
NORTHWESTERN UNIVERSITY

On the Optimality and Complexity of Reinforcement Learning

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Zuyue Fu

EVANSTON, ILLINOIS

August 2022



2

© Copyright by Zuyue Fu 2022

All Rights Reserved



3

ABSTRACT

On the Optimality and Complexity of Reinforcement Learning

Zuyue Fu

In this dissertation, we aim to develop algorithms that achieve optimality with provable

complexity guarantees under various settings in reinforcement learning (RL). Specifically,

in Markov decision processes (MDPs), we study single-agent and multi-agent online RL,

respectively, and offline RL under the presence of unobserved confounders.

• Single-agent online RL. We design a single-timescale actor-critic method to solve

single-agent RL, where the actor and critic are updated simultaneously. Specif-

ically, in each iteration, the critic update is obtained by applying the Bellman

evaluation operator only once while the actor is updated in the policy gradient

direction computed using the critic. We prove that the actor sequence converges

to a globally optimal policy at a sublinear O(K−1/2) rate, where K is the number

of iterations.

• Multi-agent online RL. We study discrete-time mean-field Markov games with

infinite numbers of agents, where each agent aims to minimize its ergodic cost.

Specifically, we consider a linear-quadratic case, where the agents have identical
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linear state transitions and quadratic cost functions. For such a game, we provide

sufficient conditions for the existence and uniqueness of its Nash equilibrium,

and also propose a model-free mean-field actor-critic algorithm. In particular,

we prove that our algorithm converges to the Nash equilibrium at a linear rate.

• Offline RL with unobserved confounders. We study offline RL in the face of un-

observed confounders. Offline RL is typically facing the following two significant

challenges: (i) the agent may be confounded by the unobserved state variables;

(ii) the offline data collected a prior does not provide sufficient coverage for the

environment. To tackle the above challenges, we study the policy learning in

the confounded MDPs with the aid of instrumental variables (IVs). Specifically,

we propose value- and ratio-based identification results for the identification of

the expected total reward. Then by leveraging pessimism and our identification

results, we propose various policy learning methods with the finite-sample sub-

optimality guarantee of finding the optimal in-class policy under minimal data

coverage and modeling assumptions.
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CHAPTER 1

Introduction

In reinforcement learning (RL, Sutton and Barto (2018)), the agent aims to make

sequential decisions that maximize the expected total reward through interacting with the

environment and learning from the experiences, where the environment is modeled as a

Markov decision process (MDP, Puterman (2014)). RL with deep neural networks achieves

tremendous successes in practice, e.g., video games (Silver et al., 2016; OpenAI, 2018),

robotics (Kalashnikov et al., 2018), solving social dilemmas (de Cote et al., 2006; Leibo

et al., 2017; Hughes et al., 2018), etc. However, there still lack a theoretical understanding

on the optimality, i.e., how good is a learned policy compared with the optimal policy, and

complexity, i.e, how large a dataset is required to learn a good policy, of various types of

RL methods. In this dissertation, we aim to develop and study algorithms that provably

achieve optimality and complexity guarantees under various settings in RL.

In single-agent online RL, where the agent can actively interact with the environ-

ment to collect new data, to achieve the highest possible total reward in expectation, the

actor-critic method (Konda and Tsitsiklis, 2000) is the among the most commonly used

algorithms. Specifically, to establish convergence guarantees for actor-critic, most existing

works either focus on the bi-level setting or the two-timescale setting, which are seldom

adopted in practice. In Chapter 2, we propose a single-timescale actor-critic method, and

investigate its convergence and global optimality under linear and deep neural network

function approximation. In particular, we focus on the family of energy-based policies
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and aim to find the optimal policy within this class. In our actor-critic algorithm, the

actor update follows proximal policy optimization (PPO, Schulman et al. (2017)) and the

critic update is obtained by applying the Bellman evaluation operator only once to the

current critic iterate, which is more closed to the practical algorithms.

Multi-agent RL extends single-agent RL to sequential decision-making problems in-

volving multiple agents. Mean-field game (MFG, Huang et al. (2003, 2006); Lasry and

Lions (2006a,b, 2007)) is a specific form of multi-agent RL, which utilizes mean-field ap-

proximation to model the strategic interactions within a large population. In Chapter 3,

we develop an efficient model-free RL approach to solve MFGs, which provably attains

the Nash equilibrium. In particular, we focus on discrete-time MFGs with linear state

transitions and quadratic cost functions, where the aggregated effect of the population is

quantified by the mean-field state. In detail, we propose a mean-field actor-critic algo-

rithm, which alternatingly updates the policy and mean-field state. In theory, we prove

that the sequence of policies and its corresponding sequence of mean-field states converge

to the unique Nash equilibrium at a linear rate.

Since actively interacting with the environment in an MDP is usually either expansive

or unethical (e.g., in healthcare (Raghu et al., 2017; Komorowski et al., 2018; Gottesman

et al., 2019), autonomous driving (Shalev-Shwartz et al., 2016)), a growing body of liter-

ature focus on designing RL methods in the offline setting, where the agent aims to learn

an optimal policy π∗ in the infinite-horizon Markov decision process (MDP, Puterman

(2014)) only through observational data. In Chapter 4, we aim to solve the following

two challenges in offline RL: (i) The agent may be confounded by unobserved variables

(confounders) in the observational data; (ii) Due to insufficient data coverage, typical
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methods (Precup, 2000; Antos et al., 2008b; Chen and Jiang, 2019) may fail to converge

without imposing strong assumptions on the data generation process. To tackle such

challenges, by leveraging instrumental variables (IVs) and the principle of pessimism, we

propose value-based and ratio-based estimators of the optimal policy, which are shown

enjoy provable optimality and complexity guarantees.

1.1. Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy

In reinforcement learning (RL, Sutton et al. (1998)), the agent aims to make sequential

decisions that maximize the expected total reward through interacting with the environ-

ment and learning from the experiences, where the environment is modeled as a Markov

Decision Process (MDP, (Puterman, 2014)). To learn a policy that achieves the highest

possible total reward in expectation, the actor-critic method (Konda and Tsitsiklis, 2000)

is among the most commonly used algorithms. In actor-critic, the actor refers to the

policy and the critic corresponds to the value function that characterizes the performance

of the actor. This method directly optimizes the expected total return over the policy

class by iteratively improving the actor, where the update direction is determined by the

critic. In particular, recently, actor-critic combined with deep neural networks (LeCun

et al., 2015) achieves tremendous empirical successes in solving large-scale RL tasks, such

as the game of Go (Silver et al., 2017), StarCraft (Vinyals et al., 2019), Dota (OpenAI,

2018), Rubik’s cube (Agostinelli et al., 2019; Akkaya et al., 2019), and autonomous driv-

ing (Sallab et al., 2017). See Li (2017) for a detailed survey of the recent developments

of deep reinforcement learning.
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Despite these great empirical successes of actor-critic, there is still an evident chasm

between theory and practice. Specifically, to establish convergence guarantees for actor-

critic, most existing works either focus on the bi-level setting or the two-timescale setting,

which are seldom adopted in practice. In particular, under the bi-level setting (Yang et al.,

2019a; Wang et al., 2019; Agarwal et al., 2019; Fu et al., 2019; Liu et al., 2019; Abbasi-

Yadkori et al., 2019a,b; Cai et al., 2019; Hao et al., 2020; Mei et al., 2020; Bhandari and

Russo, 2020), the actor is updated only after the critic solves the policy evaluation sub-

problem completely, which is equivalent to applying the Bellman evaluation operator to

the previous critic for infinite times. Consequently, actor-critic under the bi-level setting

is a double-loop iterative algorithm where the inner loop is allocated for solving the policy

evaluation sub-problem of the critic. In terms of theoretical analysis, such a double-loop

structure decouples the analysis for the actor and critic. For the actor, the problem is

essentially reduced to analyzing the convergence of a variant of the policy gradient method

(Sutton et al., 2000; Kakade, 2002) where the error of the gradient estimate depends on

the policy evaluation error of the critic. Besides, under the two-timescale setting (Borkar

and Konda, 1997; Konda and Tsitsiklis, 2000; Xu et al., 2020; Wu et al., 2020; Hong et al.,

2020), the actor and the critic are updated simultaneously, but with disparate stepsizes.

More concretely, the stepsize of the actor is set to be much smaller than that of the critic,

with the ratio between these stepsizes converging to zero. In an asymptotic sense, such a

separation between stepsizes ensures that the critic completely solves its policy evaluation

sub-problem asymptotically. In other words, such a two-timescale scheme results in a

separation between actor and critic in an asymptotic sense, which leads to asymptotically

unbiased policy gradient estimates. In sum, in terms of convergence analysis, the existing
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theory of actor-critic hinges on decoupling the analysis for critic and actor, which is

ensured via focusing on the bi-level or two-timescale settings.

However, most practical implementations of actor-critic are under the single-timescale

setting (Peters and Schaal, 2008a; Schulman et al., 2015; Mnih et al., 2016; Schulman et al.,

2017; Haarnoja et al., 2018), where the actor and critic are simultaneously updated, and

particularly, the actor is updated without the critic reaching an approximate solution

to the policy evaluation sub-problem. Meanwhile, in comparison with the two-timescale

setting, the actor is equipped with a much larger stepsize in the the single-timescale setting

such that the asymptotic separation between the analysis of actor and critic is no longer

valid.

Furthermore, when it comes to function approximation, most existing works only an-

alyze the convergence of actor-critic with either linear function approximation (Xu et al.,

2020; Wu et al., 2020; Hong et al., 2020), or shallow-neural-network parameterization

(Wang et al., 2019; Liu et al., 2019). In contrast, practically used actor-critic meth-

ods such as asynchronous advantage actor-critic (Mnih et al., 2016) and soft actor-critic

(Haarnoja et al., 2018) oftentimes represent both the actor and critic using deep neural

networks.

Thus, the following question is left open:

Does single-timescale actor-critic provably find a globally optimal policy under the

function approximation setting, especially when deep neural networks are employed?

To answer such a question, we make the first attempt to investigate the convergence

and global optimality of single-timescale actor-critic with linear and neural network func-

tion approximation. In particular, we focus on the family of energy-based policies and aim
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to find the optimal policy within this class. Here we represent both the energy function

and the critic as linear or deep neural network functions. In our actor-critic algorithm,

the actor update follows proximal policy optimization (PPO) (Schulman et al., 2017) and

the critic update is obtained by applying the Bellman evaluation operator only once to

the current critic iterate. As a result, the actor is updated before the critic solves the

policy evaluation sub-problem. Such a coupled updating structure persists even when the

number of iterations goes to infinity, which implies that the update direction of the actor

is always biased compared with the policy gradient direction. This brings an additional

challenge that is absent in the bi-level and the two-timescale settings, where the actor

and critic are decoupled asymptotically.

To tackle such a challenge, our analysis captures the joint effect of actor and critic

updates on the objective function, dubbed as the “double contraction” phenomenon,

which plays a pivotal role for the success of single-timescale actor-critic. Specifically,

thanks to the discount factor of the MDP, the Bellman evaluation operator is contractive,

which implies that, after each update, the critic makes noticeable progress by moving

towards the value function associated with the current actor. As a result, although we

use a biased estimate of the policy gradient, thanks to the contraction brought by the

discount factor, the accumulative effect of the biases is controlled. Such a phenomenon

enables us to characterize the progress of each iteration of joint actor and critic update,

and thus yields the convergence to the globally optimal policy. In particular, for both the

linear and neural settings, we prove that, single-timescale actor-critic finds a O(K−1/2)-

globally optimal policy after K iterations. To the best of our knowledge, we seem to

establish the first theoretical guarantee of global convergence and global optimality for
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actor-critic with function approximation in the single-timescale setting. Moreover, under

the broader scope of policy optimization with nonlinear function approximation, our work

seems to prove convergence and optimality guarantees for actor-critic with deep neural

network for the first time.

Contribution. Our contribution is two-fold. First, in the single-timescale setting with

linear function approximation, we prove that, after K iterations of actor and critic up-

dates, actor-critic returns a policy that is at most O(K−1/2) inferior to the globally optimal

policy. Second, when both the actor and critic are represented by deep neural networks,

we prove a similar O(K−1/2) rate of convergence to the globally optimal policy when the

architecture of the neural networks are properly chosen.

Related Work. Our work extends the line of works on the convergence of actor-critic

under the function approximation setting. In particular, actor-critic is first introduced

in Sutton et al. (2000); Konda and Tsitsiklis (2000). Later, Kakade (2002); Peters and

Schaal (2008b) propose the natural actor-critic method which updates the policy via the

natural gradient (Amari, 1998) direction. The convergence of (natural) actor-critic with

linear function approximation are studied in Bhatnagar et al. (2008, 2009); Bhatnagar

(2010); Castro and Meir (2010); Maei (2018). However, these works only characterize the

asymptotic convergence of actor-critic and their proofs all resort to tools from stochastic

approximation via ordinary differential equations (Borkar, 2008). As a result, these works

only show that actor-critic with linear function approximation converges to the set of

stable equilibria of a set of ordinary differential equations. Recently, Zhang et al. (2019a)

propose a variant of actor-critic where Monte-Carlo sampling is used to ensure the critic

and the policy gradient estimates are unbiased. Although they incorporate nonlinear
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function approximation in the actor, they only establish finite-time convergence result

to a stationary point of the expected total reward. Moreover, due to having an inner

loop for solving the policy evaluation sub-problem, they focus on the bi-level setting.

Moreover, under the two-timescale setting, Wu et al. (2020); Xu et al. (2020) show that

actor-critic with linear function approximation finds an ε-stationary point with Õ(ε−5/2)

samples, where ε measures the squared norm of the policy gradient. All of these results

establish the convergence of actor-critic, without characterizing the optimality of the

policy obtained by actor-critic.

In terms of the global optimality of actor-critic, Fazel et al. (2018); Malik et al. (2018);

Tu and Recht (2018); Yang et al. (2019a); Bu et al. (2019); Fu et al. (2019) show that

policy gradient and bi-level actor-critic methods converge to the globally optimal policies

under the linear-quadratic setting, where the state transitions follow a linear dynamical

system and the reward function is quadratic. For general MDPs, Bhandari and Russo

(2019) recently prove the global optimality of vanilla policy gradient under the assumption

that the families of policies and value functions are both convex. In addition, our work is

also related to Liu et al. (2019) and Wang et al. (2019), where they establish the global

optimality of proximal policy optimization and (natural) actor-critic, respectively, where

both the actor and critic are parameterized by two-layer neural networks. Our work is also

related to Agarwal et al. (2019); Abbasi-Yadkori et al. (2019a,b); Cai et al. (2019); Hao

et al. (2020); Mei et al. (2020); Bhandari and Russo (2020), which focus on characterizing

the optimality of natural policy gradient in tabular and/or linear settings. However, these

aforementioned works all focus on bi-level actor-critic, where the actor is updated only

after the critic solves the policy evaluation sub-problem to an approximate optimum.
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Besides, these works consider linear or two-layer neural network function approximations

whereas we focus on the setting with deep neural networks. Furthermore, under the

two-timescale setting, Xu et al. (2020); Hong et al. (2020) prove that linear actor-critic

requires a sample complexity of Õ(ε−4) for obtaining an ε-globally optimal policy. In

comparison, our O(K−1/2) convergence for single-timescale actor-critic can be translated

into a similar Õ(ε−4) sample complexity directly. Moreover, when reusing the data, our

result leads to an improved Õ(ε−2) sample complexity. In addition, our work is also

related to Geist et al. (2019), which proposes a variant of policy iteration algorithm with

Bregman divergence regularization. Without considering an explicit form of function

approximation, their algorithm is shown to converge to the globally optimal policy at a

similar O(K−1/2) rate, where K is the number of policy updates. In contrast, our method

is single-timescale actor-critic with linear or deep neural network function approximation,

which enjoys both global convergence and global optimality. Meanwhile, our proof is

based on a finite-sample analysis, which involves dealing with the algorithmic errors that

track the performance of actor and critic updates as well as the statistical error due to

having finite data.

Our work is also related to the literature on deep neural networks. Previous works

(Daniely, 2017; Jacot et al., 2018; Wu et al., 2018; Allen-Zhu et al., 2018a,b; Du et al.,

2018; Zou et al., 2018; Chizat and Bach, 2018; Jacot et al., 2018; Li and Liang, 2018;

Cao and Gu, 2019a,b; Arora et al., 2019; Lee et al., 2019; Gao et al., 2019) analyze the

computational and statistical rates of supervised learning methods with overparameterized

neural networks. In contrast, our work employs overparameterized deep neural networks
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in actor-critic for solving RL tasks, which is significantly more challenging than supervised

learning due to the interplay between the actor and the critic.

1.2. Actor-Critic Provably Finds Nash Equilibria of Linear-Quadratic

Mean-Field Games

In reinforcement learning (RL) (Sutton and Barto, 2018), an agent learns to make

decisions that minimize its expected total cost through sequential interactions with the

environment. Multi-agent reinforcement learning (MARL) (Shoham et al., 2003, 2007;

Busoniu et al., 2008) aims to extend RL to sequential decision-making problems involving

multiple agents. In a non-cooperative game, we are interested in the Nash equilibrium

(Nash, 1951), which is a joint policy of all the agents such that each agent cannot de-

crease its expected total cost by unilaterally deviating from its Nash policy. The Nash

equilibrium plays a critical role in understanding the social dynamics of self-interested

agents (Ash, 2000; Axtell, 2002) and constructing the optimal policy of a particular agent

via fictitious self-play (Bowling and Veloso, 2000; Ganzfried and Sandholm, 2009). With

the recent development in deep learning (LeCun et al., 2015), MARL with function ap-

proximation achieves tremendous empirical successes in applications, including Go (Silver

et al., 2016, 2017), Poker (Heinrich and Silver, 2016; Moravč́ık et al., 2017), Star Craft

(Vinyals et al., 2019), Dota (OpenAI, 2018), autonomous driving (Shalev-Shwartz et al.,

2016), multi-robotic systems (Yang and Gu, 2004), and solving social dilemmas (de Cote

et al., 2006; Leibo et al., 2017; Hughes et al., 2018). However, since the capacity of the

joint state and action spaces grows exponentially in the number of agents, such MARL ap-

proaches become computationally intractable when the number of agents is large, which
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is common in real-world applications (Sandholm, 2010; Calderone, 2017; Wang et al.,

2017a).

Mean-field game is proposed by Huang et al. (2003, 2006); Lasry and Lions (2006a,b,

2007) with the idea of utilizing mean-field approximation to model the strategic interac-

tions within a large population. In a mean-field game, each agent has the same cost func-

tion and state transition, which depend on the other agents only through their aggregated

effect. As a result, the optimal policy of each agent depends solely on its own state and

the aggregated effect of the population, and such an optimal policy is symmetric across all

the agents. Moreover, if the aggregated effect of the population corresponds to the Nash

equilibrium, then the optimal policy of each agent jointly constitutes a Nash equilibrium.

Although such a Nash equilibrium corresponds to an infinite number of agents, it well

approximates the Nash equilibrium for a sufficiently large number of agents (Bensoussan

et al., 2016). Also, as the aggregated effect of the population abstracts away the strategic

interactions between individual agents, it circumvents the computational intractability of

the MARL approaches that do not exploit symmetry.

However, most existing work on mean-field games focuses on characterizing the ex-

istence and uniqueness of the Nash equilibrium rather than designing provably efficient

algorithms. In particular, most existing work considers the continuous-time setting, which

requires solving a pair of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck (FP) equa-

tions, whereas the discrete-time setting is more common in practice, e.g., in the afore-

mentioned applications. Moreover, most existing approaches, including the ones based on

solving the HJB and FP equations, require knowing the model of dynamics (Bardi and

Priuli, 2014), or having the access to a simulator, which generates the next state given
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any state-action pair and aggregated effect of the population (Guo et al., 2019), which is

often unavailable in practice.

To address these challenges, we develop an efficient model-free RL approach to mean-

field game, which provably attains the Nash equilibrium. In particular, we focus on

discrete-time mean-field games with linear state transitions and quadratic cost functions,

where the aggregated effect of the population is quantified by the mean-field state. Such

games capture the fundamental difficulties of general mean-field games and well approx-

imates a variety of real-world systems such as power grids (Minciardi and Sacile, 2011),

swarm robots (Fang, 2014; Araki et al., 2017; Doerr et al., 2018), and financial systems

(Zhou and Li, 2000; Huang and Li, 2018). In detail, based on the Nash certainty equiv-

alence (NCE) principle (Huang et al., 2006, 2007), we propose a mean-field actor-critic

algorithm which, at each iteration, given the mean-field state µ, approximately attains

the optimal policy π∗
µ of each agent, and then updates the mean-field state µ assuming

that all the agents follow π∗
µ. We parametrize the actor and critic by linear and quadratic

functions, respectively, and prove that such a parameterization encompasses the optimal

policy of each agent. Specifically, we update the actor parameter using policy gradient

(Sutton et al., 2000) and natural policy gradient (Kakade, 2002; Peters and Schaal, 2008a;

Bhatnagar et al., 2009) and update the critic parameter using primal-dual gradient tem-

poral difference (Sutton et al., 2009a,b). In particular, we prove that given the mean-field

state µ, the sequence of policies generated by the actor converges linearly to the optimal

policy π∗
µ. Moreover, when alternatingly update the policy and mean-field state, we prove

that the sequence of policies and its corresponding sequence of mean-field states con-

verge to the unique Nash equilibrium at a linear rate. Our approach can be interpreted
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from both “passive” and “active” perspectives: (i) Assuming that each self-interested

agent employs the single-agent actor-critic algorithm, the policy of each agent converges

to the unique Nash policy, which characterizes the social dynamics of a large population

of model-free RL agents. (ii) For a particular agent, our approach serves as a fictitious

self-play method for it to find its Nash policy, assuming the other agents give their best

responses. To the best of our knowledge, our work establishes the first efficient model-free

RL approach with function approximation that provably attains the Nash equilibrium

of a discrete-time mean-field game. As a byproduct, we also show that the sequence of

policies generated by the single-agent actor-critic algorithm converges at a linear rate to

the optimal policy of a linear-quadratic regulator (LQR) problem in the presence of drift,

which may be of independent interest.

Related Work. Mean-field game is first introduced in Huang et al. (2003, 2006); Lasry

and Lions (2006a,b, 2007). In the last decade, there is growing interest in understand-

ing continuous-time mean-field games. See, e.g., Guéant et al. (2011); Bensoussan et al.

(2013); Gomes et al. (2014); Carmona and Delarue (2013, 2018) and the references therein.

Due to their simple structures, continuous-time linear-quadratic mean-field games are ex-

tensively studied under various model assumptions. See Li and Zhang (2008); Bardi

(2011); Wang and Zhang (2012); Bardi and Priuli (2014); Huang et al. (2016a,b); Ben-

soussan et al. (2016, 2017); Caines and Kizilkale (2017); Huang and Huang (2017); Moon

and Başar (2018); Huang and Zhou (2019) for examples of this line of work. Meanwhile,

the literature on discrete-time linear-quadratic mean-field games remains relatively scarce.

Most of this line of work focuses on characterizing the existence of a Nash equilibrium

and the behavior of such a Nash equilibrium when the number of agents goes to infinity
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(Gomes et al., 2010; Tembine and Huang, 2011; Moon and Başar, 2014; Biswas, 2015;

Saldi et al., 2018a,b, 2019). See also Yang et al. (2018a), which applies maximum entropy

inverse RL (Ziebart et al., 2008) to infer the cost function and social dynamics of discrete-

time mean-field games with finite state and action spaces. Our work is most related to

Guo et al. (2019), where they propose a mean-field Q-learning algorithm (Watkins and

Dayan, 1992) for discrete-time mean-field games with finite state and action spaces. Such

an algorithm requires the access to a simulator, which, given any state-action pair and

mean-field state, outputs the next state. In contrast, both our state and action spaces

are infinite, and we do not require such a simulator but only observations of trajecto-

ries under given mean-field state. Correspondingly, we study the mean-field actor-critic

algorithm with linear function approximation, whereas their algorithm is tailored to the

tabular setting. Also, our work is closely related to Mguni et al. (2018), which focuses on

a more restrictive setting where the state transition does not involve the mean-field state.

In such a setting, mean-field games are potential games, which is, however, not true in

more general settings (Li et al., 2017; Briani and Cardaliaguet, 2018). In comparison, we

allow the state transition to depend on the mean-field state. Meanwhile, they propose a

fictitious self-play method based on the single-agent actor-critic algorithm and establishes

its asymptotic convergence. However, their proof of convergence relies on the assumption

that the single-agent actor-critic algorithm converges to the optimal policy, which is un-

verified therein. In addition, our work is related to Jayakumar and Aditya (2019), where

the proposed algorithm is only shown to converge asymptotically to a stationary point of

the mean-field game.
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Our work also extends the line of work on finding the Nash equilibria of Markov games

using MARL. Due to the computational intractability introduced by the large number of

agents, such a line of work focuses on finite-agent Markov games (Littman, 1994, 2001; Hu

and Wellman, 1998; Bowling, 2001; Lagoudakis and Parr, 2002; Hu and Wellman, 2003;

Conitzer and Sandholm, 2007; Perolat et al., 2015; Pérolat et al., 2016b,a, 2018; Wei et al.,

2017; Zhang et al., 2018; Zou et al., 2019; Casgrain et al., 2019). See also Shoham et al.

(2003, 2007); Busoniu et al. (2008); Li (2018) for detailed surveys. Our work is related to

Yang et al. (2018b), where they combine the mean-field approximation of actions (rather

than states) and Nash Q-learning (Hu and Wellman, 2003) to study general-sum Markov

games with a large number of agents. However, the Nash Q-learning algorithm is only

applicable to finite state and action spaces, and its convergence is established under rather

strong assumptions. Also, when the number of agents goes to infinity, their approach

yields a variant of tabular Q-learning, which is different from our mean-field actor-critic

algorithm.

For policy optimization, based on the policy gradient theorem, Sutton et al. (2000);

Konda and Tsitsiklis (2000) propose the actor-critic algorithm, which is later generalized

to the natural actor-critic algorithm (Peters and Schaal, 2008a; Bhatnagar et al., 2009).

Most existing results on the convergence of actor-critic algorithms are based on stochastic

approximation using ordinary differential equations (Bhatnagar et al., 2009; Castro and

Meir, 2010; Konda and Tsitsiklis, 2000; Maei, 2018), which are asymptotic in nature. For

policy evaluation, the convergence of primal-dual gradient temporal difference is studied

in Liu et al. (2015); Du et al. (2017); Wang et al. (2017b); Yu (2017); Wai et al. (2018).

However, this line of work assumes that the feature mapping is bounded, which is not the
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case in our setting. Thus, the existing convergence results are not applicable to analyzing

the critic update in our setting. To handle the unbounded feature mapping, we utilize a

truncation argument, which requires more delicate analysis.

Finally, our work extends the line of work that studies model-free RL for LQR. For

example, Bradtke (1993); Bradtke et al. (1994) show that policy iteration converges to the

optimal policy, Tu and Recht (2017); Dean et al. (2017) study the sample complexity of

least-squares temporal-difference for policy evaluation. More recently, Fazel et al. (2018);

Malik et al. (2018); Tu and Recht (2018) show that the policy gradient algorithm converges

at a linear rate to the optimal policy. See as also Hardt et al. (2016); Dean et al. (2018)

for more in this line of work. Our work is also closely related to Yang et al. (2019b), where

they show that the sequence of policies generated by the natural actor-critic algorithm

enjoys a linear rate of convergence to the optimal policy. Compared with this work, when

fixing the mean-field state, we use the actor-critic algorithm to study LQR in the presence

of drift, which introduces significant difficulties in the analysis. As we show in §3.2, the

drift causes the optimal policy to have an additional intercept, which makes the state-

and action-value functions more complicated.

1.3. Offline Reinforcement Learning with Instrumental Variables in

Confounded Markov Decision Processes

Reinforcement learning (RL, Sutton and Barto (2018)) with deep neural networks

gains tremendous successes in practice, e.g., games (Silver et al., 2016; OpenAI, 2018),

robotics (Kalashnikov et al., 2018), etc. Most RL methods heavily rely on an efficient data

generator, e.g., game engines (Bellemare et al., 2013) and physics simulators (Todorov
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et al., 2012), which serve as an environment to be interacted with the agent. Since inter-

acting with such an environment is usually either expansive or unethical (e.g., in health-

care (Raghu et al., 2017; Komorowski et al., 2018; Gottesman et al., 2019), autonomous

driving (Shalev-Shwartz et al., 2016)), RL methods requiring actively collecting data in

an online fashion is impractical under this scenario. Thus, a growing body of literature

focus on designing RL methods in the offline setting, where the agent aims to learn an op-

timal policy π∗ in the infinite-horizon Markov decision process (MDP, Puterman (2014))

only through observational data, which consists of N trajectories generated by a behavior

policy b with a finite horizon T .

However, applying RL methods in the offline setting still possesses the following chal-

lenges: (i) The agent may be confounded by unobserved variables (confounders) in the

observational data. We refer to the MDP with such confounders as confounded MDP.

Such confounders usually comes from private data or heuristic information not recorded

(Brookhart et al., 2010). In the confounded MDP, the causal effects of actions on the

transitions and rewards are not identifiable from the observational data, leaving most of-

fline RL methods assuming unconfoundedness not applicable in our setting. (ii) To learn

an optimal policy from observational data, many prior methods (Precup, 2000; Antos

et al., 2008b; Chen and Jiang, 2019) require a data coverage assumption for any policy π,

i.e., the density ratio between the state-action visitation measure induced by π and that

induced by the behavior policy b is uniformly upper bounded for any π. However, such a

data coverage assumption is hard to satisfy in practice, especially when the state or action

spaces are large. Further, many existing methods developed under this assumption are
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not stable or even do not converge when the assumption is violated (Wang et al., 2020,

2021c).

To tackle the above challenge (i), we study the confounded MDP via instrumental

variables (IVs, Pearl (2009)). Informally, IVs are variables that affect the transitions and

rewards only through actions. With the aid of IVs, we introduce two types of identification

results: value function (VF)-based and marginalized importance sampling (MIS)-based.

Specifically, with only finite-horizon data, VF-based identification result helps identify the

state-value function in the infinite-horizon confounded MDP and establish a new Bellman

equation by leveraging IVs, which relies on the memoryless assumption on the unmea-

sured confounders. The memoryless assumption rules out the existence of unmeasured

confounders that can affect future rewards and dynamics. On the other hand, we establish

the MIS-based identification result for estimating the expected total reward. Interestingly,

our MIS-based identification result does not require the memoryless assumption and al-

low the existence of unmeasured confounders that affects future rewards and dynamics.

Therefore our identification result via MIS can be applied in a more general confounded

MDP.

In the meanwhile, to tackle the above challenge (ii), we employ pessimism to achieve

policy learning. Specifically, when using VF-based identification, we first formulate a min-

imax estimator of the state-value function via the newly established estimating equation.

Then, we construct a confidence set of such a minimax estimator, so that the true state-

value function lies within the confidence set with a high probability. Finally, we search

for the best policy that maximizes the most conservative expected total reward associated
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with the estimated state-value function within the confidence set. As a theoretical con-

tribution, under data coverage assumption only for an optimal policy π∗ and realizability

assumption for all policies, we show that the suboptimality of the learned best policy is

upper bounded by O(log(NT )(NT )−1/2). It is worth noting that our theoretical analysis

does not assume that the observational data are generated from stationary distribution

or even independent, which is widely imposed in related literature (Farahmand et al.,

2016; Nachum et al., 2019; Tang et al., 2019; Xie et al., 2021; Kallus and Uehara, 2022).

Without imposing such a restrictive assumption, inspired by Wang et al. (2021a), our

convergence analysis relies on novel concentration inequalities for geometrically ergodic

sequences, which significantly increases the applicability of our results in practice. In the

meanwhile, pessimism with MIS-based identification achieves a similar result by imposing

realizability assumption only for an optimal policy π∗ and data coverage assumption for

all policies. Further, by combining VF- and MIS-based identification results, we propose

a doubly robust (DR) estimator of the optimal policy π∗. Theoretically, for such a DR

estimator, we show a similar suboptimality at a rate of O(log(NT )(NT )−1/2), but only

requiring that either the assumptions imposed in VF-based method or those imposed in

MIS-based one hold. See Table 1.1 for an overview of our theoretical results.

Contribution. As a summary, our contribution is three-fold. First, by leveraging IVs,

we provide VF- and MIS-based identification results. Second, by employing pessimism,

we construct estimators of the optimal policy π∗ via VF- and MIS-based identification.

Further, by combining VF- and MIS-based identification, we propose a DR-based algo-

rithm for estimating π∗. Third, under mild conditions on data coverage and realizabil-

ity, we show that the suboptimalities of the proposed estimators are upper bounded by
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Methods Data Coverage Realizability Identifiability

VF-based ∥wπ∗∥∞ ≤ C∗
wπ∗ ∈ W ,

V π ∈ V ∀π ∈ Π
J(π∗) is identifiable

MIS-based ∥wπ∥∞ ≤ C∗ ∀π ∈ Π
V π∗ ∈ V ,

wπ ∈ W ∀π ∈ Π
J(π) is identifiable ∀π ∈ Π

DR-based
∥wπ∗∥∞ ≤ C∗, w

π∗ ∈ W , V π ∈ V ∀π ∈ Π,
and J(π∗) is identifiable; OR ∥wπ∥∞ ≤ C∗ ∀π ∈ Π, V π∗ ∈ V ,

wπ ∈ W ∀π ∈ Π, and J(π) is identifiable ∀π ∈ Π
Table 1.1. Assumptions required by our VF-, MIS-, and DR-based methods,
where wπ is the density ratio between visitation measures induced by the
policy π and the behavior policy b (see (4.2.1) for a detailed definition), and
V π is the state-value function of the policy π. Here V and Π are function
classes, and C∗ is a positive absolute constant.

O(log(NT )(NT )−1/2), without requiring that the observational data is generated from

stationary distribution or even independent.

Related Work. Our work is related to the line of works that study RL under the pres-

ence of unobserved confounders. Zhang and Bareinboim (2019) propose an online RL

method to solve dynamic treatment regimes in a finite-horizon setting with the presence

of confounded observational data. Their method relies on sensitivity analysis, which con-

structs a set of possible models based on the confounded observational data to obtain

partial identification. Also, to incorporate the observational data into the finite-horizon

RL, Wang et al. (2021b) propose deconfounded optimistic value iteration, which is an

online algorithm with a provable regret guarantee. To ensure the identifiability through

the observational data, they impose the backdoor criterion (Pearl, 2009; Peters et al.,

2017) when confounders are partially observed, and also the frontdoor criterion when

confounders are unobserved. Our work is also closely related to Liao et al. (2021a), where

they propose an IV-aided value iteration algorithm to study confounded MDPs in the

offline setting. It is worth mentioning that they only consider the finite-horizon MDP,
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where the transition dynamics is a linear function of some known feature map. In the

meanwhile, to ensure identifiability, they assume that the unobserved confounders are

Gaussian noise, which does not affect the immediate reward and only affect the transi-

tion dynamics in an additive manner. In contrast, we consider infinite-horizon confounded

MDP without such specific assumptions on the structure of the model, which brings signif-

icant technical challenges. With unobserved confounders, Kallus and Zhou (2020) study

off-policy evaluation in the infinite-horizon setting based on sensitivity analysis, which

imposes additional assumptions on how strong the unobserved confounding can possibly

be. Bennett et al. (2021) also study off-policy evaluation in the infinite-horizon MDP via

a conditional moment restriction. In the meanwhile, to ensure identifiability, Namkoong

et al. (2020) consider the case where the unmeasured confounders affect only one of the

decisions made.

Our work is also related to the line of research on policy evaluation and policy learn-

ing in the offline setting assuming unconfoundedness. In terms of off-policy evaluation,

most works either employs a VF-based method (Ernst et al., 2005; Shi et al., 2020; Liao

et al., 2021b; Uehara et al., 2021), or an MIS-based method (Liu et al., 2018; Nachum

et al., 2019; Zhang et al., 2020; Wang et al., 2021a; Uehara et al., 2021). Our work is also

related to research that propose DR estimators in off-policy evaluation. See Jiang and

Li (2016); Thomas and Brunskill (2016); Tang et al. (2019); Kallus and Uehara (2020);

Uehara et al. (2020); Kallus and Uehara (2022) for this line of research. As for policy

learning in the offline setting, Munos and Szepesvári (2008)and Antos et al. (2008b) prove

that fitted value and policy iterations converge to an optimal policy under the data cov-

erage assumption and realizability assumption for all policies, respectively. By employing
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pessimism, Xie et al. (2021) guarantee a near-optimal policy under the realizability and

the completeness assumptions for all policies, while Jiang and Huang (2020) provide a

similar guarantee under the data coverage assumption for the optimal policy and the

realizability assumption for all policies. More recently, Zhan et al. (2022) claims that

they can learn a near-optimal policy under the data coverage and realizability assump-

tions for the optimal policy. Their method is built upon a regularized version of the LP

formulation of MDPs and thus working on a class of regularized policies. However, due

to regularization, the policy learned by Zhan et al. (2022) is typically suboptimal even

given infinite data. Moreover, their realizability assumption is imposed on the regular-

ized value function, making it difficult to interpret and compare with other works. In

contrast, our work still focuses on a non-regularized setting under standard realizability

and data coverage assumptions, even under the presence of unobserved confounders and

non-stationary dependent observational data.
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CHAPTER 2

Single-Timescale Actor-Critic Provably Finds Globally Optimal

Policy

2.1. Background

In this section, we introduce the background on discounted Markov decision processes

(MDPs) and actor-critic methods.

Notation. We denote by [n] the set {1, 2, . . . , n}. For any measure ν and 1 ≤ p ≤ ∞,

we denote by ∥f∥ν,p = (
∫
X |f(x)|

pdν)1/p and ∥f∥p = (
∫
X |f(x)|

pdµ)1/p, where µ is the

Lebesgue measure.

2.1.1. Discounted MDP

A discounted MDP is defined by a tuple (S,A, P, ζ,R, γ). Here S and A are the state

and action spaces, respectively, P : S × S × A → [0, 1] is the Markov transition kernel,

ζ : S → [0, 1] is the initial state distribution, R : S × A → R is the deterministic reward

function, and γ ∈ [0, 1) is the discount factor. A policy π(a | s) measures the probability

of taking the action a at the state s. We focus on a family of parameterized policies

defined as follows,

Π = {πθ(· | s) ∈ P(A) : s ∈ S},(2.1.1)
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where P(A) is the probability simplex on the action space A and θ is the parameter of

the policy πθ. For any state-action pair (s, a) ∈ S×A, we define the action-value function

as follows,

Qπ(s, a) = (1− γ) · Eπ

[ ∞∑
t=0

γt · R(st, at)
∣∣∣ s0 = s, a0 = a

]
,(2.1.2)

where st+1 ∼ P (· | st, at) and at+1 ∼ π(· | st+1) for any t ≥ 0. We use Eπ[·] to denote that

the actions follow the policy π, which further affect the transition of the states. We aim to

find an optimal policy π∗ such that Qπ∗
(s, a) ≥ Qπ(s, a) for any policy π and state-action

pair (s, a) ∈ S × A. That is to say, such an optimal policy π∗ attains a higher expected

total reward than any other policy π, regardless of the initial state-action pair (s, a). For

notational convenience, we denote by Q∗(s, a) = Qπ∗
(s, a) for any (s, a) ∈ S×A hereafter.

Meanwhile, we denote by νπ(s) and ρπ(s, a) = νπ(s) · π(a | s) the stationary state

distribution and stationary state-action distribution of the policy π, respectively, for any

(s, a) ∈ S × A. Correspondingly, we denote by ν∗(s) and ρ∗(s, a) the stationary state

distribution and stationary state-action distribution of the optimal policy π∗, respectively,

for any (s, a) ∈ S × A. For ease of presentation, given any functions g1 : S → R and

g2 : S ×A → R, we define two operators P and Pπ as follows,

[Pg1](s, a) = E[g1(s1) | s0 = s, a0 = a], [Pπg2](s, a) = Eπ[g2(s1, a1) | s0 = s, a0 = a],

(2.1.3)

where s1 ∼ P (· | s0, a0) and a1 ∼ π(· | s1). Intuitively, given the current state-action

pair (s0, a0), the operator P pushes the agent to its next state s1 following the Markov
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transition kernel P (· | s0, a0), while the operator Pπ pushes the agent to its next state-

action pair (s1, a1) following the Markov transition kernel P (· | s0, a0) and policy π(· | s1).

These operators also relate to the Bellman evaluation operator T π, which is defined for

any function g : S ×A → R as follows,

T πg = (1− γ) · R+ γ · Pπg.(2.1.4)

The Bellman evaluation operator T π is used to characterize the actor-critic method in

the following section. By the definition in (2.1.2), it is straightforward to verify that the

action-value function Qπ is the fixed point of the Bellman evaluation operator T π defined

in (2.1.4), that is, Qπ = T πQπ for any policy π. For notational convenience, we let Pℓ

denote the ℓ-fold composition PP · · ·P︸ ︷︷ ︸
ℓ

. Such notation is also adopted for other linear

operators such as Pπ and T π.

2.1.2. Actor-Critic Method

To obtain an optimal policy π∗, the actor-critic method (Konda and Tsitsiklis, 2000) aims

to maximize the expected total reward as a function of the policy, which is equivalent to

solving the following maximization problem,

max
π∈Π

J(π) = Es∼ζ,a∼π(· | s)
[
Qπ(s, a)

]
,(2.1.5)

where ζ is the initial state distribution, Qπ is the action-value function defined in (2.1.2),

and the family of parameterized polices Π is defined in (2.1.1). The actor-critic method

solves the maximization problem in (2.1.5) via first-order optimization using an estimator

of the policy gradient ∇θJ(π). Here θ is the parameter of the policy π. In detail, by the
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policy gradient theorem (Sutton et al., 2000), we have

∇θJ(π) = E(s,a)∼ϱπ

[
Qπ(s, a) · ∇θ log π(a | s)

]
.(2.1.6)

Here ϱπ is the state-action visitation measure of the policy π, which is defined as ϱπ(s, a) =

(1 − γ) ·
∑∞

t=0 γ
t · Pr[st = s, at = a]. Based on the closed form of the policy gradient in

(2.1.6), the actor-critic method consists of the following two parts: (i) the critic update,

where a policy evaluation algorithm is invoked to estimate the action-value function Qπ,

e.g., by applying the Bellman evaluation operator T π to the current estimator of Qπ, and

(ii) the actor update, where a policy improvement algorithm, e.g., the policy gradient

method, is invoked using the updated estimator of Qπ.

In this paper, we consider the following variant of the actor-critic method,

πk+1 ← argmax
π∈Π

Eνπk

[
⟨Qk(s, ·), π(· | s)⟩ − β ·KL

(
π(· | s) ∥ πk(· | s)

)]
,

Qk+1(s, a)← Eπk+1

[
(1− γ) · R(s0, a0) + γ ·Qk(s1, a1)

∣∣ s0 = s, a0 = a
]
,(2.1.7)

for any (s, a) ∈ S × A, where s1 ∼ P (· | s0, a0), a1 ∼ πk+1(· | s1), and we write Eνπk
[·] =

Es∼νπk
[·] for notational convenience. Here Π is defined in (2.1.1) and KL(π(· | s) ∥ πk(· | s))

is the Kullback-Leibler (KL) divergence between π(· | s) and πk(· | s), which is defined for

any s ∈ S as follows,

KL
(
π(· | s) ∥ πk(· | s)

)
=
∑
a∈A

log
( π(a | s)
πk(a | s)

)
· π(a | s).

In (2.1.7), the actor update uses the proximal policy optimization (PPO) method (Schul-

man et al., 2017), while the critic update applies the Bellman evaluation operator T πk+1
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defined in (2.1.4) to Qk only once, which is the current estimator of the action-value

function. Furthermore, we remark that the updates in (2.1.7) provide a general frame-

work in the following two aspects. First, the critic update can be extended to letting

Qk+1 ← (T πk+1)τQk for any fixed τ ≥ 1, which corresponds to updating the value func-

tion via τ -step rollouts following πk+1. Here we only focus on the case with τ = 1 for

simplicity. Our theory can be easily modified for any fixed τ . Moreover, the KL divergence

used in the actor step can also be replaced by other Bregman divergences between prob-

ability distributions over A. Second, the actor and critic updates in (2.1.7) is a general

template that admits both on- and off-policy evaluation methods and various function

approximators in the actor and critic. In the next section, we present an incarnation of

(2.1.7) with on-policy sampling and linear and neural network function approximation.

Furthermore, for analyzing the actor-critic method, most existing works (Yang et al.,

2019a; Wang et al., 2019; Agarwal et al., 2019; Fu et al., 2019; Liu et al., 2019) rely

on (approximately) obtaining Qπk+1 at each iteration, which is equivalent to applying

the Bellman evaluation operator T πk+1 infinite times to Qk. This is usually achieved by

minimizing the mean-squared Bellman error ∥Q − T πk+1Q∥2ρπk+1
,2 using stochastic semi-

gradient descent, e.g., as in the temporal-difference method (Sutton, 1988), to update the

critic for sufficiently many iterations. The unique global minimizer of the mean-squared

Bellman error gives the action-value function Qπk+1 , which is used in the actor update.

Meanwhile, the two-timescale setting is also considered in existing works (Borkar and

Konda, 1997; Konda and Tsitsiklis, 2000; Xu et al., 2019, 2020; Wu et al., 2020; Hong

et al., 2020), which require the actor to be updated more slowly than the critic in an
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asymptotic sense. Such a requirement is usually satisfied by forcing the ratio between the

stepsizes of the actor and critic updates to go to zero asymptotically.

In comparison with the setting with bi-level updates, we consider the single-timescale

actor and critic updates in (2.1.7), where the critic involves only one step of update, that is,

applying the Bellman evaluation operator T π to Qk only once. Meanwhile, in comparison

with the two-timescale setting, where the actor and critic are updated simultaneously but

with the ratio between their stepsizes asymptotically going to zero, the single-timescale

setting is able to achieve a faster rate of convergence by allowing the actor to be updated

with a larger stepsize, while updating the critic simultaneously. In particular, such a

single-timescale setting better captures a broader range of practical algorithms (Peters and

Schaal, 2008a; Schulman et al., 2015; Mnih et al., 2016; Schulman et al., 2017; Haarnoja

et al., 2018), where the stepsize of the actor is not asymptotically zero. In §2.2, we

discuss the implementation of the updates in (2.1.7) for different schemes of function

approximation. In §2.3, we compare the rates of convergence between the two-timescale

and single-timescale settings.

2.2. Algorithms

We consider two settings, where the actor and critic are parameterized using linear

functions and deep neural networks, respectively. We consider the energy-based policy

πθ(a | s) ∝ exp(τ−1fθ(s, a)), where the energy function fθ(s, a) is parameterized with

the parameter θ. Also, for the (estimated) action-value function, we consider the pa-

rameterization Qω(s, a) for any (s, a) ∈ S × A, where ω is the parameter. For such

parameterizations of the actor and critic, the updates in (2.1.7) have the following forms.
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Actor Update. The following proposition gives the closed form of πk+1 in (2.1.7).

Proposition 2.2.1. Let πθk(a | s) ∝ exp(τ−1
k fθk(s, a)) be an energy-based policy and

π̃k+1 = argmax
π

Eνk

[
⟨Qωk

(s, ·), π(· | s)⟩ − β ·KL
(
π(· | s) ∥ πθk(· | s)

)]
.

Then π̃k+1 has the following closed form,

π̃k+1(a | s) ∝ exp
(
β−1Qωk

(s, a) + τ−1
k fθk(s, a)

)
,

for any (s, a) ∈ S ×A, where νk = νπθk
is the stationary state distribution of πθk .

Proof. See §A.5.1 for a detailed proof. □

Motivated by Proposition 2.2.1, to implement the actor update in (2.1.7), we update

the actor parameter θ by solving the following minimization problem,

θk+1 ← argmin
θ

Eρk

[(
fθ(s, a)− τk+1 ·

(
β−1Qωk

(s, a) + τ−1
k fθk(s, a)

))2]
,(2.2.1)

where ρk = ρπθk
is the stationary state-action distribution of πθk .

Critic Update. To implement the critic update in (2.1.7), we update the critic parameter

ω by solving the following minimization problem,

ωk+1 ← argmin
ω

Eρk+1

[(
[Qω − (1− γ) · R − γ · Pπθk+1Qωk

](s, a)
)2]
,(2.2.2)

where ρk+1 = ρπθk+1
is the stationary state-action distribution of πθk+1

and the operator

Pπ is defined in (2.1.3).
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2.2.1. Linear Function Approximation

In this section, we consider linear function approximation. More specifically, we parame-

terize the action-value function using Qω(s, a) = ω⊤φ(s, a) and the energy function of the

energy-based policy πθ using fθ(s, a) = θ⊤φ(s, a). Here φ(s, a) ∈ Rd is the feature vector,

where d > 0 is the dimension. Without loss of generality, we assume that ∥φ(s, a)∥2 ≤ 1

for any (s, a) ∈ S ×A, which can be achieved by normalization.

Actor Update. The minimization problem in (2.2.1) admits the following closed-form

solution,

θk+1 = τk+1 · (β−1ωk + τ−1
k θk),(2.2.3)

which corresponds to a step of the natural policy gradient method (Kakade, 2002).

Critic Update. The minimization problem in (2.2.2) admits the following closed-form

solution,

ω̃k+1 =
(
Eρk+1

[φ(s, a)φ(s, a)⊤]
)−1 · Eρk+1

[
[(1− γ) · R+ γ · Pπθk+1Qωk

](s, a) · φ(s, a)
]
.

(2.2.4)

Since the closed-form solution ω̃k+1 in (2.2.4) involves the expectation over the stationary

state-action distribution ρk+1 of πθk+1
, we use data to approximate such an expectation.

More specifically, we sample {(sℓ,1, aℓ,1)}ℓ∈[N ] and {(sℓ,2, aℓ,2, rℓ,2, s′ℓ,2, a′ℓ,2)}ℓ∈[N ] such that

(sℓ,1, aℓ,1) ∼ ρk+1, (sℓ,2, aℓ,2) ∼ ρk+1, rℓ,2 = R(sℓ,2, aℓ,2), s′ℓ,2 ∼ P (· | sℓ,2, aℓ,2), and a′ℓ,2 ∼

πθk+1
(· | s′ℓ,2), where N is the sample size. We approximate ω̃k+1 using ωk+1, which is
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defined as follows,

ωk+1 = ΓR

{( N∑
ℓ=1

φ(sℓ,1, aℓ,1)φ(sℓ,1, aℓ,1)
⊤
)−1

(2.2.5)

·
N∑
ℓ=1

(
(1− γ) · rℓ,2 + γ ·Qωk

(s′ℓ,2, a
′
ℓ,2)
)
· φ(sℓ,2, aℓ,2)

}
.

Here ΓR is the projection operator, which projects the parameter onto the centered ball

with radius R in Rd. Such a projection operator stabilizes the algorithm (Konda and

Tsitsiklis, 2000; Bhatnagar et al., 2009). It is worth mentioning that one may also view

the update in (2.2.5) as one step of the least-squares temporal difference method (Bradtke

and Barto, 1996), which can be modified for the off-policy setting (Antos et al., 2007; Yu,

2010; Liu et al., 2018; Nachum et al., 2019; Xie et al., 2019; Zhang et al., 2020; Uehara

and Jiang, 2019; Nachum and Dai, 2020). Such a modification allows the data points

in (2.2.5) to be reused in the subsequent iterations, which further improves the sample

complexity. Specifically, let ρbhv ∈ P(S × A) be the stationary state-action distribution

induced by a behavioral policy πbhv. We replace the actor and critic updates in (2.2.1)

and (2.2.2) by

θk+1 ← argmin
θ

Eρbhv

[(
fθ(s, a)− τk+1 ·

(
β−1Qωk

(s, a) + τ−1
k fθk(s, a)

))2]
,(2.2.6)

ωk+1 ← argmin
ω

Eρbhv

[(
[Qω − (1− γ) · R − γ · Pπθk+1Qωk

](s, a)
)2]
,(2.2.7)
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respectively. With linear function approximation, the actor update in (2.2.6) is reduced

to (2.2.3), while the critic update in (2.2.7) admits a closed form solution

ω̃k+1 =
(
Eρbhv [φ(s, a)φ(s, a)

⊤]
)−1 · Eρbhv

[
[(1− γ) · R+ γ · Pπθk+1Qωk

](s, a) · φ(s, a)
]
,

which can be well approximated using state-action pairs drawn from ρbhv. See §2.3 for a

detailed discussion.

Finally, by assembling the updates in (2.2.3) and (2.2.5), we present the linear actor-

critic method in Algorithm 1 as follows.

Algorithm 1 Linear Actor-Critic Method

Input: Number of iterations K, sample size N , temperature parameter β.
Initialization: Set τ0 ← ∞, and randomly initialize the actor parameter θ0 and the
critic parameter ω0.
for k = 0, 1, 2, . . . , K do

Actor Update: Update θk+1 via (2.2.3) with τ−1
k+1 = (k + 1) · β−1.

Critic Update: Sample {(sℓ,1, aℓ,1)}ℓ∈[N ] and {(sℓ,2, aℓ,2, rℓ,2, s′ℓ,2, a′ℓ,2)}ℓ∈[N ] as spec-
ified in §2.2.1. Update ωk+1 via (2.2.5).
end for
Output: {πθk}k∈[K+1], where πθk ∝ exp(τ−1

k fθk).

2.2.2. Deep Neural Network Approximation

In this section, we consider deep neural network approximation. We first formally define

deep neural networks. Then we introduce the actor-critic method under such a parame-

terization.
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A deep neural network (DNN) uθ(x) with the input x ∈ Rd, depth H, and width m is

defined as

x(0) = x, x(h) =
1√
m
· σ(W⊤

h x
(h−1)), for h ∈ [H], uθ(x) = b⊤x(H).(2.2.8)

Here σ : Rm → Rm is the rectified linear unit (ReLU) activation function, which is define

as σ(y) = (max{0, y1}, . . . ,max{0, ym})⊤ for any y = (y1, . . . , ym)
⊤ ∈ Rm. Also, we

have b ∈ {−1, 1}m, W1 ∈ Rd×m, and Wh ∈ Rm×m for 2 ≤ h ≤ H. Meanwhile, we

denote the parameter of the DNN uθ as θ = (vec(W1)
⊤, . . . , vec(WH)

⊤)⊤ ∈ Rmall with

mall = md + (H − 1)m2. We call {Wh}h∈[H] the weight matrices of θ. Without loss of

generality, we normalize the input x such that ∥x∥2 = 1.

We initialize the DNN such that each entry of Wh follows the standard Gaussian

distribution N (0, 1) for any h ∈ [H], while each entry of b follows the uniform distribu-

tion Unif({−1, 1}). Without loss of generality, we fix b during training and only optimize

{Wh}h∈[H]. We denote the initialization of the parameter θ as θ0 = (vec(W 0
1 )

⊤, . . . , vec(W 0
H)

⊤)⊤.

Meanwhile, we restrict θ within the ball B(θ0, R) during training, which is defined as fol-

lows,

B(θ0, R) =
{
θ ∈ Rmall : ∥Wh −W 0

h∥F ≤ R, for h ∈ [H]
}
.(2.2.9)

Here {Wh}h∈[H] and {W 0
h}h∈[H] are the weight matrices of θ and θ0, respectively. By

(2.2.9), we have ∥θ − θ0∥2 ≤ R
√
H for any θ ∈ B(θ0, R). Now, we define the family of

DNNs as

U(m,H,R) =
{
uθ : θ ∈ B(θ0, R)

}
,(2.2.10)
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where uθ is a DNN with depth H and width m.

We parameterize the action-value function using Qω(s, a) ∈ U(mc, Hc, Rc) and the

energy function of the energy-based policy πθ using fθ(s, a) ∈ U(ma, Ha, Ra). Here

U(mc, Hc, Rc) and U(ma, Ha, Ra) are the families of DNNs defined in (2.2.10). Here-

after we assume that the energy function fθ and the action-value function Qω share the

same architecture and initialization, i.e., ma = mc, Ha = Hc, Ra = Rc, and θ0 = ω0. Such

shared architecture and initialization of the DNNs ensure that the parameterizations of

the policy and the action-value function are approximately compatible. See Sutton et al.

(2000); Konda and Tsitsiklis (2000); Kakade (2002); Peters and Schaal (2008a); Wang

et al. (2019) for a detailed discussion.

Actor Update. To solve (2.2.1), we use projected stochastic gradient descent, whose

n-th iteration has the following form,

θ(n+ 1)←ΓB(θ0,Ra)

(
θ(n)

− α ·
(
fθ(n)(s, a)− τk+1 ·

(
β−1Qωk

(s, a) + τ−1
k fθk(s, a)

))
· ∇θfθ(n)(s, a)

)
.

Here ΓB(θ0,Ra) is the projection operator, which projects the parameter onto the ball

B(θ0, Ra) defined in (2.2.9). The state-action pair (s, a) is sampled from the stationary

state-action distribution ρk. We summarize the update in Algorithm 5, which is deferred

to §A.1 of the appendix.

Critic Update. To solve (2.2.2), we apply projected stochastic gradient descent. More

specifically, at the n-th iteration of projected stochastic gradient descent, we sample a

tuple (s, a, r, s′, a′), where (s, a) ∼ ρk+1, r = R(s, a), s′ ∼ P (· | s, a), and a′ ∼ πθk+1
(· | s′).
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We define the residual at the n-th iteration as δ(n) = Qω(n)(s, a)−(1−γ)·r−γ ·Qωk
(s′, a′).

Then the n-th iteration of projected stochastic gradient descent has the following form,

ω(n+ 1)← ΓB(ω0,Rc)

(
ω(n)− η · δ(n) · ∇ωQω(n)(s, a)

)
.

Here ΓB(ω0,Rc) is the projection operator, which projects the parameter onto the ball

B(ω0, Rc) defined in (2.2.9). We summarize the update in Algorithm 6, which is deferred

to §A.1 of the appendix.

By assembling Algorithms 5 and 6, we present the deep neural actor-critic method in

Algorithm 4, which is deferred to §A.1 of the appendix.

Finally, we remark that the off-policy actor and critic updates given in (2.2.6) and

(2.2.7) can also incorporate deep neural network approximation with a slight modification,

which enables data reuse in the algorithm.

2.3. Theoretical Results

In this section, we upper bound the regret of the linear actor-critic method. We defer

the analysis of the deep neural actor-critic method to §A.2 of the appendix. Hereafter we

assume that |R(s, a)| ≤ Rmax for any (s, a) ∈ S × A, where Rmax is a positive absolute

constant. First, we impose the following assumptions. Recall that ρ∗ is the stationary

state-action distribution of π∗, while ρk is the stationary state-action distribution of πθk .

Moreover, let ρ ∈ P(S×A) be a state-action distribution with respect to which we aim to

characterize the performance of the actor-critic algorithm. Specifically, after K + 1 actor
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updates, we are interest in upper bounding the following regret

E
[ K∑
k=0

(
∥Q∗ −Qπθk+1∥ρ,1

)]
= E

[ K∑
k=0

(
Q∗(s, a)−Qπθk+1 (s, a)

)]
,(2.3.1)

where the expectation is taken with respect to {θk}k∈[K+1] and (s, a) ∼ ρ. Here we allow

ρ to be any fixed distribution for generality, which might be different from ρ∗.

Assumption 2.3.1 (Concentrability Coefficient). The following statements hold.

(i) There exists a positive absolute constant ϕ∗ such that ϕ∗
k ≤ ϕ∗ for any k ≥ 1,

where ϕ∗
k = ∥dρ∗/dρk∥ρk,2.

(ii) We assume that for any k ≥ 1 and a sequence of policies {πi}i≥1, the k-step

future-state-action distribution ρPπ1 · · ·Pπk is absolutely continuous with respect

to ρ∗, where ρ is the same as the one in (2.3.1) Also, it holds for such ρ that

Cρ,ρ∗ = (1− γ)2
∞∑
k=1

k2γk · c(k) <∞,

where c(k) = sup{πi}i∈[k]
∥d(ρPπ1 · · ·Pπk)/dρ∗∥ρ∗,∞.

In Assumption 2.3.1, Cρ,ρ∗ is known as the discounted-average concentrability coeffi-

cient of the future-state-action distributions. Similar assumptions are commonly imposed

in the literature (Szepesvári and Munos, 2005; Munos and Szepesvári, 2008; Antos et al.,

2008a,b; Scherrer, 2013; Scherrer et al., 2015; Farahmand et al., 2016; Yang et al., 2019c;

Geist et al., 2019; Chen and Jiang, 2019).

Assumption 2.3.2 (Zero Approximation Error). It holds for any ω, θ ∈ B(0, R) that

inf
ω̄∈B(0,R)

Eρπθ

[(
[T πθQω − ω̄⊤φ](s, a)

)2]
= 0,
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where T πθ is defined in (2.1.4).

Assumption 2.3.2 states that the Bellman evaluation operator maps a linear function

to a linear function. Such an assumption only aims to simplify the presentation of our

results. If the approximation error is nonzero, we only need to incorporate an additional

bias term into the rate of convergence.

Assumption 2.3.3 (Well-Conditioned Feature). The minimum singular value of the

matrix Eρk [φ(s, a)φ(s, a)
⊤] is uniformly lower bounded by a positive absolute constant σ∗

for any k ≥ 1.

Assumption 2.3.3 ensures that the minimization problem in (2.2.2) admits a unique

minimizer, which is used in the critic update. Similar assumptions are commonly imposed

in the literature (Bhandari et al., 2018; Zou et al., 2019).

Under Assumptions 2.3.1, 2.3.2, and 2.3.3, we upper bound the regret of Algorithm 1

in the following theorem.

Theorem 2.3.4. We assume that Assumptions 2.3.1, 2.3.2, and 2.3.3 hold. Let ρ be

a state-action distribution satisfying (ii) of Assumption 2.3.1. Also, for any confidence

parameter δ ∈ (0, 1) and sufficiently large number of iterations K > 0, let β = K1/2,

N = Ω(KC2
ρ,ρ∗ ·(ϕ∗/σ∗)2 · log2(KN/δ)), and the sequence of policy parameters {θk}k∈[K+1]

be generated by Algorithm 1. It holds with probability at least 1− δ that

Eρ

[ K∑
k=0

(
Q∗(s, a)−Qπθk+1 (s, a)

)]
≤
(
2(1− γ)−3 · log |A|+O(1)

)
·K1/2,(2.3.2)

where the expectation is taken with respect (s, a) ∼ ρ.

Proof. We sketch the proof in §2.4. See §A.3.1 for a detailed proof. □
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Theorem 2.3.4 establishes an O(K1/2) regret of Algorithm 1, where K is the total

number of iterations. Here O(·) omits terms involving (1 − γ)−1 and log |A|. To better

understand Theorem 2.3.4, we consider the ideal setting, where we have access to the

action-value function Qπ of any policy π. In such an ideal setting, the critic update is

unnecessary. However, the natural policy gradient method, which only uses the actor

update, achieves the same O(K1/2) regret (Liu et al., 2019; Agarwal et al., 2019; Cai

et al., 2019). In other words, in terms of the iteration complexity, Theorem 2.3.4 shows

that in the single-timescale setting, using only one step of the critic update along with

one step of the actor update is as efficient as the natural policy gradient method in the

ideal setting.

Furthermore, by the regret bound in (2.3.2), to obtain an ε-globally optimal policy, it

suffices to set K ≍ (1−γ)−6 ·ε−2 · log2 |A| in Algorithm 1 and output a randomized policy

that is drawn from {πθk}K+1
k=1 uniformly. Plugging such a K into N = Ω(KC2

ρ,ρ∗(ϕ
∗/σ∗)2 ·

log2(KN/δ))), we obtain that N = Õ(ε−2), where Õ(·) omits the logarithmic terms.

Thus, to achieve an ε-globally optimal policy, the total sample complexity of Algorithm

1 is Õ(ε−4). This matches the sample complexity results established in Xu et al. (2020);

Hong et al. (2020) for two-timescale actor-critic methods. Meanwhile, notice that here

the critic updates are on-policy and we draw N new data points in each critic update.

As discussed in §2.2.1, under the off-policy setting, the critic updates given in (2.2.7)

can be implemented using a fixed dataset sampled from ρbhv, the stationary state-action

distribution induced by the behavioral policy. Under this scenario, the total number

of data points used by the algorithm is equal to N . Moreover, by imposing similar

assumptions on ρbhv as in (i) of Assumption 2.3.1 and Assumption 2.3.3, we can establish
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a similar O(K1/2) regret as in (2.3.2) for the off-policy setting. As a result, with data

reuse, to obtain an ε-globally optimal policy, the sample complexity of Algorithm 1 is

essentially Õ(ε−2), which demonstrates the advantage of our single-timescale actor-critic

method. Besides, only focusing on the convergence to an ε-stationary point, Wu et al.

(2020); Xu et al. (2020) establish the sample complexity of Õ(ε−5/2) for two-timescale

actor-critic, where ε measures the squared Euclidean norm of the policy gradient. In

contrast, by adopting the natural policy gradient (Kakade, 2002) in actor updates, we

achieve convergence to the globally optimal policy. To the best of our knowledge, we

establish the rate of convergence and global optimality of the actor-critic method with

function approximation in the single-timescale setting for the first time.

Furthermore, as we will show in Theorem A.2.5 of §A.1, when both the actor and the

critic are represented using overparameterized deep neural networks, we establish a similar

O((1 − γ)−3 · log |A| · K1/2) regret when the architecture of the actor and critic neural

networks are properly chosen. To our best knowledge, this seems the first theoretical

guarantee for the actor-critic method with deep neural network function approximation

in terms of the rate of convergence and global optimality.

2.4. Proof Sketch of Theorem 2.3.4

In this section, we sketch the proof of Theorem 2.3.4. Recall that ρ is a state-action

distribution satisfying (ii) of Assumption 2.3.1. We first upper bound
∑K

k=0(Q
∗(s, a) −

Qπθk+1 (s, a)) for any (s, a) ∈ S × A in part 1. Then by further taking the expectation

over ρ in part 2, we conclude the proof of Theorem 2.3.4. See §A.3.1 for a detailed proof.
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Part 1. In the sequel, we upper bound
∑K

k=0(Q
∗(s, a)−Qπθk+1 (s, a)) for any (s, a) ∈ S×A.

We first decompose Q∗ −Qπθk+1 into the following three terms,

K∑
k=0

[Q∗ −Qπθk+1 ](s, a) =
K∑
k=0

[
(I − γPπ∗

)−1(A1,k + A2,k + A3,k)
]
(s, a),(2.4.1)

the proof of which is deferred to (A.3.1) and (A.3.2) in §A.3.1 of the appendix. Here the

operator Pπ∗
is defined in (2.1.3), (I − γPπ∗

)−1 =
∑∞

i=0(γPπ∗
)i, and A1,k, A2,k, and A3,k

are defined as follows,

A1,k(s, a) = [γ(Pπ∗ − Pπθk+1 )Qωk
](s, a),(2.4.2)

A2,k(s, a) =
[
γPπ∗

(Qπθk+1 −Qωk
)
]
(s, a),(2.4.3)

A3,k(s, a) = [T πθk+1Qωk
−Qπθk+1 ](s, a).(2.4.4)

To understand the intuition behind A1,k, A2,k, and A3,k, we interpret them as follows.

Interpretation of A1,k. As defined in (2.4.2), A1,k arises from the actor update and

measures the convergence of the policy πθk+1
towards a globally optimal policy π∗, which

implies the convergence of Pπθk+1 towards Pπ∗
.

Interpretation of A3,k. Note that by (2.1.2) and (2.1.4), we have Qπθk+1 = T πθk+1Qπθk+1

and T πθk+1 is a γ-contraction, which implies that applying the Bellman evaluation operator

T πθk+1 to any Q, e.g., Qωk
, infinite times yields Qπθk+1 . As defined in (2.4.4), A3,k measures

the error of tracking the action-value function Qπθk+1 of πθk+1
by applying the Bellman

evaluation operator T πθk+1 to Qωk
only once, which arises from the critic update. Also,

as A3,k = T πθk+1 (Qωk
− Qπθk+1 ), A3,k measures the difference between Qπθk , which is

approximated by Qωk
as discussed subsequently, and Qπθk+1 . Such a difference can also
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be viewed as the difference between πθk and πθk+1
, which arises from the actor update.

Therefore, the convergence of A3,k to zero implies the contractions of not only the critic

update but also the actor update, which illustrates the “double contraction” phenomenon.

We establish the convergence of A3,k to zero in (2.4.10) subsequently.

Interpretation of A2,k. Assuming that A3,k−1 converges to zero, we have T πθkQωk−1
≈

Qπθk . Moreover, assuming that the number of data points N is sufficiently large and

ignoring the projection in (2.2.5), we have T πθkQωk−1
= Qω̃k

≈ Qωk
as ω̃k defined in

(2.2.4) is an estimator of ωk. Hence, we have Qπθk ≈ Qωk
. Such an approximation error

is characterized by ϵck defined in (2.4.5) subsequently. Hence, A2,k measures the difference

between πθk and πθk+1
through the difference between Qπθk ≈ Qωk

and Qπθk+1 , which relies

on the convergence of A3,k−1 to zero.

In the sequel, we upper bound A1,k, A2,k, and A3,k, respectively. To establish such

upper bounds, we define the following quantities,

ϵck+1(s, a) = [T πθk+1Qωk
−Qωk+1

](s, a),(2.4.5)

ek+1(s, a) = [Qωk
− T πθk+1Qωk

](s, a),(2.4.6)

ϑk(s) = KL
(
π∗(· | s) ∥ πθk(· | s)

)
−KL

(
π∗(· | s) ∥ πθk+1

(· | s)
)
.(2.4.7)

To understand the intuition behind ϵck+1, ek+1, and ϑk, we interpret them as follows.

Interpretation of ϵck+1. Recall that ω̃k+1 is defined in (2.2.4), which parameterizes

T πθk+1Qωk
(ignoring the projection in (2.2.5)). Here ϵck+1 arises from approximating ω̃k+1

using ωk+1 as an estimator, which is constructed based on ωk and the N data points. In
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Actor Update:

Figure 2.1. Illustration of the relationship among A1,k, A2,k, A3,k, ϵ
c
k+1,

ek+1, and ϑk. Here {θk, ωk} and {θk+1, ωk+1} are two consecutive iterates of
actor-critic. The red arrow from Qωk

to Qωk+1
represents the critic update

and the red arrow from Qπθk to Qπθk+1 represents the action-value functions
associated with the two policies in any actor update. Here ϑk given in
(2.4.7) quantifies the difference between πθk and πθk+1

in terms of their KL
distances to π∗. In addition, the cyan arrows represent quantities A1,k, A2,k,
and A3,k introduced in (2.4.2)–(2.4.4), which are intermediate terms used
for analyzing the error Q∗ −Qπk+1 . Finally, the blue arrows represent εck+1

and ek+1 defined in (2.4.5) and (2.4.6), respectively. Here εck+1 corresponds
to the statistical error due to having finite data whereas ek+1 essentially
quantifies the difference between πθk and πθk+1

.

particular, ϵck+1 decreases to zero as N →∞, which is used in characterizing A2,k defined

in (2.4.3).

Interpretation of ek+1. Assuming that A3,k−1 defined in (2.4.4) and ϵck defined in (2.4.5)

converge to zero, which implies T πθkQωk−1
≈ Qπθk and T πθkQωk−1

≈ Qωk
, respectively, we

have Qωk
≈ Qπθk . Therefore, as defined in (2.4.6), ek+1 = Qωk

− T πθk+1Qωk
≈ Qπθk −
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T πθk+1Qπθk = (T πθk − T πθk+1 )Qπθk measures the difference between πθk and πθk+1
, which

implies the difference between T πθk and T πθk+1 . We remark that ek+1 fully characterizes

A3,k defined in (2.4.4) as shown in (2.4.8) subsequently.

Interpretation of ϑk. As defined in (2.4.7), ϑk measures the difference between πθk

and πθk+1
in terms of their differences with π∗, which are measured by the corresponding

KL-divergences. In particular, ϑk is used in characterizing A1,k and A2,k defined in (2.4.2)

and (2.4.3), respectively.

We remark that ϵck+1 measures the statistical error in the critic update, while ϑk mea-

sures the optimization error in the actor update. As discussed above, the convergence of

A3,k to zero implies the contraction of both the actor update and the critic update, which

illustrates the “double contraction” phenomenon. Meanwhile, since ek+1 fully character-

izes A3,k as shown in (2.4.8) subsequently, ek+1 plays a key role in the “double contraction”

phenomenon. In particular, the convergence of ek+1 to zero is established in (2.4.9) sub-

sequently. See Figure 2.1 for an illustration of these quantities.

With the quantities defined in (2.4.5), (2.4.6), and (2.4.7), we upper bound A1,k, A2,k,

and A3,k as follows,

A1,k(s, a) ≤ γβ · [Pϑk](s, a),

A2,k(s, a) ≤
[
(γPπ∗

)k+1(Q∗ −Qω0)
]
(s, a) + γβ ·

k−1∑
i=0

[
(γPπ∗

)k−iPϑi

]
(s, a)

+
k−1∑
i=0

[
(γPπ∗

)k−iϵci+1

]
(s, a),

A3,k(s, a) =
[
γPπθk+1 (I − γPπθk+1 )−1ek+1

]
(s, a),(2.4.8)
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the proof of which is deferred to Lemmas A.3.1, A.3.2, and A.3.3 in §A.3.1 of the appendix,

respectively. Meanwhile, by recursively expanding (2.4.5) and (2.4.6), we have

ek+1(s, a) ≤
[
γk
( k∏
s=1

Pπθs

)
e1 +

k∑
i=1

γk−i
( k∏
s=i+1

Pπθs

)
(I − γPπθi )ϵci

]
(s, a),(2.4.9)

the proof of which is deferred to Lemma A.3.4 in §A.3.1 of the appendix. By plugging

(2.4.9) into (2.4.8), we have

A3,k(s, a) ≤
[
γPπθk+1 (I − γPπθk+1 )−1

(
γk
( k∏
s=1

Pπθs

)
e1

(2.4.10)

+
k∑

i=1

γk−i
( k∏
s=i+1

Pπθs

)
(I − γPπθi )ϵci

)]
(s, a).

To better understand (2.4.10) and how it relates to the convergence of A3,k, A2,k, and A1,k

to zero, we discuss in the following two steps.

Step (i). We assume ϵci = 0, which corresponds to the number of data points N → ∞.

Then (2.4.10) yields A3,k = O(γk), which implies that A3,k defined in (2.4.4) converges

to zero driven by the discount factor γ. As discussed above, the convergence of A3,k

to zero also implies the contraction between πθk and πθk+1
of the actor update and the

contraction between Qωk
and Qπθk of the critic update, which illustrates the “double

contraction” phenomenon.

Step (ii). The convergence of A3,k to zero further ensures that A2,k converges to zero. To

see this, we further assume A3,k = 0, which together with the assumption that ϵck+1 = 0
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implies Qπθk+1 = T πθk+1Qωk
= Qωk+1

by their definitions in (2.4.4) and (2.4.5), respec-

tively. Then by telescoping the sum of A2,k defined in (2.4.3), which cancels out Qωk+1
and

Qπθk+1 , we obtain the convergence of A2,k to zero. Meanwhile, telescoping the sum of A1,k

defined in (2.4.2) and the sum of its upper bound in (2.4.8) implies that A1,k converges

to zero.

Now, by plugging (2.4.8) and (2.4.10) into (2.4.1), we establish an upper bound of∑K
k=0(Q

∗(s, a) − Qπθk+1 (s, a)) for any (s, a) ∈ S × A, which is deferred to (A.3.12) in

§A.3.1 of the appendix. Hence, we conclude the proof in part 1. See part 1 of §A.3.1 for

details.

Part 2. Recall that ρ is a state-action distribution satisfying (ii) of Assumption 2.3.1. In

the sequel, we take the expectation over ρ in (A.3.12) and upper bound each term. We

first introduce the following lemma, which upper bounds ϵck+1 defined in (2.4.5).

Lemma 2.4.1. Under Assumptions 2.3.2 and 2.3.3, with probability at least 1 − δ, it

holds for any k ∈ {0, 1, . . . , K} that

Eρk+1

[
ϵck+1(s, a)

2
]
= E

[(
Qωk+1

(s, a)− [T πθkQωk
](s, a)

)2]
≤ 32(Rmax +R)2

N(σ∗)4
· log2(NK/p+ dK/p),

where the expectation is taken with respect to (s, a) ∼ ρk+1.

Proof. See §A.6.1 for a detailed proof. □

On the right-hand side of (A.3.12) in §A.3.1 of the appendix, for the terms not involv-

ing ϵck+1, i.e., M1, M2, and M3 in (A.3.13), we take the expectation over ρ and establish

their upper bounds in the ℓ∞-norm over (s, a) in Lemma A.3.5. On the other hand, for
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the terms involving ϵck+1, i.e., M4 and M5 in (A.3.14), we take the expectation over ρ and

then change the measure from ρ to ρk+1. By Assumption 2.3.1 and Lemma 2.4.1, which

relies on ρk+1, we establish the upper bounds in Lemma A.3.6. See part 2 of §A.3.1 for

details.

Combining Lemmas A.3.5 and A.3.6 yields Theorem 2.3.4. See §A.3.1 for a detailed

proof.

2.5. Conclusion

In this paper, we analyze the actor-critic method in single-timescale setting with func-

tion approximation. We theoretically show that the method achieves an O(K1/2)-regret,

which appears to be the first success to provide upper bound of regret of the actor-

critic method in the single-timescale setting with function approximation. For future

research, we aim to extend our analysis to other variations of actor-critic setting, includ-

ing mean-field-type control tasks and games (Zhang et al., 2019b), risk-sensitive RL tasks

(Prashanth and Ghavamzadeh, 2013), and partially observed MDP (Bhatnagar, 2010).
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CHAPTER 3

Actor-Critic Provably Finds Nash Equilibria of

Linear-Quadratic Mean-Field Games

3.1. Linear-Quadratic Mean-Field Game

A linear-quadratic mean-field Na-player game involves Na ∈ N agents, whose state

transitions are given by

xit+1 = Axit +Buit + Axt + di + ωi
t, ∀t ≥ 0, i ∈ [Na].

Here A ∈ Rm×m, B ∈ Rm×k, and A ∈ Rm×m are matrices, xit ∈ Rm and uit ∈ Rk are the

state and action vectors of agent i, respectively, the vector di ∈ Rm is a drift term, ωi
t ∈ Rm

is an independent random noise term following the Gaussian distribution N (0,Ψω), and

xt = 1/Na ·
∑Na

j=1 x
j
t is the mean-field state. The agents are coupled through the mean-field

state xt. In the linear-quadratic mean-field Na-player game, the cost of agent i ∈ [Na] at

time t ≥ 0 is given by

cit = (xit)
⊤Qxit + (uit)

⊤Ruit + x⊤t Qxt,

where Q ∈ Rm×m, R ∈ Rk×k, and Q ∈ Rm×m are matrices, and uit is generated by πi, i.e.,

the policy of agent i. To measure the performance of agent i following its policy πi under
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the influence of the other agents, we define the expected total cost of agent i as

J i(π1, π2, . . . , πNa) = lim
T→∞

E

(
1

T

T∑
t=0

cit

)
.

We are interested in finding a Nash equilibrium (π1, π2, . . . , πNa), which is defined by

J i(π1, . . . , πi−1, πi, πi+1, . . . , πNa) ≤ J i(π1, . . . , πi−1, π̃i, πi+1, . . . , πNa), ∀π̃i, i ∈ [Na].

That is, agent i cannot further decrease its expected total cost by unilaterally deviating

from its Nash policy.

For the simplicity of discussion, we assume that the drift term di is identical for each

agent. We consider taking the infinite-population limit Na → ∞, where each agent has

an infinitesimal contribution to the dynamics of the system. Thus, the joint policy of all

the agents except agent i can be modeled as a mean-field policy π†, and all the agents

following such a mean-field policy π† generate the mean-field state Ex†t , where {x
†
t}t≥0

is generated following the policy π†. By the symmetry of the agents in terms of their

state transitions and cost functions, we focus on a fixed agent and drop the superscript i

hereafter.

Before we formally present the formulation of linear-quadratic mean-field games, we

first introduce the following mean-field LQR (MF-LQR) problem, which aims to find an

optimal policy for the fixed agent given the mean-field policy π†.
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Problem 3.1.1 (MF-LQR). Given the mean-field policy π†, we consider the following

formulation,

xt+1 = Axt +But + AEx†t + d+ ωt,

c(xt, ut) = x⊤t Qxt + u⊤t Rut + (Ex†t)⊤Q(Ex
†
t),

J(π, π†) = lim
T→∞

E

[
1

T

T∑
t=0

c(xt, ut)

]
,

where xt ∈ Rm is the state vector, ut ∈ Rk is the action vector generated by the policy π,

{x†t}t≥0 is the trajectory generated by the policy π†, ωt ∈ Rm is an independent random

noise term following the Gaussian distribution N (0,Ψω), and d ∈ Rm is a drift term.

Here the expectation Ex†t is taken across all the agents. We aim to find π∗ such that

J(π∗, π†) = infπ∈Π J(π, π
†).

Note that a controllable linear system using linear quadratic optimal control is always

stable. Further combining the fact that our linear closed-loop dynamics in Problem 3.1.1

is driven by the Gaussian noise term ωt, we know that the Markov chain of states gen-

erated by the policy π† admits a stationary distribution and converges to this stationary

distribution. This implies that the mean-field state Ex†t converges to a constant vector

µ† as t → ∞, which serves as a time-invariant mean-field state. As we consider the

ergodic setting, it then suffices to study Problem 3.1.1 with t sufficiently large. There-

fore, the influence of the mean-field policy π† is captured by the mean-field state µ†.

By re-formulating Problem 3.1.1, with slight abuse of notations, we obtain the following

drifted-LQR (D-LQR).
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Problem 3.1.2 (D-LQR). Given a mean-field state µ ∈ Rm, we consider the following

formulation,

xt+1 = Axt +But + Aµ+ d+ ωt,

cµ(xt, ut) = x⊤t Qxt + u⊤t Rut + µ⊤Qµ,

Jµ(π) = lim
T→∞

E

[
1

T

T∑
t=0

cµ(xt, ut)

]
,

where xt ∈ Rm is the state vector, ut ∈ Rk is the action vector generated by the policy

π, ωt ∈ Rm is an independent random noise term following the Gaussian distribution

N (0,Ψω), and d ∈ Rm is a drift term. We aim to find an optimal policy π∗
µ such that

Jµ(π
∗
µ) = infπ∈Π Jµ(π).

Compared with the most studied LQR problem (Lewis et al., 2012), both the state

transition and the cost function in Problem 3.1.2 have drift terms, which act as the mean-

field “force” that drives the states away from zero. Such a mean-field “force” introduces

additional challenges when solving Problem 3.1.2 in the model-free setting (see §3.2.3 for

details). On the other hand, the unique optimal policy π∗
µ of Problem 3.1.2 admits a

linear form π∗
µ(xt) = −Kπ∗

µ
xt + bπ∗

µ
under certain regularity conditions (Anderson and

Moore, 2007), where the matrix Kπ∗
µ
∈ Rk×m and the vector bπ∗

µ
∈ Rk are the parameters

of π∗
µ. Motivated by such a linear form of the optimal policy, we define the class of

linear-Gaussian policies as

Π = {π(x) = −Kπx+ bπ + σ · η : Kπ ∈ Rk×m, bπ ∈ Rk},(3.1.1)
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where σ ∈ R and the standard Gaussian noise term η ∈ Rk is included to encourage

exploration. To solve Problem 3.1.2, it suffices to find the optimal policy π∗
µ within Π.

We define Λ1(µ) = π∗
µ as the optimal policy under the mean-field state µ.

Assume that all the agents follow the linear policy π(x) = −Kπx+bπ under the mean-

field state µ. By plugging ut = π(xt) into the state transition in Problem 3.1.2, as t→∞,

we know that these agents generate a new mean-field state µnew such that

µnew = (I − A+BKπ)
−1(Bbπ + Aµ+ d).

We define Λ2(µ, π) = µnew as such a new mean-field state.

Now, we are ready to present the following linear-quadratic mean-field game (LQ-

MFG).

Problem 3.1.3 (LQ-MFG). We consider the following formulation,

xt+1 = Axt +But + Aµ+ d+ ωt,

c(xt, ut) = x⊤t Qxt + u⊤t Rut + µ⊤Qµ,

J(π, µ) = lim
T→∞

E

[
1

T

T∑
t=0

c(xt, ut)

]
,

where xt ∈ Rm is the state vector, ut ∈ Rk is the action vector generated by the policy π,

µ ∈ Rm is the mean-field state, ωt ∈ Rm is an independent random noise term following

the Gaussian distribution N (0,Ψω), and d ∈ Rm is a drift term. We aim to find a pair

(µ∗, π∗) such that (i) J(π∗, µ∗) = infπ∈Π J(π, µ
∗); (ii) Ex∗t converges to µ∗ as t → ∞,

where {x∗t}t≥0 is the Markov chain of states generated by the policy π∗.
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The formulation in Problem 3.1.3 is studied by Lasry and Lions (2007); Bensoussan

et al. (2016); Saldi et al. (2018a,b). We propose a more general formulation in Problem

B.3.2 (see §B.3 of the appendix for details), where an additional interaction term between

the state vector xt and the mean-field state µ is incorporated into the cost function.

According to our analysis in §B.3, up to minor modification, the results in the following

sections also carry over to Problem B.3.2. Therefore, for the sake of simplicity, we focus

on Problem 3.1.3 in the sequel.

In Problem 3.1.3, condition (i) is equivalent to the optimality of the policy π∗ under

the mean-field state µ∗, namely, Λ1(µ
∗) = π∗. Meanwhile, condition (ii) is equivalent to

the invariance of the mean-field state µ∗ given the policy π∗, namely, Λ2(µ
∗, π∗) = µ∗.

Such equivalence follows from the NCE principle (Huang et al., 2006, 2007), which also

motivates the following definition of the Nash equilibrium pair (Saldi et al., 2018a,b).

Definition 3.1.4 (Nash Equilibrium Pair). The pair (µ∗, π∗) ∈ Rm × Π constitutes a

Nash equilibrium pair of Problem 3.1.3 if it satisfies π∗ = Λ1(µ
∗) and µ∗ = Λ2(µ

∗, π∗).

Here µ∗ is called the Nash mean-field state and π∗ is called the Nash policy.

By Definition 3.1.4, Problem 3.1.3 aims to find a Nash equilibrium pair (µ∗, π∗).

Notations. We denote by ∥M∥∗ the spectral norm, ρ(M) the spectral radius, σmin(M)

the minimum singular value, and σmax(M) the maximum singular value of a matrix M .

We use ∥α∥2 to represent the ℓ2-norm of a vector α, and (α)ji to denote the sub-vector

(αi, αi+1, . . . , αj)
⊤, where αk is the k-th entry of the vector α. For scalars a1, . . . , an, we

denote by poly(a1, . . . , an) the polynomial of a1, . . . , an, and this polynomial may vary

from line to line. We use [n] to denote the set {1, 2, . . . , n} for any n ∈ N.
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3.2. Mean-Field Actor-Critic

We first characterize the existence and uniqueness of the Nash equilibrium pair of

Problem 3.1.3 under mild regularity conditions, and then propose a mean-field actor-

critic algorithm to obtain such a Nash equilibrium. As a building block of the mean-field

actor-critic, we propose the natural actor-critic to solve Problem 3.1.2.

3.2.1. Existence and Uniqueness of Nash Equilibrium Pair

We now establish the existence and uniqueness of the Nash equilibrium pair defined in

Definition 3.1.4. We impose the following regularity conditions.

Assumption 3.2.1. We assume that the following statements hold:

(i) The algebraic Riccati equation X = A⊤XA+Q−A⊤XB(B⊤XB +R)−1B⊤XA

admits a unique symmetric positive definite solution X∗;

(ii) It holds for L0 = L1L3 + L2 that L0 < 1, where

L1 =
∥∥[(I − A)Q−1(I − A)⊤ +BR−1B⊤]−1

A
∥∥
2
·
∥∥[K∗Q−1(I − A)⊤ −R−1B⊤]∥∥

2
,

L2 =
[
1− ρ(A−BK∗)

]−1 · ∥A∥2, L3 =
[
1− ρ(A−BK∗)

]−1 · ∥B∥2.

Here K∗ = −(B⊤X∗B +R)−1B⊤X∗A.

The first assumption is implied by mild regularity conditions on the matrices A, B,

Q, and R, which are (1) the positivity of R; (2) the non-negativity of Q = C⊤C; (3) the

observability of (A,C); (4) the stability of (A,B). See De Souza et al. (1986); Lewis et al.

(2012) for more details. The second assumption is standard in the literature (Bensoussan

et al., 2016; Saldi et al., 2018b), which ensures the stability of the LQ-MFG. In the
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following proposition, we show that Problem 3.1.3 admits a unique Nash equilibrium

pair.

Proposition 3.2.2 (Existence and Uniqueness of Nash Equilibrium Pair). Under As-

sumption 3.2.1, the operator Λ(·) = Λ2(·,Λ1(·)) is L0-Lipschitz, where L0 is given in

Assumption 3.2.1. Moreover, there exists a unique Nash equilibrium pair (µ∗, π∗) of

Problem 3.1.3.

Proof. See §B.5.1 for a detailed proof. □

3.2.2. Mean-Field Actor-Critic for LQ-MFG

The NCE principle motivates a fixed-point approach to solve Problem 3.1.3, which gener-

ates a sequence of policies {πs}s≥0 and mean-field states {µs}s≥0 satisfying the following

two properties: (i) Given the mean-field state µs, the policy πs is optimal. (ii) The mean-

field state becomes µs+1 as t→∞, if all the agents follow πs under the current mean-field

state µs. Here (i) requires solving Problem 3.1.2 given the mean-field state µs, while (ii)

requires simulating the agents following the policy πs given the current mean-field µs.

Based on such properties, we propose the mean-field actor-critic in Algorithm 2.

Algorithm 2 requires solving Problem 3.1.2 at each iteration to obtain πs = Λ1(µs)

and µs+1 = Λ2(µs, πs). To this end, we introduce the natural actor-critic in §3.2.3 that

solves Problem 3.1.2.

3.2.3. Natural Actor-Critic for D-LQR

Now we focus on solving Problem 3.1.2 for a fixed mean-field state µ, we thus drop the

subscript µ hereafter. With slight abuse of notations, we write πK,b(x) = −Kx+ b+ σ · η
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Algorithm 2 Mean-Field Actor-Critic for solving LQ-MFG.

1: Input:
• Initial mean-field state µ0 and Initial policy π0 with parameters K0 and b0.

• Numbers of iterations S, {Ns}s∈[S], {Hs}s∈[S], {T̃s,n, Ts,n}s∈[S],n∈[Ns],

{T̃ b
s,h, T

b
s,h}s∈[S],h∈[Hs].

• Stepsizes {γs}s∈[S], {γbs}s∈[S], {γs,n,t}s∈[S],n∈[Ns],t∈[Ts,n], {γbs,h,t}s∈[S],h∈[Hs],t∈[T b
s,h]

.

2: for s = 0, 1, 2, . . . , S − 1 do
3: Policy Update: Solve for the optimal policy πs+1 with parameters Ks+1

and bs+1 of Problem 3.1.2 via Algorithm 3 with µs, πs, Ns, Hs, {T̃s,n, Ts,n}n∈[Ns],

{T̃ b
s,h, T

b
s,h}h∈[Hs], γs, γ

b
s, {γs,n,t}n∈[Ns],t∈[Ts,n], and {γbs,h,t}h∈[Hs],t∈[T b

s,h]
, which gives the

estimated mean-field state µ̂Ks+1,bs+1 .
4: Mean-Field State Update: Update the mean-field state via µs+1 ← µ̂Ks+1,bs+1 .
5: end for
6: Output: Pair (πS, µS).

to emphasize the dependence on K and b, and J(K, b) = J(πK,b) consequently. Now, we

propose the natural actor-critic to solve Problem 3.1.2.

For any policy πK,b ∈ Π, by the state transition in Problem 3.1.2, we have

xt+1 = (A−BK)xt + (Bb+ Aµ+ d) + ϵt, ϵt ∼ N (0,Ψϵ),(3.2.1)

where Ψϵ = σBB⊤ + Ψω. It is known that if ρ(A − BK) < 1, then the Markov chain

{xt}t≥0 induced by (3.2.1) has a unique stationary distribution N (µK,b,ΦK) (Anderson

and Moore, 2007), where the mean-field state µK,b and the covariance ΦK satisfy that

µK,b = (I − A+BK)−1(Bb+ Aµ+ d),(3.2.2)

ΦK = (A−BK)ΦK(A−BK)⊤ +Ψϵ.(3.2.3)
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Meanwhile, the Bellman equation for Problem 3.1.2 takes the following form

PK = (Q+K⊤RK) + (A−BK)⊤PK(A−BK).(3.2.4)

Then by calculation (see Proposition B.2.2 in §B.2.1 of the appendix for details), it holds

that the expected total cost J(K, b) is decomposed as

J(K, b) = J1(K) + J2(K, b) + σ2 · tr(R) + µ⊤Qµ,(3.2.5)

where J1(K) and J2(K, b) are defined as

J1(K) = tr
[
(Q+K⊤RK)ΦK

]
= tr(PKΨϵ),

J2(K, b) =

µK,b

b


⊤Q+K⊤RK −K⊤R

−RK R


µK,b

b

 .(3.2.6)

Here J1(K) is the expected total cost in the most studied LQR problems (Yang et al.,

2019b; Fazel et al., 2018), where the state transition does not have drift terms. Meanwhile,

J2(K, b) corresponds to the expected cost induced by the drift terms. The following two

propositions characterize the properties of J2(K, b).

First, we show that J2(K, b) is strongly convex in b.

Proposition 3.2.3. Given any K, the function J2(K, b) is νK-strongly convex in b. Here

νK = σmin(Y
⊤
1,KY1,K + Y ⊤

2,KY2,K), where Y1,K = R1/2K(I − A + BK)−1B − R1/2 and

Y2,K = Q1/2(I − A + BK)−1B. Also, J2(K, b) has ιK-Lipschitz continuous gradient in b,

where ιK is upper bounded as ιK ≤ [1−ρ(A−BK)]−2 ·(∥B∥22 ·∥K∥22 ·∥R∥2+∥B∥22 ·∥Q∥2).

Proof. See §B.5.4 for a detailed proof. □
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Second, we show that minb J2(K, b) is independent of K.

Proposition 3.2.4. We define bK = argminb J2(K, b), where J2(K, b) is defined in (3.2.6).

It holds that

bK =
[
KQ−1(I − A)⊤ −R−1B⊤] · [(I − A)Q−1(I − A)⊤ +BR−1B⊤]−1 · (Aµ+ d).

Moreover, J2(K, b
K) takes the form of

J2(K, b
K) = (Aµ+ d)⊤

[
(I − A)Q−1(I − A)⊤ +BR−1B⊤]−1 · (Aµ+ d),

which is independent of K.

Proof. See §B.5.2 for a detailed proof. □

Since minb J2(K, b) is independent of K by Proposition 3.2.4, it holds that the optimal

K∗ is the same as argminK J1(K). This motivates us to minimize J(K, b) by first updating

K following the gradient direction ∇KJ1(K) to the optimal K∗, then updating b following

the gradient direction ∇bJ2(K
∗, b). We now design our algorithm based on this idea.

We define ΥK , pK,b, and qK,b as

ΥK =

Q+ A⊤PKA A⊤PKB

B⊤PKA R +B⊤PKB

 =

Υ11
K Υ12

K

Υ21
K Υ22

K

 ,

pK,b = A⊤[PK · (Aµ+ d) + fK,b

]
, qK,b = B⊤[PK · (Aµ+ d) + fK,b

]
,(3.2.7)

where fK,b = (I − A + BK)−⊤[(A − BK)⊤PK(Bb + Aµ + d) − K⊤Rb]. By calculation

(see Proposition B.2.3 in §B.2.1 of the appendix for details), the gradients of J1(K) and



70

J2(K, b) take the forms of

∇KJ1(K) = 2(Υ22
KK −Υ21

K ) · ΦK , ∇bJ2(K, b) = Υ22
K (−KµK,b + b) + Υ21

KµK,b + qK,b.

Our algorithm follows the natural actor-critic method (Bhatnagar et al., 2009) and

actor-critic method (Konda and Tsitsiklis, 2000). Specifically, (i) To obtain the optimal

K∗, in the critic update step, we estimate the matrix ΥK by Υ̂K via a policy evaluation

algorithm, e.g., Algorithm 7 or Algorithm 8 (see §B.2.2 and §B.2.3 of the appendix for

details); in the actor update step, we update K via K ← K − γ · (Υ̂22
KK − Υ̂21

K ), where

the term Υ̂22
KK − Υ̂21

K is the estimated natural gradient. (ii) To obtain the optimal b∗

given K∗, in the critic update step, we estimate ΥK∗ , qK∗,b, and µK∗,b by Υ̂K∗ , q̂K∗,b,

and µ̂K∗,b via a policy evaluation algorithm; In the actor update step, we update b via

b← b−γ · ∇̂bJ2(K
∗, b), where ∇̂bJ2(K

∗, b) = Υ̂22
K∗(−K∗µ̂K∗,b+b)+Υ̂21

K∗µ̂K∗,b+ q̂K∗,b is the

estimated gradient. Combining the above procedure, we obtain the natural actor-critic

for Problem 3.1.2, which is stated in Algorithm 3.

One may want to apply gradient method to J(K, b) directly in the joint space of K

and b. However, the gradient dominance property of J1(K) in the most studied LQR

problem (Yang et al., 2019b) no longer holds for J(K, b). Therefore, the convergence of

the gradient method to J(K, b) is not guaranteed in our problem.

3.3. Global Convergence Results

The following theorem establishes the rate of convergence of Algorithm 2 to the Nash

equilibrium pair (µ∗, π∗) of Problem 3.1.3.
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Algorithm 3 Natural Actor-Critic Algorithm for D-LQR.

1: Input:
• Mean-field state µ and initial policy πK0,b0 .

• Numbers of iterations N , H, {T̃n, Tn}n∈[N ], {T̃ b
h, T

b
h}h∈[H].

• Stepsizes γ, γb, {γn,t}n∈[N ],t∈[Tn], {γbh,t}h∈[H],t∈[T b
h]
.

2: for n = 0, 1, 2, . . . , N − 1 do

3: Critic Update: Compute Υ̂Kn via Algorithm 7 with πKn,b0 , µ, T̃n,Tn, {γn,t}t∈[Tn],
K0, and b0 as inputs.

4: Actor Update: Update the parameter via

Kn+1 ← Kn − γ · (Υ̂22
Kn
Kn − Υ̂21

Kn
).

5: end for
6: for h = 0, 1, 2, . . . , H − 1 do

7: Critic Update: Compute µ̂KN ,bh , Υ̂KN
, q̂KN ,bh via Algorithm 7 with πKN ,bh , µ,

T̃ b
h, T

b
h, {γbh,t}t∈[T b

h]
, K0, and b0.

8: Actor Update: Update the parameter via

bh+1 ← bh − γb ·
[
Υ̂22

KN
(−KN µ̂K,bh + bh) + Υ̂21

KN
µ̂KN ,bh + q̂KN ,bh

]
.

9: end for
10: Output: Policy πK,b = πKN ,bH , estimated mean-field state µ̂K,b = µ̂KN ,bH .

Theorem 3.3.1 (Convergence of Algorithm 2). For a sufficiently small tolerance ε > 0,

we set the number of iterations S in Algorithm 2 such that

S >
log
(
∥µ0 − µ∗∥2 · ε−1

)
log(1/L0)

.(3.3.1)

For any s ∈ [S], we define

εs = min
{[

1− ρ(A−BK∗)
]4(∥B∥2 + ∥A∥2)−4(∥µs∥−2

2 + ∥d∥−2
2

)
· σmin(Ψϵ) · σmin(R) · ε2,

νK∗ ·
[
1− ρ(A−BK∗)

]4 · ∥B∥−2
2 ·Mb(µs) · ε2, ε

}
· 2−s−10,

(3.3.2)
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where νK∗ is defined in Proposition 3.2.3 and

Mb(µs) = 4
∥∥∥Q−1(I − A)⊤ ·

[
(I − A)Q−1(I − A)⊤ +BR−1B⊤]−1 · (Aµs + d)

∥∥∥
2

·
[
ν−1
K∗ + σ−1

min(Ψϵ) · σ−1
min(R)

]1/2
.(3.3.3)

In the s-th policy update step in Line 3 of Algorithm 2, we set the inputs via Theorem

B.2.4 such that Jµs(πs+1)− Jµs(π
∗
µs
) < εs, where the expected total cost Jµs(·) is defined

in Problem 3.1.2, and π∗
µs

= Λ1(µs) is the optimal policy under the mean-field state µs.

Then it holds with probability at least 1− ε5 that

∥µS − µ∗∥2 ≤ ε, ∥KS −K∗∥F ≤ ε, ∥bS − b∗∥2 ≤ (1 + L1) · ε.

Here µ∗ is the Nash mean-field state, KS and bS are parameters of the policy πS, and K
∗

and b∗ are parameters of the Nash policy π∗.

Proof Sketch. The proof of the theorem is based on the convergence of the natural

actor-critic algorithm 3 and a contraction argument. First, we prove in Theorem B.2.4

that Algorithm 3 converges linearly to the optimal policy of Problem 3.1.2. By this, in

each iteration of Algorithm 2, we control the error between µs+1 and µ∗
s+1 to be εs > 0

with high probability, where µ∗
s+1 is the mean-field state generated by the optimal policy

Λ1(µs); in other words, µ∗
s+1 = Λ(µs). Combining the fact from Proposition 3.2.2 that

Λ(·) is a contraction, we deduce that

∥µs+1 − µ∗∥2 ≤
∥∥Λ(µs)− Λ(µ∗)

∥∥
2
+ ε̃s ≤ L0 · ∥µs − µ∗∥2 + ε̃s
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with high probability, where ε̃s > 0 is some error term and is specified in the detailed

proof. Moreover, by telescoping sum, and note that the sum
∑S

s=1 ε̃s is upper bounded

by the desired error ε, we conclude the theorem. See §B.4.1 for a detailed proof. □

We highlight that if the inputs of Algorithm 2 satisfy the conditions stated in Theo-

rem B.2.4, it holds that Jµs(πs+1)− Jµs(π
∗
µs
) < εs for any s ∈ [S]. See Theorem B.2.4 in

§B.2.1 of the appendix for details. By Theorem 3.3.1, Algorithm 2 converges linearly to

the unique Nash equilibrium pair (µ∗, π∗) of Problem 3.1.3. To the best of our knowledge,

this theorem is the first successful attempt to establish that reinforcement learning with

function approximation finds the Nash equilibrium pairs in mean-field games with theoret-

ical guarantee, which lays the theoretical foundations for applying modern reinforcement

learning techniques to general mean-field games.

3.4. Conclusion

For the discrete-time linear-quadratic mean-field games, we provide sufficient con-

ditions for the existence and uniqueness of the Nash equilibrium pair. Moreover, we

propose the mean-field actor-critic algorithm with linear function approximation that is

shown converges to the Nash equilibrium pair with linear rate of convergence. Our algo-

rithm can be modified to use other parametrized function classes, including deep neural

networks, for solving mean-field games. For future research, we aim to extend our algo-

rithm to other variations of mean-field games including risk-sensitive mean-field games

(Saldi et al., 2018a; Tembine et al., 2014), robust mean-field games (Bauso et al., 2016),

and partially observed mean-field games (Saldi et al., 2019).



74

CHAPTER 4

Offline Reinforcement Learning with Instrumental Variables in

Confounded Markov Decision Processes

4.1. Confounded Markov Decision Processes

In this section, we introduce the framework of confounded Markov decision processes

with discrete instrumental variables. We aim to leverage the batch data to find an optimal

in-class policy that maximizes the expected total rewards.

Confounded MDPs In a confounded MDP, we observe {St, At, Rt}t≥0 for each trajec-

tory, where St is the observed state, At is the action taken after observing St, and Rt is

the immediate reward received after making an action At for t ≥ 0. We denote by S and

A the state and action spaces, respectively. Furthermore, we assume that at each decision

point t ≥ 0, there exist some unmeasured state variables Ut ∈ U , which may confound

the effect of action At on the rewards and future transitions. Due to such unobserved

confounders, the (causal) effect of the action on the immediate and future rewards may

not be non-parametrically identified and directly applying standard RL algorithms for

MDPs will produce sub-optimal policies.

To address this concern, we study the confounded MDP via the instrumental variable

(IV) method (Angrist and Imbens, 1995), which has been widely used in the literature

of causal inference (e.g., Pearl (2009); Hernán and Robins (2010)) to identify the causal

effect of a treatment under unmeasured confounding. Specifically, at each decision point
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t, we further assume that we also observe a time-varying IV Zt ∈ Z, which is independent

of Ut and does not have a direct effect on the immediate reward Rt and all future states,

actions, and rewards. With such an IV, we observe {St, Zt, At, Rt}t≥0 for each trajectory

in the confounded MDP.

In this work, we consider finite action and IV spaces, i.e., A = {aj}j∈[K] and Z =

{zj}j∈[K], where K ≥ 2 is an integer. Furthermore, we consider a simplex encoding for

both actions and IVs which enjoy a nice interpretation (Zhang and Liu, 2014). Specifically,

for any j ∈ [K], we let

aj = zj =


(K − 1)−1/21K−1 if j = 1,

(1+
√
K1K−1)

(K−1)3/2
+
√

K
K−1

ej−1 if 2 ≤ j ≤ K,

(4.1.1)

where 1K−1 ∈ RK−1 is an all-one vector and ej ∈ RK−1 is a vector with all elements 0

except 1 for j-th position. By the simplex encoding in (4.1.1), one can see that
∑

j∈[K] aj =∑
j∈[K] zj = 0 and a⊤i aj = z⊤i zj = −1{i ̸= j}/(K−1)+1{i = j} for any i, j ∈ [K], where

1{·} is an indicator function. We remark that any reasonable encoding mechanisms can

be incorporated here and our results can be equally applied.

Value Function and Performance Metric. In the confounded MDP, we aim to find

an optimal in-class policy π∗ ∈ Π such that π∗ maximizes the expected total rewards,

where Π is a class of time-homogeneous policies mapping from the observed state space

S into the probability distribution over the action space A. In particular, π(a | s) refers

to the probability of choosing action a ∈ A given the state value s ∈ S. Formally, for any
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π ∈ Π, we define the value function V π and the expected total reward J(π) as follows,

V π(s) = Eπ

[
∞∑
t=0

γtRt

∣∣∣S0 = s

]
, J(π) = (1− γ) · ES0∼ν [V

π(S0)] ,(4.1.2)

where the expectation Eπ[·] is taken with respect to the distribution such that the action

At ∼ π(· |St) for any t ≥ 0, and ν is a known reference distribution over S. Given the

definition of J(π) in (4.1.2), our goal is to leverage the batch data to estimate π∗, where

π∗ ∈ argmax
π∈Π

J(π).

Suppose the batch data we have collected consist of N independent and identically dis-

tributed copies of {St, Zt, At, Rt}t≥0 with total decision points T for each trajectory. Then

we can summarize our batch data as D = {{Si
t , Z

i
t , A

i
t, R

i
t, S

i
t+1}T−1

t=0 }i∈[N ]. In the mean-

while, we define the performance metric as

SubOpt(π) = J(π∗)− J(π),

which characterizes the suboptimality of the policy π compared with the optimal in-class

policy π∗.

Why is Confounded MDP Challenging? In the standard MDP (Sutton and Barto,

2018), all states are assumed fully observed and the trajectory {St, At, Rt}t≥0 satisfies

the Markovian property. By leveraging the celebrated Bellman equation, under some

mild conditions, one can non-parametrically identify J(π) for any π ∈ Π, which serves

as a foundation for many existing RL algorithms. However, in the confounded MDP, the

Markovian assumption on the trajectory no longer holds and Bellman equation cannot
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be applied anymore due to the existence of the unmeasured confounders {Ut}t≥0. More

seriously, the effect of actions on the rewards and future states cannot be identified even

we include all past history information at each decision point t ≥ 0. Therefore, additional

assumptions are needed to identify J(π) and in this work, we rely on the IV to deal with

such challenges.

Notation. Throughout the paper, we denote by c a positive absolute constant, which may

vary from lines to lines. Without further explanation, we denote by Eπ[·] the expectation

taken with respect to the trajectory generated by the policy π, E[·] the expectation taken

with respect to the trajectory generated by the behavior policy, and Ê[·] the empirical

average across all N trajectories.

4.2. Assumptions and Identification Results

In this section, we introduce several assumptions to help us identify J(π) for any π ∈ Π

by using an IV. The first assumption is related to the trajectory {St, Ut, At, Rt}t≥0, where

we model it by a time-homogenous MDP.

Assumption 4.2.1. The following statements hold.

(a) For any t ≥ 1, we have (St+1, Ut+1) ⊥⊥ {Sj, Uj, Aj}0≤j<t | (St, Ut, At) and the

transition probability is stationary;

(b) For any t ≥ 0, we have Rt = R(Ut, St, At, St+1, Ut+1) for some deterministic

function R : U × S × A × S × U → R. Also, we assume |Rt| ≤ 1 almost surely

for any t ≥ 0;
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(c) The offline dataset D is generated by an unknown initial distribution ζ over S

and a stationary policy b, which is a function mapping from S × U × Z into a

probability distribution over A.

Here b is often called behavior policy in RL literature. Assumption 4.2.1 is standard

in the literature of RL, which is mild as {Ut}t≥0 is unobserved. The uniformly bounded

assumption on the reward Rt is used to simplify the technical analysis and can be relaxed

by imposing some high-order moment condition on Rt instead. Due to the unobserved

state variables Ut, we make the following IV assumptions.

Assumption 4.2.2. The following statements hold.

(a) For any t ≥ 0, we have (St+1, Ut+1) ⊥⊥ Zt | (St, Ut, At);

(b) For any a ∈ A and t ≥ 0, we have P(At = a |St, Zt) ̸= P(At = a |St);

(c) For any t ≥ 0, we have Zt ⊥⊥ Ut |St and the probability distribution of Zt given

St is time-homogeneous.

(d) For any t ≥ 0, we have the behavior policy satisfy that

b(At = a |St, Ut, Zt = a)− 1

K − 1

∑
z∈Z,z ̸=a

b(At = a |St, Ut, Zt = z)

= b(At = a |St, Zt = a)− 1

K − 1

∑
z∈Z,z ̸=a

b(At = a |St, Zt = z) = ∆∗(St, a),

i.e., the compliance ∆∗(St, a) defined above is independent of the unobserved

confounder Ut almost surely.

Assumption 4.2.2(a) states that there is not direct effect of the IV Zt on the future

states and rewards except through the action At, which is a typical assumption in the

literature of causal inference with IVs (Angrist and Imbens, 1995; Angrist et al., 1996).
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Note that by Assumption 4.2.1(b), we have implicitly restricted the effect of Zt on the

reward Rt only through At in this assumption. Assumption 4.2.2(b) requires that the

IV Zt will influence the action At, which is called IV relevance in the causal inference.

Assumption 4.2.2(c), corresponding to IV independence, ensures that the effect of Zt

on futures states and rewards is unconfounded by adjusting the current state St. The

homogeneous assumption on the conditional distribution of Zt given St is imposed here

as our target parameter J(π) is defined over the infinite horizon. Define a function

Θ∗(s, z) = P(Zt = z |St = s)

for every (s, z) ∈ S × Z, which is independent of the decision point due to such time-

homogeneity. In addition, Assumption 4.2.2(d) essentially indicates that there is no in-

teraction between Ut and Zt in affecting whether the action At will follow Zt or not.

This so-called independent compliance assumption has been widely adopted in identi-

fying the average treatment effect of binary treatments in causal inference (Wang and

Tchetgen Tchetgen, 2018). Here we generalize it to the setting of multiple treatments

and instrumental variables, which may be of independent interest. A graphical illustra-

tion of Assumptions 4.2.1 and 4.2.2 is presented in Figure 4.1, which also illustrates how

the offline data in the confounded MDP are generated. In the following section, we in-

troduce value function (VF)-based identification and marginalized importance sampling

(MIS)-based identification, respectively.
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St−1

Zt−1 Ut−1

At−1 St

Zt

St+1

Ut

At

Figure 4.1. A graphical illustration of the confounded MDP.

4.2.1. Value Function-based Identification

In the unconfounded MDP, value function defined in (4.1.2) can be used to identify J(π)

and itself can be identified via the Bellman equation. However, due to the existence of

unobserved confounders, the regular Bellman equation, which relies on the Markovian

assumption, does not hold in general and the effect of actions on the reward cannot be

identified either. Fortunately, by leveraging the IV, we are able to provide a way to

identify J(π) via the state-value function V π, which can be identified by an IV-aided

Bellman equation. Before stating our result, we make one additional assumption.

Assumption 4.2.3. We have (Zt, Ut) ⊥⊥ ({Sj, Uj, Aj}0≤j<t) |St and the probability dis-

tribution of (Zt, Ut) given St is time-homogeneous for any t ≥ 0.

Assumption 4.2.3 ensures that (Zt, Ut) is “memoryless” and only depends on the cur-

rent observed state St. This essentially ensures that the stochastic process {St, At}t≥0

satisfies Markov property, which rules out the scenario that Ut affects future rewards and

transitions. The memoryless assumption on the unmeasured confounders has been com-

monly used in the confounded MDP. See Kallus and Zhou (2020); Shi et al. (2022) for

more details.
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Lemma 4.2.4. Under Assumptions 4.2.1 and 4.2.2, for any s ∈ S and π ∈ Π, we have

V π(s) = E

[
∞∑
t=0

γtRt

(
t∏

j=0

Z⊤
j Ajπ(Aj |Sj)

∆∗(Sj, Aj)Θ∗(Sj, Zj)

) ∣∣∣∣S0 = s

]
.

If additionally Assumption 4.2.3 is satisfied, it holds for any t ≥ 0 that,

V π(s) = E
[

Z⊤
t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
· (Rt + γV π(St+1))

∣∣∣St = s

]
.

Then the policy value J(π) for π ∈ Π can be identified via

J(π) = (1− γ) · ES0∼ν [V
π(S0)] .

Proof. See §C.2.3 for a detailed proof. □

We remark that the Bellman equation in the unconfounded MDP takes the following

form,

V π
unconf(s) = E

[
π(At |St)

P(At |St)
· (Rt + γV π

unconf(St+1))
∣∣∣St = s

]
,

where V π
unconf is the corresponding state-value function in the unconfounded MDP. In

comparison, to deal with the unobserved confounders, our identification result in Lemma

4.2.4 incorporates the IVs into the action density ratio. It is also interesting to see that if

one can observe the trajectory {St, Zt, At, Rt}t≥0 to the infinity, then Assumptions 4.2.1

and 4.2.2 are sufficient to identify V π(s) and J(π) based on the first statement of Lemma

4.2.4. However, due to the limitation of only observing trajectories up to a finite horizon,

we impose Assumption 4.2.3 so that Bellman equation is satisfied and used to break the

curse of infinite-horizon. Based on Lemma 4.2.4, we introduce the following VF-based
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estimating equation, which will be used later in §4.3.1 to construct an estimator of the

value function V π.

Corollary 4.2.5 (VF-based Estimating Equation). Under Assumptions 4.2.1, 4.2.2, and

4.2.3, it holds for any function g : S → R that

E

[
1

T

T−1∑
t=0

g(St)
Z⊤

t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
· (Rt + γV π(St+1))

]
= E

[
1

T

T−1∑
t=0

g(St)V
π(St)

]
.

Proof. See §C.2.4 for a detailed proof. □

4.2.2. Marginalized Importance Sampling-based Identification

In this subsection, we propose another way to identify J(π) via the marginal importance

sampling. We first introduce the following notations. For any t ≥ 0, we denote by pπt (·) the

marginal distribution of St under the known initial observed state distribution ν following

the policy π. In the meanwhile, with a slight abuse of notations, we denote by pbt(·)

the marginal distribution of St under the unknown offline data generation distribution ζ

following the behavior policy b. In addition, we denote by for every s ∈ S,

dπ(s) = (1− γ)
∞∑
t=0

γtpπt (s), db(s) =
1

T

T−1∑
t=0

pbt(s), wπ(s) =
dπ(s)

db(s)
(4.2.1)

the discounted state visitation measure under the policy π, the average state visitation

measure under the behavior policy b, and their density ratio, respectively. In order to

identify J(π) via the marginal importance sampling, i.e., wπ, we make the following

assumption.

Assumption 4.2.6. For any t ≥ 0, Ut |St is time-homogeneous.
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Assumption 4.2.6 is weaker than assuming the unmeasured confounder Ut is memo-

ryless, and does not imply that {St, At}t≥0 is a Markov chain. Such an assumption will

be satisfied for example when the trajectory comes from a stationary sequence or unmea-

sured confounders are independent of observed states and actions. Motivated by the idea

of marginalized importance sampling for off-policy evaluation in the standard MDP (Liu

et al., 2018), we establish the following novel identification result for the expected total

reward J(π) in the confounded MDP.

Lemma 4.2.7. Under Assumptions 4.2.1, 4.2.2, and 4.2.6, for any π ∈ Π, we have

J(π) = E

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
· wπ(St)Rt

]
,

where wπ is defined in (4.2.1).

Proof. See §C.2.1 for a detailed proof. □

We remark that the expected total reward in the unconfounded MDP takes the fol-

lowing form,

Junconf(π) = E

[
1

T

T−1∑
t=0

π(At |St)

P(At |St)
· wπ(St)Rt

]
,

where Junconf(π) is the corresponding expected total reward in the unconfounded MDP,

and the expectation E[·] is taken with respect to the trajectory generated by the behavior

policy. In comparison, to deal with the unobserved confounders, our identification result

in Lemma 4.2.7 incorporates the IVs into the action density ratio. Based on Lemma

4.2.7, we introduce the following MIS-based estimating equation, which will be used later

in §4.3.2 to construct an estimator of the density ratio wπ.
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Lemma 4.2.8 (MIS-based Estimating Equation). Under Assumptions 4.2.1, 4.2.2, and

4.2.6, for any π ∈ Π, it holds for any function f : S → R that

(1− γ)ES0∼ν [f(S0)] = E

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
· wπ(St) (f(St)− γf(St+1))

]
.

Proof. See §C.2.2 for a detailed proof. □

Lemma 4.2.8 is somewhat surprising in that with the help of IVs and Assumption

4.2.6, the estimating equation for the density ratio wπ holds even when the Markov

condition fails on the observed trajectory, thus allowing the existence of unmeasured

confounder Ut that can affect future rewards and transitions. This is different from the

existing approaches such as Liu et al. (2018); Zhang et al. (2020) for estimating ratio

functions in the standard MDP setting, which relies crucially on the Markovian assump-

tion. Compared with the value function-based identification, marginalized importance

sampling-based identification on the J(π) requires fewer conditions and can be applied

into more general confounded MDP problems.

4.3. Instrumental-Variable-Assisted RL with Pessimism

In this section, we introduce three pessimistic RL methods to estimate π∗ in our

confounded MDP. Generally, pessimistic RL first employs the offline data to construct a

conservative estimate of the values for any policy, then select the policy with the highest

conservative estimate of its value. Though the recently proposed pessimistic RL shows

promising performance in practice (Kumar et al., 2020; Yu et al., 2020; Kidambi et al.,

2020; Deng et al., 2021), its theoretical understanding is far from complete and is only
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limited to fully observable MDP (Levine et al., 2020). In this section, we adapt the idea

of pessimism in our case and present related theoretical results in Section 4.4.

Since both identification results in §4.2.1 and §4.2.2 require estimating the quantities

∆∗(s, a) and Θ∗(s, z), we first introduce the estimating procedure for such quantities. We

assume that there exists an oracle that gives estimators of ∆∗(s, a) and Θ∗(s, z) via two

loss functions L̂0(∆) and L̂1(Θ) as follows,

∆̂ ∈ argmin
∆∈F0

L̂0(∆), Θ̂ ∈ argmin
Θ∈F1

L̂1(Θ),

where F0 and F1 are two function classes. We remark that we can use the negative

likelihood functions for L̂0 and L̂1 (see §4.4 for details). In the meanwhile, we construct

two confidence sets for ∆ and Θ, respectively, as follows,

conf0α0
=
{
∆ ∈ F0 : L̂0(∆)− L̂0(∆̂) ≤ α0

}
, conf1α1

=
{
Θ ∈ F1 : L̂1(Θ)− L̂1(Θ̂) ≤ α1

}
,

(4.3.1)

where (α0, α1) are some constants that will be specified later. These two confidence sets

are used to construct conservative estimators for J(π) via either VF-, MIS-, or doubly

robust-based estimation.

4.3.1. VF-based Pessimistic Method

We introduce VF-based pessimistic RL in this section. We first define the following

quantity,

Φ̂π
vf(v, g; ∆,Θ) = Ê

[
1

T

T−1∑
t=0

g(St)

(
Z⊤

t Atπ(At |St)

∆(St, At)Θ(St, Zt)
(Rt + γv(St+1))− v(St)

)]
,
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where Ê[·] is the empirical measure defined by the offline data D. In the meanwhile, we

define its population counterpart as

Φπ
vf(v, g; ∆,Θ) = E

[
1

T

T−1∑
t=0

g(St)

(
Z⊤

t Atπ(At |St)

∆(St, At)Θ(St, Zt)
(Rt + γv(St+1))− v(St)

)]

for any (v, g,∆,Θ), where the expectation E[·] is taken with respect to the trajectory

generated by the behavior policy. Then by the VF-based estimating equation specified in

Corollary 4.2.5, it is easy to see that Φπ
vf(V

π, g; ∆∗,Θ∗) = 0 for any function g : S → R.

With the aforementioned notions, for any (∆,Θ), we construct an estimator of V π via

solving the following minimax optimization problem,

v̂π∆,Θ ∈ argmin
v∈V

max
g∈W

Φ̂π
vf(v, g; ∆,Θ),(4.3.2)

where V and W are two sets to be specified later. To obtain an estimation π̂vf for an

optimal in-class policy π∗ that maximizes the expected total reward J(π) defined in (4.1.2),

we formulate the following optimization problem,

π̂vf = argmax
π∈Π

min
(∆,Θ)∈conf0α0

×conf1α1

min
v∈confvfαvf

(∆,Θ,π)
(1− γ)ES∼ν [v(S)],

(4.3.3)

where confvfαvf
(∆,Θ, π) =

{
v ∈ V : max

g∈W
Φ̂π

vf(v, g; ∆,Θ)−max
g∈W

Φ̂π
vf(v̂

π
∆,Θ, g; ∆,Θ) ≤ αvf

}
,

(4.3.4)

where (α0, α1, αvf) are constants to be specified, and conf0α0
and conf1α1

are confidence

sets defined in (4.3.1). Intuitively, the policy π̂vf defined in (4.3.3) aims to maximize the

most pessimistic estimator of the expected total reward. As we will see in Theorem 4.4.9,
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such a pessimistic method provably converges to an optimal policy with data coverage

assumption only for the optimal policy and some other mild conditions.

4.3.2. MIS-based Pessimistic Method

We introduce MIS-based pessimistic RL in this section. We first define the following

quantity,

Φ̂π
mis(w, f ; ∆,Θ) = ES0∼ν [(1− γ)f(S0)]

− Ê

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆(St, At)Θ(St, Zt)
w(St) (f(St)− γf(St+1))

]
.

We define its population counterpart as

Φπ
mis(w, f ; ∆,Θ) = ES0∼ν [(1− γ)f(S0)]

− E

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆(St, At)Θ(St, Zt)
w(St) (f(St)− γf(St+1))

]

for any (w, f,∆,Θ). Then by the MIS-based estimating equation specified in Lemma

4.2.8, it can be seen that Φπ
mis(w

π, f ; ∆∗,Θ∗) = 0 for any function f : S → R. With the

aforementioned notions, for any (∆,Θ), we construct an estimator of wπ via solving the

following minimax optimization problem,

ŵπ
∆,Θ ∈ argmin

w∈W
max
f∈V

Φ̂π
mis(w, f ; ∆,Θ).(4.3.5)

With a slight abuse of notations, here W and V are again two sets to be specified later.

We aim to obtain an optimal policy that maximizes the expected total reward J(π) by
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utilizing the estimators constructed in (4.3.5). For this, we further define the following

estimator of J(π) via Lemma 4.2.7,

L̂mis(w, π; ∆,Θ) = Ê

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆(St, At)Θ(St, Zt)
w(St)Rt

]
.

Then we aim to solve the following optimization problem,

π̂mis ∈ argmax
π∈Π

min
(∆,Θ)∈conf0α0

×conf1α1

min
w∈confmis

αmis
(∆,Θ,π)

L̂mis(w, π; ∆,Θ),(4.3.6)

where confmis
αmis

(∆,Θ, π) =

{
w ∈ W : max

f∈V
Φ̂π

mis(w, f ; ∆,Θ)(4.3.7)

−max
f∈V

Φ̂π
mis(ŵ

π
∆,Θ, f ; ∆,Θ) < αmis

}
,

where (α0, α1, αmis) are constants to be specified, and conf0α0
and conf1α1

are confidence

sets defined in (4.3.1). Similarly as in (4.3.3), the policy π̂mis defined in (4.3.6) aims to

maximize the most pessimistic estimator of the expected total reward. As we will see in

Theorem 4.4.13, such a pessimistic method provably converges to an optimal policy with

realizability assumption only for the optimal policy.

4.3.3. Doubly Robust based Pessimistic Method

As a combination of VF-based and MIS-based policy optimization methods, we introduce

a doubly robust (DR)-based pessimistic RL algorithm in this section. We define the
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following DR estimator with its population counterpart,

L̂dr(w, v, π; ∆,Θ) = Ê

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆(St, At)Θ(St, Zt)
w(St) (Rt + γv(St+1)− v(St))

]

+ (1− γ)ES0∼ν [v(S0)] ,

Ldr(w, v, π; ∆,Θ) = E

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆(St, At)Θ(St, Zt)
w(St) (Rt + γv(St+1)− v(St))

]

+ (1− γ)ES0∼ν [v(S0)] .

Note that Ldr(w
π, v, π; ∆∗,Θ∗) = Ldr(w, V

π, π; ∆∗,Θ∗) = J(π) for any (π,w, v) ∈ Π ×

W × V . Thus, the quantity L̂dr serves as a valid DR estimator of J(π). In the follows,

based on such a DR estimator of the expected total reward, we formulate the following

optimization problem for estimating the optimal in-class policy,

π̂dr ∈ argmax
π∈Π

min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π)
L̂dr(w, v, π; ∆,Θ),

where confαmis,αvf
(∆,Θ, π) = confmis

αmis
(∆,Θ, π)× confvfαvf

(∆,Θ, π),(4.3.8)

where (α0, α1, αvf, αmis) are constants to be specified, and confvfαvf
(∆,Θ, π) and confmis

αmis
(∆,Θ, π)

are defined in (4.3.4) and (4.3.7), respectively. As we will see in Theorem 4.4.14, such a

DR-based pessimistic method provably converges to an optimal policy with realizability

assumption only for the optimal policy.
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4.4. Theoretical Results

In this section, we investigate theoretical properties of the aforementioned three meth-

ods. We aim to derive the finite-sample upper bounds for the sub-optimality of our esti-

mated policies, i.e., SubOpt(π̂), where π̂ is either π̂vf, π̂mis, or π̂dr. To begin with, we first

introduce the following definition of covering number, and then impose some assumptions.

Definition 4.4.1 (Covering Number). Let (C, ∥ · ∥∞) be a normed space, and H ⊆ C.

The set {x1, x2, . . . , xn} is a ε-covering over H if H ⊆ ∪ni=1B(xi, ε), where B(xi, ε) is

the L∞-ball centered at xi with radius ε. Then the covering number of H is defined as

N(ε,H, ∥ · ∥∞) = min{n : ∃ ε-covering over H of size n}.

Assumption 4.4.2. The following statements hold.

(a) For any set H ∈ {F0,F1,V ,W ,Π}, there exists a constant CH such that

N(ε,H, ∥ · ∥∞) ≤ c · (1/ε)CH ,

where c > 0 is a constant. Further, we denote by CH1,H2,...,Hk
=
∑

j∈[k] CHj
for

any {H1,H2, . . . ,Hk}.

(b) There exist positive constants C∆∗ and CΘ∗ such that |∆∗(s, a)| ≥ C−1
∆∗ and

Θ∗(s, z) ≥ C−1
Θ∗ for any (s, z, a) ∈ S × Z × A, where Θ∗(s, z) and ∆∗(s, a) are

defined in Assumption 4.2.2.

(c) We have |∆(s, a)| ≥ C−1
∆∗ and Θ(s, z) ≥ C−1

Θ∗ for any (∆,Θ, s, a, z) ∈ F0 × F1 ×

S ×A×Z.

(d) We have sups∈S |V π1(s)− V π2(s)| ≤ LΠ · sup(s,a)∈S×A |π1(a | s)− π2(a | s)| for any

π1, π2 ∈ Π, where LΠ is a positive constant.
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(e) We have ∥v∥∞ ≤ 1/(1−γ) and ∥w∥∞ ≤ C∗ for any (v, w) ∈ V×W , where C∗ > 0

is a constant.

Assumption 4.4.2(a) states that the function spaces have finite log covering numbers.

Assumption 4.4.2(b) states that the conditional probability Θ∗ and the compliance ∆∗ are

uniformly lower bounded. Such an assumption ensures the identifiability of the expected

total reward. With Assumption 4.4.2(b), we only need to consider a lower bounded

function class to recover Θ∗ and ∆∗, which is imposed in Assumption 4.4.2(c). In the

meanwhile, the Lipschitz condition imposed in Assumption 4.4.2(d) aims to control the

complexity of the value function class induced by Π, i.e., the class {V π(·) : π ∈ Π}. Such

an assumption is commonly imposed in related literature (Zhou et al., 2017; Liao et al.,

2020). Finally, Assumption 4.4.2(e) states that the sets V and W are upper bounded.

Assumption 4.4.3. The sequence {St, Zt, Ut, At}t≥0 admits a unique stationary distri-

bution Gstat over S ×Z ×U ×A and is geometrically ergodic, i.e., there exists a function

φ : S × Z × U ×A → R+ and a constant κ > 0 such that

∥Gstat(·)−Gt(· | s0, z0, u0, a0)∥TV ≤ φ(s0, z0, u0, a0) · exp (−2κt) ,

whereGt(· | s0, z0, u0, a0) is the marginal distribution of (St, Zt, Ut, At) given (S0, Z0, U0, A0) =

(s0, z0, u0, a0) under the behavior policy b. Further, we have
∫
φ(s, z, u, a)dν(s, z, u, a) ≤ c

and
∫
φ(s, z, u, a)dGstat(s, z, u, a) ≤ c for some positive absolute constant c.

Assumption 4.4.3 states that the the Markov chain {St, Zt, Ut, At}t≥0 mixes geomet-

rically. Such an assumption is widely adopted in the related literature (Van Roy, 1998;

Liao et al., 2020, 2021b; Wang et al., 2021a) to deal with dependent data.
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To establish the upper bounds for the sub-optimality of the resulting policies, we need

to first show that in our proposed algorithms, there exists at least one feasible solution

that satisfies the constraints with properly chosen constants. In the following, we focus on

conf0α0
and conf1α1

for ∆∗ and Θ∗ respectively. Since conf0α0
and conf1α1

can be constructed

by many methods, to keep our theoretical results general, we assume that there exists a

proper choice of (α0, α1) that ensures ∆
∗ ∈ conf0α0

and Θ∗ ∈ conf1α1
and then give a valid

example that justifies this assumption.

Assumption 4.4.4. There exists (α0, α1) such that with probability at least 1 − δ, we

have

∆∗ ∈ conf0α0
, Θ∗ ∈ conf1α1

.

Further, with probability at least 1− δ, for any (∆,Θ) ∈ conf0α0
× conf1α1

, we have

E

[
1

T

T−1∑
t=0

∥∆∗(St, ·)−∆(St, ·)∥21

]
≤ ξ20

C∆∗

NTκ
· CF0 log

2

δ
,

E

[
1

T

T−1∑
t=0

∥Θ∗(St, ·)−Θ(St, ·)∥21

]
≤ ξ21

CΘ∗

NTκ
· CF1 log

2

δ
.

We now illustrate that Assumption 4.4.4 can be realized via maximum likelihood

estimation (MLE) by replacing ξ0 and ξ1 with proper quantities. Note that the estimation

of ∆∗ can be decomposed into the estimation of P(A = a |S = s, Z = z) for all z ∈

Z, which can also be obtained via MLE. This implies that estimating ∆∗ is similar to

estimating Θ∗. Therefore, we only show how to estimate Θ∗ so that Assumption 4.4.4

holds for the simplicity of presentation. By maximum likelihood, we construct the loss
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function L̂1 and the estimator Θ̂ as follows,

L̂1(Θ) = −Ê

[
1

T

T−1∑
t=0

log Θ(St, Zt)

]
= − 1

NT

∑
i∈[N ]

T−1∑
t=0

log Θ(Si
t , Z

i
t), Θ̂ ∈ argmin

Θ∈F1

L̂1(Θ),

where for the simplicity of notations, we denote by Ê[·] the empirical measure generated

by the offline data D hereafter. In addition, we assume that F1 is a parametric class such

that F1 = {Θθ : θ ∈ Rd, ∥θ∥2 ≤ θmax}. We introduce the following results.

Theorem 4.4.5. Suppose F1 = {Θθ : θ ∈ Rd and ∥θ∥2 ≤ θmax}, and

α1 = c · CΘ∗

NTκ
· d log θmax

δ
log(NT ),

where c/(N2T 2) · log(NT ) ≤ δ ≤ 1. Then under Assumptions 4.2.2, 4.4.2(b), 4.4.2(c), and

4.4.3, it holds with probability at least 1− δ that Θ∗ ∈ conf1α1
. Further, with probability

at least 1− δ, it holds for any Θ ∈ conf1α1
that

√
E [∥Θ(S, ·)−Θ∗(S, ·)∥21] ≤ c

√
CΘ∗

NTκ
· d log θmax

δ
.

Proof. See §C.1.1 for a detailed proof. □

Supported by Theorem 4.4.5, we assume Assumption 4.4.4 holds throughout this sec-

tion.

4.4.1. Theoretical Results for VF-based Pessimistic Method

We first impose the following assumption, which assumes that V π is realizable in V for

any policy π, and wπ∗
is realizable in W only for the optimal policy π∗.
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Assumption 4.4.6. We have V π ∈ V for any π ∈ Π and wπ∗ ∈ W . Further, we have

−w ∈ W for any w ∈ W .

In the following lemma, we show that with a proper choice of αvf, we have V π ∈

confvfαvf
(∆∗,Θ∗, π) with a high probability.

Lemma 4.4.7. Suppose

αvf = c · C∆∗CΘ∗C∗

1− γ

√
CW,V,Π

NTκ
· log 1

δ
log(NT )

and c/(NT )2 ≤ δ ≤ 1. Then under Assumptions 4.4.2 and 4.4.6, with probability at least

1− δ, it holds for any π ∈ Π that V π ∈ confvfαvf
(∆∗,Θ∗, π).

Proof. See §C.3.2 for a detailed proof. □

In the following lemma, we show that for any v ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confvfαvf
(∆,Θ, π),

we can upper bound the risk maxg∈W Φπ
vf(v, g; ∆

∗,Θ∗).

Lemma 4.4.8. Suppose that (α0, α1, αvf) is defined in Assumption 4.4.4 and Lemma 4.4.7

and c/(NT )2 ≤ δ ≤ 1. Then under Assumptions 4.2.2, 4.2.3, and 4.4.2–4.4.6, with proba-

bility at least 1−δ, it holds for any policy π ∈ Π and v ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confvfαvf
(∆,Θ, π)

that

max
g∈W

Φπ
vf(v, g; ∆

∗,Θ∗) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)LΠ

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ).

Proof. See §C.3.3 for a detailed proof. □

Equipped with the above results, we introduce the following theorem, which charac-

terizes the suboptimality of the learned policy π̂vf constructed in (4.3.3).
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Theorem 4.4.9. Suppose c/(NT )2 ≤ δ ≤ 1. Under Assumptions 4.2.2–4.4.6, it holds

with probability at least 1− δ that

SubOpt(π̂vf) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)LΠ

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ).

Proof Sketch. In the proof sketch, we assume that we have full knowledge on ∆∗

and Θ∗. By the definition of J(π) in (4.1.2), we have

J(π∗)− J(π̂vf) = (1− γ)ES0∼ν

[
V π∗

(S0)− V π̂vf(S0)
]

≤ (1− γ)ES0∼ν

[
V π∗

(S0)
]
− min

v∈confvfαvf
(∆∗,Θ∗,π̂vf)

(1− γ)ES0∼ν [v(S0)]

≤ (1− γ)ES0∼ν

[
V π∗

(S0)
]
− min

v∈confvfαvf
(∆∗,Θ∗,π∗)

(1− γ)ES0∼ν [v(S0)]

≤ (1− γ) · max
v∈confvfαvf

(∆∗,Θ∗,π∗)

∣∣ES0∼ν

[
V π∗

(S0)− v(S0)
]∣∣ ,

where in the first inequality, we use Lemma 4.4.7 that V π̂vf ∈ confvfαvf
(∆∗,Θ∗, π̂vf) with

a high probability; while in the second inequality, we use the optimality of π̂vf. In the

meanwhile, by Lemmas 4.2.7 and 4.2.8, we have the following decomposition,

(1− γ)ES0∼ν

[
V π∗

(S0)
]
= J(π∗) = E

[
1

T

T−1∑
t=0

wπ∗
(St)

Z⊤
t Atπ

∗(At |St)

∆∗(St, At)Θ∗(St, Zt)
Rt

]
,

(1− γ)ES0∼ν [v(S0)] = E

[
1

T

T−1∑
t=0

wπ∗
(St)

Z⊤
t Atπ

∗(At |St)

∆∗(St, At)Θ∗(St, Zt)
(v(St)− γv(St+1))

]
.

(4.4.1)
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Now, by plugging (4.4.1), we have

J(π∗)− J(π̂vf) ≤ max
v∈confvfαvf

(∆∗,Θ∗,π∗)

∣∣Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)

∣∣ .
We then can upper bound the above suboptimality by Lemma 4.4.8, which concludes the

proof of the theorem. See §C.3.1 for a detailed proof. □

In Theorem 4.4.9, we impose data coverage and realizability assumptions as in As-

sumption 4.4.6, which only requires that the offline data covers the trajectory generated

by the optimal policy π∗ and V π is realizable in V for any π.

4.4.2. Theoretical Results for MIS-based Pessimistic Method

We first impose the following assumption, which assumes that wπ is realizable in W for

any policy π, and V π∗
is realizable in V only for the optimal policy π∗.

Assumption 4.4.10. We have wπ ∈ W for any π ∈ Π and V π∗ ∈ V . Further, we have

−v ∈ V for any v ∈ V .

In the following lemma, we show that with a proper choice of αmis, we have wπ ∈

confmis
αmis

(∆∗,Θ∗, π) with high probability.

Lemma 4.4.11. Suppose

αmis = c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CV,W,Π log

1

δ
log(NT )

and c/(NT )2 ≤ δ ≤ 1. Then under Assumptions 4.4.2 and 4.4.10, with probability at

least 1− δ, it holds for any π ∈ Π that wπ ∈ confmis
αmis

(∆∗,Θ∗, π).

Proof. See §C.4.2 for a detailed proof. □
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In the following lemma, we show that for any w ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π),

we can upper bound the risk maxf∈V Φ
π
mis(w, f ; ∆

∗,Θ∗).

Lemma 4.4.12. Suppose that (α0, α1, αmis) is defined in Assumption 4.4.4 and Lemma

4.4.11, and c/(NT )2 ≤ δ ≤ 1. Then under Assumptions 4.2.2, 4.2.6–4.4.4, and 4.4.10, with

probability at least 1−δ, it holds for any π ∈ Π and w ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π)

that

max
f∈V

Φπ
mis(w, f ; ∆

∗,Θ∗) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ).

Proof. See §C.4.3 for a detailed proof. □

Equipped with the above results, we introduce the following theorem, which charac-

terizes the suboptimality of the learned policy π̂mis constructed in (4.3.6).

Theorem 4.4.13. Suppose c/(NT )2 ≤ δ ≤ 1. Under Assumptions 4.2.2, 4.2.6–4.4.4,

and 4.4.10, it holds with probability at least 1− δ that

SubOpt(π̂mis) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ).

Proof. See §C.4.1 for a detailed proof. □

In Theorem 4.4.13, we impose data coverage and realizability assumptions as in As-

sumption 4.4.10, which only requires that V π∗
is realizable in V and the offline data covers

the trajectory generated by the policy π for any π ∈ Π.
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4.4.3. Theoretical Results for DR-based Pessimistic Method

Theorem 4.4.14. Suppose that (α0, α1, αmis, αvf) is defined in Assumption 4.4.4, Lem-

mas 4.4.7, 4.4.11, and at least one of Assumptions 4.4.6 and 4.4.10 hold. Then under

Assumptions 4.2.2–4.4.4, it holds with probability at least 1− δ for any c/(NT )2 ≤ δ ≤ 1

that

SubOpt(π̂dr) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V,Π log

1

δ
log(NT ),

where π̂dr is defined in (4.3.8).

Proof. See §C.5.1 for a detailed proof. □

Theorem 4.4.14 shows that π̂dr is a doubly robust estimator of the optimal policy in

the sense that either Assumption 4.4.6 or Assumption 4.4.10 ensures the convergence of

π̂dr.

Our results in §4.3.1–§4.3.3 hinge on the data coverage and realizability assumptions.

Can we obtain a similar upper bound if such assumptions are violated? In this section,

we answer this question affirmatively. First, we introduce the following assumption. We

denote by

ṽπ ∈ argmin
v∈V

max
w∈W

Φπ
vf(v, w; ∆

∗,Θ∗), w̃π ∈ argmin
w∈W

max
v∈V

Φπ
mis(w, v; ∆

∗,Θ∗).(4.4.2)

Assumption 4.4.15 (Model Misspecification). The following statements hold.

(a) We have ∥V π − ṽπ∥∞ ≤ εVvf for any π ∈ Π and ∥wπ∗ − w̃π∗∥∞ ≤ εWvf .

(b) We have ∥wπ − w̃π∥∞ ≤ εWmis for any π ∈ Π and ∥V π∗ − ṽπ∗∥∞ ≤ εVmis.
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Though Assumption 4.4.15 requires that (a) and (b) hold simultaneously, we remark

that previous assumptions imposed in VF-, MIS-, and DR-based pessimism can be recov-

ered by such an assumption. Specifically, Assumptions 4.4.6 and 4.4.10 can be recovered

by taking (εVvf, ε
W
vf , ε

V
mis, ε

W
mis) = (0, 0,∞,∞) and (εVvf, ε

W
vf , ε

V
mis, ε

W
mis) = (∞,∞, 0, 0), respec-

tively, in Assumption 4.4.15. Similarly, the data coverage and realizability assumptions in

Theorem 4.4.14 can also be recovered by either taking (εVvf, ε
W
vf , ε

V
mis, ε

W
mis) = (0, 0,∞,∞)

or taking (εVvf, ε
W
vf , ε

V
mis, ε

W
mis) = (∞,∞, 0, 0).

Theorem 4.4.16. Suppose that (α0, α1, αmis, αvf) is defined in Assumption 4.4.4, Lemma

4.4.7, and Lemma 4.4.11. Then under Assumptions 4.2.2–4.4.4, and 4.4.15, it holds with

probability at least 1− δ for any c/(NT )2 ≤ δ ≤ 1 that

SubOpt(π̂dr) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V,Π log

NT

δ

+ 3C∆∗CΘ∗ min
{
C∗ε

V
vf + εWvf /(1− γ), C∗ε

V
mis + εWmis/(1− γ)

}
,

where π̂dr is defined in (4.3.8).

Proof. See §C.5.2 for a detailed proof. □

Due to the model misspecification, compared with Theorem 4.4.14, there is an addi-

tional bias term on the upper bound of the suboptimality in Theorem 4.4.16. We remark

that either (εVvf, ε
W
vf ) = (0, 0) or (εVmis, ε

W
mis) = (0, 0) ensures zero bias in Theorem 4.4.16.

4.5. Dual Formulation

To improve the computational efficiency of estimating the optimal in-class policy due

to the confidence sets, we propose a dual formulation of the aforementioned pessimistic
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methods. For illustration purpose, we only consider the dual formulation of the VF-based

pessimistic method proposed in §4.3.1. Similar formulations for MIS-based and DR-based

methods can also be derived accordingly.

For the ease of presentation, we assume that there exists an oracle that gives us ∆∗

and Θ∗. Without the existence of such an oracle, we only need to employ two additional

dual variables to consider the uncertainty induced by estimating ∆∗ and Θ∗.

We consider the following dual form of (4.3.3),

π̂†
vf = argmax

π∈Π
max
λ≥0

min
v∈V

(1− γ)ES∼ν [v(S)] + λ ·
(
M̂π

vf(v)− αvf

)
,(4.5.1)

s.t. M̂π
vf(v) = max

g∈W
Φ̂π

vf(v, g; ∆
∗,Θ∗)−max

g∈W
Φ̂π

vf(v̂
π
∆∗,Θ∗ , g; ∆∗,Θ∗),

where v̂π∆∗,Θ∗ = argminv∈V maxg∈W Φ̂π
vf(v, g; ∆

∗,Θ∗) and λ is the dual variable that corre-

sponds to the constraint v ∈ confvfαvf
(∆∗,Θ∗, π). In comparison to the constrained opti-

mization problem in (4.3.3), the problem in (4.5.1) can be solved efficiently using gradient

methods.

In the following theorem, we characterize the suboptimality of π̂†
vf.

Theorem 4.5.1. Suppose that V is convex, c/(NT )2 ≤ δ ≤ 1, and αvf is defined in

Lemma 4.4.8. Under Assumptions 4.2.2–4.4.6, it holds with probability at least 1−δ that

SubOpt(π̂†
vf) ≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)LΠ

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ).

Proof. See §C.6.1 for a detailed proof. □

In Theorem 4.5.1, we show a similar suboptimality holds as in Theorem 4.4.9. Thus,

to avoid computation challenges induced by the confidence sets, we only need to solve
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(4.5.1) to obtain an optimal policy. We remark similar dual formulations for MIS-based

and DR-based methods also hold, as well as their theoretical properties.

4.6. Identifiability

We discuss identifiability in this section. First, we use tabular MDP as an example to

illustrate non-identifiability. Then we discuss the identifiability in our methods.

Non-Identifiability in Tabular MDP. We consider a tabular MDP with states S =

{s1, s2, . . . , s|S|}, where the behavior policy b used to generate offline data only covers

states {s2, . . . , s|S|}. We assume that the expected total reward under such a tabular

MDP is J(π) for any policy π. Since the offline data generated following b never covers

the state s1, we cannot infer any information of the reward received at the state s1.

Thus, for any policy π that arrives the state s1 with a nonzero probability, we cannot

identify the value J(π) uniquely. In the meanwhile, the state-value function V π : S → R

is not uniquely identifiable for any policy π (even for π∗), since the value V π(s1) is not

identifiable.

Identifiability in Our Methods. In §4.2 and §4.3, we do not explicitly impose any

identifiability assumptions. But certain identifiability assumptions are implied by the

data coverage assumptions as follows.

• VF-based pessimism. As imposed in Assumption 4.4.6, we require that wπ∗
is

upper bounded. Thus, we know that the trajectory generated by the optimal

policy π∗ is covered by the offline data, which implies that J(π∗) is identifiable.

• MIS-based pessimism. As imposed in Assumption 4.4.10, we require that wπ is

upper bounded for any policy π. Thus, we know that the trajectory generated by
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any policy π is covered by the offline data, which implies that J(π) is identifiable

for any π.

• DR-based pessimism. Since either Assumption 4.4.6 or Assumption 4.4.10 hold,

we require that J(π∗) is identifiable or J(π) is identifiable for any π.

It is worth noting that though we impose realizability assumptions on the state-value

function V π in Assumptions 4.4.6 and 4.4.10, we do not require that V π is identifiable for

any π (even for π∗). Such non-identifiability implies that the IV-aided Bellman equation

in Lemma 4.2.4 may have multiple fixed point solutions.
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yses for fully decentralized multi-agent reinforcement learning. arXiv preprint

arXiv:1812.02783.

Zhang, R., Dai, B., Li, L. and Schuurmans, D. (2020). Gendice: Generalized offline esti-

mation of stationary values. arXiv preprint arXiv:2002.09072.

Zhou, X., Mayer-Hamblett, N., Khan, U. and Kosorok, M. R. (2017). Residual weighted

learning for estimating individualized treatment rules. Journal of the American Statis-

tical Association, 112 169–187.

Zhou, X. Y. and Li, D. (2000). Continuous-time mean-variance portfolio selection: A

stochastic LQ framework. Applied Mathematics and Optimization, 42 19–33.



129

Ziebart, B. D., Maas, A. L., Bagnell, J. A. and Dey, A. K. (2008). Maximum entropy

inverse reinforcement learning. In AAAI Conference on Artificial Intelligence, vol. 3.

Zou, D., Cao, Y., Zhou, D. and Gu, Q. (2018). Stochastic gradient descent optimizes

over-parameterized deep ReLU networks. arXiv preprint arXiv:1811.08888.

Zou, S., Xu, T. and Liang, Y. (2019). Finite-sample analysis for SARSA and Q-learning

with linear function approximation. arXiv preprint arXiv:1902.02234 8665–8675.



130

APPENDIX A

Supplemental Materials in Chapter 2

A.1. Details of Algorithms

We introduce the actor-critic method with DNN approximation in Algorithm 4, which

relies on Algorithms 5 and 6 for the actor and critic updates.

Algorithm 4 Deep Neural Actor-Critic Method

Input: Number of iterations K,Na, Nc, stepsizes α, η, and temperature parameter β.
Initialization: Set τ0 ←∞ and initialize DNNs fθ0 and Qω0 as specified in §2.2.2.
for k = 0, 1, 2, . . . , K do

Actor Update: Update θk+1 via Algorithm 5 with input πθk , θ0, Qωk
, α, β, τk+1 =

(k + 1)−1 · β, and Na.
Critic Update: Update ωk+1 via Algorithm 6 with input πθk+1

, Qωk
, ω0, η, and

Nc.
end for
Output: {πθk}k∈[K+1], where πθk ∝ exp(τ−1

k fθk).

Algorithm 5 Actor Update for Deep Neural Actor-Critic Method

Input: Policy πθ ∝ exp(τ−1fθ), initial actor parameter θ0, action-value function Qω,
stepsize α, temperature parameter β, temperature τ̃ , and number of iterations Na.
Initialization: Set θ(0)← θ0.
for n = 0, 1, 2, . . . , Na − 1 do

Sample (s, a) as specified in §2.2.2.
Set θ(n + 1) ← ΓB(θ0,Ra)(θ(n) − α · (fθ(n)(s, a) − τ̃ · (β−1Qω(s, a) + τ−1fθ(s, a))) ·

∇θfθ(n)(s, a)).
end for
Output: θ = 1/Na ·

∑Na

n=1 θ(n).
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Algorithm 6 Critic Update for Deep Neural Actor-Critic Method

Input: Policy πθ, action-value function Qω, initial critic parameter ω0, stepsize η, and

number of iterations Nc.

Initialization: Set ω(0)← ω0.

for n = 0, 1, 2, . . . , Nc − 1 do

Sample (s, a, r, s′, a′) as specified in §2.2.2.

Set δ(n)← Qω(n)(s, a)− (1− γ) · r − γ ·Qω(s
′, a′).

Set ω(n+ 1)← ΓB(ω0,Rc)(ω(n)− η · δ(n) · ∇ωQω(n)(s, a)).

end for

Output: ω = 1/Nc ·
∑Nc

n=1 ω(n).

A.2. Convergence Results of Algorithm 4

In this section, we upper bound the regret of the deep neural actor-critic method.

Hereafter we assume that |R(s, a)| ≤ Rmax for any (s, a) ∈ S × A, where Rmax is a

positive absolute constant. First, we impose the following assumptions in parallel to

Assumption 2.3.1. Recall that ρ∗ is the stationary state-action distribution of π∗, while

ρk is the stationary state-action distribution of πθk .

Assumption A.2.1 (Concentrability Coefficient). The following statements hold.

(i) There exists a positive absolute constant ϕ∗ such that ϕ∗
k ≤ ϕ∗ for any k ≥ 1,

where ϕ∗
k = ∥dρ∗/dρk∥ρk,2.

(ii) For the state-action distribution ρ used to define the regret in (2.3.1), we assume

that for any k ≥ 1 and a sequence of policies {πi}i≥1, the k-step future-state-

action distribution ρPπ1 · · ·Pπk is absolutely continuous with respect to ρ∗. Also,
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it holds that

Cρ,ρ∗ = (1− γ)2
∞∑
k=1

k3γk · c(k) <∞,

where c(k) = sup{πi}i∈[k]
∥d(ρPπ1 · · ·Pπk)/dρ∗∥ρ∗,∞.

Meanwhile, we impose the following assumption in parallel to Assumption 2.3.2.

Assumption A.2.2 (Zero Approximation Error). For anyQω ∈ U(mc, Hc, Rc) and policy

π, it holds that T πQω ∈ U(mc, Hc, Rc), where T π is defined in (2.1.4).

Assumption A.2.2 states that U(mc, Hc, Rc) is closed under the Bellman evaluation

operator T π, which is commonly imposed in the literature (Munos and Szepesvári, 2008;

Antos et al., 2008a; Farahmand et al., 2010, 2016; Tosatto et al., 2017; Yang et al., 2019c;

Liu et al., 2019).

We upper bound the regret of the deep neural actor-critic method in Algorithm 4 in

the sequel. To establish such an upper bound, we first establish the rates of convergence

of Algorithms 5 and 6 as follows.

Proposition A.2.3. For any sufficiently largeNa > 0, letma = Ω(d3/2R−1
a H

−3/2
a log(m

1/2
a /Ra)

3/2),

Ha = O(N
1/4
a ), and Ra = O(m

1/2
a H−6

a (logma)
−3). We denote by θ the output of Algo-

rithm 5 with input πθ ∝ exp(τ−1fθ), θ0, Qω, α, β, τ̃ = (τ−1 + β−1)−1, and Na. Also, let

f̃ = τ̃ · (β−1Qω + τ−1fθ). With probability at least 1 − exp(−Ω(R2/3
a m

2/3
a Ha)) over the

random initialization θ0, we have

E
[(
fθ(s, a)− f̃(s, a)

)2]
= O(R2

aN
−1/2
a +R8/3

a m−1/6
a H7

a logma).
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Here the expectation is taken over the randomness of θ conditioning on the initialization

θ0 and (s, a) ∼ ρπθ
, where ρπθ

is the stationary state-action distribution of πθ.

Proof. See §A.5.2 for a detailed proof. □

Proposition A.2.4. For any sufficiently largeNc > 0, letmc = Ω(d3/2R−1
c H

−3/2
c log(m

1/2
c /Rc)

3/2),

Hc = O(N
1/4
c ), and Rc = O(m

1/2
c H−6

c (logmc)
−3). We denote by ω the output of Algo-

rithm 6 with input πθ, Qω, ω0, η, and Nc. Also, let Q̃ = (1 − γ) · R + γ · PπθQω. With

probability at least 1− exp(−Ω(R2/3
c m

2/3
c Hc)) over the random initialization ω0, we have

E
[(
Qω̄(s, a)− Q̃(s, a)

)2]
= O(R2

cN
−1/2
c +R8/3

c m−1/6
c H7

c logmc).

Here the expectation is taken over the randomness of ω conditioning on the initialization

ω0 and (s, a) ∼ ρπθ
, where ρπθ

is the stationary state-action distribution of πθ.

Proof. See §A.5.3 for a detailed proof. □

Propositions A.2.3 and A.2.4 characterize the errors that arise from the actor and

critic updates in Algorithm 4, respectively. In particular, if the widths ma and mc of the

DNNs fθ and Qω are sufficiently large, the errors characterized in Propositions A.2.3 and

A.2.4 decay to zero at the rates of O(N
−1/2
a ) and O(N

−1/2
c ), respectively. Propositions

A.2.3 and A.2.4 act as the key ingredients to upper bounding the regret of the deep neural

actor-critic method.

Based on Propositions A.2.3 and A.2.4, we upper bound the regret of Algorithm 4 in

the following theorem, which is in parallel to Theorem 2.3.4.

Theorem A.2.5. We assume that Assumptions A.2.1 and A.2.2 hold. Let ρ be a state-

action distribution satisfying (ii) of Assumption A.2.1. Also, for any sufficiently large
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K > 0, let Na = Ω(K6C4
ρ,ρ∗(ϕ

∗ + ψ∗ + 1)4R4
a), Nc = Ω(K6C4

ρ,ρ∗ϕ
∗4R4

c), Ha = Hc =

O(N
1/4
c ), Ra = Rc = O(m

1/2
c H−6

c (logmc)
−3), ma = mc = Ω(d3/2K6C12

ρ,ρ∗(ϕ
∗ + ψ∗ +

1)12R16
c H

42
c log(m

1/2
c /Rc)

3/2), β = K1/2, and the sequence {θk}k∈[K] be generated by Al-

gorithm 4. With probability at least 1− 1/K over the random initialization θ0 and ω0, it

holds that

E
[ K∑
k=0

Q∗(s, a)−Qπθk+1 (s, a)
]
≤
(
2(1− γ)−3 log |A|+O(1)

)
·K1/2,

where the expectation is taken over the randomness of (s, a) ∼ ρ and {θk+1}k∈[K] condi-

tioning on the initialization θ0 and ω0.

Proof. See §A.3.2 for a detailed proof. □

When the architecture of the actor and critic neural networks are properly chosen,

Theorem A.2.5 establishes an O(K1/2) regret of Algorithm 4, where K is the total number

of iterations. Specifically speaking, to establish such a regret upper bound, we need the

widths ma and mc of the DNNs fθ and Qω to be sufficiently large. Meanwhile, to control

the errors of actor update and critic update in Algorithm 4, we also run sufficiently large

numbers of iterations in Algorithms 5 and 6.

In terms of the total sample complexity, to simplify our discussion, we omit constant

and logarithmic terms here. To obtain an ε-globally optimal policy, it suffices to set

K ≍ ε−2 in Algorithm 4. By plugging such a K into Na = Ω(K6C4
ρ,ρ∗(ϕ

∗ + ψ∗ + 1)4R4
a)

and Nc = Ω(K6C4
ρ,ρ∗ϕ

∗4R4
c) as required in Theorem A.2.5, we have Na = Õ(ε−12) and

Nc = Õ(ε−12). Thus, to achieve an ε-globally optimal policy, the total sample complexity



135

of Algorithm 4 is Õ(ε−14). With the modification to off-policy setting as in §2.2.1, the

total sample complexity of Algorithm 4 is Õ(ε−12).

To the best of our knowledge, we establish the rate of convergence and global opti-

mality of the actor-critic method under single-timescale setting with DNN approximation

for the first time.

A.3. Proofs of Theorems

A.3.1. Proof of Theorem 2.3.4

Recall that ρ is a state-action distribution satisfying (ii) of Assumption 2.3.1. We first

upper bound
∑K

k=0(Q
∗(s, a) − Qπθk+1 (s, a)) for any (s, a) ∈ S × A in part 1. Then by

further taking the expectation over ρ and invoking Lemma 2.4.1 in part 2, we conclude

the proof of Theorem 2.3.4.
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Part 1. In the sequel, we upper bound
∑K

k=0(Q
∗(s, a)−Qπθk+1 (s, a)) for any (s, a) ∈ S×A.

By the definition of Q∗ in (2.1.2), it holds for any (s, a) ∈ S ×A that

[Q∗ −Qπθk+1 ](s, a)

=
∞∑
ℓ=0

[
(1− γ) · (γPπ∗

)ℓR
]
(s, a)−Qπθk+1 (s, a)

=
∞∑
ℓ=0

[
(1− γ) · (γPπ∗

)ℓR+ (γPπ∗
)ℓ+1Qπθk+1 − (γPπ∗

)ℓ+1Qπθk+1

]
(s, a)−Qπθk+1 (s, a)

=
∞∑
ℓ=0

[
(1− γ) · (γPπ∗

)ℓR+ (γPπ∗
)ℓ+1Qπθk+1 − (γPπ∗

)ℓQπθk+1

]
(s, a)

=
∞∑
ℓ=0

[
(γPπ∗

)ℓ
(
(1− γ) · R+ γ · Pπ∗

Qπθk+1 −Qπθk+1

)]
(s, a),

(A.3.1)

where Pπ∗
is defined in (2.1.3). We upper bound [(1−γ) ·R+γ ·Pπ∗

Qπθk+1 −Qπθk+1 ](s, a)

on the RHS of (A.3.1) in the sequel. By calculation, we have

[
(1− γ) · R+ γ · Pπ∗

Qπθk+1 −Qπθk+1

]
(s, a)

=
[(
(1− γ) · R+ γ · Pπ∗

Qπθk+1

)
−
(
(1− γ) · R+ γ · Pπ∗

Qωk

)]
(s, a)

+
[(
(1− γ) · R+ γ · Pπ∗

Qωk

)
−
(
(1− γ) · R+ γ · Pπθk+1Qωk

)]
(s, a)

+
[(
(1− γ) · R+ γ · Pπθk+1Qωk

)
−Qπθk+1

]
(s, a)

= A1,k(s, a) + A2,k(s, a) + A3,k(s, a),(A.3.2)
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where A1,k, A2,k, and A3,k are defined as follows,

A1,k(s, a) =
[
γ(Pπ∗ − Pπθk+1 )Qωk

]
(s, a),

A2,k(s, a) =
[
γPπ∗

(Qπθk+1 −Qωk
)
]
(s, a),

A3,k(s, a) = [T πθk+1Qωk
−Qπθk+1 ](s, a).(A.3.3)

Here T πθk+1 is defined in (2.1.4). By the following three lemmas, we upper bound A1,k,

A2,k, and A3,k on the RHS of (A.3.2), respectively.

Lemma A.3.1. It holds for any (s, a) ∈ S ×A that

A1,k(s, a) =
[
γ(Pπ∗ − Pπθk+1 )Qωk

]
(s, a) ≤

[
γβ · P(ϑk + ϵak+1)

]
(s, a),

where ϑk and ϵak+1 are defined as follows,

ϑk(s) = KL
(
π∗(· | s) ∥ πθk(· | s)

)
−KL

(
π∗(· | s) ∥ πθk+1

(· | s)
)
,(A.3.4)

ϵak+1(s) =
〈
log
(
πθk+1

(· | s)/πθk(· | s)
)
− β−1 ·Qωk

(s, ·), π∗(· | s)− πθk+1
(· | s)

〉
.(A.3.5)

Proof. See §A.6.2 for a detailed proof. □

We remark that ϵak+1 = 0 for any k in the linear actor-critic method. Meanwhile,

such a term is included in Lemma A.3.1 only aiming to generalize to the deep neural

actor-critic method.
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Lemma A.3.2. It holds for any (s, a) ∈ S ×A that

A2,k(s, a) ≤
[
(γPπ∗

)k+1(Q∗ −Qω0)
]
(s, a) + γβ ·

k−1∑
i=0

[
(γPπ∗

)k−iP(ϑi + ϵai+1)
]
(s, a)

+
k−1∑
i=0

[
(γPπ∗

)k−iϵci+1

]
(s, a),

where ϑi is defined in (A.3.4) of Lemma A.3.1, ϵai+1 is defined in (A.3.5) of Lemma A.3.1,

and ϵci+1 is defined as follows,

ϵci+1(s, a) = [T πθi+1Qωi
−Qωi+1

](s, a).(A.3.6)

Proof. See §A.6.3 for a detailed proof. □

We remark that ϵak+1 = 0 for any k in the linear actor-critic method. Meanwhile,

such a term is included in Lemma A.3.2 only aiming to generalize to the deep neural

actor-critic method.

Lemma A.3.3. It holds for any (s, a) ∈ S ×A that

A3,k(s, a) =
[
γPπθk+1 (I − γPπθk+1 )−1ek+1

]
(s, a),

where ek+1 is defined as follows,

ek+1(s, a) = [Qωk
− T πθk+1Qωk

](s, a).(A.3.7)

Proof. See §A.6.4 for a detailed proof. □

We upper bound ek+1 in (A.3.7) of Lemma A.3.3 using Lemma A.3.4 as follows.
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Lemma A.3.4. It holds for any (s, a) ∈ S ×A that

ek+1(s, a) ≤
[
γk
( k∏
s=1

Pπθs

)
e1 +

k∑
i=1

γk−i
( k∏
s=i+1

Pπθs

)(
γβPϵbi+1 + (I − γPπθi )ϵci

)]
(s, a).

where ϵci (s, a) is defined in (A.3.6) of Lemma A.3.2 and ϵbi+1(s) is defined as follows,

ϵbi+1(s) =
〈
log
(
πθi+1

(· | s)/πθi(· | s)
)
− β−1 ·Qωi

(s, ·), πθi(· | s)− πθi+1
(· | s)

〉
.(A.3.8)

Proof. See §A.6.5 for a detailed proof. □

We remark that ϵbi+1 = 0 for any i in the linear actor-critic method. Meanwhile, such a

term is included in Lemma A.3.4 only aiming to generalize to the deep neural actor-critic

method.

Combining Lemmas A.3.3 and A.3.4, we obtain the following upper bound of A3,k,

A3,k(s, a) =
[
γPπθk+1 (I − γPπθk+1 )−1ek+1

]
(s, a)

≤
[
γPπθk+1 (I − γPπθk+1 )−1

(
γk
( k∏
s=1

Pπθs

)
e1(A.3.9)

+
k∑

i=1

γk−i
( k∏
s=i+1

Pπθs

)(
βγPϵbi+1 + (I − γPπθi )ϵci

))]
(s, a).
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Combining (A.3.1), (A.3.2), Lemma A.3.1 and Lemma A.3.2, it holds for any (s, a) ∈ S×A

that

K∑
k=0

[Q∗ −Qπθk+1 ](s, a)

≤
K∑
k=0

[
(I − γPπ∗

)−1
(
(γPπ∗

)k+1(Q∗ −Qω0) +
k∑

i=0

(γPπ∗
)k−iγβP(ϑi + ϵai+1)

+
k−1∑
i=0

(γPπ∗
)k−iϵci+1 + A3,k

)]
(s, a)

=

[
(I − γPπ∗

)−1
( K∑

k=0

(γPπ∗
)k+1(Q∗ −Qω0) +

K∑
k=0

k∑
i=0

(γPπ∗
)k−iγβPϵai+1

(A.3.10)

+
K∑
k=0

k−1∑
i=0

(γPπ∗
)k−iϵci+1 +

K∑
k=0

A3,k +
K∑
k=0

k∑
i=0

(γPπ∗
)k−iγβPϑi

)]
(s, a),

where ϑi, ϵ
a
i+1, ϵ

c
i+1, and ek+1 are defined in (A.3.4) of Lemma A.3.1, (A.3.5) of Lemma

A.3.1, (A.3.6) of Lemma A.3.2, and (A.3.7) of Lemma A.3.3, respectively. We upper
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bound the last term as follows,

[ K∑
k=0

k∑
i=0

(γPπ∗
)k−iγβPϑi

]
(s, a) =

[ K∑
k=0

k∑
i=0

γβ(γPπ∗
)iPϑk−i

]
(s, a)

=

[ K∑
i=0

γβ(γPπ∗
)iP

K∑
k=i

ϑk−i

]
(s, a)

=

[ K∑
i=0

γβ(γPπ∗
)iP

K∑
k=i

(
KL
(
π∗ ∥ πθk−i

)
−KL

(
π∗ ∥ πθk−i+1

))]
(s, a)

=

[ K∑
i=0

γβ(γPπ∗
)iP
(
KL(π∗ ∥ πθ0)−KL(π∗ ∥ πθK−i+1

)
)]
(s, a)

≤
[ K∑

i=0

γβ(γPπ∗
)iPKL(π∗ ∥ πθ0)

]
(s, a),(A.3.11)

where we use the definition of ϑk−i in (A.3.4) of Lemma A.3.1 and the non-negativity of

the KL divergence in the second equality and the last inequality, respectively. By plugging
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(A.3.9) and (A.3.11) into (A.3.10), we have

K∑
k=0

[Q∗ −Qπθk+1 ](s, a)

≤
[
(I − γPπ∗

)−1

( K∑
k=0

(γPπ∗
)k+1(Q∗ −Qω0) +

K∑
k=0

k∑
i=0

(γPπ∗
)k−iγβPϵai+1

(A.3.12)

+
K∑
k=0

k−1∑
i=0

(γPπ∗
)k−iϵci+1 +

K∑
k=0

γk+1Pπθk+1 (I − γPπθk+1 )−1
( k∏
s=1

Pπθs

)
e1

+
K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1

k∑
ℓ=1

γk−ℓ+1
( k∏
s=ℓ+1

Pπθs

)(
γβPϵbℓ+1 + (I − γPπθℓ )ϵcℓ

))]
(s, a).

+
K∑
i=0

(γPπ∗
)iγβPKL(π∗ ∥ πθ0)

We remark that ϵai+1 = ϵbi+1 = 0 for any i in the linear actor-critic method. Meanwhile,

such terms is included in (A.3.12) only aiming to generalize to the deep neural actor-critic

method. This concludes the proof in part 1.

Part 2. Recall that ρ is a state-action distribution satisfying (ii) of Assumption 2.3.1. In

the sequel, we take the expectation over ρ in (A.3.12) and upper bound each term. Recall

that ϵai+1 = ϵbi+1 = 0 for any i in the linear actor-critic method. Hence, we only need to

consider terms in (A.3.12) that do not involve ϵai+1 or ϵbi+1. We first upper bound terms

on the RHS of (A.3.12) that do not involve ϵci+1. More specifically, for any measure ρ



143

satisfying satisfying (ii) of Assumption 2.3.1, we upper bound the following three terms,

M1 = Eρ

[
(I − γPπ∗

)−1

K∑
k=0

(γPπ∗
)k+1(Q∗ −Qω0)

]
,

M2 = Eρ

[
(I − γPπ∗

)−1

K∑
k=0

γk+1Pπθk+1 (I − γPπθk+1 )−1
( k∏
s=1

Pπθs

)
e1

]
,

M3 = Eρ

[
(I − γPπ∗

)−1

K∑
i=0

(γPπ∗
)iγβPKL(π∗ ∥ πθ0)

]
.(A.3.13)

We upper bound M1, M2, and M3 in the following lemma.

Lemma A.3.5. It holds that

|M1| ≤ 4(1− γ)−2 · (Rmax +R), |M2| ≤ (1− γ)−3 · (2R +Rmax),

|M3| ≤ (1− γ)−2 · log |A| ·K1/2,

where M1, M2, and M3 are defined in (A.3.13).

Proof. See §A.6.6 for a detailed proof. □

Now, we upper bound terms on the RHS of (A.3.12) that involve ϵci+1. More specifi-

cally, for any measure ρ satisfying (ii) of Assumption 2.3.1, we upper bound the following

two terms,

M4 = Eρ

[
(I − γPπ∗

)−1

K∑
k=0

k∑
i=0

(γPπ∗
)k−iϵci+1

]
,

(A.3.14)

M5 = Eρ

[
(I − γPπ∗

)−1

K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1

k∑
ℓ=1

γk−ℓ+1
( k∏
s=ℓ+1

Pπθs

)
(I − γPπθℓ )ϵcℓ

]
.
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We upper bound M4 and M5 in the following lemma.

Lemma A.3.6. It holds that

|M4| ≤ 3KCρ,ρ∗ · εQ, |M5| ≤ KCρ,ρ∗ · εQ.

where M4 and M5 are defined in (A.3.14).

Proof. See §A.6.7 for a detailed proof. □

Now, by plugging Lemmas A.3.5 and A.3.6 into (A.3.12), we have

Eρ

[ K∑
k=0

Q∗(s, a)−Qπθk+1 (s, a)
]

≤ 2(1− γ)−3 · log |A| ·K1/2 + 4KCρ,ρ∗ · εQ +O(1).(A.3.15)

Meanwhile, by changing measure from ρ∗ to ρk+1, it holds for any k that

Eρ∗ [|ϵck+1|] ≤
√
Eρk+1

[
(ϵck+1(s, a))

2
]
· ϕ∗

k+1,(A.3.16)

where ϕ∗
k+1 is defined in Assumption 2.3.1. Also, by Lemma 2.4.1, with probability at

least 1− δ, it holds for any k ∈ {0, 1, . . . , K} that

√
Eρk+1

[
(ϵck+1(s, a))

2
]
= O

(
1/(
√
Nσ∗) · log(KN/δ)

)
.(A.3.17)

Now, by plugging (A.3.17) into (A.3.16), combining the definition of εQ = maxk Eρ∗ [|ϵck+1(s, a)|],

it holds with probability at least 1− δ that

εQ = O
(
ϕ∗/(
√
Nσ∗) · log(KN/δ)

)
.(A.3.18)
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Combining (A.3.15), (A.3.18), and the choices of parameters stated in the theorem that

N = Ω
(
KC2

ρ,ρ∗(ϕ
∗/σ∗)2 · log2(KN/δ)

)
,

we have

Eρ

[ K∑
k=0

Q∗(s, a)−Qπθk+1 (s, a)
]
≤
(
2(1− γ)−3 log |A|+O(1)

)
·K1/2,

which concludes the proof of Theorem 2.3.4.

A.3.2. Proof of Theorem A.2.5

We follow the proof of Theorem 2.3.4 in §A.3.1. Following similar arguments when deriving

(A.3.12) in §A.3.1, we have

K∑
k=0

[Q∗ −Qπθk+1 ](s, a)

≤
[
(I − γPπ∗

)−1 ·
( K∑

k=0

(γPπ∗
)k+1(Q∗ −Qω0) +

K∑
k=0

k∑
i=0

(γPπ∗
)k−i · γβPϵai+1

(A.3.19)

+
K∑
k=0

k−1∑
i=0

(γPπ∗
)k−iϵci+1 +

K∑
i=0

(γPπ∗
)i · γβP ·KL(π∗ ∥ πθ0)

+
K∑
k=0

γk+1Pπθk+1 (I − γPπθk+1 )−1
( k∏
s=1

Pπθs

)
e1

+
K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1

k∑
ℓ=1

γk−ℓ+1
( k∏
s=ℓ+1

Pπθs

)(
βγPϵbℓ+1 − (I − γPπθℓ )ϵcℓ

))]
(s, a),
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for any (s, a) ∈ S×A. Here ϵai+1, ϵ
b
ℓ+1, ϵ

c
i+1, and e1 are defined in (A.3.5), (A.3.8), (A.3.6),

and (A.3.7), respectively.

Now, it remains to upper bound each term on the RHS of (A.3.19). We introduce the

following error propagation lemma.

Lemma A.3.7. Suppose that

Eρk

[(
fθk+1

(s, a)− τk+1 · (β−1Qωk
(s, a)− τ−1

k fθk(s, a))
)2]1/2 ≤ εk+1,f .(A.3.20)

Then, we have

Eν∗
[
|ϵak+1(s)|

]
≤
√
2τ−1

k+1 · εk+1,f · (ϕ∗
k + ψ∗

k), Eν∗
[
|ϵbk+1(s)|

]
≤
√
2τ−1

k+1 · εk+1,f · (1 + ψ∗
k),

where ϵak+1 and ϵ
b
k+1 are defined in (A.3.5) and (A.3.8), respectively, ϕ∗

k and ψ
∗
k are defined

in Assumption A.2.1.

Proof. See §A.6.8 for a detailed proof. □

Following from Lemma A.4.4, with probability at least 1 − O(Hc) exp(−Ω(H−1
c mc)),

we have |Qω0| ≤ 2. Also, from the fact that |R(s, a)| ≤ Rmax, we know that |Q∗| ≤ Rmax.

Therefore, for any measure ρ, we have

∣∣∣Eρ

[
(I − γPπ∗

)−1

K∑
k=0

(γPπ∗
)k+1(Q∗ −Qω0)

]∣∣∣
≤ Eρ

[
(I − γPπ∗

)−1

K∑
k=0

(γPπ∗
)k+1|Q∗ −Qω0|

]

≤ Rmax(1− γ)−1

K∑
k=0

γk+1 ≤ Rmax(1− γ)−2.(A.3.21)
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Also, by changing the index of summation, we have

∣∣∣Eρ

[
(I − γPπ∗

)−1

K∑
k=0

k∑
i=0

(γPπ∗
)k−iγβPϵai+1

]∣∣∣
=
∣∣∣Eρ

[ K∑
k=0

k∑
i=0

∞∑
j=0

(γPπ∗
)k−i+jγβPϵai+1

]∣∣∣
=
∣∣∣Eρ

[ K∑
k=0

k∑
i=0

∞∑
t=k−i

(γPπ∗
)tγβPϵai+1

]∣∣∣
≤

K∑
k=0

k∑
i=0

∞∑
t=k−i

∣∣Eρ

[
(γPπ∗

)tγβPϵai+1

]∣∣,(A.3.22)

where we expand (I − γPπ∗
)−1 into an infinite sum in the first equality. Further, by

changing the measure of the expectation on the RHS of (A.3.22), we have

K∑
k=0

k∑
i=0

∞∑
t=k−i

∣∣Eρ

[
(γPπ∗

)tγβPϵai+1

]∣∣ ≤ K∑
k=0

k∑
i=0

∞∑
t=k−i

βγt+1c(t) · Eν∗ [|ϵAi+1|],(A.3.23)

where c(t) is defined in Assumption A.2.1. Further, by Lemma A.3.7 and interchanging

the summation on the RHS of (A.3.23), we have

∣∣∣Eρ

[
(I − γPπ∗

)−1

K∑
k=0

k∑
i=0

(γPπ∗
)k−iγβPϵai+1

]∣∣∣
≤ 2

K∑
k=0

∞∑
t=0

k∑
i=max{0,k−t}

βγt+1c(t) · τ−1
i+1εf (ϕ

∗
i + ψ∗

i )

≤
K∑
k=0

∞∑
t=0

4ktγt+1c(t) · εf (ϕ∗ + ψ∗)

≤ γ

K∑
k=0

4Cρ,ρ∗ · εf (ϕ∗ + ψ∗) ≤ 2γK2Cρ,ρ∗(ϕ
∗ + ψ∗) · εf ,(A.3.24)
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where εf = maxi Eρi [(fθi+1
(s, a) − τi+1 · (β−1Qωi

(s, a) − τ−1
i fθi(s, a)))

2]1/2, and Cρ,ρ∗ is

defined in Assumption A.2.1. Here in the second inequality, we use the fact that τ−1
i+1 =

(i+ 1) · β−1, and ϕ∗
i ≤ ϕ∗ and ψ∗

i ≤ ψ∗ by Assumption A.2.1.

By similar arguments in the derivation of (A.3.24), we have

∣∣∣Eρ

[
(I − γPπ∗

)−1

K∑
k=0

k−1∑
i=0

(γPπ∗
)k−iϵci+1

]∣∣∣ ≤ 2(K + 1)Cρ,ρ∗ϕ
∗ · εQ,

(A.3.25)

∣∣∣Eρ

[
(I − γPπ∗

)−1

K∑
i=0

(γPπ∗
)iγβPKL(π∗ ∥ πθ0)

]∣∣∣ ≤ log |A| ·K1/2(1− γ)−2,

Eρ

[
(I − γPπ∗

)−1

K∑
k=0

γk+1Pπθk+1 (I − γPπθk+1 )−1
( k∏
s=1

Pπθs

)
e1

]
≤ (2 +Rmax) · (1− γ)−3,

where εQ = maxi Eρ∗ [|ϵci+1|]. And we use the fact that β = K1/2.

Now, it remains to upper bound the last term on the RHS of (A.3.19). We first

consider the terms involving ϵbℓ+1. We have

Eρ

[
(I − γPπ∗

)−1

K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1

k∑
ℓ=1

γk−ℓ+1
( k∏
s=ℓ+1

Pπθs

)
βγPϵbℓ+1

]

=
∞∑
j=0

∞∑
i=0

K∑
k=0

k∑
ℓ=1

Eρ

[
(γPπ∗

)j(γPπθk+1 )i+1γk−ℓ
( k∏
s=ℓ+1

Pπθs

)
βγPϵbℓ+1

]

≤ βγ
K∑
k=0

k∑
ℓ=1

∞∑
j=0

∞∑
i=0

γi+j+k−ℓ+1 · Eρ∗ [|Pϵbℓ+1|] · c(i+ j + k − ℓ+ 1)

≤ 2γ
K∑
k=0

k∑
ℓ=1

∞∑
j=0

∞∑
i=0

γi+j+k−ℓ+1 · (ℓ+ 1)εf · (1 + ψ∗
ℓ ) · c(i+ j + k − ℓ+ 1),(A.3.26)
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where we expand (I − γPπ∗
)−1 and (I − γPπθk+1 )−1 to infinite sums in the first equality,

change the measure of the expectation in the first inequality, and use Lemma A.3.7 in the

last inequality. Now, by changing the index of the summation, we have

γ

K∑
k=0

k∑
ℓ=1

∞∑
j=0

∞∑
i=0

γi+j+k−ℓ+1 · (ℓ+ 1)εf · (1 + ψ∗
ℓ ) · c(i+ j + k − ℓ+ 1)

= γ

K∑
k=0

k∑
ℓ=1

∞∑
j=0

∞∑
t=j+k−ℓ+1

γt · (ℓ+ 1)εf · (1 + ψ∗
ℓ ) · c(t)

≤ γ
K∑
k=0

∞∑
j=0

∞∑
t=j+1

k∑
ℓ=max{0,j+k−t+1}

γt · (ℓ+ 1)εf · (1 + ψ∗) · c(t),(A.3.27)

where we use the fact that ψ∗
ℓ ≤ ψ∗ from Assumption A.2.1 in the last inequality. By

further manipulating the order of summations of the RHS of (A.3.27), we have

γ
K∑
k=0

∞∑
j=0

∞∑
t=j+1

k∑
ℓ=max{0,j+k−t+1}

γt · (ℓ+ 1)εf (1 + ψ∗) · c(t)

≤ γ
K∑
k=0

∞∑
j=0

(j+k+1∑
t=j+1

(t− j)(2k + j − k + 1) · γtc(t) +
∞∑

t=j+k+2

k2 · γtc(t)
)
· εf (1 + ψ∗)

= γ
K∑
k=0

( ∞∑
t=1

t−1∑
j=max{0,t−k−1}

(t− j)(2k + j − k + 1) · γtc(t)

+
∞∑

t=k+2

t−k−2∑
j=1

k2 · γtc(t)
)
· εf (1 + ψ∗)

≤ 20γ
K∑
k=0

( ∞∑
t=1

k2 · tγtc(t) +
∞∑
t=1

k2 · tγtc(t)
)
· εf (1 + ψ∗)

≤ 20γK · Cρ,ρ∗ · εf (1 + ψ∗),

(A.3.28)
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where we use the definition of Cρ,ρ∗ from Assumption A.2.1 in the last inequality. Now,

combining (A.3.26), (A.3.27), and (A.3.28), we have

Eρ

[
(I − γPπ∗

)−1

K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1

k∑
ℓ=1

γk−ℓ+1
( k∏
s=ℓ+1

Pπθs

)
βγPϵbℓ+1

]

≤ 20γK · Cρ,ρ∗ · εf · (1 + ψ∗).(A.3.29)

Following from similar arguments when deriving (A.3.29), we have

Eρ

[
(I − γPπ∗

)−1

K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1

k∑
ℓ=1

γk−ℓ+1
( k∏
s=ℓ+1

Pπθs

)
(I − γPπθℓ )ϵcℓ

]

≤ 20K · Cρ,ρ∗ϕ
∗ · εQ,

(A.3.30)

Now, by plugging (A.3.21), (A.3.24), (A.3.25), (A.3.29), and (A.3.30) into (A.3.19),

with probability at least 1−O(Hc) exp(−Ω(H−1
c mc)), we have

Eρ

[ K∑
k=0

Q∗(s, a)−Qπθk+1 (s, a)
](A.3.31)

≤ 2 log |A| ·K1/2(1− γ)−3 + 60K2Cρ,ρ∗(ϕ
∗ + ψ∗ + 1) · εf + 50KCρ,ρ∗ϕ

∗ · εQ.
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Meanwhile, following from Propositions A.2.3 and A.2.4, it holds with probability at least

1− 1/K that

εf = O
(
RaN

−1/4
a +R4/3

a m−1/12
a H7/2

a (logma)
1/2),

εQ = O
(
RcN

−1/4
c +R4/3

c m−1/12
c H7/2

c (logmc)
1/2).(A.3.32)

Combining (A.3.31), (A.3.32), and the choices of parameters stated in the theorem, it

holds with probability at least 1− 1/K that

Eρ

[ K∑
k=0

Q∗(s, a)−Qπθk+1 (s, a)
]
≤
(
2(1− γ)−3 log |A|+O(1)

)
·K1/2,

which concludes the proof of Theorem A.2.5.

A.4. Supporting Results

In this section, we provide some supporting results in the proof of Theorems 2.3.4

and A.2.5. We introduce Lemma A.4.1, which applies to both Algorithms 1 and 4. To

introduce Lemma A.4.1, for any policy π and action-value function Q, we define π̃(a | s) ∝

exp(β−1Q(s, a)) · π(a | s).

Lemma A.4.1. For any s ∈ S and π†, we have

β−1 · ⟨Q(s, ·), π†(· | s)− π̃(· | s)⟩ ≤ KL
(
π†(· | s) ∥ π(· | s)

)
−KL

(
π†(· | s) ∥ π̃(· | s)

)
+
〈
log
(
π̃(· | s)/π(· | s)

)
− β−1 ·Q(s, ·), π†(· | s)− π̃(· | s)

〉
.
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Proof. By calculation, it suffices to show that

〈
log(π̃(· | s)/π(· | s)), π†(· | s)− π̃(· | s)

〉
≤ KL(π†(· | s) ∥ π(· | s))−KL(π†(· | s) ∥ π̃(· | s)).

By the definition of the KL divergence, it holds for any s ∈ S that

KL(π†(· | s) ∥ π(· | s))−KL(π†(· | s) ∥ π̃(· | s))

=
〈
log(π̃(· | s)/π(· | s)), π†(· | s)

〉
.(A.4.1)

Meanwhile, for the term on the RHS of (A.4.1), we have

〈
log(π̃(· | s)/πθk(· | s)), π†(· | s)

〉
=
〈
log(π̃(· | s)/π(· | s)), π†(· | s)− π̃(· | s)

〉
+
〈
log(π̃(· | s)/π(· | s)), π̃(· | s)

〉
=
〈
log(π̃(· | s)/π(· | s)), π†(· | s)− π̃(· | s)

〉
+KL(π̃(· | s) ∥ π(· | s))

≥
〈
log(π̃(· | s)/π(· | s)), π†(· | s)− π̃(· | s)

〉
.(A.4.2)

Combining (A.4.1) and (A.4.2), we obtain that

〈
log(π̃(· | s)/π(· | s)), π†(· | s)− π̃(· | s)

〉
≤ KL(π†(· | s) ∥ π(· | s))−KL(π†(· | s) ∥ π̃(· | s)),

which concludes the proof of Lemma A.4.1. □



153

A.4.1. Local Linearization of DNNs

In the proofs of Propositions A.2.3 and A.2.4 in §A.5.2 and §A.5.3, respectively, we utilize

the linearization of DNNs. We introduce some related auxiliary results here. First, we

define the linearization ūθ of the DNN uθ ∈ U(w,H,R) as follows,

ūθ(·) = uθ0(·) + (θ − θ0)⊤∇θ0uθ(·),

where θ0 is the initialization of uθ. The following lemmas characterize the linearization

error.

Lemma A.4.2. Suppose that H = O(m1/12R−1/6(logm)−1/2) and m = Ω(d3/2R−1H−3/2 ·

log(m1/2/R)3/2). Then with probability at least 1−exp(−Ω(R2/3m2/3H)) over the random

initialization θ0, it holds for any θ ∈ B(θ0, R) and any (s, a) ∈ S ×A that

∥∇θuθ(s, a)−∇θuθ0(s, a)∥2 = O
(
R1/3m−1/6H5/2(logm)1/2

)
and

∥∇θuθ(s, a)∥2 = O(H).

Proof. See the proof of Lemma A.5 in Gao et al. (2019) for a detailed proof. □

Lemma A.4.3. Suppose that H = O(m1/12R−1/6(logm)−1/2) and m = Ω(d3/2R−1H−3/2 ·

log(m1/2/R)3/2). Then with probability at least 1−exp(−Ω(R2/3m2/3H)) over the random

initialization θ0, it holds for any θ ∈ B(θ0, R) and any (s, a) ∈ S ×A that

|uθ(s, a)− ūθ(s, a)| = O
(
R4/3m−1/6H5/2(logm)1/2

)
.
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Proof. Recall that

ūθ(s, a) = uθ0(s, a) + (θ − θ0)⊤∇θuθ0(s, a).

By mean value theorem, there exists t ∈ [0, 1], which depends on θ and (s, a), such that

uθ(s, a)− ūθ(s, a) = (θ − θ0)⊤
(
∇θuθ0+t(θ−θ0)(s, a)−∇θuθ0(s, a)

)
.

Further by Lemma A.4.2, we have

|uθ(s, a)− ūθ(s, a)| ≤ ∥θ − θ0∥2 ·
∥∥∇θuθ0+t·(θ−θ0)(s, a)−∇θuθ0(s, a)

∥∥
2

= O
(
R4/3m−1/6H5/2(logm)1/2

)
,

where we use Cauchy-Schwarz inequality in the first inequality. This concludes the proof

of Lemma A.4.3. □

We denote by x(h) the output of the h-th layer of the DNN uθ ∈ U(m,H,R), and x(h),0

the output of the h-th layer of the DNN uθ0 ∈ U(m,H,R). The following lemma upper

bounds the distance between x(h) and x(h),0.

Lemma A.4.4. With probability at least 1 − exp(−Ω(R2/3m2/3H)) over the random

initialization θ0, for any θ ∈ B(θ0, R) and any h ∈ [H], we have

∥x(h) − x(h),0∥2 = O
(
RH5/2m−1/2(logm)1/2

)
.
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Also, with probability at least 1− O(H) exp(−Ω(H−1m)) over the random initialization

θ0, for any θ ∈ B(θ0, R) and any h ∈ [H], it holds that

2/3 ≤ ∥x(h)∥2 ≤ 4/3.

Proof. The first inequality follows from Lemma A.5 in Gao et al. (2019), and the

second inequality follows from Lemma 7.1 in Allen-Zhu et al. (2018b). □

A.5. Proofs of Propositions

A.5.1. Proof of Proposition 2.2.1

The proof follows the proof of Proposition 3.1 in Liu et al. (2019). First, we write the

update π̃k+1 ← argmaxπ Eνk [⟨Qωk
(s, ·), π(· | s)⟩−β ·KL(π(· | s) ∥ πθk(· | s))] as a constrained

optimization problem in the following way,

max
π

Eνk

[
⟨π(· | s), Qωk

(s, ·)⟩ − β ·KL(π(· | s) ∥ πθk(· | s))
]

s.t.
∑
a∈A

π(a | s) = 1, for any s ∈ S.

We consider the Lagrangian of the above programming problem,

∫
s∈S

(
⟨π(· | s), Qωk

(s, ·)⟩ − β ·KL
(
π(· | s) ∥ πθk(· | s)

))
dνk(s)

+

∫
s∈S

(∑
a∈A

π(a | s)− 1
)
dλ(s),
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where λ(·) is the dual parameter, which is a function on S. Now, by plugging in

πθk(a | s) =
exp(τ−1

k fθk(s, a))∑
a′∈A exp(τ−1

k fθk(s, a
′))
,

we have the following optimality condition,

Qωk
(s, a) + βτ−1

k fθk(s, a)− β ·
(
log
(∑
a′∈A

exp(τ−1
k fθk(s, a

′))
)
+ log π(a |s) + 1

)
+
λ(s)

νk(s)

= 0,

for any (s, a) ∈ S × A. Note that log(
∑

a′∈A exp(τ−1
k fθk(s, a

′))) is only a function of s.

Thus, we have

π̂k+1(a | s) ∝ exp(β−1Qωk
(s, a) + τ−1

k fθk(s, a))

for any (s, a) ∈ S ×A, which concludes the proof of Proposition 2.2.1.

A.5.2. Proof of Proposition A.2.3

We define the local linearization of fθ as follows,

f̄θ = fθ0 + (θ − θ0)⊤∇θ0fθ.(A.5.1)



157

Meanwhile, we denote by

gn =
(
fθ(n) − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ(n), gen = Eρπθ

[gn],

ḡn =
(
f̄θ(n) − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ0 , ḡen = Eρπθ

[ḡn],

g∗ =
(
fθ∗ − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ∗ , ge∗ = Eρπθ

[g∗],

ḡ∗ =
(
f̄θ∗ − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ0 , ḡe∗ = Eρπθ

[ḡ∗],(A.5.2)

where θ∗ satisfies that

θ∗ = ΓB(θ0,Ra)(θ∗ − α · ḡe∗).(A.5.3)

By Algorithm 5, we know that

θ(n+ 1) = ΓB(θ0,Ra)(θ(n)− α · gn).(A.5.4)

By (A.5.3) and (A.5.4), we have

Eρπθ

[
∥θ(n+ 1)− θ∗∥22 | θ(n)

]
= Eρπθ

[
∥ΓB(θ0,Ra)(θ(n)− α · gn)− ΓB(θ0,Ra)(θ∗ − α · ḡe∗)∥22 | θ(n)

]
≤ Eρπθ

[
∥(θ(n)− α · gn)− (θ∗ − α · ḡe∗)∥22 | θ(n)

]
= ∥θ(n)− θ∗∥22 + 2α · ⟨θ∗ − θ(n), gen − ḡe∗⟩︸ ︷︷ ︸

(i)

+α2 · Eρπθ

[
∥gn − ḡe∗∥22 | θ(n)

]︸ ︷︷ ︸
(ii)

,(A.5.5)

where we use the fact that ΓB(θ0,Ra) is a contraction mapping in the first inequality. We

upper bound term (i) and term (ii) on the RHS of (A.5.5) in the sequel.
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Upper Bound of Term (i). By Cauchy–Schwarz inequality, it holds that

⟨θ∗ − θ(n), gen − ḡe∗⟩ = ⟨θ∗ − θ(n), gen − ḡen⟩+ ⟨θ∗ − θ(n), ḡen − ḡe∗⟩

≤ ∥θ∗ − θ(n)∥2 · ∥gen − ḡen∥2 + ⟨θ∗ − θ(n), ḡen − ḡe∗⟩

≤ 2Ra · ∥gen − ḡen∥2 + ⟨θ∗ − θ(n), ḡen − ḡe∗⟩,(A.5.6)

where we use the fact that θ(n), θ∗ ∈ B(θ0, Ra) in the last inequality. Further, by the

definitions in (A.5.2), it holds that

⟨θ∗ − θ(n), ḡen − ḡe∗⟩ = Eρπθ

[
(f̄θ(n) − f̄θ∗) · ⟨θ∗ − θ(n),∇θfθ0⟩

]
= Eρπθ

[
(f̄θ(n) − f̄θ∗) · (f̄θ∗ − f̄θ(n))

]
= −Eρπθ

[
(f̄θ(n) − f̄θ∗)2

]
,(A.5.7)

where we use (A.5.1) in the second equality. Combining (A.5.6) and (A.5.7), we obtain

the following upper bound of term (i),

⟨θ∗ − θ(n), gen − ḡe∗⟩ ≤ 2Ra · ∥gen − ḡen∥2 − Eρπθ

[
(f̄θ(n) − f̄θ∗)2

]
.(A.5.8)

Upper Bound of Term (ii). We now upper bound term (ii) on the RHS of (A.5.5). It

holds by Cauchy-Schwarz inequality that

Eρπθ

[
∥gn − ḡe∗∥22 | θ(n)

]
≤ 2Eρπθ

[
∥gn − gen∥22 | θ(n)

]
+ 2∥gen − ḡe∗∥22

≤ 2Eρπθ

[
∥gn − gen∥22 | θ(n)

]︸ ︷︷ ︸
(ii).a

+4 ∥gen − ḡen∥22︸ ︷︷ ︸
(ii).b

+4 ∥ḡen − ḡe∗∥22︸ ︷︷ ︸
(ii).c

.(A.5.9)
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We upper bound term (ii).a, term (ii).b, and term (ii).c in the sequel.

Upper Bound of Term (ii).a. Note that

Eρπθ

[
∥gn − gen∥22 | θ(n)

]
= Eρπθ

[
∥gn∥22 − ∥gen∥22 | θ(n)

]
≤ Eρπθ

[
∥gn∥22 | θ(n)

]
.(A.5.10)

Meanwhile, by the definition of gn in (A.5.2), it holds that

∥gn∥22 =
(
fθ(n) − τ̃ · (β−1Qω + τ−1fθ)

)2 · ∥∇θfθ(n)∥22.(A.5.11)

We first upper bound fθ as follows,

f 2
θ = x(Ha)⊤bb⊤x(Ha) = x(Ha)⊤x(Ha) = ∥x(Ha)∥22,

where x(Ha) is the output of the Ha-th layer of the DNN fθ. Further combining Lemma

A.4.4, it holds with probability at least 1−O(Ha) exp(−Ω(H−1
a ma)) that

|fθ| ≤ 2.(A.5.12)

Following from similar arguments, with probability at least 1−O(Ha) exp(−Ω(H−1
a ma)),

we have

|Qω| ≤ 2, |fθ(n)| ≤ 2.(A.5.13)

Combining Lemma A.4.2, (A.5.10), (A.5.11), (A.5.12), and (A.5.13), it holds with prob-

ability at least 1− exp(−Ω(R2/3
a m

2/3
a Ha)) that

Eρπθ

[
∥gn − gen∥22 | θ(n)

]
= O(H2

a ),(A.5.14)
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which establishes an upper bound of term (ii).a.

Upper Bound of Term (ii).b. It holds that

∥gen − ḡen∥2 =
∥∥Eρπθ

[(
fθ(n) − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ(n)

−
(
f̄θ(n) − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ0

]∥∥
2

≤ Eρπθ

[
∥fθ(n)∇θfθ(n) − f̄θ(n)∇θfθ0∥2

]
+ τ̃ · Eρπθ

[
∥(β−1Qω + τ−1fθ) · (∇θfθ0 −∇θfθ(n))∥2

]
≤ Eρπθ

[
∥fθ(n)∇θfθ0 − f̄θ(n)∇θfθ0∥2

]
+ Eρπθ

[
∥fθ(n)∇θfθ(n) − fθ(n)∇θfθ0∥2

]
(A.5.15)

+ Eρπθ

[
∥τ̃ · (β−1Qω + τ−1fθ) · (∇θfθ0 −∇θfθ(n))∥2

]
.

We upper bound the three terms on the RHS of (A.5.15) in the sequel, respectively.

For the term ∥fθ(n)∇θfθ0−f̄θ(n)∇θfθ0∥2 on the RHS of (A.5.15), following from Lemmas

A.4.2 and A.4.3, it holds with probability at least 1− exp(−Ω(R2/3
a m

2/3
a Ha)) that

∥fθ(n)∇θfθ0 − f̄θ(n)∇θfθ0∥2 = O
(
R4/3

a m−1/6
a H7/2

a (logma)
1/2
)
.(A.5.16)

For the term ∥fθ(n)∇θfθ(n) − fθ(n)∇θfθ0∥2 on the RHS of (A.5.15), following from

(A.5.13) and Lemma A.4.2, with probability at least 1− exp(−Ω(R2/3
a m

2/3
a Ha)), we have

∥fθ(n)∇θfθ(n) − fθ(n)∇θfθ0∥2 = O
(
R1/3

a m−1/6
a H5/2

a (logma)
1/2
)
.(A.5.17)
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For the term ∥τ̃ · (β−1Qω + τ−1fθ) · (∇θfθ0 − ∇θfθ(n))∥2 on the RHS of (A.5.15), we

first upper bound τ̃ · (β−1Qω + τ−1fθ) as follows,

|τ̃ · (β−1Qω + τ−1fθ)| ≤ 2,

where we use (A.5.12), (A.5.13), and the fact that τ̃−1 = β−1 + τ−1. Further combining

Lemma A.4.2, it holds with probability at least 1− exp(−Ω(R2/3
a m

2/3
a Ha)) that

∥τ̃ · (β−1Qω + τ−1fθ) · (∇θfθ0 −∇θfθ(n))∥2 = O
(
R1/3

a m−1/6
a H5/2

a (logma)
1/2
)
.(A.5.18)

Now, combining (A.5.15), (A.5.16), (A.5.17), and (A.5.18), it holds with probability

at least 1− exp(−Ω(R2/3
a m

2/3
a Ha)) that

∥gen − ḡen∥22 = O
(
R8/3

a m−1/3
a H7

a logma

)
,(A.5.19)

which establishes an upper bound of term (ii).b.

Upper Bound of Term (ii).c. It holds that

∥ḡen − ḡe∗∥22 =
∥∥Eρπθ

[(f̄θ(n) − f̄θ∗)∇θfθ0 ]
∥∥2
2
≤ Eρπθ

[
(f̄θ(n) − f̄θ∗)2 · ∥∇θfθ0∥22

]
.

Further combining Lemma A.4.2, it holds with probability at least 1−exp(−Ω(R2/3
a m

2/3
a Ha))

that

∥ḡen − ḡe∗∥22 ≤ O(H2
a ) · Eρπθ

[
(f̄θ(n) − f̄θ∗)2

]
,(A.5.20)

which establishes an upper bound of term (ii).c.
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Now, combining (A.5.9), (A.5.14), (A.5.19), and (A.5.20), we have

Eρπθ

[
∥gn − ḡe∗∥22 | θ(n)

]
≤ O

(
R8/3

a m−1/3
a H7

a logma

)
+O(H2

a ) · Eρπθ

[
(f̄θ(n) − f̄θ∗)2

]
,

(A.5.21)

which is an upper bound of term (ii) on the RHS of (A.5.5).

By plugging the upper bound of term (i) in (A.5.8) and the upper bound of term (ii) in

(A.5.21) into (A.5.5), combining (A.5.19), with probability at least 1−exp(−Ω(R2/3
a m

2/3
a Ha)),

we have

Eρπθ

[
∥θ(n+ 1)− θ∗∥22 | θ(n)

]

≤ ∥θ(n)− θ∗∥22 + 2α ·
(
O
(
R7/3

a m−1/6
a H7/2

a (logma)
1/2
)
− Eρπθ

[
(f̄θ(n) − f̄θ∗)2

])(A.5.22)

+ α2 ·
(
O
(
R8/3

a m−1/3
a H7

a logma

)
+O(H2

a ) · Eρπθ

[
(f̄θ(n) − f̄θ∗)2

])
.

Rearranging terms in (A.5.22), it holds with probability at least 1−exp(−Ω(R2/3
a m

2/3
a Ha))

that

(2α− α2 ·O(H2
a )) · Eρπθ

[
(f̄θ(n) − f̄θ∗)2

]

≤ ∥θ(n)− θ∗∥22 − Eρπθ

[
∥θ(n+ 1)− θ∗∥22 | θ(n)

]
+ α ·O

(
R8/3

a m−1/6
a H7

a logma

)
.

(A.5.23)
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By telescoping the sum and using Jensen’s inequality in (A.5.23), we have

Eρπθ

[
(f̄θ̄ − f̄θ∗)2

]
≤ 1

Na

·
Na−1∑
n=0

Eρπθ

[
(f̄θ(n) − f̄θ∗)2

]
≤ 1/Na ·

(
2α− α2 ·O(H2

a )
)−1 ·

(
∥θ0 − θ∗∥22 + αNa ·O(R8/3

a m−1/6
a H7

a logma)
)

≤ N−1/2
a · ∥θ0 − θ∗∥22 +O(R8/3

a m−1/6
a H7

a logma),

where the last line comes from the choices that α = N
−1/2
a and Ha = O(N

1/4
a ). Further

combining Lemma A.4.3 and using triangle inequality, we have

Eρπθ

[
(fθ̄ − f̄θ∗)2

]
= O(R2

aN
−1/2
a +R8/3

a m−1/6
a H7

a logma).(A.5.24)

By the definition of θ∗ in (A.5.3), we know that

⟨ḡe∗, θ − θ∗⟩ ≥ 0, for any θ ∈ B(θ0, Ra).(A.5.25)

By plugging the definition of ḡe∗ into (A.5.25), we have

Eρπθ

[
⟨f̄θ∗ − τ̃ · (β−1Qω + τ−1fθ), f̄θ† − f̄θ∗⟩

]
≥ 0, for any θ† ∈ B(θ0, Ra),

which is equivalent to

θ∗ = argmin
θ†∈B(θ0,Ra)

Eρπθ

[(
f̄θ† − τ̃ · (β−1Qω + τ−1fθ)

)2]
.(A.5.26)
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Meanwhile, by the fact that θ0 = ω0, we have

τ̃ · (β−1Q̄ω + τ−1f̄θ) = τ̃ ·
(
β−1 · (Qω0 + (ω − ω0)

⊤∇ωQω0) + τ−1 · (fθ0 + (θ − θ0)⊤∇θfθ0)
)

= fθ0 +
(
τ̃ · (β−1ω + τ−1θ)− θ0

)⊤∇θfθ0 ,

where the second line comes from τ̃−1 = β−1+τ−1. Note that θ ∈ B(θ0, Ra), ω ∈ B(ω0, Rc),

θ0 = ω0, and Ra = Rc, we know that τ̃ · (β−1ω + τ−1θ) ∈ B(θ0, Ra). Therefore, with

probability at least 1− exp(−Ω(R2/3
a m

2/3
a Ha)) we have

Eρπθ

[(
f̄θ∗ − τ̃ · (β−1Qω + τ−1fθ)

)2]
≤ Eρπθ

[(
τ̃ · (β−1Q̄ω + τ−1f̄θ)− τ̃ · (β−1Qω + τ−1fθ)

)2]
≤ τ̃ 2 · β−2 · Eρπθ

[(Q̄ω −Qω)
2] + τ̃ 2 · τ−2 · Eρπθ

[(f̄θ − fθ)2]

= O(R8/3
a m−1/3

a H5
a logma),(A.5.27)

where the first inequality comes from (A.5.26), and the last inequality comes from Lemma

A.4.3 and the fact that Rc = Ra, mc = ma, and Hc = Ha. Combining (A.5.24) and

(A.5.27), by triangle inequality, we have

Eρπθ

[(
fθ(s, a)− τ̃ · (β−1Qω(s, a) + τ−1fθ(s, a))

)2]
= O(R2

aN
−1/2
a +R8/3

a m−1/6
a H7

a logma),

which finishes the proof of Proposition A.2.3.
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A.5.3. Proof of Proposition A.2.4

The proof is similar to that of Proposition A.2.3 in §A.5.2. For the completeness of the

paper, we present it here. We define the local linearization of Qω as follows,

Q̄ω = Qω0 + (ω − ω0)
⊤∇ω0Qω.(A.5.28)

We denote by

gn =
(
Qω(n)(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω(n)(s0, a0), gen = Eπθ

[gn],

ḡn =
(
Q̄ω(n)(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω0(s0, a0), ḡen = Eπθ

[ḡn],

g∗ =
(
Qω∗(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω∗(s0, a0), ge∗ = Eπθ

[g∗],

ḡ∗ =
(
Q̄ω∗(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω0(s0, a0), ḡe∗ = Eπθ

[ḡ∗],

(A.5.29)

where ω∗ satisfies that

ω∗ = ΓB(ω0,Rc)(ω∗ − α · ḡe∗).(A.5.30)

Here the expectation Eπθ
[·] is taken following (s0, a0) ∼ ρπθ

(·), s1 ∼ P (· | s0, a0), a1 ∼

πθ(· | s1), and r0 = R(s0, a0). By Algorithm 6, we know that

ω(n+ 1) = ΓB(ω0,Rc)(ω(n)− η · gn).
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Note that

Eπθ

[
∥ω(n+ 1)− ω∗∥22 |ω(n)

]
= Eπθ

[
∥ΓB(ω0,Rc)(ω(n)− η · gn)− ΓB(ω0,Rc)(ω∗ − η · ḡe∗)∥22 |ω(n)

]
≤ Eπθ

[
∥(ω(n)− η · gn)− (ω∗ − η · ḡe∗)∥22 |ω(n)

]
= ∥ω(n)− ω∗∥22 + 2η · ⟨ω∗ − ω(n), gen − ḡe∗⟩︸ ︷︷ ︸

(iii)

+η2 · Eπθ

[
∥gn − ḡe∗∥22 |ω(n)

]︸ ︷︷ ︸
(iv)

.(A.5.31)

We upper bound term (iii) and term (iv) on the RHS of (A.5.31) in the sequel.

Upper Bound of Term (iii). By Hölder’s inequality, it holds that

⟨ω∗ − ω(n), gen − ḡe∗⟩

= ⟨ω∗ − ω(n), gen − ḡen⟩+ ⟨ω∗ − ω(n), ḡen − ḡe∗⟩

≤ ∥ω∗ − ω(n)∥2 · ∥gen − ḡen∥2 + ⟨ω∗ − ω(n), ḡen − ḡe∗⟩

≤ 2Rc · ∥gen − ḡen∥2 + ⟨ω∗ − ω(n), ḡen − ḡe∗⟩,(A.5.32)

where we use the fact that ω(n), ω∗ ∈ B(ω0, Rc) in the last line. Further, by the definitions

in (A.5.29), it holds that

⟨ω∗ − ω(n), ḡen − ḡe∗⟩

= Eπθ

[
(Q̄ω(n)(s0, a0)− Q̄ω∗(s0, a0)) · ⟨ω∗ − ω(n),∇ωQω0(s0, a0)⟩

]
= Eπθ

[
(Q̄ω(n)(s0, a0)− Q̄ω∗(s0, a0)) · (Q̄ω∗(s0, a0)− Q̄ω(n)(s0, a0))

]
= −Eπθ

[
(Q̄ω(n)(s0, a0)− Q̄ω∗(s0, a0))

2
]
= −Eρπθ

[
(Q̄ω(n) − Q̄ω∗)

2
]
,(A.5.33)
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where the second equality comes from (A.5.28), and the last equality comes from the fact

that the expectation is only taken to the state-action pair (s0, a0). Combining (A.5.32)

and (A.5.33), we obtain the following upper bound of term (i),

⟨ω∗ − ω(n), gen − ḡe∗⟩ ≤ 2Rc · ∥gen − ḡen∥2 − Eρπθ

[
(Q̄ω(n) − Q̄ω∗)

2
]
.(A.5.34)

Upper Bound of Term (iv). We now upper bound term (iv) on the RHS of (A.5.31).

It holds by Cauchy-Schwarz inequality that

Eπθ

[
∥gn − ḡe∗∥22 |ω(n)

]
≤ 2Eπθ

[
∥gn − gen∥22 |ω(n)

]
+ 2∥gen − ḡe∗∥22

≤ 2Eπθ

[
∥gn − gen∥22 |ω(n)

]︸ ︷︷ ︸
(iv).a

+4 ∥gen − ḡen∥22︸ ︷︷ ︸
(iv).b

+4 ∥ḡen − ḡe∗∥22︸ ︷︷ ︸
(iv).c

.(A.5.35)

We upper bound term (iv).a, term (iv).b, and term (iv).c in the sequel.

Upper Bound of Term (iv).a. We now upper bound term (iv).a on the RHS of

(A.5.35). By expanding the square, we have

Eπθ

[
∥gn − gen∥22 |ω(n)

]
= Eπθ

[
∥gn∥22 − ∥gen∥22 |ω(n)

]
≤ Eπθ

[
∥gn∥22 |ω(n)

]
.(A.5.36)

Meanwhile, by the definition of gn in (A.5.29), it holds that

∥gn∥22 =
(
Qω(n)(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)2 · ∥∇ωQω(n)(s0, a0)∥22.(A.5.37)
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We first upper bound Qω as follows,

Q2
ω = x(Hc)⊤bb⊤x(Hc) = x(Hc)⊤x(Hc) = ∥x(Hc)∥22,

where x(Hc) is the output of the Hc-th layer of the DNN Qω. Further combining Lemma

A.4.4, it holds that

|Qω| ≤ 2.(A.5.38)

Similarly, we have

|Qω(n)| ≤ 2.(A.5.39)

Combining Lemma A.4.2, (A.5.36), (A.5.37), (A.5.38), and (A.5.39), we have

Eπθ

[
∥gn − gen∥22 |ω(n)

]
= O(H2

c ).(A.5.40)
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Upper Bound of Term (iv).b. We now upper bound term (iv).b on the RHS of

(A.5.35). It holds that

∥gen − ḡen∥2

=
∥∥Eπθ

[(
Qω(n)(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω(n)(s0, a0)

−
(
Q̄ω(n)(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω0(s0, a0)

]∥∥
2

≤ Eπθ

[∥∥(γ ·Qω(s1, a1) + (1− γ) · rt
)
· (∇ωQω0(s0, a0)−∇ωQω(n)(s0, a0))

∥∥
2

]
+ Eρπθ

[
∥Qω(n)∇ωQω(n) − Q̄ω(n)∇ωQω0∥2

]

≤ Eπθ

[∥∥(γ ·Qω(s1, a1) + (1− γ) · r0
)
· (∇ωQω0(s0, a0)−∇ωQω(n)(s0, a0))

∥∥
2

](A.5.41)

+ Eρπθ

[
∥(Qω(n) − Q̄ω(n)) · ∇ωQω0∥2

]
+ Eρπθ

[
∥Qω(n) · (∇ωQω(n) −∇ωQω0)∥2

]
.

We now upper bound the three terms on the RHS of (A.5.41) in the sequel, respectively.

For the term Eρπθ
[∥(Qω(n)− Q̄ω(n)) · ∇ωQω0∥2] on the RHS of (A.5.41), following from

Lemmas A.4.2 and A.4.3, it holds with probability at least 1−exp(−Ω(R2/3
c m

2/3
c Hc)) that

Eρπθ

[
∥(Qω(n) − Q̄ω(n)) · ∇ωQω0∥2

]
= O

(
R4/3

c m−1/6
c H7/2

c (logmc)
1/2
)
.(A.5.42)

For the term Eρπθ
[∥Qω(n) · (∇ωQω(n) − ∇ωQω0)∥2] on the RHS of (A.5.41), following

from (A.5.39) and Lemma A.4.2, with probability at least 1− exp(−Ω(R2/3
c m

2/3
c Hc)), we

have

Eρπθ

[
∥Qω(n) · (∇ωQω(n) −∇ωQω0)∥2

]
= O

(
R1/3

c m−1/6
c H5/2

c (logmc)
1/2
)
.(A.5.43)
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For the term Eπθ
[∥(γ ·Qω(s1, a1) + (1− γ) · r0) · (∇ωQω0(s0, a0)−∇ωQω(n)(s0, a0))∥2]

on the RHS of (A.5.41), we first upper bound |γ ·Qω(s1, a1) + (1− γ) · r0| as follows,

|γ ·Qω(s1, a1) + (1− γ) · r0| ≤ 2 +Rmax,

where we use (A.5.38) and the fact that |R(s, a)| ≤ Rmax for any (s, a) ∈ S ×A. Further

combining Lemma A.4.2, with probability at least 1− exp(−Ω(R2/3
c m

2/3
c Hc)), we have

Eπθ

[∥∥(γ ·Qω(s1, a1) + (1− γ) · r0
)
· (∇ωQω0(s0, a0)−∇ωQω(n)(s0, a0))

∥∥
2

]
= O

(
R1/3

c m−1/6
c H5/2

c (logmc)
1/2
)
.(A.5.44)

Now, combining (A.5.41), (A.5.42), (A.5.43), and (A.5.44), it holds with probability

at least 1− exp(−Ω(R2/3
c m

2/3
c Hc)) that

∥gen − ḡen∥22 = O(R8/3
c m−1/3

c H7
c logmc).(A.5.45)

Upper Bound of Term (iv).c. We now upper bound term (iv).c on the RHS of (A.5.35).

It holds that

∥ḡen − ḡe∗∥22 =
∥∥Eρπθ

[(Q̄ω(n) − Q̄ω∗)∇ωQω0 ]
∥∥2
2
≤ Eρπθ

[
(Q̄ω(n) − Q̄ω∗)

2 · ∥∇ωQω0∥22
]
.

Further combining Lemma A.4.2, it holds that

Eπθ

[
∥ḡen − ḡe∗∥22 |ω(n)

]
≤ O(H2

c ) · Eρπθ

[
(Q̄ω(n) − Q̄ω∗)

2
]
.(A.5.46)
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Combining (A.5.35), (A.5.40), (A.5.45), and (A.5.46), we obtain the following upper

bound for term (iv) on the RHS of (A.5.31),

Eπθ

[
∥gn − ḡe∗∥22 |ω(n)

]
≤ O(R8/3

c m−1/3
c H7

c logmc) +O(H2
c ) · Eρπθ

[
(Q̄ω(n) − Q̄ω∗)

2
]
.

(A.5.47)

We continue upper bounding (A.5.31). By plugging (A.5.34) and (A.5.47) into (A.5.31),

it holds with probability at least 1− exp(−Ω(R2/3
c m

2/3
c Hc)) that

Eπθ

[
∥ω(n+ 1)− ω∗∥22 |ω(n)

]
≤ ∥ω(n)− ω∗∥22 + 2η ·

(
O
(
R7/3

c m−1/6
c H7/2

c (logmc)
1/2
)
− Eρπθ

[
(Q̄ω(n) − Q̄ω∗)

2
])

+ η2 ·
(
O
(
R8/3

c m−1/3
c H7

c logmc

)
+O(H2

c ) · Eρπθ

[
(Q̄ω(n) − Q̄ω∗)

2
])
.

(A.5.48)

Rearranging terms in (A.5.48), it holds with probability at least 1−exp(−Ω(R2/3
c m

2/3
c Hc))

that

(2η − η2 ·O(H2
c )) · Eρπθ

[
(Q̄ω(n) − Q̄ω∗)

2
]

≤ ∥ω(n)− ω∗∥22 − Eρπθ
[∥ω(n+ 1)− ω∗∥22 |ω(n)] + η ·O(R8/3

c m−1/3
c H7

c logmc).

(A.5.49)
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By telescoping the sum and using Jensen’s inequality in (A.5.49), we have

Eρπθ

[
(Q̄ω̄ − Q̄ω∗)

2
]
≤ 1

Nc

·
Nc−1∑
n=0

Eρπθ

[
(Q̄ω(n) − Q̄ω∗)

2
]

≤ 1/Nc ·
(
2η − η2 ·O(H2

c )
)−1 ·

(
∥ω0 − ω∗∥22 + ηNc ·O(R8/3

c m−1/6
c H7

c logmc)
)

≤ N−1/2
c · ∥θ0 − θ∗∥22 +O(R8/3

c m−1/6
c H7

c logmc),

where the last line comes from the choices that η = N
−1/2
c and Hc = O(N

1/4
c ). Further

combining Lemma A.4.3 and using triangle inequality, we have

Eρπθ

[
(Qω̄ − Q̄ω∗)

2
]
= O(R2

cN
−1/2
c +R8/3

c m−1/6
c H7

c logmc).(A.5.50)

To establish the upper bound of Eρπθ
[(Q̄ω∗ − Q̃)2], we upper bound Eρπθ

[(Q̄ω∗ − Q̃)2]

in the sequel. By the definition of ω∗ in (A.5.30), following a similar argument to derive

(A.5.26), we have

ω∗ = argmin
ω†∈B(ω0,Rc)

Eρπθ

[
(Q̄ω†(s0, a0)− Q̃(s0, a0))2

]
.(A.5.51)

From the fact that Q̃ ∈ U(mc, Hc, Rc) by Assumption A.2.2, we know that Q̃ = Qω̃ for

some ω̃ ∈ B(ω0, Rc). Therefore, by (A.5.51), with probability at least 1−exp(−Ω(R2/3
c m

2/3
c Hc)),

we have

Eρπθ

[
(Q̄ω∗ − Q̃)2

]
≤ Eρπθ

[
(Q̄ω̃ − Q̃)2

]
= O(R8/3

c m−1/3
c H5

c logmc),(A.5.52)
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where we use Lemma A.4.3 in the last inequality. Now, combining (A.5.50) and (A.5.52),

by triangle inequality, with probability at least 1− exp(−Ω(R2/3
c m

2/3
c Hc)), we have

Eρπθ

[
(Qω̄ − Q̃)2

]
≤ 2Eρπθ

[
(Qω̄ − Q̄ω∗)

2
]
+ 2Eρπθ

[
(Q̄ω∗ − Q̃)2

]
= O(R2

cN
−1/2
c +R8/3

c m−1/6
c H7

c logmc),

which concludes the proof of Proposition A.2.4.

A.6. Proofs of Lemmas

A.6.1. Proof of Lemma 2.4.1

W denote by Q̃ = T πθkQωk
. In the sequel, we upper bound Eρk+1

[(Qωk+1
−Qω̄k+1

)2], where

ω̄k+1 = ΓR(ω̃k+1) and ω̃k+1 is defined in (2.2.4). Note that by the fact that ∥φ(s, a)∥2 ≤ 1

uniformly, it suffices to upper bound ∥ωk+1− ω̃k+1∥2. By the definitions of ωk+1 and ω̃k+1

in (2.2.5) and (2.2.4), respectively, we have

∥ωk+1 − ω̄k+1∥2 ≤ ∥Φ̂v̂ − Φv∥2 ≤ ∥Φ∥2 · ∥v̂ − v∥2 + ∥Φ̂− Φ∥2 · ∥v̂∥2.(A.6.1)

Here, we use the fact that the projection ΓR(·) is a contraction in the first inequality, and

triangle inequality in the second inequality. Also, for notational convenience, we denote
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by Φ̂, Φ, v̂, and v in (A.6.1) as follows,

Φ̂ =
( 1

N

N∑
ℓ=1

φ(sℓ,1, aℓ,1)φ(sℓ,1, aℓ,1)
⊤
)−1

, Φ =
(
Eρk+1

[φ(s, a)φ(s, a)⊤]
)−1

,

v̂ =
1

N

N∑
ℓ=1

(
(1− γ)rℓ,2 + γQωk

(s′ℓ,2, a
′
ℓ,2)
)
· φ(sℓ,2, aℓ,2),

v = Eρk+1

[(
(1− γ)R+ γPπθk+1Qωk

)
(s, a) · φ(s, a)

]
.

By the fact that ∥φ(s, a)∥2 ≤ 1, |R(s, a)| ≤ Rmax, and ∥ωk∥2 ≤ R we have

∥Φ∥2 ≤ 1/σ∗, ∥v̂∥2 ≤ Rmax +R.(A.6.2)

Now, following from matrix Bernstein inequality (Tropp, 2015) and Assumption 2.3.3,

with probability at least 1− p/2, we have

∥Φ̂− Φ∥2 ≤
4√

N(σ∗)2
· log(N/p+ d/p),(A.6.3)

where σ∗ is defined in Assumption 2.3.3. Similarly, with probability at least 1− p/2, we

have

∥v̂ − v∥2 ≤ 4(Rmax +R)/
√
N · log(N/p+ d/p).(A.6.4)

Now, combining (A.6.1), (A.6.2), (A.6.3), and (A.6.4), we have

∥ωk+1 − ω̄k+1∥2 ≤
16(Rmax +R)√

N(σ∗)2
· log(N/p+ d/p).
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Therefore, it holds with probability at least 1− p that

(Qωk+1
−Qω̄k+1

)2 ≤ 32(Rmax +R)2

N(σ∗)2
· log2(N/p+ d/p).(A.6.5)

Meanwhile, by Assumption 2.3.2 and the definition of ω̄k+1, we have

Q̃(s, a) = Qω̄k+1
(s, a)(A.6.6)

for any (s, a) ∈ S×A. Combining (A.6.5) and (A.6.6) and a union bound argument, with

probability at least 1− δ, it holds for any k ∈ {0, 1, . . . , K} that

Eρk+1

[
(Qωk+1

(s, a)− Q̃(s, a))2
]
≤ 32(Rmax +R)2

N(σ∗)4
· log2(NK/p+ dK/p),

which concludes the proof of Lemma 2.4.1.

A.6.2. Proof of Lemma A.3.1

Following from the definitions of Pπ and P in (2.1.3), we have

A1,k(s, a) =
[
γ(Pπ∗ − Pπθk+1 )Qωk

]
(s, a) =

[
γP⟨Qωk

, π∗ − πθk+1
⟩
]
(s, a).(A.6.7)

By invoking Lemma A.4.1 and combining (A.6.7), it holds for any (s, a) ∈ S ×A that

A1,k(s, a) =
[
γ(Pπ∗ − Pπθk+1 )Qωk

]
(s, a) ≤

[
γβ · P(ϑk + ϵak+1)

]
(s, a),

where ϑk and ϵak+1 are defined in (A.3.4) and (A.3.5) of Lemma A.3.1, respectively. We

conclude the proof of Lemma A.3.1.
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A.6.3. Proof of Lemma A.3.2

By the definition that Q∗ is the action-value function of an optimal policy π∗, we know

that Q∗(s, a) ≥ Qπ(s, a) for any policy π and state-action pair (s, a) ∈ S ×A. Therefore,

for any (s, a) ∈ S ×A, we have

A2,k(s, a) =
[
γPπ∗

(Qπθk+1 −Qωk
)
]
(s, a) ≤

[
γPπ∗

(Q∗ −Qωk
)
]
(s, a).(A.6.8)

In the sequel, we upper bound Q∗(s, a)−Qωk
(s, a) for any (s, a) ∈ S ×A. We define

Q̃k+1 = (1− γ) · R+ γ · Pπθk+1Qωk
.

By its definition, we know that Q̃k+1 = T πθk+1Qωk
. It holds for any (s, a) ∈ S ×A that

Q∗(s, a)−Qωk+1
(s, a)

= Q∗(s, a)− Q̃k+1(s, a) + Q̃k+1(s, a)−Qωk+1
(s, a)

=
[(
(1− γ) · R+ γ · Pπ∗

Q∗)− ((1− γ) · R+ γ · Pπθk+1Qωk

)]
(s, a) + ϵck+1(s, a)

= γ · [Pπ∗
Q∗ − Pπθk+1Qωk

](s, a) + ϵck+1(s, a)

= γ · [Pπ∗
Q∗ − Pπ∗

Qωk
](s, a) + γ · [Pπ∗

Qωk
− Pπθk+1Qωk

](s, a) + ϵck+1(s, a)

= γ ·
[
Pπ∗

(Q∗ −Qωk
)
]
(s, a) + A1,k(s, a) + ϵck+1(s, a)

≤ γ ·
[
Pπ∗

(Q∗ −Qωk
)
]
(s, a) + γβ ·

[
P(ϑk + ϵak+1)

]
(s, a) + ϵck+1(s, a),

(A.6.9)
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where ϵck+1 and A1,k are defined in (A.3.6) and (A.3.3), respectively. Here, we use Lemma

A.3.1 to upper bound A1,k in the last line. We remark that (A.6.9) upper bounds Q∗ −

Qωk+1
using Q∗−Qωk

. By recursively applying a similar argument as in (A.6.9), we have

Q∗(s, a)−Qωk
(s, a)

≤
[
(γPπ∗

)k(Q∗ −Qω0)
]
(s, a) + γβ ·

k−1∑
i=0

[
(γPπ∗

)k−i−1P(ϑi + ϵai+1)
]
(s, a)(A.6.10)

+
k−1∑
i=0

[
(γPπ∗

)k−i−1ϵci+1

]
(s, a).

Combining (A.6.8) and (A.6.10), it holds for any (s, a) ∈ S ×A that

A2,k(s, a) ≤
[
γPπ∗

(Q∗ −Qωk
)
]
(s, a)

≤
[
(γPπ∗

)k+1(Q∗ −Qω0)
]
(s, a) + γβ ·

k−1∑
i=0

[
(γPπ∗

)k−iP(ϑi + ϵai+1)
]
(s, a)

+
k−1∑
i=0

[
(γPπ∗

)k−iϵci+1

]
(s, a),

where ϑi, ϵ
a
i+1, and ϵ

c
i+1 are defined in (A.3.4) of Lemma A.3.1, (A.3.5) of Lemma A.3.1,

and (A.3.6) of Lemma A.3.2, respectively. We conclude the proof of Lemma A.3.2.
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A.6.4. Proof of Lemma A.3.3

Note that for any (s, a) ∈ S ×A, we have

A3,k(s, a) = [T πθk+1Qωk
−Qπθk+1 ](s, a)

=
[(
(1− γ) · R+ γPπθk+1Qωk

)
−Qπθk+1

]
(s, a)

=
[(
(1− γ) · R+ γPπθk+1Qωk

)
−

∞∑
t=0

(1− γ)(γPπθk+1 )tR
]
(s, a)

=

[ ∞∑
t=1

(
(γPπθk+1 )tQωk

− (γPπθk+1 )t+1Qωk

)
−

∞∑
t=1

(1− γ)(γPπθk+1 )tR
]
(s, a)

=
∞∑
t=1

[
(γPπθk+1 )t

(
Qωk
− γPπθk+1Qωk

− (1− γ) · R
)]
(s, a)

=
∞∑
t=1

[
(γPπθk+1 )t

(
Qωk
− T πθk+1Qωk

)]
(s, a)

=
∞∑
t=1

[
(γPπθk+1 )tek+1

]
(s, a) =

[
γPπθk+1 (I − γPπθk+1 )−1ek+1

]
(s, a),

where the term ek+1 in the last line is defined in (A.3.7). We conclude the proof of Lemma

A.3.3.
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A.6.5. Proof of Lemma A.3.4

We invoke Lemma A.4.1 in §A.4, which gives

β−1 · ⟨Qωk
(s, ·), πθk(· | s)− πθk+1

(· | s)⟩

≤
〈
log(πθk+1

(· | s)/πθk(· | s))− β−1 ·Qωk
(s, ·), πθk(· | s)− πθk+1

(· | s)
〉

−KL(πθk(· | s) ∥ πθk+1
(· | s))

≤
〈
log(πθk+1

(· | s)/πθk(· | s))− β−1 ·Qωk
(s, ·), πθk(· | s)− πθk+1

(· | s)
〉
= ϵbk+1(s).

(A.6.11)

Combining (A.6.11) and the definition of Pπ in (2.1.3), we have

[PπθkQωk
− Pπθk+1Qωk

](s, a) ≤ β[Pϵbk+1](s).(A.6.12)

By the definition of ek+1 in (A.3.7), we have

ek+1(s, a) =
[
Qωk
− γ · Pπθk+1Qωk

− (1− γ) · R
]
(s, a)

≤
[
Qωk
− γ · PπθkQωk

− (1− γ) · R
]
(s, a) + βγ · [Pϵbk+1](s, a)(A.6.13)

=
[
Q̃k − γ · Pπθk Q̃k − (1− γ) · R

]
(s, a) +

[
βγPϵbk+1 − (I − γPπθk )ϵck

]
(s, a),

where we use (A.6.12) in the first inequality, and

Q̃k = (1− γ) · R+ γ · PπθkQωk−1
.(A.6.14)
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For the first term on the RHS of (A.6.13), by (A.6.14), it holds that

Q̃k − γ · Pπθk Q̃k − (1− γ) · R

= (1− γ) · R+ γ · PπθkQωk−1
− γ(1− γ) · PπθkR− (γPπθk )2Qωk−1

− (1− γ) · R

= γ · Pπθk

(
Qωk−1

− γPπθkQωk−1
− (1− γ)R

)
= γ · Pπθkek.

(A.6.15)

Combining (A.6.13) and (A.6.15), we have for any (s, a) ∈ S ×A that

ek+1(s, a) ≤ [γPπθkek](s, a) +
[
βγPϵbk+1 − (I − γPπθk )ϵck

]
(s, a).(A.6.16)

By telescoping (A.6.16), it holds that

ek+1(s, a) ≤
[( k∏

s=1

γPπθs

)
e1 +

k∑
i=1

γk−i
( k∏
s=i+1

Pπθs

)(
βγPϵbi+1 − (I − γPπθi )ϵci

)]
(s, a).

This finishes the proof of the lemma.

A.6.6. Proof of Lemma A.3.5

Note that ∥ω0∥2 ≤ R and |r(s, a)| ≤ rmax for any (s, a) ∈ S × A, which implies that

|Qω0(s, a)| ≤ R and |Q∗(s, a)| ≤ rmax by their definitions. Thus, for M1, we have

|M1| ≤ Eρ

[
(I − γPπ∗

)−1

K∑
k=0

(γPπ∗
)k+1|Q∗ −Qω0|

]

≤ 4(1− γ)−1

K∑
k=0

γk+1 · (Rmax +R) ≤ 4(1− γ)−2 · (Rmax +R).(A.6.17)
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For M2, by the definition of e1 in (A.3.7), |ωk| ≤ R, |ϕ(s, a)| ≤ 1, and |r(s, a)| ≤ rmax, we

have

|e1(s, a)| =
∣∣[Qωk

− T πθk+1Qωk
](s, a)

∣∣
=
∣∣ω⊤

k ϕ(s, a)− γ · ω⊤
k [P

πθk+1ϕ](s, a)− (1− γ) · r(s, a)
∣∣

≤ 2R + rmax(A.6.18)

for any (s, a) ∈ S ×A. Therefore, we have

|M2| ≤ (1− γ)−3 · (2R +Rmax).(A.6.19)

Meanwhile, by the initialization τ0 = ∞ in Algorithm 1, the initial policy πθ0(· | s) is a

uniform distribution over A. Therefore, it holds for any s ∈ S that

KL
(
π∗(· | s) ∥ πθ0(· | s)

)
=

∫
A
π∗(a | s) log π

∗(a | s)
πθ0(a | s)

da

=

∫
A
π∗(a | s) log π∗(a | s)da−

∫
A
π∗(a | s) log πθ0(a | s)da

≤ −
∫
A
π∗(a | s) log πθ0(a | s)da

=

∫
A
π∗(a | s) log |A|da = log |A|.(A.6.20)

Therefore, by (A.6.20), we have

M3 ≤ (1− γ)−2 · log |A| ·K1/2,(A.6.21)
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where we use β = K1/2. We see that (A.6.17), (A.6.19), and (A.6.21) upper bound M1,

M2, and M3, respectively. We conclude the proof of Lemma A.3.5.

A.6.7. Proof of Lemma A.3.6

For M4, by changing the index of summation, we have

|M4| =
∣∣∣Eρ

[ K∑
k=0

k∑
i=0

∞∑
j=0

(γPπ∗
)k−i+jϵci+1

]∣∣∣
=
∣∣∣Eρ

[ K∑
k=0

k∑
i=0

∞∑
t=k−i

(γPπ∗
)tϵci+1

]∣∣∣
≤

K∑
k=0

k∑
i=0

∞∑
t=k−i

∣∣Eρ

[
(γPπ∗

)tϵci+1

]∣∣,(A.6.22)

where we expand (I − γPπ∗
)−1 into an infinite sum in the first equality. Further, by

changing the measure of the expectation from ρ to ρ∗ on the RHS of (A.6.22), we have

K∑
k=0

k∑
i=0

∞∑
t=k−i

∣∣Eρ

[
(γPπ∗

)tϵci+1

]∣∣ ≤ K∑
k=0

k∑
i=0

∞∑
t=k−i

γtc(t) · Eρ∗ [|ϵci+1|],(A.6.23)

where c(t) is defined in Assumption 2.3.1. Further, by changing the index of summation

on the RHS of (A.6.23), combining (A.6.22), we have

|M4| ≤
K∑
k=0

∞∑
t=0

k∑
i=max{0,k−t}

γtc(t) · εQ

≤
K∑
k=0

∞∑
t=0

2tγtc(t) · εQ

≤ γ

K∑
k=0

2Cρ,ρ∗ · εQ ≤ 3KCρ,ρ∗ · εQ,(A.6.24)
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where εQ = maxi Eρ∗ [|ϵci+1|], and Cρ,ρ∗ is defined in Assumption 2.3.1.

Now, for M5, by a similar argument as in the derivation of (A.6.24), we have

M5 ≤
∞∑
i=0

K∑
k=0

∞∑
j=0

k∑
ℓ=1

γi+j+k−ℓ+1c(i+ j + k − ℓ+ 1) · εQ

=
∞∑
i=0

K∑
k=0

∞∑
j=0

i+j+k∑
t=i+j+1

γtc(t) · εQ ≤
K∑
k=0

∞∑
t=1

t2γtc(t) · εQ ≤ KCρ,ρ∗ · εQ.(A.6.25)

We see that (A.6.24) and (A.6.25) upper bound M4 and M5, respectively. We conclude

the proof of Lemma A.3.6.

A.6.8. Proof of Lemma A.3.7

Part 1. We first show that the first inequality holds. Note that

πθk(a | s) = exp(τ−1
k fθk(s, a))/Zθk(s), πθk+1

(a | s) = exp(τ−1
k+1fθk+1

(s, a))/Zθk+1
(s),

Here Zθk(s), Zθk+1
(s) ∈ R are normalization factors, which are defined as

Zθk(s) =
∑
a′∈A

exp(τ−1
k fθk(s, a

′)), Zθk+1
(s) =

∑
a′∈A

exp(τ−1
k+1fθk+1

(s, a′)).

Thus, we have

⟨log(πθk+1
(· | s)/πθk(· | s))− β−1Qωk

(s, ·), π∗(· | s)− πθk+1
(· | s)⟩

= ⟨τ−1
k+1fθk+1

(s, ·)− (β−1Qωk
(s, ·) + τ−1

k fθk(s, ·)), π∗(· | s)− πθk(· | s)⟩,(A.6.26)
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where we use the fact that

⟨logZθk+1
(s)− logZθk(s), π

∗(· | s)− πθk+1
(· | s)⟩

= (logZθk+1
(s)− logZθk(s)) ·

∑
a′∈A

(π∗(a′ | s)− πθk+1
(a′ | s)) = 0.

Thus, it remains to upper bound the right-hand side of (A.6.26). We have

⟨τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk

(s, ·) + τ−1
k fθk(s, ·)), π∗(· | s)− πθk+1

(· | s)⟩

(A.6.27)

=

〈
τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk

(s, ·) + τ−1
k fθk(s, ·)), πθk(· | s)·

(
π∗(· | s)
πθk(· | s)

−
πθk+1

(· | s)
πθk(· | s)

)〉
.

Taking expectation with respect to s ∼ ν∗ on the both sides of (A.6.27) and using the

Cauchy-Schwarz inequality, we obatin

Eν∗
[∣∣〈τ−1

k+1fθk+1
(s, ·)− (β−1

k Qωk
(s, ·) + τ−1

k fθk(s, ·)), π∗(· | s)− πθk+1
(· | s)

〉∣∣]∣∣
=

∫
S

∣∣∣∣〈τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk

(s, ·) + τ−1
k fθk(s, ·)),

πθk(· | s) · νk(s)·
(
π∗(· | s)
πθk(· | s)

−
πθk+1

(· | s)
πθk(· | s)

)〉∣∣∣∣ · ∣∣∣ν∗(s)νk(s)

∣∣∣ds
=

∫
S×A

∣∣τ−1
k+1fθk+1

(s, a)− (β−1
k Qωk

(s, a) + τ−1
k fθk(s, a))

∣∣
·
∣∣∣∣ρ∗(a | s)ρk(a | s)

−
πθk+1

(a | s) · ν∗(s)
ρk(a | s)

∣∣∣∣dρk(s, a)
≤

√
Eρk

[(
τ−1
k+1fθk+1

(s, a)− (β−1
k Qωk

(s, a) + τ−1
k fθk(s, a))

)2]Eρk

[∣∣∣∣dρ∗dρk
−

d(πθk+1
ν∗)

dρk

∣∣∣∣2]
≤
√
2τ−1

k+1 · εk+1,f · (ϕ∗
k + ψ∗

k),



185

where in the last inequality we use the error bound in (A.3.20) and the definition of ϕ∗
k

and ψ∗
k in Assumption A.2.1. This finishes the proof of the first inequality.

Part 2. The proof of the second inequality follows from a similar argument as above. We

have

⟨log(πθk+1
(· | s)/πθk(· | s))− β−1Qωk

(s, ·), πθk(· | s)− πθk+1
(· | s)⟩

= ⟨τ−1
k+1fθk+1

(s, ·)− (β−1Qωk
(s, ·) + τ−1

k fθk(s, ·)), πθk(· | s)− πθk+1
(· | s)⟩,(A.6.28)

where we use the fact that

⟨logZθk+1
(s)− logZθk(s), πθk(· | s)− πθk+1

(· | s)⟩

= (logZθk+1
(s)− logZθk(s)) ·

∑
a′∈A

(πθk(a
′ | s)− πθk+1

(a′ | s)) = 0.

Thus, it remains to upper bound the right-hand side of (A.6.28). We have

⟨τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk

(s, ·) + τ−1
k fθk(s, ·)), πθk(· | s)− πθk+1

(· | s)⟩

(A.6.29)

=

〈
τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk

(s, ·) + τ−1
k fθk(s, ·)), πθk(· | s)·

(
1−

πθk+1
(· | s)

πθk(· | s)

)〉
.
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Taking expectation with respect to s ∼ ν∗ on the both sides of (A.6.29) and using the

Cauchy-Schwarz inequality, we obatin

Eν∗
[∣∣〈τ−1

k+1fθk+1
(s, ·)− (β−1

k Qωk
(s, ·) + τ−1

k fθk(s, ·)), πθk(· | s)− πθk+1
(· | s)

〉∣∣]
=

∫
S

∣∣∣∣〈τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk

(s, ·) + τ−1
k fθk(s, ·)), πθk(· | s)νk(s)

(
1−

πθk+1
(· | s)

πθk(· | s)

)〉∣∣∣∣
·
∣∣∣ν∗(s)
νk(s)

∣∣∣ds
=

∫
S×A

∣∣τ−1
k+1fθk+1

(s, a)− (β−1
k Qωk

(s, a) + τ−1
k fθk(s, a))

∣∣∣∣∣∣1− πθk+1
(a | s) · ν∗(s)
ρk(s, a)

∣∣∣∣dρk
≤ Eρk

[(
τ−1
k+1fθk+1

(s, a)− (β−1
k Qωk

(s, a) + τ−1
k fθk(s, a))

)2]1/2Eρk

[∣∣∣∣1− d(πθk+1
ν∗)

dρk

∣∣∣∣2]1/2
≤
√
2τ−1

k+1 · εk+1,f · (1 + ψ∗
k),

where in the last inequality we use the error bound in (A.3.20) and the definition of ψ∗
k

in Assumption A.2.1. This finishes the proof of the second inequality.
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APPENDIX B

Supplemental Materials in Chapter 3

B.1. Notations in the Appendix

In the proof, for convenience, for any invertible matrix M , we denote by M−⊤ =

(M−1)⊤ = (M⊤)−1 and ∥M∥F the Frobenius norm. We also denote by svec(M) the

symmetric vectorization of the symmetric matrix M , which is the vectorization of the

upper triangular matrix of the symmetric matrix M , with off-diagonal entries scaled

by
√
2. We denote by smat(·) the inverse operation. For any matrices G and H, we

denote by G⊗H the Kronecker product, and G⊗sH the symmetric Kronecker product,

which is defined as a mapping on a vector svec(M) such that (G ⊗s H)svec(M) = 1/2 ·

svec(HMG⊤ +GMH⊤).

For notational simplicity, we write Eπ(·) to emphasize that the expectation is taken

following the policy π.

B.2. Auxiliary Algorithms and Analysis

B.2.1. Results in D-LQR

In this section, we provide auxiliary results in analyzing Problem 3.1.2. First, we introduce

the value functions of the Markov decision process (MDP) induced by Problem 3.1.2. We
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define the state- and action-value functions VK,b(x) and QK,b(x, u) as follows

VK,b(x) =
∞∑
t=0

{
E
[
c(xt, ut) |x0 = x

]
− J(K, b)

}
,(B.2.1)

QK,b(x, u) = c(x, u)− J(K, b) + E
[
VK,b(x1) |x0 = x, u0 = u

]
,(B.2.2)

where xt follows the state transition, and ut follows the policy πK,b given xt. In other

words, we have ut = −Kxt + b + σηt, where ηt ∼ N (0, I). The following proposition

establishes the close forms of these value functions.

Proposition B.2.1. The state-value function VK,b(x) takes the form of

VK,b(x) = x⊤PKx− tr(PKΦK) + 2f⊤
K,b(x− µK,b)− µ⊤

K,bPKµK,b,(B.2.3)

and the action-value function QK,b(x, u) takes the form of

QK,b(x, u) =

x
u


⊤

ΥK

x
u

+ 2

pK,b

qK,b


⊤x

u

− tr(PKΦK)− σ2 · tr(R + PKBB
⊤)

− b⊤Rb+ 2b⊤RKµK,b − µ⊤
K,b(Q+K⊤RK + PK)µK,b

+ 2f⊤
K,b

[
(Aµ+ d)− µK,b

]
+ (Aµ+ d)⊤PK(Aµ+ d),(B.2.4)

where fK,b = (I −A+BK)−⊤[(A−BK)⊤PK(Bb+Aµ+ d)−K⊤Rb], and ΥK , pK,b, and

qK,b are defined in (3.2.7).

Proof. See §B.5.6 for a detailed proof. □

By Proposition B.2.1, we know that VK,b(x) is quadratic in x, while QK,b(x, u) is

quadratic in (x⊤, u⊤)⊤. Now, we show that (3.2.5) holds.
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Proposition B.2.2. The expected total cost J(K, b) defined in Problem 3.1.2 takes the

form of

J(K, b) = J1(K) + J2(K, b) + σ2 · tr(R) + µ⊤Qµ,

where

J1(K) = tr
[
(Q+K⊤RK)ΦK

]
= tr(PKΨϵ),

J2(K, b) =

µK,b

b


⊤Q+K⊤RK −K⊤R

−RK R


µK,b

b

 .

Here µK,b is defined in (3.2.2), ΦK is defined in (3.2.3), and PK is defined in (3.2.4).

Proof. See §B.5.3 for a detailed proof. □

The following proposition establishes the gradients of J1(K) and J2(K, b), respectively.

Proposition B.2.3. The gradient of J1(K) and the gradient of J2(K, b) with respect to

b take the forms of

∇KJ1(K) = 2(Υ22
KK −Υ21

K ) · ΦK , ∇bJ2(K, b) = 2
[
Υ22

K (−KµK,b + b) + Υ21
KµK,b + qK,b

]
,

where ΥK and qK,b are defined in (3.2.7).

Proof. See §B.5.5 for a detailed proof. □

The following theorem establishes the convergence of Algorithm 3.
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Theorem B.2.4 (Convergence of Algorithm 3). Assume that ρ(A−BK0) < 1. Let ε > 0

be a sufficiently small tolerance. We set

γ ≤
[
∥R∥2 + ∥B∥22 · J(K0, b0) · σ−1

min(Ψϵ)
]−1

,

N ≥ C · ∥ΦK∗∥2 · γ−1 · log
{
4
[
J(K0, b0)− J(K∗, b∗)

]
· ε−1

}
,

Tn ≥ poly
(
∥Kn∥F, ∥b0∥2, ∥µ∥2, J(K0, b0)

)
· λ−4

Kn
·
[
1− ρ(A−BKn)

]−9 · ε−5,

T̃n ≥ poly
(
∥Kn∥F, ∥b0∥2, ∥µ∥2, J(K0, b0)

)
· λ−2

Kn
·
[
1− ρ(A−BKn)

]−12 · ε−12,

γn,t = γ0 · t−1/2,

γb ≤ min
{
1− ρ(A−BKN),[
1− ρ(A−BKN)

]−2 ·
(
∥B∥22 · ∥KN∥22 · ∥R∥2 + ∥B∥22 · ∥Q∥2

)}
,

H ≥ C0 · ν−1
KN
· (γb)−1 · log

{
4
[
J(KN , b0)− J(KN , b

KN )
]
· ε−1

}
,

T b
h ≥ poly

(
∥KN∥F, ∥bh∥2, ∥µ∥2, J(KN , b0)

)
· λ−4

KN
· ν−4

KN
·
[
1− ρ(A−BKN)

]−11 · ε−5,

T̃ b
h ≥ poly

(
∥KN∥F, ∥bh∥2, ∥µ∥2, J(KN , b0)

)
· λ−4

KN
· ν−2

KN
·
[
1− ρ(A−BKN)

]−17 · ε−8,

γbh,t = γ0 · t−1/2,

where C, C0, and γ0 are positive absolute constants, {Kn}n∈[N ] and {bh}h∈[H] are the

sequences generated by Algorithm 3, λKn is specified in Proposition B.2.6, and νKN
is

specified in Proposition 3.2.3. Then it holds with probability at least 1− ε10 that

J(KN , bH)− J(K∗, b∗) < ε, ∥bH − b∗∥2 ≤Mb(µ) · ε1/2,

∥KN −K∗∥F ≤
[
σ−1
min(Ψϵ) · σ−1

min(R) · ε
]1/2

, ∥µ̂KN ,bH − µK∗,b∗∥2 ≤ ε,



191

where Mb(µ) is defined in (3.3.3).

Proof. See §B.4.2 for a detailed proof. □

By Theorem B.2.4, given any mean-field state µ, Algorithm 3 converges linearly to

the optimal policy π∗
µ of Problem 3.1.2.

B.2.2. Primal-Dual Policy Evaluation Algorithm

Note that the critic update steps in Algorithm 3 are built upon the estimators of the

matrix ΥK and the vector qK,b. We now derive a policy evaluation algorithm to establish

the estimators of ΥK and qK,b, which is based on gradient temporal difference algorithm

(Sutton et al., 2009a).

We define the feature vector as

ψ(x, u) =


φ(x, u)

x− µK,b

u− (−KµK,b + b)

 ,(B.2.5)

where

φ(x, u) = svec


 x− µK,b

u− (−KµK,b + b)


 x− µK,b

u− (−KµK,b + b)


⊤ .
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Recall svec(M) gives the symmetric vectorization of the symmetric matrix M . We also

define

αK,b =


svec(ΥK)

ΥK

 µK,b

−KµK,b + b

+

pK,b

qK,b


 ,(B.2.6)

where ΥK , pK,b, and qK,b are defined in (3.2.7). To estimate ΥK and qK,b, it suffices to

estimate αK,b. Meanwhile, we define

ΘK,b = EπK,b

{
ψ(x, u)

[
ψ(x, u)− ψ(x′, u′)

]⊤}
,(B.2.7)

where (x′, u′) is the state-action pair after (x, u) following the policy πK,b and the state

transition. The following proposition characterizes the connection between ΘK,b and αK,b.

Proposition B.2.5. It holds that 1 0

EπK,b

[
ψ(x, u)

]
ΘK,b


J(K, b)

αK,b

 =

 J(K, b)

EπK,b

[
c(x, u)ψ(x, u)

]
 ,

where ψ(x, u) is defined in (B.2.5), αK,b is defined in (B.2.6), and ΘK,b is defined in (B.2.7).

Proof. See §B.5.7 for a detailed proof. □

By Proposition B.2.5, to obtain αK,b, it suffices to solve the following linear system in

ζ = (ζ1, ζ
⊤
2 )

⊤,

Θ̃K,b · ζ =

 J(K, b)

EπK,b

[
c(x, u)ψ(x, u)

]
 ,(B.2.8)
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where for notational convenience, we define

Θ̃K,b =

 1 0

EπK,b

[
ψ(x, u)

]
ΘK,b

 .(B.2.9)

The following proposition shows that ΘK,b is invertible.

Proposition B.2.6. If ρ(A−BK) < 1, then the matrix ΘK,b is invertible, and ∥ΘK,b∥2 ≤

4(1 + ∥K∥2F)2 · ∥ΦK∥22. Also, σmin(Θ̃K,b) ≥ λK , where λK only depends on ∥K∥2 and

ρ(A−BK).

Proof. See §B.5.8 for a detailed proof. □

By Proposition B.2.6, ΘK,b is invertible. Therefore, (B.2.8) admits the unique solution

ζK,b = (J(K, b), α⊤
K,b)

⊤.

Now, we present the primal-dual gradient temporal difference algorithm.

Primal-Dual Gradient Method. Instead of solving (B.2.8) directly, we minimize the

following loss function with respect to ζ = ((ζ1)⊤, (ζ2)⊤),

[
ζ1 − J(K, b)

]2
+
∥∥∥EπK,b

[
ψ(x, u)

]
ζ1 +ΘK,bζ

2 − EπK,b

[
c(x, u)ψ(x, u)

]∥∥∥2
2
.(B.2.10)

By Fenchel’s duality, the minimization of (B.2.10) is equivalent to the following primal-

dual min-max problem,

min
ζ∈Vζ

max
ξ∈Vξ

F (ζ, ξ) =
{
EπK,b

[
ψ(x, u)

]
ζ1 +ΘK,bζ

2 − EπK,b

[
c(x, u)ψ(x, u)

]}⊤
ξ2(B.2.11)

+
[
ζ1 − J(K, b)

]
· ξ1 − ∥ξ∥22/2,
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where we restrict the primal variable ζ in a compact set Vζ and the dual variable ξ in a

compact set Vξ, which are specified in Definition B.2.7. It holds that

∇ζ1F = ξ1 + EπK,b

[
ψ(x, u)

]⊤
ξ2, ∇ζ2F = Θ⊤

K,bξ
2, ∇ξ1F = ζ1 − J(K, b)− ξ1,

∇ξ2F = EπK,b

[
ψ(x, u)

]
ζ1 +ΘK,bζ

2 − EπK,b

[
c(x, u)ψ(x, u)

]
− ξ2.

(B.2.12)

The primal-dual gradient method updates ζ and ξ via

ζ1 ← ζ1 − γ · ∇ζ1F (ζ, ξ), ζ2 ← ζ2 − γ · ∇ζ2F (ζ, ξ)

ξ1 ← ξ1 − γ · ∇ξ1F (ζ, ξ), ξ2 ← ξ2 − γ · ∇ξ2F (ζ, ξ).(B.2.13)

Estimation of Mean-Field State µK,b. To utilize the primal-dual gradient method

in (B.2.13), it remains to evaluate the feature vector ψ(x, u). Note that by (B.2.5),

the evaluation of the feature vector ψ(x, u) requires the mean-field state µK,b. In what

follows, we establish the estimator µ̂K,b of the mean-field state µK,b by simulating the

MDP following the policy πK,b for T̃ steps, and calculate the estimated feature vector

ψ̂(x, u) by

ψ̂(x, u) =


φ̂(x, u)

x− µ̂K,b

u− (−Kµ̂K,b + b)

 ,(B.2.14)
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where φ̂(x, u) takes the form of

φ̂(x, u) = svec

[ x− µ̂K,b

u− (−Kµ̂K,b + b)


 x− µ̂K,b

u− (−Kµ̂K,b + b)


⊤]
.

We now define the sets Vζ and Vξ in (B.2.11).

Definition B.2.7. Given K0 and b0 such that ρ(A − BK0) < 1 and J(K0, b0) < ∞, we

define the sets Vζ and Vξ as

Vζ =
{
ζ : 0 ≤ ζ1 ≤ J(K0, b0), ∥ζ2∥2 ≤Mζ,1 +Mζ,2 · (1 + ∥K∥F) ·

[
1− ρ(A−BK)

]−1
}
,

Vξ =
{
ξ : |ξ1| ≤ J(K0, b0), ∥ξ2∥2 ≤Mξ ·

(
1 + ∥K∥2F

)3 · [1− ρ(A−BK)
]−1
}
.

Here Mζ,1, Mζ,2, and Mξ are constants independent of K and b, which take the forms of

Mζ,1 =
[(
∥Q∥F + ∥R∥F

)
+
(
∥A∥2F + ∥B∥2F

)
·
√
d · J(K0, b0) · σ−1

min(Ψω)
]

+
(
∥A∥2 + ∥B∥2

)
· J(K0, b0)

2 · σ−1
min(Ψω) · σ−1

min(Q),

+
[(
∥Q∥2 + ∥R∥2

)
+
(
∥A∥2 + ∥B∥2

)2 · J(K0, b0) · σ−1
min(Ψω)

]
· J(K0, b0) ·

[
σ−1
min(Q) + σ−1

min(R)
]

Mζ,2 =
(
∥A∥2 + ∥B∥2

)
· (κQ + κR), Mξ = C · (Mζ,1 +Mζ,2) · J(K0, b0)

2 · σ−2
min(Q),

where C is a positive absolute constant, and κQ and κR are condition numbers of Q and

R, respectively.
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We summarize the primal-dual gradient temporal difference algorithm in Algorithm

7. Hereafter, for notational convenience, we denote by ψ̂t the estimated feature vector

ψ̂(xt, ut).

Algorithm 7 Primal-Dual Gradient Temporal Difference Algorithm.

1: Input: Policy πK,b, mean-field state µ, numbers of iteration T̃ and T , stepsizes
{γt}t∈[T ], parameters K0 and b0.

2: Define the sets Vζ and Vξ via Definition B.2.7 with K0 and b0.
3: Initialize the parameters by ζ0 ∈ Vζ and ξ0 ∈ Vξ.
4: Sample x̃0 from the the stationary distribution N (µK,b,ΦK).

5: for t = 0, . . . , T̃ − 1 do
6: Given the mean-field state µ, take action ũt following πK,b and generate the next

state x̃t+1.
7: end for
8: Set µ̂K,b ← 1/T̃ ·

∑T̃
t=1 x̃t and compute the estimated feature vector ψ̂ via (B.2.14).

9: Sample x0 from the the stationary distribution N (µK,b,ΦK).
10: for t = 0, . . . , T − 1 do
11: Given the mean-field state µ, take action ut following πK,b, observe the cost ct,

and generate the next state xt+1.

12: Set δt+1 ← ζ1t + (ψ̂t − ψ̂t+1)
⊤ζ2t − ct.

13: Update parameters via

ζ1t+1 ← ζ1t − γt+1 · (ξ1t + ψ̂⊤
t ξ

2
t ), ζ2t+1 ← ζ2t − γt+1 · ψ̂t(ψ̂t − ψ̂t+1)

⊤ξ2t ,

ξ1t+1 ← (1− γt+1) · ξ1t + γt+1 · (ζ1t − ct), ξ2t+1 ← (1− γt+1) · ξ2t + γt+1 · δt+1 · ψ̂t.

14: Project ζt+1 and ξt+1 to Vζ and Vξ, respectively.
15: end for
16: Set α̂K,b ← (

∑T
t=1 γt)

−1 · (
∑T

t=1 γt · ζ2t ), and

Υ̂K ← smat(α̂K,b,1),

(
p̂K,b

q̂K,b

)
← α̂K,b,2 − Υ̂K

(
µ̂K,b

−Kµ̂K,b + b

)
,

where α̂K,b,1 = (α̂K,b)
(k+d+1)(k+d)/2
1 and α̂K,b,2 = (α̂K,b)

(k+d+3)(k+d)/2
(k+d+1)(k+d)/2+1.

17: Output: Estimators µ̂K,b, Υ̂K , and q̂K,b.

We now characterize the rate of convergence of Algorithm 7.

Theorem B.2.8 (Convergence of Algorithm 7). Given K0, b0, K, and b such that ρ(A−

BK0) < 1 and J(K, b) ≤ J(K0, b0), we define the sets Vζ and Vξ through Definition B.2.7.
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Let γt = γ0t
−1/2, where γ0 is a positive absolute constant. Let ρ ∈ (ρ(A − BK), 1). For

T̃ ≥ poly0(∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)) · (1− ρ)−6 and a sufficiently large T , it holds with

probability at least 1− T−4 − T̃−6 that

∥α̂K,b − αK,b∥22

≤ λ−2
K · poly1

(
∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
·
[

log6 T

T 1/2 · (1− ρ)4
+

log T̃

T̃ 1/4 · (1− ρ)2

]
,

where λK is defined in Proposition B.2.6. Same bounds for ∥Υ̂K −ΥK∥2F, ∥p̂K,b − pK,b∥22,

and ∥q̂K,b − qK,b∥22 hold. Meanwhile, it holds with probability at least 1− T̃−6 that

∥µ̂K,b − µK,b∥2 ≤
log T̃

T̃ 1/4
· (1− ρ)−2 · poly2

(
∥ΦK∥2, ∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
.

Proof. See §B.4.3 for a detailed proof. □

B.2.3. Temporal Difference Policy Evaluation Algorithm

Besides the primal-dual gradient temporal difference algorithm, we can also evaluate αK,b

by TD(0) method (Sutton and Barto, 2018) in practice, which is presented in Algorithm

8.

Note that in related literature (Bhandari et al., 2018; Korda and La, 2015), non-

asymptotic convergence analysis of TD(0) method with linear function approximation is

only applied to discounted MDP. As for our ergodic setting, the convergence of TD(0)

method is only shown asymptotically (Borkar and Meyn, 2000; Kushner and Yin, 2003)



198

Algorithm 8 Temporal Difference Policy Evaluation Algorithm.

1: Input: Policy πK,b, number of iteration T̃ and T , stepsizes {γt}t∈[T ].
2: Sample x̃0 from the stationary distribution N (µK,b,ΦK).

3: for t = 0, . . . , T̃ − 1 do
4: Take action ũt under the policy πK,b and generate the next state x̃t+1.
5: end for
6: Set µ̂K,b ← 1/T̃ ·

∑T̃
t=1 x̃t.

7: Sample x0 from the the stationary distribution N (µK,b,ΦK).
8: for t = 0, . . . , T do
9: Given the mean-field state µ, take action ut following πK,b, observe the cost ct,

and generate the next state xt+1.

10: Set δt+1 ← ζ1t + (ψ̂t − ψ̂t+1)
⊤ζ2t − ct.

11: Update parameters via ζ1t+1 ← (1−γt+1) ·ζ1t +γt+1 ·ct and ζ2t+1 ← ζ2t −γt+1 ·δt+1 ·ψ̂t.
12: Project ζt to V ′

ζ , where V ′
ζ is a compact set.

13: end for
14: Set α̂K,b ← (

∑T
t=1 γt)

−1 · (
∑T

t=1 γt · ζ2t ), and

Υ̂K ← smat(α̂K,b,1),

(
p̂K,b

q̂K,b

)
← α̂K,b,2 − Υ̂K

(
µ̂K,b

−Kµ̂K,b + b

)
,

where α̂K,b,1 = (α̂K,b)
(k+d+1)(k+d)/2
1 and α̂K,b,2 = (α̂K,b)

(k+d+3)(k+d)/2
(k+d+1)(k+d)/2+1.

15: Output: Estimators µ̂K,b, Υ̂K , and q̂K,b.

using ordinary differential equation method. Therefore, in the convergence theorem pro-

posed in §3.2, we only focus on the primal-dual gradient temporal difference method

(Algorithm 7) to establish non-asymptotic convergence result.

B.3. General Formulation

Compared with Problem 3.1.3, a more general formulation includes an additional term

x⊤t Pµ in the cost function. For the completeness of this paper, we define this general

formulation here. Following from a same argument as in §3.1, it suffices to study the

setting where t is sufficiently large. First, we propose the following general drifted LQR

(general D-LQR) problem, which is parallel to Problem 3.1.2.
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Problem B.3.1 (General D-LQR). For any given mean-field state µ ∈ Rm, consider the

following formulation

xt+1 = Axt +But + Aµ+ d+ ωt,

c̃µ(xt, ut) = x⊤t Qxt + u⊤t Rut + µ⊤Qµ+ 2x⊤t Pµ,

J̃µ(π) = lim
T→∞

E

[
1

T

T∑
t=0

c̃µ(xt, ut)

]
,

where xt ∈ Rm is the state vector, ut ∈ Rk is the action vector generated by the policy

π, ωt ∈ Rm is an independent random noise term following the Gaussian distribution

N (0,Ψω), and d ∈ Rm is a drift term. We aim to find an optimal policy π∗
µ such that

J̃µ(π
∗
µ) = infπ∈Π J̃µ(π).

In Problem B.3.1, the unique optimal policy π∗
µ(·) still admits a linear form π∗

µ(xt) =

−Kπ∗
µ
xt+ bπ∗

µ
(Anderson and Moore, 2007), where the matrix Kπ∗

µ
∈ Rk×m and the vector

bπ∗
µ
∈ Rk are the parameters of the policy π. It then suffices to find the optimal policy in

the class Π defined in (3.1.1).

Parallel to Problem 3.1.3, we define the general LQ-MFG problem as follows.

Problem B.3.2 (General LQ-MFG). We consider the following formulation

xt+1 = Axt +But + Aµ+ d+ ωt,

c̃(xt, ut) = x⊤t Qxt + u⊤t Rut + µ⊤Qµ+ 2x⊤t Pµ,

J̃(π, µ) = lim
T→∞

E

[
1

T

T∑
t=0

c̃(xt, ut)

]
,
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where xt ∈ Rm is the state vector, ut ∈ Rk is the action vector generated by the policy π,

µ ∈ Rm is the mean-field state, ωt ∈ Rm is an independent random noise term following

the Gaussian distribution N (0,Ψω), and d ∈ Rm is a drift term. We aim to find a pair

(µ∗, π∗) such that (i) J̃(π∗, µ∗) = infπ∈Π J̃(π, µ
∗); (ii) Ex∗t converges to µ∗ as t → ∞,

where {x∗t}t≥0 is the Markov chain of states generated by the policy π∗.

One can see that Problem B.3.2 aims to find a Nash equilibrium pair (µ∗, π∗).

Similar to the discussions in §3.2.2, to solve Problem B.3.2, one can design an algorithm

similar to Algorithm 2, which solves Problem B.3.1 and obtain the new mean-field state

at each iteration. We omit the detailed algorithm here. Now, we focus on solving Problem

B.3.1 in the sequel.

Similar to §3.2.3, we drop the subscript µ when we focus on Problem B.3.1 for a fixed

µ. We write πK,b(x) = −Kx + b + σ · η to emphasize the dependence on K and b, and

J̃(K, b) = J̃(πK,b) consequently. We derive an explicit form of the expected total cost

J̃(K, b) in the following proposition.

Proposition B.3.3. The expected total cost J̃(K, b) in Problem B.3.1 is decomposed as

J̃(K, b) = J̃1(K) + J̃2(K, b) + σ2 · tr(R) + µ⊤Qµ,

where J̃1(K) and J̃2(K, b) take the forms of

J̃1(K) = tr
[
(Q+K⊤RK)ΦK

]
= tr(PKΨϵ),

J̃2(K, b) =

µK,b

b


⊤Q+K⊤RK −K⊤R

−RK R


µK,b

b

+ 2µ⊤PµK,b.
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Here µK,b is given in (3.2.2), ΦK is given in (3.2.3), and PK is given in (3.2.4).

Proof. The proof is similar to the one of Proposition B.2.2. Thus we omit it here. □

Compared with the form of J(K, b) given in (3.2.5), we see that the only difference is

that J̃(K, b) contains an extra term 2µ⊤PµK,b in J̃2(K, b), which is only a linear term in

b (recall that µK,b is linear in b by (3.2.2)). Thus, J̃2(K, b) is still strongly convex in b, as

shown in the proposition below.

Proposition B.3.4. Given any K, the function J̃2(K, b) is νK-strongly convex in b, here

νK = σmin(Y
⊤
1,KY1,K +Y ⊤

2,KY2,K), where Y1,K = R1/2K(I−A+BK)−1B−R1/2 and Y2,K =

Q1/2(I−A+BK)−1B. Also, J̃2(K, b) has ιK-Lipschitz continuous gradient in b, where ιK

is upper bounded such that ιK ≤ [1− ρ(A−BK)]−2 · (∥B∥2∗ · ∥K∥2∗ · ∥R∥∗ + ∥B∥2∗ · ∥Q∥∗).

Proof. The proof is similar to the one of Proposition 3.2.3. Thus we omit it here. □

Parallel to Proposition 3.2.4, we derive a similar proposition in the sequel.

Proposition B.3.5. Denote by b̃K = argminb J̃2(K, b), then J̃2(K, b̃
K) takes the form

J̃2(K, b̃
K)

=

Aµ+ d

P⊤µ


⊤ S S(I − A)Q−1

Q−1(I − A)⊤S 3Q−1(I − A)⊤S(I − A)Q−1 −Q−1


Aµ+ d

P⊤µ

 ,

which is independent of K. Here S = [(I −A)Q−1(I −A)⊤ +BR−1B⊤]−1. And b̃K takes

the form

b̃K =
[
KQ−1(I − A)⊤ −R−1B⊤] · S · [(Aµ+ d) + (I − A)Q−1P⊤µ

]
−KQ−1P⊤µ.
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Proof. The proof is similar to the one of Proposition 3.2.4. Thus we omit it here. □

Similar to Problem 3.1.2, we define the state- and action-value functions as

ṼK,b(x) =
∞∑
t=0

{
E
[
c̃(xt, ut) |x0 = x, ut = −Kxt + b+ σηt

]
− J̃(K, b)

}
,

Q̃K,b(x, u) = c̃(x, u)− J̃(K, b) + E
[
ṼK,b(x

′) |x, u
]
,

where the x′ is the state generated by the state transition after the state-action pair (x, u).

A slight modification of Proposition B.2.1 gives the proposition below.

Proposition B.3.6. For Problem B.3.1, the state-value function ṼK,b(x) takes the form

ṼK,b(x) = x⊤PKx− tr(PKΦK) + 2f̃⊤
K,b(x− µK,b)− (µK,b)

⊤PKµK,b,

and the action-value function Q̃K,b(x, u) takes the form

Q̃K,b(x, u) =

x
u


⊤

ΥK

x
u

+ 2

p̃K,b

q̃K,b


⊤x

u


− tr(PKΦK)− σ2 · tr(R + PKBB

⊤)− b⊤Rb

+ 2b⊤RKµK,b − (µK,b)
⊤(Q+K⊤RK + PK)µK,b + 2f̃⊤

K,b

[
(Aµ+ d)− µK,b

]
+ (Aµ+ d)⊤PK(Aµ+ d)− 2µ⊤PµK,b.

Here the matrix ΥK is given in (3.2.7), and the vectors p̃K,b, q̃K,b are given asp̃K,b

q̃K,b

 =

A⊤[PK · (Aµ+ d) + f̃K,b

]
+ Pµ

B⊤[PK · (Aµ+ d) + f̃K,b

]
 ,(B.3.1)
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where the vector f̃K,b = (I − A+BK)−⊤[(A−BK)⊤PK(Bb+ Aµ+ d)−K⊤Rb+ Pµ].

Proof. The proof is similar to the one of Proposition B.2.1. Thus we omit it here. □

Now we establish the gradients of J̃(K, b) for Problem B.3.1.

Proposition B.3.7. The gradient of J̃1(K) and the gradient of J̃2(K, b) w.r.t. b takes

the form

∇K J̃1(K) = 2(Υ22
KK −Υ21

K ) · ΦK ,

∇bJ̃2(K, b) = 2
[
Υ22

K (−KµK,b + b) + Υ21
KµK,b + q̃K,b

]
,

where the matrix ΥK is given in (3.2.7), and the vector q̃K,b is given in (B.3.1).

Proof. The proof is similar to the one of Proposition B.2.3. Thus we omit it here. □

Equipped with above results, parallel to the analysis in §3.2, it is clear that by slight

modification of Algorithms 2, 3, and 7, we derive similar actor-critic algorithms to solve

both Problem B.3.2 and Problem B.3.1, where all the non-asymptotic convergence results

hold. We omit the algorithms and the convergence results here.

B.4. Proofs of Theorems

B.4.1. Proof of Theorem 3.3.1

We define µ∗
s+1 = Λ(µs), which is the mean-field state generated by the optimal policy

πK∗(µs),b∗(µs) = Λ1(µs) under the current mean-field state µs. By Proposition 3.2.4, the

optimal K∗(µ) is independent of the mean-field state µ. Therefore, we write K∗ = K∗(µ)
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hereafter for notational convenience. By (3.2.2), we know that

µ∗
s+1 = (I − A+BK∗)−1 ·

[
Bb∗(µs) + Aµs + d

]
.

We define

µ̃s+1 = (I − A+BKs)
−1(Bbs + Aµs + d),

which is the mean-field state generated by the policy πs under the current mean-field state

µs, where Ks and bs are the parameters of the policy πs. By triangle inequality, we have

∥µs+1 − µ∗∥2 ≤ ∥µs+1 − µ̃s+1∥2︸ ︷︷ ︸
E1

+ ∥µ̃s+1 − µ∗
s+1∥2︸ ︷︷ ︸

E2

+ ∥µ∗
s+1 − µ∗∥2︸ ︷︷ ︸

E3

,(B.4.1)

where µs+1 is generated by Algorithm 2. We upper bound E1, E2, and E3 in the sequel.

Upper Bound of E1. By Theorem B.2.4, it holds with probability at least 1− ε10 that

E1 = ∥µs+1 − µ̃s+1∥2 < εs ≤ ε/8 · 2−s,(B.4.2)

where εs is given in (3.3.2).

Upper Bound of E2. By the triangle inequality, we have

E2 =
∥∥∥(I − A+BKs)

−1(Bbs + Aµs + d)− (I − A+BK∗)−1 ·
[
Bb∗(µs) + Aµs + d

]∥∥∥
2

≤
∥∥Bb∗(µs) + Aµs + d

∥∥
2
·
∥∥∥[I − A+BK∗ +B(Ks −K∗)

]−1 − (I − A+BK∗)−1
∥∥∥
2

+
∥∥(I − A+BKs)

−1
∥∥
2
· ∥B∥2 ·

∥∥bs − b∗(µs)
∥∥
2
.

(B.4.3)
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By Taylor’s expansion, we have

∥∥∥[I − A+BK∗ +B(Ks −K∗)
]−1 − (I − A+BK∗)−1

∥∥∥
2

=
∥∥∥(I − A+BK∗)−1

[
I + (I − A+BK∗)−1B(Ks −K∗)

]−1 − (I − A+BK∗)−1
∥∥∥
2

≤ 2
∥∥(I − A+BK∗)−1B(Ks −K∗)(I − A+BK∗)−1

∥∥
2
.

(B.4.4)

Meanwhile, by Taylor’s expansion, it holds with probability at least 1− ε10 that

∥∥(I − A+BKs)
−1
∥∥
2

=
∥∥∥(I − A+BK∗ +B(Ks −K∗)

)−1
∥∥∥
2

=
∥∥∥(I − A+BK∗)−1

(
I + (I − A+BK∗)−1B(Ks −K∗)

)−1
∥∥∥
2

≤
[
1− ρ(A−BK∗)

]−1 ·
(
1 +

∥∥(I − A+BK∗)−1B
∥∥
2
· ∥K∗ −Ks∥2

)
≤ 2
[
1− ρ(A−BK∗)

]−2
,(B.4.5)

where the last inequality comes from Theorem B.2.4. By plugging (B.4.4) and (B.4.5) in

(B.4.3), it holds with probability at least 1− ε10 that

E2 ≤ 2
∥∥Bb∗(µs) + Aµs + d

∥∥
2
·
∥∥(I − A+BK∗)−1B(Ks −K∗)(I − A+BK∗)−1

∥∥
2

+
∥∥(I − A+BKs)

−1
∥∥
2
· ∥B∥2 ·

∥∥bs − b∗(µs)
∥∥
2

≤ 2
∥∥Bb∗(µs) + Aµs + d

∥∥
2
·
[
1− ρ(A−BK∗)

]−2 · ∥B∥2 · ∥Ks −K∗∥2(B.4.6)

+ 2
[
1− ρ(A−BK∗)

]−2 · ∥B∥2 ·
∥∥bs − b∗(µs)

∥∥
2
.
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By Proposition 3.2.4, it holds that

∥∥Bb∗(µs) + Aµs + d
∥∥
2
≤ L1 · ∥B∥2 · ∥µs∥2 + ∥A∥2 · ∥µs∥2 + ∥d∥2

≤
(
L1 · ∥B∥2 + ∥A∥2

)
· ∥µs∥2 + ∥d∥2,(B.4.7)

where the scalar L1 is defined in Assumption 3.2.1. Meanwhile, by Theorem B.2.4, it

holds with probability at least 1− ε10 that

∥Ks −K∗∥F ≤
[
σ−1
min(Ψϵ) · σ−1

min(R) · εs
]1/2

,
∥∥bs − b∗(µs)

∥∥
2
≤Mb(µs) · ε1/2s ,(B.4.8)

where Mb(µs) is defined in (3.3.3). Combining (B.4.6), (B.4.7), (B.4.8), and the choice of

εs in (3.3.2), it holds with probability at least 1− ε10 that

E2 ≤ ε/8 · 2−s.(B.4.9)

Upper Bound of E3. By Proposition 3.2.2, we have

E3 = ∥µ∗
s+1 − µ∗∥2 =

∥∥Λ(µs)− Λ(µ∗)
∥∥
2
≤ L0 · ∥µs − µ∗∥2,(B.4.10)

where L0 = L1L3 + L2 by Assumption 3.2.1.

By plugging (B.4.2), (B.4.9), and (B.4.10) in (B.4.1), we know that

∥µs+1 − µ∗∥2 ≤ L0 · ∥µs − µ∗∥2 + ε · 2−s−2,(B.4.11)
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which holds with probability at least 1− ε10. Following from (B.4.11) and a union bound

argument with S = O(log(1/ε)), it holds with probability at least 1− ε5 that

∥µS − µ∗∥2 ≤ LS
0 · ∥µ0 − µ∗∥2 + ε/2,

where we use the fact that L0 < 1 by Assumption 3.2.1. By the choice of S in (3.3.1), it

further holds with probability at least 1− ε6 that

∥µS − µ∗∥ ≤ ε.(B.4.12)

By Theorem B.2.4 and the choice of εs in (3.3.2), it holds with probability at least

1− ε5 that

∥KS −K∗∥F =
∥∥KS −K∗(µS)

∥∥
F
≤
[
σ−1
min(Ψϵ) · σ−1

min(R) · εS
]1/2 ≤ ε.(B.4.13)

Meanwhile, by the triangle inequality and the choice of εs in (3.3.2), it holds with proba-

bility at least 1− ε5 that

∥bS − b∗∥2 ≤
∥∥bS − b∗(µS)

∥∥
2
+
∥∥b∗(µS)− b∗

∥∥
2

≤Mb(µS) · ε1/2S + L1 · ∥µS − µ∗∥2

≤ (1 + L1) · ε,(B.4.14)

where the second inequality comes from Theorem B.2.4 and Proposition 3.2.4, and the

last inequality comes from (B.4.12). By (B.4.12), (B.4.13), and (B.4.14), we conclude the

proof of the theorem.
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B.4.2. Proof of Theorem B.2.4

Proof. We first show that J1(KN)−J1(K∗) < ε/2 with a high probability, then show

that J2(KN , bH)− J2(K∗, b∗) < ε/2 with a high probability. Then we have

J(KN , bN)− J(K∗, b∗) = J1(KN) + J2(KN , bH)− J1(K∗)− J2(K∗, b∗) < ε

with a high probability, which proves Theorem B.2.4.

Part 1. We show that J1(KN)− J1(K∗) < ε/2 with a high probability.

We first bound J1(K1) − J1(K2) for any K1 and K2. By Proposition B.2.2, J1(K)

takes the form of

J1(K) = tr(PKΨϵ) = Ey∼N (0,Ψϵ)(y
⊤PKy).(B.4.15)

The following lemma calculates y⊤PK1y − y⊤PK2y for any K1 and K2.

Lemma B.4.1. Assume that ρ(A−BK1) < 1 and ρ(A−BK2) < 1. For any state vector

y, we denote by {yt}t≥0 the sequence generated by the state transition yt+1 = (A−BK2)yt

with initial state y0 = y. It holds that

y⊤PK2y − y⊤PK1y =
∑
t≥0

DK1,K2(yt),

where

DK1,K2(y) = 2y⊤(K2 −K1)(Υ
22
K1
K1 −Υ21

K1
)y + y⊤(K2 −K1)

⊤Υ22
K1
(K2 −K1)y.

Here ΥK is defined in (3.2.7).
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Proof. See §B.6.1 for a detailed proof. □

The following lemma shows that J1(K) is gradient dominant.

Lemma B.4.2. Let K∗ be the optimal parameter and K be a parameter such that

J1(K) <∞, then it holds that

J1(K)− J1(K∗) ≤ σ−1
min(R) · ∥ΦK∗∥2 · tr

[
(Υ22

KK −Υ21
K )⊤(Υ22

KK −Υ21
K )
]
,(B.4.16)

J1(K)− J1(K∗) ≥ σmin(Ψω) · ∥Υ22
K ∥−1

2 · tr
[
(Υ22

KK −Υ21
K )⊤(Υ22

KK −Υ21
K )
]
.(B.4.17)

Proof. See §B.6.2 for a detailed proof. □

Recall that from Algorithm 3, the parameter K is updated via

Kn+1 = Kn − γ · (Υ̂22
Kn
Kn − Υ̂21

Kn
),(B.4.18)

where Υ̂Kn is the output of Algorithm 7. We upper bound |J1(Kn+1) − J1(K∗)| in the

sequel. First, we show that if J1(Kn) − J1(K∗) ≥ ε/2 holds for any n ≤ N , we obtain

that

J1(KN) ≤ J1(KN−1) ≤ · · · ≤ J1(K0),(B.4.19)

which holds with probability at least 1− ε13. We prove (B.4.19) by mathematical induc-

tion. Suppose that

J1(Kn) ≤ J1(Kn−1) ≤ · · · ≤ J1(K0),(B.4.20)
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which holds for n = 0. In what follows, we define K̃n+1 as

K̃n+1 = Kn − γ · (Υ22
Kn
Kn −Υ21

Kn
),(B.4.21)

where ΥKn is given in (3.2.7). By (B.4.21), we have

J1(K̃n+1)− J1(Kn) = Ey∼N (0,Ψϵ)

[
y⊤(PK̃n+1

− PKn)y
]

= −2γ · tr
[
ΦK̃n+1

· (Υ22
Kn
Kn −Υ21

Kn
)⊤(Υ22

Kn
Kn −Υ21

Kn
)
]

+ γ2 · tr
[
ΦK̃n+1

· (Υ22
Kn
Kn −Υ21

Kn
)⊤Υ22

Kn
(Υ22

Kn
Kn −Υ21

Kn
)
]

≤ −2γ · tr
[
ΦK̃n+1

· (Υ22
Kn
Kn −Υ21

Kn
)⊤(Υ22

Kn
Kn −Υ21

Kn
)
]

(B.4.22)

+ γ2 · ∥Υ22
Kn
∥2 · tr

[
ΦK̃n+1

· (Υ22
Kn
Kn −Υ21

Kn
)⊤(Υ22

Kn
Kn −Υ21

Kn
)
]
,

where the first equality comes from (B.4.15), the second equality comes from Lemma

B.4.1, and the last inequality comes from the trace inequality. By the definition of ΥK in

(3.2.7), we obtain that

∥Υ22
Kn
∥2 ≤ ∥R∥2 + ∥B∥22 · ∥PKn∥2 ≤ ∥R∥2 + ∥B∥22 · J1(Kn) · σ−1

min(Ψϵ)

≤ ∥R∥2 + ∥B∥22 · J1(K0) · σ−1
min(Ψϵ),(B.4.23)
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where the second inequality comes from Proposition B.2.2. By plugging (B.4.23) and the

choice of stepsize γ ≤ [∥R∥2 + ∥B∥22 · J1(K0) · σ−1
min(Ψϵ)]

−1 into (B.4.22), we obtain that

J1(K̃n+1)− J1(Kn) ≤ −γ · tr
[
ΦK̃n+1

· (Υ22
Kn
Kn −Υ21

Kn
)⊤(Υ22

Kn
Kn −Υ21

Kn
)
]

≤ −γ · σmin(Ψϵ) · tr
[
(Υ22

Kn
Kn −Υ21

Kn
)⊤(Υ22

Kn
Kn −Υ21

Kn
)
]

≤ −γ · σmin(Ψϵ) · σmin(R) · ∥ΦK∗∥−1
2 ·

[
J1(Kn)− J1(K∗)

]
< 0,(B.4.24)

where the last inequality comes from Lemma B.4.2.

The following lemma upper bounds |J1(K̃n+1)− J1(Kn+1)|.

Lemma B.4.3. Assume that J1(Kn) ≤ J1(K0). It holds with probability at least 1− ε15

that

∣∣J1(K̃n+1)− J1(Kn+1)
∣∣ ≤ γ · σmin(Ψϵ) · σmin(R) · ∥ΦK∗∥−1

2 · ε/4,

where Kn+1 and K̃n+1 are defined in (B.4.18) and (B.4.21), respectively.

Proof. See §B.6.3 for a detailed proof. □

Combining (B.4.24) and Lemma B.4.3, if J1(Kn)− J1(K∗) ≥ ε/2, it holds with prob-

ability at least 1− ε15 that

J1(Kn+1)− J1(Kn) ≤ J1(K̃n+1)− J1(Kn) +
∣∣J1(K̃n+1)− J1(Kn+1)

∣∣
≤ −γ · σmin(Ψϵ) · σmin(R) · ∥ΦK∗∥−1

2 · ε/4 < 0.(B.4.25)
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Combining (B.4.20) and (B.4.25), it holds with probability at least 1− ε15 that

J1(Kn+1) ≤ J1(Kn) ≤ · · · ≤ J1(K0).

Finally, following from a union bound argument and the choice of N in Theorem B.2.4,

if J1(Kn)− J1(K∗) ≥ ε/2 holds for any n ≤ N , we have

J1(KN) ≤ J1(KN−1) ≤ · · · ≤ J1(K0),

which holds with probability at least 1− ε13. Thus, we complete the proof of (B.4.19).

Combining (B.4.24) and (B.4.25), for J1(Kn)− J1(K∗) ≥ ε/2, we have

J1(Kn+1)− J1(K∗) ≤
[
1− γ · σmin(Ψϵ) · σmin(R) · ∥ΦK∗∥−1

2

]
·
[
J1(Kn)− J1(K∗)

]
,

which holds with probability at least 1 − ε13. Meanwhile, following from a union bound

argument and the choice of N in Theorem B.2.4, it holds with probability at least 1− ε11

that

J1(KN)− J1(K∗) ≤ ε/2.(B.4.26)

The following lemma upper bounds ∥KN −K∗∥F.

Lemma B.4.4. For any K, we have

∥K −K∗∥2F ≤ σ−1
min(Ψϵ) · σ−1

min(R) ·
[
J1(K)− J1(K∗)

]
.

Proof. See §B.6.4 for a detailed proof. □
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Combining (B.4.26) and Lemma B.4.4, we have

∥KN −K∗∥F ≤
[
σ−1
min(Ψϵ) · σ−1

min(R) · ε/2
]1/2

,(B.4.27)

which holds with probability 1− ε11.

Part 2. We show that J2(KN , bH) − J2(K∗, b∗) < ε/2 with high probability. Following

from Proposition 3.2.4, it holds that J2(K
∗, b∗) = J2(KN , b

KN ). Therefore, it suffices to

show that J2(KN , bH)− J2(KN , b
KN ) < ε/2.

First, we show that if J2(KN , bh)− J2(KN , b
KN ) ≥ ε/2 for any h ≤ H, we obtain that

J2(KN , bH) ≤ J2(KN , bH−1) ≤ · · · ≤ J2(KN , b1) ≤ J2(KN , b0),(B.4.28)

which holds with probability at least 1− ε13. We prove (B.4.28) by mathematical induc-

tion. Suppose that

J2(KN , bh) ≤ J2(KN , bh−1) ≤ · · · ≤ J2(KN , b0),(B.4.29)

Recall that by Algorithm 3, the parameter b is updated via

bh+1 = bh − γb · ∇̂bJ2(KN , bh).(B.4.30)

Here

∇̂bJ2(KN , bh) = Υ̂22
KN

(−KN µ̂KN ,bh + bh) + Υ̂21
KN
µ̂KN ,bh + q̂KN ,bh ,(B.4.31)
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where Υ̂KN
and q̂KN ,bh are the outputs of Algorithm 7. We define b̃h+1 as

b̃h+1 = bh − γb · ∇bJ2(KN , bh).(B.4.32)

Here

∇bJ2(KN , bh) = Υ22
KN

(−KNµKN ,bh + bh) + Υ21
KN
µKN ,bh + qKN ,bh ,(B.4.33)

where ΥKN
and qKN ,bh are defined in (3.2.7). We upper bound J2(KN , bh+1)−J2(KN , b

KN )

in the sequel. Following from (B.4.32) and Proposition 3.2.3, we have

J2(KN , b̃h+1)− J2(KN , bh) ≤ −γb/2 ·
∥∥∇bJ2(KN , bh)

∥∥2
2

≤ −νKN
· γb ·

[
J2(KN , bh)− J2(KN , b

KN )
]

≤ −νKN
· γb · ε < 0,(B.4.34)

where νKN
is specified in Proposition 3.2.3. The following lemma upper bounds |J2(KN , bh+1)−

J2(KN , b̃h+1)|.

Lemma B.4.5. Assume that J2(KN , bh) ≤ J2(KN , b0). It holds with probability at least

1− ε15 that

∣∣J2(KN , bh+1)− J2(KN , b̃h+1)
∣∣ ≤ νKN

· γb · ε/2,

where bh+1 and b̃h+1 are defined in (B.4.30) and (B.4.32), respectively.

Proof. See §B.6.5 for a detailed proof. □
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Combining (B.4.34) and Lemma B.4.5, we know that if J2(KN , bh)−J2(KN , b
KN ) ≥ ε,

it holds with probability at least 1− ε15 that

J2(KN , bh+1)− J2(KN , bh) ≤ J2(KN , b̃h+1)− J2(KN , bh) +
∣∣J2(KN , bh+1)− J2(KN , b̃h+1)

∣∣
≤ −νKN

· γb · ε/2 < 0.(B.4.35)

Combining (B.4.29) and (B.4.35), it holds with probability at least 1− ε15 that

J2(KN , bh+1) ≤ J2(KN , bh) ≤ · · · ≤ J2(KN , b0).

Following from a union bound argument and the choice of H in Theorem B.2.4, if

J2(KN , bh)− J2(KN , b
KN ) ≥ ε holds for any h ≤ H, we have

J2(KN , bH) ≤ J2(KN , bH−1) ≤ · · · ≤ J2(KN , b0),

which holds with probability at least 1− ε13. Thus, we finish the proof of (B.4.28).

Combining (B.4.34) and Lemma B.4.5, for J2(KN , bh)− J2(KN , b
KN ) ≥ ε/2, we have

J2(KN , bh+1)− J2(KN , b
KN ) ≤ (1− νKN

· γb) ·
[
J2(KN , bh)− J2(KN , b

KN )
]
,

which holds with probability at least 1 − ε13. Meanwhile, following from a union bound

argument and the choice of H in Theorem B.2.4, it holds with probability at least 1− ε11

that

J2(KN , bH)− J2(KN , b
KN ) ≤ ε/2.(B.4.36)
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By Proposition 3.2.3 and (B.4.36), it holds with probability at least 1− ε11 that

∥bH − bKN∥2 ≤ (2ε/νK∗)1/2.(B.4.37)

Following from Proposition 3.2.4, we know that

bKN − b∗ = (KN −K∗)Q−1(I − A)⊤(B.4.38)

·
[
(I − A)Q−1(I − A)⊤ +BR−1B⊤]−1 · (Aµ+ d).

Combining (B.4.27), (B.4.37), and (B.4.38), it holds with probability 1− ε10 that

∥bH − bKN∥2 ≤Mb · ε1/2,

where

Mb(µ) = 4
∥∥∥Q−1(I − A)⊤ ·

[
(I − A)Q−1(I − A)⊤ +BR−1B⊤]−1 · (Aµ+ d)

∥∥∥
2

·
[
ν−1
K∗ + σ−1

min(Ψϵ) · σ−1
min(R)

]1/2
.

We finish the proof of the theorem. □

B.4.3. Proof of Theorem B.2.8

Proof. We follow the proof of Theorem 4.2 in Yang et al. (2019b), where they only

consider LQR without drift terms. Since our proof requires much more delicate analysis,

we present it here.
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Part 1. We denote by ζ̂ and ξ̂ the primal and dual variables generated by Algorithm 7.

We define the primal-dual gap of (B.2.11) as

gap(ζ̂ , ξ̂) = max
ξ∈Vξ

F (ζ̂ , ξ)−min
ζ∈Vζ

F (ζ, ξ̂).(B.4.39)

In the sequel, we upper bound ∥α̂K,b − αK,b∥2 using (B.4.39).

We define ζK,b and ξ(ζ) as

ζK,b =
(
J(K, b), α⊤

K,b

)⊤
, ξ(ζ) = argmax

ξ
F (ζ, ξ).(B.4.40)

Following from (B.2.12), we know that

ξ1(ζ) = ζ1 − J(K, b), ξ2(ζ) = EπK,b

[
ψ(x, u)

]
ζ1 +ΘK,bζ

2 − EπK,b

[
c(x, u)ψ(x, u)

]
.

(B.4.41)

The following lemma shows that ζK,b ∈ Vζ and ξ(ζ) ∈ Vξ for any ζ ∈ Vζ .

Lemma B.4.6. Under the assumptions in the statement of Theorem B.2.8, we have

ζK,b = (J(K, b), α⊤
K,b)

⊤ ∈ Vζ . Also, for any ζ ∈ Vζ , the vector ξ(ζ) defined in (B.4.40)

satisfies that ξ(ζ) ∈ Vξ.

Proof. See §B.6.6 for a detailed proof. □

By (B.2.12), we know that ∇ζF (ζK,b, 0) = 0 and ∇ξF (ζK,b, 0) = 0. Combining Lemma

B.4.6, it holds that (ζK,b, 0) is a saddle point of the function F (ζ, ξ) defined in (B.2.11).
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Following from (B.4.39), it holds that

∥∥∥EπK,b

[
ψ(x, u)

]
ζ̂1 +ΘK,bζ̂

2 − EπK,b

[
c(x, u)ψ(x, u)

]∥∥∥2
2
+
∣∣ζ̂1 − J(K, b)∣∣2

= F
(
ζ̂ , ξ(ζ̂)

)
= max

ξ∈Vξ

F (ζ̂ , ξ) = gap(ζ̂ , ξ̂) + min
ζ∈Vζ

F (ζ, ξ̂),(B.4.42)

where the first equality comes from (B.4.41), and the second equality comes from the fact

that ξ(ζ̂) = argmaxξ∈Vξ
F (ζ̂ , ξ) by (B.4.40) and Lemma B.4.6. We upper bound the RHS

of (B.4.42) and lower bound the LHS of (B.4.42) in the sequel.

As for the RHS of (B.4.42), it holds for any ξ ∈ Vξ that

min
ζ∈Vζ

F (ζ, ξ) ≤ min
ζ∈Vζ

max
ξ∈Vξ

F (ζ, ξ) = min
ζ∈Vζ

F
(
ζ, ξ(ζ)

)
=

1

2
min
ζ∈Vζ

{∥∥∥EπK,b

[
ψ(x, u)

]
ζ1 +ΘK,bζ

2 − EπK,b

[
c(x, u)ψ(x, u)

]∥∥∥2
2
+
∣∣ζ1 − J(K, b)∣∣2}

= 0,

(B.4.43)

where the first equality comes from the fact that ξ(ζ) = argmaxξ∈Vξ
F (ζ, ξ) by (B.4.40)

and Lemma B.4.6, the second equality comes from (B.4.41), and the last equality holds

by taking ζ = ζK,b ∈ Vζ . Meanwhile, we lower bound the LHS of (B.4.42) as

∥∥∥EπK,b

[
ψ(x, u)

]
ζ̂1 +ΘK,bζ̂

2 − EπK,b

[
c(x, u)ψ(x, u)

]∥∥∥2
2
+
∣∣ζ̂1 − J(K, b)∣∣2

=
∥∥Θ̃K,b(ζ̂ − ζK,b)

∥∥2
2
≥ λ2K · ∥ζ̂ − ζK,b∥22 ≥ λ2K · ∥α̂K,b − αK,b∥22,(B.4.44)

where the first equality comes from the definition of Θ̃K,b in (B.2.9), and the first inequality

comes from Proposition B.2.6. Here λK is defined in Proposition B.2.6. Combining
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(B.4.42), (B.4.43), and (B.4.44), it holds that

∥α̂K,b − αK,b∥22 ≤ λ−2
K · gap(ζ̂ , ξ̂),(B.4.45)

which finishes the proof of this part.

Part 2. We now upper bound gap(ζ̂ , ξ̂). We denote by z̃t = (x̃⊤t , ũ
⊤
t )

⊤ for t ∈ [T̃ ], where

x̃t and ũt are generated in Line 6 of Algorithm 7. Following from the state transition in

Problem 3.1.3 and the form of the linear policy, {z̃t}t∈[T̃ ] follows the following transition,

z̃t+1 = Lz̃t + ν + δt,(B.4.46)

where

ν =

 Aµ+ d

−K(Aµ+ d) + b

 , δt =

 ωt

−Kωt + ση

 , L =

 A B

−KA −KB

 .

Note that we have

L =

 A B

−KA −KB

 =

 I

−K

(A B

)
.

Then by the property of spectral radius, it holds that

ρ(L) = ρ

((
A B

) I

−K

) = ρ(A−BK) < 1.
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Thus, the Markov chain generated by (B.4.46) admits a unique stationary distribution

N (µz,Σz), where

µz = (I − L)−1ν, Σz = LΣzL
⊤ +

 Ψω −ΨωK
⊤

−KΨω KΨωK
⊤ + σ2I

 .(B.4.47)

The following lemma characterizes the average

µ̂z = 1/T̃ ·
T̃∑
t=1

z̃t.(B.4.48)

Lemma B.4.7. It holds that

µ̂z ∼ N
(
µz +

1

T̃
µT̃ ,

1

T̃
Σ̃T̃

)
,

where ∥µT̃∥2 ≤Mµ · (1− ρ)−2 · ∥µz∥2 and ∥Σ̃T̃∥F ≤MΣ · (1− ρ)−1 · ∥Σz∥F. Here Mµ and

MΣ are positive absolute constants. Moreover, it holds with probability at least 1− T̃−6

that

∥µ̂z − µz∥2 ≤
log T̃

T̃ 1/4
· (1− ρ)−2 · poly

(
∥ΦK∥2, ∥K∥F, ∥b∥2, ∥µ∥2

)
.

Proof. See §B.6.7 for a detailed proof. □

Lemma B.4.7 gives that

∥µ̂K,b − µK,b∥2 ≤
log T̃

T̃ 1/4
· (1− ρ)−2 · poly

(
∥ΦK∥2, ∥K∥F, ∥b∥2, ∥µ∥2

)
,

which holds with probability at least 1− T̃−6.



221

We now apply a truncation argument to show that gap(ζ̂ , ξ̂) is upper bounded. We

define the event E in the sequel. Following from Lemma B.4.7, it holds for any z ∼

N (µz,Σz) that

z − µ̂z + 1/T̃ · µT̃ ∼ N (0,Σz + 1/T̃ · Σ̃T̃ ).

By Lemma B.7.3, there exists a positive absolute constant C0 such that

P
[∣∣∥z − µ̂z + 1/T̃ · µT̃∥

2
2 − tr(Σ̃z)

∣∣ > τ
]
≤ 2 exp

[
−C0 ·min

(
τ 2∥Σ̃z∥−2

F , τ∥Σ̃z∥−1
2

)]
,

(B.4.49)

where we write Σ̃z = Σz + 1/T̃ · Σ̃T̃ for notational convenience. By taking τ = C1 · log T ·

∥Σ̃z∥F in (B.4.49) for a sufficiently large positive absolute constant C1, it holds that

P
[∣∣∥z − µ̂z + 1/T̃ · µT̃∥

2
2 − tr(Σ̃z)

∣∣ > C1 · log T · ∥Σ̃z∥F
]
≤ T−6.(B.4.50)

We define the event Et,1 for any t ∈ [T ] as

Et,1 =
{∣∣∥zt − µ̂z + 1/T̃ · µT̃∥

2
2 − tr(Σ̃z)

∣∣ ≤ C1 · log T · ∥Σ̃z∥F
}
.

Then by (B.4.50), it holds for any t ∈ [T ] that

P(Et,1) ≥ 1− T−6.(B.4.51)

Also, we define

E1 =
⋂
t∈[T ]

Et,1.(B.4.52)
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Following from a union bound argument and (B.4.51), it holds that

P(E1) ≥ 1− T−5.(B.4.53)

Also, conditioning on E1, it holds for sufficiently large T̃ that

max
t∈[T ]
∥zt − µ̂z∥22

≤ C1 · log T · ∥Σ̃z∥F + tr(Σ̃z) + ∥1/T̃ · µT̃∥
2
2

≤ 2C̃1 ·
[
1 +MΣ(1− ρ)−1/T̃ 2

]
· log T · ∥Σz∥2 +Mµ(1− ρ)−2/T̃ 2 · ∥µz∥22

≤ C2 · log T ·
(
1 + ∥K∥2F

)
· ∥ΦK∥2 · (1− ρ)−1 + C3 ·

(
∥b∥22 + ∥µ∥22

)
· (1− ρ)−4 · T̃−2

≤ 2C2 · log T ·
(
1 + ∥K∥2F

)
· ∥ΦK∥2 · (1− ρ)−1,

(B.4.54)

where C̃1, C2, and C3 are positive absolute constants. Here, the first inequality comes

from the definition of E1 in (B.4.52), the second inequality comes from Lemma B.4.7, and

the third inequality comes from (B.4.47). Also, we define the following event

E2 =
{
∥µ̂z − µz + 1/T̃ · µT̃∥2 ≤ C1

}
.(B.4.55)

Then by Lemma B.4.7, we know that

P(E2) ≥ 1− T̃−6(B.4.56)



223

for T̃ sufficiently large. We define the event E as

E = E1
⋂
E2.

Then following from (B.4.53), (B.4.56), and a union bound argument, we know that

P(E) ≥ 1− T−5 − T̃−6.

Now, we define the truncated feature vector ψ̃(x, u) as ψ̃(x, u) = ψ̂(x, u)1E , the trun-

cated cost function c̃(x, u) as c̃(x, u) = c(x, u)1E , and also the truncated objective function

F̃ (ζ, ξ) as

F̃ (ζ, ξ) =
{
E(ψ̃)ζ1 + E

[
(ψ̃ − ψ̃′)ψ̃⊤]ζ2 − E(c̃ψ̃)

}⊤
ξ2 +

[
ζ1 − E(c̃)

]
· ξ1 − ∥ξ∥22/2,

(B.4.57)

where we write ψ̃ = ψ̃(x, u) and c̃ = c̃(x, u) for notational convenience. Here the expec-

tation is taken following the policy πK,b and the state transition. The following lemma

establishes the upper bound of |F (ζ, ξ) − F̃ (ζ, ξ)|, where F (ζ, ξ) and F̃ (ζ, ξ) are defined

in (B.2.11) and (B.4.57), respectively.

Lemma B.4.8. It holds with probability at least 1− T̃−6 that

∣∣F (ζ, ξ)− F̃ (ζ, ξ)∣∣ ≤ ( 1

2T
+

log T̃

T̃ 1/4

)
· (1− ρ)−2 · poly

(
∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
.

Proof. See §B.6.8 for a detailed proof. □
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Following from (B.4.39) and Lemma B.4.8, it holds with probability at least 1− T̃−6

that

∣∣gap(ζ̂ , ξ̂)− g̃ap(ζ̂ , ξ̂)
∣∣

≤
(

1

2T
+

log T̃

T̃ 1/4

)
· (1− ρ)−2 · poly

(
∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
.(B.4.58)

where we define g̃ap(ζ̂ , ξ̂) as

g̃ap(ζ̂ , ξ̂) = max
ξ∈Vξ

F̃ (ζ̂ , ξ)−min
ζ∈Vζ

F̃ (ζ, ξ̂).

Therefore, to upper bound of gap(ζ, ξ), we only need to upper bound g̃ap(ζ, ξ).

Part 3. We upper bound g̃ap(ζ, ξ) in the sequel. We first show that the trajectory

generated by the policy πK,b and the state transition in Problem 3.1.2 is β-mixing.

Lemma B.4.9. Consider a linear system yt+1 = Dyt + ϑ + υt, where {yt}t≥0 ⊂ Rm, the

matrix D ∈ Rm×m satisfying ρ(D) < 1, the vector ϑ ∈ Rm, and υt ∼ N (0,Σ) is the

Gaussians. We denote by ϖt the marginal distribution of yt for any t ≥ 0. Meanwhile,

assume that the stationary distribution of {yt}t≥0 is a Gaussian distribution N ((I −

D)−1ϑ,Σ∞), where Σ∞ is the covariance matrix. We define the β-mixing coefficients for

any n ≥ 1 as follows

β(n) = sup
t≥0

Ey∼ϖt

[∥∥Pyn(· | y0 = y)− PN ((I−D)−1ϑ,Σ∞)(·)
∥∥
TV

]
.

Then, for any ρ ∈ (ρ(D), 1), the β-mixing coefficients satisfy that

β(n) ≤ Cρ,D,ϑ ·
[
tr(Σ∞) +m · (1− ρ)−2

]1/2 · ρn,
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where Cρ,D,ϑ is a constant, which only depends on ρ, D, and ϑ. We say that the sequence

{yt}t≥0 is β-mixing with parameter ρ.

Proof. See Proposition 3.1 in Tu and Recht (2017) for details. □

Recall that by (3.2.1), the sequence {xt}t≥0 follows

xt+1 = (A−BK)xt + (Bb+ Aµ+ d) + ϵt, ϵt ∼ N (0,Ψϵ),

where the matrix A−BK satisfies that ρ(A−BK) < 1. Therefore, by Lemma B.4.9, the

sequence {zt}t≥0 is β-mixing with parameter ρ ∈ (ρ(A − BK), 1), where zt = (x⊤t , u
⊤
t )

⊤.

The following lemma upper bounds the primal-dual gap for a convex-concave problem.

Lemma B.4.10. Let X and Y be two compact and convex sets such that ∥x−x′∥2 ≤M

and ∥y − y′∥2 ≤ M for any x, x′ ∈ X and y, y′ ∈ Y . We consider solving the following

minimax problem

min
x∈X

max
y∈Y

H(x, y) = Eϵ∼ϖϵ

[
G(x, y; ϵ)

]
,

where the objective function H(x, y) is convex in x and concave in y. In addition, we

assume that the distribution ϖϵ is β-mixing with β(n) ≤ Cϵ · ρn, where Cϵ is a constant.

Meanwhile, we assume that it holds almost surely that G(x, y; ϵ) is L̃0-Lipschitz in both

x and y, the gradient ∇xG(x, y; ϵ) is L̃1-Lipschitz in x for any y ∈ Y , the gradient

∇yG(x, y; ϵ) is L̃1-Lipschitz in y for any x ∈ X , where Cϵ, L̃0, L̃1 > 1. Each step of our

gradient-based method takes the following forms,

xt+1 = ΓX
[
xt − γt+1 · ∇xG(xt, yt; ϵt)

]
, yt+1 = ΓY

[
yt − γt+1 · ∇yG(xt, yt; ϵt)

]
,



226

where the operators ΓX and ΓY projects the variables back to X and Y , respectively,

and the stepsizes take the form γt = γ0 · t−1/2 for a constant γ0 > 0. Moreover, let

x̂ = (
∑T

t=1 γt)
−1(
∑T

t=1 γtxt) and ŷ = (
∑T

t=1 γt)
−1(
∑T

t=1 γtyt) be the final output of the

gradient method after T iterations, then there exists a positive absolute constant C, such

that for any δ ∈ (0, 1), the primal-dual gap to the minimax problem is upper bounded as

max
x∈X

H(x̂, y)−min
y∈Y

H(x, ŷ) ≤ C · (M2 + L̃2
0 + L̃0L̃1M)

log(1/ρ)
· log

2 T + log(1/δ)√
T

+
C · CϵL̃0M

T
,

which holds with probability at least 1− δ.

Proof. See Theorem 5.4 in Yang et al. (2019b) for details. □

To use Lemma B.4.10, we define the function G(ζ, ξ; ψ̃, ψ̃′) as

G(ζ, ξ; ψ̃, ψ̃′) =
[
ψ̃ζ1 + (ψ̃ − ψ̃′)ψ̃⊤ζ2 − c̃ψ̃

]⊤
ξ2 + (ζ1 − c̃) · ξ1 − 1/2 · ∥ξ∥22,

where ψ̃ = ψ̃(x, u) and ψ̃′ = ψ̃(x′, u′). Note that the gradients of G(ζ, ξ; ψ̃, ψ̃′) take the

form

∇ζG(ζ, ξ; ψ̃, ψ̃
′) =

 ψ̃⊤ξ2 + ξ1

ψ̃(ψ̃ − ψ̃′)⊤ξ2

 ,

∇ξG(ζ, ξ; ψ̃, ψ̃
′) =

 ζ1 − c̃− ξ1

ψ̃ζ1 + (ψ̃ − ψ̃′)ψ̃⊤ζ2 − c̃ψ̃ − ξ2

 .
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By Definition B.2.7 and Lemma B.4.6, we know that

∥∥∇ζG(ζ, ξ; ψ̃, ψ̃
′)
∥∥
2
≤ poly

(
∥K∥F, J(K0, b0)

)
· log2 T · (1− ρ)−2,∥∥∇ξG(ζ, ξ; ψ̃, ψ̃

′)
∥∥
2
≤ poly

(
∥K∥F, ∥µ∥2, J(K0, b0)

)
· log2 T · (1− ρ)−2.(B.4.59)

This gives the Lipschitz constant L̃0 in Lemma B.4.10 for G(ζ, ξ; ψ̃, ψ̃′). Also, the Hessians

of G(ζ, ξ; ψ̃, ψ̃′) take the forms of

∇2
ζζG(ζ, ξ; ψ̃, ψ̃

′) = 0, ∇2
ξξG(ζ, ξ; ψ̃, ψ̃

′) = −I,

which follows that

∥∥∇2
ζζG(ζ, ξ; ψ̃, ψ̃

′)
∥∥
2
= 0,

∥∥∇2
ξξG(ζ, ξ; ψ̃, ψ̃

′)
∥∥
2
= 1.(B.4.60)

This gives the Lipschitz constant L̃1 in Lemma B.4.10 for∇ζG(ζ, ξ; ψ̃, ψ̃
′) and∇ξG(ζ, ξ; ψ̃, ψ̃

′).

Moreover, note that (B.4.54) provides an upper bound ofM , combining (B.4.59), (B.4.60)

and Lemma B.4.10, it holds with probability at least 1− T−5 that

g̃ap(ζ̂ , ξ̂) ≤
poly

(
∥K∥F, ∥µ∥2, J(K0, b0)

)
· log6 T

(1− ρ)4 ·
√
T

.(B.4.61)

Combining (B.4.45), (B.4.58), and (B.4.61), we know that

∥α̂K,b − αK,b∥22

≤ λ−2
K · poly1

(
∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
·
[

log6 T

T 1/2 · (1− ρ)4
+

log T̃

T̃ 1/4 · (1− ρ)2

]
.
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Same bounds for ∥Υ̂K−ΥK∥2F, ∥p̂K,b−pK,b∥22, and ∥q̂K,b−qK,b∥22 hold. We finish the proof

of the theorem. □

B.5. Proofs of Propositions

B.5.1. Proof of Proposition 3.2.2

Proof. We follow a similar proof as in the one of Theorem 1.1 in Sznitman (1991)

and Theorem 3.2 in Bensoussan et al. (2016). Note that for any policy πK,b ∈ Π, the

parameters K and b uniquely determine the policy. We define the following metric on Π.

Definition B.5.1. For any πK1,b1 , πK2,b2 ∈ Π, we define the following metric,

∥πK1,b1 − πK2,b2∥2 = c1 · ∥K1 −K2∥2 + c2 · ∥b1 − b2∥2,

where c1 and c2 are positive constants.

One can verify that Definition B.5.1 satisfies the requirement of being a metric. We

first evaluate the forms of the operators Λ1(·) and Λ2(·, ·).

Forms of the operators Λ1(·) and Λ2(·, ·). By the definition of Λ1(µ), which gives

the optimal policy under the mean-field state µ, it holds that

Λ1(µ) = π∗
µ,

where π∗
µ solves Problem 3.1.2. This gives the form of Λ1(·). We now turn to Λ2(µ, π),

which gives the mean-field state µnew generated by the policy π under the current mean-

field state µ. In Problem 3.1.2, the sequence of states {xt}t≥0 constitutes a Markov chain,

which admits a unique stationary distribution. Thus, by the state transition in Problem
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3.1.2 and the form of the linear-Gaussian policy, we have

µnew = (A−BKπ)µnew + (Bbπ + Aµ+ d),(B.5.1)

where Kπ and bπ are parameters of the policy π. By solving (B.5.1) for µnew, it holds that

Λ2(µ, π) = µnew = (I − A+BKπ)
−1(Bbπ + Aµ+ d).

This gives the form of Λ2(·, ·).

Next, we compute the Lipschitz constants for Λ1(·) and Λ2(·, ·).

Lipschitz constant for Λ1(·). By Proposition 3.2.4, for any µ1, µ2 ∈ Rm, the optimalK∗

is fixed for Problem 3.1.2. Therefore, by the form of the optimal bK given in Proposition

3.2.4, it holds that

∥∥Λ1(µ1)− Λ1(µ2)
∥∥
2
≤ c2 ·

∥∥∥[(I − A)Q−1(I − A)⊤ +BR−1B⊤]−1
A
∥∥∥
2

·
∥∥∥[K∗Q−1(I − A)⊤ −R−1B⊤]∥∥∥

2
· ∥µ1 − µ2∥2

= c2L1 · ∥µ1 − µ2∥2,(B.5.2)

where L1 is defined in Assumption 3.2.1.

Lipschitz constants for Λ2(·, ·). By Proposition 3.2.4, for any µ1, µ2 ∈ Rm, the optimal

K∗ is fixed for Problem 3.1.2. Thus, for any π ∈ Π such that π is an optimal policy under
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some µ ∈ Rm, it holds that

∥∥Λ2(µ1, π)− Λ2(µ2, π)
∥∥
2
=
∥∥(I − A+BKπ)

−1 · A · (µ1 − µ2)
∥∥
2

≤
[
1− ρ(A−BK∗)

]−1 · ∥A∥2 · ∥µ1 − µ2∥2

= L2 · ∥µ1 − µ2∥2,(B.5.3)

where L2 is defined in Assumption 3.2.1, and Kπ = K∗ is the parameter of the policy π.

Meanwhile, for any mean-field state µ ∈ Rm, and any poicies π1, π2 ∈ Π that are optimal

under some mean-field states µ1, µ2, respectively, we have

∥∥Λ2(µ, π1)− Λ2(µ, π2)
∥∥
2
=
∥∥(I − A+BK∗)−1B · (bπ1 − bπ2)

∥∥
2

≤
[
1− ρ(A−BK∗)

]−1 · ∥B∥2 · ∥bπ1 − bπ2∥2

= c−1
2 L3 · ∥π1 − π2∥2,(B.5.4)

where in the last equality, we use the fact that Kπ1 = Kπ2 = K∗ by Proposition 3.2.4.

Here L3 is defined in Assumption 3.2.1, and bπ1 and bπ2 are the parameters of the policies

π1 and π2.
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Now we show that the operator Λ(·) is a contraction. For any µ1, µ2 ∈ Rm, it holds

that

∥∥Λ(µ1)− Λ(µ2)
∥∥
2
=
∥∥∥Λ2

(
µ1,Λ1(µ1)

)
− Λ2

(
µ2,Λ1(µ2)

)∥∥∥
2

≤
∥∥∥Λ2

(
µ1,Λ1(µ1)

)
− Λ2

(
µ1,Λ1(µ2)

)∥∥∥
2
+
∥∥∥Λ2

(
µ1,Λ1(µ2)

)
− Λ2

(
µ2,Λ1(µ2)

)∥∥∥
2

≤ c−1
2 L3·

∥∥Λ1(µ1)− Λ1(µ2)
∥∥
2
+ L2 · ∥µ1 − µ2∥2

≤ c−1
2 L3 · c2L1 · ∥µ1 − µ2∥2 + L2 · ∥µ1 − µ2∥2 = (L1L3 + L2) · ∥µ1 − µ2∥2,

where the first inequality comes from triangle inequality, the second inequality comes from

(B.5.3) and (B.5.4), and the last inequality comes from (B.5.2). By Assumption 3.2.1,

we know that L0 = L1L3 + L2 < 1, which shows that the operator Λ(·) is a contraction.

Moreover, by Banach fixed-point theorem, we obtain that Λ(·) has a unique fixed point,

which gives the unique equilibrium pair of Problem 3.1.3. We finish the proof of the

proposition. □

B.5.2. Proof of Proposition 3.2.4

Proof. By the definition of J2(K, b) in (3.2.6) and the definition of µK,b in (3.2.2), the

problem

min
b
J2(K, b)
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is equivalent to the following constrained problem,

min
µ,b

µ
b


⊤Q+K⊤RK −K⊤R

−RK R


µ
b


s.t. (I − A+BK)µ− (Bb+ Aµ+ d) = 0.(B.5.5)

Following from the KKT conditions of (B.5.5), it holds that

2MK

µ
b

+NKλ = 0, N⊤
K

µ
b

+ Aµ+ d = 0,(B.5.6)

where

MK =

Q+K⊤RK −K⊤R

−RK R

 , NK =

−(I − A+BK)⊤

B⊤

 .

By solving (B.5.6), the minimizer of (B.5.5) takes the form ofµK,bK

bK

 = −M−1
K NK(N

⊤
KM

−1
K NK)

−1(Aµ+ d).(B.5.7)

By substituting (B.5.7) into the definition of J2(K, b) in (3.2.6), we have

J2(K, b
K) = (Aµ+ d)⊤(N⊤

KM
−1
K NK)

−1(Aµ+ d).(B.5.8)
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Meanwhile, by calculation, we have

M−1
K =

 Q−1 Q−1K⊤

KQ−1 KQ−1K⊤ +R−1

 .

Therefore, the term N⊤
KM

−1
K NK in (B.5.8) takes the form of

N⊤
KM

−1
K NK = (I − A)Q−1(I − A⊤) +BR−1B⊤.(B.5.9)

By plugging (B.5.9) into (B.5.8), we have

J2(K, b
K) = (Aµ+ d)⊤

[
(I − A)Q−1(I − A⊤) +BR−1B⊤]−1

(Aµ+ d).

Also, by plugging (B.5.9) into (B.5.7), we haveµK,bK

bK

 =

 Q−1(I − A)⊤

KQ−1(I − A)⊤ −R−1B⊤

[(I − A)Q−1(I − A)⊤ +BR−1B⊤]−1
(Aµ+ d).

We finish the proof of the proposition. □

B.5.3. Proof of Proposition B.2.2

Proof. By the definition of the cost function c(x, u) in Problem 3.1.2 (recall that we

drop the subscript µ when we focus on Problem 3.1.2), we have

Ect = E(x⊤t Qxt + u⊤t Rut + µ⊤Qµ)

= E(x⊤t Qxt + x⊤t K
⊤RKxt − 2b⊤RKxt + b⊤Rb+ σ2η⊤t Rηt + µ⊤Qµ)

= E
[
x⊤t (Q+K⊤RK)xt − 2b⊤RKxt

]
+ b⊤Rb+ σ2 · tr(R) + µ⊤Qµ,(B.5.10)
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where we write ct = c(xt, ut) for notational convenience. Here in the second line we use

ut = πK,b(xt) = −Kxt + b + σηt. Therefore, combining (B.5.10) and the definition of

J(K, b) in Problem 3.1.2, we have

J(K, b) = lim
T→∞

1

T

T∑
t=0

{
E
[
x⊤t (Q+K⊤RK)xt − 2b⊤RKxt

]
+ b⊤Rb+ σ2 · tr(R) + µ⊤Qµ

}
= Ex∼N (µK,b,ΦK)

[
x⊤(Q+K⊤RK)x− 2b⊤RKx

]
+ b⊤Rb+ σ2 · tr(R) + µ⊤Qµ

= tr
[
(Q+K⊤RK)ΦK

]
+ µ⊤

K,b(Q+K⊤RK)µK,b − 2b⊤RKµK,b

(B.5.11)

+ b⊤Rb+ σ2 · tr(R) + µ⊤Qµ.

Now, by iteratively applying (3.2.3) and (3.2.4), we have

tr
[
(Q+K⊤RK)ΦK

]
= tr(PKΨϵ),(B.5.12)

where PK is given in (3.2.4). Combining (B.5.11) and (B.5.12), we know that

J(K, b) = J1(K) + J2(K, b) + σ2 · tr(R) + µ⊤Qµ,

where

J1(K) = tr
[
(Q+K⊤RK)ΦK

]
= tr(PKΨϵ),

J2(K, b) =

µK,b

b


⊤Q+K⊤RK −K⊤R

−RK R


µK,b

b

 .

We finish the proof of the proposition. □
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B.5.4. Proof of Proposition 3.2.3

Proof. By calculating the Hessian matrix of J2(K, b), we have

∇2
bbJ2(K, b) =B

⊤(I − A+BK)−⊤(Q+K⊤RK)(I − A+BK)−1B

−
[
RK(I − A+BK)−1B +B⊤(I − A+BK)−⊤K⊤R

]
+R

=
[
R1/2K(I − A+BK)−1B −R1/2

]⊤[
R1/2K(I − A+BK)−1B −R1/2

]
+B⊤(I − A+BK)−⊤Q(I − A+BK)−1B,

which is a positive definite matrix independent of b. We denote by its minimum singular

value as νK . Also, note that ∥∇2
bbJ2(K, b)∥2 is upper bounded as

∥∥∇2
bbJ2(K, b)

∥∥
2
≤
[
1− ρ(A−BK)

]−2 ·
(
∥B∥22 · ∥K∥22 · ∥R∥2 + ∥B∥22 · ∥Q∥2

)
.

Therefore, it holds that

ιK ≤
[
1− ρ(A−BK)

]−2 ·
(
∥B∥22 · ∥K∥22 · ∥R∥2 + ∥B∥22 · ∥Q∥2

)
,

where ιK is the maximum singular value of ∇2
bbJ2(K, b). We finish the proof of the

proposition. □

B.5.5. Proof of Proposition B.2.3

Proof. Following from Proposition B.2.2, it holds that

J1(K) = tr(PKΨϵ) = Ey∼N (0,Ψϵ)(y
⊤PKy) = Ey∼N (0,Ψϵ)

[
fK(y)

]
,(B.5.13)
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where fK(y) = y⊤PKy. By the definition of PK in (3.2.4), we obtain that

∇KfK(y) = ∇K

{
y⊤(Q+K⊤RK)y +

[
(A−BK)y

]⊤
PK

[
(A−BK)y

]⊤}
= 2RKyy⊤ +∇K

[
fK
(
(A−BK)y

)]
.(B.5.14)

Also, we have

∇K

[
fK
(
(A−BK)y

)]
= ∇KfK

(
(A−BK)y

)
− 2B⊤PK(A−BK)yy⊤.(B.5.15)

By plugging (B.5.15) into (B.5.14), we have

∇KfK(y) = 2
[
(R +B⊤PKB)K −B⊤PKA

]
yy⊤ +∇KfK

(
(A−BK)y

)
.(B.5.16)

By iteratively applying (B.5.16), it holds that

∇KfK(y) = 2
[
(R +B⊤PKB)K −B⊤PKA

]
·

∞∑
t=0

yty
⊤
t ,(B.5.17)

where yt+1 = (A − BK)yt with y0 = y. Now, combining (B.5.13) and (B.5.17), it holds

that

∇KJ1(K) = 2
[
(R +B⊤PKB)K −B⊤PKA

]
ΦK = 2(Υ22

KK −Υ21
K ) · ΦK ,

where ΥK is defined in (3.2.7). Meanwhile, combining the form of µK,b in (3.2.2), it holds

by calculation that

∇bJ2(K, b) = 2
[
Υ22

K (−KµK,b + b) + Υ21
KµK,b + qK,b

]
,
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where qK,b is defined in (3.2.7). We finish the proof of the proposition. □

B.5.6. Proof of Proposition B.2.1

Proof. From the definition of VK,b(x) in (B.2.1) and the definition of the cost function

c(x, u) in Problem 3.1.2, it holds that

VK,b(x) =
∞∑
t=0

{
E
[
x⊤t (Q+K⊤RK)xt − 2b⊤RKxt

+ b⊤Rb+ σ2η⊤t Rηt + µ⊤Qµ |x0 = x
]
− J(K, b)

}
.

Combining (3.2.1), we know that VK,b(x) is a quadratic function taking the form of

VK,b(x) = x⊤Gx + r⊤x + h, where G, r, and h are functions of K and b. Note that

VK,b(x) satisfies that

VK,b(x) = c(x,−Kx+ b)− J(K, b) + E
[
VK,b(x

′) |x
]
,(B.5.18)
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by substituting the form of c(x,−Kx + b) in Problem 3.1.2 and J(K, b) in (3.2.5) into

(B.5.18), we obtain that

x⊤Gx+ r⊤x+ h

= x⊤(Q+K⊤RK)x− 2b⊤RKx+ b⊤Rb+ µ⊤Qµ

(B.5.19)

−
[
tr(PKΨϵ) + µ⊤

K,b(Q+K⊤RK)µK,b − 2b⊤RKµK,b + µ⊤Qµ+ b⊤Rb
]

+
[
(A−BK)x+ (Bb+ Aµ+ d)

]⊤
G
[
(A−BK)x+ (Bb+ Aµ+ d)

]
+ tr(GΨϵ) + r⊤

[
(A−BK)x+ (Bb+ Aµ+ d)

]
+ h− σ2 · tr(R).

By comparing the quadratic terms and linear terms on both the LHS and RHS in (B.5.19),

we obtain that

G = PK , r = 2fK,b,

where fK,b = (I − A + BK)−⊤[(A − BK)⊤PK(Bb + Aµ + d) − K⊤Rb]. Also, by the

definition of VK,b(x) in (B.2.1), we know that E[VK,b(x)] = 0, where the expectation is

taken following the stationary distribution generated by the policy πK,b and the state

transition. Therefore, we have

h = −2fK,bµK,b − µ⊤
K,bPKµK,b − tr(PKΦK),
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which shows that

VK,b(x) = x⊤PKx− tr(PKΦK) + 2f⊤
K,b(x− µK,b)− µ⊤

K,bPKµK,b.(B.5.20)

For the action-value function QK,b(x, u), by plugging (B.5.20) into (B.2.2), we obtain

that

QK,b(x, u) =

x
u


⊤

ΥK

x
u

+ 2

pK,b

qK,b


⊤x

u

− tr(PKΦK)− σ2 · tr(R + PKBB
⊤)

− b⊤Rb+ 2b⊤RKµK,b − µ⊤
K,b(Q+K⊤RK + PK)µK,b

+ 2f⊤
K,b

[
(Aµ+ d)− µK,b

]
+ (Aµ+ d)⊤PK(Aµ+ d).

We finish the proof of the proposition. □

B.5.7. Proof of Proposition B.2.5

Proof. By Proposition B.2.1, it holds that QK,b takes the following linear form

QK,b(x, u) = ψ(x, u)⊤αK,b + βK,b,(B.5.21)

where βK,b is a scalar independent of x and u. Note that QK,b(x, u) satisfies that

QK,b(x, u) = c(x, u)− J(K, b) + EπK,b

[
QK,b(x

′, u′) |x, u
]
,(B.5.22)
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where (x′, u′) is the state-action pair after (x, u) following the policy πK,b and the state

transition. Combining (B.5.21) and (B.5.22), we obtain that

ψ(x, u)⊤αK,b = c(x, u)− J(K, b) + EπK,b

[
ψ(x′, u′) |x, u

]⊤
αK,b.(B.5.23)

By left multiplying ψ(x, u) to both sides of (B.5.23), and taking the expectation, we have

EπK,b

{
ψ(x, u)

[
ψ(x, u)− ψ(x′, u′)

]⊤} · αK,b + EπK,b

[
ψ(x, u)

]
· J(K, b) = EπK,b

[
c(x, u)ψ(x, u)

]
.

Combining the definition of the matrix ΘK,b in (B.2.7), we have 1 0

EπK,b

[
ψ(x, u)

]
ΘK,b


J(K, b)

αK,b

 =

 J(K, b)

EπK,b

[
c(x, u)ψ(x, u)

]
 ,

which concludes the proof of the proposition. □

B.5.8. Proof of Proposition B.2.6

Proof. Invertibility and Upper Bound. We denote by zt = (x⊤t , u
⊤
t )

⊤ for any t ≥ 0.

Then following from the state transition and the policy πK,b, the transition of {zt}t≥0

takes the form of

zt+1 = Lzt + ν + δt,(B.5.24)

where L, ν and δ are defined as

L =

 A B

−KA −KB

 , ν =

 Aµ+ d

−K(Aµ+ d) + b

 , δt =

 ωt

−Kωt + σηt

 .
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Note that L also takes the form of

L =

 I

−K

(A B

)
.

Combining the fact that ρ(UV ) = ρ(V U) for any matrices U and V , we know that

ρ(L) = ρ(A − BK) < 1, which verifies the stability of (B.5.24). Following from the

stability of (B.5.24), we know that the Markov chain generated by (B.5.24) admits a

unique stationary distribution N (µz,Σz), where µz and Σz satisfy that

µz = Lµz + ν, Σz = LΣzL
⊤ +Ψδ.

where

Ψδ =

 Ψω −ΨωK
⊤

−KΨω KΨωK
⊤ + σ2I

 .

Also, we know that Σz takes the form of

Σz = Cov

[x
u

] =

 ΦK −ΦKK
⊤

−KΦK KΦKK
⊤ + σ2I

 =

0 0

0 σ2I

+

 I

−K

ΦK

 I

−K


⊤

,

(B.5.25)

where ΦK is defined in (3.2.3).

The following lemma establishes the form of ΘK,b.
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Lemma B.5.2. The matrix ΘK,b in (B.2.7) takes the form of

ΘK,b =

2(Σz ⊗s Σz)(I − L⊗s L)
⊤ 0

0 Σz(I − L)⊤

 .

Proof. See §B.6.9 for a detailed proof. □

Note that since ρ(L) < 1, both I − L⊗s L and I − L are positive definite. Therefore,

by Lemma B.5.2, the matrix ΘK,b is invertible. This finishes the proof of the invertibility

of ΘK,b. Moreover, by (B.5.25) and Lemma B.5.2, we upper bound the spectral norm of

ΘK,b as

∥ΘK,b∥2 ≤ 2max
{
∥Σz∥22 ·

(
1 + ∥L∥22

)
, ∥Σz∥2 ·

(
1 + ∥L∥2

)}
≤ 4
(
1 + ∥K∥2F

)2 · ∥ΦK∥22,

which proves the upper bound of ∥ΘK,b∥2.

Minimum singular value. To lower bound σmin(Θ̃K,b), we only need to upper bound

σmax(Θ̃
−1
K,b) = ∥Θ̃−1

K,b∥2. We first calculate Θ̃−1
K,b. Recall that the matrix Θ̃K,b in (B.2.8)

takes the form of

Θ̃K,b =

 1 0

EπK,b

[
ψ(x, u)

]
ΘK,b

 .

By the definition of the feature vector ψ(x, u) in (B.2.5), the vector σ̃z = EπK,b
[ψ(x, u)]

takes the form of

σ̃z = EπK,b

[
ψ(x, u)

]
=

svec(Σz)

0k+m

 ,
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where 0k+m denotes the all-zero column vector with dimension k+m. Also, since ΘK,b is

invertible, the matrix Θ̃K,b is also invertible, whose inverse takes the form of

Θ̃−1
K,b =

 1 0

−Θ−1
K,b · σ̃z Θ−1

K,b

 .

The following lemma upper bounds the spectral norm of Θ̃−1
K,b.

Lemma B.5.3. The spectral norm of the matrix Θ̃−1
K,b is upper bounded by a positive

constant λ̃K , where λ̃K only depends on ∥K∥2 and ρ(A−BK).

Proof. See §B.6.10 for a detailed proof. □

By Lemma B.5.3, we know that σmin(Θ̃K,b) is lower bounded by a positive constant

λK = 1/λ̃K , which only depends on ∥K∥2 and ρ(A − BK). This concludes the proof of

the proposition. □

B.6. Proofs of Lemmas

B.6.1. Proof of Lemma B.4.1

Proof. Following from (3.2.4), it holds that

y⊤PK2y =
∑
t≥0

y⊤
[
(A−BK2)

t
]⊤

(Q+K⊤
2 RK2)(A−BK2)

ty.(B.6.1)

Meanwhile, by the state transition yt+1 = (A−BK2)yt, we know that

yt = (A−BK2)
ty0 = (A−BK2)

ty.(B.6.2)
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By plugging (B.6.2) into (B.6.1), it holds that

y⊤PK2y =
∑
t≥0

y⊤t (Q+K⊤
2 RK2)yt =

∑
t≥0

(y⊤t Qyt + y⊤t K
⊤
2 RK2yt).(B.6.3)

Also, it holds that

y⊤PK1y =
∑
t≥0

(y⊤t+1PK1yt+1 − y⊤t PK1yt)(B.6.4)

Combining (B.6.3) and (B.6.4), we have

y⊤PK2y − y⊤PK1y =
∑
t≥0

(y⊤t Qyt + y⊤t K
⊤
2 RK2yt + y⊤t+1PK1yt+1 − y⊤t PK1yt).(B.6.5)

Also, by the state transition yt+1 = (A−BK2)yt, it holds for any t ≥ 0 that

y⊤t Qyt + y⊤t K
⊤
2 RK2yt + y⊤t+1PK1yt+1 − y⊤t PK1yt

= y⊤t
[
Q+ (K2 −K1 +K1)

⊤R(K2 −K1 +K1)
]
yt

+ y⊤t
[
A−BK1 −B(K2 −K1)

]⊤
PK1

[
A−BK1 −B(K2 −K1)

]
yt − y⊤t PK1yt

= 2y⊤t (K2 −K1)
⊤[(R +B⊤PK1B)K1 −B⊤PK1A

]
yt

+ y⊤t (K2 −K1)
⊤(R +B⊤PK1B)(K2 −K1)yt

= 2y⊤t (K2 −K1)
⊤(Υ22

K1
K1 −Υ21

K1
)yt + y⊤t (K2 −K1)

⊤Υ22
K1
(K2 −K1)yt,

(B.6.6)
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where the matrix ΥK1 is defined in (3.2.7). By plugging (B.6.6) into (B.6.5), we have

y⊤PK2y − y⊤PK1y

=
∑
t≥0

2y⊤t (K2 −K1)
⊤(Υ22

K1
K1 −Υ21

K1
)yt + y⊤t (K2 −K1)

⊤Υ22
K1
(K2 −K1)yt

=
∑
t≥0

DK1,K2(yt),

where DK1,K2(y) = 2y⊤(K2 −K1)(Υ
22
K1
K1 − Υ21

K1
)y + y⊤(K2 −K1)

⊤Υ22
K1
(K2 −K1)y. We

finish the proof of the lemma. □

B.6.2. Proof of Lemma B.4.2

Proof. We prove (B.4.16) and (B.4.17) separately in the sequel.

Proof of (B.4.16). From the definition of J1(K) in (3.2.6), we have

J1(K)− J1(K∗) = tr(PKΨϵ − PK∗Ψϵ) = Ey∼N (0,Ψϵ)(y
⊤PKy − y⊤PK∗y)

= −E
[∑

t≥0

DK,K∗(yt)

]
,(B.6.7)

where in the last equality, we apply Lemma B.4.1 and the expectation is taken following

the transition yt+1 = (A − BK∗)yt with initial state y0 ∼ N (0,Ψϵ). Here we denote by

DK,K∗(y) as

DK,K∗(y) = 2y⊤(K∗ −K)(Υ22
KK −Υ21

K )y + y⊤(K∗ −K)⊤Υ22
K (K∗ −K)y.
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Also, we write DK,K∗(y) as

DK,K∗(y) = 2y⊤(K∗ −K)(Υ22
KK −Υ21

K )y + y⊤(K∗ −K)⊤Υ22
K (K∗ −K)y

(B.6.8)

= y⊤
[
K∗ −K + (Υ22

K )−1(Υ22
KK −Υ21

K )
]⊤

Υ22
K

[
K∗ −K + (Υ22

K )−1(Υ22
KK −Υ21

K )
]
y

− y⊤(Υ22
KK −Υ21

K )⊤(Υ22
K )−1(Υ22

KK −Υ21
K )y.

Note that the first term on the RHS of (B.6.8) is positive, due to the fact that it is a

quadratic form of a positive definite matrix, we lower bound DK,K∗(y) as

DK,K∗(y) ≥ −y⊤(Υ22
KK −Υ21

K )⊤(Υ22
K )−1(Υ22

KK −Υ21
K )y.(B.6.9)

Combining (B.6.7) and (B.6.9), it holds that

J1(K)− J1(K∗) ≤
∥∥∥∥E(∑

t≥0

yty
⊤
t

)∥∥∥∥
2

· tr
[
(Υ22

KK −Υ21
K )⊤(Υ22

K )−1(Υ22
KK −Υ21

K )
]

= ∥ΦK∗∥2 · tr
[
(Υ22

KK −Υ21
K )⊤(Υ22

K )−1(Υ22
KK −Υ21

K )
]

≤
∥∥(Υ22

K )−1
∥∥
2
· ∥ΦK∗∥2 · tr

[
(Υ22

KK −Υ21
K )⊤(Υ22

KK −Υ21
K )
]

≤ σ−1
min(R) · ∥ΦK∗∥2 · tr

[
(Υ22

KK −Υ21
K )⊤(Υ22

KK −Υ21
K )
]
,

where the last line comes from the fact that Υ22
K = R+B⊤PKB ⪰ R. This complete the

proof of (B.4.16).
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Proof of (B.4.17). Note that for any K̃, it holds by the optimality of K∗ that

J1(K)− J1(K∗) ≥ J1(K)− J1(K̃) = −E
[∑

t≥0

DK,K̃(yt)

]
,(B.6.10)

where the expectation is taken following the transition yt+1 = (A − BK̃)yt with initial

state y0 ∼ N (0,Ψϵ). By taking K̃ = K − (Υ22
K )−1(Υ22

KK − Υ21
K ) and following from a

similar calculation as in (B.6.8), the function DK,K̃(y) takes the form of

DK,K̃(y) = −y
⊤(Υ22

KK −Υ21
K )⊤(Υ22

K )−1(Υ22
KK −Υ21

K )y.(B.6.11)

Combining (B.6.10) and (B.6.11), it holds that

J(K)− J(K∗) ≥ tr
[
ΦK̃(Υ

22
KK −Υ21

K )⊤(Υ22
K )−1(Υ22

KK −Υ21
K )
]

≥ σmin(Ψϵ) · ∥Υ22
K ∥−1

2 · tr
[
(Υ22

KK −Υ21
K )⊤(Υ22

KK −Υ21
K )
]
,

where we use the fact that ΦK̃ = (A − BK̃)ΦK̃(A − BK̃)⊤ + Ψϵ ⪰ Ψϵ in the last line.

This finishes the proof of (B.4.17). □

B.6.3. Proof of Lemma B.4.3

Proof. By Proposition B.2.2, we have

∣∣J1(K̃n+1)− J1(Kn+1)
∣∣ = tr

[
(PK̃n+1

− PKn+1)Ψϵ

]
≤ ∥PK̃n+1

− PKn+1∥2 · ∥Ψϵ∥F.(B.6.12)

The following lemma upper bounds the term ∥PK̃n+1
− PKn+1∥2.
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Lemma B.6.1. Suppose that the parameters K and K̃ satisfy that

∥K̃ −K∥2 ·
(
∥A−BK∥2 + 1

)
· ∥ΦK∥2 ≤ σmin(Ψω)/4 · ∥B∥−1

2 ,(B.6.13)

then it holds that

∥PK̃ − PK∥2 ≤ 6 · σ−1
min(Ψω) · ∥ΦK∥2 · ∥K∥2 · ∥R∥2 · ∥K̃ −K∥2(B.6.14)

·
(
∥B∥2 · ∥K∥2) · ∥A−BK∥2 + ∥B∥2 · ∥K∥2 + 1

)
.

Proof. See Lemma 5.7 in Yang et al. (2019b) for a detailed proof. □

To use Lemma B.6.1, it suffices to verify that K̃n+1 and Kn+1 satisfy (B.6.13). Note

that from the definitions of Kn+1 and K̃n+1 in (B.4.18) and (B.4.21), respectively, we have

∥K̃n+1 −Kn+1∥2 ·
(
∥A−BK̃n+1∥2 + 1

)
· ∥ΦK̃n+1

∥2

≤ γ · ∥Υ̂Kn −ΥKn∥F ·
(
1 + ∥Kn∥2

)
·
(
∥A−BK̃n+1∥2 + 1

)
· ∥ΦK̃n+1

∥2.(B.6.15)

Now, we upper bound the RHS of (B.6.15). For the term ∥A−BK̃n+1∥2, it holds by the

definition of K̃n+1 in (B.4.21) that

∥A−BK̃n+1∥2 ≤ ∥A−BKn∥2 + γ · ∥B∥2 · ∥Υ22
Kn
Kn −Υ21

Kn
∥2

≤ ∥A−BKn∥2 + γ · ∥B∥2 · ∥ΥKn∥2 ·
(
1 + ∥Kn∥2

)
.(B.6.16)
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By the definition of ΥKn in (3.2.7), we upper bound ∥ΥKn∥2 as

∥ΥKn∥2 ≤ ∥Q∥2 + ∥R∥2 +
(
∥A∥F + ∥B∥F

)2 · ∥PKn∥2

≤ ∥Q∥2 + ∥R∥2 +
(
∥A∥F + ∥B∥F

)2 · J1(K0) · σ−1
min(Ψϵ),(B.6.17)

where the last line comes from the fact that

J1(K0) ≥ J1(Kn) = tr
[
(Q+K⊤

n RKn)ΦKn

]
= tr(PKnΨϵ) ≥ ∥PKn∥2 · σmin(Ψϵ).

As for the term ∥ΦK̃n+1
∥2 in (B.6.15), from the fact that

J1(K0) ≥ J1(K̃n+1) = tr
[
(Q+ K̃⊤

n+1RK̃n+1)ΦK̃n+1

]
≥ ∥ΦK̃n+1

∥2 · σmin(Q),

it holds that

∥ΦK̃n+1
∥2 ≤ J1(K0) · σ−1

min(Q).(B.6.18)

Therefore, combining (B.6.15), (B.6.16), (B.6.17), and (B.6.18), we know that

∥K̃n+1 −Kn+1∥2 ·
(
∥A−BK̃n+1∥2 + 1

)
· ∥ΦK̃n+1

∥2

≤ poly1
(
∥Kn∥2

)
· ∥Υ̂Kn −ΥKn∥F.(B.6.19)

From Theorem B.2.8, it holds with probability at least 1− T−4
n − T̃−6

n that

∥Υ̂Kn −ΥKn∥F ≤
poly3

(
∥Kn∥F, ∥µ∥2

)
λKn · (1− ρ)2

· log
3 Tn

T
1/4
n

(B.6.20)

+
poly4

(
∥Kn∥F, ∥b0∥2, ∥µ∥2

)
λKn

· log1/2 T̃n

T̃
1/8
n · (1− ρ)

,
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which holds for any ρ ∈ (ρ(A− BKn), 1). Note that from the choice of Tn and T̃n in the

statement of Theorem B.2.4 that

Tn ≥ poly5
(
∥Kn∥F, ∥b0∥2, ∥µ∥2

)
· λ−4

Kn
·
[
1− ρ(A−BKn)

]−9 · ε−5,

T̃n ≥ poly6
(
∥Kn∥F, ∥b0∥2, ∥µ∥2

)
· λ−2

Kn
·
[
1− ρ(A−BKn)

]−12 · ε−12,

it holds that

poly3
(
∥Kn∥F, ∥µ∥2

)
λKn · (1− ρ)2

· log
3 Tn

T
1/4
n

+
poly4

(
∥Kn∥F, ∥b0∥2, ∥µ∥2

)
λKn

· log1/2 T̃n

T̃
1/8
n · (1− ρ)

≤ min

{[
poly1

(
∥Kn∥2

)]−1

· σmin(Ψω)/4 · ∥B∥−1
2 ,

(B.6.21)

[
poly2

(
∥Kn∥2

)]−1

· ε/8 · γ · σmin(Ψϵ) · σmin(R) · ∥ΦK∗∥−1
2 · ∥Ψϵ∥−1

F

}
.

Combining (B.6.19), (B.6.20), and (B.6.21), we know that (B.6.13) holds with probability

at least 1−ε15 for sufficiently small ε > 0. Meanwhile, by (B.6.16), (B.6.17), and (B.6.18),

the RHS of (B.6.14) is upper bounded as

6 · σ−1
min(Ψω) · ∥ΦK̃n+1

∥2 · ∥K̃n+1∥2 · ∥R∥2 · ∥K̃n+1 −Kn+1∥2

·
(
∥B∥2 · ∥K̃n+1∥2) · ∥A−BK̃n+1∥2 + ∥B∥2 · ∥K̃n+1∥2 + 1

)
≤ poly2

(
∥Kn∥2

)
· ∥Υ̂Kn −ΥKn∥F.(B.6.22)
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Now, by Lemma B.6.1, it holds with probability at least 1− ε15 that

∥PK̃n+1
− PKn+1∥2 ≤ 6 · σ−1

min(Ψω) · ∥ΦK̃n+1
∥2 · ∥K̃n+1∥2 · ∥R∥2 · ∥K̃n+1 −Kn+1∥2

·
(
∥B∥2 · ∥K̃n+1∥2) · ∥A−BK̃n+1∥2 + ∥B∥2 · ∥K̃n+1∥2 + 1

)
≤ poly2

(
∥Kn∥2

)
· ∥Υ̂Kn −ΥKn∥F

≤ ε/8 · γ · σmin(Ψϵ) · σmin(R) · ∥ΦK∗∥−1
2 · ∥Ψϵ∥−1

F ,(B.6.23)

where the second inequality comes from (B.6.22), and the last inequality comes from

(B.6.20) and (B.6.21). Combining (B.6.12) and (B.6.23), it holds with probability at

least 1− ε15 that

∣∣J1(K̃n+1)− J1(Kn+1)
∣∣ ≤ γ · σmin(Ψϵ) · σmin(R) · ∥ΦK∗∥−1

2 · ε/4,

which concludes the proof of the lemma. □

B.6.4. Proof of Lemma B.4.4

Proof. Note that Υ22
K∗K∗ − Υ21

K∗ is the natural gradient of J1 at the minimizer K∗,

which implies that

Υ22
K∗K∗ −Υ21

K∗ = 0.(B.6.24)
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By Lemma B.4.1, it holds that

J1(K)− J1(K∗) = tr(PKΨϵ − PK∗Ψϵ) = Ey∼N (0,Ψϵ)(y
⊤PKy − y⊤PK∗y)

= E
{∑

t≥0

[
2y⊤t (K −K∗)(Υ22

K∗K∗ −Υ21
K∗)yt + y⊤t (K −K∗)⊤Υ22

K∗(K −K∗)yt

]}

= E
{∑

t≥0

y⊤t (K −K∗)⊤Υ21
K∗(K −K∗)yt

}
,

(B.6.25)

where we use (B.6.24) in the last line. Here the expectations are taken following the

transition yt+1 = (A−BK)yt with initial state y0 ∼ N (0,Ψϵ). Also, we have

E
{∑

t≥0

y⊤t (K −K∗)⊤Υ22
K∗(K −K∗)yt

}

= tr
[
ΦK(K −K∗)⊤Υ22

K∗(K −K∗)
]

≥ ∥ΦK∥2 · ∥Υ22
K∗∥2 · tr

[
(K −K∗)⊤(K −K∗)

]
≥ σmin(Ψϵ) · σmin(R) · ∥K −K∗∥2F,(B.6.26)

where we use the fact that ΦK = (A − BK)ΦK(A − BK) + Ψϵ ⪰ Ψϵ and Υ22
K∗ = R +

B⊤PK∗B ⪰ R in the last line. Combining (B.6.25) and (B.6.26), we have

J1(K)− J1(K∗) ≥ σmin(Ψϵ) · σmin(R) · ∥K −K∗∥2F.

We conclude the proof of the lemma. □



253

B.6.5. Proof of Lemma B.4.5

Proof. Following from Proposition 3.2.3, we have

J2(KN , bh+1)− J2(KN , b̃h+1)

≤ γb · ∇bJ2(KN , b̃h+1)
⊤[∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)

]
+ (γb)2 · νKN

/2 ·
∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)

∥∥2
2
,

J2(KN , b̃h+1)− J2(KN , bh+1)

≤ −γb · ∇bJ2(KN , b̃h+1)
⊤[∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)

]
(B.6.27)

− (γb)2 · ιKN
/2 ·

∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)
∥∥2
2
,

where νKN
and ιKN

are defined in Proposition 3.2.3. Also, following from Proposition

B.2.3, it holds that

∥∥∇bJ2(KN , b̃h+1)
∥∥
2
≤ poly1

(
∥KN∥F, ∥bh∥2, ∥µ∥2, J(KN , b0)

)
·
[
1− ρ(A−BKN)

]−1
.

(B.6.28)
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Combining (B.6.27), (B.6.28), and the fact that νKN
≤ ιKN

≤ [1 − ρ(A − BKN)]
−2 ·

poly2(∥KN∥2), we know that

∣∣J2(KN , bh+1)− J2(KN , b̃h+1)
∣∣(B.6.29)

≤ (γb)2 · poly2
(
∥KN∥2

)
·
∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)

∥∥2
2
·
[
1− ρ(A−BKN)

]−2

+ γb · poly1
(
∥KN∥F, ∥bh∥2, ∥µ∥2, J(KN , b0)

)
·
∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)

∥∥
2

·
[
1− ρ(A−BKN)

]−1
.

Note that from the definition of ∇̂bJ2(KN , bh) and ∇bJ2(KN , bh) in (B.4.31) and (B.4.33),

respectively, it holds by triangle inequality that

∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)
∥∥
2

≤ ∥Υ̂22
KN
−Υ22

KN
∥2 · ∥KN∥2 · ∥µ̂KN ,bh∥2 + ∥Υ22

KN
∥2 · ∥KN∥2 · ∥µ̂KN ,bh − µKN ,bh∥2

+ ∥Υ̂22
KN
−Υ22

KN
∥2 · ∥bh∥2 + ∥Υ̂21

KN
−Υ21

KN
∥2 · ∥µ̂KN ,bh∥2 + ∥q̂KN ,bh − qKN ,bh∥2

+ ∥Υ21
KN
∥2 · ∥µ̂KN ,bh − µKN ,bh∥2.

By Theorem B.2.8, combining the fact that J2(KN , bh) ≤ J2(KN , b0) and the fact that

∥µKN ,b∥2 ≤ J(KN , b0)/σmin(Q), we know that with probability at least 1−(T b
n)

−4−(T̃ b
n)

−6,
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it holds for any ρ ∈ (ρ(A−BKN), 1) that

∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)
∥∥
2

(B.6.30)

≤ λ−1
KN
· poly3

(
∥KN∥F, ∥bh∥2, ∥µ∥2, J2(KN , b0)

)
·
[

log3 T b
n

(T b
n)

1/4(1− ρ)2
+

log1/2 T̃ b
n

(T̃ b
n)

1/8 · (1− ρ)

]
.

Following from the choices of γb, T b
n, and T̃

b
n in the statement of Theorem B.2.4, it holds

that

γb · poly1
(
∥KN∥F, ∥bh∥2, ∥µ∥2, J(KN , b0)

)
· λ−1

KN
· poly3

(
∥KN∥F, ∥bh∥2, ∥µ∥2, J2(KN , b0)

)
·
[

log3 T b
n

(T b
n)

1/4(1− ρ)2
+

log1/2 T̃ b
n

(T̃ b
n)

1/8 · (1− ρ)

]
·
[
1− ρ(A−BKN)

]−1
+
[
1− ρ(A−BKN)

]−2

· poly3
(
∥KN∥F, ∥bh∥2, ∥µ∥2, J2(KN , b0)

)
·
[

log6 T b
n

(T b
n)

1/2(1− ρ)4
+

log T̃ b
n

(T̃ b
n)

1/4 · (1− ρ)2

]
· (γb)2 · poly2

(
∥KN∥2

)
· λ−1

KN

≤ νKN
· γb · ε/2.

Further combining (B.6.29) and (B.6.30), it holds with probability at least 1− ε15 that

∣∣J2(KN , bh+1)− J2(KN , b̃h+1)
∣∣ ≤ νKN

· γb · ε/2.

We then finish the proof of the lemma. □

B.6.6. Proof of Lemma B.4.6

Proof. We show that ζK,b ∈ Vζ and ξ(ζ) ∈ Vξ for any ζ ∈ Vζ separately.
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Part 1. First we show that ζK,b ∈ Vζ . Note that from Definition B.2.7, we know that

ζ1K,b = J(K, b) satisfies that 0 ≤ ζ1K,b ≤ J(K0, b0). It remains to show that ζ2K,b = αK,b

satisfies that ∥ζ2K,b∥2 ≤Mζ . By the definition of αK,b in (B.2.6), we know that

∥αK,b∥22 ≤ ∥ΥK∥2F + ∥ΥK∥22 ·
(
∥µK,b∥22 + ∥µu

K,b∥22
)

+
(
∥A∥2 + ∥B∥2

)2 · (∥PK∥2 · ∥Aµ+ d∥2 + ∥fK,b∥2
)2

(B.6.31)

where fK,b = (I −A+BK)−⊤[(A−BK)⊤PK(Bb+Aµ+ d)−K⊤Rb] and for notational

simplicity, we denote by µu
K,b = −KµK,b + b. We only need to bound ΥK , µK,b, µ

u
K,b, PK ,

and fK,b. Note that by Proposition B.2.2, the expected total cost J(K, b) takes the form

of

J(K, b) = tr(PKΨϵ) + µ⊤
K,bQµK,b + (µu

K,b)
⊤Rµu

K,b + σ2 · tr(R) + µ⊤Qµ.

Thus, we have

J(K0, b0) ≥ J(K, b) ≥ σmin(Ψω) · tr(PK) ≥ σmin(Ψω) · ∥PK∥2,

J(K0, b0) ≥ J(K, b) ≥ µ⊤
K,bQµK,b ≥ σmin(Q) · ∥µK,b∥2,

J(K0, b0) ≥ J(K, b) ≥ (µu
K,b)

⊤Rµu
K,b ≥ σmin(R) · ∥µu

K,b∥2,
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which imply that

∥PK∥2 ≤ J(K0, b0)/σmin(Ψω),

∥µK,b∥2 ≤ J(K0, b0)/σmin(Q),

∥µu
K,b∥2 ≤ J(K0, b0)/σmin(R).(B.6.32)

For ΥK , it holds that

ΥK =

Q 0

0 R

+

A⊤

B⊤

PK

(
A B

)
,

which gives

∥ΥK∥F ≤ (∥Q∥F + ∥R∥F) +
(
∥A∥2F + ∥B∥2F

)
· ∥PK∥F,

∥ΥK∥2 ≤ (∥Q∥2 + ∥R∥2) +
(
∥A∥2 + ∥B∥2

)2 · ∥PK∥2.

Combining (B.6.32) and the fact that ∥PK∥F ≤
√
m · ∥PK∥2, we know that

∥ΥK∥F ≤
(
∥Q∥F + ∥R∥F

)
+
(
∥A∥2F + ∥B∥2F

)
·
√
m · J(K0, b0)/σmin(Ψω),

∥ΥK∥2 ≤
(
∥Q∥2 + ∥R∥2

)
+
(
∥A∥2 + ∥B∥2

)2 · J(K0, b0)/σmin(Ψω).(B.6.33)

Now, we upper bound the vector fK,b. Note that by algebra, the vector fK,b takes the

form of

fK,b = −PKµK,b + (I − A+BK)−T (QµK,b −K⊤Rµu
K,b).
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Therefore, we upper bound fK,b as

∥fK,b∥2 ≤ J(K0, b0)
2 · σ−1

min(Ψω) · σ−1
min(Q) +

[
1− ρ(A−BK)

]−1 · (κQ + κR · ∥K∥F)

(B.6.34)

Combining (B.6.31), (B.6.32), (B.6.33), and (B.6.34), it holds that

∥ζ2K,b∥2 = ∥αK,b∥2 ≤Mζ,1 +Mζ,2 · (1 + ∥K∥F) · [1− ρ(A−BK)]−1.

Therefore, it holds that ζK,b ∈ Vζ .

Part 2. Now we show that for any ζ ∈ Vζ , we have ξ(ζ) ∈ Vξ. Recall that from (B.4.41),

it holds that

ξ1(ζ) = ζ1 − J(K, b), ξ2(ζ) = EπK,b

[
ψ(x, u)

]
ζ1 +ΘK,bζ

2 − EπK,b

[
c(x, u)ψ(x, u)

]
.

(B.6.35)

Then we have

∣∣ξ1(ζ)∣∣ = ∣∣ζ1 − J(K, b)∣∣ ≤ J(K0, b0),(B.6.36)

where we use the fact that since ζ ∈ Vζ , we have 0 ≤ ζ1 ≤ J(K0, b0) by Definition B.2.7.

Also, by (B.6.35), we have

∥∥ξ2(ζ)∥∥
2
≤
∥∥∥EπK,b

[
ψ(x, u)

]
ζ1
∥∥∥
2︸ ︷︷ ︸

B1

+ ∥ΘK,b∥2 · ∥ζ2∥2︸ ︷︷ ︸
B2

+
∥∥∥EπK,b

[
c(x, u)ψ(x, u)

]∥∥∥
2︸ ︷︷ ︸

B3

.(B.6.37)
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Note that we upper bound B1 as

B1 ≤ J(K0, b0) ·
∥∥∥EπK,b

[
ψ(x, u)

]∥∥∥
2
.(B.6.38)

Following from the definition of ψ(x, u) in (B.2.5), we know that

∥∥∥EπK,b

[
ψ(x, u)

]∥∥∥
2
≤ ∥Σz∥F,(B.6.39)

where Σz is defined as

Σz = Cov

[x
u

] =

 ΦK −ΦKK
⊤

−KΦK KΦKK
⊤ + σ2I

 =

0 0

0 σ2I

+

 I

−K

ΦK

 I

−K


⊤

.

Combining (B.6.38) and (B.6.39), we have

B1 ≤ J(K0, b0) · ∥Σz∥F.(B.6.40)

By Proposition B.2.6, we upper bound B2 as

B2 ≤ 4(1 + ∥K∥2F)3 · ∥ΦK∥22 · (Mζ,1 +Mζ,2) ·
[
1− ρ(A−BK)

]−1
,(B.6.41)

where we use the fact that ζ ∈ Vζ and Definition B.2.7. As for the term B3 in (B.6.37),

we utilize the following lemma to provide an upper bound.
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Lemma B.6.2. The vector EπK,b
[c(x, u)ψ(x, u)] takes the following form,

EπK,b

[
c(x, u)ψ(x, u)

]
=


2svec

[
Σzdiag(Q,R)Σz + ⟨Σz, diag(Q,R)⟩Σz

]
Σz

2QµK,b

2Rµu
K,b




+
[
µ⊤
K,bQµK,b + (µu

K,b)
⊤Rµu

K,b + µ⊤Qµ
]

svec(Σz)

0m

0k

 .

Here the matrix Σz takes the form of

Σz =

 ΦK −ΦKK
⊤

−KΦK KΦKK
⊤ + σ2 · I

 .

Proof. See §B.6.11 for a detailed proof. □

From Lemma B.6.2 and (B.6.32), it holds that

B3 ≤ 3
[
∥Q∥F + ∥R∥F + J(K0, b0) · ∥Q∥2/σmin(Q)(B.6.42)

+ J(K0, b0) · ∥R∥2/σmin(R)
]
· ∥Σz∥22.

Moreover, by the definition of Σz in (B.5.25), combining the triangle inequality, we have

the following bounds for ∥Σz∥F and ∥Σz∥2,

∥Σz∥F ≤ 2(d+ ∥K∥2F) · ∥ΦK∥2, ∥Σz∥2 ≤ 2(1 + ∥K∥2F) · ∥ΦK∥2.(B.6.43)
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Also, we have

J(K0, b0) ≥ J(K, b) ≥ tr
[
(Q+K⊤RK)ΦK

]
≥ ∥ΦK∥2 · σmin(Q),

which gives the upper bound for ΦK as follows,

∥ΦK∥2 ≤ J(K0, b0)/σmin(Q).(B.6.44)

Therefore, combining (B.6.37), (B.6.40), (B.6.41), (B.6.42), (B.6.43), and (B.6.44), we

know that

∥∥ξ2(ζ)∥∥
2
≤ C · (Mζ,1 +Mζ,2) · J(K0, b0)

2/σ2
min(Q)(B.6.45)

·
(
1 + ∥K∥2F

)3 · [1− ρ(A−BK)
]−1

.

By (B.6.36) and (B.6.45), we know that ξ(ζ) ∈ Vξ for any ζ ∈ Vζ . We conclude the proof

of the lemma. □

B.6.7. Proof of Lemma B.4.7

Proof. Assume that z̃0 ∼ N (µ†,Σ†). Following from the fact that

z̃t+1 = Lz̃t + ν + δt,

it holds that

z̃t ∼ N

(
Ltµ† +

t−1∑
i=0

Li · ν, (L⊤)tΣ†L
t +

t−1∑
i=0

(L⊤)iΨδL
i

)
,(B.6.46)
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where

Ψδ =

 Ψω KΨω

KΨω KΨωK
⊤ + σ2I

 .

From (B.4.47), we know that µz takes the form of

µz = (I − L)−1ν =
∞∑
j=0

Ljν.(B.6.47)

Therefore, combining (B.6.46) and (B.6.47), we have

E(µ̂z) = µz +
1

T̃

T̃∑
t=1

Ltµ† −
1

T̃

T̃∑
t=1

∞∑
i=t

Liν.(B.6.48)

We denote by

µT̃ =
T̃∑
t=1

Ltµ† −
T̃∑
t=1

∞∑
i=t

Liν.

Meanwhile, it holds that

∥∥∥∥ T̃∑
t=1

Ltµ† −
T̃∑
t=1

∞∑
i=t

Liν

∥∥∥∥
2

≤
T̃∑
t=1

ρ(L)t · ∥µ†∥2 +
T̃∑
t=1

∞∑
i=t

ρ(L)i · ∥ν∥2

≤
[
1− ρ(L)

]−1 · ∥µ†∥2 +
[
1− ρ(L)

]−2 · ∥ν∥2

≤Mµ · (1− ρ)−2 · ∥µz∥2,(B.6.49)

where Mµ is a positive absolute constant.
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For the covariance, note that for any random variables X ∼ N (µ1,Σ1) and Y ∼

N (µ2,Σ2), we know that Z = X + Y ∼ N (µ1 + µ2,Σ), where ∥Σ∥F ≤ 2∥Σ1∥F + 2∥Σ2∥F.

Combining (B.6.46), we know that µ̂z ∼ N (Eµ̂z, Σ̃T̃/T̃ ), where Σ̃T̃ satisfies that

T̃ /2 · ∥Σ̃T̃∥F ≤
T̃∑
t=1

ρ(L)2t · ∥Σ†∥F +
T̃∑
t=1

t−1∑
i=0

ρ(L)2i · ∥Ψδ∥F

≤
[
1− ρ(L)2

]−1 · ∥Σ†∥F + T̃ ·
[
1− ρ(L)2

]−1 · ∥Ψδ∥F,

which implies that

∥Σ̃T̃∥F ≤MΣ · (1− ρ)−1 · ∥Σz∥F,(B.6.50)

where MΣ is a positive absolute constant. Combining (B.6.48), (B.6.49), and (B.6.50),

we obtain that

µ̂z ∼ N
(
µz +

1

T̃
µT̃ ,

1

T̃
Σ̃T̃

)
,

where ∥µT̃∥2 ≤Mµ · (1− ρ)−2 · ∥µz∥2 and ∥Σ̃T̃∥F ≤MΣ · (1− ρ)−1 · ∥Σz∥F. Moreover, by

the Gaussian tail inequality, it holds with probability at least 1− T̃−6 that

∥µ̂z − µz∥2 ≤
log T̃

T̃ 1/4
· (1− ρ)−2 · poly

(
∥ΦK∥2, ∥K∥F, ∥b∥2, ∥µ∥2

)
.

Then we finish the proof of the lemma. □
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B.6.8. Proof of Lemma B.4.8

Proof. We continue using the notations given in §B.4.3. We define

F̂ (ζ, ξ) =
{
E(ψ̂)ζ1 + E

[
(ψ̂ − ψ̂′)ψ̂⊤]ζ2 − E(cψ̂)

}⊤
ξ2 +

[
ζ1 − E(c)

]
· ξ1 − 1/2 · ∥ξ∥22,

where ψ̂ = ψ̂(x, u) is the estimated feature vector. Here the expectation is only taken over

the trajectory generated by the state transition and the policy πK,b, conditioning on the

randomness induced when calculating the estimated feature vectors. Thus, the function

F̂ (ζ, ξ) is still random, where the randomness comes from the estimated feature vectors.

Note that |F (ζ, ξ) − F̃ (ζ, ξ)| ≤ |F (ζ, ξ) − F̂ (ζ, ξ)| + |F̂ (ζ, ξ) − F̃ (ζ, ξ)|. Thus, we only

need to upper bound |F (ζ, ξ)− F̂ (ζ, ξ)| and |F̂ (ζ, ξ)− F̃ (ζ, ξ)|.

Part 1. First we upper bound |F (ζ, ξ)− F̂ (ζ, ξ)|. Note that by algebra, we have

∣∣F (ζ, ξ)− F̂ (ζ, ξ)∣∣
=

∣∣∣∣{E(ψ − ψ̂)ζ1 + E
[
(ψ − ψ′)ψ⊤ − (ψ̂ − ψ̂′)ψ̂⊤]ζ2 − E

[
c(ψ − ψ̂)

]}⊤
ξ2
∣∣∣∣

≤ E
(
∥ψ − ψ̂∥2

)
·
[
|ζ1|+ E

(
∥ψ − ψ′∥2 + 2∥ψ̂∥2

)
· ∥ζ2∥2 + E(c)

]
· ∥ξ2∥2,(B.6.51)

where the expectation is only taken over the trajectory generated by the state transition

and the policy πK,b. From Lemma B.4.7, it holds that

P
(
∥µ̂z − µz + 1/T̃ · µT̃∥2 ≤ C1

)
≥ 1− T̃−6.(B.6.52)
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Therefore, combining (B.6.52), it holds with probability at least 1− T̃−6 that

E
(
∥ψ − ψ′∥2 + 2∥ψ̂∥2

)
≤ poly

(
∥ΦK∥2, ∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
,(B.6.53)

where the expectation is conditioned on the randomness induced when calculating the

estimated feature vectors. Also, we know that

E(c) ≤ poly
(
∥ΦK∥2, ∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
.(B.6.54)

Therefore, combining (B.6.51), (B.6.53), (B.6.54), and Definition B.2.7, it holds with

probability at least 1− T̃−6 that

∣∣F (ζ, ξ)− F̂ (ζ, ξ)∣∣ ≤ E
(
∥ψ − ψ̂∥2

)
· poly

(
∥ΦK∥2, ∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
.(B.6.55)

Following from the definitions of ψ(x, u) in (B.2.5) and ψ̂(x, u) in (B.2.14), we upper

bound ∥ψ(x, u)− ψ̂(x, u)∥2 for any x and u as

∥ψ(x, u)− ψ̂(x, u)∥22 = ∥µ̂z − µz∥22 +
∥∥z(µ̂z − µz)

⊤ + (µ̂z − µz)z
⊤∥∥2

F
+ ∥µzµ

⊤
z − µ̂zµ̂

⊤
z ∥2F

≤ poly
(
∥ΦK∥2, ∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
· ∥µ̂z − µz∥22,(B.6.56)

where µz is defined in (B.4.47), µ̂z is defined in (B.4.48), and z = (x⊤, u⊤)⊤. Also, by

Lemma B.4.7, we know that

∥µ̂z − µz∥2 ≤
log T̃

T̃ 1/4
· (1− ρ)−2 · poly

(
∥ΦK∥2, ∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
,(B.6.57)
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which holds with probability at least 1−T̃−6. Combining (B.6.55), (B.6.56), and (B.6.57),

it holds with probability at least 1− T̃−6 that

∣∣F (ζ, ξ)− F̂ (ζ, ξ)∣∣ ≤ log T̃

T̃ 1/4
· (1− ρ)−2 · poly

(
∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
.(B.6.58)

Part 2. We now upper bound |F̂ (ζ, ξ)− F̃ (ζ, ξ)| in the sequel. By definitions, we have

∣∣F̃ (ζ, ξ)− F̂ (ζ, ξ)∣∣
=

∣∣∣∣{E(ψ̃ − ψ̂)ζ1 + E
[
(ψ̃ − ψ̃′)ψ̃⊤ − (ψ̂ − ψ̂′)ψ̂⊤]ζ2 − E(c̃ψ̃ − ĉψ̂)

}⊤
ξ2 + E(ĉ− c̃)ξ1

∣∣∣∣

≤
∣∣∣∣{E(ψ̂)ζ1 + E(ψ̂ψ̂⊤)ζ2 − E(ĉψ̂)

}⊤
ξ2 + E(ĉ)ξ1

∣∣∣∣ · 1Ec

(B.6.59)

+
∣∣∣[E(ψ̂′ψ̂⊤)ζ2

]⊤
ξ2
∣∣∣ · 1(E ′∩E)c ,

where we define the event E ′ as

E ′ =
(⋂

t∈[T ]

{∣∣∥z′t − µz + 1/T̃ · µT̃∥
2
2 − tr(Σ̃z)

∣∣ ≤ C1 · log T · ∥Σ̃z∥2
})⋂

E2,

where E2 is defined in (B.4.55). Combining the fact that P(E2) ≥ 1 − T̃−6 and Lemma

B.7.3, it holds that P(E ′) ≥ 1 − T−5 − T̃−6. Following a similar argument as in Part 1,

it holds from (B.6.59) that

∣∣F̃ (ζ, ξ)− F̂ (ζ, ξ)∣∣ ≤ ( 1

T
+

1

T̃ 1/4

)
· poly

(
∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
(B.6.60)

for sufficiently large T and T̃ .
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Now, combining (B.6.58) and (B.6.60), by triangle inequality, it holds with probability

at least 1− T̃−6 that

∣∣F (ζ, ξ)− F̃ (ζ, ξ)∣∣ ≤ ( 1

2T
+

log T̃

T̃ 1/4

)
· (1− ρ)−2 · poly

(
∥K∥F, ∥b∥2, ∥µ∥2, J(K0, b0)

)
.

We finish the proof of the lemma. □

B.6.9. Proof of Lemma B.5.2

Proof. Recall that the feature vector ψ(x, u) takes the following form

ψ(x, u) =

svec
[
(z − µz)(z − µz)

⊤]
z − µz

 .

We then have

ψ(x, u)− ψ(x′, u′) =

svec
[
yy⊤ − (Ly + δ)(Ly + δ)⊤

]
y − (Ly + δ)

 ,(B.6.61)

where we denote by y = z − µz, and (x′, u′) is the state-action pair after (x, u) following

the state transition and the policy πK,b. Therefore, for any symmetric matricesM , N and
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any vectors m, n, it holds from (B.2.7) and (B.6.61) that

svec(M)

m


⊤

ΘK,b

svec(N)

n



= Ey,δ

{svec(M)

m


⊤svec(yy⊤)

y


svec

[
yy⊤ − (Ly + δ)(Ly + δ)⊤

]
y − (Ly + δ)


⊤svec(N)

n

}

= Ey,δ

{(
⟨M, yy⊤⟩+m⊤y

)
·
[
⟨N, yy⊤ − (Ly + δ)(Ly + δ)⊤⟩+ n⊤(y − Ly − δ)

]}

= Ey

(
⟨yy⊤,M⟩ · ⟨yy⊤ − Lyy⊤L⊤ −Ψδ, N⟩

)︸ ︷︷ ︸
A1

+Ey

(
⟨yy⊤,M⟩ · n⊤(y − Ly)

)︸ ︷︷ ︸
A2

(B.6.62)

+ Ey

(
m⊤y · ⟨yy⊤ − Lyy⊤L⊤ −Ψδ, N⟩

)︸ ︷︷ ︸
A3

+Ey

[
m⊤y · n⊤(y − Ly)

]︸ ︷︷ ︸
A4

,

where the expectations are taken over y ∼ N (0,Σz) and δ ∼ N (0,Ψδ). We evaluate the

terms A1, A2, A3, and A4 in the sequel.

For the terms A2 and A3 in (B.6.62), by the fact that y = z−µz ∼ N (0,Σz), we know

that these two terms vanish. For A4, it holds that

A4 = Ey

[
m⊤y · (y − Ly)⊤n

]
= Ey

[
m⊤yy⊤(I − L)⊤n

]
= m⊤Σz(I − L)⊤n.(B.6.63)
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For A1, by algebra, we have

A1 = Ey

(
⟨yy⊤,M⟩ · ⟨yy⊤ − Lyy⊤L⊤ −Ψδ, N⟩

)
= Ey

(
⟨yy⊤,M⟩ · ⟨yy⊤ − Lyy⊤L⊤, N⟩

)
− Ey

(
⟨yy⊤,M⟩ · ⟨Ψδ, N⟩

)
= Ey

[
y⊤My · y⊤(N − L⊤NL)y

]
− ⟨Σz,M⟩ · ⟨Ψδ, N⟩

= Eu∼N (0,I)

[
u⊤Σ1/2

z MΣ1/2
z u · u⊤Σ1/2

z (N − L⊤NL)Σ1/2
z u

]
− ⟨Σz,M⟩ · ⟨Ψδ, N⟩.(B.6.64)

Now, by applying Lemma B.7.1 to the first term on the RHS of (B.6.64), we know that

A1 = 2 tr
[
Σ1/2

z MΣ1/2
z · Σ1/2

z (N − L⊤NL)Σ1/2
z

]
+ tr(Σ1/2

z MΣ1/2
z ) · tr

[
Σ1/2

z (N − L⊤NL)Σ1/2
z

]
− ⟨Σz,M⟩ · ⟨Ψδ, N⟩

= 2
〈
M,Σz(N − L⊤NL)Σz⟩+ ⟨Σz,M

〉
· ⟨Σz − LΣzL

⊤ −Ψδ, N⟩

= 2
〈
M,Σz(N − L⊤NL)Σz

〉
,

where we use the fact that Σz = LΣzL
⊤ +Ψδ in the last equality. By using the property

of the operator svec(·) and the definition of the symmetric Kronecker product, we obtain

that

A1 = 2svec(M)⊤svec
[
Σz(N − L⊤NL)Σz

]
= 2svec(M)⊤

[
Σz ⊗s Σz − (ΣzL

⊤)⊗s (ΣzL
⊤)
]
svec(N)

= 2svec(M)⊤
[
(Σz ⊗s Σz)(I − L⊗s L)

⊤]svec(N).(B.6.65)
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Combining (B.6.62), (B.6.63), and (B.6.65), we obtain that

svec(M)

m


⊤

ΘK,b

svec(N)

n


= svec(M)⊤

[
2(Σz ⊗s Σz)(I − L⊗s L)

⊤]svec(N) +m⊤Σz(I − L)⊤n

=

svec(M)

m


⊤2(Σz ⊗s Σz)(I − L⊗s L)

⊤ 0

0 Σz(I − L)⊤


svec(N)

n

 .

Thus, the matrix ΘK,b takes the following form,

ΘK,b =

2(Σz ⊗s Σz)(I − L⊗s L)
⊤ 0

0 Σz(I − L)⊤

 ,

which concludes the proof of the lemma. □

B.6.10. Proof of Lemma B.5.3

Proof. From the definition of Θ̃K,b in (B.2.9), it holds that

∥Θ̃−1
K,b∥

2
2 ≤ 1 + ∥Θ−1

K,b∥
2
2 + ∥Θ−1

K,bσ̃z∥
2
2,(B.6.66)

where σ̃z is defined as

σ̃z = EπK,b

[
ψ(x, u)

]
=

svec(Σz)

0k+m

 .



271

We bound the RHS of (B.6.66) in the sequel. For the term Θ−1
K,bσ̃z, combining Lemma

B.5.2, we have

Θ−1
K,bσ̃z =

1/2 · (I − L⊗s L)
−⊤(Σz ⊗s Σz)

−1 · svec(Σz)

0k+m



=

1/2 · (I − L⊗s L)
−⊤(Σ−1

z ⊗s Σ
−1
z ) · svec(Σz)

0k+m



=

1/2 · (I − L⊗s L)
−⊤ · svec(Σ−1

z )

0k+m

 ,(B.6.67)

where we use the property of the symmetric Kronecker product in the second and last

line. By taking the spectral norm on both sides of (B.6.67), it holds that

∥Θ−1
K,bσ̃z∥2 = 1/2 ·

∥∥(I − L⊗s L)
−⊤ · svec(Σ−1

z )
∥∥
2

≤ 1/2 ·
∥∥(I − L⊗s L)

−⊤∥∥
2
·
∥∥svec(Σ−1

z )
∥∥
2

≤ 1/2 ·
[
1− ρ2(L)

]−1 · ∥Σ−1
z ∥F

≤ 1/2 ·
√
k +m ·

[
1− ρ2(L)

]−1 · ∥Σ−1
z ∥2

= 1/2 ·
√
k +m ·

[
1− ρ2(L)

]−1 · σ−1
min(Σz),(B.6.68)

where in the third line we use Lemma B.7.2 to the matrix L ⊗s L. Similarly, we upper

bound ∥Θ−1
K,b∥2 in the sequel

∥Θ−1
K,b∥2 ≤ min

{
1/2 ·

[
1− ρ2(L)

]−1
σ−2
min(Σz),

[
1− ρ(L)

]−1
σ−1
min(Σz)

}
.(B.6.69)
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Thus, combining (B.6.66), (B.6.68), and (B.6.69), we obtain that

∥Θ̃−1
K,b∥

2
2 ≤ 1 + 1/2 ·

√
k +m ·

[
1− ρ2(L)

]−1 · σ−1
min(Σz)

+ min
{
1/2 ·

[
1− ρ2(L)

]−1
σ−2
min(Σz),

[
1− ρ(L)

]−1
σ−1
min(Σz)

}
.(B.6.70)

Now it remains to characterize σmin(Σz). For any vectors s ∈ Rm and r ∈ Rk, we have

s
r


⊤

Σz

s
r

 = Ex∼N (µK,b,ΦK),u∼πK,b(· |x)

{[
s⊤(x− µK,b) + r⊤(u+KµK,b − b)

]2}

= Ex∼N (µK,b,ΦK),η∼N (0,I)

{[
(s−K⊤r)⊤(x− µK,b) + σr⊤η

]2}
= Ex∼N (µK,b,ΦK)

{[
(s−K⊤r)⊤(x− µK,b)

]2}
+ Eη∼N (0,I)

[
(σr⊤η)2

]
.(B.6.71)

The first term on the RHS of (B.6.71) is lower bounded as

Ex∼N (µK,b,ΦK)

{[
(s−K⊤r)⊤(x− µK,b)

]2}
= (s−K⊤r)⊤ΦK(s−K⊤r)

≥ ∥s−K⊤r∥22 · σmin(ΦK) ≥ ∥s−K⊤r∥22 · σmin(Ψω),(B.6.72)

where the last inequality comes from the fact that σmin(ΦK) ≥ σmin(Ψω) by (3.2.3). The

second term on the RHS of (B.6.71) takes the form of

Eη∼N (0,I)

[
(σr⊤η)2

]
= σ2∥r∥22.(B.6.73)
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Therefore, combining (B.6.71), (B.6.72), and (B.6.73), we have

s
r


⊤

Σz

s
r

 ≥ ∥s−K⊤r∥22 · σmin(Ψω) + σ2∥r∥22

≥ σmin(Ψω) · ∥s∥22 +
[
σ2 − ∥K∥22 · σmin(Ψω)

]
· ∥r∥22.

From this, we know that

σmin(Σz) ≥ min
{
σmin(Ψω), σ

2 − ∥K∥22 · σmin(Ψω)
}
.(B.6.74)

Thus, combining (B.6.70) and (B.6.74), we know that ∥Θ̃−1
K,b∥2 is upper bounded by a

constant λ̃K , where λ̃K only depends on ∥K∥2 and ρ(L) = ρ(A−BK). This finishes the

proof of the lemma. □

B.6.11. Proof of Lemma B.6.2

Proof. First, note that the cost function c(x, u) takes the following form,

c(x, u) = ψ(x, u)⊤


svec

[
diag(Q,R)

]
2QµK,b

2Rµu
K,b

+
[
µ⊤
K,bQµK,b + (µu

K,b)
⊤Rµu

K,b + µ⊤Qµ
]
.
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For any matrix V and vectors vx, vu, it holds that

EπK,b

[
c(x, u)ψ(x, u)

]⊤

svec(V )

vx

vu



= EπK,b

ψ(x, u)⊤

svec

[
diag(Q,R)

]
2QµK,b

2Rµu
K,b

ψ(x, u)⊤


svec(V )

vx

vu




︸ ︷︷ ︸
D1

(B.6.75)

+ EπK,b

ψ(x, u)⊤(µ⊤
K,bQµK,b + (µu

K,b)
⊤Rµu

K,b + µ⊤Qµ)


svec(V )

vx

vu




︸ ︷︷ ︸
D2

.

In the sequel, we calculate D1 and D2 respectively.
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Calculation of D1. Note that by the definition of ψ(x, u) in (B.2.5), it holds that

D1 = EπK,b


[
(z − µz)

⊤diag(Q,R)(z − µz) + (z − µz)
⊤

2QµK,b

2Rµu
K,b

]

·

[
(z − µz)

⊤V (z − µz) + (z − µz)
⊤

vx
vu

]


= EπK,b

[
(z − µz)

⊤diag(Q,R)(z − µz) · (z − µz)
⊤V (z − µz)

]
(B.6.76)

+ EπK,b

[2QµK,b

2Rµu
K,b


⊤

(z − µz)(z − µz)
⊤

vx
vu

].
Here z = (x⊤, u⊤)⊤ and µz = EπK,b

(z). For the first term on the RHS of (B.6.76), note

that z − µz ∼ N (0,Σz). Therefore, by Lemma B.7.1, we obtain that

EπK,b

[
(z − µz)

⊤diag(Q,R)(z − µz) · (z − µz)
⊤V (z − µz)

]
= 2
〈
Σzdiag(Q,R)Σz, V

〉
+
〈
Σz, diag(Q,R)

〉
· ⟨Σz, V ⟩

= svec
[
2Σzdiag(Q,R)Σz +

〈
Σz, diag(Q,R)

〉
· Σz

]⊤
svec(V ).(B.6.77)

Meanwhile, the second term on the RHS of (B.6.76) takes the form of

EπK,b

[2QµK,b

2Rµu
K,b


⊤

(z − µz)(z − µz)
⊤

vx
vu

] =

[
Σz

2QµK,b

2Rµu
K,b

]⊤
vx
vu

 .(B.6.78)



276

Combining (B.6.76), (B.6.77), and (B.6.78), we obtain that

D1 =


2svec

[
Σzdiag(Q,R)Σz + ⟨Σz, diag(Q,R)⟩Σz

]
Σz

2QµK,b

2Rµu
K,b




⊤
svec(V )

vx

vu

 .(B.6.79)

Calculation of D2. By the definition of the feature vector ψ(x, u) in (B.2.5), we know

that

D2 = (µ⊤
K,bQµK,b + (µu

K,b)
⊤Rµu

K,b + µ⊤Qµ)


svec(Σz)

0m

0k


⊤

svec(V )

vx

vu

 .(B.6.80)

Now, combining (B.6.75), (B.6.79), and (B.6.80), it holds that

EπK,b

[
c(x, u)ψ(x, u)

]
=


2svec

[
Σzdiag(Q,R)Σz + ⟨Σz, diag(Q,R)⟩Σz

]
Σz

2QµK,b

2Rµu
K,b




+
[
µ⊤
K,bQµK,b + (µu

K,b)
⊤Rµu

K,b + µ⊤Qµ
]

svec(Σz)

0m

0k

 ,

which concludes the proof of the lemma. □
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B.7. Auxiliary Results

Lemma B.7.1. Assume that the random variable w ∼ N (0, I), and let U and V be two

symmetric matrices, then it holds that

E(w⊤Uw · w⊤V w) = 2 tr(UV ) + tr(U) · tr(V ).

Proof. See Magnus et al. (1978) and Magnus (1979) for a detailed proof. □

Lemma B.7.2. LetM , N be commuting symmetric matrices, and let α1, . . . , αn, β1, . . . , βn

denote their eigenvalues with v1, . . . , vn a common basis of orthogonal eigenvectors. Then

the n(n+1)/2 eigenvalues of M ⊗sN are given by (αiβj +αjβi)/2, where 1 ≤ i ≤ j ≤ n.

Proof. See Lemma 2 in Alizadeh et al. (1998) for a detailed proof. □

Lemma B.7.3. For any integer m > 0, let A ∈ Rm×m and η ∼ N (0, Im). Then, there

exists some absolute constant C > 0 such that for any t ≥ 0, we have

P
[∣∣η⊤Aη − E(η⊤Aη)

∣∣ > t
]
≤ 2 · exp

[
−C ·min

(
t2∥A∥−2

F , t∥A∥−1
2

)]
.

Proof. See Rudelson et al. (2013) for a detailed proof. □
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APPENDIX C

Supplemental Materials in Chapter 4

C.1. Analysis of Maximum Likelihood Estimation

We denote by

L1(Θ) = −E

[
1

T

T−1∑
t=0

log Θ(St, Zt)

]

the population counterpart of L̂1. We define

H2(Θ1,Θ2) =
1

2
· E

[
1

T

T−1∑
t=0

∫ (√
Θ1(St, z)−

√
Θ2(St, z)

)2
dz

]
.(C.1.1)

We have the following supporting result.

Lemma C.1.1. Under Assumption (b), for any Θ1,Θ2 ∈ F1, it holds with probability at

least 1− δ for any c/(NT )2 ≤ δ ≤ 1 that

∣∣∣(L1(Θ1)− L1(Θ2))−
(
L̂1(Θ1)− L̂1(Θ2)

)∣∣∣
≤ c · logCΘ∗

NTκ
log

1

δ
log(NT ) + c ·

√
CΘ∗

NTκ
H2(Θ1,Θ2) log

1

δ
log(NT ),

where H2(Θ1,Θ2) is defined in (C.1.1).
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Proof. By Theorem C.7.7, it holds with probability at least 1− δ that

∣∣∣(L1(Θ1)− L1(Θ2))−
(
L̂1(Θ1)− L̂1(Θ2)

)∣∣∣

≤ c · logCΘ∗

NTκ
log

1

δ
log(NT ) + c ·

√√√√ 1

NTκ
E

[
1

T

T−1∑
t=0

(
log

Θ1(St, Zt)

Θ2(St, Zt)

)2
]
log

1

δ
log(NT ).

(C.1.2)

Now, it suffices to upper bound the variance term on the RHS of the above inequality.

Note that log x ≤ 2(
√
x− 1) for any x > 0. Thus, for any s ∈ S, we have

∫
Θ∗(s, z)

(
log

Θ1(s, z)

Θ2(s, z)

)2

dz

≤ 4

∫
Θ∗max


(√

Θ2

Θ1

− 1

)2

,

(√
Θ1

Θ2

− 1

)2
 dz

= 4

∫
max

{
Θ∗

Θ1

(√
Θ2 −

√
Θ1

)2
,
Θ∗

Θ2

(√
Θ1 −

√
Θ2

)2}
dz

≤ 4CΘ∗

∫ (√
Θ1(s, z)−

√
Θ2(s, z)

)2
dz,(C.1.3)

which implies that

E

[
1

T

T−1∑
t=0

(
log

Θ1(St, Zt)

Θ2(St, Zt)

)2
]
≤ 8CΘ∗H2(Θ1,Θ2).(C.1.4)

By plugging (C.1.4) into (C.1.2), we conclude the proof of the lemma. □
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C.1.1. Proof of Theorem 4.4.5

Proof. Proof of the first statement. It suffices to show that with probability at least

1− δ, we have

L̂1(Θ
∗)− L̂1(Θ̂) ≤ α1.

By Corollary C.7.10, it holds with probability at least 1− δ that

H2(Θ∗, Θ̂) ≤ c · d

NTκ
log

θmax

δ
,(C.1.5)

where c > 0 is an absolute constant, which may vary from lines to lines. Thus, by Lemma

C.1.1, it holds with probability at least 1− δ that

∣∣∣(L1(Θ
∗)− L1(Θ̂)

)
−
(
L̂1(Θ

∗)− L̂1(Θ̂)
)∣∣∣

≤ c · logCΘ∗

NTκ
d log

θmax

δ
log(NT ) + c ·

√
CΘ∗

NTκ
H2(Θ∗, Θ̂)d log

θmax

δ
log(NT )

≤ c · CΘ∗d

NTκ
log

θmax

δ
log(NT ),(C.1.6)

where we use a covering argument and (C.1.5) in the first and last inequalities, respectively.

Further, by a similar idea as in (C.1.3), we upper bound |L1(Θ
∗)− L1(Θ̂)| as follows,

|L1(Θ
∗)− L1(Θ̂)| =

∣∣∣∣∣E
[
1

T

T−1∑
t=0

∫
Θ∗(St, z) log

Θ∗(St, z)

Θ̂(St, z)
dz

]∣∣∣∣∣
≤ 2CΘ∗H2(Θ∗, Θ̂) ≤ c · CΘ∗d

NTκ
log

θmax

δ
,(C.1.7)
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where we use (C.1.5) and Corollary C.7.10 in the first and last inequalities, respectively.

Now, by combining (C.1.6) and (C.1.7), it holds with probability at least 1− δ that

L̂1(Θ
∗)− L̂1(Θ̂) ≤ c · CΘ∗d

NTκ
log

θmax

δ
log(NT ) = α1,

which concludes the proof of the first statement.

Proof of the second statement. By Lemma C.1.1, with probability at least 1− δ, for

any Θ ∈ conf1α1
, we have

∣∣∣(L1(Θ
∗)− L1(Θ))−

(
L̂1(Θ

∗)− L̂1(Θ)
)∣∣∣

≤ c · logCΘ∗

NTκ
d log

θmax

δ
log(NT ) + c ·

√
CΘ∗

NTκ
H2(Θ∗,Θ)d log

θmax

δ
log(NT ),(C.1.8)

where we use a covering argument. In the meanwhile, by the first statement, we have

Θ∗ ∈ conf1α1
with probability at least 1− δ. Thus, we have

∣∣∣L̂1(Θ
∗)− L̂1(Θ)

∣∣∣ ≤ ∣∣∣L̂1(Θ
∗)− L̂1(Θ̂)

∣∣∣+ ∣∣∣L̂1(Θ̂)− L̂1(Θ)
∣∣∣ ≤ 2α1,(C.1.9)

where we use the fact that Θ ∈ conf1α1
. By combining (C.1.8) and (C.1.9), with probability

at least 1− δ, it holds for any Θ ∈ conf1α1
that

L1(Θ)− L1(Θ
∗)

(C.1.10)

≤ c · logCΘ∗

NTκ
d log

θmax

δ
log(NT ) + c ·

√
CΘ∗

NTκ
H2(Θ∗,Θ)d log

θmax

δ
log(NT ).
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On the other hand, it holds for any s ∈ S that

−
∫

Θ∗(s, z) log
Θ(s, z)

Θ∗(s, z)
dz ≥ −2

∫
Θ∗(s, z)

(√
Θ(s, z)

Θ∗(s, z)
− 1

)
dz

=

∫ (
Θ∗(s, z) + Θ(s, z)− 2

√
Θ(s, z)Θ∗(s, z)

)
dz

=

∫ (√
Θ∗(s, z) +

√
Θ(s, z)

)2
dz,

which implies that

L1(Θ)− L1(Θ
∗) ≥ 2H2(Θ∗,Θ).(C.1.11)

By combining (C.1.10) and (C.1.11), we have

H2(Θ∗,Θ) ≤ c · logCΘ∗

NTκ
d log

θmax

δ
log(NT ) + c ·

√
CΘ∗

NTκ
H2(Θ∗,Θ)d log

θmax

δ
log(NT ),

which implies that

H2(Θ∗,Θ) ≤ c · CΘ∗d

NTκ
log

θmax

δ
log(NT ).

Now, by Lemma C.7.8, with probability at least 1− δ, it holds for any Θ ∈ conf1α1
that√√√√E

[
1

T

T−1∑
t=0

∥Θ(St, ·)−Θ∗(St, ·)∥21

]
≤ c ·

√
CΘ∗d

NTκ
log

θmax

δ
log(NT ),

which concludes the proof of the second statement. □
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C.2. Proofs of Results in §4.2

We provide proofs of results in §4.2. We first present proofs for §4.2.2, then we present

proofs for §4.2.1.

C.2.1. Proof of Lemma 4.2.7

Proof. By Assumption (b), we know that

E
[

Z⊤
t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
wπ(St)Rt

∣∣∣St

]

is well-defined. Further, we observe for any t ∈ {0, 1, . . . , T − 1} that

E
[

Z⊤
t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
wπ(St)Rt

∣∣∣St

]
=
∑
a∈A

E
[
Z⊤

t aπ(a |St)d
π(St)1{At = a}

∆∗(St, a)Θ∗(St, Zt)db(St)
R(St, Ut, a, St+1, Ut+1)

∣∣∣St

]

=
∑
a∈A

E
[
Z⊤

t aπ(a |St)d
π(St)1{At = a}

∆∗(St, a)Θ∗(St, Zt)db(St)
r(St, Ut, a)

∣∣∣St

]

=
∑
a∈A

E
[
Z⊤

t aπ(a |St)d
π(St)P(At = a |St, Ut, Zt)

∆∗(St, a)db(St)Θ∗(S,Z)
r(St, Ut, a)

∣∣∣St

]

=
∑
a∈A

E
[
π(a |St)d

π(St)P(At = a |St, Ut, Zt = a)

∆∗(St, a)db(St)
r(St, Ut, a)

∣∣∣St

]

−
∑
a∈A

∑
z∈Z,z ̸=a

1

K − 1
E
[
π(a |St)d

π(St)P(At = a |St, Ut, Zt = z)

∆∗(St, a)db(St)
r(St, Ut, a)

∣∣∣St

]

=
∑
a∈A

π(a |St)d
π(St)

db(St)
EUt [r(St, Ut, a) |St],

where in the first equality, we use the definition of wπ(s); in the second equality, we use

Assumption (a); in the third equality, we use Assumption (b); in the forth equality, we use
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Assumption (c); while in the fifth equality, we use Assumption (d). Now, by Assumption

4.2.6, we know that EUt [r(St, Ut, a) |St] = r̃(St, a), where the function r̃ is independent of

t. Therefore, we have

E

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
wπ(St)Rt

]

=
1

T

T−1∑
t=0

E

[∑
a∈A

π(a |St)d
π(St)

db(St)
r̃(St, a)

]

=
1

T

T−1∑
t=0

∑
a∈A

∫
π(a | s)dπ(s)

db(s)
r̃(s, a)pbt(s)ds

=
∑
a∈A

∫
π(a | s)dπ(s)r̃(s, a)ds = J(π),

which concludes the proof of the lemma. □

C.2.2. Proof of Lemma 4.2.8

Proof. Similar to the proof of Lemma 4.2.7 in §C.2.1, we observe that

E

[
1

T

T−1∑
t=0

Z⊤
t Atd

π(St)π(At |St)

∆(St, At)db(St)P (Zt |St)
f(St)

]
=

∫
f(s′)dπ(s′)ds′.(C.2.1)

Similarly, we have

E

[
1

T

T−1∑
t=0

Z⊤
t Atd

π(St)π(At |St)

∆(St, At)db(St)P (Zt |St)
f(St+1)

]
(C.2.2)

=

∫
f(s′)dπ(s)π(a | s)P(S ′ = s |S = s, A = a)ds′dads.



285

Meanwhile, by the definition of dπ(s, a), we have

dπ(s′) = (1− γ)
∞∑
t=0

γtpπt (s
′)

= (1− γ)ν(s′) + (1− γ)
∞∑
t=0

γt+1pπt+1(s
′)

= (1− γ)

(
ν(s′) + γ

∞∑
t=0

γt
∫

P(St+1 = s′ |St = s, At = a)π(a | s)pπt (s)dsda

)

= (1− γ)ν(s′) + γ

∫
P(S ′ = s′ |S = s, A = a)π(a | s)dπ(s)dsda,(C.2.3)

where we use the assumption that St+1 | (St, At) is time-homogeneous. Combining (C.2.1)

and (C.2.2), we have

E

[
1

T

T−1∑
t=0

Z⊤
t Atd

π(St)π(At |St)

∆(St, At)db(St)P (Zt |St)
(f(St)− γf(St+1))

]

=

∫
f(s′)

(
dπ(s′)− γ

∫
dπ(s)π(a | s)P(S ′ = s′ |S = s, A = a)dsda

)
ds′

= (1− γ)
∫
f(s′)ν(s′)ds′ = (1− γ)ES∼ν [f(S)] ,

where we use (C.2.3) in the forth equality. This concludes the proof of the lemma. □

C.2.3. Proof of Lemma 4.2.4

Proof. Similar to the proof of Lemma 4.2.7 in §C.2.1, we observe that

E
[

Z⊤
0 A0π(A0 |S0)

∆∗(S0, A0)P (Z0 |S0)
R0

∣∣∣S0 = s

]

= EU0

[∑
a∈A

π(a |S0)r(S0, U0, a)
∣∣∣S0 = s

]
= Eπ[R0 |S0 = s],(C.2.4)
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where Eπ[·] denotes that the expectation is taken w.r.t. A0 ∼ π(· |S0). Similarly, by

Assumption 4.2.3, we observe that

E
[

Z⊤
0 A0π(A0 |S0)

∆∗(S0, A0)P (Z0 |S0)

Z⊤
1 A1π(A1 |S1)

∆∗(S1, A1)P (Z1 |S1)
R1

∣∣∣S0 = s

]

= E

[∑
a∈A

π(a |S0)E
[

Z⊤
1 A1π(A1 |S1)

∆∗(S1, A1)P (Z1 |S1)
R1

∣∣∣S0, U0, A0 = a

] ∣∣∣S0 = s

]

= E

[∑
a∈A

π(a |S0)E
[
E
[

Z⊤
1 A1π(A1 |S1)

∆∗(S1, A1)P (Z1 |S1)
R1

∣∣∣S1, U1

] ∣∣∣S0, U0, A0 = a

] ∣∣∣S0 = s

]

= E

[∑
a∈A

π(a |S0)E [Eπ[R1 |S1, U1] |S0, U0, A0 = a]
∣∣∣S0 = s

]
= Eπ[R1 |S0 = s].

Now, by induction, it holds for any t ≥ 0 that

E

[
Rt

(
t∏

j=0

Z⊤
j Ajπ(Aj |Sj)

∆∗(Sj, Aj)P (Zj |Sj)

) ∣∣∣∣S0 = s

]
= Eπ[Rt |S0 = s],

which implies that

V π(s) = E

[
∞∑
t=0

γtRt

(
t∏

j=0

Z⊤
j Ajπ(Aj |Sj)

∆∗(Sj, Aj)P (Zj |Sj)

) ∣∣∣∣S0 = s

]
.
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To show that the IV-aided Bellman equation holds, by a similar argument as in (C.2.4),

we observe that

E
[

Z⊤
0 A0π(A0 |S0)

∆∗(S0, A0)P (Z0 |S0)
γV π(S1)

∣∣∣S0 = s

]

= E

[
Z⊤

0 A0π(A0 |S0)

∆∗(S0, A0)P (Z0 |S0)
E

[
∞∑
t=0

γt+1Rt+1

(
t+1∏
j=1

Z⊤
j Ajπ(Aj |Sj)

∆∗(Sj, Aj)P (Zj |Sj)

) ∣∣∣S1

] ∣∣∣S0 = s

]

= E

[
∞∑
t=1

γtRt

(
t∏

j=0

Z⊤
j Ajπ(Aj |Sj)

∆∗(Sj, Aj)P (Zj |Sj)

) ∣∣∣S0 = s

]
.

Thus, we have

E
[

Z⊤
0 A0π(A0 |S0)

∆∗(S0, A0)P (Z0 |S0)
(R0 + γV π(S1))

∣∣∣S0 = s

]

= E

[
∞∑
t=0

γt+1Rt+1

(
t+1∏
j=0

Z⊤
j Ajπ(Aj |Sj)

∆∗(Sj, Aj)P (Zj |Sj)

) ∣∣∣S0 = s

]
= V π(s).

Similar results also hold for any t ≥ 0. This concludes the proof of the lemma. □

C.2.4. Proof of Corollary 4.2.5

Proof. We have

E
[
f(St)

Z⊤
t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
(Rt + γV π(St+1))

]
= E

[
f(St)E

[
Z⊤

t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
(Rt + γV π(St+1))

∣∣∣St

]]
= E [f(St)V

π(St)] ,
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where the last equality comes from Lemma 4.2.4. By summing all t ∈ {0, 1, . . . , T − 1},

we conclude the proof of the corollary. □

C.3. Proofs of Results in §4.4.1

C.3.1. Proof of Theorem 4.4.9

Proof. By the definition of J(π) in (4.1.2), we proceed as follows,

J(π∗)− J(π̂vf)

= (1− γ)ES0∼ν

[
V π∗

(S0)− V π̂vf(S0)
]

≤ (1− γ)ES0∼ν

[
V π∗

(S0)
]
− min

(∆,Θ)∈conf0α0
×conf1α1

min
v∈confvfαvf

(∆,Θ,π̂)
(1− γ)ES0∼ν [v(S0)]

≤ (1− γ)ES0∼ν

[
V π∗

(S0)
]
− min

(∆,Θ)∈conf0α0
×conf1α1

min
v∈confvfαvf

(∆,Θ,π∗)
(1− γ)ES0∼ν [v(S0)] ,

(C.3.1)

where in the first inequality, we use Lemma 4.4.7; while in the last inequality, we use the

optimality of π̂vf. It suffices to characterize the RHS of the above. We proceed (C.3.1) as

follows,

J(π∗)− J(π̂vf)

≤ max
(∆,Θ)∈conf0α0

×conf1α1

max
v∈confvfαvf

(∆,Θ,π∗)

∣∣(1− γ)ES0∼ν [v(S0)]− (1− γ)ES0∼ν

[
V π∗

(S0)
]∣∣ .

(C.3.2)
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Meanwhile, by Lemmas 4.2.7 and 4.2.8, we have

(1− γ)ES0∼ν

[
V π∗

(S0)
]
= J(π∗) = E

[
1

T

T−1∑
t=0

wπ∗
(St)

Z⊤
t Atπ

∗(At |St)

∆∗(St, At)Θ∗(St, Zt)
Rt

]
,

(1− γ)ES0∼ν [v(S0)] = E

[
1

T

T−1∑
t=0

wπ∗
(St)

Z⊤
t Atπ

∗(At |St)

∆∗(St, At)Θ∗(St, Zt)
(v(St)− γv(St+1))

]
.

(C.3.3)

Now, by plugging (C.3.3) into the RHS of (C.3.2), we obtain

J(π∗)− J(π̂vf) ≤ max
(∆,Θ)∈conf0α0

×conf1α1

max
v∈confvfαvf

(∆,Θ,π∗)

∣∣Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)

∣∣ .
By continuing the above inequality, we have

J(π∗)− J(π̂vf)

≤ max
(∆,Θ)∈conf0α0

×conf1α1

max
v∈confvfαvf

(∆,Θ,π∗)
max
g∈W

∣∣Φπ∗

vf (v, g; ∆
∗,Θ∗)

∣∣
= max

(∆,Θ)∈conf0α0
×conf1α1

max
v∈confvfαvf

(∆,Θ,π∗)
max
g∈W

max
{
Φπ∗

vf (v, g; ∆
∗,Θ∗),−Φπ∗

vf (v, g; ∆
∗,Θ∗)

}
= max

(∆,Θ)∈conf0α0
×conf1α1

max
v∈confvfαvf

(∆,Θ,π∗)
max
g∈W

max
{
Φπ∗

vf (v, g; ∆
∗,Θ∗),Φπ∗

vf (v,−g; ∆∗,Θ∗)
}

= max
(∆,Θ)∈conf0α0

×conf1α1

max
v∈confvfαvf

(∆,Θ,π∗)
max
g∈W

Φπ∗

vf (v, g; ∆
∗,Θ∗)

≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)LΠ

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ),

where in the first inequality, we use Assumption 4.4.6; in the third equality, we use the fact

that W is symmetric; while in the last inequality, we use Lemma 4.4.8. This concludes

the proof of the theorem. □
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C.3.2. Proof of Lemma 4.4.7

Proof. By Assumption 4.4.6, we know that V π ∈ V . Thus, to show that V π ∈

confvfαvf
(∆∗,Θ∗, π) with a high probability, it suffices to show that

max
g∈W

Φ̂π
vf(V

π, g; ∆∗,Θ∗)−max
g∈W

Φ̂π
vf(v̂

π
∆∗,Θ∗ , g; ∆∗,Θ∗) ≤ αvf.(C.3.4)

In the follows, we show that (C.3.4) holds with a high probability. For the simplicity of

notations, we denote by Φπ
vf(v, g; ∗) = Φπ

vf(v, g; ∆
∗,Θ∗) and v̂π∗ = v̂π∆∗,Θ∗ for any (π, v, g).

Note that

max
g∈W

Φ̂π
vf(V

π, g; ∗)−max
g∈W

Φ̂π
vf(v̂

π
∗ , g; ∗)

= max
g∈W

Φ̂π
vf(V

π, g; ∗)−max
g∈W

Φπ
vf(V

π, g; ∗) + max
g∈W

Φπ
vf(V

π, g; ∗)−max
g∈W

Φπ
vf(v̂

π
∗ , g; ∗)

+ max
g∈W

Φπ
vf(v̂

π
∗ , g; ∗)−max

g∈W
Φ̂π

vf(v̂
π
∗ , g; ∗)

≤ max
g∈W

Φ̂π
vf(V

π, g; ∗)−max
g∈W

Φπ
vf(V

π, g; ∗) + max
g∈W

Φπ
vf(v̂

π
∗ , g; ∗)−max

g∈W
Φ̂π

vf(v̂
π
∗ , g; ∗)

≤ 2max
v∈V

∣∣∣∣max
g∈W

Φ̂π
vf(v, g; ∗)−max

g∈W
Φπ

vf(v, g; ∗)
∣∣∣∣

≤ 2max
v∈V

max
g∈W

∣∣∣Φ̂π
vf(v, g; ∗)− Φπ

vf(v, g; ∗)
∣∣∣ ,

(C.3.5)

where in the first inequality, we use maxg∈W Φπ
vf(V

π, g; ∗) = 0 while maxg∈W Φπ
vf(v, g; ∗) ≥

0 for any v. In the meanwhile, by Theorem C.7.6, with probability at least 1− δ, it holds
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for any (π, v, g) ∈ Π× V ×W that

∣∣∣Φ̂π
vf(v, g; ∗)− Φπ

vf(v, g; ∗)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
CW,V,Π

NTκ
· log 1

δ
log(NT ),(C.3.6)

where we use Assumption (b) and ∥g∥∞ ≤ C∗ for any g ∈ W . Now, combining (C.3.5)

and (C.3.6), with probability at least 1− δ, we have

max
g∈W

Φ̂π
vf(V

π, g; ∗)−max
g∈W

Φ̂π
vf(v̂

π
∗ , g; ∗) ≤ c · C∆∗CΘ∗C∗

1− γ

√
CW,V,Π

NTκ
· log 1

δ
log(NT ) = αvf,

which implies that V π ∈ confvfαvf
(∆∗,Θ∗, π) for any π ∈ Π. This concludes the proof of the

lemma. □

C.3.3. Proof of Lemma 4.4.8

Proof. Since v ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confvfαvf
(∆,Θ, π), there exists a pair (∆̃, Θ̃) ∈

conf0α0
× conf1α1

such that v ∈ confvfαvf
(∆̃, Θ̃, π). For the simplicity of notations, we de-

note by

ṽ ∈ argmin
v∈V

max
g∈W

Φ̂π
vf(v, g; ∆̃, Θ̃),(C.3.7)

i.e., ṽ = v̂π
∆̃,Θ̃

, which is defined in (4.3.2). By the definition of ṽ and v ∈ confvfαvf
(∆̃, Θ̃, π),

we know that

max
g∈W

Φ̂π
vf(v, g; ∆̃, Θ̃)−max

g∈W
Φ̂π

vf(ṽ, g; ∆̃, Θ̃) ≤ αvf.(C.3.8)
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Note that

max
g∈W

Φπ
vf(v, g; ∆

∗,Θ∗)

= max
g∈W

Φπ
vf(v, g; ∆

∗,Θ∗)−max
g∈W

Φ̂π
vf(v, g; ∆

∗,Θ∗) + max
g∈W

Φ̂π
vf(v, g; ∆

∗,Θ∗)

−max
g∈W

Φ̂π
vf(v, g; ∆̃, Θ̃) + max

g∈W
Φ̂π

vf(v, g; ∆̃, Θ̃)−max
g∈W

Φ̂π
vf(ṽ, g; ∆̃, Θ̃)

+ max
g∈W

Φ̂π
vf(ṽ, g; ∆̃, Θ̃)−max

g∈W
Φπ

vf(ṽ, g; ∆̃, Θ̃) + max
g∈W

Φπ
vf(ṽ, g; ∆̃, Θ̃)

≤ 2 max
(v,g,∆,Θ)∈(V,W,F0,F1)

∣∣∣Φπ
vf(v, g; ∆,Θ)− Φ̂π

vf(v, g; ∆,Θ)
∣∣∣︸ ︷︷ ︸

Term (I)

+max
g∈W

Φπ
vf(ṽ, g; ∆̃, Θ̃)︸ ︷︷ ︸
Term (II)

+max
g∈W

∣∣∣Φ̂π
vf(v, g; ∆

∗,Θ∗)− Φ̂π
vf(v, g; ∆̃, Θ̃)

∣∣∣︸ ︷︷ ︸
Term (III)

+αvf,

(C.3.9)

where we use (C.3.8) in the last inequality. Now we upper bound terms (I), (II), and (III)

on the RHS of (C.3.9).

Upper Bounding Term (I). By Theorem C.7.6, with probability at least 1−δ, it holds

for any (v, g,∆,Θ, π) ∈ (V ,W ,F0,F1,Π) that

∣∣∣Φ̂π
vf(v, g; ∆,Θ)− Φπ

vf(v, g; ∆,Θ)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ),

which implies that with probability at least 1− δ, we have

Term (I) ≤ c · C∆∗CΘ∗C∗

1− γ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ).(C.3.10)
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Upper Bounding Term (II). We introduce the following lemma to help upper bound

term (II).

Lemma C.3.1. Suppose α0 and α1 are defined in Assumption 4.4.4. With probability

at least 1− δ, for any (∆,Θ, π) ∈ conf0α0
× conf1α1

× Π, we have

max
g∈W

Φπ
vf(v̂

π
∆,Θ, g; ∆,Θ) ≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)LΠ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ),

where v̂π∆,Θ is defined in (4.3.2), ξ0 and ξ1 are constants defined in Assumption 4.4.4.

Proof. See §C.3.4 for a detailed proof. □

By the definition of ṽ in (C.3.7) and Lemma C.3.1, with probability at least 1− δ, we

have

Term (II) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)LΠ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ).(C.3.11)

Upper Bounding Term (III). Note that

∣∣∣Φ̂π
vf(v, g; ∆

∗,Θ∗)− Φ̂π
vf(v, g; ∆̃, Θ̃)

∣∣∣
≤

∣∣∣∣∣(Ê− E
)[ 1

T

T−1∑
t=0

g(St)

(
Z⊤

t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)

∆̃(St, At)Θ̃(St, Zt)

)
(Rt + γv(St+1))

]∣∣∣∣∣

+

∣∣∣∣∣E
[
1

T

T−1∑
t=0

g(St)

(
Z⊤

t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)

∆̃(St, At)Θ̃(St, Zt)

)
(Rt + γv(St+1))

]∣∣∣∣∣ .
(C.3.12)
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For the first term on the RHS of (C.3.12), by Theorem C.7.6, with probability at least

1− δ, it holds for any (v, g, π) ∈ V ×W × Π that∣∣∣∣∣(Ê− E
)[ 1

T

T−1∑
t=0

g(St)

(
Z⊤

t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)

∆̃(St, At)Θ̃(St, Zt)

)
(Rt + γv(St+1))

]∣∣∣∣∣

≤ c · C∆∗CΘ∗C∗

1− γ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ).

(C.3.13)



295

For the second term on the RHS of (C.3.12), with probability at least 1− δ, it holds that∣∣∣∣∣E
[
1

T

T−1∑
t=0

g(St)

(
Z⊤

t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)

∆̃(St, At)Θ̃(St, Zt)

)
(Rt + γv(St+1))

]∣∣∣∣∣
≤ C∗

1− γ
E

[
1

T

T−1∑
t=0

∣∣∣∣∣ 1

∆̃(St, At)Θ̃(St, Zt)
− 1

∆∗(St, At)Θ∗(St, Zt)

∣∣∣∣∣
]

=
C∗

1− γ
E

[
1

T

T−1∑
t=0

∣∣∣∣∣ Θ∗(St, Zt)− Θ̃(St, Zt)

∆̃(St, At)Θ̃(St, Zt)Θ∗(St, Zt)
− ∆∗(St, At)− ∆̃(St, At)

∆∗(St, At)∆̃(St, At)Θ∗(St, Zt)

∣∣∣∣∣
]

≤ C∆∗CΘ∗C∗

1− γ

(
CΘ∗E

[
1

T

T−1∑
t=0

∥∥∥∆∗(St, ·)− ∆̃(St, ·)
∥∥∥
1

]

+ C∆∗E

[
1

T

T−1∑
t=0

∥∥∥Θ∗(St, ·)− Θ̃(St, ·)
∥∥∥
1

])

≤ C∆∗CΘ∗C∗

1− γ

(
CΘ∗

√√√√E

[
1

T

T−1∑
t=0

∥∥∥∆∗(St, ·)− ∆̃(St, ·)
∥∥∥2
1

]

+ C∆∗

√√√√E

[
1

T

T−1∑
t=0

∥∥∥Θ∗(St, ·)− Θ̃(St, ·)
∥∥∥2
1

])

≤ C∆∗CΘ∗C∗

1− γ

(
ξ0CΘ∗

√
C∆∗

NTκ
CF0 log

1

δ
log(NT ) + ξ1C∆∗

√
CΘ∗

NTκ
CF1 log

1

δ
log(NT )

)
,

(C.3.14)

where in the first inequality, we use the fact that ∥v∥∞ ≤ 1/(1 − γ) and ∥g∥∞ ≤ C∗;

in the third inequality, we use Cauchy-Schwarz inequality; while in the last inequality,

we use Assumption 4.4.4 with the fact that (∆̃, Θ̃) ∈ conf0α0
× conf1α1

. Now, by plugging

(C.3.13) and (C.3.14) into (C.3.12), with probability at least 1 − δ, it holds for any
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v ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confvfαvf
(∆,Θ, π), g ∈ W , and π ∈ Π that

∣∣∣Φ̂π
vf(v, g; ∆

∗,Θ∗)− Φ̂π
vf(v, g; ∆̃, Θ̃)

∣∣∣
≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ).(C.3.15)

Now, by plugging (C.3.10), (C.3.11), and (C.3.15) into (C.3.9), with probability at

least 1− δ, it holds for any v ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confvfαvf
(∆,Θ, π) and π ∈ Π that

max
g∈W

Φπ
vf(v, g; ∆

∗,Θ∗) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)LΠ

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ),

which concludes the proof of the lemma. □

C.3.4. Proof of Lemma C.3.1

Proof. Note that

max
g∈W

Φπ
vf(v̂

π
∆,Θ, g; ∆,Θ)

= max
g∈W

Φπ
vf(v̂

π
∆,Θ, g; ∆,Θ)−max

g∈W
Φ̂π

vf(v̂
π
∆,Θ, g; ∆,Θ) +max

g∈W
Φ̂π

vf(v̂
π
∆,Θ, g; ∆,Θ)

−max
g∈W

Φ̂π
vf(V

π, g; ∆,Θ) +max
g∈W

Φ̂π
vf(V

π, g; ∆,Θ)−max
g∈W

Φπ
vf(V

π, g; ∆,Θ)

+max
g∈W

Φπ
vf(V

π, g; ∆,Θ)−max
g∈W

Φπ
vf(V

π, g; ∆∗,Θ∗)

≤ 2max
v∈V

max
g∈W

∣∣∣Φπ
vf(v, g; ∆,Θ)− Φ̂π

vf(v, g; ∆,Θ)
∣∣∣

+max
g∈W
|Φπ

vf(V
π, g; ∆,Θ)− Φπ

vf(V
π, g; ∆∗,Θ∗)| ,

(C.3.16)
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where we use the fact that v̂π∆,Θ ∈ argminv∈V maxg∈W Φ̂π
vf(v, g; ∆,Θ) in the last inequality.

In the meanwhile, by Theorem C.7.6, with probability at least 1 − δ, it holds for any

(v, g, π) ∈ V ×W × Π that

∣∣∣Φ̂π
vf(v, g; ∆,Θ)− Φπ

vf(v, g; ∆,Θ)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
CV,W,Π

NTκ
log

1

δ
log(NT ).(C.3.17)

Also, we upper bound the second term on the RHS of (C.3.16) with probability at least

1− δ by a similar argument as in (C.3.14),

|Φπ
vf(V

π, g; ∆,Θ)− Φπ
vf(V

π, g; ∆∗,Θ∗)|

≤ C∆∗CΘ∗C∗

1− γ

(
ξ0CΘ∗

√
C∆∗

NTκ
CF0 log

1

δ
log(NT ) + ξ1C∆∗

√
CΘ∗

NTκ
CF1 log

1

δ
log(NT )

)
,

(C.3.18)

where in the first inequality, we use the fact that ∥V π∥∞ ≤ 1/(1− γ) and ∥g∥∞ ≤ C∗; in

the third inequality, we use Cauchy Schwarz inequality; while in the last inequality, we use

Assumption 4.4.4 with (∆,Θ) ∈ conf0α0
× conf1α1

. Now, by plugging (C.3.17) and (C.3.18)

into (C.3.16), with probability at least 1−δ, it holds for any (∆,Θ, π) ∈ conf0α0
×conf1α1

×Π

that

max
g∈W

Φπ
vf(v̂

π
∆,Θ, g; ∆,Θ) ≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)LΠ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ),

which concludes the proof of the lemma. □
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C.4. Proofs of Results in §4.4.2

C.4.1. Proof of Theorem 4.4.13

Proof. Before the proof of the theorem, we first introduce some supporting results as

follows. We define the population counterpart of L̂mis(w, π; ∆,Θ) as

Lmis(w, π; ∆,Θ) = E

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆(St, At)Θ(St, Zt)
w(St)Rt

]

for any (w, π,∆,Θ).

Lemma C.4.1. It holds for any (π,w) ∈ Π×W that

Lmis(w
π, π; ∆∗,Θ∗)− Lmis(w, π; ∆

∗,Θ∗) = Φπ
mis(w, V

π; ∆∗,Θ∗),

where V π is the state-value function defined in (4.1.2).

Proof. See §C.4.4 for a detailed proof. □

Lemma C.4.2. Suppose that (α0, α1, αmis) is defined in Lemmas 4.4.11. With probability

at least 1− δ, it holds for any (∆,Θ) ∈ conf0α0
× conf1α1

that∣∣∣∣∣ min
w∈confmis

αmis
(∆∗,Θ∗,π∗)

Lmis(w, π
∗; ∆∗,Θ∗)− min

w∈confmis
αmis

(∆,Θ,π∗)
Lmis(w, π

∗; ∆,Θ)

∣∣∣∣∣
≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V log

1

δ
log(NT ) = ε∗L.

Proof. See §C.4.5 for a detailed proof. □
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Lemma C.4.3. With probability at least 1− δ, it holds for any (w,∆,Θ, π) ∈ W×F0×

F1 × Π that

∣∣∣Lmis(w, π; ∆,Θ)− L̂mis(w, π; ∆,Θ)
∣∣∣

≤ c · C∆∗CΘ∗C∗

√
1

NTκ
CF0,F1,W,Π log

1

δ
log(NT ) = ε̂L.

Proof. See §C.4.6 for a detailed proof. □

Now we start the proof of the theorem. By the definition of J(π), it holds with

probability at least 1− δ that

J(π∗)− J(π̂mis) = Lmis(w
π∗
, π∗; ∆∗,Θ∗)− Lmis(w

π̂mis , π̂mis; ∆
∗,Θ∗)

≤ Lmis(w
π∗
, π∗; ∆∗,Θ∗)− min

w∈confmis
αmis

(∆∗,Θ∗,π̂mis)
Lmis(w, π̂mis; ∆

∗,Θ∗)

≤ Lmis(w
π∗
, π∗; ∆∗,Θ∗)

− min
(∆,Θ)∈conf0α0

×conf1α1

min
w∈confmis

αmis
(∆,Θ,π̂mis)

Lmis(w, π̂mis; ∆,Θ)

≤ Lmis(w
π∗
, π∗; ∆∗,Θ∗)

− min
(∆,Θ)∈conf0α0

×conf1α1

min
w∈confmis

αmis
(∆,Θ,π̂mis)

L̂mis(w, π̂mis; ∆,Θ) + ε̂L

≤ Lmis(w
π∗
, π∗; ∆∗,Θ∗)(C.4.1)

− min
(∆,Θ)∈conf0α0

×conf1α1

min
w∈confmis

αmis
(∆,Θ,π∗)

L̂mis(w, π
∗; ∆,Θ) + ε̂L,

where we use Lemma 4.4.11 in the first inequality; we use Assumption 4.4.4 that (∆∗,Θ∗) ∈

conf0α0
× conf1α1

with probability at least 1 − δ in the second inequality; we use Lemma
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C.4.3 in the third inequality; while we use the optimality of π̂mis in the last inequality.

Now, by applying Lemmas C.4.2 and C.4.3, we obtain from (C.4.1) that

J(π∗)− J(π̂mis) ≤ Lmis(w
π∗
, π∗; ∆∗,Θ∗)− min

w∈confmis
αmis

(∆∗,Θ∗,π∗)
Lmis(w, π

∗; ∆∗,Θ∗) + ε∗L + 2ε̂L

≤ max
w∈confmis

αmis
(∆∗,Θ∗,π∗)

∣∣Φπ∗

mis(w, V
π∗
; ∆∗,Θ∗)

∣∣+ ε∗L + 2ε̂L

≤ max
w∈confmis

αmis
(∆∗,Θ∗,π∗)

max
f∈V

∣∣Φπ∗

mis(w, f ; ∆
∗,Θ∗)

∣∣+ ε∗L + 2ε̂L

≤ max
w∈confmis

αmis
(∆∗,Θ∗,π∗)

max
f∈V

max
{
Φπ∗

mis(w, f ; ∆
∗,Θ∗),−Φπ∗

mis(w, f ; ∆
∗,Θ∗)

}
+ ε∗L + 2ε̂L

≤ max
w∈confmis

αmis
(∆∗,Θ∗,π∗)

max
f∈V

max
{
Φπ∗

mis(w, f ; ∆
∗,Θ∗),Φπ∗

mis(w,−f ; ∆∗,Θ∗)
}

+ ε∗L + 2ε̂L

≤ max
w∈confmis

αmis
(∆∗,Θ∗,π∗)

max
f∈V

Φπ∗

mis(w, f ; ∆
∗,Θ∗) + ε∗L + 2ε̂L,(C.4.2)

where in the second inequality, we use Lemma C.4.1; in the third inequality, we use

Assumption 4.4.10; while in the last inequality, we use the fact that V is symmetric.

Now, by Lemma 4.4.12 and plugging the definition of ε̂L and ε∗L into (C.4.2), it holds with

probability at least 1− δ that

J(π∗)− J(π̂mis) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

NT

δ
,

which concludes the proof of the theorem. □
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C.4.2. Proof of Lemma 4.4.11

Proof. First, by Assumption 4.4.10, we know that wπ ∈ W . For notation simplicity,

we denote by Φπ
mis(w, f ; ∗) = Φπ

mis(w, f ; ∆
∗,Θ∗) and ŵπ

∗ = ŵπ
∆∗,Θ∗ for any (π,w, f). Note

that

max
f∈V

Φ̂π
mis(w

π, f ; ∗)−max
f∈V

Φ̂π
mis(ŵ

π
∗ , f ; ∗)

= max
f∈V

Φ̂π
mis(w

π, f ; ∗)−max
f∈V

Φπ
mis(w

π, f ; ∗) + max
f∈V

Φπ
mis(w

π, f ; ∗)−max
f∈V

Φπ
mis(ŵ

π
∗ , f ; ∗)

+ max
f∈V

Φπ
mis(ŵ

π
∗ , f ; ∗)−max

f∈V
Φ̂π

mis(ŵ
π
∗ , f ; ∗)

≤ max
f∈V

Φ̂π
mis(w

π, f ; ∗)−max
f∈V

Φπ
mis(w

π, f ; ∗) + max
f∈V

Φπ
mis(ŵ

π
∗ , f ; ∗)−max

f∈V
Φ̂π

mis(ŵ
π
∗ , f ; ∗)

≤ 2max
w∈W

∣∣∣∣max
f∈V

Φ̂π
mis(w, f ; ∗)−max

f∈V
Φπ

mis(w, f ; ∗)
∣∣∣∣

≤ 2max
w∈W

max
f∈V

∣∣∣Φ̂π
mis(w, f ; ∗)− Φπ

mis(w, f ; ∗)
∣∣∣ ,

(C.4.3)

where in the first inequality, we use the fact that wπ = argminw∈W maxf∈V Φ
π
mis(w, f ; ∗);

while in the second inequality, we use wπ ∈ W by Assumption 4.4.10. In the meanwhile,

by Theorem C.7.6, with probability at least 1− δ, it holds for any (w, f, π) ∈ W ×V ×Π

that

∣∣∣Φ̂π
mis(w, f ; ∗)− Φπ

mis(w, f ; ∗)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CV,W,Π log

1

δ
log(NT ),(C.4.4)
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where we use Assumption (b). Now, combining (C.4.3) and (C.4.4), with probability at

least 1− δ, we have

max
f∈V

Φ̂π
mis(w

π, f ; ∗)−max
f∈V

Φ̂π
mis(ŵ

π
∗ , f ; ∗)

≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CV,W,Π log

1

δ
log(NT ) = αmis,

which implies that wπ ∈ confmis
αmis

(∆∗,Θ∗, π). This concludes the proof of the lemma. □

C.4.3. Proof of Lemma 4.4.12

Proof. Since w ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π), there exists a pair (∆̃, Θ̃) ∈

conf0α0
× conf1α1

such that w ∈ confmis
αmis

(∆̃, Θ̃, π). For the simplicity of notations, we denote

by

w̃ ∈ argmin
w∈W

max
f∈V

Φ̂π
mis(w, f ; ∆̃, Θ̃),(C.4.5)

i.e., w̃ = ŵπ
∆̃,Θ̃

, which is defined in (4.3.5). By the definition of w̃ and w ∈ confmis
αmis

(∆̃, Θ̃, π),

with probability at least 1− δ, it holds for any π ∈ Π and w ∈ confmis
αmis

(∆̃, Θ̃, π) that

max
f∈V

Φ̂π
mis(w, f ; ∆̃, Θ̃)−max

f∈V
Φ̂π

mis(w̃, f ; ∆̃, Θ̃) ≤ αmis.(C.4.6)
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Further, we observe that

max
f∈V

Φπ
mis(w, f ; ∆

∗,Θ∗)

≤ max
(w,f,∆,Θ)∈(W,V,F0,F1)

∣∣∣Φπ
mis(w, f ; ∆,Θ)− Φ̂π

mis(w, f ; ∆,Θ)
∣∣∣︸ ︷︷ ︸

Term (I)

+max
f∈V

Φπ
mis(w̃, f ; ∆̃, Θ̃)︸ ︷︷ ︸
Term (II)

(C.4.7)

+ max
f∈V

∣∣∣Φ̂π
mis(w, f ; ∆

∗,Θ∗)− Φ̂π
mis(w, f ; ∆̃, Θ̃)

∣∣∣︸ ︷︷ ︸
Term (III)

+αmis,

where we use (C.4.6) in the last inequality. Now we upper bound terms (I), (II), and (III)

on the RHS of (C.4.7).

Upper Bounding Term (I). By Theorem C.7.6, with probability at least 1−δ, it holds

for any (w, f,∆,Θ, π) ∈ (W ,V ,F0,F1,Π) that

∣∣∣Φ̂π
mis(w, f ; ∆,Θ)− Φπ

mis(w, f ; ∆,Θ)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CF0,F1,W,V,Π log

1

δ
log(NT ),

which implies that with probability at least 1− δ, we have

Term (I) ≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CF0,F1,W,V,Π log

1

δ
log(NT ).(C.4.8)

Upper Bounding Term (II). We introduce the following lemma to help upper bound

term (II).



304

Lemma C.4.4. Suppose (α0, α1) is defined in Assumption 4.4.4. With probability at

least 1− δ, for any (∆,Θ) ∈ conf0α0
× conf1α1

and π ∈ Π, we have

max
f∈V

Φπ
mis(ŵ

π
∆,Θ, f ; ∆,Θ) ≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V,Π log

1

δ
log(NT ),

where ŵπ
∆,Θ is defined in (4.3.5), ξ0 and ξ1 are constants defined in Assumption 4.4.4.

Proof. See §C.4.7 for a detailed proof. □

By the definition of w̃ in (C.4.5) and Lemma C.4.4, with probability at least 1− δ, we

have

Term (II) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V,Π log

1

δ
log(NT ).(C.4.9)

Upper Bounding Term (III). Note that

∣∣∣Φ̂π
mis(w, f ; ∆

∗,Θ∗)− Φ̂π
mis(w, f ; ∆̃, Θ̃)

∣∣∣
≤

∣∣∣∣∣(Ê− E
)[ 1

T

T−1∑
t=0

(
Z⊤

t Atπ(At |St)w(St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)w(St)

∆̃(St, At)Θ̃(St, Zt)

)
(f(St)− γf(St+1))

]∣∣∣∣∣

+

∣∣∣∣∣E
[
1

T

T−1∑
t=0

(
Z⊤

t Atπ(At |St)w(St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)w(St)

∆̃(St, At)Θ̃(St, Zt)

)
(f(St)− γf(St+1))

]∣∣∣∣∣ .
(C.4.10)
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For the first term on the RHS of (C.4.10), by Theorem C.7.6, with probability at least

1− δ, it holds for any (w, f, π) ∈ W × V × Π that∣∣∣∣∣(Ê− E
)[ 1

T

T−1∑
t=0

(
Z⊤

t Atπ(At |St)w(St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)w(St)

∆̃(St, At)Θ̃(St, Zt)

)
(f(St)− γf(St+1))

]∣∣∣∣∣

≤ c · C∆∗CΘ∗C∗

1− γ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ).

(C.4.11)

For the second term on the RHS of (C.4.10), by a similar argument as in (C.3.14), it

holds with probability at least 1− δ that∣∣∣∣∣E
[
1

T

T−1∑
t=0

(
Z⊤

t Atπ(At |St)w(St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)w(St)

∆̃(St, At)Θ̃(St, Zt)

)
(f(St)− γf(St+1))

]∣∣∣∣∣

≤ 2C∆∗CΘ∗C∗

1− γ

(
ξ0CΘ∗

√
C∆∗

NTκ
CF0 log

1

δ
log(NT ) + ξ1C∆∗

√
CΘ∗

NTκ
CF1 log

1

δ
log(NT )

)
,

(C.4.12)

where in the first inequality, we use the fact that ∥f∥∞ ≤ 1/(1 − γ) and ∥w∥∞ ≤ C∗;

in the third inequality, we use Cauchy Schwarz inequality; while in the last inequality,

we use Assumption 4.4.4 with the fact that (∆̃, Θ̃) ∈ conf0α0
× conf1α1

. Now, by plugging

(C.4.11) and (C.4.12) into (C.4.10), with probability at least 1 − δ, it holds for any

w ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π) and (f, π) ∈ V × Π that

∣∣∣Φ̂π
mis(w, f ; ∆

∗,Θ∗)− Φ̂π
mis(w, f ; ∆̃, Θ̃)

∣∣∣
≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ).(C.4.13)
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Now, by plugging (C.4.8), (C.4.9), and (C.4.13) into (C.4.7), with probability at least

1− δ, it holds for any π ∈ Π and w ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π) that

max
f∈V

Φπ
mis(w, f ; ∆

∗,Θ∗) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ),

which concludes the proof of the lemma. □

C.4.4. Proof of Lemma C.4.1

Proof. Since Φπ
mis(w

π, V π; ∆∗,Θ∗) = 0, we have

Φπ
mis(w, V

π; ∆∗,Θ∗)

= Φπ
mis(w, V

π; ∆∗,Θ∗)− Φπ
mis(w

π, V π; ∆∗,Θ∗)

= E

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
(wπ(St)− w(St)) (V

π(St)− γV π(St+1))

]

= E

[
1

T

T−1∑
t=0

(wπ(St)− w(St))Eπ [V
π(St)− γV π(St+1) |St]

]

= E

[
1

T

T−1∑
t=0

(wπ(St)− w(St))Eπ[Rt |St]

]

= E

[
1

T

T−1∑
t=0

Z⊤
t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
(wπ(St)− w(St))Rt

]

= Lmis(w
π, π; ∆∗,Θ∗)− Lmis(w, π; ∆

∗,Θ∗),

which concludes the proof of the lemma. □
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C.4.5. Proof of Lemma C.4.2

Proof. With a slight abuse of notations, we denote by

w0 ∈ argmin
w∈confmis

αmis
(∆∗,Θ∗,π∗)

Lmis(w, π
∗; ∆∗,Θ∗), w1 ∈ argmin

w∈confmis
αmis

(∆,Θ,π∗)

Lmis(w, π
∗; ∆,Θ).

Then we have∣∣∣∣∣ min
w∈confmis

αmis
(∆∗,Θ∗,π∗)

Lmis(w, π
∗; ∆∗,Θ∗)− min

w∈confmis
αmis

(∆,Θ,π∗)
Lmis(w, π

∗; ∆,Θ)

∣∣∣∣∣
= |Lmis(w0, π

∗; ∆∗,Θ∗)− Lmis(w1, π
∗; ∆,Θ)|

≤
∣∣Lmis(w0, π

∗; ∆∗,Θ∗)− Lmis(w
π∗
, π∗; ∆∗,Θ∗)

∣∣
+
∣∣Lmis(w

π∗
, π∗; ∆∗,Θ∗)− Lmis(w1, π

∗; ∆∗,Θ∗)
∣∣

+ |Lmis(w1, π
∗; ∆∗,Θ∗)− Lmis(w1, π

∗; ∆,Θ)|

=
∣∣Φπ∗

mis(w0, V
π∗
; ∆∗,Θ∗)

∣∣︸ ︷︷ ︸
Term (I)

+
∣∣Φπ∗

mis(w1, V
π∗
; ∆∗,Θ∗)

∣∣︸ ︷︷ ︸
Term (II)

(C.4.14)

+ |Lmis(w1, π
∗; ∆∗,Θ∗)− Lmis(w1, π

∗; ∆,Θ)|︸ ︷︷ ︸
Term (III)

.

We upper bound terms (I), (II), and (III) on the RHS of (C.4.14), respectively.
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Upper Bounding Term (I). Note that with probability at least 1− δ, we have

∣∣Φπ∗

mis(w0, V
π∗
; ∆∗,Θ∗)

∣∣ ≤ max
f∈V

∣∣Φπ∗

mis(w0, f ; ∆
∗,Θ∗)

∣∣
= max

f∈V
max

{
Φπ∗

mis(w0, f ; ∆
∗,Θ∗),−Φπ∗

mis(w0, f ; ∆
∗,Θ∗)

}
= max

f∈V
max

{
Φπ∗

mis(w0, f ; ∆
∗,Θ∗),Φπ∗

mis(w0,−f ; ∆∗,Θ∗)
}

= max
f∈V

Φπ∗

mis(w0, f ; ∆
∗,Θ∗)

≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V log

1

δ
log(NT ),(C.4.15)

where in the first inequality, we use the fact that V π∗ ∈ V ; in the third equality, we use the

fact that V is symmetric; in the last inequality, by noting that w0 ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π),

we use Lemma 4.4.12. This upper bounds term (I) on the RHS of (C.4.14).

Upper Bounding Term (II). Similar to (C.4.15), note that w1 ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π),

it holds with probability at least 1− δ that

∣∣Φπ∗

mis(w1, V
π∗
; ∆∗,Θ∗)

∣∣ ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V log

1

δ
log(NT ),

(C.4.16)

which upper bounds term (II) on the RHS of (C.4.14).
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Upper Bounding Term (III). Note that with probability at least 1 − δ, it holds for

any (∆,Θ) ∈ conf0α0
× conf1α1

that

|Lmis(w1, π
∗; ∆∗,Θ∗)− Lmis(w1, π

∗; ∆,Θ)|

= E

[
1

T

T−1∑
t=0

(
Z⊤

t Atπ
∗(At |St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ
∗(At |St)

∆(St, At)Θ(St, Zt)

)
w1(St)Rt

]

≤ C∆∗CΘ∗C∗

(
ξ0CΘ∗

√
C∆∗

NTκ
CF0 log

1

δ
log(NT ) + ξ1C∆∗

√
CΘ∗

NTκ
CF1 log

1

δ
log(NT )

)
,

(C.4.17)

where we use Cauchy-Schwarz inequality and Assumption 4.4.4 in the last inequality.

Now, by plugging (C.4.15), (C.4.16), and (C.4.17) into (C.4.14), with probability at

least 1− δ, it holds for any (∆,Θ) ∈ conf0α0
× conf1α1

that∣∣∣∣∣ min
w∈confmis

αmis
(∆∗,Θ∗,π∗)

Lmis(w, π
∗; ∆∗,Θ∗)− min

w∈confmis
αmis

(∆,Θ,π∗)
Lmis(w, π

∗; ∆,Θ)

∣∣∣∣∣
≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V log

1

δ
log(NT ),

which concludes the proof of the lemma. □

C.4.6. Proof of Lemma C.4.3

Proof. By Theorem C.7.6, with probability at least 1−δ, it holds for any (w,∆,Θ, π) ∈

W ×F0 ×F1 × Π that

∣∣∣Lmis(w, π; ∆,Θ)− L̂mis(w, π; ∆,Θ)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

√
1

NTκ
CF0,F1,W,Π log

1

δ
log(NT ),
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which concludes the proof of the lemma. □

C.4.7. Proof of Lemma C.4.4

Proof. Note that

max
f∈V

Φπ
mis(ŵ

π
∆,Θ, f ; ∆,Θ)

= max
f∈V

Φπ
mis(ŵ

π
∆,Θ, f ; ∆,Θ)−max

f∈V
Φ̂π

mis(ŵ
π
∆,Θ, f ; ∆,Θ) +max

f∈V
Φ̂π

mis(ŵ
π
∆,Θ, f ; ∆,Θ)

−max
f∈V

Φ̂π
mis(w

π, f ; ∆,Θ) +max
f∈V

Φ̂π
mis(w

π, f ; ∆,Θ)−max
f∈V

Φπ
mis(w

π, f ; ∆,Θ)

+max
f∈V

Φπ
mis(w

π, f ; ∆,Θ)−max
f∈V

Φπ
mis(w

π, f ; ∆∗,Θ∗)

≤ 2max
w∈W

max
f∈V

∣∣∣Φπ
mis(w, f ; ∆,Θ)− Φ̂π

mis(w, f ; ∆,Θ)
∣∣∣

+max
f∈V
|Φπ

mis(w
π, f ; ∆,Θ)− Φπ

mis(w
π, f ; ∆∗,Θ∗)| ,

(C.4.18)

where we use the fact that ŵπ
∆,Θ ∈ argminw∈W maxf∈V Φ̂

π
mis(w, f ; ∆,Θ) in the last inequal-

ity. In the meanwhile, by Theorem C.7.6, with probability at least 1− δ, it holds for any

(w, f, π) ∈ W × V × Π that

∣∣∣Φ̂π
mis(w, f ; ∆,Θ)− Φπ

mis(w, f ; ∆,Θ)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CV,W,Π log

1

δ
log(NT ).

(C.4.19)
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Also, we upper bound the second term on the RHS of (C.4.18) with probability at least

1− δ as follows,

|Φπ
mis(w

π, f ; ∆,Θ)− Φπ
mis(w

π, f ; ∆∗,Θ∗)|

=

∣∣∣∣∣E
[
1

T

T−1∑
t=0

(
Z⊤

t Atπ(At |St)w(St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)w(St)

∆(St, At)Θ(St, Zt)

)
(f(St)− γf(St+1))

]∣∣∣∣∣

≤ C∆∗CΘ∗C∗

1− γ

(
ξ0CΘ∗

√
C∆∗

NTκ
CF0 log

1

δ
log(NT ) + ξ1C∆∗

√
CΘ∗

NTκ
CF1 log

1

δ
log(NT )

)
,

(C.4.20)

where we use Cauchy-Schwarz inequality and Assumption 4.4.4 in the last inequality.

Now, by plugging (C.4.19) and (C.4.20) into (C.4.18), with probability at least 1− δ,

it holds for any (∆,Θ) ∈ conf0α0
× conf1α1

and π ∈ Π that

max
f∈V

Φπ
mis(ŵ

π
∆,Θ, f ; ∆,Θ) ≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V,Π log

1

δ
log(NT ),

which concludes the proof of the lemma. □

C.5. Proof of Results in §4.4.3

C.5.1. Proof of Theorem 4.4.14

Proof. We split the proof into two case: (i) Assumption 4.4.6 holds; (ii) Assumption

4.4.10 holds.

Case (i): Assumption 4.4.6 holds. We introduce the following supporting lemmas.
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Lemma C.5.1. For any policy π, with probability at least 1− δ with c/(NT )2 ≤ δ ≤ 1,

it holds for any (w, v,∆,Θ, π) ∈ W × V × F0 ×F1 × Π that

∣∣∣Ldr(w, v, π; ∆,Θ)− L̂dr(w, v, π; ∆,Θ)
∣∣∣

≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CF0,F1,W,V,Π log

1

δ
log(NT ) = ϵ̂L.

Proof. See §C.5.3 for a detailed proof. □

Lemma C.5.2. Suppose that (α0, α1, αmis, αvf) is defined in Assumption 4.4.4, Lemmas

4.4.11, and 4.4.7. With probability at least 1− δ, it holds for any (∆,Θ) ∈ conf0α0
× conf1α1

that

∣∣∣∣ min
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)
Ldr(w, v, π

∗; ∆∗,Θ∗)− min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
Ldr(w, v, π

∗; ∆,Θ)

∣∣∣∣
≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V log

1

δ
log(NT ) = ϵ∗L.

Proof. See §C.5.4 for a detailed proof. □
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By the definition of Ldr, it holds with probability at least 1− δ that

J(π∗)− J(π̂dr) = J(π∗)− Ldr(w, V
π̂dr , π̂dr; ∆

∗,Θ∗)

≤ J(π∗)− min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π̂dr)
Ldr(w, v, π̂dr; ∆,Θ)

≤ J(π∗)− min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π̂dr)
L̂dr(w, v, π̂dr; ∆,Θ) + ϵ̂L

≤ J(π∗)− min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
L̂dr(w, v, π

∗; ∆,Θ) + ϵ̂L

≤ J(π∗)− min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
Ldr(w, v, π

∗; ∆,Θ) + 2ϵ̂L,(C.5.1)

where in the first inequality, we use Assumption 4.4.4 that (∆∗,Θ∗) ∈ conf0α0
× conf1α1

with probability at least 1 − δ, and Lemma 4.4.7 with Assumption 4.4.6 that V π̂dr ∈

confvfαvf
(∆∗,Θ∗, π̂dr) with probability at least 1−δ; in the second inequality, we use Lemma

C.5.1; in the third inequality, we use the optimality of π̂dr; while in the last inequality, we

use Lemma C.5.1 again. By combining Lemma C.5.2 and (C.5.1), we have

J(π∗)− J(π̂dr)

≤ J(π∗)− min
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)
Ldr(w, v, π

∗; ∆∗,Θ∗) + 2ϵ̂L + ϵ∗L

= Ldr(w, V
π∗
, π∗; ∆∗,Θ∗)− min

(w,v)∈confαmis,αvf
(∆∗,Θ∗,π∗)

Ldr(w, v, π
∗; ∆∗,Θ∗) + 2ϵ̂L + ϵ∗L

= max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Ldr(w, V
π∗
, π∗; ∆∗,Θ∗)− Ldr(w, v, π

∗; ∆∗,Θ∗)
∣∣+ 2ϵ̂L + ϵ∗L

= max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)− Φπ∗

vf (v, w; ∆
∗,Θ∗)

∣∣+ 2ϵ̂L + ϵ∗L,

(C.5.2)
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where we use the following fact in the last equality,

Ldr(w, V
π∗
, π∗; ∆∗,Θ∗)− Ldr(w, v, π

∗; ∆∗,Θ∗) = Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)− Φπ∗

vf (v, w; ∆
∗,Θ∗).

In the meanwhile, note that by Assumption 4.4.6 that wπ∗ ∈ W , we obtain from (C.5.2)

that

J(π∗)− J(π̂dr) ≤ 2 max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Φπ∗

vf (v, w; ∆
∗,Θ∗)

∣∣+ 2ϵ̂L + ϵ∗L

≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V,Π log

NT

δ
,(C.5.3)

where we use Lemma 4.4.8 and plug in the definition of ϵL and ϵ∗L in the last inequality.

This concludes the proof of case (i).

Case (ii): Assumption 4.4.10 holds. It holds with probability at least 1− δ that

J(π∗)− J(π̂dr) = J(π∗)− Ldr(w
π̂dr , v, π̂dr; ∆

∗,Θ∗)

≤ J(π∗)− min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π̂dr)
Ldr(w, v, π̂dr; ∆,Θ)

≤ J(π∗)− min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π̂dr)
L̂dr(w, v, π̂dr; ∆,Θ) + ϵ̂L

≤ J(π∗)− min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
L̂dr(w, v, π

∗; ∆,Θ) + ϵ̂L,

where we use Assumption 4.4.4 that (∆∗,Θ∗) ∈ conf0α0
× conf1α1

with probability at least

1 − δ and Assumption 4.4.10 that wπ ∈ W for any π ∈ Π in the first inequality, we

use Lemma C.5.1 in the second inequality, and we use the optimality of π̂dr in the last
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inequality. Further, by Lemmas C.5.1 and C.5.2, we have

J(π∗)− J(π̂dr)

≤ J(π∗)− min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
Ldr(w, v, π

∗; ∆,Θ) + 2ϵ̂L

≤ J(π∗)− min
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)
Ldr(w, v, π

∗; ∆∗,Θ∗) + 2ϵ̂L + ϵ∗L

≤ max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Ldr(w
π∗
, v, π∗; ∆∗,Θ∗)− Ldr(w, v, π

∗; ∆∗,Θ∗)
∣∣+ 2ϵ̂L + ϵ∗L

≤ max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Φπ∗

mis(w, V
π∗
; ∆∗,Θ∗)− Φπ∗

mis(w, v; ∆
∗,Θ∗)

∣∣+ 2ϵ̂L + ϵ∗L

≤ 2 max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Φπ∗

mis(w, v; ∆
∗,Θ∗)

∣∣+ 2ϵ̂L + ϵ∗L

≤ 2 max
w∈confmis

αmis
(∆∗,Θ∗,π∗)

max
v∈V

∣∣Φπ∗

mis(w, v; ∆
∗,Θ∗)

∣∣+ 2ϵ̂L + ϵ∗L

where in the third inequality, we use the fact that J(π∗) = Ldr(w
π∗
, v, π∗; ∆∗,Θ∗); in the

forth inequality, we use the following fact

Ldr(w, v, π
∗; ∆∗,Θ∗)− Ldr(w

π∗
, v, π∗; ∆∗,Θ∗) = −Φπ∗

mis(w, V
π∗
; ∆∗,Θ∗) + Φπ∗

mis(w, v; ∆
∗,Θ∗)

for any (w, v) ∈ W×V ; in the fifth inequality, we use the fact that V π∗ ∈ V by Assumption

4.4.10 and V π∗ ∈ confvfαvf
(∆∗,Θ∗, π∗) with probability at least 1− δ by Lemma 4.4.7. Now,

by Lemma 4.4.12 and the fact that V is symmetric, we obtain that

J(π∗)− J(π̂dr) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V,Π log

NT

δ
,(C.5.4)

which concludes the proof of case (ii).

By combining (C.5.3) and (C.5.4), we conclude the proof of the theorem. □
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C.5.2. Proof of Theorem 4.4.16

Proof. Recall that

ṽπ ∈ argmin
v∈V

max
w∈W

Φπ
vf(v, w; ∆

∗,Θ∗), w̃π ∈ argmin
w∈W

max
v∈V

Φπ
mis(w, v; ∆

∗,Θ∗).

We split the proof into the following two parts.

Part (i). We first introduce the following lemmas.

Lemma C.5.3. Suppose αvf is defined in Lemma 4.4.7 and c/(NT )2 ≤ δ ≤ 1. Then

under Assumptions (b) and 4.4.3, with probability at least 1− δ, it holds for any π ∈ Π

that ṽπ ∈ confvfαvf
(∆∗,Θ∗, π).

Proof. See §C.5.5 for a detailed proof. □

Lemma C.5.4. Suppose that (α0, α1, αvf) is defined in Assumption 4.4.4 and Lemma

4.4.7 and c/(NT )2 ≤ δ ≤ 1. Then under Assumptions 4.2.2, 4.2.3, 4.4.3 and 4.4.4, with

probability at least 1−δ, it holds for any policy π ∈ Π and v ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confvfαvf
(∆,Θ, π)

that

max
g∈W

Φπ
vf(v, g; ∆

∗,Θ∗) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT )

+ max
g∈W

Φπ
vf(ṽ

π, g; ∆∗,Θ∗).

Proof. See §C.5.6 for a detailed proof. □
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By the definition of Ldr, it holds that

J(π∗)− J(π̂dr)

= J(π∗)− Ldr(w, V
π̂dr , π̂dr; ∆

∗,Θ∗)

= J(π∗)− Ldr(w, ṽ
π̂dr , π̂dr; ∆

∗,Θ∗) + Ldr(w, ṽ
π̂dr , π̂dr; ∆

∗,Θ∗)− Ldr(w, V
π̂dr , π̂dr; ∆

∗,Θ∗).

(C.5.5)

Note that

∣∣Ldr(w, ṽ
π̂dr , π̂dr; ∆

∗,Θ∗)− Ldr(w, V
π̂dr , π̂dr; ∆

∗,Θ∗)
∣∣ ≤ C∗C∆∗CΘ∗εVvf.(C.5.6)

In the meanwhile, by Assumption 4.4.4 and Lemma C.5.3, it holds with probability at

least 1− δ that

Ldr(w, ṽ
π̂dr , π̂dr; ∆

∗,Θ∗) ≥ min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π̂dr)
Ldr(w, v, π̂dr; ∆,Θ)

≥ min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π̂dr)
L̂dr(w, v, π̂dr; ∆,Θ)− ϵ̂L

≥ min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
L̂dr(w, v, π

∗; ∆,Θ)− ϵ̂L

≥ min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
Ldr(w, v, π

∗; ∆,Θ)− 2ϵ̂L,(C.5.7)

where in the second inequality, we use Lemma C.5.1; in the third inequality, we use the

optimality of π̂dr; in the forth inequality, we again use Lemma C.5.1. Now, by plugging
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(C.5.6) and (C.5.7) into (C.5.5), we have

J(π∗)− J(π̂dr)

≤ J(π∗)− min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
Ldr(w, v, π

∗; ∆,Θ)(C.5.8)

+ 2ϵ̂L + C∗C∆∗CΘ∗εVvf.(C.5.9)

By combining Lemma C.5.2 and (C.5.8), we have

J(π∗)− J(π̂dr)

≤ J(π∗)− min
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)
Ldr(w, v, π

∗; ∆∗,Θ∗) + 2ϵ̂L + ϵ∗L + C∗C∆∗CΘ∗εVvf

= Ldr(w, V
π∗
, π∗; ∆∗,Θ∗)− min

(w,v)∈confαmis,αvf
(∆∗,Θ∗,π∗)

Ldr(w, v, π
∗; ∆∗,Θ∗)

+ 2ϵ̂L + ϵ∗L + C∗C∆∗CΘ∗εVvf

= max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Ldr(w, V
π∗
, π∗; ∆∗,Θ∗)− Ldr(w, v, π

∗; ∆∗,Θ∗)
∣∣

+ 2ϵ̂L + ϵ∗L + C∗C∆∗CΘ∗εVvf

= max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)− Φπ∗

vf (v, w; ∆
∗,Θ∗)

∣∣(C.5.10)

+ 2ϵ̂L + ϵ∗L + C∗C∆∗CΘ∗εVvf,

where we use the following fact in the last equality,

Ldr(w, V
π∗
, π∗; ∆∗,Θ∗)− Ldr(w, v, π

∗; ∆∗,Θ∗) = Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)− Φπ∗

vf (v, w; ∆
∗,Θ∗).
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We upper bound the first term on the RHS of (C.5.10) as follows,

max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)− Φπ∗

vf (v, w; ∆
∗,Θ∗)

∣∣
≤ max

v∈confvfαvf
(∆∗,Θ∗,π∗)

max
w∈W

∣∣Φπ∗

vf (v, w̃
π∗
; ∆∗,Θ∗)− Φπ∗

vf (v, w; ∆
∗,Θ∗)

∣∣
+max

v∈V

∣∣Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)− Φπ∗

vf (v, w̃
π∗
; ∆∗,Θ∗)

∣∣
≤ 2 max

v∈confvfαvf
(∆∗,Θ∗,π∗)

max
w∈W

∣∣Φπ∗

vf (v, w; ∆
∗,Θ∗)

∣∣(C.5.11)

+ max
v∈V

∣∣Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)− Φπ∗

vf (v, w̃
π∗
; ∆∗,Θ∗)

∣∣ ,
where in the first inequality, we use triangle inequality; in the second inequality, we use

the definition of w̃π∗
that w̃π∗ ∈ W . By Lemma C.5.4 and Assumption 4.4.15, we obtain

from (C.5.11) that

max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)− Φπ∗

vf (v, w; ∆
∗,Θ∗)

∣∣
≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT )(C.5.12)

+ 2max
g∈W

Φπ∗

vf (ṽ
π∗
, g; ∆∗,Θ∗) + C∆∗CΘ∗εWvf /(1− γ).
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Also, we have

max
g∈W

Φπ∗

vf (ṽ
π∗
, g; ∆∗,Θ∗)

= max
g∈W

Φπ∗

vf (ṽ
π∗
, g; ∆∗,Θ∗)−max

g∈W
Φπ∗

vf (V
π∗
, g; ∆∗,Θ∗) + max

g∈W
Φπ∗

vf (V
π∗
, g; ∆∗,Θ∗)

= max
g∈W

Φπ∗

vf (ṽ
π∗
, g; ∆∗,Θ∗)−max

g∈W
Φπ∗

vf (V
π∗
, g; ∆∗,Θ∗)

= max
g∈W

∣∣Φπ∗

vf (ṽ
π∗
, g; ∆∗,Θ∗)− Φπ∗

vf (V
π∗
, g; ∆∗,Θ∗)

∣∣

≤ C∗C∆∗CΘ∗εVvf,

(C.5.13)

where we use Assumption 4.4.15 in the last inequality. By plugging (C.5.12) and (C.5.13)

into (C.5.10), we have

J(π∗)− J(π̂dr) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V,Π log

NT

δ
(C.5.14)

+ 3C∆∗CΘ∗
(
C∗ε

V
vf + εWvf /(1− γ)

)
,

where we plug in the definition of ϵL and ϵ∗L in the last inequality.

Part (ii). We first introduce the following lemmas.

Lemma C.5.5. Suppose αmis is defined in Lemma 4.4.11 and and c/(NT )2 ≤ δ ≤ 1.

Then under Assumptions (b) and 4.4.3, with probability at least 1 − δ, it holds for any

π ∈ Π that w̃π ∈ confmis
αmis

(∆∗,Θ∗, π).

Proof. See §C.5.7 for a detailed proof. □
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Lemma C.5.6. Suppose that (α0, α1, αmis) is defined in Assumption 4.4.4 and Lemma

4.4.11, and c/(NT )2 ≤ δ ≤ 1. Then under Assumptions 4.2.2, 4.2.6, 4.4.3, and 4.4.4, with

probability at least 1−δ, it holds for any π ∈ Π and w ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π)

that

max
f∈V

Φπ
mis(w, f ; ∆

∗,Θ∗) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT )

+ max
f∈V

Φπ
mis(w̃

π, f ; ∆∗,Θ∗).

Proof. See §C.5.8 for a detailed proof. □

By the definition of Ldr, we have

J(π∗)− J(π̂dr)

= J(π∗)− Ldr(w
π̂dr , v, π̂dr; ∆

∗,Θ∗)

= J(π∗)− Ldr(w̃
π̂dr , v, π̂dr; ∆

∗,Θ∗) + Ldr(w̃
π̂dr , v, π̂dr; ∆

∗,Θ∗)− Ldr(w
π̂dr , v, π̂dr; ∆

∗,Θ∗).

(C.5.15)

By Assumption 4.4.15, we have

∣∣Ldr(w̃
π̂dr , v, π̂dr; ∆

∗,Θ∗)− Ldr(w
π̂dr , v, π̂dr; ∆

∗,Θ∗)
∣∣ ≤ C∆∗CΘ∗εWmis/(1− γ).(C.5.16)
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In the meanwhile, by Assumption 4.4.4 and Lemma C.5.5, it holds with probability at

least 1− δ that

Ldr(w̃
π̂dr , v, π̂dr; ∆

∗,Θ∗) ≥ min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π̂dr)
Ldr(w, v, π̂dr; ∆,Θ)

≥ min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π̂dr)
L̂dr(w, v, π̂dr; ∆,Θ)− ϵ̂L

≥ min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
L̂dr(w, v, π

∗; ∆,Θ)− ϵ̂L

≥ min
(∆,Θ)∈conf0α0

×conf1α1

min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
Ldr(w, v, π

∗; ∆,Θ)− 2ϵ̂L,(C.5.17)

where in the second inequality, we use Lemma C.5.1; in the third inequality, we use the

optimality of π̂dr; in the forth inequality, we again use Lemma C.5.1. Further, combining

Lemma C.5.2 and (C.5.17), we have

Ldr(w̃
π̂dr , v, π̂dr; ∆

∗,Θ∗) ≥ min
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)
Ldr(w, v, π

∗; ∆∗,Θ∗)− 2ϵ̂L − ϵ∗L.

(C.5.18)
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Now, by plugging (C.5.16) and (C.5.18) into (C.5.15), we have

J(π∗)− J(π̂dr)

≤ J(π∗)− min
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)
Ldr(w, v, π

∗; ∆∗,Θ∗)

+ 2ϵ̂L + ϵ∗L + C∆∗CΘ∗εWmis/(1− γ)

≤ max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Ldr(w
π∗
, v, π∗; ∆∗,Θ∗)− Ldr(w, v, π

∗; ∆∗,Θ∗)
∣∣

+ 2ϵ̂L + ϵ∗L + C∆∗CΘ∗εWmis/(1− γ)

= max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Φπ∗

mis(w, V
π∗
; ∆∗,Θ∗)− Φπ∗

mis(w, v; ∆
∗,Θ∗)

∣∣(C.5.19)

+ 2ϵ̂L + ϵ∗L + C∆∗CΘ∗εWmis/(1− γ),

where in the second inequality, we use the fact that J(π∗) = Ldr(w
π∗
, v, π∗; ∆∗,Θ∗); in the

last equality, we use the following fact

Ldr(w, v, π
∗; ∆∗,Θ∗)− Ldr(w

π∗
, v, π∗; ∆∗,Θ∗) = −Φπ∗

mis(w, V
π∗
; ∆∗,Θ∗) + Φπ∗

mis(w, v; ∆
∗,Θ∗)
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for any (w, v) ∈ W×V . We upper bound the first term on the RHS of (C.5.19) as follows,

max
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

∣∣Φπ∗

mis(w, V
π∗
; ∆∗,Θ∗)− Φπ∗

mis(w, v; ∆
∗,Θ∗)

∣∣
≤ max

w∈confmis
αmis

(∆∗,Θ∗,π∗)
max
v∈V

∣∣Φπ∗

mis(w, v; ∆
∗,Θ∗)− Φπ∗

mis(w, ṽ
π∗
; ∆∗,Θ∗)

∣∣
+max

w∈W

∣∣Φπ∗

mis(w, V
π∗
; ∆∗,Θ∗)− Φπ∗

mis(w, ṽ
π∗
; ∆∗,Θ∗)

∣∣
≤ 2 max

w∈confmis
αmis

(∆∗,Θ∗,π∗)
max
v∈V

∣∣Φπ∗

mis(w, v; ∆
∗,Θ∗)

∣∣
+max

w∈W

∣∣Φπ∗

mis(w, V
π∗
; ∆∗,Θ∗)− Φπ∗

mis(w, ṽ
π∗
; ∆∗,Θ∗)

∣∣
≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT )

+ 2max
f∈V

Φπ∗

mis(w̃
π∗
, f ; ∆∗,Θ∗) + C∗C∆∗CΘ∗εVmis,(C.5.20)

where in the first inequality, we use triangle inequality; in the second inequality, we use the

definition of ṽπ
∗
that ṽπ

∗ ∈ V ; in the last inequality, we use Lemma C.5.6 and Assumption

4.4.15. In the meanwhile, by Assumption 4.4.15, we have

max
f∈V

Φπ∗

mis(w̃
π, f ; ∆∗,Θ∗)

≤ max
f∈V

Φπ∗

mis(w̃
π∗
, f ; ∆∗,Θ∗)−max

f∈V
Φπ∗

mis(w
π∗
, f ; ∆∗,Θ∗) + max

f∈V
Φπ∗

mis(w
π∗
, f ; ∆∗,Θ∗)

= max
f∈V

Φπ∗

mis(w̃
π∗
, f ; ∆∗,Θ∗)−max

f∈V
Φπ∗

mis(w
π∗
, f ; ∆∗,Θ∗)

≤ max
f∈V

∣∣Φπ∗

mis(w̃
π∗
, f ; ∆∗,Θ∗)− Φπ∗

mis(w
π∗
, f ; ∆∗,Θ∗)

∣∣

≤ C∆∗CΘ∗εWmis/(1− γ).

(C.5.21)
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Now, by plugging (C.5.20) and (C.5.21) into (C.5.19), we have

J(π∗)− J(π̂dr) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V,Π log

NT

δ
(C.5.22)

+ 3C∆∗CΘ∗
(
C∗ε

V
mis + εWmis/(1− γ)

)
.

By combining (C.5.14) and (C.5.22), we have

J(π∗)− J(π̂dr) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V,Π log

NT

δ

+ 3C∆∗CΘ∗ min
{
C∗ε

V
vf + εWvf /(1− γ), C∗ε

V
mis + εWmis/(1− γ)

}
which conclude the proof. □

C.5.3. Proof of Lemma C.5.1

Proof. By Theorem C.7.6, with probability at least 1−δ, it holds for any (w, v,∆,Θ, π) ∈

W × V × F0 ×F1 × Π that

∣∣∣Ldr(w, v, π; ∆,Θ)− L̂dr(w, v, π; ∆,Θ)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CF0,F1,W,V,Π log

1

δ
log(NT ),

which concludes the proof of the lemma. □
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C.5.4. Proof of Lemma C.5.2

Proof. With a slight abuse of notations, we denote by

(w0, v0) ∈ argmin
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)

Ldr(w, v, π
∗; ∆∗,Θ∗),

(w1, v1) ∈ argmin
(w,v)∈confαmis,αvf

(∆,Θ,π∗)

Ldr(w, v, π
∗; ∆,Θ).

Then we have

∣∣∣∣ min
(w,v)∈confαmis,αvf

(∆∗,Θ∗,π∗)
Ldr(w, v, π

∗; ∆∗,Θ∗)− min
(w,v)∈confαmis,αvf

(∆,Θ,π∗)
Ldr(w, v, π

∗; ∆,Θ)

∣∣∣∣
= |Ldr(w0, v0, π

∗; ∆∗,Θ∗)− Ldr(w1, v1, π
∗; ∆,Θ)|

≤
∣∣Ldr(w0, v0, π

∗; ∆∗,Θ∗)− Ldr(w
π∗
, v0, π

∗; ∆∗,Θ∗)
∣∣

+ |Ldr(w
π, v1, π

∗; ∆∗,Θ∗)− Ldr(w1, v1, π
∗; ∆∗,Θ∗)|

+ |Ldr(w1, v1, π; ∆
∗,Θ∗)− Ldr(w1, v1, π; ∆,Θ)|

=
∣∣Φπ∗

mis(w0, V
π∗
; ∆∗,Θ∗)− Φπ∗

mis(w0, v0; ∆
∗,Θ∗)

∣∣︸ ︷︷ ︸
Term (I)

(C.5.23)

+
∣∣Φπ∗

mis(w1, V
π∗
; ∆∗,Θ∗)− Φπ∗

mis(w1, v1; ∆
∗,Θ∗)

∣∣︸ ︷︷ ︸
Term (II)

+ |Ldr(w1, v1, π
∗; ∆∗,Θ∗)− Ldr(w1, v1, π

∗; ∆,Θ)|︸ ︷︷ ︸
Term (III)

,

where in the first inequality, we use triangle inequality and the fact that Ldr(w
π∗
, v, π∗; ∆∗,Θ∗) =

J(π∗) for any function v; while in the last equality, we use the following equality for any
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(w, v),

Ldr(w, v, π
∗; ∆∗,Θ∗)− Ldr(w

π∗
, v, π∗; ∆∗,Θ∗) = −Φπ∗

mis(w, V
π∗
; ∆∗,Θ∗) + Φπ∗

mis(w, v; ∆
∗,Θ∗).

We upper bound terms (I), (II), and (III) on the RHS of (C.5.23), respectively.

Upper Bounding Term (I). Note that with probability at least 1− δ, we have

∣∣Φπ∗

mis(w0, V
π∗
; ∆∗,Θ∗)

∣∣ ≤ max
f∈V

∣∣Φπ∗

mis(w0, f ; ∆
∗,Θ∗)

∣∣
= max

f∈V
max

{
Φπ∗

mis(w0, f ; ∆
∗,Θ∗),−Φπ∗

mis(w0, f ; ∆
∗,Θ∗)

}
= max

f∈V
max

{
Φπ∗

mis(w0, f ; ∆
∗,Θ∗),Φπ∗

mis(w0,−f ; ∆∗,Θ∗)
}

= max
f∈V

Φπ∗

mis(w0, f ; ∆
∗,Θ∗)

≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V log

1

δ
log(NT ),

where in the first inequality, we use the fact that V π∗ ∈ V ; in the third equality, we use the

fact that V is symmetric; in the last inequality, by noting that w0 ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confπαmis
(∆,Θ),

we use Lemma 4.4.12. Similarly, we have

∣∣Φπ∗

mis(w0, v0; ∆
∗,Θ∗)

∣∣ ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V log

1

δ
log(NT ),

which implies that

Term (I) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V log

1

δ
log(NT ).(C.5.24)
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Upper Bounding Term (II). Similar to (C.5.24), with probability at least 1 − δ, we

have

Term (II) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
CF0,F1,W,V log

1

δ
log(NT ).(C.5.25)

Upper Bounding Term (III). Note that with probability at least 1 − δ, it holds for

any (∆,Θ) ∈ conf0α0
× conf1α1

that

Term (III)

= E

[
1

T

T−1∑
t=0

(
Z⊤

t Atπ
∗(At |St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ
∗(At |St)

∆(St, At)Θ(St, Zt)

)
w1(St) (Rt + γv1(St+1)− v1(St))

]

≤ C∆∗CΘ∗C∗

1− γ

(
ξ0CΘ∗

√
C∆∗

NTκ
CF0 log

1

δ
log(NT ) + ξ1C∆∗

√
CΘ∗

NTκ
CF1 log

1

δ
log(NT )

)
,

(C.5.26)

where we use triangle inequality and Assumption 4.4.4 in the last inequality.

Now, by plugging (C.5.24), (C.5.25), and (C.5.26) into (C.5.23), we conclude the proof

of the lemma. □

C.5.5. Proof of Lemma C.5.3

Proof. By the definition of ṽπ in (4.4.2), we know that ṽπ ∈ V . Thus, to show that

ṽπ ∈ confvfαvf
(∆∗,Θ∗, π) with a high probability, it suffices to show that

max
g∈W

Φ̂π
vf(ṽ

π, g; ∆∗,Θ∗)−max
g∈W

Φ̂π
vf(v̂

π
∆∗,Θ∗ , g; ∆∗,Θ∗) ≤ αvf.(C.5.27)



329

In the follows, we show that (C.5.27) holds with a high probability. For the simplicity of

notations, we denote by Φπ
vf(v, g; ∗) = Φπ

vf(v, g; ∆
∗,Θ∗) and v̂π∗ = v̂π∆∗,Θ∗ for any (π, v, g).

Note that

max
g∈W

Φ̂π
vf(ṽ

π, g; ∗)−max
g∈W

Φ̂π
vf(v̂

π
∗ , g; ∗)

= max
g∈W

Φ̂π
vf(ṽ

π, g; ∗)−max
g∈W

Φπ
vf(ṽ

π, g; ∗) + max
g∈W

Φπ
vf(ṽ

π, g; ∗)−max
g∈W

Φπ
vf(v̂

π
∗ , g; ∗)

+ max
g∈W

Φπ
vf(v̂

π
∗ , g; ∗)−max

g∈W
Φ̂π

vf(v̂
π
∗ , g; ∗)

≤ max
g∈W

Φ̂π
vf(ṽ

π, g; ∗)−max
g∈W

Φπ
vf(ṽ

π, g; ∗) + max
g∈W

Φπ
vf(v̂

π
∗ , g; ∗)−max

g∈W
Φ̂π

vf(v̂
π
∗ , g; ∗)

≤ 2max
v∈V

∣∣∣∣max
g∈W

Φ̂π
vf(v, g; ∗)−max

g∈W
Φπ

vf(v, g; ∗)
∣∣∣∣

≤ 2max
v∈V

max
g∈W

∣∣∣Φ̂π
vf(v, g; ∗)− Φπ

vf(v, g; ∗)
∣∣∣ ,

(C.5.28)

where in the first inequality, we use the fact that maxg∈W Φπ
vf(ṽ

π, g; ∗) ≤ maxg∈W Φπ
vf(v, g; ∗)

for any v due to the definition of ṽπ in (4.4.2); while in the second inequality, we use the

fact that ṽπ, v̂π∗ ∈ V . In the meanwhile, by Theorem C.7.6, with probability at least 1− δ,

it holds for any (π, v, g) ∈ Π× V ×W that

∣∣∣Φ̂π
vf(v, g; ∗)− Φπ

vf(v, g; ∗)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
CW,V,Π

NTκ
· log 1

δ
log(NT ),(C.5.29)

where we use Assumption (b) and ∥g∥∞ ≤ C∗ for any g ∈ W . Now, combining (C.5.28)

and (C.5.29), with probability at least 1− δ, we have

max
g∈W

Φ̂π
vf(ṽ

π, g; ∗)−max
g∈W

Φ̂π
vf(v̂

π
∗ , g; ∗) ≤ c · C∆∗CΘ∗C∗

1− γ

√
CW,V,Π

NTκ
· log 1

δ
log(NT ) = αvf,
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which implies that ṽπ ∈ confvfαvf
(∆∗,Θ∗, π) for any π ∈ Π. This concludes the proof of the

lemma. □

C.5.6. Proof of Lemma C.5.4

Proof. Since v ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confvfαvf
(∆,Θ, π), there exists a pair (∆̃, Θ̃) ∈

conf0α0
× conf1α1

such that v ∈ confvfαvf
(∆̃, Θ̃, π). For the simplicity of notations, we de-

note by

v† ∈ argmin
v∈V

max
g∈W

Φ̂π
vf(v, g; ∆̃, Θ̃),

i.e., v† = v̂π
∆̃,Θ̃

, which is defined in (4.3.2). By the definition of v† and v ∈ confvfαvf
(∆̃, Θ̃, π),

we know that

max
g∈W

Φ̂π
vf(v, g; ∆̃, Θ̃)−max

g∈W
Φ̂π

vf(v
†, g; ∆̃, Θ̃) ≤ αvf.(C.5.30)

Note that

max
g∈W

Φπ
vf(v, g; ∆

∗,Θ∗)

≤ 2 max
(v,g,∆,Θ)∈(V,W,F0,F1)

∣∣∣Φπ
vf(v, g; ∆,Θ)− Φ̂π

vf(v, g; ∆,Θ)
∣∣∣︸ ︷︷ ︸

Term (I)

+max
g∈W

Φπ
vf(v

†, g; ∆̃, Θ̃)︸ ︷︷ ︸
Term (II)

+max
g∈W

∣∣∣Φ̂π
vf(v, g; ∆

∗,Θ∗)− Φ̂π
vf(v, g; ∆̃, Θ̃)

∣∣∣︸ ︷︷ ︸
Term (III)

+αvf,

(C.5.31)
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where we use (C.5.30) in the last inequality. Now we upper bound terms (I), (II), and

(III) on the RHS of (C.5.31).

Upper Bounding Term (I). By Theorem C.7.6, with probability at least 1−δ, it holds

for any (v, g,∆,Θ, π) ∈ (V ,W ,F0,F1,Π) that

∣∣∣Φ̂π
vf(v, g; ∆,Θ)− Φπ

vf(v, g; ∆,Θ)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ),

which implies that with probability at least 1− δ, we have

Term (I) ≤ c · C∆∗CΘ∗C∗

1− γ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ).(C.5.32)

Upper Bounding Term (II). Recall that ṽπ ∈ argminv∈V maxw∈W Φπ
vf(v, w; ∆

∗,Θ∗).

Note that

max
g∈W

Φπ
vf(v

†, g; ∆̃, Θ̃)

≤ 2max
v∈V

max
g∈W

∣∣∣Φπ
vf(v, g; ∆̃, Θ̃)− Φ̂π

vf(v, g; ∆̃, Θ̃)
∣∣∣

+max
g∈W

Φ̂π
vf(v

†, g; ∆̃, Θ̃)−max
g∈W

Φ̂π
vf(ṽ

π, g; ∆̃, Θ̃) + max
g∈W

Φπ
vf(ṽ

π, g; ∆̃, Θ̃)

≤ 2max
v∈V

max
g∈W

∣∣∣Φπ
vf(v, g; ∆̃, Θ̃)− Φ̂π

vf(v, g; ∆̃, Θ̃)
∣∣∣(C.5.33)

+ max
g∈W

∣∣∣Φπ
vf(ṽ

π, g; ∆̃, Θ̃)− Φπ
vf(ṽ

π, g; ∆∗,Θ∗)
∣∣∣+max

g∈W
Φπ

vf(ṽ
π, g; ∆∗,Θ∗),

where we use triangle inequality and the fact that v† ∈ argminv∈V maxg∈W Φ̂π
vf(v, g; ∆,Θ)

in the last inequality. In the meanwhile, by Theorem C.7.6, with probability at least 1−δ,
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it holds for any (v, g, π) ∈ V ×W × Π that

∣∣∣Φπ
vf(v, g; ∆̃, Θ̃)− Φ̂π

vf(v, g; ∆̃, Θ̃)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
CV,W,Π

NTκ
log

1

δ
log(NT ).(C.5.34)

Also, we upper bound the second term on the RHS of (C.5.33) with probability at least

1− δ by a similar argument as in (C.3.14),

∣∣∣Φπ
vf(ṽ

π, g; ∆̃, Θ̃)− Φπ
vf(ṽ

π, g; ∆∗,Θ∗)
∣∣∣

≤ C∆∗CΘ∗C∗

1− γ

(
ξ0CΘ∗

√
C∆∗

NTκ
CF0 log

1

δ
log(NT ) + ξ1C∆∗

√
CΘ∗

NTκ
CF1 log

1

δ
log(NT )

)
,

(C.5.35)

where in the first inequality, we use the fact that ∥v∥∞ ≤ 1/(1−γ) and ∥g∥∞ ≤ C∗; in the

third inequality, we use Cauchy Schwarz inequality; while in the last inequality, we use

Assumption 4.4.4 with (∆,Θ) ∈ conf0α0
× conf1α1

. Now, by plugging (C.5.34) and (C.5.35)

into (C.5.33), with probability at least 1−δ, it holds for any (∆,Θ, π) ∈ conf0α0
×conf1α1

×Π

that

Term (II) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ) + max

g∈W
Φπ

vf(ṽ
π, g; ∆∗,Θ∗).

(C.5.36)
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Upper Bounding Term (III). Note that

∣∣∣Φ̂π
vf(v, g; ∆

∗,Θ∗)− Φ̂π
vf(v, g; ∆̃, Θ̃)

∣∣∣
≤

∣∣∣∣∣(Ê− E
)[ 1

T

T−1∑
t=0

g(St)

(
Z⊤

t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)

∆̃(St, At)Θ̃(St, Zt)

)
(Rt + γv(St+1))

]∣∣∣∣∣

+

∣∣∣∣∣E
[
1

T

T−1∑
t=0

g(St)

(
Z⊤

t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)

∆̃(St, At)Θ̃(St, Zt)

)
(Rt + γv(St+1))

]∣∣∣∣∣ .
(C.5.37)

For the first term on the RHS of (C.3.12), by Theorem C.7.6, with probability at least

1− δ, it holds for any (v, g, π) ∈ V ×W × Π that∣∣∣∣∣(Ê− E
)[ 1

T

T−1∑
t=0

g(St)

(
Z⊤

t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)

∆̃(St, At)Θ̃(St, Zt)

)
(Rt + γv(St+1))

]∣∣∣∣∣

≤ c · C∆∗CΘ∗C∗

1− γ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ).

(C.5.38)

For the second term on the RHS of (C.5.37), by a similar argument as in (C.3.14), with

probability at least 1− δ, it holds that∣∣∣∣∣E
[
1

T

T−1∑
t=0

g(St)

(
Z⊤

t Atπ(At |St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)

∆̃(St, At)Θ̃(St, Zt)

)
(Rt + γv(St+1))

]∣∣∣∣∣

≤ C∆∗CΘ∗C∗

1− γ

(
ξ0CΘ∗

√
C∆∗

NTκ
CF0 log

1

δ
log(NT ) + ξ1C∆∗

√
CΘ∗

NTκ
CF1 log

1

δ
log(NT )

)
,

(C.5.39)

where in the first inequality, we use the fact that ∥v∥∞ ≤ 1/(1−γ) and ∥g∥∞ ≤ C∗; in the

third inequality, we use Cauchy Schwarz inequality; while in the last inequality, we use
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Assumption 4.4.4 with the fact that (∆̃, Θ̃) ∈ conf0α0
× conf1α1

. Now, by plugging (C.5.38)

and (C.5.39) into (C.5.37), it holds with probability at least 1− δ that

∣∣∣Φ̂π
vf(v, g; ∆

∗,Θ∗)− Φ̂π
vf(v, g; ∆̃, Θ̃)

∣∣∣
≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ).(C.5.40)

Now, by plugging (C.5.32), (C.5.36), and (C.5.40) into (C.5.31), with probability at

least 1− δ, it holds for any v ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confvfαvf
(∆,Θ, π) and π ∈ Π that

max
g∈W

Φπ
vf(v, g; ∆

∗,Θ∗) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT )

+ max
g∈W

Φπ
vf(ṽ

π, g; ∆∗,Θ∗),

which concludes the proof of the lemma. □

C.5.7. Proof of Lemma C.5.5

Proof. First, by the definition of w̃π in (4.4.2), we know that w̃π ∈ W . For notation

simplicity, we denote by Φπ
mis(w, f ; ∗) = Φπ

mis(w, f ; ∆
∗,Θ∗) and ŵπ

∗ = ŵπ
∆∗,Θ∗ for any
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(π,w, f). Note that

max
f∈V

Φ̂π
mis(w̃

π, f ; ∗)−max
f∈V

Φ̂π
mis(ŵ

π
∗ , f ; ∗)

= max
f∈V

Φ̂π
mis(w̃

π, f ; ∗)−max
f∈V

Φπ
mis(w̃

π, f ; ∗) + max
f∈V

Φπ
mis(w̃

π, f ; ∗)−max
f∈V

Φπ
mis(ŵ

π
∗ , f ; ∗)

+ max
f∈V

Φπ
mis(ŵ

π
∗ , f ; ∗)−max

f∈V
Φ̂π

mis(ŵ
π
∗ , f ; ∗)

≤ max
f∈V

Φ̂π
mis(w̃

π, f ; ∗)−max
f∈V

Φπ
mis(w̃

π, f ; ∗) + max
f∈V

Φπ
mis(ŵ

π
∗ , f ; ∗)−max

f∈V
Φ̂π

mis(ŵ
π
∗ , f ; ∗)

≤ 2max
w∈W

∣∣∣∣max
f∈V

Φ̂π
mis(w, f ; ∗)−max

f∈V
Φπ

mis(w, f ; ∗)
∣∣∣∣

≤ 2max
w∈W

max
f∈V

∣∣∣Φ̂π
mis(w, f ; ∗)− Φπ

mis(w, f ; ∗)
∣∣∣ ,

(C.5.41)

where in the first inequality, we use the fact that maxf∈V Φ
π
mis(w̃

π, f ; ∗) ≤ maxf∈V Φ
π
mis(ŵ

π
∗ , f ; ∗)

by the definition of w̃π in (4.4.2); while in the second inequality, we use the fact that

w̃π, ŵπ
∗ ∈ W . In the meanwhile, by Theorem C.7.6, with probability at least 1 − δ, it

holds for any (w, f, π) ∈ W × V × Π that

∣∣∣Φ̂π
mis(w, f ; ∗)− Φπ

mis(w, f ; ∗)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CV,W,Π log

1

δ
log(NT ),(C.5.42)

where we use Assumption (b). Now, combining (C.5.41) and (C.5.42), with probability

at least 1− δ, we have

max
f∈V

Φ̂π
mis(w̃

π, f ; ∗)−max
f∈V

Φ̂π
mis(ŵ

π
∗ , f ; ∗)

≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CV,W,Π log

1

δ
log(NT ) = αmis,
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which implies that w̃π ∈ confmis
αmis

(∆∗,Θ∗, π). This concludes the proof of the lemma. □

C.5.8. Proof of Lemma C.5.6

Proof. Since w ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π), there exists a pair (∆̃, Θ̃) ∈

conf0α0
× conf1α1

such that w ∈ confmis
αmis

(∆̃, Θ̃, π). For the simplicity of notations, we denote

by

w† ∈ argmin
w∈W

max
f∈V

Φ̂π
mis(w, f ; ∆̃, Θ̃),

i.e., w† = ŵπ
∆̃,Θ̃

, which is defined in (4.3.5). By the definition of w† and w ∈ confmis
αmis

(∆̃, Θ̃, π),

with probability at least 1− δ, it holds for any π ∈ Π and w ∈ confmis
αmis

(∆̃, Θ̃, π) that

max
f∈V

Φ̂π
mis(w, f ; ∆̃, Θ̃)−max

f∈V
Φ̂π

mis(w
†, f ; ∆̃, Θ̃) ≤ αmis.(C.5.43)

Further, we observe that

max
f∈V

Φπ
mis(w, f ; ∆

∗,Θ∗)

≤ max
(w,f,∆,Θ)∈(W,V,F0,F1)

∣∣∣Φπ
mis(w, f ; ∆,Θ)− Φ̂π

mis(w, f ; ∆,Θ)
∣∣∣︸ ︷︷ ︸

Term (I)

+max
f∈V

Φπ
mis(w

†, f ; ∆̃, Θ̃)︸ ︷︷ ︸
Term (II)

(C.5.44)

+ max
f∈V

∣∣∣Φ̂π
mis(w, f ; ∆

∗,Θ∗)− Φ̂π
mis(w, f ; ∆̃, Θ̃)

∣∣∣︸ ︷︷ ︸
Term (III)

+αmis,

where we use (C.5.43) in the last inequality. Now we upper bound terms (I), (II), and

(III) on the RHS of (C.5.44).
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Upper Bounding Term (I). By Theorem C.7.6, with probability at least 1−δ, it holds

for any (w, f,∆,Θ, π) ∈ (W ,V ,F0,F1,Π) that

∣∣∣Φ̂π
mis(w, f ; ∆,Θ)− Φπ

mis(w, f ; ∆,Θ)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CF0,F1,W,V,Π log

1

δ
log(NT ),

which implies that with probability at least 1− δ, we have

Term (I) ≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CF0,F1,W,V,Π log

1

δ
log(NT ).(C.5.45)

Upper Bounding Term (II). Recall that w̃π ∈ argminw∈W maxv∈V Φ
π
mis(w, v; ∆

∗,Θ∗).

Note that

max
f∈V

Φπ
mis(w

†, f ; ∆̃, Θ̃)

= max
f∈V

Φπ
mis(w

†, f ; ∆̃, Θ̃)−max
f∈V

Φ̂π
mis(w

†, f ; ∆̃, Θ̃) + max
f∈V

Φ̂π
mis(w

†, f ; ∆̃, Θ̃)

−max
f∈V

Φ̂π
mis(w̃

π, f ; ∆̃, Θ̃) + max
f∈V

Φ̂π
mis(w̃

π, f ; ∆̃, Θ̃)−max
f∈V

Φπ
mis(w̃

π, f ; ∆̃, Θ̃)

+ max
f∈V

Φπ
mis(w̃

π, f ; ∆̃, Θ̃)

≤ 2max
w∈W

max
f∈V

∣∣∣Φπ
mis(w, f ; ∆̃, Θ̃)− Φ̂π

mis(w, f ; ∆̃, Θ̃)
∣∣∣

+max
f∈V

∣∣∣Φπ
mis(w̃

π, f ; ∆̃, Θ̃)− Φπ
mis(w̃

π, f ; ∆∗,Θ∗)
∣∣∣+max

f∈V
Φπ

mis(w̃
π, f ; ∆∗,Θ∗),

(C.5.46)

where we use triangle inequality and the fact that w† ∈ argminw∈W maxf∈V Φ̂
π
mis(w, f ; ∆,Θ)

in the last inequality. In the meanwhile, by Theorem C.7.6, with probability at least 1−δ,
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it holds for any (w, f, π) ∈ W × V × Π that

∣∣∣Φπ
mis(w, f ; ∆̃, Θ̃)− Φ̂π

mis(w, f ; ∆̃, Θ̃)
∣∣∣ ≤ c · C∆∗CΘ∗C∗

1− γ

√
1

NTκ
CV,W,Π log

1

δ
log(NT ).

(C.5.47)

Also, we upper bound the second term on the RHS of (C.5.46) with probability at least

1− δ as follows,

∣∣∣Φπ
mis(w̃

π, f ; ∆̃, Θ̃)− Φπ
mis(w̃

π, f ; ∆∗,Θ∗)
∣∣∣

=

∣∣∣∣∣E
[
1

T

T−1∑
t=0

(
Z⊤

t Atπ(At |St)w(St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)w(St)

∆̃(St, At)Θ̃(St, Zt)

)
(f(St)− γf(St+1))

]∣∣∣∣∣

≤ C∆∗CΘ∗C∗

1− γ

(
ξ0CΘ∗

√
C∆∗

NTκ
CF0 log

1

δ
log(NT ) + ξ1C∆∗

√
CΘ∗

NTκ
CF1 log

1

δ
log(NT )

)
,

(C.5.48)

where we use Cauchy-Schwarz inequality and Assumption 4.4.4 in the last inequality.

Now, by plugging (C.5.47) and (C.5.48) into (C.5.46), it holds with probability at least

1− δ that

Term (II) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ) + max

f∈V
Φπ

mis(w̃
π, f ; ∆∗,Θ∗).

(C.5.49)
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Upper Bounding Term (III). Note that

∣∣∣Φ̂π
mis(w, f ; ∆

∗,Θ∗)− Φ̂π
mis(w, f ; ∆̃, Θ̃)

∣∣∣
≤

∣∣∣∣∣(Ê− E
)[ 1

T

T−1∑
t=0

(
Z⊤

t Atπ(At |St)w(St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)w(St)

∆̃(St, At)Θ̃(St, Zt)

)
(f(St)− γf(St+1))

]∣∣∣∣∣

+

∣∣∣∣∣E
[
1

T

T−1∑
t=0

(
Z⊤

t Atπ(At |St)w(St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)w(St)

∆̃(St, At)Θ̃(St, Zt)

)
(f(St)− γf(St+1))

]∣∣∣∣∣ .
(C.5.50)

For the first term on the RHS of (C.5.50), by Theorem C.7.6, with probability at least

1− δ, it holds for any (w, f, π) ∈ W × V × Π that∣∣∣∣∣(Ê− E
)[ 1

T

T−1∑
t=0

(
Z⊤

t Atπ(At |St)w(St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)w(St)

∆̃(St, At)Θ̃(St, Zt)

)
(f(St)− γf(St+1))

]∣∣∣∣∣

≤ c · C∆∗CΘ∗C∗

1− γ

√
CF0,F1,W,V,Π

NTκ
log

1

δ
log(NT ).

(C.5.51)

For the second term on the RHS of (C.5.50), by a similar argument as in (C.3.14), it

holds with probability at least 1− δ that∣∣∣∣∣E
[
1

T

T−1∑
t=0

(
Z⊤

t Atπ(At |St)w(St)

∆∗(St, At)Θ∗(St, Zt)
− Z⊤

t Atπ(At |St)w(St)

∆̃(St, At)Θ̃(St, Zt)

)
(f(St)− γf(St+1))

]∣∣∣∣∣

≤ 2C∆∗CΘ∗C∗

1− γ

(
ξ0CΘ∗

√
C∆∗

NTκ
CF0 log

1

δ
log(NT ) + ξ1C∆∗

√
CΘ∗

NTκ
CF1 log

1

δ
log(NT )

)
,

(C.5.52)

where in the first inequality, we use the fact that ∥f∥∞ ≤ 1/(1 − γ) and ∥w∥∞ ≤ C∗;

in the third inequality, we use Cauchy Schwarz inequality; while in the last inequality,
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we use Assumption 4.4.4 with the fact that (∆̃, Θ̃) ∈ conf0α0
× conf1α1

. Now, by plugging

(C.5.51) and (C.5.52) into (C.5.50), with probability at least 1 − δ, it holds for any

w ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π) and (f, π) ∈ V × Π that

∣∣∣Φ̂π
mis(w, f ; ∆

∗,Θ∗)− Φ̂π
mis(w, f ; ∆̃, Θ̃)

∣∣∣
≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ).(C.5.53)

Now, by plugging (C.5.45), (C.5.49), and (C.5.53) into (C.5.44), with probability at

least 1− δ, it holds for any π ∈ Π and w ∈ ∪(∆,Θ)∈conf0α0
×conf1α1

confmis
αmis

(∆,Θ, π) that

max
f∈V

Φπ
mis(w, f ; ∆

∗,Θ∗) ≤ c · C
2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT )

+ max
f∈V

Φπ
mis(w̃

π, f ; ∆∗,Θ∗),

which concludes the proof of the lemma. □

C.6. Proof of Results in §4.5

C.6.1. Proof of Theorem 4.5.1

Proof. We denote by (π̂, λ̂, v̂) the solution of (4.5.1). Note that (1 − γ)ES0∼ν [v(S0)]

is a lower bounded real-valued convex functional w.r.t. v, and M̂π∗

vf is also a convex

functional. In the meanwhile, we have M̂π∗

vf (v̂
π∗
∆∗,Θ∗) = 0. Thus, by Theorem 1 of §8.6 in
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Luenberger (1997), strong duality holds, i.e.,

max
λ≥0

min
v∈V

{
(1− γ)ES0∼ν [v(S0)] + λ ·

(
M̂π∗

vf (v)− αvf

)}
= min

v∈V
max
λ≥0

{
(1− γ)ES0∼ν [v(S0)] + λ ·

(
M̂π∗

vf (v)− αvf

)}
.(C.6.1)

By Lemma 4.4.7, it holds with probability at least 1− δ that M̂π
vf(V

π̂) ≤ αvf. Thus, with

probability at least 1− δ, we have

J(π∗)− J(π̂)

= (1− γ)ES0∼ν

[
V π∗

(S0)− V π̂(S0)
]

≤ (1− γ)ES0∼ν

[
V π∗

(S0)
]
−
(
(1− γ)ES0∼ν

[
V π̂(S0)

]
+ λ̂ ·

(
M̂ π̂

vf(V
π̂)− αvf

))
≤ (1− γ)ES0∼ν

[
V π∗

(S0)
]
−min

v∈V

{
(1− γ)ES0∼ν [v(S0)] + λ̂ ·

(
M̂ π̂

vf(v)− αvf

)}
= (1− γ)ES0∼ν

[
V π∗

(S0)
]
−max

π∈Π
max
λ≥0

min
v∈V

{
(1− γ)ES0∼ν [v(S0)] + λ ·

(
M̂π

vf(v)− αvf

)}

= (1− γ)ES0∼ν

[
V π∗

(S0)
]
−max

λ≥0
min
v∈V

{
(1− γ)ES0∼ν [v(S0)] + λ ·

(
M̂π∗

vf (v)− αvf

)}
,

(C.6.2)

where in the second inequality, we use the fact that V π̂ ∈ V ; in the third inequality, we

use the definition of π̂ and λ̂; in the last inequality, we use the fact that π∗ ∈ Π. By
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combining (C.6.1) and (C.6.2), we have

J(π∗)− J(π̂)

≤ (1− γ)ES0∼ν

[
V π∗

(S0)
]
−min

v∈V
max
λ≥0

{
(1− γ)ES0∼ν [v(S0)] + λ ·

(
M̂π∗

vf (v)− αvf

)}
≤ (1− γ)ES0∼ν

[
V π∗

(S0)
]
− min

v∈V : M̂π∗
vf (v)≤αvf

(1− γ)ES0∼ν [v(S0)]

≤ max
v∈V : M̂π∗

vf (v)≤αvf

∣∣(1− γ)ES0∼ν

[
V π∗

(S0)− v(S0)
]∣∣ .

(C.6.3)

Note that by Lemmas 4.2.7 and 4.2.8, we have

(1− γ)ES0∼ν

[
V π∗

(S0)− v(S0)
]
= Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗).(C.6.4)

By plugging (C.6.4) into (C.6.3), we have

J(π∗)− J(π̂) ≤ max
v∈V : M̂π∗

vf (v)≤αvf

∣∣Φπ∗

vf (v, w
π∗
; ∆∗,Θ∗)

∣∣
≤ c · C

2
∆∗C2

Θ∗C∗

1− γ
(ξ0 + ξ1)LΠ

√
1

NTκ
· CF0,F1,W,V,Π · log

1

δ
log(NT ),

where in the last inequality, we use Lemma 4.4.8 with the fact that wπ∗ ∈ W . This

concludes the proof. □

C.7. Auxiliary Results

We introduce auxiliary results used in the paper. We provide the proofs of these

results in §C.8. We first introduce the following definition of β-mixing coefficient.
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Definition C.7.1. Let {Zt}t≥0 be a sequence of random variables. For any i, j ∈ N∪{∞},

we denote by σj
i the sigma algebra generated by {Zk}i≤k≤j. The β-mixing coefficient of

{Zt}t≥0 is defined as β(t) = supn EB∈σn
0
[supA∈σ∞

n+t
|P(A |B)− P(A)|].

We introduce the following form of β-mixing coefficient for Markov chains.

Lemma C.7.2. Suppose {Zt}t≥0 is a Markov chain with initial distribution ζ. It holds

that

β(t) ≤ 1

2

∫
∥pt′(· | z)− pstat(·)∥TVdpstat(z) +

3

2

∫
∥pt′(· | z)− pstat(·)∥TVdζ(z),

where t′ = ⌊t/2⌋ and pn(· | z) is the the marginal the distribution of Zn given Z0 = z for

any n ∈ [N ].

Proof. See the proof of Lemma 1 in Meitz and Saikkonen (2021) for a detailed proof.

□

Following from Lemma C.7.2, we can upper bound the β-mixing coefficient for a

Markov chain {Zt}t≥0. Before that, we impose the following assumption on {Zt}t≥0.

Assumption C.7.3. The Markov chain {Zt}t≥0 with initial distribution ζ admits a

unique stationary distribution pstat over Z and is geometrically ergodic, i.e., there ex-

ists a function φ : Z → [0,∞) and a constant κ > 0 such that

∥pstat(·)− pt(· | z0)∥TV ≤ φ(z0) · exp (−2κt) ,

where pt(· | z0) is the marginal distribution of Zt given Z0 = z0 and there exists a positive

absolute constant c such that
∫
φ(z)dζ(z) ≤ c and

∫
φ(z)dpstat(z) ≤ c.
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Lemma C.7.4. Suppose {Zt}t≥0 is a Markov chain satisfying Assumption C.7.3. Then

we have β(t) ≤ c · exp(−κt) for any t ≥ 0.

Proof. For any t ≥ 0, by Lemma C.7.2, we have

β(t) ≤ 1

2

∫
∥pt′(· | z)− pstat(·)∥TVdpstat(z) +

3

2

∫
∥pt′(· | z)− pstat(·)∥TVdζ(z)

≤ 1

2

∫
φ(z) · exp (−κt) dpstat(z) +

3

2

∫
φ(z) · exp (−κt) dζ(z)

≤ c · exp(−κt),

where in the second and last inequalities, we use Assumption C.7.3. This concludes the

proof of the lemma. □

C.7.1. Concentration Inequality for Geometrically Ergodic Non-Stationary

Sequence

We first introduce the following lemma, which is a straight-forward genelization of Berbee’s

lemma (Berbee, 1979).

Lemma C.7.5. For any k > 0 and a random sequence {Yℓ}kℓ=1, there exists a random

sequence {Ỹℓ}kℓ=1 such that

(1) {Ỹℓ}kℓ=1 are independent;

(2) for any 1 ≤ ℓ ≤ k, Ỹℓ and Yℓ have the same distribution;

(3) for any 1 ≤ ℓ ≤ k, P(Ỹℓ ̸= Yℓ) = β(σ({Yℓ′}ℓ−1
ℓ′=1), σ({Yℓ})).

Proof. See Lemma 2.10 in Barrera and Gobet (2021) for a detailed proof. □
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We introduce the following Hoeffding’s Inequality and Bernstein’s Inequality for geo-

metrically ergodic non-stationary sequences.

Theorem C.7.6 (Hoeffding’s Inequality for geometrically ergodic non-stationary se-

quences). We denote by {Xt}t≥0 ⊆ X a Markov chain satisfying Assumption C.7.3. Then

for any function f : X → [−fmax, fmax], it holds with probability at least 1 − δ with

c/(NT )2 ≤ δ ≤ 1 that∣∣∣∣∣∣ 1

NT

∑
i∈[N ]

T−1∑
t=0

f(X i
t)− E

[
1

T

T−1∑
t=0

f(Xt)

]∣∣∣∣∣∣ ≤ c · fmax

√
1

NTκ
log

2

δ
log(NT ),

where {{X i
t}T−1

t=0 }i∈[N ] consists of N i.i.d. trajectories with length T > 0 generated from

the same distribution as {Xt}t≥0.

Proof. See §C.8.1 for a detailed proof. □

Theorem C.7.7 (Bernstein’s Inequality for geometrically ergodic non-stationary se-

quences). We denote by {Xt}t≥0 ⊆ X a Markov chain satisfying Assumption C.7.3. Then

for any function f : X → [−fmax, fmax], it holds with probability at least 1 − δ with

c/(NT )2 ≤ δ ≤ 1 that

1

NT

∑
i∈[N ]

T−1∑
t=0

f(X i
t)− E

[
1

T

T−1∑
t=0

f(Xt)

]

≤ c1 ·
fmax

NTκ
log

2

δ
log(NT ) + c2 ·

√√√√ 1

NTκ
E

[
1

T

T−1∑
t=0

f(Xt)2

]
log

2

δ
log(NT ),

where c1 and c2 are positive absolute constants, and {{X i
t}T−1

t=0 }i∈[N ] consists of N i.i.d.

trajectories with length T > 0 generated from the same distribution as {Xt}t≥0.
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Proof. See §C.8.2 for a detailed proof. □

C.7.2. Empirical Processes for Geometrically Ergodic Non-Stationary Sequence

For any conditional probabilities p1(y |x) and p2(y |x) such that (x, y) ∈ X ×Y , we define

the squared Hellinger distance as follows,

h2 (p1(· |x), p2(· |x)) =
1

2

∫ (√
p1(y |x)−

√
p2(y |x)

)2
dy.

We further assume that Y is a discrete space. We denote by p∗(y |x) the true conditional

probability of y ∈ Y given x ∈ X . Also, let {(Xt, Yt)}t≥0 ⊂ X × Y be a Markov chain

such that Yt ∼ p∗(· |Xt) and satisfies Assumption C.7.3. Further, we denote by µt the

marginal distribution of Xt for any t ≥ 0. In the meanwhile, with µ = 1/T ·
∑T−1

t=0 µt, we

define the generalized squared Hellinger distance over µ as follows,

H2(p1, p2) = EX∼µ

[
h2 (p1(· |X), p2(· |X))

]
.

In the meanwhile, we are given a data set {{(X i
t , Y

i
t )}T−1

t=0 }i∈[N ] consisting ofN independent

trajectories of length T , where {(X i
t , Y

i
t )}T−1

t=0 is generated from the same distribution as

{(Xt, Yt)}t≥0. We construct the following maximum likelihood estimator for p∗,

p̂ ∈ argmax
p∈P

Ê [log p(Y |X)] =
1

NT

∑
i∈[N ]

T−1∑
t=0

log p(Y i
t |X i

t).(C.7.1)

We also define

gp(x, y) =
1

2
log

p(y |x) + p∗(y |x)
2p∗(y |x)
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for any (x, y) ∈ X × Y .

Now, we are ready to introduce the following lemma.

Lemma C.7.8. We have

H2

(
p̂+ p∗

2
, p∗
)
≤
(
Ê− E

)
[gp̂(X, Y )] ,

H2

(
p1 + p∗

2
,
p2 + p∗

2

)
≤ 1

2
H2(p1, p2),

H2(p, p∗) ≤ 16H2

(
p+ p∗

2
, p∗
)
,

∥p1(· |x)− p2(· |x)∥1 ≤ 2
√
2h (p1(· |x), p2(· |x)) .

Proof. See §C.8.3 for a detailed proof. □

We define the entropy integral as follows,

JB(δ,P
1/2

(δ)) = max

{∫ δ

δ2/210

(
HB(u,P

1/2
(δ))

)1/2
du, δ

}
,

where HB(u,P
1/2

(δ)) is the entropy of the space P1/2
(δ) with bracketing, and P1/2

(δ) is

defined as follows,

P1/2
(δ) = {p1/2 : p ∈ P and H2(p, p∗) ≤ δ2}.

Now, we introduce the following theorem, which upper bounds the distance between p̂

and p∗.

Theorem C.7.9. We take Ψ(δ) ≥ JB(δ,P
1/2

(δ)) in such a way that Ψ(δ)/δ2 is a non-

increasing function of δ. Then for a universal constant c and any δ ≥ δNT , where

δNT satisfies that
√
NTδ2NT ≥ cΨ(δNT ), it holds with probability at least 1 − c/κ ·
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exp(−NTκδ2/(c2 log(NT )))− c/(N2T 2) · log(4/δ) that

H2(p̂, p∗) ≤ δ2,

where p̂ is defined in (C.7.1).

Proof. See §C.8.4 for a detailed proof. □

We study the following case, where P is a parametric class.

Corollary C.7.10 (Parametric Class). Suppose P = {pθ : θ ∈ Rd and ∥θ∥2 ≤ θmax}.

Then with probability at least 1− δ with c/(N2T 2) · log(NT ) ≤ δ ≤ 1, we have

H2(p̂, p∗) ≤ c · d

NTκ
log

θmax

δ
log(NT ),

where c > 0 is an absolute constant, which may vary from lines to lines.

Proof. Note that

JB(δ,P
1/2

(δ), d) ≤ δ

√
d log

θmax

δ
.

By taking Ψ(δ) = δ
√
d log(θmax/δ), we have

P
(
H2(p̂, p∗) ≤ c · d

NTκ
log

θmax

δ
log(NT )

)
≥ 1− δ

with c/(N2T 2) · log(NT ) ≤ δ ≤ 1, which concludes the proof of the corollary. □
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C.8. Proofs of Auxiliary Results

C.8.1. Proof of Theorem C.7.6

Proof. We take τ = min{T, 3/κ · log(NT )}, and denote by Estat[·] the expectation

taken with respect to the stationary distribution of {Xt}t≥0. We observe the following

decomposition,

1

NT

∑
i∈[N ]

T−1∑
t=0

f(X i
t)− E

[
1

T

T−1∑
t=0

f(Xt)

]

=
τ

T

 1

Nτ

∑
i∈[N ]

τ−1∑
t=0

f(X i
t)− E

[
1

τ

τ−1∑
t=0

f(Xt)

]
︸ ︷︷ ︸

(I)

]

+
T − τ
T

 1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

f(X i
t)− Estat [f(X)]


︸ ︷︷ ︸

(II)

+
T − τ
T

(
Estat [f(X)]− E

[
1

T − τ

T−1∑
t=τ

f(Xt)

])
︸ ︷︷ ︸

(III)

.

In the follows, we upper bound terms (I), (II), and (III), respectively.

Upper Bounding Term (I). Since {{X i
t}T−1

t=0 }i∈[N ] are i.i.d. accross each trajectory, by

standard Hoeffding’s inequality, with probability at least 1− δ, we have

|(I)| ≤ fmax

√
2

N
log

2

δ
.(C.8.1)
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Upper Bounding Term (II). We consider an auxiliary Markov chain {{X̃ i
t}T−1

t=0 }i∈[N ],

where the i-th trajectory {X̃ i
t}T−1

t=0 is sampled such that X̃ i
0 ∼ pstat. Here pstat is the

stationary distribution of {Xt}t≥0. Similarly, we define the following quantity,

(ĨI) =
1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

f(X̃ i
t)− Estat [f(X)] .

Now, for any x ≥ 0, we upper bound the difference P((II) ≥ x)− P((ĨI) ≥ x) as follows,

P ((II) ≥ x)− P
(
(ĨI) ≥ x

)
≤ N

T−1∑
t=τ

E [∥pt(· |X0)− pstat(·)∥TV] ≤ c ·NT exp(−κτ).

(C.8.2)

Thus, by (C.8.2), to upper bound P((II) ≥ x), it suffices to upper bound P((ĨI) ≥ x).

To upper bound P((ĨI) ≥ x), we take T − τ = 2ks, where k and s are two positive

integers for the simplicity of presentation. We partition the set {τ, τ + 1, . . . , T − 1} as

follows,

J1 = {τ, τ + 1, . . . , τ + s− 1}, J2 = {τ + s, τ + s+ 1, . . . , τ + 2s− 1}, . . . ,

J2k−1 = {T − 2s, T − 2s+ 1, . . . , T − s− 1}, J2k = {T − s, T − s+ 1, . . . , T − 1}.

Under such a partition, we see that ∪ℓ∈[2k]Jℓ = {τ, τ + 1, . . . , T − 1} and Jℓ ∩ Jℓ′ = ∅ for

any ℓ ̸= ℓ′. Also, for any i ∈ [N ], we define

Zi
ℓ = (X̃ i

t)t∈Jℓ
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for any ℓ ∈ [2k]. Now, for any i ∈ [N ], by Lemma C.7.5, there exists a sequence {W i
ℓ}ℓ∈[2k],

where W i
ℓ = (Ỹ i

t )t∈Jℓ such that

(1) {W i
ℓ}ℓ∈[2k] are independent;

(2) for any ℓ ∈ [2k], W i
ℓ and Zi

ℓ have the same distribution;

(3) for any ℓ ∈ [2k], P(W i
ℓ ̸= Zi

ℓ) = β(σ({Zi
ℓ′}ℓ′∈[ℓ−1]), σ({Zi

ℓ})).

Note that the following inclusion relation holds,{
1

s

∑
t∈Jℓ

f(X̃ i
t)− Estat[f(X)] ≥ xℓ

}
⊆

{
1

s

∑
t∈Jℓ

f(Ỹ i
t )− Estat[f(X)] ≥ xℓ

}
∪ {W i

ℓ ̸= Zi
ℓ}

for any xℓ ∈ R. Thus, we have

P
(
(ĨI) ≥ x

)
≤ P

 1

kN

∑
i∈[N ],ℓ is odd

1

s

∑
t∈Jℓ

f(X̃ i
t)− Estat[f(X)] ≥ x


+ P

 1

kN

∑
i∈[N ],ℓ is even

1

s

∑
t∈Jℓ

f(X̃ i
t)− Estat[f(X)] ≥ x


≤ P

 1

kN

∑
i∈[N ],ℓ is odd

1

s

∑
t∈Jℓ

f(Ỹ i
t )− Estat[f(X)] ≥ x


+ P

 1

kN

∑
i∈[N ],ℓ is even

1

s

∑
t∈Jℓ

f(Ỹ i
t )− Estat[f(X)] ≥ x

+
∑
ℓ∈[2k]

P(W i
ℓ ̸= Zi

ℓ)

≤ 2 exp

(
−kNx

2

2f 2
max

)
+ 2kβ(s),

where we use Hoeffding’s inequality in the last line. Similarly, we have

P
(
(ĨI) ≤ −x

)
≤ 2 exp

(
−kNx

2

2f 2
max

)
+ 2kβ(s).
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Thus, we have

P (|(II)| ≥ x) ≤ 4 exp

(
−kNx

2

2f 2
max

)
+ 4kβ(s) + c ·NT exp(−κτ).

Now, by taking s = 3 log(NT )/κ, it holds with probability at least 1− δ with c/(NT )2 ≤

δ ≤ 1 that

|(II)| ≤ fmax

√
24

NTκ
log

4

δ
log(NT ).(C.8.3)

Upper Bounding Term (III). We observe that

|(III)| ≤ fmax ·
T−1∑
t=τ

c · exp(−κt) ≤ c · fmax

N2T 2
.(C.8.4)

Combining Everything. Now, by combining (C.8.1), (C.8.3), and (C.8.4), it holds with

probability at least 1− δ with c/(NT )2 ≤ δ ≤ 1 that

1

NT

∑
i∈[N ]

T−1∑
t=0

f(X i
t)− E

[
1

T

T−1∑
t=0

f(Xt)

]
≤ c · fmax

√
48

NTκ
log

4

δ
log(NT ),

which concludes the proof of the theorem. □

C.8.2. Proof of Theorem C.7.7

Proof. The proof follows from the proof of Theorem C.7.6 in §C.8.1. For the com-

pleteness of the paper, we present it here. We take τ = min{T, 3/κ · log(NT )}, and denote

by Estat[·] the expectation taken with respect to the stationary distribution of {Xt}t≥0.



353

We observe the following decomposition,

1

NT

∑
i∈[N ]

T−1∑
t=0

f(X i
t)− E

[
1

T

T−1∑
t=0

f(Xt)

]

=
τ

T

 1

Nτ

∑
i∈[N ]

τ−1∑
t=0

f(X i
t)− E

[
1

τ

τ−1∑
t=0

f(Xt)

]
︸ ︷︷ ︸

(I)

]

+
T − τ
T

 1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

f(X i
t)− Estat [f(X)]


︸ ︷︷ ︸

(II)

+
T − τ
T

(
Estat [f(X)]− E

[
1

T − τ

T−1∑
t=τ

f(Xt)

])
︸ ︷︷ ︸

(III)

.

In the follows, we upper bound terms (I), (II), and (III), respectively.

Upper Bounding Term (I). Since {{X i
t}T−1

t=0 }i∈[N ] are i.i.d. across each trajectory, by

standard Bernstein’s inequality, with probability at least 1− δ, we have

|(I)| ≤ 2fmax

3N
log

2

δ
+ 4

√√√√√ 4

N
E

(1

τ

τ−1∑
t=0

f(Xt)

)2
 log

2

δ

=
2fmax

3N
log

2

δ
+ 4

√√√√ 4

N
E

[
1

τ

τ−1∑
t=0

f(Xt)2

]
log

2

δ
.(C.8.5)

Upper Bounding Term (II). We consider an auxiliary dataset {{X̃ i
t}T−1

t=0 }i∈[N ], where

the i-th trajectory {X̃ i
t}T−1

t=0 is sampled such that X̃ i
0 ∼ pstat. Here pstat is the stationary
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distribution of {Xt}t≥0. Similarly, we define the following quantity,

(ĨI) =
1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

f(X̃ i
t)− Estat [f(X)] .

Now, for any x ≥ 0, we upper bound the difference P((II) ≥ x)− P((ĨI) ≥ x) as follows,

P ((II) ≥ x)− P
(
(ĨI) ≥ x

)
≤ N

T−1∑
t=τ

E [∥pt(· |X0)− pstat(·)∥TV] ≤ c ·NT exp(−κτ).

(C.8.6)

Thus, by (C.8.6), to upper bound P((II) ≥ x), it suffices to upper bound P((ĨI) ≥ x).

To upper bound P((ĨI) ≥ x), we take T − τ = 2ks, where k and s are two positive

integers for the simplicity of presentation. We partition the set {τ, τ + 1, . . . , T − 1} as

follows,

J1 = {τ, τ + 1, . . . , τ + s− 1}, J2 = {τ + s, τ + s+ 1, . . . , τ + 2s− 1}, . . . ,

J2k−1 = {T − 2s, T − 2s+ 1, . . . , T − s− 1}, J2k = {T − s, T − s+ 1, . . . , T − 1}.

Under such a partition, we see that ∪ℓ∈[2k]Jℓ = {τ, τ + 1, . . . , T − 1} and Jℓ ∩ Jℓ′ = ∅ for

any ℓ ̸= ℓ′. Also, for any i ∈ [N ], we define

Zi
ℓ = (X̃ i

t)t∈Jℓ

for any ℓ ∈ [2k]. Now, for any i ∈ [N ], by Lemma C.7.5, there exists a sequence {W i
ℓ}ℓ∈[2k],

where W i
ℓ = (Ỹ i

t )t∈Jℓ such that

(1) {W i
ℓ}ℓ∈[2k] are independent;
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(2) for any ℓ ∈ [2k], W i
ℓ and Zi

ℓ have the same distribution;

(3) for any ℓ ∈ [2k], P(W i
ℓ ̸= Zi

ℓ) = β(σ({Zi
ℓ′}ℓ′∈[ℓ−1]), σ({Zi

ℓ})).

Note that the following inclusion relation holds,{
1

s

∑
t∈Jℓ

f(X̃ i
t)− Estat[f(X)] ≥ xℓ

}
⊆

{
1

s

∑
t∈Jℓ

f(Ỹ i
t )− Estat[f(X)] ≥ xℓ

}
∪ {W i

ℓ ̸= Zi
ℓ}

for any xℓ ∈ R. Thus, we have

P
(
(ĨI) ≥ x

)
≤ P

 1

kN

∑
i∈[N ],ℓ is odd

1

s

∑
t∈Jℓ

f(X̃ i
t)− Estat[f(X)] ≥ x


+ P

 1

kN

∑
i∈[N ],ℓ is even

1

s

∑
t∈Jℓ

f(X̃ i
t)− Estat[f(X)] ≥ x


≤ P

 1

kN

∑
i∈[N ],ℓ is odd

1

s

∑
t∈Jℓ

f(Ỹ i
t )− Estat[f(X)] ≥ x


+ P

 1

kN

∑
i∈[N ],ℓ is even

1

s

∑
t∈Jℓ

f(Ỹ i
t )− Estat[f(X)] ≥ x

+
∑
ℓ∈[2k]

P(W i
ℓ ̸= Zi

ℓ)

≤ exp

− 3k2N2x2

6
∑

i∈[N ],ℓ is odd E
[(

1
s

∑
t∈Jℓ f(Ỹ

i
t )
)2]

+ 2fmaxNkx



+ exp

− 3k2N2x2

6
∑

i∈[N ],ℓ is even E
[(

1
s

∑
t∈Jℓ f(Ỹ

i
t )
)2]

+ 2fmaxNkx

+ 2kβ(s),(C.8.7)
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where we use Bernstein’s inequality in the last line. Note that for any (i, ℓ) ∈ [N ]× [2k],

we have

E

(1

s

∑
t∈Jℓ

f(Ỹ i
t )

)2
 = Estat

[
f(X)2

]
≤ E

[
1

T − τ

T−1∑
t=τ

f(Xt)
2

]
+ f 2

maxTc · exp(−κτ).

(C.8.8)

Combining (C.8.7) and (C.8.8), we have

P
(
(ĨI) ≥ x

)
≤ 2 exp

− 3k2N2x2

6kN
(
E
[

1
T−τ

∑T−1
t=τ f(Xt)2

]
+ f 2

maxβ(τ)
)
+ 2fmaxNkx

+ 2kβ(s).

Similarly, we have

P
(
(ĨI) ≤ −x

)
≤ 2 exp

− 3k2N2x2

6kN
(
E
[

1
T−τ

∑T−1
t=τ f(Xt)2

]
+ f 2

maxβ(τ)
)
+ 2fmaxNkx

+ 2kβ(s).

Thus, we have

P (|(II)| ≤ x) ≤ 4 exp

− 3k2N2x2

6kN
(
E
[

1
T−τ

∑T−1
t=τ f(Xt)2

]
+ f 2

maxβ(τ)
)
+ 2fmaxNkx


+ 4kβ(s) + c ·NT exp(−κτ).

Now, by taking s = 3 log(NT )/κ, it holds with probability at least 1− δ with c/(NT )2 ≤

δ ≤ 1 that

|(II)| ≤ 2fmax

3NTκ
log

2

δ
+ 4

√√√√ 4

NTκ
E

[
1

T − τ

T−1∑
t=τ

f(Xt)2

]
log

2

δ
.(C.8.9)
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Upper Bounding Term (III). We observe that

|(III)| ≤ fmax ·
T−1∑
t=τ

c · exp(−κt) ≤ c · fmax

N2T 2
.(C.8.10)

Combining Everything. Now, by combining (C.8.5), (C.8.9), and (C.8.10), it holds

with probability at least 1− δ with c/(NT )2 ≤ δ ≤ 1 that

1

NT

∑
i∈[N ]

T−1∑
t=0

f(X i
t)− E

[
1

T

T−1∑
t=0

f(Xt)

]

≤ 24fmax

NTκ
log

2

δ
log(NT ) + 48

√√√√ 1

NTκ
E

[
1

T

T−1∑
t=0

f(Xt)2

]
log

2

δ
log(NT ),

which concludes the proof of the theorem. □

C.8.3. Proof of Lemma C.7.8

Proof. The proof follows from the proofs of Lemmas 4.1 and 4.2 in Geer et al. (2000).

First Inequality. By the optimality of p̂, we have

Ê [log p̂(Y |X)] ≥ Ê [log p∗(Y |X)] ,

which implies that

∫
log

p̂

p∗
dp̃∗dµ̃ ≥ 0,
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where p̃∗ and µ̃ are empirical counterparts of p∗ and µ. Now, by the concavity of log(·),

we have

log
p̂+ p∗

2p∗
≥ 1

2
log

p̂

p∗
+

1

2
log

p∗

p∗
=

1

2
log

p̂

p∗
.

By the above two inequalities, we have

0 ≤ 1

4

∫
log

p̂

p∗
dp̃∗dµ̃ ≤ 1

2

∫
log

p̂+ p∗

2p∗
dp̃∗dµ̃

=
1

2

∫
log

p̂+ p∗

2p∗
(dp̃∗dµ̃− dp∗dµ) +

1

2

∫
log

p̂+ p∗

2p∗
dp∗dµ

=
(
Ê− E

)
[gp̂] +

1

2

∫
log

p̂+ p∗

2p∗
dp∗dµ.(C.8.11)

In the meanwhile, by the fact that log z ≤ 2(
√
z − 1) for any z > 0, we have

1

2

∫
log

p̂+ p∗

2p∗
dp∗dµ ≤

∫ (√
p̂+ p∗

2p∗
− 1

)
dp∗dµ

=

∫ (√
p̂+ p∗

2
· p∗ − 1

2
p∗ − 1

2
· p̂+ p∗

2

)
dydµ

= −
∫

1

2

(√
p̂+ p∗

2
−
√
p∗

)2

dydµ

= −H2

(
p̂+ p∗

2
, p∗
)
.(C.8.12)

By combining (C.8.11) and (C.8.12), we conclude the proof of the first inequality.
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Second&Third Inequality. We denote by p = (p + p∗)/2 for any p. We note the

following two facts,

p
1/2
1 + p

1/2
2

p
1/2
1 + p

1/2
2

≤
√
2,

∣∣∣p1/21 − p
1/2
2

∣∣∣ (p1/21 + p
1/2
2

)
= |p1 − p2| =

∣∣∣∣p1 − p22

∣∣∣∣ = 1

2

∣∣∣p1/21 − p
1/2
2

∣∣∣ (p1/21 + p
1/2
2

)
.

Thus, we have

∣∣∣p1/21 − p
1/2
2

∣∣∣ = 1

2
· p

1/2
1 + p

1/2
2

p
1/2
1 + p

1/2
2

·
∣∣∣p1/21 − p

1/2
2

∣∣∣ ≤ √2
2
·
∣∣∣p1/21 − p

1/2
2

∣∣∣ ,
which implies the second inequality. The third inequality can be proved in a similar way.

Forth Inequality. We note that

∥p1(· |x)− p2(· |x)∥1 =
∫
|p1(y |x)− p2(y |x)| dy

=

∫ (
p1(y |x)1/2 − p2(y |x)1/2

) (
p1(y |x)1/2 + p2(y |x)1/2

)
dy

=

√∫
(p1(y |x)1/2 − p2(y |x)1/2) dy

√∫
(p1(y |x)1/2 + p2(y |x)1/2) dy

≤ 2

√∫
(p1(y |x)1/2 − p2(y |x)1/2) dy = 2

√
2h (p1(· |x), p2(· |x)) ,

which concludes the proof. □
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C.8.4. Proof of Theorem C.7.9

Proof. The proof follows from the proof of Theorem 7.4 in Geer et al. (2000). We

define the events

E =
{
ω ∈ Ω: H2(p̂, p∗) > δ2

}
.

Conditioning on E , we have

(
Ê− E

)
[gp̂] ≥ H2(p̂, p∗) ≥ 1

16
H2(p̂, p∗) >

δ2

16
,(C.8.13)

where the first two inequalities come from Lemma C.7.8. We further define

E† =

{
ω ∈ Ω: sup

p∈P : H2(p,p∗)>δ2/16

(
Ê− E

)
[gp]−H2(p, p∗) ≥ 0

}
.

By (C.8.13) and the definitions of E and E†, we observe that E ⊆ E†. Thus, we only

need to upper bound P(E†). To do so, we use a peeling argument as follows. Let L =

min{ℓ : 2ℓ+1δ2/16 > 1}. We observe that

P(E†) ≤
L∑

ℓ=0

P(E†ℓ ),(C.8.14)

where

E†ℓ =

{
ω ∈ Ω: sup

p∈Pℓ

(
Ê[gp]− E[gp]

)
≥ 2ℓδ2/16

}
.

Here Pℓ = {p ∈ P : H2(p, p∗) ≤ 2ℓ+1δ2/16}. To upper bound P(E†ℓ ), we introduce the

following result.
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Theorem C.8.1. Given a Markov chain {Zt}t≥0 ⊂ Z satisfying Assumption C.7.3, and

take

v ≤ C1

√
NTR2/K,(C.8.15)

v ≤ 8
√
NTR,(C.8.16)

v ≥ C0 ·max

{∫ R

v/(26
√
NT )

(HB,K(u,G, P ))1/2 du,R
}
,(C.8.17)

v ≥ C2/(NT )
2,(C.8.18)

C2
0 ≥ C2(C1 + 1),(C.8.19)

where HB,K(u,G, P ) is the generalized entropy with bracketing. Then we have

P

sup
g∈G

√
NT

 1

NT

∑
i∈[N ]

T−1∑
t=0

g(Zi
t)− E

[
1

T

T−1∑
t=0

g(Zt)

] ≥ v


≤ 4C

κ
exp

(
− v2κ

18C2(C1 + 1)R2 log(NT )

)
+

2

N2T 2
,

where {Zi
t}T−1

t=0 } is generated from the same distribution as {Zt}t≥0 for any i ∈ [N ].

Proof. See §C.8.5 for a detailed proof. □

To invoke Theorem C.8.1, we take

v =
√
NT · 2ℓδ2/16, K = 1, R = 2ℓ/2δ, C1 = 15, C = c/64, C0 = c/16, C2 = c.
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It is easy to verify that (C.8.15), (C.8.16), (C.8.18), and (C.8.19) hold. For (C.8.17), since

√
NTδ2NT ≥ cΨ(δNT ), which implies that

√
NT ≥ c · Ψ(δNT )

δ2NT

≥ c · Ψ(2ℓ/2δ)

2ℓδ2
,

where we use the fact that Ψ(δ)/δ2 is a non-increasing function of δ. Thus, we have

16a ≥ c ·max

{∫ R

v/(26
√
NT )

(HB,1 (u, {gp : p ∈ Pℓ}, µ0))
1/2 du,R

}
,

which justifies (C.8.17) by noting that K = 1. Here, we use the fact that

HB,1(u, {gp : p ∈ Pℓ}, P ) ≤ HB

(
u√
2
, {p1/2 : p ∈ Pℓ}

)
.

Thus, by using Theorem C.8.1, we have

P(E†ℓ ) ≤
c

κ
exp

(
− NTκ2ℓδ2

c2 log(NT )

)
+

2

N2T 2
.

Further, by combining (C.8.14), we have

P(E†) ≤ c

κ
exp

(
−NTκδ

2

c2

)
+

c

N2T 2
log

4

δ
,

which concludes the proof of the theorem. □

C.8.5. Proof of Theorem C.8.1

Proof. We take τ = min{T, 3/κ·log(GmaxNT )}, where Gmax = max{maxg∈G maxz∈Z g(z), 1},

and denote by Estat[·] the expectation taken with respect to the stationary distribution of
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{Zt}t≥0. We have the following decomposition,

P

sup
g∈G

√
NT

 1

NT

∑
i∈[N ]

T−1∑
t=0

g(Zi
t)− E

[
1

T

T−1∑
t=0

g(Zt)

] ≥ v


= P

(
sup
g∈G

τ

T

(
1

Nτ

∑
i∈[N ]

τ−1∑
t=0

g(Zi
t)− E

[
1

τ

τ−1∑
t=0

g(Zt)

])

+
T − τ
T

(
1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

g(Zi
t)− Estat[g(Z)]

)

+
T − τ
T

(
Estat[g(Z)]− E

[
1

T − τ

T−1∑
t=τ

g(Zt)

])
≥ v√

NT

)

≤ P

sup
g∈G

τ

T

 1

Nτ

∑
i∈[N ]

τ−1∑
t=0

g(Zi
t)− E

[
1

τ

τ−1∑
t=0

g(Zt)

] ≥ v

3
√
NT



+ P

sup
g∈G

T − τ
T

 1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

g(Zi
t)− Estat [g(Z)]

 ≥ v

3
√
NT

 ,

(C.8.20)

where the last inequality comes from the fact that

sup
g∈G

T − τ
T

(
Estat[g(Z)]− E

[
1

T − τ

T−1∑
t=τ

g(Zt)

])

≤ sup
g∈G

T − τ
T

∫
g(z)

1

T − τ

T−1∑
t=τ

(
pstat(z)−

∫
pt(z | z0)dζ(z0)

)
dz

≤ 1

T
Gmax

T−1∑
t=τ

c · exp(−κt) ≤ Gmaxc exp(−κτ) ≤
v

3
√
NT

,
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where we use the fact that v ≥ C2/(NT )
2 for some constant C2. Thus, we only need

to upper bound the two terms on the RHS of (C.8.20). We first introduce the following

supporting results.

Lemma C.8.2. Take

v ≤ C1

√
nR2/K,

v ≤ 8
√
nR,

v ≥ C0 ·max

{∫ R

v/(26
√
n)

(logNB,K(u,G, P ))1/2 du,R
}
,

C2
0 ≥ C2(C1 + 1).

Then we have

P

sup
g∈G

∣∣∣∣∣∣√n
 1

n

∑
i∈[n]

g(Zi)− E [g(Z)]

∣∣∣∣∣∣ ≥ v

 ≤ C exp

(
− v2

C2(C1 + 1)R2

)
,

where {Zi}i∈[n] are i.i.d. samples drawn the same distribution as Z.

Proof. See Theorem 5.11 in Geer et al. (2000) for a detailed proof. □

Lemma C.8.3. Given a β-mixing sequence {Zt}t≥0 ⊂ Z with coefficient β(t) for any

t ≥ 0. There exists a sequence {Z∗
t }T−1

t=0 ⊂ Z and a set J such that

(1) J is a partition of {0, 1, . . . , T−1}, i.e., ∪J∈J J = {0, 1, . . . , T−1} and J1∩J2 = ∅

for any J1, J2 ∈ J ;

(2) for any 0 ≤ t ≤ T − 1, Z∗
t and Zt have the same distribution;

(3) for any J ∈ J , {Z∗
t }t∈J is an independent sequence;
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(4) it holds for any u ∈ R that

P

(
sup
g∈G

1

T

T−1∑
t=0

g(Zt)− E

[
1

T

T−1∑
t=0

g(Zt)

]
≥ u

)

≤
∑
J∈J

P

(
sup
g∈G

1

|J |
∑
t∈J

g(Z∗
t )− E

[
1

|J |
∑
t∈J

g(Zt)

]
≥ u

)

+
∑
J∈J

|J | · β (min{|t1 − t2| : t1 ̸= t2 ∈ J}) .

Proof. See Theorem 2.11 in Barrera and Gobet (2021) for a detailed proof. □

We upper bound two terms on the RHS of (C.8.20) as follows.

Upper Bounding the First Term on the RHS of (C.8.20). To upper bound the

first term, we invoke Lemma C.8.2. Since the sequence{
1

τ

τ−1∑
t=0

g(Zi
t)

}
i∈[n]

is i.i.d., we have

P

sup
g∈G

τ

T

 1

Nτ

∑
i∈[N ]

τ−1∑
t=0

g(Zi
t)− E

[
1

τ

τ−1∑
t=0

g(Zt)

] ≥ v

3
√
NT


≤ C exp

(
− v2T

9τ 2C2(C1 + 1)R2

)
≤ C exp

(
− v2

C2(C1 + 1)R2

)
.(C.8.21)

Upper Bounding the Second Term on the RHS of (C.8.20). To upper bound the

second term, we note that

P

sup
g∈G

T − τ
T

 1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

g(Zi
t)− Estat [g(Z)]

 ≥ v

3
√
NT

 = (i) + (ii),
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where

(i) = P

sup
g∈G

T − τ
T

 1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

g(Zi
t)− Estat [g(Z)]

 ≥ v

3
√
NT


− P

sup
g∈G

T − τ
T

 1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

g(Z̃i
t)− Estat [g(Z)]

 ≥ v

3
√
NT

 ,

(ii) = P

sup
g∈G

T − τ
T

 1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

g(Z̃i
t)− Estat [g(Z)]

 ≥ v

3
√
NT

 .

Here {Z̃i
t}T−1

t=0 are an auxiliary sequence for any i ∈ [N ], where Z̃i
0 is sampled from the

stationary distribution of the sequence {Zt}t≥0. To upper bound (i), we note that

(i) ≤
∑
i∈[N ]

T−1∑
t=τ

c · exp(−κt) ≤ NTc exp(−κτ) ≤ 1

N2T 2
.(C.8.22)

To upper bound (ii), we invoke Lemma C.8.3 by taking

J = {J1, J2, . . . , Js}, Jj = {τ + j − 1, τ + j + s− 1, . . . , T − s+ j} for any j ∈ [s].

Then there exists a sequence {{Z̃i∗
t }T−1

t=τ }i∈[N ] such that Z̃i∗
t and Z̃i

t have the same distri-

bution for any (i, t); {{Z̃∗
t }t∈J}i∈[N ] are independent; and it holds for any u ∈ R that

(ii) ≤
s∑

j=1

P

sup
g∈G

s

N(T − τ)
∑
i∈[N ]

∑
t∈Jj

g(Z̃i∗
t )− Estat [g(Z)] ≥

v

3
√
NT

T

T − τ

+ (T − τ) · β(s)

≤ s · C exp

(
− v2

9sC2(C1 + 1)R2

)
+ (T − τ)β(s),
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where we use Lemma C.8.2 in the last inequality. Now, by taking s = min{T, 3/κ ·

log(NT )}, we have

(ii) ≤ 3C

κ
exp

(
− v2κ

18C2(C1 + 1)R2 log(NT )

)
+

1

N2T 2
,(C.8.23)

where we use Lemma C.7.4 to upper bound β(s). Now, by combining (C.8.22) and

(C.8.23), we have

P

sup
g∈G

T − τ
T

 1

N(T − τ)
∑
i∈[N ]

T−1∑
t=τ

g(Zi
t)− Estat [g(Z)]

 ≥ v

3
√
NT


≤ 3C

κ
exp

(
− v2κ

18C2(C1 + 1)R2 log(NT )

)
+

2

N2T 2
.(C.8.24)

Combining Everything. By plugging (C.8.21) and (C.8.24) into (C.8.20), we have

P

sup
g∈G

√
NT

 1

NT

∑
i∈[N ]

T−1∑
t=0

g(Zi
t)− E

[
1

T

T−1∑
t=0

g(Zt)

] ≥ v


≤ 4C

κ
exp

(
− v2κ

18C2(C1 + 1)R2 log(NT )

)
+

2

N2T 2
,

which concludes the proof of the theorem. □
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