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Abstract

The overall goal of my thesis is to enhance our quantitative understanding of the biophysical

properties of DNA – a long polynucleotide chain, present in every living cell, that embodies the

genetic information. The existence of DNA has been known to us for over a century, however,

our understanding of its physiochemical nature and spatial organization inside our cells is ever

evolving. Since the momentous discovery of the double-helical structure of DNA, the emergent

view of DNA as a long biopolymer that proteins manipulate via physical interactions has been

very successful in explaining experimental observations and proposing biological mechanisms.

Since DNA resides in an environment where thermal fluctuations are omnipresent, statistical-

mechanical properties of DNA play an indispensable role in protein-DNA interactions. Topolog-

ical constraints are an essential feature of cellular DNA. Active control of both the intra-DNA

topology, arising from the double-helix structure, and the inter-DNA topology due to its long

length and self-avoidance, is an important characteristic of various biological functions. This

dissertation contains theoretical models of double-helix DNA and other biologically-relevant

DNA structures, such as two intertwined DNAs, where we view the double helix as a semi-

flexible elastic rod or a worm-like chain with an inherent twist stiffness. Our results explain

torsion-induced buckling in stretched double-helix DNAs and intertwined DNAs that are in

good quantitative agreement with existing experiments. New experimental data, resulting from

collaborations, that successfully verified theoretical predictions are also reported. Some of our

novel findings shed light on the role of certain structural defects in modulating DNA-buckling

behavior, and the influence structural bulkiness may have on the stability of buckled DNAs. We

also address a long-standing question of topological simplification of cellular chromosomes via

modeling chromosome as a polymer bottle-brush or a cylindrical array of DNA loops. Our find-

ing, inter-chromosome entanglements can be minimized by an optimal-loop length, may suggest

that chromosome domains in interphase nuclei or “Topologically Associating Domains” (TADs)

play a role in entanglement minimization. Loop extrusion, that has been recently proposed

as a mechanism to compact chromosomes during the cell cycle, provides an active process to
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control the compaction state of chromosomes within our model. Our model of loop-extruded

chromosome is quantitatively consistent with experiments reporting the rigidity modulus in

chromosomes, which in our case, derives from a cylindrical core of densely packed DNA. The

theoretical models described here make testable predictions, that we hope, will help design future

experiments and uncover new phenomena, creating a need for novel theoretical techniques.
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Chapter 1

Introduction

Complexity in the biological world has diverse manifestations: it can be in form of intricate

intracellular processes occurring at the nanometer (nm) length scale, or collective behavior

of many cells at upwards of many micrometers (µm). Here, our focus will be on the complex

intracellular organization and the associated statistical mechanics of nucleic acids or the genome:

a polynucleotide chain, where each nucleotide monomer is constituted of a phosphate group, a

sugar-ring or ribose, and one of the four nitrogenous bases: adenine (A), guanine (G), cytosine

(C), and thymine (T). Nucleic acids can be DNA (deoxyribonucleic acid), a polymeric chain

of paired bases (A=T or G≡C)1 that stores genetic information as a well-defined sequence of

complementary bases. DNA is transcribed or read by a synchrony of proteins to make another

commonly found nucleic acid, RNA (ribonucleic acid), a polymeric sequence of single bases: A

or C or G or U (uracil)2. RNA chains are codes that prompt synthesis of specific proteins in

the cell. Proteins are macromolecular structures made up of amino acids. The RNA code is

translated by ribosomes to make a protein with a specific sequence of amino acids. Thus, DNA,

that stores the genetic code of an organism, is read and then translated to synthesize proteins

according to the DNA code.

The concepts of modern molecular biology were largely established following the discovery

1 Owing to structural constraints, adenine only pairs with thymine using two hydrogen bonds, while guanine
pairs with cytosine using three hydrogen bonds.

2RNA base uracil usually takes the place of DNA base thymine that has a methyl group lacking in uracil.
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of the double-helical structure of DNA in 1953 by J. Watson and F. Crick [1]. Nonetheless,

it is worthwhile to indulge in a short historical discourse. In 1880, W. Flemming provided a

detailed study of cell division, where he was intrigued by the “thread figures” appearing inside

the nucleus [2] [see Fig. 1.4, chromosomes appear as cylindrical objects in mitosis]. He also

coined the term “chromatin”, which led to chromosomes, the nuclear figures that are passed

from the mother to daughter cells. We now know chromatin as a polymer of protein-bound

DNA segments that is compacted to form chromosomes, however, Flemming’s observation and

characterization of chromatin using staining dyes are relevant till date.

“Therefore, we will designate as chromatin that substance, in the nucleus, which
upon treatment with dyes known as nuclear stains does absorb the dye. From my
description of the results of staining resting and dividing cells it follows that the
chromatin is distributed throughout the whole resting nucleus, mostly in the nucleoli,
the network and the membrane, but also in the ground-substance. In nuclear divi-
sion it accumulates exclusively in the thread figures.”

— W. Flemming (1880) [2]

DNA was extracted as the nuclear substance or “nuclein” by F. Miescher in 1869, who

characterized its high phosphate content [3]. In 1889, R. Altmann termed the phosphate-rich

nuclear substance as “nucleic acid”, which was later studied by A. Kossel and coworkers, in early

1900s, to identify the five constituting nucleotides: A, T, G, C, and U.

In 1886, G. Mendel, unaware of Flemming’s work, developed a quantitative framework to

analyze hereditary inheritance in hybrid plants [4]. He proposed that traits or “characters”

are passed on from the parent to progeny via “inheritable units” that make a certain trait

either present or absent in the progeny, as opposed to the notion that the progeny contains a

blend of parental traits. Although the mechanistic basis of Mendel’s arguments were limited

to the abstract concept of inherited units, by the end of nineteenth century, when Mendel’s

work garnered renewed enthusiasm, the possibility that chromosomes are the nuclear material

linked with hereditary inheritance gained prominence. In 1903, W. Sutton, put forward “the
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chromosome theory of inheritance”, which postulated chromosomes as the bearer of hereditary

traits [5].

Around the same time, in early 1900s, W. Johannsen proposed “genes” as the unit in

Mendelian inheritance, and highlighted a distinction between the “genotype”: “the sum total

of all the genes”, and the “phenotype” of an organism: “types of organisms, distinguishable by

direct inspection” [6]. The exclusive correspondence of genes to DNA became clear after a series

of studies, notably, the Avery-MacLeod-McCarty experiment (1943)[7], and the Hershey-Chase

experiment (1952) [8], concluded that nucleic acids and not proteins are the genetic material.

In 1953, Watson and Crick proposed the currently-accepted double-helix model for DNA [1],

which proved instrumental in understanding the molecular nature of DNA. Watson and Crick’s

proposal of the three dimensional double-helical structure of DNA, with hydrogen-bonding inter-

actions between purine (A, G) and pyrimidine bases (C, T) holding the structure together, was

consistent with the X-ray crystallographic data published by R. Franklin and M. Wilkins, as well

as the base-pairing “rules” proposed by E. Chargaff, which stated that the purine-to-pyrimidine

ratio is a constant close to unity [9]. The complementarity of double-helix bases (A can only

pair with T, while G can only pair with C) indicated that one strand can act as a template

to synthesize the other, and provided a possible copying mechanism for the genetic material

[1], called the semi-conservative replication scheme, which is now known to be the predominant

mode of DNA replication in cells.

Discovery of the double-helix DNA structure qualified the abstract notion of genes into some-

thing with a known chemical and physical identity. This ushered in an era of biophysical research

where the cellular DNA or chromosomes are viewed as physical objects that are constantly in-

teracting with various proteins to facilitate vital life processes, such as DNA replication, gene

transcription and DNA compaction. Continued efforts by researchers has enhanced our molec-

ular understanding of biological processes, enabling us not only to ask more detailed questions

probing the fundamentals of the processes, but also to apply our understanding in controlling

certain biological processes, such as treatment of diseases.
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In early 1990s, it became possible to experimentally study the mechanical response of short

DNA fragments to stretching and twisting perturbations [10]. These precise experimental stud-

ies, along with theoretical modeling led to a worm-like chain or a stiff polymer picture of DNA

at short length scales (≈ µm) [11, 12]. Quantification of DNA mechanics at the short length

scales provided a tool to quantitatively study single-molecule protein-DNA interactions using

DNA as a calibrated substrate [13–16]. These studies also highlighted the intimate connection

between DNA mechanics and its topology, derived from the double-helical structure, that led to

a better understanding of many biological processes where the interplay between mechanics and

topology takes a center stage. For example, the essential role of DNA topoisomerase proteins

became clearer: relieving DNA torsional stress resulting from DNA replication, as well as dis-

entangle the highly intertwined replicated DNAs [17]. In this dissertation, we will delve deeper

into DNA mechanics, the interplay with topology, and its possible cellular ramifications, with a

focus on modeling DNA as a semiflexible polymer.

An enhanced understanding of the microscopic nature of DNA and protein-DNA interactions

makes us better equipped to study the large scale organization of the genome and its compaction-

decompaction cycle during cell division. Recently, lengthwise compaction via loop extrusion has

been proposed as a mechanism to compact the genome [18–22]. Active extrusion of DNA loops by

proteins provides a microscopic mechanism to manipulate the large scale genome structure and

compaction state to form cylindrical chromosomal structures: the “thread figures”, as remarked

by Flemming more than a century ago [2]. We will also discuss modeling chromosomes as

cylindrical polymer brushes, a consequence of loop extrusion, and the implications of the brush

morphology to chromosome entanglements. In the rest of this chapter, we will intimate the

reader to structure and topology of DNA, and the electrostatic aspects of the aqueous ionic

buffer that our cells live in.
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1.1 DNA structure

1.1.A DNA is composed of two polynucleotide chains

The building blocks of DNA are nucleotide monomers. Each nucleotide contains a phosphate

group attached to a sugar ring that is connected to a nucleobase: adenine (A), thymine (T),

guanine (G), and cytosine (C) [Fig. 1.1(a)]. DNA contains two polynucleotide strands where

the sugar and the phosphate groups are arranged on the outside with the nucleobases projected

inwards, such that two nucleobases from the opposite strands are facing each other, allowing

them to form hydrogen bonds.

The nucleobases are flat heterocyclic rings containing carbon and nitrogen atoms. The bases

fall into two categories: purines (adenine and guanine), a double ring structure, and pyrimidines

(cytosine and thymine) that have a single ring structure [Fig. 1.1(a)].

1.1.B The two strands of DNA have complementary sequences

Structural constraints of the nucleotides only allow a purine-pyrimidine base pair between the

two strands, i.e., the allowed base pairs are A=T, and G≡C. This complementarity of base pairs

implies one strand can be used as a template to make a copy of the DNA or replicate the DNA

for cell division.

1.1.C DNA has a double-helical structure

The two polynucleotide strands of the DNA are helically wrapped, where the sugar-phosphate

part of each nucleotide sits on the outside of the helix forming the backbone of the double helix.

While the bases on either strands project inwards and noncovalently bind with each other.

Specificity of base pairing is important for hydrogen bonding of the bases of the two strands.

DNA has two unequal grooves: the major and minor grooves, which is a direct consequence of

the double-helical structure.

The most common form of cellular DNA is B-DNA, which is a right-handed double helix.

We will always refer to the B-form of DNA unless otherwise mentioned. A consequence of the
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Figure 1.1: (a) Chemical structure of one DNA chain, showing the deoxyribose sugars (note
numbered carbons) and charged phosphates along the backbone, and the attached bases (A,
T, G and C following the 5′ to 3′ direction from top to bottom). (b) Space-filling diagram of
the double helix. Two complementary-sequence strands as in (a) noncovalently bind together
via base-pairing and stacking interactions, and coil around one another to form a regular helix.
The two strands can be seen to have directed chemical structures, and are oppositely directed.
Note the different sizes of the major (M) and minor (m) grooves, and the negatively charged
phosphates along the backbones (dark groups). The helix repeat is 3.6 nm, and the DNA cross-
sectional diameter is 2 nm. Image reproduced from Ref. [23]. (c) Molecular-dynamics snapshot
suggestive of a typical double-helix DNA conformation for a short 10 bp molecule in solution at
room temperature. Reproduced from Ref. [24].

helical nature of DNA is its periodicity. Each base pair is rotated from its neighbor by ∼ 35◦,

meaning, the helix contour makes one full rotation about its axis every ≈ 10.5 bp, which is the

helix-repeat length of DNA.
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1.1.D The double helix is stabilized by base pairing and base stacking

The hydrogen bonds between the complementary bases is essential for the double helix, however,

noncovalent bonds alone are not enough to explain the thermodynamic stability of double-helix

DNA. In absence of complementary base pairing, the nucleobases form hydrogen bonds with

the water molecules,which also stabilizes the bases. An important contribution to stability of

the double helix is from the stacking interactions between adjacent bases. The bases are flat,

allowing them to stack on top of each other, which is favored because of van der Waals attraction

between the stacked bases.

1.1.E Conformations of the double helix

DNA can adopt configurations other than the canonical B-from: a right-handed helix with a

10.5 bp helix repeat length. In low humidity conditions or in many protein-DNA complexes,

DNA adopts the A-form, which is also a right-handed helix but with a wider major groove and

11 bp per turn. DNA is also known to conform to a left-handed double-helical structure, called

Z-DNA, an intermediate structure that occurs during gene transcription.

1.2 Mechanical properties of DNA

The stacked nature of the bases makes the double-helix a stiff polymer, allowing only a few

degrees of lateral bending per base pair. One degree of lateral bend corresponds to roughly 0.03

nm of separation between the adjacent bases. However, one may expect to see occasional large

bends arising from correlated distortions over many base pairs. In this section, we develop a

quantitative understanding of how the double helix responds to mechanical perturbations in a

thermal environment.

1.2.A DNA is a stiff polymer

DNA is a semiflexible polymer with a bending stiffness similar to an elastic rod. The thermal

persistence length of DNA is A ≈ 50 nm, or ≈150 bp. This means that, first, DNA polymers
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longer than a few hundred nanometers will be severely distorted from a straight line configuration

due to thermal fluctuations; and second, the configurations of the fluctuating DNA will feature

correlated bends over ≈ 50 nm segments.

1.2.B Statistical mechanics of DNA

The fact that thermal fluctuations will bend DNA indicates that the end-to-end extension of a

long piece of DNA is typically smaller than its contour length. The ensemble-averaged end-to-

end distance of semiflexible DNA, computed from a partition function [25], gives the following:

〈R2
ee〉 = 2AL+ 2A2

(
e−L/A − 1

)
(1.1)

where L is the total contour length. The limit L ≈ A, furnishes Ree ≈ L, the rod-like limit of

DNA. While, L� A limit gives the Gaussian polymer behavior: Ree ≈
√
AL.

1.2.C Entropic elasticity of stretched DNA

If a stretching force is applied to the ends of a long DNA molecule, the end-to-end extension

increases. This is due to suppression of the entropic degrees of freedom perpendicular to the

force direction. In other words, work needs to be done in stretching the ends of a polymer.

The characteristic force delineating the strong stretching regime from weak stretching is set

by the thermal persistence length. Forces in the range f < kBT/A ≈ 0.1 pN (recall 1 kBT ≈ 4

pN-nm) are weak perturbations to the equilibrium Gaussian-polymer conformation. While,

forces f � kBT/A strongly stretch the DNA polymer.

Polymer elasticity at low forces. In the weak stretching regime f < kBT/A, the polymer has

a linear force response, furnishing a spring constant k = kBT/ 〈Ree〉2 = kBT/(AL). This corre-

sponds to a Gaussian polymer, where the spring constant is inversely proportional to polymer

length, and f ≈ k 〈Ree〉, sets the order of magnitude of the restoring force.

As the length of DNA is increased, the self-avoidance of the polymer plays an important

role that makes the force response nonlinear [26]. However, for double-helix DNA, the narrow
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effective thickness (≈ 3.5 nm at 100 mM univalent salt including electrostatic effects [27]) of

the double helix compared to its segment length (b = 2A ≈ 100 nm) leads to quite weak self-

avoidance, and makes dsDNA elasticity quite close to that of an ideal polymer for DNA lengths

(< 50 kb ≈ 16 µm) studied experimentally [12].

Strongly stretched DNA exhibits semiflexible-polymer behavior. DNA under high forces (f �

kBT/A) approaches a fully extended state, where transverse fluctuations are small and can be

treated as a perturbation. The total energy has a force-extension energy component that is

negative since work has to be done to stretch the molecule, along with the bending energy term

that scales with the square of the local curvature, as shown in the following [12].

βE =

∫ L

0
ds

[
A

2

(
dt̂

ds

)2

− βf ẑ · t̂
]

⇒ 〈z〉
L

=
〈
ẑ · t̂

〉
= 1−

√
kBT

4Af
+ · · · (1.2)

The first equation shows the total energy whereas the second one shows the ensemble-averaged

extension derived from a canonical partition function. The characteristic reciprocal square-root

dependence of extension on force for a semiflexible polymer in the regime f � kBT/A is observed

in single-molecule experiments on double-helix DNA for forces from about 0.1 up to 10 pN [10].

1.2.D DNA denaturation by stress

From DNA “melting” studies, we know that the energy required to separate the helically stacked

single-stranded DNAs (ssDNA) is g ≈ 2.5kBT per base pair [28]. The secondary structure of

DNA, which is held together by weak non-covalent bonds of binding energy ≈ kBT , is expected

to strongly deform under highly stressed conditions. This has been observed in a few different

ways.

Unzipping: Pulling the two strands of the DNA in opposite directions leads to unzipping of

the double helix DNA strands. The helical arclength associated with each base pair is ` ≈ 1

nm, which is the length released upon unzipping. Hence, the force, at which the required work

to procure ` length of ssDNA from a double helix equals the base-pairing energy, gives a simple

estimate of the unzipping force: funzip ≈ g/` = 10 pN. The experimentally observed unzipping
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force ranges from 8 to 15 pN, depending on DNA sequence [29–31]. The variations in unzipping

force has been proposed to be used to analyze DNA sequence.

Overstretching: Under a large applied force a long dsDNA undergoes a structural transition,

where the double helix length per base pair increases from 0.34 nm to 0.6 nm. Again using

DNA strand separation energy as the free energy scale, we estimate the overstretching force:

foverstretch ≈2.5kBT/(0.2 nm)≈ 50 pN. Experimentally observed overstretching transition occurs

at a well-defined force 65 pN [32–34].

Unwinding: One might imagine an applied torque with a negative helicity (double helix DNA

has positive helicity) will unwrap the two single strands of the DNA. Unwinding the DNA releases

≈ 0.6 rad/bp (2π radians per 10.5 bp), which along with the base-pairing energy of 2.5kBT/bp

gives an estimate of the critical unwinding torque: τunwind ≈ −2.5kBT/(0.6 rad)≈ −16 pN·nm

(the sign reflects helicity or handedness). The experimentally observed unwinding torque is

≈ −10 pN·nm (a slightly lower torque than the above estimate occurs since there is left-handed

wrapping resulting after denaturation).

Experimental observations and more detailed theoretical work has resulted in development of

a force-torque “phase-diagram” for the double helix, with a variety of structural states [35, 36].

1.3 Topology of DNA

The two helically wrapped strands of a DNA are linked, i.e., for a circular DNA the two strands

cannot be separated or unlinked from one another without breaking one of them. This gives

rise to an internal linking number for the double helix, which is closely connected to its twist

response.

Topology of a polymer refers to linking or entanglement of the polymer. Topology is invariant

under smooth geometric deformations, and only changes when one polymer passes through

another. A simple example is the linking of two rings; they can be linked or unlinked, and one

cannot pass from the linked to the unlinked state without breaking one of the rings.
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(a) a b c d(b) (c) (d) (e)

Figure 1.2: (a)Sign convention for computation of linking number using crossings. Left: left-
handed (−1) crossing. Right: right-handed (+1) crossing. Simple links of oriented loops. Lk
for each pair is computed by adding up the signs of the crossings and dividing the sum by 2.
(b) unlinked rings; the signs of the crossings cancel, so Lk = 0. (c) the Hopf link; the signs
of the crossings add, so Lk = +1 (Lk would be −1 if the orientation of one of the loops were
reversed). (d) for this link (sometimes called “Solomon’s knot”) the signs of the crossings again
add, making Lk = +2. (e) the Whitehead link has canceling signs of its crossings, and has
Lk = 0 despite being a nontrivial link. Image reproduced from Ref. [37].

1.3.A Linking number

The linking number of two oriented closed curves can be computed by counting their signed

crossings, according to the rules shown in Fig. 1.2. Dividing the total crossing number by two

gives an integer, the linking number Lk of the two curves. This quantity can only change when

one curve is passed through another. 3

The Gauss invariant computes the same quantity, but determines it from the geometry of

the two curves:

Lk =
1

4π

∮
C1

∮
C2

dr1 × dr2 · (r1 − r2)

|r1 − r2|3
(1.3)

For DNA, we can distinguish between external linking of two double helix molecules together,

and the internal linking property of the double helix itself.

3 Linking topology is perfectly well defined only for closed curves or polymers. However, it is sometimes useful
to define linkage of open curves, using suitably defined closure boundary conditions, e.g., closing chains at infinity
by extending them with long straight paths. This introduces small corrections to the properties of entanglement
of interest here (primarily estimates of linking number). Qualitatively this can be understood by considering
the definition of linking number in terms of signed crossings (Fig. 1.2). If we imagine deforming part of one
of the links of Fig. 1.2 so that it closes far from the other crossings (not introducing any new crossings in the
process) the topology and linking number of the polymer will be unchanged. This will be true for all closure
paths that do not introduce additional strand crossings, indicating a rather weak dependence of linking number
on closure boundary conditions, and further allowing us to talk about the topology of the region of the polymers
not including the closure in a reasonably well-defined way.
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1.3.A.i Internal double-helix linking number Lk

The two strands of a double-helix DNA are wrapped around each other in a right-handed manner,

with a preferred helix-repeat of one turn every nh ≈ 10.5 bp, or every h ≈ 3.6 nm. This causes

linking of the two strands, resulting in a net linking number associated with the double helix

structure: Lk ≈ Lk0 = L/h = N/nh, for a double helix of length L or N base pairs. However,

Lk is an integer for a closed double helix, and is not in general equal to Lk0.

The difference between double helix linking number and the preferred linking number, ∆Lk =

Lk−Lk0, is often expressed as a fraction of the preferred linking number (linking number density),

σ ≡ ∆Lk/Lk0 (the excess linking number per DNA length is ∆Lk/L = σ/h). In E. coli and

many other species of bacteria, circular DNA molecules are maintained in a state of appreciably

perturbed Lk, with σ ≈ −0.05. This is a sufficient perturbation to drive the DNA to supercoil,

or wrap around itself in the manner of a twisted extension cord, due to competition between

bending and twisting elasticity of the double helix.

1.3.A.ii Perturbation of internal linking number generates DNA torsion

If Lk is sufficiently different from Lk0, then there will be a buildup of twist in the DNA, such

that the DNA twist energy can be expressed as,

βEtwist =
C

2L
Θ2 (1.4)

where Θ is the net twist angle along the double helix. This is just the form of the twisting

energy for a uniform elastic rod. Experimentally, this simple linear model has been observed to

have a surprisingly wide range of validity for DNA, for C ≈ 100 nm [35].

In the absence of other constraints, thermal fluctuations of twist give rise to a fluctuation:〈
Θ2
〉

= L
C , suggesting the interpretation of C as a characteristic length for twist fluctuations.

For the double helix, this twist persistence length is C ≈ 100 nm.

The derivative of Etwist with respect to Θ is the torque or “torsional stress” in the DNA that
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increases linearly with the applied twist:

τ =
∂Etwist

∂Θ
=
kBTC

L
Θ (1.5)

If there is no bending, then any excess linking number ∆Lk goes entirely into twisting

the double helix: Θ = 2π∆Lk (or σ = Θ/[2πL/h]). The mechanical torque in DNA will be

τ = 2πkBTC∆Lk/L = (2πkBTC/h)σ. The parameter 2πC/h ≈ 175 sets the scale for when

the linking number density will start to appreciably perturb DNA conformation, i.e., when

|τ | ≈ kBT . This level of torque occurs for |σ| ≈ 0.005.

1.3.A.iii Decomposition of double helix Lk into twist Tw and writhe Wr

The previous computation supposed that there was no bending, in which case all of the ∆Lk is

put into twisting the double helix. This DNA twisting can be quantified through the twist angle

Θ, or equivalently through the twisting number 4.

If DNA bending occurs, there may be nonlocal crossings of the double helix over itself. These

nonlocal crossings contribute to double-helix linking number, and the separation of length scales

between DNA thickness and the longer scale of DNA self crossing (controlled by the persistence

length A) allows linking number to be decomposed into local (twist) and nonlocal (writhe)

crossing contributions:

Lk = Tw + Wr (1.6)

or equivalently, ∆Lk = ∆Tw+Wr. This is known as White’s Theorem. While Lk is a topological

property and is quantized for a covalently closed double helix, Wr and Tw are geometrical, and

change value smoothly as the molecule is distorted.

One can demonstrate this with a thin strip of paper (30 cm by 1 cm works well). Put one

twist into the strip, closing it in a ring. The two edges of the strip are linked together once.

Now without opening the ring, let it assume a figure-8 shape; you will see that you can make

4The total twist of a DNA molecule is often written as the excess twist ∆Tw plus the intrinsic twist, or
Tw = ∆Tw + Lk0 = ∆Tw + L/h, where ∆Tw = Θ/(2π).
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Tw = 0
Wr = 1

Tw = 1
Wr = 1

Tw = 1
Wr = 0

(a) (b)

(c) (d)

Figure 1.3: Conformations of a ribbon (or a piece of paper cut out in the shape of a ribbon
as shown in the images) with different linking of the two edges, see the red and black colored
lines showing the edges. (a) Untwisted ribbon. (b) Twisted ribbon with a unit twist, which can
be achieved by rotating one end of the ribbon by 360◦ before joining the two ends. (c) Ribbon
with two links between the edges, where the shown conformation has, roughly, one unit of twist
and one unit of writhe. (d) The linking number between the edges is unity, the same as in (b).
However, note the altered conformation where the entire linking number is stored in form of
writhe, following White’s theorem [Eq. (1.6)].

the twist go away: in this state there is only writhe (Fig. 1.3).

DNA supercoiling. The torque developed in the DNA due to twisting of the double helix can

lead to a mechanical response in form of chiral bending. This response is often a wrapping of the

double helix around itself, a phenomenon known as supercoiling. One can observe this by taking

a stiff cord and twisting it. This behavior arises from a competition between the bending energy

and the elastic twist energy. A bent configuration gives rise to nonlocal crossings and has a

writhe contribution. Hence, when the twist energy is very high the total energy can be lowered

by bending, because the writhe contribution of the bent structure lowers the torque in the

double helix. However, note that bent structure should have a well defined chiral to contribute

maximum writhe, and consequently provide maximum torsional stability. A commonly found

bent configuration that the double helix succumbs to under torsional stress is that of superhelix
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or a plectoneme, where the double helix wraps around itself in a helical fashion. We will indulge

in a detailed discussion of plectonemes and the corresponding buckling transition in Chapter 3.

1.3.B Catenation or inter-DNA linking number

DNA due to long length often gets intertwined that leads to topological entanglements. This is

inter-DNA topology, which we call entanglement or catenation, and is distinct from the linking

topology of the two strands of the double helix. Torsionally relaxed DNA, e.g., DNA with one

base missing along its contour or nicked DNA, cannot be twisted, however they can get entangled

due to inter-DNA topology constraints. Here, we will discuss entanglement or catenation of

torsionally relaxed DNA. Interplay of topology between double-helix linking number and inter-

DNA catenation number is an interesting and poorly understood topic [38], and will be left for

future work.

1.3.B.i Knotting of DNA

DNA can get knotted,which is typically detrimental to the cell, because these knots, unless re-

solved, can lead to problems in gene transcription and DNA replication. The probability that a

polymer will be knotted will, in general, increase with its contour length, i.e., a longer polymer is

expected to be more knotted. The characteristic length scale above which knotting is probable

has been shown to be quite large (about 300-500 segment lengths, which for DNA ≈ 100 kb) [19].

This estimate is based on numerical simulations of ideal polymers, and self-avoiding interaction

makes the characteristic knotting length much longer (≈ 106 segment lengths). The remark-

ably low knotting probability of DNA, being based on numerical studies, lacks fundamental

understanding, however, suggests that knotting of cellular DNA is rare.

1.3.B.ii DNA topoisomerase

The topology of cellular DNA, both intra- and intermolecular linking, is actively manipulated

by proteins called DNA topoisomerases (Topo). These proteins, Type-I Topoisomerase (TopoI),
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can alter the DNA linking number by over/under-winding the double helix. TopoI mediates a

transient cut in one of the strands of the double-helix backbone and relaxes the topology by

swiveling the cut strand about the intact one. DNA in most bacteria, e.g., E. coli, are maintained

in a twisted state by the action of TopoI.

Type-II DNA topoisomerases (TopoII) drives inter-DNA topology manipulation. TopoII

mediates a cleavage of both the DNA strands allowing another double-helix segment to pass

through the cut, before resealing the severed backbone. Thus, TopoII allows changes in the inter-

DNA topology or DNA catenation. TopoII is thought to perform selective decatenation in order

to suppress the equilibrium probabilities of knotted DNA states, which is consistent with the

fact that topo II mediated decatenation requires ATP hydrolysis (the requirement of ATP seems

to ensure that the second molecule is passed through the gap in a specific direction). However,

the mechanism underlying active suppression of entanglements via selective decatenation is not

fully understood [39–41].

TopoII drives topology fluctuations. TopoII are locally-acting enzymes that are unaware of

the global topology of long DNA polymers in the cell. Thus inter-DNA topology changes by

TopoII in the cell are uncorrelated events and can be thought of as a mechanism to maintain a

fluctuating topology, and as we shall see, these topology fluctuations are crucial in compacting

and segregating the genome.

Topoisomerases are present in all living cells, bacteria and eukarya, and are essential for a

living cell. Inhibition of topoisomerases lead to stalling of the cell cycle, and eventually cell death,

which makes topoisomerase inhibition an important biomedical tool to stop cell proliferation.

This has led to the use to topoisomerase inhibitors, like etoposide, as drugs against cancerous

cells and infectious bacteria [42].

1.4 Electrostatics in the cellular environment

Cells live in an aqueous solution of salts, i.e., an ionic aqueous buffer, where the most abundant

are the monovalent ions, like Na+ and K+. The typical cellular concentration of monovalent
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ions is ≈ 0.1 M5. DNA has a negatively charged backbone, due to the negative charges on the

phosphate group, which adds to 2e− per base pair6, i.e., a linear charge density of ≈ 6e−/nm

of the double helix. This charge on the backbone, however, is strongly screened by the local

arrangement of counter ions around the backbone. The free ions in the solution form a charge

layer encapsulating the double helix that screens the charges on the backbone, as a result, the

electrostatic potential decays much more rapidly than the inverse-distance behavior expected

from Coulomb’s law.

1.4.A Debye-Hückel theory

The charge distribution in an ionic solution follows Maxwell-Boltzmann distribution, where the

configurations with higher electrostatic energy, due to close proximity of similar charges, are

less probable. This leads to a Poisson-Boltzmann equation for the electrostatic potential Ψ (see

Appendix A). Assuming that the number of ions per unit volume is low enough that thermal

energy dominates the electrostatic energy (eΨ� kBT ), we can linearize the Poisson-Boltzmann

equation to write the Debye-Hückel equation:

λ2
D∇2Ψ = Ψ (1.7)

where λD is the Debye-Hückel screening length, a characteristic length scale in the system over

which the electrostatic potential is screened. The screening length is higher for lower molarity

of the ionic buffer: λD ≈ 0.3/
√
M nm, where M is the molar concentration of the solution (see

Table 2.1). The solution of the above equation gives an exponentially decaying potential: Ψ(r) ∼

r−1 exp (−r/λD). The electrostatic potential at short distances (r ≈ λD) follow Coulomb’s

law: ∼ r−1; however, at long distances (r � λD) the potential decays exponentially with the

characteristic length scale λD, due to screening by the counter-ion charge distribution. Thus,

effectively, DNA fragments in solution may be considered to be cylindrical units with a radius

5One molar concentration (1M) means there is 1 mol per litre, where 1 mol of a substance has 6.023 × 1023

units of the substance, which can be molecules or ions or atoms.
6units of electrostatic charge: 1e = 1.6 × 10−19 Coulomb
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set by the electrostatic screening length of the solution, which is larger for lower salts.

Geometry of the linear charge density associated with DNA backbone modifies the boundary

conditions and leads to a different short-distance behavior, while at long distances geometry

is irrelevant and the electrostatic potential decays exponentially. See Appendix A, where we

calculate the electrostatic potential of various relevant DNA geometries.

1.5 Cellular DNA: a confined polymer solution

DNA in our cells reside in confined spaces; for eukaryotes, the confinement is provided by the

nuclear envelope, while bacterial DNA is confined by the cell wall itself. Such confinement

may play a variety of roles, ranging from protection of our genome from possible damage by

other large organelles, to compartmentalization, enabling an efficient processing of the genetic

information, e.g., RNA splicing 7.

Our entire genome, containing all the DNA segments inside the cell (or nuclei, in case of

eukaryotic cells), is not always a single long polymer, but maybe divided into a few chains or

chromosomes. The number of chromosomes in a cell defines the karyotype of the cell. A haploid

human genome has 23 chromosomes, whereas, bacteria has only one chromosome, see Table 4.1

for a list of various karyotypes.

Chromosomes in our cell are typically not bare-DNA segments, but are composed of protein-

bound DNA. Eukaryotic chromosomes are constituted of nucleosomes 8, a histone-DNA complex,

that is roughly 10 nm in diameter. A string of nucleosomes is called a chromatin, where the

name derives from the ability of chromatin to absorb certain dyes, as remarked by W. Flemming

[2]. While, bacterial chromosomes do not have nucleosomes, their DNA is coated with various

7 DNA is transcribed to make pre-mRNA (precursor to messenger RNA), the RNA molecule may undergo
partial deletion and editing to mature the molecule into an mRNA ready to be translated by Ribosomes to
synthesize proteins. Splicing of nuclear genes is carried out by a specialized macromolecular machinery called
Spliceosomes. There are clusters enriched with spliceosomes and RNA inside the nucleus, called splicing speckles,
where most of the RNA splicing occurs. Nuclear confinement provides an enclosed compartment for splicing of
nuclear genes, following which mRNA is transported outside the nucleus where Ribosomes translate the message
encoded in the RNA molecule.

8A nucleosome contains ≈ 200 bp of DNA, where an octamer of histone proteins tightly wrap ≈ 150 bp around
themselves to form a histone core. Two 20 bp DNA fragments are “linker” DNA that is not wrapped around the
core, but as the name suggests, acts as a connection between adjacent nucleosomes.
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Figure 1.4: Animal cell division. (A) Late interphase showing dark nucleoli and still un-
condensed chromosomes; (B) prophase showing long but condensed prophase chromosomes;
(C) spindle-aligned and shortened metaphase chromosomes; (D) separation of chromatids at
anaphase; (E) telophase chromosomes beginning to decondense; (F) interphase nuclei in daugh-
ter cells. Bar is 20 µm (Image reproduced from Ref. [43]).

DNA-bending proteins, like IHF and HU.

1.5.A Chromosomes are self-avoiding polymers

We view chromatin as a polymer constituted of spherical nucleosome monomers of diameter

a ≈ 10 nm 9. In a physiological solution (0.1 M Na+), chromatin is a self-avoiding polymer, i.e.,

the volume occupied by a nucleosome is inaccessible to the others. Genome size or the total

number of nucleosomes N , corresponds to a contour length L = Na such that the end-to-end

distance (radius of gyration) of the genome scales positively with the number of nucleosomes

via the 3D-Flory exponent [26, 44]:

RF (N) = a2/5(wa3)1/5N3/5 (1.8)

9Our ideas are applicable to bacterial DNA also, as we shall see in Chapter 4. Bacteria do not have nucleosomes
and the microscopic monomers constituting the chromosomes are cylinders of height given by the DNA persistence
length a ≈ 50 nm and width b ≈ 4 nm corresponding to a protein-bound DNA fragment.
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where the excluded volume per monomer is wa3. Good solvent (w > 0) refers to the condi-

tion where the free energy associated with monomer-monomer contacts is higher than that of

monomer-solvent contacts. When the monomers have no self-adhesion, we have w = 1, the

polymer expands due to self-avoidance. Weak self-adhesive interactions can lead to 0 < w < 1,

where the end-to-end extension is lower due to less self-avoidance among the monomers. Strong

monomer self-adhesion may overcome their self-avoidance and lead to a collapse of the polymer,

which corresponds to poor solvents (w < 0). Eq. (1.8), that is applicable only for self-avoiding

polymers, breaks down in the poor solvent limit (w < 0). However, the effect of a deteriorating

solvent quality may be analyzed using Eq. (1.8) by lowering the excluded volume parameter w

between 0 and 1. We shall see that a globally-operative self-adhesive interaction that facilitates

non-specific sticking among nucleosomes (w < 1), increases inter-chromosomal entanglements

[45].

1.5.B Volume fraction of confined chromosomes

The volume fraction of chromosomes in confinement, i.e., the fraction of the total confinement

volume occupied by all the genomic segments, is typically high enough to promote overlap

between different chromosomes (φ ≈ 0.01− 0.1, see Table 4.1) [26]. The high degree of confine-

ment is important for gene regulation, as physical proximity of genomic segments is crucial to

turn on/off expression of certain genes (e.g., via promoter-enhancer contacts). However, strong

confinement also has an undesirable aspect of a higher degree of entanglement among differ-

ent chromosomes. As we shall see in Chapter 4, the cell has devised a way to disentangle its

chromosomes, namely, via chromosome compaction.

1.5.C Closely packed blobs of chromatin

Self-avoiding chromatin polymer may be viewed as a sequence of “de Gennes’ blobs”, where

the size of the blob ξ, also called the correlation length, is the length scale associated with

screening of polymer correlations [26]. In a dilute polymer solution, where chains are isolated,
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the correlation length is given by the Flory radius [Eq. (1.8)] and the entire chain is one blob.

At a higher volume fraction, different chains overlap and the correlation length is smaller than

the whole chain’s radius of gyration, due to stronger screening of polymer interactions at higher

concentrations [26]. The volume fraction of chromatin inside the nucleus φ (≈ 0.07 for humans,

see Table 4.1), is typically much higher than the critical volume fraction above which chains

overlap φ? ∼ N−4/5 (≈ 10−6 for humans, Table 4.1). A higher volume fraction also means that

nuclear chromatin may be considered as a closely packed system of mutually excluding blobs or a

melt of blobs, where the polymer correlations inside a blob is that of a self-avoiding polymer; and

the polymer considered as a string of blobs obeys Gaussian statistics, akin to an ideal polymer

[26, 44].

1.5.D Cell cycle dependent (de)compaction of chromosomes

The mitotic cell cycle is composed of interphase and mitosis. During interphase the cell is tran-

scribing genes to make proteins, replicating its DNA for cell division. Interphase is followed

by mitosis, where the chromosomes undergo compaction. During mitosis, chromosomes emerge

as individualized rod like structures, composed to densely compacted chromatin. The compact

chromosomes then undergo segregation, followed by their equal division into the two daugh-

ter cells. Following mitosis, the chromosomes in daughter cells undergo decompaction in the

interphase of the daughter cells.

While the decompacted state of the genome is essential to allow physical access to DNA

for transcription and replication, the compacted state during mitosis helps drive segregation

of the chromosomes. We will delve deeper into disentanglement and segregation of mitotic

chromosomes in Chapter 4.

1.6 Summary

DNA is long polymer made up of di-nucleotide monomers or base-pairs that exhibits semi-

flexibility at short length scales (≈ 100 nm). DNA stiffness originates from the double-helical
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stacking of its base pairs. DNA has an intrinsic topology due to helical linking of the two

sugar-phosphate strands bearing the nucleotide monomers, and perturbation of topology is in-

herently related to mechanics. Mechanical stress can lead to twisting, stretching and denatura-

tion of the double-helix, which shape the free energy landscape of protein-DNA interactions in

the cell. Chromosomes, the bearer of hereditary units, are DNA coated with proteins. Cellular

chromosomes are under strong confinement forcing inter-chromosome overlap and entanglement.

Chromosomes undergo cell-cycle synchronized compaction and disentanglement (or segregation),

a process where the global structure and topology of chromosomes are actively controlled by

locally-acting proteins.

In Chap. 2, we model the mechanics of two intertwined DNA double helices under applied

stretching that elucidates its buckling behavior shaped by the torque from DNA wrapping. The

findings of this chapter are published in Refs. [46, 47]. Chap. 3 contains the mechanics of

stretched-twisted DNA, with applications to the case of DNA harboring an inhomogeneity, such

as a protein-mediated kink. Our model and results for supercoiled DNA and the consequences

of a defect on DNA mechanics, as described in Chap. 3 can be found in Refs. [48, 49]. We then

study, in Chap. 4, the global compaction and segregation of chromosomes in confinement by

the active process of DNA loop extrusion.
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Chapter 2

Intertwined double-helix DNAs

This chapter concerns a statistical-mechanical model for the behavior of two intertwined double-

helix DNAs or DNA braids, where individual DNAs are torsionally unconstrained or nicked1.

We focus on the torque and extension as a function of braid catenation (linking) number and

applied force, as studied in magnetic tweezers experiments.

Braids have two double-helix DNA molecules wrapped around each other in a helical fashion,

where the wrapping generates a restoring torque. This restoring torque, that tends to unwrap

the braids, increases nonlinearly with the catenation number of the braid. In other words, DNA

braids exhibit a catenation-dependent effective twist modulus, distinct from what is observed for

twisted individual double-helix DNAs (we discuss individual twisted double helices in Chapter

3). Braid torque drives buckling of the stretched braid, where buckling occurs near the point

where experiments have observed a change of slope in the extension versus linking number

curves.

The buckled structure is characterized by a “supercoiled” or helically wrapped configuration

of the two braids. Writhing of the braid in the buckled state suppresses torque increase and

stabilizes the buckled structure. However, the bulkiness of plectonemically supercoiled braid

contributes to destabilizing the buckled state. Structural bulkiness derives from the fact that

1 Nicked DNA implies at least one of the DNA base pairs has a missing base, indicating that DNA torque,
originating from double-helix twisting, is relaxed
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braid diameter is at least twice the double-helix diameter, this restricts the minimum braid-

plectoneme diameter to four times that of the double-helix diameter. The bending energy of

a plectoneme structure scales positively with plectoneme radii, resulting in a less stable braid

plectoneme.

Destabilization of the bulk braid-plectoneme state leads to a proliferation of multiple buckled

domains following the nucleation of the first domain. A buckled domain is defined as a braid-

plectoneme with a braid end loop that is a finite-sized structure connecting the self-writhing

braid. Nucleation of the braid end loop associates an extension discontinuity at the buckling

transition, that we predicted and subsequently followed up experimentally to verify its existence.

We also experimentally find coexistence of multiple buckled structures in the braid-plectoneme

state, as predicted. The findings of this chapter are published [46, 47].

Significance Catenated or intertwined DNA molecules are a common occurrence in the cell

as they are an intermediate in segregation of sister chromatids. Following DNA replication and

recombination, the sister chromatids are in an intertwined or braided state due to the remnant

linking of their parental double helix [50–53]. Catenated DNA molecules can be mimicked in vitro

by wrapping or “braiding” two single DNA molecules around each other. At the single-molecule

level, DNA braids are important substrates to study the topology-manipulation mechanism of

DNA topoisomerases and site-specific DNA recombinases [14–16, 53].

Braided DNAs have also been studied in precise single-molecule manipulation experiments

using magnetic tweezers2. Experiments of this type have been used to study removal of DNA

catenations by Type-II DNA topoisomerases (TopoII) [13–15, 55, 57]. Braided DNAs have also

been used to study the decatenation activity of type-I topoisomerases [16, 52], as well as the

double-helix segment-exchange activity of site-specific DNA recombinases [53, 58, 59].

2 Magnetic tweezers are used to apply a constant force to a particle to which two double-helix DNAs are
attached; the opposite ends of the DNAs are tethered to a surface [13, 54–56] [Figs. 2.1(a) and 2.8(a)]. The
resulting double tether can have a controlled force applied to it using a magnetic field gradient, while at the same
time, the total linking number of the two double-helix molecules can be adjusted by rotating the magnetic field
so as to rotate the magnetic particle. As a result, one can study the extension of the two DNAs as a function of
inter-DNA linking number or catenation number (Ca).
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Understanding these kinds of DNA-topology-changing enzyme experiments depend on the

understanding of the physical properties of the DNA braids, but this has lagged behind our

understanding of the simpler problem of a single twisted stretched double helix [11, 12, 60–

66]. The reason for this is that braided DNAs are a more complex physical situation than a

single supercoiled DNA; as a result, while there have been prior theoretical studies of helically

intertwined DNAs [45, 56, 67–70], those works have not quantitatively analyzed the buckling

(“braid supercoiling”) behavior. While it has been assumed that the experimentally observed

change in the slope of braid extension versus catenation number corresponds to the onset of

braid supercoiling [13, 55, 56], the precise location and nature of braid buckling have not been

theoretically understood. Two factors that make the problem of braided DNAs distinct from

the mechanics of a single twisted DNA under tension are first, the lack of an intrinsic braid twist

elastic modulus, and second, the dependence of the braid mechanics on the distance between

the tethering points of the two double helices [13, 55, 56].

Outline The layout of the chapter is as follows. Sec. 2.1 contains a detailed description of the

mathematical model, where we study the braid Hamiltonian in the thermodynamic limit (Sec.

2.1.A). Free energies corresponding to a tethered braid and thermal averaging of fluctuations are

discussed in Sec. 2.1.B and Sec. 2.1.C, respectively. The results and predictions are contained

in Sec. 2.2, where we study braids at physiological salt (Sec. 2.2.A), as well as the effect of

varying salt concentration (Sec. 2.2.B) and other finite-size effects (Sec. ?? and 2.2.D).

2.1 Model

We build a free energy model for braids considering double-helix DNAs as electrically charged

semi-flexible polymers residing in an ionic solution. Fig. 2.1(a) shows how we view a braided

DNA structure. The ends of two nicked DNA molecules are tethered to a fixed wall and a

rotating bead respectively, such that the intertether distance on either end is d. This scenario

is similar to the setup for tweezer experiments [13, 54–56]. The beads used in experiments are
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Figure 2.1: (a) Schematic of a DNA braid under torsional stress, showing coexistence of straight
and plectonemically buckled states. The individual dsDNAs are able to swivel around their
contact with the wall, keeping the dsDNAs from twisting. (b) Two duplex DNAs (dark and
gray shaded) helically braided in a right-handed manner on the surface of a cylinder of radius R
oriented parallel to the ẑ-axis, viewed from two angles. The orthonormal triad (̂tio, t̂i⊥r, t̂i⊥θ),
where i ∈ {1, 2} is shown for one of the curves. t̂1o is in the direction of the tangent to the helix,
t̂1⊥r is oriented radially inward, and t̂1⊥θ ≡ t̂1o× t̂1⊥r. The projection of the triad on the ẑ axis
is a constant dependent on the helix parameters [Eq. (2.3)].

large enough to safely assume no leakage of catenation number via looping of the DNA over the

beads. By applying a constant force to the rotationally constrained bead it is possible to study

DNA braids in a fixed force and fixed catenation ensemble.

2.1.A The Hamiltonian

We express the Hamiltonian H associated with two nicked double-helix DNA molecules of length

L, held at a fixed inter-DNA linking or catenation number and under a constant applied force

f ẑ as follows.

H
kBT

=

L/A∫
0

dξ

[
1

2

(∣∣∣∣dt̂1

dξ

∣∣∣∣2 +

∣∣∣∣dt̂2

dξ

∣∣∣∣2
)
− fA

kBT
ẑ · 1

2
(̂t1 + t̂2) + U(r1, r2)

]
(2.1)

where A is the DNA persistence length and ξ is the dimensionless arc length. ri(ξ) and ti(ξ) ≡

(1/A)(∂ri/dξ), are respectively the position vector and the tangent of the i-th braiding strand
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for i ∈ {1, 2}. The first term in the integrand containing the sum of the squares of the local

curvature of the two strands correspond to elastic bending energy of the two double helices.

The second term containing the external force f ẑ corresponds to the entropic elasticity of the

two chains. The electrostatic part of the Hamiltonian is represented by U(r1, r2). Since we

only consider nicked double-helix DNAs, there are no DNA-twist-energy terms in the above

Hamiltonian.

Two catenated elastic rods, many persistence lengths long, under a high stretching force form

coaxial helices. We take the average shape of the braiding strands to be that of a regular helix

oriented parallel to the direction of the external force f ẑ [Fig. 2.1(a)], and propose a perturbative

expansion of the braid Hamiltonian [Eq. (2.1)] around a mean-field solution parameterized by

radius R, and pitch 2πP of the helix.

2.1.A.i Oscillating reference frame

We expand the tangent vectors t̂i (i ∈ {1, 2}) in Eq. (2.1) about a mean-field direction tio [Fig.

2.1(b)]:

t̂i =

[
1− t2

i⊥
2

+O(t4
i⊥)

]
t̂io + ti⊥ (2.2)

where ti⊥ = ti⊥r + ti⊥θ. We introduce two rotating right-handed orthonormal triads [Fig.

2.1(b)]: (̂tio, t̂i⊥r, t̂i⊥θ), where i ∈ {1, 2}, such that the unit vector t̂io points along the tangent

to the mean-field helix corresponding to the i-th strand, t̂i⊥r points along the radially-inward

direction, and t̂i⊥θ ≡ t̂io × t̂i⊥r. Note that the ẑ-projection of the basis vectors depend only on

the helix parameters:

ẑ · t̂io = cos δ ; ẑ · t̂i⊥θ = sin δ ; ẑ · t̂i⊥r = 0 ; (2.3)

where δ ≡ arctan(R/P ), is the braiding angle.

The derivatives of the orthonormal basis with respect to normalized arc length ξ are given
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by the following equations:

d

dξ


t̂io

t̂i⊥r

t̂i⊥θ

 =


0 κ 0

−κ 0 κa

0 −κa 0




t̂io

t̂i⊥r

t̂i⊥θ

 (2.4)

where κ ≡ AR/(R2 + P 2), is the total mean-field curvature per unit persistence length of the

strands and a ≡ P/R. The above set of equations [Eq. (2.4)] are also known as the Frenet-Serret

formulas. We neglect any space-varying component of the mean-field helix curvature [68, 71–73],

which is a good approximation in the thermodynamic limit of long braids.

Using the above equations, the square of the local curvature is written as

∣∣∣∣dt̂idξ
∣∣∣∣2 = (1− t2

i⊥)κ2 +

∣∣∣∣dti⊥dξ
∣∣∣∣2 + 2κt̂i⊥r ·

dti⊥
dξ

(2.5)

where we have neglected O(t3
i⊥) terms.

2.1.A.ii Electrostatic interaction

Physical micromanipulation experiments on DNA have been performed in varied concentrations

of aqueous buffers, whereas ≈ 100 mM Na+ or K+ is the physiologically relevant range of salt.

Counterion condensation on the negatively charged DNA backbone (2e− per base pair) results

in a screened Coulomb potential over a characteristic length scale called the Debye screening

length, λD ≈ 0.3 nm/
√

M for M molar univalent salt. DNA-DNA repulsion over a few screening

lengths is that of the Debye-Hückel type, i.e., the electrostatic potential decays exponentially

at large distances and diverges like the Coulomb potential at distances shorter than λD.

The electrostatic potential due to a close proximity of two parallel DNAs has been shown

to be described by Debye-Hückel interaction of uniformly charged rods [74, 75]. For helically

wrapped DNA chains, also the case for plectonemes in single supercoiled DNA an empirical

modification of the parallel rod potential has been shown to account for the enhancement due

to helical bends in the structure [76]. Furthermore, there is an electrostatic contribution from
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the self interaction of the braiding helices, for which we propose an empirical form that agrees

with the numerical solution of the Debye-Hückel-type self interaction (Appendix A.3). The total

electrostatic potential energy per unit length A of the braid, in kBT units is given by

U(R,P ) = ζK0

(
2R

λD

)
Z(a) +

ζc1λ
2
D

R2a2(1 + c2a2)
(2.6)

where a = cot δ and Z(a) ≡ 1 +m1/a
2 +m2/a

4.

The first term in Eq. (2.6) is the electrostatic interaction potential between the braiding

strands and Z is the correction factor for helix curvature with m1 = 0.828 and m2 = 0.864

[76]. The second term corresponds to the self-electrostatic energy of a helix, where c1 = 0.042,

and c2 = 0.312, are chosen to closely match the numerical solution [Fig. A.2]. ζ ≡ 2A`Bν
2, is

the amplitude of the Debye-Hückel potential, where `B = e2/(εkBT ), is the Bjerrum length of

the solution with dielectric constant ε and ν is the effective linear charge density of the double-

helix DNA, which is a parameter used to satisfy the near-to-surface boundary conditions for the

far-field Debye-Hückel solution [12, 63, 74–77]. We use `B = 0.7 nm corresponding to water at

290 K; numerical values of the effective charge ν and the Debye screening length λD, used for

various salt concentrations are given in Table 2.1. The bending persistence length of DNA is

also known to slightly modify on changing the salt concentration [78, 79], but we neglect such

small changes as they are inconsequential to our qualitative results.

We approximate the total braid electrostatic potential as the average potential arising from

self and mutual repulsion of two coaxial helices, and consider radial fluctuations in the braid in

the asymptotic limit of parallel chains. We consider small uniform deviations in the braid radius

Aw(ξ) such that,

w(ξ) =

∫ ξ

0

1

2
[t1⊥r − t2⊥r]dξ̄ = t̂1⊥r

∫ ξ

0

1

2
[t1⊥r + t2⊥r]dξ̄ (2.7)

where ti⊥r are given by Eq. (2.2) and we assume the boundary condition w(0) = 0. The above

definition of normalized radial deformations w(ξ) assumes a parallel configuration of the two
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strands. We define the electrostatic part of the Hamiltonian as:

U(r1, r2) ≡ U(R+Aw(ξ), P ) = U0 + gw + ηw2 +O(w3) (2.8)

where U0 ≡ U(R,P ), is given by Eq. (2.6). g ≡ A∂U/∂R, and η ≡ (A2/2)(∂2U/∂R2), where η

is the effective electrostatic modulus of uniform radial deformations in the braid. The first term

gives the mean electrostatic energy per unit length A of braid with fixed radius and pitch, while

the subsequent terms are corrections for small uniform derivation in braid radius. We neglect

expansion of the electrostatic potential in the pitch of the braid because the fluctuations in the

pitch are predominantly controlled by the external tension.

2.1.A.iii Perturbative expansion of the Hamiltonian

We expand the total Hamiltonian [Eq. (2.1)] to the quadratic order in transverse-tangent fluc-

tuations:

βH =
L

A

[
κ2 − 2µ+ U0

]
+

L/A∫
0

dξ

[
κ

{
t̂1⊥r ·

dt1⊥
dξ

+ t̂2⊥r ·
dt2⊥
dξ

}
− (µ/a)(t1⊥θ + t2⊥θ) + gw

]

+
1

2

L/A∫
0

dξ

[∣∣∣∣dt1⊥
dξ

∣∣∣∣2 +

∣∣∣∣dt2⊥
dξ

∣∣∣∣2 + (µ− κ2)
(
|t1⊥|2 + |t2⊥|2

)
+ 2ηw2

]
+O(t3

1⊥, t
3
2⊥) (2.9)

where µ ≡ (βAf cos δ)/2, is the dimensionless effective tension in each strand of the braid. The

first term, associated with t̂io (i ∈ {1, 2}) component of the tangent vectors is the leading order

term that gives the total mean-field energy of the braid.

We represent the real-space components of the transverse-tangents as a sum over dimension-

less Fourier modes q:

tj⊥k(ξ) =
A

L

∑
q

eiqξ t̃j⊥k(q) (2.10)

where i =
√
−1, j ∈ {1, 2} and k ∈ {r, θ}. We set the reference of the fluctuation free energy
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by setting the amplitude of zero-momentum transverse fluctuations to zero: t̃j⊥k(0) = 0, where

j ∈ {1, 2} and k ∈ {r, θ}. The contribution from zero momentum is accounted for by the mean-

field parameters, and this boundary condition precludes order-mean-field perturbations. Also,

subject to the zero-momentum boundary condition, the second term in Eq. (2.9) (terms linear

in tj⊥k) vanishes.

The third term in Eq. (2.9), containing quadratic transverse tangents, accounts for the free

energy contribution due to Gaussian fluctuations of the two braided strands about their average

helical shapes. We write the third term as a sum over the Fourier modes q:

β∆H =
1

2

∑
q

ω†Mω (2.11)

where ω(q) is a 4× 1 column vector and M(q) is a 4× 4 Hermitian matrix:

Mω =
A

L



Xq + 1
2ηq
−2 2iqκa 1

2ηq
−2 0

−2iqκa Xq − κ2 0 0

1
2ηq
−2 0 Xq + 1

2ηq
−2 2iqκa

0 0 −2iqκa Xq − κ2





t̃1⊥r

t̃1⊥θ

t̃2⊥r

t̃2⊥θ


(2.12)

where Xq ≡ q2 +µ+κ2a2. We compute the fluctuation free energy in the limit of zero curvature

(κ→ 0), which simplifies the configuration to that for two fluctuating parallel chains and makes

the problem analytically tractable. Also, note that in our scheme to include fluctuations in the

electrostatic part of the Hamiltonian [Eq. (2.7)] we have already assumed zero curvature.

2.1.A.iv Partition function

We construct the canonical partition function for two fluctuating parallel strands:

Z =
∏
q

∫
dt̃1⊥r

∫
dt̃1⊥θ

∫
dt̃2⊥r

∫
dt̃2⊥θ e

− 1
2
ω†Mω =

∏
q

(2πL/A)2q√
(q2 + µ)3(q4 + µq2 + η)

(2.13)
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and obtain the fluctuation correction to the mean-field free energy from the partition function:

− ln Z

L/A
=

3

2

√
µ+ η1/4 cos

(
1

2
tan−1

√
4η

µ2
− 1

)
(2.14)

where we drop constants dependent on only the ultraviolet cutoff. The RHS of Eq. (2.14),

which is real and positive for all positive values of µ and η gives the fluctuation free energy per

unit length A of the braid. There are four degrees of freedom for transverse fluctuations in a

stretched braid; three of them (̂t1⊥θ, t̂2⊥θ, and one in t̂1⊥r where there is no relative displacement

between the strands) are controlled solely by the external tension, as seen in the first term of Eq.

(2.14). The second term accounts for the fluctuations in t̂1⊥r that correspond to displacement

of the two strands relative to one another, and is controlled by both the external tension and

the electrostatic forces.

2.1.A.v Radial fluctuations

The average energy corresponding to radial fluctuations for each wavenumber q can be obtained

from the fluctuation Hamiltonian [Eq. (2.9)]:

〈|̃t1⊥r(q) + t̃2⊥r(q)|2〉 =
2q2L

A(q4 + µq2 + η)
(2.15)

The two-point correlation function associated with radial undulations can be computed as fol-

lows,

〈w(0)w(∆ξ)〉 =
A

L

∞∫
−∞

dq

2π
eiq∆ξ

〈|̃t1⊥r(q) + t̃2⊥r(q)|2〉
4q2

=

∞∫
−∞

dq

4π

eiq∆ξ

q4 + µq2 + η
(2.16)

where ∆ξ is the distance between the two points. Note, the two-point correlation of radial fluc-

tuations decays exponentially with the distance between the points: 〈w(0)w(∆ξ)〉 ∼ exp(−k∆ξ),

where k ∼ O(
√
µ), which is typical of Gaussian fluctuations.

We obtain the radial fluctuations in the braid from the zero-distance behavior of the above



51

correlation function:

σ2
R = A2〈|w(0)|2〉 =

A2

8
η−3/4

[
cos

(
1

2
tan−1

√
4η

µ2
− 1

)]−1

(2.17)

where σR is the fluctuation in braid radius. The probability distribution of braid radii is given

as follows.

P (R) =
1√

2πσ2
R

exp

[
−(R− 〈R〉)2

2σ2
R

]
(2.18)

Fluctuations in the radius of the braid (σR) decrease with increasing electrostatic modulus

of radial fluctuations (η): σR ∼ η−3/8 [Eq. (2.17)], which implies a scaling of the fluctuation

free energy with the radial fluctuations: − ln Z ∼ σ
−2/3
R . A similar scaling relation appears

for the confinement entropy of a worm-like chain trapped in a rigid cylindrical tube, where

the confinement entropy scales with the radius of the tube: ∆F ∼ 〈R〉−2/3 [80]. Theoretical

studies of supercoiled DNA have used the confinement entropy scaling to account for strand

undulations in a plectoneme structure [12, 65]. Again in the context of plectonemic DNA,

the scaling ansatz was modified: for Gaussian fluctuations of a worm-like chain trapped in a

potential well, the average radius 〈R〉 could be replaced by the radial fluctuation σR, which was

then chosen to be the Debye length of the solution [66, 76, 81]. Indeed, we find that σR of the

free energy minimized braid is of the order of the Debye length [Fig. 2.3(b), Table 2.1]. The

existing literature on plectonemic and braided DNAs, to the best of our knowledge uses the

confinement entropy scaling approach to account for strand undulations [12, 65–70, 76]. Our

calculations treat fluctuations systematically and without a scaling ansatz, and produce the

previously assumed scaling behavior.

Pitch fluctuations. We assume a spatially-uniform mean-field curvature in the braiding

helices, and the introduction of a space-varying component to the helical curvature will be an

interesting addition to the model. The effect of the spatially-varying helical pitch has been

studied for loaded plies at zero temperature [71–73] as well as for straight DNA braids [68, 69].
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Variable pitch solutions for many persistence-lengths long braided helices feature a constant

helical angle inside the braid, which is smaller than the end angle that connects the helices with

the end regions [68]. We note that we determine the end angle φ from free energy minimization,

and we indeed find that an end angle larger than the helical angle δ is energetically favored,

consistent with the effect observed in Ref. [68].

2.1.B Mean-field theory

In this section, we develop the free energy expressions for a finite-sized tethered braid [Fig.

2.1(a)], where the total length of each of the braiding molecules is partitioned into a force-

extended state (straight phase), and a plectonemically buckled state (plectoneme phase). The

plectoneme state also consists of a braid “end loop”, a teardrop-shaped loop at the end of every

plectoneme structure [Fig. 2.1(a)].

2.1.B.i Catenation number

The amount of catenation per helical repeat of the DNA molecules is defined as the catenation

density in braids, σc ≡ Ca/Lk0 (Lk0 = L/h, where L is the contour length of each DNA and

h = 3.6 nm, is the length of one helical repeat of double-helix DNA). Total catenation (Ca) is

divided between the straight phase (Cas) and the plectoneme phase (Cap),

Ca = Cas + Cap (2.19)

which are further redistributed between twist and writhe as dictated by minimization of the

total free energy.

2.1.B.ii Straight braid

The length of each double helix in the straight phase Ls is divided into two parts: (1) the helical

intermolecular wrappings of length Lb, such that Lb = 2πCas

√
R2
s + P 2

s , where Rs and 2πPs

are respectively the radius and the pitch of the helical interwounds; and (2) the end regions
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of length Le (Le = Ls − Lb), which do not contain any inter-molecular links and connect the

helical wrappings to the tethered points (Fig. 2.1). The mean-field energy of the straight braid

is obtained using the leading order term in the expansion of the Hamiltonian [the first term in

Eq. (2.9)] as follows.

βEs = Lb

[
AR2

s

(R2
s + P 2

s )2
−βf cos δs +

1

A
U0(Rs, Ps)

]
− βfLe cosφ (2.20)

The first term (with the brackets) corresponds to the helical region of the straight phase, which

is a sum of free energy contributions from elastic bending, force-extension, and electrostatic

repulsion respectively. Here δs is the braiding angle (tan δs = Rs/Ps) in the straight phase. The

second term contains the force-extension free energy of the end regions, where φ is the opening

angle at the end of the braid (sinφ = d/Le, where d is the intertether distance, see Fig. 2.1).

Note that for a given length (Ls) and catenation (Cas), the radius (Rs) and the pitch (2πPs)

of the braid are the only free parameters in the free energy of the straight phase, minimizing

which we obtain the equilibrium state.

The fluctuation correction to the mean-field free energy in the straight phase is obtained

from Eq. (2.14),

β∆Fs =
Lb
A

[
3

2

√
µs + η1/4

s cos

(
1

2
tan−1

√
4ηs
µ2
s

− 1

)]
+ Le

√
2βf cosφ

A
(2.21)

The first term (with the brackets) corresponds to the fluctuation contribution to the free energy

of the helically wrapped section of the straight phase, where µs = µ(Rs, Ps) and ηs = η(Rs, Ps)

[Eqs. (2.8) and (2.9)]. The second term corresponds to the worm-like-chain fluctuations of the

end regions and is obtained by plugging µ = (βAf cosφ)/2 and η = 0 in Eq. (2.13).

2.1.B.iii Plectonemically buckled braid

The plectonemic braid is a buckled structure where the braid centerline writhes around itself

(Fig. 2.1). Buckling achieves a lower energy state by the release of torque in the braid, due to an
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increase in the writhe contribution to the total linking number. Total writhe in the plectoneme

formed of superhelical wrappings of the braid with total double helix length Lp, superhelix

opening angle α, and superhelical radius Rp is given by

Wrp = Lp cos δp
sin 2α

4πRp
(2.22)

where δp is the helix angle of the braid in the plectoneme [12, 76, 82].

2.1.B.iv Braided end loop

Every plectoneme domain is accompanied by a finite-sized loop-shaped structure where the braid

bends back (Fig. 2.1). The braid end loop presents an energy cost to nucleation of a plectoneme

domain; thermodynamically, the situation is similar to plectoneme nucleation in supercoiled

single DNAs [64, 65, 83, 84]. The equilibrium size of the end loops Γ is obtained by separately

minimizing the elastic energy cost of forming them:

βEΓ = 2
εA

Γ
+ βfΓ ⇒ Γ =

√
2εA

βf
(2.23)

where the first term in the above elastic energy equation is the bending contribution, and the

second term is the work done in decoupling the plectoneme end loop from the external tension

f [64, 65]. We use ε = 16, corresponding to a “teardrop” geometry of the loop [85–87].

2.1.B.v Partition of plectoneme catenation number

Considering the writhe contribution of an end loop to be unity (WrΓ ≈ 1), the total catenation

in the plectoneme phase (Cap) made up of m domains is partitioned into the twist (Twp),

containing the local twisting of the braid, and the writhe (Wrp), reflecting the overall structure

of the plectoneme.

Cap = Twp + Wrp +mWrΓ = (Lp +mΓ)
sin δp
2πRp

+ Lp cos δp
sin 2α

4πRp
+m (2.24)
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where Rp is the radius of the braid in the plectoneme state. Considering a simple geometric

picture of closely-packed braids, we set the plectoneme superhelical radius to be twice the braid

radius in the plectoneme: Rp = 2Rp. As a simplifying assumption, we ignore local structural

rearrangements in the plectoneme that may lead to spatially-varying mean-field superhelical

radii.

The mean-field free energy of the plectoneme phase is given by

βEp =(Lp +mΓ)

[
A sin4 δp
R2
p

+
1

A
U0(Rp, Pp)

]
+ Lp

[
cos δp

A sin4 α

4Rp
2 +

2

A
U0(Rp,Pp)

]

+m
√

2εβAf − ln Ω(m) (2.25)

where the first bracketed term is the sum total of elastic bending energy and electrostatic energy

of the braid inside the plectoneme, obtained from the mean-field term in Eq. (2.9). The second

bracketed term is the energy contribution from elastic bending and electrostatic repulsion in

the superhelix, where 2πPp and 2πPp are the braid pitch and the superhelical pitch in the

plectoneme respectively. The factor of 2 multiplying the superhelix electrostatic term is because

the length of the superhelix is half of that of the DNA length in the plectoneme while the effective

charge is two times that of the double helix. The third term corresponds to the elastic energy

of m braid end loops [Eq. (2.23)], and finally, the logarithm term is the free energy associated

with the configuration entropy of m loops. The origin of this entropy is from the following two

sources: (1) sliding of a plectoneme domain along the braid contour, and (2) exchange of DNA

length among the plectonemic domains. We define the arc length corresponding to unit twist in

the braid (
√
R2 + P 2 ∼ 10 nm at 100 mM Na+) as the characteristic length distinguishing these

energetically degenerate but structurally distinct states. The total number of such states (Ω)

for a plectoneme phase constituted of m domains (where m ≥ 1) can be written as a product of

two combinatorial factors [65]:

Ω(m) =
(2πCas)

m(2πTwp)
m−1

m!(m− 1)!
(2.26)
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where the first term corresponds to the sliding entropy of m loops (2πCas is the total number of

possible plectoneme nucleation sites) and the second term is the number of distinct configurations

associated with the exchange of DNA length among the domains. Note, for a plectoneme of given

length (Lp), catenation (Cap) and number of domains (m), the total free energy has two free

parameters [namely, δp, α and Rp constrained by Eq. (2.24)] that determine the equilibrium

structure.

Similar to the straight braid case [Eq. (2.21)], the fluctuation free energy correction to the

mean-field energy of the braid in the plectoneme is obtained from Eq. (2.14), using µp = µ(δp)

and ηp = η(δp, α):

β∆Fp =
(Lp +mΓ)

A

[
3

2

√
µp + η1/4

p cos

(
1

2
tan−1

√
4ηp
µ2
p

− 1

)]
(2.27)

The above expression gives the total free energy associated with worm-like-chain fluctuations in

the braiding strands forming the plectoneme structure.

2.1.C Numerical partition function

In an ensemble of fixed catenation and fixed force, the total free energy of the braid can be

obtained by minimizing the sum total of the straight and the plectoneme phase energy. We

thermally average over states with all possible plectoneme lengths and number of domains,

where the free energy in each state is minimized with respect to the partition of the total linking

number, thus ensuring torque balance between the two structural phases. The free energy of

the braid for each fixed Lp and m is obtained via numerical minimization over Cas [Eqs. (2.20),

(2.21), (2.25), (2.27)].

F (Lp,m) = min
Cas

(Es + ∆Fs + Ep + ∆Fp) (2.28)

The above minimization is constrained by conservation of total catenation (Ca = Cas + Cap)

and total DNA length (L = Ls + Lp +mΓ). The states described by Eq. (2.28) for all possible
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values of Lp and m are then thermally averaged over to construct a partition function:

Z(Ca, f) = e−βF (0,0) +
∑

m=1,2...

L−d∑
Lp=∆

e−βF (Lp,m) (2.29)

where the first term is the purely straight phase, and the second term corresponds to a sum over

all possible co-existence states. The sum over Lp in Eq. (2.29) is done numerically using a ∆ = 1

nm mesh. An averaging scheme as described above takes into account various thermally acces-

sible equilibrium states which allow the possibility of torque fluctuations in the fixed catenation

ensemble. A similar approach was taken in Ref. [65] to study supercoiled single DNAs.

2.1.C.i Ensemble-averaged observables

Equilibrium values of the end-to-end distance (z), the torque in the braid (τ), and the size of

the helical wrappings in the straight phase (Lb) are obtained from the partition function [Eq.

(2.29)]:

〈z〉 = − 1

Z

[
∂F (0, 0)

∂f
e−βF (0,0) +

∑
m

∑
Lp

∂F (Lp,m)

∂f
e−βF (Lp,m)

]
(2.30)

〈βτ〉 = − 1

2π

∂ lnZ
∂Ca

(2.31)

〈Lb〉 = 2π〈Cas〉
√
〈Rs〉2 + 〈Ps〉2 (2.32)

The average values of the pure-state free variables X, and the coexistence-state free variables Y

are computed from Eq. (2.29) as follows:

〈X〉 =
1

Z

[
Xe−βF (0,0) +

∑
m

∑
Lp

X e−βF (Lp,m)

]
〈Y 〉 =

1

Z
∑
m

∑
Lp

Y e−βF (Lp,m) (2.33)

where X ∈ {Rs, Ps,Cas} and Y ∈ {δp, α, Lp,m}.
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2.2 Results

2.2.A Braids at 100 mM salt

2.2.A.i Higher catenation at a fixed force decreases extension

Figure 2.2(a) shows the comparison of theoretically calculated braid extension curves for various

forces with experimental observation at 100 mM univalent salt concentration [56]. The size of the

intertether distance d being comparable to the length of the braiding molecules results in a sharp

decrease in extension when the first catenation is added. The decrease is due to the formation

of the first helical bend in the braid along with the end-regions from the zero-catenation parallel

configuration. The extension shortening is used to estimate the intertether distance by simply

using the Pythagorean theorem [13, 55, 56]. Notably, the intertether distance d is a parameter

that has not been controlled in experiments to date.

2.2.A.ii Nonlinear braid torque

Further addition of catenation decreases the end-to-end extension of the braid [Fig. 2.2(a)] due to

the double-helix length being passed from the end-regions to the helically wrapped section. The

size of the straight braid, containing helical intertwines, increases with catenation and reaches

a maximum just before the onset of buckling [Fig. 2.2(d)]. Elastic bends in the braiding double

helices generate torsional stress, which increases nonlinearly with catenation [Fig. 2.2(b)]. The

nonlinearity of torque originates from the adjustable helical geometry, and has been seen in

previous models of the straight braid [56, 67, 68]. When the torque reaches a critical value,

which mainly depends on thermodynamic parameters such as the external force, nucleation of

the first plectonemically buckled domain becomes energetically favorable.

Stretched, supercoiled single DNAs at 100 mM salt also show a buckling transition separating

a force-extended phase from a plectoneme-coexistence phase [12, 34, 79], although the mechanical

response of braids is fundamentally different than that of supercoiled DNAs (see Chapter 3). The

torque in a stretched supercoiled DNA double helix increases linearly with the linking number



59

0.00 0.02 0.04 0.06
Catenation density σc

0.3
0.4
0.5
0.6
0.7
0.8
0.9

No
rm

al
iz

ed
 e

xt
en

si
on

 〈 z/L
〉

1.25 pN

4 pN

(a)

0.00 0.02 0.04 0.06
Catenation density σc

5
10
15
20
25
30
35
40
45

To
rq

ue
 〈 τ〉  (p

N-
nm

)

1.25 pN

4 pN

(b)

0.00 0.02 0.04 0.06
Catenation density σc

0

5

10

15

20

Nu
m

be
r o

f p
le

ct
on

em
e 

do
m

ai
ns

 〈 m〉

1.25 pN

4 pN

(c)

0.00 0.02 0.04 0.06
Catenation density σc

0.0

0.5

1.0

1.5

2.0

St
ra

ig
ht

 b
ra

id
 h

el
ic

al
 re

gi
on

 〈 L b
〉  (µ

m
)

1.25 pN 4 pN

1.25 pN

(d)

0.0

0.5

1.0

1.5

2.0

Pl
ec

to
ne

m
e 

si
ze

 〈 L p
+
m

Γ
〉  (µ

m
)0 10 20 30 40 50 60

Catenation Ca

1.0

1.5

2.0

2.5

3.0

Ex
te

ns
io

n 
〈 z〉  (µ

m
)

0 10 20 30 40 50 60
Catenation Ca

0 10 20 30 40 50 60
Catenation Ca

0 10 20 30 40 50 60
Catenation Ca

Figure 2.2: DNA braids at 100 mM monovalent salt under various forces, the shaded arrows
show the direction of increasing force. Theoretical predictions are for ≈11 kb (L = 3.6 µm)
long double helices, tethered 1.5 µm (d = 0.42L) apart. Catenation (Ca) and catenation density
(σc = Ca/Lk0) are plotted on the top and the bottom x-axes respectively. (a) Relative end-
to-end distance (left y-axis) or extension (right y-axis) versus catenation. Lines are theoretical
predictions for 1.25 (lowest curve), 2, 3 and 4 pN (highest curve) force, while filled circles are
experimental data at 2 pN [56]. The change in slope of the lines corresponds to plectonemic
buckling transition, which is at a higher catenation for larger external tension due to increased
stability of the force-coupled straight state. The kink at the onset of buckling transition is related
to the plectoneme-nucleation cost presented by the braid end loop. (b) Torque in the braid shows
a non-linear increase in the straight phase, and continues to increase in the coexistence phase but
with a much weaker slope. The torsional stress is released in the coexistence phase due to the
contribution from plectoneme writhe [Eq. (2.24)]. (c) Number of plectonemic domains versus
catenation, showing that the buckled phase is characterized by multiple plectoneme domains.
Nucleation of new domains causes the increase of torque in the coexistence phase, as opposed to
a constant torque expected in the case of a single plectoneme domain. (d) Plot of the size of the
straight-phase helical region 〈Lb〉 (left y-axis, solid gray curves) and the size of the plectoneme
region 〈Lp + mΓ〉 (right y-axis, dashed black curves) as a function of catenation. Lb increases
in the straight phase with catenation till the buckling point, after which Lb decreases as DNA
length is passed into the plectoneme phase, also seen in the increase in the total size of the
plectoneme.
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Figure 2.3: Radial fluctuations in braid with L = 2 µm, d = 800nm and Ca= 12. (a) Probability
distribution of braid radii [Eq. (2.18)], plotted for applied forces of 1 pN (dot-dashed line), 2
pN (solid line) and 3 pN (dashed line). Note the broadening of the distribution at lower forces
indicating higher fluctuations. R = 1 nm corresponds to the excluded radius of the DNA
molecules due to self avoidance, included while calculating the average radius via free energy
minimization but not explicitly taken into account in plotting Eq. (2.18). (b) Variation of the
standard deviation of the radial distribution σR (black open squares) and the average value of
the radius 〈R〉 (shaded filled circles) with the external tension (f) on the braid. The dashed lines
correspond to best-fit equations: σR = σ0(βAf)−0.35 and 〈R〉 = R0(βAf)−0.13, where σ0 = 2.4
nm and R0 = 5.2 nm. The exact power laws depend on the catenation in the braid, however,
both the average value and the fluctuations in braid radius always decrease with increasing force.

[35, 83], as opposed to a non-linear increase in braids. The linearity of torque in supercoiled

single DNA arises from a constant twist modulus in the double helix (C ∼ ∂τ/∂σsc ≈ 100 nm

[60, 79, 83]), which is attributed to the strong base-pairing interactions holding the DNA strands

together. Conversely, braids are soft structures (the two braiding molecules are not attached

to each other), where twist-stiffening occurs as the catenation is increased, making the twist

modulus of braids a quantity that depends on catenation.

2.2.A.iii Abrupt plectonemic buckling in braids

The onset of buckling can be identified as a knee in the extension plots [Fig. 2.2(a)], past which

DNA length is passed into the force-decoupled buckled phase [Eq. (2.25)], resulting in a steeper

decrease of the end-to-end extension. In the coexistence region, the writhe contribution to the

total linking number reduces torsional strain in the braid. The torque in the braid shows a

small non-monotonic “overshoot” at the buckling transition, and continues to increase with a
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small slope in the coexistence phase. The abruptness of the buckling transition owes to the

finite-energy cost to nucleating a plectoneme domain, vis-à-vis the plectoneme end loop.

2.2.A.iv Multiple plectonemic domains in buckled braid

The coexistence phase at 100 mM salt is characterized by multiple domains of plectoneme [Fig.

2.2(c)], where the number of domains is equal to the equilibrium number of plectoneme end loops.

The total size of the plectoneme phase increases after the buckling transition [Fig. 2.2(d)], where

DNA length is transferred to the buckled region from the straight phase. The higher number

of domains is a consequence of the structural bulkiness of braids. Braid plectonemes require a

higher radii, because of the self-avoidance between the two writhing braids, which destabilizes

the plectoneme state relative to the end loops, resulting in a large number of domains in the

buckled state.

2.2.A.v Higher force stabilizes straight braid and decreases fluctuations

Higher external tension lowers the total energy of the straight braid [Eqs. (2.20), (2.21)], re-

sulting in a higher end-to-end extension at a given catenation [Fig. 2.2(a)]. The stabilization

of the straight phase upon increasing force has an effect of delaying the buckling transition, i.e,

buckling occurs at a higher value of catenation. The torque is also higher in both the straight

and the buckled braids under a larger external tension [Fig. 2.2(b)].

Figure 2.3(a) shows the probability distribution of braid radius for various forces. Higher

forces result in a smaller average radius of the braid with less radial fluctuations. Figure 2.3(b)

shows the variation of the mean and the fluctuation in braid radius for various forces at 100 mM

salt. Radial fluctuations decrease with increasing force and are much smaller than the average

value of the radius. This indicates that the braiding DNAs show small fluctuations about their

average shape when stretched under a higher tension.
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Figure 2.4: Effect of salt concentration on ≈11 kb (L = 3.6 µm) DNA braids under 2 pN force.
The tether points are 1.5 µm (d = 0.42L) apart. Theoretical curves are plotted for (0.01, 0.05,
0.1 and 0.5) M salt concentrations, where the shaded arrows show the direction of increasing salt
concentration. Catenation (Ca) and catenation density (σc ≡ Ca/Lk0) are plotted on the top
and the bottom x-axes respectively. (a) Relative end-to-end extension (left y-axis) or extension
(right y-axis) versus catenation shows smaller extension and buckling at a lower catenation
for lower salt concentrations. Low salt increases the effective DNA diameter, which effectively
increases the twist elasticity of the braid, thereby decreasing the stability of the straight phase.
The filled circles (0.1 M) and open squares (0.01 M) are experimental data reproduced from
Ref. [56]. The total length of DNA for 10 mM and 100 mM experimental data sets [56] differ
slightly (∼ 0.2 µm); we renormalized the length of the 10 mM case (open squares) to be close
to that of the 100 mM data (filled circles) for comparison. (b) Torque in the braid shows a
non-linear increase in all salt conditions. Also, twist stiffening occurs faster for braids at lower
salt concentration due to the larger radius of the braid. The critical buckling torque, being a
thermodynamic variable does not vary significantly with the salt concentration. (c) The number
of plectoneme domains versus catenation or catenation density, showing nucleation of multiple
domains of plectoneme at lower salt concentrations, while a single plectoneme state is favored
at higher salts. Smaller excluded diameter of the braid at higher salt makes the superhelical
bending in the plectoneme phase favorable over nucleation of new domains. (d) The size of
the straight phase helical wrappings 〈Lb〉 (left y-axis, solid gray curves) and the size of the
plectonemic phase 〈Lp +mΓ〉 (right y-axis, dashed black lines) versus catenation. Lb increases
faster for lower salt concentrations due to larger braid radii (Table 2.1).
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2.2.B Braid mechanics at various salt concentrations

2.2.B.i Electrostatic screening is weaker at lower salt concentrations

Lowering the ionic strength of the solution causes an increase in excluded volume of the double-

helix DNA in the solution, due to less screening of the negative charges on the double-helix

backbone. At low salt, the Debye length (λD) of the solution is higher, causing the Coulomb-

repulsion effect to propagate a longer distance before it is cut off, thus increasing the effective

diameter of the double helix.

2.2.B.ii Braids buckle at lower catenations for lower salt concentrations

Figure 2.4(a) shows braid extension curves under various salt concentrations. The buckling

transition occurs at a lower catenation for braids under lower salt concentrations. The larger

effective DNA diameter increases the braid radius at lower salts (Table 2.1), which destabilizes

the straight phase and consequently causes buckling at a lower catenation number. The predicted

trend of buckling with varying salt has been observed experimentally [56].

In the supercoiled single DNA case, the opposite trend is observed, where lowering the salt

concentration of the solution makes plectonemic buckling occur at a higher supercoiling density

[84]. In stretched supercoiled DNA, the stability of the force-extended phase is unaltered by

changing the ionic strength, but the supercoiled plectoneme phase (containing intra-molecular

writhes) is relatively destabilized on decreasing the salt concentration, again due to the increase

in effective diameter of the double helix, resulting in the observed trend of buckling at a lower

linking number for higher salt concentrations.

The torque in the braid plotted as a function of the catenation [Fig. 2.4(b)] shows a nonlinear

increase and a small non-monotonic overshoot at the buckling transition at all salt conditions.

For a given catenation, the torque is higher for lower salt concentrations due to effective swelling

of the braid. The torsional stress in the braid decreases with increasing salt, a trend also observed

in supercoiled DNAs [79].



64

2.2.B.iii Braid plectonemes are stabilized at higher salt concentrations

Figure 2.4(c) shows that multiple plectoneme domains are favored at lower salt conditions,

while single domain plectonemes are favored at higher salts. This is due to the lower excluded

volume of DNA at higher salts leading to a more stable plectoneme state. At lower salts,

larger braid diameter increases the energy associated with superhelical bending of the braid in

the plectoneme, making the formation of looped structures of braid favored over a superhelical

structure, consequently favoring formation of multiple domains of plectoneme. At higher salts,

the average number of superhelical turns per plectoneme domain is higher, i.e., the average

size of each plectoneme domain is larger [Fig. 2.4(d)]. This effect is directly related to the

decrease in DNA excluded volume at higher salt concentrations (Table 2.1), which stabilizes the

superhelical bends in a braid plectoneme.

2.2.C Braid intertether distance characterizes mechanics

2.2.C.i Braids with a larger intertether distance buckles at a lower catenation

The intertether distance d between the two braided molecules affects the critical catenation, i.e.,

the catenation at which buckling occurs [Fig. 2.5(a)]. Braiding molecules with larger d makes

a helix with a larger aspect ratio (ratio of radius to pitch of the helix), which causes a steeper

increase of the torque in the braid [Fig. 2.5(b)]. In effect, the twist modulus of the braid is

larger for larger intertether distances and causes buckling at a lower catenation [Fig. 2.5(a)].

The torque at which a braid buckles is a thermodynamic property dependent on the external

force and remains roughly the same on changing the intertether distance [Fig. 2.5(b)] or the

salt conditions [Fig. 2.4(b)].

2.2.C.ii Asymmetric braid tethers

The difference in extension between the states Ca = 0 and 1 is dependent on the intertether

distance, but the two intertether distances at the two ends of the braid need not be the same.

In fact, these distances being uncontrolled parameters in experiments, are almost never equal.
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Figure 2.5: Effect of the intertether distance for braids with ≈6 kb (L = 2 µm) long DNAs
under 2 pN force at 100 mM salt. The shaded arrows show the direction of increasing intertether
distance d = 0.1L, 0.25L, 0.35L and 0.5L, where the top and the bottom x-axes show catenation
(Ca) and catenation density (σc ≡ Ca/Lk0) respectively. (a) Variation of relative extension (left
y-axis) or extension (right y-axis) with catenation in the braid. Larger intertether distance
results in a larger initial jump in the extension and lowering of the critical catenation density.
(b) The torque in the braid is higher for larger intertether distances. The increase of torque
per unit catenation or effective twist modulus of the braid is also higher for larger intertether
distance, resulting in buckling at a lower catenation. However, the critical value of torque at
which buckling occurs is a bulk property of the braid and remains roughly the same for various
intertether distances, ≈ 30 pN-nm at 2 pN external force. (c) The average number of plectonemes
as a function of catenation showing the formation of multiple domains at all intertether distances.
(d) The size of the helical straight braid (left y-axis, solid gray curves) and the total plectoneme
length (right y-axis, dashed black curves) as a function of catenation. For braids with larger
intertether distance, buckling occurs at relatively smaller size of the straight braid helical section
due to the larger size of the triangular end regions [Figure 2.1(a)].

The theoretically predicted extension plots are a characteristic of the arithmetic mean of the

intertether distances at the two ends of the braid; although, not surprisingly, the structure of the
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Figure 2.6: Effect of the intertether distance. (a) Comparison of the free energy versus ε [Eq.
(2.34)] for braids with various choices of the two intertether distances d1 and d2, but keeping
the arithmetic mean of the two distances the same. The end-region where the two DNAs are
closer to each other is smaller in size ( i.e., has less DNA in it), and vice-versa. (b) Free energy
versus ε for braids at various catenations (Ca=5, 12 and 20) with identical intertether distances
d = 0.3L. The stiffness of the free energy decreases for lower catenation values indicating higher
fluctuations in the relative sizes of the two end regions. The free energy curves have been shifted
in the y-axis in order to overlay them.

braid depends on the specific values of the two intertether distances [Fig. 2.6(a)]. In the case of

unequal intertether distances, we find that the end-region associated with the larger intertether

distance is bigger in size, i.e., the helically wrapped region of the braid does not form at the

center of the structure but is pushed towards the end with the smaller intertether distance.

We also find that the energy cost of fluctuations in the relative size of the two end regions, i.e.,

small displacement of the entire helical section away from the equilibrium position are O(kBT ),

hence permissible, especially in the regime of low catenation [Fig. 2.6(b)]. The energy cost

increases with increasing catenation, reflecting the sliding of the helical section is energetically

expensive when the torque in the braid is higher. Such behavior of a braid may be possible to

probe in braiding experiments done on DNA molecules labeled along their length with fluorescent

tags.

For a braid with unequal intertether distances d1 and d2, we define a dimensionless parameter
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ε such that

ε =
`1

`1 + `2
, (2.34)

where the total length in the end-regions Le [Eq. (2.20)] is divided into `1 and `2 corresponding

to the two end-regions. Hence, ε = 1/2 indicates the scenario of a braid with symmetric end-

regions. Figure 2.6(a) shows the minimized total free energy [Eqs. (2.20), (2.21)] versus ε for

three pairs of intertether distances, keeping the arithmetic mean of the distances the same in all

three choices. The extension plots are a characteristic of the arithmetic mean, but the relative

sizes of the end-regions depend on the particular choice of d1 and d2. The end-region associated

with the larger of the two intertether distances contains more length of double-helix DNA.

Figure 2.6(b) shows minimized free energy versus ε for a braid with symmetric ends but

various catenations. The stiffness of the potential near the equilibrium value of ε increases with

increasing catenation in the braid. This suggests the possibility of fluctuation in the relative

sizes of the end-regions, which would be higher for lower catenations and becomes energetically

expensive in the regime of tight braid or braid with high catenation density. It may be possible

to directly visualize the sliding of the braid helical intertwines in a braiding experiment using

DNA molecules labeled with fluorescent tags.

2.2.D Braiding short DNA molecules

Braiding DNA molecules shorter than ≈3 kb in size shows the same qualitative trends of ex-

tension decrease with catenation and formation of multiple buckled domains past the critical

catenation density, as seen for larger molecules. However, due to the small size of the molecules

and hence the smaller number of fluctuation states, discrete nucleation of buckled domains may

be observed as steps in the extension plot [Fig. 2.7(a)]. The torque also shows multiple over-

shoots associated with nucleation of new buckled domains [Fig. 2.7(b)-(c)]. Similarly, a step-like

behavior can be seen in the length transfer between the straight and the plectoneme phase. The

discrete jumps in extension or torque are masked by thermal fluctuations in longer molecules
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Figure 2.7: Braiding ≈2 kb (L = 0.65 µm) DNA at 100 mM Na+ with forces f = 1.25, 2, 3 and
4 pN, where the shaded arrows show the direction of increasing force. The intertether distance
is 0.26 µm (d = 0.4L), where the top and the bottom x-axes show catenation and catenation
density (σc ≡ Ca/Lk0) in the braid. (a) Relative extension (left y-axis) or extension (right
y-axis) versus catenation for short DNA molecules. (b) Torque vs catenation shows multiple
discrete “overshoots”, corresponding to the nucleation of new plectoneme domains. (c) Number
of plectoneme domains vs catenation. The appearance of new plectoneme domains coincides with
the steps in the extension or overshoots in the torque. (d) The size of the straight-phase helical
region 〈Lb〉 (left y-axis, solid gray curves) and the size of the plectoneme phase 〈Lp+mΓ〉 (right
y-axis, dashed black curves) versus catenation, where steps are associated with the formation
of finite-length braid end loops. The successive nucleation events are smoothed out by thermal
fluctuations in braids made up of long DNA molecules (> 4 kb).

(> 4 kb or 1.3 µm). Similarly, at lower forces, large fluctuations make the average extension of

the braid decrease more uniformly [Fig. 2.7(a)].
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Figure 2.8: (a) Schematic of the magnetic tweezers setup. Two DNA molecules are attached (us-
ing only one of the DNA strands as attachments) to the glass surface and a paramagnetic bead
via digoxigenin-antidigoxigenin and biotin-streptavidin interactions, respectively. The single-
strand attachments ensure no twisting of individual DNA molecules upon rotation of the bead
[16, 88]. (b) Experimentally measured end-to-end extension of a braid as a function of cate-
nation number for 0.8 (black points) and 1.2 pN (gray cross marks) applied forces in 100 mM
NaCl, where the error bars represent standard deviation. The solid lines represent theoretical
predictions for 1.6 µm DNA molecules, with intertether distance 0.19 µm, and under 0.8 (black
line) and 1.2 pN (gray line) force at 100 mM monovalent salt. The small peak in extension at
zero catenation is due to the small intertether distance, i.e., the close proximity of the two DNA
molecules for this particular DNA pair [46].

2.3 Comparison with experiments

2.3.A Braid-extension measurement using magnetic tweezers

We used bright-field magnetic tweezers [88] to study braided DNAs, where we attached one pair

of ends of the two double-helical DNAs to a glass surface and the other pair of ends to a one-

micron paramagnetic bead [16] [Fig. 2.8(a)]. The inter-DNA linking (or “catenation”) number

in the braid is controlled by rotating the bead using the magnet, whereas the applied force is

controlled by varying the distance between the magnet and the bead. To ensure that each DNA

is not subject to double-helix twisting torque, only the 5′-ends of the DNAs were attached to the

surfaces, allowing swiveling of the free strand about the tethered one, which makes the number

of turns of the bead a direct measure of catenation in the braid. All experiments were carried

out in 100 mM NaCl buffer.
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Figure 2.9: (a) Time series of end-to-end extension of a braid constituted of two torsionally-
unconstrained 6 kb DNAs, under 0.8 pN force at 100 mM NaCl [Fig. 2.8(b)], for three catenation
numbers (Ca = -23, -24, and -25) near the buckling transition point [the point of slope change
in the extension curve, Fig. 2.8(b)]. Data were collected at 200 Hz (light gray dots), then
median filtered (dark points) using a 0.1 sec time window to show dynamic switching between
discrete extension states. The panels on the right of each time series plot show histograms of
the raw data using 10 nm bins (gray shaded area); the y-axis is the same for left and right
panels. The histograms were fit to a sum of multiple Gaussian distributions, where the dark line
is the best-fit distribution and corresponds to the sum of the individual Gaussians shown in gray
lines. The sum of two Gaussian distributions fit the data better at low catenation (Ca=-23),
indicating nucleation of the first plectoneme domain, whereas, the sum of at least three Gaussians
is required to fit the histograms at higher catenation (Ca=-24, -25), due to the appearance of
multiple plectoneme domains. (b) Schematic diagram of three braid-extension states accessible
via thermal fluctuations near the buckling transition. (c) Theoretically predicted extension
histograms near the buckling transition, where the black dotted line shows the total extension
distribution (Ptot); also plotted are the individual contributions from the straight braid (P0, cyan
solid line) and the buckled braid with one (P1, red dot-dashed line) and two (P2, blue dashed line)
plectoneme domains [see Eq. (2.36)]. Contributions from the three (P3) and the four-domain
(P4) plectonemes are also plotted, however, the negligible statistical weight of those states for
the plotted range of catenation renders them almost invisible in the predicted histograms.
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As the magnet is rotated, the extension of the braid under fixed force decreases when the

catenation is increased, producing a characteristic bell-shaped curve [Fig. 2.8(b)]. The change in

extension of the braid between catenation numbers 0 and 1 is related to the distance between the

two tether points; closely-spaced DNA tethers produce a small jump, whereas, a larger separation

between the DNA tethering points show a sharper initial jump [13, 46, 55, 56]. In Fig. 2.8(b),

the jump is small relative to the length of the braided molecules (≈ 1.6 µm), indicating that

the two DNAs are tethered close together (≈ 0.19 µm). After the first catenane is introduced,

the extension of the braid decreases with increasing catenation due to formation and consequent

increase in size of the helically-wrapped region of the braid. Since the individual DNA molecules

cannot be supercoiled, the extension plots are symmetric for positive and negative catenations

[Fig. 2.8(b)]; our model assumes this symmetry as there are no DNA-twist-energy terms in the

free energy expressions.

2.3.B Multimodal distribution of measured braid extension

Appearance of a plectoneme domain requires nucleation of the braid end loop, which causes a

discrete change in braid extension since the end loops are finite-sized structures. Figure 2.9(a)

shows data for a time series of braid extension under 0.8 pN force and 100 mM NaCl salt

concentration, at a fixed catenation near the buckling transition, i.e., near the point of slope

change in the extension curves [Fig. 2.8(b)]; and the histograms show the probability density

of braid extension. Near the buckling transition point [Ca=-23 at 0.8 pN, see Fig. 2.8(b)],

the probability distribution of braid extension is bimodal [Fig. 2.9(a)], where the higher and

the lower extension peaks respectively correspond to the straight braid and the one-domain

plectoneme braid ( i.e., a plectoneme with one end loop).

In the vicinity of the buckling transition, the occupancy of the lower-extension state increases

with increasing catenation, due to the appearance of the first buckled plectoneme domain. Si-

multaneously, the occupancy of the higher-extension state decreases as the purely-straight state

of the braid disappears. The data also show appearance of multiple discrete-extension states
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after the nucleation of the first domain [multiple peaks in the histograms for Ca=-24 and -25,

see Fig. 2.9(a)], where the lowest-extension state corresponds to a two-domain plectoneme braid

[plectoneme with two braid end loops, see Fig. 2.9(b)].

2.3.C Calculated probability distribution of braid extension

Using the partition function described in Eq. (2.29), we consider the probability of each state

considered in the partition sum. The extension distribution in each of the summed-over state is

Gaussian:

Pm,Lp(z) =
1√

2π∆m,Lp

exp

[
−(z − z̄m,Lp)2

2∆2
m,Lp

]
(2.35)

where the mean and the variance are respectively given by: z̄m,Lp = −∂F/∂f , and β∆2
m,Lp

=

−∂2F/(∂f2). Here, F (Lp,m) is the total free energy of the plectoneme-coexistence state, which

includes the force-coupled straight braid, superhelically-bent braid of size Lp, and m end loop(s)

[Eq. (2.28)]. The total distribution of extension at a given catenation is obtained from sum-

ming all the corresponding Gaussian distributions [Eq. (2.35)] with their respective Boltzmann

weights:

Ptot(z) = P0,0
e−βF (0,0)

Z +
∑
m

∑
Lp

Pm,Lp

e−βF

Z = P0 +
∑

m=1,2,···
Pm (2.36)

where P0(z) and Pm(z) are the respective contributions to the total extension probability dis-

tribution Ptot(z) from the straight and the m-domain plectoneme states.

Figure 2.9(c) shows the calculated probability distributions of extension near the buckling

transition point for braids at 100 mM monovalent salt condition [Fig. 2.8(b)]. The total prob-

ability distributions Ptot [black dotted lines, Fig. 2.9(c)] are multimodal, similar to the exper-

imentally observed histograms. The individual Gaussian contributions from the straight phase

(P0), and the plectoneme phase with one (P1) and two (P2) domains are also plotted in Fig.

2.9(c). Near the buckling point, increasing the catenation in the braid makes the purely-straight
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braid (P0) less favorable than the one-domain plectoneme-coexistence state (P1). Further in-

crease in catenation number leads to the nucleation of new plectoneme domains, which gives a

strong asymmetric character to the extension distributions. In Fig. 2.9(c), the contributions

corresponding to three (P3) and four-domain (P4) plectonemes are also plotted, however, they

are almost invisible due to negligible statistical weights of the states.

2.3.D Bulky structure of braids favor nucleation of multiple buckled domains

Braids being bulky structures favor multiple small plectoneme domains over a single large one,

where structural bulkiness is derived from bending stiffness and excluded diameter of the braids.

Since braids have two wrapped double helices, the effective braid bending stiffness is twice that

of a double helix. Also, due to the electrostatic interactions, braids have an excluded diameter

which is at least twice of that of a single double helix. Larger excluded volume increases the

lower bound on braid-plectoneme diameter, which destabilizes the superhelical state relative

to the braid end loops [46]. Increased bulkiness makes the two-domain plectoneme structure

fluctuation-accessible, and results in the appearance of a finite-probability state with extension

lower than that of the one-domain plectoneme. The probability of occupancy of the one-domain

plectoneme state increases past the onset of the buckling transition, and then decreases as the

two-domain state becomes more probable. From the median-filtered time signal [Fig. 2.9(a)],

we estimate the nucleation rate of a braid plectoneme state ≈ 10 s−1, which is similar to that

observed for a plectoneme domain in twisted single dsDNA [89].

2.3.E Buckling transition is more abrupt than consequent nucleation of do-

mains

Figure 2.10 shows the comparison of theoretically predicted change in extension upon nucleation

of the first and the second domain of braid plectoneme with experimental data. For both

theoretical calculations and experimental measurements, we define the extension jump upon

nucleation of the first plectoneme domain as the distance between the means of the extension
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Figure 2.10: Comparison of theoretically-predicted change in extension upon nucleation of the
first (red open triangles) and the second (blue open squares) plectoneme domain with exper-
imental observations. Red points and blue cross marks represent the difference in extension
between successive peaks (inset) in the experimental best-fit histograms, where the second jump
(blue cross markers) is measured one unit catenation after the first jump (red points). The error
bars represent binning error. The red and blue dashed lines show the expected f−1/2 power law
[Eq. (2.23)], best-fit to red open triangles and blue open squares, respectively.

distributions corresponding to the straight (P0) and one-domain braid plectoneme (P1), when

both the states are almost equally-likely and most-probable. Similarly, the extension jump

associated with nucleation of the second plectoneme domain is defined as the distance between

the means of the extension distributions corresponding to one (P1) and two-domain plectonemes

(P2), one catenation unit after the first jump is measured.

The predicted magnitude of extension jump upon nucleation of a plectoneme domain de-

creases with increasing force due to the decrease in size of the nucleated braid end loop [Eq.

(2.23)], although this trend is not apparent in the experiments [Fig. 2.10]. However, we find

both theoretically and experimentally that the extension change associated with nucleation of

the second plectoneme domain is significantly smaller than that of the first one. This suggests

that the nucleation energy cost of the first domain is larger than that of the second domain,

or the nucleation of the first buckled domain is more abrupt than the consequent addition of

buckled domains.



75

2.4 Summary

In this chapter we have presented a statistical-mechanical model for a pair of intertwined double-

helix DNAs or a DNA braid [Fig. 2.1(a)]. We implemented a helical mean-field structure for the

intertwined DNAs and treated thermal fluctuations as harmonic perturbations about the mean-

helical structure. Our treatment of thermal fluctuations is consistent with the expected scaling

for a worm-like chain in a confined tube [80], however, our approach is free of unknown scaling

constants. We also presented experimental data that agrees well with theoretical predictions

[46, 47].

Braids exhibit nonlinear torque due to twist stiffening Two intertwined double-helix

DNAs are torsionally stressed due to their helical geometry. Note that DNA torque, originat-

ing from twisting of individual double-helices is absent in the current model and experiments,

because DNAs are nicked or torsionally unconstrained. Braid torque is due to the wrapping

geometry that consists of helical bends, giving rise to a torsional response. Braids with a higher

catenation have a higher torque, due to the higher catenation density in the braid. However,

the positive scaling of braid torque with catenation is nonlinear [Fig. 2.2(b)]. This is because

braids are soft structures where the geometry may be adjusted, leading to a torque response

that is weaker for smaller catenations but stronger when the catenation density in the braid is

higher.

The slope of the torque-versus-catenation plot gives braid twist stiffness [Fig. 2.2(b)], which

also has a positive scaling with catenation. Braids with higher catenation are more stiff to

torsional perturbations due to a more rigid structure. The twist-stiffening behavior is due to the

soft structure of braids that lack an inherent rigidity; on the other hand, dsDNA has a covalently

bonded backbone that provides structural rigidity and a constant twist stiffness (see Chapter

3).

Torsionally stressed braid buckles abruptly into a braided plectoneme structure

Torsional stress, originated from a high density of catenation, increases the free energy of the
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braid to an extent that buckling becomes favorable. Buckling of the braid centerline gives a

writhe contribution to the total catenation which does not couple to torque. Hence, increasing

catenation in the buckled state results into an increased writhing of the braid due to a plec-

tonemic structure, which keeps the torque from increasing. Buckling, however, costs additional

bending energy, implying that buckling of the braid centerline will be favored only when the

torsional stress is high enough that buckling decreases the total free energy of the braid.

Braid buckling is associated with the nucleation of a braid-plectoneme end loop [Fig. 2.1(a)],

which posits an finite-energy barrier to buckling. The energy associated with the braid loop

nucleation makes the buckling transition abrupt. The abruptness of the transition is reflected

in a bimodal probability distribution of braid extension at the buckling transition, where the

two modes correspond to the buckled and unbuckled states. Because the buckled state cannot

be smaller than the braid end loop, the extension at the buckling point shows a discontinuity.

Experimental braid extension shows dynamic switching between discrete extension states, and

has a bimodal probability distribution, both of which occur due to the finite-sized braid loop

necessary to nucleate a buckled domain.

Buckled braid features coexistence of multiple plectoneme domains Braids are bulky

structures: the braid radii is at least twice the radii of dsDNA, and the bending stiffness of braids

is also twice that of dsDNA. This bulkiness destabilizes the braid plectoneme state, because the

energy of the plectoneme state scales positively with the plectoneme radii. Destabilization of

the plectoneme state leads to proliferation of multiple coexistent domains, instead of increasing

the length of the plectonemically buckled region.

Coexistence of multiple buckled domains in braid gives rise to a multimodal probability

distribution of braid extension in the buckled state. Experimental distribution of extension

indeed shows a multimodal distribution [Fig. 2.9]. Nucleation of the first buckled domain results

in a larger extension discontinuity than that associated with the proliferation of subsequent

domains, suggesting that the nucleation cost of the first buckled domain is the highest [Fig.

2.10].
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Intertether distance characterizes braid mechanical response Braid geometry is af-

fected by the intertether distance which also influences its mechanics. Braids with a larger

intertether distance show a stronger twist stiffening response and buckles at a lower catenation.

The critical buckling torque for braids is established at a lower catenation for larger intertether

distances. Braids with asymmetric tethers, although does not affect the buckling response, have

an asymmetric geometry, where the end corresponding to a larger intertether distance is longer.

The fact that the mechanical response of braids can be controlled by altering the intertether

distance may be biologically relevant.

Braid mechanics depends on the ionic strength of the solution Reduced ionic strength

of the solution increases the electrostatic screening length. This has an effect of an increase in

the effective DNA diameter due to stronger self-avoidance between DNA segments. The larger

braid radii at lower salts destabilize the braided state and causes buckling at a lower catenation

[Fig. 2.4]. The twist stiffening in braids with an increasing catenation occur at a faster rate

at lower salts [Fig. 2.4(b)]. At higher salts, due to strong electrostatic screening, the braid

diameter is lower. This not only stabilizes the braid resulting in buckling at a higher catenation,

it also stabilizes the braid-plectoneme state leading to growth of a plectoneme domain rather

than proliferation of multiple domains [Fig. 2.4(c)].

Braiding short DNAs It may be interesting to study short braided DNAs (≈ 2 kb or 650

nm) because we find that for molecules of that short length, the successive addition of small

buckled domains leads to a series of buckling transitions [Fig. 2.7], possibly observable as steps

in the extension. This is directly related to less thermal fluctuations in smaller DNA molecules.

The effect of variable curvature is more prominent in short braids, which may provide additional

fluctuations that further mask discrete jumps in extension for short DNA braids.

Overall, the contrast between the mechanical properties of braided and supercoiled DNAs

can be simply interpreted as a result of the structural bulkiness and linking-number-dependent

elastic moduli in braids, and is well explained by the theoretical model [46]; whether these
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potential differences directly influence cellular function or the way proteins interact and modify

DNA remains to be determined.
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Salt conc. Debye length Effective charge Straight braid (Ca=10) Buckled braid (Ca=60)
(M) λD (nm) ν (nm−1) 〈Rs〉 (nm) 〈Ps〉 (nm) 〈Rs〉 (nm) 〈Ps〉 (nm) 〈δp〉 (◦) 〈α〉 (◦)

0.01 3.0 1.97 7.1 15.7 4.9 7.8 33.9 33.5
0.05 1.34 4.33 4.5 13.4 3.4 6.6 28.3 29.4
0.1 0.95 6.24 3.6 12.3 2.8 5.9 25.8 27.5
0.5 0.42 26.6 2.3 10.8 1.9 5.3 19.4 21.0

Table 2.1: Debye-Hückel parameters (the Debye length λD and the effective linear charge density ν of the double helix [76]) and
the average values of the minimized free parameters for L = 3.6 µm, d = 0.42L and f = 2 pN under various salt concentrations.
Comparison of the braid parameters for the straight (Ca=10) and the buckled phase (Ca=60). Rs and 2πPs are the radius and
the pitch of the straight braid respectively, while δp and α are the braid helix angle and the superhelix angle in the plectoneme
state respectively.
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Chapter 3

Supercoiled double-helix DNA

A statistical-mechanical model for stretched twisted double-helix DNA is presented, where we

view DNA as a semiflexible polymer chain or a worm-like chain featuring bending and twisting

stiffness. Mechanical twisting of DNA perturbs the double-helix structure and generates torsion.

DNA under high torsional stress buckles to helically writhe around itself, forming a plectoneme

[Fig. 3.1(a)]. Helical self-wrapping or supercoiling of DNA is associated with a writhe linking

number that does not contribute to torque, and as a result, additional DNA twisting in the buck-

led state increases the plectoneme length without further increasing DNA torsion. Our model

describes coexistence of multiple plectoneme domains in long DNA molecules at physiological

salt concentrations (≈ 0.1 M Na+). Each plectoneme domain contains one end loop that is a

finite-sized structure and is responsible for a plectoneme-domain nucleation energy [Fig. 3.1(a)].

We find higher (lower) number of domains at lower (higher) ionic strengths of the solution and

stretching forces, in accord with experimental observations.

The model is then used to study the effect of an immobile point defect on the DNA contour

that allows a localized kink. DNA containing an inhomogeneity or a defect may be treated

as an isotropic worm-like chain with a spatially-pinned defect. The thermal persistence length

associated with the defect is smaller, which reduces the energy cost of a localized bend or a kink.

The defect, however, suppresses diffusion of the bent structure which decreases its entropy. The
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degree of the kink is controlled by the defect size, such that a larger defect further reduces the

bending energy of the defect-facilitated kinked end loop [Fig. 3.1(b)]. We find that a defect can

spatially pin a plectoneme domain via nucleation of a kinked end loop, in accord with experiments

and simulations [48, 90, 91]. Our model is in accord with magnetic tweezer experiments [48]

showing two buckling signatures: buckling and ‘rebuckling’ in supercoiled DNA with a base-

unpaired region. Comparing with experiments, we find that under 1 pN force, a kinked end loop

nucleated at a base-mismatched site reduces the bending energy by ≈ 0.7 kBT per unpaired

base. We predict coexistence of three states at the buckling and rebuckling transitions that

warrants new experiments. The findings of this chapter are published in Refs. [48, 49]

Significance Twisted DNA is abundant in the cell. While binding of various proteins perturbs

the double-helix structure, resulting in DNA torsion, this torque is typically small enough not to

induce DNA buckling. Large torsion may be generated by proteins via swiveling one DNA strand

around another. Sufficiently twisted DNA undergoes buckling to form plectoneme structures.

Bacterial DNA is maintained in a twisted condition, as a result, plectonemic or supercoiled

DNA is a common occurrence. DNA supercoiling is associated with various cellular functions,

such as genome organization, gene expression, and DNA recombination [53, 92–94]. In vivo

manipulation of DNA linking number, carried out by topoisomerase enzymes [95], is essential

for topological simplification of the entangled state of the genome, as well as manipulation of

the compaction state of the genome.

The double helix is not a homogeneous polymer. Cellular DNA harbors inhomogeneities that

allow a sharp localized bend, which may be associated with diverse biological phenomena, such

as the appearance of a protein-induced kink on the DNA, or a single-stranded bulge, or a DNA

hairpin [84, 96, 97]. Intrinsic mechanical inhomogeneity introduced by the base-pair sequence

is typically small and may be ignored for a random occurrence of base pairs. However, DNA

fragments containing certain periodic base pair arrays (e.g., a positioning sequence, such as the

601 sequence [98]) may have an intrinsic curvature in the double-helix backbone, which can

alter its mechanics. Positioning sequences are thought to regulate cellular function via biasing



82

nucleosome positioning and altering genome access for transcription factors and other DNA-

binding proteins [99–101]. Base-pair mismatches are another common source of inhomogeneities

influencing DNA mechanics [48, 91]. Spatial pinning of plectoneme domains by a defect [Fig.

3.1(b)] may have important biological consequences. Protein-induced kinks can favor plectoneme

branching and play a role in organization of the bacterial genome. Pinning of a plectoneme

domain by a base-mismatch site will place the mismatch site at the tip of a plectoneme and may

aid in its detection and repair [48].

The importance of theoretical models of DNA and DNA defects of inhomogeneities lies both

in gaining a better understanding of biological mechanisms, and in predicting and explaining

outcomes of single-molecule experiments [49, 60, 65, 66, 76, 102–104]. Single molecule experi-

ments have been crucial in studying DNA mechanical response to linking number perturbation.

While some experiments have directly visualized plectonemes using electron microscopy [105]

and DNAs with fluorescent labels [89]; others have studied plectonemic buckling using tweezer

techniques [35, 79, 83, 84, 89, 106, 107]. Previous theoretical work have greatly enhanced our un-

derstanding of DNA supercoiling, but there still are poorly understood aspects, such as whether

DNA buckles to form a single or multiple plectonemic domains that we investigate in this chap-

ter. Experiments [48, 91] and simulations [90] studying supercoiling DNA with unpaired bases

have shown that a defect can spatially pin a plectoneme domain, however, the nature of buckling

facilitated by the defect and the buckled states involved in the process are not known beforehand,

which is also something our model sheds light on.

Outline Sec. 3.1 contains theory [Sec. 3.1.A] and numerical results [Sec. 3.1.B] for supercoiled

defect-free DNA, where we also compare with available experimental data. We analyze the

effects of salt concentration and length of the supercoiled DNA molecules on its statistical

mechanics [Secs. 3.1.B.i and 3.1.B.vii]. Our results also explain the abrupt buckling transition

and coexistence of multiple buckled domains in supercoiled DNA.

Sec. 3.2 describes how the model can take into account an immobile point defect on the DNA

[Sec. 3.2.A], and explains the results of its numerical solution [Sec. 3.2.B]. Our results reproduce
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Figure 3.1: (a) Schematic of stretched defect-free double-helix DNA plectonemically buckled
under torsional stress. A plectoneme domain contains an end loop that is associated with a
nucleation cost of the domain. (b) DNA with a defect located on its contour (denoted by an
‘X’). The defect allows a localized DNA kink that favors nucleation of a defect-pinned plectoneme
domain characterized by an energy-saving kinked end loop. However, the immobile nature of
the defect spatially pins the domain costing diffusion entropy.

the second buckling signature or rebuckling transition observed previously in magnetic tweezers

experiments [48] [Sec. 3.2.B], and explains the free energy picture underlying buckling [Sec.

3.2.B.i] and rebuckling transitions [Sec. 3.2.B.vi]. We highlight the role of the size of the defect

and predict coexistence of multiple states at the transitions [Sec. 3.2.B.xv]. In Sec. 3.2.C, we

compare our theoretical results with experimental data of Ref. [48]. We explain the observed

shift in transition points [Sec. 3.2.C.i] and quantitatively connect our theoretical defect size

parameter with experiments [Sec. 3.2.C.iv]. The experimental trends for extension jump with

varying defect sizes [Sec. 3.2.C.v], and the force and salt dependence of the rebuckling signal

[Sec. 3.2.C.viii] are also in accord with the theoretical results. Finally, in Sec. 3.3, we conclude

with a summary.

3.1 Supercoiled defect-free DNA

We consider DNA as a charged semiflexible polyelectrolyte with bending persistence length

A = 50 nm and twist persistence length C = 95 nm. We define β−1 ≡ kBT and use T = 290 K

for all numerical purposes. In the following, we investigate the mechanical response of a double-

helix DNA stretched under a constant force f and subject to twist such that the change in the

DNA linking number is ∆Lk. We present the model schematically in this section; mathematical

details are in Appendices C.1 and C.2.
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3.1.A Model

We partition total DNA length (L) and linking number (∆Lk) into a force-extended or unbuckled

state (Lu, Lku), a plectonemically-buckled superhelical state (Lp, Lkp), and m end loops each

of size γ corresponding to m plectoneme domains.

∆Lk = Lku + Lkp +m (3.1)

We consider the writhe linking number contribution from each end loop to be ≈ 1. There is also

a constraint of fixed total DNA length: L = Lu + Lp +mγ.

The total free energy of a stretched-twisted DNA is written as follows.

F = Eu + Ep − kBT lnZ (3.2)

where Eu corresponds to the force-extended or unbuckled part of the DNA containing contri-

butions from DNA twist and force extension [Eq. (C.13)]. Ep is the mean-field energy corre-

sponding to the plectonemically-buckled state [Eq. (C.11)]; and −kBT lnZ is the free energy

contribution from thermal fluctuations of the DNA [Eq. (C.9)]. The total free energy is min-

imized with respect to partition of linking number to obtain the equilibrium linking numbers

corresponding to the force-extended and plectoneme states.

3.1.A.i Buckled state

3.1.A.ii Plectoneme superhelix

The plectoneme state is characterized by superhelically-coiled DNA, and has no force-extension

energy [Fig. 3.1(a)]. However, transverse fluctuations of the DNA within the superhelical

structure are controlled by both the applied tension and electrostatic interactions (Appendix

C.1). The plectoneme state costs bending energy, but at the same time reduces twist energy due

to the writhe linking number contribution associated with the superhelical structure. Following

White’s theorem of partition of linking number into twist and writhe [82], the linking number
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in the plectoneme state Lkp is divided as follows.

Lkp = Twp + Lp
sin 2α

4πr
(3.3)

where the first right-hand-side term is the twist linking number contribution, and the second is

the total writhe of a helical structure with opening angle α, helical radius r, and total plectoneme

length Lp [82, 102].

3.1.A.iii Plectoneme end loop

The end loop is a finite-sized DNA structure where the double helix bends back in a plectoneme

[Fig. 3.1(a)]. We compute the equilibrium size of the end loop: γ =
√
ρA/(βf), via separately

minimizing the associated elastic energy expense [46, 65]:

βEγ = ρA/γ + βfγ ⇒ βEγ =
√
ρβAf (3.4)

The parameter ρ depends on the geometry of the loop, such that it is 2π2 for a circular loop,

≈ 14.0 for a “teardrop”-shaped loop with free ends [108], and ≈ 15.3 (exact) or ≈ 15.7 (simpler

calculation) for an end-constrained teardrop loop [86, 87]. We use ρ = 16, however, we note

that a small change (≈ 10%) in the numerical value of ρ does not alter our conclusions. In the

later part of this chapter, concerning defects, we analyze the effect of a relative variation in ρ

[Eq. (3.8)].

3.1.A.iv Thermal fluctuations

The mean-field structure of the force-extended state is a twisted straight line, whereas, that of the

plectoneme state is a regular helix made up of self-writhed twisted DNA. At a finite temperature,

we treat thermal fluctuations as a small perturbation around the mean-field structure (Appendix

C.1).

The total energy associated with transverse fluctuations of the DNA about its mean-field



86

shape is as follows [Eq. (C.14)].

− lnZ =
Lp
2A

[
3

2

√
µ+ η1/4 cos

(
1

2
tan−1

√
4η

µ2
− 1

)]
+ (L− Lp)

√
βf/A (3.5)

where µ ≡ βAf cosα, is the effective tension in each of the two helically wrapped strands of

the plectoneme; and η ≡ (A2/2)∂2
rU , is the effective electrostatic modulus of uniform radial

deformations in the plectonemic superhelix (see Appendix C.1).

The first bracketed term in Eq. (3.5) corresponds to thermal fluctuations in the plectoneme

structure [Eq. (C.9)]. Note that there are four degrees of freedom associated with transverse

fluctuations in a plectoneme structure, two for each of the plectonemic strands. In a conveniently

chosen reference frame [Eq. (C.3)], three of the degrees of freedom fluctuate independently

under the external tension, as seen in the first term inside the brackets (the term proportional

to
√
µ). The second term within the brackets, dependent on the strength of the electrostatic

repulsions via η, corresponds to electrostatically-coupled fluctuations where the two strands

displace relative to each other. The second term in Eq. (3.5) corresponds to tension-controlled

transverse fluctuations in the force-extended part of the DNA.

We note that this part of the computation substantially improves on the prior work where a

scaling-like free energy cost from cylindrical confinement is used to account for fluctuations in

the plectonemic superhelix [12, 66, 76, 80, 81]. Our approach, resulting in Eq. (3.5), proposes an

explicit computation of thermal fluctuations, treating them as a perturbation about the mean-

field helical geometry of the plectoneme. Eq. (3.5) is consistent with the previously assumed

scaling: − lnZ ∼ σ−2/3
r (where σr is the fluctuation in plectoneme radii [Eq. (C.10)]), but does

not depend on any unknown scaling constants.

Note that a similar treatment of thermal fluctuations in two helically-intertwined DNAs

or braids can be found in Chapter 2. DNA braids have the same geometry as plectonemes,

however experimentally studied braids [47, 55, 56] are force extended, while plectonemes are

buckled structures that do not have force-extension energy [Appendix C.1].
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3.1.A.v Extension and torque

DNA extension z can be obtained from the negative-force derivative of the total free energy [Eq.

(3.2)]. Hence, DNA lengths in the force-extended and buckled states are respectively associated

with positive and zero contributions to extension. Thermal fluctuations further reduce DNA

extension, which is a sub-leading order effect.

Torque in the DNA τ is obtained via the linking-number derivative of the total free energy.

The free energy is harmonic in twist linking number, however, conversion of twist to writhe in

the plectoneme-coexistence state influences the torque response.

3.1.A.vi Partition function

We sum over states containing all possible lengths (Lp), and numbers of domains (m) of plec-

toneme to construct a canonical partition function Z.

Z(∆Lk, f) = e−βF(0,0) +
∑

m=1,2,...

∑
Lp>0

e−βF(Lp,m) (3.6)

where the coexistence-state energies F(Lp,m) [Eq. (3.2)] are obtained by free-energy minimiza-

tion, which also ensures balance of torque in the summed-over states. Energy minimization for

a coexistence state with fixed Lp and m determines the equilibrium plectoneme radius r, and

opening angle α.

Equilibrium values of end-to-end extension (z), number of plectoneme domains (m), torque

in the DNA (τ), and the total plectoneme length (Lp) at a fixed force and fixed linking number

are obtained from the partition function [Eq. (C.15)].

3.1.A.vii Probability distributions

In a canonical ensemble of fixed force f , and fixed linking number ∆Lk, both z and τ undergo

equilibrium fluctuations. The total probability distribution of X ∈ {z, τ} is obtained by adding
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the contributions from various states in the partition sum:

P (X) = P0(X) +
∑

m=1,2,···
Pm(X) (3.7)

where P0 corresponds to the force-extended state, and Pm, where m ∈ {1, 2, · · · }, is the con-

tribution from the buckled state featuring coexistence of m plectoneme domain(s). Buckled

states corresponding to different plectoneme lengths in the partition sum are already taken into

account in Pm [Eq. (C.16)].

3.1.B Results: defect-free DNA

In this section, we describe the numerical solutions of the model and compare our results with

experimental data.

3.1.B.i Supercoiling at physiological salt

We begin with a discussion of rather short DNA molecules (≈2 kb), subject to twist under

physiological salt conditions (≈ 0.15 M Na+).

3.1.B.ii Slight twisting causes extension change due to chiral fluctuations

Untwisted DNA extension is 80-90% of its total contour length under 0.5-2 pN stretching force

[Fig. 3.2(a)]. Higher forces suppress DNA excursions lateral to the force direction, resulting

in a longer extension at zero linking number. Small twisting of the double helix results in a

linear buildup of DNA torque [Fig. 3.2(b)]. Change in extension upon slight twisting of the

double helix is small, due to twist-induced chiral fluctuations in DNA that leads to partial twist

screening, which is taken into account via a renormalized twist stiffness for stretched-unbuckled

DNA [Eq. (C.13)] [60].

Linear torque indicates a constant twist stiffness in DNA, which is a consequence of the

rigidly-stacked double-helical structure. A softer structure, two-intertwined nicked DNAs or a

“braid” has a linking number dependent twist stiffness [46], see Chapter 2.
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Figure 3.2: Theoretical curves for a 0.7 µm (≈2 kb) supercoiled DNA molecule, stretched under
0.5 (blue dashed lines), 1 (red solid lines), 2 (cyan dot-dashed lines), and 3 pN (magenta dotted
lines) applied forces at 0.15 M Na+. Experimental data, reproduced from Ref. [83], are plotted
for 1 (red circles), 2 (cyan squares), and 3 pN (magenta triangles). (a) Extension versus linking
number, shows a flat unbuckled regime at lower linking numbers. Extension decreases steeply
at higher linking numbers corresponding to coexistence of a plectoneme state. The extension
discontinuity connecting the two slopes corresponds to the buckling transition. (b) Torque
increases linearly in the unbuckled state, and then saturates as a part of the DNA buckles
to form plectoneme. Constant torque in the plectoneme coexistence state is due to the writhe
contribution of the plectoneme geometry that screens DNA twist. The small overshoot in torque
as well as the discontinuity in extension near the buckling transition point is related to the end
loop-introduced nucleation cost of a plectoneme domain. (c) Equilibrium number of plectoneme
domains grows to unity at the buckling transition point, showing the nucleation and coexistence
of a plectoneme domain. (d) Average plectoneme domain size increases after the buckling point,
indicating addition of superhelical turns to the buckled domain. Probability density of (e)
extension and (f) torque near the buckling point is bimodal [∆Lk=7.5 and 8.0 under 2 pN force].
The modes of the distributions at higher extension and torque correspond to the unbuckled state
(P0, blue dashed lines); whereas, the lower extension and torque modes correspond to the one-
domain plectoneme state (P1, red dot-dashed lines). The average occupancy of the buckled state
(P1) increases as the linking number is increased near the buckling point.
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3.1.B.iii Torque due to higher twisting leads to DNA buckling

At higher linking numbers, the double helix buckles into a self-writhed plectoneme structure

[12, 105]. Plectonemes with higher pitch-to-radius ratio have a substantial writhe linking number

density [Eq. (3.3)], as a result, buckling avails conversion of twist into writhe. Post-buckling

torque is nearly constant [Fig. 3.2(b)], suggesting that increasing the linking number in buckled

DNA does not increase DNA twist but increases total writhe. Plectonemes save DNA twist

energy but cost bending energy, hence buckling is favored only above a critical torque that

corresponds to a critical linking number. Higher stretching forces stabilize the unbuckled state,

resulting in an increase in the critical linking number [Fig. 3.2]. The mean-field plectoneme

state does not contribute to end-to-end extension, resulting in a steeper decrease in extension

in the coexistence regime [Fig. 3.2(a)].

3.1.B.iv Buckled DNA forms plectonemic structures

Figure 3.2(c) shows the appearance of a plectoneme domain at the buckling transition, which

grows in size as the linking number is increased beyond the critical value [Fig. 3.2(d)]. The

increase in the average size of the plectoneme domain is due to equilibrium DNA length being

passed from the unbuckled into the buckled state, which increases the number of superhelical

turns in the plectoneme domain.

3.1.B.v Buckling transition is abrupt due to nucleation of the end loop

The buckling transition is abrupt due to the finite-sized end loop that associates a nucleation

cost to a plectoneme domain. The discontinuity in extension and the overshoot in torque at

the buckling point [Fig. 3.2(a)-(b)] characterizes the abrupt nature of the transition. Near

the buckling point, the unbuckled and the plectoneme states are thermally accessible, which

implies that the probability of occupancy of either state is non-zero. Figure 3.2(e) shows a

bimodal probability density of extension near the buckling point, where the unbuckled and the

plectoneme states correspond to the higher (P0) and lower (P1) extension modes, respectively.
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The discontinuity in extension at the buckling point (i.e., the non-zero distance between the

two extension modes) is due to the fact that a buckled domain cannot be smaller than an end

loop, which is ∼ O(1) DNA persistence length in size. As the linking number is increased near

the buckling point, the probability of occupancy of the buckled state increases, and that of the

unbuckled state decreases [Fig. 3.2(e)].

The average torques in the two fluctuation-accessible states (P0 and P1) at the buckling

transition are different; this is due to the writhe associated with the nucleated buckled domain

(plectoneme and the end loop). Figure 3.2(f) shows the bimodal torque distributions near the

buckling point. Equilibrium fluctuations between the two states of different torques: P0 and

P1, lead to an overshoot behavior seen in the ensemble-averaged DNA torque at the buckling

transition [Fig. 3.2(b)]. A nonmonotonic mechanical torque, i.e., decreasing torque with increas-

ing linking number indicates negative torsional stiffness, a signature of mechanical instability.

However, the ensemble-averaged torque may show nonmonotonic behavior in an equilibrated

system with monotonic mechanical torque. This is a consequence of nonmonotonic behavior of

torque fluctuations near the buckling transition (see Sec. V of Ref. [65]). There is experimental

evidence of an overshoot in DNA torque at the buckling transition [83, 107].

3.1.B.vi Long buckled DNA show coexistence of multiple plectoneme domains

Entropic stabilization of plectoneme domains, via one-dimensional diffusion along the DNA con-

tour and exchange of DNA length among domains (i.e., fluctuations in relative size of the do-

mains), increases logarithmically with DNA length [Eq. (C.11)] [65]. This leads to proliferation

of multiple domains in supercoiled long DNA molecules (> 10 kb). Diffusion of plectonemes and

coexistence of multiple domains have been observed in DNA visualization experiments [89, 91].

Figure 3.3 shows buckling behavior in long DNA molecules. The critical linking number is

an extensive quantity that increases with DNA length [Figs. 3.2(a) and 3.3(a)]; however, the

critical buckling torque is intensive and remains roughly the same for different length molecules

[Figs. 3.2(b) and 3.3(b)].



92

0 20 40 60 80 100 120
Linking number ∆Lk

0

1

2

3

4

5

Ex
te

ns
io

n 
〈 z〉  (µ

m
)

(a)

0 20 40 60 80 100 120
Linking number ∆Lk

0
5

10
15
20
25
30
35

To
rq

ue
 〈 τ〉  (p

N-
nm

) (b)

0 20 40 60 80 100 120
Linking number ∆Lk

10-1

100

101

Nu
m

be
r o

f d
om

ai
ns

 〈 m〉

(c)

0 20 40 60 80 100 120
Linking number ∆Lk

0

1

2

3

4

5

Do
m

ai
n 

si
ze

 〈 L p
/m
〉  (µ

m
)

(d)

0.5 pN
1.42 pN
3 pN
3.9 pN

Figure 3.3: Theoretical curves for supercoiled 5.4 µm (≈ 16 kb) DNA, stretched under 0.5
(blue dashed lines), 1.42 (red solid lines), 3 (cyan dot-dashed lines), and 3.9 pN (magenta dotted
lines) forces at 0.1 M Na+. Experimental data for 0.5 (blue circles), 1.42 (red triangles), 3 (cyan
diamonds), and 3.9 pN (magenta squares) are reproduced from Ref. [79]. (a) Extension and (b)
Torque plotted as a function of linking number show twisting behavior at lower linking numbers
and plectoneme buckling at higher linking numbers. (c) Equilibrium number of plectoneme
domains show proliferation of multiple plectoneme domains in the coexistence state. At higher
forces, long molecules show a non-monotonic increase in the number of plectoneme domains at
the buckling transition due to the large entropy associated with plectoneme diffusion. However,
in the purely-plectoneme state (i.e., the zero extension state, refer to the 0.5 pN case, at linking
numbers > 90), high stability of plectoneme superhelices and absence of diffusion entropy results
in favoring a single plectoneme domain. Torque in the purely-plectoneme state increases because
the DNA twist increases. (d) The steepness in the increase of the average domain size increases
in the purely-plectoneme state due to coalescence of plectoneme domains.

The larger configuration entropy associated with long DNA molecules reduces the nucleation

energy of a plectoneme domain, resulting in proliferation of multiple domains in the buckled

state [Fig. 3.3(c)]. At lower forces, the nucleation energy cost is further reduced, resulting in an

increased tendency to proliferate new plectoneme domains. However, in the purely-plectoneme

state (i.e., the zero-extension state, where the entire DNA is in the plectoneme state, Lu = 0),

a single plectoneme domain is favored due to reduced diffusion entropy of a domain. Figure

3.3(c) shows coalescence of multiple domains as the linking number is increased in the purely-



93

plectoneme state, which is the result of a highly stable plectoneme superhelix compared to an

end loop.

Energy of the unbuckled and the plectoneme states vary linearly with force, whereas, that of

the end loops vary as the square root of the applied stretching force. This leads to an increased

probability of small plectoneme domains (i.e., end loop with a minimal amount of plectoneme

superhelix) at the buckling transition under higher forces. As a result, twisted long DNA, under

higher forces, buckles via nucleation of a few small loops that coalesce at a slightly higher linking

number due to increased stability of plectonemic superhelices. This is seen as a small overshoot

in the number of plectoneme domains at the buckling transition under higher forces [Fig. 3.3(c)].

Post-buckling torque is mostly constant in the plectoneme-coexistence state, however, in-

creasing the linking number in the purely-plectoneme state causes an increase in the DNA twist,

reflected in an increase in the torque [Fig. 3.3(b)].

Theoretical post-buckling torque appears to be an underestimation compared to experiments

of Ref. [83] [Fig. 3.2(b)], where torque was inferred from angular fluctuations of an optically-

trapped DNA-tethering particle. On the other hand, torque reported in Ref. [79], derived from

the slope of the extension curves using Maxwell relations [109] is lower than the theoretical values

[Fig. 3.3(b)]. While in-situ torque measurement is a remarkable step forward for experiments,

equilibration might be an issue. Maxwell relations are a robust tool for torque estimation,

however, the procedure employed by Ref. [79] assumes a constant torque in the plectoneme-

coexistence state. Our model, although devoid of the above issues, assumes a regular plectoneme

geometry and ignores any energy contribution from distortion of the helical plectoneme structure.

Numerical values of the DNA effective charge [63, 76] as a function of salt concentration also

affects the coexistence state torque. These small discrepancies call for future attention both

from the theoretical and experimental perspectives.
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Figure 3.4: Effect of salt concentration on defect-free DNA. Supercoiled 2µm DNA at 1 pN
stretching force under 0.01 (blue dashed line), 0.1 (red solid line), and 0.5 M Na+ (green dot-
dashed line). (a) Extension, and (b) Torque shows a more rounded buckling transition for lower
salts due to a lower stability of plectoneme superhelices. Note that the torque increases in the
buckled state for lower salts, due to an increase in DNA twist resulting from lower twist screening
by plectoneme superhelices. (c) Number of plectoneme domains increase in the buckled state
for lower salts, whereas, a single plectoneme domain is favored at higher salts. (d) Average size
of a domain increases in the higher salt case. For lower salts, proliferation of multiple domains
lead to a very small domain size in the buckled state.

3.1.B.vii Effect of salt concentration

An increased ionic concentration of the solution strengthens the electrostatic screening of the

charges on the DNA backbone, which reduces the effective excluded diameter of DNA (measured

in Debye-Hückel screening length λD). At lower salt concentrations, a larger screening length

mimics stronger self-avoidance in DNA, which shifts the free energy balance in favor of looped

structures over plectonemic superhelices. This effectively translates into a higher tendency to

proliferate multiple domains of plectoneme as the salt concentration is lowered.
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Figure 3.5: Probability density of extension at 0.01 M Na+ under 1 pN force near the buckling
transition for a 2 µm DNA (≈ 6 kb) [Fig. 3.4]. The extension distribution is bimodal, however,
the two modes, corresponding to unbuckled DNA (P0, blue dashed line) and one plectoneme
domain (P1, red dot-dashed line), are less resolved at lower salts due to increased fluctuations.
The probability distribution remains bimodal after the buckling point, due to appearance of
multidomain plectoneme states (e.g., the two domain state P2, cyan dotted line at ∆Lk=17).
Decreased stability of the plectoneme superhelix at lower salts result in coexistence of multiple
plectoneme domains. Increasing the linking number in the buckled state increases the probability
of occupancy of a plectoneme state with a larger number of domains.

3.1.B.viii Buckling transition is less sharp at lower salt concentrations

The critical linking number increases with a decrease in the salt concentration (Fig. 3.4). Larger

excluded diameter of DNA at lower salt concentrations increases the bending energy of the

plectoneme state, leading to an increase in the critical linking number. The post-buckling state

is that of many domains at lower salts (≈ 0.01 M Na+) (Fig. 3.4), which is again related to the

increased energy of plectoneme superhelices that favors nucleation of many small plectonemes

instead of a single large domain.

3.1.B.ix Buckled DNA at lower salts show coexistence of multiple domains

Torque in the buckled state is flat for higher salts and increases slowly with linking number

for lower salt concentrations (Fig. 3.4). For lower salts, decreased stability of the plectonemic

superhelix (due to higher DNA excluded diameter) causes a small increase in DNA twist in the

plectoneme coexistence state. The extension distributions, at low salt concentrations (≈ 0.01

M Na+), are bimodal at the buckling transition and remain multimodal in the buckled state

due to coexistence of multiple plectoneme domains (Fig. 3.5), which may be visible in tweezer

experiments. However, increased fluctuations may decrease the resolution of the two peaks,
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producing a broad-tailed single Gaussian shape.

DNA braids are structurally bulky, and as a result, mimic the low salt behavior of supercoiled

DNAs. Braids show multimodal extension profiles corresponding to proliferation of buckled

domains [46, 47], see Chapter 2.

We assume the unbuckled state to be decoupled from the electrostatics, because non-neighbor

segments in unbuckled DNA are always distant. Nonetheless, increased repulsion between neigh-

boring segments at lower salts (due to less DNA charge screening), is expected to induce addi-

tional stretching of the polymer. This maybe taken into account via a persistence length that

gets longer with decreasing salt concentration. Experiments suggest a small change (≈ 10%) in

the persistence length over a wide range of salt concentrations (0.01-1 M Na+) [78], which we

ignore for simplicity. The ionic strength dependence of DNA torsional stiffness is also negligibly

small [110].

3.1.B.x Abruptness of the buckling transition varies due to a differential stability

between plectoneme superhelices and end loops

The discontinuous change in extension and overshoot in torque at the buckling point are measures

of the abruptness of the transition, which decreases with decreasing salt concentration (Fig. 3.4).

A more abrupt transition, i.e., two well-separated peaks in the extension profile, results from a

larger size of the nucleated buckled domain. The nucleated domain at buckling consists of an

end loop and a plectoneme comprising superhelical turns. When the superhelix is less stable,

the case for lower salt concentrations (≈ 0.01 M Na+), the nucleated domain is an end loop with

minimal superhelix, which leads to a less abrupt extension change at buckling.

When the salt concentration is increased, plectoneme-superhelical turns are increasingly sta-

bilized, and the amount of superhelically wrapped DNA in the nucleated domain also increases.

This produces a larger extension change (i.e., strongly bimodal extension distribution) at buck-

ling for higher ionic strengths.
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3.2 DNA with a spatially-pinned point defect

In the following section, we describe an immobilized point defect on the DNA that can spatially-

pin a kinked end loop. Consequently, nucleation of a spatially-pinned plectoneme domain may

be favored at the defect site due to the higher bending energy of a teardrop end loop compared

to a kinked loop. We introduce a defect size parameter ε that controls the relative stability of

a kinked loop. We also predict a defect-size-dependent coexistence of three states at buckling

and rebuckling transitions.

3.2.A Model for an immobile defect

We suppose that a defect acts as a soft-spot for bending deformations, such that the DNA can

form a kink at the defect site [Fig. 3.1(b)]. We are motivated to describe defects arising from

base-unpaired regions on the DNA [48], but the biological relevance of a defect-induced DNA

kink is diverse, such as a protein-mediated DNA bend, or a single-stranded bulge on the DNA,

or a damaged DNA base.

3.2.A.i Defect-pinned plectoneme domain

A plectoneme with its tip at the defect site can have a kinked end loop, thereby saving bending

energy. However, the immobile nature of the defect restricts diffusion of a defect-pinned domain

[Fig. 3.1(b)]. As a result, nucleation of a defect-pinned domain is expected to feature a compe-

tition between stabilization from lower bending energy of a kinked end loop and destabilization

from spatial pinning.

3.2.A.ii Size of the defect ε

The defect may have a varied size that affects the degree of the defect-induced DNA kink; larger

defects allow a sharper DNA kink, thus lowering the associated bending energy of a kinked end

loop [87]. Following the scheme used for the defect-free DNA in Eq. (3.4), we use a defect-size

dependent loop parameter: (1 − ε)2ρ, such that the energy of a kinked end loop (Eγ†) is a
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defect-dependent fraction of that of the teardrop loop:

Eγ† = (1− ε)Eγ , (3.8)

where 0 < ε < 1 is the size of the defect, and βEγ =
√
ρβAf is the energy of a teardrop-shaped

loop [Eq. (3.4)]. Energy minimization gives the equilibrium size of a defect-kinked end loop:

γ† = (1− ε)
√
ρA/(βf). (3.9)

Higher values of ε, corresponding to a larger defect, stabilizes the defect-pinned loop by

allowing a sharper kink at the defect site. The experimental counterpart of ε is the number of

adjacent base-pair mismatches on a supercoiled DNA [48]. A defect with a larger number of

unpaired bases further reduces the bending energy of a defect-kinked loop, which corresponds

to a larger value of ε.

The total free energy of a stretched twisted DNA with a defect of size ε is given as:

F(Lp,m,m
†) = Eu + Ep(ε)− kBT lnZ, (3.10)

where the free energy of the coexistence state now depends on the length of the plectoneme (Lp),

the number of mobile plectoneme domains (m), and the number of defect-pinned plectoneme

domains (m†) which can be either 0 or 1 (i.e., m† ∈ {0, 1}). The size of the defect, ε affects the

plectoneme state energy by changing the bending contribution associated with a kinked loop

[Eqs. (3.8), (C.17)]. The total free energy is minimized for a fixed total length:

L = Lu + Lp +mγ +m†γ†, (3.11)

where γ and γ† are the respective sizes of a teardrop and a kinked end loop. [Eqs. (3.4) and

(3.9)]. The total linking number is also constrained, where both kinked and teardrop end loops

contribute unit writhe linking number.
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3.2.A.iii Critical size of the defect-pinned plectoneme

The size of a plectoneme domain is maximum at the end of the coexistence region, which is the

purely-plectoneme state with no unbuckled DNA. However, a defect-pinned plectoneme can be

made maximally big (corresponding to a critical size) at any point in the coexistence region by

forcing its proximity to the tethering surface. For a defect located a distance L∗ from one of the

ends, the defect-pinned plectoneme has a critical size of 2L∗ [48]. A defect-pinned domain must

have the tip of the plectoneme at the defect site; this results in one of the ends of a critically

big defect-pinned plectoneme domain coinciding with a surface-tether point of the DNA [Fig.

3.1(b)]. Consequently, at a coexistence point with total plectoneme length larger than 2L∗ there

must be at least one mobile plectoneme domain (i.e., m ≥ 1).

3.2.A.iv Partition function

We sum over all possible sizes (Lp) and numbers of the plectoneme domains, both mobile (m)

and pinned (m†), to construct a canonical partition function:

Z† = e−βF(0,0,0) +
∑

m†=0,1

∑
m=0,1...

L∑
Lp=∆

[
e−βF(Lp,m,m†) × (1− δm,0δm†,0) [1− δm,0Θ(Lp − 2L∗)]

]

(3.12)

The above partition function imposes a critical size on the defect-pinned plectoneme via the

product of the Kronecker delta with the Theta function [Eq. (C.18)]. The product of the two

Kronecker delta functions ensures the presence of at least one end loop in the buckled state of

the DNA. We get equilibrium values of observables such as extension, torque, and number of

plectoneme domains from the above partition function [Eqs. (C.15)].

3.2.A.v Extension distribution

The extension profile at a given linking number and force is also obtained from the partition

function [Eq. (C.19)].
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P (z) = P00 +
∑′

m†,m

Pm†m, (3.13)

where the primed sum corresponds to a restricted sum as defined in the above partition function

[Eq. (3.12)]. Here, P00 is the contribution from the unbuckled state; and Pm†m is the contri-

bution from a buckled state with m† pinned and m mobile plectoneme domains. For instance,

P01, P10, and P11 are the respective contributions from- the buckled state with one mobile plec-

toneme domain (m† = 0 and m = 1), the buckled state with a defect-pinned domain (m† = 1

and m = 0), and the two-domain plectoneme state containing one mobile and one defect-pinned

domain (m† = 1 and m = 1).

3.2.B Results: DNA with a defect

Figure 3.6(a)-(b) shows extensions and torques, respectively, of a 6 kb DNA molecule with a

defect of sizes ε = 0.05, 0.15, and 0.3 as a function of linking number. Small twisting of the

molecule leads to a small extension change and a linear torque buildup, as seen for defect-free

DNA (Fig. 3.2). An increase in the DNA linking number leads to buckling of the double helix.

The second buckling signature in the extension and torque curves [Fig. 3.6] or the rebuckling

transition [48] is related to the critical size associated with the defect-pinned plectoneme domain.

3.2.B.i Buckling transition

At the buckling transition, the plectoneme state becomes energetically favored because of its

writhe linking number contribution that decreases DNA-twist energy and torque.

3.2.B.ii Defect size controls the post-buckling state

The plectoneme domain nucleated at the buckling transition can be defect-pinned (P10), which

has a nucleation energy that decreases with increasing defect size, but the spatially-pinned

nature of the domain costs diffusion entropy [Fig. 3.7(a)]. On the other hand, the nucleated
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Figure 3.6: Supercoiling 2µm DNA (≈ 6 kb) with a defect of size ε = 0.05 (blue dashed lines),
0.15 (red solid lines), and 0.3 (cyan dot-dashed lines) located L∗=150 nm (≈ 450 bp) from the
surface, under 2 pN stretching force and 0.5 M Na+. The buckling transition is associated with
nucleation of a plectoneme domain, whereas, the rebuckling transition is due to a maximum-size
constraint on the defect-pinned plectoneme domain [48]. (a) Extension and (b) Torque versus
linking number curves show, respectively, a sharp decrease and an overshoot at the buckling and
rebuckling transition points. The magnitudes of torque overshoot and extension jump, associated
with the nucleation cost at the transition, decrease with increasing defect size ε for the buckling
transition; whereas, at the rebuckling point, they increase with increasing size of the defect. (c)
Equilibrium number of pinned plectoneme domain shows an appearance of the defect-pinned
plectoneme at the buckling point, however, probability of nucleating the defect-pinned domain
is vanishingly small for small defects (ε < 0.1). Near the rebuckling point, the defect-pinned
domain is stable only for large defects (ε > 0.25). (c′) Equilibrium number of mobile plectoneme
domains shows that a mobile domain is favored at the buckling point only when the defect is
small; for larger defects, a mobile domain does not appear before the rebuckling point. This
suggests that the rebuckling transition does not occur for small defects. (d) Average size of
a plectoneme domain shows an increase after the buckling point. Rebuckling transition occurs
when the size of the defect-pinned domain is 2L∗ or 0.3 µm. Near the rebuckling point, for larger
defects, the average size of a domain shows an abrupt decrease due to nucleation of a mobile
plectoneme domain. The vertical dashed lines correspond to buckling and rebuckling transitions
[see Figs. 3.7 and 3.8], however, note that the critical linking numbers for the transitions are
defect size dependent [Fig. 3.10].

plectoneme domain can be a mobile one (P01), which has a fixed nucleation cost associated with

a teardrop loop and possesses extra stabilization from diffusion entropy. Figure 3.7(b) shows
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Figure 3.7: Buckling transition for various defect sizes. (a) Schematic of the three possible states
at the buckling transition: unbuckled state (P00, blue dashed line), defect-pinned plectoneme
(P10, green solid line), and mobile plectoneme domain (P01, red dot-dashed line). (b) Total
probability of the three states at the buckling transition (∆Lk=19.5 under f = 2 pN and 0.5
M Na+, see Fig. 3.6) as a function of the defect size ε. For larger defects (ε > 0.1), the
defect-pinned domain (P10) is the favored post-buckling state, because of the lower bending
energy of a kinked end loop associated with P10. While, for small defects (ε < 0.1) the bending
energy saved from a kinked end loop is lower than the loss of diffusion entropy of the pinned
state (P10), which makes the mobile domain (P01) the favored post-buckling state. Note the
relatively higher probability of the unbuckled state for smaller defects. This is due to a shift
of the buckling point towards lower linking numbers with increasing defect sizes (Fig. 3.10).
(c) Probability density of DNA extension at the buckling transition shows the typical bimodal
character observed for defect-free DNA (Fig. 3.2), however, the defect size controls the states
populating the lower-extension mode of the distribution. This also suggests that measurement
of the extension alone is insufficient to distinguish between the states involved at the buckling
transition.

the probability of the three states: P00, P01, and P10, near the buckling transition as a function

of the defect size. The defect-pinned domain (P10) is the favored post-buckling state for larger

defects (ε > 0.1), whereas a mobile domain (P01) is the preferred post-buckling state for smaller

defect sizes (ε < 0.1).

3.2.B.iii Small defects cannot reliably pin plectoneme domains

For small defects (0 < ε < 0.1), the loss of diffusion entropy for a defect-pinned domain is higher

than the bending energy saved from a kinked end loop. This leads to relative stabilization of

the mobile domain for small defect sizes. The probability of the mobile plectoneme domain

decreases near the buckling transition with increasing defect size, and becomes negligible for
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larger defects [Figs. 3.6(c) and 3.7(b)]. The probability of the defect-pinned plectoneme domain

increases with the defect size, and the pinned domain becomes the most probable post-buckling

state for larger defects. The total probability of an end loop or a plectoneme domain after the

buckling transition is unity; the defect size controls the relative stability of the two possible

types of end loops: mobile and kinked or defect-pinned, thus controlling the post-buckled state

[Fig. 3.7(b)].

3.2.B.iv Larger defects cause buckling at a lower critical linking number

Buckling occurs at a lower linking number for higher values of ε. Figure 3.6(c) shows an increase

in the probability of the defect-pinned plectoneme domain at the buckling point. The nucleation

cost of a defect-pinned plectoneme domain decreases with increasing defect size, due to the lower

bending energy associated with a kinked end loop of a larger defect [Eq. (3.8)]. This results in

a decrease of the critical linking number for larger defects, as well as a smaller extension change

and torque overshoot at the buckling transition [Fig. 3.6(a)-(b)].

However, small defects do not show a shift in the buckling transition, because the nucleation

cost of the most probable post-buckling state (P01) is independent of the defect size.

3.2.B.v Plectoneme contribution to a nucleated buckled domain is higher for higher

critical linking number

The average size of a plectoneme domain increases with increasing linking number due to nucle-

ation and consequent growth of a plectoneme domain. Note that although the critical buckling

point varies with the defect size, the plectoneme domain size near the buckling point does not

depend on the defect [Fig. 3.6(d)]. DNA length contribution to a nucleated domain from plec-

toneme superhelical turns depends only on the linking number. As a result, the critical linking

number at a transition determines the plectoneme contribution to the total size of the nucleated

buckled domain, such that the contribution is larger for a higher critical linking number, i.e., a

smaller defect. This also means that the extension change at the buckling transition is larger
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for smaller defects [Fig. 3.6].

For small defects (ε < 0.1), the domain size increases after nucleation of the mobile end loop.

However, for larger defects, the defect-facilitated kinked end loop is highly stable and becomes

probable before plectoneme superhelices are favored [Fig. 3.6(a)-(c)]. As a result, for larger

defects, there is a linking number interval at the buckling transition where the post-buckled

state is just the kinked end loop with minimal superhelical turns. This interval shrinks as the

defect size decreases. Supercoiling experiments using a 20 bp DNA hairpin as a defect have

observed such a linking number interval [84].

3.2.B.vi Rebuckling transition

In Fig. 3.6, the defect is located 450 bp away from one of the ends of the 6 kb DNA molecule.

As mentioned previously (Sec. 3.2.A.iii), the position of the defect imposes a critical size of

900 bp or 0.3 µm on the defect-pinned plectoneme domain. This is directly related to the fact

that a defect-pinned domain must have the defect site at its tip, where an energy-saving kinked

end loop is placed [Fig. 3.1(b)]. When a defect-pinned domain nucleated at buckling becomes

critical in size, nucleation of a mobile plectoneme domain is required to store additional linking

number as writhe, resulting in an increased probability of a mobile domain at the rebuckling

transition [Fig. 3.6(c′)].

The nucleation of a mobile plectoneme domain may or may not be accompanied with a

reduction in the equilibrium probability of the defect-pinned domain (P10). This leads to two

possible post-rebuckling states: one mobile plectoneme state (P01), and the two-domain plec-

toneme state (P11) containing one mobile domain and a defect-pinned domain. Figure 3.8(a)

shows a sketch of the three coexisting states at the rebuckling transition. The corresponding

probability of occupancy of these states at the rebuckling point are also plotted for various defect

sizes [Fig. 3.8(b)].
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Figure 3.8: Rebuckling transition for various defect sizes. (a) Schematic of the three possible
states at the rebuckling transition: the critically-big defect-pinned plectoneme domain (P10,
green solid lines), one mobile plectoneme domain (P01, red dot-dashed lines), and two-domain
plectoneme containing one defect-pinned and one mobile domains (P11, cyan dotted lines). (b)
Total probability of the three states at the rebuckling point (∆Lk=28 under f = 2 pN and 0.5
M Na+, see Fig. 3.6) as a function of the defect size ε. For small defects (0 < ε < 0.1), the post-
buckling state is the mobile domain (P01) and not the defect-pinned domain (P10) (see Fig. 3.7).
As a result, rebuckling is not observed for small defects and the P01 state continues to increase in
size after buckling, same as the case for a defect-free DNA (Fig. 3.2). For intermediate defects
(0.1 < ε < 0.25), the defect is large enough to bias nucleation of the defect-pinned domain
(P10) at the buckling transition (Fig. 3.7); however, at the rebuckling point, one mobile domain
(P01) is more stable than the two-domain state (P11). For large defects (ε > 0.25), the defect-
pinned domain (P10) is highly stable, resulting in nucleation of a new mobile domain at the
rebuckling point; this makes the two domain state (P11) favored after the rebuckling transition.
Note the higher probability of P10 for larger defects, which is due to a shift of the rebuckling
transition to higher linking numbers for larger defect sizes (Fig. 3.10). (c) Probability density of
extension for ε = 0.25 at the rebuckling point. The bimodal extension profile is due to the finite
nucleation energy associated with a teardrop loop of a mobile domain. The state populating
the lower-extension mode of the distribution depends on the size of the defect, such that large
and intermediate defects favor P11 and P01 states, respectively. Small defects show a unimodal
extension profile after buckling transition, and do not exhibit rebuckling.

3.2.B.vii Nucleation cost at rebuckling depends on the defect size

The nucleation energy of the post-rebuckling state depends on the relative stability of the defect-

kinked end loop with respect to a teardrop loop, such that the nucleation cost of the mobile

plectoneme state (P01) increases with the defect size. Note that the total nucleation cost of

the P01 state at the rebuckling point is associated with, first, the energy cost of a teardrop

loop which is defect-size independent, and second, the cost of unpinning a defect-pinned domain

(i.e., a decrease in the equilibrium probability of the pinned domain) which increases for larger
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defects. While, the nucleation cost for the two-domain state (P11) depends only on the energy

of the teardrop loop of the added mobile domain and does not change with the defect size. The

discontinuity in extension and overshoot in torque, seen at the rebuckling point [Fig. 3.6(a)-(b)],

is due to the finite nucleation cost associated with the post-rebuckling state.

3.2.B.viii Rebuckling transition is absent for small defects

Small defects (0 < ε < 0.1) do not exhibit rebuckling transition because the defect-pinned

domain is not the most probable post-buckling state [Fig. 3.6(a)-(c)]. For small defects, a

mobile plectoneme (P01) is nucleated at the buckling transition which increases in size with

increasing linking number in the buckled state. Since a mobile plectoneme domain (P01) is the

most probable buckled state for small defects, the probability corresponding to P01 is the highest

for small defect sizes in Fig. 3.8(b). For small defects, the defect-pinned domain is the second

most probable post-buckling state, and the probability goes to zero when the total plectoneme

size is larger than its critical size [Fig. 3.8(c)].

3.2.B.ix Defect-pinned domain is unpinned at rebuckling transition for intermedi-

ate defects

For intermediate defects (0.1 < ε < 0.25), probability of the defect-pinned domain decreases

at rebuckling. This means that the critically-big defect-pinned domain is “unpinned” or trans-

formed into a mobile domain by displacing it along the DNA contour, thereby replacing the

kinked end loop with a teardrop end loop. Hence, for intermediate defects, the pre-rebuckling

state is the defect-pinned domain (P10) and the post-rebuckling state is a mobile plectoneme

domain (P01) [Fig. 3.8(b)].

3.2.B.x Large defects show coexistence of two plectoneme domains after rebuckling

For large defect sizes (ε > 0.25), higher stability of the defect-pinned domain resists decrease in

its equilibrium probability, and results in addition of a mobile plectoneme domain [Fig. 3.6(c′)].
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Thus, for large defects, the favored post-rebuckling state is the two-domain plectoneme state

(P11); whereas, the pre-rebuckling state is the defect-pinned domain (P10), which is essential for

rebuckling to occur [Fig. 3.8].

3.2.B.xi Critical linking number for rebuckling is higher for larger defects

For intermediate defects, the rebuckling transition occurs at a higher linking number for larger

defect sizes, which is related to the increased stability of the defect-pinned domain [Fig. 3.6].

This is because the nucleation cost at rebuckling increases with increasing defect size resulting in

an increase in the associated critical linking number. However, for large defects, the nucleation

cost does not depend on the defect size resulting in a critical linking number that does not

change with the defect size. The shift in the critical linking number with defect size is also seen

experimentally [48], and is quantitatively analyzed later in this article [Fig. 3.10].

3.2.B.xii Rebuckling is absent at low stretching forces

At lower forces, the nucleation cost of a plectoneme domain decreases, resulting in an increased

tendency to proliferate multiple domains. The energy difference between a mobile and a kinked

end loop also decreases with decreasing force, leading to a coexistence of the defect-pinned and

mobile plectoneme domains in the post-buckling state. For intermediate defects, below ≈ 1 pN

the mobile domain is the most probable post-buckling state, whereas, the defect-pinned domain

is the second most probable. Hence, intermediate defects do not show rebuckling transition

when the stretching force is less than ≈ 1 pN.

3.2.B.xiii Rebuckling is absent at low salt concentrations

Lower salts promote proliferation of multiple plectoneme domains due to decreased stability

of plectoneme superhelices that contain close proximity of DNA segments (Fig. 3.4). This

causes an increase in the probability of the two-domain state at the rebuckling transition as the

ionic strength of the solution is decreased. Hence, at salt concentrations lower than ≈ 0.1 M
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Figure 3.9: Displacement of the defect site. Twist response of 2 µm DNA under 2 pN force
at 0.5 M Na+ with an intermediate defect (ε = 0.2) located L∗ = 0.15 (blue), 0.25 (red), 0.5
(cyan), 0.75 (green), and 1 µm (magenta) from one of the DNA ends. The location of the defect
site controls the critical size of the pinned plectoneme domain (2L∗) nucleated at the buckling
point. This results in an increase of the critical linking number for the rebuckling transition for
defects located farther away from the end, seen as a shift in extension and torque bumps. For
a centrally-located defect (L∗ = 1 µm, magenta lines) the rebuckling transition does not occur
because the critical size of the defect-pinned domain is equal to the total size of the DNA. Note
that unpinning of the defect-pinned domain occurs at the rebuckling transition, as expected for
intermediate defects.

Na+, intermediate defects preferentially nucleate the two-domain state (P11) at the rebuckling

transition.

3.2.B.xiv Displacing the defect shifts the rebuckling point

For a given force and length of the molecule, the critical linking number associated with rebuck-

ling depends on the location of the defect. A defect located farther away from the closest end of

the DNA (i.e., larger L∗) increases the critical size of the defect-pinned domain, resulting in an

increase in the rebuckling critical linking number (Fig. 3.9). Note that for a defect located at

the middle of the DNA, the defect-pinned domain is critically big only in the purely plectoneme

state (no unbuckled DNA or zero extension), and the rebuckling transition does not occur, as
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has also been shown experimentally [48].

3.2.B.xv Comments on experimental detection of three-state coexistence

The extension distributions at the buckling and rebuckling transitions appear bimodal, even

when there are three coexisting states [Figs. 3.7(c) and 3.8(c)]. The lower-extension peak at

the transition is the sum of contributions from the two possible post-transition states (P01 and

P10 for buckling, and P01 and P11 for rebuckling). This means that experimentally measuring

the extension profile at the buckling or rebuckling transitions, as done in magnetic tweezer

experiments [48], does not inform on the identity of the post-transition state.

Measurements of the lifetime of the lower and higher extension modes are also unlikely to

shed light on the possibility of multiple states contributing to the lower-extension peak. The

lifetimes of the higher and lower extension states are simple exponential distributions. In case

of a three-state transition where one of the states is hidden (i.e., the transition out of one state

is not the same as the transition in to the other and vice-versa), the lifetimes follow a Gamma

distribution (polynomial increase for small times and exponential decay for long times). However,

if two of the three states are grouped together, like the predicted scenario, the transition out of

one state is the same as the transition in to the other and vice-versa, resulting in an exponential

distribution of the lifetimes. Such grouping of the two states in a three-state transition simply

blinds the observer to ∼ 1/3 of the transition events and the overall kinetics appears to be that

of a two-state transition.

However, DNA-visualization experiments, where the DNA backbone is labeled with a flu-

orescent dye [89, 91], may be able to distinguish between a defect-pinned domain, a mobile

domain, and a two-domain plectoneme state. Our model predicts the most probable state for a

given linking number and force, but does not inform on the kinetic pathways at the transition.

Precise control of the DNA linking number in visualization experiments may also be able to

report on kinetically-favored states at buckling and rebuckling transitions.
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3.2.C Comparison with experimental data

In this section we compare our results with magnetic tweezer experiments on supercoiled DNA

with a base-unpaired region [48]. We obtain a quantitative relation between the number of

adjacent base mismatches n, and the theoretical defect size ε. Experiments and theory show

good agreement for various thermodynamic trends.

3.2.C.i Critical linking number shift

3.2.C.ii Buckling occurs at a lower linking number for larger defects

The critical linking number associated with buckling shows a general decreasing trend with

increasing defect size, because of the lower nucleation cost for larger defects [gray arrows in Fig.

3.10(a)-(a′)]. We define the critical linking number as the point where the higher and lower

extension peaks have equal weights (i.e., ∆F = 0 in Fig. 3.10). Experiments show a similar

shift in the buckling point to a lower linking number as the number of adjacent base mismatches

n is increased [48] [Fig. 3.10(a′)]. For small defects, the nucleation cost at buckling transition

is less sensitive to the defect size because of the lower probability of the defect-pinned domain

[Fig. 3.7(b)], resulting in a very small to no shift in the buckling point [Fig. 3.10(a)].

3.2.C.iii Rebuckling occurs at a higher linking number for larger defects

The rebuckling point shifts to higher linking numbers with increasing defect size for intermediate

defects. As previously mentioned, rebuckling does not occur for small defects [In Fig. 3.10(b),

the blue dashed curve corresponding to a small defect does not intersect ∆F = 0]. For large

defects, the critical linking number for rebuckling transition does not depend on the defect size.

The nucleation cost of the post-transition state (two-domain plectoneme, P11) for large defects

is associated with a mobile end loop and does not depend on the defect size. Experiments show

the expected trend for the rebuckling point shift [Fig. 3.10(b′)]. Note that n = 4 and 16 bp

cases show a very small shift in the rebuckling point, the expected behavior for large defects.

We compare theoretical results for 0.5 M Na+ with experimental observations at 1 M NaCl
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Figure 3.10: Comparison of theoretical and experimental shifts in the critical linking numbers
associated with buckling and rebuckling transitions as a function of the defect size for f = 3.6
pN. The size of the defect is defined theoretically via the parameter ε, and experimentally, as
n, the number of adjacent base pair mismatches on the DNA [48]. Theoretically, the defects
are categorized into small, intermediate, and large (Fig. 3.8) depending on the numerical value
of ε, as shown in the figure legend. The free energy difference, ∆F between the lower and
higher extension states at the buckling or rebuckling transitions is obtained from the logarithm
of the ratio of area-under-curve of extension histograms (as shown on the y-axis labels). For
a specified defect size, the critical linking number corresponds to ∆F = 0. The gray shaded
arrows show the direction of increasing defect sizes. (a)Buckling transition: Theoretical plot
shows a decrease in the critical linking number with an increase in ε for intermediate and large
defects, whereas, the buckling point does not shift for small defects. Large and intermediate
defects nucleate a defect-pinned plectoneme domain that has a lower nucleation energy, this
causes a decrease in the critical linking number. Small defects nucleate a mobile domain at
the buckling transition, as a result the critical linking number is independent of the defect size.
(a′) A similar shift of the critical buckling point to lower linking numbers with increasing n is
observed experimentally (see Fig. S4(b) of Ref. [48]), where the solid lines show the best-fit
linear regression for various n. (b) Rebuckling transition: Theoretical plot showing the change
in the critical linking number as a function of ε. Small defects do not show rebuckling transition:
the blue dashed line does not intersect ∆F = 0. Intermediate defects show an increase in the
associated critical linking number with increasing ε. Rebuckling for intermediate defects involves
a decrease (increase) in the probability of the defect-pinned domain (one mobile domain), and
consequently, a higher stability of the defect-pinned domain delays the rebuckling transition.
Large defects show rebuckling but not a shift in the rebuckling point with ε. For large defects,
a mobile domain is added to the defect-pinned domain at the rebuckling transition, making the
rebuckling critical linking number independent of ε. (b′) Experimental plot of ∆F near the
rebuckling transition for various n (solid curves are the best-fit straight lines) agrees with the
theoretical trend of the shift in the rebuckling critical linking number.
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[48] [Figs. 3.10 and 3.11]. The increased abruptness of the buckling and rebuckling transitions

at higher salt concentrations, related to the higher stability of plectoneme superhelices, makes

the high salt scenario suitable for experimental studies. However, at salt concentrations higher

than 0.5 M, the Debye-Hückel approximation becomes questionable at best.

3.2.C.iv Relation between ε and n

The experimental (n) and theoretical (ε) defect sizes are expected to have a direct monotonic

relationship for n ≥ 1, and ε = 0 for n = 0. We look for a simple linear variation for n ≥ 1:

ε = a+ bn, ignoring higher order terms that only contribute for very large defect sizes.

The fact that rebuckling is observed experimentally for n = 1 suggests that it is not a small

defect. The rebuckling point shifts in the experimental plot with increasing defect size [Fig.

3.10(b′)]; this indicates that at least n = 1 and 2 must be intermediate defects. Comparing

the critical linking number shifts we see that an increase in n by 1 roughly corresponds to an

increase of 0.05 in ε, implying b ≈ 0.05.

The smallest defect sizes corresponding to rebuckling transition are ε ≈ 0.1 and n = 1; this

suggests a + b ≈ 0.1. Hence, we find n = 1, 2, and 4 respectively correspond to ε = 0.1, 0.15,

and 0.25.

The bending energy saved by increasing the defect size by ∆ε is β∆E = ∆ε
√
ρβAf [Eq.

(3.8)]. This suggests that increasing the size of a DNA lesion by one base pair (∆ε = 0.05) saves

≈ 0.7 kBT of bending energy by allowing a sharper kink at the lesion site under physiological

forces (1 pN). Our estimation is based on intermediate defects, and may be an underestimation

for larger defect sizes because, first, we assumed a linear relationship between n and ε; and

second, we ignored any defect-induced perturbation in DNA twist.

One may ask, given that a larger defect stabilizes the kinked end loop, when is it favorable

to break the intact base pairs adjacent to a base-unpaired region, i.e., save bending energy by

increasing the defect size at the cost of base-pairing energy? The energy saved for an increase

in the defect size by 1 bp (∆ε = 0.05) when equated with the average base-pairing energy
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≈ 2.5 kBT [111], we find a critical force ≈ 12.5 pN which compares with DNA unzipping force

≈ 12 pN [112]. This means that the base-unpaired region of a supercoiled DNA will show an

equilibrium increase in size when stretched under forces larger than ≈ 12.5 pN. This value, based

on our estimation of the defect size, provides a reference point. Experimental significance of this

force is not clear because we ignore transitions in the double-helical structure of DNA, which

are known to occur at torques > 40 pN-nm, which corresponds to buckling torque under < 6

pN stretching force [36].

3.2.C.v Abruptness of the transitions

The extension change at a transition is a measure of the abruptness of the transition. Transitions

with more resolved peaks in the bimodal extension profile are more abrupt.

3.2.C.vi Buckling transition

At the buckling transition, the total size of the nucleated domain (lower extension state) has

contributions from the end loop (kinked or mobile) and the plectoneme superhelical structure.

Larger nucleation cost increases the critical buckling linking number which increases the amount

of plectonemic turns in the nucleated domain. As the defect size gets bigger (intermediate and

large defects), the nucleation cost decreases, which reduces the plectonemic contribution to the

nucleated domain, resulting in a decrease of the extension change [Fig. 3.11]. Note that the size

of a kinked end loop at 3.6 pN is 30 − 20 nm for defect sizes 0 < ε < 0.35 [Fig. 3.11, and Eq.

(3.9)], and it goes to zero as ε→ 1.

Hence, the steep decrease in the extension change at the buckling transition for intermediate

defects is predominantly due to a decrease in the plectoneme contribution to the nucleated

domain [Fig. 3.11]. A large defect nucleates a kinked end loop with minimal plectoneme. This

makes the extension change depend solely on the size of the kinked end loop, and the small

change in the kinked end loop length with increasing defect size results in the shallow decrease

in extension change for larger defects [Fig. 3.11]. Small defects nucleate a mobile domain,
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Figure 3.11: Change in extension at the buckling and rebuckling transitions as a function of the
defect size for 3.6 pN force. The extension change at a transition depends on the size of the
nucleated domain, which has contributions from the end loop and the plectoneme superhelical
state. In case of buckling (blue solid line), the critical linking number decreases with increasing
defect size causing a decrease in the plectoneme contribution as well as the size of the end
loop, reducing the extension change at the transition. However, for small defects, nucleation
of a mobile domain causes a saturation in the extension change for buckling transition and an
absence of rebuckling transition, hence no associated extension change (red dot-dashed line). For
intermediate defects, rebuckling extension change increases with the defect size due to an increase
in the associated critical linking number resulting in a higher superhelix contribution. Whereas,
for large defects, the extension change is constant because of a fixed superhelix contribution
corresponding to a fixed critical linking number (Fig. 3.10). Experimental data for the extension
change (see Fig. 2(c) in Ref. [48]) as function of the number of adjacent unpaired bases n (top
x-axis) compares well with theory. The experimental error bars, omitted in the plot, are smaller
than the size of the point markers.

resulting in an extension change that does not depend on the defect size [Fig. 3.11].

3.2.C.vii Rebuckling transition

Extension change at the rebuckling transition increases with increasing defect size for interme-

diate defects. Rebuckling occurs at a higher linking number for larger defects due to increased

nucleation cost, resulting in an increased plectoneme contribution to the nucleated domain.

This means that at the rebuckling point, total plectoneme length in one mobile plectoneme do-

main (P01, the favored post-rebuckling state for intermediate defects) is larger than that for the
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defect-pinned plectoneme domain (P10, the pre-rebuckling state). The plectoneme contribution

to the post-rebuckling state also increases with the defect size, resulting in an increase of the

rebuckling extension change [Fig. 3.11].

Large defects nucleate the two-domain plectoneme at the rebuckling point, which has a

defect-independent nucleation cost, and as a result the plectoneme contribution to the nucleated

domain does not depend on the defect size. This produces a fixed extension change for rebuckling

in large defects [Fig. 3.11]. Small defects do not show rebuckling, hence there is no extension

change associated with small defects at rebuckling.

3.2.C.viii Detection of rebuckling signal in force-salt landscape

Experimental detection of the rebuckling transition relies on the resolution of the corresponding

bimodal extension distribution [48]. As the force and ionic strength are lowered, the rebuckling

signal diminishes due to overlapping peaks in the extension profile that gives the distribution

an overall unimodal character. Consequently, rebuckling is experimentally observed mainly in

the high salt and high force regime [48].

Pearson chi-squared test

We implement a chi-squared analysis that compares the theoretical extension distribution to a

single Gaussian that best fits the distribution. We fit the theoretical total-extension histograms

[P (z), Eq. (3.13)] near the rebuckling point to a Gaussian distribution, where the mean and

the variance are obtained via least-squared method. We then use a Pearson chi-squared test

[113] to find the p-value of the fit; the p-values corresponding to various salts and forces at the

rebuckling transition are plotted in Fig. 3.12.

Low p-values indicate that our null hypothesis of the chi-squared test: extension histograms

are Gaussian, is less likely, which arises from the distinctly bimodal nature of the extension

profile. As a result, low p-values correspond to the regions in the force-salt landscape where

rebuckling produces an extension profile with two resolvable peaks, and is more likely to be
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Figure 3.12: Contour plot of p-values near rebuckling transition (ε = 0.15) for various points
on the force-salt landscape. We fit the theoretical extension distributions near the rebuckling
point to a single Gaussian distribution, and using the chi-squared test calculate the p-value,
which serves as a goodness-of-fit statistic. Lower p-values (lighter shade) indicate that the
extension histograms near the rebuckling point are characteristically bimodal and are not well
fitted by single Gaussian distributions; whereas, higher p-values (darker shade) indicate the
rebuckling extension histograms are well approximated as Gaussian distributions. Since the
experimental signal associated with the rebuckling transition is the bimodal character of DNA
extension, we find that the rebuckling transition is more likely to be observed experimentally
when the p-value is low, i.e., higher forces and higher salts. The dotted black line shows the
experimentally observed boundary for the appearance of the rebuckling signal associated with
a defect containing two adjacent base-pair mismatches (n = 2 bp) (see Fig. 3 of Ref. [48]).
The bimodal rebuckling signal was reliably observed in experiments for salts and forces on the
right-hand side of the dotted line.

observed experimentally. On the other hand, higher p-values suggest that the total-extension

profile is well fit by a single Gaussian distribution (unimodal), and experimental detection of

rebuckling is less probable.

The dotted line in Fig. 3.12 shows the experimentally-observed boundary between the dis-

appearance of the rebuckling signal on the left-hand side of the dotted line, i.e., at lower forces

and salts; and the appearance of the signal on the right-hand side of the dotted line, i.e., for

higher forces and salt concentrations [48]. The theoretical picture correlates well with the ob-

served statistics of the rebuckling signal, where bimodal extension profile is expected for higher

salts and higher forces (low p-value) [lighter shade in Fig. 3.12]. We note that the experimental
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boundary [dotted line in Fig. 3.12] is associated with a statistical disappearance of the exper-

imental rebuckling signal [48]; and theory suggests that this disappearance is not due to an

absence of the rebuckling transition, but thermal fluctuations overshadowing the experimental

signal at lower forces and salts.

3.3 Summary

3.3.A Defect-free DNA

Supercoiled defect-free DNA shows a linear torque buildup and small extension change upon

small linking number change in the DNA (Fig. 3.2). Larger torques for higher linking numbers

drive coexistence of a buckled plectoneme state that is favored due to its substantial writhe

linking number contribution associated with the geometry (Fig. 3.1). DNA torque is nearly

constant in the plectoneme-coexistence state due to plectonemic writhe. Torque, however, in-

creases in the purely-plectoneme state due to an increase in DNA twist with increasing linking

number (Fig. 3.3).

Abrupt plectoneme-buckling transition The buckling transition marks the onset of a

plectoneme-coexistence state. Nucleation of a plectoneme domain is abrupt due to the finite-

energy cost associated with a plectoneme end loop. The nucleation cost is also related to the

discontinuous change in extension and overshoot in torque at the buckling transition (Fig. 3.2).

Multiple plectoneme domains in long DNA molecules Longer DNA molecules have a

larger configuration entropy associated with a plectoneme domain that reduces the nucleation

cost of the domain. This results in an increase in the equilibrium number of plectoneme domains

coexisting in buckled DNA (Fig. 3.3). However, in the purely-plectoneme state of the DNA, a

single plectoneme domain is favored and the post-buckling torque increases (Fig. 3.3).

Highly stable plectoneme at higher salts Increased salt concentration of the solution

causes an increased screening of the DNA charge that leads to highly stable plectoneme super-
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helices. Whereas, at lower salts, DNA loops are favored over plectoneme superhelices (Fig. 3.4).

This reduces the DNA-length contribution of plectoneme superhelices to the nucleated buckled

domain at the buckling transition for lower salts, resulting in a lower extension discontinuity or

more rounded buckling transition.

The extension distribution is bimodal in the buckled state for low salt concentrations due to

proliferation of multiple domains in the plectoneme-coexistence state (Fig. 3.5), which may be

possible to observe in magnetic tweezer experiments.

Plectoneme tails A plectoneme tail is a finite-sized structure connecting the plectoneme

domain to the unbuckled part of the DNA. The energy cost of a tail region is related to the

constraint of a continuous change of DNA curvature from the plectoneme to the unbuckled

DNA, and compares with the energy cost of constraining the ends of a DNA loop (≈ 10% of

the bending energy of a loop, i.e., ≈ 2 kBT under 2 pN force, see Sec. IVA of Ref. [87]). The

plectoneme tail causes a small increase in the nucleation cost of the plectoneme domain, which

we have ignored in our model for simplicity.

However, the tail region may induce a preference for the spatial location of the plectoneme

domain. By placing the plectoneme domain at one of the ends of the DNA, so that its tail

coincides with a DNA-tether point, the energy associated with the tail can be halved. This is

because one of the ends of plectoneme is the tether point and the constraint of a continuous

DNA curvature is released for that end. Lowering the plectoneme tail energy by ≈ 1 kBT results

in ≈ 3-fold increase in the probability of localizing the domain at one of the DNA ends. There

is experimental evidence for preferential localization of a plectoneme domain near the DNA end

[91].

3.3.B DNA with a defect

We analyzed the effect of an immobile point defect, e.g., a short base-unpaired region [48], on

the mechanical response of DNA. We hypothesized that a defect allows a kink on the DNA at

the defect site, and the location of the defect imposes a critical size on the plectoneme domain
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that nucleates at the defect site. A plectoneme domain with the tip of its end loop placed at the

defect site (i.e., the defect-pinned plectoneme domain), is energetically favored due to a lower-

energy kinked end loop. However, the requirement of putting the end loop at the defect site

causes the other end of the plectoneme (i.e., the plectoneme tail) to coincide with a DNA tether

point for a certain size of the defect-pinned plectoneme domain, which is its critical size. From

simple geometry, a critically-big defect-pinned domain cannot store more superhelical turns [Fig.

3.1(b)].

In previously reported experiments [48], we used one or more adjacent base pair mismatches

at a specified location on the DNA as a point defect. Twisting a base-pair mismatched DNA

showed rebuckling transition near the point where the defect-pinned plectoneme domain reaches

its critical size [Fig. 3.6].

Defect size A defect of size ε can nucleate a kinked end loop that has a bending energy equal

to (1-ε) times the bending energy corresponding to a teardrop loop [Eq. 3.8]. The defect size ε is

related to n the number of adjacent base-pair mismatches on the DNA, such that a larger value

of n indicates higher ε. We categorized the defect size into: small (0 < ε < 0.1), intermediate

(0.1 < ε < 0.25), and large (0.25 < ε < 1).

Buckling transition Twisting the double helix containing a defect buckles when it is ener-

getically favorable to convert twist into writhe. For intermediate and large defects, the buckling

transition occurs via nucleation of a kinked end loop, which makes the defect-pinned plectoneme

domain favored at the buckling transition (Fig. 3.7). For small defects, a mobile plectoneme

domain is nucleated at the buckling transition, the DNA kink at the defect reduces bending

energy but the defect-pinned domain lacks stabilization from diffusion entropy. This leads to a

higher net nucleation cost for the defect-pinned domain featuring small defects than a mobile

domain.

The critical linking number associated with the buckling transition decreases with increasing

defect size for intermediate and large defects. This is because of the lower nucleation cost
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associated with a more sharply kinked end loop of a larger defect size (Fig. 3.6). However, the

critical linking number does not change for small defects, because a mobile plectoneme domain

is nucleated at the buckling point.

Rebuckling transition As the linking number is increased after the buckling transition,

the defect-pinned domain grows in size and becomes critically big. Further increase in DNA

linking number leads to nucleation of a mobile plectoneme domain, required to store additional

plectonemic-superhelical turns.

For large defects, the high stability of the kinked end loop leads to addition of a mobile

domain such that the post-rebuckling state is that of a two-domain plectoneme featuring one

mobile and one defect-pinned domains (Fig. 3.8). For intermediate defects, the defect-pinned

domain unpins itself to nucleate a mobile plectoneme domain. Since only one domain is fa-

vored due to high stability of plectoneme superhelices (higher salt concentration scenario), the

critically-big defect-pinned domain decreases in probability as the mobile domain becomes more

probable after the rebuckling point. For small defects, the rebuckling transition does not occur

as the defect-pinned domain is not the most probable after buckling transition (Fig. 3.8).

For intermediate defects, the critical linking number associated with rebuckling transition

increases with increasing defect sizes. This is due to an increased stability of the defect-pinned

domain for larger defect sizes (Fig. 3.6). However, for large defects, the critical linking number

does not change because the energy difference between the pre- (critically-big defect-pinned

domain) and post-rebuckling (two-domain plectoneme) states does not depend on the defect

size.

Lowering the salt concentration of the solution results in an increased proliferation of buckled

domains. This increases the probability of the two-domain state for lower salts. Consequently,

at low salt concentrations (< 0.1 M Na+) unpinning of the defect-pinned domain is not favored

for intermediate defects.

An unpinned mobile domain may have a preference for placing its tail at one of the DNA

ends or the defect site. This is due to the energy saved from an unconstrained plectoneme tail
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at the DNA ends or the defect site, which is expected to increase the spatial plectoneme density

at those regions and may be visible in fluorescent-DNA experiments [89, 91].

Number of unpaired DNA bases n, and defect size ε We compare theoretical and

experimental shifts in the critical linking numbers at buckling and rebuckling transitions for

various defect sizes (Fig. 3.10). Experimentally, the defect size is controlled via n the number

of adjacent unpaired bases on the DNA [48], which has a direct monotonic variation with the

theoretical defect size ε. We find that n = 1, 2, and 4 roughly correspond to ε = 0.1, 0.15, and

0.25, respectively (Fig. 3.10). This indicates that, for intermediate defects, increasing the size

of a base-unpaired region by 1 bp saves ≈ 0.7 kBT of bending energy under 1 pN stretching

force.

We predict n = 1 and 2 to be intermediate defects, i.e., the defect-pinned domain unpins itself

at the rebuckling transition, as opposed to nucleating a two-domain plectoneme under higher

salt concentrations (≈ 0.5 M Na+) [Fig. 3.8(b)]. The extension histograms at the rebuckling

transition are bimodal even though there are three states: both the mobile and the two-domain

plectoneme state contribute to the lower-extension mode [Fig. 3.8(c)]. As a result, measuring

the extension, as done in magnetic tweezer experiments [48] does not inform whether the post-

rebuckling state is a mobile domain or a two-domain state. However, DNA visualization using

fluorescence imaging experiments may elucidate the existence of these states.

We assume that only the bending degree of freedom of DNA (and not the twist degree of

freedom) is affected by the presence of the defect. This assumption is a simplifying one. Certain

defects, such as the one produced by a base-unpaired region on the DNA [48], may absorb twist

at the defect site. A more sophisticated model may consider the defect to have a lower twist

modulus than the double helix, which is essential when treating the base-unpaired region as

a coexisting state [114]. However, when the number of adjacent unpaired bases is only a few

compared to thousands of paired bases, twist absorption at the defect is expected to be a small

effect and may be ignored.
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Extension change at the transitions The change in extension at a transition is non-zero

because the nucleated plectoneme domain cannot be smaller than the end loop. Moreover, the

relative stability of the end loop compared to plectoneme superhelices determine the contribu-

tion of the plectoneme-superhelix state to the nucleated domain; such that when superhelices

are highly stable, the plectoneme content of the nucleated domain is larger and results in a

larger extension discontinuity. The extension change decreases with increasing defect size at

the buckling transition because of a decrease in the plectoneme contribution to the nucleated

domain as well as a decrease in the size of the kinked end loop for larger defects (Fig. 3.11).

The extension change at the rebuckling transition increases with an increase in the defect size

for intermediate defects, and saturates for large defects.

Disappearance of experimental rebuckling signal at lower force and salt The exten-

sion distributions at the rebuckling transition are bimodal with well-resolved peaks at higher

salts and forces (Fig. 3.12). However, for lower salts and forces, the two peaks overlap giving the

extension distribution a unimodal character that obscures experimental detection of rebuckling

transition. Lower stability of plectonemic superhelices at lower salt concentrations produces

more rounded transitions and masks the rebuckling signal [48].

Biological significance of a defect The parameter ε directly controls the amount of bend-

ing energy saved when the tip of a plectoneme end loop is placed at the defect location. The

biological relevance of a defect is diverse. Adjacent base-pair mismatches on the double-helix

backbone can introduce a spatially-pinned defect [48, 91]; alternately, local structural rearrange-

ment of the double helix by a protein, thereby allowing easy local bending of the DNA backbone

[96, 97], might also act as an immobile defect site. Double helices with a single-stranded bulge

are a common substrate in single molecule study of various DNA-binding proteins [88]; DNA

bulges can also be treated as a defect. The defect size parameter ε may be used as a common

scale to compare relative perturbations introduced by defects of varied origin.

Spatial pinning of a plectoneme domain by a defect may have relevance in double-helix base-
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pair repair mechanism in the cell [48]. A common mechanism to locate targets in the cell, such

as locating a DNA base-pair mismatch region by the repair machinery, is that of a diffusive

search [115–117]. Preferential positioning of the defect site containing mismatched base pairs

at the tip of a plectoneme may facilitate easier access to the lesion. Moreover, DNA kinks are

known to stabilize binding of the enzymes associated with the repair process [118].

Defect induced by DNA sequence Spatial inhomogeneity in a DNA polymer is not only

from varied intra-base-pair interactions, but stacking interactions between adjacent base pairs

can enhance the inhomogeneity locally for certain positioning sequences (or, nucleosome-positioning

sequences) [98–101]. Pinning of a plectoneme domain by certain sequences have recently been

demonstrated experimentally [119]. Occurrence of such positioning sequences in a DNA with

otherwise random base pairs may be modeled as a spatially-pinned defect. Local stiffness change

from one base pair or a weak sequence-induced defect may be expected to be small, i.e., buck-

ling is not necessarily favored at the defect site and rebuckling is not observed. On the other

hand, some positioning sequences may generate an intermediate or large defect, thereby favor-

ing nucleation of a buckled domain at the defect site and exhibiting rebuckling transition. Our

prediction that rebuckling does not occur for small defects (ε < 0.1) may be used in classifying

various positioning sequences.

The possibility of a sequence-induced defect makes the relationship between ε and n (Fig.

3.10) less exact. Placing a base-pair mismatch of size n inside a positioning sequence is ex-

pected to generate a larger defect than placing it at a random location. Enhancement of defect-

facilitated buckling for a positioning sequence with unpaired bases may be relevant for its in

vivo mismatch repair. Similarly, occurrence of a sequence-induced defect near one of the DNA

ends may favor plectoneme positioning at that end over the other [91, 119].

An alternate model, where the defect is associated with an increased bending energy cost may

also be useful. In vivo, such a defect will disfavor in-situ nucleosome assembly, thus regulating

genome access for DNA-binding proteins. Studying supercoiled DNA with multiple defects is an

interesting future prospect. Such studies may show pinning of a plectoneme domain at a defect
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site after an unpinning from a larger defect. Furthermore, studying the role of defects on the

mechanics of chromatin fibers may also be an interesting future possibility.

To conclude, we have presented a theoretical model for DNA buckling and the analyzed the

consequences of introducing a defect. We provided an explicit theoretical treatment of thermal

fluctuations in plectonemic DNA that may be relevant in modeling fluctuations of geometrically

constrained polymers. We also classified defects depending on their size which leads to various

possible states corresponding to different defect sizes that can be probed experimentally.
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Chapter 4

Chromosome structure and topology

We model chromosomes as a succession of polymer loops of chromatin 1, where active extrusion

of loops allows manipulation of the chromosome structure. This results in a cylindrical morphol-

ogy of chromosomes where chromatin loops emanate from a flexible chromatin backbone [Fig.

4.1(b)]. Extrusion of loops to increase the loop size leads to a smaller interloop distance, i.e., a

higher linear density of loops on the backbone, and drives increased compaction of chromosomes

[20, 22]. Compact chromosomes have a high density of chromatin monomers or nucleosomes at

the loop bases, i.e., near the chromosome backbone, leading to an osmotic pressure gradient that

stretches the loops radially. The high osmotic pressure stiffens the chromosomes and generates

a higher thermal persistence length associated with bending of the backbone. High nucleosome

density along the backbone forms a cylindrical core composed of densely packed chromatin [Fig.

4.1(c)]. The core imparts mechanical rigidity to chromosomes and reproduces the elastic moduli

of compact mitotic chromosomes [43, 120–124].

Cellular chromosomes, by virtue of their confinement, strongly overlap with each other,

resulting in an entangled conformation [18, 19]. We find that lengthwise compaction of chro-

mosomes, via loop extrusion, can resolve their entangled topology and drive segregation, given

Type-II DNA topoisomerases (TopoII) that allow topology fluctuations. TopoII act locally and

1 Chromatin is a string of nucleosomes or DNA-protein complexes that forms the basic unit of eukaryotic
chromosomes.
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by themselves cannot disentangle chromosomes, however, by mediating topology fluctuations,

they ensure entanglements do not hinder active compaction and segregation. The level of inter-

chromosome entanglement in a confined volume containing multiple loop-extruded chromosomes

shows a non-monotonic variation with the loop size, featuring an entanglement-minimizing op-

timal loop length that scales positively with the genome size. Inter-chromosomal entanglements

scale negatively with the degree of chromosome compaction, indicating that optimal loops also

maximize compaction. Applying our results to chromosomes during interphase, we find that the

organization of the genome into chromosomal domains or “Topologically Associating Domains”

(TADs) may suppress inter-chromosome entanglements. The model described in this chapter

provides a microscopic view of the structural evolution of chromosomes during the cell cycle,

that is consistent with existing observations and makes testable predictions. The contents of

this chapter are being prepared for publication.

Significance Cellular chromosomes are long biopolymers residing in confined spaces. For eu-

karyotes, the nucleus constitutes the confining compartment, while bacterial chromosomes are

confined by the cell wall. The high degree of confinement promotes topological entanglement

between the chromosomes. Simplification of their entangled topology is essential for proper

segregation of chromosomes, as occurs during mitosis. Active topology manipulation by TopoII

is essential but not sufficient to disentangle the chromosomes, since individual TopoII cannot

sense global chromosome topology. However, chromosome disentanglement may be achieved by

driving compaction in presence of topology fluctuations. Chromosomes are compacted into cylin-

drical rod-like structures during cell division. The increased stiffness of compact chromosomes,

derived from the high osmotic pressure inside their loop-extruded structures, drives chromosome

disentanglement and segregation. This is because denser chromosomes repel each other more

strongly upon overlap due to a higher osmotic pressure in the overlap volume. Although the

idea that compaction via loop extrusion can drive chromosome segregation has been proposed

[18, 19, 21], and since been simulated to show its viability [125], there lacks a quantitative

analysis of its implications, which this chapter provides.
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Our model provides insight into the structure of mitotic chromosomes: compact chromosomes

have a densely packed chromatin core along the backbone, which recapitulates the mechanical

properties of mitotic chromosomes observed experimentally [43, 120–124]. The core behaves as

an elastic solid made up of closely packed nucleosomes, and is responsible for the structural

rigidity of mitotic chromosomes. Our view of the chromosome core is similar to the dense

spherical “core” in star polymers, as analyzed by Daoud and Cotton in 1982 [126], where the

polymer inside the core is fully stretched and maximally dense. Although, non-histone proteins

are essential to generate a compaction pressure leading to formation of the core, the mechanical

rigidity of chromosomes, in our case, comes from the densely packed chromatin, as opposed to

the elasticity of a protein scaffold [127].

Outline The layout of this chapter is as follows. The necessary details of the model are given in

Sec. 4.1, which are subdivided into the structural aspects of loop-extruded chromosomes [Sec.

4.1.A] and the implications of structure on inter-chromosomal entanglements in confinement

[Sec. 4.1.B]. We discuss the results of our model in Sec. 4.2, where we compare our results with

existing experimental observations. Finally, we conclude in Sec. 4.3 with discussion and future

scope of the study.

4.1 Model

In this section, we develop the model through introducing the relevant parameters and concepts.

The scaling calculation has been briefly sketched, and the intermediate steps can be found in

Appendix D.

A fundamental length scale in for a chromatin chain of N monomers is given by its end-

to-end distance or radius of gyration RF that scales positively with the number of monomers:

RF (N) ∼ N3/5 [Fig. 4.1(a)]. The end-to-end distance also scales positively with w, the excluded

volume associated with the nucleosome monomers: RF ∼ w1/5, see Eq. (1.8).
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Figure 4.1: (a) Flory radius of a self-avoiding polymer [Eq. (1.8)]. (b) Sketch of a loop-
extruded chromosome showing chromatin loops on a backbone, where the circles represent the
correlation length inside the chromosome. Out of the three schematic loops, the middle one
is divalent (α = 2) and the other two are monovalent (α = 1). (c) Cross-sectional view of a
compact chromosome. The circular cross-section corresponding to the gray shaded area is the
densely-packed-chromatin core of diameter 2r0. (d) Radial profile of monomer volume fraction
ϕ(r) [Eq. (4.1)]. The volume fraction is the highest inside the core [ϕcore ≈ 1, Eq. (4.4)], and
decays radially outwards.

4.1.A Cylindrical loop-extruded chromosomes

Extrusion of chromatin loops [20, 22, 125, 128] by active elements that form the loop anchoring

complexes leads to a cylindrical configuration of the chromosomes, where loops emanate radially

from a stretched backbone [Fig. 4.1(b)].

4.1.A.i Loop size n

The number of monomers (nucleosomes) in a chromatin loop n, can be obtained from the size

of a loop in base pairs (bp) divided by ≈ 200 bp corresponding to one nucleosome monomer
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(e.g., a 10 kb loop has n = 50 monomers). The loop size is a parameter actively controlled by

the loop-extruding complexes.

4.1.A.ii Interloop distance d

The linear distance between the loop anchors, or the interloop distance d [Fig. 4.1(b)], is also

an actively manipulated length scale that parameterizes the extruded state of a chromosome.

Extrusion of chromatin loops in a finite-sized genome causes an increase in the number of loop

monomers n, and a corresponding decrease in the interloop distance d. Loop extrusion generates

compaction via driving the interloop distance to be smaller than the equilibrium size of the loops:

d < RF (n), which also forces overlap among adjacent loops.

4.1.A.iii Loop valency α

A loop of size n may be divided into α smaller loops (each of size n/α), all of them grafted at

the same site [Fig. 4.1(b)]. Multivalent loops are more compact and have a higher local volume

fraction. The valency of a loop α, is another active parameter controlling the chromosome

structure. Loop extruding enzymes can divide a big loops into multiple smaller ones [20, 22,

125, 129], which increases their loop valencies and drives compaction.

4.1.A.iv Radially decaying monomer volume fraction

Lower interloop distances attained via processive extrusion of chromatin loops lead to a radial

gradient of monomer concentration, such that the volume fraction is the highest at the base of

the loops and decays radially outwards. This is a well-established feature of polymers grafted

on curved surfaces [126, 130–133]. The radial profile of the monomer volume fraction is given

as follows [Eq. (D.1)].

ϕ(r) =
α2/3

w1/3

(
a2

rd

)2/3

(4.1)

The volume fraction is a dimensionless, bounded quantity: 0 ≤ ϕ ≤ 1, where a region with

maximally packed nucleosomes correspond to ϕ ≈ 1.
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The correlation length or the mesh size inside the extruded chromosome has a radially

increasing profile: ξ(r) =
√
rd/α, because the correlation length, which encodes the length scale

over which polymer correlations are screened, is higher for lower concentration of monomers [26].

4.1.A.v Loop extension R

The osmotic pressure gradient generated due to the radial decay of monomer volume fraction

stretches the loops radially. The radial extension of the loops is obtained from integrating ϕ

over the total volume accessible to a loop.

R∫
0

dr ϕ(r)rd = na3 ⇒ R

a
=
w1/4n3/4

α1/2

(a
d

)1/4
(4.2)

Larger loops (higher n) have a higher extension, however, increasing the loop valency (higher

α) causes a decrease in the radial extension of the loop. Decreasing the interloop spacing (lower

d) generates a steeper osmotic pressure gradient which results in a higher loop extension.

The scaling dependence: R ∼ n3/4 is identical to a 2D self-avoiding walk, which is the

consequence of confinement of a loop in an effective 2D slit generated by the neighboring loops

[134].

4.1.A.vi Loop overlap stretches backbone

Overlap between adjacent loops, due to a small interloop spacing (d < RF (n)), generates a

tension along the backbone, because the osmotic pressure tends to push the loops away from

each other. The tension f , may be calculated from the axial gradient of the loop free energy F ,

via: f = −∂F/∂d [Eqs. (D.4), (D.5)]. The same tension can be derived from the net osmotic

pressure per unit cross-sectional area of the chromosomes.

The correlation length along the backbone is set by the force: ξf = kBT/f , and as a result

the backbone polymer behaves as a string of tension-induced blobs, each of size ξf (Pincus

polymer [135]) [Fig. 4.1(b)]. The interloop distance d, is equal to the end-to-end distance of the
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stretched backbone [Eq. (D.6)]:

d = maw1/3

(
fa

kBT

)2/3

= aw1/5α2/5m12/25n3/25 (4.3)

where m is the number of monomers in a segment of backbone between two adjacent loops.

The above relation suggests that the polymer degrees of freedom of the backbone chromatin will

be completely stretched for f > kBT/a ≈ 1 pN. However, this transition to a fully stretched

backbone (d ≈ ma), occurs only in the limit of large loops and small backbone: m < n3/13

[obtained using d > ma in Eq. (4.3)].

Fully stretched backbone: tandem arrangement of monovalent loops. Loop extrusion drives

an increase in the loop size leading to a fully stretched backbone (n� m), where the correlation

length is minimum: ξf = a, and the end-to-end extension is linear with the number of monomers:

d = ma. This configuration corresponds to a tandem arrangement of monovalent loops (α =

1, d ≈ a). However, note that for this configuration, the monomer volume fraction near the

backbone approaches the maximum [ϕm = ma3/(ξ2
fd) ≈ 1, Eq. (D.6)], indicating a highly

compact chromatin near the loop bases.

4.1.A.vii Dense backbone core

High nucleosome density near the loop bases lead to a cylindrical dense-chromatin core of radius

r0 along the backbone [Fig. 4.1(c)]. Tandemly arranged monovalent loops establish a minimal

core (r0 = a). Further loop compaction, e.g., via increasing the loop valency, causes radial

spreading of the high density region, i.e., core thickening. This is because the nucleosome

density in already maximum in the core volume.

The number of monomers per unit length d along the core is m+nc; where nc is the number

of loop monomers residing in the core, such that nc < n, and m is the number of monomers in

the fully stretched backbone (m� n). The volume fraction in the core approaches unity.

ϕcore = (m+ nc)a
3/(r2

0d) ≈ 1 (4.4)
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The correlation length inside the core is at its minimum (one monomer unit), and the edge of

the core corresponds to the radial distance beyond which the correlation length is higher or the

volume fraction is lower [Fig. 4.1(c)-(d)]. This means that every monomer on the surface of the

core belongs to a loop grafting site, which yields a geometric relation between the loop valency

α, and the core radius r0, as follows.

r0 = αa2/d (4.5)

The above equation suggests the thickness of the dense core region can be increased by increasing

the valency of the loops (α), or by decreasing the interloop distance (d). Note that in order to

build a dense core (r0 > a), the following criterion is necessary: αa > d.

Loops with a maximum valency:“saturated loops”. The hardcore limit on the valency of a

loop is the number of the monomers in the loop. However, when the interloop distance is small

(d ≈ a), the core spans the entire chromosome width before the valency reaches this hard limit.

Using Eqs. (4.4) and (4.5), we get the maximum value of valency αmax, when nc = n.

αmax =
√
nd/a ⇒ max{r0} = a

√
na/d (4.6)

The maximum valency of a loop is higher for a larger loop and for a larger interloop distance.

The loops with a maximum valency are saturated, as the volume fraction in the core is al-

ready maximum; we refer to chromosomes with a maximum core as being “saturated”, which

corresponds to a limit of compaction achieved by core formation.

Saturated chromosomes are like solid objects made up of nucleosomes, with a Young’s mod-

ulus ≈ kBT/a3 ≈ kPa. This internal pressure, however, needs to be actively compensated via a

compaction pressure that keeps the chromosomes from relaxing.

4.1.A.viii Persistence length ρ

The cylindrical chromosomes, with loops emanating from a backbone that runs along the axis,

have a bending rigidity because bending of the backbone increases the local volume fraction on
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the concave side of the bend [45, 132]. The persistence length of the chromosomes ρ, may be

calculated from the change in free energy associated with a perturbation in the volume fraction

[Eq. (D.7)] [45], or directly using the formula [132]: kBTρ = R2d(∂2F/∂d2), both yield the

following scaling relation.

ρ = aw5/8α1/4n15/8 (a/d)17/8 (4.7)

The persistence length is higher, i.e., chromosomes become stiffer when the loop size increases,

because larger loops have stronger overlap with their neighbors leading to a stiffer response to

thermal bending. Similarly, chromosomes become more rigid with increasing loop valency and

decreasing interloop distance. Loop extrusion drives an increase in n and α and a corresponding

decrease in d, all of which contribute to an effective increase in the bending persistence length.

Contribution from the core. The core behaves as a solid with elastic modulus ≈ kBT/a
3,

and the corresponding persistence length depends on core thickness: ρcore = r4
0/a

3. The core

makes the chromosome stiffer, and the net persistence length of chromosomes may be obtained

by adding the above contribution from the core to that of the loops [Eq. (4.7)]. However,

in the limit of saturated chromosomes [Eq. (4.6)], both the contributions have an identical

scaling: ρ = a(na/d)2. Hence, it is sufficient to use the contribution from overlapping loops for

chromosome stiffness, and we will employ Eq. (4.7) for persistence length in our calculations.

4.1.A.ix Transformation of chromatin polymer to chromosome

Loop extrusion transforms N units of chromatin monomers or nucleosomes of diameter a, into

N ′ chromosome monomers that are cylindrical units of height ρ and radii R. The coarse-graining

of chromatin units to chromosomal units may be depicted as:

N(a,w, L)→ N ′(ρ,R, L′) (4.8)

where L = Na, is the total contour length of chromatin, and L′ = N ′ρ is that of the chromo-

some. The excluded volume per chromosome monomer: ρ2R ∼ w3/2 [Eqs. (4.2), (4.7)], has



134

a positive scaling with the microscopic excluded-volume parameter w, suggesting that a lower

self-avoidance between nucleosomes also correspond to a lower self-avoidance between chromo-

somes.

Chromosome polymer is shorter. The contour length of the chromosome L′, has a leading

order contribution from the cylindrical array of loops, which is the number of loops times the

interloop distance, as shown in the first term on the right hand side in the following equation.

L′ = Nd/(n+m) + α
1/5
endRF (n) (4.9)

The second term is the contribution from the two ends of a chromosome, which resemble a star

polymer, see Ref. [126] for a derivation of the scaling relation. Each end has loops emanating

from a hemispherical core of radius r0, such that the total number of loops, both ends combined,

is given by αend = (αa/d)2; this condition is equivalent to Eq. (4.5) for a spherical geometry.

The end-to-end distance of the chromosome polymer is given as: RF (N ′) = ρ2/5(ρ2R)1/5N ′3/5,

where ρ2R is the excluded volume per chromosome monomer [Eq. (1.8)]. The transformation

of chromosome end-to-end extension under loop extrusion is given as follows.

RF (N ′)

RF (N)
=

(d/a)1/8

w1/40α1/20n3/40

(
1 +

w1/5α2/5n8/5

(d/a)7/5N
+ · · ·

)
(4.10)

The leading order term is the contribution from the cylindrical part of the chromosomes, and

the second-order contribution (second term inside the brackets, note the 1/N which keeps the

term small as long as the loops are not comparable to the genome size) is the contribution from

ends. We have implemented the limit n� m in the above equation.

Note that loop extrusion causes an increase in n and α, and a decrease in d, which drives a

decrease in the leading order term of the end-to-end distance, thus driving compaction. However,

the same mechanism causes an increase in the contribution to extension from the ends [second

term in Eq. (4.10)], suggesting there is an optimal loop size that minimizes chromosome end-

to-end extension.
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4.1.B Chromosome entanglements

Entanglements from blob collisions. Every nearby crossing or collision between two polymer

segments contributes to entanglement; because type-II DNA topoisomerases (TopoII) can locally

change the topology at a nearby crossing [18, 19]. TopoII enzymes can facilitate passing of a

double-helix DNA segment through another via introducing a transient cut in the DNA, which

makes the total number of nearby collisions a linear scale to measure overall entanglement

between chromosomes. Locally acting TopoII enzymes, however, cannot simplify the global

topology of chromosomes. These enzymes facilitate topology fluctuations, allowing the active

renormalization from nucleosomes to chromosome monomers [Eq. (4.8)] that eventually drives

global resolution of chromosome topology, followed by their segregation.

Collisions between segments inside a blob are rare, because the polymers exhibit strong

self-avoidance. However, collisions between blobs are abundant, since the chromatin solution

is a system of closely-packed blobs. The number of inter-blob collisions scales linearly with

entanglement, as every inter-blob collision contributes ∼ 1 to the overall entanglement of the

polymers.

Note that the average catenation 〈Ca〉, is not a good identifier of polymer entanglement [19].

This is because a highly entangled system may have 〈Ca〉 ≈ 0 where the total number of positive

and negative crossings are the same and cancel each other. However, catenation-squared 〈Ca2〉,

scales linearly with the total number of nearby crossings between polymer segments [19], and is

zero only for unentangled polymers.

Average volume fraction in confinement φ. The average volume fraction of chromatin inside

a nucleus of diameter D is given as follows.

φ = N(a/D)3 (4.11)

Transformation of chromatin to chromosome is accompanied by a strong inhomogeneity in the

local volume fraction, because the volume fraction is higher at the core of the chromosome and



136

decays radially. However, the average volume fraction of the genome inside the nucleus remains

the same (Table 4.1).

4.1.B.i Concentration blobs in a confined solution of chromosomes

The correlation length in confinement ξc, scales with gc, the number of chromosome monomers

in confinement: ξc = ρ2/5(ρ2R)1/5g
3/5
c [Eq. (1.8)].

The number density of chromosome monomers inside a blob is the same as the average

density in confinement, which furnishes the following relation for the correlation length.

N ′

D3
=
gc
ξ3
c

⇒ ξc = aφ−3/4

(
RF (N)

RF (N ′)

)5/4

(4.12)

In the unextruded state (N = N ′), the blob size is ≈ aφ−3/4, as expected for a semidilute

polymer solution [26]. However, via loop extrusion, the chromosome polymer becomes shorter

(RF (N) > RF (N ′)) [Eq. (4.10)], which increases the blob size in confinement. Hence, renor-

malization of chromatin to stiffer and more compact chromosomes result in larger confinement

blobs.

Number of concentration blobs. The total number of blobs in confinement Nblobs, depends

not only on the confinement volume fraction φ and the total number of microscopic monomers

N , but also on the transformation of the end-to-end distance under loop extrusion.

Nblobs = N ′/gc = Nφ5/4

(
RF (N ′)

RF (N)

)15/4

(4.13)

The number of blobs is the maximum in the unextruded state (N = N ′); however, when the

chromosomes become cylindrical brush polymers (N ′ < N), a larger blob size results in a fewer

number of blobs .
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Figure 4.2: Inter-chromosomal entanglements per chromosome 〈Ca2〉, plotted as a function of
the loop size for a finite genome size N [Eq. (4.14)]. Entanglement initially decreases as loops
get bigger, since the end-to-end distance decreases. However, larger loops also lead to a larger
contribution from the ends of the chromosomes that increases the net end-to-end distance of
chromosomes [Eq. (4.9)]. This results in an optimal loop size: n? ∼ N5/8, that minimizes inter-
chromosome entanglements [Eq. (4.15)]. Note that the number of loops is higher for a finite
genome with smaller loop sizes and vice-versa. The schematic pictures of finite-size chromosomes
in small and large loop regime are shown.

4.1.B.ii Inter-chromosome entanglement in confinement

Net entanglement in the nucleus is obtained from the number of blobs scaled with the entan-

glement number Ne. Entanglement is not defined between two isolated monomers, two chains

need to be of a certain number of units, Ne ≈ 100, to be entangled [19, 136, 137]. The inter-

chromosomal entanglement per chromosome

〈Ca2〉 =
Nblobs

kNe
(4.14)

scales inversely with the number of polymers in confinement or the karyotype number k. The

average length of the chromosomes N/k, is smaller in a nuclei with a higher k, and consequently,

the degree of inter-chromosomal entanglement is lower.
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4.1.B.iii Optimal loops minimize inter-chromosome entanglement

Larger loops shorten the cylindrical part of the chromosomes, however, the contribution from

the ends is higher [Eq. (4.10)]. Hence, for a given genome size and karyotype, there is an

optimal loop size n?, that minimizes both the end-to-end distance of chromosomes and their

inter-chromosomal entanglements (Fig. 4.2).

(
∂〈Ca2〉
∂n

)
n?

= 0 ⇒ n? =
(d/a)7/8

w1/8α1/4

(
N

k

)5/8

(4.15)

The optimal loop size is larger for larger genomes, but decreases for chromosomes with a thicker

core (higher α). Chromosomes with a lower interloop distance (d) are more compact and require

smaller loops to minimize entanglement.

4.1.B.iv Chromosome self-entanglement

The number of blob collisions inside a chromosome is a linear scale to measure self-entanglement.

However, contrary to the confinement-induced blobs used to compute inter-chromosome entan-

glements [Eq. (4.12)], the blobs contributing to self-entanglement: ξ = aw−1/4〈ϕ〉−3/4, are

associated with the average volume fraction of loops: 〈ϕ〉 = na3/(R2d).

Self-entanglement of a chromosome is thus obtained using the number of nucleosomes g, per

blob of size ξ = RF (g) [Eq. (1.8)], as follows:

〈Ca2〉self =
N

kNeg
=
w13/64α45/32

Ne(d/a)75/64

(
N

k

)39/64

(4.16)

where we have used the optimal loop size corresponding to minimum inter-chromosome entan-

glements [Eq. (4.15)]. Note that self-entanglement is higher for a more compact state, i.e., lower

interloop distance and higher loop valency.
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4.2 Results

4.2.A Chromosome structure

4.2.A.i Loop extrusion controls chromosome structure

Active manipulation of the three structural parameters: loop size n, interloop distance d, and

loop valency α, allows control over the compaction state of the chromosomes [Fig. 4.1(b)].

Loop extrusion provides a mechanism for directed activity at the loop bases, such that the

loop-extruding complexes, that establish the loop-anchoring point, may also drive a processive

increase in the number of loop monomers [20, 22, 125, 128]. This processivity leads to a more

compact chromosome configuration, where large loops are separated by a small interloop dis-

tance: d < RF (n), resulting in overlap between adjacent loops. The level of compaction may

be increased by division of bigger loops into smaller ones, i.e., via increasing loop valency α,

which may also be driven by loop extrusion [22, 129]. The mechanism of loop extrusion may be

used to attain a highly compact chromosome state corresponding to a fully stretched backbone

(d ≈ a), however, even higher compaction may be achieved by driving d < a [Eq. (4.10)]. It has

been recently proposed that mitotic chromosomes may possess a helical backbone [129], which

may achieve d < a, however, the microscopic mechanism of establishing such a structure is not

clear at the moment.

Directed activity at the loop bases is essential to transition from a less-compact chromosome

state to a highly compact one, as occurs during the cell cycle. Proteins of the family Structural

Maintenance of Chromosome (SMC) are pivotal to chromosome structure [138, 139], and recently

have been strongly implicated as the enzymes that drive loop extrusion via ATP hydrolysis [140–

142]. In order to extrude loops, these enzymes need to generate forces in the range kBT/a ≈ 1

pN, that corresponds to stretching the entropic degrees of freedom in the genome [Eq. (4.3)].
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Figure 4.3: Core diameter 2r0, is larger for chromosomes with loops of higher valency α and/or
lower interloop distance d (green and red solid lines, respectively corresponding to α = 30, d = a
and α = 10, d = a). A minimal core corresponds to tandem monovalent loops (blue line:
α = 1, d = a). The dashed lines correspond to a maximum core size: max{r0} ∼ (N/k)5/18

[Eqs. (4.6), (4.15)] for two interloop distances: d = a and d = 0.1a; the core width is maximized
for chromosomes with optimal loops of maximum valency, i.e., saturated chromosomes. The
dashed lines show that larger chromosomes can afford a thicker core. Black circles represent
experimental data for chromatid width, which is an upper bound for the core diameter (Table
4.3). Open square represents experimental observation of SMC co-localization width during
prometaphase [143]. SMC proteins possibly play an important role in generating the compaction
pressure required to maintain a core, thus a higher width associated with co-localization of SMCs
on the chromatid axes correlates with a thicker core.

4.2.A.ii Compact chromosomes have a dense cylindrical core

Loop extrusion increases n and decreases d, which leads to a nucleosome density that is highest

along the cylindrical backbone and decays radially outwards [Fig. 4.1(c)-(d)]. High volume

fraction of nucleosomes near the loop base builds a cylindrical core along the chromatid axes,

that is composed of closely-packed chromatin. The volume of the core is completely filled with

nucleosomes, such that there is no entropic freedom of chromatin within the core. The osmotic

pressure inside the core: kBT/a
3 ≈ 1 kPa, needs to be counteracted by an active-compaction

pressure to keep the core from relaxing under the osmotic stress. Proteins such as SMCs and

TopoII are known to co-localize along the chromatid axes during mitosis [143, 144], and possibly

play a role in building the core via generating this compaction pressure. SMCs may generate

compaction pressure by loop extrusion, however, the contribution of TopoII to the osmotic



141

pressure of compaction is poorly understood [145]. Higher cross-linking of chromatin inside the

core, possibly by both non/histone-like proteins, can also help maintain a higher compaction

pressure. There is experimental evidence that mitotic nucleosomes tend to aggregate more than

interphase ones, due to post-translational modifications to their histones [146]. This hints at

cell-cycle-dependent chemical modification of chromatin as a possible mechanism to stabilize the

compact core.

Higher loop valency results in a thicker core. Increasing the valency of chromosome loops is

a mechanism to build the core, since the core radius scales linearly with loop valency [Eq. (4.5)].

The core radius is minimum (equal to one nucleosome diameter a) for a tandem arrangement

of monovalent loops (α = 1, d = a) (Fig. 4.3), and becomes thicker for a higher loop valency

(α > 1, Fig. 4.3). This is the result of a higher nucleosome density near the base of a loop with

a higher valency. Since the nucleosome density is already maximum in the core, increasing loop

valency cannot further increase the nucleosome density in the core, but has to increase the volume

of the core, leading to a thicker cross-section. The upper limit of loop valency corresponds to

the core spanning the entire chromosome width, which we call “saturated chromosomes”. The

maximum valency scales positively with loop size: αmax ∼
√
n [Eq. (4.6)]. The dashed lines

in Fig. 4.3 corresponds to saturated chromosomes with different interloop distances. Saturated

chromosomes correspond to the maximally compact state achievable by loop division.

Simulation studies have shown that division of larger loops into smaller ones via loop extru-

sion can drive compaction [22, 125, 129]; such a mechanism can also build a core via increasing

the loop valency. It may be interesting to compute the radial variation of monomer density in the

simulated structures, which may be able to see a regime of shallower radial decay of monomer

concentration corresponding to the chromosome core. The nucleosome concentration profile

predicts a radially decreasing fluorescence intensity in chromatin-stained mitotic chromosomes,

which appears to be qualitatively consistent [139, 143, 144]. An experimental quantification of

the radial decay could be interesting, however note that the fluorescence intensity may not scale

linearly with nucleosome density. The radial dimension of SMC co-localization along the back-
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Figure 4.4: Optimal loop size n?, versus average size of chromosomes for various loop valencies
α and interloop distances d are shown. Optimal loops minimize chromosome end-to-end dis-
tance and inter-chromosomal entanglements, such that the optimal loops are bigger for larger
chromosomes. Note that the loop size n? is smaller for a thicker core, i.e., higher α and lower
d, because a thicker core drives a stronger decrease in chromosome end-to-end distance and
entanglement [Eqs. (4.10), (4.14)]. The power law behavior of n? for saturated chromosomes
(αmax): n? ∼ (N/k)5/9 (dashed lines), is slightly weaker than the case of chromosomes with a
smaller core: n? ∼ (N/k)5/8 (solid lines). The dot-dashed curve depicts a loop size equal to the
chromosome size, hence loop sizes larger than this are not accessible. The gray lines indicate the
chromosome sizes of various organisms, and the black circles are the typical TAD (Topologically
Associating Domains) or chromosome domain sizes from experiments studying physical contacts
within chromosomes (Table 4.2).

bone is a correlative measure of the core width [143, 144]. A higher SMC-width indicates that

the compaction pressure is maintained over a larger cylindrical volume, resulting in a thicker

core (Fig. 4.3).

4.2.B Coupling of chromosome structure and topology

4.2.B.i Lower inter-chromosome entanglement in a higher karyotype

Nuclear chromatin is highly entangled, because the volume fraction of nucleosomes in nuclear

confinement φ, is more than two orders of magnitude higher than the overlap threshold φ? (Table

4.1). The end-to-end distance of a chromosome is maximum in the unextruded state, which

maximizes entanglements in unextruded chromatin [N = N ′, plotted in Fig. 4.5(a)]. However,
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entanglements per chromosome is lower for nuclei with a higher karyotype: 〈Ca2〉 ∼ 1/k, because

the average length of a chromosome is shorter leading to a lower number of contacts with other

chromosomes [Eq. (4.14)].

Dilemma of Yeast. An interesting example to study the effect of karyotype on chromosome

entanglements is the contrast between budding and fission yeasts: both have the same genome

size, but budding yeast has a higher karyotype, and consequently, a smaller average chromosome

length compared to fission yeast (Table 4.1). Inter-chromosome entanglement, 〈Ca2〉 ∼ φ5/4/k

[Eq. (4.14)], is expected to be lower for budding yeast (k = 32) than fission yeast (k = 6),

because of a higher karyotype number. However, fission yeast nuclei are larger (lower φ, Table

4.1), leading to an entanglement value similar to that of budding yeast [Fig. 4.5(a)]. Proper

segregation of chromosomes is likely a strong selective pressure in evolution, since chromosome

mis-segregation can be a lethal stress [147]. This suggests that an increase in the size of fission

yeast nuclei could be an evolutionary response to its lower karyotype number.

4.2.B.ii Optimized loop extrusion drives chromosome segregation

Increasing the loop size decreases inter-chromosome entanglements as long as the loops are

smaller than n? [Eq. (4.15)], beyond this critical value, entanglement increases with the loop

size (Fig. 4.2). This feature of loop-extruded chromosomes comes from their finite size, i.e.,

the two rounded ends capping the cylindrical volume. Longer loops decrease the axial contour

length of the cylindrical part of the chromosomes, however, longer loops also make the ends

larger, contributing positively to the net end-to-end extension of the chromosomes [Eq. (4.10)].

Hence, there is an optimal loop size that minimizes the end-to-end distance of the chromosome

polymer. Inter-chromosomal entanglements scale positively with the end-to-end extension [Eq.

(4.14)], as a result, optimal loops also minimize entanglements [Fig. 4.2, Eq. (4.15)].

Chromosome disentanglement may be driven via an optimized loop extrusion process that

maintains a chromosomal-loop length comparable to the optimal value: n? (Fig. 4.4). This

optimization may be achieved by titrating the concentration of loop-extruding enzymes with
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respect to the average chromosome size. Note that the optimal loops are independent of the

chromatin volume fraction in the nucleus φ. This suggests that a variation in the nuclear

volume, although changes the overall level of inter-chromosomal entanglement [Fig. 4.5(d)],

does not affect the optimal loop length required to minimize entanglements.

Optimal loops are larger for larger genomes. The optimal loop size, plotted as a function of

the average chromosome length (Fig. 4.4) has a positive slope indicating that a larger loop is

required to minimize entanglements between larger chromosomes: n? ∼ (N/k)5/8 [Eq. (4.15)].

Note that the optimal loop size is lower for chromosomes with loops of higher valency and lower

interloop distance. This is because formation of a core via increasing the loop valency and

decreasing the interloop distance leads to a higher loop extension which increases entanglement.

Entanglement removal for chromosomes with a tandem arrangement of optimal monovalent

loops. Inter-chromosomal contacts, leading to entanglements, reduce upon extruding the linear

genome into loops, because the end-to-end distance of the extruded chromosome is smaller. Inter-

chromosome entanglement scales positively with the chromosome length for optimal monovalent

loops: 〈Ca2〉 ∼ (N/k)211/256 [Eq. (D.13)]. Entanglement for chromosomes with a minimum core

(α = 1, and d = a), which also corresponds to the configuration of tandem monovalent loops

that are optimal, is plotted in Fig. 4.5(b). Note the dashed line (Fig. 4.5) that corresponds to

〈Ca2〉 = 1. For points in the phase space below the dashed line (e.g., yeast), inter-chromosomal

contacts are rarer and the chromosomes are less entangled. Loop extrusion drives the dashed

line towards higher volume fraction and higher chromosome lengths [i.e., towards the upper

right corner of the contour plots in Fig. 4.5(b)-(c)], depicting a decreasing inter-chromosomal

entanglement in higher eukaryotes. This is a consequence of the transformation of chromatin

into a loop-extruded polymer brush that has larger and fewer monomer units [Eq. (4.8)].

Compaction via core formation drives further disentanglement of chromosomes. Formation of

a chromosome core, via increasing the valency of loops and/or decreasing the interloop distance,

decreases the end-to-end distance of the chromosomes [Eq. (4.10)]. Loop valency greater than

unity and smaller than the maximum allowed value: 1 < α < αmax, leads to a semi-saturated
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Figure 4.5: Entanglement removal by loop extrusion in steady state. Inter-chromosome en-
tanglement 〈Ca2〉 is shown as a contour plot for various chromatin volume fractions φ, and
chromosome sizes N/k, where the lighter (darker) end of the spectrum corresponds to lower
(higher) entanglement. Various organisms are placed in the (φ,N/k)-phase space, see Table 4.1,
where the dashed line corresponds to 〈Ca2〉 = 1. Hence, organisms lying below the dashed line
have essentially disentangled chromosomes. (a) Entanglement in the unextruded state. Lower
eukaryotes, e.g., fungi (yeast) and nematodes (roundworm), have a low entanglement in unex-
truded chromatin. This results from either a large nuclei or a small genome (Table 4.1). (b)
Inter-chromosomal entanglements are lower in the loop-extruded state with a minimum core
(α = 1, d = a), than that in the unextruded state. This suggests that a minimum core is
enough to segregate the chromosomes in lower eukaryotes and bacteria. Loop-extruded chromo-
somes with a minimum core possibly corresponds to prophase chromosomes in the eukaryotic
cell cycle. (c) Semi-saturated chromosomes with a loop valency half of the maximum value
(α = αmax/2, d = a) show further removal of entanglements via forming a core; although,
the entanglement level is not much smaller than that for the minimal core [compare with (b)].
Inter-chromosome entanglement can be reduced further via nuclear envelope breakdown (NEB)
due to an increase in the volume accessible to chromosomes, i.e., a decrease in the confinement
volume fraction. The dot-dashed lines show 〈Ca2〉 = 1 corresponding to 3 and 6-fold increase
in the volume, where the dot-dashed line on the further right corresponds to the 6-fold case.
(d) Saturated chromosomes, such that chromosomal loops feature maximum valency, are stiff or
semiflexible polymers where the end-to-end is linear with its contour length [Eq. (4.17)]. Satu-
rated semiflexible chromosomes, possibly corresponding to eukaryotic metaphase chromosomes,
show a strong removal of entanglements due to their stiff rod-like behavior.
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state of chromosomes, where inter-chromosomal entanglements are only a little lower than the

monovalent configuration, because of a weak power law: 〈Ca2〉 ∼ α−15/128 [Eq. (D.13)]. How-

ever, nuclear envelope breakdown (NEB) causes a decrease in the confinement volume fraction

which decreases inter-chromosomal entanglements in semi-saturated chromosomes [Fig. 4.5(c)],

that possibly correspond to eukaryotic prophase chromosomes.

4.2.B.iii Semiflexibility of saturated chromosomes drives disentanglement

The maximum valency of an optimal loop: αmax ∼
√
n?, corresponds to a case where the core

spans the entire chromosome. These saturated chromosomes are compact cylindrical structures

that are semiflexible or rod-like stiff polymers, such that their end-to-end extension scales linearly

with the contour length. Hence, using Eq. (4.9), we get the following for semiflexible saturated

chromosomes. (
RF (N ′)

RF (N)

)
sat

= N2/5 d

na
+
(αa
d

)2/5 ( n
N

)3/5
(4.17)

The inter-chromosome entanglement, that scales positively with end-to-end extension: 〈Ca2〉 ∼

RF (N ′)15/4 [Eqs. (4.13), (4.14)], obtained from the above equation, is also minimized by n? [Eq.

(4.15)]. However, in the semiflexible limit, the scaling of entanglement with chromosome length

is substantially weaker: 〈Ca2〉 ∼ (N/k)5/12, resulting in a strong drive towards disentanglement

for saturated chromosomes [Fig. 4.5(d)]. The persistence length of saturated chromosomes are

comparable to their contour length, resulting in a semiflexible-rod-like statistics, that decreases

entanglement.

4.2.B.iv Open mitosis aids faithful chromosome segregation

Higher eukaryotes, like mammals, have open mitosis, i.e., their nuclear envelope completely dis-

solves during mitosis and reemerges after the chromosomes have segregated [148–150]. Contrar-

ily, some lower eukaryotes, like fungi (S. cerevisiae and S. pombe) and molds (D. discoidieum),

have closed mitosis, where the nuclear envelope remains intact during mitosis, or in some cases,

partially dissolves (semi-open mitosis) [148]. The cause of this divergence in the evolution of
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early eukaryotes remains a puzzle, however, high fidelity of chromosome segregation may be an

important determinant.

Nuclear envelope breakdown (NEB) helps chromosome disentanglement. Entanglement be-

tween semi-saturated chromosomes inside the nucleus is not negligible in higher eukaryotes [e.g.,

see human or newt in Fig. 4.5(c)]. However, a decrease in the volume fraction due to NEB

decreases entanglement [dot-dashed lines in Fig. 4.5(c)], enabling higher fidelity of chromosome

segregation. Driving compaction to establish a saturated state will lead to disentanglement

of chromosomes even inside the nucleus [Fig. 4.5(d)], nonetheless, disentanglement of smaller

chromosomes in organisms, such as fly or thale cress, may be attained in the semi-saturated

state via NEB [Fig. 4.5(c)]. Larger genomes, such as newt or lily, however, requires high level

of compaction to drive chromosome disentanglement [Fig. 4.5(d)].

Lower eukaryotes need not dissolve their nuclear envelope to disentangle chromosomes. For

smaller genomes (e.g., yeast, see Table 4.1 and Fig. 4.5), the chromosomes are less entangled

and can be segregated faithfully inside the nucleus. Figure 4.5(a) suggests that budding and

fission yeasts can afford a closed form of mitosis, since entanglements per chromosome are low

(〈Ca2〉 < 1), and interestingly, these organisms do exhibit closed mitosis [149, 150]. This hints

at faithful chromosome segregation as a metric of evolutionary selection influencing whether

mitosis features NEB.

There are, of course, other selective pressures contributing to deciding the fate of the nuclear

envelope during mitosis, one of them being the location of the spindle-pole bodies (SPBs) that

organize the microtubules at the spindle poles [148, 149]. Exo-nuclear positioning of SPBs

will necessitate NEB. Roundworms (C. elegans) can afford closed mitosis (inter-chromosomal

entanglement is low, see Fig. 4.5); however their SPBs reside outside the nucleus, making NEB

essential for mitosis. In C. elegans, NEB occurs only in late mitosis (anaphase), and the rupture

in the envelope is partial (semi-open) and localized near the spindle poles [151]. Interestingly,

fungi, like yeast, also have their SPBs outside the nucleus, which are ‘fenestrated’ into their

nuclear envelope [148, 149, 152, 153], thus enabling intra-nuclear chromosome segregation .
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Flies (D. melanogaster), also a case with low inter-chromosomal entanglements in the nuclei,

shows partial NEB in late mitosis during early developmental stages [150, 151, 154]. Nuclear

envelope dis/assembly depends on, among others, the nuclear lamin proteins and the nuclear

pore complexes, which may also play crucial roles in determining whether an organism has open

mitosis [149].

4.2.B.v Chromosome self-entanglement is higher in the compact state

Self-entanglement scales linearly with the number of chromosome self-contacts, which has a

positive scaling with the average nucleosome volume fraction inside the chromosomal structure:

〈Ca2〉self ∼ 〈ϕ〉5/4 [Eqs. (4.13), (4.14), (4.16)]. As a result, a higher compaction state, associated

with a higher average nucleosome concentration in its cylindrical volume, has a higher self-

entanglement. The level of self-entanglement is higher for chromosomes with a thicker core

(higher α) and a larger size (higher N/k) [Eq. (4.16)]. Higher self-entanglement is expected

in more compact chromosomes, because the chromatin mesh size is lower, leading to a larger

number of self contacts.

4.2.B.vi Synchronized core formation drives sister-chromatid segregation

Higher chromosome self-entanglement indicates that the sister chromosomes are more entan-

gled, which is detrimental to their segregation. This necessitates resolution of sister-chromatid

entanglements before a high degree of compaction is established via formation of the core. The

compaction machinery that drives a thicker core must ensure that the sister chromosomes are

not “fused” at the core, leading to their mis-segregation. This may be achieved by modulating

the rate of compaction, so that the topology-resolution machinery (TopoII) is able to resolve

sister-chromosome entanglements in a timely manner.

Processive loop extrusion initially establishes a minimal core for each sister chromosome,

associated with a tandem arrangement of monovalent loops (α = 1, d = a). However, the two

cores may be heavily intertwined at this stage, and further compaction by increasing loop valency
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may fuse the cores into a single unit of densely packed chromatin. Note that the two intertwined

cores repel each other due to a high osmotic pressure in the region of their overlap [45, 125].

This repulsive force can drive physical segregation of the two chromatids in presence of topology

fluctuations mediated by TopoII. However, segregation may be hindered if core thickening is

driven faster than the disentanglement dynamics of the sisters chromatids.

The net repulsive force between the two sister-chromosome cores is obtained from the total

osmotic pressure per unit cross-sectional area of overlap: frep = ΠRL′/k, where Π = kBT/〈ξ〉3

is the osmotic pressure derived from the average correlation length inside chromosomes: 〈ξ〉 =

aw−1/4〈ϕ〉−3/4, which depends on the average volume fraction 〈ϕ〉 = na3/(R2d). The net

repulsive force between the backbone cores per sister-chromatid pair is given as follows:

frep =
kBT

a

α67/32w3/64

(d/a)101/64

(
N

k

)9/64

(4.18)

where we have used the optimal loop criterion [Eq. (4.15)]. For human chromosomes N/k ≈ 130

Mbp, with a minimal core (α = 1, d = a), the repulsive force is ≈ 2 pN. However, the repulsive

force has a strong positive scaling with loop valency, indicating large repulsion between thick

cores, derived from a higher osmotic stress.

This mechanism is sufficient to drive sister chromatid segregation, however, a concerted ac-

tion of the topology manipulating machinery (TopoII) and the compaction machinery is crucial.

Although the repulsive force increases with core thickness, disentanglement dynamics of inter-

twined sister-chromatid cores becomes exceedingly slow as the cores become thick. This is a

direct consequence of the high polymer viscosity in concentrated solutions, suggesting that the

time scale for thick cores to pass through each other (facilitated by TopoII activity) can be pro-

hibitively large. However, a compaction synchronized with the rate of topology fluctuations by

TopoII, that allows enough time for the two cores to segregate before they undergo compaction

and thickening, can lead to individualized chromatid cores. Once the cores are disentangled,

compaction drives an increase in the repulsive force leading to their gradual entropic segregation.

There is experimental evidence of a cross-talk between TopoII and the SMC protein Condensin,
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coordinating sister chromatid segregation [155].

4.2.B.vii Chromosome domains in interphase reduce inter-chromosome entangle-

ments

Experiments studying the three-dimensional conformation of the genome have observed a high

probability for certain non-neighboring genomic loci to be in physical contact [156, 157]. Such

contacts within a chromosome are abundant and establish chromatin loops. The genomic dis-

tances between the contact points show a peaked distribution, indicating a typical loop size

for organisms; these loops are termed, “Topologically Associating Domains” (TADs), or self-

interacting domains, or chromosome interaction domains [156–162].

The black circles in Fig. 4.4 represent the typical TADs observed in experiments, which

indicate that the TAD sizes compare with that of the optimal loops. Larger genomes have larger

optimal loops, and the TADs for organisms with larger chromosomes are also larger (Fig. 4.4);

this strongly suggests a possible role of TADs in minimizing inter-chromosomal entanglements.

TADs are prominent during interphase, and the sequence-specificity of the TAD loops are known

to play an important role during gene transcription and DNA replication; however, TADs also

ensure that the interphase genome is maintained in a less entangled state.

Note that the TAD organization is gradually lost during mitosis [129, 163], this necessarily

implicates a loss of the sequence specificity at the base of the loops, not the loop organization

itself. Entry into mitosis triggers compaction of the chromosomes, which can be achieved by

forming a core that involves dividing the loops and bringing the loop bases closer. Formation of

the core generates many new genomic contacts, however the statistics of these contacts need not

correlate with the genomic sequences as gene transcription ceases during mitosis. A reappearance

of the sequence-specific TAD structure in the interphase of the next cell cycle necessitates a

disassembly of the core region; and indeed, interphase chromosomes do not appear as rigid

cylindrical rods. Extrusion of loops needs to follow core disassembly to reestablish the TAD

organization [128].
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Figure 4.6: (a) Chromosome doubling force f0 [Eq. (4.20)], defined as the interpolated force
associated with doubling the length of the chromosomes, plotted as a function of chromosome
length for optimal loops. The doubling force is higher for chromosomes with a thicker core,
i.e., higher α and lower d (solid lines). The dashed lines, corresponding to chromosomes with a
maximum core or saturated chromosomes (αmax), show the upper limit of the doubling force. (b)
Elastic moduli E [Eq. (4.19)], derived from the average osmotic pressure inside the chromosomes,
is higher for thicker cores (solid lines), and is maximum for a saturated chromosome ≈ kBT/a3 ≈
4 kPa (dashed line). The negative power law of E with the genome size for a constant α and
d is a result of a lower average monomer density inside larger chromosomes with a thinner
core. Equivalently, it states that larger chromosomes require a thicker core to maintain their
elastic moduli. The black circles correspond to micromechanical experiments on metaphase
chromosomes [43, 120–124], see Table 4.3.

4.2.C Chromosome elastic rigidity

Core imparts mechanical rigidity to chromosome The elastic moduli of mammalian

metaphase chromosomes is ∼kPa, and requires ≈ 0.1 nN forces for appreciable stretching [43,

122, 123]. Loop-extruded chromosomes have a cylindrical rod-like morphology, however, without

a core the they lack the structural rigidity observed in metaphase chromosomes.

Elastic modulus of chromosomes E. The internal osmotic pressure, derived from the av-

erage correlation length: 〈ξ〉 = aw−1/4〈ϕ〉−3/4, serves as an estimate of elastic moduli of the

chromosomes [26].

E =
kBT

〈ξ〉3 =
kBT

a3

α81/32

w15/64(d/a)135/64

(
N

k

)−45/64

(4.19)

The above expression corresponds to optimal loop sizes, and is plotted in Fig. 4.6. The elastic
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moduli is higher for chromosomes with a thicker core, since the average volume fraction inside the

chromosome is higher. The negative power law dependence of the elastic moduli on chromosome

sizes indicates that a thicker core is required in larger chromosomes to maintain its elastic moduli.

Note that the maximum elastic moduli corresponds to 〈ϕ〉 ≈ 1, i.e., saturated chromosomes:

Esat = kBT/a
3 ≈ 4 kPa. However, in case of a core smaller than the maximum size, chromosomes

are highly heterogeneous and the elastic modulus is not well defined.

Chromosomes with a thicker core have a higher doubling force. The doubling force of chro-

mosomes is an intrinsic force constant reflecting the extrapolated force associated with doubling

the length of the chromosomes [120, 122]. We define the doubling force as f0 = d(∂2F/∂d2),

where F is the free energy per loop [Eq. (D.4)], furnishing the following for optimal loops.

f0 =
kBT

a

α37/32w5/64

(d/a)83/64

(
N

k

)15/64

(4.20)

Figure 4.6 shows the doubling force as a function of average chromosome length for optimal

loops, where the black circles represent experimental observations.

Chromosomes with a minimum core (tandem monovalent loops, α = 1, d = a) have a

low doubling force (≈ 10 pN), whereas, the chromosomes with a thicker core (higher α) are

more rigid to stretching perturbations, since f0 ∼ α37/32 (Fig. 4.6). The origin of this elastic

response is the densely packed chromatin inside the core, where the osmotic pressure is the

highest. The curve corresponding to an optimal saturated chromosome (dashed lines in Fig. 4.6)

suggests that organisms with a larger genome can afford a thicker core, f0 ∼ (N/k)5/9(a/d)1/3,

which may explain the higher stretching forces in newts (≈nN) compared to that in humans

(≈0.1 nN) [120, 123]. Note that the high internal osmotic pressure in the core volume must

be actively maintained, and the candidate proteins for this activity are SMC complexes and

various chromatin crosslinking proteins including histones. Non-specific proteolysis of mitotic

chromosomes leads to a smaller elasticity to stretching perturbations [164]. This is consistent

with our results, because digestion of proteins in the chromosomes will lead to a lower compaction

pressure yielding a lower doubling force. The doubling force is also expected to be lower for a
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Figure 4.7: Contour length of chromatids (L′/k) and their widths (2R) are plotted [Eqs.
(D.18), (D.19)] on the left and right y-axes, respectively. The dashed black line shows the con-
tour lengths, whereas, the solid blue line shows the widths of optimal saturated chromosomes
(αmax, d = a). Larger chromosomes have longer contour lengths and widths, however, chromatid
length has a steeper scaling with genome size than width, indicating a higher length-to-width
aspect ratio for larger chromosomes. The black circles and blue squares are experimental obser-
vations [165–174] for the contour length and width, respectively, see Table 4.3.

less compact core (Fig. 4.6).

Bending rigidity of chromosomes. The bending rigidity of loop-extruded chromosomes is

given by, B = kBTρ, where ρ is the persistence length [Eq. (4.7)]. For the genomes of higher

eukaryotes, i.e., chromosome lengths ≈ 102 − 103 Mbp (Table 4.1), B ≈ 10−21 − 10−22 N·m2

for saturated chromosomes. Experimental values of bending rigidity, reported for mammalian

chromosomes [43, 122, 123], are in good agreement.

Longer chromosomes have a higher aspect ratio. The contour lengths (L′/k) and widths

(2R) of chromosomes with optimal loops are higher for organisms with larger chromosomes.

Figure 4.7 plots the lengths and widths of optimal saturated chromosomes, where the positive

scaling of the contour length with total chromosome length, L′sat ∼ (N/k)4/9, is steeper than

that for the width Rsat ∼ (N/k)5/18 [Eqs. (D.18), (D.19)]. This indicates that the aspect ratio

of the cylindrical chromosomes is larger for longer chromosomes, however, the scaling is weak:

L′sat/Rsat ∼ (N/k)1/6.
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4.2.D Effect of solvent quality

Good solvent for chromatin is essential for chromosome segregation Good solvent

for chromatin (w > 0) means the nucleosomal monomers have a preference to be in contact

with the solvent than other nucleosomes. The solvent quality may deteriorate leading to a

weak self-adhesion among nucleosomes that decreases the intensity of their self-avoidance, which

corresponds to 0 < w < 1. In plotting our results, we have always used w = 1; in what follows

we discuss the scaling with the excluded-volume parameter and study the effect of deteriorating

solvent quality.

Inter-chromosomal entanglements scale negatively with the excluded-volume parameter w:

〈Ca2〉 ∼ w−3/32 [Eqs. (4.10), (4.14)]. This suggests that entanglements increase when there

is higher self-adhesion among nucleosomes, which can be understood as the effect of random

sticking of nucleosomes belonging to different chromosomes. Moreover, the repulsion between

sister-chromatid arms is lower for a lower excluded volume: frep ∼ w3/64 [Eq. (4.18)], which

emphasizes the requirement of low nucleosome self-adhesion. Strong self-adhesion in chromatin

promotes attraction between the sister chromatids, as well as different chromosomes, leading to

a highly entangled state that disfavors their segregation [45].

Surfactant activity helps chromosome segregation. Surfactants can drive further compaction

of the chromosomes via reducing the excluded volume of chromosome monomers in a manner

independent of the microscopic excluded volume. Surfactant activity may be studied using a

surfactant parameter ws, such that RF (N ′) ∼ w
1/5
s , which is independent of nucleosome self-

adhesion parameter w [Eq. (1.8)]. Higher surfactant activity reduces ws, which leads to a

smaller entanglement between chromosomes: 〈Ca2〉 ∼ RF (N ′)15/4 ∼ w
3/4
s [Eq. (4.10)]. Upon

disassembly of the nuclear envelope, mitotic chromosomes get coated with a host of proteins,

like Ki-67, that form a perichromosomal layer [175–177]. Such a coating may act as a biological

surfactant that reduces the excluded volume of the chromosome monomers. Ki-67, a widely

used cell proliferation marker, has been proposed to act as a surfactant by building a charged

layer on the chromosomal periphery [175–177].
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Strong self-adhesion among nucleosomes, however, can be turned on after the chromosomes

are coated with surfactants. Once there is an energy barrier to sticking of inter-chromosomal

nucleosomes, such as the charge barrier effectuated by Ki-67 [175–177], a strong self-adhesive

interaction can help further compact the chromosomes. A higher tendency of mitotic nucleo-

somes to aggregate, compared to interphase ones [146] is consistent with the idea of cell-cycle

dependent modulation of chromatin solvent quality, as a mechanism to achieve compaction while

not hampering segregation.

4.2.E Segregation of bacterial chromosomes

Bacteria, unlike eukaryotes, do not have nucleosomes, instead the DNA inside bacterial cells are

coated with a variety of nucleoid associated proteins, like HU and IHF [178]. Bacteria, however,

like eukaryotes, contain SMC proteins [such as MukBEF [179]] and TopoII, which are essential

for compaction and segregation of chromosomes in all kingdoms of life. Bacterial chromosomes

can be treated as a flexible self-avoiding polymer with cylindrical monomer units of length a ≈ 50

nm, corresponding to the persistence length of naked DNA [12]; and width b ≈ 4 nm, which

roughly corresponds to the thickness of a protein-bound DNA segment. All our results discussed

above for chromatin loops in eukaryotes are directly applicable to bacterial chromosomes, i.e.,

extrusion of DNA loops lead to a polymer-brush morphology that drives disentanglement of

chromosomes.

The entanglement-minimizing loops in bacteria have the same scaling relation as Eq. (4.15).

However, there is an extra factor associated with the aspect ratio of the cylindrical DNA

monomers: n? ∼ (a/b)1/4, and 〈Ca2〉 ∼ (a/b)3/20 [Eqs. (D.23), (D.24)]. This suggests that

increasing DNA volume by covering the surface of the double helix with proteins (higher b),

causes a decrease in the optimal loop size and a decrease in entanglement, although the effect

is small (a/b ≈ 10). Figure 4.4 shows the comparison of optimal loop size with experimentally

observed chromosome interacting domain in bacteria (C. crescentus) [159], suggesting that

chromosome domains in bacteria, similar to the eukaryotes, help maintain a low entanglement
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level.

Bacteria do not have nuclei enclosing their genome, however the volume fraction of the

genome inside the cell is quite high compared to the nuclear volume fraction of chromatin in

lower eukaryotes (e.g., yeast and roundworms) (see Table 4.1). Figure 4.5(a) shows that bacterial

chromosomes are entangled in the unextruded state. However, a small degree of compaction

achieved via formation of a minimal core (α = 1, d = a) is enough to disentangle bacterial

chromosomes [Fig. 4.5(c)]. Similar to sister chromatid segregation in eukaryotes, the compaction

is needed to be driven slow enough to allow for disentanglement dynamics of sister chromosomes.

This is a more serious issue for bacteria, because the volume fraction of the genome in the cell

is moderately high, leading to higher polymer viscosity.

Bacterial DNA is maintained in a supercoiled condition, which favors plectoneme formation

[12]. Branching of plectonemes may provide a way to manipulate the size of DNA loops and their

valencies. Protein-mediated kinks may also play an important role in facilitating plectoneme

branching [49], thus driving the structure parameters. Bacterial cell volumes are typically asym-

metric, this generates an entropic-segregation pressure gradient along the longer axis of the cell.

The segregation pressure may lead to equilibrium chromosome segregation at long enough time

scales [180], however, extrusion of DNA loops to form a cylindrical brush structure enhances the

osmotic pressure gradient providing an active mechanism to drive segregation.

4.3 Summary

We presented a model for chromosomes, where the linear genome is arranged as chromatin loops

emanating from a chromatin backbone (similar to a bottle-brush polymer) [Fig. 4.1(b)]. We

analyzed a trend towards self-segregation of chromosomes driven by an active manipulation of

the chromosome structure parameters: loop size n, interloop spacing d, and valency of the loops

α, which denotes the number of loops emanating from one grafting point on the backbone. Active

extrusion of chromatin loops [20, 22, 125] can provide an efficient mechanism to manipulate these

parameters in our model that drive compaction and segregation of chromosomes.
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Loop extrusion Lengthwise compaction of the genome can drive chromosome segregation

[18, 19]. Loop extrusion, an active mode of lengthwise compaction, has been very successful

in interpreting experiments studying the three-dimensional conformation of cellular chromo-

somes [128, 129, 163]. Proteins of the family Structural Maintenance of Chromosomes (SMC),

like Condensin and Cohesin, play an integral role in maintaining the structure of compact

metaphase chromosomes; and more recently, Condensins have been strongly implicated as the

loop-extruding agents [140, 141]. Loop extrusion, by actively increasing the loop size and simul-

taneously decreasing the interloop distance [20, 22, 125], can control the compaction state of the

chromosomes. Loop extrusion can also divide larger loops into smaller ones [20, 22, 125, 129],

thus increasing the valency of loops, which is again a mechanism to control the compaction state

of the chromosomes.

Optimal loops minimize inter-chromosome entanglement Entanglements between chro-

mosomes are minimized for an optimal loop size that increases with the average size of chro-

mosomes (Fig. 4.4). Entanglements are maximum in an equilibrium solution of chromatin

confined in the nucleus. Extruding loops to form a polymer brush structure decreases entangle-

ment initially, but once a threshold loop size is reached the entanglement starts to increase for

larger loops (Fig. 4.2). Larger loops make the chromosome thicker which decreases end-to-end

distance of a finite-sized genome, however, larger loops also increase the contribution to the

end-to-end distance from the chromosome ends, leading to an optimal loop size that minimizes

end-to-end extension and inter-chromosome entanglement [Eq. (4.15)]. To establish an optimal

loop size, loop extrusion has to be optimized which can be done by titrating the concentration

of loop-extruding agents.

Loop extrusion to build a core The optimal loop size, however, is not a constant. It

increases with the genome size, and decreases with increasing loop valency [Eq. (4.15)]. The

valency of the loops is an internal parameter that controls the level of compaction. Higher

valency, larger number of loops emanating from one anchor along the backbone, indicates a
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higher density of nucleosomes at the loop base, and leads to formation of a cylindrical core along

the backbone [Figs. 4.1(c), 4.3]. The core gives the loop-extruded chromosomes the compactness

and structural rigidity observed in metaphase chromosomes [Fig. 4.6]. Thus, extrusion of the

existing chromatin loops to increase their valency can compact the chromosomes via building a

core.

TADs reduce chromosome entanglements in interphase genome Sequence-specific

physical contacts are a unique feature of the interphase genome, that establishes loops with well-

defined genomic sequences at their bases, called “Topologically Associating Domains” (TADs),

or self-interacting or chromosome-interacting domains [156, 157, 159]. The optimal loop sizes

that minimize inter-chromosomal entanglements compare with the TAD sizes observed experi-

mentally in interphase [156, 158, 181]. This highlights a potential role of TADs in maintaining

a low entanglement level inside the nuclei, while also regulating gene transcription. The loss

of TADs during mitosis [129, 163] could be a result of the core formation, which proceeds via

increasing the valency of the loops irrespective of the genomic sequences at the loop bases.

Chromosome compartmentalization during interphase features a separation of the less com-

pact, early replicating, active or “A”-compartment (euchromatin) from the more-compact, late-

replicating inactive or “B”-compartment (heterochromatin) [182]. The inactive compartments,

typically tethered to the nuclear lamina, may be thought of as densely-packed chromatin cores,

however, the geometry of the core and the proteins responsible for maintaining the compaction

pressure in the compartments are different. Chromatin cross-linking and tethering proteins, like

HP1α [183], are thought to be the primary organizers of the interphase compartments.

Active topology fluctuations are essential for chromosome segregation Topology fluc-

tuations, mediated by type-II DNA topoisomerases (Topo II), are an essential ingredient for

chromosome segregation. Topo II is a locally acting enzyme that is agnostic of the global topol-

ogy of chromosomes, which means, TopoII alone is incapable of segregating the chromosomes.

However, by maintaining a fluctuating topology, Topo II ensures that local entanglements do
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not hinder the compaction machinery (SMCs), which is able to drive a global segregation of

chromosomes by lengthwise compaction.

The net rate of topology fluctuations, governed by the cellular concentrations of TopoII, can

affect the time scales of compaction. Topology fluctuations by TopoII may be incorporated as

an effective polymer viscosity governing the time scales of chromosome dynamics, which is left

for future considerations.

Sister-chromatid segregation requires interplay between compaction and topology-

manipulation activities A higher-compaction state for the loop-extruded chromosomes also

have a higher self-entanglement, which hinders segregation of sister chromatids. Entanglements

between the sister chromatid backbones should be resolved before the compaction machinery

drives a core formation via increasing loop valency; otherwise, both the sister chromosomes may

develop a heavily intertwined common core, making disentanglement dynamics prohibitively

slow. Proper segregation of the sister chromatids require a modulated compaction rate, such

that the sister core are duly disentangled before they become thick. Osmotic pressure from core

overlap generates a repulsive force between the cores [Eq. (4.18)], however, the dynamics of the

core is slow due to high nucleosome density, which again hints at the necessary interplay between

TopoII and SMCs (compaction machinery) in order to disentangle the sister chromosomes.

Comparison with other models of mitotic chromosomes The view of compact metaphase

chromosomes as layers of stacked chromatin loops dates back to the early electron microscopy

images that led to the “radial loop” models [184, 185]. Note, that the core in our case is

built entirely out of closely packed chromatin, which reproduces the mechanical properties of

metaphase chromosomes (Fig. 4.6) [43, 120, 122, 123]. This is different from the scenario of

a protein scaffold along the chromosome axes supporting the radial loops and providing the

mechanical rigidity of chromosomes [127, 184]. However, the core in our case is actively built by

packing chromatin, hence a higher density of proteins associated with the activity (like SMCs)

is expected along the core [138, 143, 144]. Another view of mitotic chromosomes is that of
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hierarchically folded chromatin with an “axial glue” comprised of chromatin-crosslinking pro-

teins [186]. The saturated state of the chromosomes in our model has qualitative similarities

with this view, however, the hierarchical folding in our case is obtained by extruding loops that

leads to a higher axial density of chromatin. Mitotic chromosomes as self-assembled stacks of

thin plates containing irregularly folded chromatin [174, 187] may provide structural rigidity but

how such self-assembly of nucleosomes will lead to segregation is not clear. Polymer models of

chromosomes obtained from simulating loop extrusion have the 3D conformation of cylindrical

chromosomes [125, 129], and it would be interesting to study aspects of the simulated structure

like the radial density profile of monomers.

We have modeled chromosomes as chromatin loops arranged on a flexible chromatin back-

bone. In presence of topology fluctuations, active extrusion of the loops can control the com-

paction state of the genome and drive segregation of the chromosomes. A high density of loops

on the backbone leads to a dense chromatin core along the cylindrical axis that provides chro-

mosomes with structural rigidity and rod-like morphology observed during mitotis. We also find

that inter-chromosome entanglement is minimized for an optimal loop size that is higher (lower)

in a less (more) compact genome, and scales positively with the genome length. Entanglement

minimization by loop-organization of the genome hints at the potential role of chromosomal

domains or TADs in maintaining a lower degree of inter-chromosomal entanglement during in-

terphase.



161

Chromosome Confinement Volume Overlap
Organism Genome Karyotype length volume fraction threshold

(Mbp) k N/k (Mbp) D3 (µm3) φ φ?

Lily (L. longiflorum) 97000 24 4000 1347 [188] 0.3 10−7

Newt (N. viridescens) 95000 24 4000 4174 [189] 0.06 10−7

Human (H. sapiens) 6000 46 130 300 [189, 190] 0.07 10−6

Mouse (M. musculus) 5600 40 140 400 [189, 191, 192] 0.04 10−6

Toad (X. laevis) 5400 46 150 307 [189] 0.05 10−6

Chicken (G. gallus) 2200 78 28 210 [189] 0.03 10−6

Fly (D. melanogaster) 280 8 35 78 [189] 0.01 10−5

Thale cress (A. thaliana) 240 10 24 70 [193, 194] 0.01 10−5

Roundworm (C. elegans) 200 12 17 200 [195, 196] 0.003 10−5

Fission yeast (S. pombe) 25 6 4 12 [197–199] 0.005 10−4

Budding yeast (S. cerevisiae) 25 32 0.8 3 [189, 200, 201] 0.02 10−4

Bacteria (E. coli) 9.2 2 4.6 2 [202] 0.025 10−4

Table 4.1: Genome size in diploid nuclei, in Mega-base pair units (Mbp=106 bp), and the corresponding karyotype (number
of chromosomes) for various model organisms [188, 189, 203]. Average chromosome length N/k, is obtained by dividing the
total genome size by the karyotype number k. Note that the number of monomers per chromosome N/k, when written in
Mbp units represent the net genomic length of each chromosome. Nuclear volumes of various organisms are used to compute
the average volume fraction of chromatin inside nuclear confinement, φ. The critical volume fraction above which there is
inter-chromosome overlap, φ? = Na3/RF (N)3 = N−4/5, is much smaller than the chromatin volume fraction, indicating strong
inter-chromosome overlap between chromosomes inside the nucleus. Note, bacterial chromosomes are made up of cylindrical
segments of length a ≈ 50 nm and width b ≈ 4 nm (corresponding to protein-bound DNA), such that the volume fraction is
computed as φ = Nab2/D3.
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Organism TAD size (kbp)

Human 200 [158], 880 [156]
Mouse 880 [156]

Chicken 80 [129]
Fly 60 [156, 161]
Rice 45[160], 487[162]

Roundworm 1000 [204]
Bacteria 170 [159]

Fission yeast 50 [205, 206], 80 [207, 208]
Budding yeast 100[209], 200 [181]

Table 4.2: Topologically Associating Domain or TAD sizes, as observed in chromosome conformation capture experiments,
plotted in Fig. 4.4. The genome size and karyotype numbers of these organisms are given in Tables 4.1 and 4.3. Note, the
bacterial TAD size is for C. crescentus [159] which has a genome size similar to E. coli.

Chromatid Chromatid Stretching Elastic
Organism Genome size Karyotype length: L′/k width: 2R modulus: f0 modulus: E

(Gbp) k (µm) (µm) (nN) (kPa)

Newt (N. viridescens) 95 [189] 24 [189] 20 [123] 1.6 [123] 1 [123] 0.7 [123]
Pine (P. taeda) 44 [203] 24 [203] 18 [174] 1 [174] – –

Grasshopper (C. parallelus) 26 [169] 18 [169] – – – 0.43 [124]
Deer (M. muntjak) 6 [170, 171] 8 [170, 171] 11 [171] 0.96 [171] – –
Human (H. sapiens) 6 [203] 46 [203] 4.3 [171] 0.88 [171] 0.25 [120] 0.42[120]

Toad (X.laevis) 5.4 [203] 46 [203] 5 [123] 0.8 [123] 0.6 [122] 0.4[123]
Rice (O. sativa) 0.75 [203] 24 [203] 2.5 [174] 0.3 [174] – –

Fly (D. melanogaster) 0.28 [203] 8 [203] 3.9 [174] 0.4 [174] – –
Budding yeast (S. cerevisiae) 0.025[203] 32 [203] 1 [210] 0.5 [210] – –

Table 4.3: Experimental values plotted in Figs. 4.6 and 4.7 are tabulated. The elastic modulus reported in Ref. [124] is for
migratory grasshopper (M. sanguinipes) chromosomes, however, due to lack of genomic data on M. sanguinipes, we use the
genomic data of meadow grasshopper (C. parallelus).
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Chapter 5

Conclusions

DNA or chromosomes, the native state of DNA inside living cells, bears the genetic information

that largely shapes cell function and fate by characterizing gene expression. We discussed a

view of DNA and chromosomes as passive objects that are manipulated physically and chem-

ically1 by various proteins. DNA has a double-helical structure that is stabilized by stacking

of complementary bases. Proteins, either by just binding DNA or via facilitating a series of

events following DNA association, perturbs DNA structure that has a mechanical response.

This mechanical response is often tuned to drive biological processes, making DNA mechanics a

topic of interest. We presented theoretical models aimed at understanding the response of DNA

and other complex DNA structures, such as protein-bound DNA or chromatin, to biologically

relevant perturbations. The cell lives in an aqueous ionic buffer at a finite temperature (≈ 300

K), where screening of charge by counter-ion condensation and thermal fluctuations, i.e., sta-

tistical mechanics are important considerations in building theoretical models [Sec. 1.4]. DNA,

due to the double-helical wrapping of its two strands, has an inherent topology or linking num-

ber, perturbation of which generates a mechanical response [Secs. 1.2, 1.3]. Proteins, cellular

machines intended to effectuate biological processes involving DNA, are known to utilize the

1We did not focus on how chemical modifications affect DNA, however, DNA structure is intimately related
with its chemistry. Chemical modifications to DNA base pairs, such as DNA methylation or post-translational
modifications to chromatin, is expected to modify chromosome structure and mechanics, and have important
biological functions.
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coupling between DNA topology and mechanics to their advantage. Quantitative calibration of

DNA statistical mechanics, topology, and their inter-dependence, as provided by the theoret-

ical models described in this dissertation, is important for a fundamental understanding of in

vivo micromanipulation of DNA, and also for a precise control of biological pathways, possibly

leading to biomedical applications.

5.1 Two helically intertwined DNAs subject to tensile stretch-

ing

DNA braids, two torsionally unconstrained double helices that are helically intertwined or cate-

nated, is a common in vivo occurrence. This is because cellular DNA is long and sufficiently

flexible2 to get intertwined. Under physiological stretching forces3, DNA intertwines or cate-

nanes adopt a helically-wrapped conformation as it minimizes the bending energy. Akin to

wrapped elastic rods, DNA braids are bulkier than the individual double helices. Tight wrap-

ping of DNAs generate a braid torque that increases nonlinearly with the number of turns or

catenation [Sec. 2.2.A]. Nonlinear torque makes the twist stiffness in braids a variable quantity

that depends on the geometry, such that braid twist rigidity is higher for a higher density of

catenations. Braid torque, when higher than a critical value, is also responsible for buckling into

a plectonemic structure. Braid plectoneme features self-writhing of the braid, the writhe linking

number contribution does not contribute to torque, as a result, increasing the number of braid

turns in the buckled state drives an increase in the total plectoneme length.

The braid plectoneme state is characterized by a proliferation of many domains, where a

plectoneme domain is distinguished by the presence of a braid end loop, a finite-sized loop

structure that associates a nucleation energy cost to a plectoneme domain [Sec. 2.2.A]. This

multi-domain proliferation is a direct consequence of the bulky nature of DNA, that destabilizes

the plectoneme state due to a high bend stiffness as well as a stronger excluded volume interaction

2Contour length of cellular DNA is ∼ 1 m, whereas, DNA persistence length is A ≈ 50 nm.
3 Physiological forces on DNA are in 10−12 Newton or 1 pico-Newton (pN) range.
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in DNA braids. The plectoneme nucleation cost, due to the finite-energy end loop, is also

responsible for an abrupt buckling in braids that features an experimental signal of discontinuous

braid extension, that was predicted and subsequently verified [Sec. 2.3]. We also experimentally

verified the prediction of coexistence of multiple plectoneme domains in buckled braid.

Mechanics of braids is also affected by the distance between its two tether points or the

intertether distance, such that braids with a higher intertether distance shows a stronger twist

stiffening with catenation and consequently buckle at a lower catenation density [Sec. 2.2.C].

This may have important biological consequences, as the intertether distance can be a protein-

controlled parameter, thus providing a mechanism for microscopic manipulation of braid me-

chanics. The ionic concentration of the buffer and the size of the catenated DNA molecules

affect the mechanical response of DNA braids, which we also investigated.

Our model provides a statistical mechanical view of braided DNA where the mean-field

structure is given by the helical geometry. We treated thermal fluctuations in DNA braids

as small perturbations transverse to the mean-field state, that are suppressed under a higher

stretching tension. Proximity of two double helices in the braided structure leads to electrostatic

coupling of fluctuations [Sec. 2.1.A]. Less electrostatic screening at lower ionic strengths of the

solution results in a stronger coupling and a higher net fluctuation. Although, the calculation

of electrostatically coupled thermal fluctuations in this dissertation is more accurate than the

scaling-like approach utilized in previous studies [12, 66, 68, 76, 80], a better computation is

possible. Our computation assumes a uniform electrostatic coupling of all the fluctuation modes

of the braid, that is derived from the average electrostatic potential of the helical structure.

This is an essential simplification. Using a Debye-Hückel kernel one can, in principle, compute

the coupling strengths of each fluctuation wavemode, however, analytical tractability becomes

an issue.

Stability of the braid plectoneme state is governed by its bending energy and writhe linking

number contribution. We assumed the braid to be a uniform cylinder when computing bending

energy and writhe from the geometry [Sec. 2.1.B]. This is a good approximation especially in the
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low screening limit, i.e., low salt concentration, where braids tend to behave as thick cylindrical

objects. However, at higher salts, where the helical grooves of a braid are more prominent

due to strong electrostatic screening, stacking of braids may provide stabilization to the braid

plectoneme structure. Exact computation of the braid plectoneme geometry is challenging, an

alternative strategy may be to use an effective stacking stabilization, however that interaction

needs to be calibrated, possibly using simulations.

Note that our focus was limited to catenated DNAs that are torsionally unconstrained,

meaning, individual double helices are not subject to twist [Sec. 2.1.A]. While catenated sister

chromatids are torsionally unconstrained, due to the presence of DNA nicks or missing bases

where the double helix can swivel to relax any torsional stress, intertwined twistable DNAs may

occur in vivo due to local twist blocking from protein binding. Braided twistable DNAs also pro-

vide an interesting construct to study coupling of inter-DNA linking number or catenation with

intra-DNA linking number. Adding twist to the braid Hamiltonian is a possible consideration

for future modeling efforts.

5.2 Plectoneme buckling in stretched twisted double-helix DNA

Topology perturbation in double helices leads to DNA twist. Twisted DNA results in torque

that increases linearly with the excess linking number [Sec. 3.1], contrasting the nonlinear

torque increase with catenation in DNA braids. This is the result of base-stacking interactions

that make DNA a solid object featuring a constant DNA twist stiffness, while braids are soft

structures that undergo twist stiffening with increased catenation. Sufficient twisting of the

double helix results in a DNA torque that drives buckling of DNA [Sec. 3.1.B.i]. The buckled

state is a DNA plectoneme where the double helix writhes around itself in a helical fashion4.

The writhe linking number contribution screens DNA twist and stabilizes the buckled state at

higher torque. The buckling transition is abrupt due to nucleation of a finite-sized DNA loop

4 DNA plectoneme has a similar structure to that of a DNA braid, both are helically wrapped DNAs, however
in plectonemes the DNA is twisted and contains an end loop. Braid plectoneme features helical self-wrapping of
a braid with itself, a structure bulkier than a plectoneme.



167

that generates a discontinuity in DNA extension at the critical linking number corresponding to

plectoneme buckling. Stretching the double helix causes partial unwrapping of the plectoneme

superhelix, and also leads to buckling at a higher critical linking number [Sec. 3.1.B.i]. Long

DNA molecules (> 6 kb) show coexistence of multiple plectoneme domains, due to entropic

stabilization of plectoneme-domain diffusion along the DNA contour. DNA plectonemes are

more stable than braid plectonemes due to their less-bulky structure, as a result, while braids

exhibit proliferation of multiple domains in all practical scenarios, proliferation of plectonemic

domains in twisted DNA is only favored for DNAs with long length and lower strength of

ionic buffer. Low ionic buffers increase plectoneme radii which destabilizes them, leading to

coexistence of multiple domains [Sec. 3.1.B.vii].

5.3 Buckling in DNAs with an immobile point defect

Defects on DNA, like a base-unpaired region, or a short single stranded DNA bulge influences

its mechanical response. Such defects allow a sharp localized DNA bend at low energy cost and

can act as preferred sites of plectoneme nucleation [Sec. 3.2]. A kink in the plectoneme end loop

reduces its nucleation energy, which lowers the energy of a plectoneme with a defect placed at

its tip. These plectonemes are defect-pinned because of the immobile nature of the defect and

lack diffusion stabilization.

We quantified the strength or size of the defect via the amount bending energy reduction

associated with the defect [Sec. 3.2.A.ii], e.g., a base-unpaired region with a larger number

of unpaired bases is a larger defect as it allows a sharper kink at the defect site . Another

important source of DNA defects discussed in our model is protein-mediated kinks that induce a

local curvature that reduces the in-situ DNA bending cost. We find that larger defects are more

efficient in trapping a plectoneme domain due to a lower nucleation cost of the defect-pinned

domain. However, if the defect is too small the entropic stabilization from plectoneme diffusion

makes nucleation of a defect-pinned domain less favorable. Our model predicts a three-state

coexistence at the buckling point, where the stability of various possible buckling states depend
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on the size of the defect [Sec. 3.2.B.i]. Experiments using DNA visualization may be able to

verify the coexistence. We also quantitatively explained the observations of existing experiments

on DNA with base-unpaired defects [Sec. 3.2.C]

We treated thermal fluctuations perturbatively around a helical mean-field state, similar to

the scheme used for braids. A better calculation of electrostatic coupling of thermal fluctuations

of the two plectonemic strands may be possible, as discussed above for braids. We considered

defects to only affect the local bending stiffness and not the twist stiffness. This is a good

approximation for a point defect, however, if the physical dimension of the defect is large, the

twist stiffness is also expected to be lowered. An interesting approach can be to treat the large

defect as a coexistent state with altered mechanical properties, which is left as a possible future

course of work. The kinetics associated with the defect-pinned domain may also be interesting

to study. Information regarding the kinetically favored states may be relevant for understanding

the dynamics of defect-pinned plectonemes.

The inherent inhomogeneity of DNA may get amplified due to the presence of certain periodic

base pair arrays, which may be treated as a series of multiple defects. DNA defects generated by

sequence specificity are known to affect nucleosome positioning thus regulating genome access.

The framework developed here may be applied to treat a series of multiple defects. Role of defects

in buckling of bulkier polymers like braids or single chromatin fibers may also be interesting to

study in the future.

5.4 Chromosome-topology simplification driven by loop extru-

sion

Proper disentanglement and segregation of chromosomes is of paramount importance. The high

density of chromosomes inside cell nucleus (or cell volume in case of bacteria) cause strong

overlap between chromosomes leading to an entangled topology. TopoII allow topology fluc-

tuations, however, local action of TopoII is not sufficient to disentangle the global topology

of chromosomes. We find that lengthwise compaction via loop extrusion in presence of topol-
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ogy fluctuations can drive chromosome disentanglement. Loop extrusion leads to a cylindrical

brush morphology where chromosomal loops emanate from a flexible backbone, and via extru-

sion activity the structure can be driven to a highly compact state [Sec. 4.1.A]. The compact

state corresponds to a high linear density of loops and leads to a chromosome core along the

cylindrical backbone associated with dense packing of nucleosomes, the fundamental unit of

chromosome polymer in eukaryotes, near the base of the loops. The cylindrical loop-extruded

structure of chromosomes is associated with a transformation of the chromosome polymer viewed

a string of nucleosomes or chromatin to a thicker rod-like polymer where the segment length is

set by the persistence length of the polymer brush. This transformation drives a decrease in the

inter-chromosomal entanglement in confinement [Sec. 4.1.B].

We find that entanglement in confinement is minimized by an optimal loop-extruded con-

figuration where the optimal-loop size scales positively with the total chromosome length [Sec.

??]. This optimization is a consequence of the finite size of the chromosomes, where the ends

of the cylindrical structure that contributes to increase entanglement in the large loop limit.

We discussed in detail the implications of loop extrusion in chromosome structure and disen-

tanglement, such as the mechanical rigidity of chromosomes is derived from the densely packed

core [Sec. ??]. One important in vivo implication is that organization of interphase chromo-

somes into loops or chromosome domains, also called Topology Associating Domains (TADs),

that have been strongly implicated to affect gene expression, also plays a role in minimizing

inter-chromosomal entanglements [Sec. ??].

It may be interesting to simulate confined polymer brushes and study their entanglement

properties. We have focused on the steady-state or quasi-equilibrium properties of chromosomes

to show that activity in form of loop extrusion can lead to disentanglement. The dynamical

aspects of chromosome disentanglement are yet unexplored, and are very important from the in

vivo perspective. One challenge in formulating the dynamics will be to accurately account for

the polymer viscosity, which sets the fundamental unit of disentanglement time in chromosomes.

This unit of disentanglement time is not only set by the concentration of chromosomes but also
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the rate of topology fluctuations, such that a faster rate of fluctuating topology will have a less

effective viscosity, thus making the viscosity an active parameter. Calculation of dynamics will

be able to consolidate the interplay between compaction and segregation and can make testable

predictions regarding the time scales expected for mitosis as a function of chromosome length

and concentration.

The model of chromosomes presented here is a structural one, i.e., we focused on the struc-

tural aspects of chromosome compaction and entanglement, driven by loop extrusion. Manipu-

lation of the structure is important to pack the genome into cylindrical chromosomes that are

then divided between the daughter cells. Another equally important facet of chromosomes is its

function, which is related to its sequence. DNA sequences code for proteins that are transcribed

predominantly during the interphase stage of the cell cycle. Physical proximity of certain non-

neighboring DNA sequences is essential for transcription, leading to formation of TAD structures

in interphase [157, 158, 163]. The dynamics associated with TAD formation is crucial for gene

regulation, and is intimately related to the chromosome structure. The framework developed

here may be extended to furnish information regarding the time scales governing TAD for-

mation, which will be relevant in understanding the spatio-temporal regulation of the genome

during cell cycle. Organization of the interphase genome into compartments with enriched gene

transcription is yet another feature that is poorly understood [163, 182].

Mechanics of cell nuclei has been shown to be dominated by the chromatin mechanics in

the weak-stretching regime [211, 212]. The correspondence between the compaction state of

the genome and its mechanics, as described by our model, may be explored in the context of

nuclei mechanics. Chromosome and nuclei mechanics are affected by chemical modifications

to the genome via post-translational modifications to histones [213]. However, the mechanistic

understanding of how these chemical modifications affect rigidity is not clear. These chemi-

cal modifications, which are connected with gene regulation, may be modeled as higher-order

interactions that promote nucleosome stacking. Our model may be extended to provide a quan-

tification of the mechanical response as a function the stacking interactions.
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In all, we have developed statistical-mechanical models for DNA and chromosome that en-

hance our understanding their mechanics and structure. The results of these models have pro-

vided quantitative explanations for various experimental observations and their biological impli-

cations. The next step with these models is to include the various aspects of biological function,

such as methylation and acetylation of the genome that are important markers of biological

function, however, they facilitate the function via influencing statistical mechanics.
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Appendix A

DNA electrostatics: Debye-Hückel

theory

Each DNA base pair (∼ 0.34 nm) contains two units (1 unit ≡ e = 1.6 × 10−19 C) of negative

charge. Hence, interaction of electrostatic origin is important in estimation of free energy of DNA

chain conformations. The physiological environment of DNA consists of various ionic species,

predominantly ≈ 0.1 M univalent ions (Na+ or K+), which results in a non-uniform charge

distribution in the vicinity of the negatively charged DNA backbone. The number density of an

ionic species can be calculated using the Maxwell-Boltzmann distribution,

ni(r) = n0
i e
−βzieΨ(r) (A.1)

where Ψ(r) is the electrostatic potential we wish to calculate. Using the above number density,

we can write the charge distribution in the electrolytic solution surrounding the DNA and arrive

at the Poisson-Boltzmann equation.

∇2Ψ =
4πe

ε

∑
i

n0
i zie

−βzieΨ (A.2)
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where zi is the valency of the i-th ionic species, and ε is the dielectric constant of the medium. Eq.

(A.2) can be linearized by expanding the exponential, which is valid as long as the electrostatic

energy is small compared to the thermal energy (βeΨ� 1).

λ2
D∇2Ψ = Ψ (A.3)

where λ−2
D = 4πβe2

ε

∑
i n

0
i z

2
i , is called the Debye length of the electrolyte and Eq. (A.3) is also

known as the Debye-Huckel equation. λD characterizes an emergent length scale over which the

Coulomb interaction is shut-off due to rearrangement of charges in the solution.

A.1 Parallel dsDNAs

Eq. (A.3) can be solved for a cylindrical rod where the potential is radially symmetric and varies

as a function of the distance from the rod axis. The potential at points far from the axis of the

rod can be written as [214],

Ψ(r) = (2νh/ε)K0(r/λD) (A.4)

where νh is the effective linear charge density of the hypothetical line charge along the axis of

the cylindrical rod that causes this potential. Using Eq. (A.4), we can calculate the leading

order electrostatic interaction energy in plectonemic DNA by considering pairs of nearest points

on the two DNAs as one moves along the plectoneme axis [Fig. 3.1(a)]. An estimation of νh

readily follows from matching the boundary conditions for the electric field near the surface of

the cylinder.

−∂Ψ

∂r

∣∣∣
r=a

=
2νh
ελD

K1(κa) =
4πσ

ε
(A.5)
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where σ = e/2πab is the actual surface charge density on the cylinder with radius a and a charge

of 1e per length b (b = 0.17 nm for double helix DNA).

νh =
λDeγ(ε, a/λD)

abK1(a/λD)
(A.6)

where γ is a numerical coefficient used to match the far-field Debye-Hückel solution to the exact

numerical solution of Eq. (A.2) (Gouy-Chapman) near the surface of the cylinder. γ has been

tabulated for various values of salt concentrations[63, 77].

Finally, we write the free energy per unit length due to leading order electrostatic interaction

of plectonemic strands 2r apart.

Uel =
1

2
νhΨ(2r/λD) (A.7)

where the factor of half corrects for double counting. Now defining ν = νh/e and `B = βe2/ε,

the Bjerrum length we write the following.

βUel = `Bν
2K0(2r/λD) (A.8)

The values of ν for a few representative salt concentrations are given in Table 2.1.

A.2 Circular loop of dsDNA

The total Debye-Hückel self electrostatic energy of a circle of perimeter L:

U =
ζ

2

L∫
0

ds1

L∫
0

ds2

[
e−|r1(s1)−r2(s2)|/λD

|r1(s1)− r2(s2)| −
e−|s1−s2|/λD

|s1 − s2|

]
(A.9)

where ζ = kBT`Bν
2, where ` = 0.7nm, is the Bjerrum length of water at 290K and ν is the

effective linear charge density of DNA. We parameterize the circle using ξ = L/(πλD), such that
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Figure A.1: Electrostatic interactions in a circular DNA loop. (a)Comparison of exact numerical
evaluation of ψ [Eq. (A.10)], shown as points) with the proposed fit function [Eq. (A.14), shown
as the solid black line] as a function of normalized loop size ξ = L/(πλD). The asymptotic
solutions for large loop [ξ � 1, Eq. (A.11)] and small loop [ξ � 1, Eq. (A.13)] are shown
as red dashed lines. (b)Electrostatic self-energy of a circular DNA loop as a function of the
loop size L for 10, 100 and 200 mM monovalent salt concentrations. The points show the exact
numerical values whereas the lines show the energy from the fit function [Eq. (A.14)]. (c)
Looping probability of double-helix DNA as a function of the size of the circular loop L. The
dot-dashed line shows the looping probability considering only elastic bending energy; whereas
dotted, solid and dashed lines show the probability for circular looping of DNA with elastic as
well as Debye-Hückel electrostatic energy under 10, 50 and 150 mM monovalent salt conditions
respectively.

the total electrostatic energy is given by U(ξ) = ζLψ(ξ), where

ψ(ξ) =

π/2∫
0

dφ

[
e−ξ sinφ

sinφ
− e−ξφ

φ

]
(A.10)

Asymptotic solutions of ψ:

Case I: Small loop, ξ � 1.

ψ(ξ � 1) ≈
∞∑
m=0

ξm

m!

π/2∫
0

dφ
[
(sinφ)m−1 − φm−1

]
= ln(4/π) +

∞∑
m=0

αmξ
m+2 (A.11)

where

αm =
1

(m+ 2)!

[√
π

2

Γ(m+3
2 )

Γ(m+4
2 )
− (π/2)m+3

m+ 3

]
(A.12)
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Case II: Large loop, ξ � 1.

We make a transformation t = sinφ in Eq. (A.10) and note that the leading order contribution

to the integral in the limit ξ � 1 comes from t� 1.

ψ(ξ) =

1∫
0

dte−ξt
[
t

2
+

3t3

8
+ · · ·

]
+ Ei(−ξ)− Ei(−πξ/2)

⇒ ψ(ξ � 1) ≈ 1

2ξ2
+O(ξ−4) (A.13)

where Ei(x) is the exponential integral function such that Ei(x→∞) ∼ ex/x.

We propose a fit function that smoothly goes from one asymptote to the other:

ψ =
a1

ξ2

[
1− e−a2ξ2

]
(A.14)

Numerically fitting Eq. (A.14) to Eq. (A.10) we get: a1 = 0.47 and a2 = 0.51 [Fig. A.1(a)].

Figure A.1 shows the comparison of numerically evaluated values of normalized loop size

ξ with the fit function. The electrostatic self energy of the circular loop of size L is given by

U = ζLψ(κL/π), shown in Fig. A.1(b) for three salt conditions (10, 50 and 150) mM, where

the corresponding Debye-Hückel effective linear charge density of DNA used are (2.82, 4.98 and

8.86) nm−1.

We write the probability of length distribution of circular loops [87]:

P (L) = π2

(
2A

L

)−6

e−β(Eb+U) (A.15)

where A ≈ 50 nm is the bending persistence length of DNA; βEb = 2π2A/L − 0.257L/A, is

the elastic bending energy of the circular loop including fluctuations of the ends and U is the

electrostatic energy associated with the circular loop.
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A.3 Two helically intertwined dsDNAs or DNA braids

Eq. (A.8) ignores the free energy contribution from the interaction between all the length

elements of the plectoneme strands but the pair of nearest-neighbors. In Ref. [76], the authors

numerically evaluated the correction to Eq. (A.8) due to the presence of the neighboring chain

but the authors ignored the effect of the self energy of the helix, which we look at in the

following work. First, we need the spherically symmetric solution to the Debye-Hückel equation

[Eq. (A.3)].

Ψ(r) = ζ
e−r/λD

r
(A.16)

where ζ ≡ `Bν. Following Ref. [76] we parametrize the plectoneme to write the distance between

any two points (M and N) on the opposing strands of the plectoneme,

ρ(u) =
√

2r2(1 + cosu) + p2u2 (A.17)

The Debye-Hückel potential exerted by the opposing strand on point M is given by

Ψn =ζ

∞∫
−∞

ds
e−ρ/λD

ρ
= ζ
√

1 + 4µ

∞∫
0

du
e−wφ(u)

φ(u)
(A.18)

where µ ≡ p2/4r2, w ≡ 2r/λD and φ(u) =
√

(1 + cosu)/2 + µu2. The following solution was

proposed in Ref. [76] for Eq. (A.18),

Ψn = ζ

√
2π

w
e−w

[
1 +

m1

µ
+
m2

µ2

]
(A.19)

where m1 = 0.207 and m2 = 0.054 was chosen to match the numerical solution to Eq. (A.18).

Self-electrostatic energy of DNA braids The minimum energy state of a charged rod in

an ionic solution is the straight configuration, such that the electrostatic repulsion between the
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length elements of the rod is minimized. External work has to be done against the electrostatic

repulsion to keep the rod bent in a helix shape, which is stored as the self energy. Prior theoretical

works on braids [45, 68] as well as supercoiled single DNA plectonemes [11, 65, 66, 76] ignore

the Debye-Hückel self energy of helically intertwined DNAs. In the following, we numerically

compute the self energy in braids and propose an empirical fit function. We find that the energy

contribution from Debye-Hückel-type self-interaction of the coaxial helices increases for helices

with higher aspect ratio (ratio of radius to pitch), and is non-negligible for braids under 2 pN

force at 100 mM monovalent salt concentration [Figs. A.2(c) and A.2(d)].

We parameterize the helical arc length by a rotation angle u such that the distance ρ between

any two points on the helix is given by,

ρ(u) =
√

2R2(1− cosu) + P 2u2 ≡ 2Rϕ(u), (A.20)

where R and 2πP are radius and pitch of the helix respectively. The authors of Ref. [76] used

a similar parameterization scheme to study the enhancement of electrostatic interaction energy

between two helically intertwined strands of a plectoneme as a function of the helix angle.

We write Ψs, the total self-electrostatic potential for a braid of length L by integrating the

spherically symmetric solution of the Debye-Hückel equation:

βΨs =
`Bν

2

2

L∫
−L

ds1

L∫
−L

ds2

[
e−ρ(u)/λD

ρ(u)
− e−ρ(u→0+)/λD

ρ(u→ 0+)

]
. (A.21)

Now, the self-electrostatic potential per unit length A of the braid is given by Us ≡ Ψs/(L/A),

such that

βUs =
ζ

2

∞∫
0

du

[√
1 + a2

e−wϕ(u)

ϕ(u)
− 2

u
e−

wu
2

√
1+a2

]
, (A.22)

where a ≡ P/R, is the inverse of the aspect ratio of the helix, and w ≡ 2R/λD, is the scaled

diameter of the helix. We have defined ζ = 2A`Bν
2, where `B is the Bjerrum length and ν is the
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Figure A.2: Electrostatic interactions in a DNA braid. (a) Comparison of numerical evaluation
(points) of Us (Eq. A.22) with the proposed empirical solution [Eq. (A.23)] (solid lines) with
ζ = 1, c1 = 0.042 and c = 0.312, as a function of w for various values of a = 1, 3, 6 and 9. (b) Us
versus a for w = 2, 5, 7 and 10 showing that the empirical function is a good fit to the numerical
solution. (c) Plot of the total electrostatic potential U per unit braid length A [Eq. (A.24)]
with (dashed lines) and without (solid lines) the self-interaction component (the second term
in Eq. (A.24) containing the self interaction can be set to zero by putting c1 = 0) versus braid
radius (R) over a range of braiding angles δ = 15◦, 30◦ and 45◦ (Table 4.1). We used ζ = 2700
(corresponding to 100 mM Na+, Table 4.1), c2 = 0.312 and c1 was chosen to be either 0 (only
neighbor interaction plot, solid lines) or 0.042 (neighbor and self interaction plot, dashed line).
(d) Comparison of the self and the neighbor components of the total electrostatic potential as a
function of braiding angle δ for braid radii R = 2, 3 and 4 nm.

effective linear change density in inverse-length units [Eq. (C.4) and Table 2.1]. We have shifted

the reference of the free energy to subtract the contribution of the self-electrostatic energy of a

straight rod.

We numerically evaluate the self-energy integral [Eq. (A.22)] for a range of practically

relevant values of w and a, and propose the following empirical function that captures the

behavior of the self-energy functional,

βUs =
ζ

w2

[
4c1

a2 + c2a4

]
. (A.23)
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Figure A.2(a)-(b) shows the comparison between the numerically evaluated value of the integral

[Eq. (A.22)] and the empirical fit-function [Eq. (A.23)] with ζ = 1, c1 = 0.042 and c2 = 0.312.

Finally, we write the electrostatic potential energy per unit length A of braid with radius R

and helix angle δ:

βU(R,P ) =ζK0

(
2R

λD

)
(1 +m1 tan2 δ +m2 tan4 δ) +

ζc1λ
2
D tan4 δ

R2(c2 + tan2 δ)
. (A.24)

The first term is the interaction potential with m1 = 0.828, m2 = 0.864 [76], and the second

term is the self-energy contribution, where c1 = 0.042 and c2 = 0.312.

Figure A.2(c)-(d) shows the comparison between the self and the interaction energy com-

ponent of the total electrostatic potential for various braid radii (R) and braiding angles (δ).

For typical values of the braiding angle ≈ 25◦ (Table 2.1), the self-energy contribution becomes

significant in braids with radius > 3 nm, which corresponds to to < 2 pN stretching tension on

the braid at 100 mM Na+ [Fig. 2.3(a)].
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Appendix B

Intertwined DNAs (Supplementary

figures)

The 6 kb DNA molecules used in braiding were made using one digoxigenin and one biotin

5′-labeled oligonucleotide as primers for PCR [16, 53]. The purified labeled DNA was diluted

to 1 ng/µL in phosphate buffered saline (PBS) (17-516Q, Lonza) and incubated with 1 µm

streptavidin coated paramagnetic beads (Dynabeads MyOne Streptavidin T1, 65601, Invitrogen)

diluted to 0.6 mg/mL in 0.4 mg/mL Bovine Serum Albumin (BSA) (A7030 10G, Sigma-Aldrich).

For the incubation, 1 µL of DNA was incubated with 2 µL of beads for 10 min. The beads and

DNA were then diluted with 45 µL of PBS and passed into the flow cell [88]. Following a

20 min incubation in the flow cell, the slide was placed on the microscope and magnetic force

applied. The bright-field magnetic tweezer microscope used for these experiments has been

described before as part of Ref. [88]. To wash the DNA into the experimental buffer (100 mM

NaCl, 20mM Tris-HCl pH 8), at least 6 flow cell volumes were passed through the flow cell.

Following the identification of a potential DNA tether, the magnets were rotated to introduce

turns (catenations) into the DNA. Single tethers would not supercoil, since the DNA only had

single attachments to both the bead and glass coverslip, so only double tethers showed a change

in extension with magnet rotation. After a double tether was identified, a lookup table was
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collected to measure the extension of the tethered bead compared to a fixed surface bead. After

exactly centering the double tether using the peak of the extension versus catenation curve as

a guide, a force calibration was done using the Brownian motion of the bead [16, 97]. This

calibration was used to estimate the force applied to the bead for the experiments. Data were

collected at 200 Hz using a CMOS camera (PL-B741U, PixeLink), while the magnets were

rotated to introduce or remove catenations in the braid[47].

See Figs. B.1-B.6 for experimental data.
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Figure B.1: (a) Extension versus catenation for a braid under 1.2±0.12 pN force under 100 mM
NaCl. Points are experimental data and the solid line is the theoretical prediction using L = 2.4
µm and an intertether distance of 0.77 µm (d = 0.32L). (b) Comparison between theory and
experiments for relative probability of occupancy of the three states: highest extension (blue),
lower extension (red) and lowest extension (green) as a function of catenation near the buckling
transition; and (c) the distance between the successive peaks in extension histograms for the
three states as a function of catenation, showing the extension jump associated with nucleation of
the first (blue) and the second (green) plectoneme domains. (d) Time series of extension showing
dynamic switching near the buckling transition, where the shaded points are experimental data
collected at 200 Hz and the dark points are the median-filtered time series using a 0.1 sec time
window to emphasize dynamic-switching. Corresponding right panels are histogram of raw data
(10 nm bins) which are fitted to a sum of Gaussian distributions showing equilibrium transitions
between two or three extension states. (e) Theoretically predicted extension histograms near
the buckling transition. The black solid line shows the total extension distribution, while the
dashed lines show the contribution from the straight braid (blue) and the buckled braid with
one (red), two (green), three (magenta) and four (cyan) plectoneme domains.



206

30 20 10 0 10 20 30
Catenation (Ca)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ex
te

ns
io

n 
(µ

m
)

100 mM NaCl   1.5 pN

24 25 26 27 28
Catenation

0
20
40
60
80

100

Ex
te

ns
io

n 
ch

an
ge

 (n
m

) 24 25 26 27 280.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ili

ty

22 23 24 25 26
Catenation

0
20
40
60
80

100

Ex
te

ns
io

n 
ch

an
ge

 (n
m

)

(d')

22 23 24 25 26
Catenation

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ili

ty

(c')

0.7

0.8

0.9

1.0

1.1 Ca = -24.0

0.6

0.7

0.8

0.9

1.0

Ex
te

ns
io

n 
(µ

m
)

Ca = -25.0

0 5 10 15
Time (s)

0.6

0.7

0.8

0.9

1.0 Ca = -26.0

0.7

0.8

0.9

1.0

1.1 Ca = 24.0

0.7

0.8

0.9

1.0

Ex
te

ns
io

n 
(µ

m
)

Ca = 25.0

0 5 10 15
Time (s)

0.6

0.7

0.8

0.9

1.0 Ca = 26.0

0.6

0.7

0.8

0.9 Ca = -26.5

0.5

0.6

0.7

0.8

0.9

Ex
te

ns
io

n 
(µ

m
)

Ca = -27.5

0 5 10 15
Time (s)

0.5

0.6

0.7

0.8

0.9 Ca = -28.0

0.6

0.7

0.8

0.9

1.0 Ca = 26.5

0.6

0.7

0.8

0.9

Ex
te

ns
io

n 
(µ

m
)

Ca = 27.5

0 5 10 15
Time (s)

0.5

0.6

0.7

0.8

0.9 Ca = 28.5

0 2 4 6 8 10 12 14
P(z)

0.95

1.00

1.05

1.10

1.15

1.20

Ex
te

ns
io

n 
z (
µ
m

)

Ca = 22.6

0 1 2 3 4 5 6 7 8 9
P(z)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ex
te

ns
io

n 
z (
µ
m

)

Ca = 23.0

0 2 4 6 8 10 12
P(z)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ex
te

ns
io

n 
z (
µ
m

)

Ca = 23.4

0 2 4 6 8 10 12
P(z)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Ex
te

ns
io

n 
z (
µ
m

)

Ca = 24.2

Figure B.2: Experiments for 6 kb DNA braids under 1.5±0.15 pN at 100 mM NaCl. Theoretical
predictions are for L = 1.9 µm, intertether distance 0.74 µm (d = 0.39L), f = 1.5 pN and 100
mM monovalent salt.
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Figure B.3: Experiments for 6 kb DNA braids under 0.8±0.08 pN at 100 mM NaCl. Theoretical
predictions are for L = 1.6 µm, intertether distance 0.19 µm (d = 0.12L), f = 0.8 pN and 100
mM monovalent salt.
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Figure B.4: Experiments for 6 kb DNA braids under 1±0.1 pN at 100 mM NaCl. Theoretical
predictions are for L = 1.6 µm, intertether distance 0.19 µm (d = 0.12L), f = 1 pN and 100
mM monovalent salt.
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Figure B.5: Experiments for 6 kb DNA braids under 1±0.1 pN at 100 mM NaCl. Theoretical
predictions are for L = 1.5 µm, intertether distance 0.46 µm (d = 0.31L), f = 1 pN and 100
mM monovalent salt.
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Figure B.6: Experiments for 6 kb DNA braids under 2±0.2 pN at 100 mM NaCl. Theoretical
predictions are for L = 1.9 µm, intertether distance 1.12 µm (d = 0.62L), f = 2 pN and 100
mM monovalent salt.
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Appendix C

Supercoiled double-helix DNA

C.1 Plectoneme Hamiltonian

A plectoneme structure made up of total DNA length Lp, can be considered as two helices of

length Lp/2 wrapped around each other. The total Hamiltonian of the plectoneme structure is

given by,

βH =

Lp/2A∫
0

dξ

[
1

2

(∣∣∣∣dt̂1

dξ

∣∣∣∣2 +

∣∣∣∣dt̂2

dξ

∣∣∣∣2
)

+ U(r1, r2)− βAf
{

(̂t1 − t̂1o) · ê + (̂t2 − t̂2o) · ê
}]

(C.1)

where an external force f is applied at the two ends of the plectoneme in a direction perpendicular

to the axis of the plectonemic helix. This force can be interpreted as the stretching tension

required at the end of a plectoneme that keeps the helices from unwinding themselves. Since,

the force is in a direction perpendicular to the axis of the plectoneme, there is no corresponding

force-extension energy contribution, however, the tension plays an important role in controlling

the transverse fluctuations of the DNA inside the plectoneme.

In Eq. (C.1), the first parenthesized term containing the square of the local curvature of the

two intertwining helices inside the plectoneme corresponds to the total elastic bending energy.

The second term contains the total electrostatic energy contribution from close proximity of
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the DNAs inside the plectonemic structure [12, 46, 75, 76]. And, the third term contains the

coupling of the transverse fluctuations of the DNAs to the external force, where ê is the direction

of the plectoneme axis.

The above Hamiltonian is similar to the one analyzed for two intertwined DNAs or braids

in Ref. [46], except for that braids have a force-extension energy [46], while plectonemes do not.

Note in Eq. (C.1), the external force is only coupled to the transverse tangents.

C.1.A Oscillating Reference Frame

We consider two sets of orthonormal triads: (t̂io, t̂i⊥r, t̂i⊥θ), where i ∈ {1, 2} corresponds to the

two intertwining helices in the plectoneme. t̂io points along an average helical shape defined by

two helix parameters: radius (r) and pitch (2πp); t̂i⊥r points towards the axis of the plectoneme;

whereas t̂i⊥θ ≡ t̂io×t̂i⊥r. See Ref. [46] for a similar calculation done in the context of intertwined

DNAs or DNA braids.

We expand the tangent vectors to harmonic order, about a mean helical shape t̂io:

t̂i =

[
1− t2

i⊥
2

+O(t4
i⊥)

]
t̂io + ti⊥ (C.2)

where the mean helical shape depends on two helix parameters radius (r) and pitch (2πp):

ê · t̂io = cosα ê · t̂i⊥θ = sinα ê · t̂i⊥r = 0 (C.3)

Here, α ≡ arctan(r/p), is the braiding angle.

C.1.B Electrostatic Interactions

The electrostatic energy contribution due to DNA-DNA repulsion in a helical structure U com-

puted from a Debye-Hückel-type interaction is as follows.

U(r, α) ≡ ζK0

(
2r

λD

)
v(tanα) +

ζλ2
Dc1 tan4 α

r2(c2 + tan2 α)
(C.4)
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The first term in Eq. (C.4) is the contribution from electrostatic interaction with the neighboring

strand in the superhelix. Here, K0(x), the modified Bessel function of the first kind, denotes the

solution for two parallel strands [12, 75], and v(x) = 1+(0.828)x2+(0.864)x4, is an enhancement

factor that accounts for the effect of helical curvature [76]. The second term accounts for the

self interaction of the helically-bent polymer in the plectoneme, where c1 = 0.042 and c2 = 0.312

[46]. λD is the Debye length of the ionic solution, and we define ζ = 2A`Bν
2, a parameter that

depends on the effective linear charge density of DNA ν [63, 74, 76, 77], and `B ≈ 0.7 nm is

the Bjerrum length of water at 290K. We have used ν = 1.97, 6.24, 8.85, 10.23, and 26.6 nm−1

respectively corresponding to 0.01, 0.1, 0.15, 0.2, and 0.5 M monovalent salt concentrations

[46, 63, 65, 76].

We define the electrostatic part of the Hamiltonian as:

U(r1, r2) ≡ U(r +Aw(ξ), α) = U0 + gw + ηw2 +O(w3) (C.5)

where U0 ≡ U(r, α); g ≡ A∂U/∂r, and η ≡ (A2/2)(∂2U/∂r2) is the effective modulus of the

electrostatic potential. The first term gives the mean electrostatic energy per unit length A of

plectoneme with fixed radius and pitch, while the subsequent terms are corrections for small

uniform deviation in the braid radius. Here, w(ξ) is the normalized radial deformation:

w(ξ) = t̂1⊥r

∫ ξ

0

1

2
[t1⊥r + t2⊥r]dξ̄ (C.6)

where ti⊥r are given by Eq. (C.2) and we assume the boundary condition w(0) = 0. Note, the

above definition of normalized radial deformations w(ξ) assumes a parallel configuration of the

two strands.

C.1.C Thermal Fluctuations

Perturbative expansion of the Hamiltonian. Following the above equations, the plec-

toneme Hamiltonian [Eq. (2.1)] can be expanded as a contribution from the mean-field helix
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structure and thermal fluctuations [46]:

βH =
Lp
2A

[
κ2 + U0

]
+

1

2

Lp/2A∫
0

dξ

[ ∣∣∣∣dt̂1⊥
dξ

∣∣∣∣2 +

∣∣∣∣dt̂2⊥
dξ

∣∣∣∣2 + (µ− κ2)
(
|̂t1⊥|2 + |̂t2⊥|2

)
+ 2ηw2

]

(C.7)

where µ ≡ βAf cosα, is the effective tension in the plectoneme; κ ≡ Ar/(r2 + p2), is the total

mean-field curvature per unit persistence length of the strands. Note that we have truncated the

expansion to the harmonic order, i.e., we ignore ∼ O(t3
1⊥, t

3
2⊥) terms. The mean-field term is the

sum total of bending and electrostatic energy in the plectoneme [Eqs. (C.11) and (C.17)]. The

sub-leading order term is the contribution from thermal fluctuations. We set the reference of

the fluctuation free energy by setting the amplitude of the zero-momentum mode of transverse

fluctuations to zero [46].

Free energy of fluctuations We construct a partition function for the plectoneme via a path

integral over all the transverse tangent conformations:

Zp =

∫
Dt1⊥

∫
Dt2⊥e

−β∆H, (C.8)

and get the free energy contribution of thermal fluctuations from the partition function [46],

− lnZp =
Lp
2A

[
3

2

√
µ+ η1/4 cos

(
1

2
tan−1

√
4η

µ2
− 1

)]
. (C.9)

The first term gives the fluctuation free energy that depends only on the external tension,

whereas, the second term depends on both the external tension and the salt concentration of

the solution.

Note that there are four independent degrees of transverse fluctuations in a plectoneme struc-

ture: t̂1⊥r, t̂2⊥r, t̂1⊥θ, and t̂2⊥θ [Fig. (??a)]. Three of them [t̂1⊥θ, t̂2⊥θ, and (t̂1⊥r + t̂2⊥r)/2]are

solely controlled by the tension µ; while, the fluctuations in the direction (t̂1⊥r − t̂2⊥r)/2 are
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controlled by both the external tension µ and the salt concentration via the parameter η. We

have used the above expression for the fluctuation free energy inside the plectoneme structure

in Eq. (3.5).

Radial fluctuations Fluctuations in the radius of the plectoneme are generated by displace-

ment of one plectonemic strand relative to the other. As is the case for Gaussian fluctuations,

the two-point correlation function of radial deformations decays exponentially: 〈w(ξ)w(0)〉 ∼

exp(−kξ), where k ∼ O(
√
µ) [46]. The zero-distance behavior of the two-point correlation gives

the radial fluctuations in the plectonemic superhelix (See Appendix B in Ref. [46]):

σr ≈ A〈|w(0)|2〉1/2 ≈ Aη−3/8. (C.10)

This suggests that a stronger electrostatic repulsion reduces fluctuations in the plectoneme

radius.

C.2 Finite-Sized Supercoiled DNA

C.2.A Defect-free DNA

Buckled state: plectonemes and end loops The total free energy of the buckled state

composed of m domains of plectoneme:

βEp =
2π2C(Twp)

2

Lp +mγ
+ Lp

A sin4 α

2r2
+ 2m

√
ρβAf + [(Lp +mγ)/2A]U(r, α)− ln Ω(m) (C.11)

where the first term corresponds to DNA-twist energy contribution in the buckled state. The sec-

ond and third terms respectively correspond to the net elastic energy of plectoneme superhelices

and m end loops. The fourth term contains the total mean-field electrostatic contribution from

the buckled state of the DNA. Finally, the last term in Eq. (C.11) corresponds to configuration
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entropy of m plectoneme domains (m ≥ 1) [46, 65], where

Ω =
(Lu/D)m

m!
· (Lp/D)m−1

(m− 1)!
(C.12)

is the total number of energetically degenerate but distinguishable configurations arising

from: (1) one-dimensional diffusion of a domain along the DNA contour length [the first com-

binatorial term in Eq. (C.12)]; and (2) the exchange of DNA length among the plectoneme

domains [the second combinatorial term in Eq. (C.12)]. D ≡
√
A/(βf), is the force-induced

correlation length, which we have used as the distinguishable length for plectoneme sliding.

Force-extended state The total energy of the force-coupled state is given by

βEu =
2π2Cf
Lu

Lk2
u − βf(L− Lp) (C.13)

The first term corresponds to the total twist energy, where Cf = C
[
1− C/(4A√βAf)

]
is the

renormalized twist persistence length [60]. The second term is the extension energy of the DNA

under external force f .

Thermal fluctuations The total fluctuation contribution is obtained from summing the con-

tributions from the force-extended and plectoneme states:

− lnZ = − lnZp − lnZu, (C.14)

where Zp corresponds to the plectoneme [Eq. (C.9)]; and Zu corresponds to the force-extended

state, which is computed by taking the η → 0 limit of Eq. (C.8). − lnZu is the second term in

Eq. (3.5).

Numerical scheme Various quantities of interest can be numerically computed from the

partition function Z in Eq. (3.6) as follows:
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〈z〉 = − 1

Z
[∂F
∂f

e−βF(0,0) +
∑
m,Lp

∂F
∂f

e−βF(Lp,m)
]
, (C.15a)

〈m〉 =
1

Z
∑
m,Lp

me−βF(Lp,m), (C.15b)

β〈τ〉 = − 1

2π

∂ lnZ
∂(∆Lk)

, (C.15c)

〈Lp〉 =
1

Z
∑
m,Lp

Lpe
−βF(Lp,m). (C.15d)

Probability distributions For a given coexistence state (Lp,m), the probability distribution

of X ∈ {z, τ} is given by

PLp,m(X) =
1√

2πσ2
X

exp

[
−(X −X)2

2σ2
X

]
,

where the mean X and the standard deviation σX are obtained as follows:

z(Lp,m) = −∂F
∂f

, τ(Lp,m) =
∂F

∂(2π∆Lk)
,

σ2
z(Lp,m) = − ∂2F

β∂f2
, σ2

τ (Lp,m) =
∂2F

β∂(2π∆Lk)2
.

Now, the total probability distribution of X for a given linking number and force is obtained

by summing the contributions from all the states considered in the partition sum:

P (X) =
P0,0

Z e−βF(0,0) +
∑

m=1,2,···

∑
Lp

PLp,m

Z e−βF(Lp,m) = P0(X) +
∑

m=1,2,···
Pm(X). (C.16)

In the above equation, the probability distribution is written as a sum of contributions from the

force-extended state, and the buckled domain containing m end loops.
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C.2.B DNA with a Defect

Free energy of the buckled state The free energy of the plectoneme state, now including

m mobile plectoneme domains and m† pinned plectoneme domains, is given by

βEp =
2π2C(Twp)

2

(Lp +mγ +m†γ†)
+ Lp

A sin4 α

2r2
+ 2
√
ρβAf

[
m†(1− ε) +m

]
+[(Lp +mγ +m†γ†)/2A]U − ln

[
(Lu/D)m

m!

(Lp/D)m+m†−1

(m+m† − 1)!

]
, (C.17)

where the first and the second terms respectively correspond to the total twist and bending

energy in the plectoneme state. The third term gives the total elastic energy associated with m

mobile and m† pinned plectoneme end loops. The fourth term corresponds to net electrostatic

energy of the buckled state. And the fifth term is associated with the total configuration entropy

of plectoneme domains.

Theta function. We have used the usual definition of Theta function in the partition sum

[Eq. (3.12)].

Θ(Lp − 2L∗) =


1, when Lp > 2L∗

0, when Lp < 2L∗
(C.18)

Probability distributions Similar to Eq. (C.16), we write the probability distribution of X

at a fixed linking number and fixed force as:

P (X) =
P0,0,0

Z† e−βF(0,0,0) +
∑′

Lp,m†,m

PLp,m†,m

Z† e−βF(Lp,m†,m) = P00 +
∑′

m†,m

Pm†m, (C.19)

where the sum is now a restricted one as shown in the partition sum [Eq. (3.12)]. The contri-

bution from the buckled state with m and m† mobile and pinned plectonemes respectively is

Pm†m.
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Appendix D

Chromosome structure and topology

D.1 Cylindrical loop-extruded structure

Radial profile of monomer volume fraction We consider a cylindrical shell of height d,

inner radius r, and outer radius r+ξ(r). Following the arguments originally proposed by Daoud

and Cotton [126] for star polymers, the blobs corresponding the loops diffuse radially outward

due to the monomer concentration gradient, and there is, on average, α blobs in the considered

shell. Hence, the volume fraction of monomers in the shell, ϕ(r), is equal to that inside the blob

in that shell.

ϕ(r) =
αg(r)a3

rdξ(r)
=
g(r)a3

ξ(r)3
⇒ ξ(r) =

√
rd/α (D.1)

where g(r), the number of monomers per blob of size ξ(r), obeys self-avoiding statistics: ξ =

ag3/5.

Osmotic pressure. In a semidilute solution, the osmotic pressure scales as, Π ∼ 1/ξ3 [26],

suggesting, a radially decreasing profile for osmotic pressure.

Π(r) =
kBT

a3

ϕ(r)

g(r)
=

kBT

(rd/α)3/2
(D.2)

Loop extension. The radial extension of a loop, R, containing n monomers can be obtained
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from integrating the volume fraction ϕ(r) [45, 132–134].

R∫
0

dr ϕ(r)rd = na3 ⇒ R = a
n3/4

α1/2

(a
d

)1/4
(D.3)

Loop free energy. Free energy per loop is given by the number of blobs per loop, because each

blob contributes O(1) kBT [26]. Equivalently, the free energy per loop may also be obtained

from integrating the total osmotic pressure in the cylindrical volume accessible to each loop.

F =

R∫
0

dr Π(r)rd = kBTα
5/4n3/8 (a/d)5/8 (D.4)

Tension along the backbone. Overlapping loops generate a tension along the backbone which

we estimate from the free energy per unit length of the backbone.

f = −∂F/∂d =
kBT

a
α5/4n3/8 (a/d)13/8 (D.5)

High monomer density along the backbone. The volume fraction of the monomers along the

backbone, ϕm, is uniform, and is given by,

ϕm =
gfa

3

ξ3
f

=
ma3

ξ2
fd

⇒ d = (m/gf )ξf (D.6)

where gf is the number of monomers in a blob of size ξf = kBT/f , such that ξf = ag
3/5
f . The

number of monomers per backbone segment between two loops is m and the linear distance

between two adjacent loop anchors is d.

Persistence length A thermally-excited bend generates a curvature κ along the cylindrical

brush axes, that has a convex and a concave side. The volume accessible to the loop monomers

in the concave (convex) side is smaller (larger) than the unperturbed case by κR � 1. This

perturbs the monomer volume fractions: 〈ϕ〉(1 ± κR), where the upper/lower signs are for the
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concave/convex sides respectively, and 〈ϕ〉 = na3/(R2d) is the average unperturbed volume

fraction.

The free energy of a loop depends on the average volume fraction as, F = kBTn〈ϕ〉5/4. The

perturbation energy due to a curvature κ for a cylindrical brush with persistence length ρ is

given by, kBTρκ
2d. Hence, we get the persistence length:

ρ = n〈φ〉5/4R2/d = aα1/4n15/8 (a/d)17/8 (D.7)

D.2 Entanglements

Entanglements in confinement The correlation length in confinement ξc, scales with gc,

the number of chromosome monomers in confinement: ξc = ρ2/5(wρ2R)1/5g
3/5
c . The number

density of chromosome monomers is uniform in the confined volume.

N ′

D3
=
gc
ξ3
c

⇒ ξc = aφ−3/4

(
RF (N)

RF (N ′)

)5/4

(D.8)

The number of confinement blobs

Nblobs = N ′/gc = Nφ5/4

(
RF (N ′)

RF (N)

)15/4

(D.9)

scales positively with the chromatin volume fraction φ.

D.3 Optimal chromosomes

The optimal loop size for loops with maximum valency,

(n?)αmax
= (d/a)2/3(N/k)5/9 (D.10)



222

Maximum valency for optimal loops,

(αmax)n?
= (d/a)5/6(N/k)5/18 (D.11)

The maximum core size for optimal loops of size n? is given as

(r0)n?,αmax
=
√

(n?)αmaxa/d = (a/d)1/6(N/k)5/18 (D.12)

Inter-chromosomal entanglements per chromosome for optimal loops is as follows.

(
〈Ca2〉

)
n?

=
φ5/4w3/4(d/a)57/256

Ne α15/128

(
N

k

)211/256

(D.13)

For saturated chromosomes (loops with maximum valency αmax),

(
〈Ca2〉

)
n?,αmax

=
φ5/4

Ne
w3/4

(
d

a

)1/8(N
k

)19/24

(D.14)

Stretching modulus. The maximum stretching modulus of saturated chromosomes,

(f0)n?,αmax = (kBT/a)(a/d)1/3(N/k)5/9 (D.15)

Contour length and width. The contour length and width per chromosome for optimal loops

(
L′/k

)
n?

= aα1/4(d/a)1/8(N/k)3/8 (D.16)

(R)n?
=
a(d/a)13/32

α11/16

(
N

k

)15/32

(D.17)

and for saturated chromosomes,

(
L′/k

)
n?,αmax

= a(d/a)1/3(N/k)4/9 (D.18)
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(R)n?,αmax
= a(a/d)1/6 (N/k)5/18 (D.19)

Bacterial DNA: cylindrical monomers

RF (N) = a2/5(wa2b)1/5N3/5 (D.20)

R

a
=

(
b

a

)1/4
[
n3/4w1/4

α1/2

(a
d

)1/4
]

(D.21)

ρ

a
=

(
b

a

)5/8 [
n15/8w5/8α1/4

(a
d

)17/8
]

(D.22)

RF (N ′)

RF (N)
=

(a/b)1/40 (d/a)1/8

w1/40α1/20n3/40

(
1 +

(b/a)2/5w1/5α2/5n8/5

(d/a)7/5N
+ · · ·

)
(D.23)

n? =
(a
b

)1/4
[

(d/a)7/8

w1/8α1/4

(
N

k

)5/8
]

(D.24)
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