Storage-inventory activities and transport services are in this case comple-

mentary factors of production. The increase in the cost of storage causes the

firm to also reduce its use of the services that carry goods through space.
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Case 3: Transport Cost Increase with Amblgious Results

This case resembles the preceding one in that the firm has been behaving

as a spatial and temporal monopolist, and the equilibrium output of each plant

is on the falling portion of its marginal cost function. In these circum-

stances an increase in transport cost, say from A to C, the latter being the

market served exclusively by A, and from B to D will have certain impacts that

are clearcut. However, there can be a second kind of impact that can go in

either of two ways. We consider the clearcut effects first.

An increase in transport cost must cause the output of each of the firm's

plants to fall. The declines in plant output cause the marginal cost of

production to rise because we have assumed that each plant is operating on the

falling portion of its marginal cost function. The increase in marginal cost

of production means that the price of the product must increase in each market

at time (0) and for some interval of time thereafter. Moreover, prices

increase and sales fall off in A and in B at time (0) even though these

markets experienced no increase in transport cost. Of course, the decline in

sales is relatively greater in the markets where the increase in transport

cost occurred, that is C and D in our example.

The above are the straightforward effects of the increase in transport

cost. The ambiguity involves the cross effects on the timing of production of

an increase in transport cose. If the length of run was originally from (0)

to T, it may be shortened to H, at which time production takes place again, or

it may be lengthened to V. Which of these two alternatives occurs depends on

two conditions. The first is the steepness of the marginal cost function in

the vicinity of the original plant equilibrium output. The second condition

is the rapidity with which sales fall off with time because of storage

costs. We may think of the latter condition as the time elasticity of



2.28

demand. Now, if the marginal cost function is very steep in the vicinity of

the original equilibrium and if sales fall off rapidly with time, then an

increase in the per unit cost of transport will tend to shorten the length of

the production-sales run, say from T to H. In that event, prices can be lower

at H, and for some interval of time thereafter, and sales higher than they

were before the increase of transport cost. The explanation is that because

production resumes earlier after the increase in transport cost, it is

possible that the savings in storage expenditure associated with serving some

temporal markets more than compensates for the increase in marginal cost of

production and increased transport cost. The increase in transport cost

causes the quantity of goods shipped to all markets over the entire planning

horizon to fall. It causes a decline in the holdings of inventory and expen-

ditures on storage. Thus, in this case, transport and storage are

complementary factors of production.

If the marginal cost function in the vicinity of the original equilibrium

is gently sloped, and sales fall off slowly with time, an increase in

transport cost can cause the length of the production-sales run to increase,

say from T to V. In other words, storage and transport are in this case

substitutes for one another in the production process. The increase in the

cost of transport causes the firm to shift into a mode of operation that

involves relatively more holding of goods over time and less shipping of them

in space. When this occurs, price at time T is higher and sales lower than

they were before the increase in transport cost. On the other hand, price at

time V is lower and sales are higher than they were before the increase in

transport cost.
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In order to introduce the reader to the notion of temporal strategies,

spatial strategies, and how they can interact, we have up to this time largely

adopted the logic of partial equilibrium analysis in this part of the

report. That is, in discussing the pure temporal model we assumed a given

number and spatial distribution of plants. Similarly, in the pure spatial

model we largely ignored dynamic elements. In Part 3, to which we now turn,

we adopt a long run view of the firm, allowing it to choose simultaneously a

locational-temporal plan that is profit maximizing.

We consider a multiplant monopoly that sells and produces over space and

time. Each market is identified by a space-time ordered pair, and each pro-

duction - sales run such as the time from (0) to T in Figure 2, is identified

by the plant location of the run as well as the time of completion of the

run. We view both space and time to each pair to be represented by a single

coordinate, and for analytical convenience we now treat space and time coordi-

nates as continuous.

We solve the firm's problem as a nested maximization problem. The first

step in this procedure is to consider a plant producing from a single produc-

tion run and selling its output over a prespecified time horizon. The plant

is described by a production cost function which is characterized by both U-

shaped marginal and average costs, i.e., there are at least some economies of

scale. If there are no such economies, then it is optimal for the firm to

produce at each space-time pair, i.e., to operate under both spatial and

temporal isolation. Each market is characterized by a downward sloping demand

curve which admits a downward sloping marginal revenue curve. These are the

only restrictions we put on the shape of the demand curves. To show the pure

effect of scale economies, we assume that the market demand curve and the

production run cost functions are space and time invariant. These assumptions
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imply that each plant is located in the middle of the market region it ser-

vices, and that over time it is not optimal for one plant to service a market

some of the time while another nearby plant services the market at other

times.

We assume that there are freight delivery costs associated with shipping

the product through space from plant to market. We model these costs as if

they are directly proportional to distance from the plant so that there are no

delivery costs to a market located at the plant and these costs rise linearly

as one goes away from the plant. In an analogous fashion we assume that there

are inventory storage costs associated with shipping the product through

time. We model these costs as if they are proportional to inventory stocks.

We also assume that the firm faces a constant interest rate over time, so that

both future revenue and cost flows are appropriately discounted. Then we can

make storage and freight costs appear even more similar. Since inventory

stock at any time subsequent to the completion of the production run is just

the output of the run minus sales up to that time, we can associate storage

charges with sales at times subsequent to the completion of the production

run, rather than with inventory stocks held at that time. The only difference

then between freight charges and storage charges is that, due to discounting,

current value storage charges rise exponentially rather than linearly with

time.

For a specified output from the production run, the firm must deterine

how to sell off this output over its market region within the prespecified

time horizon. Since freight and storage charges act to separate markets, it

is natural to assume that the firm price discriminates both spatially and

temporally. We will proceed with the analysis under this assumption. It

should be pointed out, however, that a similar analysis can be performed under
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other assumptions. For example, one can rule out price discrimination and

impose a generalized F.O.B. condition that prices in different spatial or

temporal markets must differ by the difference in the costs of serving those

markets. Alternatively, one can allow partial price discrimination by impos-

ing a policy of price uniformity temporally, spatially, or both. For now we

do not concern ourselves with the influence that different economic environ-

ments have on the price policy selected by the firm. That is, we ignore

questions of the possible influence of potential competition or regulation on

the firm's choice of a pricing policy.

The first order condition which determines the optimal sales policy for

the firm is that at any market, discounted marginal revenue net of freight and

storage charges, also appropriately discounted, must be equal to discounted

13
net marginal revenue at any other market. This common value of discounted

net marginal revenue is determined so that aggregate sales over the market

region up to the prespecified time horizon just exhausts the production run

output. This common value of discounted net marginal revenue equals the

aggregate marginal revenue for this output level.

By varying production run output levels, one traces out over the market

region and the time horizon an aggregate marginal revenue curve. This aggre-

gate marginal revenue curve must be downward sloping since this property holds

for the marginal revenue curve for each market. Profit from this production

run is maximized by finding the intersection of this aggregate marginal reve-

nue curve and the marginal cost curve such that marginal revenue cuts marginal

cost from above.^ This completes the first stage of the optimization.

If one performs a comparative static-dynamic analysis of the first stage

problem by varying the size of the market region and the time horizon as well,

a profit function can be generated. This function depends directly on the
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market radius, the distance from a plant to its most extreme market, and the

time horizon. Indirectly, the profit function depends on the unit freight

rate, the unit storage cost, the discount rate as well as the shape of the

market demand curve and the production run cost function.

For this given profit function, the firm maximizes over the two varia-

bles: the market radius, r, and the time horizon between completion of pro-

duction runs, T. These variables are chosen to maximize the total runs per

unit length. We explain this objective as follows.

Suppose the entire market area of the firm (as opposed to the market

region of a given plant), and the total time horizon (as opposed to the time

between production runs) is specified. The firm wants to locate its plants

and time its production runs so as to maximize the discounted present value of

profits. If the number of plants is determined so that each plant serves a

market region of identical length, and if the number of production runs is

determined so that the time between production runs is the same then: (1) the

market radius of each plant is one half of the total market area divided by

the number of plants; and (2) the time between production runs is the total

time horizon divided by the number of runs.

Alternatively, the number of plants is one half the total market area

divided by the market radius, and the number of production runs is the total

time horizon divided by the time between consecutive runs. Considering the

choice of number of plants, aggregate profit is profit per plant multiplied by

the number of plants and that is equal to:

, .
^ , market areaprofit per plant x :—r ttmarket radius
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What is done over the spatial dimension is to maximize profit per unit

length. This is an assumption that has also been adopted in purely spatial

studies of the raultiplant firm. The assumption is made in order to avoid an

endpoint problem. The problem arises because the number of plants is not a

continuous variable, and therefore the assumption that all plants serve an

identically sized market region is not correct. To get around this problem

one might assume that the entire market area served by the firm is unbounded

but then so are aggregate profits. Hence, the true optimum is approximated by

assuming that the number of plants is a continuous variable. This is not a

bad approximation when the optimally determined radius, and hence the market

region of individual plants, is small relative to the entire market area.

The endpoint problem crops up again in determining the number of produc-

tion runs. However, the temporal aspect of the problem involves discounting,

and this permits us to assume an unbounded total time horizon and still have

bounded profits. This is what is typically done in analysing profit maxi-

mizing decisions over time. We turn now to our formal model of space-time

equilibrium.
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Footnotes

^This and the next part of the report are written in collaboration with L.
Arvan, Department of Economics, University of Illinois, Champaign, Illinois.
2 •• ••
L. Arvan and L.N. Moses, 'Inventory Investment and the Theory of the Firm,

American Economic Review, March 1982.

3
Earlier the point was made that there was one major exception to the general

rule that in static conditions, perfectly competitive firms maximize profits
by choosing one plant-market combination. That exception has to do with
randomness and attitudes toward risk. Suppose that the profits associated
with different plant-market combinations are subject to random variations and
that a given entrepreneur has a utility function involving risk and the
expected rate of profits. Now, if the plant-market choices available to the
entrepreneur are discrete, it may be optimal to blend these choices, i.e. to
operate as a multiplant firm even though costs and prices do not change
systematically over time. The multiple plant-market combinations in which the
firm then operates are a form of portfolio.

4 /

Part 4 contains examples of models in which costs change over time.

^The word 'may' is underlined because the results of changes in temporal and
spatial parameters can prove to be counter intuitive.

^R. Peterson and E.A. Silver, Decision Systems for Inventory Management and
Production Planning, New York, John Wiley and Sons, Inc., 1979.

^H.M. Wagner and T. M. Whitin, "Dynamic Problems in the Theory of the Firm,"
Naval Research Logistics Quarterly, March 1958, pp. 53-74 and T.M. Whitin,
"Dynamic Programming Extensions to the Theory of the Firm," Journal of
Industrial Economics, April 1968, 16, pp. 81-99.
Q

It can readily encompass cases in which storage as well as production cost
exhibit U-shaped average and marginal costs.

9
The solution procedures used to solve actual problems involve algorithms

built around the techniques of non-linear programming.

^It is not possible to satisfy consumption today from production tomorrow,
but it is certainly possible to make sales today from production or deliveries
that will take place in the future. The practice is most common in durable
goods, both producer and consumer.
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In this footnote we offer a qualitative explanation of the aggregate
marginal revenue curve associated with the dynamic-spatial strategy. It is
obtained in a number of steps. First, the instantaneous demand function is
adjusted for per unit transport cost A to A. Second, the transport cost
adjusted demand function at A is adjusted for storage cost and the interest
rate for each period, say for a time interval from time (0) to time T. Third,
the associated marginal revenue curves for each of these adjusted demand
functions at A is obtained and all are then summed to obtain the aggregate
temporal marginal revenue curve at A. Exactly the same adjustments are made
for the instantaneous demand function at C except that the relevant transport
cost in the above first step is the cost of shipping a unit of the product
from A to C. The temporal aggregate revenue function at C is then summed
horizontally to that of market at A to obtain the spatial-temporal marginal
revenue function.

12
The reader will recall that up to the present time we have been assuming

that the firm's storage cost function is linear in quantity and time.

13
This implies that sales fall with distance from the plant that serves a

particular market and with time from completion of production.

^Shutdown conditions must also be examined, but this is difficult to do
without equations. They are examined in Part 3 below.
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Part 3: Economies of Scale and A Model of the Firm In Time and Space

This part of our report is divided into two sections. The formal

model of the firm that maximizes profit by concentrating production in

time and in space is presented in Section 1. Section 2 is devoted to

an investigation of the short and long run comparative statics-

dynamics of the model. That is, we examine the effects on the firm's

behavior of changes in the various costs of carrying goods through

space and time. Five cases are considered in Section 2. The first

four deal with issues that are essentially short run in nature. The

fifth case deals with long run adjustments. The effects considered in

this case are very complex. The results that we are able to achieve

are, unfortunately but understandably, ambiguous.

Section 1: The Model

Consider a firm that can sell over a market region of length L, a

time horizon of duration W, and which faces cost and demand functions

that are time and space invariant. That is, for each space-time pair

at which the firm can produce, it would incur identical costs if it

produced identical outputs and it would sell identical quantities if

it charged identical prices."'" Given this assumption and an additional

simplifying assumption mentioned below, each plant that the firm

constructs will service a market region of identical length. In addi-

tlon, sales from each production-sales run lasts for the identical

length of time. We call the constant interplant distance d. -y, the
distance from the plant to each of the two furthest markets served by

that plant, is called the market radius and is denoted by r. The
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constant duration of production-sales runs is denoted by T, and since

we rule out backordering (i.e., the satisfaction of today's consump-

tion from future outputs) there is no temporal equivalent to radius.

Figure 3.1 below depicts the spatial-temporal choices the firm faces.

Distance and the spacing of plants are shown on the horizontal axis.

Time is measured on the vertical axis. Each column of dots is asso-

ciated with a plant location. We refer to the time between successive

dots in a column as the length of a production-sales run. That is,

each dot within a column denotes an instant of time at which production

takes place. At that time, the stock of inventory from the preceding

production time is exhausted. The dashed vertical lines and the two

solid vertical lines denote plant market boundaries. Each plant ser-

vices the market region contained within its left most and right most

boundary. The solid horizontal lines denote temporal production-sales

run boundaries. The output of a plant's production run is sold at all

locations within the plant's market region until the time of the next

production run. Production takes place when output of the previous

run has been exhausted by sales.

Given such a grid specifying interplant spacing and the time be-

tween production-sales runs, the firm chooses the output of each run

and the associated sales policy that maximize profit. Product is

costly to ship through space, costly to store through time, and the

firm discounts future revenue and cost flows. The output, sales

policy, and profit associated with a single run at a given plant

depends on freight costs, storage costs, and discount rates as well

as demand and production cost function. We denote the maximal profit

associated with a single plant production-sales run by ir(r,T).
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Figure 3.1: Time-Distance Grid
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If there are n plants each serving a market region of identical

length, and each plant is located in the center of the region, then

d = ~ and r = Alternately, n = 7^7. Since production-sales runs
at each plant are completed at the identical time, to maximize aggre-

gate profits of all plants from a single production-sales run, the

firm maximizes mr(r,T) =-rr( r ,T) . Since j is fixed, maximization of
7T( r T)nir(r,T) is equivalent to maximization of ^ . This definition of

aggregate profit assumes n is an integer. When r is chosen so that

77^7 is not integer valued, it is not strictly correct to assume that all
plants will produce identical outputs and consequently also incorrect

to assume that they are all equally spaced. We want to avoid this

integer problem caused by assuming that the endpoints of the entire

market region served by the firm are fixed. Consequently we assume

that when the firm optimizes with regard to interplant spacing it

maximizes —an assumption that has been employed by others
2

interested in location and spatial competition.

Since the firm discounts future revenue and cost flows at a constant

discount rate equal to <5, the discounted present value of all produc-

tion runs from a given plant equals:

n-1
_..T , -6nT

(1) £ e J ir(r,T) = 6 Tr(r,T)
j=0 1-e

W 3
where n = —• The integer problem crops up here as well. However, if

W is very large relative to T, this discounted present value is

approximately equal to ^^-Tr(r,T). We take this to be the objec-
1-e

tive of the firm with regard to its choice of time between production-

sales runs. This is the objective when the time horizon is infinite

and consequently no endpoint problem arises.
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It should be noted that the firm maximizes average profit per unit

distance when making its interplant spacing choice but maximizes

aggregate discounted profits in its choice of time between production

runs. While there is much similarity between the two choices we will

not obtain symmetric conditions for the optimal r and T. Note

however, that when W is finite and 6=0, then the two problems are

essentially identical.

Consequently we model the firm's problem as follows:

(2) maximize —'"^T
r,T>0 (1-e 6T)r

The first order conditions for an interior optimum of this problem

are:

(3)

. -6T , _5e ir(r,T)and ir —r—1 - 0
T

(1-e 6T)
The second order sufficient conditions require that:

(4)
rr

rT r

rT r

tt + —————

TT 6T .

e -1

is negative definite.

To study this problem more closely we examine the determinants of

ir(r,T). Assume for now that r and T are fixed. We first look at the
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variational problem of how to sell over time and space when the out-

put level from a production run, Q, is held fixed. The firm solves

the following problem:

T r

(5) maximize 2 / {/ e ^[p(y(z,t))-fz]y(z,t)dz(-sl(t))}dt
y( )>0 00

t r

subject to: I(t) = Q - 2 / / y(z,u)dzdu
0 0

I(t) _> 0 for t G [0,T).

(6) where z is an index of distance from the plant,

t is an index of time from production,

y(z,t) is sales at (z,t),

f is the unit freight rate,

s is the unit storage cost,

I(t) is inventory at t,

6 is the discount rate, and

p(y) is the sales price when sales are y.

We explain this problem as follows. All revenue flows at time t

—61
are discounted to time zero by the discount factor e . Gross reve-

nue in current value from sales at (z,t) is p(y(z,t))y(z,t). Each

unit of product shipped from the plant to a market z units from the

plant requires payment of a freight charge with unit price in current

value equal to fz. Thus the total freight charge associated with

sales at (z,t) in current value is fzy(z,t). When we aggregate over

all market locations within the plant's market region, the discounted
-fit r

revenue net of freight charges at time t is 2e / [p(y(z,t))-fz]y(z,t)dz.
0
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For each unit of product held in inventory at time t the firm pays a

storage charge with unit price s in current dollars. Given inventory

level of I(t), at time t the discounted value of storage charges is
— 51

e sl(t). Inventory at t equals the original quantity available for
t r

sale, Q, minus the amount sold up to t, 2 / / y(z,u)dzdu. The
0 0

requirement that inventory is nonnegative for all t in [0,T) amounts

to requiring that over this interval not more is sold in total than
T r

was available for sale, i.e., 2 / / y(z,t)dzdt <_ Q.
0 0

It is convenient to assume that the last inequality holds as an

equality so that all product available for sale is actually sold.

Doing so allows us to treat inventory charges in terms of sales flow

rather than in terms of inventory stock, and makes them more directly

analagous to freight charges. Since I(u) can be rewritten as:

T r

(7) 2 / / y(z,t)dzdt = I(u)
u 0

the total discounted present value of storage charges is obtained in

terms of sales via a change in the order of integration. Thus:

T T T r

(8) / e usl(u)du = / e us[2 / / y(z,t)dzdt]du
0 0 u 0

T r t

f J sy(z,t) /
0 0 0

=2 / / sy(z,t) / e ^Ududzdt

T r , -fit
= 2 / / (—| )sy(z,t)dzdt

0 0

T r , fit
= 2 / / e t—)sy(z,t)dzdt.

0 0
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In current value, the unit storage cost associated with sales at time
St .

6 ""1 «
t is (—; )s. Given this way of writing inventory costs our problem

6

can be rewritten as:

T r , St,.
(9) max 2 / / e [p(y(z,t))-fz--^-^7 ]y(z,t)dzdt

y( )20 0 0

T r

subject to 2 / / y(z,t)dz,dt = Q.
0 0

We call the value of the objective when evaluated along the optimal

sales trajectory, TR(r,T,Q).

Note that in formulating this problem the only restriction placed

on sales at (z,t) is that they are nonnegative. Hence we allow for

both interspatlal and intertemporal price discrimination. Besides

being theoretically appealing, price discrimination has the additional

advantage of allowing us to describe the optimal sales policy with

intuitive first order conditions. Note however that if such discrimi-

nation is not possible, due to regulation or to fear of potential

entry, the model can be reformulated to require uniform delivered

prices.^
The first order conditions governing the optimal sales policy are:

(10) e 5t[p(y(z,t)) + p'(y(z,t))y(z,t)-fz-——] _< k

for all (z,t),

y(z,t) 2 0 f°r all (z>t), and

y(z,t){k-e 5t[p(y(z,t))+p'(y(z,t))y(z,t)-fz-s(e<St-l)]} = 0

for all (z,t).
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These first order conditions along with the condition
T r

2 / / y(z,t)dz,dt = Q determine the optimal sales policy. We have
0 0

assumed that the spot demand curve and its corresponding marginal

revenue curve are downward sloping. Hence the first order conditions

imply that at each time t, (gross) marginal revenue rises linearly in

distance since unit freight charges have been assumed to rise linearly

in distance. Therefore, sales fall with distance from the plant.

Likewise at each location, z, current value (gross) marginal revenue

rises over time as the current value of storage charges rise and future

net revenue flows are discounted more heavily than current net revenue

flows. Hence sales fall from the instant of production to the instant

at which sales exhaust the output of a production run.

Since spot marginal revenue curves are downward sloping we can
2

3 TR
conclude ^— < 0. To determine the optimal output, the firm solves

3Q
the following maximization problem.

(11) maximize TR(r,T,Q) - C(Q).
QM)

The first order conditions for this problem are:

(12) - C*(Q) = 0.

The second order conditions are:

(13) - C"(Q) < 0.
3Q

We assume that is U-shaped and there are no fixed costs. This

requires C'(Q) to be U-shaped as well. Hence there will be two, one,

or no solutions to the first order conditions. When there are none,
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the firm shuts down. When there Is one solution the second order

3TR
conditions will be satisfied, i.e., cuts C'(Q) from above. When

dQ

there are two solutions only one will satisfy the second order condi-

tions. The other will actually be a local minimum of the objective

function. At the smaller of the two output levels which satisfy the
3TR

first order conditions, cuts C'(Q) from below. At the larger it
dQ

cuts from above. Hence the larger of the two output levels is the

only candidate for an interior optimum.

We can now return to the choice of r and T. Let y(z,t,r,T) denote

optimal sales at location-time pair (z,t), when the market radius is r

and the time between production-sales runs is T. We drop the explicit

functional dependence on r and T and write these sales as y(z,t). Let
T r

Q(r,T) =2 / / y(z,t)dzdt be the optimal production, given r and T.
0 0

Again we drop the explicit functional dependence on r and T and write

this production as Q. We can now write:

T r
-at ( 6t--n

(14) ir(r,T) = 2 / / e [p(y(z,t))-fz- — ]y(z,t)dzdt - C(Q).
0 0

T 51

(15) ir^ = 2 / e 6t[ p(y(r ,t) )-fr-——]y(r,t)dt

T
- C'(Q)•2 / y(r,t)dt.

0
T

= 2 / y(r,t)dt and the terms involving dy(z,t) nQt inciu(jed
0

above because, by the envelope theorem, this change has no effect on

overall profits. Likewise

r
-Kt ( <ST_i->

(16) it = 2 / e [p(y(z,T))-fz- — ]y(z,T)dz
0 0

r
- C'(Q)*2 / y(z,T)dz

0
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where = 2 / y(z,t)dt.
0

We can also obtain the second own and cross partials as follows:

T

(17) TTrr = 2 / e"6t[-fy(r,T)]dt - C"(Q)

where = 2 /* /* dzdt + j^ y(r,t)dt.

Note that -7^- * -^-includes two effects. The first occurs becausedr 3r dr

sales at each (z,t) pair change when r changes. The second occurs

3 0
because the market area changes when r changes, -r-*- only includes this

second effect.

We presume that > 0 in the relevant range. Intuitively,

raising r shifts the aggregate marginal revenue curve for the entire

market region to the right. Since the marginal cost curve is unaffected

optimal output must rise.

From the above we can conclude that tt >0 only if C" < 0. Since
rr

we are assuming that the marginal cost curve itself is U-shaped, one

and only one of the situations depicted in Figure 3.2 can occur. The

graphs in the Figure are constructed from the policy which solves the

first-order marginal conditions. Obviously, in this case these con-

ditions do not ensure an optimum. We focus exclusively on an interior

optimum (optimal r > 0). A necessary condition for an interior opti-

mum is ir I . > 0, while at the optimal point ir I <0.rr'r=0 rr1r=optimum

Thus, second order conditions will not be satisfied universally and

they must be checked before a comparative static-dynamic analysis is

performed.
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Figure 3.2
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(ST

(18) TTrX = 2e~6T[p(y(r,T)-fr-^-=^-]y(r,T)-C"(Q)

- C'(Q) 3r3T

320
where = 2y(r,T).

Finally,

r _. , ST,..
(19) n = 2 / [-6e [p(y(z ,T))-fz—~~7 ]y(z,T)-sy(z,T)]dz

0

_ c"(0)W 3T dT*

In order to perform the comparative statics-dynamics we must be

T
able to sign ir _ .b rT r

TT
_ , ST_, .

(20) *rT " r = 2^e [p(y(r.T))-fr" —]-C' (Q) }y(r ,T)
5T

an r {e '5T[p(y(z,T)-fz- s(e j 1)]-C' (Q)}y(z,T)dt
_ r" (0) -2±L^L - ? f 5W 3r dT J r

Discounted revenue net of freight, storage, and marginal production

cost (undiscounted) must be falling with distance from the plant, z.

This follows since: (a) by the first order conditions, sales fall

with z; and (b) if discounted net revenue were to rise with z over

some interval, fz^.z^], then by setting sales over this entire inter-
val equal to sales at z^ the firm would increase profits. Profits would
rise because unit freight charges over [z^.z^] are greatest at z^ so
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that net revenue at z would be at least as great as net revenue at z^,
while production costs would fall since a cutback in sales would imply

a cutback in production as well.
IT

T
We conclude that if C"(Q) >_ 0 certainly ir — < 0. When

TT
T

C"(Q) < 0, it - — may change signs. This completes the presentation

of the model.

Section 2: Comparative Statics-Dynamics

As stated earlier, five cases are considered in this section. The

first four adopt what is essentially a short run approach in that

either T, the time of a production-sales run, or r, the market radius

of each plant, is held fixed.

Case 1

This case focuses on pure spatial adjustments under the assump-

tions that T is fixed and 6 = s = 0. Our first order conditions then

imply y(z,t) = y(z,0) for all t. Hence

T r

(21) ir(r,T) = 2 / / [p(y(z,t))-fz]y(z,t)dzdt-C(Q)
0 0

r

= 2T / [p(y(z,0)-fz]y(z,0)dz - C(Q)
0

r

where Q = 2T / y(z,0)dz.
0

The firm maximizes with respect to r. The relevant first order

condition is:
r

2T / [p(y(z,0))-fz]y(z,0)dz+C(Q)
(22) 2T[p(y(r,0))-fr-C'(Q)]y(r,0)
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The relevant second order condition is:

(23) -2Tfy(r,0) - 2TC"(Q)y(r,0) < 0.

Thus f > C"(Q) -yj- is required. At an interior optimum we obtain the
following comparative static result.

^

T / -zy(z,0)dz
(24) sign yy = sign[T[-r-C"(Q>^j]y(r,0) ]

r

/ zy(z,0)dz
= sign[ [-r-C"(Q)y^]y(r,0) + — ].

dr
Intuitively, yy should be negative. Raising freight rates raises unit
delivery costs more the further one gets from the plant since unit

delivery costs at z are fz. An increase in the freight rate, f, makes

markets further from the plant relatively less attractive than markets

closer to the plant. Hence it pays for the firm to space plants

closer together to avoid these high delivery costs, though this

strategy cuts down on the firm's ability to exploit plant scale

economies and consequently leads to higher average production costs.

A sufficient condition for this intuition to hold is that

r

/ zy(z,0)dz
ry(r,0) > — — and that C"(Q) 0. We will actually assume a

stronger condition on the sales path, namely, that zy(z,0) is increasing

in z. This condition says that total outlays on freight increase with

distance from the plant, which holds for typical demand curves.

dr dr
Perverse results concerning the sign of yy, i.e., yy > 0 can occur

r

/ zy(z,0)dz
if ry(r,0) < — — or if C"(Q) > 0. If the former holds then an



3.16

increase in the freight rate hurts the firm relatively less at the

boundary of the market region than it does on average over the market

region. If the latter holds, raising f for a fixed market region

lowers marginal production cost since output falls. Though gross

marginal revenue at the boundary of the market region rises when the

freight rate rises, net marginal revenue actually falls. This is the

case because by the first order conditions, marginal production cost

must be equal to net marginal revenue. In these circumstances, it is

possible for total revenue earned on sales at the boundary, net of

delivery and marginal production costs, to fall off less with an

increase in the freight rate than the net revenue lost on average over

the entire market region. If this is the case, it actually pays for

the firm to increase the spacing between plants, i.e., the market

region increases with an increase in the freight rate.

Case 2

This case is the temporal analog of Case 1. It considers pure

temporal adjustments to changes in the cost of storage when the

freight rate is set equal to zero and r is fixed. In this case we

will have y(z,t) = y(0,t) for all z. Hence

T r

(25) ir(r,T) = 2 / / e~6t
0 0

Ip(y(z,t))- —] y( z , t)dzdt-C(Q)

= 2r / e 5t[P(y(0,t))- -]y(0,t)dt-C(Q)
0

6
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T
where Q = 2r / y(0,t)dt.

0

The firm maximizes ir(r»'^ with respect to T. The relevant
1-e

first order condition is:

— <5T s(e^T-l)
(26) 2r[e [p(y(0,T) )- S^eg ] —C' (Q) ]y(0,T)

. -5T T 6t_-n
-

_6T [2r / e [p(y(0,t))—— ]y(0,t)dt-C(Q)] = 0.
1-e 0

The relevant second order condition is:

5T
(27) 2r[-6e"6T[p(y(0,T))- s(eg ~1)]-s-C"(Q>g-]y(0>T)

2 -6T T , fit,.
+ 6_5t [2r / [p(y(0,t))- SKe& ] y(0,t)dt-C(Q)] < 0.

1-e 0

This condition is a bit more complicated than the equivalent condition

of the previous case since now we are maximizing aggregate dis-

counted present value profits rather than profits per unit length. At

an interior optimum we obtain the following result:

5T

(28) sign = sign[2r[e 5T(e g 1)~C"(Q)^-]y(0 ,T)

r -5T „ . fit ,

+
_6T • 2r /T e (-^—g—^)y(0 ,t)dt]

1-e 0

As in the spatial case one would expect intuitively that
dT
-r— <0. A sufficient condition for this result to hold is that

, St..
C"(Q) _< 0 and e . y(0,t) is increasing with t. That is, current
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value storage charges associated with sales at t when the interest

rate is 6 are increasing with time from production. Then
( 6t-n ( 6T-i 16

. y(0,t) < 6 . y(0,T) and consequently

x _<5T T /• 6t n66
[2r / e » 1} y(0,t)dt] <

(1-e 6T) 0 6

66
6T [2r fT e~6t (£ ~1) y(0,T)dt]

(1-e 6i) 0

= e~6T[2r (e -~1) y(0,T)].

Perhaps a more revealing way to compare the temporal and spatial

analyses of Cases 1 and 2 is to rewrite the first order conditions as

follows:

For the spatial analysis,

(29)

For the temporal analysis,

3tt 6e 6T
_ _ 3tt ST tt _

U ; 3T , -5T 3T <5T . T
1-e e -1

In the temporal case, marginal profit per length of time between pro-

5T
duction-sales runs equals a fraction, —^—, of average profit. Since

e -1

lim —^— = 1 when 6 = 0 we get -§V - = 0. In this case the spatial
6T+0 e -1 9T T

Pm

and temporal models coincide. Since lim —— = 0 when 6 is very large,
6T+» e -1
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we get approximately-|^ = 0. That is, the firm maximizes profit by
0 1

acting as if there is only one production run when 6 is large. We now

consider the comparative dynamics of changes in 6.

If the marginal revenue curve has a finite valued y intercept (e.g.,

linear demand) then -|^ = 0 for some finite T. Furthermore, the T where
a r

this occurs is decreasing in 6. Hence intuitively one has the follow-
8 TT 9T

ing: if-^ » 0 then > 0. That is, raising 6 increases the rela-
tive importance of profits from the first production-sales run. When
9 7T

-r^T » 0 these profits can be increased significantly by increasing T.
When -|y z 0, changing T has no significant effect on profits from the

9T
first production run. In this case -r-j- < 0.

a 0

Alternatively, one can view these effects in terms of Figure 3.3.

Raising 6 shifts down both and -J-. It also lowers the fraction
a 1 i

—~—. It is reasonable that shifts down more than -J-. Thus, iso-
a 1 .. o 1 1

e -1

lating this shifting effect, T has a tendency to fall. On the other
6T

hand reducing —^—, has a tendency to increase T.
e -1

Case 3

Here we return to an analysis of the effects of changes in f, the

freight rate. Again T, the length of time of a production-sales run,

is held constant. However, this case differs from Case 1 in that s

and 6 are positive.

Now, the relevant first order condition is:

X 61 X

(31) 2 / e 6t[p(y(r,t)-fr-o^e ^]y(r,t)dt-C'(Q)•! f y(r,t)dt
0

T r
6t

2 / / e 6t[p(y(z,t)-fz-s ——]y(z,t)dzdt-C(Q)
-_J2_o o.
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Figure 3.3
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The relevant second order condition is:

T T

(32) 2 / e 6t[-fy(r,t) ]dt-C"(Q>^- • 2 / y(r,t)dt < 0.
0 0

At an interior optimum the following results are obtained:

T

(33) sign= sign[2 / [-e 6tr-C"(Q)^]y(r,t)dt
T r

2 / / e ^Czy(z,t)dzdt
+ —^ ].

This is quite similar to the results reported above for the analysis

of the pure spatial effects of changes in f. If zy(z,t) is in-

creasing in z for each t and C"(Q) _< 0 then < 0.

T ~~ <51

(34) sign-||-= sign[2 / [- ^ ^ C"(Q>^]y(r,t)dt
T r M-

2 / / 1 y(z,t)dz,dt
+ —JLJ>— j.

r

Intuitively> 0. As long as C"(Q) _> 0 this is necessarily the case

because

r . -6t
1-e

/ (—i )y(z,t)dz _6t
°

> (M )y(r,t)
r 6

since sales fall with distance from the plant.

We also can sign !
do
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- C"(Q>^g"}y(r,t)dt

-)]y(z,t)dzdt

r

Note that [p(y(z,t))-fz-s(

(The second expression is net delivered total revenue and is declining

in z.) Since y(z,t) is declining in z the first expression is also

declining in z. Hence -^jr > 0 as long as C"(Q) _>_ 0.

Case 4

This is the case that is the temporal analog of Case 3. Now, r is

fixed and T is variable. Again, f and 6 are positive.

The relevant, first order condition for ths case is:

(36) 2 / {e 6T [p(y(z,T))-fz-s(^—^)]-C' (Q) }y(z,T)dz
0

1-e

*-6T
— {2 (
, -6T 1 J

6t_i
[ p(y(z,t))-fz-s(^—^—) ] dzdt-C(Q)} = 0.

The relevant second order condition is:

6t_1
[p(y(z ,t))-fz-s(-^—^—) ]dzdt-C(Q)} < 0.
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At an interior optimum the following results are obtained.

(38) sign-^j|- = sign[2 / )-C"(Q>7§-}y(z,T)d2
0

dsJ

6e
-6T T r -St

2 / / (—| )y(z,t)dzdt]l-e-6T 00 8

6t
16 ~1

This is also similar to Case 2. If jj— y(z,t) is increasing in t
dT

for each z then -r— < 0 as long as C"(Q) < 0.
ds —

r

(39) sign-^y = sign [2 / {-ze 6T-C"(Q>j^}y(z,T)ddfJ

6e
-ST T r

2 / / - e <^tzy(z ,t)dzdt]
l-e~6T 0 0

HT1
> 0 as long as C"(Q) _>^ 0.

This completes the short run analysis.

Case 5: The Long Run

In the long we have to take account that both r and T may vary.

Recall our second order conditions are:

(40)
rr

7T
rT r

N
mrT r

.2 -ST
, 5 e

^TT , -ST ^1-e

is negative definite.
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62 ~6T 62e~6T it 2
This requires it , tt,^ + if < 0 and *„[*.„. + ZgY ^ ~ Xt ~ > 0

1-e 1-e

at an interior optimum.

Algebraically all the comparative static-dynamics results are given

below.

+

A «2 _<5T
(41) sign-jj = sign[(—- n f)(ir +—w)

1-e

^0_lST WT
- ( t— it - 1t_£)(tt )].

- -6T f Tf rT r
1-e

+

jrri , -6T tt tt
(42) sign "dF = " W " (7" " irrf)(irrT ""T)]

1-e

, tt 2 -6T
(43) sign-^ = sign[ (r~ ~ Vs)(irTT + , Xt *)1-e

+

.«e"6T V Xl- ~

-6T" 11 s - ^Ts rT r~~
1-e

+ - -

dT 6e"6T % ^t(44) sign — = sign[(—^ttg - tt )* - (—- tt )(ir - —) ].
1-e

The interest rate effects are too complicated to include here. We have

taken the liberty of putting in the "usual" signs of all terms above
J _ lm J _ Jrn

the corresponding term. When this is the case ——, —— < 0 and —. -r-r > 0.
dr as as ar

We continue to assume the condition on sales that total freight out-
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lays at distance z rise with z, and total current value storage charges

at time t rise with t.

The "usual" signs may alter when C" » 0 (to the right of min MC)

or C" « 0 (to the left of min MC).
*f

When C" » 0 the only terms which may switch signs are — ir

Se"6T
which may become negative and 3^" ~ ^jg which may also become

1-e

negative. When this happens > 0 is possible as is < 0.

if 6e~6T
When C" « 0, nrT - — > 0 is possible as is 6 _gT irf - irTf,

1-e
IT

—- it >0. When this is the case it is possible that
r rs

J u J' 1' J ■ J rn

-r-p, —rp, — <0. As should be expected, given the much greaterdf' df' ds ds

complexity of the problem, the results achieved in the long run analy-

sis are ambiguous when compared to those of the short run.

Footnotes

"''As stated in Part 2 of this report, the essential logic of the
model is unchanged if cost and demand functions differ over time and
space. In Part 4, a solution procedure is developed and the solu—
tions to some sample problems are presented that show this to be the
case.

2
M. L. Katz, "Multiplant Monopoly in a Spatial Market," The Bell

Journal of Economics, vol. no. 2, Autumn 1980, pp. 519-535.
3

When W is small the assumption that each production-sales run is
of identical duration is inappropriate

4
L. Arvan and L. N. Moses, "Inventory Investment and the Theory of

the Firm," American Economic Review, May 1982.

D/96
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Part 4: Some Uses of the Space-Time Modelling Effort^

The Transportation Center research on physical distribution has two major

goals. First, we wish to formulate models of firms' decision making that are

capable of taking spatial and temporal factors into account. In effect, we

wish to build models that bring together the richness and understanding of two

bodies of economic literature about the firm, the theory of location and the

theory of dynamics. Our second goal is to formulate solution procedures that

incorporate the essential elements of our theoretical work and can be used to

solve complex, real world problems. This last point requires further comment.

In Part 1 of this report, the point was made that the systems or total

cost approach to physical distribution is viewed by most specialists in the

field as representing the intellectual threshold to modern logistical

reasoning and practice. We accepted this point but stated our reservation,

that in fact the systems approach is rarely used in complex problems. It is

rare to see examples of logistical modelling in which quantitative estimates

of the tradeoffs between diverse logistical elements are based on a formal

logical structure. The point was also made that when tradeoffs are estimated

they are frequently based on the assumption of linearity in the various cost

elements, whereas it is widely known that some of the most important cost

elements in a logistical plan involve significant non-linearities. The sample

problems discussed in this part of our report use cost functions that involve

scale economies in the long run or variable returns to variable factors in the

short run.
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It was also rioted in Part 1 above that some writers have objected to what

they view as an excessive concern on the part of specialists with the minimi-

zation of the total costs of distribution, with all other goals being

ignored. In this regard we observed that logistical models are fixed quantity

models. We accepted the commonly held view that it is appropriate for the

specialist in physical distribution to treat as given the prices set by mar-

keting people in various markets and therefore the quantities sold. However,

we added that the models with which logistics specialists work should be

capable of being put into a profit maximizing framework. Among other things

this means that they should be capable of incorporating demand responsive

elements. Hence in the work done in the present part of the report, we go

beyond fixed quantity models. The economist's and modern marketing special-

ist's downward sloping price-quantity demand function is introduced into

logistical models.

In earlier parts of the report, the point was made that the theory of the

model with which we are working was developed for the case of demand and cost

functions that are time invariant. This assumption was made because we were

interested in showing how non-linearities in costs could of themselves produce

a pattern of dynamic behavior for the imperfectly competitive firm. We

referred to our model as a pure model of dynamics because the conditions for

dynamic behavior largely originated from within the firm. In most models of

firm dynamics, the firm's behavior is the result of exogenous changes in

costs, demands, etc. faced by it. While our model allows for dynamic behavior

to originate largely from within the firm, it and the solution procedures we

adopt are fully capable of handling changes in outside conditions. Two of the

examples of temporal problems discussed below introduce changes in costs.

Demand shifts could just as easily be introduced.
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Our theoretical model has production taking place at a moment of time,

output then being sold off over a period of time. This on-off character of

the model's operations allows for the analysis of a very realistic problem,

the production of multiple products in a single plant, and the switching back

and forth from the production of one to the production of another. One of the

problems solved below involves periodic increases in costs as well as product

switching in production.

In all of the problems discussed below, we seek optimal solutions, solu-

tions that maximize profits. Because we have cost functions that involve both

convex and concave segments, and because we allow the firm to vary price and

hence amounts sold as well as production, the profit surfaces involved in all

of our problems are very complex. They can have numerous local optima. It is

easy for the computer to get stuck at a local maximum and not converge to a

higher one. The solutions obtained are highly conditioned by the initial

conditions imposed, i.e. the starting place for a problem. Different starting

places yield different solutions. We believe that we have developed a solu-

tion procedure that in many, perhaps most, instances overcomes this diffi-

culty. This procedure is described in general terms below.

In all of our applied work we have used a non-linear software package

called GRG II. It finds solutions that satisfy the first order conditions for

a maximum or a minimum. The package itself does not get around the difficulty

of local optima, and the fact that the solution obtained in any given run is

so heavily conditioned by the initial conditions of the problem. To cope with

this problem, we have had to develop our own solution procedures and link them

to GRG II.

In almost all of our work we employ a multiple two stage maximization

procedure. In the first of these stages, a cost minimization is carried out
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to determine, in the case of a spatial problem, which plants would serve which
— 9

markets if a given output, , had to be sold in each market. By limiting

the amount sold in each market to some prespecified amount, we place linear

constraints on our non-linear objective function, making it easier to find a

solution. After finding a least cost solution for a prespecified set of sales

and hence an overall limit on the total or system output, we then carry out a

second stage. Here, profits are maximized and output is unconstrained. The

minimum cost solution provides the initial conditions for the second stage

unconstrained profit maximization.

Above we referred to our solution procedure as a multiple two stage

procedure. The word multiple was employed because it is run more than once,

using different 's or output-sales constraints in stage one, the cost

minimization stage. In this way a profit "function" is generated with profit

measured on the vertical axis and system output or the sum of the 's on the

horizontal. The shape of profit "curve" is examined for a maximum. The

output flows corresponding to "the" maximum profit point on a profit hill is

taken to be the optimum solution. We complete this part of the discussion

with some additional comments on the linear constraints employed in the cost

minimization stage of our solution procedure.

It is a simple rule of profit maximizing behavior that an imperfectly

competitive firm will not normally sell a quantity in a market at which mar-

ginal revenue is negative. Hence with any demand function which intersects

the horizontal quantity axis, must be between zero and the point at which
*

marginal revenue is zero. We call this latter quantity . We then choose

's by dividing the demand curve into equal size segments between zero and
*

Q^. We now turn to some examples of problems that were solved using the above
solution procedure. Each of the problems involves U-shaped cost functions.
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Each problem contemplates a firm that faces a downward sloping demand function

so that prices charged and quantities sold in different spatial or temporal

markets may be decision variables as well as rates of output. Our first

sample problem involves spatial considerations alone.

Section 1: The Pure Spatial Model

The pure spatial model is a tool used to allocate output from spatially

distinct plants to spatially distinct markets in a profit-maximizing manner,

given the cost functions for each plant, the demand functions for each market,

and the transportation costs between any two points. Let represent the

amount of good x produced at plant i and sold in market j. We can denote the

total amount produced at plant i as

M

x.. , and the total amount sold in market j as

j=l
N

E x. .

j=l ^ >

where N is the number of plants and M is the number of markets. Note that x^j
is the amount of x shipped from i to j, or, the "flow." The final result of

the model gives us the profit maximizing flows of goods, as well as the cor-

responding system-wide profit, cost, revenue (prices and quantities sold), and

output. Our pure spatial model may be thought of as relevant for the case of

an imperfectly competitive firm that can achieve all the cost economies

required to maximize profits by only massing production in space. Profits are

not increased by also massing production in time, perhaps because the product

is very difficult and expensive to store. Hence the firm carries little or no

product inventory.



4.6

In one of our sample problems we assumed three plants and six markets.

The cost functions of the three plants are cubic and different from one

another. They are:

Plant 1: C(x^) = 166.666x^ - 2.66x^ + .0166x^
* **

x, = 53.333 x, = 80

Plant 2: C(x2> = 380x2 - 7,5x2 + .05x2

* **

x2 = 50 x2 = 75

Plant 3: C(x^) = 325x^ - 6x^ + .04x3

* **
x- = 50 x„ =75

•k

where x^ is the output level where marginal cost reaches its minimum, and
**

x^ is the output level where average cost reaches its minimum.
The six different markets were assumed to have linear demand functions,

different from one another.

Market 1: P(Q^) = 1500 - 15Q^ = 50

Market 2: P(Q2> = 1000 - 1002 Q* = 50

Market 3: P(Q3> = 1250 - 12.5Q3 Q* = 50
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Market 4: P(Q4> = 1800 - 18Q4 Q* = 50

Market 5: P(Q5> = 2000 - 20Q5 Q* = 50

Market 6: = 2500 - 25Q^ = 50

*

where is the point at which marginal revenue is zero.

In the present problem we assumed a single mode of transportation and

also assumed that transport cost functions were linear in the amount

shipped. However, just as our solution procedures are capable of handling

non-linearities in costs of production they can handle cost functions for

transport that also involve non-linearities. The model is capable of handling

several modes of transport, so that one of the decision variables can be

choice of mode of transport.

In the present problem the unit transport costs are:

from/to 1 2 3 4 5 6

1 0 7 12 5 6 20

2 7 0 11 10 4 7

3 12 11 0 6 16 8

For the purpose of generating a profit hill we chose our Q^'s to be 50,
45, 40, 35, and 30. 50 was chosen because it is the upper limit on the amount

a monopolist will sell, i.e. marginal revenue equals zero at an output of

50. 30 seemed to be a good lower limit in view of the shape of the cost

curves. Selling 30 in each market would put production close to the minimum

of marginal cost at each plant if all three plants were producing. Finally,

in view of the relatively low cost of running the two-stage procedure, we
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decided upon increments of 5. Less than 5, we felt, would have been too small

and repetitive, but larger increments, e.g. 10, would have been too big and we

possibly would have missed something.

The initial conditions in the cost minimization stages were as follows:

from/to 1 2 3 4 5 6

1 Q 0 0 Q 0 0

2 0 Q 0 0 Q 0

3 0 0 Q 0 0 Q

The choice of letting plants 1, 2, and 3 serve their home markets arises from

the fact that it is the likely solution in view of the transportation costs.

There is no rationale, however, for the choice in markets 4, 5, and 6. Con-

cerned that the initial conditions for markets 4, 5, and 6 affected the

results, we ran one two-stage costs minimization-profit maximization procedure

using the following as initial conditions:

from/to 1 2 3 4 5 6

1 45 0 0 15 15 15

2 0 45 0 15 15 15

3 0 0 45 15 15 15

We found the initial conditions to have no effect on the results.

As explained earlier, the purpose of segmenting the demand curves and

selecting different starting places and initial conditions grew out of our

understanding that the profit surfaces involved in our problems are complex

and can involve numerous local maxima. However, in the present case the flow
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configurations that resulted from each starting place was essentially the

same. The profit that resulted from the second, unconstrained profit maximi-

zation stage was $223,950 in each case. The consistency of the results

achieved with quite different initial conditions made us feel confident that

we had found a profit maximizing solution.

A summary of the results follows. Note the sales totals for each

market. In steps III - IV, sales were originally constrained to be 40, 35, or

30 in the cost minimization stage. In the unconstrained profit maximization

stage, however, the sales in each market exceed the original constraint. To

conserve space we report on only two of the profit explorations. These are

the extremes. One is the largest possible sale in each market, and hence the

largest possible system output. The largest possible sale in a normal monopo-

ly model is one in which marginal revenue is zero. The low sales and output

extreme is that in which sales in each market are 30 units. The initial

conditions for this solution have each plant operating on the falling portion

of its marginal cost function. As already noted, the unconstrained profit

maximizing stage of the two experiments converge to essentially identically

the same flows, outputs, sales and prices.

As to prices, we note that the profit maximizing solution of the firm in

question involves price discrimination. Thus, the equilibrium solution of our

problem has prices between markets that are not equal to differences in the

transport costs of serving them. Indeed, markets served by the same plant

have prices that differ by more than the transport costs between the plant and

markets in question. The prices in markets 1, 4, and 5, each served by plant

1 provide an example. In a perfectly competitive spatial model the equilib-

rium condition is that prices between markets cannot differ by more than the

cost of shipping the product between them.
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Constrain sales to 50 at each market in the cost minimization stage.

A. Constrained Cost Minimizaton

1. Flows:

Xij
1

2

3

tot

1 2 3 4 5 6 total

50 0 0 50 18.566 0 118.566

0 50 0 0 31.434 7.9738 89.408

0 0 50 0 0 42.026 92.026

50 50 50 50 50 50

B. Unconstrained Profit Maximization

1. Flows:

1 2 3 4 5 6 total

1 44.855 0 45.573 14.019 0 104.477

2 0 42.189 0 0 31.972 7.5933 81.754

300 43.792 0 0 39.141 82.933

tot 44.855 42.189 43.792 45.573 45.991 46.734

2. System output: 269.14

3. Cost: 24,871

4. Profit: 223,950

5. Prices:

Px = 828

P2 = 578

P3 = 702

P4 = 979

P5 = 1080

P6 = 1332
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II. Constrain sales to 30 at each market in the cost minimization stage.

A. Constrained Cost Minimization

1. Flows:

xij 1 2 3 4 5 6 total

1 30 0 0 30 1.4898 0 61.490

2 0 30 0 0 28.510 4.3543 62.864

3 0 0 30 0 0 25.646 55.646

tot 30 30 30 30 30 30

2. System output: 180

3. Cost: 17 ,628

4. Profit: 193,420

Unconstrained Profit Maximization

1. Flows:

Xij 1 2 3 4 5 6 total

1 44.862 0 0 45.580 13.969 0 104.411

2 0 42.181 0 0 32.021 7.5508 81.753

3 0 0 43 .782 0 0 39.184 82.966

tot 44.862 42.181 43 .782 45.580 45.90 46.735

2. System output: 269.13

3. Cost: 24,871

4. Profit: 223,950

5. Prices as in the previous solution

We conclude our discussion of the pure spatial model with some summary

comments.
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We are now quite certain that the solution procedures we have developed allow

us to solve quite large multi-plant, multi-market models in which outputs at

different plants as well as prices and sales in different markets are decision

variables. The existence of complex cost functions and different downward sloping

demand functions do not appear to pose insuperable difficulties to finding profit

maximizing solutions. Up to now we have used linear transport costs. We see no

problem in introducing transport cost functions that exhibit shipment size

economies. Indeed, alternative functions for different modes and even some service

variations can be introduced so that choice of mode of transport also becomes a part

of the optimal solution. However, at this stage we are limited to transport cost

and service functions that have no discontinuities in them. Typical rate structures

do involve discontinuities. In trucking, for example, there is one rate for

shipments of less than 5000 pounds, a lower rate for shipments between 5000 and

15,000 pounds, etc. Future research will include methods of introducing such real-

istic rate structures into our spatial models.

Section 2: Pure Temporal Problems

The firm of Section 1, above, was characterized as one that did not need to

aggregate across time as well as space in order to maximize profits. Alternatively,

it was suggested that the firm's product was so expensive to store that it behaved

statically. The firm of this present section finds that it operates over time but

each plant serves a single market, perhaps because the product is difficult and

expensive to ship.

At one stage in our efforts to model and develop solution procedures for

different types of real world logistical problems we became overly impressed with

the similarities between the economies of carrying goods through space and the
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economies of carrying them through time. We failed to note an important difference

between a variety of temporal problems and the short run spatial problem.

It will be recalled that the short run was earlier described as that period of

time in which the firm cannot add to its productive capacity by building new plants

at new locations. Where production can take place is fixed in the short run, but is

fully variable in the long run. It is in this sense that our pure temporal differ

from the pure spatial problems. Even in the short run, when productive capacity is

fixed, the firm can alter when it produces, i.e., it can alter the timing of produc-

tion and length of run. In this sense, all of our temporal problems are like the

long run locational problems referred to briefly in Part 3 above. Therefor, the

problem of when and how much to produce in a short run temporal problem is not the

pure analog of the short run locational problem. Rather, it is the analog of the

long run locational problem, one in which the choice of where to produce and how

much to produce at alternative locations is determined. This characteristic of

temporal problems makes our miltiple cost-min-profit-raax optimization procedure

somewhat more complicated than the one used to solve short run spatial problems. We

now explain the nature of the procedure used to solve temporal problems.

We take the short run planning horizon of the firm as given and begin by deter-

mining whether profit maximization even requires a dynamic strategy. If the demand

function of each period intersects the marginal cost function of each period above

minimum average cost and if the cost function is invariant, then a static strategy

is profit maximizing. If the above conditions are not satisfied, the solution

procedure described below is followed. A sample problem is used to illustrate the

procedure.

In this problem, demand in each period of time was:

P(Q) = 1000 - 10Q.
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This equation has a value of Q*, the sales at which marginal revenue is zero, equal

to 50. The production cost function for each period is:

C(x) = 500x - 8x2 + .05x3 .

Minimum marginal and average costs occur at outputs that respectively are 53 and

80. The storage cost function is assumed to be linear in both quantity and time and

equal to $20 per unit product stored per day. The problem was run with different

assumptions as to the per period interest rate. A 3% interest rate was assumed in

the problem reported on below. The firm was assumed to have an 8 period planning

horizon.

The reader will recall that in the spatial problem, a Q was assumed for each

market. A cost minimizing problem was then run to determine the optimal allocation

of output to the various plants. This minimum cost solution provided the initial

conditions for the unconstrained profit maximization storage. The Q's were then

changed and the two stage procedure was repeated. The solution procedure for the

pure temporal problem does not have a formal cost minimizing stage, though it is

still a multiple two stage procedure. Instead of obtaining the initial conditions

for the unconstrained profit maximizing step from a cost minimizing step, initial

conditions in the temporal problem are obtained by specifying a time pattern of

production. This is the way in which the temporal problem more closely resembles a

long run than a short run locational problem. The step-by-step testing of how many
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and where among a set of potential sites the firm should locate its plants is the

spatial equivalent of testing out different lengths of production-sales runs in a

temporal problem.

In the temporal problem currently being discussed we began, as in the spatial

problem, by specifying the Q^'s as the sales in the (temporal) market at which
marginal revenue is zero. This is 50 units. We then chose the first temporal

pattern to be tested, i.e. produce all output in the first period and then shut

down. Below we call this Case A. In Case B, production takes place twice, once in

period 1 and once in period 5. In Case C production takes place four times, in

periods 1, 3, 5, and 7. The data of the three cases are shown below. We will

shortly explain why these are the only relevant cases for the present problem.

Case A, produce 1 time

period 1 2 3 4 5 6 7 8

prod'n 400 0 0 0 0 0 0 0

inv'y 350 300 250 200 150 100 50 0

sales 50 50 50 50 50 50 50 50

Case B, produce 2 times

period 1 2 3 4 5 6 7 8

prod'n 200 0 0 0 200 0 0 0

inv'y 150 100 50 0 150 100 50 0

sales 50 50 50 50 50 50 50 50
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Case C, produce 4 times

period 1 2 3 4 5 6 7 8

prod'n 100 0 100 0 100 0 100 0

inv 'y 50 0 50 0 50 0 50 0

sales 50 50 50 50 50 50 50 50

Three unconstrained profit maximization problems were then run, with the above

providing the initial conditions. The results are reported below, again as Cases A,

B, and C. Among the things that our profit maximizing procedure can do is to shift

to a different pattern of production than was entered initially. Thus Case A begins

with production only in period 1, but profit maximization yields a much more complex

pattern. The firm acts dynamically in period 1, producing in that period for the

first three periods. However, beginning in period 4, it acts statically. Only in

Case C is the initial pattern maintained. The pattern of on for a period, and off

for a period provides the maximum profit. The three cases yield quite different

patterns of sales, profits, outputs, demonstrating very clearly that the objective

functions we work with are very complex and have numerous local maxima. The

solution obtained in any stage is highly conditioned by the initial conditions. It

is for this reason that temporal problems, even more than spatial problems, require

experimentation based on segmentation of the demand functions, i.e. varying

the Q^'s. Our last comments on the above temporal problem pertain to the pattern
of prices and sales when the firm is operating dynamically. Any of the examples of

dynamic behavior shown in the three cases can be used to illustrate the point we

wish to make.
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Results

Case A

System output: 32,469

Cost: 65,257

Revenue: 165,310

Profit: 100,050

period 1 2 3 4 5 6 7 8

prod'n 95.1 0 0 45.9 45.9 45.9 45.9 45.9

inv 'y 61.8 30.1 0 0 0 0 0 0

sales 33.2 31.7 30.1 45.9 45.9 45.9 45.9 45.9

!

System output: 270i,96

Cost: 51 ,884

Revenue: 156,720

Profit: 104,840

period 1 2 3 4 5 6 7 8

prod'n 95.1 0 0 86.6 89.3 0 0 0

inv 'y 61.8 30.1 0 48.6 101.2 66.0 32.2 0

sales 33.3 31.7 30.1 38.0 36.6 35.2 33.7 32.2
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Case C

System output: 321.52

Cost: 54.352

Revenue: 168.720

Profit: 114,370

period 1 2 3 4 5 6 7 8

prod'n 80.4 0 80.4 0 80.4 0 80.4 0

inv'y 39.6 0 39.6 0 39.6 0 39.6 0

sales 40.8 39.5 40.8 39.5 40.8 39.5 40.8 39.5

Consider the profit maximizing solution yielded under the initial conditions of

Case A. Here the firm only acts dynamically in the first three periods, production

in period 1 being used to serve demand in the three periods. We observe the

observed pattern of falling sales over the three periods, which means that prices

must be rising since we are dealing with a time invariant demand function. The

equilibrium prices are: = $668; = 683; P3 = 699. Prices rise, but less than
the cost of storage because our demand function is linear. In this sense the

dynamic strategy involves discrimination in favor of future as against present

consumers. One might ask what prices in periods 2 and 3 would have to be if price

in period 1 were $668 and expected to remain there. If the market were perfectly

competitive, with storage cost of $20 per unit per period and an interest rate of

3%, P2 and P3 would have to be equal to $729 and $769 in the two periods in order

for a group of perfectly competitive sellers to be in temporal equilibrium, i.e. to

be indifferent as to which market period they dispose of their existing output.

Our solution procedure is perfectly capable of being applied to situations in

which costs and demands change over time. Experiments were performed for a case in
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which costs varied in a systematic way over time. We do not report on this example

because the model reviewed in the next section incorporates cost changes as well as

other things.

Section 3: A Product Switching Model

Economies of long production runs, as we saw in our theoretical model,

contribute to a situation in which a firm produces in excess of current sales and

carries inventory of finished product. Beyond a certain point it is not economical

to produce "today" for future markets becauses storage costs become an uneconomic

alternative to a resumption of production as a way of satisfying future sales. Thus

we have a pattern in which production is switched on and off over time. However,

there is no need for the plant to actually shut down if there are alternative

products that can be produced by some or all of the fixed factors of production

found in the plant. When production of one product is discontinued, a run of

another product is begun.

The product switching example presented below considers a situation in which

two products are produced in one facility. Only one good can be produced at a time,

but both goods can be sold simultaneously. The product switching model determines

how daily demand for the two products can be satisfied given the constraint that the

two goods cannot be produced simultaneously. This is achieved by alternating pro-

duction runs and carrying inventory.

The product switching model is solved by a procedure that is very similar to

the one employed in the pure spatial model. We work with a sequence of sets

of Q's , one set for each product in each period of time. The initial set

of Q's are those at which the marginal revenue of each product goes to zero in each

period. By starting with these sales for each period, we assure ourselves that we
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have logically bounded the system, since an imperfectly competitive firm will not

normally sell more in any period than the quantity at which marginal revenue is

zero.

As in the pure spatial model, we first run a constrained cost minimization

problem. The Q's of each product in each period provide the linear constraints used

in the cost minimization stage of the solution procedure. What is obtained is the

least costly way of satisfying any given set of Q's over time. The solution

specifies a certain switching pattern in which only one good is produced on any

given day. The excess of production over sales is stored to be sold on days on

which the good is not produced. There are two kinds of days of this kind in the

example reported on below. First, there are days when the alternate product is

being produced. Second, in our example of a monthly planning model, there are

Saturdays and Sundays. Costs of production of both products on those days carry a

penalty. They are higher than the costs of producing the products during the

week. As a result, production does not take place on the weekend. The penalty

costs for weekend production tend to have the effect on assuring that plant-down

time occurs on weekend days.

Above we were discussing the cost minimization stage of each step in the solu-

tion procedure. Each cost minimization solutions provides the initial conditions

for an unconstrained profit maximization. The objective function for the profit

maximization stage has the following elements in it for each period of the planning

horizon: (1) the revenues obtained from selling each of the products; (2) the cost

of producing whichever product is being produced in each period; (3) the cost of

storing each product in each period.
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The solution procedure involves a sequence of two stage (cost min and profit

max) solutions. In each stage a different set of Q's is selected. By varying

the Q's , we investigate the possibility that the profit surface is complex and has

local optima. As in the pure spatial model we establish a profit hill. We turn now

to our example.

The short run planning horizon assumed in the problem is 30 days. The cost of

producing good 1 is:

C(X^) = 500x^ - 8x^ + .05x^.

In this cost function, marginal and average cost reach their minima at 53.33 and

80. The cost of producing good 2 is:

C(X2) = 350x2 - 2X2 + .005X2.

Minimum marginal and average cost occur at 133.33 and 200. All of the above costs

are in hundreds of dollars. In our solution procedure, we formally permit the two

products to be produced simutaneously, but we impose a very high penalty on such

production. There is also a penalty for production on weekends. Costs are 1.1

times the above figures. The weekend days are 7, 8, 13, 14, 20, 21, 27, and 28.

Our problem assumes linear storage costs, but there is no reason why U-shaped

storage cost functions could not have been used. Storage cost for good 1 is $1.00

per day and for good 2 is $15.

A time invariant linear demand function is assumed for each product, though

there would have been no great difficulty in allowing demands to vary over time.

The two demand functions are:



4.22

PCQ^ = 1000 - IOQ1

P(Q2) = 1425 - 15Q2 .

* *
cr\

and , the two sales rates at which marginal revenue equals zero are 50 and

47.5 respectively.

In the product switching model, we assume an initial inventory for each

product. This is not an essential aspect of the model. An alternative to initial

inventory is to allow buildup time. This is time in which production can take place

but in which no sales are made of one or the other product. The initial inventories

assumed in our present formulation were:

I1 = 55 and I2 = 25.

Three tables appear below. Table 1 contains the data that were entered into

the first cost minimization problem. This is the problem in which and Q2 are

equal to 50 and 47.5, the quantities at which the two marginal revenues are zero.

Table 2 contains the cost minimizing solution. In this problem, sales are con-

strained to be greater than or equal to the above two quantities in each period.

Columns (2) and (3) show the temporal pattern of production of each product, i.e.

the switching back and forth and the down days. Columns (6) and (7) show the end of

period inventory of each product. The results shown in Table 2 are entered as the

initial conditions for the first unconstrained profit maximization problem. As

expected, sales in each period of each product are less than the sales at which

marginal revenue is zero. Total output of each product over the 30 day period is of

course less than that of the cost minimization stage. The time pattern of

production of each good, and the down days for the plant as a whole are the same in
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the unconstrained profit maximization as in the cost minimization problem. In the

next stage of the solution procedure, a reduced set of Q 's is selected and new cost

minimization and profit maximization problems run. We do not bother to report on

the additional steps since they all yielded the same results as those shown in Table

3.
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Table 1
Initial Conditions

Initial production condition Initial inventory condition

X1 x2 *1 X2

0 142.5 5 120
150 0 105 72.5
50 47.5 105 72.5

0 142.5 55 167.5
150 0 155 120

0 0 105 72.5
0 0 55 25
0 142.5 5 120

150 0 105 72.5
50 47.5 105 72.5

0 142.5 55 167.5
150 0 155 120

0 0 105 72.5
0 0 55 25
0 142.5 5 120

150 0 105 72.5
50 47.5 105 72.5

0 142.5 55 167.5
150 0 155 120

0 0 105 72.5
0 0 55 25
0 142.5 5 120

150 0 105 72.5
50 47.5 105 72.5

0 142.5 55 167.5
150 0 155 120

0 0 105 72.5
0 0 55 25
0 70 5 47.5

45 0 0 0
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Table 2
Cost Minimization Results

(1) (2) (3) (4) (5) (6) (7)
Production Sales End of period invento

period X1 x2 q2 X1 x2
1 0.0 117.5 50.0 47.5 5.0 95.0
2 104.3 0.0 50.0 47.5 59.3 47.5
3 104.3 0.0 50.0 47.5 113.6 0.0
4 0.0 190.0 50.0 47.5 63.6 142.5
5 104.5 0.0 50.0 47.5 118.1 95.0
6 0.0 0.0 50.0 47.5 68.1 47.5
7 101.7 0.0 50.0 47.5 119.8 0.0
8 0.0 143.5 50.0 47.5 69.8 96.0
9 104.7 0.0 50.0 47.5 124.5 48.5
10 104.8 0.0 50.0 47.5 179.3 1.0
11 0.0 189.0 50.0 47.5 129.3 142.5
12 104.9 0.0 50.0 47.5 184.2 95.0
13 0.0 0.0 50.0 47.5 134.2 47.5
14 0.0 0.0 50.0 47.5 84.2 0.0
15 0.0 143.5 50.0 47.5 34.2 96.0
16 105.2 0.0 50.0 47.5 89.4 48.5
17 105.2 0.0 50.0 47.5 144.6 1.0
18 0.0 189.0 50.0 47.5 94.6 142.5
19 105.4 0.0 50.0 47.5 150.0 95.0
20 0.0 0.0 50.0 47.5 100.0 47.5
21 0.0 0.0 50.0 47.5 50.0 0.0
22 0.0 143.5 50.0 47.5 0.0 96.0
23 87.9 0.0 50.0 47.5 37.9 48.5
24 88.0 0.0 50.0 47.5 75.8 1.0
25 0.0 189.0 50.0 47.5 25.8 142.5
26 88.1 0.0 50.0 47.5 64.0 95.0
27 0.0 0.0 50.0 47.5 14.0 47.5
28 86.0 0.0 50.0 47.5 50.0 0.0
29 0.0 95.0 50.0 47.5 0.0 47.5
30 50.0 0.0 50.0 47.5 0.0 0.0
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Table 3
Profit Maximization Results

Production Sales End of Period Inventory

period X1 x2 Qi q2 h X2
1 0.0 106.6 40.41 44.36 14.6 87.2
2 81.5 0.0 40.36 43.86 55.8 43.4
3 81.7 0.0 40.31 43.36 97.1 0.0
4 0.0 172.8 40.26 43.94 56.9 128.8
5 81.9 0.0 40.21 43.44 98.5 85.4
6 0.0 0.0 40.16 42.94 58.4 42.4
7 80.0 0.0 40.11 42.44 98.2 0.0
8 0.0 132.7 40.06 44.72 58.2 87.9
9 82.4 0.0 40.01 44.22 100.5 43.7

10 82.5 0.0 39.96 43.72 143.0 0.0
11 0.0 172.8 39.91 43.94 103.1 128.8
12 82.7 0.0 39.86 43.44 146.0 85.4
13 0.0 0.0 39.81 42.94 106.2 42.4
14 0.0 0.0 39.76 42.44 66.4 0.0
15 0.0 132.7 39.71 44.72 26.7 87.9
16 83.2 0.0 39.66 44.22 70.2 43.7
17 83.3 0.0 39.61 43.72 113.8 0.0
18 0.0 172.8 39.56 43.94 74.3 128.8
19 83.5 0.0 39.51 43.44 118.2 85.4
20 0.0 0.0 39.46 42.94 78.8 42.4
21 0.0 0.0 39.41 42.44 39.4 0.0
22 0.0 132.7 39.36 44.72 0.0 87.9
23 74.9 0.0 42.84 44.22 32.1 43.7
24 75.1 0.0 42.79 43.72 64.3 0.0
25 0.0 172.8 42.74 43.94 21.6 128.8
26 75.4 0.0 42.69 43.44 54.2 85.4
27 0.0 0.0 42.64 42.94 11.6 42.4
28 73.5 0.0 42.59 42.44 42.5 0.0
29 0.0 86.8 42.54 43.64 0.0 43.1
30 45.9 0.0 45.92 43.14 0.0 0.0
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Some additional experiments will be carried out with the product switching

model in the future, including the introduction of additional products. However,

there is one important problem about which we are unlikely to be able to do anything

that is likely to prove to be analytically rigorous and satisfying. This is the

problem of set-up costs.

Real world product switching situations entail some kind of cost of going from

the production of one product to the production of another. A machine may, for

example, be capable of producing a variety of metal fasteners, but not without its

being adjusted. The adjustment entails down time and costs that we call set-up

costs. Such costs are very difficult to introduce into the kind of solution we

employ, because they are discrete. They are a kind of fixed cost in the sense that

once the money is expended and the plant's machinery has been set up to produce a

product, any amount of that product can be produced without additional set-up costs

in any run that is uninterrupted except for plant down time. While set-up costs are

fixed in the above sense, they are variable temporally in that they may be borne

more than once for each product over the planning horizon. The solution procedure

with which we have been working cannot handle lumpy costs. However, a procedure of

introducing them through a heuristic device that seems promising will be tested in

the next academic year. This completes this part of our report. Many other models

and problems have been investigated. It was felt that the above three were enough

to report on at present.
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Footnotes

^This part of the report was written with Martha Weidner, Department of Economics,
Northwestern University.

2
In a temporal problem we determine the time of production used to satisfy demands

in different temporal markets.

3
We make the same comment about the linear storage costs of the temporal models as

was made earlier about the assumption of linear transport costs. That is, we now
see that there is no problem in introducing storage cost functions that exhibit cost
economies with quantities stored, so long as the function are smooth.
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Part 5: Future Research and Plans

The next stage in the Center's physical distribution research will

largely be in the area of applications of our approach to actual problems.

Members of the Business Advisory Committee will be approached and an effort

made to work out arrangements in which they frame a physical distribution

problem that is important to their firms and provide the data needed to

analyze the problems. Center staff will then set up the analytical model,

write the computer programs needed to solve the problems, and interpret the

results.

More work will have to be done on the problems mentioned in the text if

our approach is to be most useful in a real world setting. In particular, our

models must be capable of dealing with realistic rate structures and their

discontinuties. The models and computer programs should also be capable of

incorporating transportation service variables so that problems involving mode

choice, production and inventory planning, and product pricing can be

solved. These goods will require the development of additional solution

procedures.
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