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ABSTRACT

Dynamic Trucking Equilibrium in a Freight Exchange Platform with Hyperpath Routing

John Vaala Miller

This dissertation proposes a new hyperpath-based truck equilibrium assignment model

with bidding. Unique from other trucking assignment models that examine assigning

trucks for a large fleet of vehicles under a company’s control, this model considers the

case of many independent but homogeneous carriers that are competing for loads by

bidding in auctions administered by an online freight exchange. The competitors follow

optimal bidding hyperpaths to maximize their expected profit. The carriers all utilize

an Online freight exchange (OFEX) platform that allows shippers to advertise loads to

a large number of freight operators in search of loads. Such platforms often serve the

purpose of matching demand and supply for freight in real-time.

The dissertation starts by developing a hyperpath truck routing problem that leverages

the power of an OFEX platform. The OFEX routing problem seeks to determine a

hyperpath in a space-time expanded network that maximizes the expected profit for a

given origin-destination pair and tour duration. At the core of the OFEX routing problem

is a combined pricing and bidding model that simultaneously (1) considers the probability
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of winning a load at a given bid price and current market competition; (2) anticipates

the future profit corresponding to the present decision; and (3) prioritizes the bidding

order among possible load options. Results from numerical experiments, constructed

using real-world data from a Chinese OFEX platform, indicate that the proposed routing

model could (1) improve trucks’ expected profits up to 400%, compared to the myopic and

recursive benchmark solutions built to represent the state of the practice; and (2) enhance

the robustness of the overall profitability against the impact of market competition and

spatial variations.

The interference of the hyperpath routing model is that as more trucks utilize the

method, the less advantageous the hyperpaths become due to the increased competition.

Therefore, the dissertation continues to explain an equilibrium model that leverages the

hyperpath truck routing solution to enable a solution for all trucks. This dissertation

proposes a new hyperpath-based dynamic trucking equilibrium (DTE) assignment model.

Unlike existing freight assignment models, this model focuses on the interactions between

individual truck operators that solely compete for loads advertised on an online freight

exchange. The competing trucks are assumed to follow optimal bidding and routing

strategies - represented using a hyperpath - to maximize their expected profit. The

proposed DTE model helps (1) predict system-wide truck flows (including empty truck

flows), (2) identify efficiency improvements gained by network-wide visibility, and (3) lay

the foundation for building a system optimal model. We rewrite the DTE conditions

as a variational inequality problem (VIP) and discuss the analytical properties of the

formulation, including solution existence. A heuristic solution algorithm is developed to

solve the VIP, which consists of three modules: a dynamic network loading procedure
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for mapping hyperpath flows onto the freight network, a column generation scheme for

creating hyperpaths as needed, and a method of successive average for equilibrating profits

on existing hyperpaths. The model and the solution algorithm are validated by numerical

experiments constructed from empirical data collected in China. The results show that the

DTE solutions outperform with wide margin the benchmark solutions that either ignore

inter-truck interaction or operate trucks according to suboptimal routing and bidding

decisions.
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CHAPTER 1

Introduction

1.1. Motivation

Trucking is the backbone of freight transportation in many parts of the world. In the

U.S., the trucking industry generated over $700 billion of revenue in 2015, which is more

than 80% of the entire freight-related transportation bill [1]. In China, trucks moved

about 31.5 billion tons of freight (roughly three-quarters of the total freight tonnage) in

2015 [72], with estimated revenue of nearly $1 trillion, based on the total cost of freight

transportation in China [8]. The strong growth in e-commerce, expected to account for

17% of retail business by the end of 2022 [83], is continuing to drive up the demand for

trucking. According to United States Department of Transportation in 2016 [78], by 2040

freight volume in the U.S. will increase by 45% to almost 30 billion tons.

One challenge to the efficiency of the trucking industry is the high fragmentation.

According to the American Trucking Associations in 2015 [1], there are over 1.25 million

for-hire and private carriers in the U.S., of which more than 90% operate six or fewer

trucks. The fragmentation in China is even more significant. A survey conducted in 2014

showed that 85% of trucks are owned and operated by small for-hire carriers, with each

carrier maintaining an average of 1.6 trucks [40]. Running in such an intensely competitive

market is challenging, especially for the small carriers who have neither much bargaining

power nor viable means for consolidation or collaboration. The key to surviving thus
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lies in the ability to discover high-value loads as quickly as possible and the flexibility to

follow them wherever they arise. Small carriers are also at a disadvantage compared to

big players when it comes to accessing load information across the entire network. Not

surprisingly, when left to their own devices, these carriers often fail to match their assets

to the most profitable loads in time, which not only hurts their profitability but also drags

down the efficiency of the entire industry.

One of the promising solutions to breaking this information barrier, enabled by mo-

bile computing and communication technologies, is the online freight exchange (OFEX)

system. This system provides a platform that allows shippers to advertise loads publicly

or privately to a large number of freight operators in search of loads. Like Uber for pas-

sengers, OFEX systems serve the purpose of matching demand (loads) and supply (truck

capacity) for freight in real time. Well-known OFEX examples include Teleroute in France

(http://teleroute.com/en en, the first of its kind according to Wikipedia), Coyote in the

US (www.coyote.com, acquired by UPS in 2015), 56QQ in China (www.56qq.cn, also

known as Truck Alliance) and most recently Uber Freight (https://freight.uber.com/).

The OFEX platforms provide a wide range of services. Some, such as Coyote and Uber

Freight, mainly broker and execute transactions as an online third-party logistics provider.

Teleroute and 56QQ, on the other hand, are primarily focused on advertising (for ship-

pers) and consulting (for trucks) services. Either way, the fundamental question is how

to guide the carriers - most have no contractual relationship with the platform - to the

most suitable loads, by leveraging on the platform’s visibility of network-wide demand and

supply information. This question is at the core of OFEX’s value-added services, and also

what motivates this dissertation.
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The question is framed in the context of inter-city truckload (TL) shipping. Currently,

only about 11% of TL trucking is matched through OFEX systems in the United States

but expected to continue rapid growth (Richardson 2017). An OFEX platform, operating

in a closed shipping network consisting of a certain number of cities, is assumed to have

access to detailed information of each load it ever recorded, such as origin-destination (O-

D), weight, price, shipped date, etc. Suppose also that, based on this historical database,

the OFEX could project for a future planning horizon: (1) the number of loads between

any O-D pair at any given time, (2) the number of trucks looking for loads at each city

at any given time, and (3) the distribution of load prices between any O-D pair. The

question that can be asked is the following: given the above information, what guidance

could be given to a freight operator to maximize its profitability in a shipping tour with a

given duration and starting/ending cities?

Central to understanding the above question is the shipping imbalance inherent in any

OFEX’s network: some locations have more loads coming in than out (sink nodes), and

others have more going out than in (source nodes). Sink nodes make the probability of

getting a follow-on load from that location lower, in addition to driving the profits down

on the few loads that are available. Source nodes make an almost certain probability

for follow-on loads near that location, along with higher earnings on average. Utilizing

these probabilities and profit expectations can allow a freight broker to recommend a

bidding strategy for the next job. The policy is determined by calculating the maximum

expected profit of all available loads and all follow-on decisions until the desired end of a

tour (regarding both time and space). This method can significantly improve upon the

current status quo where a truck strives to find the most profitable job available at the
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time, with little thought about the subsequent earnings effect of that decision. With a

probabilistic recursive approach that optimizes profit over the whole route chain, a truck

could significantly improve profitability.

Routing in an OFEX platform bears some similarities to the selective traveling sales-

person problem (TSP) in that both problems aim to determine a set of cities to visit

to optimize an objective function. However, there are several critical differences. One

difference is the revenue at each city is not deterministic, but instead dependent upon the

trucks’ decisions. Trucks may decide to haul a load at the below-market price to a city,

wait for a better deal in the next time interval, or move to a source node without carrying

a load. More importantly, our OFEX problem endogenizes the competition in the market,

through an embedded biding process that determines the winning probability.

The OFEX problem produces plans for trucks to follow to make as much profit as

possible. However, it can be seen that the well-meaning guidance prescribed by the OFEX

could be self-defeating. For example, a city that is usually a preferred stop, thanks to its

relatively scarce trucking supply, may become flooded with incoming flows of trucks tipped

by the platform, which in turn ruins the promise of demand surplus. For the platform that

seeks to profit from the improved system efficiency, it is essential to anticipate and respond

to the changing spatial-temporal supply-demand patterns caused by the interventions.

Motivated by this need, this dissertation aims to propose a descriptive model of the

OFEX system called the OFEX dynamic trucking equilibrium problem (DTE) problem.

In this model, all (or a portion) of its registered trucks compete for loads while seeking

to maximize their expected profit through dynamic routing and bidding.
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1.2. Problem Statement

The DTE problem is defined as finding an equilibrium flow pattern of trucks over

a network where all trucks utilize an OFEX platform that brings shippers and trucks

together. The equilibrium occurs as optimal plans are identified, trucks change to those

identified plans, which in turn decreases the expected profit. This decrease enables new

plans to be more profitable, creating a cycle. We assume the cycle continues until an

equilibrium state is reached, in which all hyperpaths with positive flow for an origin-

destination (O-D) pair will have equal expected profit. We call finding this state the

DTE. The OFEX platform operates in a region that consists of n cities. Each city pair i

to j is connected by a route with a fixed travel time τij. The ultimate goal is to create

delivery plans for all trucks when each specifies (1) the origin city î, (2) the destination city

ĵ, (3) the starting time and (4) the planning horizon T measured in the unit of operating

interval ∆ (e.g., a day or an hour). With these inputs defined, the model assigns the

trucks to the delivery plans in a way such that all trucks’ expected profit is equal for each

strategy available for trucks with the same starting ending locations and times.

1.3. Contributions

With the aspiration of constructing and putting into practice a planning tool to aid

truckers and shippers utilizing an OFEX platform, we make the following significant

contributions in this dissertation:

(1) Develop a hyperpath-based truck routing model that is based on optimized bid-

ding within an OFEX platform. Current planning and truck allocation models

assume full control of the trucks or include constraints that all jobs must be filled
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or penalties are incurred. The OFEX routing model formulation provides a way

to generate robust routing plans with full recourse for truckers in addition to

being very fast even for realistically sized networks.

(2) Demonstrate the practical significance of the methodology on specific instances

using real OFEX data from China. The OFEX routing model generates the

expected optimal profit routing hyperpath and bidding strategy for a single truck

in an online freight exchange platform that can increase earnings by over 200%

from the status quo. Furthermore, the DTE problem shows the network could

raise profits for all trucks by 10%, potentially increasing profits by hundreds of

millions of dollars in China’s highly fragmented trucking network.

(3) Establish a mathematical foundation for a new research area ripe for application

and analysis with potential for major economic and environmental impacts. Re-

search can build upon this foundation to analyze many other networks: from a

localized Uber driver network to examine efficient and fair time-dependent pric-

ing in a city, to a national shipping network to find the optimal place for a new

distribution center to alleviate shipping imbalance, many possibilities exist.

1.4. Organization

The dissertation structure is designed to develop the elements necessary to solve the

trucking equilibrium problem for a real OFEX. Chapter 2 provides a thorough literature

review of the related routing problem and the dynamic user equilibrium problem literature.

Chapter 3 presents a formal statement of the OFEX routing problem with bidding and

introduces necessary notations, assumptions, and models. Chapter 4 builds upon the
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OFEX routing problem and presents a formulation for the dynamic user equilibrium

problem, to include the dynamic loading algorithm necessary to produce the network

results from hyperpath strategies. Chapter 5 presents the data, numerical analysis of the

OFEX routing and equilibrium problems. Chapter 6 concludes the dissertation with a

summary of the contributions, and equally valuable, the potential areas of future research.
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CHAPTER 2

Literature Review

This chapter introduces the literature of some models relevant to the OFEX routing

problem and transportation models related to the dynamic user equilibrium problem. The

trucking industry is a fundamental part of transportation research, and many papers and

models have been created in this field. However, previous research does not incorporate

all of the types of objectives, constraints, and perspectives that are critically important

to the problem defined in this research. This chapter describes the relationships between

the different types of formulations related to the OFEX routing problem and dynamic

trucking equilibrium problems.

2.1. OFEX Routing Problem Literature Review

The OFEX routing problem is a transportation optimization problem with four main

features: (1) selective profit-maximizing routing, (2) dynamic pickup and delivery, (3)

bidding in an online auction for probabilistic (or stochastic) service requests, and (4)

solving for a set of attractive routing and pricing strategies, referred to as hyperpaths.

While problems with individual or some mixtures of multiple features have unquestionably

been studied before, the full combination of all aspects is new, to the best of our knowledge.

Problems in the literature that solve vehicle flows on arcs and nodes are known as

vehicle routing problems. Many variations and formulations of routing problems exist.

The goal of this research is to utilize a formulation that handles the elements of time
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windows, single and multiple vehicles, multiple depots, open routes, stochasticity, selective

pickup for a pickup and delivery, and the ability to be solved and resolved quickly to

account for a dynamically changing environment to maximize the benefit received. The

aim is to accurately classify the OFEX routing problem in research to know what work has

been previously completed and what methods need to be explored in solving the problem.

Routing problems are known as classic and fundamental operations research problems.

The OFEX routing problem is therefore related to this classical research stream, including

the traveling salesperson problem (TSP).

2.1.1. Traveling Salesperson Problem

Our research problem is related to a class of problems known as the Traveling Salesman

Problem (TSP). TSPs also aim to optimize an objective function with a routing plan.

The standard traveling salesperson problem requires the solution to visit each node

of a set of nodes, or cities, for example, exactly once, initializing from, and returning

to the starting location [70]. The objective is to minimize the total distance traveled

by the salesperson. To solve these problems when the number of nodes becomes large

is very difficult. The known exact algorithms that search the whole solution space can

be as difficult as exhaustive search in the worst case. Known approximate algorithms

avoid searching the whole solution space and attempt only to find a solution that is

within a certain proximity of an optimal solution. It is a mathematical conjecture that

the complexity class of the TSP is Nondeterministic Polynomial-time Complete or NP-

complete. A problem is in class NP if it is possible to check in polynomial time whether a

“lucky guess” is actually an optimal solution. For a given directed graph with edge costs,
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the problem of determining whether there is a path of cost c (for any given c) is in NP -

if a path is supplied, it is possible to check in polynomial time whether the cost of that

path is c. Any TSP can be solved by determining a sequence of these “does there exist a

path of cost c” special problems by choosing the c’s as a binary sequence. A problem is

NP-complete if whenever there is an engine that solves this problem in polynomial time,

you can use this engine as part of an algorithm that solves any other problem in class NP

in polynomial time. This means that it is not possible to find a solution algorithm that

gives an optimal solution in a time that has a polynomial variation with the number of

nodes n, as in n ∗ x. The best solution currently available is to solve the problem in a

way that grows exponentially with the number of nodes, as in 2n. This challenge makes

solving TSP problems intractable when n is very large. Because the TSP is a NP-complete

problem, it is nearly impossible to solve optimally for a large n. For example, a complete

graph with n vertices requires (n−1)! ways to choose a circuit of length n. As n becomes

large, the number of possible paths explodes.

Algorithms do exist that are usually good at solving the TSP precisely, especially for

smaller-sized problems. The branch and bound algorithm is frequently used to solve the

TSP exactly. However, in the worst case, branch and bound is equal to exhaustive search.

The origin of the branch and bound algorithm goes back to the work of Dantzig, Fulkerson,

and Johnson [13]. The branch and bound method solves a discrete optimization problem

by breaking up its feasible set into successively smaller subsets, calculating bounds on the

objective function value over each subset, and using them to discard specific subsets from

further consideration.



25

The TSP is a good starting point for exploring models and the corresponding prop-

erties, but the OFEX routing problem has significant differences from the standard and

TSP variants. The OFEX routing model has revenues at each city that are not deter-

ministic, but instead dependent upon the trucks’ decisions. More importantly, our OFEX

problem incorporates the competition in the market, through an embedded biding process

that determines the winning probability, very different than the TSP. Finally, the OFEX

routing problem contains profit maximization, while the TSP is a cost minimization.

2.1.2. Orienteering Problem

Another area of research related to profit maximization routing falls under the name of

the orienteering problem (OP). While the OP was named for and applied to the sport

of orienteering, it has practical applications in vehicle routing with profits as discussed

by Golden et al. [30]. They also proved that the OP is NP-hard. Work has been done

on exact methods for the OP such as integer programming, dynamic programming, and

branch-and-cut algorithms. Although these approaches have yielded solutions to smaller

sized problems, as in other NP-hard problems, the computational limitations of exact

algorithms encourage the exploration of heuristic procedures in the OP literature as well.

The Team Orienteering Problem (TOP) is the multiple vehicle extension to the OP. In

the multiple vehicle case, this relates to the classic vehicle routing problem classification.

The TOP framework is closer related work to the OFEX routing problem but does not

capture the probabilistic or pickup and deliver nature to the question of interest for this

dissertation.
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2.1.3. Probabilistic Traveling Salesperson and Orienteering Problems

A research problem that accounts for the stochastic nature of the problem is the proba-

bilistic traveling salesperson problem (PTSP). The PTSP is a stochastic extension of the

TSP where each node will be visited with a certain probability. Jaillet in 1988, [36] is

known for creating the original formulation of the PTSP. Laporte et al. [39] formalized

the methodologies and analysis of the PTSP in 1994. Recently, building upon the PTSP

body of work, Angelelli et al. [2] developed the Probabilistic Orienteering Problem (POP).

They formulate the POP as a linear integer stochastic problem and establish heuristics

to solve many instances of the problem and develop a recourse function to handle the

stochastic nature of finding points that do not materialize. While the stochastic elements

are present in these models, the pickup and delivery and bidding aspects are not included

in these models.

2.1.4. Pickup and Delivery Problem

The literature mentioned so far has not covered the vehicle pickup and delivery (PDP)

aspect of the desired formulation. PDPs are broken into three main categories, many-

to-many, one-to-many-to-one, and one-to-one. The OFEX routing problem is similar to

the pickup and delivery problem (PDP) - which is a special case of the vehicle routing

problem (VRP) [16] - in that each load is identified by a pickup (origin) and a drop-

off (destination) location and that the optimal decision involves a tour of multiple loads.

Because the literature of VRP/PDP is quite extensive, no attempt is made here to provide

a comprehensive review. The reader is referred to Ritzinger et al. [66] and Ulmer [77] for

recent reviews.
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Recent and relevant research in this area begins with Yang et al. [84] who consider

a dynamic multi-vehicle PDP that incorporates the penalty cost on the delayed comple-

tion and job rejections. Using a rolling horizon framework, they propose re-optimization

strategies (by solving a mixed integer programming formulation) and local dispatching

policies for real-time operations. In 2004, Yang et al. [85] proposed a new optimization-

based policy for the dynamic multi-vehicle PDP and developed a simulation platform

to test its effectiveness. Within a similar dynamic PDP framework, Mitrović-Minić and

Laporte in 2004, [49] examined the problem of organizing and distributing a vehicle’s

idle time in its schedule. They proposed and compared four different waiting strate-

gies and concluded that the optimal waiting strategy depends on proper route partition.

Figliozzi et al. [24] introduced the VRP in a competitive environment, where they utilize

a stochastic dynamic programming model to solve the problem for a carrier bidding on

arriving loads. Built on Yang et al.’ work from [84] and [85], Zolfagharinia and Haughton

in 2014, [88], introduced the notion of a truck’s home base when designing dispatching

rules. Their model can also handle load rejection, truck diversion, and advance load in-

formation. They further examined the effect of incomplete advance load information and

proposed a simple but effective heuristic policy that is integrated with a mixed integer

programming formulation [89]. More recently, they analyzed the value of advanced load

information, decision interval, and the diversion capability in the context of dynamic PDP

for truckloads [90]. They found that the advance load information and decision interval

significantly influence the total cost. Lastly, in 2017, Qui et al. [65] and Gansterer et al.

[29] consider profitable PDP problems, which decide not only how to route and schedule

vehicles to serve the loads, but also which loads to accept or reject.
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2.1.5. Vehicle Assignment Problem

Our problem is also similar to the dynamic vehicle allocation problem (VAP). In its most

straightforward form, such a problem assigns trucks to meet the demand for moving

loads between cities within a region, which can be reduced to a transshipment problem

when the future requirements are known with certainty, as in 1969 and 1972 models by

White [81, 80]. In 1984 [63], Powell et al. introduced uncertainty into the demand but

assumed the vehicle flows are determined before the actual realization of the demand.

This assumption was relaxed by Powell in 1986 [57], who proposed to differentiate empty

truck flows from those intended to move with loads. Accordingly, the actual number of

loaded truck flows between any O-D pair would be bounded by the realized demand in the

model. In 1987 [58], Powell suggested a fundamentally different approach to managing the

fleet in a real-time truckload trucking environment. The problem posed was to optimize

load acceptance/rejection and truck movements for the current condition, while using

the historical data to anticipate the consequence of a decision made now. The key is to

include the so-called “regional impact” in the current decision, or the expected value of

sending a vehicle to a region, which may depend on all the possible future movements

once the vehicle arrives at the region. Powell et al. later implemented this real-time VAP

model in [62] as LOADMAP and deployed by the Commercial Transport Division of North

American Van Lines. In 1996 [59], Powell extended the above framework by explicitly

integrating the forecasted demand into the model, and confirmed that this stochastic,

dynamic model with predicted demand outperforms standard myopic models. In 2000

[64], Powell et al. compared two solution strategies for dynamic vehicle assignment: a

deterministic myopic re-optimization based on the data revealed up to the decision time
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(as in Yang et al. [85]) and local greedy-type heuristics. They found that in the presence of

uncertainty (especially user noncompliance) optimal solutions to static subproblems offer

small to negative benefits compared to crude local heuristics. In 2006, Tjokroamidjojo

et al. revisited the dynamic VAP and proposed a formulation revised from an aircraft

scheduling model [74]. Their focus was to quantify the value of knowing the requests

in advance. In 2007, Topaloglu and Powell [75], incorporate the pricing decision of a

carrier into the stochastic VAP. The pricing decision in this dissertation is fundamentally

different because, in Topaloglu and Powell, the carrier is determining a price, which

influences how many loads arrive, while in this dissertation, an auction determines the

price from competing carriers, with no bearing on the arrival of loads.

2.1.6. Agent-based Control Models

Most studies reviewed hitherto are concerned with a centralized decision problem of as-

signing a fleet of trucks to most valuable loads (in the case of dynamic vehicle allocation

problems) or optimal tours (in the case of dynamic PDP). In this dissertation, we con-

ceptualize the problem from the perspective of an individual trucker who attempts to

plan for a tour based on historical information observed from an OFEX platform. In the

literature, the line of work that resembles this approach most closely was initiated by Mes

et al. [47], who model truckload operations as a multi-agent system of individual truck

operators and job dispatchers. Each truck operator competes for loads by submitting

bids to a job dispatcher, who evaluates all bids and decides which one to accept. A bid

is priced by each operator “on the fly” according to the difference in cost between the

updated schedule (with the new load) and the current schedule. When compared to a
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centralized control system, the multi-agent system was found as equally or more efficient.

In a follow-up study [46], Mes et al. extended the truck operator’s decision problem,

attempting to take into account not only the direct cost of a job insertion (as in [47]) but

also the potential gains and costs that may arise within a look-ahead period. Mes et al.

continued to focus on the truck’s “next optimal move” given the information of available

loads and its current work schedule [46]. However, no attempt was made to build an

optimal tour plan that consists of multiple moves for a planning horizon. Therefore, their

modeling approach’s ability to anticipate the effects of possible future events is limited,

leading to potentially myopic dispatching and bidding decisions.

2.1.7. OFEX Problem Formulation Considerations

The truckload routing and scheduling problems discussed above are typically formulated

and solved either as a mixed integer program (MIP) or a (stochastic) dynamic program

(DP). In this dissertation, we formulate the OFEX routing problem as a DP because it

allows us to build recourse into strategic planning through dynamic recursion. Instead of

a fixed tour, our model generates a series of routing and bidding strategies represented as

a hyperpath over a space-time expanded network. The hyperpath is determined a priori

but contains adaptive decisions. Specifically, while the decision at any time is made by

anticipating the aggregate effects of all possible future decisions, the actual trajectory of

a truck in the network is unknown until the strategies are executed.

The concept of hyperpath routing originates from the common bus lines problem from

Chriqui and Robillard in 1975 [9], in which passengers strategically select the first arriving

bus from a set of attractive lines to minimize the total expected travel time. Spiess and
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Florian extended the idea in 1989 to a general transit network [73], and Nguyen and

Pallottino in 1988 [52] formally described such a strategy as a hyperpath. To the best

of our knowledge, most hyperpath applications are related to public transportation, see

Trozzi et al. 2013 [76], Li et al. 2015 [41], and Chen and Nie 2015 [7], but few have

considered it in truckload trucking.

2.2. OFEX Trucking Equilibrium Problem Literature Review

The routing problems and solution methodologies covered so far are good for optimally

routing single or multiple vehicles when the probabilities are static or independent of the

vehicles’ actions. However, as more vehicles begin to optimize expected profits, and move

to the same optimal paths, the competition creates more demand for the initially optimal

locations, and those probabilities and the corresponding expected revenues would decrease

as the number of vehicles at those locations increase. Borrowing the ideas and principles

from John Wardrop and the field of traffic assignment research, it is possible to find this

type of equilibrium in a profit maximization case as well.

The DTE problem is a transportation problem with three main features: (1) solving

for a set of attractive routes and routing strategies, referred to as hyperpaths, for trucks

within an OFEX, (2) loading flows of trucks onto a network from hyperpath flows, and (3)

finding a network trucking equilibrium by balancing the truck flows across hyperpaths.

The DTE problem mimics the traffic assignment problem (TAP), from Wardrop’s seminal

paper in 1952 [79] and Beckman et al.’s in 1955 [3], in that the equilibrium may be

viewed as the result of two competing processes. On the one hand, like travelers seeking

shortest paths in TAP, the trucks make profit-maximizing decisions based on predicted
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information about the distribution of load/trucks in the network, as well as shipping

prices. On the other hand, like travelers inducing congestion, each truck’s decision affects

his/her expected profits by shifting the demand/supply balance in each spot market,

which changes not only the market price for loads but also the likelihood of winning a

bid. While characterizing this equilibrium behavior is interesting in its own right, we note

that understanding how interventions may impact system efficiency and profitability is

also crucial to the OFEX’s value-added services.

2.2.1. Time-Dependent Shortest Path Problems

The analysis of transportation networks and finding equilibrium solutions to date has

required the computation of shortest paths. The shortest path problem is one of the most

fundamental problems in computer science and combinatorial optimization. In the basic

variants of the problem, it has very efficient algorithms to solve it, including dynamic

programming, Dijkstra’s algorithm [17], and the Bellman-Ford algorithm [4] and [25]. For

the research in this dissertation, the time-dependent case is considered because the proba-

bilities at the locations change based on time of day. Furthermore, this adds the ability to

account for the length of travel time to change over time, adding realism to the problem.

Also, the time-dependent formulation enables the use of a directed acyclic graph (DAG)

which to calculate and solve the maximum profitable path, (or longest path problem) is

a necessary condition for solving the problem in polynomial time. The algorithm has to

be as efficient as possible to be able to calculate optimal routes dynamically.

2.2.1.1. Generalizing the Static Shortest Path Problem. The initial paper cov-

ering the time-dependent shortest path problem was in 1966 by Cooke and Halsey [11].
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Following in Bellman’s principle of optimality [4], they developed an algorithm that cal-

culated the shortest path from every node in the network to one destination node for a

set of discrete departure time steps. The proposed algorithm has a time complexity of

O(V 3M), where V is the number of vertices (nodes) and M is the number of discrete time

units. Later, in 1969, Dreyfus [19] built upon Dijkstra’s [17] static label-setting algorithm.

Dreyfus generalized the static case that could calculate the time-dependent shortest path

between two nodes for one departure time step with the same complexity as the static

case O(V 2M) but has the same complexity as Cooke and Halsey in the case for all the

nodes.

Orda and Rom, in 1990, [53] studied the problem accounting for waiting-at-nodes

scenarios, and developed algorithms to solve these cases. They proved that if waiting is

allowed at nodes, then the FIFO property is not required. Building upon these efforts,

in 1993, Ziliaskopoulos and Mahmassani [87] provided an efficient solution approach to

the problem of the FIFO property by the discretization of time into τ time periods and

developed a pseudo-polynomial time algorithm for the all-to-one case having a complexity

of O(m3τ 2), for a network having m source nodes. This algorithm can solve for the

minimum cost paths in networks with general link travel costs that do not necessarily

satisfy the FIFO property, for a given set of starting times.

2.2.1.2. Decreasing Order of Time Algorithm. In 1998, Chabini analyzed the dif-

ferent types of problems and developed the decreasing order of time (DOT) algorithm [6].

Chabini proposed that in the case of all travel times are represented as positive integers,

the labels corresponding to time step t never update labels corresponding to time steps

greater than t. This insight implies the acyclic property along the time dimension of
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the time-space expansion of a discrete dynamic network. Chabini shows that the time

complexity of the DOT algorithm is O(M(V 2 + V +m)), where m is the number of arcs.

He also proves that this method is the optimal worst-case-run-time complexity for the

all-to-one shortest path problem.

2.2.1.3. Dynamic Longest and Profit Maximizing Paths. None of the papers dis-

cussed have explored the case of finding the longest path or profit maximized route in a

time-dependent network. This area of research remains mostly unexplored for two rea-

sons: first, the longest path problem in the general case is NP-hard as shown [68]. If it

could be solved in polynomial time, the methodology could be used to solve the traveling

salesperson problem. Therefore, less effort has been placed on researching the longest path

problem and has been limited to exceptional cases when the Hamiltonian Path Problem

can be solved in polynomial time. Second, in the case of problems with a directed acyclic

graph structure, it is possible to transform the graph from the longest path problem to

an equivalent shortest path problem by changing every length or cost in the network to

its negation, and applying the algorithms of the shortest path problem.

A typical example of this methodology in practice is determining the critical path

from project management. The longest path signifies the critical path of the project and

represents the fastest time possible for project completion. For the problem of finding

optimized profit routes, this dissertation will focus on DAG networks. Very little re-

search can be found for the dynamic or time-dependent maximum profit path problem.

Therefore, a plan for solving the problem is to utilize the extensive research from the

time-dependent shortest path problem in DAGs and apply the algorithms inversely to

account for profits or the longest path in a time-dependent DAG network.
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2.2.2. Static User Equilibrium in the Traffic Assignment Problem

The intensely studied traffic assignment problem studies the interactive process between

the traveler demand and the transportation supply. The supply is the transportation

infrastructure, and the demand is the travelers desire to move from point to point within

a network. This supply and demand interaction creates an equilibrium point that Wardrop

specified in his first principle in 1952 [79]. Wardrop also identified a second principle that

states there is also a state in which the total users’ travel cost is minimized concerning the

choice of routes. This research utilizes these same principles, but for profit instead of cost.

With the increase of available data to predict future demand for freight shipments, truckers

have the newfound ability to plan routes to maximize their expected profit intelligently.

However, just as in the traffic assignment problem, as more trucks follow the same profit-

maximizing techniques, the routes that were initially the most profitable become less

profitable with increased competition. However, since very little applicable research is

currently found for equilibrium problems with profits, this section will look at the research

related to the traffic assignment problem.

In 1955, Beckmann et al. formulated the static user equilibrium with fixed demand as

an optimization problem to find equivalent routes [3]. Sheffi, in 1985, wrote a book with

detailed analysis and the standard for the static UE and the stochastic UE problems [69].

Many algorithms and models have been developed to solve the static user equilibrium

problems. The algorithms’ ability to converge to the UE solution depends on the problem

structure. Patriksson defines three favorable structures to include origin-destination (O-

D) pair separability, cost separability, and the primal-dual relationship [54]. When models

have these favorable structures, then the use of a decomposition algorithm, where the
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algorithm fixes all O-D flows except the one being updated is prudent. This situation

exploits the stronger monotonicity structure on the smaller subspace being updated than

on the entire network.

2.2.3. Dynamic User Equilibrium in the Traffic Assignment Problem

While the static user equilibrium provides many valuable insights, the assumptions of the

static UE problem were too restrictive for modeling real-time traffic. This issue sparked

interest in researching the dynamic traffic assignment problem and the dynamic user

equilibrium. A time-dependent network had to be utilized, to account for the changing

demand rate. The early analytical formulations of the time-dependent user equilibrium

model extended Wardrops condition to departure time choice as well as the static con-

ditions for unutilized routes. The first known attempt to formulate the dynamic traffic

assignment problem was by Merchant and Nemhauser in 1978 [44] and [45].

Another class of formulations for the dynamic UE problem assumes the knowledge

of O-D demands a priori to running the model. This assumption effectively removes the

time choice from the model to make it tractable. The earliest instance in this area was

by Janson in 1991, [37]. However, the solutions to these types of models can lead to

unrealistic travel behavior in some cases due to the reliance on static link performance

functions and static O-D demand.

To overcome the weaknesses and simplifications of the dynamic TAP models, simulation-

based models became a prevalent methodology to solve the dynamic UE problem. Now

they are the most widely used models in practice because of the greater realistic repre-

sentation of traffic within the simulated network. Mahmassani and Peeta developed a
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DTA model that used a mesoscopic traffic simulator, called DYNASMART [55], which

has gone through many enhancements since creation. There are several other similar

simulation-based dynamic traffic assignment models, to include DynaMIT, CONTRAM,

and METROPOLIS to name a few. A quick summary of the foundational simulation-

based models is found in [56]. Most of the advantage of simulation-based models is the

utilization of advanced realistic traffic simulation. The dynamic model for the profit-

maximization model proposed in this research is a more extended scale model that is less

concerned about the realistic traffic but could utilize simulation to model a more realistic

bidding process that is not possible with a mathematical model implementation.

2.2.4. Freight Network Equilibrium

In the literature, the intercity freight flow equilibrium problem is typically concerned with

the interactions between shippers (demand side) and carriers (supply side). A classical

example is the Freight Network Equilibrium Model (FNEM) [26], which assumes that

shippers compete for the service of carriers non-cooperatively and carriers maximize profit

by choosing the production of transportation services. The shipper-carrier interaction

may be modeled sequentially (as in FNEM), or simultaneously. The latter approach often

treats the shipper’s problem as an equilibrium constraint in the carrier’s cost optimization

problem, which leads to a non-convex bi-level formulation [see, e.g., 27, 28].

In a more general setting, [34] formulate the demand for shipping as a result of equi-

librating spatial commodity prices. [35] focus on carriers’ pricing strategies in freight

network equilibrium and show that the most efficient flow distribution can be decentral-

ized if carriers use the optimal nonlinear tariffs. More recently, [23] revisited the FNEM
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problem and proposed an integrated shipper-carrier equilibrium model that is similar in

many ways to the combined mode choice/trip distribution/traffic assignment model [69].

The proposed DTE model fundamentally differs from these existing freight equilibrium

models in that it takes the perspective of an OFEX platform that primarily functions as

a marketplace for infinitely many small shippers and truckers. No player, including the

platform itself, has the power to dominate the market. The proposed model also captures

highly disaggregated time-dependent decisions of individual trucks, such as which loads

and at what price to bid, whether and how long to wait for a desirable load at a given stop,

and where and when to move empty to the next city. Accordingly, it offers mechanisms

to endogenize the movement of empty trucks (as part of the trucks’ decision making) and

load pricing (as a result of the competitive bidding in the market).

Finally, we note that hyperpath (or strategy) is not new to equilibrium analysis [see,

e.g., 14, 82, 10, 43, 31, 33], but few had considered it in the context of freight flow

equilibrium.

2.3. Summary

This chapter provided a review of the relevant literature for the OFEX routing and

DTE equilibrium problems proposed in this dissertation. Both of these research ques-

tions have aspects that have been heavily researched, but both have elements that make

them new problems. The main components not addressed in the literature include the

combination of utilizing an OFEX to create routing strategies with optimal bidding plans

and recourse, referred to as hyperpaths for trucks. Furthermore, research gaps exist for

modeling a trucking freight network equilibrium by balancing the truck flows across the
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generated hyperpaths. The following chapters plan to fill these gaps with the purpose

of creating a new OFEX routing model and new OFEX equilibrium model to improve

trucking operations.
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CHAPTER 3

OFEX Routing Problem

An online freight exchange platform provides a modern auction form. Trucks bid

for loads advertised on the platform, typically from a smartphone, and the low bidder

wins. Traditionally, independent owner-operator trucks use these services when trying

to fill their schedule with loads, or try to carry at least some load on a back-haul to

the next destination. However, as the services have grown in popularity, so too did the

utility of using the service full-time. As trucks utilize the OFEX platform exclusively, the

opportunity arose to create a bidding strategy for loads that also accounts for the impact

of that decision on the potential of future earnings, along with all recourse. Developing

this ability could potentially give the power of network visibility that large carriers possess

to independent trucks. This chapter explains how these routes and bidding strategies can

be generated.

3.1. Problem Statement

This section explains the stochastic dynamic decision problem that represents the

decisions for a single independent truck and the with an example problem, introduces

some assumptions to scope the problem for this dissertation, and introduces the chosen

solution representation. Consider a truck that utilizes an OFEX platform that brings

shippers and trucks together to acquire loads. Shippers can post information about their

loads, to which the truck has access, both through the platform. The truck operates in
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a region that consists of n cities. Each city pair i to j is connected by a route with a

fixed travel time τij. When the truck is at i, it is offered a set of loads represented by Q

that the truck can bid to move from i to j at time t. The truck may also reject all loads

and stay in place until time t + 1, or move empty to any node j. The goal is to create

a bid order and pricing plan for the truck when it specifies (1) the origin city î, (2) the

destination city ĵ, (3) the starting time and (4) the planning horizon T measured in the

unit of operating interval ∆ (e.g., a day or an hour). A table of notation for reference is

given in Appendix A.

3.1.1. Markov Decision Process Model

The problem can be generically modeled as a stochastic dynamic decision problem fol-

lowing similar notation set by Powell, 2007 [60]. The stages are represented by the time

increment t, the state variable St is the current location of the truck, and the set of

decisions, x ∈ X, represent the order of loads to bid and for what price. Specifically,

x = (x, φ) where xtij = bid price for load from node i to node j at time t (= 0 for all

empty moves and waiting option) and φtx = ranking of all feasible x moves. The objective

is to maximize the expected vehicle profit measured as the difference in revenues collected,

xtij, and delivery costs ctij, represented by σ. The general optimization problem can be

represented as:

max
π∈Π

Eπ{
T∑
t=0

σ(St, X
π
t (St))|S0},(3.1)

where decisions are made according to a policy, represented as π. The transition function

depends on the state and information pre-decision (St, W̄t) and post-decision (denoted
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Sx
t , W̄t+1) which is the state and information immediately after making a decision. This

relationship is represented as: Sx
t = SM,x(St,xt) and the transition function is St+τx =

SM,W̄ (Sx
t , W̄t+1), where W̄t+1 is the information that becomes known at time t, after

decision x, which for this problem represents if a bid for a desired load is won or lost

for a given bid price and order. The superscript M represents the generic “model” of

information, as common in the literature. Then assume there is a probability transition

matrix p(s′|s,x) = P [St+τx = s′|St = s,xt = x] for s, s′ ∈ S. Since W̄t depends on

the decisions xt, specifically the bid price, and the state information St, in Equation 3.1

includes Eπ to represent this dependency. Also note, that the transition time depends on

the travel time of the specific decision x, so the travel time can be greater than 1 period.

The constraints to Problem 3.1 include restrictions on the bid value, x ∈ R, bid order

φ ∈ Z, and only one loaded or empty move can be completed at each stage, Xπ(St) ∈ Xt.

In general, the problem can be solved with Bellman’s equation:

Vt(St) = max
xt∈X

(σ(St,xt) +
∑
s′∈S

p(s′|St,xt)Vt+τs′ (s
′)).(3.2)

where one can assume VT (ST ) = 0 and solving backward in time. Once all Vt(St) are

computed for all times t and states St ∈ S, a policy can be generated by:

X∗t (St) = arg max
xt∈X

(σ(St,xt) +
∑
s′∈S

p(s′|St,xt)Vt+τs′ (s
′)).(3.3)

The challenge to solving this problem 3.2 in a practical way is to find a pragmatic way to

represent the probabilities of transitioning from winning or losing bids that are dependent

on the bid price, order, and competition behavior. The remainder of the dissertation
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discusses techniques to handle the dependent relationships. The first step is by presenting

the operating assumptions of the solution methodology.

3.1.2. Assumptions

We shall assume that the following inputs to the OFEX routing problem can be reliably

predicted between now (t = 0) and t = T , based on historical information:

• Number of loads scheduled to depart from i at t = 0, · · · , T destined for city j,

denoted as gtij;

• Number of vehicles available to carry loads at each city i at t = 0, · · · , T , denoted

as H t
i ; and

• Cumulative distribution function of the unit load price between any city pair ij,

denoted F t
ij.

We further make the following assumptions about the operations of the OFEX plat-

form in order to simplify the problem setting.

(1) All decisions are tied to an operating interval ∆. Hence, all travel times τij are

rounded up the next ∆.

(2) Drivers are limited to 12 hours of work per day including waiting, with a working

time window between 6:00 AM to 6:00 PM.

(3) All loads are advertised on the OFEX platform and executed without breaks

within the working time window. Therefore the pickup time window is strictly

enforced once a truck wins a bid, and consequently, the delivery time windows

are never violated.

(4) The cost of traveling loaded or empty is a linear function of travel time, which is

a linear function of distance, similar to [49].
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(5) The truck only carries full truckloads, one at a time.

(6) Handling (loading and unloading) takes a fixed amount of time. In this disser-

tation, it is set to 2∆ (one for loading and one for unloading) unless otherwise

specified.

The set of real and dummy cities in STEN is denoted as L and L′ respec-

tively. There is a dummy connector from i′ to i at each time interval, relocating

empty trucks to the real city so that they can be available for loads. The set

of dummy connectors in STEN is denoted as Ad. Other than the dummy con-

nector, there are three types of links in STEN: links between i at time t1 and j

at time t2 > t1 representing a loaded move (Af ); links between i at t1 and j′ at

t2 > t1 representing an empty move (Ae); and links between i and t1 and i at

t2 > t1 representing waiting (Aw). Finally, the STEN is denoted as G(N , E , T ),

where N and E = Aw
⋃
Ad
⋃
Ae
⋃
Af
⋃

represent the set of all nodes and links,

respectively.

(7) Probabilities of winning a load solely depend on the bidding order and price. We

solve Problem 3.1 with dynamic programming and representing the network with

a space-time expanded network (STEN) as illustrated in Figure 3.1. Without

loss of generality, we assume that the tour always starts at the current operating

interval (i.e., t = 0), which reduces the number of input parameters to three. At

each time interval t, a city has two copies in the network, denoted as i and i′.

The former (i) represents the “real” city corresponding to loaded moves whereas

the latter (i′) is a dummy associated with empty moves.
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The set of real and dummy cities in STEN is denoted as L and L′ respec-

tively. There is a dummy connector from i′ to i at each time interval, relocating

empty trucks to the real city so that they can be available for loads. The set

of dummy connectors in STEN is denoted as Ad. Other than the dummy con-

nector, there are three types of links in STEN: links between i at time t1 and j

at time t2 > t1 representing a loaded move (Af ); links between i at t1 and j′ at

t2 > t1 representing an empty move (Ae); and links between i and t1 and i at

t2 > t1 representing waiting (Aw). Finally, the STEN is denoted as G(N , E , T ),

where N and E = Aw
⋃
Ad
⋃
Ae
⋃
Af
⋃

represent the set of all nodes and links,

respectively.

3.1.3. Space-time Expanded Network Representation

We solve Problem 3.1 with dynamic programming and representing the network with

a space-time expanded network (STEN) as illustrated in Figure 3.1. Without loss of

generality, we assume that the tour always starts at the current operating interval (i.e.,

t = 0), which reduces the number of input parameters to three. At each time interval t,

a city has two copies in the network, denoted as i and i′. The former (i) represents the

“real” city corresponding to loaded moves whereas the latter (i′) is a dummy associated

with empty moves.

The set of real and dummy cities in STEN is denoted as L and L′ respectively. There

is a dummy connector from i′ to i at each time interval, relocating empty trucks to the

real city so that they can be available for loads. The set of dummy connectors in STEN is

denoted as Ad. Other than the dummy connector, there are three types of links in STEN:
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Figure 3.1. Illustration of the OFEX hyperpath problem

links between i at time t1 and j at time t2 > t1 representing a loaded move (Af ); links

between i at t1 and j′ at t2 > t1 representing an empty move (Ae); and links between

i and t1 and i at t2 > t1 representing waiting (Aw). Finally, the STEN is denoted as

G(N , E , T ), where N and E = Aw
⋃
Ad
⋃
Ae
⋃
Af
⋃

represent the set of all nodes and

links, respectively.



47

The optimal solution to the OFEX problem is represented by a hyperpath between

the origin-destination (O-D) pair, as illustrated by links with green double-head arrows

in Figure 3.1. The hyperpath contains a series of adaptive strategies at each decision

point, starting from the origin. In the example in the figure, at t = 0 and i = 1, the

optimal strategy contains a loaded move to either city 2 or city i. Which city the truck

will visit with certainty depends on the result of the bidding process. We shall return to

this problem later.

3.2. Optimal Bidding Model

Let us focus on a truck’s decision problem at city i. To simplify the notation, we

shall drop the subscript t from this section. At most a truck has 2n − 1 possible

options at any city. As seen in Figure 3.1, each option corresponds to a link in set

A = {i1, i1′, · · · , ii, · · · , ij, ij′, · · · , in, in′} (the head node must lie “below” the tail node

on the STEN). For the notational convenience, a link in the STEN will mostly be denoted

by a, with the tail node a− = i ∈ L and the head node a+ = j ∈ L
⋃
L′.

Each option a thus corresponds to an expected profit associated with the option a ∈ A

(denoted as σa), the number of loads on each option (denoted as ga), and the profit

expected to receive at city a+ (denoted as Va+). The number of trucks looking for load

at i is Hi. These trucks are competing for the total number of Gi =
∑

a∈A ga loads. Note

that the profit σa = xa − ca, where ca and xa are the cost and revenue associated with
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choosing option a, given by

xa


∈ [la, ua] a ∈ Af

⋂
A

= 0 a ∈ Aw
⋂
A

= 0 a ∈ Ae
⋂
A

ca =


αfτa + 2γ a ∈ Af

⋂
A

αw a ∈ Aw
⋂
A

αeτa a ∈ Ae
⋂
A

,(3.4)

where αf , αe, αe and γ are the cost for a loaded move, empty move, waiting, and handling,

all measured in $ per operating interval ∆. Note that the total handling cost is 2γ because

per Assumption 6, the handling time is 2∆.

Equation (3.4) states that for (and only for) a loaded move a, xa is a variable (with

a range of [la, ua]) determined from an auction. In particular, each truck is assumed to

participate in spot procurement auctions for available loads for one or more options. The

truck must place a bid for each auction one at a time. This is necessary for our problem

because a truck cannot serve more than one load at a time per Assumption 5. All auctions

are single-round, sealed-bid, and first-price auction [see, e.g. 38].

Because the bid affects the value of a loaded move, the bidding order and price are

interdependent variables and should be determined simultaneously. For narrative conve-

nience, however, ordering and pricing decisions will be treated separately. Trucks only

bid for a set of feasible loaded options, denoted as Q, where ‖Q‖ = m. In what follows,

we shall first address the pricing issue for a given biding order φ ∈ Φ, where Φ is the

set of all feasible bidding orders for all options in Q. For simplicity, the options will be

re-indexed for each order; hence the first in the list is always indexed as 1.

Let ba be the number of trucks bidding for option a. It should be understood that ba

is a function of order φ because ba is different for the same option under a separate order.
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For now, ba is assumed to be given, and we shall discuss how to determine ba later. If

ga ≥ ba, we assume that each truck will get a load regardless of the bid price (within a

reasonable bidding range set by the shipper). If not, some trucks will fail and will have

to bid on the next desirable load.

When a truck bids for a load of option a, s/he has to choose a bid price of xa, which

will determine the winning probability pa. Without loss of generality, we assume that

pa = Fa(xa) is a strictly decreasing function of xa and that through the platform, the

truck could estimate function Fa from the observed price of winning bids. We emphasize,

without explicitly reflecting it in notations for simplicity, that Fa(·) are determined by ba

(how many trucks are competing for loads in option a) and ga (number of loads available

in a), with ba depending on the bidding order φ.

For each option, the truck is assumed to choose the optimal bid price to maximize the

expected profit, while accurately anticipating the results in later rounds of auctions. This

pricing problem is naturally formulated as the following dynamic program:

z∗a = max
xa
{(Fa(xa)(Va+ + σa) + z∗a+1(1− Fa(xa))}, a = 1, · · · ,m(3.5a)

z∗a =Va+ + σa, a = m+ 1,(3.5b)

where z∗a is the optimal expected profit after the ath round of auction. For any given

order, the maximum expected profit is achieved in the first round, i.e., z∗1 .

Equation (3.5b) states that a = m+ 1 is the fallback option in case all other bids fail

to come through. The fallback option is set to the option that has the highest expected

profit (Va+ + σa) and belong to either Ae (empty move) or Aw (waiting).
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3.2.1. Winning Probability Function

For modeling convenience in this dissertation, we shall assume that the prevailing price

of loads between a given city pair is uniformly distributed. As we shall show later, the

empirical data we have collected suggest that this is a reasonable assumption. The price

distribution reflects the random factors inherent in freight type, shipper characteristics,

seasonal fluctuations and so on.

With the above assumption, the probability of winning a “standard load” at a price

offer xa is given by the winning probability function:

Fa(xa) =
ua − xa
ua − la

,(3.6)

where la and ua are lower and upper bounds of the price range.

Function (3.6) implies that an average price bid always has a winning probability of

0.5 (as predicted by the uniform distribution). This percentage most likely is not the case

when accounting for the competition vying for the bid. For example, if a truck were the

only bidder, and made a bid within the acceptable range of bids, that truck would win

the bid guaranteed. However, if a trucker was competing with four other trucks, assuming

all trucks made bids within the acceptable range randomly, that truck may have a much

lower chance of winning with an average price bid. The following lemma is introduced to

formalize the discussion.

Lemma 1. Suppose (1) the option a has ga loads available and receives ba bids and (2)

all trucks bid randomly within the price range [la, ua]. For a truck bidding at the expected

price, i.e. xa = (ua + la)/2, the probability of winning the bid, denoted as p0
a, is 1 if
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ba ≤ ga. When ba > ga,

p0
a =0.5ba

ga∑
k=1

Ck−1
ba−1.(3.7)

where

Ck
b ≡

b!

(b− k)!(k)!

Proof. Proof of Lemma 1. It is trivial to see that when ba ≤ ga, everyone with a

feasible bid xa ∈ [la, ua] will get a load. When ba > ga, let’s first consider ga = 1. Since

there is only one load, the truck must be the lowest bid in order to win it. Since everyone

else bids randomly, the probability that ba − 1 bids are larger than (ua + la)/2 is 0.5ba−1.

When ga = 2, the probability of winning equals the sum of the probabilities of the average

bid being the lowest and the second lowest. The probability of the bid being the second

lowest can be computed as 0.5ba−1C1
ba−1. To see why this is the case, note that C1

ba−1

gives the number of possible combinations that place exactly one truck’s bid higher than

(ua + la)/2. Since each independent bid has 50% chance of being either higher or lower

than the expected value, the total probability equals 0.5ba−1C1
n−1. With the same logic,

we can show that when ga = k, the probability of being the kth lowest bid should be

0.5ba−1Ck−1
ba−1. The probability of winning a load is the sum of probabilities of being the

lowest, the second lowest until the kth lowest bid. This completes the proof. �

p0
a gives the winning probability of an average price bid when the peer competition is

considered. To estimate the winning probability for any feasible bid price in the range

[la, ua], we propose to use the following rational function that takes p0
a as a parameter



52

0

1

Figure 3.2. Illustration of the proposed winning probability function

Fa(xa) =
p0
a(ua − xa)

(1− 2p0
a)(xa − la) + p0

a(ua − la)
.(3.8)

We leave it to the reader to verify that Fa(xa) = p0
a when xa = (ua + la)/2. Figure 3.2

illustrates how the value of p0
a affects the shape of the function. When p0

a < 0.5 (i.e.,

an average priced bid leads to a probability of winning lower than 50%), the function

is convex, suggesting that one has to bid at a rather low price to achieve a relatively

high winning probability. When 1 > p0
a > 0.5, the function is concave, suggesting that

a high bid would still likely to be accepted with a high probability due to a low level of

competition. When p0
a = 0.5, the function is reduced to a linear function equal to the

cumulative distribution function of a uniform distribution.
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Proposition 1. Fa(xa) given by Equation (3.8) is a well-defined cumulative distribu-

tion function for the option a if ba > ga > 0.

Proof. Proof of Proposition 1. We first show that when 0 < ga < ba, p
0
a should

always range between (0, 1). It is easy to see that when ga = 0 p0
a = 0 and when

ga = ba, p
0
a = 1. If 0 < ga < ba, p

0
a is always positive. Because

∑ga
k=1C

k−1
ba−1 < 2ba − 1,

p0
a = 0.5ba(2ba−1) = 1−0.5ba < 1. It can be easily verified that Fa(la) = 1 and Fa(ua) = 0

for any p0
a ∈ (0, 1). Further, the derivative of Fa(xa) is

dFa(xa)

dxa
=

p0
a(la − ua + p0

a(ua − la))
((1− 2p0

a)(xa − la) + p0
a(ua − la))2

This derivative is strictly negative when p0
a ∈ (0, 1), which implies that Fa(xa) is a strictly

decreasing function between [la, ua]. This completes the proof. �

Equation 3.7 is valid only when ba and ga are integers. In practice, the number of

available trucks Ha, hence ba, may be fractional because it may be obtained from other

computational procedures (e.g., take an average over several observations). The same

is true for the number of available loads, ga. One can round a fractional number to

the nearest integer, but doing so may create nontrivial rounding errors, especially when

the numbers are small. To address this issue, we propose to approximate the binomial

function based on the normal distribution. Specifically, a binomial distribution with

parameters ga, ba, and p may be approximated by a normal distribution with x = ga,

the mean µ = bap and the standard deviation σ =
√
bap(1− p). See [21] for the method

and recent developments in the approximation. Furthermore, we apply Yates’ continuity

correction, which is most accurate for when p is near 0.5, as is our case [86]. The resulting
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approximate formula reads:

p0
a = 0.5ba

ga∑
k=1

Ck−1
ba−1 ≈

1√
0.5(ba − 1)π

∫ ga− 1
2

−∞
e
−(t−0.5(ba−1))2

0.5(ba−1) dt.(3.9)

3.2.2. Pricing Problem

We proceed to discuss the truck’s sequential bidding (or pricing) problem (3.5). It is easy

to see that the problem has to be solved backward, starting from the fallback option, for

which the expected profit is fixed. Then for each option a < m+ 1, we solve the following

nonlinear program for xa

max za = Fa(xa)(xa − ca + Va+) + (1− Fa(xa))za+1(3.10a)

subject to

la ≤ xa ≤ ua(3.10b)

a ≤ m(3.10c)

where ca is defined in (3.4) and za+1 is obtained by solving the same problem for option

a + 1. When a = m, za+1 is simply the expected value of the fallback option. Clearly,

solving (3.10) will produce an optimal bid price x∗a for each a, and correspondingly, the

expected profit for each option is σ∗a = x∗a − ca.

Problem (3.10) can be solved in closed form because the objective function is a well-

defined quadratic function. We formally state its solution as follows.
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Proposition 2. The optimal solution to Problem (3.10) is given by

(3.11)

x∗a =



ζ−
√
θ

4p0a−2 if p0
a 6= 0.5, θ ≥ 0 & ζ−

√
θ

4p0a−2
∈ [la, ua]

ua+ca+za+1−Va+
2 if p0

a = 0.5 &
ua+ca+za+1−Va+

2
∈ [la, ua]

la

if ζ−
√
θ

4p0a−2
< la, p

0
a 6= 0.5 & θ ≥ 0 or

ua+ca+za+1−Va+
2

< la when

p0
a = 0.5 or za+1 > xa − ca + Va+ when θ < 0 & p0

a 6= 0.5

ua

if ζ−
√
θ

4p0a−2
> ua, p

0
a 6= 0.5 & θ ≥ 0 or

ua+ca+za+1−Va+
2

> ua when

p0
a = 0.5 or za+1 ≤ xa − ca + Va+ when θ < 0 & p0

a 6= 0.5,

where ζ = 2uap
0
a + 2lap

0
a − 2la and

θ =


(2la−2uap

0
a−2lap

0
a)

2−(8p0a−4)(caua−Va+ua−laca+laVa+−laua−cauap
0
a+lacap

0
a

+Va+uap
0
a−laVa+p

0
a+lauap

0
a+ua

2p0a+lap
0
aza+1−uap

0
aza+1−laza+1+uaza+1)

Proof. Proof of Proposition 2. Because Equation 3.10a is a continuous second order

polynomial within [l, u], we can solve the maximization problem by simply setting the

first derivative equal to 0 and solving for xa.

Set dz(x∗a)
dxa

= 0

dz(x∗a)
dxa

=
p0a(la−ua+p0a(ua−la))(xa−ca+Va+ )

((1−2p0a)(xa−la)+p0a(ua−la))2
+ p0a(ua−xa)

(1−2p0a)(xa−la)+p0a(ua−la)
− p0a(la−ua+p0a(ua−la))za+1

((1−2p0a)(xa−la)+p0a(ua−la))2
= 0

Solving this equation we get

xa =
ζ ±
√
θ

4p0
a − 2

,

where

ζ = 2uap
0
a + 2lap

0
a − 2la
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and

θ =


(2la−2uap

0
a−2lap

0
a)

2−(8p0a−4)(caua−Va+ua−laca+laVa+−laua−cauap
0
a+lacap

0
a

+Va+uap
0
a−laVa+p

0
a+lauap

0
a+ua

2p0a+lap
0
aza+1−uap

0
aza+1−laza+1+uaza+1)

Note: only the minus critical point in ζ±
√
θ

4p0a−2
is a maximum point. The positive critical point

is the minimum point of a convex section of the objective function after the asymptotic

discontinuity. The only exception being when θ = 0, then only one critical point exists.

To verify, the sign of d2z(x∗a)
dxa2 of the negative critical point, when real, is strictly negative,

thus x∗a is a maximum point of the concave function when it is a real number, and p0
a 6= 1

2
.

The sign of d2z(x∗a)
dxa2 of the positive critical point, when real, is strictly positive, which

signifies a minimum point.

When p0
a = 1

2
: Fa(xa) is a linear function and setting dz(x∗a)

dxa
= 0 yields

xa =
ua+ca+za+1−Va+

2
. These two cases yield the optimal bid points, but limited by the

lower and upper bid prices [la, ua]. With these four points, the optimal bid price can be

summarized as given in the Proposition 2. �

3.2.3. Bidding Strategies

Recall that a critical input to the sequential bidding problem is ba, i.e., the number of

trucks bidding for each loaded move. It is worth emphasizing that from the perspective

of the truck that is actively solving the OFEX routing problem, all Hi trucks available

at city i are competitors. Predicting these trucks’ bidding behaviors (hence determining

ba) is a challenging exercise for many reasons. First, not all trucks attempt to maximize

the expected profit as defined by Problem (3.5). Second, even if they do, each truck may

have a unique O-D or desired shipping duration, which may lead to very different future

expected profit, Va+ . Third, many attributes of the trucks that could affect their bidding
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priority are simply not captured in the model. In reality, the OFEX platform could

estimate ba by mining microscopic truck behavioral data, such as call records and mobile

app usage. Since such data are not readily available in this dissertation, a simplifying

method is given below to generate an “educated guess” to test the OFEX routing model.

To this end, it is assumed (1) that the number of competing trucks for each load can be

determined by logit model that gives preference for loads with high profitability more load

availability; and (2) that the competing trucks do not know their competitors for each

option. As a result of (1), we further assume that the utility of an option depends on its

present expected profit, σ̄a, and the number of loads, ga. To estimate σ̄a, the following

maximization problem is solved for each option a ∈ Q

maxFa(xa, p
0
a)(xa − ca), subject to xa ∈ [la, ua],(3.12)

and σ̄a is set to x∗a− ca, where x∗a is the optimal solution to (3.12). In the above problem,

Fa(xa, p
0
a) is the winning probability at a bid price xa, given the chance of winning at

an average price bid p0
a. Note that, because of the second assumption made above, these

trucks cannot use Lemma 1 (which assumes the knowledge of ba) to determine p0
a. Instead,

p0
a is replaced by a parameter (denoted as p̄0) that reflects the average winning probability

of an average price bid across the platform (see Section 3.4.3 for how p̄0 is determined).

Once σ̄a and ga are given, a multinomial logit model [18] may be used to estimate the

distributions of Hi among all feasible options; see Appendix B for details.
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3.2.4. Combined Ordering and Pricing Optimization Problem

We are now ready to present the combined optimization problem with both ordering and

pricing as follows:

max
φ∈Φ

z1(φ)(3.13a)

where z1(φ) is the solution to the dynamic program

max
xa∈[la,ua]

za(φ) =Fa(xa, φ)(xa − ca + Va+)+(3.13b)

(1− Fa(xa, φ)za+1(φ)), a = 1, 2, · · · ,m;

za(φ) =V(a)+ + σa, a = m+ 1.(3.13c)

In the above formulation, each φ represents an order of the m options corresponding to

the feasible loaded moves in Q. Fa(xa, φ) depends on φ through bφa defined in Equations

(B.5) and (3.8). The fallback option m + 1 is always the waiting/empty move that has

the highest expected future profit and it does not vary with the order. Once Problem

(3.13) is solved for each a ≤ m , the optimal bidding price (x∗a) and the optimal expected

profit (z∗a) for each round of auction are obtained. In addition, the probability of choosing

option a, denoted as πa, can be computed as follows:

π1 = F1(x1, φ),(3.14a)

πa = Fa(xa, φ)Πa−1
a′=1(1− Fa′(xa′ , φ)), a = 2, · · · ,m+ 1.(3.14b)

Problem (3.13) can be solved using the Bidding and Pricing Algorithm presented

in Figure 3.3. Located among all the inputs specified on line 1, p̄0 is the probability of
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Algorithm 3.1 Combined Ordering and Pricing Algorithm (COPA) for city i at time t

1: Input: Q, Hi, ga, la, ua, Va+ , τa∀a ∈ Q, the fallback option f̄ and its expected profit
zf̄ , p̄0.

2: Output: x∗a, π
∗
a,∀a ∈ A, z∗.

3: Initialize:
4: Set π∗a = 0, z∗ = −1, xa = 0.5(la + ua),∀a ∈ A.
5: Set the estimated profit σ̄a for each option a ∈ Af by solving Problem (3.12) while

setting p0
a = p̄0.

6: Set b̄a (the number of competing trucks for each option) using the method described
in Appendix B.

7: Set the fallback option m+ 1 = f̄ .
8: Main loop:
9: for every order φ ∈ Φ do

10: Set πφm+1 = 1, zφm+1 = z0
f .

11: for a = m to 1 do
12: Solve Problem (3.10) by finding xφa using Equation (3.11).
13: Evaluate Fa(x

φ
a) using Equations (3.8) and (3.9) and zφa using Equation (3.10a).

14: Set πφa = Fa(x
φ
a), update πφa+1 = πφa+1(1− Fa(xφa)).

15: end for
16: if zφa > z∗ then
17: Set z∗ = zφa , x

∗
a = xφa , π

∗
a = πφa .

18: end if
19: end for
20: return x∗a, π

∗
a, ∀a ∈ A, z∗.

Figure 3.3. Combined Ordering and Pricing Algorithm (COPA)

winning a bid at the average price, averaged over all bids. Line 3 - 7 initializes the solution

variables and the number of competing trucks. The main iteration of the algorithm (line 9

- 19) enumerates all possible bidding orders and solves the pricing problem for each order.

The order that yields the most substantial expected profit is retained as the incumbent

for the optimal solution (line 16 - 18).

Unfortunately, COPA has extremely high time complexity because all orders must

be enumerated. The number of possible orders is n!, which is an astronomically large
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number even for modest n ( 2× 1032 for n = 30.) A complete enumeration of orders may

be unnecessary, if, for example, a predetermined order based on a certain metric can ensure

optimality (as in a greedy algorithm). Alternatively, one may design an iterative procedure

that can quickly converge to the optimal order by searching only a small subset of the

feasible space. It remains an open question whether or not either approach is feasible,

however. Instead, a simple greedy heuristic algorithm is proposed in this dissertation to

compare orders in a small predefined set. We define these special orders in what follows:

(1) The truck follows the order defined by ranking σ̄a/(τa + 2) denoted as φ̄0. This

order gives priority to the options with higher estimated profitability. τa and 2

are the travel and handling time measured in the unit of the operating interval

(the handling time equals twice the operation interval as per Assumption 6),

respectively. σa/(τa + 2), rather than σa, is a better metric for profitability

because the former takes into account the total time required to serve the load.

Clearly, for the same profit σa, a shorter trip is more desirable than a longer one.

(2) The truck follows the order defined by ranking Va+ ,∀a ∈ Af , denoted as φ̄1.

With this order, the truck gives priority to the options with greater future profit

potential, while ignoring the present profits.

(3) The truck follows the order defined by ranking Va+ + 0.5(la + ua)− ca,∀a ∈ Af ,

denoted as φ̄2. This order implies that the truck gives priority to options with

higher total expected profit, but ignores the competition in the current bid.

(4) The truck follows the order defined by ranking Va+ + σ̄a,∀a ∈ Af , where σ̄a is

obtained by solving Problem (3.12) while setting p0
a = p̄0. Denoted as φ̄3, this
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order allows the truck to take into consideration both the future and estimated

present profits when prioritizing options.

For each φ̄i, we can also define a φ̄′i that represents its reverse order. Let Φ̄ = {φ̄i, φ̄′i, i =

0, 1, 2, 3}. A heuristic version of COPA is obtained by simply replacing Φ on line 9 with

Φ̄.

In COPA, each pricing problem requires orderingQ once and solving Problem (3.10) up

to ‖Q‖ = m times. In the worst case, m = n, so the total effort amount to O(n log n+n).

Since the pricing problem must be solved for up to ‖Φ‖ = n! times in the exact algorithm,

the complexity is roughly O((n+ 1)!(log +1)) for large n. For the heuristic algorithm, the

complexity is proportional to the size of Φ̄, i.e., O(‖Φ̄‖(n log n+ n)).

3.3. Hyperpath problem

Having examined the pricing and bidding problem for city i at time t, we now turn

to the OFEX routing problem, i.e., finding the optimal shipping tour - represented as

a hyperpath - in the STEN shown in Figure 3.1 for a given O-D pair rs. Since each

expanded network is constructed in response to a specific request, the tour always starts

from city r at t = 0 and ends at city s at t = T . Following [52], we first define a hyperpath

between r at t = 0 and s at t = T as follows.

Definition 1 (Hyperpath in the space-time expanded network). A subgraph of

G(N , E , T ), denoted as Gh(N h, Eh, πh), where N h ⊂ N , Eh ⊂ E, and πh = (πha , a ∈ Eh)

a real value vector, is a hyperpath connecting r at time 0 and s at time T if

(1) Gh is acyclic with at least one arc;

(2) the origin r has no predecessors and the destination s no successors in Gh;
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(3) for every node i ∈ N h, there is a path from r to s traversing i; and

(4) the characteristic vecotr πh satisfies

∑
a∈Eh,a−=i

πha = 1; πha ≥ 0,∀a ∈ Eh.

The set of all hyperpaths connecting r at time 0 and s at time T is denoted as HT
rs.

πha is the probability that a truck ends up on arc a starting from node a−, which equals

the winning probability defined in (3.14). Define σha as the profit earned on arc a ∈ Eh,

which equals xha − ca (where xha is the optimal bidding price, obtained from COPA). Let

Kh denote the set of all simple paths of Gh connecting r and s. For any k ∈ Kh, the

probability of traversing k is

λhk =
∏
a∈Eh

πhaδ
h
ak,∀k ∈ Kh,(3.15)

where δhak = 1 if a is on path k ∈ Kh and 0 otherwise. With the profit associated with

path k being defined as

ωhk =
∑
a∈Eh

σhaδ
h
ak, ∀k ∈ Kh,(3.16)

the total profit of a hyperpath h is given by

Ẃh =
∑
k∈Kh

ωhkλ
h
k.(3.17)

Thus, the objective of the hyperpath problem is to find

h∗ = argmax{Ẃh, h ∈ HT
rs}.(3.18)
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This problem can be solved as a dynamic program following decreasing order of time

(DOT), as described in Figure 3.4. Let V t
i denote the maximum expected profit earned

starting from city i at t and returning to city s at T . The Hyperpath DOT (HyDOT)

algorithm starts by initializing all V T
i and V T

i′ as −∞, except for the destination s at

t = T , where it is set to 0 (line 4). Any node with a negative infinity V t
i is called

unreachable, in the sense that a truck starting from that node cannot find a path to arrive

at the destination s by T .

In the main loop, the algorithm sequentially visits each layer in a descending order

(starting from t = T ). For every city it scans on a layer, HyDOT first creates a list of

loaded moves (Q) that leads to reachable nodes and identifies a reachable fallback option

f̄ (line 8 - 20). If Q is not empty, HyDOT calls COPA to maximize the expected profit

earned at the node (line 22 - 23), and then adds the links and nodes corresponding to

options with positive choice probabilities into the hyperpath (line 24 - 34). Note that

whenever a dummy node is added into the hyperpath, its dummy connector should also

be added to ensure connectivity (line 29 - 31). Also, whenever a “real” node becomes

reachable, so does the corresponding dummy node (line 36 - 38). After all layers are

scanned, we add node r into the hyperpath to complete the construction of the graph.
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Algorithm 3.2 Hyperpath DOT Algorithm (HyDOT)

1: Inputs: G(N , E , T ), H t
i , g

t
a, l

t
a, u

t
a,∀a ∈ Af , Va+ , τ ta,∀a ∈ E , p̄0.

2: Outputs: Gh∗ , π
h∗
a , x

h∗
a ,∀a ∈ Gh∗ . V

t
i , ∀i ∈ N h∗ , t = 0, · · · , T .

3: Initialize: set V t
i = V t

i′ = −∞, i = 1, · · · , n, t = 0, ·, T , V T
s = 0, Nh∗ = ∅, Eh∗ = ∅.

4: for t = T to 0 do
5: for all i = 1, · · · , n do
6: for all a in A starting from city i at time t do
7: Initialize list of feasible options Q = ∅, fallback option f̄ = −1, zf̄ = −∞.
8: Set e = t+ τ ta + 2
9: if e ≤ T and V e

a+ > −∞ then
10: if a ∈ Af then Set Q = Q

⋃
a

11: else
12: if Va+ − ca > zf̄ then Set f̄ = a, zf̄ = Va+ − ca.
13: end if
14: end if
15: end if
16: end for
17: if Q 6= ∅ then
18: Run COPA to obtain x∗a, π

∗
a, z
∗ for Q (loaded moves) & f̄ (fallback option)

19: Set V t
i = z∗

20: for all a ∈ Q do
21: if π∗a > 0 then
22: Set Eh∗ = Eh∗

⋃
a, set xh

∗
a = x∗a, π

h∗
a = π∗a.

23: if a+ /∈ N h∗ then
24: Set N h∗ = N h∗

⋃
a+.

25: if a+ ∈ L′ then
26: Add the dummy connector starting from a+ into Eh∗

27: end if
28: end if
29: end if
30: end for
31: end if
32: if V t

i <∞ then
33: Set V t

i′ = V t
i .

34: end if
35: end for
36: end for
37: Add node r at t = 0 into N h∗ .
38: Return Gh∗ .

Figure 3.4. DOT Hyperpath Algorithm.
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Proposition 3. The HyDOT algorithm presented in Figure 3.4 finds the optimal

hyperpath h∗.

Proof. Proof We first show that the algorithm always constructs a feasible hyperpath.

Requirement 1 in Definition 1 is satisfied as long as T ≥ 1 since the STEN itself is

acyclic. Requirement 2 is obvious by construction: for s at T , no outgoing options are

feasible; and for r at t = 0, it is added at the end, so none of its incoming links would

ever be examined. Requirement 3 is always met because only reachable nodes can be

added into the hyperpath and by definition, a reachable node can always find a path to

arrive at s by T . Requirement 4 is guaranteed by the definition of choice probability

(3.14). A hyperpath h so constructed must have the maximum Ẃh because whenever

V t
i is maximized, all V t′

i , t
′ > t would already have been maximized (guaranteed by the

DOT sequence). In other words, all sub-hyperpaths of the optimal hyperpath are always

optimal. This ensures optimality based on backward induction. �

Finally, we note that the computational effort of the HyDOT algorithm is dominated

by the number of COPA calls, which in the worst case equals nT .

3.4. Implementation Issues

In this section, we discuss several issues arising from implementing the proposed model

using empirical data. We have access to real freight movement data collected by a Chinese

OFEX platform. The datasets used in this dissertation cover 31 major cities in China

within two two-week periods in December of 2015 and July 2016. The data includes,

among other things, the following information for each load: at which time it was posted

on the platform, how long it stayed online, its origin and destination, the freight type,
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the preferred truck type, the distance, the weight, and the price. In total, the datasets

record about 113,000 loads.

Recall that one of the main inputs for the OFEX routing problem is the number of

trucks available at each city H t
i . This information, however, is not directly available in

the data sets. In Section 3.4.1, we propose a method to estimate H t
i from the freight

movement. Section 3.4.2 examines the empirical distribution of load prices and Section

3.4.3 discusses how to estimate the overall average probability of winning loads with an

average price bid.

3.4.1. Trucks Available at a City

For each city i, we know both the posted outgoing loads scheduled to depart from i at

t, as well as the incoming loads scheduled to complete delivery at i at t. Assuming that

all trucks arriving at city i with loads become available afterward, a starting point to

estimate the number of available trucks at t is to use the total number of incoming trucks

less that of outgoing trucks at t− 1. Formally,

H t
i =

t−1∑
t′=0

n∑
j=1

∑
a,a−=j,a+=i,t′+τ t′a =t−1

gt
′

a −
∑
a−=i

gt−1
a .(3.19)

Equation (3.19) ignores the fact that some trucks may move between cities without a

load, which would not be counted in gta. A more realistic estimation can be achieved

if the empty truck flows can be estimated and included in the calculation. There is

an extensive volume of literature devoted to the empty truck flow estimation problem,

beginning with [81] which led to a dynamic transshipment representation by [80]. [48] is

credited with the first formulation of the problem as a static linear programming problem,
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which is the approach utilized in this dissertation. See [15] for a summary of early studies

on the subject. In this dissertation, we design a simple linear program to minimize the

total distance of empty trips, while satisfying the long-term truck balance constraint at

each city. The average empty truck flows are then scaled to match empirical data and

distributed to each node in the STEN.

A simple observation drives the proposed model: a city with a positive balance (a sink

node) of trucks needs to generate at least that number of empty trucks leaving the city;

and a city with a negative balance (a source node) needs to attract enough empty trucks

to service the surplus of loads available. While the model can be defined as dependent

on time, our data suggested that the distribution of loads does not vary continuously

with time. Instead, it shows two distinctive patterns: one for weekdays and the other

for weekends. In light of this, the data are averaged by day for weekdays and weekends

separately, and two models are created accordingly using the data to estimate empty truck

flows in the two cases. The linear program reads:

min
∑

i=1,··· ,n

∑
j=1,··· ,n,j 6=i

τijyij(3.20a)

subject to:∑
j=1,··· ,n,j 6=i

ḡij + yij =
∑

j=1,··· ,n,j 6=i

ḡji + yji ∀i = 1, · · · , n(3.20b)

yij ≥ 0 ∀i = 1, · · · , n, j = 1, · · · , n, j 6= i,(3.20c)

where ḡij is the average daily number of loads between i and j in the data, and yij is

the average daily empty truck flows between i and j. The objective function (3.20a) is
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the total travel time spent on moving empty. Constraints (3.20b) impose the truck flow

conservation condition at each node. Constraints (3.20c) ensure nonnegativity. With yij

being solved from (3.20), we propose to estimate the additional available trucks due to

empty movement at city i at t as

eti = ρ0

( ∑
j=1,··· ,n,j 6=i

yji + ρ1

∑
j=1,··· ,n,j 6=i

ḡji

)
≡ ρ0(Yi + ρ1Ḡi),∀i = 1, · · · , n, t = 1, · · · , T

(3.21)

In the above, the parameter ρ0 distributes the daily average to each operating interval,

and ρ1 is used to scale up the empty flows (proportional to the total loaded flow) to match

empirical data. ρ1 is introduced because the total distance traveled by empty trucks may

not be minimized in reality as dictated by the model. Publicly available information often

reveals the percentage of miles traveled by empty trucks in all truck miles, denoted as ε,

which can be computed as:

ε =

∑
i(Yi + ρ1Ḡi)∑

i(Yi + ρ1Ḡi) +
∑

i Ḡi

.(3.22)

Suppose ε is given, ρ1 can be obtained as

(3.23) ρ1 =
ε

1− ε
−
∑

i Yi∑
i Ḡi

.

In this dissertation, we set ε = 0.35 for our data set, as [50] estimate the empty truck

miles traveled at about 30% to 40% of total truck miles traveled in China. This leads to

ρ1 = 0.245. ρ0 is set to 0.5, implying about 50% of the empty trucks estimated to arrive

within a workday would bid for any operating interval within the day.
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Finally, the trucks available at node i at time t is given by

H t
i =

t−1∑
t′=0

n∑
j=1

∑
a,a−=j,a+=i,t′+τ t′a =t−1

gt
′

a −
∑
a−=i

gt−1
a + eit.(3.24)

3.4.2. Empirical Distribution of Prevailing Price

This section examines empirical distributions of prevailing prices. The data used here are

the total price of each load for each city pair, which is listed when a shipper posts the

load on the OFEX platform. We note that this price is not the final price, which is not

available in this dataset. However, the price initially offered by the shipper seems a good

surrogate for the prevailing price on the market.

Figure 3.5 reports the data and the fitting results for the provincial capital city pair

Hubei-Henan, which has the highest number of price observations. The resulting best

fit by likelihood was the beta distribution that closely resembles the shape of a uniform

distribution.

Figure 3.5. Empirical and fitted distributions of prevailing prices for the
provincial capital city pair Hubei-Henan
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This pattern of fitting is consistent over all provincial capital city pairs tested with

at least 50 price observations. In particular, in all tested cases, the uniform distribution

fits the data better than other distributions except the beta distribution. Therefore, the

assumption that the prevailing price is uniformly distributed is properly justified.

3.4.3. Choice of p̄0

Section 3.2.3 introduces an empirical parameter, p̄0, to represent the overall average prob-

ability of winning at an average price bid. This parameter is used to help estimate how

the competing trucks evaluate different options, i.e., determining σ̄a. We now discuss how

p̄0 is determined empirically from the data.

Our data show that on average, 4.20 loads exist at any given location and time. Using

the empty truck ratio ε = 0.35 yields about 5.67 trucks competing for those loads on

average. Applying the approximation in Equation (3.9) produces an average winning

probability of 0.897. In other words, when an average-price bid is made with the average

load/truck ratio, the likelihood of winning is 89.7%. Hence, p̄0 is set to 0.9 in all numerical

experiments.

3.4.4. Benchmark Problems

An alternative routing model is presented in this section to classify the benchmark of

the benefit of the proposed OFEX routing model. The benchmark model retains the

hyperpath structure but employs different pricing and bidding methods that mimics how

most trucks today compete for loads in the spot market. Precisely, at each city, a truck

will follow a predefined order and bid for each option at the average price. This method
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means that it does not take advantage of the winning probability function to maximize

profits, and hence will always have a winning probability of p0
a for any option a. Figure

3.6 details this Bidding with Average-Price Algorithm (BAPA).

Algorithm 3.3 Bidding with Average-Price Algorithm (BAPA) for City i and time t

1: Input: Q, Hi, ga, la, ua, Va+ , ca, τa∀a ∈ Q, the fallback option f̄ and its expected profit
zf , p̄0, routing type (Myopic or Recursive).

2: Output: x∗a, π
∗
a,∀a ∈ A, z∗.

3: Initialize:
4: Set π∗a = 0, z∗ = −1, xa = 0.5(la + ua),∀a ∈ A.
5: Set the estimated profit σ̄a for each option a ∈ Af by solving Problem (3.12) while

setting p0
a = p̄0.

6: if Myopic then
7: Rank all options in Q in the descending order of σ̄a/(τa + 2).
8: else
9: Rank all options in Q in the descending order of σ̄a + Va+ .

10: end if
11: Set b̄a (the number of competing trucks for each option) using the method described

in Appendix B.
12: Set the fallback option m+ 1 = f̄ .
13: Main loop:
14: Set P = 1.0, z∗ = 0
15: for a = 1 to m and P > 0 do
16: Set π∗a using Equation (3.9), x∗a = 0.5(la+ua), and z∗ = z∗+P×π∗a×(x∗a−ca+Va+).
17: Update π∗a = π∗a × P
18: Update P = P − π∗a.
19: end for
20: if P > 0 then
21: Set z∗ = z∗ + (V +

m+1 − cm+1)× P
22: Set π∗m+1 = P, x∗m+1 = 0.
23: end if
24: return x∗a, π

∗
a, ∀a ∈ A, z∗.

Figure 3.6. Bidding with Average-Price Algorithm (BAPA)

The BAPA algorithm has two variants (see line 6 - 10). The first, called Myopic,

ranks feasible options in descending order of σt
a

τ ta+2
. Because the truck does not consider
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the future profits at all, the decision is myopic and likely to produce rather poor results.

The second variant, called Recursive, attempts to be forward-looking by following the

order dictated by σ̄a+Va+ , where Va+ is the profits that one anticipates in the next stage.

In a nutshell, the different profits made by Myopic and Recursive represents the

benefits of the forward-looking strategy, and the difference between Recursive and COPA

can be attributed to the bid pricing strategy.

3.5. Summary

The hyperpath-based decreasing order of time model is an effective and efficient

methodology to solve the OFEX routing problem as a dynamic program by a polyno-

mial time algorithm. The HyDOT algorithm allows a truck to make the best series of

decisions now that account for the future ramifications of that decision. Also, it delivers

all the recourse information necessary if and when the decision outcomes are realized.

While this formulation has been successfully developed, its utility is best when used by a

small percentage of the trucks in a trucking network. The next step required is to utilize

the OFEX routing methodology as a building block for an equilibrium model that can

benefit all trucks in a network.
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CHAPTER 4

Equilibrium Problem Formulations

The OFEX routing model presented in Chapter 3 can give an immense competitive

advantage to a truck that utilizes it for planning when other trucks do not. This situation

is similar to when a commuter is driving to work, but assume that commuter is the only

driver who knows the current traffic conditions. In this condition allows that commuter

to exploit the knowledge most productively. However, when all drivers know the current

conditions, the traffic conditions are less beneficial, as most of the viable ways to work

will converge to about the same amount of time as commuters adjust routes based on

the conditions. Similarly, as more trucks follow the model’s guidance, it may impact

the marginal gain from the initial adopters. However, as all trucks use the guidance,

the network and logistics system as a whole becomes more efficient, similar to how all

commuters benefit from knowing the current traffic conditions, as the variation in the

drive to work, is reduced, and a lower average is expected overall. The OFEX trucking

equilibrium (DTE) has great promise to create a similar effect. As all trucks plan routing

strategies instead of simple matching, and guided the current best strategy, the whole

network benefits, and all trucks should realize less variation in profits, creating a more

stable and profitable transportation system.

This chapter explores how to model the DTE. It explores the problem background

and challenges. We develop the model, the variational inequality formulation and com-

plementarity system for the problem. The problem is found to be non-monotone, and the
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profit function has no closed form, so we develop a dynamic loading model that generates

arc flows through the network from hyperpaths generated by the OFEX routing model.

This chapter also explores some of the mathematical properties of the variational inequal-

ity problem to include integrability, continuity, and existence of a solution. Finally, the

balancing algorithms and the overall DTE solution algorithms are explained.

4.1. DTE Problem Discussion

The DTE problem is defined as finding an equilibrium flow pattern of trucks over

a network of trucks that all utilize an OFEX platform that brings shippers and trucks

together, that results from the two competing processes mentioned in Chapter 2. The

supply and demand processes are inherently dependent. Once optimal paths are identified,

more trucks will change to those identified paths, which in turn decreases the expected

profit. This change enables new paths to be more profitable, creating a cycle. We assume

the cycle continues until an equilibrium state is reached, in which all hyperpaths with

positive flow for an origin-destination (O-D) pair will have equal expected profit. We call

finding this state the OFEX trucking equilibrium problem. The platform operates in a

region that consists of n cities. Each city pair i to j is connected by a route with a fixed

travel time τij. The goal is to create delivery plans for all trucks when each specifies (1)

the origin city î, (2) the destination city ĵ, (3) the starting time and (4) the planning

horizon T measured in the unit of operating interval ∆ (e.g., a day or an hour). Once these

parameters are given, the platform constructs a space-time expanded network (STEN) as

illustrated in Figure 3.1 for the OFEX routing problem.
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The assumption is that the trucks have a choice of if, when, and where to travel to

pick up and deliver goods. These decisions depend on how much competition (supply,

number of available trucks, and demand number of available shipping loads from that lo-

cation) exist at the different locations. Modeling and solving the two interactions between

truckers decisions and the competition simultaneously can produce the truck flow pattern

throughout the logistics network of interest. This flow pattern can help study the logistics

network operating and control policies to make the network more efficient, better for the

environment, and more profitable for both shipping companies and truck drivers. The

chief operating characteristics of interest in the network include profits, the percentage of

goods delivered, and empty truck miles. It is possible to analyze the profitability using a

profit function that explains how the profitability decreases with an increased supply of

trucks.
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Because of increased competition, the expected profitability of a node is defined as

a decreasing function of the flow through the node, called a performance function. Two

performance functions for a node are shown in Figure 4.1. Function (1) with the solid

red line has only one type of load option with five loads that have a max profit of 200.

Function (2) with a dashed line shows a node with two types of load options, one type

has five loads with a max profit of 200, and the second type has five loads with a max

profit of 150. The expected profit when there are no trucks present until the total number

of loads available of the best type is flat, which represents the expected profit without

competition present, where the trucks can bid the highest amount the shipper accepts.

However, once the truck supply exceeds the available shipping demand, then the trucks

compete, and some trucks will not make any profit. Additionally, the winning bid price

also decreases from the competition, causing the expected profit to decrease dramatically

from the double effect of the supply increase.

4.1.1. Challenges for the DTE Problem

The simple framework utilizing node performance functions makes it easy to solve an equi-

librium problem of one O-D pair with homogeneous trucks in a simple network where only

one hyperpath is active, and no loads carryover over in time to the next period. However,

the node performance function framework breaks down when a location contains trucks

from different hyperpaths that may bid differently, because of different requirements, and

strategies downstream in the network. Hyperpaths may have different fallback options,
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different bid prices, thus nullifying any way to create a unifying node performance func-

tion at every node. This framework also breaks when loads unfilled carryover to the next

period, creating node interactions.

Attempting to create link performance functions are even more problematic, as the

links are interdependent on the other links extending from a node, in addition to being

dependent on the number of trucks at a node. Therefore, a different framework is needed

that can harmonize many competing hyperpaths in a network, and generate the expected

profits needed to analyze the performance of the trucks and account for the dependencies

of the arc flows on the hyperpath flows. The derivation of arc flows from hyperpath flows

requires a specific algorithm which is explained in Section 4.3.

The ability to solve the DTE problem and apply proven solution techniques is severely

limited because the profit function does not have a closed form. Another problem is

accounting explicitly for the hyperpath flows, which can be an exponential number, to

derive the profit function. We will look further into the characteristics and mathematical

properties of the problem in Section 4.4.

4.2. DTE Model

To define the equilibrium conditions, let us first review the key inputs. On the demand

side, we have gta for each a ∈ Af , a− = (i, t), a+ = (j, t+ τij) as the number of loads ready

for pickup at t for the city pair ij represented by a. On the supply side, Btr
w denotes

the number of trucks that start at city r at time tr and wish to return to city s at T .

w is introduced as a shortcut to the O-D pair r − s, with w− = r and w+ = s. The

set of unique origin-destination pairs is denoted as W . Thus, a truck is identified in this
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dissertation only by the pair of the origin/destination cities w and the starting time tr.

The desired arrival time of all trucks at the destination is always the end of the planning

horizon T . While not considered herein, we note that the model can be easily extended

to accommodate different arrival times, truck types and sizes, as long as data justify it.

Not all loads ready to be delivered in t will find a truck willing to take them. In light

of this, we denote the number of loads left undelivered for link a at the end of time t as

eta. These loads will be carried over to the next time interval, hence increasing the total

number of loads in that interval. Let dta be the number of loads for link a at t. We have

dta =et−1
a + gta; ∀a ∈ Af ,∀t = 1, 2, · · · , T,(4.1a)

eta =dta − vta; ∀a ∈ Af , ∀t = 0, 1, 2, · · · , T,(4.1b)

d0
a =g0

a, ∀a ∈ Af ,(4.1c)

eta =dta = 0; ∀a ∈ Aw
⋃
Ae
⋃
Ad,∀t = 1, 2, · · · , T,(4.1d)

where vta is the truck flow on link a departing at time t. Equations (4.1a - 4.1c) specifies

the relationship between dta, e
t
a and vta. Equation (4.1d) states that activities of load

movements are zero except on the loaded links. For the loaded links, the truck flow must

be restricted by

vta ≤dta, ∀a ∈ Af ,∀t = 1, 2, · · · , T.(4.2)
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The total number of trucks available at city i′ and i at time t can be computed as

b̂ti′ =
∑

a,a+=(i′,t),a−=(j,t−τa)

vt−τaa , ∀i′ ∈ L′, t = 1, 2, · · · , T,(4.3a)

vta = b̂ti′ , ∀a− = (i′, t), a+ = (i, t), t = 1, 2, · · · , T,(4.3b)

b̂ti =
∑

a,a+=(i,t),a−=(j,t−τa)

vt−τaa +
∑

w∈W,w−=i

Bti
w , ∀i ∈ L, t = 1, 2, · · · , T.(4.3c)

Equation (4.3a) specifies that, at a dummy city i, the total number of trucks available

equals the number of trucks arriving without carrying a load. Equation (4.3b) states that

the flow on a dummy connector equals the total number of trucks available at its tail

node in the same interval. Equation (4.3c) includes two parts: the first part includes

all trucks arriving from other cities, carrying a load or not, and the second part is the

number of trucks starting their tour at t (these trucks were not in the workforce in the

earlier intervals).

Each truck in Btr
w will follow a profit-maximizing hyperpath by solving the OFEX

routing problem. Denote such a hyperpath as hwtr ∈ Htr
w . Further, let p̄wtrah be the

expected probability of choosing link a on htrw as defined as:

p̄ah =
∑
k∈Kh

λkhδ
k
ah,∀a ∈ Eh,(4.4)

and xwtrah be the bidding price for link a on htrw . Due to competitions, Btr
w may be distributed

to multiple hyperpaths. Let fwtrh be the flows of trucks in Btr
w assigned to hyperpath hwtr ,

and uwtrh be the actual profit realized by following the routing and bidding decisions
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Figure 4.2. Illustration of hyperpath flow loading

prescribed in hwtr . The flow conservation condition dictates that

Btr
w =

∑
hwtr∈Htr

w

fwtrh ,∀w ∈ W, tr = 0, 1, · · · , T.(4.5)

Let f , v and u be the vectors of hyperpath truck flows, link truck flows, and hyperpath

profits respectively. The critical question here is how to evaluate x and u provided f . The

simplest way would be to use:

va =
∑
w∈W

∑
tr∈T

∑
h∈Htr

w

p̄wtrah f
wtr
h ,∀a ∈ E ,(4.6)

uwtrh =
∑
a∈hwtr

p̄what(x
wtr
ah − ca),∀h

wtr ∈ Hwtr ,(4.7)

where p̄wtrah is defined in Equation (4.4). This naive method, however, is questionable,

because it does not properly account for the competitions among flows from different

hyperpaths. This issue can be best illustrated using an example. Figure 4.2 shows three

hyperpaths that are competing for loads on three links originated at city i. According

to the bidding order and the price associated with these hyperpaths, flows on both hy-

perpaths 1 and 3 have the highest preference for link ij1. Hence, in total, there will be

20 trucks bidding for the ten loads on ij1. Because the bidding price for hyperpath 3 is

lower, all loads will be won by flow from hyperpath 3. This effectively means that the
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actual probability of using link ij1 is zero for hyperpath 1, which differs from the original

winning probability (as a link with a zero choice probability would not be included in the

hyperpath). It is clear from this example that distributing loads to each hyperpath re-

quires executing (or simulating) the bidding process according to a physically meaningful

rule. This procedure is called dynamic network loading (DNL), to borrow a term from

the literature on dynamic traffic assignment.

We will propose a DNL procedure in the next section. It suffices here to say that,

using DNL, we can determine pwtrah , the actual percentage of flows from hyperpath hwtr

that use link a. Hence, the link flows, and hyperpath profits can be redefined as:

va =
∑
w∈W

∑
tr∈T

∑
h∈Htr

w

pwtrah f
wtr
h , ∀a ∈ E ,(4.8)

uwtrh =
∑
a∈hwtr

pwtrah (xwtrah − ca), ∀h
wtr ∈ Hwtr .(4.9)

With the above definitions, the DTE conditions can be stated as follows:

uwtrh ≤ νwtr ∀hwtr ∈ Hwtr , w ∈ W, tr ∈ T ,(4.10a)

fwtrh > 0→ uwtrh = νwtr ,∀hwtr ∈ Hwtr , w ∈ W, tr ∈ T ,(4.10b)

where fwtrh satisfies the flow conservation conditions (4.5) as well as non-negativity con-

ditions. uwtrh is evaluated using (4.9), which is an implicit function of fwtrh . νwtr is the

equilibrium maximum expected profit for trucks from O-D pair w departing at tr.
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4.2.1. DTE assumptions

The DTE problem model and solution relies upon the hyperpath-based routes constructed

by HyDOT. The assumptions from the OFEX routing model in Chapter 3 still apply, along

with a few more. We shall assume that the following inputs to the DTE problem can be

reliably predicted between now (t = 0) and t = T , based on the historical information,

consistent with the assumptions made in the OFEX Routing Problem:

(1) The number of vehicles available to carry loads on each O-D pair w, denoted as

Bw, at all times t;

(2) The desired starting and ending times within t = 0 · · ·T , and locations within N

for all trucks’ tours; and

(3) The load arrival rates for all locations and times within the planning horizon.

4.2.2. Use of the OFEX Routing Problem

The OFEX routing algorithm serves as one of the critical engines for the DTE problem,

similar to how the shortest path algorithm serves the traffic assignment and transit as-

signment problems. However, the Hyperpath DOT (HyDOT) algorithm is modified from

the version in Figure 3.4 for the equilibrium application. First, the model no longer needs

to estimate the number of competing trucks, ba for each option using a logit model and an

empty truck model that were exogenous to the original model, and the most problematic

elements of that model. Instead, the algorithm utilizes the flows generated from the last

iteration of the DTE model, an exact number of trucks, endogenous to the model to count

the number of competing trucks, ba. This value of ba is still an estimate, but as the DTE

algorithm iterates, the number of competing trucks becomes increasingly more accurate.
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The empty truck model is also completely unnecessary in the equilibrium model, as the

model will account for all empty movements and truck arrivals endogenously as well.

4.3. Dynamic Network Loading

This section details the dynamic network loading (DNL) procedure, which produces

the actual link choice probability vector p = {pwtrah ,∀a, hwtr , w, tr} according to the hyper-

path flow vector f . At the core of the DNL procedure is the bidding process used when

multiple hyperpaths are competing for the same set of loads originating from a city.

4.3.1. Loading Bidding Process

To study the bidding process, recall at each city i, the set of all outgoing links is Oi, and

the number of loads on each a ∈ Oi is ga (ga > 0 only if a is a loaded link). Let H =

{hk, k = 1, · · · , K} be the set of hyperpaths that pass through city i and may compete

for loads on Oi. For simplicity, the superscripts related to O-D pairs and time index are

suppressed here. At node i, each hk has its own bidding vector φk = {φ1
k, φ

2
k, ..., φ

mk
k } and

biding price vector xk = {x1
k, x

2
k, · · · , x

mk
k }, where mk is the number of links in the biding

list. A truck following a hyperpath hk always bids for loads on link φ1
k first. Assume

that all trucks strictly follow their orders, then we can obtain the total number of trucks

bidding for each φ1
k. For every link a, define Ha = {hl|φ1

l = a}. The total number of

competing trucks and the demand/supply ratio on each link a are

ba =
∑
k∈Ha

fhk , ϑa =
ga
ba
,∀a ∈ Oi,(4.11)
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respectively. Each link ba may consist of flows from multiple hyperpaths, and only the

hyperpaths offering the lowest price would win loads. The question is how many loads

should be awarded to the winning hyperpaths. One option is to give as many as possible,

which implies that loads will be exhausted on any link a where ga ≤ ba. In a competitive

market, this method means that trucks are likely to lose the opportunity to get any load

if their first choice is too competitive for them to win. In reality, trucks may avoid such an

outcome by actively engaging in bidding for multiple links. To capture such behavior, we

propose to award loads based on a minimum assignment ratio [see 43, for the application

of a similar idea in the capacitated traffic assignment problem], defined as

ϑ∗ = min{ϑa,∀a ∈ Oi}.

Define vahl as the flow on link a contributed by hyperpath hk and rank the hyperpath set

Ha in the ascending order of their bidding price for a. Thus, h1 in Ha is the hyperpath

that has highest preferences for a and offers the lowest price. Let l∗ be the highest-rank

hyperpath in Ha such that
∑l∗

l=1 fhl ≥ ϑ∗ba. If l∗ does not exist, then we have

vahl = fhl , ∀l;(4.12)

Otherwise

vahl =

 fhl , ∀l = 1, · · · , l∗ − 1

ϑ∗ba −
∑l∗−1

l=1 fhl l = l∗
.(4.13)
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Using this method, only the links with the minimum assignment ratio may deplete all loads

after the bidding for the first choice is over. If there are still flows on some hyperpaths

left unassigned to a link, another round of bidding will be simulated.

The above process will be repeated after (1) removing the links whose loads have

become zero from φk and xk, and (2) updating ga, fhk and ba. When all flows on all

hyperpaths are assigned according to the above bidding process, the link choice probability

vector p can be obtained from vahl . A detailed description of the iterative bidding process,

as well as the overall network loading procedure, is presented in the next section.

4.3.2. DNL Algorithm

The pseudocode of the dynamic network loading (DNL) algorithm is given in Figure 4.3.

We define, for each by hyperpath h between O-D pair w starting at tr, (1) vwtrah as the

flow contributed to link a in the STEN, (2) f̌wtrith as the residual flow that arrive at node

(i, t) and (3) φwtrith as the bidding order at node (i, t).

The algorithm runs forward in time starting at the initial time, t = 0. The initial

section of the algorithm (lines 4 - 12) totals the truck flow at a node b̂tr and initialize the

total residual truck flow by hyperpath f̌wtrith . Next, for each node in the STEN (i, t), (lines

14-18) leftover loads are carried over to the next time. Then, while truck flow remains

unassigned (lines 19-31), the hyperpaths are first partitioned into groups (lines 20-24)

that have the same first choice outgoing node, and the demand for the highest remaining

link is totaled as ba. Next, ϑ∗ is set to the proportion of residual flow yet to be assigned,

to the minimum ratio of the corresponding load over the residual summed demands (line

24). Note, if ϑ∗ ≥ 1, then all residual flows are assigned to their current preferred choices,
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and the algorithm moves to the next time increment. If ϑ∗ < 1, the algorithm checks

the bid prices (lines 25-31) by ranking the bids from all hyperpaths in ascending order

of xwtrah , and assigning link flow vwtrah , based on the winning bids by Equations (4.12 -

4.13). The algorithm repeats the assignment by updating the residual loads and trucks

available and updating the new lowest bidding option if necessary (lines 27-30). Finally,

the probabilities p and profit vectors u are determined, (lines 32-35).

In general, a single node is removed from the bidding order sets at each primary while

loop structure of the procedure (lines 9-33). However, the algorithm can saturate more

than one node or even all nodes (it occurs when all outgoing arcs saturate simultaneously).

Therefore, in the worst case this loop is performed at most |a+| times for each node i,∑
i∈L |a+| = (|Af |+ 1). Inside the main while loop is an additional while loop to account

for the bidding competition, which in the worst case checks all hyperpaths from all O-

D pairs, |H|. The summation of the flows by nodes and by hyperpaths creates at most

|A|×|H|×n+|H| calculations for each time. It follows that the entire algorithm structure

is executed at most |H| × ((|Af | + 1) + |A| × n + 1) × (T − 1) times. The algorithm

without any restrictions is non-polynomial because the number of possible hyperpaths

grows exponentially as the network grows. However, in a practical setting, the number of

utilized hyperpaths can always be artificially capped.

4.3.3. Example

We now demonstrate how the bidding process in the DNL algorithm works using the

example shown in Figure 4.2. Recall that there are three unique hyperpaths with different

flows at node i, each with a bidding order and price vectors φk,xk, k = 1, 2, 3 respectively.
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Algorithm 4.1 Dynamic Network Loading (DNL) Algorithm

1: Inputs: G(N , E , T ), Btrw , g
t
a, f

wtr
h , τ ta, x

wtr
ah , ca, φ

wtr
ith .

2: Initialization: Set vwtrah = ∅, f̌wtrith = ∅,∀i ∈ L, t ∈ T , w ∈ W, h ∈ H, b̂ti = ∅,∀i ∈ L, t ∈ T .
3: for t = 0 to T − 1 do
4: for all w, tr do

5: if tr = t then b̂tr = b̂tr +Btrw , fwtrth = f̌wtrth = f̌wtrth +Btrw
6: end if
7: for all h ∈ Hwtr do
8: for all a on h do

9: if t+ τ ta ≤ T , b̂
t+τt

a

a+ = b̂
t+τt

a

a+ + vwtrah , fwtra+(t+τt
a)h = f̌wtra+(t+τt

a)h = f̌wtra+(t+τt
a)h + vwtrah

10: end for
11: end for
12: end for
13: for all (i, t) do
14: for all a such that a− = (i, t) do
15: if t = 0 then e0

a = g0
a

16: else eta = gta + et−1
a

17: end if
18: end for
19: while

∑
w∈W

∑
h∈Hw

f̌wtrith > 0 do

20: Update the bidding order φwtrith for all w, tr, h.
21: for all w, tr, h ∈ Htrw do
22: Set a as the first in φwtrith , ba = ba + f̌wtrith

23: end for
24: Set ϑ∗ = min(1,mina{ e

t
a

ba
,∀a})

25: Construct for each a a temporary hyperpath set Ha and rank the hyperpaths in Ha in the
ascending order of xwtrah

26: Set l∗ to the highest-rank hyperpath in Ha such that
∑l∗

l=1 f̌
wtr
ithl
≥ ϑ∗ba, Set vwtrahl

by

Equations (4.12 - 4.13).
27: for all a such that a− = (i, t) do eta = eta − v

wtr
ahl

, f̌wtrithl
= f̌wtrithl

− vwtrahl

28: if eta = 0,∀a− = (i, t) then Remove the first choice from the bidding order
φwtrith ,∀w, tr, h

29: end if
30: end for
31: end while

32: Set pwtrah =
vwtr
ah

fwtr
ith

, ∀w, tr, h, a
33: end for
34: end for
35: Set uwtrh =

∑
a∈hwtr p

wtr
ah (xwtrah − ca), ∀hwtr ∈ Hwtr

36: Outputs: vwtah, f
wt
ih , b̂

t
i, e

t
a, p

wt
ah, u

wtr
h

Figure 4.3. Pseudocode of the dynamic network loading algorithm
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Table 4.1. Dynamic network loading results for the example shown in Figure 4.2

Iter. Arc (i, j1), a = 1 (i, j2), a = 2 (i, j3), a = 3
1 Residual Loads, e 10 24 ∞

Sum of demand ba, ratio ϑ 20, 0.5 20, 1.2 null
Min Ratio ϑ∗ 0.5 0.5 null

Winning bid demand ḃa, ratio ϑ̂∗ 12, 5/6 null null
Assigned Flow, v v13 = 10 v22 = 10 null

2 Residual Loads, e 0 14 ∞
Sum of demand ba, ratio ϑ null 20, 0.7 null

Winning bid demand ḃa, ratio ϑ̂∗ null 8,1 null
Assigned Flow, v null v21 = 8 null
Residual Loads, e 0 6 ∞
Winning bid demand ḃa, ratio ϑ̂∗ null 12,0.5 null

Assigned Flow, v null
v22 = 5 + 10 =
15, v23 = 1 null

3 Residual Loads, e 0 0 ∞
Sum of demand ba, ratio ϑ null null 6,∞
Assigned Flow, v null null v32 = 5, v33 = 1

Outputs Assigned Flow, v v13 = 10
v21 = 8, v22 =
15, v23 v32 = 5, v33 = 1

Probabilities, p = vah

fh

p11 = 0, p12 =
0, p13 = 10

12

p21 = 1, p22 =
15
20 , p23 = 1

12

p31 = 0, p32 =
5
20 , p33 = 1

12

Hyperpath profit/truck, u,
∑
σa

fh
u(f1) = 32

8 = 4
u(f2) =
90−25

20 = 3.25
u(f3) =
40+6−5

12 = 3.417

As shown in the figure

φ1 = {1, 2, 3}, φ2 = {2, 1, 3}, φ3 = {1, 2, 3},x1 = {10, 9,−},x2 = {11, 10,−},

x3 = {9, 11,−}, fh1 = 8, fh2 = 20, fh3 = 12, g1 = 10, g2 = 24, g3 = 0.

For simplicity, set cost ca = 5,∀a.

In the first round, the trucks are bidding for their first choice. The flows from h1 and

h3 are both competing for loads to 1 while h3 is the only hyperpath that prefers 2. Thus,

the supply at link 1 is b1 = 20 (8 from h1 and 12 from h3) and the supply at link 2 is

20 (all from h2). At the beginning, the available loads at the two links are g1 = 10 and

g2 = 24. Hence, the assignment ratios are ϑ1 = 10
20

and ϑ2 = 24
20

. Since 10
20
< 24

20
, the
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minimum assignment ratio ϑ∗ = 10
20

= 0.5. For link 1, both h1 and h3 compete for its load.

Ranking them based on the bidding price leads to a set H1 = {h3, h1}. Using Equations

(4.12 - 4.13), we find l∗ = 1, hence v1h3 = 10, v1h1 = 0. That is, all loads on link 1 will

be awarded to h3. For link 2, only h2 is competing for its loads. However, the maximum

loads allowed to be awarded to h2 is capped by ϑ∗ × b2 = 10. After the first round, thus,

loads on link 1 are depleted and removed from φk, and there are still 24 - 10 = 14 loads

left on link 2.

In the second round all unassigned flow (8 from h1, 10 from h2 and 2 from h3) are

competing for the 14 loads on link 2. The minimum assignment ratio is ϑ∗ = 14
20

= 0.7.

Ranking the hyperpaths based on the bidding price leads to H2 = {h1, h2, h3}, with h2

and h3 tied with the same bidding price. In this case, l∗ = 2, hence, v2h1 = 8. Because

h2 and h3 have the same price, they share the remaining six loads proportional to their

flow, that is, v2h2 = 6/12 = 5 and v2h2 = 6/12 = 1. After the second round, loads on link

2 are exhausted.

In the third and the final round, the remaining flows (5 from h2, and 1 from h3) are all

assigned to link 3, which is a fallback option that has no load limitation. The calculations

are summarized in Table 4.1.
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4.4. DTE Variational Inequality Formulation

The DTE conditions (4.10) can be restated as the following complementarity condi-

tions:

uwtrh − νwtr ≤ 0;∀hwtr ∈ Hwtr , w ∈ W, tr ∈ T ,(4.14a)

fwtrh (uwtrh − νwtr) = 0,∀hwtr ∈ Hwtr , w ∈ W, tr ∈ T ,(4.14b)

fwtrh ≥ 0;∀hwtr , w, tr,(4.14c) ∑
h∈Hwtr

fwtrh = Bwtr ,∀w, tr.(4.14d)

Let f and u be the vectors for hyperpath flows and profits, respectively. Note that u is an

implicit function of f , in that u can be evaluated for any given f using the DNL algorithm

presented in the previous section. We further define the feasible set for f as

F = {f = {fwtrh }
∣∣fwtrh satisfies Conditions (4.14c− 4.14d)}.

It is easy to show [see, e.g., 71, 12] that the complementarity system (4.14) is equivalent

to the following variational inequality problem (VIP)

VIP(u,F) : Find f∗ ∈ F such that

〈u(f∗), f − f∗〉 6 0 holds ∀f ∈ F ,(4.15)

where 〈a, b〉 = aT b. Because the profit function u(f∗) is not available in closed form, the

VIP (4.15) is not particularly amenable to analysis. In the following, we first show that

the Jacobian matrix of u(f∗) is asymmetric, making it impossible to reformulate the VIP
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as a standard optimization problem [see, e.g., 51]. To see this, consider a simple example

in which trucks from two distinct hyperpaths, h1 and h2, compete for one load on link 1.

The flow on each hyperpath is denoted as fk, k = 1, 2. Assume that their bidding price

is the same for the load and that the two trucks have a different fallback link, links 2 for

the truck on h1 and 3 for the truck on h2. Let σi be the profit earned on link i. Note

that since the trucks bid for link 1 at the same price, the profit σ1 is the same, and the

trucks will receive the loads proportional to the total flow. Therefore, the expected profit

for each hyperpath is:

u1(f1, f2) =
f1σ1

f1 + f2

+ (1− f1

f1 + f2

)σ2,

u2(f1, f2) =
f2σ1

f1 + x2

+ (1− f2

f1 + f2

)σ3.

Then, the cross partial derivatives of ui are given by

∂u1

∂f2

(f1, f2) =
f1(σ2 − σ1)

(f1 + f2)2
,

∂u2

∂f1

(f1, f2) =
f2(σ3 − σ1)

(f1 + f2)2
.

These are clearly different when f1(σ2−σ1) 6= f2(σ3−σ1). Therefore, the Jacobian matrix

of u is asymmetric in general.

Not only is the profit function u(f∗) asymmetric, it can also fail to be monotone on

F . By definition, the profit function u is monotone on F if

〈u(f1)− u(f2), f1 − f2〉 > 0,∀f1, f2 ∈ F .
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Intuitively, everything else equal, the profit on a hyperpath cannot increase when more

trucks are assigned to it, because more trucks would only intensify competition, which

in turn reduces profitability. However, due to interactions among competing hyperpaths,

monotonicity is not always held. Consider the example given in Figure 4.2 where there are

three hyperpaths. Assume f1 = {8, 20, 12}, and f2 = {11, 19, 10}. Applying the proposed

loading algorithm we obtain u(f1) = {4, 3.25, 3.417}, and u(f2) = {4, 2.526, 4}. We have

〈u(f1)− u(f2), f1 − f2〉 = 〈(0, 0.724,−0.583), (−3, 1, 2)〉 = −0.443 < 0.

This example shows that the profit function is not monotone in general. The lack of

monotonicity means, among other things, that the DTE may not be unique.

Having addressed the issue of uniqueness, we proceed to examine the existence of

DTE. To this end, we first define the lower semi-continuous function.

Definition 2 (lower semi-continuous function). A function f : Rn → R is lower semi-

continuous at point x̄, if ∀ε > 0,∃η > 0 such that when ||x − x̄|| < η, f(x̄) − f(x) ≤ ε.

Equivalently, f(x̄) ≤ lim inf
x→x̄

f(x).

[22] establishes the following result.

Lemma 2 (Ky Fan Inequality ). Suppose that X is a compact subset of Rn and that

Φ : X ×X → R is a function satisfying

∀y ∈ X, x→ Φ(x, y) is lower semi-continuous, and(4.18)

∀x ∈ X, y → Φ(x, y) is concave.(4.19)
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Then there exists x∗ ∈ X such that

sup
y∈X

Φ(x∗, y) ≤ sup
y∈X

Φ(y, y).(4.20)

We proceed to show that the profit function is a lower semi-continuous function for

our setting.

Lemma 3. The hyperpath profit u is a lower semi-continuous function of the hyperpath

flow f .

Proof. Consider the profit function u from the DTE problem in Equation 4.9 . The

profit function is dependent on the probabilities pwtrah , which in turn depends on vwtrah and

fwtrith (See Line 32 in Figure 4.3). fwtrith is the hyperpath flow fwtrh passing node (i, t), hence

it must be continuous in fwtrh . vwtrah are determined in Equations (4.12 - 4.13), hence also

continuous in fwtrh in general. Discontinuity may occur in a special case, when fwtrith = 0,

the residual load eta = 0 and the hyperpath hwtr happens to have a as its first choice but

with a losing bid.

Let us illustrate this special case with an example. Consider two hyperpaths, both

having only two options at a node: a1: win the load, or a2: travel empty to the same

node. Let the bid price of the two paths satisfy x1
a1
< x2

a1
, i.e., hyperpath 2 will lose

since it offers a higher price. Assume the total flow f = g, where g is the number of

available loads on option a. Without loss of generality, assume the profit of winning

option a1 is: σ1
a1

= 20, σ2
a1

= 25 and the cost of option a2 = -10 for both hyperpaths. For

a flow pattern f1 = g, f2 = 0, the link choice probability pa11 = 1, pa12 = 0 and the profit
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u1(f1, f2) = 20, u2(f1, f2) = −10. For another flow pattern f1 = g − ε, f2 = ε, however,

lim
ε→0+

pa22(f1 = g − ε, f2 = ε) = 1.0 > 0, lim
ε→0+

u2(f1 = g − ε, f2 = ε) = 25 > −10

Therefore, both the link choice probability and the profit are discontinuous at the point

(f1 = g, f2 = 0), but are lower semi-continuous. �

We are now ready to prove the existence of DTE, using similar arguments made by

[32].

Theorem 1. There exists at least one solution satisfying the variational inequality

VIP(u(f),F).

Proof. To show the second condition of the Ky Fan’s Inequality, set Φ(f ,y) =

〈u(f), f − y〉 such that the function Φ is concave in y and satisfies Φ(y,y) = 0. Now

the proof can be completed by showing the first condition, i.e. f → Φ(f ,y) is lower semi-

continuous for every value of y. Since u is lower semi-continuous the following results:

∀ε′ = ε
2||f̄−y|| > 0 ∃η > 0 such that ||f − f̄ || < η ⇒ u(f) ≥ u(f̄)− ε′ ⇔ ∀ε′ > 0 ∃η > 0 such

that ||f − f̄ || ⇒ −u(f) ≤ −u(f̄) + ε′. Then it follows that:

〈−u(f), f − y〉 ≤〈−u(f̄), f − y〉+ ε′||f − y||

≤〈−u(f̄), f̄ − y〉+ 〈−u(f̄), f − f̄〉+ ε′||f − y||

≤〈−u(f̄), f̄ − y〉+ ||u(f̄)||||f − f̄ ||+ ε′||f − f̄ ||+ ε′||f̄ − y||

≤〈−u(f̄), f̄ − y〉+ (ε′ + ||u(f̄)||)η +
ε

2

≤〈−u(f̄), f̄ − y〉+ ε if η ≤ ε

2(ε′ + ||u(f̄)||)
,
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where the last term is uniformly bounded, because u(f̄) is bounded by M =
∑

a∈Af
σa.

This proves that the function f → Φ(f ,y) is lower semi-continuous on the set F , and Ky

Fan’s Inequality may be applied now that both conditions are met. Setting supy∈F Φ(y,y) =

0, and supy∈F Φ(f∗,y) also reaches its suprema when f∗ = y, so supy∈F Φ(f∗,y) = 0.

Therefore, there exists f∗ ∈ F 3:

∀y ∈ F , 〈u(f∗),y − f∗〉 ≤ 0.

�

4.5. Hyperpath Assignment Algorithms

The idea of MSA is fairly simple. In each iteration k, it first identifies the hyperpath

with the highest profit, and shifts flow from other hyperpaths to it according to step size.

Let f(k) = {· · · , fwtrh (k), · · · } be the hyperpath flow vector at iteration k, and hwtr∗ be

the hyperpath that has the highest profit for O-D pair w at tr after loading f(k) to the

network. Allocating all truck flows to hwtr∗, and zero to all other hyperpaths for each O-D

pair and departure time will lead to a target flow pattern yk. Then, the new hyperpath

flow vector is given by

f(k + 1) = f(k) + βk(y(k)− f(k)).(4.21)

Following the literature, the convergence at a solution f = {fwtr , ∀w, tr} is measured using

a relative gap function defined as

r = max
w∈W,tr∈T

〈uwtr(f),ywtr − fwtr〉
〈uwtr(f), fwtr〉

.(4.22)



96

Note that here the relative gap is computed for each O-D pair and departure time, and the

largest value is used to measure convergence. This way, we can ensure that equilibrium

according to a given threshold is achieved for each O-D pair and departure time. It is

easy to see that the gap function reaches zero when the equilibrium conditions are strictly

satisfied.

It is mainly the choice of βk that define different MSA schemes. In the simplest case

[67], we just set the step size by:

βk =
1

k
.

The problem with this pre-defined step size is that it does not respond to any changes in

the convergence behavior at different solution stages. To address this issue, [42] proposed

a self-regulated scheme that sets the step size according to

βk =
1

αk
where αk =


αk−1 + Γ, If rk ≥ rk−1,

αk−1 + γ, Otherwise,

, α0 = 1.(4.23)

where γ ∈ [0.1, 0.5] and Γ ∈ [1.5, 2] are parameters. The idea is to reduce the step

size faster (hence more conservative move along the current direction) when the current

iteration enlarges the relative gap, and to slow down the reduction of the step size (hence

more aggressive move along the current direction) when the current iteration closes the

gap. In this dissertation, we propose a self-regulated scheme similar to (4.23) but make

an additional correction related to the gap computed for each O-D pair. Accordingly, our
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step size is O-D specific, i.e.,

βwtrk =
1− 〈uwtr(f), fwtr〉/〈uwtr(y), fwtr〉

αk
,(4.24)

where αk is computed as in (4.23) with α0 = 0.5,Γ = 0.018, γ = 0.002 (the parameters

are chosen based on numerical experiments). The second term in the numerator is the

ratio between the current total profit and the maximum possible profit, which always

ranges between 0 and 1. The idea is that, when the solution approaches DTE, the step

size should be smaller. The ratio in the numerator does exactly that: the ratio becomes

larger as the solution moves towards DTE, which reduces the step size. If the solution

arrives at DTE, the step size will be reduced to zero. For convenience, Liu’s scheme and

the proposed scheme will be referred to as MSA by self-regulation (MSASR) and MSA

by self-regulation of profit (MSASRP), respectively.

Algorithm 4.2 MSA Hyperpath Balancing Algorithm

1: Inputs: ε, f : fwtrh ,∀h ∈ H, w ∈W, t ∈ T .
2: Initialization: set r by Equation (4.22), k = 0,
3: while r > ε do
4: k = k + 1, αk = 1

k
5: for all w, tr do
6: Set an auxiliary hyperpath flow vector ywtr (k) according to an all-or-nothing assignment.
7: Set βk by Equation (4.24)
8: if βwtrk ≥ 1 then βk = 0.999
9: end if

10: fwtr (k + 1) = fwtr (k) + βwtrk (ywtr (k)− fwtr (k))
11: end for
12: Run DNL Algorithm to update link flows v and profits u with fk+1.
13: Update r by Equation (4.22)
14: end while
15: Outputs: f ,v,u,p.

Figure 4.4. MSA Hyperpath Balancing Algorithm.
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Algorithm 4.3 MSASR Hyperpath Balancing Algorithm

1: Inputs: ε,Γ = 1.8, γ = 0.2, f : fwtrh ,∀h ∈ H, w ∈W, t ∈ T .
2: Initialization: set r by Equation (4.22), k = 0,
3: while r > ε do
4: k = k + 1
5: if k = 1 then αk = 1.0
6: else
7: if rk ≥ rk−1 then αk = αk−1 + Γ
8: else αk = αk−1 + γ
9: end if

10: end if
11: for all w, tr do
12: Set an auxiliary hyperpath flow vector ywtr (k) according to an all-or-nothing assignment.
13: Set βk by Equation (4.24)
14: if βwtrk ≥ 1 then βk = 0.999
15: end if
16: fwtr (k + 1) = fwtr (k) + βwtrk (ywtr (k)− fwtr (k))
17: end for
18: Run DNL Algorithm to update link flows v and profits u with fk+1.
19: Update r by Equation (4.22)
20: end while
21: Outputs: f ,v,u,p.

Figure 4.5. MSASR Hyperpath Balancing Algorithm.

It is well-known that MSA is a convergent algorithm for a broad class of traffic assign-

ment problems [see, e.g., 61, 5]. Nonetheless, the proof of convergence usually requires

that the objective function (in the case where the problem can be formulated as a mathe-

matical program) is convex to avoid the trap of local optimal solutions. This fundamental

requirement is unfortunately not met in the DTE problem, which has a non-monotone cost

function in the VIP formulation. Hence, the proposed MSA algorithm must be considered

as no more than a heuristic.
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Algorithm 4.4 MSASRP Hyperpath Assignment Algorithm

1: Inputs: ε,Γ = 0.018, γ = 0.002, f : fwtrh ,∀h ∈ H, w ∈W, t ∈ T .
2: Initialization: set r by Equation (4.22), k = 0,
3: while r > ε do k = k + 1
4: if k = 1 then αk = 0.5
5: else
6: if rk ≥ rk−1 then αk = αk−1 + Γ
7: else αk = αk−1 + γ
8: end if
9: end if

10: for all w, tr do
11: Set an auxiliary hyperpath flow vector ywtr (k) according to an all-or-nothing assignment.
12: Set βk by Equation (4.24)
13: if βwtrk ≥ 1 then βk = 0.999
14: end if
15: fwtr (k + 1) = fwtr (k) + βwtrk (ywtr (k)− fwtr (k))
16: end for
17: Run DNL Algorithm to update link flows v and profits u with fk+1.
18: Update r by Equation (4.22)
19: end while
20: Outputs: f ,v,u,p.

Figure 4.6. MSASRP hyperpath assignment algorithm

4.5.1. Example Assignment

Again we use the same example in Figure 4.2 for the illustration. Recall that for the

initial hyperpath flow vector (f = [8, 20, 12]), the profits u = {4, 3.25, 3.417}. Clearly,

this solution does not meet the DTE conditions (4.10) and the relative gap is r = 0.159.

Using the current flow as a starting point, Table 4.2 reports the solutions obtained at

different MSA iterations. The algorithm achieves a relative gap below 1 × 10−4 after 66

iterations. For the initial solution, the average profit per truck is about 3.65. At DTE,

the average profit per truck converges toward a much less value of 2.65. In this case, the

solution seems to suggest that the hyperpath h2 should not receive any flow at DTE.

Interestingly, it is possible but difficult for MSA to locate unless searching with small

step size near the solution, a different DTE exists. This other equilibrium turns out to
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be more profitable with f = [2.289, 27.412, 10.299] and u = {3.739, 3.739, 3.739}. This

result confirms that there are indeed multiple DTE, thanks to the non-monotonicity of

the profit function.

Table 4.2. MSASRP on 1 node example, 40 trucks, γ = 0.002,Γ =
0.018, h = 3, ε = 0.0001

# Iter. f1 f2 f3 u1 u2 u3 βk r

0 8 20 12 4 3.25 3.417 0.275 0.159
1 16.798 14.501 8.701 3.691 1.449 4 0.509 0.358
2 8.246 7.118 24.636 4 3.655 3.187 0.270 0.163
3 16.830 5.194 17.976 4 1.972 2.380 0.461 0.330
5 10.896 1.110 27.995 4 3.395 3.031 0.311 0.210
10 30.763 0.054 9.182 2.150 -2.246 4 0.566 0.557
20 16.076 1.37× 10−04 23.924 4 2.445 2.405 0.319 0.313
50 28.555 1.04× 10−08 11.445 2.564 -2.250 2.864 0.072 0.081
66 28.235 4.38× 10−09 11.765 2.650 -2.25 2.650 1.37× 10−05 1.64× 10−05

4.6. DTE Solution Algorithm

We are ready to present the overall solution algorithm based on column generation,

as described in Figure 4.8.

The algorithm starts by finding an optimal hyperpath for each O-D pair w ∈ W , tr ∈

T , while assuming that there are no competitions for any link (i.e., the truck flow vector

is set to zero). Then, we assign all flows from each O-D to the corresponding initial

hyperpath and call the DNL procedure (see Figure 4.3). The loading process generates

the profits for each hyperpath, as well as truck flows on each link. This completes the

initialization process.

Entering the main loop, we first attempt to generate a new hyperpath for each O-D

pair by calling the HyDOT algorithm again. This time the competitions from other trucks

are estimated using truck flows obtained from the previous DNL. The generated path is
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added to the current hyperpath set only if (1) it is a new hyperpath, and (2) its expected

profit is higher than those of all hyperpaths in the current set.

How to verify whether or not a hyperpath is new merits some explanation. Since a

hyperpath encapsulates both routing and bidding decisions, comparing two hyperpaths

involves checking not only all links but also the bidding order at each node. Strictly

speaking, even the bidding price is a property of a hyperpath. However, treating hyper-

paths with the same topology and bidding order as “different” only because of a slightly

different bid price is not realistic, because it leads to an infinite number of possible hy-

perpaths. Thus, in this dissertation, we do not differentiate hyperpaths based on bidding

price.
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Figure 4.7. DTE Algorithm

If at least one O-D pair accepts a newly generated hyperpath, the algorithm proceeds

to call the MSA algorithm to equilibrate flows on the current hyperpath sets until the

convergence criterion is met; otherwise, the algorithm terminates. Once the equilibrium

is reached by MSA, the main loop is repeated, started with another dynamic network

loading.
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Algorithm 4.5 DTE Algorithm

1: Initialization
2: Set u, f ,v,p,H = ∅, NewPath = true, iteration k = 0
3: for all w, tr do
4: Run HyDOT to generate the initial hyperpath hwtr , the corresponding bidding orders vector
φwtrh and the bidding price vector xwtrh .

5: Initialize Hwtr = {hwtr}.
6: end for
7: Run DNL to update link flow vector v and profit vector u.
8: while NewPath = true do
9: NewPath = false

10: for all w, tr do
11: Set k = k + 1
12: Run HyDOT to generate new hyperpath h̄wtr , φwtr

h̄
, xwtr

h̄
based on current v.

13: if h̄wtr 6= hwtr ,∀hwtr ∈ Hwtr and uwtr
h̄

> uwtrh ∀hwtr ∈ Hwtr then

14: Set NewPath = true and Hwtr = h̄wtr
⋃
Hwtr

15: end if
16: end for
17: if NewPath = true then
18: Run MSA Hyperpath Assignment Algorithm to equilibrate flows for each Hwtr .
19: end if
20: end while
21: Outputs: f ,v,u,p.

Figure 4.8. DTE solution algorithm

4.7. Summary

This chapter explored how to model the hyperpath-based DTE problem. Also, the

mathematical characteristics were explored and found to be less than ideal for finding

unique solutions quickly. While the problem is shown to be non-monotone and has some

areas of discontinuity, the solution was shown to exist. Also, the dynamic loading model,

while driven to employ rules that favor simplicity, still scales poorly because of the possible

exponential number of hyperpaths. While this problem is shown to be challenging to solve

with many possible equilibrium solutions to a problem, the possibly substantial significant

impact of the model demands numerical exploration.



104

CHAPTER 5

Data, Numerical Results, and Analysis

In this chapter, we apply the OFEX routing and DTE models to data from a real

OFEX in China. We first discuss the nature of the OFEX data used to study the problem

for the dissertation. We generate simple and complex numerical results for both the

OFEX routing problem and the DTE problem and analyze the results. We examine the

computational performance of both algorithms and compare each model’s improvement

against the baseline solutions.

5.1. Data Framework

The data used for testing, validating, and running numerical analysis of the problem

in this dissertation proposal comes from real data collected in China. The initial data was

collected from periods in December of 2015 and July 2016. The data collected includes

the posted time of the shipment on the website of the third party logistics company, how

long it lasted online, the origin and destination province and city of the shipment, the

type of freight, the truck type used, the distance, the weight, and the price. The initial

data includes information on nearly 113,000 shipments. This data allows for analyzing

many aspects of the data. A few examples include the shipment arrival rate for each

location, and the shipment imbalances, as seen in figure 5.1.
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Figure 5.1. Aggregated Shipping Balance

5.2. OFEX Routing Model Numerical Experiments

The hyperpath algorithm was coded in Octave 4.2.1 [20], and all tests were performed

on a personal computer with dual-core (2.4 GHz, 2.4 GHz Intel Core i7 3635QM) pro-

cessors with 8 GB of memory. The computer was equipped with the 64-bit Windows

10 operating system. The algorithm is first tested on a small network to illustrate its

properties and then is applied to the real OFEX data from China.

Unless otherwise specified, the following default parameter values are used throughout

this section:

δ = 1h, αw = U10/h, αe = U175/h, αf = U210/h, γ = U125/h, p̄0 = 0.9, ε = 0.35.
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Figure 5.2. A three-city shipping network

5.2.1. Illustrative example

In this illustrative example, a three-city shipping network is considered, as shown in Figure

5.2. The distance between each city pair is given a link label in the plot. The travel speed

between a given city pair is assumed to be a constant of 70 km per hour. For simplicity,

the handling time is set to 0 in this example. Table 5.1 reports the loads, travel time τa

and price range for each city pair. Note that the data in the table are the same for all

time intervals.

Table 5.1. Three-city example data

City
pair

τa
(hr) ga la ua

1 - 2 1 1 200 320
1 - 3 2 1 340 600
2 - 1 1 1 220 280
2 - 3 1 1 220 280
3 - 1 2 1 420 480
3 - 2 1 1 230 250

Two other trucks are assumed to be competing for loads at every node for all times,

and another truck is assumed to arrive empty at each node every two periods. This setting

allows for the example to have meaningful competitions. This setting gives H t
i = 2.5 ∀i ∈

L, t = 0, · · · , T .

The COPA-HyDOT algorithm solves the routing problem recursively, starting at the

boundary stage t = 4, where V 4
1 = 0. For stage t = 3 at node 1, STEN shows that the only
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feasible decision is to stay and wait at node 1, which makes V 3
1 = −10 + (V 4

1 = 0) = −10

(cf. Figure 5.3-(c)). For node 2 at t = 3, two options exist: a loaded move to node 1 (the

feasible option) and an empty move to node 1 (the fallback option). Since there is only

one feasible option, all available trucks will compete for it, so H3
2 = 2.5 and b3

21 = 3.5

(includes the the routing truck). With b3
21 = 3.5 and g3

21 = 1, p0
a = 0.171 as given by

Equation (3.9). Solving the optimal bidding problem sets x3∗
21 = 220, which is the lowest

bid in the price range (since the recourse option is a significant loss) and sets p3
21 = 1.

This results in V 3
2 = 1 × 10 + 0 × −175 + V 4

1 = 10. No bidding order is concerned until

there is more than one option available, which first occurs at t = 2 at node 3, where the

more profitable order is to bid for (3,1) first and then bid for (3,2). The expected profits

are 53.5 with this order, or 42.0 if a truck bids for (3,2) first.

Completing the COPA-HyDOT algorithm in this fashion yields a hyperpath shown in

Figure 5.3-(c), where each link on the hyperpath is labeled with the probability of being

chosen by a truck at its tail in the STEN. The final expected profit V 1
1 = U200.1. Figure

5.3-(d) shows that the hyperpath obtained by the algorithm contains eight simple paths

(each has a non-zero choice probability and profit).

The hyperpaths obtained by the benchmark BAPA-HyDOT algorithm are reported in

Figure 5.3-(a) and (b), where (a) corresponds to the Myopic model and (b) the Recursive

model. The Myopic and Recursive models generate the expected value of 40.9 and 76.9,

respectively. As expected, because the Recursive model allows the truck to anticipate

the future profits, it helps to improve the overall profits (in this case by nearly 100%). For

example, with the anticipatory information, a truck could avoid taking a load that could
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Figure 5.3. COPA, BAPA-Myopic and BAPA-recursive models results for
three-city example

result in a higher chance of future loss than simply waiting or moving empty to another

location.

Compared to the Recursive model, COPA further increases the expected profit by

over 150%. Among other things, optimal pricing helps (1) reduce the probability of

being forced to move empty, and (2) increases profits by setting the price higher than the

expected value, when the probability of finding a load is high.
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Figure 5.3-(d) shows that the hyperpaths corresponding to the Myopic and Recursive

models contain 20 and 15 simple paths, respectively, compared to 8 for the COPA model.

This shows that both the forward-looking strategy and the optimal pricing help eliminate

suboptimal choices that should not be included in the hyperpath. The finding is consistent

with the previous observation that COPA yields the highest expected profit, followed by

the Recursive model.

5.2.2. Real-world OFEX Data

As mentioned in the previous section, the OFEX data set used in this dissertation consists

of detailed information about freight loads between 31 major cities in China within four

weeks (two weeks in December of 2015, and another two in July of 2016). Because the

loads are posted online continuously in the raw data, they first have to be aggregated into

“operating intervals.” Figure 5.4 plots the distribution of the number of loads posted by

the time of day. It shows that the number of loads posted on the platform begins to rise

sharply around 6:00 AM, peaks around 9:30 AM and then quickly declines. Overall, most

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ro

p
o

rt
io

n
 o

f 
Lo

a
d

s

Hour

Figure 5.4. Hour of day load distribution
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loads were posted in the morning hours, with a very small percentage appearing between

6:00 PM and 6:00 AM.

The length of the operating interval (δ) is selected as one hour in this dissertation.

That is to say, a truck can make a decision every hour within the 12 working hours (from

6:00 AM to 6:00 PM) in a day. The constant travel speed between cities is estimated as

70 km/h, and the inter-city travel time is calculated based on the distance and the speed,

and then rounded up to the next hour.

A close look at the data shows that hourly loads fluctuate significantly and that a

posted load stays on the platform for about six hours on average. In light of these

observations, we estimate for each city pair the hourly loads at hour t by taking an

average of loads recorded in hours t− 5, · · · , t− 1, t. The only exception is hour 1 (6:00

AM), for which averaging goes back to 6:00 PM the previous day. This hour is treated

differently because there are little activities overnight, as shown in Figure 5.4. In the

same manner, the ranges of prices of the loads are aggregated.

Using the above method, a dataset is created to represent freight activities within the

31-city network in an “average week” (by taking the average over the four weeks covered

by the raw data). This results in a STEN that has 84 (12× 7) time intervals and 158,844

((31× 2− 1)× 31× 84) links. If a tour schedule longer than a week is needed for a test,

the dataset is simply replicated as needed to represent as many weeks as required.

5.2.3. Experiment Results Based on OFEX data

In this experiment, each run is specified by start and end locations and times. The

locations can be the same as in a selective TSP, or different as in the orienteering problem.
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This allows for maximum flexibility, especially for a long planning horizon where the truck

must stop to rest for more than just an overnight to follow trucking regulations. To use

this model to maximize a specified time horizon, the model could be run repeatedly over all

potential end locations to find the optimal expected value ending point. It is also possible

to run the model repeatedly over a set of possible ending times to find the optimal time

to end a tour.

5.2.3.1. Bidding Order Impact. The first set of experiments was designed to examine

how different bidding orders (see Section 3.2.3) may affect the solutions obtained by the

COPA-HyDOT algorithm.

Table 5.2 reports the average profit generated from all tours starting and ending at

the capital city of Hubei province, chosen for being centrally located within China. The

first column reports the test ID, the second shows the number of time intervals used in

the test, columned 3 - 10 report the average profits when Φ̄ includes only one of the eight

bidding orders; and column 11 shows the average profit when Φ̄ includes all eight bidding

orders. Clearly, the last column gives the highest expected profit because it compares all

eight orders at each node. The results show that overall the bidding order seems to have

a negligible impact on the expected profits. The worst order, φ̄0’, is still able to yield

99.56% of the maximum average profit achieved by the strategy that considers all eight

orders.

Looking closer at the data shows that for the hyperpaths generated, the number of

feasible options under consideration is often quite small (sometimes only one), making

the order less relevant. In many other cases, where as many as ten options are considered,

the best load was priced to achieve 100% winning probability, which again wipes out the
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Table 5.2. Impact of bidding orders on average profits from tours based at
the capital city of Hubei Province

Test T (hrs) φ̄0 (U) φ̄′0 (U) φ̄1 (U) φ̄′1 (U) φ̄2 (U) φ̄′2 (U) φ̄3 (U) φ̄′3 (U) Φ̄ (U)

1 50 2343.1 2337.0 2336.9 2343.3 2342.3 2337.8 2342.2 2337.7 2344.2
2 100 6908.0 6884.8 6883.0 6908.8 6885.5 6882.4 6916.6 6875.4 6920.4
3 150 12291 12230 12244 12285 12285 12243 12289 12237 12302
4 200 17354 17295 17297 17350 17354 17295 17346 17305 17354
5 250 22367 22309 22316 22369 22367 22313 22380 22309 22407
Rank(% of Φ̄) 2(99.90) 8(99.56) 5(99.59) 3(99.89) 4(99.82) 6(99.59) 1(99.92) 7(99.56) -

Chinese Yuan (U) ≈ 0.15 US Dollar ($)

effect of bidding order because other bids could not change the overall expected profit.

There were cases when the bidding order did make a significant impact. In those cases,

we found that the magnitude of the impacts varies by location and time, and no order

seems to have a clear advantage over others concerning profit maximization. Because the

overall impact of bidding orders is quite small, the following experiments choose only to

use φ̄3 to reduce the computational overhead. Table 5.2 shows that this order yields the

highest average expected profits among the eight, although the difference is small.

5.2.3.2. Comparison with Benchmark Models. In this section, the performance of

the COPA model is compared with the Myopic-BAPA and Recursive-BAPA benchmark

models.

Table 5.3 shows the comparison results for two base cities: the capital cities of Anhui

and Hubei provinces, respectively. The capital city of Anhui is located in eastern China,

and according to the data collected, is a sink node, i.e., more loads enter the city than

leave. In contrast, the capital city of Hubei, located in the center of the country, is a source

node (more loads leave than enter) and has much higher load activities than Anhui. These

two cities were selected to examine how such localities might affect the performance of

the three models.
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Table 5.3. Average profit and computing time for tours based at capitals
of Anhui and Hubei

Anhui (Less Connected City)
Test T (hr) Myopic-BAPA (U) Recursive-BAPA (U) COPA (U) COPA runtime (s)

1 40 -838.0 -400 1699.3 3.24
2 50 -1219.4 -426.4 2269.9 5.37
3 60 -1295.0 -174.8 3005.8 7.83
4 70 -1413.5 353.5 3684.0 10.50
5 80 -1396.6 1106.4 5104.2 12.54

Hubei (More Connected City)
1 40 -907.0 -273.7 1879.2 3.44
2 50 -645.6 262.6 2191.4 5.62
3 60 -1063.2 683.9 2808.7 8.25
4 70 -1397.8 1882.4 3858.9 10.77
5 80 -1203.5 2303.2 4702.8 13.62

For both cities, the results show that COPA could improve profitability dramatically,

compared to the two benchmark cases. In many instances, COPA increases the profit

generated by Recursive-BAPA by 200% to 400%, and in some instances the profit changes

from negative to a positive profit. The improvement mostly comes from nearly 200%

increase in revenue, and a 100% cost savings on average in these instances. Notably, this

finding is consistent with the observation by [38]. Also worth noting is that accurately

anticipating future profits alone could generate substantial benefits profit. In most cases,

Recursive-BAPA delivers significantly better results than Myopic-BAPA, often turning

a considerable loss into a positive profit. In a nutshell, the above findings confirm the

value of both optimal bidding and forward-looking strategies.

Comparing the results from the two cities yields somewhat surprising findings. The

tours based at the capital city of Hubei (the centrally located source city) are only doing

better than those based at the capital city of Anhui (a less connected sink city with

much lower load activities) in the benchmark cases. When COPA is applied, the average
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profits of the tours based at Anhui outperform those associated with Hubei by a nontrivial

margin. This result indicates that COPA is much less sensitive to the base city of a truck

than the benchmark cases.

The last column in Table 5.3 reports the time required by the COPA model to solve

each test case. Even with a MATLAB script, the problem can be solved within seconds

in most cases. The case with the most extended time horizon took less than 14 seconds.

The algorithm also scales well as the number of time intervals increase. Thus, we expect

that applying the proposed algorithm to solve real-world problems is practical.

5.2.3.3. Sensitivity Analysis. In this section, experiments are designed to test the

sensitivity of the COPA routing results to the starting time, the base city and the average

ratio of empty truck flow (ε defined in Section 3.4.1).

Table 5.4 shows the expected profits of 60-hour work tours based on all 31 cities, with

all tours starting and ending in the same city. The best 60-hour tour originates and ends

in the capital city of Heilongjiang, while the minimum is based at the neighbor province of

Jilin. While the location does affect profits, the standard deviation related to the choice

of the base city is only ¥267, less than 10% of the average profits. Again, this suggests

that COPA reduces the importance of the base city because it is able to take advantage

of network-wide visibility.

While the starting location and proximity to other locations may influence the results,

the departure time can also play a role. Figure 5.5 shows how a 60-hour tour’s profit

changes depending on the departure time. The plot reveals a periodic pattern for this

data set, with a departure in the middle of the working days generally producing higher

expected profits than starting early or late in the working day. This result seems correlated
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Table 5.4. Expected profits for tours based at all cities (T = 60)

City
COPA
profit (U) City

COPA
profit (U) City

COPA
profit (U)

Anhui 3005.8 He’nan 3078.2 Shaanxi 2976.3
Beijing 3148.3 Hubei 2808.7 Shandong 3504.3
Chongqing 3030.4 Hunan 3271.5 Shanghai 2700.8
Fujian 2934.1 Jiangsu 2919.7 Shanxi 2904.4
Gansu 3215.1 Jiangxi 3162.0 Sichuan 3066.2
Guangdong 3030.4 Jilin 2449.3 Tianjin 2812.4
Guangxi 3066.9 Liaoning 3502.3 Xinjiang 2613.9
Guizhou 2873.4 Neimenggu2882.3 Xizang 3247.9
Hainan 2819.7 Ningxia 3185.0 Yunnan 3035.3
Hebei 3255.0 Qinghai 3489.8 Zhejiang 3424.0
Heilongjiang 3537.7 Mean 3062.9 St. Dev. 266.8
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Figure 5.5. Expected profits at all possible departure times in a week (T =
60, base city = Hubei)

well with the fact that the morning hours have the highest load activities (see Figure 5.4).

The exception to the pattern happens between late Tuesday to late Wednesday. In fact,

the minimum expected profit is generated by leaving at 6:00 PM on Tuesday (or 6:00 AM

on Wednesday, the same time point in the model). This result may be explained by the

fact that departing at this hour means that the truck has to look for loads during the

entire weekend and must return to the base at the end of Sunday when load activities are

significantly decreased.
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We finally test the sensitivity to ε, the ratio of empty truck flow. Increasing ε is

expected to negatively affect profitability because it means more empty trucks become

available at each market, hence greater competition. Figure 5.6 shows how the value of ε

changes the average expected profit for 80-hour tours for tours from all locations ending in

the capital city of Hubei. The range of ε values tested in the experiments is selected such

that ρ1 ≥ 0. The reason for imposing this requirement is that ρ1 ≤ 0 typically creates too

few trucks available to move loads.

As anticipated, the expected profits decrease as ε increases, in all three routing models.

However, the magnitude of the impact varies. The COPA model is the least sensitive.

When ε doubles, the average profit drops by merely 10% or U495. In contrast, the profits

decrease by nearly 50% for the Recursive model and the losses incurred for the Myopic

hit 237%, over four times worse. The Recursive model has the highest absolute negative

change, as the difference in the range of ε is U1411, versus U1167 for the Myopic. This

finding shows that the optimal bidding strategies adopted in the COPA model are better

equipped to cope with the variable competitions in the market.

5.3. DTE Model Numerical Experiments

The DTE algorithm was coded in Octave 4.2.1 [20], and all tests were performed

on a personal computer with a 2.0 GHz, AMD Ryzen5 2500U processor with 8 GB of

memory. The computer was equipped with the 64-bit Windows 10 operating system. We

first examine the properties of the DTE problem and the performance of the proposed

algorithm using an illustrative example. We then apply the algorithm to a larger example

created using real data collected by a Chinese OFEX platform.
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5.3.1. Illustrative example without bidding

The topology of the STEN is shown in Figure 5.7. The number of available loads, gta, is

placed in {}. For example, there are 0.2 units loads going from city 2 to 3 starting at

t = 1. We prohibit bidding in this example to simplify the problem further. Accordingly,

the profit σta = xta − cta is assumed to be the same for each load. These are shaded in

gray. The fixed profit is 15 from city 2 to 3 starting at t = 1. The dotted lines in the plot

represent links in Ae.

There are two O-D pairs for this problem: 0.5 units of trucks start at node 1, and the

other half start at node 2, and all trucks plan to end at node 2 at t = 3. We simply identify

the O-D pair starting at city 1 and 2 as O-D pair 1 and 2, respectively. From inspection,

trucks are better off by going through city 3 because of the higher profits of connecting

loads. However, there are not many loads available to or from city 3: g1
13 = 0.1, g1

23 = 0.2,

and g2
32 is limited to 0.4. Thus, trucks will first compete to fill the most profitable jobs,

and those that are left behind will choose routes that maximize future profits.

To solve this problem, we first generate the initial hyperpaths. For O-D pair 1, h1
1(φ) =

([3,3’],[2,2’]), where the first and second brackets [] present the choice order at t = 1 and

2, respectively. In the first bracket, for example, the first number 3 represents moving to

city 3 loaded whereas 3’ means moving empty to city 3. Similarly, h2
1(φ) = ([3,1,3’],[2,2’])

for O-D pair 2. Then the trucks are loaded according to the DNL procedure. Once the

loading is completed, the profits for each hyperpath can be evaluated as u1
1 = 4, u2

1 = 16.

This gives us the initial solution.

We then attempt to generate for each O-D pair a second hyperpath based on the

loading results. The second hyperpath generated for O-D pair 1 is h1
2 =([3,2,1’],[2,2’]),
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Table 5.5. Truck flows for equilibrium solution

w1 Arc xtwah x1,1
13,1 x1,1

13′,1 x2,1
32,1 x2,1

32′,1 x1,1
11′,2 x1,1

12,2 x1,1
13,2 x2,1

12,2 x2,1
22′,2 x2,1

32,2 x2,1
32′,2

w1 Flow 0.005 0.021 0.025 0.001 0.279 0.095 0.1 0.279 0.1 0.09 0.005

w2 Arc xtwah x1,2
21,1 x1,2

23,1 x1,2
23′,1 x2,2

12,1 x2,2
32,1 x2,2

32′,1

w2 Flow 0.2 0.2 0.1 0.2 0.285 0.015

Nodet 11 21 31 12 22 32 13 23 33

Flow 0.5 0.5 0 0.479 0.1 0.421 0 1 0

which has an expected profit of 11.2, higher than 4. The new strategy suggests that it is

now more profitable to go to city 2 at t = 1 from node 1 than to 3’, due to overcrowding

at city 3. The second hyperpath generated for O-D pair 2, however, is not new, so the

hyperpath set for O-D pair 2 remains unchanged. With two active hyperpaths for O-D

pair 1, the DTE conditions dictate that u1
1 = u1

2 if both hyperpaths are utilized. For this

simple example, it is possible to equilibrate flows on these two hyperpaths analytically.

Note that the profits on the two hyperpaths can be expressed in closed-form functions of

hyperpath flow as follows:

u1
1 =

15f 1
1 (0.1

0.5
)− 5f 1

1 (1− 0.1
0.5

) + 15f 1
1 ( 0.4

0.3+f11 +
0.1f12
0.5

)− 5f 1
1 (1− 0.4

0.3+f11 +
0.1f12
0.5

)

f 1
1

(5.1a)

u1
2 =

15f 1
2 (0.1

0.5
) + 9f 1

2 (1− 0.1
0.5

) + 15
0.1f12
0.5

( 0.4

0.3+f11 +
0.1f12
0.5

)− 5
0.1f12
0.5

(1− 0.4

0.3+f11 +
0.1f12
0.5

)

f 1
2

(5.1b)

f 1
1 + f 1

2 = 0.5(5.1c)

Setting u1
1 = u1

2 and recalling the flow conservation conditions f 1
1 + f 1

2 = 0.5, we found at

DTE, f 1
1 = 0.0263 and f 1

2 = 0.4737, which produces the equilibrium profit of u1
1 = u1

2 = 13.

The solution also produces a profit u2
1 = 21.4 for h2

1. This turns out to be the final solution

because running the HyDOT algorithm again does not generate any new hyperpaths.
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A DTE solution not only tells how truck flows might distribute in the network, but

it also enables an analyst to discover possible strategies for improving network efficiency.

For example, the DTE solution obtained above indicates that 0.021 loads are unserved at

node 1 at t = 2. A possible remedy to this problem is for the OFEX platform to apply

a simple zero-sum price adjustment, similar to an optimal toll in the traffic assignment

problem. Excess demand needs to shift away from city 3, toward city 1. Therefore, the

platform can give a bonus of 0.5 for loads from city 1 to 2 at t = 2, which increases the

profit to 10.5. Adding this amount to all 0.5 loads results in a total increase of 0.25.

Then, the platform reduces the price from city 3 to 2 at t = 2, by 0.625, to 14.375, which

over 0.4 loads results in an equal total adjustment of 0.25. Applying the new prices to

the network enables h1
2 to be the dominant hyperpath, i.e., all trucks will choose h1

2, and

the resulting flow serves all loads.

In the above adjustment, the cost to the shipper remains unchanged, but the amount

that the trucks receive changed - it, of course, implies that the platform must be making

the transactions so that they can manipulate the prices, in this case for the benefits of

the system. This example highlights the potential of the equilibrium analysis for guiding

the operations of OFEX platforms.

5.3.2. Example with Bidding

In the previous example, bidding decisions were excluded from making the assignment

problem simple enough for an analytical solution. The example also avoids carrying loads

undelivered in the current time interval to later intervals, and limits interdependencies
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Figure 5.8. 10-city China network

between hyperpaths to only one O-D pair. We shall add these complexities back now,

using a network constructed from a real OFEX data set collected in China.

Our goal here is to test the performance of the three MSA schemes: the simplest

scheme (MSA), the self-regulated scheme (MSASR) and the proposed self-regulated scheme
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considering profit (MSASRP). The example network consists of 10 cites, as shown in Fig-

ure 5.8 and the planning horizon has 50 periods. The network creates 190 links that

include loaded and empty moves for each period. In this example, we only consider one

O-D pair that has 30 trucks, starting and ending at the capital city of Anhui, beginning

at t = 0, ending at t = 50.

Table 5.6. MSA on one O-D pair 25 truck example, h = 4, ε = 0.001

# Iter. f1 f2 f3 f4 u1 u2 u3 u4 r

0 6.25 6.25 6.25 6.25 -500 1436.5 2143.3 1762.2 0.7706
1 0.0625 0.0625 24.8125 0.0625 -500 -1491 1152.4 2616.1 1.284
2 0.03125 0.03125 12.40625 12.53125 -500 -1459.74 1190.68 1075.3 0.0561
3 0.02083 0.02083 16.60417 8.35417 -500 -1461.54 995.65 1416.24 0.2501
5 0.0125 0.0125 14.9625 10.0125 -500 -1458.96 1060.57 1243.16 0.0985
10 0.00625 0.00625 12.48125 12.50625 -500 -1459.92 1176.87 1080.51 0.0437
41 0.00152 0.00152 13.41006 11.58689 -500 -1457.91 1130.99 1130.48 0.0004

Table 5.7. MSASR on one O-D pair 25 truck example, h = 4, ε = 0.001

# Iter. f1 f2 f3 f4 u1 u2 u3 u4 r

0 6.25 6.25 6.25 6.25 -500 1436.5 2143.3 1762.2 0.7706
1 0.0625 0.0625 24.8125 0.0625 -500 -1491 1152.4 2616.1 1.284
2 0.04018 0.04018 15.95089 8.96875 -500 -1460.21 1023.92 1344.15 0.187
3 0.02679 0.02679 10.63393 14.3125 -500 -1461.04 1326.44 971.54 0.1861
5 0.013 0.013 10.67529 14.29871 -500 -1461.12 1320.81 970.86 0.1811
10 0.00568 0.00568 12.95165 12.03699 -500 -1457.80 1155.52 1104.82 0.0225
21 0.00249 0.00249 13.40566 11.58937 -500 -1457.90 1131.39 1130.36 0.0008

Table 5.8. MSASRP on one O-D pair 25 truck example, h = 4, ε = 0.001

# Iter. f1 f2 f3 f4 u1 u2 u3 u4 r

0 6.25 6.25 6.25 6.25 -500 1436.5 2143.3 1762.2 0.7706
1 0.00236 0.00236 24.99291 0.00236 -500 -1491.79 1145.84 2604.48 1.2735
2 0.00152 0.00152 16.06905 8.92791 -500 -1460.64 1013.36 1347.74 0.19
3 0.00101 0.00101 10.71461 14.28337 -500 -1461.18 1315.51 970.53 0.1764
5 0.00049 0.00049 10.71495 14.28407 -500 -1461.18 1315.4 970.46 0.1763
10 0.00021 0.00021 12.96857 12.03100 -500 -1457.85 1153.60 1104.98 0.0207
21 0.00009 0.00009 13.41297 11.58684 -500 -1457.92 1130.59 1130.44 0.000076
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Table 5.9. Iterations to reach gap value of 10−k, one O-D pair example, h = 4

Method 101 100 10−1 10−2 10−3 10−4 10−5

MSA 0 0 2 13 41 164 2674
MSASR 0 0 6 6 21 105 953
MSASRP 0 0 6 6 21 21 871

(a) (b)

(c)
(d)

Figure 5.9. Convergence comparison for one O-D pair example, h = 3

In this example, the DTE algorithm performs three main iterations, and a new hyper-

path is added in each iteration. When there are only 2 hyperpaths, all three MSA schemes

converge quickly, and there is little difference in their overall performance. Hence, we only

show the results for the last round equilibration, when there are three hyperpaths. For
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illustration, we start from an initial solution that assigns an equal amount of flows to each

hyperpath.

Figure 5.9 compares the convergence behavior of the three MSA algorithm variants.

Figure 5.9(a-c) shows how the flows on the three hyperpaths converge to their DTE value

and Figure 5.9(d) reports the change of the relative gap as the iteration proceeds. It

is evident from the plots that the proposed algorithm is able to converge to DTE much

faster than the other two methods. Figure 5.9(d) indicates that MSASRP can reduce

the relative gap down to the level of 10−6, whereas the other two algorithms begin to

experience difficulty around r = 10−3. Figure 5.9(b-c) clearly shows that the flows on the

hyperpaths 2 and 3 stabilize at the equilibrium value much earlier in MSASRP than in

the other two.

It is worth noting that, in the early stage, the MSASRP algorithm seems to converge

slower, possibly because it retains a relatively larger step size at the beginning. However,

it quickly surpassed the two competitors, and eventually achieved a more precise solution.

The performance of the algorithm depends on three parameters: α0, γ, and Γ. The optimal

values of these parameters may be problem specific and finding them usually requires

careful tweaks.

5.3.3. Large Example with Multiple O-D pairs

In this section, we continue to use variants of the ten-city example to test the DTE

algorithm. We first examine how sensitive the performance of the algorithm is to the

number of O-D pairs.
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Table 5.10 reports the results of the DTE when the number of O-D pair increases

from 1 to 5. The second column shows the number of total trucks in the network. The

third column shows how many hyperpaths were added to each O-D pair. The fourth

column shows how many of the hyperpaths in the final iteration had significant positive

flow at DTE. As the number of O-D pairs increases, the level of effort for the solution

algorithm increases exponentially. When there are more than two O-D pairs, converging

to a reasonably precise solution becomes very difficult with the current implementation of

the algorithm. When there are five O-D pairs, each call to the MSA hyperpath assignment

algorithm requires more than five hundred seconds to complete. This complexity can be

prohibitively expensive considering that the number of hyperpaths could easily reach

hundreds (if not thousands) even for average-sized problems.

Table 5.10. DTE algorithm hyperpaths produced by number of O-D pairs

# of O-D
Pairs Trucks

Hyperpaths
by O-D pair Used Hyperpaths

DTE Itera-
tions

Rel. Gap af-
ter 50 iter. Time (s)

1 15 4 2 4 0.00005 30
2 25 {4,5} {3,3} 5 0.02 303
3 35 {6,9,5} {5,4,5} 9 0.32 2645
4 45 {5,9,5,3} {4,4,5,3} 9 0.35 4805
5 55 {5,16,5,3,4} {4,5,5,3,4} 16 0.18 8608

We finally apply the algorithm to solve the ten-city network at full scale, where trucks

are assumed to start and end in the same city from all cities. Thus, there are ten O-D

pairs in total. The numbers of loads available at each city are obtained from the real

data. Three scenarios are tested. The average competition scenario represents an average

level of competition in the network, in which the number of trucks initially available in

a city is obtained as follows. For each city, we run the algorithm multiple times, each

time with a varying number of initial trucks, until it generates roughly U2500 for each
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truck. This method helped balance cities with high demands, by placing more trucks at

those locations. The second scenario increases the number of trucks in each city by 50%

to reflect a higher level of competition. Also, a lower level of competition decreases the

number of trucks in each city by 50% to reflect a lower level of competition. It took our

algorithm 5, 16, and 36 hours to solve the low, average, and high competition cases (at a

convergence criterion of 0.35). Given the slow convergence of the MSA algorithm, we do

not expect a much better solution could be obtained within a reasonable amount of time.

The DTE solutions are compared against three benchmarks: (1) a myopic routing

solution where trucks try to maximize only the next decision, and always bid at the average

price; (2) a recursive routing solution where trucks anticipate the expected profits in the

future, but still always bid at the average price; and (3) the initial solution obtained by the

DTE algorithm, i.e., assigning all flows to the first set of hyperpaths that optimizes both

routing and bidding decisions (interactions between these decisions are ignored, however).

Table 5.11. Low competition scenario results, ε = 0.35

O-D Pair Trucks Initial Profit Added Hyperpaths Used Hyperpaths Final Profit % Change

Anhui 10 3455 1 1 3455 0
Beijing 5 3390 8 4 3402 0.3
Chongqing 81 2422 5 3 3198 32.1
Fujian 18 2982 6 4 2812 -5.7
Gansu 8 3733 1 1 3733 0
Guangdong 118 3223 4 2 3256 1.0
Guangxi 80 3402 4 3 3378 0.7
Guizhou 85 2586 9 5 2386 -6.7
Hainan 28 3181 4 3 3219 1.2
Hebei 4 2822 7 4 2815 -0.2

Avg Profit U Loads Served Empty kms Loaded kms % Waiting

Myopic Baseline 1701 1158 73.4K 1.03M 22.0
Recursive Baseline 1481 1120 1400 838K 34.9
Baseline 2978 1068 700 978K 26.3
Equilibrium 3089 1110 11148 1.05M 21.0
% Change 3.7 4.9 1492 7.4 -20.1
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Table 5.12. Avg competition scenario results, ε = 0.35

O-D Pair Trucks Initial Profit Added Hyperpaths Used Hyperpaths Final Profit % Change

Anhui 20 1690 10 5 2486 47.1
Beijing 9 2558 12 7 2639 3.2
Chongqing 161 1608 10 4 1313 -18.3
Fujian 36 1783 5 3 2427 36.1
Gansu 15 2603 8 3 1386 -46.8
Guangdong 235 1573 17 7 1989 26.4
Guangxi 160 2822 17 8 2961 4.9
Guizhou 170 1944 9 3 2732 40.5
Hainan 55 2714 17 3 2994 10.3
Hebei 7 908 17 10 1428 57.3

Avg Profit U Loads Served Empty kms Loaded kms % Waiting

Myopic Baseline 1173 2327 224K 1.86M 27.9
Recursive Baseline 853 1931 84.8K 1.36M 46.3
Baseline 1989 1958 38220 1.53M 39.4
Equilibrium 2273 2049 82040 1.68M 23.3
% Change 14.3 4.6 114.7 9.7 -69.1

Table 5.13. High competition scenario results, ε = 0.35

O-D Pair Trucks Initial Profit Added Hyperpaths Used Hyperpaths Final Profit % Change

Anhui 30 960 19 7 1951 103.3
Beijing 14 1385 22 5 765 -44.8
Chongqing 242 1332 8 5 1276 -4.2
Fujian 54 760 20 4 2573 238.6
Gansu 23 1183 4 1 226 -80.9
Guangdong 353 455 15 8 1144 151.6
Guangxi 240 2554 16 4 2647 3.6
Guizhou 255 1038 8 3 166 -84.0
Hainan 83 2550 20 5 2762 8.3
Hebei 11 291 13 2 -217 -174.5

Avg Profit U Loads Served Empty kms Loaded kms % Waiting

Myopic Baseline 689 3184 400K 2.42M 37.3
Recursive Baseline 455 2524 187K 1.71M 54.9
Baseline 1296 2680 240K 2.01M 47.7
Equilibrium 1403 2196 177K 1.76M 38.4
% Change 8.2 -26.3 -26.3 -12.4 -19.6

The top half of Tables 5.11 - 5.13 show the results for each O-D pair in both the

average (left side) and high competition (right side) cases. On the left, the first column

reports the name of the base city; the second shows the number of trucks; the third shows
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the average profit after the DTE algorithm completed initialization; the fourth and fifth

columns report the total number of hyperpaths generated and used, respectively; the

sixth column shows the average profit when the DTE algorithm was terminated; and the

last column shows the relative difference between Column three and Column six. Two

observations are noteworthy from the top half of the table. First, the DTE solution is

not always better than the initial solution (i.e., the third benchmark mentioned above),

although several more O-D pairs benefit. Some city, such as Gansu, see their profit drop

by almost 50% after implementing the DTE solution. Second, the average number of used

hyperpaths is quite small: about 5 per O-D pair for the average competition case and a

little more than 4 for the high competition case.

The bottom half of Tables 5.11 - 5.13 compares the DTE solutions with the three

benchmark solutions. The last row shows how much the DTE solution improves over

the third benchmark (i.e., the initial solution) for different metrics. On the left side, the

second column reports the average profit per O-D pair; the third shows the total number

of loads served; the fourth and fifth columns show the miles traveled without and with

loads, respectively; and the sixth column reports the waiting time as the percentage of

the planning horizon. With the average competition, the DTE solution generated 15%

more profits, served about 5% more loads, traveled 10% more distance with loads, and

cut the waiting time by 17 percentage points, compared to the initial solution benchmark.

Interestingly, it also more than doubled the empty travel distance in the initial solution.

As expected, the higher competition lowered the improvement in profitability delivered

by the DTE solution. More interestingly, the DTE solution achieves this improvement

in a completely different manner, by driving less and shipping fewer loads. Clearly, the
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intensified competition forces the trucks to be more selective on what loads to deliver and

where to get them.

The myopic solution serves the most loads but also has low profitability, even com-

pared to the initial solution benchmark. Its empty travel distance is exceedingly high

compared to all other cases, evidently one of the worst consequences for being “myopic”.

The performance of the recursive solution is worst because it only uses a single sub-

optimal hyperpath per O-D pair that may be quickly saturated. This result highlights

the importance of the optimal bidding. The initial solution benchmark also uses a single

hyperpath for each O-D pair, but thanks to optimal bidding, it generates a much higher

profit compared to the recursive solution.

5.4. Summary

The OFEX routing model is a practical approach for developing routing plans for

trucks in large logistic networks. We have demonstrated that, for data from a real OFEX

network in China, the OFEX routing model generates routing hyperpaths that signifi-

cantly improve truck expected profits. Furthermore, it achieves this with fast run-times,

making it possible to run repeatedly and efficiently for many trucks, which could be a

useful tool for any OFEX platform.

The DTE model allows for a network of trucks, all utilizing the OFEX routing model,

to generate an iterative series of hyperpaths to work toward a network equilibrium that

equalizes expected profits for trucks identified by an O-D pair. Compared to the baseline

hyperpaths, the equilibrium solution generates significantly improved profits, increased
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numbers of goods transported, and less downtime, improving profits for both the shipping

companies and the truckers.
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CHAPTER 6

Conclusions and Future Research

Online freight exchange (OFEX) firms are rapidly rising and promising to improve

efficiency in the trucking industry by matching trucks to loads more intelligently. Their

magic wand, which only became available in the past decade, is a massive mobile comput-

ing platform that allows direct interactions with the agents (shippers and truckers) and

collects and processes data generated from their activities. This dissertation proposed a

truck routing model that leverages the immense power of such a platform. We finish the

dissertation in this chapter with a summary of the contributions, main conclusion, and

potential areas of future work.

6.1. Summary of contributions

(1) Developed a hyperpath-based truck routing model that is based on optimized bid-

ding within an OFEX platform. We demonstrated that the OFEX routing model

formulation provides a way to generate robust routing plans with full recourse

for truckers in addition to being very fast for realistically sized networks. This

model is a capable engine for generating hyperpath-based routing and bidding

strategies for trucks in the DTE problem.

(2) Demonstrated the practical significance of the methodology on specific instances

using real OFEX data from China. The OFEX routing model generated expected

optimal profit routing and bidding strategies for a truck utilizing an online freight
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exchange platform that can increase profits by over 200% from the status quo.

Furthermore, the DTE problem shows the network could increase profits for all

trucks by 10% or more, potentially increasing profits by hundreds of millions of

dollars for in China’s highly fragmented trucking network.

(3) Established a mathematical foundation for a new research area ripe for appli-

cation and analysis with potential for significant economic and environmental

impacts. By laying the foundational methods, the research community can build

upon this foundation to analyze many other networks: from a localized Uber

driver network to analyze efficient and fair time-dependent pricing in a city, to a

national shipping network to find the optimal place for a new distribution center

to alleviate shipping imbalance, many possibilities exist.

6.2. Conclusions

The proposed OFEX routing problem seeks to determine a hyperpath in a space-

time expanded network (STEN) that maximizes the expected profits for a given origin-

destination pair and a tour duration. At the core of the OFEX routing problem is a

combined pricing and bidding (COPA) model that simultaneously (1) considers the prob-

ability of winning a load at a given bid price; (2) anticipate the future profits corresponding

to the current decision; (3) accounts for the competition in the market; and (4) prioritize

the bidding order among possible load options. To the best of our knowledge, such a

problem has not been studied in the context of freight logistics.

We show that, on a STEN, the OFEX routing problem can be formulated as a dynamic

program and solved in polynomial time. Results from numerical experiments, constructed
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using real-world data from a Chinese OFEX platform, indicate that the proposed COPA

model could (1) improve truck’s expected profits up to 400%, compared to the myopic

and recursive benchmark solutions built to represent the state of the practice; and (2) en-

hance the robustness of the overall profitability against the impact of market competition

and spatial variations. Thus, the algorithm could potentially be used to help individ-

ual truckers discover more profitable shipping tours as they navigate through the OFEX

platform.

This research showed how emerging OFEX platforms could help consolidate the highly

fragmented industry and improve its efficiency by delivering automated “optimal” guid-

ance to all trucks. The proposed DTE model helps predict system-wide truck flows (in-

cluding empty truck flows) and identify efficiency improvements gained by network-wide

visibility.

The proposed DTE model is formulated as a variational inequality problem and solved

using a specialized heuristic algorithm. The algorithm consists of three modules: a dy-

namic network loading procedure for mapping hyperpath flows onto the freight network,

a column generation scheme for creating hyperpaths as needed, and a method of suc-

cessive average for equilibrating profits on existing hyperpaths. The results of numerical

experiments show that (1) the proposed algorithm offers a viable tool to find approximate

DTE solutions, but its convergence is rather slow, especially when the effect of cross O-D

interactions are significant; (2) the DTE solutions improves the profitability of the system

with wide margin compared to the benchmark solutions that either ignore interactions

between trucks’ decisions or operate trucks according to sub-optimal routing decisions.
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In conclusion, the DTE research lays a foundation for analyzing new equilibrium prob-

lems that deal with profit maximizing endeavors, such as the OFEX trucking equilibrium

demonstrated in this dissertation. The techniques developed in this dissertation could be

extended and refined to analyze other for-profit transportation networks such as an Uber

driver network equilibrium in a city, or a crowd-sourced shipping network in a region of

interest. Although the model presented does not embody the theoretical properties that

would guarantee unique equilibrium solutions, the algorithms implemented show promis-

ing convergence characteristics, on simple examples and real-world data networks.

6.3. Future Research

This dissertation study opens up many possible directions for future research. The

first area of interest is building upon the user-equilibrium solution to explore the system

optimal solution. Once the system optimal solution is identified, then optimal pricing of

the network can be explored similar to optimal toll pricing research.

Improving the computational efficiency of the DTE assignment algorithm is high on

the immediate future to-do list. Part of the reason why the computation time reported in

the numerical results seems quite high has to do with the programming tool (Octave, a free

version of MATLAB) selected to develop the prototype code. It is expected that switching

to a more efficient language (e.g., C++) would dramatically reduce the computation time.

In addition, all three components of the algorithm can be tuned for better efficiency.

Another possible direction is to explore a system optimal solution for a fleet of trucks,

which considers intra-fleet competitions. Such an investigation could also help the OFEX
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platform develop strategies to improve the efficiency of the entire system, not just indi-

vidual trucks. Finally, the methodologies developed in this dissertation could be extended

and refined to analyze other for-profit transportation systems such as ride-sourcing plat-

forms (e.g., Uber) or crowd-sourced shipping platforms (e.g., Postmates).

Another area of research could be to explore modeling the user-defined interaction

with the OFEX platform. So far, we have assumed that trucks will follow the OFEX

plans generated. However, a more plausible scenario is that the platform may try to

“control” the tours of trucks, by allowing truckers to define their constraints. The routing

model could be revised such that a system objective - such as minimizing the total empty

truck flows or waiting time - can be achieved. This revised system would create a problem

similar to the vehicle allocation problem, although an OFEX platform would never have

- nor would they desire - the kind of control that a traditional trucking company has over

its fleet, it allows for different levels of control, and one could measure how much control

is worth.

A future study could also examine how the several essential inputs used in the OFEX

routing model, such as empty truck flow and the number of competing trucks, can be

reliably estimated from mining the diverse sources of data collected on OFEX platforms.

Improving these inputs improves the output of the model.

Future work includes studying larger networks for the DTE problem, and how to apply

optimal price adjustments to the network to shift the equilibrium to improve network effi-

ciency. Finally, to try to mitigate the effect of the complexity of the DLA, pursuing other

methods and models to generate the profit functions would be very beneficial research as

the problem is scaled higher.
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Another possible methodology to research this problem is to use simulation. The

advantage of simulation is the realism that can be implemented and modeled and one can

leverage the law of large numbers in the experimental design. The main realism elements

that simulation would augment for this problem framework is the bidding process for

jobs, and another way to analyze the influence of time on the recourse options. The

bidding process is generally ignored in the OFEX routing model and accounted for by

utilizing an expected profit number for each time period and location. This process

enables the analytical models’ profit functions to be monotonically decreasing functions

and tractable. However, simulation can enable this realistic tradeoff between time and

bid order a reality. However, the data that is available and collected so far is insufficient

for a realistic implementation because it does not include information about bids for

jobs that did not win, and jobs that were never delivered because they were not bid for.

Getting this necessary data could prove difficult. That being said, in the literature, most

research utilizes simulation-based dynamic assignment models, and at a minimum, this is

interesting future work.

Finally, the methods here can be extended to other research areas. It would be easy to

apply this framework to other profit-maximizing networks, like the Uber driver network

in Chicago. Similar to the OFEX platform, the Uber platform matches drivers and

passengers, and Uber has the data that could enable calculations of the likelihood of

arriving passengers in a zone by time, and average profitability of each zone. One could

use this to help an Uber driver plan a more profitable route chain with recourse for the

amount of time s/he wants to drive. This analysis could help improve profits significantly
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against how most people interact with the application as an Uber driver, surfing the

smartphone application to find the next passenger nearest their current location.
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APPENDIX A

Notation

Symbol Definition

Sets

A = set of all options for a given city at a given time interval

‖A‖ = 2n− 1

Ad = set of dummy connectors in the STEN

Ae = set of links corresponding to empty moves in the STEN

Af = set of links corresponding to loaded moves in the STEN

Aw = set of links corresponding to waiting in the STEN

E = Af
⋃
Ae
⋃
Aw
⋃
Ad

G(N , E , T ) = space-time expanded network (STEN)

Hw = set of all generated hyperpaths hw that connect origin io and

destination jT of hyperpath w

K = set of all simple paths of G

L = set of nodes in the STEN corresponding to real cities, ‖L‖ =

Tn, L′, corresponding to dummy cities

M = set of information for general MDP model

N = L
⋃
L′
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Q = set of all feasible loaded options for a given city at a given

time interval. ‖Q‖ = m

Φ = set of all bid orders

S = general state variable for MDP model, Smathbfxt = state post

decision

T = set of all times, t ∈ 0 · · ·T in planning horizon

W = set of all unique O-D pairs, each w represented by tour start

time ts, location r, and tour end time te, and end location s,

|W | = η

W̄ = information set that becomes known in general MDP model

Data

αe = cost per ∆ for empty travel, αf = loaded, αw = waiting

cta = cost incurred on arc a at t

∆ = length of operating interval (1 hour in this dissertation)

gta = number of loads on arc a at t

γ = cost per ∆ for loading\unloading

î = origin city at start of planning horizon for a w

ĵ = destination city at end of planning horizon for a w

lta = lower limit of a winning bid on arc a at t

n = number of cities in the region

p = probability of state transition in P in general MPD model

τ ta = travel time on arc a at t

uta = upper limit of a winning bid on arc a at t
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Indicator Variables

δwhat = hyperpath-link incidence: δwhat = 1 if at ∈ hw and 0 other-

wise)

Decision Variables

eta = number of residual (unmatched) loads ready for delivery at

time t on option a, êta = dummy version

f = hyperpath flow vector

fwtrh = flows of trucks in Btr
w assigned to hyperpath hwtr

φtwah = bid orders for option a, on O-D pair w on hyperpath h at

time t

π = policy for general MDP model

xta = revenue (equal to bid price) earned on arc a at t

x = set of decision for general MDP model representing bid prices

x and bid order φ

ζtwah = bid prices for option a, on O-D pair w on hyperpath h at

time t

General Variables

a = a movement option, of ij

ba = number of trucks bidding on option a

Btr
w = number of trucks that start at city r at time tr and wish to

return to city s at T

dta = number of loads ready for delivery at time t on option a
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Fij = cumulative distribution function of unit load price between

i and j

f̄ = fallback option

f̌wtrith = residual flow that arrives at node (i, t)

H t
i = number of trucks available at city i at t

λk = probability of traversing simple path k

ωk = profit associated with path k

p0t
a = probability of winning with expected value bid on load a at

t

pta = Fa(y
t
a), probability of winning a load on arc a at t with bid

price yta

pwhat = percentage of truck flows that pass through at on hyperpath

hw

p̄0 = probability of winning with expected value bid, averaged

over time and bids.

p̄wtrah = expected probability of choosing link a on htrw

p = actual link choice probability vector

πta = probability of traveling on arc a departing at t

ψ = multiplier associated with load to demand ratios

r = relative gap

% = minimum (winning) bid value

s̄a = sum of the demand for option a

ṡa = sum of the winning bid demand for option a
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σta = yta − cta, profit earned on arc a at t

t = time

ϑa = load to demand ratio for option a

u = hyperpath profits vector

uwh = expected profit associated with hyperpath hw

vtwah = truck flow on link a on O-D pair w on hyperpath h at time

t, full vector is also denoted as X

V t
i = maximum expected profit starting from city i at time t to

end of process

w = shortcut to the O-D pair r − s, with w− = r and w+ = s

Ẃh = total profit associated with hyperpath h

zf̄ = expected profit of the fallback option

Auxiliary Variables

νwh = maximum expected profit for the truck drivers in class w
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APPENDIX B

Estimating the number of competing trucks for each option (ba)

To apply the logit model, we first define the utility of each option a as

Ua = η0 + η1
σ̄a

τa + 2
+ η2ga + εa,(B.1)

where ηi, i = 0, 1, 2 are coefficients and εa represents unobserved attributes (error term).

Ideally, ηi should be calibrated from the real observations of truckers’ choice behavior.

As we neither have the data nor consider the estimation of ba the focus of the present

study, the utility function (B.2) is further simplified by scaling σ̄a and ga into a given

range [κ, θ], i.e.,

Ua = S

(
σ̄a

τa + 2

)
+ S(ga) + εa,∀a ∈ A′(B.2)

S(y′a) =
y′a −min(ya,∀a ∈ A′)

max(ya,∀a ∈ A′)−min(ya,∀a ∈ A′)
(θ − κ) + κ.(B.3)

where κ and θ are the desired range, and A′ is defined as the set of all loaded moves

such that the estimated unit profit σa/(τa + 2∆) > αw (the cost of waiting). Then,

assuming εa is an identically and independently distributed (IID) Gumbel variable, the

choice probability of option a is given by

Pa =
eUa∑
b e

Ub
,∀a.(B.4)
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Accordingly, the number of competing trucks is

b̄a =HiβPa, ∀a ∈ A, where(B.5a)

β = min{1 + 0.2(||A|| − 1), 3}.(B.5b)

The parameter β is a scalar multiplier that reflects the fact that trucks can bid on more

than one load. The setting of β assumes that the number of options that each truck bids

is proportional to the number of options, ||A||, but is limited by an upper bound (3 is

selected in this dissertation).
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