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ABSTRACT

Product Lifecycle Considerations in Closed-Loop Supply Chain Management

Kristin Marie Sahyouni

This dissertation examines the impact of product returns on effective supply chain man-
agement. Within this area of research, known as Closed-Loop Supply Chain Management,
we consider both strategic and tactical level reverse logistics and inventory management
problems from the perspective of a firm which must efficiently process returned items. More
specifically, we explore the effective integration of forward and reverse logistics systems
throughout the product lifecycle and the impact of lifetime buys on repair operations for
short lifecycle products.

The first part of this dissertation develops three general bidirectional facility location
models to deliver products and collect returns in a two-tier supply chain. This research
quantifies the value of simultaneously considering forward and reverse product flows when
designing an integrated closed-loop logistics network. We develop these models as exten-
sions of the classical uncapacitated fixed charge location problem and present a Lagrangian
relaxation-based solution algorithm that is quick and effective. We measure the cost sav-
ings opportunities of integrated network design throughout the introductory, maturity, and
decline stages of the product lifecycle. In addition, we discuss the resulting network config-
urations and introduce a new network similarity metric to quantify this analysis.

The second part of this dissertation investigates the impact of lifetime buys on warranty
repair operations for short lifecycle products. This work is the first to consider the impli-
cations of a single procurement opportunity for repair parts, which is common practice in

the electronics and telecommunications industries. Using a deterministic continuous time



model, we show how fixed repair capability costs, variable repair costs, inventory holding
costs, and replacement costs affect a firm’s optimal repair and replacement decisions for a
single product. We extend these models to examine the role of repair capacity constraints
for the single product model and the impact of having shared repair facilities that service
two products. Our models are applied to an industry case to gain insights for a U.S. mobile
device manufacturer.

The third part of this dissertation develops a scenario planning extension of the lifetime
buy problem to understand the effects of return rate uncertainty in the inventory planning
process. We present two models that address the somewhat competing objectives of min-
imizing cost and minimizing risk under a discrete set of return rate scenarios. We also
explore the tradeoff curve of efficient solutions that are Pareto-optimal in the two objectives.
Our analysis empirically shows that solutions to this problem are robust with respect to

minimizing cost and risk.
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Chapter 1

Introduction

This dissertation utilizes operations research methods and other quantitative techniques
to examine network design and inventory management topics within the context of closed
loop supply chain (CLSC) management, a research area that considers the effect of product
returns and remanufacturing operations on supply chain activities. Within this domain, this
dissertation explores (1) the effective integration of forward and reverse logistics systems
throughout the product lifecycle, and (2) the impact of lifetime buys on repair operations

for short lifecycle products.

1.1 Closed-Loop Supply Chain Management

Traditional supply chain management research typically deals with the forward flow of goods.
In this forward flow, raw materials are processed into parts and subassemblies by one or more
manufacturers, and undergo numerous operations to produce a finished good. Once these
processes are complete, the finished good is moved through a network of distribution centers
to arrive at a retail outlet (or similar sales location) where it is sold to a customer. This

process is depicted in Figure 1.1. In this forward-oriented supply chain, the product is
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thought to have left the system once it has been consumed (purchased).

Raw Parts
Materials Production

v
A 4
v
v

Assembly Distribution Consumer

Figure 1.1: A Traditional Forward Supply Chain

This traditional way of thinking about supply chains often ignores the role of product
returns and resulting remanufacturing activities on the design and operation of these highly
complex systems. In truth, product returns can have a tremendous impact on a firm’s supply
chain performance. A returned product can enter the system at each tier of the supply chain,
depending on its condition and what (if any) processing is required to return the product
to a useable state. Throughout this dissertation, we use the term forward logistics to refer
to the forward flow of products (from raw material to customers) defined above and the
term reverse logistics to refer to any activities or processes that treat return flows. We use
the term closed loop supply chain to refer to a flexible system that includes both forward
logistics and reverse logistics activites to serve bidirectional flows. Figure 1.2 depicts the
major components and activities in a closed-loop supply chain.

Effective closed loop supply chain management is critical to the success of many firms.
One recent study shows that the estimated annual value of returned goods in the United
States is $60 billion and that firms spend $40 billion a year to manage these returns (Enright,
2003). The US Central Intelligence Agency estimates the 2005 US annual Gross Domestic
Product to be roughly $12,370 billion (CIA World FactBook, 2006) in which case returned
goods account for approximately 0.5% of the United States economy each year. Another
source claims that the value of returned goods exceeds $100 billion annually (Stock, Speh,
and Shear, 2002)! In addition to these cost figures, many studies have shown that return rates

can reach as high as 35% for catalog retailers, 50% for online retailers, and 40% for textile
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Forward Logistics

Raw > Parts » e
Materials Production Assembly Distribution Consumer
A A A A
Reuse
Refurbishing
Remanufacturing
Landfill | Recycling

Figure 1.2: A Closed-Loop Supply Chain

manufacturers (Rogers and Tibben-Lembke, 1999). The size, scope, and cost of returns all
suggest that the value of effectively managing reverse logistics processes is significant.
Closed loop supply chain and reverse logistics topics have emerged as an important
component of supply chain management research due to three current trends: (1) govern-
mental imposition of stricter environmental regulations on product recycling and disposal,
(2) shorter product life cycles and subsequent increased supply of used goods with high
salvage value, and (3) the explosion of e-commerce activities resulting in a high volume of
products returned from consumers for exchange or refund. It is worth noting that the entire
business plan of some firms (e.g., Netflix.com) is predicated on the availability of an efficient
and effective reverse logistics network. As these trends continue to evolve, effective closed-
loop supply chain management practices will become increasingly important for companies.
Many companies now recognize that getting their product to the customer is not the end of
the story, but the beginning of a new era of challenges that requires the design of effective

reverse logistics channels to efficiently handle product returns. Firms that fail to recognize
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the importance of reverse logistics may be banned from certain markets by legislation and /or
left behind in other markets as they fail to recover valuable used products.

The academic community has responded to the need for a better understanding of the
needs of effective returns management with the creation of closed loop supply chain research,
which explicitly considers the impact of product returns and resulting operations on the entire
supply chain - including product design, forward distribution and returns collection, and
assembly (or disassembly) operations. Until recently, the subject was solely considered within
an environmental or sustainability context, but over the last decade CLSC management has
emerged as an important research field and is becoming an increasingly common topic within
traditional supply chain management literature. A recent presentation by Guide and Van
Wassenhove (2005), gives a brief overview of the history of closed loop supply chain research.
The literature on CLSC management includes topics such as: remanufacturing processes and
design; reverse logistics and remanufacturing networks; production and inventory control
in remanufacturing environments; coordination in reverse supply chains; the time value of
commercial returns; marketing issues for new and remanufactured products; and many other
topics. We outline the contributions made by this dissertation to the existing literature in

Section 1.2.

1.2 Research Contributions

Supply chain management research may be classified according to its scope of impact - e.g.
a strategic-, tactical-, or operational- level problem. A strategic- level problem considers long
term planning scenarios, such as logistic network design or strategic sourcing decisions. A
tactical- level problem considers midrange planning scenarios, such as inventory management
or capacity planning problems. Operational- level planning considers short term problems

such as production scheduling or distribution dispatching problems. In addition to its scope
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of impact, it is very important to identify the conditions under which a problem is studied.
A scenario in which all parameters are known, also referred to as a deterministic problem,
is modeled very differently from a stochastic scenario in which uncertainty is explicitly con-
sidered. A framework for categorizing problems according to these two measures is given in
Figure 1.3. Using this taxonomy, we classify the research contributions of this dissertation

as strategic-deterministic, tactical-deterministic, and tactical-stochastic in nature.

Problem Strategic Tactical Operational
level
Capacity planning Production pla}nning /
Problem Distribution network scheduling
) design Inventory management Demand / Return
ype forecasting
Integrated Lifetime Buys in
Deterministic Bidirectional Warranty Repair
Network Design Operations
Scenario Planning
. for Lifetime Buys
Stochastic in Warranty
Repair Operations

Figure 1.3: Research Framework

As noted in Section 1.1, there have been many great contributions to the literature on
closed loop supply chain management. This dissertation contributes to this area of research
by examining (1) the role of product lifecycles in the design of bidirectional CLSC logistics
systems and (2) the impact of lifetime buys on warranty repair operations for short lifecycle

products. More specifically, this dissertation contributes as follows:

1. We develop a general bidirection facility location model to serve both forward and
reverse product flows in a two-tier supply chain. This model is extended to consider

the logistics needs of a product during the introductory, maturity, and decline stages
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of a product’s lifecycle. The embedded forward and reverse logistics networks are
determined sequentially and concurrently to quantify the value of integrated CLSC

network design. (Chapter 2)

. We develop a network similarity metric to quantify the spatial similarities and dif-
ferences among multiple network configurations. Using a modified out-of-kilter flow
algorithm, we develop the first known metric to consider the total network distance

between competing facility location plans. (Chapter 2)

. We investigate the impact of lifetime buys on warranty repair operations in the elec-
tronics and telecommunications industries. In this work we model a repair operation
in which defective warranty items arrive at a manufacturer and must be repaired or
replaced with a comparable next generation alternative. There is a single procurement
opportunity (lifetime buy) at the beginning of the period when a manufacturer can
obtain repair parts from a third party supplier. We develop a deterministic continuous
time model that examines how repair capability costs, inventory holding costs, variable
repair costs, and replacement costs affect firm decisions in this environment. Using con-
strained numerical optimization methods, we derive the firms optimal repair/replace

policy and order quantity for a single product. (Chapter 3)

. We extend contribution 3 to consider the impact of repair capacity constraints for a
single product as well as the impact of having shared repair facilities to service two

products. (Chapter 3)

. We extend contribution 3 to consider a situation in which the return rate observed by
the manufacturer is uncertain but limited to a finite number of scenarios. We consider
two planning objectives: (1) minimize the total expected cost, and (2) minimize the

maximum regret across all return rate scenarios. We show how the total cost to
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the manufacturer and the resulting optimal inventory quantity change as the relative

emphasis on each of these two objectives changes. (Chapter 4)

1.3 Outline

The remainder of this dissertation is organized as follows. In Chapter 2 we develop a facility
location model for bidirectional flows and present three approaches to modeling closed-
loop supply chain systems as extensions of the classic uncapacitated fixed charge facility
location model. In Chapter 3 we develop a deterministic continuous-time model to study
the impact of lifetime buys on warranty repair operations. We show how a manufacturer
should decide whether to repair or replace returned defective items as a function of fixed,
variable repair, inventory holding, and replacement costs; we also show how this analysis
leads to an optimal inventory order quantity. This work is extended to consider multiple
scenarios in Chapter 4. We study the effects of different objective functions based on
minimizing cost or maximum regret, and show how the optimal inventory order quantity
changes with the objective. Literature related to each of the problems is presented within
the appropriate chapter. Finally, conclusions and directions for future research are discussed

at the end of each chapter.
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Chapter 2

A Facility Location Model For

Bidirectional Flows

Recent research on reverse logistics and closed loop supply chains has produced a number of
specialized network design models. In this chapter we develop three generic facility location
models for the integrated distribution and collection of products that accommodate a variety
of applications and industries. These models quantify the value of integrated decision making
in the design of forward and reverse logistics networks throughout different stages of a prod-
ucts life cycle. The formulations extend the uncapacitated fixed charge location model to
include the location of used product collection centers and the assignment of product return
flows to these centers. In addition, we develop a Lagrangian relaxation based solution algo-
rithm that is both quick and effective. We measure the implications of integrated decision
making by comparing the total facility and transportation costs of our joint optimization
models to the cost of solutions in which forward and reverse facility location decisions are
made sequentially or independently of one another. In addition, we discuss the implications of
integrated decision making on network configuration and introduce a new network similarity

measure to quantify this analysis. Computational results are also presented.
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2.1 Introduction

A number of formulations for designing product collection networks have been proposed
in the literature, but they tend to be specific to particular case study applications. In
this chapter we formulate three generic facility location models for the integrated design of
forward and reverse logistics networks. The forward and reverse networks are integrated by
locating bidirectional distribution centers in addition to dedicated unidirectional facilities.
The generalized models we propose are useful for understanding logistics activities in a
variety of industries and can be extended to capture complexities encountered in specific
applications. The primary contribution of this work is in developing models to analyze the
impact of integrated product distribution and returns collection between the distribution and

consumer tiers of the supply chain. Our work addresses the following research questions:

e How can existing facility location models be extended to effectively integrate forward
distribution and reverse collection activities and how must solution algorithms be mod-

ified to accommodate the presence of return flows?

e What is the value of integrated forward and reverse logistics network design for a

company in different stages of a product’s life cycle?

e What are the network configuration implications of integrating forward and reverse

logistics design decisions?

2.1.1 Sources of Product Returns and Resulting Reverse Logistics

Needs

Product returns occur for several reasons. To understand these reasons and determine man-

agement needs for an effective response, it is crucial to differentiate among the sources of
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returns. Empirical research suggests that product returns can be categorized into two pri-
mary groups: push returns and pull returns. The first type of product returns are pushed
back through the supply chain (from end users towards the origin of supply) as a result of
commercial returns, warranty claims, and repairs. The second type of returns are pulled into
the reverse logistics network as a result of legislation or the financial benefits of reclaiming
high valued items for remanufacturing or recycling. We discuss these two types of returns
in detail below.

Reverse logistics has always been a norm of doing business, especially for catalog retailers
(Rogers and Tibben-Lembke, 1999). However, the recent growth of business-to-consumer
direct distribution channels such as internet sales and telemarketing has led to an explosion
of commercial returns for both retailers and manufacturers. These returns can be attributed
to relaxed return policies, product quality that does not meet customer expectations, or
consumers who are uninformed regarding proper product use. Consequently, the return
rates for computer products and for products purchased through catalogs are in the range
of 10 - 20% and 18 - 35%, respectively (Rogers and Tibben-Lembke, 1999).

In some cases, companies are forced to set up reverse logistics and processing networks
to take back their products after they have been used and disposed of by their consumers.
Political concerns for the environment in Europe, in the US, and in Japan have resulted in
legislation that requires the recycling and remanufacturing of specific products and materi-
als. Printers, copiers, computers, power tools, and cellular phones are examples of durable
products which are collected by manufacturers after use and remanufactured into new prod-
ucts. In non-durables, examples include copy and print cartridges and single use cameras.
Marketing activities such as trade-in offers and asset recovery services to induce new product
demand can also lead to a stream of used products flowing back to resellers or manufacturers

(Savaskan, Coughlan, and Shulman, 2006a; Savaskan, Coughlan, and Shulman, 2006b). The
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timing and quality of end of life returns differ considerably from commercial returns, and as
a result so do their processing needs. Table 2.1 identifies drivers and high frequency time

periods for both commercial returns and end of life returns.

Type of Returns Drivers of Returns Timing of Returns

= Product is defective
*  Product does not meet consumer

expectations Higher volumes at the
Commercial Returns * Consumer does not know how to introductory stage of the
(push returns) install or use the product product life cycle

= Wrong product delivered
= Relaxed return policies

»  Short product life cycles and new

End of Life Returns product introductions, resulting in
Environmental trade-ins Higher volumes during
Trade-ins »  Marketing campaigns for product maturity and decline stages of
Replacements recycling the
(pull returns) »  Legislation product life cycle

* Product stewardship trough asset
recovery services

Table 2.1: Drivers and Timing of Product Returns

A significant return flow of products can present major obstacles to a firms logistics
operations since many of todays supply chain networks were originally designed with only
forward product flow in mind (Rogers and Tibben-Lembke, 1999). For this reason, companies
now face a considerable challenge in designing a reverse supply chain network that will
meet their returns processing needs while complementing their existing forward distribution

system.

2.1.2 Three Generic Reverse Network Structures

While there are specific industries that can be characterized as either forward or reverse

dominant, many industries experience significant distribution and collection flow changes
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throughout a products lifecycle. In these cases, network design decisions may change over
time.

During the introductory stage there are very few products in the market, which implies
even fewer returns. During this time, the firm will focus on forward product distribution and
in general there is little need for returns collection. Since the product is newly introduced to
the market, the majority of product returns are commercial returns due to unmet customer
needs. During this phase, a company may focus on the design of its forward distribution
network and collect returns at a subset of forward distribution points. Online retailers with
centralized returns handling and decentralized product distribution, such as those found in
the textile industry, are an example of forward dominant reverse logistics models.

By contrast, a companys primary focus is likely to shift to recovery and collection at the
end of a products lifecycle as new product demand declines and used product returns increase
over time. During this period a reverse dominant reverse logistics network is prevalent.
Remanufacturing and recycling networks are examples of reverse dominant network struc-
tures, where there is a large number of collection sites and a few centralized processing
facilities. Other examples of reverse dominant network design can be found in refillable ink
/ printer cartridge and single use camera industries.

During the maturity stage, forward and reverse flows are generally stable, so the network
tends to favor, but not require, the location of bidirectional facilities. During this time
neither the forward distribution nor the product collection network dominates the other.
The Dell asset recovery program, which collects both end of life and commercial returns is
an example of a distribution network whose design is similar to a co-location model.

The following graph, Figure 2.1, depicts how product demand, commercial return flows,
and end of life return flows change throughout the introductory, maturity, and decline phases

of the product lifecycle and the corresponding distribution model.
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Maturity Product Demand
Introduct Stage — — Commercial Returns
ntroductory Decline End of Life Returns
Stage Stage

—_— e ——

Forward ) Reverse
) Co-Location }
Dominant Model Dominant
Model Model

Figure 2.1: Product Flows Throughout the Lifecycle

In practice, firms rarely optimize their forward and reverse network design decisions
jointly due to evolving product and market needs or limited management attention or re-
sources. It is important to understand how much value is forgone by not integrating forward
and reverse logistics decision making and the conditions under which integration is critical.
We measure the value of integrated forward and reverse network design by comparing the
total facility and transportation costs of the integrated model to one in which forward and
reverse facility decisions are made sequentially over time. We also investigate how much
the forward and reverse network configurations change under integrated decision making.
We introduce a new network similarity measure which can be used to assess the degree of
similarity between any two location plans, providing a quantitative method of comparing
solutions not previously found in location analysis literature.

We propose three models that extend the uncapacitated fixed charge location problem
to simultaneously locate forward and reverse distribution centers within the frameworks

described above, and assign forward and reverse flow between customers and facilities. These
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three models enable us to study the value and impact of integrated network design throughout
the product lifecycle. The models are formulated as mixed integer linear programs and are
solved using a specialized Lagrangian relaxation heuristic.

The remainder of this chapter is organized as follows. In Section 2.2 we review some of the
current literature on closed loop supply chain management, specifically focusing on papers
that integrate forward and reverse logistics design. The uncapacitated fixed charge location
problem is extended in Section 2.3 to incorporate the costs of integrating product recovery
operations into a traditional distribution network. We provide formulations and solution
algorithms for three variations of the integrated distribution network design problem. A
network similarity metric is developed in Section 2.4. Computational results and algorithm
performance are presented in Section 2.5. Conclusions and directions for future research

comprise Section 2.6.

2.2 Literature Review

A considerable amount of empirical work in the realm of reverse logistics and closed loop
supply chains has been performed in the last ten years. The bulk of this work, in the
form of surveys and case studies, has motivated the advancement of this particular field of
research and has proven helpful in quantifying the cost savings opportunities to be realized
by optimizing closed loop supply chain processes. This work has been valuable in both
defining models for future study and framing the quantitative work that follows.

Rogers and Tibben-Lembke (1999) conducted a survey of manufacturers, wholesalers,
retailers, and service providers to elicit information regarding returns policies, reverse lo-
gistics activities, and operational challenges. Their work is purely descriptive but is useful
in identifying opportunities for future study. Fleischmann et al. (2000) review a number

of case studies that detail product recovery network design in various industries. They
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categorize common activities used in product recovery and remanufacturing processes and
contrast these activities with those found in other logistics networks. Krumwiede and Chwen
(2002) conduct a field study to examine the various operational and organizational struc-
tures required for a company to incorporate reverse logistics practices effectively into their
core business and present a decision model to aid companies when considering outsourcing
their reverse logistics activities. Finally, De Brito (2003) reviews reverse logistics research to
date and outlines a framework for decision making in a returns environment. She reviews a
number of case studies and considers returns handling and inventory management issues in
depth.

The current modeling literature on closed-loop supply chain management includes topics
such as: remanufacturing processes and product design, reverse logistics and remanufacturing
networks, remanufacturing production control, inventory control, coordination in reverse
supply chains, time value of returns, and marketing issues for remanufactured products.
Within this stream of literature, reverse logistics typically deals with three major areas:
network design, product design for reuse and recycling, and product recovery strategies
and inbound planning. Network design encompasses decisions about how products should
be collected and who should collect them (Savaskan and Corbett, 2002; Savaskan, Debo,
and Van Wassenhove, 2003; Savaskan, Bhattacharya, and Van Wassenhove, 2004; Savaskan,
2006), where the collection sites should be located (Fleischmann et al., 2001), and whether
the collection facilities should be stand-alone operations or should be integrated with existing
forward supply chain facilities (Marin and Pelegrin, 1998). Product design deals with the
choice of the materials to be used in products, the ease of disassembly of the parts, and part
commonality which increases the potential for reuse. Finally, product recovery strategies
and inbound planning refers to decisions about whether to reuse, remanufacture, refurbish

or recycle the recovered products (Savaskan and Aytekin, 2005). Inventory and capacity
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management clearly affect and are affected by product recovery decisions.

Much of the network design research in reverse logistics has focused on the location
of manufacturing and remanufacturing sites. Bloemhof-Ruwaard et al. (1996) consider a
problem in which plants are located to manufacture products to supply given customer
demands, and disposal facilities are located to collect waste that is generated during the
manufacturing process. Spengler et al. (1997) formulate a multi-staged, multi-product
capacitated problem in which processing facilities are located and flows between product
sources and recycling facilities are determined. Krikke (1998) proposes a mixed integer linear
program to determine optimal facility and processing locations for products to be collected,
reprocessed, and sold in a secondary market. Barros et al. (1998) develop a model to
minimize total fixed, transportation, and processing costs of locating separate collection and
treatment facilities for given waste supply and processed demand quantities and locations.
Marin and Pelegrin (1998) propose the Return Plant Location problem in which facilities
that process both forward and return flows are located to minimize the total fixed and
transportation costs of supplying primary products from a distribution center to customers
and returning some proportion of those products back to the DC. Note that all facilities
in their model serve both forward and reverse flows. Jayaraman et al. (1999) develop a
closed-loop model to determine optimal distribution and remanufacturing facility locations
as well as production, stocking, and shipment quantities for used core components and
remanufactured products. Fleischmann et al. (2001) introduce a general recovery network
design model in which manufacturing plants, forward distribution centers, and separate
product collection centers are located to minimize the total fixed location and transportation
costs of the system. Jayaraman et al. (2003) propose a reverse logistics model that does not
consider forward distribution activities when locating capacitated collection and refurbishing

facilities to process used products. Beamon and Fernandes (2004) consider the tradeoff
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between capacity investment costs and recurring operational costs in a closed-loop supply
chain in which collection centers and warehouses are located to accept returned products
and remanufacture them for resale. Finally, Fleischman et al. (2004) present a review of
papers that specifically consider reverse logistics costs in both deterministic and stochastic
demand-based facility location models.

Most, if not all, of the models outlined above have been solved using general purpose
optimization solvers such as CPLEX or GAMS. This has tended to limit the size of the
problems that can be attacked. By way of contrast, our models can readily be solved using
Lagrangian relaxation for instances several times the size of the largest problems reported
on earlier. (It is important to note that some of these models include capacity and other
complicating constraints which we do not consider and that these may also limit the size
of problems that can be studied.) Therefore, our interest is in understanding how facility
location models and solution methods change when reverse flows are introduced. This chap-
ter contributes to the existing literature by introducing 3 generic models that consider the
impact of integrating forward and reverse network design decisions through the location of

bidirectional distribution centers.

2.3 Bidirectional Facility Location Models

In this section, we formulate three extensions to the classical uncapacitated fixed charge
location problem (Balinski, 1965) that integrate forward and reverse distribution activities
through the location of bidirectional distribution centers in addition to dedicated unidirec-
tional facilities. Numerous empirical studies have shown that most distribution networks
are designed with a specific product flow direction, namely forward distribution, in mind
(Rogers and Tibben-Lembke, 1999). This emphasis on single direction distribution makes

it challenging to effectively combine separate forward and reverse distribution networks into
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one integrated bidirectional flow network. We consider two methods to accomplish this goal:
(1) using financial incentives to induce the location of bidirectional facilities, and (2) impos-
ing constraints that require one type of network to fit within the other. The first method
is used to formulate the Co-Location (CL) model while the second is used to formulate
the Forward Dominant (FD) and Reverse Dominant (RD) models described in Section 2.2.
The CL model locates bidirectional facilities in addition to stand alone forward and reverse
facilities. The FD model allows only bidirectional and stand alone forward facilities while
the RD model allows only bidirectional and stand alone reverse facilities. Figure 2.2 below

illustrates sample network configurations for these three models:

L °
f 4 1 .
Vs :: F R .’ F "s. R
F o e / R \ ® Demand node
l l o ° .
¢ i F Forward Facility
Forward Dominant Reverse Dominant
Model Model R Reverse Facility
° o L
4 / F. Bidirectional
' R" Facilit
F Py F= ° R acility
l v \ — Forward flow
L] ) Reverse flow
Co-Location Model

Figure 2.2: Sample Network Configurations for FD, RD, and CL Models

2.3.1 The Co-Location Model

We consider the problem of jointly locating forward and reverse facilities. We assume that
the forward demand at some node i is given by h; and that the unit cost of (forward) shipping

from some candidate site j to that demand node is given by c;;. The fixed facility cost of
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locating a forward distribution center at candidate site j is given by f;. We further assume
that the return rate is given by «;, so the number of returns per unit time at demand node
1 is given by «;h,. Similarly, we assume that the unit cost of shipping a return item is given
by 7ijcij, where 7;; can be any value greater than 0. In particular, we do not assume that
the unit cost of return shipping is either greater than (y;j > 1) or less than (v;j < 1) the
forward unit shipping cost. We assume that the fixed facility cost for a reverse site is given
by 8;f;. Finally, if a forward and a reverse facility are co-located then there is a fixed cost
savings of s;, where s; < min{f;, 5;f;}.

The objective of this problem is to identify the locations of forward, reverse, and co-
located facilities as well as the assignment of forward and reverse demands to those facilities.
(See Figure 2.2 for a sample configuration of a co-location network.) To formulate this

problem as a linear program, we define the following decision variables:

1 if a forward distribution center is located at site 7,

X = <
0 if not
)
R 1 if a reverse distribution center is located at site j,
=
J
0 if not

1 if both a forward and reverse distribution center is located at site 7,

0 if not

\

YT = fraction of forward demand at node i that is served by a distribution center
at site 5

Y:® = fraction of returns at node i that is served by a distribution center at site j
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With this notation, we can formulate the Co-Location (CL) model as follows:

Minimize Z FiX]+ Z Z hici;Yi; + Zﬁjij]R +

jeJ el jed jeJ
ZZaihicin;f — ZSJCXJC (2.1)
i€l jeJ jeJ
Subject to ZY;f =1, Viel (2.2)
Y vE=1vViel (2.3)
Y <XI' VielvjeJ (2.4)
YE<XF VielVjeld (2.5)
X[ ={0,1}, VjeJ (2.6)
XF={0,1}, VjeJ (2.7)
X7 ={0,1}, VjeJ (2.8)
Vi >0, VielVNjeJ (2.9)
YE>0,VielVjelJ (2.10)
X[ >X7, Vjed (2.11)
Xf>X7, vield (2.12)

The objective function 2.1 minimizes the sum of the fixed forward and reverse facility
costs, the forward and reverse transportation costs, and the savings associated with co-
location of forward and reverse facilities. Constraints (2.2) and (2.3) require that all forward
and reverse demand nodes be assigned to a facility. Constraints (2.4) and (2.5) ensure that a
demand node is not assigned to a facility that has not been opened. Constraints (2.6), (2.7),
and (2.8), are the necessary binary constraints for locating facilities while constraints (2.9)
and (2.10) are standard non-negativity constraints. Constraints (2.11) and (2.12) link the

forward and reverse subproblems by allowing the savings for co-location to be realized only if
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a site has both a forward and a reverse facility. Note that in the absence of constraints (2.11)
and (2.12) and the co-location variables, X ]C , the model decomposes into two uncapacitated

fixed charge problems: one for forward sites and one for reverse sites.

2.3.2 Lagrangian Relaxation Solution Algorithm For The

Co-Location Model

The Co-Location model can be solved using a standard IP solver such as CPLEX, but
the solution times are excessive and hence limit the size and number of problems that can
be solved. To address this problem, we develop a Lagrangian relaxation based algorithm
to effectively and quickly solve this problem. We relax the assignment constraints (2.2)

and (2.2) to obtain the following Lagrangian formulation:

e ] + S e+ 0 (1- 2

icl jeJ iel jeJ

DITEES S) WARHTES oIl (B 9K
je€J i€l jeJ el jed

_ Z SfXJC (2.13)
j€J

Subject to Constraints (2.2) — (2.12) above

In addition, we add the following two constraints:

Y xf>1 (2.14)

jeT

Y xf>1 (2.15)

jeT

These constraints require that the model locate at least one facility in each direction
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(forward and reverse). Observe that constraints (2.2) - (2.5) in the original CL formulation
implicitly enforce these constraints, but the relaxation of constraints (2.2) and (2.3) in the
Lagrangian formulation allows a solution that does not locate any facilities which is clearly
undesirable.

The objective function can be rewritten as:

Minimize Z ijf + Z Ai + Z Z (hicij — ) Y;f

jeJ iel iel jeJ

+ Z BifiX[ ++ Z M + Z Z (Qihicij — 1) Vi
jeJ iel i€l jeJ

- sfx? (2.16)
jeJ

(Note that A and p are the Lagrange variables that correspond to the relaxed forward
assignment and reverse assignment constraints, respectively.)

Observe that in the absence of constraints (2.11) and (2.12) the problem decomposes
into separable forward and reverse subproblems. We incorporate this constraint into the
procedure for solving the problem for fixed A and p values using the algorithm described in

Figure 2.3

Lower Bound

For given values of the Lagrange multipliers, A and u, the formulation above can be easily

solved using the following algorithm:

1. Initialize all decision variables X[, X*, V;I', v

i+ Y equal to 0

2. Calculate the “value” of locating a distribution center in each direction for all candidate
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Lagrangian Relaxation Algorithm:

Initialize Lagrange multipliers

While (termination criteria not met)

{
Increment iteration counter
Calculate lower bound solution
Calculate upper bound solution
Check optimality gap
Calculate step size
Update Lagrange multipliers

}

Figure 2.3: Lagrangian Relaxation Algorithm

sites. The value functions are:

el
V;-R = Zmln{O, aihicij - ,LLZ} (218)
el

3. Repeat for all candidate sites j:

(a) If (V;F + f; < 0), set X]F =1

(b) If (Vi + B;f; < 0), set Xj* =1
(Note that this step is executed whether or not a foward site is located in step
3a)

(c) I (V" + f; + V[ + B;f; - 5§ < 0) (it is advantageouse to locate a joint facility)
or, If (V' + f; + V[ + B f; - s§ < V* + B;f; ) (ajoint facility is more beneficial
than a stand-alone reverse facility)

or, If (V' + f; + VI + B;f; - s <V} + f; ) (a joint facility is more beneficial
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than a stand-alone forward facility)

Then set XF XR Xc—l

4. At least one forward and one reverse distribution center must be located in each iter-

ation

(a) If there are no open forward facilities and no open reverse facilities, then calculate:

i.

ii.

iil.

m = argmin,cs (V;F + f;) and 8 = VI’ + f,, (this corresponds to locating a
forward facility as a standalone facility)

n = argminje; (V¥ + 6;f;) and ¢ = V. + 3, f,, (this corresponds to locating
a reverse facility as a standalone facility)

p = argminjey (V" + f; + VF + Bif; - s§) and w = V" + f; + V7 +
Bif; - s (this corresponds to locating both a forward and a reverse site at a

location)

Ifw <60+ ¢, then set X" = XF = X0 =1.

Else set X =1 and X = 1.

(b) If there is at least one open forward facility, but no open reverse facilities, then

let F be the set of all open forward facilities and calculate:

ii.

iil.

= argminjep (VF + B;f; - s§) and 0 = V,E + By frm - 5, (this corresponds
to locating a reverse facility at a site that already has a forward facility)
n = argminjenr (V;® + B;f;) and ¢ = V,F + B, f, this corresponds to
locating a stand alone reverse facility at a site that does not have a forward
facility)
p = argminje; (V" + f; + VF + Bif; - s¥) and w = VI + f; + VT +
Bifj - s]C (this corresponds to locating both a forward and a reverse site at a

location that does not have a forward facility)
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If w <0 and +w < ¢, then set X' = X = X7 = 1.
Else if w < ¢, set XF = XS =1, else set XF = 1.

(c) If there is at least one open reverse facility but no open forward facilities, then
locate a forward site using a procedure identical to that of step 4b with the forward

and reverse indices exchanged.

5. Determine the assignment of demand nodes to open distribution centers:
(a) If X =1 and (hicij - A < 0), set Y;§' = 1. Else, set Vi = 0.
(b) If X]R =1 and (ozih,-’yijcij - o < 0), set Y;? =1. Else, set Y;? =0.

(c) Repeat steps ba and 5b for all (i,j) pairs

Using the values of the decision variables obtained through this algorithm, we calculate

the lower bound using the objective function of the lagrangian relaxation objective (2.13)

Upper Bound

The upper bound is calculated at each iteration using the following algorithm:

1. All location variables X jF and X JR retain the same status as determined in the lower

bound algorithm

2. All demand nodes are assigned to the single closest open facility in both the forward

and the reverse directions.

Using the values of the decision variables obtained through this algorithm, we calculate

the upper bound using objective function (2.1)
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Lagrange Multiplier Initialization and Updating

The Lagrange multipliers A and p are initialized to the following values at iteration 0:

10 * (ZjeJ fi+ hy)

A0 2.1
’u;o) _ 10 % (Ejeniffj + a;h;) (2.20)

These particular initialization formulae perform well in practice, but others may also be
used.

The Lagrange multipliers A and p are updated at each iteration using standard subgra-
dient optimization (Fisher, 1981 and Fisher, 1985) with the search direction modified as

proposed by Crowder (1976). The following formulae are used at each iteration:

)\Z("H) = max{0, A§”) + stepsize(”)directionfommd(i)(")} (2.21)
ME"H) = max{0, ,ugn) + stepsize™ direction, eyerse (1) ™ } (2.22)

where the superscript (n + 1) indicates that this update is for the (n + 1) iteration.

Iteration Step Size Calculation

To calculate the step size at iteration n, we first define a direction for each node 7 € I:

directionfwward(i)(") = (1 — Z Y;f) +C % directz’onfwward(i)("’l) (2.23)
jeJ

directionreveme(i)(”) = (1 - Z Yf) + C % directionreverse(i)("_l) (2.24)
jeT

where direction forwaerd(i)® = direction,eperse(i)® = 0 Vi and C is a Crowder damping con-

stant (Crowder, 1976). Typically we set C = 0.3.
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The step size is calculated at each iteration n using the following formula:

* . Z(")
bestupperbound lowerbound (2 25)

tepsize™ = §
Slepsize 3 e L (ITeCtion foruara(d) ™) + (direction, eperse (1)™)?}

where 0 is initialized to 2.0 and is halved if there are k (typically £ = 12) consecutive iterations
in which the lower bound does not increase, and Zj, ., perbouna 18 the lowest upperbound

calculated in iterations 1 through n.

Termination Criteria

The Lagrangian relaxation algorithm utilizes three termination criteria:

e Mazimum Iteration Count the procedure is stopped once 10,000 iterations have been

performed

e Step Size Multiplier the procedure is stopped if the step size multiplier ¢ is less than a

defined epsilon (typically when § < 0.0001)

e Optimality Gap the procedure is stopped if the optimality gap between the lower and

upper bounds is less than a defined tolerance (typically when gap < 0.01

2.3.3 The Forward Dominant Model

In the forward dominant model, the set of reverse distribution centers (product collection
centers) is restricted to be a subset of the forward distribution centers. (See Figure 2.2 for
a sample configuration of a forward dominant network.) For this model, replace objective

function 2.1 with the following objective function:

Minimize > fiX[ + ) 0> hici Vil + ) Bifi X+ Y cihici Vi (2.26)

jeJ icl jed jeJ icl jed
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Thereby eliminating the term related to co-location cost savings. We also remove con-
straints (2.8), (2.11), and (2.12) and impose the following constraint to ensure that reverse

facilities are only located at sites that have an open forward facility:
F R -
X; > X Vjed (2.27)

The forward dominant model is applicable to products in the early part of their lifecycle
when few returns are likely and therefore a firm requires that reverse facilities will be co-
located with forward facilities. This model can also be solved using Lagrangian relaxation

using a straightforward modification of the algorithm outlined for the co-location model.

2.3.4 The Reverse Dominant Model

The reverse dominant model considers the case in which the set of forward distribution cen-
ters is a subset of the product collection facilities. Reverse dominant models are prevalent
in recycling networks where there is a large number of collection sites and a few centralized
processing facilities. (See Figure 2.2 for a sample configuration of a reverse dominant net-
work.) The reverse dominant model is identical to the forward dominant model except that
the sense of inequality (2.27) is reversed, thereby ensuring that forward facilities are located

only at sites that house a reverse facility:
F R -
X; < X; Vield (2.28)

Such a model is applicable to products nearing the end of their useful life, when the
number of returns is likely to be on the same order of magnitude, or even greater than, the
number of primary sales (forward flow) of the product. This too can readily be solved using

Lagrangian relaxation.
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2.4 Network Similarity Metric

In addition to considering the financial impact of integrating forward distribution and reverse
collection activities within a supply chain, it is also important to measure the extent to
which the integrated and sequential (or independent) facility siting plans differ from one
another. The current literature simply counts the number of different facility sites and
reports this value as a measure of the difference between two location plans. Such a measure
can be misleading. Consider three different location plans, each using four facilities on the

contiguous 48 states. These plans are identified in Table 2.2 and Figure 2.4 below.

Plan 1 Plan 2 Plan 3
Chicago, IL Chicago, IL Milwaukee, WI
New York, NY |New York, NY |Allentown, PA
Houston, TX Houston, TX Pasadena, TX
Los Angeles, CA |Jacksonville, FL |Burbank, CA

Table 2.2: 3 Example Facility Location Plans

Figure 2.4: 3 Example Facility Location Plans
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Plans 1 and 2 share 3 sites in common and differ by only one facility location. However,
this single facility has been moved from Los Angeles, CA on the west coast of the U.S. to
Jacksonville, FL, on the east coast, some 2153 miles from Los Angeles. A visual examination
of the two plans reveals a striking difference. Plans 1 and 3 share no sites in common.
However, Milwaukee is only 86 miles from Chicago, Allentown is 81 miles from New York,
Pasadena is a mere 16 miles from Houston, and Burbank is only 7 miles from Los Angeles.
The total of these four distances is only 190 miles, or less than 10 percent of the distance
between Jacksonville and Los Angeles. Visual inspection of plans 1 and 3 indicates that they
are indeed quite similar and one could argue that they are in fact more similar than plans 1
and 2.

We introduce a new metric to quantify the differences between any two location plans
by capturing the total distance between them. The network similarity measure between two
solutions m and n, with known locations X,;,, and X,, respectively, is given by the optimal

value of the objective function of the following optimization problem:

Minimize » ) ¢V (2.29)

1€EXm j€EXn

Subject to Y ¥;; > 1,Vj € X, (2.30)
1€EXm
Y Vi > 1,Vi€ X (2.31)
J€Xn
Yii>0,Vie X, VjeX, (2.32)

In this model Yj; is an assignment variable that assigns a facility in X, to a facility in
X, and ¢;; is the cost of this assignment - which we take as the distance between the two
facilities. The problem assigns every facility in solution m to a facility in solution n in such
a way that the total assigned distance is minimized. In the event that |X,,| # |X,| , the

model allows multiple facilities in the solution with more locations to be assigned to a single
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facility in the solution with fewer sites. This is a variant on a simple transportation problem.
It is clear that it has an all-integer solution. We solve it using an out-of-kilter flow algorithm
(Ahuja et al., 1993).

Since the magnitude of the similarity measure defined above is data set dependent, we
report results using a network similarity ratio that standardizes the network impact across
data sets. The similarity ratio is the total similarity measure defined above (total distance
between all locations) divided by the maximum distance between any two locations in the
data set. A similarity ratio of > 0.5 indicates a fair amount of dissimilarity between the
two sets being compared, while a similarity ratio < 0.1 indicates that the two sets are fairly

similar.

2.5 Computational Results

An extensive computational study was conducted to analyze the effects of key parameters
on both the value and impact of integrated bidirectional network design. The results of this

study are summarized below.

2.5.1 Numerical Experiments

The solution algorithms were coded in C and run on a Pentium 2.0 GHz PC.

Obtaining Integrated and Sequential Solutions

We solve the models as they appear above to obtain an integrated solution. To obtain a
sequential solution for the forward dominant model we first solve an uncapacitated fixed
charge problem (UFC) for forward distribution. Next we solve an independent UFC for

reverse collection while restricting the candidate reverse facility sites to be the sites located
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in the forward UFC solution. A sequential solution for the reverse dominant formulation
is obtained similarly. The integrated solution for the co-location model is contrasted with
an independent solution formed by combining the solutions of two independent forward and
reverse UFC instances. If the combined independent solution has a co-located facility at site

k, the co-location incentive value, s¢ , is subtracted from the objective function.

Data Sets

The models were tested on two relatively large data sets. The first data set contains 150
demand and candidate facility site locations and is based on the 150 largest cities in Europe.
The second data set contains 263 demand and candidate facility site locations and is based
on the 263 largest cities in the contiguous 48 US states. Demand data for these locations is

proportional to population. The distribution of demand points is shown below in Figure 2.5.

150 node European dataset 263 Node US Dataset

Figure 2.5: Data Sets

Experimental Design

An experiment on return rate («), reverse fixed cost ratio (3), and reverse transportation

ratio () was performed for all three models using the two datasets. Observe that the
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forward dominant model is appropriate for systems in which return rate a < 1 while the
reverse dominant model is appropriate for systems in which the return rate is relatively high,
so the experiments for these two models were conducted using the appropriate return rate
values.

Table 2.3 gives the specific values that were tested for each parameter. Each value of
a specific parameter was tested for low-low, low-high, high-low, and high-high values of
the other two parameters. For example, a return rate value of & = 0.6 was tested on four
combinations of reverse fixed and transportation cost ratios: (8 = 0.25, v = 0.50), (3 = 0.25,
v = 2.0), (8 =0.75, v = 0.50), and ( = 0.75, v = 2.0). Testing these combinations over
both data sets and for both the integrated and the sequential model gives 11,280 problem

instances. The co-location savings factor, s;, was set to s;=0.25*Min(f;, §;f;) in all cases

below.
Model i p Y Summary
: 0<ash (<ps2 0<y<h

V- Licatun increments of 0.05 | increments of 0.05 | increments of 0.05 allnes
Forward B fcfe? 0<y<h 3640 s

Dominant | increments of 0.01 | increments of 0.05 | increments of 0.05
Reverse 075sash 0sps? 0<y<h 3600 runs

Dominant | increments of 0.05 | increments of 0.05 | increments of 0.05

Table 2.3: Experimental Design

Performance Metrics

Two performance metrics, (i) the value of integration and (ii) the network impact of in-
tegration, were used to evaluate the differences between integrated and sequential design

decisions. The network similarity value is calculated as described in Section 2.4. A value of
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integration is calculated for the total objective cost impact of integrated decision making.

This metric captures the total cost penalty of locating facilities sequentially versus locating

facilities in an integrated framework. The value of integration (or sequential penalty) is

calculated as:

Value = Sequential Penalty =

*

*

sequential ~ “integrated
*
Z integrated

(2.33)

where Z% . entiar @04 2710 0rateq are the optimal total costs of sequentially locating facilities

Se

and locating facilities under the integrated formulation, respectively. Table 2.4 shows the

average and maximum value of integration and resulting network impact for the three models.

Nodl S Value of Integration | Forward Similarity ratio | Reverse Similarity ratio
ode ata Se
Average | Maximum | Average | Maximum | Average | Maximum
o 180 nodes 0.60% 2.48% 0.00 0.00 0.00 0.04
o - Location
263 nodes 1.41% 1.87% 0.02 0.15 0.13 0.67
Forward 180 nodes 2.42% 30.07% 0.27 142 0.27 142
Dominant | 263nodes | 6.02% | 2859% | 0.1 1.20 0.21 1.20
Reverse 180 nodes 0.08% 4 64% 0.02 047 0.03 047
Dominant | 263podes | 0.10% | 169% 0.06 0.24 0.05 0.33

Table 2.4: Value and Impact of Integration Summary

2.5.2 Sensitivity Analysis Results

Co-Location Model Analysis

Our analysis indicates that the reverse fixed cost ratio () has the most impact of the three

parameters («, (3, ) on the value of integration in the CL model. The value of integration

increases slightly with increasing [ values for all a-vy combinations. In the extreme case,
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the value of integration is approximately 3.5%. Results of our analysis also show that the
integrated and independent solution methods produce highly similar forward distribution

networks but moderately dissimilar collection networks for all parameter values.

Forward Dominant Model Analysis

Results of our experiments show that the reverse transportation cost ratio (7y) is the critical
cost factor in the design of forward dominant distribution systems. The value of integration
increases significantly with increasing v values for all -8 combinations, up to 30% for
very high reverse transportation costs. Our analysis also shows that the integrated and
sequential formulations produce highly dissimilar networks when all three parameter values
are relatively high (a > 0.6, § > 0.6, v > 2.0), resulting in similarity ratios close to 1.0
for both the forward and reverse networks. When these values are low to moderate (o <
0.4, 8 < 0.4, v < 0.5), our results show that reverse collection networks can be efficiently

incorporated into existing forward distribution networks.

Reverse Dominant Model Analysis

Analysis of the RD experiments shows that the value of integration is minimal with respect
to all a-f-y parameter values and is consistently less than 2% across our entire study. We
also see that the integrated and sequential networks are consistently similar for all parameter

values tested.

2.5.3 Algorithm Performance

Throughout the experiments, the Lagrangian solution algorithm proved to be both quick and
effective. Table 2.5 below shows the speed of this algorithm with average solution times under

1 second for the smaller data set and under 5 seconds for the larger data set with no instance
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taking longer than 105 seconds. The results in this table also illustrate the effectiveness of

this solution procedure, with average optimality gaps of 0.004% and no instance larger than

0.1%.
Solution Time (sec Optimality Ga
Model Data Set [ J : bl

Average | Maximum | Average Maximum

; 150 nodes 0.93 £.85 0.01% 0.09%

Co - Location

263 nodes 472 £9.30 0.00% 0.09%

Forward 150 nodes 0.84 16.68 0.01% 0.10%

Dominant 263 nodes 524 104.16 0.00% 0.08%

Reverse 150 nodes 0.G5 255 0.00% 0.07%

Dorninant 263 nodes 6.49 12.05 0.00% 0.05%

Table 2.5: Lagrangian Algorithm Solution Times and Optimality Gaps

In addition to solving these models using the Lagrangian procedure, we used CPLEX to
solve a small number of problem instances (27 instances for each model and data set). Using
default values, CPLEX was able to solve all 162 instances to optimality but took significantly
longer than our solution algorithm. The average CPLEX to Lagrangian solution time ratio
for the 150 node data set is 1064, or roughly 17.7 minutes of CPLEX time for every second
of Lagrangian solution time. The average solution time ratio for the 263 node data set is
2181, or roughly 36.4 minutes of CPLEX time for every second of Lagrangian time. The
worst case ratios are 4955 and 5459 (roughly 1.5 hours of CPLEX time for every second of
Lagrangian solution time) for the 150 and 263 node data sets, respectively. Detailed results
for these runs, including forward and reverse similarity results, are included in Appendix
A in Tables A.1 and A.2. Figure 2.6 below shows the ratio of CPLEX time to Lagrangian

solution time for these problems.
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CPLEX - Lagrangian Solution Time Comparison
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Figure 2.6: CPLEX vs Lagrangian Solution Time Comparison
2.6 Conclusions and Directions for Future Research

In this chapter, we have outlined three extensions of the traditional fixed charge facility
location model that account for both forward and reverse flows of product. The forward
dominant model assumes that each reverse facility will be co-located at a forward site. Such
a model is most applicable to products in the early stages of the product lifecycle when
returns are likely to be a small fraction of the total demand. Our computational study
suggests that, in such cases, integrated network design is critical if excessive costs are to
be avoided as sequential network design can cost up to 30% more than integrated network
design. These two approaches also produce highly dissimilar networks as shown in Table 2.4.
The reverse dominant model assumes that each forward site is co-located at a reverse facility.

This model is most appropriate for products at the tail end of their lifecycle, when return
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rates are likely to be high relative to the product demand. Our study shows that both the
value and impact of integrated network design are minimal for a reverse dominant network
structure. Finally, we presented a model with cost incentives for co-location, but which does
not assume anything about co-location a priori. This model is most appropriate for products
in the middle of their lifecycle. Integrated design is moderately valuable in this case but can
have a significant impact on the network structure.

We outlined a Lagrangian relaxation approach for solving the models. Computational
studies show that the approach is effective (resulting in small optimality gaps) and fast (with
solution times under 2 minutes for problems with 263 nodes). We also presented a new
measure of the similarity between siting plans that captures the distance between facilities
instead of simply counting the number of facilities that differ between the two plans.

At least three directions for future research are suggested by this initial study. First, it
would be interesting to develop a time-integrated model that captures the optimal evolution
of a closed loop logistics network over the entire span of a product’s lifecycle. Second, we
would like to extend the models to encompass multiple products at different stages of their
lifecycles with differing return rates and processing costs. Third, it would be desirable to
make the return rate at each node an endogenous function of the cost of returning the
product or of the distance to the nearest return facility. This would enable us to begin to
capture the impact of network design in particular of the reverse network design on return

rates and possible compliance with mandated return programs.
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Chapter 3

The Effect of Lifetime Buys on

Warranty Repair Operations

Lifetime buys are a common practice in the electronics and telecommunication industries.
Manufacturers often procure their repair parts inventory in one order to support the spare
part needs of a product for the duration of its warranty repair period. Lifetime buy decisions
are driven by product lifecycle dynamics and the nature of manufacturer-supplier relation-
ships. In this chapter we consider a repair operation in which defective items under warranty
are returned to a manufacturer who either repairs these items using its spare parts inventory
or replaces each defective unit with a new product. The manufacturer has a single oppor-
tunity to procure its spare parts inventory from its supplier. The manufacturer must decide
on the number of parts to order and determine if returned products should be repaired using
this inventory, or replaced with new products. We show how fixed repair capability costs,
variable repair costs, inventory holding costs, and replacement costs affect a firm’s optimal
repair and replacement decisions. The model is used to gain insights for products from a

major mobile device manufacturer in the United States.
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3.1 Introduction

Lifetime buys of spare parts are common practice in the electronics and telecommunica-
tion industries but have not yet been studied in the operations management literature. A
lifetime buy is a process by which a manufacturer places a single order for all repair parts
inventory to support its products under warranty. In this chapter, we discuss the optimal
management of the lifetime buy process and its implications for maintaining cost effective
warranty repair operations. Our work is motivated by current operational challenges in the
repair divisions of two major U.S. mobile device (mobile phones, personal digital assistants,
and related products) manufacturers. In this industry, lifetime buy decisions are common
and are typically driven by two primary factors: product lifecycle dynamics and the nature
of manufacturer supplier relationships. We study this problem from the perspective of the
electronics and telecommunications product manufacturers but acknowledge that a myriad
of other factors may drive lifetime buy decisions in other industries.

Recent technological innovations in the electronics and telecommunications industries
have enabled rapid product development, which in turn has led to short lifecycles for these
products. In these industries it is not uncommon for a manufacturer to complete production
of an item even before it is available in retail outlets. Low cost mobile phones and digital
cameras are two examples of manufactured goods for which this is the case. This allows
little time for firms to observe demand and subsequent return rates of defective products
before procuring the repair parts inventory that must support repair operations during the
product’s warranty period. In addition, these products span a broad range of functional-
ity, resulting in little component commonality across multiple product lines and /or multiple
generations of a single product. This provides manufacturers with limited opportunity to
utilize common components to offset the variability in each product’s part needs. A short

planning horizon coupled with a large number of components can make it very difficult for



92

a manufacturer to manage its spare parts inventory and to plan repair operations for these
products. Finally, it is common practice for companies that produce high-end specialty
products with considerably longer lifecycles of ten to twenty years (e.g. government commu-
nication and/or security systems) to procure all parts for manufacturing and repair at once
due to low volumes and high supplier setup costs driven by the specialized nature of these
products.

Lifetime buys of spare parts are also affected by the nature of manufacturer-supplier
relationships in these industries. The overwhelming majority of components in mobile devices
are procured from small Asian suppliers who are either dedicated to a single manufacturer or
accept contracts from multiple firms. Dedicated suppliers are central to firms that implement
just-in-time manufacturing processes. Such suppliers often incur expensive retooling costs
to produce new parts when a manufacturer switches its production to a new product. These
high retooling costs make small batch orders cost prohibitive; as a result, suppliers are
often unwilling to produce items once primary manufacturing needs have ended. Before the
supplier changes its setup, it will often require a lifetime buy on the parts it is currently
producing for the manufacturer. Conversely, non-dedicated suppliers may be unwilling to
accept long-term contracts or unable to honor future contracts due to limited capacity and
competing bids from other firms. In these scenarios, the manufacturer may choose to initiate
a lifetime buy for spare parts.

To be competitive in these industries, firms must offer attractive warranty policies to
consumers, under which defective items are either repaired resulting in “like-new” condition
or replaced by a brand-new product. The role of product warranties from a management
strategy perspective is discussed in Murthy and Blischke (2000). Discussions with repair
managers at mobile device manufacturers reveal that manufacturers spend anywhere from

1% to 5% of their revenues on repairing defective warranty items. With such a significant
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amount of money being spent on warranty repair costs, firms are now focusing on controlling
their spare parts inventory and reevaluating policies that determine if a claim is satisfied via
repair or replacement.

The repair process may be performed by the manufacturer or outsourced to a third
party service provider. In most cases, the repair operation is an expensive practice as the
firm incurs the cost of maintaining testing equipment, technician training and knowledge
management, and all of the costs associated with managing the repair parts inventory. The
other option available to a manufacturer is to replace the defective item with a comparable
(possibly next-generation) product but this is also an expensive practice. The decision of
whether or not to repair or replace a defective item to satisfy a warranty claim is further
complicated by the single parts procurement opportunity of a lifetime buy decision.

This work is motivated by our collaboration with two firms from the electronics and
mobile device industries that currently use lifetime buys to support their warranty repair
operations. One of the firms is a U.S. market leader in converged handheld devices specializ-
ing in personal digital assistants and multi-functional mobile devices with telecommunication
and organizational capabilities. The other firm is a global leader in the telecommunications
industry with expertise in network infrastructure, mobile phones, and wireless communica-
tion capabilities. In this chapter, we develop a general modeling framework to analyze the
impact of key cost drivers for repair parts inventory lifetime buy decisions. We test our
modeling insights using warranty repair data from the motivating firm in Section 3.4.

This chapter contributes to the existing literature on repair operations by considering

the following questions within the lifetime buy context described above:

1. Under what conditions should a returned defective item be repaired or replaced, and

how does this decision change throughout the warranty period?

2. What is the corresponding optimal order quantity for repair parts?
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To answer these questions, we develop a deterministic continuous time model that ex-
amines how fixed repair capability costs, variable repair costs, inventory holding costs, and
replacement costs affect a firm’s optimal repair policy and order quantity for a single repair
type. We show how to calculate the true cost of repair during the planning period, and
identify a unique “switching time” before which the manufacturer should repair returned
items and after which returns should be satisfied with replacement products. We extend this
work to consider repair capacity constraints as well as the impact of having shared facilities
to support multiple product lines.

The rest of this chapter is organized as follows. In Section 3.2 we discuss the contribution
of this chapter to repair parts, warranty costing, and traditional inventory management lit-
eratures. The model is developed and extensions are presented in Section 3.3. In Section 3.4
we discuss the industry case that motivated the study. The modeling framework is verified
using data from current repair operations at this firm. A final discussion including insights

and directions for future research comprises Section 3.5.

3.2 Literature Review

This chapter contributes to three streams of research, each of which we review below. The
first is the repairable inventory literature which is concerned with designing inventory systems
to serve large scale repair operations. The second stream of literature examines warranty
repair operations and focuses on designing product warranty contracts and determining the
cost of these agreements. The third stream of literature is classical inventory management
research.

The repairable inventory literature has a long, rich history that has yet to explicitly con-
sider the impact of lifetime buys. This area of research typically considers internal repair

systems (where the firm repairs items for its own use and not for end consumers) for products
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that have a relatively long life cycle, such as aircraft, military equipment, and mass trans-
portation equipment. Sherbrookes METRIC model (Sherbrooke, 1968), which determines
repair parts inventory levels and their allocation to achieve a minimum service level, was
the first model to deal specifically with repair operations. Many extensions to this semi-
nal model have been considered since then, spanning a variety of applications and solution
techniques. A comprehensive review by Nahmias (Nahmias, 1981) summarizes a number
of studies of repairable inventory systems that consider continuous review, periodic review,
and queuing system-based models. A more recent review (Guide and Srivastava, 1997) out-
lines extensions that have been considered since Nahmias’ paper, including multi-echelon
models. The models developed in this stream of literature focus on determining stocking
quantities at various repair facilities in order to examine the interaction between service level
and total cost. While this research provides valuable insights, these models are best suited
to applications in longer lifecycle products with large repair networks and multiple parts
procurement opportunities. These models are therefore inappropriate for the problem that
we consider which serves very short lifecycle products, a single repair facility, and a single
parts procurement opportunity.

The second relevant literature stream considers new product warranty policies. Within
this stream of literature are a number of approaches for estimating the costs of various
warranty policies. One approach defines a Markov process in which multiple components
can fail, each with its own cost of repair or replacement (Balachandran, Maschmeyer, and
Livingston, 1981). Balcer and Sahin (1986) consider a warranty policy in which failed items
are repaired or replaced at a cost that depends on the age of the product. Another approach
considers both the remaining length of the warranty period and the state of deterioration
of the product in deciding whether to service a failed item by repairing it or replacing

it with a new product. Zuo, Liu, and Murthy (2000) consider multiple states of failure
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and multiple discrete decision periods in showing how to minimize the expected service
cost to the manufacturer based on these two parameters when there are multiple parts
procurement opportunities. Ja et al. (2001) estimate expected warranty costs over the
lifecycle of a complex expensive product when minimal repairs are performed and costs are
age-dependent. A review of product warranty literature including warranty cost analysis and
the implications of warranty policies for marketing and logistics management is provided by
Murthy and Djamaludin (2002). While this literature provides insight into modeling the
repair /replace decision, it does not explicitly consider the impact of lifetime buys, which
significantly changes both the modeling approach and the characterization of the solution.
Classic inventory management literature represents a third stream of research that is
directly related to the models that we develop in Section 3.3. By now (or upon reading
Section 3.3), the reader may have observed some similarities between our model and other
well-known inventory problems such as the economic order quantity (EOQ) model (Harris,
1913) and the newsvendor model (Wadsworth, 1959). As in to the original EOQ model
proposed by Harris, the inventory problem we model considers fixed costs and inventory
holding costs incurred over time when determining an optimal order quantity. However, the
EOQ model assumes an infinite horizon, constant demand rate, and fixed ordering costs. In
contrast, our model assumes a finite horizon while allowing a variable demand rate. Like the
newsvendor model, our problem considers the impact of a single procurement opportunity
and the penalty associated with not having sufficient inventory to perform repairs. Among
the differences between the original newsvendor model and our problem are the fixed cost
and inventory holding costs incurred over time as well as demand uncertainty. As one
of the oldest streams of literature in operations management research, classic inventory
management models such as the EOQ and newsvendor problems have been extended to

consider a myriad of additional factors. The purpose of this section is not to review these
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contributions, but to acknowledge the insight provided by this work and claim that the
lifetime buy model presented in Section 3.3 effectively blends the considerations of these two
seminal inventory models. The reader is referred to a recent review by Petruzzi and Dada
(1999) for extensions of the newsvendor problem. A more comprehensive review of classic

inventory management problems is provided by Porteus (1990, 2002).

3.3 Deterministic Models For Repair Inventory
Lifetime Buys

In this section, we develop deterministic continuous time models to investigate a manufac-
turer’s optimal lifetime buy decision for a single product, as well as the firm’s decision to
repair or replace a returned defective item. The basic model we develop in Section 3.3.1
considers the problem of determining the optimal repair period and lifetime buy decision
for a single product with uncapacitated repair facilities. This is the simplest form of this
model available. In Section 3.3.2, we extend this model to consider the effects of capacity
constraints on the repair operation. Finally, in Section 3.3.3 we consider two products with
shared repair facilities and discuss how the decision for each product is complicated by the
shared resources. Proofs and derivations for Sections 3.3.2 and 3.3.3 are presented in the
appendices.

All models developed below make the following assumptions:

1. Defective products arrive to a service center over a known time period [0,T]; The return
arrival rate is a known, positive, bounded function of time which is twice differentiable

over the planning period.

2. Each returned item is either repaired using the available parts inventory or replaced

with a comparable new product.
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3. All inventory required to support the repair operation is purchased at the beginning of
the planning horizon. For simplicity, we assume a 1 to 1 relationship between returns

and repair parts required to service the return.

4. Returns are repaired at the beginning of the planning period.

We begin by identifying key cost components of the manufacturer’s problem. We catego-
rize these as fixed costs, variable repair costs, inventory holding costs, and replacement costs.
Fized costs are incurred (daily) for the duration of time during which repairs are performed
regardless of the number of items repaired during that time period. These costs include
facility, employee salary, testing equipment, and overhead costs. Variable repair costs are
incurred for each item that is repaired. This category includes the unit procurement cost of
spare parts as well as the additional cost of cosmetic refurbishing performed to ensure that
the repaired items quality is as good as a new unit. Inventory holding costs are incurred over
the repair planning horizon and represent the carrying cost of repair parts during this time.
Replacement costs are incurred for each returned item that is replaced with a comparable
new product (not repaired). In the cases we consider, replacement products are provided
from the manufacturer’s current product portfolio on a per-unit cost basis. Note that due to
Just in time manufacturing in these industries, replacement products incur negligible holding

costs at repair facilities.
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The following notation is used throughout this chapter:

INPUTS

A(t) return arrival rate at time ¢
T length of the planning horizon

F fixed cost per unit time of having repair capability

v variable cost per item repaired
h repair parts inventory holding cost per item per unit time
r unit cost of replacement with a comparable product

DECISION VARIABLES
Q repair parts order quantity

T end of the repair horizon

Qualitatively, we can see the difference in relevant costs between small and large values
of 7 as shown below in Figure 3.1. Intuitively, a small value of 7 is favored over a larger
7 when holding costs (h), variable repair costs (v), and fixed costs (F) are high relative to
replacement costs (r). Note that for simplicity’s sake, in Figure 3.1, we assume a constant

rate of inventory depletion (constant return arrival rate).

3.3.1 The Uncapacitated Single Product Model

The deterministic uncapacitated single repair model is the simplest formulation that we
develop and provides a foundation for the extensions that follow. When there are no capacity
constraints, the repair and replacement horizons are disjoint. This observation gives rise to
the concept of a switching time - the time before which returns are repaired and after
which they are replaced. In this case, the repair horizon is given by [0, 7*] while the
replacement horizon is given by (7%, T|. This observation follows from a simple marginal

analysis argument. Consider scenarios A and B in Figure 3.2. Scenario A shows a repair-
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Figure 3.1: Tradeoffs Between Small And Large Values Of 7

replace-repair-replace sample path while scenario B shows a repair-repair-replace-replace
sample path. The total number of repaired and replaced items is the same in both scenarios,
therefore the total variable and replacement cost incurred in either scenario is equal. Both
scenarios model repairs beginning at time 0, but the last repair performed in scenario A
occurs at a later time than in scenario B. Therefore the total fixed cost incurred in A is
larger than in B. Scenario A requires the manufacturer to hold repair parts inventory for a
longer period of time than in scenario B, so the total holding cost in scenario A is greater
than in B. The total cost of scenario B is less than the total cost of scenario A, and we
see that once the system begins repairing items it will continue to do so as long as there is
inventory available. From this argument, we see that the repair and replacement periods are
disjoint. Note that a more conservative approach would argue that the fixed cost in scenario
A would not be incurred during the first replacement interval and that in fact the fixed cost
is the same for both scenarios. If this approach is taken, the total cost for scenario A remains
greater than scenario B due to the larger holding cost and the result still holds.

With the repair and replacement horizons defined above, we have the following relation-
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Figure 3.2: Sample Repair and Replacement Scenarios

ship between Q and 7:

T d
Q(r) = / Adt e An =2 (3.1)
0 dr
Note that for notational simplicity, we refer to Q(7) throughout the text as @ but remind
the reader that () is a function of 7.
With this relationship and the notation defined above, we can write expressions for the

relevant costs up to time T for a given switching time 7:

Fixed Cost =Fr increasing in T (3.2)
Variable Repair Cost =0 / A(t)dt increasing in T (3.3)
0
T y
Inventory Holding Cost =h / [Q — / /\(t)dt} dy increasing in T (3.4)
0 0
T
Replacement Cost =r / A(t)dt decreasing in 7 (3.5)

Summing these individual cost components, we formulate the manufacturer’s optimization
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problem as follows:
T T
min  Fr+0Q +hQr — h / A@)dt + / M)t (3.6)
T 0 T

where A(t) = fot Au)du. We observe that the objective function in the unconstrained opti-

mization problem defined by equation (3.6) is continuous and differentiable. The first order
optimality condition is given by:

dTC(7)
dr

=F +o\T1)+htA(T) —rA(T) =0 (3.7)

Rearranging this equation, a first order critical point is described by:

T*:%<T—U—A£*)> (3.8)

For a general return rate there may be multiple points that satisfy the first order condi-
tion (3.8). If the total cost function (3.6) is non-convex, there may exist multiple local
minima. A first order critical point that satisfies the following second order necessary con-
dition is a local minimum:

d*TC (1)

dr?

=o)X (1) + htN(7) + hA(T) — rN(7) > 0 (3.9)

This condition can be rewritten as:

N(T)(r —v—hT)

A(T) > & M) > V(1) [T v T} (3.10)
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Substituting 7* from (3.8), we obtain the following condition for local minima:

X(r) > %X(T*) (3.11)

To obtain the global least cost solution, the total cost is evaluated at each local minimum

as well the end points of the planning horizon (e.g., 7 = 0 and 7 = T).

Confirming our intuition, result (3.8) shows that the optimal switching time, 7*, decreases
as the unit inventory holding cost, fixed cost and variable cost increase. Conversely, 7*
increases as the cost of replacement and the arrival rate increase. By rearranging (3.8), we
observe that at the optimal switching time, 7%, the marginal cost of the last repaired unit is

equal to the (marginal) cost of replacement:

F
-0+ hrt = 12
A7) v =T (3.12)

Thus the marginal cost of repair at time 7* is the total sum of (i) the fixed cost of having
repair capabilities at time 7* divided by the number of repairs performed at that time, (ii)
the variable cost of repair, and (iii) the cost of holding the last repair part in inventory for

* is then defined as the time at which this marginal cost of

a length of time equal to 7*. 7
repair is exactly equal to the unit replacement cost.
By rearranging the second order condition given by (3.9), we get the following condition

which ensures the convexity of the total cost function:

r— :t —v ” /;\I((:)) (3.13)

If the return arrival rate A(¢) satisfies condition (3.13) for all values t € [0,T], then the total

cost function (3.6) is convex. Therefore, if there exists a 7* that satisfies the first order
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condition (3.8) in the interval [0,T], then it is a global minimizer. If no such 7* exists in
[0,T], then the minimum cost switching time is at one of the endpoints (e.g., 7* = 0 or 7* =
T).

Note that we have assumed that repairs occur during the interval [0, 7*] and that products
are replaced during [7*, T|. There may be an interval of time early in the planning period
during which A(%) is relatively small. If the repair parts purchase can also be delayed or
if incurring the fixed costs can be postponed until the beginning of the repair interval,
replacements may be cheaper than repairs during this time. Computational results suggest
that the cost penalty paid by assuming that repairs begin at time 0 is quite small (less than
1% - 2% in our numerical experiments). Extending the results above to encompass this early
replacement interval is trivial and gives result (3.8) as the critical times to begin and end the
repair operation. For simplicity we maintain assumptions 3 and 4 throughout this chapter
but acknowledge that it may lead to suboptimal solutions for cases of extremely low early

return rates.

Comparative Statics For 7*

From equation (3.8), one can easily investigate how 7* changes when F, r, v, and h change.
We summarize the comparative statics in Table 3.1 and discuss our findings below.

The analysis of the derivatives shows that when the return arrival rate is constant or is
decreasing at 7%, an increase in fixed cost (F'), variable unit repair cost (v), and unit inventory
holding cost (h) unambiguously results in lower values of 7*, denoted by a negative sign for
the respective derivatives in Table 3.1. On the other hand, an increase in replacement cost
(r) leads to a higher value of 7*, hence the positive derivative sign. Interestingly, we find
that when the arrival rate is increasing, the effect of these parameters on the optimal 7*

value is less obvious and can be either increasing or decreasing, depending on the values of



65

Table 3.1: Comparative Statics For 7*: Sign of Derivatives

dr* dr* dr* dr*
dF dr dv dh
F
Expression 1 1 1 T A7)
N(r¥) _ % _p M) N(r*) _ F) (%)
A(t) Constant - + - -
A(t) Increasing +/- +/- +/- +/-
A(t) Decreasing - + - _

F,r, v, and h. For instance, when \'(7*) > 0, 7* would be increasing in v and decreasing in
r when F'is very large. In the following numerical example we further investigate the not so

obvious effect of problem parameters on optimal 7* values.

A Numerical Example

The following numerical example illustrates the sensitivity of the total cost function and
the optimal switching time to changes in the relevant instance data. The planning horizon
is from t = 0 to T = 100. The return rate pattern follows a truncated bell-shaped curve
with 5,000 total returns and maximum return rate of 84 units (see Figure 3.3 below). This
example uses a fixed cost of $2500 per unit time, a replacement cost of $200 per unit, and
unit holding costs for the entire planning period of 15% of the unit variable cost. Figure 3.4
below shows how the total cost function behaves for variable repair costs of $25, $65, $100,
$140. Figure 3.4 shows that the minimum total cost switching time shifts toward the end of
the planning period as the variable cost (and therefore holding cost) decreases. For variable
repair costs of $25, $65, $100, and $140, the optimal switching time 7* is 96, 90, 82, and 65,

respectively.
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Switching Times
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To obtain the optimal switching times and corresponding optimal order quantities shown

in Figures 3.5 and 3.6 below, we vary the fixed cost from $1,000 to $4,000 and we vary the

variable repair cost from $0 to $200. As each of the fixed cost curves indicate, the repair

horizon contracts as the variable cost increases. For very high variable cost values, the repair

option is never cost-effective. There is a variable cost threshold above which it is optimal to

replace all returned items, and this threshold decreases as F increases.

Optimal Switching Time
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as a Function of Fixed and Variable Costs
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Figure 3.5: Sensitivity of Optimal Switch-
ing Time To Fixed And Variable Costs
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The single product uncapacitated model provides a solid foundation for formulating a
variety of extensions. In the next section, we extend this basic model to incorporate capacity

constraints for the single product model.

3.3.2 The Capacitated Single Product Model

The capacitated single product problem is a natural extension of the basic model in Sec-
tion 3.3.1. We follow the same notation as in Section 3.3.1 and include one additional
parameter, K, which represents the maximum number of repairs per unit time. In addition
to the assumptions of the uncapacitated model, we consider return rates such that the time
period over which return arrivals exceed capacity is a convex set. This assumption allows us

to define 3 disjoint regions as shown below in Figure 3.7.

returns
A

time

Figure 3.7: Capacity Regions

Since the return rate is known, we can calculate t; and t,, the times at which the arrival

rate exceeds capacity for the first time and at which the arrival rate drops below capacity,
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repectively. This leaves three cases for us to consider:

(i) 7™ <t (region I)
(i) ¢t <7" <ty (region II)

(iii) to<7” (region IIT)

Solution Algorithm

The first step in determining the optimal switching time and corresponding order quantity
for the capacitated single product model is to define the order quantity expression for each

of the three regions:

region I Qi1(7) = /T A(t)dt
0

region II Qu(r) = / At)dt + KT — Kty
0

t1 T
region 11 Qrrr(T) :/ /\(t)dt—i-/ A(t)dt + Kty — Kty
0

to

For notational simplicity, we refer to Qr(7), Qrr(7), and Qr;(7) throughout the text as @y,
Qrr1, and Q77 but remind the reader that all order quantities are a function of 7.
Using these order quantities, we obtain the total cost expressions in Table 3.2.

The first order critical points, 7, for cases (i) - (iii) given that the first order point is

strictly interior to each region are given by:

1 F
region 1 T]* = E (7‘ -V — W) (314)
1 — F
region II T = 3 (1 +1 + L - °_ ﬁ) (3.15)
1 F
region III Tirr 5 (r —v— N *)) (3.16)
T
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Table 3.2: Total Cost Expressions For The Single Product Capacitated Model

Region Total Cost Expression
I Fr+vQr +hQrr —h [ A@)dt +r [T A(t)dt
t1 Y T
II Fr+vQur+h [/0 [QH - /0 )\(t)dt] dy + /tl [Qrr — A(t1) — K] dy]
At) — K)dt A(t)d
v [Cow-mar+ [
t1 Y t2
I Fr+vQrr+h [/ [QIII - / )\(t)dt] dy + [Qrrr — A(t1) — K] dy]
0 0 t1

h [/

t / ’ /\(t)dt” dy

[QIII —A(t) — K(to —t1) — A
+r [/t2 (AMt) — K)dt + /T ,\(t)dt]

t1 T
Alternative define A(t) = min(A(t), K)
Expression for
A~ t2 A~
11 Fr+vQuur +hQuur —h [] A@)dt +r [T At)dt +r / (,\(t) . K) dt
51

where A(t) = [7 Mt)dt and A@t) = [7 At)dt

The constrained single product model does not yield a closed-form solution. Therefore,
we evaluate the total cost function at the first order citical points defined by 3.14, 3.15,
and 3.16 as well as the endpoints (t = 0 and t = T) and the region borders (t = t; and t
= t9). We can obtain candidate solutions by solving a constrained optimization problem for
each of the three defined regions. Expressions for the first order critical points in each region
are given above. The following algorithm can be used to find the global least cost switching

time. In all cases, ties are broken arbitrarily.

1. Evaluate the total cost at time t = 0 and t = T using the cost expressions found in
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Table 3.2. Let Tendpoint be the switching time which yields the lower of the two values.

2. Find all values 7 that satisfy (3.14) and 7 < ¢;. Evaluate the total cost expression for
region I found in Table 3.2 for each value of 7. Let 7; be the switching time that gives

the least total cost from among these candidate switching times.
3. Evaluate the total cost expression for region I found in Table 3.2 using 7 = ¢;

4. Find all values 7 that satisfy (3.15) and ¢; < 7 < t5. Evaluate the total cost expression
for region II found in Table 3.2 for each value of 7. Let 7;; be the switching time that

gives the least total cost from among these candidate switching times.
5. Evaluate the total cost expression for region II found in Table 3.2 using 7 = ¢

6. Find all values 7 that satisfy (3.16) and ¢, < 7. Evaluate the total cost expression for
region IIT found in Table 3.2 for each value of 7. Let 7777 be the switching time that

gives the least total cost from among these candidate switching times.

7. Select the least total cost value found in steps 1 - 6 above. The corresponding switching

time is the global minimum switching time, 7*.

This algorithm is similar in spirit to the algorithm used for finding the optimal order
quantitiy in the EOQ with quantity discounts model (Chopra and Meindl, 2004). We note
that the assumption that the period(s) of time during which the return rate exceeds repair
capacity form a convex set. This assumption allows us to define the three regions shown
in Figure 3.7. For instances in which these periods of time do not form a convex set, a
straightforward extension of the formulations and methods presented above can be developed

to solve this problem.
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The following example illustrates how the solution may fall into regions I, II, ITI, or on
the borders. In this example, returns arrive at a constant rate of 12 returns per time period
during [0, 26] and [76,100]; in between, the rate is 15 returns per time period (see Figure 3.8).
The capacity is set to 14, the fixed cost is $10 per unit time, the replacement cost is $2 per
item, the holding cost incurred over the entire planning period is 15% of the variable cost,
and the variable cost is changed to show how the optimal switching time responds. For
v = $1.14, 7x = 8 (region I); for v = $1.10, 7% = 59 (region II); for v = $1.00, 7« = 76
(on the border between regions II and III); for v = $0.90, 7 = 95 (region III). For this
particular instance and set of parameters, the optimal switching time does not fall on the
border between regions I and II. The corresponding total cost curves for these four variable

cost values are shown in Figure 3.9.

Return Rate

—retumns

= 'capacity

Returns Per Period
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Figure 3.8: Single Product With Capacity Constraints Return Rate

A Numerical Example

We modified the numerical example from Section 3.3.1 to include capacity constraints. The

optimal switching time and corresponding optimal total cost are shown below for variable



72

Capacity Case Total Cost Curves
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Figure 3.9: Single Product With Capacity Constraints Total Cost Curves

costs ranging from $0 to $200 and repair capacity equaling 20, 40, 60, and 80 repairs per
time period. Taken together, Figures 3.10 and 3.11 show that while different variable costs
may yield the same optimal switching time, the corresponding total cost is significantly
higher for lower capacities (due to the need to replace a larger proportion of returns during
time periods in which the return rate exceeds capacity). As Section 3.3.1 shows, the repair
horizon contracts as the variable cost increases, but there is a higher variable cost threshold
as capacity increases. The optimal total cost curves in Figure 3.11 are helpful in making
strategic decisions regarding capacity design. For example, if the difference between a small
capacity cost curve and a larger capacity cost curve in the region of interest (for a particular
variable cost range) is larger than the fixed cost to increase repair capacity to the larger
threshold, then the manufacturer should expand its capacity to reduce its overall costs. If
the difference between the curves is relatively small, it may be preferable to incur the cost

of replacing additional items and not increase repair capacity.



73

Optimal Switching Time Optimal Total Cost
as a Function of Capacity and Variable Costs as a Function of Capacity and Variable Costs

100 §1,200,000

§1,000,000

$300,000 ——
" K=
- k=60

—K=380

S600,000 4 =
)

§400,000 4

Optimal Total Cost

Optimal Switching Time

§200,000

7 . \
' —K=20
1 l .-
I
|
|

]
1
2 !
1
1
1

$0 $25 §50 875 §100  §125 SIS0 8175 $200 $0  $25 §50 875 S100 S125  §150 8175 S200
Variable Cost Variable Cost

Figure 3.10:  Sensitivity of Optimal Figure 3.11: Optimal Total Cost As A
Switching Time To Capacity And Vari- Function Of Capacity And Variable Cost
able Cost

The next section examines another extension of the basic model. More specifically, Sec-

tion 3.3.3 explores the impact of multiple products in a shared repair facility.

3.3.3 The Uncapacitated Two Product Case With Shared Facility

Model

The two product with shared facility costs model is a first step in considering the effects
of utilizing the same facility to repair multiple products. In this formulation, each repaired
product requires a unique inventory but we allow the same fixed cost investment to service
both products. Observe that as in the single product model, the fixed cost is incurred if
any repairs are performed, so in this case it is incurred for the longer of the two repair
horizons. The inventory quantities, (); and (o, are calculated for each product as shown

in (3.1) and we assume that the warranty periods are identical. We derive the following total
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cost function where subscripts 1 and 2 denote product 1 and product 2, respectively:

min F xmax(m,7) + v1Q1 + 12Q2 + hiQ171 + hoQaTs (3.17)

71,72

1 T2 T T
_h / Av(t)dt — ho / Ao(t)dt + 74 / M)t + 7 / No(t)dt
0 0

T1 T2

To find the optimal switching time pair, (7§, 75), we can solve two constrained optimiza-
tion problems - one in which 7 and 7 are equal and one in which they are not. If the
two switching times are not equal, then without any loss of generality we can assume that

T4 < T5. Solving this version of the problem, we get the following first order critical points:

F
m=(rn—u) Ty =7 |\Te—v2e— v~ (3.18)
h1 h2 )\2(7—;)

This is true when the fixed cost is less than the following threshold, F™:

F* = () [7«2 - Z—j(rl _ vl)] (3.19)

When F' > F* then 77 = 75 = 7" and the two switching times are equal. The first order

point in this case is given by:

£ )\1(7'*)(7'1 — ’1)1) + )\Q(T*)(T'Q — 1)2) - F
T h1)\1(7’*) + h/Q)\Q(T*) (320)

Figure 3.12 below qualitatively illustrates the relationship between the two optimal
switching times 7 and 75 as the fixed cost of repair capability changes. Case 1 shows
the effect of a free ride for product 1 as the fixed cost is driven by 7. This corresponds
to a low fixed cost. As the fixed cost increases up to the critical cost defined in (3.19), 75

decreases as 7] remains unchanged (shown in case 2). Finally, case 3 shows that as the fixed



cost increases beyond the critical value F*, 7/ and 7 decrease together.

Case 1: Base case — small F
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Figure 3.12: Switching Time Relationship As A Function Of Fixed Cost

75

Restricting our attention to the case 7 < 75, Figure 3.13 illustrates the solution space

for the two product problem and the relationship between the two optimal switching times

as a function of the input data. (The interpretation is analogous for the case 7 > 75.)

The quantity (ro — vo) is the “incremental” marginal cost of replacement, so the horizontal

axis measures the difference in the incremental marginal cost of replacement adjusted by

the holding cost rate of the two products. Note that for the case 77 > 75, this quantity is

negative. In this case, the product indices are reversed. The vertical axis is measured by

the fixed cost of having repair capabilities. The slope of the line which separates the region

into 7 = 75 and 77 < 73, is the magnitude of the holding cost on day 75 (since Ao(75) is the

number of product 2 returns on day 7). These values and their relationships result directly

from the proof of the two product case values.
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Figure 3.13: Switching Time Relationship As A Function Of Input Data

A Numerical Example

The following numerical example shows how 7 and 75 for a given instance change as the
fixed cost and variable costs for the two products change. As in the previous examples, the
planning horizon is from t = 0 to t = 100. Product 1 has a maximum return rate of 82
and 3,000 total returns while product 2 has a maximum return rate of 100 and 6,000 total
returns (see Figure 3.14).

This example uses a fixed cost of $15, variable repair costs of $0.50 (for both products),
a holding cost for the entire planning period equaling 15% of the variable cost (for both
products), and a replacement cost of $1 (for both products). This instance yields the optimal
switching time pair (77 , 75) = (66, 82) represented by the solid diamond in Figures 3.15
and 3.16 below. These figures show how the optimal switching time pair changes with the
instance data, and are consistent with the insights provided by Figures 3.12 and 3.13. Figure
3.15 illustrates the “free ride” effect as 7 remains unchanged for fixed cost values between
$7.50 and $30.00 (or 0.5x to 2.0x the original fixed cost). As the fixed cost increases beyond

this factor of two, the optimal pair (7] , 75) decreases together. Figure 3.16 shows the
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Figure 3.14: Return Rate Curves For Two Product Example

sensitivity of the optimal pair to changes in the variable costs of the two products. Since
11 < 75, 9 is unaffected by moderate (less than a factor of 2) changes in v;; however when
the variable cost of product 2 (ve) doubles, 7, goes to 0 and 7 decreases from its original

value (for this combination of input data values, we see that 7 > 73).
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3.4 Industry Case

This research was motivated by our discussions with two U.S. companies that specialize in
producing a wide range of personal digital assistants and multi-functional mobile devices.
In this section, we test our model on data provided by one of these companies. The firm
is currently experiencing high warranty costs that consume between 2 - 3% of its revenues.
For most of its products, the firm faces lifetime buy decisions to support warranty repair
operations. We tested our models on data provided by the firm and provide results for
one of their products below. (To protect the identity of the company, the data have been
normalized so that total return volumes and the magnitude of relevant costs are not given;
however the relative costs are provided.)

The data below represent a mid- to high-end personal digital assistant product with a
standard 1-year warranty period that has been returned due to a defective LCD screen. The
weekly return rate over this warranty period is given in Figure 3.17 (rates are given relative
to the average) and shows that the observed rates can vary from 10% to over 160% of the
average. We normalize our cost data by dividing all of the relevant costs by the cost of
providing a replacement unit to the customer. We obtain the following cost values: fixed =
$15.00, variable = $0.55, holding (per item per week) = $0.0015, and replacement = $1.00.
Applying the uncapacitated single product model to this data set we obtain the cost curve
given in Figure 3.18. The total cost curve over the planning horizon is given relative to the
cost at the minimum cost switching time, which is near week 36. For this particular part-
product combination, the company should plan to repair returned products during the first 8
- 9 months of the warranty period. After this time, the company should reallocate its repair
resources to another product line and satisfy warranty claims with replacement products.
Figure 3.18 shows the total cost penalty of not switching from repair to replacement mode

at this time. For example, the firm would pay a cost penalty of 16% by not repairing any of
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its returns; at the other extreme it would pay a cost penalty of 7% by repairing all returns.
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3.5 Conclusions and Directions for Future Research

In this chapter, we have developed deterministic models for purchasing repair parts to ser-
vice warranty returns for short lifecycle products. The first model considers the case of a
single product and illustrates the relationship between fixed repair capability costs, inven-
tory holding costs, replacement costs, and variable repair costs in determining an optimal
inventory quantity and identifying when a firm should repair or replace returned items in an
uncapacitated setting. The second model examines the role of capacity constraints for the
single product model. The third model considers the relationship between these decisions
for two products that share repair resources, and shows that the decision of when to stop
repairing returns and to begin replacing them with alternative products is driven by the
fixed cost. Finally, we show how sensitive these decisions are to changes in the relative data.

The deterministic models presented in this chapter provide valuable insights into the
interactions between the relevant cost components of this problem. Within the determinis-

tic case, there are other extensions that one would pursue as part of future research. The
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first of these would examine the role of overlapping product generations and the viability
of using procurement opportunities for later generation models to support the repair op-
erations of earlier generation products. A second extension would consider the impact of
parts commonality across multiple products. Finally, a third extension of the deterministic
case would consider the impact of minimum order quantities and order-size-based pricing for
repair parts.

In addition to the deterministic models suggested above, a stochastic version of the basic
model is also worth considering. Such an extension would consider the impact of return
rate uncertainty and the value of information regarding return patterns throughout the
product lifecycle. Supplier contracting options, pricing to reserve supplier capacity, and the
value of multiple procurement opportunities throughout the repair horizon are some of the
additional aspects one can investigate in a stochastic model. Finally, there may be risk
pooling benefits associated with sharing repair resources among product lines if there is
sufficient parts commonality.

In summary, this chapter is one of the first studies to investigate lifetime buy decisions
and the role of relevant costs in this problem. We believe that the current work establishes

a foundation for more detailed modeling efforts in future research.
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Chapter 4

Scenario Planning for Warranty

Repair Operations with Lifetime Buys

4.1 Introduction

In Chapter 3 we introduced the lifetime buy problem for repair operations which balances
repair and replacement costs for satisfying defective product warranty claims. The models
developed in Chapter 3 assume that the manufacturer has perfect information about the re-
turn rate, including the exact quantity and timing of returns. In practice it is impossible to
know this information with complete certainty. Introducing return rate uncertainty compli-
cates the models in Chapter 3 by allowing a salvage option in which repair parts inventory is
discarded when the manufacturer switches from repair to replacement mode. We include an
additional parameter, the salvage cost, to consider this consequence in the planning process.
In this chapter we develop two models for addressing this problem when the return rate is
uncertain.

A first step in considering the impact of return rate uncertainty is to develop scenario
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planning models in which there is a set of known return rates (scenarios), each with a
probability of occurring. The scenario planning approach is a popular method for addressing
uncertainty in the facility location literature and proves to be a useful approach for the
lifetime buy problem. This method allows the user to include some measure of uncertainty
by defining a discrete set of potential outcomes but relieves the user of the burden of having
to specify a continuous probability distribution of all possible system realizations. This
approach is particularly well-suited for the lifetime buy problem that we consider because it
readily accomodates the discrete (unit-based) and continuous (time-based) cost components
with relatively straightforward solution methods.

One potential drawback of the scenario planning approach for the lifetime buy problem
is a firm’s ability (or lack thereof) to define a set of return rate scenarios. However, in the
electronics and telecommuncations industries, a firm should have adequate information to
readily define these scenarios. Firms spend a considerable amount of time and resources
to predict a product’s failure rate and have enough knowledge about the quality of the
product to be able to identify bounds on the percentage of items that will be returned due
to defects. Using this information, a firm should be able to produce at least three estimates
of the return rate they will observe: a low rate (best case scenario), expected rate (most
likely scenario), and a high rate (worst case scenario). Using these rates and sales data, the
firm can determine the expected quantity of returns. The timing of the returns is directly
related to the sales data. Taken together, the quantity and timing of returns are sufficient
for defining the set of scenarios to be considered.

The scenario planning models in this chapter allow the decision maker to define different
objectives for measuring the efficiency of a particular solution, where a solution is the lifetime
buy order quantity. In the deterministic models of Chapter 3, the objective is to minimize

the total cost of satisfying all returns. It is not immediately clear that any other objective
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would be more appropriate. By contrast, the existence of multiple return rate scenarios
introduces additional objectives which may be appealing to a decision maker, depending on
the amount of risk associated with a solution that he is willing to tolerate. This chapter
introduces two models which each address a different objective as well as a tradeoff curve to
identify solutions that attain both objectives to varying degrees. The first model (expected
cost model) uses scenario probabilities to minimize the expected cost over all possible return
rate realizations. This approach optimizes the expected performance of the system, but
can result in particularly bad solutions if an extreme scenario is realized. By contrast, the
second model (minimax regret model) optimizes the worst case performance of the system
by minimizing the maximum regret of a solution over all possible scenarios. In this context,
the regret for order quantity ¢ and a specific return rate scenario ¢ is defined as the difference
between the optimal total cost for scenario ¢ and the total cost of having ordered ¢ before
scenario ¢ has been realized. In many applications, the minimax regret objective is overly
conservative since the optimal solution is driven by a single scenario which may have a very
small probability of being realized. The tradeoff curve of efficient solutions balances the
benefits and drawbacks of both modelling approaches.

The rest of this chapter is organized as follows. In Section 4.2 we review literature
related to the lifetime buy problem and the scenario planning methodology. The expected
cost model is developed in Section 4.3. A numerical example shows why using the expected
cost model is preferable to substituting the expected return rate into a single scenario model.
In Section 4.4 we present the minimax regret model and results for this approach. Section 4.5
examines the tradeoff between the expected cost model and the minimax regret model and
provides a curve of efficent solutions. Conclusions and directions for future research comprise

Section 4.6.
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4.2 Literature Review

This chapter explores an extension of the single uncapacitated lifetime buy model developed
in Chapter 3. Literature related to this problem, including topics such as repairable inventory
management, warranty repairs, and classical inventory management remain relevant. The
repairable inventory management literature, which has yet to consider the impact of lifetime
buys, typically considers internal repair systems where the firm repairs items for its own use
and not for end customers. This research generally considers longer lifecycle products with
large repair networks and multiple parts procurement opportunities. This area of research
provides valuable insight into our work, but is inappropriate for the lifetime buy problem
which serves very short lifecycle products, a single repair facility, and a single parts pro-
curement opportunity. (See Sherbrooke, 1968; Nahmias, 1981; Guide and Srivastava, 1997.)
The warranty repairs literature estimates the cost of various warranty policies, but does not
explicitly consider the impact of lifetime buys, which significantly changes both the mod-
eling approach and the characterization of the solution. (See Balachandran, Maschmeyer,
and Livingston, 1981; Balcer and Sahin, 1986; Zuo, Liu, and Murthy, 2000; Ja et al., 2001;
Murthy and Djamaludin, 2002.) Finally, the lifetime buy problem blends properties found
in classical inventory management problems such as the EOQ and Newsvendor models. (See
Harris, 1913; Wadsworth, 1959; Petruzzi and Dada, 1999; Porteus, 1990; Porteus, 2002.) A
more detailed review of the related literature found in these topics is given in Section 3.2.
This chapter also draws heavily on the use of scenario planning models which have a rich
history in the facility location literature stream. The value of scenario planning from an
operations management perspective has long been acknowledged as a way to plan for uncer-
tainty and identify strategies for coping with future realizations (Ringwald, 1998). Scenario
planning techniques may be used to plan for future states in which problem parameters may

take on a range of potential values (Owen, 1999) or to find robust solutions that perform
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well under expected and worst case realizations (Snyder, 2003). These techniques are used
to achieve a variety of objectives, including minimizing the worst case performance of the
system when the demand is uncertain (Kouvelis and Yu, 1997; Averbakh and Berman, 1997).
Another common objective is maximizing market share (Serra, Ratick, and ReVelle, 1996;
Serra and Marianov, 1998; Current, Ratick, and ReVelle, 1997). The reliability of a system
is another objective in scenario planning where the objective is to design a system that
operates reliably at least a-percent of the time (Daskin, Hesse, and ReVelle, 1997; Owen,
1999). Related to this are models in which the expected regret is minimized when consider-
ing scenarios that will occur at least o percent of the time (Chen et al., 2006). A review of
literature related to scenario planning for facility location problems may be found in Owen

and Daskin (1998).

4.3 The Expected Cost Model

The expected cost model minimizes the manufacturer’s expected total cost for servicing
product returns given a set of possible return rate scenarios and the probability that each
will occur. This approach to scenario planning optimizes the expected performance of the
system.

Before continuing, we note that the expected cost model of Section 4.3 and the minimax
regret model of Section 4.4 make the same assumptions as the lifetime buy model of Chapter

3. Specifically, these models assume:

1. Defective products arrive to a service center over a known time period [0,T]; There is
a set of possible return rates, each of which is a known, positive, bounded function of

time which is twice differentiable over the planning period.

2. Each returned item is either repaired using the available parts inventory or replaced
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with a comparable new product.

3. All inventory required to support the repair operation is purchased at the beginning of
the planning horizon. For simplicity, we assume a 1 to 1 relationship between returns

and repair parts required to service the return.
4. Returns are repaired at the beginning of the planning period.

These models also assume that repair facilities are uncapacitated. In the absence of a capacity
constraint, we note that the repair and replacement periods are disjoint; the repair period is
given by [0, 7*] and the replacement period is given by [7*, T]. This observation follows from
the swapping argument given in Chapter 3 in the formulation of the Uncapacitated Single
Product Model. We note that for cases in which the return rate is very low early in the
planning period, it may be preferable to replace some units for a short time before switching
into repair mode. In the models that follow we assume that the return rate is sufficiently

large that this does not happen.

4.3.1 Formulation

The scenario planning models in this chapter use the same notation as in Chapter 3. T
represents the length of the planning horizon. The costs associated with repairing items
include: F', the fixed cost per unit time of having repair capability; v, the variable cost per
item repaired; and h, the repair parts inventory holding cost per item per unit time. The unit
cost of replacement is 7. The set of possible return rate scenarios is denoted by M. For each
scenario m € M, there is a known return rate A, (¢) and a probability p,, that scenario m
will be realized. The manufacturer must decide @), the repair parts order quantity. Given @)
and a specific scenario m, an optimal switching time 7.}, can be calculated. Since the optimal

order quantity Q* is determined by the costs of servicing all possible scenarios, there is likely
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to be unused repair parts when a low return rate is realized. The salvage cost (purchase
price less salvage value) for an unused repair part is given by s. The salvage cost is incurred
at the switching time.

In the case of a single scenario, the expected cost problem reduces to the uncapacitated
single product model in Chapter 3. The optimal solution will identify the optimal switching
time and order quantity as developed in Chapter 3 with zero salvaged repair parts. However,
the simultaneous consideration of multiple scenarios is likely to result in optimal order quan-
tities which require salvaging repair parts for lower return rate scenarios. Recognizing this,
we develop a different modelling approach wherein the order quantity is given as an input
and the optimal solution identifies a switching time and a quantity of parts to be salvaged.
For a given return rate A(¢) and order quantity (), we can calculate the maximum feasible
repair time 7 where ) = fof A(t)dt. We can then calculate the minimum cost switching time

7* using the following constrained optimization problem:

Minimize,  Z(r,\, Q) =Fr + v / "A@)dt+ b / ' [Q— / y)\(t)dt] dy  (41)
0 0 0

v (Q—/OT/\(t)dt> —i—r/TT/\(t)dt

Subject to T < 7(Q) (4.2)

Objective function (4.1) is the sum of fixed, variable, inventory holding, inventory salvage,
and replacement costs for a single scenario. Constraint (4.2) ensures feasibility of the optimal
switching time.

We note that in the discrete planning scenario with M possible return rates, there exist
M such problems described above. The manufacturer’s problem is to choose () such that the

expected total cost is minimized. With p,, as the probability that return rate m is realized,
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the manufacturer’s problem can be represented by:

Minimizeg > PnZ(Tomy Am, Q) (4.3)
meM
Subject to Tm < Tm(Am, @) Ym e M (4.4)

The order quantity is the only linking part of the manufacturer’s problem. The scenarios
have no interaction with each other. Therefore, for a given () we solve M independent single
scenario problems and recognize that the scenario switching times in the manufacturer’s
problem are equal to their optimal values when a single scenario is considered. We can then

write the manufacturer’s problem as:

Minimizeg Y pnZ"(Am, Q) (4.5)

meM

Minimize,, — Z(Tm, Am, @)
where Z*(Am, Q) = (4.6)

subject to T < (A, Q)

Given an order quantity (), the problems above are straightforward and easy to solve.
The optimal solutions identify the least cost switching time and quantity of repair parts to
be salvaged for each scenario. From these two values, the least cost solution for a scenario
can be easily calculated; in fact, calculating the expected cost over all scenarios becomes
trivial. The manufacturer’s problem reduces to a search over possible values of (). To reduce

the range of values over which () must be considered, we observe that:
1. An optimal Q* value will be integer.

2. An optimal Q* value will be at least as large as the optimal order quantity found by

solving the uncapacitated single product model in Chapter 3 using the smallest return
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rate scenario. Let Qowerbound re€pPresent this value.

3. An optimal @* value will be no greater than the optimal order quantity found by
solving the uncapacitated single product model in Chapter 3 using the largest return

rate scenario. Let Qupperbound Tepresent this value.

With these bounds on the set of () values to be considered, the manufacturer’s problem

can be solved using the following algorithm:

1. Let Q = Qlowerbound-

2. For each scenario m € M, solve the single scenario problem defined by the optimization

~

problem in (4.6) to get the minimum total cost, Z*(\,, Q).
3. Calculate the expected cost for Q, Z(Q) = e PmZ* (Am, Q)
4. Q — Q +1
5. Repeat steps 2 - 4 until Q = Qupperbound-

6. Q* is the order quantity which gives the minimum Z(Q) value found in the search

above.

The algorithm above considers every feasible value of () to find the optimal solution Q)*.
Although this method considers a very large set of candidate solutions, empirical testing
has shown that the computational time required to do so is quite small (less than 1 minute
for the numerical examples in this chapter). Because the objective function is nonlinear,

searching over the entire range of values guarantees that a global optimum will be found.
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4.3.2 A Numerical Example

The following numerical example demonstrates the impact of multiple scenarios in the ex-
pected cost minimization problem. Figure 4.1 shows three possible return rate scenarios
over a planning horizon of 7" = 500. The returns in all three scenarios follow a truncated
bell-shaped curve with the peak return rate occuring at time ¢ = 250. The low scenario ob-
serves 10,000 returned items while the medium and high scenarios observe 20,000 and 30,000

returns, repectively.

Return Rates

# returns

0 50 100 150 200 250 300 350 400 450 500

time

Figure 4.1: Return Rate Patterns For 3 Scenarios

This example uses a fixed cost of $500 per unit time, a replacement cost of $100 per
unit, variable repair cost of $75 per unit, unit holding costs of $0.023 per unit time (this
amounts to 15% of the variable cost for the entire planning period), and a net salvage cost
of $30 per unit. To generate the expected cost curve, we use the following probability
distribution(piow, Pmedium, Prign) = (0.333, 0.333, 0.333) to give equal weight to each of the
three scenarios.

Figure 4.2 shows how the total cost function changes as the order quantity is varied for

the low, medium, and high return rates as well as the expected cost curve. The optimal order



91

quantity for the low scenario, @},,,, is 0 units, meaning that for this particular combination
of parameter values it is cheaper to provide replacement units for all returned items than to

repair a single return. The other optimal order quantities are as follows: ) = 18,100,

*
medium

Qhign = 28,160, and Q*E(wst) = 9,420 where Q*E( ) is the optimal solution to the problem

cost

defined by (4.5) - (4.6). We note that Q;,,,, @ and Qj,,, are optimal when considering

*
medium’

each scenario individually and result in no salvaged items.

Minimum Total Cost For A Given Order Quantity

$3,000,000
(28,160 , $2.657 M)

(9,420 , $1.944 M) /
$2,000,000

— S

e Low
(18,110, $1.841 M) "  |....... Medium
High
Expected Cost
$1,000,000

(0, $1.001 M)

minimum total cost

$0
0 5000 10000 15000 20000 25000 30000

order quantity

Figure 4.2: Total Cost Curves As A Function Of Order Quantity

Table 4.1 shows the total cost realized in each scenario when the above scenario-optimal
order quantities are used. The optimal total cost values for each scenario are shown in the
cells along the diagonal. For example, in the medium return rate scenario, the optimal order
quantity is Q. 4um = 18,100 and the resulting total cost is approximately Z(Apmedium, @ =
18,100) ~ $1,841,000. This table allows us to see the cost penalty paid in any scenario by
ordering the optimal quantity for a different scenario. For example, if the manufacturer is
expecting returns to follow the medium return rate scenario and instead the low return rate

is realized, he will order ) = 18,100 and will pay approximately $1.373M. Had he known

that the low return rate would occur, he could have ordered 0 units and paid $1.001M, a



difference of 37%.

Scenario | Q,, = 0 | Qleq = 18,110 | Qi = 28,610 | Qypr) = 9,420
Low |$1.001M| $1.373M $1.785 M $1.029 M

Medium | $2.001 M | $1.841 M $2.215 M $1.918 M
High | $3.001 M| $2.760 M $2.657 M $2.886 M

E(cost) | $2.000 M |  $1.991 M $2.219 M $1.944 M
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Table 4.1: Total Cost Using Each Scenario’s Optimal Order Quantity

While Figure 4.2 and Table 4.1 show the cost implications of ordering for a different
scenario than what is realized, Figure 4.3 provides a different insight. Figure 4.3 shows what
happens to the optimal switching time in each scenario as the order quantity is varied from 0
to 30,000 units. We see that the low return rate scenario has an optimal order quantity of )},
= 0 and corresponding optimal switching time of 7" = 0, illustrating that the manufacturer
should immediately begin replacing units. In Figure 4.3 we see that as the order quantity
increases beyond a threshold of approximately 900 units, it becomes cost effective to begin
repairing returned items in the low scenario. This is because the replacement costs and the
added salvage cost of these items (which the manufacturer has already purchased) outweigh
the costs of maintaining repair capabilities for the first 100 or so time periods. However, the
optimal switching time decreases as the order quantity gets very large - this is mostly due
to the increased holding costs of the added salvage items that are incurred. If we were to

extend the order quantity axis in Figure 4.3 beyond 30,000 items, we would see the same
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effect in the medium and high return rate scenarios as well. Taking Figures 4.2 and 4.3
together, we see the relative sensitivity of the solution to changes in @), specifically the total

cost implications and the managerial policy implications (i.e., switching time changes).

Minimum Cost Switching Time For A Given Order Quantity

500 REP B

400

300 +

Low
------ Medium
—— High

200

minimum cost switching time

100

0 5000 10000 15000 20000 25000 30000

order quantity

Figure 4.3: Order Quantity Vs. Optimal Switching Time For 3 Scenarios

4.3.3 Performance Of The Expected Cost Model Vs. Expected

Return Scenario

Given a range of possible scenarios and the probability that each will occur, it may be natural
to believe that solving the single scenario problem by using the expected return rate could be
used as a substitute for the expected cost problem defined above. However, the nonlinearity
of the objective function can lead to cases in which this approach is a poor substitute for
solving the expected cost problem. In the numerical example above, the expected return
scenario performs well when the optimal order quantity Q* is very small or very large, but
performs poorly over the most likely range of values for (Q*. Figure 4.4 shows the cost curves
for the expected cost model and the single scenario model using a probability distribution

of (Piow, Pmedium, Phigh) = (0.333, 0.333, 0.333) to generate the expected return rate scenario.
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Minimum Total Cost For A Given Order Quantity
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Figure 4.4: Total Cost Curves For The Expected Cost Formulation And The Expected
Demand Scenario

From Figure 4.4, we see that using the expected demand in a single scenario as a substitute
for the expected cost model would lead the manufacturer to order almost twice as many repair
parts as necessary (Q*E(deman 4 = 18,100 while Q% sy = 9,420)! From Table 4.1 we see that

demand

the total expected cost of ordering QTE( ) = 18,100 is $1.991M, which results in a cost
penalty of approximately 2.4%. Although the penalty of ordering the expected demand is
not very high for this example, it is important to recognize that it may be quite high for
others. When possible, the expected cost model should be used since using the expected

demand in a single scenario case can lead to drastically different order quantities resulting

in severely suboptimal solutions.

4.4 The Minimax Regret Model

The objective of the minimax regret model is to protect the manufacturer against the worst
possible outcome. In this context, regret is defined as the difference between the realized

objective function value and the optimal objective function value for a particular scenario.



95

In the liftime buy problem, the manufacturer must decide the repair parts order quantity
before the return rate is observed. If the manufacturer knew the return rate before the order
was placed, then he would order () to minimize his total cost and his regret would be zero.
We note that there is a regret value for each scenario. By minimizing the maximum regret
across all possible scenarios, the model minimizes the worst possible outcome. The objective
function value in the minimax regret model is driven by a single scenario and does not
consider the probability that this scenario will be realized. As a result, this model may be
overly conservative. The solution performs well in the worst case scenario but its expected
performance may be poor. The remainder of this section formulates the minimax regret
model and presents an algorithm for its solution. We also extend the numerical example
from Section 4.3 to examine the minimax regret curve and its sensitivity to changes in Q).
In addition to the notation defined for the expected cost model in Section 4.3, the minimax
regret model defines Z as the optimal objective function value over all possible values of
@ in scenario m. We define Y,, to be the regret in scenario m and Y to be the maximum

regret over all scenarios. The minimax regret model can be formulated as:

Minimizeg vy, 7., Y (4.7)
Subject to Y>Y, Vm e M (4.8)

Yo > 2T Ay Q) — Z5 Vm e M (4.9)

Tm < Tin(Am, Q) VYm € M (4.10)

The objective function (4.7) minimizes the maximum regret over all scenarios. Con-
straint (4.8) ensures that the overall regret is greater than or equal to the regret in each
of the component scenarios. Constraint (4.9) defines the regret in scenario m to be the

difference between the cost in scenario m when we order () and the cost when we order the
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optimal order quantity for scenario m. Finally, constraint (4.10) ensures that the switching
time used in constraint (4.9) is feasible.

A solution algorithm similar to the one presented for the expected cost model in Sec-
tion 4.3.1 can be used to solve the minimax regret problem. As in the expected cost model,
solving the minimax regret problem reduces to a search over possible values of (). We begin
by noting that the optimal () value will be integer and fall between Qowerbound and Qupperbound
as before (see Section 4.3.1 for definitions of Qowerbound and Qupperbound)- With these bounds
on the set of ) values to be considered, the minimax regret problem can be solved using the

following algorithm:

1. Let Q = Qlowerbound-

2. For each scenario m € M, solve the single scenario problem defined by the optimization
problem in (4.6) to get the minimum total cost, Z*(Am, Q). Store these values in an

array indexed (Q, m)
3. Q — Q +1
4. Repeat steps 2 - 3 until Q = Qupperbound-

5. For each scenario m € M, find the least cost solution over all values of ). Label this

solution Z7,.

6. For each scenario m € M and each order quantity Q € {Qiowerbound, Qupperbound ), let

regrety , = Z*(Am, Q) - 7.

7. For each order quantity Q € {Qiowerbound> Qupperbound}, let regret s be the maximum

value of regrelg ,, over all scenarios m € M.

8. Q" is the order quantity which gives the minimum regret, value found in the search

above.
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As in the expected cost model, the algorithm above considers every feasible value of )
to find the optimal solution @*. Again, this method takes very little computational effort
(less than 1 minute for the numerical examples considered here) and is guaranteed to find

the global minimum solution.

Regret For A Given Order Quantity
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Figure 4.5: Regret In Each Scenario Over All @) Values

Figure 4.5 shows how the regret in each scenario changes as the order quantity () is varied
from 0 to 30,000 units. This figure also shows how the maximum regret curve changes with
Q. We can see from Figure 4.5 that the maximum regret is driven by the high return rate
scenario for 0 < @) < 13,120 units. For order quantities larger than this, 13,120 < @ <
30,000, the maximum regret curve is driven by the low return rate scenario. From this figure
we see that the order quantity which minimizes the maximum regret is 13,120 which results

in a maximum regret of ~ $174,000.
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4.5 Tradeoffs: Expected Cost Vs. Maximum Regret

In this chapter we present two approaches to the lifetime buy inventory problem when the
return rate follows one of a finite number of known scenarios. The first approach protects
the manufacturer against the average outcome by minimizing the expected cost over all
of the scenarios. The second approach protects the manufacturer against the worst case
outcome by minimizing the maximum regret for any single scenario. One could argue that
the minimum expected cost approach performs well on average but leaves the manufacturer
vulnerable when the realized return rate is extreme. One could just as easily argue that an
objective that minimizes the maximum regret is excessively conservative and may produce
solutions which do not perform well on average. As with any multi-objective problem there
is no one optimal solution, but there exist a number of efficient solutions that perform well
under both objectives. These efficient solutions are Pareto optimal - meaning that for a
particular expected cost value, there is no other feasible solution which can achieve a lower
maximum regret value, and vice versa. The manufacturer then decides which (expected cost,

maximum regret) combination is the best for him.

Competing Objective Functions

$2,500,000

$2.000,000 /
g Q= 9,420 E[cost] =$1.944 M Max[regret] = $0.229 M
s
= $1,500,000
£
E E(cost)
i Max regret
£ $1,000,000 -
s
=
<

$500,000
$0 Q=13,120 E[cost] =$1.960 M Max[regret] = $0.174 M
0 5000 10000 15000 20000 25000 30000

order quantity

Figure 4.6: Minimum Expected Cost And Minimum Maximum Regret Curves
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Using the numerical example from Sections 4.3 and 4.4, we explore the tradeoff between
the expected cost and maximum regret models. Figure 4.6 depicts the expected cost curve
and the maximum regret curve as the order quantity is varied from 0 to 30,000 units. We see
that the optimal solution to the expected cost problem is ) = 9,420. This solution results in
a total expected cost of $1.944M and a maximum regret of $0.229M. The optimal solution
to the minimax regret problem is () = 13,120 units which gives a total expected cost of
$1.960M and maximum regret of $0.174M. We note that any other order quantity will have
an expected cost greater than or equal to $1.944M and a maximum regret greater than or
equal to $0.174M. We wish to find solutions that are as close as possible to both of these
values. To do this, we explore the tradeoff curve of efficient solutions. We generate this
tradeoff curve using the following weighting method algorithm (Cohon, 1978 and Solanki,
1991).

1. Solve the minimum expected cost model formulated in Section 4.3 to get order quantity
Qc and least cost Ci. Calculate the maximum regret associated with Qc, Re. Label

this solution (Cg, Re).

2. Solve the minimum maximum regret model formulated in Section 4.4 to get order

quantity Qr and minimum maximum regret Rp. Calculate the expected cost associated

with Qg, Cr. Label this solution (C’R, RR).

3. We can draw a line connecting these two endpoints, defined by: aCo + (1- al)Rc =

Rr—R¢

aIC'R + (1 - al)RR. Solving for ay, we get ap = ot TR By minimizing

a combination of the two competing objective functions, we can obtain the efficient
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solutions that define the tradeoff curve. Using oy defined above, we minimize:

Minimizeg o1 Y pnZ*(Am, Q) + (1 — )Y (4.11)
meM

Minimize,  — Z(7ym, Am, @)
Subject to  Z*( A\, Q) = (4.12)

subject to 7, < T (A, Q)

Y >Y, Ym e M (4.13)
Yin > Z(Ti, Ay Q) — Z, Vm e M (4.14)

This procedure is shown in Figure 4.7.

Tradeoff: Expected Cost vs. Maximum Regret

(Ce,Re)

Maximum Regret

Expected Cost

Figure 4.7: The Weighting Method For Generating Tradeoff Curves

4. We repeat Step 3 using solutions (C¢, R¢) and (Ci, Ry) to calculate oy and obtain
a new solution (Cy, Ry). The same is done for the pair (C, Rg) and (Cy, R;) to
calculate a3 and obtain a new solution (CA‘;),, Rg) This step is repeated for all adjacent

pairs of efficient solutions until doing so fails to produce a new solution.
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Applying this method to our numerical example, we discover 13 efficient solutions. These
order quantities as well as the expected cost and maximum regret associated with each one

(rounded to the nearest thousand $) are shown in Table 4.2.

Q@  E[cost] Max]|regret|
9,420 $1.944 M $0.229 M
9,490 $1.944 M  $0.229 M
9,600 $1.944 M $0.227 M
9,690 $1.945 M $0.225 M
10,430 $1.948 M $0.214 M
10,900 $1.950 M $0.207 M
11,480 $1.953 M $0.198 M
11,950 $1.955 M $0.191 M
12,340 $1.957 M $0.186 M
12,650 $1.958 M $0.181 M
12,840 $1.959 M $0.178 M
13,040 $1.960 M $0.175 M
13,120 $1.960 M $0.174 M

Table 4.2: Efficient Solutions

Figure 4.8 depicts the tradeoff curve containing these 13 efficient solutions. We see that
aside from the regions immediately surrounding the endpoints, that the tradeoff curve can
be approximated by a linear function. Fitting a linear model to the data, we obtain the
following equation: Max[Regret] = -3.35 x E[Cost] + $7,000,000 with R? value = 0.998
(nearly perfect correlation). From this curve and the solutions in Table 4.2, we see that the
expected cost and maximum regret are quite robust with respect to a wide range of variation

in the order quantities.

4.6 Conclusions And Directions For Future Research

In this chapter we present a scenario planning approach to the lifetime buy problem. This

approach allows a decision maker to account for some measure of uncertainty in the number
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Tradeoff: Expected Cost vs. Maximum Regret
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Figure 4.8: The Efficient Frontier Of Minimum Expected Cost And Minimum Maximum
Regret Solutions

and timing of returns without having to define a full probability distribution for all possible
outcomes by identifying a set of possible return rate scenarios. We develop two models
for calculating lifetime buy order quantities to serve these returns based on two competing
objectives. The first objective minimizes the expected cost over all scenarios, thus optimizing
the average case performance of the system. The second objective minimizes the maximum
regret over all scenarios, optimizing the worst case performance. Finally, we explore the
tradeoff curve of solutions which are Pareto optimal in this two objectives.

The scenario planning models in this chapter should be extended to include the repair
capacity constraints and the shared facilities for two products models considered in Chap-
ter 3. In addition, many of the future research topics identified in Chapter 3 would be
beneficial in the scenario planning approach, including examining the role of overlapping
product generations and the impact of parts commonality across multiple products. Other
extensions such as delaying the timing of the lifetime buy or allowing multiple procurement

opportunities would be interesting to pursue in a scenario planning context. Another area
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of future research concerns the search method for the order quantity. The current solution
method for the expected cost and the minimax regret models evalutes a large number of
order quantities in find the optimal value @*. Although this method executes quickly for
the numerical examples in this chapter, a more intelligent search methods for finding Q*
should be explored since this method can become computationally intensive for large prob-
lem instances. Finally, it would be interesting to model other scenario planning objectives

identified in Section 4.2 to find solutions which are robust to a variety of objective functions.
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Chapter 5

Conclusions and Future Research

In this dissertation we present models that explicitly consider the role of the product lifecycle
in the effective management of closed-loop supply chains. For our purpose, the term closed-
loop refers to supply chains that include both forward and reverse product flows, including
traditional supply chain activities such as product manufacturing and distribution as well as
product returns, repair operations, and remanufacturing activities. Within this context, we
study the impact of product returns on logistics network design in a deterministic setting
and the impact of lifetime buys on repair operations in both a deterministic and a stochastic,
scenario-planning setting.

The first problem that we consider is a logistics network design problem that effectively
serves bidirectional product flows during the introductory, maturity, and decline stages of
a product’s lifecycle. We examine the role of product returns in the design of distribution
networks and the implications of simultaneously considering product delivery and returns
collection needs on bidirectional logistics network configurations. We outline three extensions
of the traditional uncapacitated fixed charge facility location model and develop Lagrangian
relaxation-based solution algorithms which have proven to be quick and effective.

Our computational results suggest that integrated solutions that simultaneously consider
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bidirectional flows outperform solutions in which forward and reverse network design de-
cisions are made sequentially or independently of each other by as much as 30%. These
results further show that these two approaches to bidirectional network design can result
in highly dissimilar networks when forward and reverse costs are misaligned. This research
indicates that the value and impact of integrated bidirectional network design is significant
in a single product, two-tier supply chain system, leading us to identify at least three direc-
tions for future study. The first of these would develop a time-integrated model to capture
the evolution of a closed-loop logistics network over the entire span of a product’s lifecycle.
The current models consider each phase of the lifecycle independently, so there would be
valuable insight in exploring how these networks evolve over time when all three phases are
considered simultaneously. A second extension of this work would develop models that serve
multiple products at different stages of their lifecycles. It would be interesting to evaluate
how the network structure changes in response to multiple products with unique return rates
and processing costs. Finally, it would be valuable to model customer behavior in the net-
work design process. The current models accept return rates as exogenous and independent,
of the network structure. However, customer behavior drives the return rates in voluntary
collection programs. For example, customers may be distance-sensitive. In this case, the
return rate would be a function of the network structure. Such behavioral extensions would
be valuable to firms that must comply with returns collection legislation.

The second problem that we consider investigates the impact of lifetime buys on warranty
repair operations. Chapter 3 studies the lifetime buy problem in a deterministic setting while
Chapter 4 examines the impact of return rate uncertainty by developing scenario planning
variations of the models in Chapter 3. Among the deterministic models that we develop are a
single product uncapacitated model, a single product with repair capacity constraints model,

and a two-product with shared repair facilities model. This research develops a framework
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for identifying the relevant costs for a repair operation facing a lifetime buy decision and
allows the manufacturer to identify a switching time before which returns are repaired and
after which they are replaced. This switching time is used to calculate the optimal lifetime
buy order quantity and resulting total cost for the system. The scenario planning models
of Chapter 4 extend the single uncapacitated model to consider the impact of return rate
uncertainty on the optimal order quantity and resulting switching time. Chapter 4 identifies
two suitable objectives for the scenario planning model, one in which the expected total cost
of the system is minimized and one in which the maximum regret is minimized. These two
somewhat competing objectives optimize the expected and the worst case performance of
the system. A tradeoff curve of Pareto-optimal solutions shows that there exists a range of
order quantities that are robust in both objectives.

This research is the first study to investigate lifetime buy decisions and the role of relevant
costs in this problem. This work establishes a foundation for extensions in both a determin-
istic and a stochastic return rate environment. One valuable extension of the deterministic
models would examine the role of overlapping product generations and the viability of using
procurement opportunities for later generation models to support the repair operations of
earlier generation products. This would give some insight into the value of a second pro-
curement opportunity during the planning period. This work would lead to another model
to explore the impact of parts commonality across multiple products. A third extension of
the deterministic case would consider the effect of order-size-based pricing for repair parts.
There are many valuable extensions to explore when the return rate is uncertain. Among
these are a variety of scenario-planning models based on other objective functions. It would
also be valuable to develop stochastic models to explore supplier contracting options, pricing
to reserve supplier capacity, and the value of multiple procurment opportunities.

The work in this dissertation is one of the first to explicitly consider the role of the product
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lifecycle in closed-loop supply chain management. The models presented here establish a
foundation for considering extensions in bidirectional logistics network design as well as
inventory planning for repair operations for short lifecycle products. It is our hope that

these models will provide value and insight to decision makers in these fields.
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Appendix A: Detailed Results For
150-Node And 263-Node Data Sets



'V S[qBL

SY[SeY po[reIo( 198 BIR( dPON 0CT

parameter values

Co-Location

150 node data set

Forward Dominant

Reverse Dominant

Forward Similarity

Reverse Similarity

Iagranglan CPIPTX # forward # reverse Iagranglan cple.x # forward # reverse Iagranglan cple.x # forward # reverse CcL CcL FD cL cL FD
a B Y so!uuon so!unon locations locations SO!UUOI’\ so!unon locations locations so!ullon SO!U(IOn locations locations| VS vs. vs. vs. vs. vs.
time time time time time time FD RD RD FD RD RD
025 0.25 0.50 0.55 434.51 7 6 0.64 798.88 7 5 0.44 540.54 7 7 0.00 0.00 0.00 0.14 0.17 0.31
025 0.25 1.00 0.53 337.31 7 7 0.42 726.41 7 7 0.42 543.26 7 7 0.00 0.00 0.00 | 0.00 0.00 0.00
025 0.25 2.00 0.46 239.35 7 12 0.67 574.54 7 7 0.68 330.21 7 12 0.00 0.00 0.00 | 0.79 0.00 0.79
025 0.75 0.50 3.92 1043.30 7 4 0.61 1278.00 7 2 0.58 1006.74 5 5 0.00 0.32 0.32 | 0.34 0.20 0.45
0.25 0.75 1.00 1.07 864.24 7 5 2.07 1001.61 7 4 0.58 1054.67 6 6 0.04 0.23 0.19 | 0.20 0.18 0.28
0.25 0.75 2.00 0.67 635.73 7 7 0.46 812.20 7 6 0.55 797.32 7 7 0.00 0.00 0.00 | 0.17 0.00 0.17
0.25 2.00 0.50 1.21 1469.05 7 1 0.44 2185.10 7 1 0.65 1554.75 4 4 0.00 0.44 0.44 | 0.00 0.71 0.71
0.25 2.00 1.00 0.90 1273.83 7 2 1.03 1724.50 7 2 1.06 1623.14 4 4 0.00 0.44 0.44 0.00 0.40 0.40
0.25 2.00 2.00 0.68 899.33 7 4 0.65 1116.92 7 4 0.71 1269.84 4 4 0.00 0.37 0.37 | 0.00 0.02 0.02
0.75 0.25 0.50 0.51 326.26 7 9 0.42 647.49 7 7 0.43 526.78 7 9 0.00 0.00 0.00 | 0.16 0.00 0.16
0.75 0.25 1.00 0.59 201.72 7 16 0.59 560.74 9 9 0.60 380.99 7 16 0.16 0.00 0.16 0.95 0.00 0.95
075 0.25 2.00 1.13 175.55 7 29 0.85 337.35 12 12 0.48 292.95 7 29 0.84 0.00 0.84 1.20 0.00 1.20
0.75 0.75 0.50 0.58 796.82 7 6 0.59 872.14 7 5 0.43 795.55 7 7 0.04 0.00 0.04 0.14 0.17 0.31
075 0.75 1.00 0.55 467.70 7 7 0.46 646.49 7 7 0.39 579.11 7 7 0.00 0.00 0.00 0.00 0.00 0.00
0.75 0.75 2.00 0.85 294.94 8 12 0.54 528.03 9 9 0.46 377.00 7 12 0.06 0.11 0.16 | 0.63 0.00 0.63
0.75 2.00 0.50 5.82 1172.59 7 4 1.12 1227.60 7 3 0.81 2018.58 4 4 0.03 0.37 0.40 | 0.17 0.02 0.16
0.75 2.00 1.00 0.56 667.29 7 5 0.59 833.55 7 4 0.56 1239.73 5 5 0.03 0.28 0.31 0.10 0.01 0.10
0.75 2.00 2.00 0.52 700.62 7 7 0.43 678.53 7 7 0.42 866.91 7 7 0.00 0.00 0.00 | 0.00 0.00 0.00
2.00 0.25 0.50 0.79 186.89 7 20 0.54 384.23 10 10 0.61 309.16 7 20 0.39  0.00 0.39 | 0.98 0.00 0.98
2.00 0.25 1.00 0.65 203.44 7 30 0.58 264.39 16 16 0.60 242.80 7 30 1.15  0.00 1.15 | 0.95 0.00 0.95
2.00 0.25 2.00 0.55 148.21 7 47 0.56 183.43 20 20 0.54 203.72 7 47 1.40 0.00 1.40 1.53 0.00 1.53
2.00 0.75 0.50 0.43 381.62 8 9 0.63 595.21 7 7 0.50 480.25 7 9 0.11 0.11 0.00 | 0.16 0.00 0.16
2.00 0.75 1.00 0.82 281.24 8 16 0.63 363.84 12 12 0.94 358.87 7 16 073 0.1 0.83 | 0.37 0.00 0.37
2.00 0.75 2.00 0.95 175.27 8 27 0.58 230.58 16 16 0.81 308.04 7 27 1.05 0.11 1.16 | 0.75 0.00 0.75
2.00 200 0.50 0.61 714.79 7 6 0.56 832.71 7 5 0.68 1135.16 5 5 0.04 0.32 0.28 0.14 0.15 0.01
2.00 200 1.00 0.87 396.08 7 7 0.46 652.08 7 7 0.55 646.94 7 7 0.00 0.00 0.00 0.00 0.00 0.00
2.00 2.00 2.00 0.64 246.41 12 12 0.62 344.18 12 12 0.88 468.93 7 12 0.00 0.84 0.84 | 0.00 0.00 0.00
a return rate CL Co-location model
B reverse fixed cost ratio FD Forward Dominant model
reverse transportation cost ratio RD Reverse Dominant model

4Nt
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parameter values

Co-Location

263 node data set

Forward Dominant

Reverse Dominant

Forward Similarity

Reverse Similarity

Iagranglan cple.x # forward # reverse Iagranglan cplgx # forward # reverse Iagranglan cple.x # forward # reverse oL cL FD cL cL FD
¢ B Y SOI.UUOH so!ullon locations locations so!ullon so!ullon locations locations so!ullon so!uhon locations locations| Y3 ve- e ve. ve- ve-
time time time time time time FD RD RD FD RD RD
0.25 0.25 0.50 5.38 10031.00 6 5 2.72 13899.80 6 4 3.02 7741.09 5 5 0.00 0.13 0.13 0.24 0.01 0.25
0.25 0.25 1.00 7.58 7535.81 6 6 5.45 11862.40 6 6 4.78 10665.40 6 6 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.25 2.00 4.76 6157.52 6 9 4.88 10282.10 6 6 4.39 6657.59 6 9 0.00 0.00 0.00 0.56 0.00 0.56
0.25 0.75 0.50 5.63 10925.70 6 3 5.24 17776.40 6 3 4.04 14558.30 4 4 0.00 0.37 0.37 0.00 0.25 0.25
0.25 0.75 1.00 5.28 11276.50 6 4 9.66 14838.50 6 4 3.60 11325.60 5 5 0.00 0.13 0.13 0.00 0.25 0.25
0.25 0.75 2.00 5.75 8873.41 6 5 5.97 8934.26 6 5 3.70 10943.30 5 5 0.00 0.13 0.13 0.00 0.01 0.01
0.25 2.00 0.50 5.52 11522.90 6 2 6.34 16828.60 6 2 7.78 15546.30 4 4 0.00 0.37 0.37 0.00 0.61 0.61
0.25 2.00 1.00 5.07 10827.40 6 3 6.21 19014.10 6 2 4.34 15523.20 4 4 0.06 0.37 0.35 0.54 0.24 0.58
0.25 2.00 2.00 3.47 10612.30 6 4 5.67 14181.80 6 3 4.98 11018.30 4 4 0.01 0.37 0.37 0.27 0.07 0.25
0.75 0.25 0.50 4.37 6814.25 6 7 5.04 9429.41 6 6 4.76 7953.56 6 7 0.00 0.00 0.00 0.13 0.00 0.13
0.75 0.25 1.00 5.52 4694.08 6 13 2.24 6667.26 7 7 3.39 6768.04 6 13 0.16 0.00 0.16 0.87 0.00 0.87
0.75 0.25 2.00 4.75 3403.68 6 15 2.40 5703.77 9 9 4.73 4794.92 6 15 0.58 0.00 0.58 0.73 0.00 0.73
0.75 0.75 0.50 4.38 10112.10 6 5 4.33 13095.20 6 4 5.15 9227.01 5 5 0.00 0.13 0.13 0.24 0.01 0.25
0.75 0.75 1.00 4.24 8696.25 6 6 2.37 8805.01 6 6 6.87 9564.81 6 6 0.00 0.00 0.00 0.00 0.00 0.00
0.75 0.75 2.00 5.02 6465.67 6 9 2.44 6377.71 7 7 3.41 6556.74 6 9 0.14 0.00 0.14 0.42 0.00 0.42
0.75 2.00 0.50 6.30 13410.60 6 3 6.22 16357.80 6 3 3.63 12961.00 4 4 0.00 0.38 0.38 0.00 0.25 0.25
0.75 2.00 1.00 4.43 13178.80 6 4 2.53 13827.30 6 4 4.68 14198.90 4 4 0.00 0.37 0.37 0.00 0.06 0.06
0.75 2.00 2.00 4.05 10657.70 6 6 6.33 11632.40 5 5 5.38 8436.23 5 5 0.13 0.13 0.00 0.13 0.13 0.00
2.00 0.25 0.50 5.78 5031.64 6 14 1.93 8215.28 7 7 5.12 7059.64 6 14 0.13 0.03 0.16 1.03 0.12 0.98
2.00 0.25 1.00 5.79 3923.01 6 22 2.85 4732.37 10 10 3.64 5372.32 6 22 0.77 0.00 0.77 1.32 0.00 1.32
2.00 0.25 2.00 5.23 1966.16 6 33 2.78 4283.96 14 14 4.11 4166.38 5 33 1.21 0.12 1.43 1.52 0.00 1.52
2.00 0.75 0.50 5.89 8089.92 6 7 4.31 9067.69 6 6 4.22 6634.47 6 7 0.01 0.00 0.01 0.13 0.00 0.13
2.00 0.75 1.00 4.39 5324.77 6 11 2.39 8899.04 7 7 3.00 5500.68 6 11 0.17 0.00 0.17 0.66 0.00 0.66
2.00 0.75 2.00 5.17 4132.92 6 14 5.16 4135.44 13 13 4.70 7820.18 6 14 1.07 0.00 1.07 0.13 0.00 0.13
2.00 2.00 0.50 4.52 10101.30 6 5 2.61 11820.10 6 4 5.47 12862.40 5 5 0.00 0.13 0.13 0.24 0.01 0.25
2.00 2.00 1.00 4.16 7616.88 6 6 2.59 8682.00 6 6 4.13 11720.50 6 6 0.00 0.00 0.00 0.00 0.00 0.00
2.00 2.00 2.00 4.57 7603.73 9 9 3.67 8603.60 7 7 5.44 7084.47 6 9 0.42 0.58 0.14 0.42 0.00 0.42
o return rate CL Co-location model
B reverse fixed cost ratio FD Forward Dominant model
reverse transportation cost ratio RD Reverse Dominant model

It
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Appendix B: Second Order
Conditions for the Single Product
Capacitated Model

We derive the second order conditions for the single product with repair capacity constraints
model below. The conditions for each region are presented separately.

Region 1
Total Cost

F.O.C.

S.0.C.

T T
TC = FT+UQ1+hQIT—h/ A(t)dt+7‘/ A(t)dt
0 T

dZi“_C =F 4+ vA(T) + htA(T) —7A(T) =0
-

i)

2

T

dd—f — oN(r) + hr N (7) + hA(T) — rN(7) > 0
=

F
N (%) > E)\,(T*) substitute T* from FOC



Region 11

Total Cost TC = F1+vQyy

+h [/Ot [QH—/Oy/\(t)dt} dy—i—/t: Qr — A(ty) — K] dy

+r [/t (A\(t) — K) dt + /TT A(t)dt]

drc
7 =F+vK+2hKT—hKt; —hK —rK =0
-

1 T — F
=1+t + - —

F.O.C.

h hK

\)

t
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2
S.0.C. @ =2hK >0
dr?
Region 111
Total Cost TC = F1 +vQrrr
t1
+h|:/ [QIII_ dt} dy+ QHI— At )—K]dy]
0
+h / [QIII_ A(ty) — K(ty —t1) — / ()t”dy
ta

+r{ 00 -K) dt+/TT )\(t)dt]

T
F.O.C. dd ¢ =F+ oM7)+ htA(1) —7A(T) =0
T
s_1( - F
=\ )
d>T
5.0.C. ?20 = oN(7) + hr X(1) + hA(T) —rX(7) >0

F
N (%) > ﬁ)\I(T*) substitute T* from FOC
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Appendix C: Proof of the First Order
Conditions for the Two Product Case
Values

To simplify the total cost expression, let:

1 T
91(T1) =011 + Qi1 — hl/ Al(t)dt + Tl/ )‘l(t)dt
0 T1

T2 T
92(72) = v2Q2 + hoQoTe — h2/ Ay (t)dt + 7’2/ Ag(t)dt
0 T2

= TC(11,72) = F x max(m1,72) + g1(11) + g2(72)
We can formulate this problem as a constrained optimization model described by:

Minimize  g1(m1) + g2(72) + F'ry

Subject to T —11 >0
Equivalently, we can write the Lagrangian:
Minimize 91(11) + go(m2) + Fro — (19 — 11)

We introduce a Lagrange multiplier, u, and note that there exist 7, 7;, u* such that the
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following conditions are satisfied:

dgl(ﬁ) F =0 d92(7—2) +F 4t =0
dri dry

Ty — Ty >0 p =0
p(ry —15) =0

Suppose we have a solution where the constraint 75 — 77 > 0 is satisfied as a strict inequality,
that is 75 — 77 > 0. This implies p* = 0. We then have a solution to:

dg(7]) ~0 dg(T5)

= —== 4+ F=0
dry dry
Expanding these two equations and solving, we get:
. 1 ( ) . 1 F
T, = —I(1r1 — v To = — 9 — Vg —

subject to the constraint 7f < 5. We observe that this relationship holds for the case:

h
F < )\2(7’5) [TQ — Vg — h—Q(’Fl —’U1)j|
1

This critical value of F, F* = \y(75) [rg — Vg — Z—f(rl — vl)] follows from 77 < 75 as given

by (3.18). We now consider what happens to 7; and 75 as F' changes. Suppose for some
value F < F *, then we observe that the constraint holds as a strict inequality then we obtain
71 and 75 as shown above. As F' increases (but remains < F*), we observe that 75 decreases
and 77 remains unchanged. This is the result until £ = F*, in which case the constraint
holds at equality, 77 = 75 (note that y* may be positive or zero). As F increases (F > F*),
then one of two things happens: (i) p* increases, forcing 7 = 75, implying that 7 and 75
decrease together but remain equal (given by (3.20)), (ii) 75 decreases, forcing 7} to decrease
as well (to satisfy the inequality 77 < 7). This forces p* to change, which in turn will force
71 = 75 to satisfy the first order conditions p*(7; = 75) = 0. The equal switching times case
T4 = 75 = 7 is formulated as an unconstrained optimization problem in a single variable 7.
The remainder of this analysis is analogous to that presented in Section 3.3.1.
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Appendix D: Obtaining the Values in
Figure 3.13

From the proof above in Appendix B, F' < \o(75) [7“2 — Vg — Z—f(rl - vl)} implies 77 < 7. For
fixed cost values greater than this, 77" = 7. Rearranging the critical F' value by factoring out

ho, we get F < ha)o(75) [M - %] which is of the form y=ax depicted in Figure 3.13,

ha
Where = F a = h2)\2 7-* and T = Te—V2 _ T1—V1 )
’ 2/ h_g —hl
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Appendix E: Second Order Conditions
for the Two Product Model

We derive the second order conditions for the two product with shared repair facility costs
model below. Conditions for the case of unequal and equal switching times are presented
separately.

Case: 77 <15

Total Cost TC = F x max(m,Te) + v1Q1 + 12Q2 + h1Q171 + hoQo7s

T1 T2 T T
—hl/ Al(t)dt—hz/ Az(t)dt—i-rl/ Al(t)dt—i-rg/ No(t)dt
0 0 T T2

drc
F.O.C. ——= 1A (T1) + T A (1) — A () =0
1
1
Tl* = h_ (7"1 — Ul)
1
dTC
T =F+ UQ/\Q(TQ) + hQTz)\2(7'2) - 7‘2)\2(72) =0
2

o1 T — Vg — F
TQ_hQ 2 2 /\2(’7’2*)

0 0
S.0.C. =0
[0 ’1)2/\12(7'2) + hQTQ/\IQ(TQ) + hQ/\Q(TQ) - 7”2/\’2(7'2) -

F
Aa(13) > h—2)\'2(7'2*) substitute Ty from FOC
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. X __ %
Case: 77 =17)

Total Cost TC = F1 4+ v1Q1 + v2Q2 + hi@Q17 + hoQom — hy / Ay (t)dt
0

T T T
by / Aot)dt + 11 / M)t + 7 / No(t)dt
0 T T
dTC

F.O.C. F =F + ’Ul)\l(’T) + UQ)\l(T) + hl’T)\l(T) + h/QT)\Q(T) — 7'1)\1(7')

— 7‘2)\2(7’) =0
= /\1(7'*)(7"1 — ’1)1) + )\Q(T*)(Tg — Ug) - F
hl)\l(T*) + hQ)\Q(T*)
S.O.C. v Ni(7) + b (T) + A (T) — 1A (T) 4 v Xy (7) + haT AL (T)

+ h/Q)\Q(T) — 7‘2)\/2(’7') >0




