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Abstract  

Evolutionary theory predicts that reproduction entails energetic costs that detract from 

somatic maintenance, accelerating biological aging. In women, such ‘costs of 

reproduction’ (CoR) are thought to arise predominantly during pregnancy and lactation, 

while in men the physiological effects of the steroid hormone testosterone (T) are 

believed to be a major driver of tradeoffs in somatic maintenance. Despite support from 

studies in human and non-human animals, mechanisms linking CoR to somatic 

maintenance and aging are poorly understood. This may be due in part to a lack of a 

mechanistic framework than can account for the evolved, genetic underpinnings of life 

history traits as well as individual plasticity in life history strategies that are believed to 

be central to tradeoffs between reproduction and maintenance. Epigenetic processes, 

such as DNA methylation (DNAm), may help fill this mechanistic gap. DNAm is a 

chemical modification to DNA that is associated with gene activity and cellular memory 

and may be particularly useful for testing hypotheses about tradeoffs between 

reproduction and somatic maintenance. First, genome-wide DNAm can be used to gain 

insights into patterns of gene regulation across the genome, which can then be used to 

better understand untheorized biological processes that could underlie costs of 

reproduction. Second, DNAm can also be used to calculate epigenetic age. Epigenetic 

age predicts biological age and mortality, providing a measure of cellular aging and 

somatic maintenance. Finally, DNAm can also be used bioinformatically-impute blood 

leukocyte cell proportions, a proxy for immune function. In this dissertation, I leverage 

the power and flexibility of genome-wide DNAm from 496 young (20-22 years old) adult 

participants in the Cebu Longitudinal Health and Nutrition Survey to test hypotheses 
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about tradeoffs between reproduction and somatic maintenance. In Chapter 2, I 

describe epigenetic clocks in detail, including an overview of their technical application 

and emerging applications in human biology. I then use an epigenetic clock and 

telomere length – a separate measure of cellular aging – to study costs of reproduction 

in 394 young women in Cebu (Chapter 3). To better understand the role of the 

epigenome in reproduction and aging, I then examine differences in the methylome of 

women in differing reproductive status (Chapter 4). To aid in the interpretation of the 

large number of differences in DNAm between women, I then carry out a series of gene 

set enrichments and construct networks of biological processes. Finally, I test 

hypotheses about the T-associated costs of reproduction in a subset of 90 young men 

(Chapter 5). I examine the relationship between T and several epigenetic clocks 

indicative of biological aging, metabolic health, and mortality risk. To test for an 

immunosuppressive effect of T, I also examine bioinformatically-imputed cell type 

proportions, and scan the methylome for differences in T and DNAm more broadly. I 

show that aging based on the epigenetic clock and telomere length are both accelerated 

in response to gravidity, and that women appear epigenetically younger during 

pregnancy (Chapter 3). Differences in DNAm between nulliparous, pregnant, 

breastfeeding, and parous women point to changes in immune function and 

neurogenesis as possible biological pathways linked to aging and disease in women 

(Chapter 4). In men, higher T was positively related to several epigenetic clocks, 

although this effect was only borderline significant for two clocks, and reached statistical 

significance for a clock associated with metabolic health and mortality. T does not 
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appear to exert a clear immunosuppressive effect as indexed by our methylation-based 

approach, and we also did not detect differential methylation with T in this relatively 

small sample size (Chapter 5). In Chapter 6, I conclude by discussing the ways in which 

epigenetic processes are providing a mechanistic framework for studying life history 

traits and tradeoffs between reproduction and aging, and future directions in my 

research on reproduction and aging in the human epigenome.
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Chapter 1. Introduction 

Why do we age? And perhaps more importantly, why do some individuals appear to 

‘age’ more quickly than others? While chronological aging can be measured by the 

passing of time and applies equally to living and non-living things, ‘biological aging’ (BA) 

can be seen in a progressive loss of function, reproductive viability, and increasing odds 

of mortality (Bulterijs, Hull, Björk, & Roy, 2015; Levine, 2013). To many, BA may seem 

like an inevitability. But one need only look across phylogenetic taxa to see that different 

species have wildly differing functional and maximum lifespans, suggestive of different 

rates of BA (Clark, 2002). Within animalia alone, lifespans range from less than a day 

for the Mayfly (Dolania americana), to at least 200 years for the Bowhead whale 

(Balaena mysticetus). There are even a number of species that show negligible 

senescence (Finch, 2009), including the Ocean Quahog clam (Arctica islandica), the 

Greenland Shark (Somniosus microcephalus), and even the apparently immortal Hydra 

(genus Hydra). There is also considerable variation in BA among humans, with some 

people living healthily beyond their first century, while others show marked declines 

much earlier (Bilder, 2016; Crews, 2003). Thus, although chronological age is a key 

predictor of mortality and functional decline in nearly every species examined, including 

humans, it is quite clear that chronological age and BA can be uncoupled (Levine, 

2013). Nevertheless, with few exceptions, we understand very little about why species – 

and individuals within our own species – age at different rates, limiting our ability to 

predict BA in both individuals and populations as a whole. With the proportion of the 

world’s population over 65 currently set to double in the next 30 years (World Health 
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Organization, 2015), understanding what causes some people to age biologically more 

quickly than others is both a practical and academic concern.  

Biological aging and variation in BA have long been of interest to scholars and 

philosophers. While Plato viewed aging as a ‘liberation’ from the base desires and 

distractions of youth, Aristotle saw aging as a process of physical and moral decline 

(Anton, 2016). It wasn’t until the 19th century that aging could be understood within an 

overarching theory of biological change and evolution (Darwin, 1859; Darwin & Wallace, 

1858; Wallace, 1871). However, viewing aging in this framework presented naturalists 

of their day with a conundrum. How could Natural Selection favor the functional decline 

and demise of living organisms? This question would come to be taken up by August 

Weismann, a German evolutionary biologist whose ideas on aging and heredity are still 

relevant to evolutionary thinking and genetics today. He posited that because extrinsic 

events will come to damage individuals over time, older individuals will be less fit than 

younger ones. A form of ‘programmed death’ in cells and organisms would free up 

resources for younger, more fit generation, improving the fitness of the species as a 

whole (Weismann, 1891). This idea established the foundation for thinking about aging 

through an evolutionary lens, but has been criticized on the ground that it relies heavily 

on group selection (which fell out of favor in 20th century evolutionary thinking). More 

importantly, Weismann’s programmed death is inconsistent with the observations that 

organisms can heal or even regenerate from injuries and disease, and could surely be 

selected to do so further.  
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In the 1940’s, J.B.S. Haldane noted that most individuals will have already reproduced 

by mid-life. As a result, natural selection would invariably be weakest later in an 

organisms life (Haldane, 1941). In this sense, BA could be viewed not so much as an 

adaptive process, but as a by-product of the ‘shadow’ of natural selection at later ages. 

While there is some circularity to this argument (reproductive age and old age are 

defined by lifespan, and not necessarily the other way around), the accumulation of 

mutations that cannot be purged through negative selection came to be seen as a 

potential pathway through which aging and a finite lifespan could arise (Rose, Burke, 

Shahrestani, & Mueller, 2008). Mutation accumulation was a major advancement in 

evolutionary thinking about aging, but was incomplete until a key insight by the brilliant 

mind of George C. Williams. Apparently unaware of previous work by Haldane and 

Medawar, Williams pointed out that mutations causing late life declines in health and 

survival could not only escape negative selection, but could in fact be positively selected 

for if they are also associated with increased reproductive output earlier in life (Williams, 

1957). This theory – referred to as antagonistic pleiotropy – was particularly important 

because it established a between reproduction and aging, and provided the groundwork 

for a subsequently influential evolutionary theory of aging: the disposable soma theory. 

The disposable soma theory, devised by Kirkwood (Kirkwood, 1977; Kirkwood & 

Holliday, 1979), is a specific framing of antagonistic pleiotropy in which it is not the 

genes themselves that favor early life fertility over aging and survival, but the finite 

nature of energy and the need to distribute it across various physiological functions. 

Because early life fertility is indeed selected for over late life survival as Haldane 
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proposed (W.D. Hamilton, 1966), processes that favor metabolic allocation to 

reproduction at the expense of somatic maintenance and survival are expected to 

evolve (S. C. Stearns, 1989). According to the disposable soma theory, it is these ‘costs 

of reproduction’ that are thought to accelerate BA. 

The disposable soma theory falls within a broader evolutionary framework referred to as 

life history theory. Life history theory is based on the premise that organisms have 

evolved strategies that maximize their fitness under a range of contexts and conditions 

(Kuzawa & Bragg, 2012; Noordwijk & Jong, 1986; Partridge & Harvey, 1988). Because 

energy and time are finite, tradeoffs in form, function, or the timeframes within which 

certain behaviors can be executed create tradeoffs. Life history strategies are thought to 

evolve as collections of traits, because natural selection will favor the coordination of 

phenotypes that maximize fitness under a range of similar contexts (Réale et al., 2010). 

A central assumption underlying life history theory is that organisms are capable of 

using information from their environment and their own physiological state to calibrate 

strategies for growth, reproduction, storage, and bodily maintenance (Gluckman & 

Hanson, 2004; Gluckman et al., 2009; Kuzawa, 2005; Rando & Verstrepen, 2007; Sear, 

2020; Stephen C. Stearns, 1992). Indeed, a key criticism of antagonistic pleiotropy is 

rooted in the fact that the same genes can be variously activated or deactivated at 

different points of time in the lifecourse (Mitteldorf, 2014), information lacking at the time 

Williams devised the theory. However, studying the kind of plasticity that is central to life 

history theory has been inherently difficult (Bolund, 2020). While cues with short-term 

relevance are integrated through rapid allostatic responses via the central nervous and 
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neuroendocrine systems, cues that are necessary for long-term orchestration of life 

history strategies – such as how much to invest in reproduction and when, how to 

maintain the body, and how to age – require processes that are flexible during critical 

windows, but robust over longer timescales (Kuzawa & Thayer, 2011; Rando & 

Verstrepen, 2007). Adjusting physiological set points, marking thresholds for key life 

history transitions, and mediating tradeoffs between competing physiological demands 

all necessitate a form of biological regulation and embedded ‘memory’ (Finch & Rose, 

1995). Precisely how such sensitivity and biological memory might operate has been 

largely left to the imagination. More recently, however, advancements in molecular 

biology may be providing a way to study these questions. These advancements center 

around epigenetic processes.  

Epigenetic processes are a collection of cellular metabolic and regulatory processes 

that are intricately involved in development, memory, and aging. They operate at the 

‘synapse’ of genes and the environment, which positions them between evolved, 

genetic, species specific windows and the physiological and environmental cues that 

fine tune individual life history strategies (Boyce & Kobor, 2015; Meaney, 2010). They 

also have well-established roles in gene regulation and cellular memory, from early 

embryonic development to the maintenance of cell specific patterns at the very limits of 

human lifespan (Allis, Caparros, Jenuwein, & Reinberg, 2015). This creates continuity 

over time and provides a link between life history traits at one point in time with tradeoffs 

in other physiological functions at the same time or years into the future. Tradeoffs 

could impact health and life history traits by redirecting developmental trajectories for 
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individual tissues or cell lineages (Lappalainen & Greally, 2017). Because different cell 

lineages are associated with different epigenetic profiles, epigenetics can be used to 

infer cell types and hence developmental trajectories based on that uniqueness. For 

example, epigenetic processes can be used to algorithmically deconvolute immune cell 

composition in blood. This provides a way of accounting for differences in 

hematopoetically-derived immune profile in addition to gene regulation within the 

leukocytes themselves. In addition to their sensitivity to context and developmental 

memory, epigenetic processes are now recognized as fundamentally tied to the aging 

process itself. Some epigenetic changes happen stochastically, while others unfold 

quite predictably with time (Benayoun, Pollina, & Brunet, 2015; Jones, Goodman, & 

Kobor, 2015). This has allowed researchers to devise ‘clocks’ which predict 

chronological age with unprecedented accuracy. These clocks can also being used to 

study BA, providing powerful markers of mortality, health, or even other biomarkers tied 

to aging (Ryan, 2020).  

The emerging tools built around epigenetic processes provide novel ways to study 

reproduction, aging, other life history traits and tradeoffs that are sensitive to context. 

Understanding tradeoffs around reproduction and aging may be key to understanding 

why we age, and why some people get sick in ways that others do not (Stephen C 

Stearns & Koella, 2007). But in many ways, they also challenge the paradigm of 

variability established over much of the 20th century. This makes it worthwhile to 

consider the ways that variability has been theorized in the past, and some of the ways 

that epigenetic processes are changing that. In this introductory chapter, I will briefly 
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review the history of notions about phenotypic variability and inheritance, based 

predominantly around genes and DNA, that were established throughout the 1900s. I 

will then discuss parallel research in development, ecology, and evolution, whose views 

of phenotypic variability and aging are often more compatible with conceptions of 

tradeoffs, plasticity, and life history theory described above. With this framing, I will 

briefly review epigenetic processes, in particular DNA methylation, and their utility for 

studying reproduction and aging in humans. I will then describe how I am using 

epigenetic methods to study tradeoffs in reproduction and aging using a long-term 

longitudinal cohort study in the Philippines. The overarching aim of this introduction is to 

provide historical and theoretical context for the chapters that follow. The goal of this 

research program is to use evolutionary theory and epigenetic tools to understand 

human evolution, health, and aging.  

The Modern Synthesis and the Century of the Gene 

In many ways, the 20th century was revolutionized by the gene. Beginning in 1900 with 

the rediscovery of Mendel’s work, and ending with the first draft sequence of the human 

genome in 2001, our understanding of life, its origins, and its molecular underpinnings 

were dramatically and permanently transformed during this time. Much of this 

transformation can be tied to an idea that is now deeply ingrained in the consciousness 

of scientists and the lay person alike: the supremacy of the gene (Keller, 2000). At the 

time when Mendel’s work was rediscovered, heredity had been a topic of contention 

since at least as early as the writings of Aristotle (384–322 BCE)(Villota-Salazar, 

Mendoza-Mendoza, & González-Prieto, 2016). Scholars could not explain how 
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characteristics were transmitted between generations, which is essential to 

understanding phenotypic variation within species as well as the diversity of life on 

earth. Mendel’s careful observation and meticulous recordings provided robust support 

for a particulate theory of inheritance (Mendel, 1866), shedding light on both heredity 

and variation and dealing a blow to the models of blending inheritance that were 

prevalent at the time. As early as 1902, the ‘particulate’ had been narrowed down to 

chromosomes themselves by cytogeneticists (Boveri, 1902; Sutton, 1902). Roughly a 

decade later, Alfred Sturtevant (an undergraduate at the time!) demonstrated that 

simple traits could be accurately mapped to physical locations on chromosomes, 

consistent with cytogenetics and Mendel’s Laws (Sturtevant, 1913). While the chemical 

nature of the hereditary substance was still unknown, the distinction between a so-

called ‘genotype’ and ‘phenotype’ was already being made (Johannsen, 1911). Even by 

1911, it would appear that the ‘century of the gene’, as Keller would later call it (Keller, 

2000), was already underway.  

The centrality of the gene to 20th century biology was further cemented with advances in 

theory and empirical discoveries about the biochemical structure of the genome. Fusing 

Mendel’s particulate inheritance with Galton’s work on continuous traits, Ronald Fisher, 

J.B.S. Haldane, and others developed mathematical and statistical theories capable of 

explaining how particulate inheritance could be responsible for complex, continuously-

varying, traits (Fisher, 1930; R. M. Nelson, Pettersson, & Carlborg, 2013). Over time, 

theory also came to accommodate more complex patterns of inheritance, such as sex-

linked inheritance, incomplete penetrance, co-dominance, epistasis, or pleiotropy 
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(Bateson, 1913; T. H. Morgan, 1910). These advances in quantitative genetics opened 

the door for the ‘Modern Synthesis’, which melded Mendel’s laws of inheritance with the 

Darwin/Wallace theory of Natural Selection (Bowler, 2003). The modern synthesis 

permanently changed the face of evolutionary biology by laying the groundwork for 

theories about adaptation, sexual selection, aging, altruism, conflict, reciprocity, 

tradeoffs, and constraints (Dawkins, 2016; Fisher, 1930; William D Hamilton, 1964; 

William D Hamilton & Zuk, 1982; Trivers, 1972; Williams, 1966a; E. O. Wilson, 2000). 

Furthermore, many of the ideas of the early biometricians and evolutionary theorists 

extended beyond evolutionary biology, providing key tools and insights used in 

statistics, economics, computer science, cognitive sciences, and other disciplines.  

During the first half of the 20th century empirical work in biochemistry and molecular 

biology also reinforced gene-centric thinking, eventually linking it with DNA specifically. 

Work describing the chemical structure of DNA, formalized by Watson, Crick, Franklin, 

Wilkins and others (Franklin & Gosling, 1953; Watson & Crick, 1953; Wilkins, Stokes, & 

Wilson, 2003), built on the foundations laid by Morgan and other early geneticists to 

describe the chemical bases by which particulate genetic information could be 

replicated and inherited. Equally groundbreaking was subsequent work by Crick and 

others deciphering the genetic code, and formulating a model of protein synthesis 

through RNA intermediates (Crick, Barnett, Brenner, & Watts-Tobin, 1961). These 

findings provided a means by which genes – physically located in DNA – could give rise 

to phenotypic variation, which in turn natural selection could act upon as Darwin 

surmised. Over the following decades, other discoveries added weight to the supremacy 
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of the gene, but in many ways the convergence of ideas and advancements that drove 

gene-centric thinking culminated in 2003 with the completion of the first draft sequence 

of the human genome (Lander et al., 2001). The Human Genome Project, viewed as 

‘the single most important project in biology and biomedical sciences’ (White House 

Press Release, 2000), was undeniably a feat of human ambition, ingenuity, and 

technological innovation. It also helped establish many of the technological and 

conceptual foundations for contemporary genomics (Lander, 2015). But even before it 

was completed it was clear that the human genome project was not so much going to 

fulfill our expectations as transform them (Keller, 2000). Gradually, it became clear that 

metaphors used to market the human genome project were oversimplifications. Ideas 

that DNA provided the complete instructions for building a human, as reflected in ideas 

of it being a ‘blueprint for life’ or the ‘genetic program’, did not adequately reflect the 

subtle complexity of genomic processes, interactions, and the importance of the 

environment in human health and phenotypic variation (Eichler et al., 2010; Zuk, 

Hechter, Sunyaev, & Lander, 2012). The underwhelming number of uniquely human 

genes, the similarity of the genome to even quite distantly-related species, the amount 

of ‘junk’ DNA, and the difficulty in finding the genetic origins of many complex traits and 

disorders led many to view the human genome project as overhyped, oversold, under-

delivering, at least in the years immediately following the HGP (Eisen, 2010; Gorski, 

2010; Kamb, 2013). Adding to the confusion, molecular biologists, geneticists, and 

evolutionary biologists often had different conceptions about what constituted a ‘gene’ 

or ‘genome’ (Stencel & Crespi, 2013). These were not entirely new developments 
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restricted to the post-genomic era, however, and dissatisfaction with the skew towards 

DNA-focused, gene-centric ideas about phenotypic variability and evolution can be 

found throughout the 20th century (Keller, 2000; West-Eberhard, 2003).  

Plasticity, differentiation, and cellular memory 

The modern synthesis was based on classical genetics, in which the traits and 

transmission patterns of the traits themselves were the focus rather than the 

mechanisms and processes that give rise to them. Despite early warnings (Thomas 

Hunt Morgan, 1917), and evidence to the contrary, genes became synonymous with 

DNA. Phenotypes linked to position effect variegation (H. J. Muller, 1930), mobile 

transposable elements (McClintock, 1950), and imprinted genes (McGrath & Solter, 

1984; Surani, Barton, & Norris, 1984) were ‘exceptions to the rule’ of classical 

mendelian inheritance and ‘one-to-one’ relationships between genotype and phenotype, 

but were often overlooked (West-Eberhard, 2003). These unusual patterns of trait 

development came to be understood as examples of gene regulation linked to the gene 

in context – either a gene in relation to the rest of the genome or the developmental 

milieu in which the organism took form (Keller, 2014; McClintock, 1984). The sensitivity 

of the genome to the environment, although differently conceived, also become central 

to other schools of thought in genetics, ecology, and ethology. Reaction norms – 

whereby the same genotype can give rise to different patterns of phenotypic expression 

across a range of environments – were described as early as 1909, and helped bridge 

the gap between quantitative genetics and phenotypic plasticity (Woltereck, 1909). The 

role of the environment in phenotypic variation and evolution was also central to ideas 
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about learning, phenotypic switching, or context-dependent life-history strategies (West-

Eberhard, 2003). In a powerful response to genetic determinism and racist ideologies 

that are inextricably intertwined with 20th century genetics, biology, and anthropology 

(Marks, 2012), anthropologist Franz Boas demonstrated that rather than arising from 

distinct and stable racial types, traits like cranial morphology and body size among 

immigrants to the US were at least partly under developmental control (Boas, 1912; 

Boas & Boas, 1913). Thus unusual forms of heredity and plasticity sat uncomfortably 

alongside the DNA-focused genetics over much of the 20th century (West-Eberhard, 

2003).  

Other findings challenged the view that phenotypic variation belonged solely in the 

domain of the gene and DNA. Embryologists and developmental biologists were 

concerned with how a single fertilized zygote could grow to be a fully coordinated, 

functional multicellular organism (Villota-Salazar et al., 2016). Because geneticists had 

established that the DNA in each cell other than gametes was essentially identical, how 

cellular identity arose became central to developmental thinking. In addition to his ideas 

about aging and programmed death, Weismann devised a theory of development that 

involved the partitioning of germline and soma. The soma, he proposed, was made up 

of so-called determinants that were distributed unevenly as daughter cells branched into 

specialized cell lines (Weismann, 1893). This model was later falsified on the grounds 

that DNA itself was not partitioned but kept whole in each cell, leaving the question 

about what exactly led to cellular identity, and how such biological memory could remain 

unaltered. It was this interest in cellular identity and memory that led Conrad 
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Waddington to propose his famous graphical landscape in 1942, which served as a 

metaphor for development and cell fate (Waddington, 1942). He used the model – and 

the term ‘epigenesis’ – to describe the causal mechanisms linking genotype to 

phenotype. But by pointing to a gap between genotype and phenotype that needed to 

be mechanistically and conceptually filled, his insight also added a new layer to 

discussions about the role of genes in phenotypic variation (Gilbert, 2012). To 

developmental biologists following in Waddington’s footsteps it became increasingly 

obvious that some other process was needed for cellular differentiation and biological 

memory. It also became clear that genes were responsive to their environment, and 

phenotypes were intricately intertwined in their developmental context (McClintock, 

1984). We now know that many of the key aspects of cellular identity, biological 

memory, and environmental sensitivity are rooted in epigenetic processes.  

The 21st Century and the Rise of the Epigenome 

Epigenetic processes gained their namesake from Waddington’s early ideas of cellular 

identity and developmental fate (Deans & Maggert, 2015; Haig, 2004; Villota-Salazar et 

al., 2016). They can been viewed as a collection of chemical processes and 

modifications that are associated with cellular differentiation and mitotically- or 

meiotically heritable gene expression states, in the absence of the original perturbation, 

and not arising as a direct result of the underlying genetic (DNA) sequence (Allis et al., 

2015). Waddington’s term was popularized by Nanney (Nanney, 1958), who described it 

as a form of “cellular memory” and a homeostatic state based on “self-regulating 

metabolic patterns.” It is Nanney's definition that is closest to contemporary uses of the 



 

 

32 
term, although the term “epigenetic” is often used even in the absence of any evidence 

for mitotic/meiotic heritability or an effect of cell fate (Deans & Maggert, 2015; Greally, 

2018; Haig, 2004).  

Many epigenetic processes are intricately tied to genetic variation, thus it is true that 

genes are regulated by an organized program. But as researchers like John Gurdon, 

Kazutoshi Takahashi, Shinya Yamanaka, Keith Campbell and Ian Wilmut would 

demonstrate, this program is not entirely dependent on DNA sequence. Many crucial 

epigenetic processes linked to cellular differentiation and memory can be modified with 

the right combination of transcription factors. Their research in cloning and pluripotent 

stem cell induction demonstrated that the developmental ‘program’ can be reset or 

reversed, effectively rolling the developmental ball back up the slopes of Waddington’s 

epigenetic landscape (Campbell, McWhir, Ritchie, & Wilmut, 1996; Gurdon, 1962; 

Gurdon, Elsdale, & Fischberg, 1958; Takahashi et al., 2007). These findings not only 

revolutionize our understanding of development, but also our conceptions of memory 

and aging. By reprogramming a cell back its nascent state and producing an entirely 

new life from a fully-differentiated, aging cell, we have learned not only what makes 

cells remember, but how to make them forget. This work points to the idea that 

development, plasticity, and aging are different sides of the same coin, and that we are 

getting closer to bringing these facets together into a comprehensive theory of aging 

(Horvath & Raj, 2018). Epigenetics, therefore, is becoming synonymous with 

environmental sensitivity and biological memory – expanding the dominant narrative of 

evolution and aging built over much of the 20th century. 
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From a molecular perspective, epigenetic processes are currently recognized as falling 

into three categories: DNA methylation (DNAm), chromatin configuration involving 

modifications to histones, and non-coding RNAs (Allis et al., 2015). These processes 

are part of a set of intersecting and overlapping pathways involved in cellular 

metabolism, gene regulation, and genomic stability. Of these, DNAm is the most well-

studied for its role in development, phenotypic variation, and disease. DNAm involves 

the covalent attachment of a methyl moiety to the 5’ carbon of the cytosine base pair in 

DNA – usually in the context of a guanine to make up a ‘CpG’ dyad. The methyl moiety 

is thought to project into the major groove of DNA, inhibiting transcriptional activity 

(Auclair & Weber, 2012). Methylation can occur de novo through enzymatic reactions or 

be “copied” to the daughter strand following cell division based on the hemimethylated 

state of the template strand. In de novo methylation, transcription factors, enhancers, 

RNAs, or other co-factors are required for sequence specificity of methylation 

machinery. DNAm is frequently found in the context of dense clusters of CpG dyads in 

the promoter and regulatory regions of certain genes, referred to as CpG-islands. Highly 

methylated CpG islands in gene promoters are transcriptionally repressed, a state that 

may be passed on through mitotic, and in some cases, meiotic cell division (Ryan & 

Kuzawa, 2020). Accordingly, DNAm is involved in functions as diverse as 

embryogenesis, sexual differentiation, growth, cancer metabolism, and aging (Bocklandt 

et al., 2011; Fraga et al., 2005; Gupta et al., 2010; Jirtle & Tyson, 2013; Kanai & Arai, 

2012; T. O. Tollefsbol, 2012).  
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DNA methylation and the study of life history traits and tradeoffs 

DNAm offers multiple advantages for studying tradeoffs between reproduction and 

aging. In humans, DNAm can be measured using a methyl array, which is affordable 

and yields highly repeatable results across studies (Bibikova et al., 2011; Sandoval et 

al., 2011). Arrays like Illumina’s BeadChip series (e.g. 450k, EPIC) still require technical 

precision and costly equipment, but are more affordable on a per sample basis than 

sequencing based methods, and can often be processed by in house institutional core 

facilities. Another major advantage of using the Illumina array technology is that there 

are a suite of readily available preprocessing and computational pipelines for working 

with DNAm data (C. Bock, 2012). This makes the analysis of DNAm using these arrays 

more accessible to new researchers, even those with less experience using the 

command line and computationally intensive methods. In some cases, DNAm data is 

openly-available, providing researchers interested about life history traits and tradeoffs 

with the opportunity to test hypotheses using pre-existing datasets before diving in on 

their own. This stems from another key advantage, which is that Illumina Infinium arrays 

form the basis for the vast majority of DNAm studies in humans, making it possible to 

compare results across many social and environmental contexts.  

The fact that DNAm provides a window into the regulation of tens of thousands of 

genes, rather than a single gene or biological process, makes it a highly flexible tool for 

studying tradeoffs between reproduction and aging or other life history traits. Some of 

these changes are so predictable that researchers have devised epigenetic clocks that 

can be used to predict chronological age, mortality, and a broad range of biomarkers 
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and health outcomes (Ryan, 2020). In some cases, epigenetic clocks used to predict 

clinical measures and biomarkers like leptin levels or telomere leukocyte length are 

better of the outcomes associated with the measures than the original measure 

themselves (Lu, Quach, et al., 2019; Lu, Seeboth, et al., 2019), which means that 

DNAm from a single array provides a highly informative surrogate for numerous 

medically and biologically interesting processes.  

Because the 450k and EPIC arrays cover some component of 99% of all refseq genes 

(Bibikova et al., 2011), researchers can use DNAm differences across large numbers of 

loci to shed light on previously untheorized biological pathways using methods such as 

gene ontology (Ashburner et al., 2000). When biological pathways are many, 

condensing findings and creating meaning through the construction of statistical and 

graphical networks can provide unique insights into the molecular and physiological 

underpinnings of life history traits and associated tradeoffs (Gillis, Mistry, & Pavlidis, 

2010; Merico, Isserlin, Stueker, Emili, & Bader, 2010). This may be particularly useful in 

situations where conventional hypotheses have not been well-supported, creating the 

need to reconstruct the genomic impacts of reproduction from the molecular ‘ground 

up’. Leveraging databases and the huge body of literature built on studies on non-

human organisms, cell cultures, genetic medicine, and genome-wide association 

studies make this a particularly powerful approach (Ashburner et al., 2000). 

Yet another advantage of quantifying DNAm is that not only can it tell us about 

differences in genomic regulation between individuals, but it can also point to 

differences between cells within or between tissues (Houseman et al., 2012a). This is 
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particularly relevant because many broad physiological processes involve changes to 

kinds of cells in a tissue, not only the activity of the individual cells (Lappalainen & 

Greally, 2017). This allows for the study of differences in leukocyte composition in 

blood, for example, which undergird immune profile and hematopoiesis. This approach 

may be particularly important when studying reproduction and aging, which at the 

physiological level are both intricately tied to immune regulation (Finch, 2010; Fulop et 

al., 2018; Suchard, 2015).  

New horizons in anthropological epigenetics 

Until recently, most epigenetics research carried out in humans has been biomedically-

focused, with a strong emphasis on the role of epigenetic processes in health-related 

traits like cancers, obesity, mental illness, and pre-term birth. Similarly, the majority of 

research on evolutionary adaptation and epigenetics has been conducted under the 

purview of experimental geneticists using yeast, mice, Drosophila, and Arabidopsis or 

other model organisms (e.g. Heo & Sung, 2011; Pillus & Rine, 1989). This work has 

been crucial for understanding molecular processes involved in epigenetic regulation of 

gene activity, and the effects of aberrant epigenetic processes, but has left open a 

space for understanding evolution, plasticity, and life history tradeoffs. Fortunately, the 

focus of epigenetic studies has started to shift. A growing number of evolutionary 

biologists have been working to understand adaptation and evolution in free-living 

organisms in the wild (e.g. Heckwolf et al., 2020; Lira-Medeiros et al., 2010), and 

biomedical researchers are recognizing the value of natural human epigenetic variation 

and including ‘diversity’ in their samples (Carja et al., 2017; Fagny et al., 2015; Gopalan 
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et al., 2017; Horvath et al., 2016). In anthropology, epigenetics is now being taken up 

enthusiastically and with exciting consequences. Anthropologists are using 

sophisticated theories and methods to infer phenotypes among ancient hominids 

(Gokhman et al., 2019, 2020), to understand human evolution in cognition or other 

human specific traits (Mendizabal et al., 2016; J. Zeng et al., 2012), and to build 

epigenetic maps of adaptation to extreme environments (Childebayeva et al., 2019). 

Anthropologists have also often been at the forefront of addressing the molecular and 

health implications of early life environments (Thomas W. McDade et al., 2017; Non et 

al., 2016), inequality (Kuzawa & Sweet, 2009; Thomas W. McDade et al., 2019), and 

trauma (Mulligan, 2016).  

Despite these important contributions, one area that is surprisingly understudied in 

anthropological epigenetics involves questions related to life history traits and tradeoffs 

(Bar-Sadeh et al., 2020). Tradeoffs between reproduction and aging in women have 

been investigated using measures of body condition (M. Gurven et al., 2016), oxidative 

stress (Ziomkiewicz, Frumkin, Zhang, Sancilio, & Bribiescas, 2018; Ziomkiewicz et al., 

2016), and telomere length (Barha et al., 2016; Lane-Cordova et al., 2017), but have 

often yielded mixed or inconclusive results. In men, the immunosuppressive effect of 

testosterone is thought play a key role in costs of reproduction and has also been 

studied with a range of immunological measures (Lee T. Gettler, McDade, Agustin, 

Feranil, & Kuzawa, 2014; Nowak, Pawłowski, Borkowska, Augustyniak, & Drulis-Kawa, 

2018; Prall & Muehlenbein, 2015; Rantala et al., 2012). However, here too the most 

dominant hypotheses linking reproduction with aging have not been well-supported in 
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the literature and appear to fall short. What may be needed is a new way of studying 

tradeoffs in human life history that can both test classical hypotheses and pave the way 

for new ones. In the post-genomic era and in the wake of the century of the gene, one 

way forward may be through the incorporation of epigenetic processes like DNAm.  

While biomedical studies often have disease biomarkers, and genetic and epigenetic 

data, they frequently lack rich, long-term information about the social and environmental 

context (Mill & Heijmans, 2013). In contrast, many anthropological studies have 

extensive details on growth, reproduction, culture, and environment, but lack large 

samples of individuals with genetic or epigenetic data. A rare example that combines 

the best of both worlds and meets the criteria outlined above for studying the tradeoffs 

of reproduction and aging in the epigenome can be found in the Cebu Longitudinal 

Health and Nutrition Survey (CLHNS)(Adair et al., 2011; Kuzawa et al., 2020). The 

CLHNS is a prospective community-based cohort study, drawn using a single-stage 

cluster-sampling procedure across 17 urban and 16 rural barangays (neighborhoods) in 

the Cebu metropolitan area in the Philippines (Adair et al., 2011). The study was 

launched by an interdisciplinary team in 1983 with the enrollment of 3327 pregnant 

women ranging from 14-39 years old. These women, and the children borne of those 

pregnancies in particular, have been followed as part of a longitudinal research covering 

topics as far reaching as obesity and breastfeeding to the effects of socioeconomic 

status, domestic violence, and substance abuse (Adair et al., 2011). In addition to this 

rich social and environmental information, extensive data related to life history traits and 

transitions has been collected on numerous occasions over the past 35 years, including 
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growth rate, sexual maturity and relationship status, sexual attitudes and behaviors, 

immune function and metabolism, parenting behavior and stress, and fertility and aging 

(Kuzawa et al., 2020). For the children who were in utero during study initiation (i.e. 

index children), these survey data are accompanied by a long list of biomarkers 

including hormones, cytokines, inflammatory biomarkers, and for a subset of individuals, 

genome-wide genetic and DNAm data.  

The CLHNS provides a rare opportunity to study the epigenetics of life history tradeoffs 

in humans, including tradeoffs between reproduction and aging (Kuzawa et al., 2020). A 

number of CLHNS index children adhere to traditional Catholic ideas about sex, 

contraception, and marriage, and many are married young and have large families. This 

contributes to fecundity rates that are atypical in many Western contexts but provides a 

greater range of naturally-occurring variation in reproductive effort ideal for testing 

evolutionary hypotheses. Another advantage of the CLHNS is the narrow age-range of 

index children, which reduces potential for confounding brought about through secular 

changes to reproduction, behavior or health that could otherwise impact the epigenome. 

Finally, numerous waves of data collection both before and after collection of epigenetic 

data can help to rule out other lurking variables that might confound our findings. For 

example, if some unmeasured genetic, social or environmental cue increases fecundity 

through changes in the epigenome (and not the other way around), researchers can 

look at fecundity for the years following epigenetic data collection to test for this 

relationship. A relationship between the epigenome and fecundity is more consistent 

with antagonistic pleiotropy, whereas the lack of such a relationship is more consistent 
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with a situation in which reproduction affects the epigenome, more aligned with the 

disposable soma theory. Because of the lifelong data, it is also possible to account at 

least partly for socioeconomic status and parental education both when individuals were 

born and when the study was conducted. While tests like these do not eliminate the 

possibility for confounding, they provide ways to eliminate alternative hypotheses that 

are not always possible in purely cross-sectional studies.  

Dissertation overview 

In this dissertation, I capitalize on the lifetime of data for CLHNS index children to study 

tradeoffs between reproduction and aging in the human epigenome. Specifically, I 

concentrate on 496 young (20-22 years old) men and women with a range of lifetime 

exposures and reproductive histories to test the disposable soma theory. To examine 

the relationship between reproduction and aging in the epigenome, I use a combination 

of genome-wide DNA methylation data, genetic data, and reproductive histories 

reconstructed using multiple data collection waves in 2005 and 2007. Using multiple 

surveys about reproductive history allowed me to quantify pregnancies and determine 

women’s reproductive status when DNAm was measured, even among women who 

were unaware of being pregnant at the time. In Chapter 2, I begin by describing 

‘Epigenetic Clocks’, an emerging molecular tool that I use in Chapter 3 and 5 for 

quantifying biological aging (Ryan, 2020). I highlight the theory behind epigenetic 

clocks, and their utility in studying environmental sensitivity and life history tradeoffs in 

humans. I emphasize some of the key considerations in study design and bioinformatic 

processing pipelines to maximize the utility and rigor of these fascinating tools. In 
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Chapter 3, I use one of these epigenetic clocks (Horvath, 2013) and telomere length – a 

separate measure of cellular aging (Harley, Futcher, & Greider, 1990) – to test for costs 

of reproduction among 397 young women in the Philippines. I look at the relationship 

between number of pregnancies and epigenetic age and telomere length, under the 

premise that increased reproductive effort should come at the expense of somatic 

maintenance and accelerated cellular aging (Ryan et al., 2018). Because pathways 

contributing to tradeoffs in women may be most apparent during pregnancy and 

lactation, when reproductive effort is greatest, I turn to the effects of pregnancy and 

breastfeeding on the methylome more broadly in Chapter 4. The aim here is to 

understand why parity and breastfeeding are associated with differences in mortality 

and both increased and decreased risks for certain diseases (Beral, 1985; Grundy & 

Read, 2015). In order to get a better understanding of the biological processes involved 

in reproduction and women’s health and aging, I then follow epigenome-wide 

association with gene set enrichment and network construction (Gillis et al., 2010; 

Merico et al., 2010). This provides integrated networks of biological processes that are 

more amenable for interpretation and hypothesis generation when looking at large 

numbers of epigenetic differences between women in different reproductive states. 

Originally, plans for the final data chapter included a second measure of DNAm and 

parity roughly 10 years after the original samples were collected in 2005. This would 

have allowed us to compare changes in DNAm with changes in reproductive effort in 

women, and reduce potential confounding tied to individual differences in health or 

access to resources. However, the global COVID pandemic interrupted the processing 
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of these samples, leading to a late transition to investigating costs of reproduction in 

men. This topic forms the basis Chapter 5, which offers a first assessment of the utility 

of using DNAm to study CoR in a smaller sample of men. In contrast with women, for 

whom reproductive investment is directly tied to pregnancy and lactation, costs of 

reproduction in men are thought to arise through the pleiotropic effects of testosterone 

(T)(Bribiescas, 2001). To test for an effect of T on mortality risk and biological aging, I 

examine the relationship between T and four epigenetic clocks in 90 young male index 

children. Each of these four clocks captures slightly different dimensions of biological 

aging and mortality risk, providing us a rough window into the potential costs of high 

testosterone in men (Hannum et al., 2013; Horvath, 2013; Levine et al., 2018; Lu, 

Quach, et al., 2019). To test for immunosuppressive effect of T, I examine 

bioinformatically-derived cell proportions, as well as immune function that has been 

collapsed along an axis of innate-acquired immunity. This allows us to test the classical 

model of costs of high T, referred to as the immunocompetence handicap hypothesis 

(ICHH)(Folstad & Karter, 1992; William D Hamilton & Zuk, 1982). To shed light on 

untheorized links between T and men’s health, I then take a hypothesis generating 

approach to the study of the effect of T on men’s epigenome (Biesecker, 2013). I 

conclude with future directions arising directly from this dissertation, including the 

current status of the longitudinal analysis of gravidity and epigenetic age in women 

originally planned, and other funded research to greatly expand the sample size for 

costs of reproduction in men. I also provide summary of some of the opportunities and 
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challenges that lay ahead in life history epigenetics and conclude with thoughts on the 

role epigenetics in studying human variation and health more broadly.  
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Chapter 2. ‘Epigenetic Clocks’: Theory and applications in human 
biology 

Abstract 

All humans age, but how we age – and how fast – can differ considerably from person 

to person. This deviation between ‘apparent’ age and chronological age is often referred 

to as ‘biological age’ (BA) and until quite recently tools for studying BA have remained 

elusive. ‘Epigenetic clocks’ have begun to change this. Epigenetic clocks use 

predictable changes in the epigenome, usually DNA methylation, to estimate 

chronological age with unprecedented accuracy. More importantly, deviations between 

epigenetic age and chronological age predict a broad range of health outcomes and 

mortality risks better than chronological age alone. Thus, epigenetic clocks appear to 

capture fundamental molecular processes tied to BA and can serve as powerful tools for 

studying health, development, and aging across the lifespan. In this Toolkit, I review 

epigenetic clocks, especially as they relate to key theoretical and applied issues in 

Human Biology. I first provide an overview of how epigenetic clocks are constructed and 

what we know about them. I then discuss emerging applications of particular relevance 

to Human Biologists – those related to reproduction, life-history, stress, and the 

environment. I conclude with an overview of the methods necessary for implementing 

epigenetic clocks, including considerations of study design, sample collection, and 

technical considerations for processing and interpretation of epigenetic clocks. The 

goals of this Toolkit are to highlight some of the ways that epigenetic clocks can inform 

questions in Human Biology, and vice versa, and to provide Human Biologists with the 
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foundational knowledge necessary to successfully incorporate epigenetic clocks into 

their own research. 
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Introduction 

Aging is a ubiquitous feature of the human experience and a leading predictor of health, 

disability, morbidity, and mortality (Clark, 2002; Crews, 2003). Nevertheless, individuals 

of the same chronological age often vary markedly in their age-related physical, 

physiological, and cognitive decline. Rare genetic disorders such as Werner syndrome 

provide extreme examples of accelerated aging, but individual differences in 

cardiovascular, metabolic, musculoskeletal, and neurological decline are present in all 

populations. The decline in functional capacity that can be decoupled from chronological 

age is often referred to as ‘biological age’ (BA), and is thought to arise as a function of 

both genes and the environment (Levine, 2013).  

Although the mechanistic underpinnings of BA are still only partly understood, the 

epigenome is emerging as fundamental component of BA (Benayoun et al., 2015; 

Jones, Goodman, et al., 2015). The contribution of epigenetic processes – including 

DNA methylation, chromatin modifications, and non-coding RNAs – to early 

development and cellular memory are well-known (Allis et al., 2015). More recently, 

researchers showed that the epigenome not only changes with age, but often does so in 

a highly predictable manner (Bocklandt et al., 2011). These predictable, age-associated 

changes in the epigenome have now been used to design a set of tools that are 

changing how we study aging across the lifespan. These tools are referred to as 

‘epigenetic clocks’ (Field et al., 2018). 
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Epigenetic clocks – typically based on DNA methylation (DNAm) – were initially 

designed to predict chronological age, and have proven to be the most accurate tool for 

doing so (Horvath, 2013; Q. Zhang et al., 2019). They accurately estimate age from 

prior to conception to the most advanced human ages, and even ‘tick’ in isolated cells in 

vitro (Hoshino, Horvath, Sridhar, Chitsazan, & Reh, 2019). However, they also appear 

capable of capturing fundamental molecular processes tied to BA that are still not well 

understood. Epigenetic clocks outperform many other measures, including 

chronological age, at predicting a long list of age-related health outcomes – from cancer 

to menopause – as well as all-cause mortality (Horvath & Raj, 2018). Now, newer 

epigenetic clocks are being explicitly ‘trained’ not only on chronological age, but on a 

range of other age-related biological and health-related measures. This includes other 

biomarkers of health and aging such as leukocyte telomere length and leptin levels, in 

some cases even outperforming the predictive ability of the original biomarker of interest 

(Lu, Quach, et al., 2019; Lu, Seeboth, et al., 2019).  

The predictive capacity of epigenetic clocks allows researchers to study aging and 

mortality while circumventing many of the logistical or temporal challenges inherent in 

following a large sample over the long timeframes necessary to obtain clinical or 

demographic outcomes. Newer epigenetic clocks expand their applications into new 

territories, solidifying them as a flexible family of tools for tackling long-standing 

questions in Human Biology, including plasticity in development, life-history traits, 

tradeoffs, and the role of the environment in the pace of aging and senescence.  
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The purpose of this Toolkit is to introduce Human Biologists without extensive 

background in genetics, molecular biology, or bioinformatics to epigenetic clocks: what 

they are, what they do, and how to use them. The focus of this article will be practical, 

and the aim is to provide readers with the foundation necessary to evaluate the utility of 

epigenetic clocks for their research program. After a broad introduction to the statistical 

methods used to ‘train’ epigenetic clocks – which are important for understanding the 

capabilities and limitations of these tools – I provide an overview of both established 

and emerging applications of epigenetic clocks for research in Human Biology. These 

include studying the impact of nutrition, exercise, and lifestyle; reproductive investment 

and tradeoffs; stress and resilience; and the environment and ecology on aging and 

age-related decline. I then discuss aspects of study design, sample collection, technical 

processing of DNAm, and interpretation of results for studies using epigenetic clocks. I 

include key references and resources that will help facilitate the incorporation of 

epigenetic clocks into human biology research.  

What are ‘epigenetic clocks’?  

Epigenetic clocks can refer to two distinct but related phenomena. The first refers to 

epigenetic changes – typically DNA methylation (DNAm) – as they unfold predictably 

over time (Jones, Goodman, et al., 2015). Specifically, this definition describes an 

innate biological process as it relates to an age-related outcome of interest (e.g. 

chronological age, mortality risk, etc.). The pace or ‘ticking rate’ for some clocks may be 

influenced by genetic oscillators and circadian genes, but ‘epigenetic clock’ is not 

synonymous with other circadian ‘clocks’. The second definition of ‘epigenetic clock’ 
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describes a statistical model that uses predictable epigenetic variation – often DNA 

methylation (DNAm) – to estimate an age-related outcome of interest (Horvath & Raj, 

2018). The predictable age-related changes in DNAm that are used for epigenetic 

clocks can be determined using two methods: supervised machine learning or 

epigenome-wide association.  

Most well-known epigenetic clocks are constructed using supervised machine learning 

methods (Horvath & Raj, 2018). This kind of clock construction entails a ‘training’ stage 

and a ‘testing’ stage. The clock is ‘trained’ by compiling a large dataset comprised of 

DNAm values for many samples and the outcome of interest (e.g. the chronological age 

of the individual the sample comes from). Sample variety and size is important for 

training a model that can later be generalized to other contexts (James, Witten, Hastie, 

& Tibshirani, 2013). Training starts with an oversaturated model in which the number of 

predictors (i.e. scaled DNAm for all available sites) greatly exceeds the number of 

observations (i.e. individual samples). Penalized regression methods (e.g. ridge, lasso, 

or elastic net) then either shrink (i.e. regularize) coefficients or ‘soft-threshold’ 

coefficients below an absolute value to zero. Regularizing coefficients in this way 

reduces the bias of the final model, making it more robust when applied in other 

contexts. Soft-thresholding to zero is also a form of feature selection, such that only the 

most informative predictors (i.e. CpG sites) are retained in the final model. The 

shrinkage penalty, which determines the strength of regularization and thresholding, can 

be ‘tuned’ by fitting models across a grid of penalty values and calculating the error 

using resampling methods such as bootstrapping or k-fold cross-validation (James et 
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al., 2013). The result is an equation – both a subset of CpGs and their associated 

coefficients – that can be then used to predict the age-related outcome of interest (e.g. 

chronological age) in a new sample of individuals or tissues.  

Validating the model in new contexts with known outcomes is referred to as ‘testing’ 

(James et al., 2013). Testing epigenetic clocks allows the researcher to determine the 

accuracy of the clock for predicting the age-related outcome of interest. For example, 

one of the most well-studied clocks was designed by Steve Horvath (Horvath, 2013), 

who trained his clock using 21,369 probes from 3921 samples derived from 39 datasets 

comprised of 27 different tissues. His model converged on a clock that uses variation in 

DNAm from 353 CpG loci. This clock was then tested in 3211 samples derived from 42 

different studies and from 22 tissues (Horvath, 2013). Because it was trained using data 

from many different tissues, Horvath’s clock shows remarkable accuracy across a range 

of contexts and tissue types. Pearson’s correlation coefficients between predicted age 

and chronological age are high (r = 0.96, p<1.0e-200), while median error between 

predicted age and chronological age are low (3.6 years across range of 0-100 

years)(Horvath, 2013). Once trained and tested, the clock can be used to predict the 

age-related outcome of interest in new contexts.   

While regularized regression and the methods described above have generated the 

most well-known epigenetic clocks, other approaches of selecting age-associated CpG 

loci have also been successfully employed. Several clocks have been derived by using 

the strongest correlations between DNAm and chronological age from epigenome-wide 

association studies (EWAS) (Lin et al., 2016; Vidal-Bralo, Lopez-Golan, & Gonzalez, 
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2016; Weidner et al., 2014; Y. Zhang et al., 2017). Because they may rely on relatively 

few CpG loci in their age calculations, such clocks can be more economical and do not 

require technical bioinformatic skills to use. However, it is not known whether clocks 

built in this way exhibit the same accuracy and robustness across contexts (e.g. across 

different genetic backgrounds, tissue types, age ranges) as clocks using a larger 

number of CpG sites. Regardless of the methods used, researchers interested in using 

epigenetic clocks to predict chronological age or other age-related phenomenon should 

understand the context in which the clock was trained and how it performs under a 

range of contexts relevant to the hypothesis or application. In this respect, Human 

Biologists also have the opportunity to play an important role in assessing performance 

of various clocks in different ecological and social settings as the field develops (e.g. 

Horvath et al., 2016). 

Applications and utility of epigenetic clocks 

Established applications of epigenetic clocks 

Predicting chronological age 

Epigenetic clocks trained on chronological age have proven to be the most accurate 

markers of chronological age devised (Horvath, 2013; Q. Zhang et al., 2019). This 

accuracy is highly desirable for forensics or for estimating chronological age in isolated 

populations that may not have detailed or accurate birth records. However, a ‘perfect’ 

chronological epigenetic clock is by design uninformative with respect to variation in 

health, development, and BA (Q. Zhang et al., 2019). Quite early on it became obvious 
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that one of the most interesting features of certain epigenetic clocks was not simply that 

they are accurate – but what these clocks can tell us when they are wrong! It turns out 

that the discrepancy between an individual’s actual and predicted chronological age – 

the ‘error’ in the clock – captures a range of normal and pathological variation in 

biological aging and development (Chen et al., 2016; Marioni, Shah, McRae, Chen, et 

al., 2015). This discrepancy, often referred to as ‘epigenetic age acceleration’ 

(AgeAccel) expands the applicability of chronological epigenetic clocks beyond simple 

‘time-keepers’ and into groundbreaking tools for studying BA. 

Predicting morbidity and mortality 

Human biologists and researchers in allied fields are often concerned with the long-term 

health of their study population, and researchers may wish to understand how 

healthspan and lifespan are affected by tradeoffs, constraints, lifestyle, behavior, or 

psychosocial stress. However, following subjects over the long periods of time 

necessary to record clinical and mortality outcomes can be costly to initiate and 

maintain (Ng et al., 2012). The ability of epigenetic clocks to predict morbidity and 

mortality far in advance of their clinical endpoints makes them powerful tools for 

studying health and BA even without long-term follow-up studies.  

Horvath’s clock – especially accounting for chronological age and cell-type variation in 

the blood sample (referred to as ‘intrinsic epigenetic age acceleration’ or Horvath-IEAA; 

Table 2-1), predicts all-cause mortality. The predictive accuracy remains even after 

correcting for a range of mortality-associated risk factors (i.e. chronological age, social 
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class, educational level, body mass index, alcohol intake, smoking pack-years, self-

reported recreational physical activity, hypertension, history of diabetes, history of 

cancer, hypertension status, cardiovascular disease, and APOE e4 status) (Chen et al., 

2016; Marioni, Shah, McRae, Chen, et al., 2015). Similarly, Hannum’s clock – including 

correcting for chronological age and weighted to incorporate additional information 

about age-related blood immune cell composition (‘extrinsic epigenetic age acceleration’ 

or Hannum-EEAA) has yielded similar results (Chen et al., 2016). The relationships 

between epigenetic age and mortality risk reported in these studies is not trivial; 

individuals in the top 5% of epigenetic age were at an almost 50% higher risk of 

mortality during follow-up than an individual with the average epigenetic age (Chen et 

al., 2016). 

In addition to all-cause mortality, acceleration of Horvath and Hannum clocks (and their 

IEAA and EEAA extensions) accurately predict leading causes of morbidity and 

mortality including lung function (Marioni, Shah, McRae, Ritchie, et al., 2015), frailty and 

cognitive decline (Breitling et al., 2016; Marioni, Shah, McRae, Ritchie, et al., 2015), and 

cancer (Levine, Hosgood, et al., 2015; Zheng et al., 2016). As discussed in more detail 

below, both clocks are also associated with a range of environmental exposures and 

developmental outcomes. However, neither the Horvath nor Hannum clocks were 

originally designed to predict these outcomes; i.e. both were ‘trained’ on chronological 

age alone. Indeed, a recently-devised epigenetic clock of chronological age using larger 

sample sizes is so accurate that it no longer reflects BA, and the error in this clock 

shows no discernable relationship with mortality (Q. Zhang et al., 2019). Accordingly, 
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other epigenetic clocks have been developed, trained on outcomes ranging from 

gestational age and leukocyte telomere length to markers of inflammation and all-cause 

mortality itself (Table 2-1). These new clocks are filling in the gaps left by the Horvath 

and Hannum clocks and are expanding the utility of epigenetic clocks into a family of 

molecular tools for studying aging and development across the lifespan.  

While a comprehensive review of all epigenetic clocks is beyond the scope of a short 

review, several clocks have been devised specifically to predict BA and mortality risk, 

and have demonstrated exceptional capacity to do so. Levine et al. (2018) trained their 

‘PhenoAge (Table 2-1)’ clock by selecting a subset of clinical markers predictive of age-

related mortality. A mortality score (in years) was then calculated, which was used as 

the outcome of interest for selecting CpGs in a supervised machine learning approach 

similar to that described for Horvath’s clock above (James et al., 2013). Thus, although 

it includes chronological age as a covariate, the resulting DNAm clock is based on a 

clinically-based mortality score, rather than chronological age itself (Levine et al., 2018). 

Using similar approaches, the GrimAge clock created by Lu et al. (Table 2-1) is based 

on chronological age, sex, and DNAm clocks for smoking pack years and 7 other 

clinical markers of mortality (Lu, Quach, et al., 2019). This means that GrimAge is an 

epigenetic clock built on sex, age, and eight other epigenetic clocks!  

Although the derivation of these newer clocks may strike some readers as unintuitive, 

their predictive ability and accuracy across contexts is remarkable. Accelerated 

PhenoAge is highly predictive of cardiovascular disease risk, number of coexisting 

morbidities, poorer likelihood of being disease free, poorer physical and cognitive 
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function, and likelihood of dying of lung cancer among both smokers and non-smokers 

(Levine et al., 2018). In one study, the mortality hazard of individuals in the top 5% of 

AgeAccelPheno was found to be >2.5 times greater than those in the bottom 5% 

(Levine et al., 2018). Lu’s GrimAge has produced even more striking results. 

AgeAccelGrim predicts hypertension, type II diabetes, poorer physical functioning, time-

to-coronary heart disease, time-to-cancer, chronic obstructive pulmonary disease, and 

computed tomography for visceral adiposity and fatty liver (Hillary et al., 2020; Lu, 

Quach, et al., 2019). Individuals in the top 5% of AgeAccelGrim in a large meta-analysis 

had a mortality risk >4.5 times greater than those in the bottom 5% (Lu, Quach, et al., 

2019). More recently, a clock was developed using change in 18 age-associated 

biomarkers rather than cross-sectional measurements (Belsky et al., 2020). The authors 

refer to this tool as referred to as a ‘speedometer’ of aging rather than a ‘clock’, 

stemming from the longitudinal nature of the training data and what appears to be a 

capacity to measure the pace – not static state – of BA. This clock or others using 

longitudinal data may be more useful for studying changes in environments or health 

interventions, such as caloric restriction (Belsky et al., 2020).



 
Table 2-1. List of major epigenetic clocks, how they were derived, what they were trained on, the number of CpG sites 
used for estimation, and relevant references. 
Major Clocks Derived from Trained on #CpG References 

Horvath AgeAccel 21,369 CpGs Chronological age 352 Horvath 2013 
Hannum AgeAccel EWAS on 473,034 CpGs, feature 

selection on 70,387 age-
associated CpG sites 

Chronological age 71 Hannum et al. 
2013 

Horvath Intrinsic 
Epigenetic 
AgeAccel (IEAA) 

Same as Horvath AgeAccel plus 
additional sites used for white 
blood cell estimation 

Chronological age (estimated 
white blood cell proportion 
down-weighted) 

~30k Chen et al. 2016 

Hannum Extrinsic 
Epigenetic 
AgeAccel (EEAA) 

Same as Hannum AgeAccel plus 
additional sites used for white 
blood cell estimation 

Chronological age (estimated 
white blood cell proportion up-
weighted) 

~30k Chen et al. 2016 

Levine-
DNAmPhenoAge 
(AgeAccelPheno) 

20,169 CpGs Composite of clinical 
measures of health and 
lifespan 

513 Levine et al. 2018 

Lu-DNAmGrimAge 
(AgeAccelGrim) 

DNAm clocks for seven candidate 
biomarkers and DNAm smoking 
pack years, age, and sex 

Time to death 1030 Lu et al. 2019 

Lu-DNAmTL ~450k CpGs found on both 
Illumina 450k and EPIC arrays 

Telomere length 140 Lu et al. 2019 

Weidner’s 3-CpG 
age clock 

EWAS on ~27k CpGs, feature 
selection on 102 CpGs 

Chronological age 3 Weidner et al. 
2014 

Zhang’s 10-CpG 
mortality clock 

EWAS on 430,363 CpGs, feature 
selection on 58 replicated age-
associated CpGs  

All-cause mortality 10 Zhang et al. 2017 
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The relationships between many of the aforementioned clocks and morbidity and 

mortality have been replicated using large (n = 7300-9500) meta-analyses across 

multiple populations, even controlling for sample heterogeneity and a range of additional 

biological, social and environmental risk factors (but see Kresovich, Xu, et al., 2019). 

Furthermore, the number of sites used (71-1030 CpGs) means that these clocks appear 

to be relatively robust to some technical variation and/or some missing data. However, 

the Horvath, Hannum, Levine and Lu clocks were trained and tested on DNAm derived 

from the Illumina Infinium microarray platform, which may still be cost-prohibitive for 

some projects (see ‘Choosing a clock and measuring DNAm’, below). A more affordable 

approach includes a clock by Zhang et al. that uses a score based on DNAm at only 10 

CpG sites which can be measured cheaply and easily using methods such as bisulphite 

pyrosequencing. Zhang’s 10 CpG mortality clock (Table 2-1) is able to predict frailty, 

cardiovascular disease mortality, cancer mortality, and all-cause mortality with 

astonishing accuracy: individuals with aberrant DNAm levels for ≥5 of 10 sites have 

mortality hazard ratios 7 times greater than that of individuals with no evidence of 

aberrant DNAm for any of the 10 sites (Y. Zhang, Saum, Schöttker, Holleczek, & 

Brenner, 2018; Y. Zhang et al., 2017). The reliance of this clock on relatively few CpG 

sites for estimating morbidity and mortality risk could make this clock more sensitive to 

the influence of genetic or technical variation, although so far there is no evidence for 

the former (Y. Zhang et al., 2017). Furthermore, while Zhang’s clock has not been 

tested in as many populations as the microarray-based clocks, these findings have 

been replicated in at least one other population, lending support to Zhang’s 10 CpG 
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mortality clock for questions pertaining to mortality and morbidity in human populations 

(Gao et al., 2019).  

Predicting growth, development, and maturation 

Senescence, morbidity, and mortality represent one end of the continuum of BA. But 

epigenetic clocks also appear to be able to track early growth, development and 

maturity, making epigenetic clocks useful to researchers interested life history tradeoffs 

that involve growth and development (e.g. between growth and immunity (Urlacher et 

al., 2018)). Horvath’s clock begins ‘ticking’ just weeks after conception, with the onset of 

cellular differentiation (Hoshino et al., 2019). Epigenetic aging also progresses normally 

in embryonic tissues grown in vitro and in pluripotent stem-cell derived organoids 

(Hoshino et al., 2019), consistent with the postulation that Horvath’s clock captures a 

fundamental property of development and BA. Given that development involves the 

interplay of both genes and the environment, it is not surprising that the pace of 

epigenetic clocks appears to be determined by both genetic and early life maternal and 

environmental effects.  

Indeed, Horvath’s epigenetic clock ‘ticks’ most rapidly during infancy, childhood, and 

adolescence (Horvath, 2013). In contrast to the other clocks discussed so far, Horvath’s 

training set included infants and children (range 0-100 years) making it more applicable 

to younger individuals, and most early studies of epigenetic age conducted in infants 

and children used this clock. Using Horvath’s clock, Simpkin et al. found that infants 

born by cesarean section or to mothers who smoke have accelerated epigenetic age at 
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birth (Simpkin et al., 2016). However, some maternal effects may not manifest until 

childhood and adolescence. Birthweight does not predict Horvath-AgeAccel at birth, but 

it positively predicts Horvath-AgeAccel during childhood (~7-9 years of age) and 

negatively predicts Horvath-AgeAccel during adolescence (~14.5-19 years of 

age)(Simpkin et al., 2016). This ‘reversal’ of epigenetic age trends between childhood 

and adolescence is an important component of epigenetic aging: children with higher 

Horvath-AgeAccel may exhibit slower Horvath-AgeAccel after adolescence. It is also 

during childhood and adolescence when the difference in Horvath-AgeAccel between 

males and females emerges (Simpkin et al., 2016), with males showing markedly more 

advanced epigenetic ages than females by early adulthood, consistent with the higher 

mortality rates and shorter average life expectancy of men (Crimmins, Shim, Zhang, & 

Kim, 2019). 

One possible explanation for the apparent reversal of Horvath-AgeAccel at puberty 

traces to the fact that prior to adulthood, children with favorable developmental 

conditions exhibit accelerated Horvath epigenetic age (Simpkin et al., 2016). Indeed, 

accelerated epigenetic age during childhood has been found to predict height (Lee T. 

Gettler et al., 2020), menarcheal age and maturational tempo (time between thelarche 

and menarche)(Binder et al., 2018; but see Simpkin et al., 2017). However, 

accelerations of Horvath’s epigenetic age during childhood has also been associated 

with stress (Davis et al., 2017; but see Marini et al., 2020), exposure to violence 

(Jovanovic et al., 2017), and allergies (Peng et al., 2019), suggesting that Horvath-

AgeAccel is more than simply a reflection of healthy development. Life history theory 
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could provide a useful framework for clarifying the divergent patterns in epigenetic aging 

in growing children. Children exposed to high levels of stress, violence, poor nutrition, 

infectious disease or extrinsic mortality may facultatively adjust maturational tempo to 

match presumed future prospects of survival and reproduction (Ellis & Del Giudice, 

2019; Kuzawa & Bragg, 2012). Such adjustments could result in tradeoffs that will affect 

health and lifespan in adulthood, consistent with broader expectations of work 

describing the developmental origins of health and disease (DOHaD). This framework 

might explain the apparently paradoxical finding that children in both favorable and 

unfavorable environments may exhibit epigenetic age acceleration. 

To more precisely model the epigenetic changes that occur during childhood, several 

clocks that capture gestational (Knight et al., 2016) and pediatric (McEwen et al., 2019) 

epigenetic age have been developed. These clocks are providing non-invasive 

biomarkers for understanding pre-natal developmental trajectories and will be 

increasingly useful for researchers working with infants and children as more data on 

these clocks accumulates. An important next step in this area is to link early life 

exposures that affect epigenetic clocks during childhood with health and functional 

decline during adulthood.  

Epigenetic clocks as surrogates for other biomarkers 

An important characteristic of epigenetic ‘clocks’ is that they can be trained on any 

feature that is accompanied by predictable changes in DNAm. As already described for 

Levine’s PhenoAge and Lu’s GrimAge clocks, this includes using DNAm as surrogate 
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predictors for age-related changes in other clinical or biomarkers. In addition to the 

GrimAge clock, Lu and colleagues generated an epigenetic clock for leucocyte telomere 

length, a measure genome stability and cellular senescence and biomarker for a range 

of health and age-related risk factors (Bakaysa et al., 2007; Blackburn & Gall, 1978; Rej 

et al., 2020). While the correlation between telomere length and the clock for leukocyte 

telomere length (DNAmTL) in validation populations was modest (r = 0.44), Lu et al. 

found that DNAmTL outperformed telomere length alone in its associations with age, 

sex, and self-reported racial identity (Lu, Seeboth, et al., 2019). DNAmTL also 

outperformed telomere length alone in predicting time-to-death, time-to-coronary heart 

disease, time-to-congestive heart failure, and history of smoking, even after adjusting 

for a range of classical risk factors (body mass index, educational history, alcohol 

intake, history of diabetes, history of cancer, and hypertension status)(Lu, Seeboth, et 

al., 2019). While DNAmTL does not appear to be capturing telomere length itself, it is 

thought to measure biological outcomes that are themselves associated with shortening 

telomere length in adults (Lu, Seeboth, et al., 2019).  

The fact that the DNAmTL based surrogate clock can outperform the measure it was 

trained on is an unusual characteristic that has been observed for other surrogate 

clocks. For example, Lu’s clock for smoking pack years (DNAm-PACKYRS, used for 

calculating GrimAge) predicts lifespan better than the self-reported smoking pack years 

(Lu, Quach, et al., 2019). Surprisingly, the DNAm-PACKYRS clock predicts lifespan 

even among non-smokers! The reasons behind this finding are unclear but have been 

validated in multiple independent datasets comprised of thousands of individuals (Lu, 
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Quach, et al., 2019). One possible explanation is that DNAm-PACKYRS is capturing 

some of the intrinsic biological impacts of smoking. This would make it more accurate 

than self-reported pack years, or better able to detect individual differences in the 

susceptibility to the effects of smoking itself. In most cases, the causal relationships 

between clinical biomarkers and their DNAm surrogate clocks remain to be elucidated. 

In the meantime, DNAm-based surrogate clocks for clinical biomarkers may lead to 

opportunities for Human Biologists. Situated at the interface of genes and the 

environment, DNAm surrogates may provide measures of health, development, and BA 

that are more proximal to the aging process itself. Furthermore, unlike some of the 

clinical measures they provide proxies for, DNAm can be measured in banked and/or 

dried blood spot samples, as will be discussed in more detail below.  

Emerging applications for epigenetic clocks 

Studying the impact of nutrition and lifestyle 

Individual trajectories in epigenetic aging appear to take shape quite early in the 

lifecourse. Some of this individual variation in the ‘ticking’ of epigenetic clocks is likely 

set prenatally by genetic variation, which has been studied through both heritability and 

genome-wide association studies (Gibson et al., 2019; Lu et al., 2018; Marioni, Shah, 

McRae, Chen, et al., 2015). Not surprisingly therefore, longitudinal trajectories for some 

epigenetic clocks (i.e. GrimAge X. Li et al., 2020) are relatively stable. However, a 

robust measure of BA should be sensitive to many of the nutritional, behavioral, 

ecological, and social factors that affect the aging process (Crews, 2003). Several 
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epigenetic clocks appear to demonstrate such flexibility, which makes them excellent 

tools for studying the factors that influence BA without the need for long-term health and 

mortality-related outcomes. 

As examples, greater self-reported consumption of fish, fruits, and vegetables are 

associated with lower Hannum-EEAA and AgeAccelGrim, while greater reported 

consumption of red meat is associated with higher AgeAccelPheno and AgeAccelGrim 

(Levine et al., 2018; Lu, Quach, et al., 2019). These measures of self-reported dietary 

intake are supported by blood measures of dietary intake; carotenoids such as lutein, 

lycopene, zeazanthin, a-tocopherol, and a- and b-carotenes all show negative 

relationships with age-corrected IEAA, EEAA, AgeAccelPheno and AgeAccelGrim 

(Levine et al., 2018; Lu, Quach, et al., 2019; Quach et al., 2017). Similarly, blood 

measures of inflammation (C-reactive protein), glucose metabolism (Insulin, glucose), 

systolic blood pressure, and obesity (waist-to-hip ratio, BMI) show the expected positive 

relationships to epigenetic aging measures, while HDL cholesterol shows similarly 

predicted negative relationships (Levine et al., 2018; Lu, Quach, et al., 2019; Quach et 

al., 2017).  

Other behavioral and lifestyle characteristics that affect life expectancy are linked to 

epigenetic clocks. Self-reported smoking status predicts more rapid AgeAccel for 

mortality-trained clocks (PhenoAge and GrimAge), whereas alcohol consumption and 

exercise predict slower AgeAccel for these measures (Levine et al., 2018; Lu, Quach, et 

al., 2019; Zhao et al., 2019). There is also evidence for a beneficial effect of exercise on 

most of the epigenetic clocks described thus far (Levine et al., 2018; Lu, Quach, et al., 
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2019; Quach et al., 2017), but the impact of physical activity may be less relevant 

among older individuals, perhaps because aging trajectory at that point is relatively ‘set’ 

(Sillanpää et al., 2019). Furthermore, the relationship between exercise and epigenetic 

age may be more complex even among young individuals. Compared to controls, young 

elite athletes – especially power athletes – exhibited acceleration in a less commonly 

used 5-CpG epigenetic clock (Spólnicka et al., 2018). Whether differences in epigenetic 

AgeAccel between physical training regimes (power vs. endurance) exist for more well-

established epigenetic clocks (IEAA, EEAA, AgeAccelPheno, or AgeAccelGrim) – and if 

so, whether they are tied to the distinct metabolic or endocrinological profiles that 

accompany training – is an open question. 

The observation that behavior and lifestyle affect the ticking of epigenetic clocks, which 

are themselves indicative of morbidity and mortality risk, means that epigenetic clocks 

may provide new tools for studying the immediate impacts of tradeoffs or health 

interventions. Although research in this area is still in its early phases, there is some 

evidence that the ticking of epigenetic clocks can be ‘slowed’ through changes in 

behavior or pharmacological means. Using a protocol designed to rejuvenate the 

thymus – which shrinks with age and is essential for proper immune function and cancer 

defense (Bilder, 2016) – Fahy et al. were able to decelerate epigenetic age acceleration 

for 4 clocks (Horvath-IEAA, Hannum-EEAA, AgeAccelPheno, AgeAccelGrim) by an 

average of 2.5 years (Fahy et al., 2019). These changes were also linked to positive 

indices of immune function and inflammation (e.g. C-reactive protein) and persisted at 

least six months after discontinuation of the protocol (Fahy et al., 2019).  
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A protocol involving the prolonged administration of metformin, dehydroepiandrosterone 

(DHEA), and recombinant human growth hormone (rhGH) like that used by Fahy et al. 

is unlikely to fit into research programs carried out by most human biologists. However, 

the treatments themselves may provide insights into broader theories about the role of 

hormones in mediating tradeoffs in immunity and somatic maintenance (i.e. the 

immunosomatic metabolic diversion hypothesis; Micheal P. Muehlenbein, 2004).The 

experimental use of GH or DHEA also raises questions about the extent to which 

natural variation in commonly studied hormones (i.e. testosterone, estrogen, cortisol, 

prolactin) might also affect BA as measured through epigenetic clocks (more on 

estrogen below). Furthermore, Fahy et al.’s intervention study raises the possibility that 

natural variation in social, environmental, or behavioral exposures might have similar 

impacts. Human biologists with expertise in biosocial and behavioral aspects of human 

health – from meditation and religious practices to seasonal changes in diet or exposure 

to sunlight – could find innovative ways to incorporate epigenetic clocks into their 

research.   

Studying reproductive investment and tradeoffs 

Few physiological transitions are as extreme as breastfeeding and pregnancy in 

women, which entail massive alterations in metabolism, immune function, and hormone 

levels (e.g. estradiol, progesterone, and human chorionic gonadotropin)(Albrecht & 

Pepe, 2015; Anderson, MacLean, McManaman, & Neville, 2015; Robertson, Petroff, & 

Hunt, 2015). The investment into reproduction – particularly in conditions of resource 

scarcity – are expected to lead to tradeoffs with somatic maintenance that will manifest 
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as accelerated BA. Evidence for a relationship between these costs of reproduction and 

epigenetic clocks is accumulating. While pregnant, women appear ‘younger’ than 

expected using Horvath’s clock, and ‘older’ than expected for both PhenoAge and 

GrimAge clocks (Ryan et al. unpublished; Ryan et al., 2018). Consistent with theorized 

‘costs of reproduction’ that are expected to draw resources away from somatic 

maintenance and accelerate BA, both Horvath and GrimAge clocks also increase with 

gravidity (Kresovich, Harmon, et al., 2019; Ryan et al. unpublished; Ryan et al., 2018).  

The effect of reproduction on epigenetic clocks may be partly tied to changes in immune 

cell composition of blood, but hormone levels also appear to be an important contributor 

to epigenetic clock ticking rate. Accelerated epigenetic age using Horvath’s clock is 

linked to earlier age at menopause and time since menopause in women who have 

already experienced this transition (regardless of the age of menopause)(Levine et al., 

2016; but see Gibson et al., 2019). Furthermore, accelerated epigenetic age is 

observed among women who have undergone surgical menopause (bilateral 

oophorectomy), and appears to be decelerated with menopausal hormone therapies 

(Levine et al., 2016). Similarly, the severity of vasomotor symptoms (‘hot flashes’) 

among older women was associated with AgeAccelPheno, and women with accelerated 

PhenoAge and GrimAge were more likely to exhibit hot flashes (Thurston et al., 2020). 

These findings point to reproduction and hormones as important components in 

women’s epigenetic aging, and to the potential utility of epigenetic clocks for studying 

other key life history traits and transitions. 
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Less is known about epigenetic clocks and men’s reproductive health and investment, 

although an accelerated average epigenetic age relative to women emerges shortly 

after puberty for several clocks (Simpkin et al., 2017), consistent with higher mortality 

rates among men compared to women more generally (Horvath, 2013). Given the 

importance of testosterone in men’s life history and health (Michael P. Muehlenbein & 

Bribiescas, 2005), future work examining the relationship between testosterone and 

epigenetic clocks is warranted. 

Studying psychosocial stress and resilience 

Chronic stress is thought to contribute to ‘wear and tear’ on the body, accelerating BA 

(Seeman, McEwen, Rowe, & Singer, 2001). Accordingly, Hannum, PhenoAge, and 

GrimAge clocks are accelerated among individuals with lower household income and 

education levels (Levine et al., 2018; Lu, Quach, et al., 2019; Quach et al., 2017; Zhao 

et al., 2019). These effects may be partly tied to the effects of diet, exercise, and 

lifestyle described above. However, trauma and stress may also mediate the effect of 

these environmental factors on epigenetic age (Z. Liu et al., 2019). A significant 

proportion of Horvath’s clock CpGs are in glucocorticoid response elements (Zannas et 

al., 2015). Furthermore, the administration of a synthetic glucocorticoid 

(dexamethosome) in living humans leads to changes in DNAm and RNA levels for 

genes near these CpGs (Zannas et al., 2015). Consistent with these findings, a study in 

adolescent girls found that greater diurnal cortisol production was linked to Horvath-

AgeAccel (Davis et al., 2017). In a separate study, the number of lifetime stressors was 

associated with acceleration of Horvath-AgeAccel in a cohort of African American 
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women (Zannas et al., 2015). However, these effects were blunted among women with 

severe experiences of child abuse (Zannas et al., 2015), possibly mirroring blunted 

glucocorticoid responses often associated with such experiences (Adam, Klimes-

Dougan, & Gunnar, 2007).  

In fact, several other studies have found that ‘resiliency’ to stress might come at the cost 

of accelerated epigenetic age. Higher measures of self-control predict slower Horvath- 

and Hannum-AgeAccel, but only among individuals who were raised in the context of 

high socioeconomic status (SES). Individuals with higher measures of self-control 

raised in low SES contexts showed the opposite effect, leading the authors to conclude 

that resilience may only be ‘skin-deep’ (G. E. Miller, Yu, Chen, & Brody, 2015). Several 

studies among veterans also support harmful effects of resiliency on epigenetic age. 

Veterans exposed to traumatic events who did not show any symptoms of post-

traumatic stress disorder (PTSD) were more – not less – likely to have increased 

Horvath-AgeAccel (Boks et al., 2015). In another study, veterans with PTSD exhibited 

accelerated epigenetic age compared to those without if they scored high on feelings of 

self-efficacy and resilience (Mehta et al., 2018). Collectively these studies suggest that 

stress and trauma contribute to accelerated epigenetic age, but also that those who 

appear to be managing it the best may experience the negative impacts on health and 

BA. More research is needed in this area, however, because antidepressant 

medications – common among individuals who score high on PTSD and major 

depressive disorder scales – may also accelerate Horvath’s clock (Verhoeven et al., 

2018). 
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Studying environmental and ecological variation 

Given the connection between epigenetic clocks and nutrition, physical activity, 

reproduction, and stress, it is not surprising that epigenetic aging rate for several clocks 

varies across socioecological contexts (Fagny et al., 2015; McEwen, Morin, et al., 

2017). In some cases, clocks display divergent age-related trends depending on the 

context, which may be informative about how environmental and ecological variation 

affects the aging process. Tsimane forager-horticulturalists of Bolivia show slower 

Horvath-IEAA and faster Hannum-EEAA than Caucasian or Hispanic counter-parts 

(Horvath et al., 2016). Slower Horvath-IEAA and faster Hannum-EEAA have also been 

reported for African forest-dwelling (Baka and Batwa) hunter-gatherers and forest-

dwelling Agrarian Bantus, but not urban-dwelling Bantus (Gopalan et al., 2017; Horvath 

et al., 2016). These findings imply that accelerated immune-associated aging (Hannum-

EEAA) can be accompanied by slower ‘intrinsic’ aging (Horvath-IEAA), consistent with 

theorized tradeoffs between immune function and development (Urlacher et al., 2018). 

More work is needed to establish if early life infectious environments shape the 

trajectory of epigenetic aging, and if so, how.  
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Methods and implementation of epigenetic clocks 

Design and sampling considerations 

Sampling, bias, and confounding 

Epigenetic clocks are providing a set of highly versatile tools for studying tradeoffs in 

health, development, reproduction and aging. However, like any method used to study 

human health and variation, the robustness and generalizability of findings using 

epigenetic clocks hinges on addressing individual research questions while minimizing 

biases and confounding introduced through study design (Michels, 2012). Here I outline 

basic protocols for sampling that aim to avoid bias and confounding in studies of 

epigenetic age.  

Sampling bias occurs when samples collected do not represent a random selection from 

the population of interest (Kahn, Kahn, & Sempos, 1989). In cohort studies, for 

example, attrition of individuals with higher socioeconomic status (SES) could bias the 

sample so that lower SES individuals are overrepresented. Because SES is in turn 

associated with nutrition, lifestyle, and psychosocial stress, all of which are known to 

alter epigenetic clocks, attrition of higher SES individuals will be reflected in changes to 

epigenetic age in the remaining sample. Resampling, following-up lost participants, or 

statistical approaches such as inverse probability weighting can minimize the impact of 

sampling biases.  
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Confounding – when an observed relationship is distorted by another, unaccounted for 

measure - is another challenge faced by studies of health and aging, including those 

using epigenetic clocks. Confounding can attenuate, amplify, falsely create, or obscure 

a relationship between the variables of interest and epigenetic age (Michels, 2012). For 

example, a study comparing the effect of physical activity on epigenetic age between 

urban and rural participants might be confounded by differences in diet, reproductive 

patterns, socioeconomic status, or exposure to pollutants. Recognizing the sensitivity of 

epigenetic clocks to environmental factors and including those in surveys and statistical 

models can help minimize the issue of confounding in studies of epigenetic age.  

Epigenetic variation, including epigenetic clocks, is partly explained by genetic variation. 

Although most epigenetic clocks using hundreds of CpG loci appear be fairly robust to 

such genetic variation, cross-cultural comparison studies should consider the potential 

for population stratification. Including genome-wide genetic data and testing for gene x 

environment interactions is one way to address this issue but can be costly. Other 

approaches for reducing the impact of genetic variation on epigenetic age is through 

restricting analysis to a fairly homogeneous sector of the population, or by using 

statistical approaches such as mixed model association methods to model population 

substructure (Yang, Zaitlen, Goddard, Visscher, & Price, 2014). 

Sample collection and storage 

All commonly-used epigenetic clocks described here involve the quantification of 

DNAm. While all cells in the body contain more or less identical genomic DNA, DNAm 
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varies widely between tissue and cell type. For this reason, it is important to consider 

the tissue and cell types sampled for any epigenetic study, including epigenetic age. 

With the exception of Horvath’s clock and McEwen’s pediatric clock, most epigenetic 

clocks have been trained and validated using DNAm measured in blood. Even 

Horvath’s clock, which was trained using 27 different tissues, shows some variation 

between tissues of the same individual. For example, obesity and Alzheimer’s are most 

strongly linked with Horvath-AgeAccel in the liver and brain, respectively (Horvath et al., 

2014; Levine, Lu, Bennett, & Horvath, 2015). In some cases, findings for one tissue type 

(e.g. buccal cells) may not apply to another (e.g. whole blood)(Levine et al., 2016; 

Slieker, Relton, Gaunt, Slagboom, & Heijmans, 2018). Unless researchers are 

interested in conducting their own intra-individual tissue comparisons, using the tissue 

on which the clock of interest has been trained or otherwise validated is the safest 

approach.  

While most epigenetic clocks have been trained or tested using whole-blood, 

venipuncture can be technically demanding, often requiring a trained medical technician 

or phlebotomist. This can be a major limitation in many field settings, where additional 

challenges arise from the transportation, shipping, and storage requirements of whole 

blood (Thomas W. McDade, 2014). Fortunately, dried blood spots (DBS) collected on 

filter paper or “Guthrie cards” provide an accurate and low-cost, field-friendly alternative 

(Dugué et al., 2016; Ramagopalan & Rakyan, 2013). Samples are easily collected using 

a finger prick from small lancet and after air drying can be stored at room temperature 

for long periods of time. Samples stored at room temperature on Whatman FTA® cards 
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– which include a chemical treatment specifically developed for DNA and RNA analysis 

– yield stable and accurate measurements of DNAm for at least a decade (Joo et al., 

2013; Walker et al., 2019). DBS therefore provide researchers with the opportunity to 

combine new waves of survey and data collection with banked samples from long-

standing studies around the world (Ghantous, Hernandez-Vargas, & Herceg, 2018). 

Alternatively, researchers with ongoing studies can collect and store DBS with an eye 

towards including epigenetic clocks in future research.  

The amount of DNA needed for epigenetic clocks depends partly on the method of 

measurement (array-based vs. pyrosequencing), as well as the efficiency of DNA 

extraction, purification, and bisulfite conversion. The bisulfite conversion step in 

particular can degrade genomic DNA, making methods for efficiently extracting and 

purifying DNA from DBS essential (Ghantous et al., 2018). For array-based methods, 

250ng of bifulfite converted starting DNA is required (www.illumina.com/documentation). 

Sufficient quantities of bisulfite converted DNA (300-800ng) can typically be obtained 

from 1-2 6mm punches (600-800ng prior to bisulfite conversion). Pyrosequencing-based 

methods for locus-specific clocks may require slightly less starting DNA (Busato, 

Dejeux, Gut, & Tost, 2018). 

Technical considerations 

Choosing a clock and measuring DNAm 

As discussed, epigenetic clocks can be characterized based on the method used to 

generate them, which also largely corresponds to the number of sites required for their 
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calculation. The most widely-used and well-validated epigenetic clocks also use the 

greater number of CpG sites, and were derived through the application of supervised 

machine learning to high-dimensional array-based datasets. These datasets come from 

a family of microarrays designed by Illumina (Illumina Inc., San Diego, CA). Illumina 

arrays are able to provide a reproducible, low bias, high density, single base resolution 

DNAm for hundreds of thousands of sites across the genome (Bibikova et al., 2011). 

Most early clocks were trained on legacy Infinium HumanMethylation27 (~27k CpG 

sites) and Infinium HumanMethylation450 (~485k sites) BeadChip arrays, but appear to 

be nearly as accurate on the newer Infinium methylationEPIC Beadchip array (~850k 

CpG sites) (Logue et al., 2017; Solomon et al., 2018). Other methods, such as whole-

genome bisulfite sequencing, may provide alternatives for measuring clocks with many 

CpG sites, but are typically more expensive and often technically more challenging to 

work with than array-based methods. More affordable alternatives, such as microdroplet 

PCR (Komori et al., 2018) may eventually prove useful in the study of epigenetic age, 

but have yet to be validated for use with epigenetic clocks. Any variation or biases tied 

to the Illumina BeadChip technology that are not present when using these other 

methods could affect the accuracy of the clocks derived from them, making such 

alternatives less desirable than currently available array-based methods. 

Array-based methods do have some drawbacks. Although less expensive and 

technically challenging to work with than next-generation sequencing, processing 

Illumina arrays still requires costly equipment (IScan System, Illumina Inc.), trained 

technicians, and strict measures of quality control. For most human biologists and 
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anthropological geneticists, leveraging collaborations or capitalizing on university 

genomics core facilities is likely the most economical and efficient way to successfully 

meet these demands. While the quality and cost of using core facilities can vary, most 

universities offer a discounted rate for larger orders or researchers affiliated with the 

university. At the time of writing, costs ranged from between $200-350 USD per sample, 

depending on the scale and researcher affiliation. Although not inexpensive, the added 

advantage of using array-based clocks is a wealth of additional information about the 

methylome. With over 850,000 CpG sites across, the Infinium methylationEPIC 

Beadchip array provides researchers with many opportunities to study the relationship 

between DNAm and health, development, and the environment beyond those offered by 

epigenetic clocks. 

The second major method for deriving epigenetic clocks comes from epigenome-wide 

association studies. These clocks concentrate on predictable changes in a small 

number of CpG sites (i.e. < 11), making them amenable to bisulfite pyrosequencing or 

other targeted approaches to measuring DNAm. While bisulfite pyrosequencing is an 

affordable, highly-accurate method for measuring DNAm, it is not applicable to array-

based clocks due to the large number of CpG sites that must be measured 

simultaneously – beyond a certain number of loci the cost of labor, reagents, and 

primers exceeds those of array-based alternatives. These targeted clocks show great 

promise as measures of chronological age (Garagnani et al., 2012; Slieker et al., 2018), 

frailty, and mortality risk (Y. Zhang et al., 2018, 2017), but have not been as well-

validated as array-based clocks. As such, these clocks may provide opportunities for 
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researchers to run pilot studies or student projects that can later be scaled up to 

genome-wide, array-based methods.  

When measuring DNAm using either array-based or targeted approaches, researchers 

should be cautious to avoid confounding the phenotype of interest with batch effects. 

While methods like surrogate variable analysis (Teschendorff, Zhuang, & 

Widschwendter, 2011) can successfully account for batch effects by themselves, 

analyzing samples from distinct groups, timepoints, or geographical locations together 

can confound technical batches with sampling procedures or the phenotypes of interest. 

Furthermore, batch correction during pre-processing is not recommended for some 

epigenetic clocks (see Box 1). To minimize technical confounding, samples that can be 

clearly grouped by time, exposure, geographical location or phenotype of interest 

should be processed and assayed in a random fashion (i.e. day, technician, chip, 

batch). In some cases, studies that originally utilized whole-blood for estimating 

epigenetic clocks may later have easier access to DNA from DBS. At other times, 

researchers conducting longitudinal studies may find that methods have changed since 

their original sample; follow-up research for samples originally run on the discontinued 

450k array may need to be run on the current EPIC array, for example. Changes in 

either blood collection method or array platform may confound with batch effects and 

should be avoided if possible. When such changes are unavoidable, researchers can 

run a small subset of replicate samples using both methods to demonstrate the 

repeatability and lack of bias within samples. Although this can be costly for array-based 

methods, it is important for establishing validity and continuity in a study over time.  
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Processing DNAm and calculating array-based clocks 

Compared to DNAm derived from targeted methods such as bisulfite pyrosequencing, 

DNAm from array-based methods requires rigorous quality control, background 

correction and signal normalization (Morris & Beck, 2015; Wang, Wu, & Wang, 2018). 

There are numerous programming tools and pipelines for carrying these procedures 

out, but quality control and normalization should be modified when output will be used 

for epigenetic clocks. It is currently possible to calculate epigenetic age for all array-

based clocks (and several candidate gene clocks) using either openly-available R 

scripts or a single online calculator developed and maintained by Steve Horvath at 

UCLA (http://dnamage.genetics.ucla.edu/). More detailed instructions for the 

preparation and processing of raw array-based data for epigenetic clocks can be found 

in Box 1.  
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Processing steps for Illumina BeadChip array data destined for array-based 
clocks 

• Quality control 
- Do not remove SNP-associated probes (Pidsley et al., 2016; E. M. Price et 

al., 2013)  
- Do not remove sex chromosome (XY) associated probes.  
- Do not remove poorly performing probes (<3 beads per signal or with non-

significant detection p-values) from the dataset entirely.  
! One option is to create a matrix with poorly performing 

participant/probe cells as “NA”. Immediately prior to preparing beta-
values for the calculator, use this matrix to only mask those cells for 
which it applies with “NA”. This maximizes the retention of probes 
that perform well for most participants and allows for Horvath’s 
calculator to impute from the missing values from the rest.  

• Normalization 
- Noob or quantile normalization are the recommended preprocessing 

methods (Fortin, Triche, & Hansen, 2017). Horvath’s calculator conducts its 
own normalization, based on a modified version of Teschendorff’s BMIQ or 
beta-mixture quantile normalization (Teschendorff et al., 2013). 

- Although samples should be processed to minimize confounding, batch 
effects should not be corrected for. Because it was trained on so many 
different samples from different sources, Horvath’s clock is quite robust to 
the batch effects and correcting for them is thought to affect the 
normalization algorithms and epigenetic age estimates performed by the 
calculator. Still, researchers should avoid analyzing samples grouped by 
sex, age, exposure or other potentially confounding variable. 

• Cell type correction 
- When “Advanced Analysis” is selected, Horvath’s calculator estimates white 

blood cell counts (CD4T, CD8T, Granulocytes, Monocytes, Natural Killer 
cells, etc.) and these are used for some measures of age acceleration (i.e. 
Horvath-IEAA and Hannum-EEAA).  

 
 

For array-based clocks, Horvath’s website provides a detailed tutorial on additional 

formatting for the calculator and interpretation of the results. Briefly, there is a ‘basic 

analysis’ in which users simply provide a .csv file containing beta-values for roughly 30k 

pre-selected CpG loci for each participant (columns). This will provide an estimate of BA 
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using Horvath’s clock and a standard quality statistic for each participant. There is also 

an ‘advanced analysis for blood’, which requires an additional .csv file containing 

columns containing participant id, age, and sex. The additional file quality control 

checks for consistency between predicted and reported tissue type and sex (based on X 

chromosome DNAm). More importantly, the advanced analysis option automatically 

calculates clocks that include chronological age in their estimates (Horvath-IEAA, 

Hannum-EEAA, PhenoAgeAccel, GrimAgeAccel, etc.) as well as surrogate clocks for a 

number of blood biomarkers (e.g. Telomere length, Leptin, PAI1, Cystatin), and 

estimates of white blood cell counts (eg. CD4T, CD8T, B cells, Natural Killer cells, 

Monocytes etc.). The range of outputs lend Horvath’s calculator great flexibility for a 

variety of research questions relevant to human biologists. 

As discussed, most epigenetic clocks are trained directly on chronological age or 

measures closely tied to age-related decline. However, most researchers are interested 

in acceleration of BA compared to others of the same age: does this person look 

biological ‘older’ or ‘younger’ than we expect, and why? In other words, the raw output 

of an epigenetic clock is sometimes not the variable of interest. Estimates for age 

acceleration can be derived from the difference between epigenetic age and 

chronological age (epigenetic age – chronological age) or the residuals of a regression 

of epigenetic age on chronological age (epigenetic age ~ a + b*chronological age, 

where a is the intercept and b is the slope). Alternatively, researchers can include 

chronological age with other variables in the model and epigenetic age as the outcome. 

As previously discussed, systematic differences between predicted and chronological 
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age may arise from DNA degradation during storage or processing, making it important 

to randomize across chips and to maintain as close a sampling protocol as possible if 

comparing different populations.  

For candidate gene clocks, genomic loci, coefficients, as well as primers are available in 

the results or supplementary sections of the relevant sources (Weidner et al., 2014; Y. 

Zhang et al., 2017). Weidner’s age estimate can also be predicted using a free online 

calculator (http://www.molcell.rwth-aachen.de/epigenetic-aging-signature/). Additional 

candidate gene clocks for chronological age, mortality, or other outcomes that are of 

interest to human biologists will no doubt continue to be developed. 

Conclusions 

Epigenetic clocks are groundbreaking tools that are changing how researchers study 

human development, aging, and health. They are providing insights into fundamental 

molecular processes underpinning health and aging and are emerging as important 

biomarkers of those processes. But the pace of ‘aging’ and how that plays out for any 

individual person is a complex interaction between evolutionary, social, and cultural 

forces. As a discipline, Human Biology strives to weave together these aspects of the 

human condition, and can both benefit from and contribute to our understanding of the 

epigenetics of aging and epigenetic clocks.  
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Chapter 3. Reproduction predicts shorter telomeres and epigenetic 
age acceleration among young adult women 

Abstract 

Evolutionary theory predicts that reproduction entails costs that detract from somatic 

maintenance, accelerating biological aging. Despite support from studies in human and 

non-human animals, mechanisms linking ‘costs of reproduction’ (CoR) to aging are 

poorly understood. Human pregnancy is characterized by major alterations in metabolic 

regulation, oxidative stress, and immune cell proliferation. We hypothesized that these 

adaptations could accelerate blood-derived cellular aging. To test this hypothesis, we 

examined gravidity in relation to telomere length (TL, n=821) and DNA-methylation age 

(DNAmAge, n=397) in a cohort of young (20-22 year-old) Filipino women. Age-corrected 

TL and accelerated DNAmAge both predict age-related morbidity and mortality, and 

provide markers of mitotic and non-mitotic cellular aging, respectively. Consistent with 

theoretical predictions, TL decreased (p=0.031) and DNAmAge increased (p=0.007) 

with gravidity, a relationship that was not contingent upon resource availability. Neither 

biomarker was associated with subsequent fertility (both p>0.3), broadly consistent with 

a causal effect of gravidity on cellular aging. Our findings provide evidence that 

reproduction in women carries costs in the form of accelerated aging through two 

independent cellular pathways.   
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Introduction 

Evolutionary theory predicts that energy expenditure in the form of reproductive effort 

comes at the expense of somatic maintenance and lifespan (Stephen C. Stearns, 

1992). Because resources are finite and selection favors early life fecundity over late life 

functional decline (Williams, 1957), reductions in somatic maintenance driven by the 

‘costs of reproduction’ (CoR) are expected to accelerate senescence and functional 

decline and increase mortality risk (Harshman & Zera, 2007; Kirkwood, 1977). When 

extrinsic mortality is high or resources are limited or unpredictable, selection will favor 

future discounting and a shift towards ‘faster’ life-history strategies (Nettle, 2010; 

Stephen C. Stearns, 1992). While potentially adaptive from an evolutionary point-of-

view, investing less into growth and maintenance and more into reproduction early in life 

could compound tradeoffs between reproduction and longevity and thereby accelerate 

senescence (Jasienska, Bribiescas, Furberg, Helle, & Núñez-de la Mora, 2017; 

Kuzawa, 2007; Williams, 1957).  

CoR have been demonstrated in animal models, whereby reproduction hastens 

senescence (Maynard Smith, 1958; D. Reznick, 1985); conversely, selection for late life 

fecundity results in lifespan extension (Curtsinger et al., 1995; Rose et al., 2002). In 

humans, CoR has been predominantly studied through the use of historical datasets, 

which show that increased reproductive effort is often associated with a shortening of 

lifespan (Westendorp & Kirkwood, 1998; Doblhammer & Oeppen, 2003; Penn & Smith, 

2007; Gagnon et al., 2009; Bolund, Lummaa, Smith, Hanson, & Maklakov, 2016;  but 

see Le Bourg, 2007), and that these costs are exacerbated when resources are limited 
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(Dribe, 2004; Lycett, Dunbar, & Voland, 2000; Tracer, 1991). However, most studies of 

CoR in humans are restricted to modeling mortality as the sole outcome, and are 

therefore unable to address the underlying biological processes through which CoR 

might translate into senescence and functional decline.  

Among women, CoR likely accumulate predominantly during lactation and pregnancy 

(Jasienska, 2009; J. Speakman & Król, 2005). Lactation is energetically taxing, while 

the highly invasive hemochorial placentation of human pregnancy places substantial 

physiological and immunological demands on the female body (Peter Thorpe Ellison, 

2009; Emery Thompson, 2013; Soma-Pillay et al., 2016). At the cellular level, 

pregnancy-induced senescence may be mediated through mitotic or non-mitotic 

pathways, or both. Mitotic – or replicative – cellular aging can be measured using 

telomere length (TL). Telomeres are non-coding DNA sequences that cap 

chromosomes, and are required for cell division and survival (Blackburn & Gall, 1978; 

Meyne, Ratliff, & Moyzis, 1989). Telomere length shortens with cell division and 

chronological age, placing a limit on the number of cell divisions (Harley et al., 1990; 

Olovnikov, 1971; Richter & Zglinicki, 2007). At a critical threshold, TL attrition leads to 

the exhaustion of a cell’s proliferative potential, a process referred to as ‘cellular 

senescence’ (Fulop et al., 2018; Sidler, Kovalchuk, & Kovalchuk, 2017). Shorter TL 

controlling for age in turn predicts higher morbidity and mortality rates (Bakaysa et al., 

2007; Cawthon, Smith, O’Brien, Sivatchenko, & Kerber, 2003; Haycock et al., 2014; 

Kimura et al., 2008).  
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Pregnancy may also affect cellular aging through pathways operating independently 

from TL (Lowe, Horvath, & Raj, 2016). A powerful emerging marker of non-mitotic 

cellular aging is epigenetic age (DNAmAge)(Lowe et al., 2016). DNAmAge in human 

(Horvath, 2013) and non-human genomes (Stubbs et al., 2017; Thompson, vonHoldt, 

Horvath, & Pellegrini, 2017) is calculated from methylation at a species-specific subset 

of cytosine-guanine dyads (CpGs), and is strongly correlated with chronological age 

(Jones, Goodman, et al., 2015). Independent of a host of associated risk factors in 

humans, accelerated DNAmAge relative to chronological age is associated with 

elevated risks for morbidity and mortality (Chen et al., 2016; Christiansen et al., 2016; 

Marioni, Shah, McRae, Chen, et al., 2015). Vital to capitalizing on epigenetic age as a 

marker of non-mitotic cellular aging, accelerated DNAmAge predicts senescence and 

mortality independently of TL in living humans (Breitling et al., 2016; Marioni et al., 

2016), and independently of both TL and the DNA damage response in vitro (Horvath, 

2013; Lowe et al., 2016). 

Human pregnancy could generate costs to female health and lifespan by shortening TL 

(mitotic age), accelerating DNAmAge (non-mitotic age), or both. During pregnancy, 

blood cells proliferate to compensate for fluid volume expansion (Bauer, 2014; Lurie, 

Rahamim, Piper, Golan, & Sadan, 2008), and women experience a shift towards innate 

immunity and an increased sensitivity to infection (R. H. Gray et al., 2005; Kraus et al., 

2012; Lanciers, Despinasse, Mehta, & Blecker, 1999; Roberts, Satoskar, & Alexander, 

1996). Data from cell culture, rodent based experiments, and clinical studies show that 

inflammation and infection increase cell proliferation and DNA damage, both expected 
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to accelerate the pace of telomere shortening (Aviv et al., 2006; Carrero et al., 2008; 

Farzaneh-Far et al., 2010; O’Donovan et al., 2011; Pommier et al., 1997; Sampson, 

Winterbone, Hughes, Dozio, & Hughes, 2006; Sanders et al., 2012; Solorio et al., 2011). 

Accelerated DNAmAge relative to chronological age has been observed in other pro-

inflammatory contexts (Horvath & Levine, 2015; Kananen et al., 2015), and with 

menopause (Levine et al., 2016), an important physiological and life history transition in 

human females. DNAmAge acceleration arising from menopause, whether naturally-

occurring or surgically-induced, was attenuated by hormone therapy (Levine et al., 

2016), suggesting that physiological and hormonal changes like those accompanying 

pregnancy could have effects on DNAmAge. While recent studies examining TL or DNA 

damage and pregnancy have yielded mixed results (Barha et al., 2016; Lane-Cordova 

et al., 2017; Ziomkiewicz et al., 2018, 2016), none have attempted to test for CoR in 

humans using mitotic and non-mitotic measures of cellular aging simultaneously.  

Here, we test for human CoR using mitotic (TL) and non-mitotic (Horvath’s DNAmAge  

(Horvath, 2013)) measures of cellular aging. We test three inter-related hypotheses in a 

relatively young cohort (age 20-22) of women in the Philippines. First, we ask whether 

pregnancy history increases mitotic or non-mitotic measures of cellular aging, or both 

(H1). We consider whether any associations between reproductive history and cell 

aging are stronger among women of lower socioeconomic status, for whom resource 

constraints are expected to be highest (H2). Finally, we evaluate the potential for 

reverse causation by examining the effect of both TL and DNAmAge on the number of 

pregnancies over the subsequent 4 years (H3).  
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Methods and Materials 

Data collection  

Data came from the Cebu Longitudinal Health and Nutrition Survey (CLHNS), a birth 

cohort study in Metropolitan Cebu, Philippines that began with enrollment of 3,327 

pregnant mothers in 1983-1984 (Adair et al., 2011). Longitudinal data are available for 

download at: https://dataverse.unc.edu/dataverse/cebu. In 2005 blood samples from 

overnight fasted subjects were collected into EDTA-coated vacutainer tubes. Automated 

and manual DNA extraction (Puregene, Gentra) was conducted on blood samples. 

Informed consent was obtained from all participants and data collection was conducted 

with approval and in accordance with the Institutional Review Boards of the University of 

North Carolina at Chapel Hill and Northwestern University.  

Telomere length  

TLs were measured using a modified form of the monochrome multiplex quantitative 

polymerase chain reaction assay that was externally validated. Details of the protocol 

and external validity can be found in (D. T. Eisenberg, Kuzawa, & Hayes, 2015) and 

since the coefficient of variation has recently been recognized to be an invalid statistic 

to assess TL measurement reliability (D. T. Eisenberg, 2016; Verhulst et al., 2015), 

intraclass correlation coefficient statistics of measurement error can be found in (D. T. 

A. Eisenberg, Borja, Hayes, & Kuzawa, 2017). 
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Epigenetic age (DNAmAge)  

160ng of sodium bisulfite converted DNA (Zymo AZDNA methylation kit, Zymo 

Research, Irvine, CA, USA) was applied to the Illumina HumanMethylation450 Bead 

Chip using manufacturer’s standard conditions. Standard methods for background 

subtraction and color correction were carried out using default parameters in Illumina 

Genome Studio and exported into R for further analyses. Quality control involved first 

confirming participant sex and replicate status. This was followed by quantile 

normalization using lumi (Du, Kibbe, & Lin, 2008) on all probes including SNP-

associated and XY multiple binding probes. To maximize the number of sites available 

for the epigenetic age calculator, probes with detection p-values above 0.01 were called 

NA for poor performing samples only, and were otherwise retained. Horvath’s 

DNAmAge was calculated using an online calculator (http://labs.genetics.ucla.edu/ 

horvath/dnamage/), designed to be generally robust to cell-type differences associated 

with age (Horvath, 2013). Background-corrected beta values were pre-processed using 

the calculator’s internal normalization algorithms.  

Socioeconomic status (SES)  

SES is measured as a combination of income, education, and assets. Participants 

reported their annual income from all sources, including in-kind services, and the sale of 

livestock or other products by household members during the prior year, which were 

summed to determine total household income. Incomes were deflated to 1983 levels, 

and log-transformed. Maternal education (in years) was also reported. Participants also 
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reported on nine assets (coded 0, 1) that were selected to capture population-relevant 

aspects of social class, including electricity, televisions, refrigerators, air conditioners, 

tape recorder, electric fans, jeepneys, cars, and their residence. In addition, house 

construction type (i.e., light, mixed, permanent structure) was coded as 0,1, and 2, 

respectively. Thus, asset scores ranged from 0 to 11. A principal components analysis 

was run on log income and assets at birth (1983) and at sample collection (2005) along 

with maternal education in Stata (v. 14.1). The first component of variation accounted 

for 49% of the variation and individual scores for this component of variation were used 

as our measure of SES. 

Statistical methods 

 The key predictor variable was gravidity (the number of pregnancies including 

stillbirths, miscarriages and live births, but not current pregnancies) the respondent 

reported having had in 2005 (at the time of blood sampling). Control variables included 

chronological age in 2005 (the time of blood collection), the measure of socioeconomic 

status (SES) described above, average urbanicity score between 1983 and 2005 (Dahly 

& Adair, 2007), and whether the respondent was pregnant at the time of blood 

collection. Pregnancy status was reported at the time of sampling, and through back-

calculation based on parturition within 9 months of the original interview (maternal and 

infant measures are recorded with each pregnancy as part of ongoing tracking process). 

DNAmAge acceleration refers to DNAmAge residualized on chronological age. Principal 

components (PCs) of genome-wide genetic variation were included to control for 

potential population genetic structure. The derivation of these principal components has 
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been described previously (Croteau-Chonka et al., 2011, 2012; Wu et al., 2012). As in 

previous analyses (Bethancourt et al., 2015; D. T. A. Eisenberg et al., 2017), the 

bivariate association between the first ten principal components and TL were tested. 

The top principal components up to and including the last one showing a significant 

bivariate association with TL (10 total) were retained as control variables, with the same 

10 principal components used for DNAmAge models.  

Linear regression was used for analyses predicting TL and DNAmAge (both normally 

distributed continuous outcome variables), while generalized linear models with a 

Poisson family and log-link were used to test for reverse association – that 

TL/DNAmAge would predict gravidity (a discrete integer) over the subsequent 4 years. 

The negative effect of time between 2005-2009 surveys and number of pregnancies 

during this time is an artifact tied to household visit schedules and urbanicity (less urban 

participants tend to have more pregnancies, and were visited later in the data collection 

wave). All models were two-tailed with α = 0.05 and were followed by standard model 

diagnostics (J. Fox & Weisberg, 2011). For all linear regressions, the absence of 

collinearity in predictor variables was confirmed with variance inflation factors (VIFs) for 

all models falling below 1.1, while Poisson GLMs showed no signs of under- or over-

dispersion (Kleiber & Zeileis, 2008). Despite the large number of nulliparous women and 

relatively small number of women with 3 or more pregnancies, all model assumptions 

were met, and there was no evidence of heteroscedasticity, outliers, or high leverage 

data points confounding our analyses. All analyses were run in R (R Core Development 
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Team, 2016) with ggplot2 (Wickham & Chang, 2013) and stargazer (Hlavac, 2014) for 

figures and tables. 

Results 

The relatively young women in our sample (21.7 ± 0.4 years old) displayed a range of 

reproductive histories. While women who had never been pregnant formed the largest 

group (n=507; 61.7%), women having experienced one (n=174; 21.2%), two (n=102; 

12.4%), and three (n=28; 3.4%) pregnancies were also well represented. A small subset 

of women had experienced four (n=7; 0.8%) or five (n=3; 0.4%) pregnancies. Although 

the women in our sample fell into a relatively narrow age range, age-adjusted measures 

of DNAmAge and TL were themselves uncorrelated (p=0.64; n=396), consistent with 

their independent roles in cellular aging. 

TL decreased and DNAmAge acceleration increased with the number of pregnancies in 

a woman’s reproductive history (Fig. 3-1; Table 3-1). The relationship between gravidity 

and both measures were also relatively robust – in nested models controlling for a 

range of potential confounders, effects sizes for pregnancy number remained stable or 

increased (Table 3-1). Each additional pregnancy was associated with the equivalent of 

0.34-3.67 years of telomere aging, and 0.29-0.63 years of DNAmAge acceleration. 
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Table 3-1. Regression models linking number of pregnancies to telomere length 
(models 1–4) and DNAmAge (models 5–8). Models marked † include controls for top 10 
principal components of genetic variation and average urbanicity score.	Note: +p < 0.1; 
*p < 0.05; **p < 0.01. 
  

 
Telomere Length  DNAmAge  

(1)  (2)†  (3)†   (4)†   (5)  (6)†  (7)†  (8)†   

Age  −0.047  −0.029  −0.028  −0.029  0.485  0.667  0.656  0.645  
p-values  0.003**  0.071+  0.073+  0.068+  0.293  0.157  0.158  0.165  

No.Pregnancies  −0.014  −0.013  −0.014  −0.016  0.363  0.326  0.459  0.510  
p-values  0.025*  0.039*  0.031*  0.020*  0.026*  0.049*  0.007**  0.005**  

SES   −0.006  −0.006  −0.004   −0.180  −0.214  −0.291  
p-values   0.143  0.161  0.395   0.146  0.081+  0.055+  

Currently 
Pregnant (Y)  

  0.011  0.011    −1.472  −1.460  

p-values    0.534  0.540    0.001**  0.001**  
No. 
Pregnancies × 
SES  

   −0.004     0.106  

p-values     0.362     0.385  
Intercept  1.826  1.337  1.332  1.343  14.818  10.319  10.611  10.850  
Observations  821  821  821  821  397  397  397  397  
Adjusted R2  0.015  0.063  0.062  0.062  0.011  0.041  0.067  0.067  
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Figure 3-1. Relationship between mitotic (TL) and non-mitotic (DNAmAge acceleration) 
measures of cellular aging and reproductive history (number of pregnancies) in young 
women. (a) Residualized TL for all variables in Table 2, Model 3, and statistics from 
same model. (b) Residualized DNAmAge for all variables in Table 2, Model 7, and 
statistics from same model. Graphs are labeled and dots are colored by relative aging 
for each marker (blue, low; red, high) and best fit lines are drawn with 95% CI of beta 
value.  
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In contrast with the apparent effect of gravidity, being currently pregnant was associated 

with a decrease in DNAmAge (Table 3-1). Current pregnancy status obscured the 

relationship between gravidity and DNAmAge, evident from the increase in the 

regression coefficient linking gravidity with DNAmAge with its inclusion (Table 3-1, 

models 7 and 8 vs. 5 and 6). Contrary to our prediction, the relationship between 

gravidity and our measures of cellular aging was not affected by socioeconomic status, 

a proxy for resource availability in this population (Table 3-1). 

We also tested for reverse causation by examining the associations of TL and 

DNAmAge with future reproduction. Neither measure of cellular aging at the time of 

measurement (2005) predicted the number of pregnancies over the subsequent four 

years (2005-2009), whether or not we controlled for baseline gravidity in 2005 (Table 3-

2). 
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Table 3-2. Relationship between telomere length (TL) and epigenetic age (DNAmAge 
acceleration) measured in 2005 and parity over the subsequent four years (2005–2009). 
Models with and without adjustment for baseline gravidity in 2005.  
 Parity 2005-2009 

 Age Adjusted 
TL~ 

 Age Adjusted 
DNAmAge~ 

 

 (1) (2) (3) (4) 
 

Measurement time bt. 2005-2009 
(Days) -0.003 -0.003 -0.002 -0.002 

 p = 0.004** p = 0.009** p = 0.058+ p = 0.068+ 
Parity in 2005  0.252  0.123 

  p = 0.000**  p = 0.016* 
Age Adjusted Telomere Length in 
2005 0.059 0.148   

 p = 0.835 p = 0.601   

Age Adjusted DNAmAge in 2005   -0.011 -0.016 
   p = 0.483 p = 0.325 

Intercept 4.457 3.777 3.460 3.265 
 p = 0.006** p = 0.022* p = 0.062+ p = 0.082+ 

Observations 743 743 397 397 
Log Likelihood -836.740 -818.205 -485.276 -482.433 
Akaike Inf. Crit. 1,679.481 1,644.411 976.552 972.866 

Note: +p<0.1;*p<0.05;**p<0.01;***p<0.001 

Discussion 

TL and DNAmAge, measures of mitotic and non-mitotic cellular aging, respectively, 

were both associated with reproductive history in our sample of young women. The 

relationship between gravidity and cellular aging was relatively robust to a number of 

potential confounders, and did not appear to be mediated by socioeconomic status, a 

measure of resource availability. Moreover, neither measure was associated with 

gravidity over the subsequent 4 years, consistent with a causal effect of the number of 

pregnancy on cellular aging.  
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Although consistent with theoretical predictions and non-human animal work, this is the 

first study to our knowledge to examine CoR using both mitotic and non-mitotic 

measures of cellular aging. Gravidity predicted age-related changes in both TL and 

DNAmAge in our study, yet several recent studies of CoR in women using TL alone did 

not find the predicted relationship. The first, conducted among 75 Guatamalan Maya 

women, reported a positive association between TL and number of surviving offspring 

over a 13-year period (Barha et al., 2016). TL in that study was determined using a 

combination of saliva- and buccal-derived DNA samples, which unfortunately have not 

been consistently associated with chronological age (Goldman et al., 2017; O’Callaghan 

et al., 2008; Thomas, 2008). Furthermore, two separate measures of TL in that study 

were uncorrelated within individuals between the two timepoints, making comparisons 

between these findings and our own blood-derived TL findings difficult.  

Contrasting with our findings, a study among 620 participants of the US-based CARDIA 

study did not find evidence for any relationship between parity and TL (Lane-Cordova et 

al., 2017). Why this study found no evidence for an effect of parity on TL while our 

findings support CoR is unclear, but could relate to pronounced differences in the age 

ranges and socio-ecological conditions in the two populations. Notably, markers of 

oxidative stress appear to be affected by parity in some socio-ecological contexts but 

not others (Ziomkiewicz et al., 2018, 2016). Furthermore, TL attrition occurs more 

rapidly at younger ages (Frenck, Blackburn, & Shannon, 1998), suggesting that any 

impacts of reproduction on TL shortening could be most pronounced among young 

women, especially if reproduction begins in adolescence and overlaps with late stages 
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of the mother’s own somatic growth (K. Hill & Kaplan, 1999; Stephen C. Stearns, 1992). 

Whether or not the relationship between TL and DNAmAge will persist, or if women with 

accelerated cellular aging will ‘recover’ and return to more age-typical levels remains an 

open question.  

We found evidence for CoR using both TL and DNAmAge, yet these two measures of 

cellular aging appear to reflect different biological pathways linking reproductive effort 

with senescence. Congruent with this interpretation is the observation that TL and 

DNAmAge measured in the same individuals have been independently associated with 

aging and mortality in prior studies (Belsky et al., 2018; Marioni et al., 2016), and 

capture distinct dimensions of cellular aging (Horvath & Raj, 2018; Lowe et al., 2016; Lu 

et al., 2018). Accordingly, TL and DNAmAge acceleration were not associated with 

each other in this study. Accelerated TL attrition – a measure of ‘mitotic age’ that is 

modified directly by cellular division – could stem from factors that modify cellular 

proliferation rates, such as the elevated inflammation, blood cell production, and cell-

turnover rates that characterize pregnancy in this and other samples (Kuzawa, Adair, 

Borja, & Mcdade, 2013; Soma-Pillay et al., 2016). 

 

In contrast to TL, Horvath’s DNAmAge is not considered a marker of mitotic age. In vitro 

DNAmAge is associated with cell passage number, but only in conjunction with the 

expression of the Telomerase Reverse Transcriptase (TERT) gene (Lu et al., 2018), 

and DNAmAge tracks chronological age even in immortal, non-dividing, and non-
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proliferative tissues and cells (Horvath, 2013). Although the biological significance of 

DNAmAge is unknown, it is hypothesized to reflect the integrity of an epigenetic 

maintenance system, itself responsible for maintaining dynamic regulatory stability 

within cells (Horvath, 2013). In light of the hypotheses about the functional 

underpinnings of DNAmAge, our findings are consistent with the prediction that 

reproduction comes at a cost of ‘maintenance’ – in this case at the scale of cellular 

regulatory maintenance. Exactly how gravidity might lead to DNAmAge acceleration is 

unclear, but tradeoffs between protein homeostasis and epigenetic control arising from 

immune activation or the buffering of oxidative stress are plausible pathways (Feder & 

Hofmann, 1999; Marshall & Sinclair, 2010; Okada, Teramura, & Takahashi, 2014; Ryan, 

Brownlie, & Whyard, 2016). Indeed, cumulative changes in immune cell composition 

during pregnancy likely contribute to DNAmAge acceleration with gravidity, although the 

measure of DNAmAge used here is remarkably robust across tissue types (Horvath, 

2013). Nevertheless, the fact that the functionally-distinct measures of TL and 

DNAmAge show similar associations with gravidity provides strong support for our 

prediction that reproduction accelerates cellular aging and organismal senescence, at 

least among the young adult women represented by our sample. 

Contrary to our prediction that the costs of reproduction would be greatest among 

individuals with limited resources (Dribe, 2004; Lycett et al., 2000; Tracer, 1991), we 

found no evidence for an interaction between gravidity and SES in models predicting 

either TL or DNAmAge acceleration. While women in low SES conditions in our study 

very likely experience constraints in energy or nutrient availability, it is still unclear to 
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what extent SES adequately captures limitations in the resources most relevant to CoR. 

Given the relatively young age of the participants, however, it is possible that the 

moderating effect of resource limitation will emerge at more advanced ages. SES in this 

population may also index factors other than resource availability that contribute to 

accelerated aging, such as less healthful diets or decreases in physical activity. This 

does not appear to be a major confounding factor, however, as neither TL or DNAmAge 

were significantly associated with SES in our models.  

Importantly, neither measure of cellular aging obtained in 2005 predicted gravidity over 

the subsequent 4 years (2005-2009). This suggests that the women in our study are not 

altering their reproductive output based on their future prospects of health and survival, 

nor in response to separate physiological or environmental factors also capable of 

accelerating cellular aging. This runs counter to a life-history framework whereby ‘pace-

of-living’ as captured by TL and DNAmAge is itself predictive of future fecundity (Nettle, 

2010; Williams, 1966b).  

Intriguingly, currently pregnant women exhibited significantly ‘younger’ DNAmAge. This 

finding could reflect the suite of immunological and physiological shifts that occur during 

pregnancy, including changes in immune cell composition and elevated estrogen levels. 

At least in some contexts, estrogen can lower oxidative stress (Behl et al., 1997), and 

elevated estrogen is protective for both TL and DNAmAge (Levine et al., 2016; Yeap et 

al., 2016). Pregnancy status and accompanying changes in cell composition may 

therefore be an important confounder to include in future studies investigating the costs 

of reproduction in women. 
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Our findings should be considered in the context of several limitations. First, while we 

attempt to control for socio-ecological factors that could affect both gravidity and our 

markers of cellular aging, residual confounding arising from differences in health and/or 

resources remains a possibility. Although the effects were modest, confounding could 

help explain the slight decrease in effect size of gravidity after adjusting for SES in 

models 2 and 6. Future studies employing longitudinal measures of TL and DNAmAge 

acceleration would minimize the potential effects of such confounders (Noordwijk & 

Jong, 1986), while modeling lactation and other indices for reproductive effort will be 

necessary for a more complete estimate of the CoR (M. Gurven et al., 2016; Samuli 

Helle, 2017). Finally, the women in this study all fall within a relatively narrow age range 

in young adulthood (20-22 years old). Because both TL and DNA-methylation change 

more rapidly early in adulthood (Frenck et al., 1998; Horvath, 2013), it is possible that 

both measures are particularly sensitive to reproduction at this time. This leaves open 

the possibility that the relationship between gravidity and cellular aging is transient – 

and measurements of TL and DNAmAge later in life will prove important for resolving 

this question. 

In sum, our study suggests that gravidity predicts shorter telomeres and epigenetic age 

acceleration, measures of mitotic and non-mitotic aging, respectively, among the young 

women in our sample. The consistency in relationships between gravidity and aging in 

two distinct pathways—one reflecting cellular turnover, and the second a putative 

marker of epigenomic regulation—support a cost of reproduction from pregnancy in 

humans. 
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Chapter 4. Genome-wide DNA-methylation in blood varies with 
reproductive status and supports costs and benefits of 
reproduction in women 

Abstract 

Women’s reproductive history is associated with life expectancy and differential 

susceptibility to certain cancers, cardiovascular disease and autoimmune 

disorders. To explore the potential links between the molecular and physiological 

changes that occur during pregnancy and breastfeeding and women’s health, we 

examined DNA methylation (DNAm) in a cross-sectional cohort of young (20-22-

year-old) women of differing reproductive statuses. Compared to currently non-

reproductive women, both pregnancy and breastfeeding were associated with 

differences in leukocyte DNAm (828 and 1107 loci, respectively). Differences in 

DNAm were highlighted in genes and pathways related to metabolism, immune 

function, and cognitive function, all consistent with disease risks associated with 

reproductive history in women. Most individual loci did not differ between 

nulliparous and parous (but not currently pregnant or breastfeeding women), 

hinting at largely transient effect of pregnancy and breastfeeding on the 

methylome. However, nulliparous and parous women differed in blood leukocyte 

composition. Furthermore, the top-ranking differences in methylation, though not 

significantly different between these groups themselves, were enriched for 

several biological processes that hint at potentially durable impacts of 

reproduction on women’s biology. Although cross-sectional, our results point to 

several genes and pathways that could explain the link between reproductive 
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history and women’s health later in life, motivating further research employing a 

longitudinal design. 
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Introduction 

Tradeoffs are a foundational concept in evolutionary biology and a core principle 

in evolutionary medicine (Grunspan, Nesse, Barnes, & Brownell, 2018). 

Tradeoffs occur when improvements in one function or trait come at the expense 

of another and arise due to functional constraints and the finite nature of time and 

the ability to acquire and allocate energy or other resources (S. C. Stearns, 1989; 

Williams, 1966a). The tradeoff that occurs between two such demands – 

reproduction and somatic maintenance – underlie what are referred to as ‘costs 

of reproduction’ (CoR) (Williams, 1966b).  

In human females, evidence for CoR in the form of disease susceptibility and 

shortened lifespan comes from both historical records and epidemiological 

studies. Historical records have shown that the total number of children borne 

over a woman’s lifetime negatively predicts post-menopausal lifespan among 

frontier populations in Quebec and Utah (1599-1870) (Gagnon et al., 2009), as 

well as among the British Aristocracy (740-1867) (Westendorp and Kirkwood, 

1998). Similarly, mothers of twins in pre-industrial Finland died of infectious 

disease at higher rates than mothers of singletons, especially when they began 

their reproductive careers early (S. Helle, Lummaa, & Jokela, 2004). While not all 

historical studies uniformly support for CoR (Le Bourg, 2007), retrospective 

approaches using historical records can only address factors that were recorded 

at the time. This rarely includes key variables related to resource availability (i.e. 
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nutrition, living conditions) or the health-associated biological processes that 

might underpin CoR (but see S. Helle et al., 2004; Lycett et al., 2000).  

Epidemiological studies among contemporary populations address some of the 

limitations of historical records and provide additional support for CoR in women. 

Numerous large studies and meta-analyses across multiple countries 

demonstrate positive relationships between parity and the risk for cardiovascular 

disease-related mortality (W. Li, Ruan, Lu, & Wang, 2019; Lv, Wu, Yin, Qian, & 

Ge, 2015), kidney cancer (Guan, Wu, & Gong, 2013), and all-cause mortality 

(Grundy, 2009; Grundy & Tomassini, 2005; Tamakoshi et al., 2011; Y. Zeng et 

al., 2016; Grundy & Kravdal, 2008). Studies also suggest that mortality from 

diabetes, cancer of the uterine cervix, gallbladder disease, kidney disease, and 

hypertension are higher among parous relative to nulliparous women (Beral, 

1985). Even late-life cognitive decline and Alzheimer’s Disease risk have now 

been linked to parity (Beeri et al., 2009; but see M. Fox, Berzuini, Knapp, & 

Glynn, 2018), possibly through well-documented changes in both brain structure 

and function during pregnancy (de Lange et al., 2019; Glynn, 2010; Hoekzema et 

al., 2017).  

Costs of reproduction on women’s health have thus been widely supported by 

both historical and contemporary epidemiological records. However, these 

findings have not been as well-supported by an array of anthropometric, 

physiological, or cellular measures. Higher parity is associated with lower 

hemoglobin levels among women in Kenya and Tibet (Cho et al., 2017; E. M. 
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Miller, 2010), but not among Tsimane women in Bolivia (M. Gurven et al., 2016). 

Tsimane women also showed no significant changes in several other measures 

of immune function and only transient changes in indicators of nutritional status 

with measures of reproductive investment (M. Gurven et al., 2016; but see 

Stieglitz et al., 2015). At the cellular level, measures of DNA oxidative damage 

and defense have been linked to parity in some populations (Ziomkiewicz et al., 

2016), but not others (Ziomkiewicz et al., 2018). Similarly, telomere length – 

which shortens with cell turnover and senescence – has been positively (Barha 

et al., 2016), negatively (Pollack, Rivers, & Ahrens, 2018; Ryan et al., 2018), and 

not at all associated (Lane-Cordova et al., 2017) with measures of reproductive 

investment. This suggests that current models of costs of reproduction in women 

– and possibly the measures currently in use to study them – may not capture 

the pathways that link reproductive investment to women’s health later in life.  

One approach with the potential to shed light on novel pathways underlying CoR 

in women may be through epigenetic processes. Epigenetic processes are a 

collection of biochemical processes involved in regulating gene activity, cell fate, 

and biological memory (Allis et al., 2015). One category of epigenetic processes 

– DNA methylation (DNAm) – reflects lasting changes to gene regulation, but 

may also be malleable over the timescales of pregnancy and breastfeeding, 

possibly relevant to the ‘biological embedding’ of tradeoffs and CoR. 

Furthermore, DNAm is sensitive to many of the physiological changes thought to 

underlie CoR in women. We recently found evidence that DNA methylation age 
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(Horvath, 2013) – a measure of somatic maintenance – was accelerated with 

gravidity among young adult women in the Philippines (Ryan et al., 2018). Similar 

findings were recently reported in a larger US population (Kresovich, Harmon, et 

al., 2019), supporting the possible role for DNAm in CoR. We also found 

evidence that DNA methylation age declined during pregnancy and increased 

during lactation (Ryan et al., 2018). However, this method targets predictable 

age-related variation in DNAm at only 353 loci (Horvath, 2013), thus it is unclear 

whether or not differences in DNAm during pregnancy and lactation more broadly 

might advance our understanding of the genes and molecular pathways 

potentially involved in CoR. A study of differences in DNAm that accompany 

reproduction across the methylome will help address this question. 

To address this gap, we examined differences in genome-wide DNAm using a 

cross-section of 392 young (20-22 years old) women of differing reproductive 

status. By comparing the DNAm in the blood of currently pregnant and 

breastfeeding women with both nulliparous and parous women, we sought 

evidence that changes in DNAm accompany reproduction, while also exploring 

whether such changes persist among parous, but no longer pregnant or 

breastfeeding women. To make our results more interpretable and comparable to 

previous studies of CoR, we combined our epigenome-wide association with 

functional enrichment and network analysis. We hypothesized that reproduction 

would be accompanied by differences in DNAm in genes and pathways 

consistent with shifting investment tied to somatic maintenance. Based on 
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evolutionary theory and epidemiological research we expected these to involve 

processes tied to metabolism and energy storage, immune function, and 

genomic stability. We further hypothesized that a subset of these changes would 

persist in women who are no longer pregnant or breastfeeding. We therefore 

expected to observe a subset of differences in DNAm between our cross section 

of nulliparous and parous women – consistent with a lingering ‘cost’ of 

reproduction on the epigenome.  

 

Materials and Methods 

Participants and Study Design 

Data came from the Cebu Longitudinal Health and Nutrition Survey (CLHNS), a 

birth cohort study in Metropolitan Cebu, Philippines that began with enrollment of 

3,327 pregnant mothers in 1983–1984. The original mothers were interviewed in 

the home during the third trimester of pregnancy, and women and their infants 

were assessed immediately following birth, and every 2 months for 2 years. 

Additional surveys were conducted in 1991–1992, 1994–1995, 1998–1999, and 

2002. The current study focuses on the birth cohort, who were 20-22 years of 

age when blood for DNA-methylation was collected in 2005. Rates of refusal 

during initial recruitment were low (<4%), and attrition in the CLHNS is due 

primarily to factors related to out-migration (Adair et al., 2011; Perez, 2015). 

Informed consent was obtained from all participants and data collection was 
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conducted under conditions of written informed consent and with oversight by the 

Institutional Review Boards of the University of North Carolina at Chapel Hill and 

Northwestern University. 

A total of 392 women were included in the current study. These women were 

drawn from a subsample of 1759 women who provided a blood sample in 2005 

and later participated in a pregnancy tracking study (Thomas W. McDade, Borja, 

Largado, Adair, & Kuzawa, 2016). Reproductive histories were based on an in-

home survey administered by a trained interviewer in 2007. The survey included 

questions about each known pregnancy, its duration, prenatal care, birth 

outcome (e.g. live birth, miscarriage, stillbirth, twins), and breastfeeding initiation 

and termination. Date of conception was inferred based on pregnancy duration 

and date of pregnancy termination (i.e. birth, miscarriage, etc.). For the few 

occasions when participants could not recall the day of pregnancy termination, 

the 15th of the month was used. Based on these records, women were classified 

as pregnant, breastfeeding, parous (but not breastfeeding or pregnant) and 

nulliparous. Women were classified as ‘pregnant’ when the blood sample date 

fell between the date of conception and the date of pregnancy termination. 

Women were classified as ‘breastfeeding’ when blood sample date fell between 

the initiation of breastfeeding and the termination of breastfeeding. Women with 

pregnancies prior to the date of blood sample, but who were not otherwise 

breastfeeding or pregnant were classified as ‘parous’. Women who reported 

never having been pregnant for any duration up to and during the time of the 
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blood sample were classified as ‘nulliparous’. Two women who were 

simultaneously pregnant and breastfeeding were reclassified as ‘pregnant’. 

DNA methylation  

Overnight fasting blood samples were collected into EDTA-coated vacutainer 

tubes, centrifuged to separate plasma and white blood cells, and frozen at 

−70°C. Samples were express shipped to the US on dry ice, stored frozen at 

−80°C prior to DNA extraction (Puregene, Gentra), and stored at −80°C following 

extraction. 750ng of genomic DNA was treated with sodium bisulfite (Zymo 

EZDNA, Zymo Research, Irvine, CA, USA), and 160ng of converted DNA was 

applied to the Illumina HumanMethylation450 Bead Chip under standard 

conditions (Illumina Inc., San Diego, CA). Technicians were blind to any 

information regarding participant characteristics, and samples were randomly 

assigned to plate, chip, and row. Background subtraction and color correction 

were performed using Illumina Genome Studio with default parameters. Data 

were then exported into R for further analysis.  

Quality control was performed as part of a larger sample to confirm participant 

sex and replicate status, and probes for sex chromosomes were removed from 

further analysis. Probes associated with known single nucleotide polymorphisms 

(SNPs), unreliable probes with a detection p-value above 0.01, probes with fewer 

than three beads contributing to signal, and those previously shown to bind to 

multiple genomic regions (E. M. Price et al., 2013) were also removed, leaving 
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434,728 probes. Data were quantile normalized using the R lumi package, then 

probe types were normalized using the SWAN method (Maksimovic, Gordon, & 

Oshlack, 2012). Next, plate, row, and chip batch variables were assessed using 

PCA and corrected using the COMBAT function in the sva R package (Leek, 

Johnson, Parker, Jaffe, & Storey, 2012). Spearman correlations for one sample 

run in duplicate and one sample run in quadruplicate all exceeded 0.99, 

confirming the efficacy of positional and batch effect corrections. Finally, 

proportions of blood cell types were predicted using a previously established 

algorithm, and variance associated with cell composition was removed using a 

linear regression approach (Houseman et al., 2012b; Jones, Islam, Edgar, & 

Kobor, 2015).  

Statistical Analyses 

A total of 434,728 probes passed quality control procedures. However, many 

DNAm sites are largely invariable between individuals and therefore unlikely to 

be informative with respect to reproductive status or CoR (Mill & Heijmans, 2013; 

Rakyan, Down, Balding, & Beck, 2011). To concentrate our analyses on sites 

plausibly associated with reproductive status and to reduce the burden of 

multiple comparisons (Bourgon, Gentleman, & Huber, 2010), we filtered out 

probes for which variability in β-values between the 10th and 90th percentiles in 

our population was <5%. This left us with a subset of 110,631 probes, which 

were converted from β-values to M-values prior to statistical analyses (Du et al., 

2010). For hypothesis testing, probe-wise variance was determined by fitting 
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linear regression models and applying parametric empirical Bayes smoothing 

formula over the entire array dataset that passed quality control using the R 

bioconductor package limma (Ritchie et al., 2015). This approach allowed for 

gene-wise information borrowing to better estimate the variation for each probe. 

The model outcomes from the subset of variable probes described above were 

then extracted and corrected for multiple comparisons using the method of 

Benjamini and Hochberg (1995). The following contrasts were made: nulliparous-

pregnant, nulliparous-breastfeeding, parous-pregnant, parous-breastfeeding, 

nulliparous-parous. 

To control for possible confounding social and environmental factors known to 

affect DNAm (Thomas W. McDade et al., 2019; Zeilinger et al., 2013) we 

included smoking (current smoker = 1), and a composite measure of 

socioeconomic status (SES) for both the year the blood sample was taken and 

the year the participant was born. SES was measured as a combination of 

income, education, and assets. Participants reported their annual income from all 

sources, including in-kind services, and the sale of livestock or other products by 

household members during the prior year, which were summed to determine total 

household income. Incomes were deflated to 1983 levels, and log-transformed. 

Participants also reported on maternal education (in years) and nine assets 

(coded 0, 1) that were selected to capture population-relevant aspects of social 

class (including electricity, televisions, refrigerators, air conditioners, tape 

recorder, electric fans, jeepneys, cars, and home and property ownership). In 
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addition, house construction type (i.e., light, mixed, permanent structure) was 

coded as 0, 1, and 2, respectively. Thus, asset scores ranged from 0 to 11. A 

principal components analysis was run on log income and assets at birth (1983) 

and at sample collection (2005) along with maternal education in Stata (v. 14.1). 

The first component of variation accounted for 49% of the variation and individual 

scores for this component of variation were used as our measure of SES. 

Finally, to control for the possible confounding influence of population 

stratification and some of the known impact of genetic variation on DNAm, we 

obtained genome-wide SNPs using the Global Screening Array (Infinium Global 

Screening Array-24 v2.0—Illumina). After standard SNP quality control, we 

performed multidimensional scaling using Euclidean distance (cmdscale function 

in R) to condense SNP variability into two components representing maximal 

dissimilarity in the data which were used as covariates. 

Gene Ranking, Functional Enrichment and Network Construction 

Delta betas (Db) used for ranking the top hits were determined from effect sizes 

of reproductive status from simple linear regression on untransformed β-values. 

Gene annotation for each probe was determined using the Illumina annotation 

UCSC_RefGene_Name column, resulting in some probes being associated with 

multiple transcripts of the same gene or multiple genes (Hansen, 2015). Using 

the Illumina-annotated USCS_RefGene_Name annotation we gave each gene 

analyzed a score. Scores were comprised of the negative log of the minimum 
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uncorrected differential methylation p-value and the log of the absolute maximum 

delta beta associated with the gene. The -log10 p-value and log10 delta beta 

values were then standardized (value-mean/standard deviation). The average of 

the standardized p-value and delta beta scores was the overall score for that 

gene. These gene scores were used for the ranking used in Table 3 and 

functional enrichment ranking of gene ontology (GO) terms.  

GO annotations of the 17,303 annotated genes associated with the variable 

450K probes used in differential methylation analysis were used as the 

background list. Enrichment of GO terms in the ranked list of differentially 

methylated genes was tested using the receiver operator characteristic (ROC) 

method from ErmineJ (Gillis et al., 2010). The ROC method is based on ranking 

of gene scores, and enrichment for a gene set occurs when the probes in the 

examined genes rank higher than expected by chance. Parameters were set as 

follows: biological process GO terms only were included, 5–100 gene set sizes, 

and best scoring replicates using the standardized negative log10 p-values and 

standardized delta betas described above. As a result, it is possible to observe 

significant enrichment even when there are no differentially methylated sites 

within a given gene.  

Statistical significance is reported as false discovery rates computed using the 

Benjamini–Hochberg method in ErmineJ. Also calculated are the 

multifunctionality scores of the ontology gene sets (Gillis & Pavlidis, 2011). When 

investigating the related functions for each gene, genes were linked to function, 
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expression, enhancer networks, and disease risks using openly-accessible 

compendia and curated databases  (Fishilevich et al., 2017; Rappaport et al., 

2017; Stelzer et al., 2016; Uhlén et al., 2015). Genomic features were based on 

UCSC genome annotations (UCSC_REFGENE_GROUP) provided by Illumina. 

The relationship between a CpG and repetitive DNA was derived from the 

overlap between the intended alignment of the probe and repetitive sequences 

from RepeatMasker (http://www.repeatmasker.org; RepeatMasker, Institute for 

Systems Biology, Seattle, WA, USA) and Price et al. (E. M. Price et al., 2013). 

The number of repetitive basepairs in a probe were categorized as low (<10), 

medium (>10 and < 40), or high (>40). 

Network construction from enriched biological processes was based on the 

ranked ErmineJ output. First, a gmt file containing GO group terms and 

associated genes was created using annotation downloaded from 

(http://download.baderlab.org/EM_Genesets/February_01_2018/Human/). From 

this list, genesets with an adjusted p-value threshold (FDR Q value £ 0.1) were 

used to construct networks. Networks were generated using the EnrichmentMap 

application in Cytoscape with the additional parameters: p = 0.05, overlap 

coefficient 0.5 (Merico et al., 2010; Shannon, 2003). 



 

 

114 
Results 

Descriptive Statistics  

A total of 392 women were included in the study. A breakdown by reproductive 

category is provided in Table 4-1. Women of different reproductive statuses did 

not differ in age or genetic PC-scores 1 and 2 (P = 0.43 and 0.68, respectively), 

but did differ by smoking status (P = 0.007) and SES (Table 4-1). While no 

pregnant or breastfeeding women smoked, three nulliparous women and seven 

parous, but no longer pregnant or breastfeeding women reported smoking. SES 

was higher among nulliparous compared to all other reproductive categories 

(F3,388 = 3.63, P = 0.0132). Using hierarchical clustering by distance for the 

subset of all 110,631 sites examined did not reveal any grouping by SES 

quartiles, smoking, or genetic PC-score quartiles. 



 

 

Table 4-1. Descriptive statistics of 392 young (20-22 years old) women of varying reproductive statuses participating in 
the Cebu Longitudinal Health and Nutrition Survey (CLHNS).  
  Nulliparous 

(N=176) 
Pregnant 
(N=69) 

Breastfeeding 
(N=60) 

Parous 
(N=87) 

Total  
(N=392) 

p-value 

Age (yrs) 
     

0.6361 
   Mean (SD) 21.65 (0.35) 21.66 (0.33) 21.72 (0.32) 21.67 (0.36) 21.67 (0.35) 

 

   Range 20.84 - 22.44 20.90 - 22.42 21.05 - 22.47 20.88 - 22.40 20.84 - 22.47 
 

SES 
     

0.0131 
   Mean (SD) 0.05 (1.35) -0.50 (1.31) -0.38 (1.50) -0.34 (1.41) -0.20 (1.40) 

 

   Range -2.75 - 3.95 -2.75 - 3.19 -3.27 - 3.81 -3.10 - 3.90 -3.27 - 3.95 
 

Genetic PC-Score 1 
     

0.4231 
   Mean (SD) 0.16 (9.01) -0.42 (8.82) 1.93 (7.55) 0.10 (7.75) 0.32 (8.50) 

 

   Range -19.94 - 24.04 -21.15 - 15.84 -12.54 - 22.85 -24.95 - 18.70 -24.95 - 24.04 
 

Genetic PC-Score 2 
     

0.6811 
   Mean (SD) -0.20 (8.06) 0.46 (7.93) -0.30 (7.47) 0.91 (6.94) 0.15 (7.70) 

 

   Range -20.48 - 20.33 -17.07 - 17.50 -15.41 - 17.56 -17.92 - 19.17 -20.48 - 20.33 
 

Smoking Status  
(1 = “yes”) 

     
0.0072 

   Number (%) 3 (2%) 0 0 7 (8%) 10 (3%) 
 

1.Linear model ANOVA 
2.Fisher’s Exact Test for Count Data 
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Genome-wide DNAm by reproductive status 

After correcting for blood cell composition and the false discovery rate, we 

detected differences in DNAm with reproductive status in a total of 2120 (1.9%) 

of the 110,631 sites we examined. These were not evenly distributed across the 

genomic features we examined (c2 (6, N = 110,631) = 203.75, P = 3.02e-41), with 

fewer than expected differentially methylated positions (DMPs) in unclassified 

intergenic regions and transcription start sites (both TSS1500 and TSS200) and 

more than expected DMPs in gene bodies, 3’UTRs and 5’UTRs. The 2120 

significant DMPs did not differ in repetitive sequence from the total subset of 

sites we examined (c2 (2, N = 110,631) = 2.76, P = 0.251). 

Compared to nulliparous women, differential methylation among pregnant 

women was observed in a total of 828 CpG loci spanning 533 annotated genes 

(CpG/gene - range: 1-19, median = 3). Of these 828 DMPs, 96% (795/828) had 

lower levels of methylation during pregnancy (Table 4-2; Fig. 4-1A). DMPs 

between pregnancy and nulliparity occurred less often than expected in 

intergenetic regions and upstream transcription start sites (TSS1500), and more 

often than expected in gene bodies and 3’UTR (c2 (6, N = 110,631) = 138.60, P = 

1.97e-27). Compared to the subset of CpG sites analyzed, the DMPs did not 

differ in the number of repetitive base pairs in the region (c2 (4, N = 110,631) = 

4.75, P = 0.314). 

Compared to parous – but currently non-pregnant or breastfeeding – women, 

539 CpG loci were differentially methylated among pregnant women, spanning 
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352 annotated genes (CpG/gene - range: 1-25, median = 1). Of these 539 DMPs, 

99% (533/539) had lower levels of methylation during pregnancy (Table 4-2; Fig. 

4-1B). Roughly half (49%, 264/539) of the DMPs when comparing pregnant and 

parous women overlapped with the comparison between pregnant and 

nulliparous women (Fig 4-2). DMPs between parous women and pregnant 

women occurred less often than expected in intergenic regions, and more often 

than expected in 5’UTR and gene bodies (c2 (6, N = 110,631) = 56.64, P = 2.17e-

10). Compared to the subset of CpG sites analyzed, the DMPs comparing parous 

with pregnant women did not differ in the number of repetitive base pairs in the 

region (c2 (4, N = 110,631) = 0.90, P = 0.925). 

Compared to nulliparous women, differential methylation among currently 

breastfeeding women was observed in a total of 1107 CpG loci in 849 annotated 

genes (CpG/gene - range: 1-6, median = 1). Only 8% (90/1107) of DMPs found 

among breastfeeding women overlapped with DMPs noted above as associated 

with pregnancy (Fig. 4-2). In contrast with pregnancy, breastfeeding was 

associated with higher levels of methylation relative to nulliparity, with 71% 

(787/1107) of DMPs being more methylated among breastfeeding women. 

Differences between breastfeeding and nulliparity occurred less often than 

expected in intergenic regions and nearby transcription start sites (TSS200) and 

more often than expected in 5’UTRs, gene bodies, and 3’UTRs (c2 (6, N = 

110,631) = 90.81, P = 2.05e-17). DMPs were not evenly distributed across 

categories of repetitive sequence, with hypomethylated DMPs occurring more 
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often than expected in probes with high and medium levels of repetitive 

sequence (c2 (4, N = 110,631) = 22.73, P = 1.44e-4). 

Table 4-2. Number of differentially methylated positions (DMPs) among women 
varying in reproductive status. Numbers are in contrast to the (top) reference 
level (i.e. Null = nulliparous as reference group).   

  Null-
Pregnant  

Parous-
Pregnant  

Null-
Breastfeeding 

Parous-
Breastfeeding  

Null-
Parous  

Down  795  533  320  0  0  

Non-sign. 109803  110092  109524  110630  110631  

Up  33  6  787  1  0  

 

 

   

  

Figure 4-1. Volcano plots of differences in DNAm (Delta-Beta) by negative log10 
p-value between women of differing reproductive status. Comparisons between 
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nulliparous-pregnant (A), parous-pregnant (B), nulliparous-breastfeeding (C), and 
parous-breastfeeding (D), are shown. Y-axis scale varies by plot. 

 

Figure 4-2. Overlapping significant differences in DNAm between women of 
differing reproductive status. Number of overlapping significant differences 
shown in black. Single significantly different site for breastfeeding-parous women 
not shown, but overlapped with breastfeeding-nulliparous category. 

Between parous and breastfeeding women, only one DMP was observed (Fig. 4-

1D). This site (cg07549715) is located in the gonadotropin releasing hormone 2 

(GNRH2) gene and was one of the 1107 DMPs found between nulliparity and 

breastfeeding. There were no statistically significant DMPs between nulliparous 

and parous women after correcting for false discovery rate. 
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Gene Ranking, Functional Enrichment and Network Analysis 

Genes were ranked based on the sum of maximum standardized -log10 p-values and 

absolute Db for each gene, such that the highest ranked genes are those for which p-

values were lowest and differences between groups were highest. The top 10 ranked 

genes for each comparison of reproductive status are provided in Table 3. Nulliparous-

pregnant and parous-pregnant overlapped in 7 of their top 10 genes, mirroring the large 

overlap in CpG loci between nulliparous-pregnant and parous-pregnant women (Table 

4-3). The top 10 genes listed for breastfeeding did not overlap with the pregnancy-

associated genes. One gene, DNAH10, appeared in the top 10 ranked annotated genes 

for both nulliparous-breastfeeding and parous-breastfeeding (Table 4-3).  

Table 4-3. Top 10 genes differing between reproductive status groups scored using the 
sum of standardized -log10 p-values and absolute Db (group differences). Highest 
ranked genes are those with the smallest p-values and largest differences between 
groups. 
Null-Pregnant Parous-Pregnant Null-Breastfeeding Parous-Breastfeeding 

Gene  score  Gene  score  Gene  score  Gene  score  
CLEC2D  10.836  CLEC2D  6.972  DNAH10  5.700  GNRH2  5.741  
TNFSF10  8.916  ZEB2  6.331  FAM193B  5.561  CPM  5.044  
CUEDC1  7.738  SBNO2  5.938  MLNR  5.455  FAM13A  4.725  
CCR7  6.679  NADK  5.859  SLC38A10  5.162  ANKFY1  4.533  
SBNO2  6.514  RORC  5.623  AMBRA1  5.050  LCP2  4.094  
BMP1  5.859  NACC2  5.324  KIAA0146  5.024  DNAH10  4.053  
TMEM49  5.828  CUEDC1  5.068  ASPRV1  4.966  ST5  3.888  
NADK  5.717  GGT6  4.948  VTI1A  4.736  LSM12  3.719  
CISH  5.688  TNFSF10  4.946  IL1R1  4.658  FOXP1  3.708  
ZEB2  5.513  BMP1  4.904  ABCC1  4.526  CCRL2  3.671 

 

Compared with nulliparity, the pregnancy-associated methylome was associated with 

enrichment for pathways involved in T cell activation, adhesion, and signaling; cellular 
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responses to interferon-gamma (IFNg); negative regulation of the viral life cycle; and cell 

morphogenesis involved in neuron differentiation (Fig. 4-3). Parous women and 

pregnant women also differed in processes involved in T cell activation and adhesion 

and exhibited methylomes with enrichment for processes involved in axon guidance, 

development, and neuron differentiation (Fig. 4-4).  

 

Figure 4-3. Nulliparous – Pregnant Women: Network of enriched biological processes 
based on differential methylation in pregnant women compared to nulliparous women. 
Darker colors indicate smaller false-discovery rate (FDR) corrected enrichment p-values 
based on ranking using the receiver operating characteristic and gene scores. More 
description in the methods. 
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Figure 4-4. Parous – Pregnant women: Network of enriched biological processes 
based on differential methylation in pregnant women compared to parous women. 
Darker colors indicate smaller false-discovery rate (FDR) corrected enrichment p-values 
based on ranking using the receiver operating characteristic and gene scores. More 
description in the methods. 

Compared to nulliparity, the breastfeeding-associated methylome was enriched for 

nuclear, protein, and vesicle-mediated transport, and for antigen processing and 

presentation of exogenous peptide antigen via MHC class II (Fig. 4-5). Relative to the 
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methylomes of breastfeeding women, the methylomes of parous women did not exhibit 

enrichment for any biological processes.  

While no individual CpG loci differed between nulliparous and parous women, the top-

ranking genes were significantly enriched for processes involved in axon development, 

neurogenesis, and cell junction assembly and adhesion (Fig. 4-6).  

 

Figure 4-5. Breastfeeding – Nulliparous women: Network of enriched biological 
processes based on differential methylation in breastfeeding women compared to 
nulliparous women. Darker colors indicate smaller false-discovery rate (FDR) corrected 
enrichment p-values based on ranking using the receiver operating characteristic and 
gene scores. More description in the methods. 



 

 

124 

 

Figure 4-6. Parous– Nulliparous women: Network of enriched biological processes 
based on differential methylation in parous women compared to nulliparous women. 
Darker colors indicate smaller false-discovery rate (FDR) corrected enrichment p-values 
based on ranking using the receiver operating characteristic and gene scores. More 
description in the methods.  

Blood Cell Composition 

Our analyses of genome-wide DNAm employ reference-based algorithms that correct 

for individual differences in immune cell composition in the blood. The differences in 
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DNAm described above were apparent despite significant differences in imputed cell 

composition between groups (Fig. 4-7). Nevertheless, differences in cell composition 

that group by reproductive status may themselves be informative with respect to 

understanding tradeoffs tied to reproduction in women. For example, we observed 

significant differences between pregnant and nulliparous women for all cell types (Fig. 

4-7). However, for B-cells, CD4T cells, CD8T cells, and granulocytes, these differences 

were not present between nulliparous and breastfeeding women (Fig. 4-7), suggesting 

that levels return to pre-pregnancy levels among breastfeeding women. In contrast, cell 

composition for monocytes and natural killer cells among breastfeeding women was 

lower and higher, respectively, than among nulliparous women. These significant 

differences were in the opposite direction to those observed in pregnant women and 

suggest what might be described as a ‘rebound’ in cell proportions. Surprisingly, these 

differences were also present among parous women (Fig. 4-7), hinting at durable 

alterations in systemic immune regulation after pregnancy and breastfeeding.  
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Figure 4-7. Imputed immune cell composition among women of differing reproductive 
status. B lymphocytes (Bcells), CDT4 lymphocytes (CD4T), CD8T lymphocytes (CD8T), 
granulocytes (Gran), monocytes (Mono), and natural killer cells (NK).  
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Discussion 

Disease risk and all-cause mortality varies with women’s reproductive history. Elevated 

risk for some diseases and shortened life-expectancy is consistent with energetic or 

functional tradeoffs tied to pregnancy or lactation, referred to as ‘costs of reproduction’. 

While a range of biological markers have begun to support the broad physiological 

processes underpinning CoR in women, much remains to be learned about the genes 

and molecular pathways involved. We used differences in DNA methylation (DNAm) 

among women of differing reproductive status to shed light on these molecular 

processes. Our findings indicate that the blood methylome varies markedly with 

reproductive status. Furthermore, differences in DNAm during pregnancy were almost 

entirely distinct from those observed during breastfeeding. Our analysis of parous 

women suggest that these differences are largely transient in blood, yet enriched 

neurogenesis and adaptive humoral response immune pathways could reflect subtle 

residual effects of reproduction on women’s methylomes. Reproductive status was also 

associated with significant differences in bioinformatically-derived measures of cell 

proportions, further suggesting that changes to the immune system may be major factor 

linking reproduction to women’s health.  

Pregnancy 

Compared to nulliparous women, pregnant women exhibited lower levels of DNAm for 

over 95% of the observed differentially methylated positions (DMPs). A similar pattern 

was observed when comparing pregnant women to ever-parous (but not pregnant or 
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breastfeeding women) where nearly 99% of the DMPs in pregnancy were down-

methylated. Although the functional consequences of lower levels of DNAm varies by 

gene, CpG class (e.g. islands, shores, shelves) and genomic features (e.g. introns, 

exons, 5’UTR, 3’UTR), global loss of methylation over time is a signature of aging in 

both humans and other species (Bollati et al., 2009; Jones, Goodman, et al., 2015; Jung 

& Pfeifer, 2015). The differences in the methylome that ranked the highest were found 

near genes tied to age-associated phenotypes. Genetic variation near SBNO2 or its 

enhancer is associated with bone mineral density (Kichaev et al., 2019), lung function 

(FEV/FEC) (Fishilevich et al., 2017; GH19J001851) and Alzheimer’s Disease risk 

(GH19J001062), while variation near ZEB2 is associated with lung function and grip 

strength (Kichaev et al., 2019; Tikkanen et al., 2018). These physical measures of age-

related decline are strongly linked to health, disability, morbidity, and mortality in the 

elderly (Bohannon, 2008; Sharma & Goodwin, 2006), and variation in DNAm in these 

genes during pregnancy could provide a link between reproduction and age-related 

health outcomes later in life. Thus, our findings suggest that pregnancy is characterized 

by epigenetic signatures of ‘aging’ across the maternal methylome, but that these 

differences may be largely transient.   

Hypomethylation – typically when associated with retroelements or other repetitive 

sequences – is also a hallmark of cancer and tumorigenesis (Ehrlich, 2002; Kanai & 

Arai, 2012). In our sample, pregnancy-associated hypomethylation was not 

disproportionately found in regions with repetitive DNA (but see below for such findings 

in during breastfeeding). However, fetal nucleated red blood cells are hypomethylated 
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relative to maternal leukocytes, hinting at fetal microchimerism through the 

‘contamination’ of maternal blood (de Goede, Lavoie, & Robinson, 2016). Several of the 

top-ranking genes, however, do have established links to breast cancer. TNFSF10 

(Tumor Necrosis Factor Superfamily Member 10) codes for a protein that binds to so-

called ‘death receptors’ that trigger apoptosis and cell death in tumor cells (Wiley et al., 

1995). Furthermore, genetic variation in this gene is a risk factor for estrogen-receptor 

negative breast cancer (Huo et al., 2016). Cell proliferation in breast cancer also occurs 

in another top ranking gene CUEDC1 (CUE domain containing 1) via stimulation of the 

estrogen-receptor alpha receptor (Lopes et al., 2018), providing a potential genetic link 

between pregnancy, estrogen-exposure and breast cancer. Such differences in DNAm 

among genes linked to both ER- and ER+ breast cancer are consistent with a 

relationship between pregnancy and breast cancer that operates through both estrogen-

dependent and estrogen-independent pathways – with the risk for ER- breast cancer 

mediated in part by breastfeeding practices after birth (Fortner et al., 2019). While these 

differences are found in blood leukocytes, differences in DNAm in response to changes 

in estrogen or other pregnancy-associated hormones could provide a surrogate 

measure of similar changes in mammary or other tissues. The relationship between 

DNAm in blood and mammary tissue for these genes during pregnancy is unknown, but 

our research suggests that TNFSF10 and CUEDC1 may merit further investigation as 

molecular intermediates in the link between pregnancy, breastfeeding, and breast 

cancer risk.  
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Many of the top-ranking genes associated with pregnancy play key roles in immune 

function and inflammation. Our findings highlight changes in DNAm associated with 

broad changes in leukocyte count (TNFSF10, ZEB2, SBNO2), and a shift from adaptive 

to innate immunity (CLEC2D) (Astle et al., 2016; Germain et al., 2011). These findings 

are supported by functional enrichment analysis, which allows us to examine the higher-

order biological processes derived from all differentially methylated genes during 

pregnancy. They are also supported by our bioinformatically-imputed cell counts, which 

suggest decreased B and T-cell counts, and increased monocyte and granulocyte 

counts. Enriched processes hinged on the regulation of leukocyte signaling and 

activation, particularly with respect to T cell activation and the response to interferon-

gamma (INF-g). These processes reflect the transition from a proinflammatory Th1 to an 

anti-inflammatory Th2 immune environment – previously documented as a normal part 

of pregnancy and parturition (Trundley & Moffett, 2004). Such shifts in the ‘landscape of 

adaptive immunity’ are required for successful implantation by controlling immune 

intolerance to fetal trophoblast cells, while maintaining active defenses against 

pathogens (Trundley & Moffett, 2004). Changes in inflammatory profiles during 

pregnancy have previously been described in this population (Kuzawa et al., 2013; 

Kuzawa, Fried, Borja, & McDade, 2017), and may have important implications for fetal 

growth and development. The findings presented here are evidence that changes in the 

immunological landscape of pregnancy are detectable in leukocyte methylomes, even 

after applying algorithms to estimate and correct for the proportion of circulating cell 

types (Houseman et al., 2012b; Jones, Islam, et al., 2015). Future work examining the 
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relationship between the methylome during pregnancy and birth outcomes may 

capitalize on these changes to help predict pre-term birth, fetal development, and infant 

health. 

The shift away from acquired immunity described here and elsewhere (E. M. Miller, 

2009) may help also explain widely-described reduction in the symptoms or relapse 

rates for several autoimmune disorders during pregnancy (Morelli, Mandal, Goldsmith, 

Kashani, & Ponzio, 2015). Accordingly, interactions between CLEC2D – the top-ranked 

gene associated with pregnancy – and the membrane receptor CD161 are thought to 

play a role in multiple sclerosis (Germain et al., 2011), the risk and progression of which 

has been linked to both pregnancy and parity (McCombe, 2018). Furthermore, genetic 

variation in another high ranking gene, CUEDC1, has been linked to glutamate levels – 

themselves a marker of neurotoxicity and poor prognosis – in patients with multiple 

sclerosis (Baranzini et al., 2010). Finally, the expression of CCR7 – another high-

ranking gene associated with pregnancy – differs between patients with multiple 

sclerosis and controls, as well as between patients before and after treatment (Fan et 

al., 2015). CCR7 expression, possibly a function of DNAm, may play an important role 

in the etiology and severity of multiple sclerosis symptoms (Fan et al., 2015). Thus, 

changes in the regulation of the immune system involving differential methylation in 

CLEC2D, CUEDC1, and CCR7 may provide insights into the molecular relationship 

between pregnancy and multiples sclerosis (Khashan et al., 2011; McCombe, 2018).  
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Breastfeeding  

Relative to nulliparity and in contrast to the hypomethylation observed during 

pregnancy, 71% of the differences in DNAm observed during breastfeeding were 

associated with increased methylation. Promoter hypermethylation is a common feature 

of cancer, as is the hypomethylation of repetitive DNA. While making up a smaller 

proportion of DMPs, the hypomethylated DMPs occurred more often than expected in 

probes containing high to moderate numbers of repetitive base pairs, broadly consistent 

with an elevated risk for tumorigenesis. One of our top-ranked genes for breastfeeding – 

FAM193B – has also been linked to renal cancer. FAM193B is a downstream target of 

enhancers tied to kidney function and renal disease, and FAM193B RNA levels are 

prognostic of poor renal cancer outcomes (Uhlén et al., 2005). Nevertheless, few of the 

other highest-ranking genes associated with breastfeeding show clear connections to 

cancer risk.  

In contrast – but consistent with the energetically taxing nature of lactation (Butte & 

King, 2005) – a number of the highest-ranking genes associated with breastfeeding are 

involved in energy storage and metabolism. DNAH10, FAM193B, and FAM13A all have 

been shown to have relationships with various measures of body mass and 

composition, triglyceride levels, and insulin resistance (Lotta et al., 2017; Singaraja et 

al., 2014). FAM193B has also been linked to pronounced sex differences in adiposity, 

which could be especially relevant when studying the relationship between reproduction 

and obesity among women (e.g. Winkler et al., 2015). Among post-reproductive women, 

BMI is lower among women who breastfeed compared to those who do not and 
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decreases with increasing time spent breastfeeding (Bobrow, Quigley, Green, Reeves, 

& Beral, 2013; Coitinho, Sichieri, & Benício, 2001). The differences in DNAm described 

here point to the regulation of pathways of energy mobilization during breastfeeding that 

could affect adiposity and body mass later in life, even after changes in DNAm have 

returned to their original states. 

While energetically costly, breastfeeding also allows mothers to transfer immunological, 

hormonal, and microbial substrates to neonates. While some proteins and lipids are 

produced locally in mammary epithelial cells, others appear to be produced elsewhere 

in the body and transported to breast tissue for eventual secretion in breastmilk 

(Bardanzellu, Fanos, & Reali, 2017). Such substrates may be transported to milk in free, 

bound, or enclosed in lipid-vesicles called exosomes (Zhou et al., 2012). We found that, 

compared to nulliparity, breastfeeding was enriched for antigen processing and 

presentation via the major histocompatibility complex (MHC) class II, as well as 

transmembrane and vesicle-mediated transport. MHC class II proteins have been found 

in breastmilk exosomes and may be a source of passive immunity in infants (Admyre et 

al., 2007), which may in part explain our findings.  

Several of the high-ranking genes that were differentially methylated in currently 

breastfeeding women are also related to neonatal health and development. DNAH10 is 

involved in the force generating capacity of cilia in organs such as the lungs and 

underlies primary ciliary dyskinesia, a disease which is characterized by a failure to 

adequately clear fluid from the lungs among neonates (Berg et al., 2011; Rappaport et 

al., 2017). MLNR codes for the motilin receptor, and is expressed in its highest 
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concentrations in the nerves of the antral walls of the stomach and the smooth muscle 

of the upper walls of the gastrointestinal tract (Uhlén et al., 2015). There, the motilin 

receptor plays a role in gastrointestinal contraction and motility (Stelzer et al., 2016). 

Although do not have evidence that MLNR is transferred to offspring, it is tempting to 

speculate that the differences that we document in breastfeeding vs. nulliparous women 

partly reflect the cellular production and packaging of vesicle-bound products destined 

for breastmilk. Such signaling, possibly through vesicle-bound transcription factors or 

non-coding RNAs, could provide cues important for infant growth and development. 

Consistent with this hypothesis, motilin is found in high quantities in the blood of 

breastfeeding women, as well as in breastmilk, where it may play a role in infant 

gastrointestinal motility (J. Liu et al., 2004). DNAH10 protein is also found in cow’s milk 

and may also be present in human breastmilk (Affolter, Grass, Vanrobaeys, Casado, & 

Kussmann, 2010). Thus, DNAH10, MLNR, and perhaps other genes might play a role in 

the connection between breastfeeding and infant health and development.   

Lactation has known inhibitory effects on menstruation and fertility in women (Peter T 

Ellison, 1990; McNeilly, Tay, & Glasier, 1994). Through this process – referred to as 

lactational amenorrhea – mechanical and sensory stimuli associated with breastfeeding 

interact with energy status to suppress ovulation. This occurs through disruption of the 

pulsatile hypothalamic release of gonadotropin releasing hormone (GnRH), which 

disrupts secretion of luteinizing hormone (LH) from the anterior pituitary (McNeilly et al., 

1994). LH in turn is necessary for the pre-ovulatory estrogen surge that drives the 

development of the corpus luteum and ovulation (Plant & Zeleznik, 2014). The top-
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ranking gene when comparing breastfeeding women to parous women was GNRH2 

(gonadotropic releasing hormone 2), a closely related gene to GNRH. This same site 

was also differentially methylated when breastfeeding women were compared to 

nulliparous women. 

The finding of differential methylation in GNRH2 in the blood is somewhat surprising 

given that expression of this gene is thought to be localized in the brain and 

reproductive tissues (e.g. ovaries, cervix, and fallopian tubes)(Uhlén et al., 2015). 

However, concordance between DNAm in blood and brain does exist for certain loci, 

with variability in DNAm and blood-brain concordance for these DMPs moderate to high 

(> 0.05 and > 0.35, respectively)(Edgar, Jones, Meaney, Turecki, & Kobor, 2017). Given 

the well-documented role of GNRH in the lactational amenorrhea that accompanies 

breastfeeding, these findings hint at the possibility that other brain-associated changes 

may be detectable in the differential methylation of genes in blood. Consistent with this 

suggestion, the highest scoring probe for each of the highest scoring genes in the 

enrichment of ‘cell morphogenesis involved in neuron differentiation’ (SRGAP2, 

PIP5K1C, CAP2) all have moderately high (spearman’s r = 0.19-0.37) correlations in 

DNAm between blood and brain (Table S1), suggesting that a subset of the DNAm 

differences identified in blood in this study may partly reflect changes to DNAm in the 

brain.  

Another intriguing possibility is that some of the apparent transient changes in DNAm 

identified in our analyses reflect mammary stem cells reported in human and non-

human breastmilk (Witkowska-Zimny & Kaminska-El-Hassan, 2017). Researchers have 
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shown that mammary stem cells are transferred to the brain of suckling pups in mice, 

where they are integrated into the brain and differentiate into neuronal and neuroglial 

cells in vivo (Aydın, Yiğit, Vatandaşlar, Erdoğan, & Öztürk, 2018). While the 

differentiation of maternal mammary stem cells into neuronal cells in the human infant is 

difficult to demonstrate, researchers have found support for this hypothesis by 

successfully differentiating human mammary stem cells into neural stem cells, neurons, 

and neuroglia in vitro (Hosseini, Talaei-khozani, Sani, & Owrangi, 2014).  

If the multipotent capacity of mammary cells can be harnessed, breastmilk could offer 

therapeutic potential for a range of neurological disorders – even age-related cognitive 

decline linked to parity in women (Beeri et al., 2009).  

Parous women 

When comparing DNAm profiles among parous, but not currently reproductive women 

to nulliparous women we did not observe a significant difference in DNAm for any 

individual locus. While our study examines different women cross-sectionally, this 

finding is most consistent with transient – rather than durable – changes to the 

methylome. This does not rule out a role for DNAm in women’s CoR. Any durable 

changes in DNAm that accompany pregnancy and breastfeeding may be small, 

cumulative, and heterogeneous across women, making them difficult to detect. 

Furthermore, temporary changes in DNAm could have more lasting impacts by affecting 

the regulation of downstream genes, which will invariably be associated with greater 

stochasticity between individuals, making it harder to detect using the cross-sectional 
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design we employed here. Finally, all of the parous women in our study had been 

pregnant only once prior to the blood sample, while all women who with 2 or more 

pregnancies were pregnant or breastfeeding at the time of the blood sample. We 

therefore lack variation for the widely-described cumulative effects of multiple 

pregnancies (Lv et al., 2015; Y. Zeng et al., 2016).  

Despite shortcomings, we do find some evidence for lasting changes in parous women. 

This is reflected by differences in the immune system of parous women compared to 

nulliparous women in the proportions of monocytes and natural killer cells. Differences 

in the proportion of monocyte and natural killer cells between nulliparous, pregnant, 

breastfeeding, and parous women imply functional changes in the immune system of 

women who have undergone reproduction – changes which could translate 

immunological changes relevant to women’s subsequent health. Although we found no 

statistically significant DMPs between nulliparous and parous women, changes in 

immune response are supported by our enrichment analysis, which relies on non-

parametric ranking of p-values rather than a p-value threshold. We found an enrichment 

for biological processes linked to immune regulation, but also neurogenesis. The latter 

is consistent with our findings for breastfeeding, which point to processes involved in 

neurogenesis and axon differentiation, and may relate to epidemiological findings 

supporting higher risk for Alzheimer’s among high parity women (Beeri et al., 2009).  
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Limitations and Future Directions 

We leveraged genome-wide DNAm to study the link between reproduction and women’s 

health from an evolutionary perspective. However, our analyses were restricted to a 

cross-sectional study of women in different reproductive states, not individual women 

through time. This limits our ability to make definitive claims about ‘changes’ in the 

methylome throughout reproduction. The use of a long-term prospective cohort should 

attenuate confounding for some factors; all women are the same age and have been 

studied since before their birth, reducing potential influences of age or secular changes 

in fertility. However, despite our design, women still differ in health or access to 

resources, which could affect reproductive decisions and the methylome. For example, 

nulliparous women had significantly higher SES than women who were in the other 

reproductive states, which could generate false positives in our comparisons. We 

attempted to address this statistically by including a composite measure of SES for both 

the year the blood sample was taken as well as the year the woman was born. We also 

included comparisons between pregnant or breastfeeding women and parous women, 

who did not differ in SES from pregnant or breastfeeding women. These two measures 

– combined with the fact that there were no significant individual DMPs when comparing 

nulliparous to parous women – support the interpretation that our findings are a result of 

differences in reproductive status and not SES. This interpretation is also supported by 

the fact that enrichment for neuron differentiation was observed between nulliparous 

and parous women (who differed in SES) and between pregnant and parous women 

(who did not differ in SES). Despite these efforts, and the fact that many of our findings 
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point to changes in systems known to undergo physiological and immunological 

adjustment during reproduction, our findings – including those showing differences in 

cell types between nulliparous and parous women – must be interpreted cautiously. A 

longitudinal approach, following individual women over time and through reproductive 

transitions, will be vital to addressing these limitations.  

Our analyses on blood make it difficult to infer changes in DNAm in other tissues (e.g. 

breast, ovaries, thymus, liver). Although some epigenetic changes are consistent across 

tissues, which DMPs provide reasonable surrogates for which tissues is unclear. 

Nevertheless, some of our leading genes associated with neurogenesis have been 

found to be modestly correlated between blood and brain, lending some support for our 

use of blood for preliminary studies of CoR that may relate to disease in brain and 

perhaps other tissues (Edgar et al., 2017). Additional research using post-mortem 

tissues or animal models may help to resolve these questions further.  

This study highlights a number of potential genes and pathways that may be important 

for understanding the relationship between reproduction and women’s health. However, 

at this stage we do not know if the changes in methylation in the genes and pathways 

we described ultimately lead to differences in health later in life. To confirm this will 

require long-term studies that examine methylation and health during reproduction and 

in aging women. Comparing DNAm in the genes described here between women of 

different disease phenotypes – such as with and without breast cancer – could also lend 

support to our suggestion that reproduction connects with women’s health through 

changes in DNAm. It is also unlikely that women all respond identically to the metabolic, 
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immunological, and endocrine changes that accompany pregnancy and breastfeeding. 

Studies of how underlying genetic variation is involved in women’s epigenetic responses 

to reproduction could help close the gap in our understanding of reproduction, the 

epigenome, and women’s health.  

Conclusions 

Our findings highlight both well-established and novel genes and pathways in the 

connection between reproduction and women’s health. These processes may help 

clarify mechanistic underpinnings involved in costs of reproduction in women. They may 

also shed light on the complex and countervailing forces that influence how the female 

body has come to adapt to – and even benefit from – reproduction. Both tradeoffs and 

adaptations are likely to be important in understanding the constraints and evolutionary 

processes that shape women’s health and reproduction. 
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Chapter 5.  Testosterone levels are not associated with individual 
changes in DNA methylation or bioinformatically-imputed cell 
composition, but do predict epigenetic age in a small sample of 
young (20-22 year old) Filipino men 

Abstract 

Testosterone (T) is a steroid hormone responsible for male sexual differentiation and 

secondary sex characteristics. T also underpins behavioral and somatic components of 

male mating effort in adulthood and thus contributes to reproductive success. Research 

suggests that T may be costly to male health and longevity through behavioral, 

metabolic, or immunosuppressive effects, but the biological pathways involved have not 

been well-defined. Furthermore, research in human males has largely focused on the 

putative immunosuppressive effect of T, but support for this effect has been mixed. This 

inconsistency may be tied to tradeoffs within the immune system, such as between 

innate and acquired immunity. Alternatively, other measures of metabolic or cellular 

aging may be involved. In an effort to address these gaps, we examined the relationship 

between an epigenetic process known as DNA methylation (DNAm) and three 

measures of T in 90 young (20-22 year old) men in the Philippines. DNAm can be used 

to calculate measures of ‘epigenetic age’, which are highly predictive of metabolic 

health, cellular aging, and mortality. DNAm can also be used to bioinformatically-

imputed leukocyte proportions, which we used to generate an axis of innate-acquired 

immunity to study the putative effects of T on immune function. Finally, to shed new light 

on T-associated tradeoffs, we carried out a scan of relationships between T and DNAm 

across the genome. All measures of epigenetic age were positively associated with all 

measures of T, although only Levine’s DNAmPhenoAge – linked to metabolic health 
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and mortality – was statistically significant. Neither cell types nor our composite of 

innate-acquired immunity was associated with any measures of T, inconsistent with a 

simple immunosuppressive effect of T. None of our epigenome-wide association study 

findings were significant after correction for false discovery, although one gene linked to 

IL2 and IL4 cytokine production approached significance for evening salivary T. Our 

preliminary findings using a relatively small sample size point to potentially complex 

roles of T in metabolic function and perhaps immunity, and suggest that DNAm – in 

conjunction with later, more well-powered samples – may provide new ways of 

operationalizing T-associated tradeoffs in men.   



 

 

143 
Introduction 

Reproduction is thought to contribute to poor health and shortened lifespan in humans 

and other organisms by drawing energy away from somatic maintenance and repair 

(Crews, 2003; K. Hill & Kaplan, 1999; Rose, 1994; Williams, 1957). This theory – 

referred to as the ‘disposable soma theory’ (Kirkwood, 1977) – is supported in plants, 

insects, reptiles, birds, and mammals (Ardia, Schat, & Winkler, 2003; Kirkwood & Rose, 

1991; Obeso, 2002; Peña et al., 2020; Shine, 1980). Costs of reproduction (CoR) have 

also been found for humans in that life expectancy is reduced, and biological markers of 

aging accelerated, among women with high parity (Grundy & Tomassini, 2005; Ryan et 

al., 2018; Tamakoshi et al., 2011; Ziomkiewicz et al., 2016). CoR in women may arise 

from the fact that female mammals are burdened with substantial energetic demands 

during pregnancy and lactation (Emery Thompson, 2013; Prentice & Prentice, 1988). 

Pregnancy and lactation also entail extensive metabolic, immunological, and 

endocrinological changes that could work in opposition to a mother’s own bodily 

maintenance (Bigiu & Pandi, 2015; S. Helle et al., 2004).  

In contrast with females, male mammals do not invest energy directly into offspring 

growth and development and do not undergo the dramatic endocrinological and 

immunological changes required to sustain pregnancy and lactation. Instead, male 

reproductive effort is thought to consist of securing social status, competing and forming 

alliances, courtship or coercion, and providing protection, provisions, or social support 

for family, mates, and offspring (Clutton-Brock, 1989). These traits and behaviors, while 

not mutually exclusive, are categorized as investments into either mating or parenting 
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effort (Geary, 2015; Trivers, 1972). Paternal care is thought to be a derived 

characteristic of the human lineage (Geary, 2015; P. B. Gray & Anderson, 2010) and 

was likely modest among ancestral humans, who appear to have been highly 

polygynous at least until the Out-of-Africa bottleneck (Amster, Murphy, Milligan, & Sella, 

2020). Compared to males of most other mammalian species, human males invest quite 

heavily into parenting effort through provisioning and protection. However, the costs of 

paternal care may be outweighed by direct physiological costs of mating effort, which 

appear to involve behaviorally, metabolically, and immunologically-costly traits directly 

or indirectly linked to social status and mate attraction.  

In humans, as in reptiles, birds, and other mammals, mating effort is largely regulated 

through a class of steroid hormone known as androgens, in particular testosterone (T) 

(Adkins-Regan, 2005; Bribiescas, 2001; Flinn, Ponzi, & Muehlenbein, 2012; R. J. 

Nelson, 2005). T contributes to the development and maintenance of primary and 

secondary sex characteristics, including male-typical genitalia, bone and facial 

structure, body hair, and vocal pitch (E. Nieschlag, Behre, & Nieschlag, 2012). T is also 

an anabolic hormone that increases bone density and muscle size, metabolic rate and 

lipolysis, and strength (Bhasin et al., 2012; Vanderschueren, Sinnesael, Gielen, 

Claessens, & Boonen, 2012; but see Alvarado et al., 2015). In the brain, T has both 

organizational and activational effects on neural development and behavior (Bancroft, 

2012; Trumble, Jaeggi, & Gurven, 2015). T also contributes to – and is produced in 

response to – competitive interactions in which male social status is threatened (Dreher 

et al., 2016; Eisenegger, Haushofer, & Fehr, 2011; M. N. Muller, 2017), or in response 
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to potential mating opportunities (Escasa, Casey, & Gray, 2011; Flinn et al., 2012; Lee 

T. Gettler, McDade, Agustin, Feranil, & Kuzawa, 2013; P. B. Gray, McHale, & Carré, 

2017). Further supporting a role of T in human male mating effort, T is highest among 

men who are single and childless, with levels declining as they transition to stable pair-

bonded relationships and fatherhood (L. T. Gettler, McDade, Feranil, & Kuzawa, 2011; 

P. B. Gray, Kahlenberg, Barrett, Lipson, & Ellison, 2002).  

While elevated T may be an important component of mating effort and fitness, it is also 

widely postulated to be a source of CoR in males of numerous species, including 

humans. In men, castration – which all but eliminates endogenous production of T – has 

been associated with a lengthening of lifespan (Min, Lee, & Park, 2012; but see 

Eberhard Nieschlag, Nieschlag, & Behre, 1993). More subtly, declines in T that 

accompany men’s transition to pairbonding and fatherhood mirror commonly observed 

reductions in mortality risk of married fathers relative to single, childless men (for a 

review, see P. B. Gray et al., 2017). Unmarried and non-cohabitating men have higher 

T, and die younger than married men – and non-fathers die younger than fathers – from 

nearly every major cause of death (Franke & Kulu, 2018; Keizer, Dykstra, & J. Van 

Lenthe, 2012). These findings are not an artifact created by men who engage in 

dangerous behavior or those in poor health being unable to secure opportunities for 

partnership or fatherhood in the first place, because similar patterns appear when 

comparing married men and fathers to men who are separated, divorced, or do not 

share custody of their children (Hu & Goldman, 1990; Ringbäck Weitoft, Burström, & 

Rosén, 2004). Elevated causes of death for single men and childless men include 
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substance abuse, accidents, suicide, and disorders of the circulatory, respiratory, and 

digestive systems (Franke & Kulu, 2018), suggesting that elevated T could be costly for 

both behavioral and physiological reasons.  

Several pathways that might link T to men’s health and longevity have been proposed. 

These are largely based on theory and data from other species and involve behavioral, 

metabolic, and immunological processes (Bribiescas, 2001)(Table 5-1). Behavioral 

costs of elevated T in other species include territoriality, antagonistic interactions, and 

behaviors that increase predation or accidents (R. J. Nelson, 2005). Territorial and 

aggressive behaviors may threaten male survivorship through injury exposure to 

parasites, but can directly benefit mates and offspring through resource access and 

protection from conspecifics and predators. Conspicuous high-risk behaviors with no 

obvious purpose can be sexually-selected for if they provide females with ‘honest 

signals’ of a male’s ability to survive those displays (Fisher, 1930; Folstad & Karter, 

1992; Zahavi, 1975). In humans, men engage in certain kinds of risky behavior more 

often than women, and die more often than women from accidents and homicide 

(Kruger & Nesse, 2006; M. Wilson & Daly, 1985). Furthermore, single and childless men 

– who have lower T than married men and fathers – tend to die earlier from substance 

abuse, accidents, and suicide (Franke & Kulu, 2018). Nevertheless, it is not clear if 

these behaviors and related morbidity and mortality risks are partly driven by variation in 

circulating T, in addition to better-understood roles of sociocultural or psychosocial 

drivers like socioeconomic status, social isolation and depression (Dabbs & Morris, 

1990).  
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Another pathway through which T may give rise to CoR is through its effects on body 

composition and metabolism (Bribiescas, 2001). T is positively associated with body 

size (Klimek, Galbarczyk, Nenko, Alvarado, & Jasienska, 2014) and lean muscle mass 

(Bhasin et al., 2012; Blouin, Boivin, & Tchernof, 2008), which increase resting metabolic 

rate and daily caloric requirements. As in other species, the high caloric requirements of 

larger body size and metabolically-active muscle can become a liability in humans when 

calories or other nutrients are limited, as evidenced by findings that men die sooner 

than women during extreme food shortages (Grayson, 1993; Zarulli et al., 2018). 

Energy shortage was likely a powerful selective pressure in human evolution, but 

tradeoffs between lean muscle mass may be rare in calorically-replete environments 

most men live in now. While clearly relevant under some contexts, a direct ‘cost’ of T 

through higher risk of starvation is unlikely to manifest itself in most contemporary 

populations. Nevertheless, higher metabolic rate could come at the expense through the 

production of reactive oxygen species and resulting oxidative damage to proteins, lipids, 

and nucleic acids (Dalle-Donne, Rossi, Colombo, Giustarini, & Milzani, 2006).  

One of the most commonly studied pathways for CoR in men is through potential 

pleiotropic effects of T on immunity (Michael P. Muehlenbein & Bribiescas, 2005). 

Building on early work in birds (Folstad & Karter, 1992), the immunocompetence 

handicap hypothesis (ICHH) posits that T and its associated secondary sex 

characteristics provide an honest signal of male mate quality through the 

immunosuppressive effect of T on immune function (Fisher, 1930; Zahavi, 1975). High-

quality males are thought to be sexually selected for their capacity to maintain both 
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costly T-associated traits and energetically-expensive immune function (M. D. Gurven et 

al., 2016) necessary to survive pathogens and parasites (Michael P. Muehlenbein, 

Hirschtick, Bonner, & Swartz, 2010). Broadly consistent with an immunosuppressive 

effect of T, males suffer less often from autoimmune disorders than females (Olsen & 

Kovacs, 2002), and appear to be more susceptible to parasites and infectious disease 

than females (Michael P. Muehlenbein & Bribiescas, 2005). Providing a more direct link 

to T, androgen receptors – which bind testosterone and other androgens – have been 

found on B and T-lymphocytes, and androgens have been shown to alter immune cell 

composition, signaling, cytokine production, and cell death (Michael P. Muehlenbein & 

Bribiescas, 2005; Olsen & Kovacs, 2002).  

Nevertheless, evidence for a relationship between T and measures of immunity in non-

human animals has been mixed, and evidence for the ICHH in humans is equivocal 

(Michael P. Muehlenbein & Bribiescas, 2005). While some studies in human males have 

demonstrated a negative relationship between androgens and immune response (Prall 

& Muehlenbein, 2015; Trumble et al., 2016), several others report no relationship 

(Nowak et al., 2018) or even positive relationships (Lee T. Gettler et al., 2014; Nowak et 

al., 2018; Prall & Muehlenbein, 2015). Part of the challenge may lie in the fact that 

‘phenotypic correlations’ can mask tradeoffs at the level of the population (K. R. Hill & 

Hurtado, 1996; David Reznick, Nunney, & Tessier, 2000). Consistent with T acting as 

an honest signal, high quality males with the best prospects can afford to maintain both 

high T and immune function, while poor quality males must reduce investment in both.  
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Another explanation for the mixed relationship between T and immune function may 

arise from tradeoffs in development of the immune system itself (Prall & Muehlenbein, 

2015). Innate, non-specific immunity, which includes natural killer and phagocytic cells 

as well as the general inflammatory response, is less energetically-costly to develop, 

but more costly to activate than acquired immunity, which involves B and T-lymphocytes 

that use highly specialized antigens to recognize and target pathogens for destruction 

(Thomas W. McDade, Georgiev, & Kuzawa, 2016). Males with surplus energetic 

reserves during childhood may be better able to develop acquired immune function, 

freeing up energy from costly innate immune activation for the expression of high T and 

T-associated traits. These kinds of tradeoffs within the immune system could obscure 

tradeoffs between T and immune function in men. Although both innate and acquired 

measures of immunity have been studied in relation to T (Nowak et al., 2018; Prall & 

Muehlenbein, 2015; Trumble et al., 2016), they are typically based on cytokine 

measures alone, and tradeoffs between the two axes of immunity are rarely explored. 

Other measures, such as leukocyte cell composition could provide additional insights 

into early developmental tradeoffs within the immune system by explicitly testing for 

tradeoffs along an axis of acquired vs. innate immunity. 

A new approach that holds great promise for studying T-associated CoR in men 

involves the study of epigenetic processes. Epigenetic processes are a set of 

biochemical and cellular metabolic processes that are involved in chromatin packaging, 

gene regulation, and cellular memory. One epigenetic process in particular, DNA 

methylation (DNAm), provides researchers with a range of tools for studying T-
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associated tradeoffs in men. DNAm involves the covalent attachment of a methyl group 

to DNA, often linked to stable changes in gene regulation in nearby genes. Changes in 

DNAm accompany development and aging and can be used to predict disease and 

mortality (McEwen, Goodman, Kobor, & Jones, 2017; D. S. Moore, 2015; T. Tollefsbol, 

2012). Specifically, DNAm can be used for ‘epigenetic clocks’, which predict health and 

mortality with greater accuracy than other biomarkers of aging or chronological age 

alone (Horvath, 2013; Levine et al., 2018; Lu, Quach, et al., 2019; Ryan, 2020). These 

clocks allow researchers to predict mortality risk even in relatively young and apparently 

healthy subjects, and even in the absence of other biomarkers. DNAm can also be used 

to bioinformatically-derive immune cell composition, providing a means of testing 

immunomodulatory effect of T which could have long-term impacts on inflammation, 

aging, and cancer. Finally, exploratory genome-wide scans of DNAm as they relate to T 

could provide insights into gene regulation more broadly, which could lead to novel 

hypotheses when theorized costs may not be empirically-supported (Biesecker, 2013). 

Here, we aim to clarify the role of T-induced CoR by studying the relationship between T 

and measures of men’s health, immunity, and mortality. We capitalize on three 

measures of T and DNAm in a sample of 90 young (20-22) men in Cebu City, 

Philippines (Adair et al., 2011; Kuzawa et al., 2020). In order to account for costs that 

may be confounded by social or nutritional conditions, we control for smoking status, 

socioeconomic status, body mass index, and genetic variation. The three measures of T 

– waking salivary T, pre-bed salivary T, and daytime total plasma T – reflect distinct 

biological fractions of T that are thought to capture different aspects of testosterone’s 
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regulation and biological activity. We use DNAm to estimate epigenetic age using four 

distinct epigenetic clocks (Hannum et al., 2013; Horvath, 2013; Levine et al., 2018; Lu, 

Quach, et al., 2019). These clocks provide insights into separate but overlapping 

aspects of biological aging, metabolic and inflammation, and mortality risk (Ryan, 2020). 

We also use bioinformatically-derived estimates of leukocyte proportions for CD4T cells, 

CD8T cells, plasma blastocysts, natural killer cells, monocytes, and granulocytes 

(Houseman et al., 2012a). To test for tradeoffs within the immune system, we also 

collapse cell types along an axis of innate-acquired immunity, and examine whether 

these axes are associated with all three T measures. Finally, we take a more agnostic 

approach to the potential pathways involved in T-associated CoR in men by employing 

an epigenome-wide association for DNAm at 144,777 locations across the genome. 

This allows us to take a hypothesis-generating approach to the molecular effects of T on 

men’s health.  



 

 

Table 5-1. Findings summarizing relationship between testosterone (T), predicted public health patterns in men, and 
current evidence in humans. Putative pathways, which might provide a mechanistic link between theory and biology, are 
highlighted, with those investigated in the current study underlined. 
 Associated with T Predicted public 

health outcomes 
Evidence in humans Predicted 

Pathways 

Risky behavior  Yes. T both 
regulates and 
responds to T. 

Men with high T 
expected to die from 
accidents, violence, 
suicide.   

Single and childless men 
have higher T and die 
more often from 
accidents, alcohol, drug-
related death, suicide.  

Neurological, HPA-
axis, dopamine, 
norepinephrine 

Metabolism Yes. Higher T 
associated with 
lean muscle mass 
and metabolism. 

Men with high T 
expected to die of 
famine faster than 
women. 

Men tend to die sooner 
during periods of famine 
than women. 

Glycolysis, lipolysis, 
oxidative stress 

Immunocompetence Mixed. Mostly in 
vitro.  

Men expected to be 
more prone to 
bacterial and viral 
(e.g. Sars-CoV-2) 
infection. 

Mixed evidence. Positive 
‘phenotypic correlations’, 
but also monocyte count 
increase. 

Immunological. 
Changes in cell 
complement 
system or cell 
composition.  
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Methods 

Sample and data collection 

Data come from participants in the Cebu Longitudinal Health and Nutritional Survey 

(CLHNS), a community birth cohort study in Metropolitan Cebu, Philippines that began 

with enrollment of 3,327 pregnant mothers in 1983–1984 and is ongoing to the present 

(Adair et al., 2011; Kuzawa et al., 2020). These analyses examined 90 men (20-22 

years old at the time of the study) for whom all necessary 2005 questionnaire data, 

testosterone data, genetic information, and DNA methylation data were available. 

Surveys and anthropometrics were conducted during in-home visit by trained, Cebuano-

speaking research staff. Details on biological sample collection are provided in more 

detail below. This research was conducted under conditions of written informed consent 

with human subjects clearance from the Institutional Review Boards of Northwestern 

University and the University of Chapel Hill, North Carolina. Survey data are available 

for download at: https://dataverse.unc.edu/dataverse/cebu.  

Testosterone measurement 

To account for different fractions (bioavailable vs. total T) and circadian effects on T, 

three measures of T were used: waking salivary testosterone (AM-T), salivary 

testosterone before bed (PM-T), and total plasma T. Saliva and plasma samples were 

generally taken during the same 24-hour period, although 6 of 90 men had salivary 

samples taken more than 2 days apart from blood samples. For plasma T, participants 



 

 

154 
were asked to fast overnight for 12 hours, and blood samples were taken the following 

morning using EDTA-coated tubes. Mean time of blood draw was 07:07 (range 05:40–

09:30). After separation, samples were frozen and shipped on dry ice to Northwestern 

University for analysis. Plasma T was analyzed with a commercially available enzyme 

immunoassay (Diagnostic Systems Laboratories #DSL-10-4000, Webster, TX). All 

samples were assayed in duplicate, and control samples were included with each assay 

to monitor between-assay variation. The coefficients of variation for low and high 

controls were, 13.3% and 5.8%, respectively. Because the time of day affects 

testosterone levels, we used the residuals corrected for time of sample collection for all 

analyses.  

For salivary T (AM-T and PM-T), each participant was provided with instructions and 

two tubes for saliva collection. The first sample was collected immediately prior to bed 

(PM-T). After collection, tubes were sealed and kept at room temperature. Participants 

were instructed to place the second tube next to their bed and to collect the second 

sample immediately upon waking the following morning (AM-T). At each collection time, 

the participant was asked to record the time of collection, with average PM-T and AM-T 

collection times being 22:23 and 06:34, respectively. Tubes were collected later that 

day, and immediately placed on ice packs in a cooler by an interviewer. Tubes were 

then transported to a freezer where they were stored at -35°C until shipment on dry ice 

to the Laboratory for Human Biology at Northwestern University, where they were 

stored at -80°C. Samples were thawed, centrifuged, supernatant separated, and 

aliquoted into smaller tubes for subsequent analysis of individual analytes. Salivary T 
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concentrations were determined in duplicate using an enzyme immunoassay protocol 

developed and validated for use with saliva samples (Salimetrics #1-2402, State 

College, PA). The between-assay coefficients of variation were 5.6% and 6.7% for high 

and low controls, respectively. Because the time of day affects testosterone levels, we 

used the residuals corrected for time of sample collection for all analyses. 

DNA methylation processing 

DNAm was derived from the same 2005 blood samples used for plasma T. Blood 

samples from overnight fasted subjects were collected by venipuncture into EDTA-

coated vacutainer tubes. Automated and manual DNA extraction (Puregene, Gentra) 

was conducted on blood samples. 160ng of sodium bisulfite converted DNA (Zymo 

AZDNA methylation kit, Zymo Research, Irvine, CA, USA) was applied to the Illumina 

HumanMethylation450 Bead Chip using manufacturer’s standard conditions. Standard 

methods for background subtraction and color correction were carried out using default 

parameters in Illumina Genome Studio and exported into R for further analyses. Quality 

control involved first confirming participant sex and replicate status. Probes associated 

with known single nucleotide polymorphisms (SNPs), unreliable probes with a detection 

p value above 0.01, probes with fewer than three beads contributing to signal, and 

those previously shown to bind to multiple genomic regions were removed. Sex 

chromosome-associated probes were retained due to their potential involvement in 

genomic effects of testosterone. For epigenome-wide association, data were quantile 

normalized (Du et al., 2008) and probe types were normalized using SWAN 

(Maksimovic et al., 2012). Plate, row, and chip batch effects were assessed using PCA 
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and corrected using COMBAT (Leek et al., 2012)(sva). Spearman correlations for 

samples run in duplicate (n = 1) and quadruplicate (n =  4) were high (>0.99), confirming 

batch effect corrections. Proportions of blood cell types were estimated using previously 

published algorithm and removed from the main DNAm data using a linear regression 

approach (Houseman et al., 2012a; Jones, Islam, et al., 2015).  

Epigenetic clocks and cell type proportions 

For epigenetic clock analyses, quality control of raw DNA methylation was modified as 

per (Ryan, 2020) as follows: In order to maximize the number of sites available for the 

epigenetic age calculator, probes with detection p-values above 0.01 were called NA for 

poor performing samples only, and were otherwise retained. Both XY-binding and SNP-

binding probes were retained. Processing involved quantile but not SWAN 

normalization. Four clocks were examined: Horvath’s DNAmAge, Hannum’s DNAmAge, 

Levine’s PhenoAge, and Lu’s GrimAge. Epigenetic ages for all clocks were calculated 

using an online calculator (http://labs.genetics.ucla.edu/horvath/dnamage/). 

Background-corrected beta values were pre-processed using the calculator’s internal 

normalization algorithms. In all models, epigenetic clock values themselves were used 

as the outcome rather than ‘AgeAccel’, with age included as a covariate in the model. 

Cell proportions were also estimated using the online calculator, based on previously 

described methods (Horvath, 2013; Houseman, Molitor, & Marsit, 2014) Cell types 

examined as part of the present study included CD4T cells, CD8T cells, plasma 

blastocysts, natural killer cells, monocytes, and granulocytes. 



 

 

157 
Survey and anthropometrics measurement 

Socioeconomic status, smoking, and body mass index have been associated with 

DNAm and epigenetic clocks and were included in all models (Beach et al., 2015; 

Demerath et al., 2015; Huang et al., 2019; Thomas W. McDade et al., 2019; Simons et 

al., 2016). Using survey data, SES was operationalized as a combination of income, 

education, and assets. Participants reported their annual income from all sources, 

including in-kind services, and the sale of livestock or other products by household 

members during the prior year, which were summed to determine total house-hold 

income. Incomes from 2005 were deflated to 1983 levels, and log-transformed. 

Maternal education (in years) was also reported. Participants also reported on nine 

assets (coded 0, 1) that were selected to capture population-relevant aspects of social 

class, including electricity, televisions, refrigerators, air conditioners, tape recorder, 

electric fans, jeepneys, cars, and their residence. In addition, house construction type 

(i.e., light, mixed, permanent structure) was coded as 0, 1, and 2, respectively. Thus, 

asset scores ranged from 0 to 11. A principal components analysis was run on log 

income and assets at birth (1983) and at sample collection (2005) along with maternal 

education in Stata (v. 14.1). The first component of variation accounted for 49% of the 

variation and individual scores for this component of variation were used as our 

measure of SES. Anthropometrics included body weight (kg) and height (cm). The body 

mass index (BMI) was calculated as the ratio of weight (kg)/height (m2). Smoking was 

dichotomized variables (0 = non-smoker/drinker, 1 = occasional or frequent smoker) 

generated from reports at the time the blood sample was taken. 
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Statistical analyses 

A total of 440,810, probes passed quality control. Many DNAm sites are invariable 

between individuals and hence unlikely to be informative with respect to individual 

differences in other exposures or traits (Mill & Heijmans, 2013; Rakyan et al., 2011), in 

our case salivary or plasma T. We therefore sought to reduce the burden of multiple 

comparison correction by concentrating our analyses on a subset of probes for which 

variability in β-values between the 10th and 90th percentiles in these men was >5%. 

This left us with a subset of 142,777 probes for our epigenome wide association (EWA) 

scan. Prior to analysis, these were converted from β-values to M-values prior to 

statistical analyses (Du et al., 2010). For our epigenome-wide association, probe wise 

variance was determined by fitting linear regression models and applying parametric 

empirical Bayes smoothing formula over the entire array dataset that passed quality 

control using the R bioconductor package limma (Ritchie et al., 2015). This approach 

allowed for gene-wise information borrowing to better estimate the variation for each 

probe. The model outcomes from the subset of variable probes described above were 

then extracted, and corrected for multiple comparisons using the method of Benjamini 

and Hochberg (1995). Models included residuals of each measure of testosterone 

corrected for time of sample collection, as well as age at the time of blood sample, 

smoking, BMI, and our composite score of SES. To account for genetic variation, we 

also included the top-2 principal components of genome-wide SNP variation derived 

from the Global Screening Array (Infinium Global Screening Array-24 v2.0—Illumina). 

These were obtained after standard SNP quality control measures, by performing 
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multidimensional scaling using Euclidean distance to collapse genetic variation into the 

top-2 most informative dimensions. Similar models were used for epigenetic clock 

analyses.  

Results 

Sample characteristics 

From an initial sample of 99 men, six men were missing either AM-T, PM-T or time of 

saliva collection, and were excluded from the analyses. Two men with plasma T levels 

>3 standard deviations above the mean (65.43 and 136.19 ng/mL) were also excluded. 

One man was missing genetic data, and was excluded, leaving a total of 90 men for all 

analyses. A summary of characteristics for the 90 remaining men is in Table 5-2.  

 
Table 5-2. Summary of characteristics of study sample examining potential testosterone 
(T)-induced costs of reproduction (CoR) in young men (n=90).  
Statistic  Mean St. Dev. Min Max 
Age (years)  21.74  0.44  21  22  
Salivary AM-T (pg/mL)  191.10  73.95  65.52  357.54  
Salivary PM-T (pg/mL)  116.45  49.49  40.70  260.74  
Plasma T (ng/mL)  7.90  2.67  4.03  17.19  
Smoke? (Yes = 1)  0.47  0.50  0  1  
Drink? (Yes = 1)  0.83  0.37  0  1  
Body Mass Index (kg/m2)  21.09  2.54  16.27  29.90  
SES PC-score  0.06  1.48  -2.73  5.18  
Genetic PC-score 1  -1.57  9.60  -19.05  21.52  
Genetic PC-score 2  -0.77  9.10  -16.42  35.20  

*Residuals of AM-T, PM-T, and plasma T from regression on time of saliva or blood 
sample used for all analyses 
**All analyses used logged plasma T to account for right skew in the data 
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Epigenetic clocks and cell types 

To assess the effect of testosterone on aging and mortality risk, we looked at the 

relationship between AM-T, PM-T, and plasma-T and four epigenetic clocks: Horvath’s 

DNAmAge, Hannum’s DNAmAge, Levine’s DNAmPhenoAge, and Lu’s DNAmGrimAge. 

All clocks were positively associated with AM-T, but this relationship was only significant 

for Levine’s DNAmPhenoAge. This effect remained when correcting for false discovery 

rate from examining four different clocks (false discovery q-value = 0.036). All clocks 

were also positively associated with PM-T and plasma T, but these relationships were 

not statistically significant for any of the epigenetic clocks (Fig. 5-1; Table 5-3).  

  
Figure 5-1. Forest plot for regression models examining the relationship between 
different measures of testosterone (AM-T, PM-T, and plasma-T) and epigenetic age 
acceleration for four epigenetic clocks (Horvath’s DNAmAge, Hannum’s DNAmAge, 
Levine’s DNAmPhenoAge, and Lu’s DNAmGrimAge). Significant associations between 
testosterone and epigenetic clocks are highlighted in red. All testosterone 
measurements corrected for time of sample, and all models included smoking status, 
body mass index, multidimensional scaling of the top 2 principle components of genetic 
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variation, and a principle component based on socioeconomic status in the year the 
man was born and the year the sample was taken.  



 

 

Table 5-3. Table of regression effects and p-values for full models examining relationships between three different 
testosterone measurements and four epigenetic clocks (Horvath’s DNAmAge, Hannum’s DNAmAge, Levine’s 
DNAmPhenoAge, and Lu’s DNAmGrimAge). Statistically significant relationships are denoted by an asterisk (see notes 
below).  
 Horvath  Hannum  Pheno  Grim  Horvath  Hannum  Pheno  Grim  Horvath  Hannum  Pheno  Grim  

 (1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10)  (11)  (12)  

AM-T  0.040  0.098  0.279  0.128          

 p = 0.730  p = 0.396  p = 
0.013*  

p = 
0.253  

        

PM-T      0.195  0.113  0.075  0.110      

     p = 
0.081+  p = 0.323  p = 

0.505  
p = 

0.319  
    

Plasma-T          0.142  0.180  0.135  0.0005  
         p = 0.166  p = 

0.081+  
p = 

0.186  
p = 

0.997  
Age  0.183  0.212  0.062  -0.039  0.188  0.216  0.069  -0.034  0.207  0.244  0.090  -0.036  

 p = 
0.090+  

p = 
0.052+  

p = 
0.549  

p = 
0.710  

p = 
0.077+  

p = 
0.047*  

p = 
0.517  

p = 
0.745  

p = 
0.056+  

p = 
0.026*  

p = 
0.402  

p = 
0.735  

Smoke = Y  0.079  -0.102  -0.051  0.600  0.089  -0.128  -0.160  0.561  0.046  -0.164  -0.185  0.546  
 p = 0.716  p = 0.641  p = 

0.806  
p = 

0.006**  p = 0.670  p = 0.549  p = 
0.450  

p = 
0.008**  p = 0.827  p = 0.436  p = 

0.377  
p = 

0.010**  
SES  -0.068  -0.224  -0.298  -0.303  -0.069  -0.211  -0.253  -0.285  -0.060  -0.205  -0.248  -0.281  

 p = 0.541  p = 
0.049*  

p = 
0.007**  

p = 
0.007**  p = 0.525  p = 

0.059+  
p = 

0.023*  
p = 

0.009**  p = 0.581  p = 
0.063+  

p = 
0.024*  

p = 
0.011*  

BMI  -0.263  -0.046  -0.238  0.004  -0.241  -0.014  -0.160  0.043  -0.267  -0.039  -0.178  0.037  
 p = 

0.022*  p = 0.682  p = 
0.031*  

p = 
0.975  

p = 
0.027*  p = 0.896  p = 

0.141  
p = 

0.683  
p = 

0.015*  p = 0.718  p = 
0.101  

p = 
0.730  16 2 



 

 

Genetic PC-
Score 1  -0.136  0.020  0.088  -0.043  -0.136  0.028  0.117  -0.032  -0.124  0.041  0.127  -0.029  

 p = 0.200  p = 0.854  p = 
0.389  

p = 
0.675  p = 0.190  p = 0.791  p = 

0.267  
p = 

0.758  p = 0.238  p = 0.693  p = 
0.226  

p = 
0.777  

Genetic PC-
Score 2  0.014  0.028  -0.163  -0.104  0.056  0.051  -0.153  -0.082  0.024  0.040  -0.159  -0.107  

 p = 0.899  p = 0.796  p = 
0.117  

p = 
0.320  p = 0.602  p = 0.648  p = 

0.164  
p = 

0.442  p = 0.822  p = 0.710  p = 
0.136  

p = 
0.311  

Intercept -0.027  0.069  0.032  -0.272  -0.021  0.087  0.085  -0.248  -0.013  0.096  0.092  -0.247  
 p = 0.851  p = 0.635  p = 

0.818  
p = 

0.055+  p = 0.879  p = 0.545  p = 
0.548  

p = 
0.077+  p = 0.927  p = 0.497  p = 

0.513  
p = 

0.080+  
Observations  90  90  90  90  90  90  90  90  90  90  90  90  
Adjusted R2  0.062  0.029  0.134  0.132  0.096  0.033  0.071  0.128  0.083  0.057  0. 085  0.118  

Note:  +p<0.1;*p<0.05;**p<0.01;***p<0.001  

16 3 
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To test for an immunosuppressive effect of T, we looked at the relationships between 

AM-T, PM-T, plasma-T and bioinformatically-derived white blood cell count (plasma 

blastocysts, natural killer cells, monocytes, granulocytes, CD8T cells and CD4T cells). 

None of the testosterone measures were related to any cell types, before or after 

correcting for false discovery across all cell types (Fig. 5-2).  

 
  
Figure 5-2. Forest plot for regression models examining the relationship between 
different measures of testostserone (AM-T, PM-T, and plasma-T) and bioinformatically-
derived leukocyte cell count proportions.  

To test for an effect of T on innate vs. acquired immunity, we first used principle 

component analysis to collapse blood cell counts into fewer dimensions. The first 3 

principle components explained 70.9% of the variance in white blood cell count, with the 

first dimension (variance explained = 45.9%) lining up along an axis consistent with 

innate/acquired immunity (Fig. 5-3). The second and third dimensions largely partitioned 
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out the variance associated with being natural killer cells and monocytes, respectively 

(Fig. 5-3). However, none of AM-T, PM-T, and plasma T were associated with any of 

the first 3 dimensions of cell proportions, even before correcting for false discovery rate.  

 

Figure 5-3. Loading plot showing influence of bioinformatically-derived cell type 
proportion on the top 3 principle components and the relationship between the PC-1 
and PC-2, and PC-1 and PC-3. (NK = natural killer cells, Mono = monocytes, Gran = 
granulocytes, PlasmaBlast = plasma blastocysts).   
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Figure 5-4. Forest plot for regression models examining relationships between different 
measures of testostserone (AM-T, PM-T, and plasma-T) and top 3 principle 
components of bioinformatically-derived blood cell proportion. Dimension 1 provides a 
strong proxy for innate vs. acquired immunity, with positive values indicating greater 
tendency towards innate immunity. 

Epigenome-wide associations with testosterone 

To explore potentially novel associations between testosterone and men’s health, we 

evaluated the relationships between AM-T, PM-T and plasma T and DNA methylation at 

142,777 CpG sites in the genome. We conducted sensitivity analyses that included 

testosterone and age only; testosterone, age, smoking status and body mass index 

(BMI); testosterone, age, smoking status, BMI and socioeconomic status (SES); 

testosterone, age, smoking status and BMI, SES, and the top 2 principle components of 

genetic variation based on multidimensional scaling. We did not find any significant 
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associations between DNAm at any of the sites we examined and AM-T, PM-T or 

plasma T after correcting for false discovery for any of the tests described. One site 

associated with PM-T approached statistical significance (FDR q-value = 0.12). This site 

was associated with the RNF128 (Ring Finger Protein 128) gene, which codes for a 

transmembrane protein involved in endocytosis. Expression of this gene inhibits IL2 and 

IL4 cytokine production, and is thought to be involved in an anergic phenotype in 

CD4(+) T cells (Maglott, Ostell, Pruitt, & Tatusova, 2007). Two other sites for PM-T were 

under FDR q-value 0.2, associated with genes PPP1R12C and AK056252. PPP1R12C 

mutants are reported to have altered growth and body size (Bult et al., 2019), as well as 

altered response to vaccine in cell culture experiments (Schmidt et al., 2013). 

AK056252 is associated with a poorly characterized long non-coding RNA 

(lncRNA)(Stelzer et al., 2016). For all models, p-values mostly followed a uniform 

distribution as would be expected under the null model. However, quantile-quantile plots 

of p-values from AM-T and plasma T suggested slight evidence for deflated p-values, 

indicating that p-values closer to 0 were less common than expected by chance. 

Examples of these distribution from the full model are provided in Fig. 5-5.  
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Figure 5-5. Histograms (top) and Quantile-Quantile (QQ) plots (bottom) of observed 
versus expected p-values (AM-T, left and orange, PM-T, middle and blue, plasma T, 
right and red). P-value distributions and QQ plots for AM-T and plasma T suggest 
slightly deflated p-values (fewer than expected p-values close to 0).  

Discussion 

Testosterone (T) is widely-hypothesized to be a source for costs of reproduction (CoR) 

in men, which are thought to arise through the hormone’s behavioral, metabolic, or 

immunosuppressive effects. Some T-induced CoR may be evident in changes in the 

regulation in gene expression, molecular aging, or changes in cell composition, all of 

which could involve DNA methylation (DNAm) and other epigenetic processes. We used 

three measures of T (AM-T, PM-T, and plasma T) along with DNAm to test possible T-

associated CoR in a cohort of 90 young men (20-22 years) in the Philippines. We first 

used genome-wide DNAm to calculate epigenetic age for each man using four different 

epigenetic clocks. These measures reflect related but distinct components of 

immunological, metabolic, and cellular aging. We then used bioinformatically-derived 
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blood cell counts to test for specific impacts of T on cell composition. We collapsed 

blood cell composition into principle components which reflect an axis of innate-

acquired immunity. Finally, we took a more agnostic, hypothesis generating approach 

by looking at the relationship between measures of T and DNAm across 142,777 sites.  

Testosterone and Epigenetics clocks 

All four epigenetic clocks were positively associated with all three measures of T. This 

relationship was only statistically significant between AM-T and Levine’s 

DNAmPhenoAge, although PM-T and Horvath’s epigenetic age and plasma T and 

Hannum’s epigenetic age were also borderline significant. Levine’s DNAmPhenoAge 

clock is based on a measure trained using 9 clinically-based biomarkers to predict 

mortality (Levine et al., 2018). The markers used to design Levine’s clock are 

associated with functional integrity of the liver (albumin, alkaline phosphatase) and 

kidney (creatinine), as well as metabolism (blood glucose levels), inflammation (C-

reactive protein), and immune function (lymphocyte percent, red cell volume, red cell 

distribution width, white blood cell count). This measure forms the basis of 

DNAmPhenoAge, and also predicts cancer, cardiovascular disease, diabetes, 

Alzheimer’s, and chronic lower respiratory disease (Levine et al., 2018). Our findings 

provide modest support for the idea that elevated T comes with a ‘cost’ to health and 

lifespan, possibly through effects on metabolism, inflammation, or immune function.  

It is not clear why DNAmPhenoAge alone would show this relationship. One reason 

could be the age of samples used to train the clocks themselves. Lu’s DNAmGrimAge is 
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a stronger predictor of all-cause mortality than Levine’s DNAmPhenoAge clock, but was 

trained and validated in datasets comprised predominantly of older (55+ years) 

individuals (Lu, Quach, et al., 2019). In contrast, Levine’s clock was based on NHANES 

data for individuals 20 years and older, which may perform better in our population of 

young 20-22 year old men (Levine et al., 2018). Horvath’s clock included children and 

adolescents, and Hannum’s clock was trained in a dataset with individuals as young as 

19 years of age. However, these clocks were trained to predict chronological age, not 

mortality, and the sample sizes at younger ages were much smaller for both Horvath 

and Hannum clocks (Hannum et al., 2013; Horvath, 2013).  

DNAmPhenoAge was positively associated with AM-T, but not PM-T or plasma T. This 

may have to do with the fact that these different measures of T reflect distinct 

physiological fractions. Testosterone in the blood exists in free (unbound) and bound 

fractions (Norman & Litwack, 1997). The bound fraction of T is associated with either 

low-affinity albumin, or high-affinity sex hormone binding globulin (SHBG). Plasma T 

provides a measure of total testosterone, which includes bound and unbound fractions, 

while our salivary measures capture T that is free or bound weakly to albumin, 

classically thought to be the ‘bioavailable’ fraction of this hormone (Simoni, Fanelli, Roli, 

& Pagotto, 2012). If this is correct, it is fitting that only salivary T is associated with 

DNAmPhenoAge. The finding that salivary AM-T but not PM-T is associated with 

DNAmPhenoAge is also interesting in light of research suggesting functional differences 

between these two measures. Testosterone levels are highest during sleep, decrease 

rapidly upon waking, and decline gradually throughout the remainder of the day 
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(Kuzawa, Georgiev, McDade, Bechayda, & Gettler, 2016). This is thought to help 

reduce conflict between the somatic and anabolic roles of testosterone with social 

priorities in which high T is less desirable, such as during parenting. Accordingly, in a 

larger sample of men from this cohort, AM-T (but not PM-T) was related to fat free 

mass, grip strength, and arm muscle area, although this was only observed in men who 

also reported high levels of physical activity (Lee T. Gettler, Agustin, & Kuzawa, 2010). 

This suggests that AM-T may better reflect the costs of T as directly related to its 

anabolic effects on lean muscle mass and strength, which could involve other tradeoffs 

with metabolism, immune function or inflammation captured by the DNAmPhenoAge 

clock. 

Testosterone and blood immune measures and cell proportions 

AM-T, PM-T and plasma T were all positively associated with the first principle 

component of cell proportions, which aligned well with an axis of acquired vs. innate 

immunity. Higher T associated with innate over acquired immunity would be consistent 

with favoring an immune strategy that involves less energy to develop early in life but 

more energy to activate when needed (Thomas W. McDade, Georgiev, et al., 2016). 

However, this effect was not statistically significant for any of the three measures. 

Furthermore, none of the three measures of T predicted the proportion of 

bioinformatically-derived cell types themselves (plasma blastocysts, natural killer cells, 

monocytes, granulocytes, CD8T cells or CD4T cells). The null nature of our findings run 

counter to the ICHH, yet there is now a growing body of evidence suggesting that T is 

unrelated to many proxies of immune function in human males. In a study of Tsimane 
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men, Trumble and colleagues did not find any relationship between urinary T and 

baseline cytokine production, nor between T and ex vivo antigen stimulated B-cell 

mediated immunity (Trumble et al., 2016). Although this study did find that higher T was 

linked to down-regulated T-cell biased cytokine production – consistent with our findings 

here – these associations were relatively weak and only significant for two of 13 

cytokines (Trumble et al., 2016). Nevertheless, this sample consisted mostly of older 

(40+ years) men. In a sample of younger men (19-36.7 years), Nowak et al. did not find 

any evidence for relationships between androgens (free T, total T, 5a-

dihydrotestosterone or dehydroepiandrosterone) and innate (complement activity, 

lysozyme activity, phagocytic uptake, reactive oxygen species production) or acquired 

(immunoglobulin A levels, immunoglobulin G levels, T lymphocyte counts, B lymphocyte 

counts) immunity (Nowak et al., 2018). The only significant association in the study of 

Nowak et al. was a positive relationship between free plasma T and a response to a flu 

vaccine (Nowak et al., 2018). This is consistent with similar positive correlations 

between T and immunity reported elsewhere (Lee T. Gettler et al., 2014; Rantala et al., 

2012), supporting the idea that high quality males may be able to maintain both high T 

and robust immune response. Thus, T may have subtle immunomodulatory – rather 

than immunosuppressive – effect, or effects that are obscured by phenotypic 

correlations or that only become apparent later in life.   

Testosterone and genome-wide DNA methylation 

Despite the well-established molecular and phenotypic effects of T and other 

androgens, none of the three measures of T in our study were significantly associated 



 

 

173 
with DNA methylation after false discovery correction. Our lack of findings is largely 

consistent with the findings of Arathimos et al. (Arathimos, Sharp, Granell, Tilling, & 

Relton, 2018), who examined the relationship between DNAm and plasma T, SHBG, 

and bioavailable T in young (7.5 years) and adolescent (16.5 years) boys. Although they 

did find evidence for one differentially-methylated region during childhood, T was not 

associated with differentially-methylated regions during adolescence, nor in any 

individual CpG sites after correction for false discovery (Arathimos et al., 2018). In 

contrast to our findings and those of Arathimos et al., Moore et al. found that salivary T 

was associated with ‘modules’ of time and sex varying co-methylated genes in 

adolescents (S. R. Moore et al., 2020). However, these findings were for buccal 

epithelial cells, not blood leukocytes, and their methods differed considerably from those 

describe here and by Arathimos et al. (S. R. Moore et al., 2020).  

Largely null findings in this study and by Arathimos et al. might be explained by the 

complex genomic and non-genomic effects of androgens, and their interaction with 

binding proteins, receptors, and regulatory proteins (Bennett, Gardiner, Hooper, 

Johnson, & Gobe, 2010). Most androgens, including T, exert their transcriptional 

genomic effects by binding of the androgen receptor (AR) inside the cell. Conventional 

understanding is that the ‘bioavailable’ fraction of T does not include T bound to high-

affinity sex hormone binding globulin (SHBG), which comprises roughly half of all T 

(Luetjens & Weinbauer, 2012). However, the “free-hormone hypothesis” has not been 

universally supported (Luetjens & Weinbauer, 2012). The binding affinity of T for SHBG 

is higher than albumin, but plasma albumin levels are high enough that binding 
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capacities are roughly equal (Luetjens & Weinbauer, 2012). Furthermore, SHBG may 

interact with cell surface receptors in ways that alter the bioactivity of T and other 

androgens (Simoni et al., 2012). Thus, the measures of T in our study and others may 

provide only rough estimates of the bioactivity of T in the leucocytes we used to 

measure DNAm.  

Once in the cell, androgens bind to the AR, which has two short tandem repeat motifs in 

its N-terminal domain. Genetic variation in these repeats has been linked to AR 

transcriptional activity (Kazemi-Esfarjani, Trifiro, & Pinsky, 1995; Simanainen et al., 

2011). Transcriptional sensitivity of the AR to T and other androgens add a layer of 

complexity when making associations between circulating hormone levels and genetic 

regulation as reflected by DNAm. To complicate things further, testosterone is only one 

of several hormones that bind the AR (Luetjens & Weinbauer, 2012). T is often 

metabolized to DHT by 5a-reductase in the cell, which binds with higher affinity to AR 

but produces distinct biological responses by binding to a different subset of androgen-

response elements (Luetjens & Weinbauer, 2012). Other steroid hormones, including 

androstenedione, estradiol, and progesterone also bind to the AR (Luetjens & 

Weinbauer, 2012). Metabolism to DHT or other hormones therefore depends on the 

activity of 5a-reductase or other enzymes, whose activity and density can vary by tissue 

and over time (Simoni et al., 2012). Thus, differences in T metabolism or the effect of 

other hormones could add unmeasured variation into the relationship between T and 

DNAm.  
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In addition to these genomic pathways, T may also exert its biological effects through 

non-genomic pathways by way of interactions with dozens of other cytoplasmic or 

membrane bound regulatory proteins (Bennett et al., 2010; Luetjens & Weinbauer, 

2012). These interactions complicate a one-to-one relationship between testosterone 

and gene regulation and DNAm, but could still have important phenotypic effects. 

Indeed, T-cells, which make up a large portion of the cells used for DNAm in our study 

do not appear to respond to T through genomic pathways (Luetjens & Weinbauer, 

2012), suggesting that effects on these cells must be non-genomic (Henze, Schwinge, 

& Schramm, 2020). This does not preclude an immunoregulatory effect of T or other 

androgens but could make detecting such relationships using DNAm more difficult.  

Study strengths and limitations 

To our knowledge, this is the first study to examine the relationship between 

testosterone and epigenetic clocks and genome-wide DNAm in adult men. This is 

somewhat surprising given how commonly T is measured in clinical panels that are 

often also used to study the DNAm. It is possible that similar studies have been 

conducted, but also found no statistically significant relationships between T and DNAm 

and remain unpublished. Epigenetic clocks provide accurate estimates of health and 

mortality risk, while DNAm offers a window into potentially long-term impacts of T on 

gene regulation and phenotypic variation. Our bioinformatically-derived estimates of 

leukocyte composition also provide us with an affordable measure of immune function 

and health that may be more stable than more widely fluctuating measures, such as 

secreted immunoglobulins or cytokines. Our study is strengthened by the large 
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intrasample differences and our ability to statistically control for in factors such as 

socioeconomic position, smoking status, and body mass index, known to affect DNAm 

(Beach et al., 2015; Demerath et al., 2015; Huang et al., 2019; Thomas W. McDade et 

al., 2019; Simons et al., 2016). Furthermore, the fact that we have examined these 

relationships in young, rather than older men means that our findings are less likely an 

effect of reverse causation, where older men in poorer health have experienced 

declines in T.  

Nevertheless, this study does have several limitations. Given the variation in 

testosterone and other factors that affect epigenetic clocks, cell proportions, and DNAm, 

our sample size of 90 men is relatively small. This constrains our ability to detect 

statistically significant relationships, particularly as we correct for testing four different 

clocks, and across 142,777 CpG sites. For example, a sample size of 500 would have 

detected significant associations 80% of the time for 6 of the 12 clock analyses we 

conducted, where we only found significant association for DNAmPhenoAge. We also 

lacked a measure of men’s health at the time the samples were taken. Although 

genome-wide DNAm values and epigenetic clocks are corrected for cell proportions and 

should be robust to such short-term variation in health, estimates of cell proportions 

themselves as well as our dimensions of innate vs. acquired immunity could be affected 

by health status at the time samples were taken. It has also been shown that T levels 

often decline when men are sick (Michael P. Muehlenbein & Bribiescas, 2005), adding 

another confounder with the lack of this health information. Another potential issue is 

that 6 of 90 men had salivary T measured 2 or more days before or after from the blood 
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sample used for DNAm. While the proportion of men in this range is relatively small, this 

could affect our ability to detect relationship given that factors such as stress, sleep, and 

health affect T.  

Conclusions 

We find modest evidence that waking salivary T is associated with acceleration of an 

epigenetic clock that predicts morbidity and mortality even in young men. All measures 

of epigenetic age were positively associated with all measures of T, although this effect 

was only statistically significant for Levine’s DNAmPhenoAge. Larger sample sizes will 

provide greater statistical power to detect these effects and will allow researchers to 

include additional sociobehavioral parameters such as partnership and fatherhood 

status when studying the impact of T on men’s health and mortality risk. Specifically, our 

findings do not support an immunosuppressive effect of T, although there was a non-

significant trend towards an immunomodulatory role of T contributing to innate over 

acquired immunity for all three measures of T. Largely consistent with other epigenome-

wide association studies of T, we failed to find evidence that DNAm at individual CpG 

sites was associated with any measure of T, possibly reflecting the physiological and 

molecular complexity of androgenic effects in men. Additional studies, with larger 

sample sizes and more detailed information on men’s health will, be important to 

resolve the extent to which T does – or does not – associate with CoR in men. 
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Chapter 6. Conclusion 

Research framework and synopsis 

Life history tradeoffs are fundamental concepts in evolutionary biology (S. C. Stearns, 

1989), biological anthropology (Stinson, Bogin, & O’Rourke, 2012), and evolutionary 

medicine (Grunspan et al., 2018). Among the most well-theorized and commonly 

studied life history tradeoffs are those occurring between reproduction and somatic 

maintenance and aging (Sear, 2020). However, tradeoffs between reproduction and 

somatic maintenance have been difficult to demonstrate definitively in humans (e.g. 

Gagnon et al., 2009; Samuli Helle, 2019; Hurt, Ronsmans, & Thomas, 2006; Le Bourg, 

2007). This is in part because phenotypic correlations and environmental factors 

complicate the search for simple one-to-one negative relationships, and experimental 

approaches are unethical and unfeasible (Bolund, 2020; David Reznick et al., 2000). 

The challenge of studying tradeoffs between reproduction and aging is made more 

difficult by a lack of concrete understanding of the mechanisms through which such 

tradeoffs could occur (Flatt & Heyland, 2011; Harshman & Zera, 2007). Many life history 

traits have undergone rapid secular changes in modern human populations (Corbett, 

Courtiol, Lummaa, Moorad, & Stearns, 2018), and often exhibit surprisingly low 

heritability (T. Price & Schluter, 1991). These observations highlight the key role for 

plasticity and biological sensitivity in tradeoffs between reproduction and aging. 

However, plasticity also leaves a gap between the genotype and the phenotype – 

similar in many ways to that described by Waddington for development during the 

century of the gene (Waddington, 1942). It is uncontroversial to describe natural 
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selection as the driving force behind life history traits and tradeoffs (Stephen C. Stearns, 

Byars, Govindaraju, & Ewbank, 2010), and to expect those tradeoffs to be sensitive to 

physiological and environmental cues (Kuzawa & Bragg, 2012; Stephen C. Stearns & 

Koella, 1986). But without concrete mechanistic models through which both genetic and 

environmental information come together to create tradeoffs, researchers are forced to 

rely on ‘black boxes’ or metaphors for how life history traits and tradeoffs actually 

operate (Flatt & Heyland, 2011). Metaphors limit the ability of scholars to refine 

hypotheses about life history tradeoffs, or to intervene in the health outcomes that are 

expected to arise from them. A mechanistic framework for studying life history tradeoffs 

is therefore an important and necessary goal. 

A key component of building this mechanistic framework may involve the study of DNA 

methylation (DNAm) or other epigenetic processes (Duncan, Gluckman, & Dearden, 

2014). DNAm is constructed around the genome, allowing researchers to point to 

specific genes or biological processes, which gives them a specificity that does not 

naturally arise from many other physiological measures and biomarkers. DNAm is also 

highly responsive to the environment inside and outside the body, providing a flexible 

range of tools for studying reproduction and somatic maintenance. This flexibility means 

that DNAm can be used to bridge the evolutionary (i.e. genetic) and ecological (i.e. 

social and physical environment) dimensions of life history traits and tradeoffs, vital for 

truly understanding how tradeoffs between reproduction and maintenance might work.  

In Chapter 2, I introduce a striking example of the flexibility of DNAm as a tool in the 

form of epigenetic clocks. I discuss how DNAm appears to act as a time-keeper, starting 
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in the earliest stages of differentiation and faithfully tracking life until old age and 

mortality (Hoshino et al., 2019; Vaiserman, 2018). I describe how epigenetic clocks are 

being used with extreme precision to predict chronological age (Q. Zhang et al., 2019) 

as well as mortality (Levine et al., 2018; Lu, Quach, et al., 2019; Y. Zhang et al., 2017) 

and a long list of other health outcomes and biomarkers (C. Liu et al., 2018; Lu, Quach, 

et al., 2019; Lu, Seeboth, et al., 2019). I discuss how epigenetic clocks are providing a 

concrete set of biomarkers of biological aging and mortality that can be used to gauge 

life span and mortality years or even decades before clinical or demographic endpoints 

like chronic disease occur (Ryan, 2020). And I describe how these remarkable 

characteristics are allowing us to use epigenetic clocks to quantify biological aging and 

to study tradeoffs like those between reproduction and aging in ways that were once 

unfeasible.   

In Chapter 3, I demonstrate the use of epigenetic clocks to study tradeoffs between 

reproduction and somatic maintenance by looking at the relationship between gravidity 

and Horvath’s epigenetic age acceleration in 397 young women in Cebu (Ryan et al., 

2018). I show that with each additional pregnancy, women’s epigenetic age is 

accelerated by between 4-6 months, even among these relatively young (20-22 years 

old) women. These findings are corroborated by a similar finding for leukocyte telomere 

length, a separate marker of cellular aging. In addition, the fact that epigenetic age was 

unrelated to parity in the four years subsequent to the epigenetic age measurement 

suggests the relationships we observed are not due to a separate genetic or social 

confounder that both increases fertility and accelerates epigenetic age (Ryan et al., 
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2018). Analyses also account for several measures of socioeconomic status and 

genetic variation, which help reduce confounding in these analyses. An unexpected 

finding of this study was the fact that pregnant women looked epigenetically younger 

according to Horvath’s clock (Ryan et al., 2018). The reasons for this relationship are 

still unclear, but could be related to the large shifts in immune regulation and 

inflammation that accompany pregnancy (Aghaeepour et al., 2017), or fetal 

contamination of maternal blood (i.e. fetal microchimerism)(Boddy, Fortunato, Sayres, & 

Aktipis, 2015).  

The paradoxical finding that women appear more epigenetically youthful during 

pregnancy, despite exhibiting epigenetic age acceleration in relation to parity, could 

provide a clue as to when tradeoffs between reproduction and aging actually arise, and 

an opportunity to study the pathways involved. I investigate this possibility in more detail 

in Chapter 4, where I examined the methylome in relation to reproductive status among 

the same women described in Chapter 2. By characterizing the differences in the 

methylome of women who are of roughly the same age, but who vary in current 

reproductive status, I sought to move beyond the epigenetic clock to the actual 

regulatory changes that might accompany reproductive effort itself. Compared to 

nulliparity, there were a large number of differences in the methylomes of pregnant (823 

loci) and breastfeeding (1107 loci) women. Interestingly, whereas pregnancy was 

predominantly associated with hypomethylation, breastfeeding was associated with the 

opposite trend – hypermethylation. Only a small proportion (8%) of these differences 

overlapped, highlighting the clear distinction between these two stages of reproductive 
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investment. Taking these analyses further, I characterized the differentially methylated 

positions (DMPs) by their genomic context, ranked associated genes using effect sizes 

and p-values, and described the biological processes associated with top-ranking genes 

using network analysis. Pregnancy was associated with changes in T-cell regulation 

and cell-cell adhesion, consistent with immunological adaptations required for fetal 

tolerance. These could be tied to the activity of T regulatory cells (Tregs), which 

suppress T cell induction and prevent an immune response to the semi-allogeneic fetus 

(La Rocca, Carbone, Longobardi, & Matarese, 2014). Tregs also have important roles in 

cancer and autoimmune disorders, diseases that have both been tied to parity (Förger & 

Villiger, 2020), and may merit further investigation for their role in costs (and benefits) of 

reproduction. The other major pattern of DNAm accompanying pregnancy was neuron 

development and differentiation. This remarkable finding is consistent with neurological 

and cognitive changes that are becoming more well-recognized both during and after 

pregnancy (Beeri et al., 2009; de Lange et al., 2019; Hoekzema et al., 2017). While the 

effects of parity on cognitive function and brain structure in women are not universally 

detrimental (de Lange et al., 2019), these findings may prove relevant to emerging 

theories in human biology that view costs of reproduction as involving brain-associated 

changes and faster age-related cognitive decline (Ziomkiewicz, Wichary, & Jasienska, 

2019).  

The analyses in Chapter 4 were conducted using cross-sectional data, but we are 

interested in the long-term effects of reproductive history on women’s epigenome and 

health. To gain some sense for the effects of reproduction on the methylome over time, 
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I compared nulliparous women and parous (but no longer pregnant or breastfeeding) 

women. I did not find significant differences in DNA methlylation for any individual loci. 

However, the non-parametric enrichment analysis (which does not rely on statistically 

significant differences for individual CpG loci) pointed again to changes in neuron 

development and axonogenesis (Chapter 4). We also found evidence for persistent 

differences in immune cell composition between nulliparous and parous women, which 

are consistent with more durable effects of parity on the methylome. These findings 

agree with the findings for pregnancy described above, and complement research in 

other samples showing changes in brain structure and function in parous women (Beeri 

et al., 2009). Although cross-sectional, these findings represent an important step 

towards building a mechanistic framework for the costs of reproduction in women using 

DNAm. Future work using multiple measures of DNAm and longitudinal data from the 

same women will help us to understand the changes in the methylome that appear 

accompany women’s reproduction, and how those might be related to women’s health 

and aging later in life.  

Due to the extensive physiological, immunological, or anatomical changes that women’s 

bodies undergo during pregnancy and breastfeeding, studies of tradeoffs between 

reproduction and aging often focus on women (Jasienska et al., 2017). Nevertheless, 

indirect costs of reproduction are expected to exist among men through mating or 

parenting effort (Bribiescas, 2001; Jasienska et al., 2017). Mating effort in men is 

thought to be mediated by testosterone (T), which is widely theorized to be costly to 

male health and longevity (Bribiescas, 2001, 2016). Support for this postulation in 
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human males, however, has been surprisingly inconsistent (Lee T. Gettler et al., 2014; 

Michael P. Muehlenbein & Bribiescas, 2005; Nowak et al., 2018; Prall & Muehlenbein, 

2015; Trumble et al., 2016). In Chapter 5, I tested this hypothesis by examining the 

relationship between DNAm and three different measures of T in a subset of 90 young 

(20-22 year old) men in Cebu. I found evidence that biological age quantified using four 

different epigenetic clocks was accelerated for all three measures of T. This effect was 

borderline significant for two clocks (Horvath and Hannum), but only statistically 

significant for one (Levine’s DNAmPhenoAge)(Levine et al., 2018). This suggests that 

higher T in young men is indeed associated with an increase in biological aging and 

mortality risk. However, there is little evidence that this effect is tied directly to 

immunosuppression, since neither bioinformatically-derived immune cell proportions nor 

a composite measure of innate-acquired immunity was clearly linked to any measure of 

T. We also found no statistically significant differences in the methylome overall with T, 

although several sites in genes associated with immune function did approach 

significance for evening salivary T. These analyses should be viewed as exploratory in 

light of the relatively small sample of men for whom DNAm were available. However, 

these preliminary findings, which include consistent directional relationships with 

multiple epigenetic age markers, including a handful that were borderline significant or 

significant, along with borderline significant patterns of differential methylation, point to 

the potential of using DNAm to study T-associated costs of reproduction in men using 

more well-powered studies. 
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Future directions in the CLHNS 

The premise of this dissertation is that epigenetic measures provide new tools to study 

life history traits and related tradeoffs. The work presented here has given us a glimpse 

into how DNAm can be used to study costs of reproduction in both men and women. It 

also lays the foundation for future research into tradeoffs in epigenome more broadly. 

As briefly discussed, future studies using longitudinal data, larger sample sizes, and 

individuals later in life will be an important next step in this research.  

While our study on gravidity described in Chapter 2 controls for a range of social, 

environmental, and genetic factors (Ryan et al., 2018), given the cross-sectional nature 

of this research we cannot rule out a role for individual differences in health or access to 

resources that also affect DNAm and epigenetic age. We are addressing this gap by 

updating reproductive histories and adding a second measure of DNAm as part of a 10-

year follow-up. This work is funded by my collaborators (Dr. Chris Kuzawa, 

Northwestern; Dr. Michael Kobor, University of British-Columbia) and I (through my NSF 

DDIG) and is well-underway. DNAm has been measured for 335 pregnant women (with 

DNAm during breastfeeding for 35 of them), and is now ready for signal normalization, 

probe-type correction, and quality control, which will begin in November, 2020. These 

data were originally intended to form the final data chapter, but were delayed due to the 

global coronavirus pandemic. Expanding this work to include a second time point will 

allow us to use each woman’s baseline value as their own control, thereby minimizing 

confounding tied to individual variation in health and access to resources. These 

analyses will also produce new data on DNAm at 800,000+ loci per individual, allowing 
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future investigations of the effect of reproduction and the environment on the 

methylome. More importantly, our epigenetic data will be complemented by measures of 

health for women approaching middle age, when the tradeoffs between reproduction 

and aging may begin to accumulate in the body. 

The sample sizes used in the analyses presented here, while large by the standards of 

most anthropological research, are modest for an epigenomics study that can involve 

hundreds of thousands of tests. This is especially true for our study of T-associated 

costs of reproduction in men, for which we had complete data for only 90 men. We are 

addressing this limitation through the addition of hundreds of DNAm samples for both 

men and women in 2005 as part of a funded NIH R01 titled ‘Lifecourse determinants 

and outcomes of epigenetic age acceleration across two generations’. I was 

instrumental in the conceptualization and writing of this grant, which dovetails with and 

builds on the work laid out in my dissertation. The larger sample generated by this grant 

will allow us to retest the hypotheses described above with much improved statistical 

power. In women, we will have greater power to examine the relationship between 

parity and DNAm beyond sites associated with epigenetic clocks across the genome, 

and to study the impacts of pregnancy-associated changes to immune function and 

DNAm and infant and maternal health. In men, we will be able to study the epigenetic 

changes that accompany partnership and fatherhood, which was not possible owing to 

small cell sizes in our present sample. We also plan on analyzing DNAm in the mothers 

of the original index children, who are now between 56-83 years old. We will combine 

DNAm measured in whole blood in 2005 when women were 39-66 years old with a 
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study of health and aging in these women conducted in 2014. We will also update 

mortality and other outcomes for these women as part of a 2022 survey. These data will 

allow us to explicitly test the relationships between epigenetic age and health and 

mortality in these women, which has yet to be done in a non-WEIRD population. 

Future directions in anthropology and beyond 

My training in life history theory and epigenetic methods are not restricted to questions 

about reproduction and aging, but extend naturally to other pressing concerns within 

anthropology and beyond. For example, recent research has found evidence for 

tradeoffs between growth and immune function in children exposed to high infectious 

disease burdens (Georgiev, Kuzawa, & McDade, 2016; T.W. McDade, Reyes-García, 

Tanner, Huanca, & Leonard, 2008). These appear to operate over a range of timescales 

depending on the nature of the immune response (Urlacher et al., 2018). The flexibility 

of DNAm could provide us with new ways of studying these tradeoffs. One hypothesis is 

that intrinsic epigenetic age – thought to capture changes in the pace of biological aging 

that are not tied to changes in cell composition – will be slowed in children, whereas 

extrinsic age, specifically capturing immunosenescence, will speed up (Ryan, 2020). 

This more youthful intrinsic epigenetic age during development may reverse at puberty, 

with adults exposed to higher infectious disease burdens showing faster pace of 

intrinsic biological age due to early life tradeoffs between growth and maintenance. A 

number of other questions could be answered with DNAm: What genome-wide changes 

in DNAm accompany these tradeoffs? Could DNAm tell us more about what genes 
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specifically are involved in these tradeoffs? The mechanistic framework and tools 

provided by DNAm may help us to better understand these processes.  

Studies in humans are only one way of understanding the mechanisms of life history 

traits and tradeoffs. A growing body of research is using free-living primates as systems 

in which to study the epigenetics of social inequality (e.g. Snyder-Mackler et al., 2016; 

Tung, Archie, Altmann, & Alberts, 2016) and researchers are recognizing the value of 

free-living populations for the study of aging (Chiou et al., 2020; Emery Thompson, 

Rosati, & Snyder-Mackler, 2020). Recently, an epigenetic clock for primate aging has 

been developed (Goldman et al., 2019), but appears to rely on large-scale bisulfite 

sequencing, an expensive and labor-intensive method. I am interested in developing a 

cost-effective method for studying the epigenetic clock using a new technology called 

‘high accuracy methylation via Targeted Bisulfite Sequencing’. This development will 

facilitate research in macaques by providing a low-cost alternative to studying the 

epigenetic clock in this species. An affordable and widely-applicable epigenetic clock in 

macaques could be used to study a number of questions about development, 

reproductive timing and effort, and aging.  

Developments in epigenetics are providing us with a powerful set of tools for studying 

aging, but are also driving a conceptual shift towards viewing aging as an extension of 

the developmental program set in motion early in life. This ‘lifecourse’ perspective is 

entirely consistent with ideas about life history strategies common to ecology and 

evolutionary biology, but often overlooked in biomedicine and gerontology. But the 

lifecourse perspective of aging is more than a nice idea. Just as developmental 
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biologists in the 20th century showed that Waddington’s ball could be rolled uphill, 

gerontologists are starting to think about turning the epigenetic clock backwards. There 

is now evidence from human clinical trials that epigenetic aging – and perhaps 

biological aging – can be reversed (Fahy et al., 2019). Part of Fahy and colleagues 

research involved the administration of growth hormone and dehydroepiandrosterone, 

hormones that are central to growth and reproduction. In this way, studies like that of 

Fahy et al. can inform research on costs of reproduction or other life history tradeoffs 

that involve aging. Equally important is the fact that studies of tradeoffs between 

reproduction and aging in human biology and allied disciplines may provide insights into 

the genes and pathways involved in certain aspects of biological age, informing clinical 

research.  

In Chapter 2, I provided evidence that women’s cells ‘age’ with each additional 

pregnancy, supporting the theorized tradeoff between reproduction and bodily 

maintenance at the cellular level (Ryan et al., 2018). However, despite what appear to 

be cumulative costs of gravidity on cellular aging, women in our study appeared 

epigenetically ‘younger’ during pregnancy itself. What might explain this cellular 

‘youthfulness’ in epigenetic age among pregnant women? One possibility alluded to 

above is fetal microchimerism – the ‘contamination’ of the maternal bloodstream by cells 

from her gestating child. If both maternal and fetal cells contribute to the DNA in a 

mother’s blood sample, our estimates of epigenetic age will be correspondingly skewed 

downward. To test the potential effect of fetal microchimerism on maternal epigenetic 

age, Dr. Meaghan Jones at the University of Manitoba and I are carrying out simulations 
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using several suitable epigenetic datasets to test this hypothesis. We will quantify 

differences in genetic variation and DNA methylation at Y-chromosome associated 

genes among mothers of sons versus daughters to validate our findings. If fetal 

microchimerism contributes significantly to maternal epigenetic age, any study of 

epigenetic age that includes pregnant women will be biased. If this is correct, our aim 

will be to provide a statistical algorithm that can be applied in conjunction with existing 

epigenetic clocks to address this bias in future studies that include pregnant women. It 

will also provide a novel way of studying the effects of fetal microchimerism using new 

and existing datasets, which could help us understand how fetal microchimerism may 

be involved in maternal immune function and health.  

While much remains to be learned about how epigenetic processes affect gene 

expression and phenotypic variation, they are often tied to genes for which we have a 

greater understanding. For example, the classical research on maternal parenting 

behavior and its role in epigenetic regulation of the glucocorticoid receptor in the 

juvenile brain was only meaningful in light of the body of research into the glucocorticoid 

receptor, its functions in the body and brain, and the phenotypes associated with 

naturally-occurring or experimentally-induced manipulations of the glucocorticoid 

receptor gene (Meaney, 2001; Weaver et al., 2004). Follow-up research on childhood 

abuse in the brains of suicide victims corroborated these findings in humans (McGowan 

et al., 2009), highlighting the power of comparative approaches. Depending on the gene 

and research question, insights about human life history evolution can come from any 

number of model or non-model organisms ranging from yeast and nematodes to mice 
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and human cell lines (Ashburner et al., 2000). In this way, findings from epigenetic 

research can build on the foundations of genetics and genomics, providing researchers 

with conceptual and mechanistic framework for studying context-dependency in life 

history traits and tradeoffs. By pointing to specific genes, pathways, or processes 

associated with tradeoffs between competing demands, such as reproduction and 

aging, epigenetic processes help researchers go beyond ‘black box’ explanations (Flatt 

& Heyland, 2011). Furthermore, hypothesis-generating approaches have the potential to 

identify relationships beyond those predicted by conventional theories. For example, 

while the immunocompetence handicap hypothesis (ICHH) for costs of T in males is a 

an elegant idea that has gained much attention, it has not been well supported 

empirically and may be over simplistic for human males. Epigenome-wide associations 

may provide new ways of operationalizing tradeoffs within the immune system, or 

between other untheorized functions. Candidate genes or pathways uncovered in life 

history research can then be tested experimentally using pharmacological or genetic 

engineering using in vitro cell culture or in model organisms. 

Broader questions in life history theory 

One of the overarching goals of this dissertation has been to develop a framework for 

studying the proximate mechanisms underlying tradeoffs between reproduction and 

healthy aging. A central assumption behind this work, laid out in the beginning, is that 

tradeoffs arise due to conflicts in energy allocation between competing physiological 

demands favoring either reproduction or maintenance (Kirkwood, 1977; S. C. Stearns, 

1989). While intuitively appealing and theoretically plausible, the evidence for such a 
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direct role of ‘energy’ in somatic maintenance and aging has been surprisingly weak or 

inconsistent. Energy is not a limiting factor in many contemporary human populations in 

which costs of reproduction in the form of all-cause mortality and disease prevalence 

have been observed (e.g. Grundy, 2009; Lv et al., 2015; Y. Zeng et al., 2016). Even in 

low resource settings with high infectious disease burdens, women appear to recoup 

the energetic costs of reproduction over time (M. Gurven et al., 2016). Our findings 

agree with this, as our measure of resource availability did not moderate the effect of 

gravidity on cellular aging (Chapter 3; Ryan et al., 2018). Similarly, very few of the 

differentially methylated sites we uncovered during pregnancy were directly tied to 

processes involved in cellular respiration or catabolism, as might be expected if the 

dominant source of reproductive costs in women is purely energetic. 

While it is important to remain cautious when inferring what may be tissue specific 

changes from DNAm in blood, there are other reasons to be wary of allusions to 

energetic trade-offs as a satisfactory mechanistic explanation of the primary driver of 

CoR. One example of this can be found in research on caloric restriction (CR). CR is the 

most reliable means of reducing disease and extending lifespan, in some cases by as 

much as 50% (Heilbronn & Ravussin, 2003; Most, Tosti, Redman, & Fontana, 2017). 

However, the effect of CR on health and lifespan—in a direction opposite to that of 

reproduction—seems to contradict the disposable soma theory and challenges the idea 

that energy availability is central to the aging process. How can energy set the pace of 

biological aging if reproduction and caloric restriction have such different effects on 

health and lifespan? One possibility is that CR slows aging by drawing more energy 



 

 

193 
away from reproductive function and allocating it to bodily maintenance. However, while 

severe CR of 40% or more does suppress fertility, moderate CR ~20-30% prolongs both 

longevity and reproductive lifespan (Garcia et al., 2019; Moatt, Nakagawa, Lagisz, & 

Walling, 2016) which runs counter to the hypothesis that reproduction comes at the 

expense of maintenance when energy is limited.  

Similar questions arise through the links between exercise, energy expenditure, and 

longevity. Physical activity typically increases resting metabolic rate (J. R. Speakman & 

Selman, 2003), which comprises the largest contribution to daily energy expenditure 

(Manini, 2010). Instead of reducing fertility, health, or lifespan, however, exercise 

improves health and reduces mortality risk (Reimers, Knapp, & Reimers, 2012), 

contrary to a model of life history tradeoffs based solely on energy availability and 

consumption. Furthermore, researchers have observed a negative relationship between 

resting metabolic rate and lifespan in mice, which appears to be confounded by body fat 

mass – a measure of energy stores (Duarte & Speakman, 2014). These findings are 

consistent with both ‘rate of living’ and ‘free-radical’ theories of aging (Duarte & 

Speakman, 2014), but do not fit comfortably within life history tradeoffs whereby energy 

itself is the limiting resource needed for somatic maintenance, repair, and longevity.  

How do we rectify what appear to be contradictions between a fundamental concept in 

life history theory – tradeoffs between reproduction and aging – and empirical data from 

other sources? Given well-documented evidence for such tradeoffs both across and 

within species, it would be premature to discard these ideas entirely. Williams 

highlighted that genes that benefit fitness do not necessarily improve health or prolong 
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lifespan, noting that they could have pleiotropic effects on other functions that affect 

longevity. And Kirkwood moved us beyond genetically hard-wired tradeoffs between 

early fecundity and late life survival towards a more ecologically oriented framework that 

allows for individual life history strategies to play out. Both appear to be key to 

understanding the link between reproduction and aging. However, life history research 

may need to push beyond the black box that still forms the basis for discussions about 

tradeoffs in life history traits. More nuanced theories that move beyond ‘energy’ – and 

start to operationalize the functional processes that underlie both reproduction and 

aging using concrete mechanistic insights – may be needed. Epigenetic processes 

could help us move towards this goal.  

Part of my long-term research plans will involve the use of mice or other non-human 

organisms to test our findings from human populations. One of these projects was 

recently selected for review for the Banting Postdoctoral Fellowship as part of the 

Canadian Institutes for Health Research (CIHR). If successful, this project will be carried 

out in conjunction with Dr. Meaghan Jones at the University of Manitoba and involves 

an experimental approach to studying the tradeoff between reproduction and aging in 

mice. Specifically, I will examine the paradoxical role of energy in aging and lifespan by 

pitting the disposable soma theory against caloric restriction – the only reliable means of 

prolonging lifespan in numerous species. I aim to address several key questions that 

are difficult to study in humans: How can energy set the pace of biological aging if 

reproduction and caloric restriction have such different effects on health and lifespan? 

Does the energy needed for reproduction come from organs like the heart or the 
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kidneys, causing these tissues to age faster? Or do mothers with many offspring reduce 

how much energy they allocate to individual young, handing down an ‘energetic debt’ to 

the next generation? The goal is to understand how reproduction and caloric restriction 

– distinct processes that draw energy away from bodily maintenance – impact aging 

across tissues and generations. Addressing these questions will tell us more about the 

role of energy in the aging process, which can be used to understand and promote 

healthy aging across the life course.  

If energy itself is not the currency of life history tradeoffs, what is? Perhaps functional 

constraints – conceived as narrowly as molecular processes and as broadly as 

physiological set-points – are key. At the molecular scale, proteins, RNAs, and 

transcriptional machinery do not operate in an infinite functional space, but can alter, 

silence, or interfere with functional signals from the others. This can create regulatory 

constraints through which tradeoffs between hormone production, growth, proteostasis, 

or genomic stability must operate. For example, heat-shock protein-90 is a chaperone 

vital for signal transduction and protein folding and stability (Erlejman, Lagadari, 

Toneatto, Piwien-Pilipuk, & Galigniana, 2014). However, it is also required in epigenetic 

silencing transposable elements through its role in the PIWI-piRNA loading pathway. 

Hsp90 expression appears to be constrained by the cytotoxic effects of Hsp90 

accumulation (Casanueva, Burga, & Lehner, 2012; Feder & Hofmann, 1999; Krebs & 

Loeschcke, 1994), resulting in a functional tradeoff between cellular buffering and 

maintaining genomic and epigenomic stability (Ryan et al., 2016, 2018). Other complex 

molecular networks needed for cell signaling, metabolism, housekeeping, as well as 
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tissue-specific functions could create functional constraints that are largely decoupled 

from energetic measures.  

If organs do not share identical endocrinological, immunological, or metabolic optima, 

functional constraints could also arise between tissues. Early in life, optima for tissues 

not involved in reproduction may be favored over reproductive tissues, but this could 

reverse at sexual maturity. Alternatively, the physiological setpoints needed for 

development and maintenance of reproductive tissues during pregnancy and 

breastfeeding may pull other non-reproductive tissues outside of their ideal operating 

range. The poorer efficiency and additional ‘friction’ caused by non-reproductive organs 

operating outside their optima could lead to the accumulation of waste or toxic by-

products such as reactive oxygen species in these tissues. For example, the greatly 

expanded blood volume during pregnancy (up to 100%) may be especially taxing to 

both the cardiovascular and renal system. Findings like this could help to explain the 

heterogeneous effects of parity on women’s health, with diseases for somatic organs, 

such as the heart, kidneys, and bones often increasing with parity, while cancers of the 

ovaries, endometrium, and breast tend to decrease. Such tradeoffs between tissues 

may lead to ‘aging mosaicism’ between organs, a testable hypothesis using pan-tissue 

biomarkers of epigenetic age (Horvath, 2013). For these and other reasons, it is also 

important to be cautious when interpreting the significance of DNAm differences in one 

tissue (i.e. blood) meant to capture biological functions in another (i.e. brain). While 

concordance between tissues does exist for some CpG sites, this is often not the case 

(Edgar et al., 2017).  
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Tradeoffs – energetic or functional – are usually thought of as an individual, intra-

generational phenomenon. There is no reason, however, that tradeoffs cannot occur 

inter-generationally, such as between a mother and her young. Intragenerational costs 

of reproduction can arise because parents and offspring differ genetically (Trivers, 

1972), and would be selected for when a mother stands to benefit from hedging her 

bets between current reproductive investment and her residual reproductive value 

(Williams, 1966b). A mother who is energetically constrained may still opt to reproduce 

while conserving her own maintenance effort by passing the energetic debt onto her 

young. In theory, this could curtail offspring developmental potential, reducing total 

somatic capacity and eventually accelerating biological aging. Evidence from non-

human animals suggests that maternal age and caloric restriction can both have 

negative impacts on offspring cognition, behavior (Sampino et al., 2017), or lifespan (M. 

J. Bock, Jarvis, Corey, Stone, & Gribble, 2019). In humans, advanced parental age is 

associated with improved offspring mortality outcomes (Carslake, Tynelius, van den 

Berg, & Davey Smith, 2019). However, this appears to be because social factors 

outweigh any developmental or physiological disadvantages, since older parents are 

more likely to be healthier and wealthier than their younger counterparts (Carslake et 

al., 2019). These findings highlight the importance of social status and support – which 

feed into education, diet, exercise, and stress, and are poorly described by energy 

expenditure – when studying costs of reproduction in either mothers or their offspring. 

The social dimensions of tradeoffs between reproduction and somatic maintenance may 

play out in other ways. For example, breastfeeding is often the most energetically costly 
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component of reproduction in women, but is a social as well as a physiological process. 

The timing, duration, and intensity of breastfeeding will influence energetic demands 

upon the mother (Hinde & Milligan, 2011), yet are shaped by women’s socioeconomic 

status, social support system, and opportunities to breastfeed. Furthermore, the 

energetic and functional role of breastmilk changes through time, meaning that from 

both energetic and functional perspectives breastfeeding is not a uniform process that 

can be easily categorized. This heterogeneity can be seen in the relatively small and 

loosely tied networks that we observed for breastfeeding compared to pregnancy 

(Chapter 4). The measures of breastfeeding in the CLHNS are relatively crude and were 

not included due to the rapid increase in parameters needed to model them. 

Incorporating factors such as infant age, feeding frequency, and supplementary feeding 

with the full cohort sample will help us to refine our understanding about how and where 

the maternal methylome responds to lactation in women, and what this might tell us 

about women’s long term health and aging. Similar opportunities exist to refine our 

understanding of costs of reproduction may come from considering the importance of 

stage of pregnancy, which may be operationalized by trimester or weeks since 

conception.  

Better measures of social context will also be necessary to fully make use of our data 

on the costs of reproduction in men. Partnership and fatherhood, for example, are likely 

to be important in male health and aging, as evidenced by epidemiological studies 

showing higher mortality among single and childless men. Unfortunately, our preliminary 

sample only consisted of 11 men who were married, and 9 men with children, limiting 
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our ability to study costs of reproduction in men within the context of their social roles as 

fathers and husbands. The larger sample sizes we have planned will help us to gain 

better resolution on the importance of men’s sociobiological roles in their epigenetic 

aging and health. Samples from a second time point will also give us a window in men’s 

epigenome later in life. This is likely to be important for both physiological and social 

reasons. Men continue to develop and build muscle into their late 20’s, and any costs of 

parenting on men’s health may become more apparent as children age over time. 

Whether or not men show similar effects of gravidity or parity as their partners is an 

interesting question that could also help to rule out some of the social factors that might 

confound our findings.  

Conclusion 

Nearly a decade and a half ago, Morange stated that “biological research is at a 

crossroads between reductionism and holism” (Morange, 2006), which is a tension that 

biological anthropology and human biology have grappled with for many decades. 

Epigenetic processes promise to help bridge the gap between these two worlds. They 

provide us with new conceptual tools for thinking about biological processes and 

change, and new methods for studying them. By their very nature, epigenetic processes 

make us think interdisciplinarily, which is one of the strengths of biological anthropology. 

While ideas about plasticity and sensitivity to the environment come with their own 

theoretical and ethical dilemmas, the biological anthropologists and human biologists of 

the 21st century are in a powerful position to make important headway in longstanding 

questions about tradeoffs in health and evolution. 
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