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ABSTRACT 

Linking Properties to Microstructure through Multiresolution Mechanics 

Cahal McVeigh 

 

The macroscale mechanical and physical properties of materials are inherently linked to the 

underlying microstructure. Traditional continuum mechanics theories have focused on 

approximating the heterogeneous microstructure as a continuum, which is conducive to a partial 

differential equation mathematical description. Although this makes large scale simulation of 

material much more efficient than modeling the detailed microstructure, the relationship between 

microstructure and macroscale properties becomes unclear. In order to perform computational 

materials design, material models must clearly relate the key underlying microstructural 

parameters (cause) to macroscale properties (effect).   

In this thesis, microstructure evolution and instability events are related to macroscale 

mechanical properties through a new multiresolution continuum analysis approach. The 

multiresolution nature of this theory allows prediction of the evolving magnitude and scale of 

deformation as a direct function of the changing microstructure. This is achieved via a two-

pronged approach: (a) Constitutive models which track evolving microstructure are developed 

and calibrated to direct numerical simulations (DNS) of the microstructure. (b) The conventional 

homogenized continuum equations of motion are extended via a virtual power approach to 

include extra coupled microscale stresses and stress couples which are active at each 

characteristic length scale within the microstructure.  
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The multiresolution approach is applied to model the fracture toughness of a cemented carbide, 

failure of a steel alloy under quasi-static loading conditions and the initiation and velocity of 

adiabatic shear bands under high speed dynamic loading. In each case the multiresolution 

analysis predicts the important scale effects which control the macroscale material response. The 

strain fields predicted in the multiresolution continuum analyses compare well to those observed 

in direct numerical simulations of the microstructure. However much less computational effort is 

required because the detailed microstructure does not have to be modeled (unlike the direct 

numerical simulations). Furthermore the characteristic length scale of inhomogeneous 

deformation is predicted to change as a function of the evolving microstructure. As such the 

predicted scale of inhomogeneous deformation which controls the macroscale response is a 

function of the underlying microstructural instability events. This provides an important link 

between macroscale properties and microstructure which is useful for materials design. 
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1 Introduction 

In materials science, rather than randomly discovering materials and exploiting their properties, 

the goal is to develop a comprehensive understanding of microstructure-properties relationships 

in order to systematically design materials with specific desired properties. 

 

(Figure 1.1) illustrates the key product design relationships from a materials science perspective. 

Processing conditions determine the microstructure, which in turn control the material properties 

and subsequent performance. Extensive empirical data is available relating material 

microstructure to the raw material processing conditions (such as temperature and deformation 

rate). This relationship is well defined for traditional processing techniques such as extrusion 

(Borrego et al. 2002; Sellars and Zhu 2000) and rolling (Brand et al. 1996; Karhausen and Roters 

2002; Wang et al. 2003) and increasingly well understood for new large deformation techniques 

such as friction stir welding (Sutton et al. 2002). At the other end of the design chain, the link 

between material properties and performance is well established; data is available which relates 

properties (e.g. strength, toughness, density, chemical resistance) to desired performance 

requirements. The middle link between structure and properties is now discussed in Section 1.1. 
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Figure 1.1. Important relationships from processing to performance (Olson)  

 

1.1 Microstructure – Property Relationship 

The relationship between macroscale properties and the underlying microstructure is often the 

most difficult to define as microstructure is often in an evolving state during the lifetime of a 

component. Microscale imaging techniques such as light microscopy, Scanning Electron 

Microscopy (SEM), Transmission Electron Microscopy (TEM) and Local Electrode Atom Probe 

(LEAP) can be used to accurately characterize the microstructure at a snapshot in time. The 

material properties, determined from physical experiments, can then be related to the observed 

microstructure.  

 

In the engineering materials of interest in this thesis, we are interested in how microstructure 

evolves spatially and temporally, and relating the evolving microstructure to the macroscale 

properties and performance. Microstructural evolution occurs during raw material processing 

(e.g. heat treatments) or within a final component under normal operating conditions (e.g. fatigue 

crack growth). The ability to predict the evolving microstructure-property relationships all the 
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way from raw material processing right throughout the component lifetime is the key 

successfully predicting and designing material performance.  

 

Recent advances in computational power and computational materials science have enabled 

direct numerical modeling of thermal-mechanical microstructure evolution as a means of 

predicting macroscale properties. The ultimate goal of computational materials science is to 

design optimized materials without an expensive and time consuming iterative empirical design 

process.  

 

The goal of this work is to develop a computational modeling framework which can affordably 

predict material properties and component performance directly in terms of the evolving 

microstructure. This is the first step in solving the reverse problem i.e. to design a microstructure 

based on the desired properties and performance requirements.  

 

The traditional continuum approach to materials modeling is described in Section 1.2. The 

different types of constitutive relationships are described in Section 1.3. Deficiencies of the 

conventional continuum approach are discussed in Section 1.4 and some techniques for 

combating these deficiencies are discussed in Section 1.5. The goals of this thesis are expanded 

upon in Section 1.6. 
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1.2 Review of Continuum Material Modeling 

The most efficient approach to materials modeling is to approximate a heterogeneous body as a 

homogeneous continuum, which is then described mathematically by a set of continuum partial 

differential governing equations (i.e. the momentum equation, energy equation, charge equation 

and diffusion equation) (Belytschko et al. 2000).   

 

1.2.1 Characteristic Length Scales of a Heterogeneous Body  

Two criteria must be satisfied in order for the conventional continuum approach to be feasible. 

To describe these criteria, we first introduce three characteristic lengths (Figure 1.2): 

• L : the typical dimension of the body to be approximated as a continuum. For example, a 

bridge will have an L  value on the order of meters. 

• λ : the wavelength or variation of the state s  about its average s . In terms of mechanical 

deformation, the state s  is a strain field and hence λ  is the characteristic wavelength of 

this strain field within the structure of size L .  

• a : the distance over which the material’s underlying properties undergo considerable 

variation about their mean value. This represents the microstructure’s spatial variation; in 

terms of homogenization theory it is related to the size of a representative volume 

element (RVE) which is described later. 

The criteria are now defined in terms of these length scales. 
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Figure 1.2. The RVE is much smaller than the component size and deformation variation 

 

1.2.2  Criteria for Continuum Modeling 

Criterion (i): L  and λ  are large compared to a . 

Explanation: This is the separation of scales principle (Auriault 1991); the body L  is much 

larger than the microstructure scale a  and the strain occurs homogeneously over a large scale λ  

compared to the microstructure a . 

 

Criterion (ii): the nature of the microstructure in a volume element 3a  in one region is the same 

as in another region.  

Explanation: This ensures that the microstructure is similar throughout the body i.e. there are no 

interfaces between different materials or strong variations in microstructure e.g. grain size, 

porosity etc.  
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If the material satisfies both criteria it is said to be a statistically homogeneous body (Beran 

1968). It follows from criterion (ii) that a volume element 3a  can be identified whose 

mechanical behaviour is statistically representative of the heterogeneous medium as a whole i.e. 

a representative volume element (RVE). In the continuum approximation, any material point can 

be represented by the average behavior of a corresponding RVE. 

 

1.2.3 Hill-Mandel Lemma: Work Conjugacy of Stress and Strain Measures 

The relationship between a continuum point and a RVE is based on the Hill-Mandel relation 

(Hill 1963). The variation of work rate pδ at a material point x  is equivalent to the average 

variation of work rate within a superimposed RVE 0V :  

 ( )
0

0

0

1
:m m

V

p dV
V

δ δ= ∫x σ L  (1.1) 

where 0V  is the volume of the RVE, mσ  is the microscale Cauchy stress and  mL  is the 

microscale velocity gradient field. The microscale measures are the actual fields within the 

heterogeneous RVE as shown in (Figure 1.3).  
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Figure 1.3. Plastic Strain contour in RVE showing the local plastic strain contour mL . The local stress mσ  

could also be plotted in the same manner. 

 The virtual internal power can be rewritten in terms of the Hill-Mandel lemma 
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where the continuum velocity gradient L  is written as a volume average of the local velocity 

gradient over the RVE:  
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where the continuum stress σ  is also a volume average over the RVE: 
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Continuum expressions can also be derived for the virtual external and kinetic power density. By 

integrating these virtual power density expressions over the entire body, applying the principle of 

virtual power and using divergence theorem, a set of partial differential governing equations and 

boundary conditions can be derived for the continuum – more details are found in (Belytschko et 

al. 2000): 
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where b  is a body force, t  is an applied traction on the surface tΓ  (with unit normal n  ) and 

 u is a prescribed displacement on the surface uΓ .  

 

1.3 Continuum Constitutive Relationships 

A constitutive relationship is required to solve the governing equation i.e. the relationship 

between the continuum stress and deformation must be computable at every continuum point. 

The most computationally intensive way is to perform a global-local analysis. This involves 

concurrently simulating an RVE at each continuum point (Ghosh et al. 2001; Kouznetsova et al. 

2002; Michel et al. 1999). The known continuum strain is applied as an average strain over the 

RVE, equation (1.2), and the continuum stress is computed via equation (1.4). Due to the 

expense of such an approach, pre-formulated mathematical models are used as affordable 

surrogates of the RVE. Different types of constitutive models have been developed in the 
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literature depending on the nature of the microstructure being replicated. In general constitutive 

relationships fall into two categories: empirical or physically based. 

 

Empirical constitutive models, such as a J2 flow model with a simple power-law hardening 

relation or the rate and temperature dependent Johnson-Cook Model (Johnson and Cook 1985; Li. 

et al. 2002; Medyanik et al. 2005) are often favored in industry for large scale simulations 

(ABAQUS 2004). These offer an efficient way to implicitly describe the effects of the underlying 

physical processes within the microstructure; these are usually calibrated using experimental data. 

These models are reliable only within the range of experimental validation and are unable to 

capture history effects. As such they are not useful for materials design purposes. 

 

Physically based constitutive models (micromechanical models), conversely, are based directly 

on the underlying microscale mechanisms e.g. dislocation movement, damage nucleation, grain 

boundary formation etc. A large number of analytical micromechanical techniques have been 

proposed and a comprehensive overview is given in the literature (Mura 1987; Nemat-Nasser 

and Hori 1993).  

 

Parameterized microstructural variable such as grain size and damage are used as numerical 

representations of the physical microstructure. Evolution equations describe the rate of change of 

the microstructure (parameters) in terms of the loading conditions and current microstructure and 

environmental conditions. The stress state is then directly related to the microstructural 

parameters. In the BCJ (Bammann-Chiesa-Johnson) internal state variable (ISV) constitutive 

model (Bammann et al. 1996; Bammann et al. 1990), variables represent the evolving 
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microstructure (e.g. dislocation climb, glide, annihilation and damage accumulation). It is also 

possible to directly track the dislocation density (Domkin 2005) and model its effect on plastic 

flow. The highly anisotropic nature of plasticity at small scales can be captured using crystal 

plasticity models which explicitly account for the dislocation behavior on individual slip planes 

(Asaro 1983a; Asaro 1983b). 

 

Physically based constitutive relations are often derived through a computational hierarchical 

technique (Hao et al. 2004; Hao et al. 2003; Liu et al. 2004) (also known as serial coupling or 

parameter passing). The average constitutive behavior at the smallest scale is used to determine 

the behavior at the next largest scale, and so on until the macroscale behavior is defined.  

 

1.4 Deficiencies of Continuum Theory 

Although the conventional continuum approach, coupled with a micromechanically based 

constitutive relation is useful for material prediction and design proposes, in many engineering 

materials a conventional homogenized continuum is insufficient. In general, two situations can 

negate the fundamental assumptions of homogenization.  
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1.4.1 Micro-components 

The first situation is when the component’s characteristic length, L , and hence the deformation 

wavelength λ  approaches the RVE size, a , which may occur in micro or nano devices (Figure 

1.4). In this case the only option is to model the discrete microstructural features directly. 
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Figure 1.4. Homogenization is invalid when the RVE size a  approaches L ,  the characteristic length scale of 

the component/body; this may occur in micro/nano scale devices.  

1.4.2 Inhomogeneous Deformation 

The second situation arises when the wavelength of the deformation, λ , approaches the RVE 

size a  (Figure 1.5). This highly inhomogeneous deformation may occur for several reasons:  

o Ahead of a sharp crack tip strong strain gradients mean that λ  may be on the 

order of the microstructural size a  

o Strain localizes due to a micromechanical process such as void coalescence.  

o In multi-material bodies, strong strain gradients occur at the material interfaces.  
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Figure 1.5. Conventional homogenization is invalid when the characteristic length scale of the deformation 

approaches the RVE size a  

A continuum approach is still feasible even when inhomogeneous deformation arises i.e. an RVE 

may still be associated with each continuum point. However it is insufficient to represent a 

continuum point as a first order average of an RVE, equation (1.1). Furthermore in many 

materials which exhibit inhomogeneous deformation localization, the associated continuum 

governing equations suffer a local loss of ellipticity upon material softening, resulting in an 

illposed mathematical description; numerical results do not converge to a physically meaningful 

solution (De Borst and Muhlhaus 1991; Tvergaard and Needleman 1995; Vosbeek 1994). 
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1.5 Modeling Inhomogeneous Deformation 

Two approaches are generally taken to overcome the problems associated with inhomogeneous 

deformation; one involves improving the conventional continuum approach by making it non-

local. Practically speaking this involves introducing higher order terms in the continuum 

formulation as described in Section 1.5.1-1.5.2. The second, and more computationally intensive 

approach, is to couple the continuum simulation with direct microstructure scale simulations in 

regions where deformation is known to be inhomogeneous (Section 1.5.4).  

 

1.5.1  Non-local Continua 

The simplest way to introduce non-local terms in the continuum formulation is to define the 

constitutive behavior in terms of a non-local averaged quantity (Bazant and Belytschko 1987; De 

Borst et al. 1993; Pijaudier-Cabot and Bazant 1987). A good overview of these methods is given 

in (Rolshoven and Jirasek 2002). For example the macroscale damage f  may be averaged about 

a continuum point as follows: 

 ( ) ( ) ( )1

nl
nl V

f k f dV
V

= ∫x y y  (1.6) 

where nlV  is a non-local averaging volume centered on the continuum point x , y  is the position 

relative to x  and  ( )k y  is a kernel function which weights or biases the averaging operation. 

The constitutive behavior is then computed as a function of the non-local damage f . This results 

in a smoothing of the local inhomogeneous deformation field over a length scale associated with 

the non-local averaging volume nlV . Hence it is necessary to calibrate the averaging volume size 

to the microstructural length scale of inhomogeneous deformation (Brekelmans 1993).  
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Another non-local approach involves extending the virtual power expression, which relates a 

continuum point to the microstructure (RVE), to include a strain gradient and power conjugate 

couple stress measure. This requires an extension of the Hill-Mandel relation, equation (1.1), to 

higher order: 
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where the variation of internal work rate is now represented by a velocity gradient L  and its 

gradient ∇L
�
. The work conjugate measure of ∇L

�
 is a higher order stress  σ . This is sometimes 

known as a gradient enhanced model (Aifantis 1992; Fleck and Hutchinson 1997; Peerlings and 

Fleck 2001; Triantafyllidis and Bardenhagen 1996). Under certain circumstances the non-local 

averaging and gradient enhanced approaches are equivalent e.g. when a linearly varying non-

local strain is considered. 

 

It is important to note that the constitutive relation must now also describe the relationship 

between the higher order stress σ  and the second gradient ∇L
�
; defining this relationship is not 

trivial. Kouznetsova (2002) went so far as to simulate an individual RVE boundary value 

problem for each material integration point in a gradient enhanced continuum in order to 

compute the complicated higher order constitutive relationship ‘on the fly’ during a quasi-static 

simulation.  

 

Gao et al. (1999) realized that gradient term was useful for describing the extra hardening effect 

arising from geometrically necessary dislocations (GNDs) when local inhomogeneous 
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deformation occurs at very small scales. In effect, the magnitude of the strain gradient indicates 

the scale at which strain is occurring; large strain gradients indicate small scale deformation and 

the level of work hardening increases accordingly. 

 

Another variation on this higher order approach is a Cosserat continua; extra rotational degrees 

of freedom are introduced in addition to the conventional translational degrees of freedom 

(Cosserat and Cosserat 1909; De Borst et al. 1993; Kadowaki and Liu 2004; Kadowaki and Liu 

2005; Toupin 1962).  Coupled thermal-mechanical models (with extra temperature degrees of 

freedom) have also been successful in capturing the scale of inhomogeneous deformation in 

dynamic adiabatic shear bands (Medyanik et al. 2005; Needleman 1988; Sluys and De Borst 

1992; Wang et al. 1996). 

 

One of the main contributions of this theory is the development and application of a 

multiresolution continuum theory. The higher order gradient enhanced models described above 

are a particular case of this theory. This general theory supplements the conventional work rate 

conjugacy description of a continuum point with multiple extra strain and strain gradient 

measures. Each pair of strain and strain gradients describes the deformation at a particular scale. 

This allows inhomogeneous deformation to be resolved to multiple discrete length scales. A 

continuously variable length scale model is also proposed which simplifies the implementation 

while replicating the multiscale nature of the original model.  
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1.5.2 Discussion of Non-Local Models 

The key to non-local models is that they introduce a physical length scale into the continuum 

model either through the constitutive response or directly within the governing equations. 

Material behavior is then a function of the scale at which deformation is occurring. The 

introduction of a length scale acts to reduce strong gradients and inhomogeneous deformation is 

smoothed over a more physical length scale. 

 

Hence important material behavior can be captured physically, such as the length scale 

dependence of plastic deformation, plastic flow localization in shear bands and the effect of 

crack size and geometry on fracture behavior. These phenomena control important mechanical 

behavior such as fracture toughness and strength. However the higher order models have crucial 

weaknesses, which limit them in terms of materials prediction and design. 

• The constitutive parameters remain empirically based. 

• Neither approach can model the variation in material behavior if the scale of 

inhomogeneous deformation evolves with microstructure and time.  

 

1.5.3 Numerical Implementation Approach 

A simple numerical approach to capture the physical length scale of localization is to use a 

discretisation which coincides with the physical scale of localization. For example if strain is 

known to localize at a scale of a micron, the numerical solution mesh is discretized to a micron. 

Hence, localizing deformation is forced to localize at the scale of the numerical discretisation 

used, which has been pre-calibrated to a physical length scale. This approach has been proposed 
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by (Busso et al. 1998) to model fracture in several metallic materials which exhibit a clear length 

scale of localization at failure. This approach can only capture strain localization at a single 

length scale. The region in which failure will occur must be known a-priori in order to mesh that 

region down to the appropriate scale. 

 

1.5.4 Continuum - Discrete Microstructure Concurrent Coupling 

Other research has focused on developing frameworks in which a continuum or ‘coarse grain’ 

approach is improved upon by performing a fine scale direct numerical simulation (DNS) of the 

microstructure in a region where homogenization is invalid or insufficient e.g. at a crack tip, 

material interface, surface behavior. Several models have been proposed which vary mainly in 

the way they relate information between the coarse and fine scale simulations. 

 

The Quasi-continuum Method (QM) (Knap and Ortiz 2001) and the Bridging Scale Method 

(BSM) (Tang et al. 2006; Wagner and Liu 2001; 2003) are particular examples where the direct 

numerical simulation (DNS) is usually performed using molecular dynamics (MD). Currently, 

the atomic region which can be examined efficiently remains extremely small and the technique 

has been limited to the simulation of nanoscale applications such as Carbon Nanotubes (CNT) 

and atomic scale phenomena such as dislocation formation (Liu et al. 2004; Park et al. 2005; 

Qian and Gondhalekar 2004; Qian et al. 2002).  

 

The BSM has also been used to couple a continuum simulation with a highly resolved Cosserat 

type continuum (Kadowaki and Liu 2004; Kadowaki and Liu 2005).  (Liu and McVeigh 2007) 
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have performed a two-scale simulation in which a DNS is performed using continuum mechanics 

(i.e. individual microstructural features are explicitly modeled and spatially discretized) and 

coupled to a continuum simulation. They have outlined a hierarchical and a concurrent coupling 

technique in which the approach can be extended to N  scales of analysis (Liu and McVeigh 

2007).   

 

The disadvantages of a direct DNS coupling approach are as follows: 

• The issue of boundary conditions between the scales is problematic as the disparity in 

spatial resolution may cause spurious wave reflection at the interface (Karpov et al. 2005; 

Wagner and Liu 2001).  

• This reflection can be reduced by using complicated (and expensive) boundary conditions, 

although this issue has still to be fully resolved particularly for three dimensional cases 

(Liu et al. 2004; Park et al. 2004; Wagner et al. 2004).  

• The expense associated with direct numerical simulation (DNS) of the microstructure, 

makes it prohibitively expensive to use for component scale simulations.  

 

1.6 Goals and Approach 

The goals of the current work are to develop an affordable material modeling framework for 

materials design; the proposed multiresolution theory overcomes the limitations of a 

conventional continuum approach, higher order/gradient models and direct coupling schemes.  In 

key features of the proposed framework are: 
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• Allows macroscale properties (e.g. strength and toughness) and performance to be 

predicted directly in terms of the key microstructure design parameters including length 

scales of inhomogeneous deformation.  

• Is general enough to incorporate a statistical description of the microstructure  

• Provide a foundation for microstructure level computational materials design 

In particular the proposed theory works as follows: 

• Predicts the evolving scale and magnitude of inhomogeneous deformation directly in 

terms of the evolving microstructural parameters and length scales (including rate and 

temperature dependence) 

• Employs a set of continuum microstresses which describe the resistance to 

inhomogeneous deformation at each characteristic length scale in the evolving 

microstructure. These microstresses are directly coupled to the conventional macroscale 

stress through a set of multiresolution continuum governing equations. 

• The multiresolution continuum governing equations can be discretized and solved using a 

conventional finite element analysis (FEA) approach with a single mesh. 

• Does not require complicated inter-scale boundary conditions (only a single FEA mesh is 

used) 

• Does not require large scale direct numerical simulation of microscale features (however 

limited microstructure scale modeling can be used to determine constitutive relations)  

 

The proposed theory is a multi-resolution extension of conventional homogenization. The 

continuum governing equations are developed by averaging over the RVE scale as before, 

equations (1.1)-(1.4), and also at several scales within the RVE microstructure associated with 
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inhomogeneous deformation. The result is a set of multiresolution continuum partial differential 

governing equations which are an extension of the conventional governing equations involving 

extra inhomogeneous microstresses; these microstresses arise naturally from the extra small scale 

averaging operations within the RVE. Conveniently, a traditional finite element solution 

procedure can be used to discretize and solve the weak form of the multiresolution governing 

equations; special finite element interpolants are not required. In terms of constitutive model 

development, average constitutive relationships are now required at each scale of interest within 

the RVE to describe the extra inhomogeneous microstresses in the extended multiresolution 

governing equations. The constitutive relationships are derived by averaging the stress and strain 

at each scale within computational RVE models.  

 

To demonstrate the proposed theory, a cemented carbide, high strength steel and dynamic shear 

band problem are chosen. Each exhibits inhomogeneous deformation at multiple scales, leading 

to material failure. In all cases the scale at which deformation occurs is crucial to the macroscale 

toughness and strength.   
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1.7 Thesis Outline 

This thesis is structured as follows: 

Chapter Two: An overview of multiscale material behavior is given in terms of a cemented 

carbide composite, high strength steel, and adiabatic void assisted shear banding; each exhibits 

failure involving inhomogeneous deformation at progressively smaller length scales related to 

the microstructural features. 

 

Chapter Three: The macroscale continuum plasticity and damage constitutive models which are 

used in this thesis are discussed; in particular the rate, temperature and damage dependent model 

of Bammann, Chiesa and Johnson (Bammann et al. 1993; Bammann et al. 1990) and the crystal 

plasticity model of Asaro (Asaro 1983a; Asaro 1983b).  

 

Chapter Four: A hierarchical micromechanical constitutive model is developed for a tungsten-

carbide-cobalt cemented carbide and numerical fracture toughness predictions are made. 

 

Chapter Five: From the standpoint of microstructure homogenization and gradient enhanced 

theories, a general Multiresolution Continuum Theory (MRCT) is derived for modeling materials 

which undergo inhomogeneous deformation at several scales. 

 

Chapter Six: An approach for deriving microscale constitutive relations (required to solve the 

MRCT governing equations) is proposed and illustrated for a steel alloy. 
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Chapter Seven: The MRCT is applied to make numerical fracture toughness predictions for a 

cemented carbide with various microstructural design parameters. Numerical fracture toughness 

simulations are performed. 

 

Chapter Eight: The MRCT is coupled with a thermal analysis to examine void assisted adiabatic 

shear bands in high strength steel. 

 

Chapter Nine: Conclusions and future directions are outlined. 
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2 Multiscale Material Systems  

In many engineering materials, permanent deformation is accompanied by energy dissipation at 

several distinct scales. Cemented carbides and high strength steels are two such materials 

systems; both undergo inhomogeneous deformation at more than one length scale during damage 

initiation, growth and final failure. Furthermore, during dynamic loading of high strength steels, 

thermal diffusion also affects the scale of the resulting adiabatic shear band. These materials are 

focused on in this thesis; they illustrate the shortcomings of a conventional continuum approach 

to material modeling and motivate the proposed multiresolution continuum theory (MRCT), 

developed in Chapter 5. The MRCT remains within the context of continuum mechanics while 

attempting to capture the important characteristic length scales of inhomogeneous deformation. 

A brief overview of cemented carbides, its applications and properties is given in Section 2.1. An 

overview of multiscale failure in high strength steel is given in Section 2.2 and adiabatic shear 

failure of a steel alloy is discussed in Section 2.3.  

 

2.1 Cemented Carbides 

A brief overview of the development, properties and applications of cemented carbides are given 

in Section 2.1.1 to familiarize the reader with this material. This is developed further in Section 

2.1.2 where the key microstructure-properties relationships are described. The multiscale nature 

of failure is described in Section 2.1.3. The nature of ductile rupture within the composite is 

described in terms of vacancy clustering in Section 2.1.4. A direct numerical simulation of a 
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WC-Co microstructure is illustrated in Section 2.1.5. Some notable empirical and modeling work 

from the literature is described in Section 2.1.6. 

 

2.1.1  Development, Properties and Applications 

Tungsten Carbide-Cobalt (also known as WC-Co, cemented carbide, hardmetal or cermetal) is an 

example of a metal matrix composite which can also be described as ductile reinforced brittle 

composite. Very hard and brittle tungsten monocarbide (WC) grains (hexagonal crystal structure) 

are ‘cemented’ together by a tough cobalt alloy binder matrix (FCC structure) by liquid phase 

sintering. The combination of a WC phase with a metallic cobalt binder tends to be a favorable 

combination for the sintering process. The ceramic WC is highly soluble in the metal cobalt at 

high temperatures and sufficient wetting of WC by the liquid cobalt binder gives good 

densification during the liquid phase sintering resulting in a very low porosity (itia.org.uk 2006). 

Cemented carbides have excellent hardness, toughness, compressive strength, transverse rupture 

strength (resistance to bending failure), and wear resistance. Applications range from aerospace, 

munitions, sports, automobile to home appliances, and it is particularly well known for its use in 

cutting tools, metal forming tools, mining tools, and wear resistance surfaces. The first patents on 

WC-Co were issued in 1923 and produced in 1926 under the name of ‘Widia’  (Inframat.com 

Dec 4th 2006). Since then there has been a continuous expansion in the consumption of 

cemented carbide from an annual world total of 10 tons in 1930; to 100 tons around 1935; 1,000 

tons in the early 1940’s; through 10,000 tons in the early 1960’s and up to nearly 30,000 tons at 

present (itia.org.uk 2006), largely due to the introductions of ultra fine submicron WC grains in 

the late 70s and early 80s. This greatly extended the application of cemented carbides into new 
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emerging applications in the area of micromachining of microelectronics and 

telecommunications components (itia.org.uk 2006). 

  

The drive toward reducing grain size stems from experimental observations of increased 

toughness, hardness and wear resistance of WC-Co. Grain sizes of WC powders used in 

cemented carbides range from 0.15 µm to 150 µm allowing a wide choice of hardness and 

toughness properties. These relationships are described in Section 2.1.2. 

 

2.1.2 Key Microstructure - Properties Relationships 

Microstructure 

The key microstructural parameters which characterize the cemented carbide are: 

(i) Cobalt volume fraction f : the ratio of cobalt phase to the total volume.  

(ii) Cobalt grain size d : this is interpreted here as the average distance a dislocation can travel in 

the cobalt before hitting a carbide grain i.e. the size of a cobalt pool. It is closely related to the 

carbide grain size.  

(iii) Contiguity WCC  of the carbide phase is defined as the ratio of the carbide/carbide interface 

area (carbide grain boundary) to the total interface area. Contiguity usually increases with 

carbide volume fraction.  

 

These parameters are often inter-related making it difficult to isolate microstructure-property 

relationships experimentally (Kim 2004). For example conflicting reports have been made about 

the relationship between carbide contiguity and carbide grain size. Gurland (1988) reports that 
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increasing carbide grain size leads to decreased contiguity, while German (1985) suggests that 

the contiguity is independent of grain size. Here we are focused on the effects of cobalt volume 

fraction and grain size; contiguity is not considered in this thesis as it is generally the least 

important (and most difficult to investigate) of the three material parameters. Cobalt volume 

fraction f  is simply given by: 

 CoVf
V

=  (2.1) 

where CoV  is the volume of cobalt and V  is the total volume of the sample. The cobalt/carbide 

volume fraction ratio can be related to the cobalt/carbide grain size ratio via the following linear-

intercept equations derived from stereological principles by (Kim 2004; Underwood 1970): 

 
( )1WC WC WC Co

d f

d f C −

=
−

 (2.2) 

where WC CoC −  is the contiguity. 

Properties 

The two crucial performance indicators of cemented carbides are: 

• Hardness which is a measure of resistance to penetration and is closely related to 

ultimate strength and 

• Fracture toughness which is a measure of the energy absorbed during fracture 
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 Density ( )3kgm−  Young’s Modulus ( )GPa  Hardness ( )GPa  

WC 15800  700 19.61 

Co 8900 209 0.7 

WC-Co ~1500 ~600 ~16 

Stainless Steel 7900 200 5.84 

Table 2.1 Comparison of density, Young's modulus and hardness for cemented carbide components 

 

The high hardness and strength of cemented carbides is due to the high carbide volume fraction; 

WC (density 315800kgm− ) has a Young’s modulus of 700GPa and hardness of 19.61GPa, 

compared to for example stainless steel (density 37900kgm− )  with a Young’s modulus of 

200GPa and hardness of around 5.84GPa (memsnet.org 2006a). The high fracture toughness of 

cemented carbides on the other hand is mainly due to the highly ductile cobalt (density 

38900kgm− ) binder. These are summarized in Table 2.1. 

 

Toughness is directly related to the amount (volume fraction) of ductile cobalt f , which absorbs 

energy via plastic deformation. However a larger cobalt fraction f  is accommodated by a 

decreased fraction of the much harder carbide, resulting in a reduction in strength.  

 

A large cobalt grain size d  also increases the toughness as the plastic deformation dissipates 

over a larger area. However larger cobalt grains d  are weaker according to the Hall-Petch effect. 

In general, larger grain size d  and more cobalt f  results in a tougher behavior but less strength. 

Hence fracture toughness exhibits an inverse relation to hardness. The effects of cobalt volume 
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fraction f  and grain size d  on hardness and toughness are shown schematically in (Figure 2.1). 

These relationships must be captured in a WC-Co constitutive relationship. 

Toughness
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Figure 2.1. Strength versus Toughness for cemented carbide; coarse grains and more cobalt increase 

toughness to the detriment of strength and vice versa. 

 

 

2.1.3 Physics of Failure in Cemented Carbides 

Failure involves combined brittle fracture of the WC phase and ductile fracture of the cobalt 

binder as shown schematically in (Figure 2.2). Five stages are involved in failure: 

• Stage 1: Initial deformation is relatively homogeneous over the sample 

• Stage 2: Brittle fracture occurs in the carbide grains but is resisted by the formation of 

crack bridging cobalt ligaments at several positions near the crack tip. This is known as 
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the multi ligament zone (MLZ) (McHugh and Connolly 2003). Plastic strain in the work 

hardening ligaments is fairly homogeneous over the entire ligament. The ligament is 

composed of a single cobalt grain of size d . This length scale is also called 1l  here.    

• Stage 3: Stress within the cobalt ligament approaches a saturation level as dislocation 

hardening and recovery cancel each other out (dislocation recovery describes dislocations 

overcoming obstacle, reducing the work hardening) . This first occurs in the ligament just 

ahead of the brittle crack tip where deformation is naturally highest. Deformation 

subsequently localizes to the scale of the opening brittle crack 2l . 

• Stage 4: The stress, deformation and triaxiality are sufficient for microvoids to nucleate 

and grow in the cobalt ligaments. Microvoid nucleation is a vacancy diffusion based 

process here (not particle debonding). Plastic strain localizes between neighboring 

microvoids at scale 3l .  

• Stage 5: As the microvoids coalesce, the micro-ligaments between the voids neck and 

final failure occurs. 
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Figure 2.2. In the multiligament zone (MLZ) inhomogeneous deformation arises at three scales related to the 

cobalt grain size, the brittle crack opening and finally the microvoids 

The energy dissipated in stretching the cobalt ligaments strongly contributes to the fracture 

toughness.  The manner in which the cobalt ligaments fail (i.e. ductile rupture) is controlled by 

microvoid nucleation (from vacancy clustering). As there no embedded particles in the cobalt 

alloy, it is not immediately obvious how microvoids nucleate.  This is discussed further in 

Section 2.1.4. 

 

2.1.4 Nucleation of Microvoids in Cobalt 

No evidence for heterogeneous nucleation at embedded particles has been observed in the cobalt 

binder in cemented carbides; precipitates are not generally found in the cobalt binder and have 

not been observed in the dimples on a fracture surface (Sigl and Exner 1987). However (Ranjan 

1983) showed that the formation of stacking fault intersections can be achieved easily in 

materials with low stacking fault energies such as cobalt. Using geometric considerations, 
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(Ashbee 1967) postulated that when two stacking faults intersect, a volumetric dilation 

equivalent to a row of vacancies occurs along the line of intersection. This mechanism is very 

likely to be responsible for producing huge numbers of vacancies in the highly deformed cobalt 

within the multiligament zone (crack tip). (Cuitino and Ortiz 1996) described another mechanism 

which may be responsible for vacancy production during plastic slip - the motion of jogged 

screw segments. Jogged screw segments are formed mainly by dislocation intersection and by 

double cross slip as illustrated in (Figure 2.3). (Cuitino and Ortiz 1996) have furthermore 

described a ‘vacancy condensation’ void nucleation mechanism in FCC metals by which 

vacancies can diffuse towards each other by “pipe diffusion” along dislocations which are also 

present in huge numbers in the MLZ. To a lesser extent vacancies may diffuse by lattice 

diffusion at higher temperatures. The vacancies are therefore mobile and can cluster together to 

form microvoids within time frames relevant to quasi-static fracture. 
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Figure 2.3. Dislocation intersection and dislocation cross slip combined with subsequent jog dragging are 

sources of vacancies in alloys 

 

(Vijayaraju et al. 1986) confirmed this microvoid nucleation mechanism occurs experimentally, 

observing that vacancies play a significant role in the initial stages of ductile fracture through 

micro-void nucleation. Specifically related to WC-Co composites, (Murray and Smith 1973) 
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determined that cobalt vacancy diffusion is thought to be a dominant deformation mechanism in 

tensile testing of Co-bonded WC composites. As the formation of stacking faults occurs relatively 

homogeneously in the cobalt binder, the nucleated micro-voids are also expected to be dispersed 

homogeneously. This is in contrast to other alloys in which microvoid nucleation happens quite 

heterogeneously due to cracking or debonding of embedded precipitates.   

 

Here we assume that a microvoid forms when a vacancy cluster reaches approximately the size 

of the mean distance between dislocations; this is consistent with the work of (Cuitino and Ortiz 

1996) who reasoned that beyond this size, the voids could grow via macroscopic plasticity 

according to Rice and Johnson’s theory (Rice and Johnson 1970). As a deformed FCC crystal 

can exhibit dislocation area densities approaching 15 16 210 10 m−−  (2D) the mean dislocation 

separation is approximately 20nm  in 2D. This is taken as the initial radius of a void in the 

present study. 

 

Macroscopically speaking, ‘vacancy condensation’ based microvoid nucleation is a stress and 

strain controlled process. Stress produces the stacking fault intersection where the vacancies are 

created. Plastic flow strain makes the vacancies mobile enough to cluster together via pipe 

diffusion. 

 

2.1.5 Direct Numerical Simulation: Multiscale Failure of WC-Co 

A direct numerical simulation of a typical microstructure is performed using finite element 

analysis (ABAQUS) as shown in (Figure 2.4). A large elastic homogenized WC-Co domain is 
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modeled i.e. material 1 in (Figure 2.4). Near the center of the model an embedded direct 

numerical simulation (DNS) of the WC-Co composite is modeled using approximately 22000 

elements. Within the DNS region several carbide grains are modeled. These grains are perfectly 

bonded to the surrounding cobalt matrix. The carbide is modeled using a simple elastic-brittle 

smeared crack relation i.e. material 3 in (Figure 2.4). The cobalt regions are represented through 

an elastic-plastic constitutive relationship i.e. material 2 in (Figure 2.4). A pre-crack is modeled 

in the homogenized zone; the pre-crack tip ends directly at the interface between the 

homogenized and DNS regions. Quasi-static Mode I loading is applied to the system.  

Pre-Crack
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2. Elasto-Plastic Cobalt (with Potential Voids)

3. Tungsten Carbide (Elastic with Brittle Fracture Law)
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Figure 2.4. A finite element model of the WC-Co composite highlights the failure mechanism involving both 

brittle and ductile fracture. The cobalt region is shown in more detail in Figure 2.5 
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Nucleation of microvoids plays a key role in the subsequent composite failure and is modeled in 

the direct numerical simulation shown in (Figure 2.4). Within the cobalt zone, pre-defined sets of 

elements are given the following property: when any element in a group satisfies a void 

nucleation criterion, all of the elements in that group are deleted (stress is set to zero), instantly 

creating a void. The void nucleation criterion is given in terms of stress and strain and is 

described in Chapter 4, equation (4.3). This allows us to model void nucleation without explicitly 

creating a new void surface and remeshing. These element regions represent ‘potential’ void sites. 

Three of these potential voids are shown in (Figure 2.4). 

 

2.1.6 Discussion of Multiscale Failure Mechanism: WC-Co 

The resulting strain in the loading direction is plotted in (Figure 2.5); a single cobalt ligament is 

extracted for clarity and the strain contour is plotted on the undeformed configuration. The five 

stages in composite deformation and failure are observed: 
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Figure 2.5. The characteristic length scales of inhomogeneous deformation within the cobalt are closely 

related to the microstructure 

• The composite initially deforms homogeneously as the carbide and cobalt phases deform 

elastically. 

•  After brittle fracture occurs in the carbide grains, the resulting cobalt ligaments undergo 

significant plastic deformation and work hardening occurs across the entire ligament 1l  - 

the amount of work hardening is defined by the slope of the stress-plastic strain curve.  
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• As the stress within a ligament saturates the deformation localizes at the brittle crack tip 

2l  - here the dimension of the brittle crack tip is given by the element size in the carbide.  

• Vacancy driven void nucleation occurs (six voids reach the nucleation criteria as shown 

in Figure 2.5) in the cobalt ligament and deformation localizes between neighboring 

voids at scale 3l  equal to the void size.  

• Strain then localizes within the micro-ligaments between voids; the micro-ligaments neck 

and rupture. 

 

Each stage involves a transition of the inhomogeneous deformation to a smaller scale.  

Furthermore each stage is initiated by a particular microstructural instability event i.e. carbide 

fracture, cobalt stress saturation, cobalt microvoid nucleation, cobalt microvoid coalescence. The 

concept of microstructural instabilities is explained further in Section 5.4.3. 

 

2.1.7 Previous Cemented Carbide Material Models 

A number of attempts have been made to define the key microstructure-property relationships in 

tungsten carbide-cobalt composites. Most are semi-empirical models which rely on experimental 

coefficients from measured microstructural level data. These are summarized in Appendix A7. 

 

Numerical Modeling 

Several attempts have been made to model the microstructural deformation within a cemented 

carbide directly through numerical (finite element) analysis. Sigl (1988) showed that the ductile 

cobalt crack bridging mechanism dominates the toughening mechanism. Ljungberg (1986) 
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performed a fairly coarse finite element simulation in which several pre-fractured carbide grains 

were modeled directly. A very large plastic zone was observed which was several times larger 

than the characteristic size of the grain size in the region of the crack. This has been proven to be 

inaccurate by subsequent, more finely discretized finite element simulations, particularly those 

performed by Fischmeister et al. (1988). Qualitatively at least it was shown that upon brittle 

fracture of the WC phase the plastic zone size extends through the binder regions directly 

intersected by the crack i.e. over a distance related to the cobalt grain size.  

 

Quinn et al. (1997) examined the behavior of the cobalt binder phase usual a crystal plasticity 

material model to describe the cobalt binder, while directly modeling the growth of periodically 

arranged voids within the binder. It was shown that initial void shape has very little effect on the 

subsequent growth and that dislocation constraint in the binder layers has a significant effect on 

binder layer strength. Connolly et al. (1999) and McHugh et al. (2003) developed a simplified 

model of the multiligament zone in which a pre-crack in a carbide plate was bridged with cobalt 

ligaments. The cobalt ligaments were modeled using several material models including crystal 

plasticity. Although the model was useful for examining the micromechanics of the crack 

bridging mechanism, the computed fracture toughness values were much lower than those 

observed experimentally. The strain tended to localize spuriously within the cobalt ligaments as 

they softened due to damage.  
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2.1.8 Design Considerations 

The key micromechanics of a WC-Co composite have been outlined in Section 2.1. The 

important design considerations for a WC-Co composite are investigated further in Chapter 4 

and are summarized as follows: 

• Composite toughness can be improved by (i) increasing the cobalt volume fraction f  or 

increasing the cobalt grain size d  

• Both of these options result in a decrease in composite strength 

• Composite toughness increases when ductile rupture in the cobalt binder is delayed  

• Composite strength increases when brittle fracture in the carbide is delayed 

A hierarchical constitutive model is developed in Chapter 4 which contains each of these 

relationships. This model is used within a multiresolution continuum theory in Chapter 7 to 

numerically predict fracture toughness in terms of the key microstructural design parameters. 

 

2.2 High Strength and Toughness Steel 

An overview of high strength and toughness steels is given here. In Section 2.2.1 a direct 

numerical simulation is performed to illustrate the length scales associated with failure of such 

an alloy. A brief discussion of the failure mechanism follows in Section 2.2.2. 

 

In this work we idealize steel as an alloy matrix containing a population of embedded inclusions 

on the order of a micron and a population of spherical precipitates on the order of tens of 

nanometers (Hao et al. 2004; Hao et al. 2003). In materials such as 4340 steel, the inclusions are 

titanium nitrides, introduced as an impurity by-product of the raw material processing. They 
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contribute nothing to the strength but adversely affect the toughness; the weak interface tends to 

separate from the surrounding alloy matrix at low nominal strains, introducing voids. 

Alternatively the inclusions may crack again nucleating a void.  

 

The precipitates in 4340 steel are typically titanium carbides which form during heat treatment. 

In general, precipitates are introduced to strengthen the alloy response by either: 

• Grain Refinement: Preventing grain coarsening by pinning migrating grain boundaries 

(thereby resulting in smaller, stronger grains) 

• Precipitate Strengthening: Impeding dislocation movement which means greater 

resolved shear stresses are required to plastically deform the alloy. 

Although the precipitate-matrix interface is relatively strong, decohesion with the surrounding 

matrix (or even precipitate cracking) occurs at large nominal strains leading to the formation of 

microvoids; these microvoids can cause ductile failure.  

 

2.2.1 Direct Numerical Simulation of a Steel Alloy: Set Up 

An idealized model of a steel alloy containing the particles described above is now examined in 

order to observe the defamation and failure mechanism. In (Figure 2.6) two large inclusions have 

been modeled directly along with several smaller precipitate particles, using ABAQUS 

(ABAQUS 2004) finite element software (21000 elements). Quasi-static fully periodic 

displacement boundary conditions (Appendix A1) are applied to the 2D plane strain volume 

element, such that an average shear strain 12ε  is applied. The other strain components are left 

unconstrained in order to avoid pressure build ups in the model. This means that although a shear 
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strain is applied, these are not zero triaxiality boundary conditions. Debonding of the inclusions 

and precipitates is included through an interfacial cohesive relationship. The alloy matrix is 

modeled using an elastic-linear plastic J2 flow plasticity model. The material properties are: 

• Titanium Nitrides: Area Fraction 1%, Elastic Modulus 600GPa , Poisson’s Ratio 0.3 , 

Interfacial Strength 0.1GPa , Diameter 1 micron 

• Titanium Carbide Particles: Area Fraction 0.1%, Elastic Modulus 600GPa , Poisson’s 

Ratio 0.3 , Interfacial Strength 1.0GPa , Diameter 200 nm 

• Steel Alloy Matrix: Elastic Modulus 200GPa , Poisson’s Ratio 0.28 , Initial Yield Stress 

1.6GPa , Hardening Modulus 0.65GPa  (McVeigh et al. 2006b).   

During deformation the weakly bonded inclusions and strongly bonded precipitates can debond 

from the surrounding matrix, via interfacial cohesive relationships, creating voids and 

microvoids respectively.  

Interfacial Cohesive Relation

Carbide Precipitate

Nitrides and Carbides

Interfacial Cohesive Relation

Carbide Precipitate

Nitrides and Carbides

6.5 mµ
1 mµ 200nm

 

Figure 2.6. Nitride and Carbide particles are embedded in a steel alloy matrix; debonding is model through h 

an interfacial cohesive relation 
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The plastic shear strain contours are shown in (Figure 2.7) at nominal shear strains of 10%, 20% 

and 30%. The local true shear strain across a section is also plotted at each snapshot in time. 
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Figure 2.7. The characteristic length scales of inhomogeneous deformation are related to the underlying 

microstructure; primary inclusions, secondary precipitates and microvoid coalescence (X=1 corresponds to 

6.5 microns). 

2.2.2 Discussion of Multiscale Failure Mechanism: Steel Alloy 

The alloy deformation and failure process illustrated in (Figure 2.7) can be described in four 

stages:  

• Deformation is initially homogeneous as the matrix work hardens and the embedded 

particles deform elastically 
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• Inclusions debond at very low nominal strains < 2%; this is accompanied by very 

inhomogeneous deformation which localizes rapidly between the inclusion-nucleated 

voids at scale 1 3.5l mµ∼  i.e. about three times the inclusion size.  

• The local inhomogeneous strain field between these voids is large enough to drive 

interfacial decohesion of the strongly bonded precipitate particles, creating a population 

of microvoids between the inclusion-nucleated voids. Terminal strain localization occurs 

between the neighboring microvoids (McVeigh et al. 2006b) at a scale 2 0.7l mµ∼  i.e. 

about three times the precipitate size. The material begins to rapidly lose load carrying 

capacity at this stage. 

• The microvoids grow and coalesce, even under pure shear loading as shown on the far 

right in (Figure 2.7), encouraging further localization of deformation at scale 3 50l nm∼ . 

In effect the coalescing microvoids link the larger inclusion level voids, allowing a 

ductile crack to propagate i.e. a void sheet mechanism occurs. 

Each stage involves a transition of the inhomogeneous deformation to a smaller scale. 

Furthermore each stage is initiated by a particular microstructural instability event i.e. inclusion 

debonding, precipitate debonding, microvoid coalescence. The concept of microstructural 

instabilities is explained further in Section 5.4.3. 

 

2.2.3 Design Considerations 

In terms of materials design, the macroscale properties of a steel alloy are directly related to the 

underlying microstructure: 
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• Strength can be improved by increasing the number/volume fraction of precipitate 

particles (i.e. more grain refinement or precipitate strengthening) 

• Toughness can be improved by reducing the volume fraction of inclusions (i.e. reducing 

the localized stress and strain concentration which drive microvoid nucleation between 

the inclusions) 

• Toughness can be improved by increasing the interfacial strength of the precipitates (i.e. 

delaying microvoid nucleation and material instability) 

 

Obviously it is impractical to model inclusions, precipitates and their debonding behavior 

directly within large scale numerical simulations. On the other hand, a homogenized continuum 

model which hopes to predict the correct macroscale response (e.g. fracture toughness) must 

capture the physical length scales of inhomogeneous deformation. A hierarchical constitutive 

model which contains each of the key design relationships is used in Section 6.4.2 within a 

multiresolution continuum framework. A similar model has been used by (Vernerey 2006) to 

predict the relationship between fracture toughness and the key microstructural parameters in a 

steel alloy.  

 

A steel alloy with two scales of embedded particles is modeled in Section 6.3.3 using a 

multiresolution continuum theory which is outlined in Chapter 5. The key design relationships in 

a steel alloy have been explored by (Vernerey 2006) using the same theory. 
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2.3 Dynamic Adiabatic Shear Bands in High Strength Steel 

The direct numerical simulation of high strength steel shown previously was performed under 

quasi-static loading conditions. As a result thermal effects arising from plastic dissipation is 

unimportant. However under dynamic loading temperature rise can be substantial, affecting the 

mechanical properties. Here we consider dynamic loading of an alloy containing a population of 

precipitates. Some background is given in Section 2.3.1. The instability mechanism associated 

with quasi-static loading is described in Section 2.3.2 and for dynamic loading in Section 2.3.3. 

Microvoid assisted shear banding is explained in Section 2.3.4. The length scales of shear 

banding are explained in Section 2.3.5.  

 

2.3.1 Background 

In various materials such as alloys, polymers and rocks, plastic instabilities may be explained by 

the formation of shear bands; narrow zones of material which undergo high levels of shearing 

relative to the surrounding material. As shown in (Figure 2.8) (Marchand and Duffy 1988) initial 

‘stage 1’ deformation is quite uniform (regardless of loading rate) as the material work hardens. 

Under dynamic loading conditions a certain amount of strain rate hardening also occurs. Any 

temperature rise due to plastic dissipation is moderate due to the homogeneous nature of the 

deformation, even under dynamic loading conditions. Microvoid nucleation during the early 

stages of deformation is low.  
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Figure 2.8. Adiabatic shear bands are bands of severe plastic strain localization which result in a nominal 

stress collapse. The inhomogeneous nature of the shear band is shown by comparing the local strain with the 

nominal strain; the resulting nominal stress is also shown: HY 100 Steel (Marchand and Duffy 1988) 

The level of work hardening reduces during ‘stage 2’ either as a result of thermal softening, 

dynamic recovery, static recovery or even damage accumulation depending on the loading 
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conditions and material. As the stress passes through a maximum the first signs of shear band 

formation arise; deformation begins to occur non-uniformly. In (Figure 2.8) the nominal strain 

just after the material instability is 36%NOMγ =  while the local strain in the initiating shear band 

is 90%LOCγ =  indicating that deformation is already quite inhomogeneous (labeled number 2 at 

the top of  Figure 2.8).   

 

In ‘stage 3’ the material in the localizing region weakens further and the stress drops rapidly as a 

fully formed shear band develops. The phenomena which drive the material instability and the 

subsequent shear band deformation are discussed below for quasi-static and dynamic loading 

conditions. 

  

2.3.2 Quasi-Static Loading: Microvoid Driven Shear Band 

Under quasi-static loading conditions, deformation generally begins to localize due to microvoid 

nucleation, even under shear loading conditions (Cowie et al. 1989; McVeigh et al. 2006b). This 

process involves cracking or debonding of embedded particles as in the steel alloy shown in the 

previous section. Elastic energy stored in the surrounding material unloads into the weakened 

voided region resulting in localized deformation, further damage, degradation of the nominal 

flow stress and final material failure via a terminal microvoid driven shear localization band.  
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2.3.3 Dynamic Loading: Thermally Driven Adiabatic Shear Band 

When loading is extremely rapid, such as during a high speed explosive impact or machining 

process, a significant temperature rise may occur due to plastic work dissipation. The actual 

softening mechanisms driven by temperature rise are  

• increased thermal or dynamic dislocation recovery 

• a reduction of the materials intrinsic resistance to dislocation glide 

• grain recrystalization 

 

It is generally believed that the instability of adiabatic flow alone can give rise to an adiabatic 

shear band (Wright 2002) without the assistance of microvoid nucleation. It should be noted that 

competing hardening mechanisms act to combat the thermal softening effect, stabilize the 

thermally softening material and delay the onset of adiabatic shear band formation as described 

in Appendix A5.  Thermal conductance also delays the onset and severity of localization. 

However early studies into dynamic shear band formation tended to ignore the diffusive effects 

of conductance, giving rise to the misnomer ‘adiabatic’ shear banding. Although the timescales 

involved are extremely small, so are the length scales and heat conductance is now accepted as 

being important in determining the post instability shear band behavior (Li et al. 2001; Li et al. 

2002; Medyanik et al. 2005) 

 

2.3.4 Dynamic Loading: Void Assisted Adiabatic Shear Bands 

As explained by (Wright 2002), (Cowie et al. 1989) observed experimentally that microvoids 

nucleated along the sheared zone in double shear tests. In steel alloys these microvoids nucleate 
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due to precipitate (diameter 100nm∼ ) debonding as described in Section 2.2. Shear localization 

was found to be delayed by performing the tests under an imposed compressive stress, 

presumably because this delayed the debonding process and hence delayed nucleation of 

microvoids. Microvoid nucleation was therefore determined to be the cause of terminal shear 

localization in high strength steels, under both quasi-static and dynamic loading conditions. 

(Anand et al. 1987) also included the effects of pressure in a perturbation analysis of adiabatic 

shear bands. Other authors have observed microvoid formation in torsion tests of alloys and 

metal matrix composites – see (Wright 2002).  

 

To the author’s knowledge, larger primary inclusion (diameter 1 mµ∼ ) nucleated voids have not 

been discussed in the literature as a source of shear instability in alloys. It is noted that the role of 

the primary inclusions is discussed in the quasi-static analysis of steel, Section 2.2, and in 

Section 6.3.3. The goal of that work was to derive a constitutive model which worked over a 

range of triaxialities (McVeigh et al. 2006b). Primary inclusion debonding was considered as it 

was deemed to interact with the microvoids to cause a material instability (McVeigh et al. 2006b; 

Vernerey 2006). However in this thesis, the role of primary inclusions is not considered 

important in adiabatic shear bands, where almost zero triaxiality stress states occur.    

 

Here we are interested in dynamic adiabatic shear bands in which the rate and strain hardening 

stabilizing effects are overcome by a combination of microvoid nucleation at the precipitate scale 

and thermal softening i.e. a void assisted adiabatic shear band. In Wright’s wide ranging book on 

adiabatic shear bands (Wright 2002) he states that in personal communications, Weerasooriya 

has proposed that both void assisted shear and pure adiabatic shear must be considered in order 
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to fully understand adiabatic shear band formation in alloys but there is little work along this line 

in the literature. 
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2.3.5 Length Scales of Microvoid Assisted Adiabatic Shear Bands  

The length scales which arise during the formation of an adiabatic shear band with damage are 

illustrated schematically in (Figure 2.9). 

hl

vl

thl

hl

vl

thl

 

Figure 2.9. Microvoid assisted adiabatic sheer banding. Two characteristic length scales of inhomogeneous 

deformation are considered here; scale 
hl  corresponds to the diffuse (but high) external strain due to work 

hardening and scale 
vl  corresponds to the  local post -instability strain in the shear band . Shear band 

widening also occurs due to thermal conductance. This is indicated by 
thl . 
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Initial deformation is relatively homogeneous as the material hardens. The material deforms in a 

stable manner as rate and strain hardening dominate and thermal softening plays only a minor 

role. Deformation is quite diffuse, over a few hundred microns, hl  depending on the work 

hardening. As deformation increases, damage nucleates in the form of debonding precipitate 

particles. The thermal softening effect arising from plastic work dissipation (Section 3.3.4) and 

microvoid softening (Section 3.3.4) effects overcome the previously mentioned strain and rate 

hardening effects in the damaged region and deformation subsequently localizes at the scale of 

the microvoids vl . Thermal conductance out of this region leads to a softening effect in the 

neighboring material and the shear band widens to a width thl , related to the conductivity. It is 

noted that deformation may localize further to a smaller scale when the microvoids coalesce. 

Each of these events occurs over time scales on the order of a microsecond; the duration of time 

over which a material point undergoes homogeneous deformation is likely to be much longer 

than the time it takes for the stress to collapse once the material point becomes part of a shear 

band. In Chapter 8, these phenomena are modeled using a fully coupled thermal-multiresolution 

continuum model which is developed in Chapters 5 and 6. 

 

  

2.3.6 Design Considerations 

In terms of materials design, the shear band behavior in a steel alloy is directly related to the 

underlying microstructure. In terms of design, the ability of a shear band to penetrate a material 

is important. The key considerations are: 
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• Shear band velocity can be reduced by increasing the precipitates’ interfacial strength or 

reducing the number of secondary precipitates (i.e. reducing the microvoid contribution 

to shear instability) 

• Shear band velocity can be reduced by increasing the distance between precipitate 

particles, which acts to disperse the plastic deformation over a larger area 

•  Shear band velocity can be reduced by increasing the strain hardening, reducing the 

thermal softening, increasing the thermal conductivity. 

Each of the key design relationships is explored in Chapter 8.  
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3 RVE Homogenization and Constitutive Modeling 

As stated in the introduction, Chapter 1, a continuum material point represents the average 

behavior of a finite volume of the heterogeneous microstructure. The link between the continuum 

point and the microstructure is generally given through a constitutive relationship which in turn 

is usually calibrated to a mathematical constitutive model (the simplest case being the Young’s 

modulus). The form of the mathematical model is chosen such that it can capture the character of 

the material behavior. In general a constitutive model involves several parameters (depending on 

the complexity of the material response) which can be calibrated to the specific material being 

modeled. This is achieved by correlating the mathematical constitutive model to either: 

• the experimentally observed material behavior (tension, compression and torsion tests)  

• the average response of a computational direct numerical simulation (DNS) of a volume 

of the microstructure which is large enough to be representative of the underlying 

inhomogeneities i.e. a representative volume element (RVE) as described in Chapter 1. 

Should the latter approach be taken, there are several possibilities with respect to the type of 

boundary conditions that can be applied to the RVE. These boundary conditions are discussed in 

Section 3.1. An approach to extracting constitutive relationships from RVEs is described in 

Section 3.2. Section 3.3 and Section 3.4 describe two plasticity models used in the current thesis: 

the BCJ (Bammann-Chiesa-Johnson) model (Bammann et al. 1993) which is a rate, temperature 

and damage dependent model and a single crystal plasticity model (Asaro 1983b). 
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3.1 Computational RVE Boundary Conditions 

In the RVE approach, a detailed microstructural configuration is modeled using a simulation 

technique such as finite element analysis; boundary conditions are applied to induce an evolving 

deformation. The average stress and strain over the RVE can be plotted against each other, in 

much the same way as the stress and strain are recorded during physical mechanical tests e.g. 

uniaxial, compression, shear tests. As in physical experiments, triaxiality, rate and temperature 

effects can also be examined by varying the applied boundary conditions. The extracted stress-

strain behavior is then correlated to the chosen constitutive model via a set of material 

parameters or constants.  

 

The types of boundary conditions which can be applied to a computational RVE are described in 

Section 3.1.1. A method for maintaining constant triaxiality is described in Section 3.1.2. 

 

3.1.1 Boundary Conditions on an RVE Simulation 

Several types of boundary conditions can be applied to the RVE. An average stress σ  can be 

applied to the RVE through an applied traction t  on the RVE surface 0S : 

 0     on     S=t σ ni  (3.1) 

In practice, traction boundary conditions become unstable if the average stress decreases due to a 

material instability. For this reason, velocity based boundary conditions are often preferred.  
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An average deformation rate D  can be applied to the RVE through the application of rigid 

velocity boundary conditions v  on the RVE surface 0S : 

 0     on     S=v D xi  (3.2) 

where x  has an origin at the center of the RVE. In this case the boundaries remain flat and rigid, 

and the RVE tends to be over constrained, often leading to unphysical pressure build ups.  

 

More general periodic boundary conditions can be applied by relating the displacements on 

opposite sides of the RVE. For a two-dimensional RVE with sides of length l  and coordinate 

system 1 2( , )x x  with an origin at the center of the RVE, an average deformation rate D  may be 

imposed by requiring that the velocity v  satisfies the conditions: 

 

1 1 1 1 12 1 2 1 2 11

2 1 2 1 22 2 2 2 2 21
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l l l l
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       

       − − = − − =       
       

 (3.3) 

 (Figure 3.1) shows the different response when rigid and periodic velocity boundary conditions 

are used. In this example the matrix material is modeled as an isotropic elastic-plastic material 

with linear strain hardening. Several voids are modeled directly and a biaxial strain is applied. In 

both cases as the voids grow, strain localizes between them. When the periodic boundary 

conditions are used the localization bands extend physically into neighboring RVE’s. When rigid 

boundary conditions are applied the localization bands terminate unphysically at the RVE 

boundary.  
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Periodic
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Figure 3.1. When rigid boundary conditions are used the deformation terminates at the interface.  

Both approaches fail to capture the terminal behavior of localization i.e. a single localization path 

will always be favored over the others. The surrounding elastic energy then unloads into this path 

leading to terminal failure of the material. Although this failure event is not captured using the 

periodic boundary conditions, the general interaction between microstructural features is more 

naturally captured. These periodic boundary conditions are used throughout this thesis; 

application of periodic boundary conditions is explained further in Appendix A1. Research in the 

area of periodic boundary conditions is an ongoing topic e.g. (Mesarovic and Padbidri 2005). 
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3.1.2 Maintaining a Constant State of Triaxiality 

In certain situations it is beneficial to study the deformation of an RVE while it is subjected to 

constant stress triaxiality. In this case the periodic boundary conditions, equation (3.3), may still 

be applied. A strain is applied in one direction only. At each increment in time the resulting 

stress state is computed and a corrector pressure is applied in the perpendicular direction to the 

applied strain to automatically bring the triaxiality back to the specified value (Socrate 1995) as 

shown in (Figure 3.2). This triaxiality corrector procedure is explained further in Appendix A2. 

 

Figure 3.2. During simulation the triaxiality can be kept at a constant value by applying an evolving lateral 

pressure 
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3.2 Computational RVE Homogenization 

(Figure 3.3) illustrates the approach taken to calibrate the macroscale constitutive model. The 

continuum stress σ  is computed as a volume average of the local stress mσ  over the RVE 0V : 

 0
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0

1 1

3
:

2

m

V S

dev dev

dV dS
V S
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= = ⊗

=

∫ ∫σ σ t x

σ σ

 (3.4) 

where S  is the current surface of the RVE. As shown, the divergence theorem is applied and the 

average stress is computed via the RVE surface traction t . An equivalent stress measure σ  has 

also been defined in terms of the deviatoric stress devσ ; this scalar quantity is often used in 

constitutive models.  
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Figure 3.3. The average stress and strain over the RVE are averaged. The resulting stress-strain curve can be 

calibrated to a mathematical constitutive relation; effective stress and strain measures are often used. 
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The rate of deformation D  can be computed as a volume average of the local deformation rate 

mD : 

 0
0

1 1

2
:

3

m

V S

p p p

dV dS
V S

ε

= = ⊗

=

∫ ∫D D n v

D Dɺ

 (3.5) 

where an effective plastic strain rate pεɺ  can also be defined in terms of the plastic part of the rate 

of deformation pD . This is often used in constitutive models. 

 

3.3 Constitutive Models – BCJ Model 

In this thesis, the BCJ (Bammann-Chiesa-Johnson) internal state variable constitutive model 

developed by (Bammann et al. 1990) is primarily used to model plasticity in alloys. This model 

has been tested extensively at Sandia National Labs and is used extensively in the literature 

(Horstemeyer et al. 2000a; Horstemeyer et al. 2000b; Horstemeyer et al. 2003). The elastic 

constitutive relationship and plastic flow equations are given in Section 3.3.1. The equations for 

the internal state variables relating to dislocation hardening and recovery are given in Section 

3.3.2. The physics underlying these phenomenological equations are described in Section 3.3.3. 

The internal state variables relating to temperature and porosity are described in Section 3.3.4. A 

uniaxial simplification is given in Section 3.3.5 in order to describe the key relationships in the 

model. A comparison is made to the well known Gurson and Johnson-Cook models in Section 

3.3.6. The uniaxial simplification is used in Section 3.3.7 to show the effect of temperature and 

damage on the stress state. A table with all of the BCJ equations is given in here. 
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Description Relationship Eqn.  Description 

f  
Reference Strain 

Rate 
Rate 

Dependent 

Plastic Flow 

( )( ) ( )
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V 1
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(3.13) 

14C  
Static Recovery 

pη = Dɺ N  (3.15) N  Nucleation 

pv = Dɺ G  (3.16) G  Growth Damage 

coal vφ η=C  (3.18) C  Coalescence 

ptc  Specific Heat 

ρ  Density Adiabatic 

Temperature 
: pc

pt

h

c
ϑ

ρ
= σ Dɺ  (3.21) 

ch  Heat fraction  

Table 3.1 Key Equations and Constants in BCJ model 
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3.3.1 Elastic and Plastic Equations 

The BCJ (Bammann et al. 1990) model describes the stress state in terms of four internal state 

variables which in turn are representative of the microstructural evolution 

• a scalar variable κ  which represents an isotropic dislocation hardening/recovery effect, 

equation (3.12) 

• a tensor variable α  which represents a kinematic dislocation hardening/recovery effect, 

equation (3.12) 

• a scalar variable φ  which represents the porosity, equation (3.17) 

• the temperature ϑ , equation (3.21) 

 

The porosity variable φ  represents the void volume fraction and describes the average effect of 

nucleation, growth and coalescence of voids on the yielding behavior. The temperature rise is 

generally due to plastic work dissipation; both adiabatic temperature rise and conductance effects 

are considered in this thesis. Details on the implementation (integration) of the BCJ model can be 

found in (Horstemeyer et al. 2000b). 

 

Elastic Constitutive Relationship 

The BCJ model assumes an additive decomposition of the total deformation rate and spin tensor 

into elastic and plastic parts (Belytschko et al. 2000): 

 
e p

e p

= +

= +

D D D

W W W
 (3.6) 
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The objective stress rate ∇σ  is related to the Cauchy stress σ  by  

 e e

∇ = − +σ σ W σ σ Wɺ i i  (3.7) 

Furthermore, the elastic constitutive relationship involving the objective rate ∇σ  may be written 

in terms of the elastic part of the deformation rate eD  , the elastic bulk and shear moduli eK  and 

eG  and the damage φ  (Bammann et al. 1993; Bammann et al. 1990): 

 ( ) ( )
( )

2
1 2

3 1
e e e eK G tr G

φ
φ

φ
∇   = − − + −   −  

σ D I D σ
ɺ

 (3.8) 

where I  is the identity tensor. In order to determine the stress from this constitutive relationship, 

an expression for the rate of plastic deformation pD  is required. 

 

Rate of Plastic Deformation pD  

The plastic part of the deformation rate pD  is assumed to have a strongly non-linear dependence 

on the deviatoric stress through the deviatoric flow rule: 

 

( )( )( )

( )
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f sinh

V 1
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  =  −
 
  

ξ
σ

D
σ

 (3.9) 

where the net deviatoric stress ξ  is given by: 

 
2

3

dev= −ξ σ α  (3.10) 

It remains only to describe expressions for the rate independent initial yield stress  ( )Y ϑ , 

magnitude of rate effect V , reference strain rate f , porous damage φ , isotropic hardening, κ , 
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kinematic hardening α  and temperature ϑ . A comparison with the well known Gurson and 

Johnson Cook models is made in the one dimensional simplification which follows later in this 

section.  

 

Initial Yield Stress ( )Y ϑ  

The initial yield stress is temperature, rate and grain size dependent. The temperature ϑ  is 

measured in Kelvin (K). Three separate temperature dependent parameters describe the initial 

yield stress; a rate independent yield stress ( )Y ϑ and two rate parameters: 

• f  is the reference strain rate i.e. the strain rate at which the initial yield stress exhibits a 

transition from being rate independent (low rates) to being rate dependent (higher rates). 

• V  describes the magnitude of the rate dependency of initial yield. 

An expression for the rate dependent yield stress ϒ  is given later in Section 3.3.5, equation 

(3.26). (Figure 3.4) gives an overview of the effect of the rate parameters  f  and V  on the initial 

yield stress. Increasing V  increases the amount of rate hardening. Increasing the reference strain 

rate f  increases the strain rate at which rate hardening becomes significant.  
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Figure 3.4. The rate dependency of initial yield is illustrated in the top graph. Increasing rate increases the 

initial yield stress. The magnitude of this increase is controlled by the parameterV . The rate at which the 

yield stress becomes rate dependent is controlled by parameter f . 
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The temperature dependence of the rate effects  V  and f  are not considered here. In other words 

the rate dependency of initial yield is temperature independent. This may be untrue under 

extremely high temperatures. Furthermore, a general form for the rate independent yield stress is 

given in terms of the temperature ϑ  and grain size d  as follows: 

 

( )
1

* 2
1 2

* 0

0

=C 1 C

t

mp

Y d

where

ϑ ϑ

ϑ ϑ
ϑ

ϑ ϑ

− − + 

 −
=   − 

 (3.11) 

where 0ϑ  and mϑ  are the initial and melt temperatures and the thermal exponent t  which is 

usually very close to 1 for alloys, introduces a slight non-linear character to the thermal softening. 

A similar grain size dependency has been introduced by many authors including (Quinn et al. 

1997). The constant 1C  can be interpreted as the temperature and grain size independent yield 

stress and 2C  describes the magnitude of the Hall-Petch grain size effect i.e. as the grain size d  

decreases, the initial yield stress increases. This is usually explained in terms of grain boundary 

dislocation blocking. Smaller grains result in more grain boundary surface area. Grain 

boundaries impede dislocation motion resulting in a higher yield stress (Courtney 2000). 

 

3.3.2 Internal State Variables: Hardening and Recovery (κ  & α )  

The internal state variables describe the state of the microstructure (e.g. dislocations, temperature, 

damage) and evolve with it. For example as dislocation density increases the isotropic hardening 

stress κ  increases; the evolution equations for the internal state variables are written in terms of 

the strain, strain rate, temperature and stress triaxiality. The isotropic and kinematic stresses (κ  
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and α ) are dealt with in this sub-section; a brief overview of the physics behind the resulting 

phenomenological equations is given in Section 3.3.3. The porosity φ  and temperature ϑ  are 

described in Section 3.3.4. 

 

The evolution equations for the isotropic hardening stress κ  and kinematic hardening stress α  

used in the plastic flow relation, equation (3.9), are motivated by dislocation mechanics and are 

written in a phenomenological hardening-recovery format first developed at SNL by (Bammann 

et al. 1993). The result is a rate and temperature dependent isotropic hardening/recovery 

function: 

 

( ) ( ) ( )
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 (3.12) 

where ( )H ϑ  and ( )h ϑ  are temperature dependent hardening parameters, ( )dR ϑ  and ( )dr ϑ  

describe the magnitude of dynamic recovery, and ( )sR ϑ  and ( )sr ϑ  describe the magnitude of 

static (sometimes called thermal) recovery. Together they are able to represent non-linear stress-

strain response over a large strain regime. The hardening moduli simply describe a linear 

hardening response. However the recovery terms in each equation introduce a non-linear effect. 

These rate equations are of a form which reaches a saturation level i.e. they are not intended to 

reproduce a softening effect. Softening occurs due to thermal softening, equation (3.11) and 

porosity damage, equation (3.9) and (3.25). 
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Here, the hardening moduli are assumed to degrade with temperature in a linear manner for 

simplicity. The temperature dependency of the recovery moduli is given in terms of Arrhenius 

type non-linear functions (Bammann et al. 1993; Bammann et al. 1990) to capture the rapid 

increase in recovery with temperature: 
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 (3.13) 

A discussion on how to derive the various constants from physical experiments is given in 

(Bammann et al. 1993) and is outlined in Appendix A3 for cobalt. 

 

3.3.3 Physical Basis of Dislocation Hardening/Recovery 

A brief overview of the hardening and recovery mechanisms in alloys is now offered; these 

mechanisms are captured phenomenologically by the hardening and recovery stresses, equations 

(3.12). Of course these actual mechanisms are not simulated as such in the BCJ model; however 

their effect on the stress state is captured via equations (3.12) and (3.13).  The following 

discussion is split into dislocation hardening, dynamic recovery and static recovery. 
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Dislocation Hardening Mechanisms ( ),H h  

The scalar isotropic stress κ  describes an average of the grain boundary dislocation effects over 

many grains and hence has no direction. On the other hand, kinematic hardening α  arises from 

dislocations within the grains, and hence direction effects can be accounted for; the kinematic 

hardening is in tensor form. In both hardening/recovery measures, linear hardening is assumed to 

arise due to dislocation interactions. In (Figure 3.5) two dislocation hardening mechanisms are 

illustrated. The first is easy glide, followed by dislocation-dislocation interactions, and is 

described as a ‘soft obstacle’. (Courtney 2000). Dislocations have a non-local effect due to the 

atomic scale dilation and stress field they introduce in the surrounding atomic structure. An 

energy barrier exists which must be overcome in order to force dislocations on neighboring slip 

planes past each other i.e. energy must be supplied for a dislocation to travel through the stress 

field induced by a nearby dislocation.  
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Figure 3.5. Dislocation hardening arises due to dislocation obstacles; these are generally classified as soft or 

strong (Courtney 2000) 

Jog formation is known as a strong obstacle as dislocations are directly interacting with each 

other, often leading to dislocation bowing. Much more energy is required to overcome this type 

of interaction. During the initial stages of plastic deformation, large numbers of dislocations are 

produced creating networks of interacting dislocations which impede deformation either though 

direct or indirect dislocation interactions i.e. work hardening occurs. Other ‘strong obstacle’ 

dislocation hardening mechanisms include precipitation and grain boundary hardening (Courtney 

2000). 

 

Dynamic Dislocation Recovery Mechanisms ( ),d dR r  

Dislocation recovery mechanisms are also active in the material, competing with the hardening 

mechanisms. As shown in (Figure 3.6) the energy required for a dislocations to by-pass an 

impeding obstacle (e.g. another dislocation, an embedded precipitate) may be supplied either 
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through an applied stress or from thermal activation (i.e. heating the material). The dynamic 

recovery terms in equation (3.12) describe the recovery which occurs when the energy barrier is 

supplied mostly by an applied stress. The actual dislocation recovery process in this case is 

usually slip i.e. a dislocations by-passes an obstacle by traversing onto a neighboring slip plane. 

(Figure 3.7) illustrates how a dislocation can ‘cross-slip’ from a 111 plane onto a 111 plane  in 

order to by-pass an obstacle. As this is a slip based mechanism, it occurs on the same time scale 

as regular dislocation glide – no additional rate dependence arises.  

 

Applied stress

x

Applied stress = 0

x
obstacle

Static (Thermal) RecoveryStatic (Thermal) Recovery Dynamic RecoveryDynamic Recovery

Eϑ Eσ

Eϑ
E

obstacle

E Eσ ϑ≫

 

Figure 3.6. Obstacles can be overcome if enough energy is supplied. This energy can be thermal energy in the 

case of static recovery (left) or from an applied stress in the case of dynamic recovery (right( 
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Figure 3.7. One mechanism of dynamic recovery is cross-slip. The dislocation by-passes an obstacle by 

crossing onto an unobstructed slip plane.  

 

 

 

Static (Thermal) Dislocation Recovery Mechanisms ( ),s sR r  

The energy required to overcome an obstacle can also be supplied solely as thermal energy i.e. 

temperature rise as shown in (Figure 3.6). In this case an applied stress is not necessary to 

achieve dislocation recovery. Thermally driven or ‘static’ recovery is generally a diffusion based 

process and is associated with high temperature or long term material behavior and can often be 

observed in grain boundaries. Hence at low strain rates and high temperatures thermal recovery 

dominates, whereas at high strain rates dynamic recovery dominates in equation (3.12). In 

(Figure 3.8) a typical thermal recovery mechanism is illustrated in which thermal energy allows 
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dislocations to climb (through interaction with atomic vacancies). Dislocations then annihilate 

each other, reducing the dislocation density and easing subsequent deformation. 

Climb

Source

Dislocation

Annihilation

Climb

Source

Dislocation

Annihilation

 

Figure 3.8. One mechanism of static (thermal) recovery is dislocation climb. This is s diffusion based process 

where dislocations of opposite signs can annihilate each other. 

 

3.3.4 Internal State Variables - Porosity and Temperature (φ  and ϑ ) 

The equations which describe the evolution of porosity φ  and temperature ϑ  are outlined in this 

Section. Porosity is considered in terms of microvoid nucleation, growth and coalescence. 

Temperature rise is considered to arise from plastic work dissipation. Both adiabatic temperature 

rise and heat conduction are described. 

 

Porosity Damage Evolution φ  

In the current thesis, porosity is considered to arise in the alloy due to microvoid nucleation and 

growth. In a continuum sense, the porosity at a point is the product of the average number of 

voids per unit volume η  and the average volume of a void v : 
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 vφ η=  (3.14) 

The rate of change of the number of nucleated voids per unit volume may be given as a simple 

rate equation, in terms of the plastic deformation rate pD : 

 pη = Dɺ N  (3.15) 

Varying degrees of complexity and accuracy can be achieved depending on the form of the 

parameter N . A simple expression for the evolution of the average volume of a void v  can be 

described in terms of the plastic deformation rate pD : 

 pv = Dɺ G  (3.16) 

where G  is usually some function of triaxiality and temperature. The effects of void coalescence 

are usually included to model the rapid increase in void growth during the final stages of failure. 

Once a coalescence criterion is satisfied, the porosity function is modified to account for the 

coalescence effect and the post coalescence porosity expression becomes  

 coalvφ η φ= +  (3.17) 

where  

 coal vφ η=C  (3.18) 

The parameter C  describes the magnitude of the coalescence effect in terms of the existing 

porosity vη . It magnifies the porosity expression to replicate the effects of coalescence. Several 

attempts have been made to numerically quantify the effects of void coalescence. For example 

(Hom et al. 1989) investigated the growth of voids directly ahead of a crack tip and developed 

several void coalescence criteria which were used to predict fracture initiation. The effect of void 

configuration on both growth and coalescence has been modeled by (Horstemeyer et al. 2000a) 
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who discovered that coalescence effects can occur between voids as far apart as six void 

diameters.  

 

General Damage Evolution 

In the current work, only isotropic damage is considered. Here it is described in terms of void 

nucleation, growth and coalescence. Later, damage due to brittle fracture is also considered in an 

isotropic continuum manner. It is noted that in general the continuum damage equations provide 

a general framework for modeling the stress degradation due to damage. Microvoid nucleation 

may arise due to other phenomena such as radiation. In this case the nucleation equation will 

likely include terms which are determined by a separate mass diffusion simulation which takes 

account of radiation intensity and the type of radiation.   

 

Temperature Evolutionϑ  

The evolution of temperature at a material point is governed by (i) plastic work dissipation and 

(ii) heat conduction within the material. When conduction is considered, the full energy equation 

including heat conduction is solved: 

       in   ptQ cρ θ∇+ = Ωq
�

ɺi  (3.19) 

with boundary condition and constitutive relationship 

 
     on    q

k ϑ
= Γ

= − ∇

q n

q

ɶi
 (3.20) 

where q  is the heat flux, k  is thermal conductivity, Q  is a heat source term related to the plastic 

work dissipation : p

cQ h= σ D , ch  is the fraction of plastic work dissipated as temperature rise, 

ρ  is the material density, ptc  is the specific heat, qɶ  is an applied heat flux on the boundary Γ .  
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It is noted that a value of 0.9ch =  is generally used in the literature for alloys and is used here. 

The thermal equation is coupled to the mechanical simulation through the heat source Q . The 

mechanical simulation is coupled to the thermal simulation through the temperature dependence 

of the mechanical constitutive relationship. Under adiabatic conditions, the conductance is 

ignored and the temperature rise can be computed within the constitutive model as: 

 : pc

pt

h

c
ϑ

ρ
= σ Dɺ  (3.21) 

The constants required in the Internal State Variable Model (as described here) are summarized 

in Table 3.1. 

 

 

3.3.5 Uniaxial Stress Simplification of the BCJ Flow Relation 

A clearer understanding of the BCJ model can be developed by examining the one dimensional 

form; the material parameters used here are consistent with a cobalt alloy. This is intended to 

highlight the rate, temperature and damage dependent characteristics of the model. 

 

One Dimensional Flow Rule 

The BCJ constitutive model can be simplified for the case of uniaxial tension; the only stress 

component is σ  and the plastic part of the deformation rate pD  can be replaced by the strain rate 

εɺ . If only the isotropic hardening/recovery term κ  is considered, the BCJ flow rule equation 

(3.9) can be rewritten as: 
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( )( )( )

( )
1

f sinh
V 1

Yσ ϑ κ φ
ε

φ

  − + −  =
−  

ɺ  (3.22) 

Dividing across by f  and taking the inverse hyperbolic sine ( 1sinh− ) of each side: 

( )( ) ( )
( )

1
1

sinh
f V 1

Yσ ϑ κ φε
φ

−
 − + − =

−

ɺ
     (3.23) 

Multiplying across by ( )V 1 φ− : 

( ) ( )( )( )1V 1 sinh 1
f

Y
ε

φ σ ϑ κ φ−  − = − + − 
ɺ

    (3.24) 

Rearranging this expression the BCJ flow rule can be written as a yield surface BCJϕ : 

 ( )( )1 0BCJϕ σ κ φ= − ϒ + − =  (3.25)  

where the rate dependent initial yield stress, ϒ  is introduced as: 

 ( ) -1Vsinh
f

Y
ε

ϑ  ϒ = +   

ɺ
 (3.26) 

and the flow stress is given by the initial stress and the hardening stress, κϒ+ . The 

experimentally observed non-linear relationship between strain rate εɺ  and yield stress ϒ  is 

captured by the inverse hyperbolic sine function; the effect of the rate parameters V  and f  is 

shown in (Figure 3.4). This function also satisfies the criterion -1Vsinh 0
f

ε  ⇒  

ɺ
 when 0ε ⇒ɺ  i.e. 

the strain hardening approaches zero as strain rate decreases to zero. Note also that when damage 

is neglected ( )0φ = , the flow stress σ  is equal to the evolving initial yield stress ϒ  plus the 

hardening κ . Furthermore when the rate dependency is neglected, V 0= , the model is identical 

to a conventional mises type yield surface model.  
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3.3.6 Comparison of BCJ to Gurson and Johnson Cook 

The BCJ model combines the damage aspects of the Gurson model and the rate and thermal 

aspects of a Johnson-Cook model to form a rate and temperature dependent damage model. A 

comparison with each is given below. 

 

Comparison to Gurson Model 

The Gurson-Tvergaard-Needleman (Gurson 1977; Tvergaard and Needleman 1981) continuum 

damage model is an extension of conventional J2 flow theory to account for ductile rupture of 

metal alloys. In that model the yield surface is explicitly written in a pressure and porosity 

sensitive form: 

 

2

2

1 2 12cosh 1 0m
GTN q q q

σσ
ϕ φ φ

κ σ
   = + − − =    ϒ +    

 (3.27) 

where 1q  and 2q  are material parameters and mσ  is the hydrostatic stress and σ  is the von Mises 

(equivalent) stress. For comparison, the BCJ yield surface equation (3.25) can be rewritten as: 

 ( )
2

2 1 0BCJ

σ
ϕ φ φ

κ
 = + − − = ϒ + 

 (3.28) 

The key difference is the inclusion of a hyperbolic cosine function in the Gurson model, equation 

(3.27), which captures the isotropic contraction of the yield surface as triaxiality increases 

(increasing hydrostatic stress). The magnitude of the contraction is governed by the constants 1q  

and  2q , and the porosity φ . In the BCJ model, equation (3.28), there is no direct dependence of 

the plastic flow on pressure. However the yield surface is sensitive to pressure via the triaxiality 

dependency usually incorporated in the porosity φ . Comparing equations (3.27) and (3.28), both 



99 

models are equivalent when the Gurson pressure sensitivity parameters are set to 1 1q =  and 

1 0q = . In both models rate and temperature effects can be introduced through the initial yield 

stress ϒ  function, equation (3.26), and the isotropic hardening stress κ , equation (3.12). 

 

Comparison to Johnson Cook Model 

The Johnson Cook model (Johnson and Cook 1985; Medyanik et al. 2005) is often used to 

extend J2 flow theory to the case of rate and temperature dependent plasticity. In the Johnson-

Cook model the rate of plastic strain εɺ  is written as: 

 

( )( )

0

*

1
exp 1

1

C g

where

g Y

σ
ε ε

κ ϑ

  
= −  

  

= + −

ɺ ɺ

 (3.29) 

Inverting the expression for strain rate, a yield surface JCϕ  can be written as: 

 ( ) ( )*
0

1 ln 1 0JC Y C
ε

ϕ σ κ ϑ
ε

  
= − + + − =     

ɺ

ɺ
 (3.30) 

 

For comparison, the BCJ yield surface BCJϕ , equation (3.25), can be rewritten as: 

 ( )
( )

( )
2

V
1 ln 1 1 0

f f
BCJ Y

Y

ε ε
ϕ σ κ φ

κ

     = − + + + + − =  +     

ɺ ɺ
 (3.31) 

where the inverse hyperbolic sine function has been replaced by the equivalent logarithmic 

expression. It is clear that these expressions are similar in form. Both include a hardening term 

κ  and each incorporates a non-linear dependency on the strain rate εɺ   (normalized in both cases 
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by a referential strain rate 0εɺ  and f ). In the Johnson Cook model a natural logarithm function is 

used whereas in the BCJ model an inverse hyperbolic sine function is used (converted to a log 

function in equation (3.31)). In each model the temperature acts to degrade the stress. In the BCJ 

model this occurs through the temperature dependence of the initial yield parameter Y . In the 

Johnson Cook model the thermal degradation is given directly in terms of a temperature function 

*ϑ , which has a similar effect to the damage term φ  in the BCJ model; it isotropically shrinks 

the yield surface.  

 

3.3.7 Demonstration of BCJ Model Behavior 

In this section the effect of hardening and recovery, thermal softening and porous damage, as 

predicted by the BCJ model, are examined using the flow expression described in equation (3.25). 

The constants required in the BCJ equations (summarized in Table 3.1) are given in Table 3.2 

(unless otherwise stated). These values are typical of a steel alloy. 
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BCJ Parameters used in 1D Example 

Parameter  Value Parameter  Value 

Initial Temperature 0θ  273K  9C  
0  

Melt Temperature mθ  1700K  

Kinematic Hardening 

Modulus 
10C  

0  

Thermal Softening 

Exponent 
t  1 

11C  
0  

Reference Strain Rate f  11s−  

Kinematic Dynamic 

Recovery Modulus 
12C  

0  

Magnitude of Rate 

Effect 
V  16MPa  13C  

0  

Initial Yield Stress 1C  950MPa  

Kinematic Static 

Recovery Modulus 
14C  

0  

Hall-Petch Effect 2C  0  Void Nucleation 
N  

0  

3C  120MPaK −−  Void Growth 
G  

0  
Isotropic Hardening 

Modulus 
4C  22500MPa  Void Coalescence 

C  
0  

5C  131.3 10 Pa−×  Specific Heat ptc  
500  

Isotropic Dynamic 

Recovery Modulus 
6C  500K  Density 

ρ  32700kgm−

 

7C  0  Heat Fraction ch  
0.9 Isotropic Static 

Recovery Modulus 
8C  0   

Table 3.2 BCJ constants used in 1d examples: consistent with a 4340 steel alloy 

 

Isotropic static recovery sR  and all kinematic hardening h  and recovery effects ( ),d sr r  are 

neglected here for simplicity. This is achieved by setting the constants 7 14C C−  to zero.  The 

grain size hardening effect is also ignored by setting 2C  to zero.  
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Hardening/RecoveryH , dR  

Initially the evolution of porosity φ  and temperature ϑ  are ignored i.e. zero porosity and 

isothermal conditions are assumed. Only the dynamic recovery term in equation (3.12) is active 

giving an expression for the isotropic hardening stress:  

 ( ) ( )( )2

d pH Rκ ϑ ϑ κ= − Dɺ  (3.32) 

It is interesting to note that under isothermal conditions the isotropic hardening/recovery stress 

κ  reaches a saturation level satκ   when the rat of change of  κ  is zero i.e.  0κ =ɺ  in equation 

(3.32): 

 
( )
( )sat

d

H

R

ϑ
κ

ϑ
=  (3.33) 

This saturation stress manifests itself as a plateau in the predicted stress-strain response. Staying 

within the framework of a uniaxial compression problem, the isotropic hardening stress, equation 

(3.12), is simplified as:  

 ( ) ( )( )22

3
dH Rκ ϑ ϑ κ ε= −ɺ ɺ  (3.34) 

where the rate of plastic deformation pD   has been rewritten in terms of the total strain rate εɺ . 

Should dynamic recovery also be neglected by setting ( ) 0dR ϑ =  in equation (3.34), the 

isotropic hardening equation (3.32) becomes: 

 ( )2

3
Hκ ϑ ε=ɺ ɺ  (3.35) 

which is a simple linear hardening response as shown in (Figure 3.9). However when dynamic 

recovery ( )dR ϑ  is considered the stress reaches a saturation level as described in equation (3.33) 
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and illustrated in (Figure 3.9) at a temperature of 273K . At elevated temperatures 

( )450 ,600K K  the temperature dependent hardening modulus ( )H ϑ  decreases and the recovery 

modulus ( )dR ϑ  increases with temperature according to equations (3.13). Both result in a lower 

saturation stress satκ , equation (3.33), as shown in (Figure 3.9). Note that only the isotropic 

hardening stress κ  is plotted in (Figure 3.9); hence the thermal softening effect on the initial 

yield stress ( )Y ϑ  is not observable in this plot. 
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Figure 3.9. The BCJ model used here reduces to a linear hardening model when recovery is neglected. 

Otherwise a saturation stress occurs, equation (3.33). 
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Thermal Softening ϑ  

The effect of adiabatic temperature rise, equation (3.21), on the flow stress, equation (3.25), is 

now considered; again porosity φ  is neglected in equation (3.25). The evolution of the 

temperature function *ϑ , described in equation (3.11), is shown in (Figure 3.10). The 

corresponding adiabatic flow stress is also shown and compared to the isothermal flow stress 

curve. The rising temperature acts to decrease the flow stress by: 

• reducing the rate independent initial stress ( )Y ϑ , equation (3.11) 

• reducing the isotropic hardening stress κ , equation (3.32) via  

o the hardening modulus ( )H ϑ , equation (3.13) 

o the recovery modulus ( )dR ϑ , equation (3.13) 
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Figure 3.10. The temperature rise which occurs under adiabatic conditions is shown along with the resulting 

thermal softening effect. 
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Isothermal Porosity Damage 

Porosity damage φ  is now considered, first under isothermal conditions and then under adiabatic 

loading conditions. Increasing porosity has the effect of isotropically shrinking the yield surface 

as described by in equation (3.25). Here a very simple linear relationship between porosity φ  

and strain is used as illustrated defined in (Figure 3.11): 

 
0   0.2

   0.2

φ ε

φ ε ε

= ≤

= >

ɺ

ɺ ɺ
 (3.36) 

This simple expression is used here for illustration purposes only (the nucleation, growth and 

coalescence expression given by equations (3.15), (3.16) and (3.18) are much more physical but 

require several parameters). Porosity is zero until a strain of 20% and then grows linearly to a 

value of 0.3 at a plastic strain of approximately 50%.  
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Figure 3.11. The effect of porosity is shown under isothermal conditions. The combined thermal and porosity 

effects are then shown; the instability point is a function of both porosity and temperature.  
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The porosity softening effect is first considered under isothermal conditions. It is shown in 

(Figure 3.11) that the stress immediately begins to degrade once the porosity begins to grow. The 

combined softening effect due to evolving porosity φ  and adiabatic thermal softening *ϑ  is also 

shown. Both softening effects act to overcome the work hardening. Again the influence of 

damage can be observed after 20% strain is reached. 

 

In conclusion, the BCJ model can capture hardening, recovery, thermal softening and porous 

damage effects. Each extra set of physics requires an extra set of material constants. A summary 

of the constitutive relationship is given below: 

 

Summary 

Cause: Increasing Strain Rate 

Effects: (a) Increasing rate dependent initial yield stress ( )εϒ ɺ , equation (3.26); dynamic 

recovery terms becomes more important than static recovery terms, equation (3.12). 

 

Cause: Increasing Temperature 

Effects: (a) Decreasing initial yield stress ( )Y ϑ , equation (3.11); decreasing hardening moduli 

( ) ( ),H hϑ ϑ    and increasing dynamic ( ) ( ),d dR rϑ ϑ   and static ( ) ( ),s sR rϑ ϑ    recovery 

moduli, equation (3.13). 

 

Cause: Increasing Porosity 

Effect: Decreasing flow stress, equation (3.25). 
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3.4 Constitutive Models – Crystal Plasticity 

The crystal plasticity formulation (Asaro 1983a) has been used successfully in the past to 

represent the details of crystallographic deformation in metallic single crystals and polycrystals 

e.g. see (Bruzzi et al. 2001; McHugh et al. 1993; McHugh and Mohrmann 1997). The 

kinematical theory for the mechanics of crystals is based on the work of (Hill 1966; Hill and 

Rice 1972; Rice 1971). What follows is a summary of crystal plasticity theory based on the 

approach of (Asaro 1983b). Although both poly- and single crystal models exist, the length 

scales of interest here can be modeled using single crystal plasticity only. Plastic deformation is 

assumed to occur via crystallographic dislocation based slip; diffusion, twinning and grain 

boundary sliding deformation mechanisms are not considered. The key assumption is that the 

resolved shear stress on each slip plane drives slip on that plane. Details of the constitutive 

model implementation (integration) can be found in (Huang 1991). 

 

3.4.1 Kinematics of Crystal Plasticity 

The crystal lattice structure undergoes elastic deformation and rigid rotation as well as crystalline 

slip i.e. dislocation motion accommodates material flow through the crystal lattice. The total 

deformation gradient can be written as: 

 * p=F F Fi  (3.37) 

where pF  is that part of the deformation gradient associated with plastic shear and *F  describes 

the elastic stretching and rotation of the lattice. The kinematics of elastic-plastic deformation of 

crystalline solids is illustrated in (Figure 3.12) in terms of the reference, intermediate and current 

deformed configurations. It is assumed that the elastic properties are independent of plastic slip, 



110 

hence the stress can be determined form the elastic/rotation part *F . The rate of change of pF  at 

a continuum point is related to the slip rate on the α  slip systems αγɺ  by: 

 ( ) 1
p p α α α

α

γ
−

=∑F F s mɺ ɺi  (3.38) 

where αs  and αm  are the slip direction and normal to the slip plane in the reference 

configuration. The sum is over all of the activated slip systems. 

In the current deformed configuration (Figure 3.12) the slip direction is given by  (Asaro 1983a) 

 * *α α=s F si  (3.39) 

and the normal to the slip plane is given by  

 ( ) 1
* *α α −

=m m Fi  (3.40) 

The velocity gradient in the current configuration is  

 1−= = +L F F D Wɺ i  (3.41) 

where the rate of deformation and spin tensor are given by D  and W  respectively. Each can be 

further decomposed into the elastic/rotation and plastic parts: 

 * *          p p= + = +D D D W W W  (3.42) 

such that 

 ( )-1* * * *           p p α α α

α

γ+ = + =∑D W F F D W s mɺ ɺi  (3.43) 

Crystalline slip is assumed to obey Schmid’s law (Asaro 1983a; Asaro 1983b) which means the 

slip rate αγɺ  can be written in terms of the Schmidt stress ατ  on that particular slip system. The 

Schmid stress can be interpreted as the resolved shear stress when elastic lattice deformation is 

negligible. In the presence of finite elastic lattice deformations, there are several generalizations 
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of the Schmid stress (Asaro and Rice 1977). Here the definition of the Schmid stress used by 

(Rice 1971) is used, given in terms of the Cauchy stress σ  as: 

 * *0α α αρ
τ

ρ
=m σ si i  (3.44) 

where 0ρ  and 0ρ  are the mass density in the reference and current configurations. The 

corresponding rate of change of Schmid stress has been given by (Hill and Rice 1972) as: 

 ( )* * * * * *:α α ατ
∇ 

= + − + 
 

m σ σ I D D σ σ D sɺ i i i i  (3.45) 

where the Jaumann rate *
∇

σ  is the corotational stress rate on axis that rotate with the crystal 

lattice. 
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Figure 3.12. A multiplicative decomposition of the deformation gradient; the deformation gradient is 

separated into the plastic part 
pF  and the part which describes elastic stretching and rigid body rotation 

*F . 

 

 

 

 

 



113 

3.4.2 Rate of Slip 

The slip rate on the thα  slip plane is commonly given in terms of the phenomenological 

Schmid’s Law: 

 ( )sgn

m

a
g

α
α α

α

τ
γ τ

  
=  

  
ɺ ɺ  (3.46) 

where m  is the rate sensitivity parameter and aɺ  is the reference strain rate. This rate equation 

for the plastic strain is analogous to equation (3.9) used in the BCJ Internal State Variable model; 

the key difference is that now a set of α  equations are required to define the strain rate on each 

slip system. The current strength of each slip system is given by the hardening variable gα . 

 

3.4.3 Rate, Temperature and Grain Size Dependent Hardening 

Here each slip system is assumed to have the same initial strength 0g .  A self hardening power 

law function for the slip planes is used such that the strength of slip plane α  is given by: 

 0

0

1

n

g g
α

α γ
γ

 
= + 

 
 (3.47) 

where 0g  is the initial strength,  αγ  is the slip on the α  slip plane, 0γ  is the reference 

accumulated plastic strain and n  is the hardening exponent. This is analogous to the 

hardening/recovery stresses defined in the BCJ model, equation (3.12). Other more complicated 

(latent hardening) functions may be used where the hardening effect on a slip plane is related to 

the accumulated strain on other planes.  

 



114 

This slip plane hardening function describes the increases in stress required to move a dislocation 

along the slip plane due to dislocation entanglement and pile up at obstacles such as stacking 

fault intersections (Figure 3.5). Other hardening effects, such as grain boundary hardening may 

be accounted for by incorporating a Hall-Petch type term: 

 
1
2

0

0

1

n

dg g k d
α

α γ
γ

− 
= + + 

 
 (3.48) 

where dk  is a constant derived from experiment (Roebuck et al. 1984) and d  is the grain size. 

Smaller grain sizes increase the strength of the slip planes. A temperature dependence of slip 

system hardening can also be included: 

 

( )1
*2

0

0

* 0

0

1 1

n

d

t

m

g g k d

where

α
α γ

ϑ
γ

ϑ ϑ
ϑ

ϑ ϑ

−
  
 = + + − 
   

 −
=  

− 

 (3.49) 

ϑ  is the temperature in Kelvin, mϑ  is the melt temperature, 0ϑ  is the reference temperature, t  is 

the thermal softening exponent. Increasing temperature reduces the yield strength of the slip 

planes. 

 

3.4.4 J2 Flow versus Crystal Plasticity 

It is interesting to compare the crystal plasticity model to a conventional isotropic metal 

plasticity approach; the J2 flow theory of metal plasticity (Belytschko et al. 2000) is used here 

for comparison. A cobalt alloy is chosen as the material. Cobalt has an FCC lattice structure with 

twelve sets of slip systems, with the closed packed slip plane being 111 and slip direction type 
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<110>. The values for each material parameter in the crystal plasticity model, equations (3.46) 

and (3.49) are given in Table 3.3. 

 

Crystal Plasticity parameters used to compare with J2 Flow 

Parameter Value Equation Description 

E  211GPa  Elastic Modulus 

ν  0.31  

- 

Poisson’s Ratio 

m  10  (3.46) Rate Sensitivity Parameter 

aɺ  10.001s−  (3.46) Reference Strain Rate 

0g  74MPa  (3.49) Initial Strength of Slip Planes 

0γ  0.3125  (3.49) Reference Accumulated Strain 

n  0.2995  (3.49) Hardening Exponent 

mϑ  1768K  (3.49) Temperature effect on slip 

mϑ  273K  (3.49) Reference Temperature 

t  1 (3.49) Thermal Softening Exponent 

dk  3
22.145Nmm

−
 (3.49) Hall-Petch effect on slip 

Table 3.3 Crystal Plasticity parameters from experiment for a cobalt alloy (Quinn et al. 1997) 

 

A J2 flow theory with power law hardening is calibrated to the average behavior of single crystal.  

In (Figure 3.13) a 2D plane strain simulation is performed in which the alloy matrix is 

represented by (a) the J2 theory of plasticity and (b) single crystal plasticity theory. The 

accumulated plastic strain is plotted on the undeformed and deformed configurations in each 
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case. The initial 2D void area (and 3D cylinder volume) fraction is 1%. Biaxial tensile strain 

loading conditions are applied. When J2 theory is used, the surrounding material deforms 

isotropically and the void expands hydrostatically. The sides of the voids flatten as it begins to 

interact with neighboring voids (periodic boundary conditions have been applied). In the case of 

crystal plasticity, the matrix displays favored slip (plastic deformation) directions resulting in a 

hexagonal void shape as predicted by (Sigl and Exner 1987). These slip directions used in the 

crystal plasticity model are shown in the top pane in (Figure 3.14) in relation to the 

crystallographic structure. The crystallographic orientation introduced through the crystal 

plasticity formulation can be observed clearly in the void growth simulation when the stress field 

is plotted on the undeformed configuration in the bottom pane of (Figure 3.14). 

J2 Flow Crystal Plasticity

 

Figure 3.13. Plastic strain contours around a growing void obtained using (a) J2 flow theory and (b) crystal 

plasticity to represent the alloy matrix. The void shape is related to the crystallographic texture when crystal 

plasticity theory is used. 
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Figure 3.14. The crystal orientation used in the crystal plasticity model is shown in the top pane. The stress 

field obtained through the crystal plasticity formulation is clearly related to the crystallographic structure in 

the bottom pane 

 A cell containing several voids is now studied to investigate how each model handles the 

interaction between voids in a locally heterogeneous system. The crystal plasticity model 

predicts a stronger interaction between voids as the plastic flow occurs more readily 

accommodating increased void growth. In (Figure 3.15) the void lying in the upper right corner 

does not interact with the others when the J2 flow theory is used. When crystal plasticity is used 
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the interaction is clear; the void interacts with the others via the active slip systems which lie at 

60 degrees. 

J2 Flow Crystal Plasticity

 

Figure 3.15. Plastic strain contours in a multi-void simulation. Greater interaction is predicted between voids 

aligned in preferred directions when using the crystal plasticity formulation 
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4 Hierarchical Model of Cemented Carbide Composites 

In this chapter a hierarchical approach (Hao et al. 2004; Hao et al. 2003) is employed to develop 

a homogenized macroscale constitutive model for a WC-Co composite. The goal is to use this 

homogenized constitutive relation within a fracture simulation in order to gauge the effect of the 

microstructural parameters (cobalt volume fraction f  and grain size d ) on crack behavior.  The 

key micromechanics of WC-Co deformation have been described in Chapter 2. The general 

forms of the constitutive relationships used in this chapter have been described in Chapter 3. An 

overview of the hierarchical approach used here is given in (Figure 4.1).  

 

The behavior of the brittle carbide grains and ductile cobalt binder are calibrated to separate 

homogenized constitutive relationships using input from empirical data and microscale 

computational cell modeling. A homogenized constitutive relationship for the WC-Co composite 

is then calibrated to the results of macroscale computational cell models in which the carbide and 

cobalt microstructural features are directly modeled. 
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Figure 4.1. A hierarchical approach to forming a constitutive model for a WC-Co composite. 

The hierarchical approach can be divided into three distinct stages: 

• (Section 4.1): A porous cobalt plasticity model (BCJ) is constructed. The BCJ porosity 

damage parameters are determined using computational simulations of void growth in a 

crystal plasticity cobalt matrix.   

• (Section 4.2): A brittle fracture model is calibrated to experimental data for tungsten 

carbide. 
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• (Section 4.3): A macroscale computational cell model of the WC-Co composite is 

constructed using the constitutive relations developed in Sections 4.1 and 4.2. The effect 

of varying each of the important microstructural parameters is investigated. 

• (Section 4.4): A composite damage constitutive model is proposed, based on modified 

BCJ model, and calibrated to the results of the parametric study performed in Section 

(4.3).   

• (Section 4.5): The composite damage model is applied within a numerical fracture 

toughness simulator. 

The final WC-Co composite model developed in Section 4.4 gives the macroscale constitutive 

response directly in terms of the key underlying microscale parameters and macroscale boundary 

conditions;  

• volume fraction of cobalt f   

• cobalt grain size d   

• temperature ϑ  

• triaxiality T  

• microvoid porosity φ  

• brittle damage D   

• deformation rate D  
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4.1 Porous Cobalt Binder Model 

The role of the cobalt binder in cemented carbides is well established empirically and is 

discussed in Section 2.1.1. In this section, a BCJ constitutive model (see Chapter 3 for details on 

the BCJ constitutive model) is calibrated to the rate D , temperature ϑ , cobalt grain size d  and 

microvoid porosity φ  dependent plastic flow within the cobalt binder. Practically speaking this is 

achieved by finding the material parameters relating to:  

 (a)  Microvoid porosity evolution, Sections 4.1.1-4.1.4 

• Nucleation parameter N , equation (3.15), is developed in Section 4.1.1 

• Growth parameter G , equation (3.16) is developed in Sections 4.1.2 and 4.1.3 

• Coalescence parameter C , equation (3.18) is developed in Section 4.1.4 

(b)  Plastic flow in the cobalt binder, Section 4.1.5 

• Magnitude of rate effect V , equation (3.9) 

• Reference strain rate f , equation (3.9) 

• Rate independent Yield Stress ( )Y ϑ , equation (3.11) 

• Isotropic hardening modulus ( )H ϑ , equation (3.13) 

• Isotropic dynamic recovery modulus ( )dR ϑ , equation (3.13) 

 

The porous damage and plastic flow equations are combined in a single BCJ damage model 

which is validated against computational cell model results in Section 4.1.6. Finally in Section 

4.1.7, the inverse strength-ductility relationship built into the model, is commented on. 
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4.1.1 Void Nucleation Parameter N  

The physics of void nucleation in cobalt has been described in Chapter 2, Section 2.1.4 and a set 

of continuum equations for nucleation, growth and coalescence of voids are described in Section 

3.3.4. An expression for the rate of change of number of nucleated voids per unit volume was 

given in equation (3.15), and is repeated here for convenience: 

 pη = Dɺ N  (4.1) 

Macroscopically speaking, vacancy based microvoid nucleation in cobalt is a stress and strain 

controlled process. With reference to Section 2.1.4, higher stress indicates a large density of 

stacking fault intersections, which are responsible for vacancy creation. Larger plastic strains 

indicate a large dislocation density, which facilitates vacancy mobility and hence microvoid 

nucleation via vacancy clustering. Here, microvoid nucleation is assumed to be normally 

distributed about a mean value of plastic strain εN  (Chu and Needleman 1980); however we 

incorporate a simple stress dependency; the mean nucleation strain εN  is a function of the initial 

yield stress ϒ . This is represented in a continuum sense by: 

 
( )

( )
2

0.5

1
exp

22

p

ss

ε ε

π

  − ϒ 
= −    

   

*
N

NN

N
N  (4.2) 

where *N  is the maximum number of nucleated voids per unit area in 2D assumed to be 

10 22 10 m−×  here (Shi and Barnby 1984), ns  is the standard deviation of nucleation about a mean 

value of strain εN . Here a standard deviation of 0.05ns =  is used.  
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A relationship between the mean strain at nucleation εN  and the initial yield stress ϒ  must be 

defined. In general, higher stresses indicate more vacancies, hence the mean distance between 

vacancies is reduced and less plasticity is required for void clustering to occur. In other words 

higher stress requires lower strain for nucleation to occur. The relationship between the average 

strain at nucleation εN  and the initial yield stress Y , equation (3.11), is approximated here as a 

simple inverse equation: 

 1D

Y
ε =N  (4.3) 

(Sokolov et al. 1969) performed uniaxial mechanical tests on a cobalt alloy and recorded the 

initial yield stress as 1Y GPa= . The ultimate tensile strength occurred at a uniaxial strain of 

0.2UTSε = . Assuming the ultimate tensile strength coincides with the mean strain at nucleation 

(i.e.  UTSε ε= N ) it is possible to calibrate equation (4.3) to this data point, giving a value of 

8

1 2 10D Pa= × . The resulting relationship is plotted in (Figure 4.2). It is noted that this is a fairly 

rough approximation; for example the triaxiality and temperature effect on nucleation is not 

considered. It may be possible to determine a more accurate relationship through empirical data 

or via molecular level simulations of vacancy formation and clustering. 
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Figure 4.2. An inverse relationship between initial yield stress ϒ  and mean strain for void nucleation εN . 

4.1.2 Void Growth Parameter G  

An expression for void growth is given by equation (3.16), and is repeated here for convenience. 

The void growth equation is generally given in terms of the plastic deformation rate pD : 

 pv = Dɺ G  (4.4) 

The physical parameters which control void growth are contained in the expression for G : 

 ( ), ,T dϑG = G  (4.5) 

where ϑ  is the temperature, T  is the triaxiality, d  is the cobalt grain size. An expression for the 

void growth parameter G  is now developed from computational cell models in which a growing 

void is modeled directly.  The effect of temperature ϑ ,  triaxiality T  and cobalt grain size d  can 

be gauged by varying each in a parametric study, Section 4.1.3. 



126 

Void Growth Computational Cell Model 

The microvoid growth simulation set-up is briefly described here; the 2D mesh and slip plane 

directions are illustrated in (Figure 4.3). The key aspects of the void growth simulation are 

summarized as: 

• Two-dimensional plane strain finite element (ABAQUS 2004) simulations 

• A single pre-nucleated 2D void (3D cylinder) of radius 20nm (see Section 2.1.4) is 

modeled 

• The initial 2D void area (3D cylinder volume) fraction is 0.8% 

• Fully periodic displacement boundary conditions (Appendix A1) are applied to induce 

true Mises strains of approximately 30-40% and stress triaxiality is kept constant 

throughout the simulation (Appendix A2).  

• A crystal plasticity model (Asaro 1983b) is used to model the bulk cobalt matrix 

surrounding the void. Crystal plasticity offers a more accurate model for the alloy matrix 

at the nanometer scale than isotropic plasticity models such as J2 flow. More details on 

the crystal plasticity formulation are given in Chapter 3, Section 3.4.  

• A Taylor factor of 3.03 is used to convert the tensile stress-strain experimental data 

(Roebuck et al. 1984) for cobalt to a power law self hardening function for each slip 

plane, equation (3.47). The Taylor factor is the ratio between the macroscopic flow stress 

and the critical resolved shear stress on a slip plane as shown in (Figure 4.4). As there are 

several discrete slip systems in alloys, an arithmetic mean of the individual Taylor factors 

is used (Courtney 2000).  
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• The grain size hardening effect on the cobalt plastic slip behavior is incorporated in 

equation (3.47) and calibrated to the experimental observations of  (Poech et al. 1991).   

• The temperature dependence of slip plane hardening in equation (3.47) is calibrated to the 

experimental observations of (Sokolov et al. 1969).  

• The rate parameters for cobalt, equation (3.44) are taken from (Sigl and Exner 1987)  

Crystal Plasticity (111 Plane)Crystal Plasticity (111 Plane)

(110) directions(110) directions

FCC StructureFCC Structure 111 Plane111 Plane 111 Plane111 Plane

60°

(111 Face)

Finite Element Mesh Finite Element Mesh 

(1050 elements)(1050 elements)

 

Figure 4.3. The crystallographic orientation used in the 2D void growth simulations. The finite element mesh 

is also shown. 
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Figure 4.4. A brief explanation of the Taylor factor. It relates the uniaxial stress to the resolved shear stress 

on a slip plane. 
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Values for each material constant used in the crystal plasticity representation of cobalt, equations 

(3.44) and (3.47) are given in Table 4.1. 

 

Crystal Plasticity Parameters for Cobalt used Void Growth Simulations 

Constant Value Equation Description 

E  211GPa  Elastic Modulus 

ν  0.31  

- 

Poisson’s Ratio 

m  10  (3.44) Rate Sensitivity Parameter 

aɺ  10.001s−  (3.44) Reference Strain Rate 

0g  74MPa  (3.47) Initial Strength of Slip Planes 

0γ  0.3125  (3.47) Reference Accumulated Strain 

n  0.2995  (3.47) Hardening Exponent 

mϑ  1768K  (3.47) Temperature effect on slip 

mϑ  273K  (3.47) Reference Temperature 

t  1 (3.47) Thermal Softening Exponent 

dk  3
22.145Nmm

−
 (3.47) Hall-Petch effect on slip 

Table 4.1 Parameters used for a crystal plasticity model of cobalt 
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4.1.3 Void Growth Parametric Study 

The effect of triaxiality T , cobalt grain size d  and temperature ϑ  on void growth are now 

examined by varying each parameter in the void growth computational cell model. Unless 

otherwise stated the triaxiality 0.5T = , grain size 5d mµ= and temperature 298Kϑ = . An 

expression for the void growth parameter ( ), ,T dϑG = G , equation (4.5), is then proposed and 

calibrated to the data from the parametric study.  

 

Triaxiality T  

The 2D computational cell model, containing a single void, is loaded under constant triaxiality 

quasi-static fully periodic loading conditions. Stress triaxiality is defined as: 

 1

2

2

3

I
T

J
=  (4.6) 

where 1I  is the first stress invariant and 2J  is the second stress invariant. As shown in (Figure 

4.5), an average strain is applied in the y direction and the triaxiality is held constant using a 

feedback loop and an applied lateral pressure (See Appendix A2 for details). This is repeated for 

several triaxialities; each time the resulting 2D void volume (area) fraction is plotted with respect 

to the plastic strain in (Figure 4.6). As expected, higher triaxiality results in increased void 

growth as a function of Mises strain. The void growth rate becomes non-linear at higher plastic 

strains, particularly at triaxialities greater than 0.5. The void configuration at a Mises strain of 

0.3 is shown for each triaxiality in (Figure 4.7). 
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Figure 4.5. Stress triaxiality is fixed by applying an evolving lateral pressure 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3

True Mises Strain

V
o
id
 V
o
lu
m
e
 F
ra
c
ti
o
n

0.2T = −

0.0T =

0.5T =

1.7T =
4T =

10T =

 

Figure 4.6. Void growth increases with increasing triaxiality. Note that in negative triaxiality 0.2T = −  the 

void actually shrinks 
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Figure 4.7. At low triaxiality voids collapse, at high triaxiality they grow at small plastic strains 
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Cobalt Grain Size d  

The cobalt grain size d  is varied in the slip strength equation (3.47). The single void cell model 

is again loaded under quasi-static loading conditions. The cobalt grain size d  is varied from 

10d nm=  to 5000d nm= . The numerical experiment is repeated at a triaxiality of 2.0T = . It is 

clear from (Figure 4.8) that decreasing the cobalt grain size d  has the effect of encouraging void 

growth as a function of plastic strain regardless of the triaxiality. Hence although a smaller cobalt 

grain size strengthens the cobalt matrix, it also encourages void growth (at constant triaxiality 

and temperature). 
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Figure 4.8. The void growth rate is predicted to increase as grain size decreases 
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 Temperature ϑ  

In the crystal plasticity model the slip system strength is temperature dependent, equation (3.47). 

Three temperatures are used in this equation; 400 ,700K K  and 1100K . Isothermal conditions 

are assumed. A small temperature dependence is observed in the resulting void growth illustrated 

in (Figure 4.9). It is noted that (Horstemeyer et al. 2000b) observed an increase in void growth 

with temperature (at constant triaxiality) using an isotropic plasticity model for the alloy matrix. 

In the current material, the temperature effect is quite small compared to the effect of changing 

the cobalt grain size d  or triaxiality T . 
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Figure 4.9. A small temperature effect is observed; decreasing void growth is predicted with temperature. 
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Calibrating the Void Growth Parameter ( ), ,T dϑG  

The final expression for void growth is clearly triaxiality T  and grain size d dependent from 

(Figure 4.7) and (Figure 4.8). As the temperature ϑ  effect on void growth is small compared to 

the other effects it is neglected here. A simple form which captures the triaxiality and grain size 

dependency is given by: 

 3
2

D
D T

d
+G =  (4.7) 

The constants 2D  and 3D  are computed by calibrating this equation to the data in (Figure 4.8) 

and (Figure 4.6). A good fit is given by 12 2

2 0.16 10D m−= ×  and 
3

8 2
3 1 10D m−= × . The 

correlation is illustrated by comparing the void growth expression (4.4), with the parameter G  

given by equation (4.7), to the void growth simulations. The comparison for different triaxialities 

is shown in (Figure 4.10) and the comparison for different cobalt grain sizes is shown in (Figure 

4.11). 
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Figure 4.10. The void growth equation (4.7) (dashed lines) is compared to the void growth simulations (solid 

lines) under different triaxialities. 
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Figure 4.11. The void growth equation (4.7) (dashed lines) is compared to the void growth simulations (solid 

lines) with different grain sizes. 
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4.1.4 Void Coalescence C  

Void coalescence occurs when the stress fields induced by neighboring voids begin to interact. 

Void growth is accelerated by the presence of a near-by void as shown in (Figure 4.12) for two 

different void configurations; a single isolated void and a system of five interacting voids. In the 

multivoid system the average spacing between void is equal to five void diameters. In the single 

void system the average spacing between voids is ten diameters (voids are arranged periodically).  

 

The initial void volume fraction in the multi-void system is five times that of the single void 

simulation. The void volume fraction of the cluster simulation is therefore divided by five to 

make a comparison between the two void growth rates in (Figure 4.12). The accelerated void 

growth arising from coalescence effects is usually accounted for in the porous damage equation 

by including a contribution to the porosity arising from coalescence coalφ  as described by 

equation (3.18) and repeated here for convenience: 

 coal vφ η=C  (4.8) 

Here the dimensionless coalescence parameter  C  is written in terms of the current porosity vη : 

 4 5D D vη= +C  (4.9) 

No coalescence criterion is used to indicate the onset of coalescence; coalescence is predicted as 

long as voids exist i.e. 0vη >  in equation (4.8). This is in contrast to the approach of (Tvergaard 

and Needleman 1981) and in the adiabatic shear band modeling performed in this thesis (Chapter 

8) in which coalescence initiates at a critical void volume fraction. Values of 4 1D =  and 5 1D =  

are used here; these values give a good correlation between the porous BCJ model and cell 

models as shown in the comparisons made in Section 4.1.6.  
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Figure 4.12. Void growth is accelerated by the presence of nearby voids. 

This completes the evolution equations for void nucleation, growth and coalescence. The 

nucleation, growth and coalescence equations along with the material constants are summarized 

in Table 4.2. 
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Damage Equations for the Cobalt BCJ Model 

Mechanism Parameter Eqn Constant Value 

*N  10 22 10 m−×  

( )
( )

2

0.5

1
exp

22

p

ss

ε ε

π

  − ϒ 
= −    

   

*
N

NN

N
N  (4.2) 

Ns  0.05  Nucleation 

1
N

D

Y
ε =  (4.3) 1D  8 12 10 Pa−×  

2D  
12 20.16 10 m−×

 Growth 

 

3
2

D
D T

d
+G =  (4.7) 

3D  3
8 21 10 m−×  

4D  1 

Coalescence 4 5D D vη= +C  (4.9) 

5D  1 

 

Table 4.2 A summary of the microvoid damage equations and parameters for cobalt. Equation numbers are 

shown.  
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4.1.5 Rate, Temperature and Grain Size Effects on Plastic Flow  

The porosity parameters for void nucleation, growth and coalescence have been determined in 

Sections 4.1.1-4.1.4. To complete the porous cobalt BCJ model, plastic flow parameters given in 

Table 4.3 must be determined. These parameters can be determined to the known rate, 

temperature and grain size dependent plastic flow behavior. This usually involves calibrating to 

experiment. Here the BCJ model (neglecting porosity) is calibrated to the known crystal 

plasticity model described in Section 4.1.2. The resulting BCJ constants are in Table 4.3. For a 

description of how to determine the BCJ constants see Appendix A3. 
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BCJ Parameters calibrated from Crystal Plasticity Model 

Parameter  Value Equation 

Reference Strain Rate f  10.001s−  

Magnitude of Rate Effect V  69MPa  
(3.9) 

Initial Temperature 0θ  298K  

Melt Temperature mθ  1768K  

Thermal Softening Exponent t  1 

Initial Yield Stress 1C  750MPa  

Hall-Petch Effect 2C  1
5 23.35 10 Pam×  

(3.11) 

3C  169MPaK −−  
Isotropic Hardening Modulus 

4C  31GPa  

5C  -6 11.674 10 Pa−×  
Isotropic Dynamic Recovery Modulus 

6C  0  

7C  1 10.02Pa s− −  
Isotropic Static Recovery Modulus 

8C  1877K−  

9C  0  
Kinematic Hardening Modulus 

10C  0  

11C  0  
Kinematic Dynamic Recovery Modulus 

12C  0  

13C  0  
Kinematic Static Recovery Modulus 

14C  0  

(3.12) 

& 

(3.13) 

Elastic Modulus E  211GPa  

Poisson’s Ratio ν  0.31  
- 

 

Table 4.3 Constants which describe the BCJ plasticity model for the cobalt binder. Equation numbers are 

shown 
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Note that kinematic hardening and recovery are not considered (constants 9 14C C−  are zero) i.e. 

only isotropic hardening/recovery is modeled (constants 3C - 8C  are non-zero).   

 

The damage evolution equations in Table 4.2 are now used within the BCJ model described in 

Table 4.3  to form a complete strain rate, temperature, triaxiality, grain size and porous damage 

dependent constitutive model for the cobalt binder, equation (3.9)-(3.12). The key relationships 

in the cobalt binder constitutive model can be summarized as follows: 

• Initial yield stress is related to the temperature, strain rate and cobalt grain size 

• Subsequent dislocation hardening and recovery is related to the temperature 

• Void nucleation is related to the initial yield stress and plastic strain 

• Void growth rate is related to the triaxiality, plastic strain and cobalt grain size 

 

4.1.6 Porous Cobalt BCJ Plasticity Model: Validation 

The BCJ porous cobalt plasticity model developed in Section 4.1.1-4.1.5 (summarized in Table 

4.2 and Table 4.3) is now compared to the average response of a voided cobalt computational 

cell (the matrix in the cell is modeled using crystal plasticity). The purpose of this exercise is to 

ensure the BCJ model is replicating the correct response i.e. the response of a porous cobalt alloy. 

Microvoid nucleation is not considered in either the cobalt cell (in which a population of pre-

existing voids is modeled) or the BCJ model. An initial porosity of 1% is used in the BCJ model; 

this is consistent with the initial porosity in the voided cobalt cell model.  
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Different loading triaxialities T , cobalt grain sizes d , average loading rates D  and 

temperatures ϑ  are examined. In each case the calibrated BCJ model shows good correlation 

with the directly modeled microstructure simulation. (Figure 4.13) shows the triaxiality 

comparison and the resulting plastic strain contours at a Mises strain of 0.3. (Figure 4.14) shows 

the temperature comparison. (Figure 4.15) shows the rate comparison. (Figure 4.16) shows the 

cobalt grain size comparison. 

Cell Modeling

BCJ Model

Plastic Strain

0.25T =

1.7T =

4T =

True
 

Figure 4.13. A comparison of the final BCJ model and multivoid simulations under different triaxialities 
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Cell Model

BCJ Model

353Kϑ =

453Kϑ =

773Kϑ =

True

 

Figure 4.14. A comparison of the final BCJ model and multivoid simulations under different temperatures 
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Cell Model

BCJ

2 125 10 s−= ×D

2 125 10 s− −= ×D

6 125 10 s− −= ×D

True
 

Figure 4.15. A comparison of the final BCJ model and multivoid simulations under different loading rates 
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5000d nm=

500d nm=

50d nm=

Cell Model

BCJ

True

 

Figure 4.16. A comparison of the final BCJ model and multivoid simulations under different grain sizes 

4.1.7 Inverse Strength-Ductility Relationship - Cobalt 

 In (Figure 4.17) the stress-plastic strain curves obtained from the BCJ model are illustrated 

using three different grain sizes (temperature 353Kϑ = , triaxiality 0.6T =  and quasi-static 

loading). Smaller cobalt grain sizes increase the initial yield stress Y  as expected from equation 

(3.11). A side effect of the higher stress level is that the mean strain for microvoid nucleation 

εN  occurs sooner due to inverse relationship between εN  and initial yield stress, equation (4.3). 

Hence an inverse strength-ductility relationship is built into the model of the cobalt binder. 
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Figure 4.17. The BCJ model developed for cobalt includes an inverse strength-ductility relationship via 

equation (4.3). 

4.2 Tungsten Carbide Material Model 

In this sub-section, a simple brittle fracture model is calibrated to the experimentally observed 

behavior of tungsten carbide in terms of the tensile strength  fσ  and critical energy release rate 

G . The role of the carbide grains in a WC-Co composite is well established empirically and is 

discussed in Section 2.1.1. Tungsten carbide exhibits a classical brittle failure mechanism over a 

wide range of temperatures.  

 

A smeared crack continuum approach implemented in (ABAQUS 2004) is used here to represent 

brittle fracture of the carbide. Individual “macro” cracks are not modeled: rather, the presence of 
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cracks enters into the model through the effect cracks have on the stress and material stiffness. A 

material point behaves elastically and ‘fractures’ when a Rankine criteria is satisfied i.e. when 

( )1 2max , fσ σ σ>  where fσ  is the tensile strength. This criterion states that a crack forms when 

the maximum principal tensile stress exceeds the tensile strength of the brittle material. The 

crack surface is taken to be normal to the direction of the maximum tensile principal stress. Note 

that in compression a simple linear elastic response is assumed here. 

 

The model has memory of this crack direction, and subsequent cracks at the point under 

consideration can only form in directions orthogonal to the first crack (ABAQUS 2004). Hence 

in 2D plane strain the effects of three orthogonal ‘cracks’ can be modeled at a material point, 

corresponding to the three direct stress components. 

 

The stresses are not set to zero when fracture occurs. The post fracture stress at a carbide 

material point is controlled by the critical energy release rate G ; this material constant is equal 

to the area under the curve of applied stress and displacement across the crack faces (Figure 

4.18). In order to compute a ‘crack normal displacement’ at a material point, the strain at the 

material point must be multiplied by some length measure. In numerical models this 

characteristic length is equal to the size of the finite element mesh size. The element size here is 

interpreted as the square root of the area of the 2D finite element in which the material point is 

situated. The use of the energy release rate and a characteristic length to control the post fracture 

behavior is considered to allay concerns about mesh sensitivity (Hilleborg et al. 1976). A 

schematic of the stress normal to the crack face (direct stress nσ ) is plotted as a function of the 
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displacement across the crack faces (crack normal displacement nu ) in (Figure 4.18). 

Experimental values (memsnet.org 2006b) for the tensile strength fσ  and energy release rate G  

are used here and are summarized in Table 4.4.  
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Figure 4.18. The post fracture stress level depends on the energy release rate G .  

 

Tungsten Carbide Elastic-Brittle Fracture Damage Model 

Constant Value Constant Value 

E  (Young’s Modulus) 700GPa  υ  (Poisson’s Ratio) 0.25  

yσ  (Tensile Strength) 1.5GPa  G  (Energy Release Rate) 9 22 10 Jm−×  

Table 4.4 Material constants for carbide elastic – brittle fracture constitutive relationship 
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4.3 WC-Co Composite Constitutive Model 

In this Section the BCJ constitutive model developed for the porous cobalt in Section 4.1, and the 

brittle fracture model developed for the tungsten carbide in Section 4.2, are employed to model 

the micromechanics of a WC-Co composite; the discrete grains and binder are modeled directly. 

A parametric study is performed to quantify the effect of each microstructural parameter 

investigated so far. The results of the parametric study are then used to calibrate a homogenized 

composite model which is proposed in Section 4.4.  

 

As a reminder, the porous cobalt BCJ model (Section 4.1) describes plastic flow in terms of  

• rate D  

• temperature ϑ  

• cobalt grain size d  

• porosity evolution φ  

• triaxiality T  

and is summarized in Tables 4.2 and 4.3.  

The tungsten carbide model (Section 4.2) describes brittle fracture in terms of  

• tensile strength fσ  

• critical energy release rate G  

and is summarized in Table 4.4.  

 

The final composite response is a function of the micromechanics within the cobalt binder and 

carbide grains. For simplicity, the interface between the materials is assumed to be perfectly 
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bonded and so the final composite response is not a function of the interfacial behavior. As the 

individual cobalt and carbide phases are being modeled in this Section, the relative fraction of 

each material also influences the overall composite response. This parameter is described 

through the volume fraction of cobalt, f .  A summary of the final composite design parameters 

is given in Table 4.5. 

 

Key Design Parameters for the Final WC-Co Composite 

Design Parameter Description 

d  Cobalt Grain Size 

f  Cobalt Volume Fraction 

T  Triaxiality 

ϑ  Temperature 

D  Rate of Deformation 

fσ  Carbide Tensile Strength 

Table 4.5 Key design parameters for the final WC-Co constitutive relation 

 

In Section 4.3.1 the results of a typical WC-Co simulation are illustrated to demonstrate the form 

of the average constitutive response; stress degradation exhibits brittle and ductile failure stages. 

A microstructural parametric study is then performed in Section 4.3.2 – the key microstructural 

parameters are varied and the constitutive response is observed; a summary is given toward the 

end of this Section 4.3.2. 
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4.3.1 General Form of the Composite Constitutive Response 

A 2D plane strain cell model of the composite system is constructed and discretized using 10500 

finite elements a shown in (Figure 4.19). The cobalt volume fraction is 15%. Fully periodic 

quasi-static displacement boundary conditions are applied under isothermal conditions, 

353Kϑ = . The cobalt grain size 500d nm= . Triaxiality is held constant at 0.5T =  using the 

method explained in Appendix A2. Hence an average strain is applied in the ‘y’ direction and a 

lateral pressure is applied in the ‘x’ direction to maintain a constant triaxiality. The average 

Mises stress and strain are computed using the averaging equations  (3.4) and (3.5) and are 

plotted in (Figure 4.19) along with the resulting total Mises strain and plastic Mises strain 

contours. Note that plastic strain only occurs in the cobalt – the carbide is elastic.  
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Figure 4.19. The composite model mesh is shown. The Mises strain and plastic strain contours are shown to 

illustrate the combined brittle-ductile fracture path.  The average composite stress and strain are plotted to 

show the brittle stress collapse followed by plastic flow. 
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The average WC-Co constitutive response shown in (Figure 4.19) is shown schematically in 

(Figure 4.20). The composite initially deforms elastically; the composite elastic modulus is 

computed as 600GPa which is close to the experimentally observed Young’s modulus of 595GPa 

(Connolly and McHugh 1999) for a WC-Co composite with a similar composition. At a true 

strain of approximately 0.5% the carbide rapidly fractures and the stress collapses. The peak 

stress just before fracture is called the fracture stress 0Y  here. The only resistance to deformation 

is then provided by the cobalt which bridges the brittle crack at several points i.e. a 

multiligament zone (MLZ) forms. The stress within the deforming cobalt ligaments saturates, 

giving an overall composite stress saturation called the post fracture strength S  here. As the 

ductile cobalt deforms further, microvoid nucleation occurs at the composites mean nucleation 

strain εN . These voids grow and weaken the cobalt, eventually leading to composite rupture at a 

nominal strain of approximately 3.5%.  
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Figure 4.20. A schematic of the important features of the WC-Co composite response predicted in the 

computational model of (Figure 4.19). The unique feature of this work is that the tail end of this curve is 

modeled in a homogenized constitutive relation (Section  4.4).  

The largest contribution to strain energy density or area under the stress-strain curve arises 

during the post-carbide fracture stage of deformation during which the cobalt provides the 

remaining resistance to deformation. A unique feature off this work is that the post-fracture 

plastic flow stage of deformation is incorporated in the final hierarchical constitutive relation in 

Section 4.4. This stage contributes greatly to the mechanical response in the crack tip region 

where multi-ligament zones arise, blunting the brittle crack.  Conventional constitutive relations 

for ductile reinforced composites often neglect this stage of deformation.  
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Although quasi-static loading is applied, rapid carbide failure temporarily introduces a 

significant amount of kinetic energy into the system (a dynamic explicit finite element code is 

used). However this kinetic energy soon dissipates and the quasi-static condition is again 

satisfied i.e. the system internal energy is much greater than the kinetic energy as shown in 

(Figure 4.19). 

 

4.3.2 Microstructural Parametric Study 

Before attempting to develop a form for the composite constitutive response, it is pertinent to 

investigate the effect of varying each of the key microstructural parameters: 

• rate D  

• temperature ϑ  

• cobalt grain size d  

• triaxiality T  

• cobalt volume fraction f  

In an effort to include a statistical variation in the microstructure, three microstructural 

arrangements are used for each parameter investigated and the average constitutive response of 

the three is considered to be sufficient. The three microstructural arrangements are shown in 

(Figure 4.21). The irregular shaped zones are pools of cobalt engulfed in carbide grains. Unless 

otherwise stated the (average) cobalt grain size is 500nmd = , cobalt volume fraction 0.15f = , 

temperature 353Kϑ = , stress triaxiality 0.5T = and loading is performed quasi-statically. 
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2 microns

 

Figure 4.21. The geometry of the cell models used to perform a parametric study of the importance of each 

design variable 

 Cobalt Grain size d  

The cobalt grain size d  is varied in the expression which describes the initial yield stress Y  in 

the cobalt, equation (3.11), Table 4.3. Three cobalt grain sizes are chosen: 50nm, 500nm, 

5000nm. The resulting average composite Mises stress-strain curves are plotted in (Figure 4.22).  
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Figure 4.22. Decreasing the cobalt grain size d  increases the post fracture strength  S  but decreases 

ductility 
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Microstructure Cause: Smaller cobalt grain sizes d  are stronger according to the Hall-Petch 

relationship built into the cobalt’s initial yield stress, equation (3.11). 

Macroscale Effect: As the composite’s post-fracture response is controlled by the resistance to 

plasticity in the cobalt binder, higher post fracture strength S  is predicted with decreasing grain 

size d . However the higher stress levels reduce the mean nucleation strain εN  in the cobalt, 

equation (4.3) resulting in lower composite ductility (strain at complete failure).  

 

Cobalt Volume Fraction f  

The cobalt volume fraction is varied directly in the cell models by expanding them about their 

centroids. Three cobalt volume fractions are examined; 5%, 15% and 25%. The resulting 

macroscale stress-strain curves are plotted in (Figure 4.23).  
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Figure 4.23. Increasing the cobalt volume fraction  f  increases the post fracture strength S  and ductility. 
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Microstructure Cause: Increasing cobalt volume fraction f  is accommodated by reducing the 

amount of carbide. 

Macroscale Effect: Less carbide results in a lower fracture stress, 0Y  . However the increasing 

amount of cobalt increases the post-fracture strength S  and increases composite ductility. 

 

Overall the area under the stress-strain curve increases substantially indicating that increasing the 

cobalt fraction f  is a good toughening mechanism; more energy is dissipated propagating a 

crack through the cobalt regions, than through the carbide.  
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Temperatureϑ  

The cell models are now loaded at four different temperatures, 353K 453K, 553K and 653K. 

Isothermal conditions are assumed during each simulation. The composite stress-strain response 

for each case is plotted in (Figure 4.24).  
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Figure 4.24. Increasing the temperature ϑ  decreases the post fracture strength S . 

Microstructure Cause: Increasing the temperature acts to degrade the initial yield stress Y , 

equation (3.11) and hardening modulus H , equation (3.13) within the cobalt zones. 

Macroscale Effect: This results in lower post fracture strength S . Composite ductility also 

degrades because the strain localizes much more in the cobalt, encouraging microvoid nucleation.  
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Loading Rate D  

The effect of strain rate on the average composite behavior is determined by varying the velocity 

of the boundary conditions applied to the computational cells. The macroscale loading rate is 

varied from 4 15 10 s− −= ×D  which is essentially quasi-static, to 15s−=D . The stress-strain 

curves for each case are shown in (Figure 4.25).  
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Figure 4.25. Increasing the loading rate D  increases the post fracture strength S  

Microstructure Cause: Rate hardening increases the strength of the plastically deforming cobalt 

binder. 

Macroscale Effect: Increasing post fracture strength S . Again, higher stress levels in the cobalt 

leads to earlier microvoid nucleation and a reduced composite ductility as shown in (Figure 4.25).  
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Triaxiality T  

The effect of triaxiality T  on the average composite behavior is determined by varying the 

applied triaxiality on the computational cells boundary. Four triaxiality levels are applied; 0.5, 

0.6, 0.8 and 1.2. The resulting stress-strain curves are shown in (Figure 4.26).  
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Figure 4.26. Increasing triaxiality T  reduces the ductility  

Microstructure Cause: Higher triaxiality at the level of the prescribed boundary conditions 

naturally leads to higher triaxiality within the cobalt regions. 

Macroscale Effect: This generates much greater void growth in the cobalt, equation (4.7), 

leading to lower overall ductility. 
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Summary of Parametric Study 

The computational parametric study has yielded the key micromechanical relationships in the 

composite. In terms of materials design the key observations are summarized in a schematic 

form of the stress-strain curve (Figure 4.27) and in Table 4.6. 

 

Increasing Parameter 

Composite 

Fracture Stress 

0Y  

Composite Post 

Fracture Strength 

S  

Composite Ductility 

Cobalt Volume Fraction f  Down Up Up 

Cobalt Grain Size d  - Down Up 

Temperature ϑ  - Up Up 

Rate D  - Up Down 

Table 4.6 Design relationships in a WC-Co, predicted through computational cell modeling 

 

• Fracture stress can be increased by reducing the cobalt fraction f  . 

• Post fracture strength can be increased by decreasing the temperature ϑ , increasing the 

loading rate D , increasing the grain size d , increasing the cobalt fraction f . 

• Ductility can be increased by increasing the loading rate D , increasing the grain size d  

or decreasing the temperature. 

Each of these microstructure-property relationships is now built into a macroscale constitutive 

relationship for the WC-Co composite in Section 4.4.  
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Figure 4.27. Design relationships in a WC-Co, predicted through computational cell modeling 
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4.4 Calibrating a Macroscale BCJ Composite Constitutive Model 

The parametric study performed in Section 4.3.2 is now used as a starting point to develop a 

modified BCJ constitutive relationship for the WC-Co composite. The BCJ model (Section 3.3) 

is extended in Section 4.4.1 to incorporate the effects of brittle and ductile damage. Expressions 

for the degradation of the flow stress are developed in Section 4.4.2 in terms of individual brittle 

and ductile damage contributions. Evolution equations for the brittle and ductile damage 

measures are given in Section 4.4.3 and 4.4.4 respectively. The final composite model is 

reviewed in Section 4.4.5.  

 

4.4.1 Yield Surface with Combined Brittle and Ductile Damage 

Expressions for the plastic stage of deformation of the WC-Co composite are concentrated on 

here. Prior to plastic deformation, an isotropic elastic response is assumed with a Young’s 

modulus of 595GPa and poison’s ratio of 0.22 (Connolly and McHugh 1999). The damage effect 

in the elastic regime is given by equation (3.8). 

 

A simple flow rule WC Coϕ −  is proposed here which captures the important characteristics of the 

composite deformation: 

 
( ) ( )0

0

0   Elastic       

0   Plastic

WC Co eq

WC Co

WC Co

WC Co
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Y Y Y D Y

ϕ σ
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ϕ
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−

−

= − =

= − −

≤

>

 (4.10) 
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where eqσ  is the equivalent Mises stress which is equal to 23J  and Y  is the yield stress which 

is given in terms of: 

• The composite fracture stress 0Y  

• Stress degradation due to brittle fracture in the carbide is given by WCY  which evolves as 

a function of a brittle damage parameter, D .  

• Stress degradation due to ductile rupture in the cobalt binder is given by CoY , which 

evolves as a function of microvoid porosity φ .  

Evolution equations relating these stress degradation measures to their associated damage term 

must be developed in order complete the constitutive relation. The individual stress degradation 

effects are illustrated schematically in (Figure 4.28). The Mises strain at the composite scale is 

called ε  to avoid confusion with previous small scale strain measures. 
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Figure 4.28. A schematic showing the effect of the brittle damage D , equation (4.20), and ductile damage φ , 

equation (3.17), on the composite flow stress, equation (4.10).  
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4.4.2 Composite Flow Relation and Brittle/Ductile Stress Degradation 

From the numerical parametric study, (Figure 4.23), the fracture stress 0Y  shown schematically 

in (Figure 4.28) is related to the cobalt volume fraction f  by a linear relationship: 

 0 1 2Y A f A= +  (4.11) 

where 1 2A GPa= −  and 2 3A GPa= . 

 

The stress degradation due to damage is separated into two parts; stress degradation WCY  due to 

brittle damage D  and stress degradation CoY  due to porous damage φ  . Both can be defined via 

the post fracture strength S  shown schematically in (Figure 4.28). The stress degradation due to 

carbide fracture WCY  grows from zero to a value equal to 0Y S− , as the carbide damage D  grows 

from zero to one: 

 ( )0WCY Y S D= −  (4.12) 

The stress degradation due to ductile failure CoY  grows from zero to S  as the microvoid porosity 

φ  grows from zero to one:  

 CoY Sφ=  (4.13) 

From the numerical parametric study performed in the previous Section (4.3), the post fracture 

strength S  is related to plastic flow in the cobalt binder; in particular it is controlled by: 

• Cobalt volume fraction f  

• Cobalt grain size g  

• Temperature ϑ  

• Strain Rate D  
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Based on the observation made in the parametric study, a suitable form for the post fracture 

stress is proposed here as: 

 

( )( )( )5

-1

0 8

9

0 3 4 6 7

sinh

A

S S A
A

S A f A d A A

ε

ϑ

 
= +  

 

= +

ɺ

 (4.14) 

where εɺ  is the macroscale rate of accumulated plastic strain, 0S  describes the effects of cobalt 

fraction f , cobalt grain size d  and temperature ϑ .  

 

The nonlinear inverse hyperbolic sine term gives the rate effect on the post yield stress. This is 

chosen such that composite plastic flow in the post fracture regime can be modeled using the 

BCJ plasticity formulation, Section 3.1. For example consider the predicted material response 

after the carbide has completely fractured i.e. 1D = . In this case the stress degradation due to 

carbide fracture WCY , (Figure 4.28), equation (4.12),  is simply: 

 ( )0WCY Y S= −  (4.15) 

The yield surface, equation (4.10), is now: 

 0,      1WC Co eq CoS Y Dϕ σ− = − + = =  (4.16) 

Substituting the stress degradation due to microvoiding CoY , given by equation (4.13), the yield 

surface expression can be rewritten as: 

 ( )1 0,      1WC Co eq S Dϕ σ φ− = − − = =  (4.17) 

Substituting equation (4.14) into the flow rule of equation (4.17) gives: 

 ( )-1

0 8

9

sinh 1 0,      1WC Co eq S A D
A

ε
ϕ σ φ−

  
= − + − = =     

ɺ
 (4.18) 
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Rearranging this, an expression for the strain rate is: 
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which is in the form of the BCJ rate of plastic deformation equation, (3.22). 

 

The material constants 3 9A A−  are determined by calibrating equation (4.14) to the cell model 

data contained in (Figure 4.22), (Figure 4.23), (Figure 4.24) and (Figure 4.25). In each case the 

change in the post fracture strength S  is compared to the change in the parameter ( , , ,f d ϑ εɺ ) 

and calibrated to equation (4.14) using a least square fit. The constants 3 9A A−  are given in 

Table 4.7. Evolution equations for the carbide damage D  and cobalt porosity φ  are developed in 

Section 4.4.3 and 4.4.4. 
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4.4.3 Isotropic Damage Evolution – Brittle Damage Arising in the Carbide 

The rapid stress collapse due to the carbide fracture WCY , (Figure 4.28), is represented in equation 

(4.12) in terms of the brittle damage D . An expression for the evolving brittle damage D  is 

proposed here as: 

 ( )101 exp pD A ε= − −  (4.20) 

where pε  is the macroscale (composite) accumulated plastic strain. The dimensionless 

parameter 10A  controls the strain interval over which this function grows from a value of zero to 

one i.e. how rapidly the carbide fracture occurs. Hence the value of this parameter is related to 

the energy release rate G of brittle tungsten carbide introduced in Section 4.2.  

 

From the observation made in the parametric study performed in Section 4.3.2 it is clear that the 

brittle fracture and resulting stress degradation are rapid; a value of 3

10 1 10A = ×  capture the  

rapid nature of the partial stress collapse well while maintaining computational efficiency (i.e. 

without resorting to an extremely small time step to capture the rapid stress collapse). 

 

4.4.4 Isotropic Damage Evolution – Ductile Damage Arising in the Cobalt 

The damage accumulation in the cobalt binder, due to nucleation and growth of microvoids, also 

contributes to the stress degradation in (Figure 4.28). This microvoid damage has already been 

examined in detail in Section 4.1. The resulting void equations (4.1), (4.4) and (4.8) are 

summarized in Table 4.2. These equations describe how microvoids nucleate, grow and coalesce 
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in the cobalt. However those equations are written in terms of the rate of plastic deformation 

within the binder which is renamed p Co
D  here for clarity. 

In the final composite constitutive model being developed in this section, the deformation 

measures are macroscale (composite) quantities which describe the average composite state. In 

general the rate of plastic deformation within the cobalt p Co
D  is always higher than the 

composite scale rate of plastic deformation, called  p WC Co−
D  here to distinguish between the 

two quantities. A scaling factor is introduced here in order to make use of the cobalt scale 

nucleation, growth and coalescence equations (4.1), (4.4) and (4.8), within the macroscale WC-

Co constitutive model. 

 

A relationship between the rate of plastic deformation within the cobalt and the composite scale 

rate of plastic deformation is proposed in terms of the cobalt volume fraction f : 

 p pWC Co Co
f

−
=D D  (4.21) 

In composites containing a larger cobalt fraction f , the cobalt strain p Co
D  is lower at a 

particular value of composite strain p WC Co−
D . As the cobalt volume fraction f  approaches 

unity the two measures coincide; the composite would be 100% cobalt. Conversely as the 

fraction of cobalt goes to zero, the composite plastic strain goes to zero.   

 

The nucleation η , growth v  and coalescence coalφ  equations (4.1), (4.4) and (4.8) can now be 

scaled accordingly and used as macroscale microvoid porosity equations. The constitutive 

parameters for the macroscale modified BCJ composite model are summarized in Table 4.7. 
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WC-Co Composite BCJ Model Constants 

1A  2GPa−  6A  2.0  

2A  3GPa  7A  3 13 10 K− −− ×  

3A  4GPa  8A  70MPa  

4A  0.1711.63m  9A  2 11 10 s− −×  

5A  0.17−  10A  31 10×  

Table 4.7 Constants required in the composite BCJ model, equation (4.14) and equation (4.20) 

 

4.4.5 Macroscale Constitutive Model - Overview 

The final macroscale constitutive relation is outlined briefly to highlight the key relationships. 

(Figure 4.29) shows the effect of cobalt grain size d , cobalt volume fraction f , temperature ϑ , 

rate D  and triaxiality T  predicted by the modified BCJ composite model; these correlate well 

with the behavior observed in the computational cell models (Figure 4.22), (Figure 4.23), (Figure 

4.24),  (Figure 4.25) and (Figure 4.26). The control values used to compute the constitutive 

curves in (Figure 4.29) are 500d nm= , 0.15f = , 353Kϑ = , 6 15 10 s− −= ×D ,  0.75T = . 



173 

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

3.0E+09

0 0.01 0.02 0.03 0.04 0.05 0.06

True Mises Strain

T
ru
e
 M
is
e
s
 S
tr
e
s
s
 (
P
a
)

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

0 0.01 0.02 0.03 0.04 0.05 0.06

True Mises Strain

T
ru
e
 M
is
e
s
 S
tr
e
s
s
 (
P
a
)

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

0 0.01 0.02 0.03 0.04 0.05

True Mises Strain

T
ru
e
 M
is
e
s
 S
tr
e
s
s
 (
P
a
)

Cobalt Grain Size

Rate

Temperature

Cobalt Volume Fraction

Triaxiality

50

500

5000

d nm

d nm

d nm

=

=

=

0.25

0.15

0.05

f

f

f

=

=

=

0.00

0.20

0.36

0.60

T

T

T

T

=

=

=

=

1

1 1

4 1

5

5 10

5 10

s

s

s

−

− −

− −

=

= ×

= ×

D

D

D

Arrows are in the 

direction of increasing 

parameter value

353

453

553

753

K

K

K

K

ϑ
ϑ
ϑ
ϑ

=

=

=

=

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

0 0.01 0.02 0.03 0.04 0.05

True Mises Strain

T
ru
e
 M
is
e
s
 S
tr
e
s
s
 (
P
a
)

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

0 0.01 0.02 0.03 0.04 0.05

True Mises Strain

T
ru
e
 M
is
e
s
 S
tr
e
s
s
 (
P
a
)

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

0 0.01 0.02 0.03 0.04 0.05 0.06

True Mises Plastic Strain

T
ru
e
 M
is
e
s
 S
tr
e
s
s
 (
P
a
)

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

0 0.01 0.02 0.03 0.04 0.05 0.06

True Mises Plastic Strain

T
ru
e
 M
is
e
s
 S
tr
e
s
s
 (
P
a
)

 

Figure 4.29. An overview of the relationships in the WC-Co composite constitutive model 

The ability of the model to capture the post carbide-fracture ductile behavior is particularly 

important. Experimentally determined mechanical constitutive relations for WC-Co are generally 

performed using a macroscale sample on the order of centimeters. Due to the rapid nature of 

fracture in tension and the large size of the tensile specimen in comparison to the failure region, 

the important post fracture ductile behavior cannot be captured as illustrated schematically in 

(Figure 4.30). In such cases compression tests is usually favored. However compression testing 

completely fails to capture the key micromechanics responsible for failure under positive 
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triaxiality loading i.e. stretching and failure of the cobalt binder. This is a crucial aspect of the 

material response particularly in the process zone ahead of a crack tip i.e. in the area within a few 

microns of the crack tip where plasticity will occur, blunting the crack tip.  

σ

ε

σ

ε

Empirical Constitutive Relation

Hierarchical Constitutive Relation

σ

ε
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Empirical Constitutive Relation

Hierarchical Constitutive Relation
 

Figure 4.30. Empirical versus computational hierarchical micromechanical constitutive relationship 
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4.5 Toughness Prediction via a Numerical Fracture Model 

The developed macroscale constitutive model is now applied within a conventional finite 

element model of a body with a pre-crack i.e. an elementary fracture toughness simulator. The 

model set-up is given in Section 4.5.1. The shortcomings of this model are described in Section 

4.5.2. In Section 4.5.3 the resistance to crack growth (stress intensity factor) is computed as a 

function of different microstructural parameters; grain size d , cobalt volume fraction f  and 

temperature ϑ .  

 

4.5.1 Model Set Up 

The model is loaded under Mode I conditions, with the assumptions of linear elastic fracture 

mechanics with small scale yielding i.e. any plasticity is confined to a very small region 

(compared to the sample) near the crack tip. A crack of length 6a mµ=  is modeled in a long 

finite width ( 24W mµ= ) specimen as illustrated in (Figure 4.31). The following condition for 

mode I stress intensity factor IK  applies: 

 1.5IK aσ π∞=  (4.22) 

where σ∞  is the applied remote stress and the shape effects are incorporated through the 

geometrical parameter  given by 1.5 . Stress boundary conditions are applied on the top and 

bottom surfaces of the model shown in (Figure 4.31). The stress is ramped linearly, which has 

the effect of linearly increasing the stress intensity factor IK . 
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Figure 4.31. The crack geometry has little bearing on the predicted crack behavior due to strain localization. 
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4.5.2 Crack Tip Blunting 

In materials containing a ductile phase a substantial contribution to the macroscale toughness is 

derived from crack tip blunting. Unfortunately this phenomenon is not captured in the current 

continuum model as the strain tends to localize unphysically in a single band of elements 

immediately ahead of the crack tip when carbide fracture occurs. This is a well known problem 

in continuum mechanics; material softening results in a loss of rank-one stability in the 

associated continuum governing partial differential equations. (Bazant and Belytschko 1987) 

have shown that the governing partial differential equations change type from elliptic to 

hyperbolic in such cases and the macroscale deformation localizes unphysically to a set of 

measure zero. Even in the case of an initially blunt crack tip the resulting spurious strain 

localization prevents any subsequent crack blunting (Figure 4.32).  
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Figure 4.32. The initially blunt crack behaves similarly to the sharp crack 

4.5.3 Effect of material parameters 

Although numerical problems exist due to the spurious localization, the qualitative effect of 

varying each material parameter can be observed in the stress intensity verses crack tip opening 

displacement curves. In the following study toughness refers to the area under the stress-strain 

curves in (Figure 4.29). Contours of plastic strain are shown for each case at a stress intensity 

factor of 
1
24.5K MPam= . 
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Cobalt volume fraction f  

Increasing cobalt volume fraction f  increases the composite toughness as shown in (Figure 

4.29). This results in an increasing stress intensity factor (Figure 4.33) and reduced crack growth; 

hardly any crack growth occurs in the case of 0.25f = .  
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Figure 4.33. Increasing cobalt volume fraction f  increases the stress intensity factor 

 

 

 



180 

Temperature ϑ  

Increasing temperature ϑ  reduces the toughness (Figure 4.29) and subsequently the stress 

intensity factor (Figure 4.34)  and increased crack growth occurs.   
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Figure 4.34. Increasing temperature results in a lower stress intensity factor. 
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Cobalt grain size d  

Increasing grain size d does not seem to change the toughness in (Figure 4.29). The  resulting 

stress intensity curve does not change much with grain size; a very small decrease is predicted 

with increasing grain size as shown in (Figure 4.35). In reality a larger grain size d  is known to 

distribute the plastic strain over a larger area within the microstructure. This acts to blunt the 

crack tip and absorb more energy. In the conventional continuum model this length scale effect 

cannot be captured. However a multiresolution continuum model is used in Chapter 7 in which 

the grain size effect is captured directly and the resulting stress intensity factor increases with 

grain size (Figure 7.14).  
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Figure 4.35. Stres intensity shows a small drop with increasing grain size. 
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4.5.4 Discussion of Results 

The stress intensity factor computed in each case for crack propagation is significantly lower 

than the experimentally determined value of fracture toughness i.e.
1-
216.7MPam  (McHugh and 

Connolly 2003) – the toughening effect of crack blunting is missing due to the unphysical nature 

of strain localization ahead of the crack tip. This problem has also been encountered by 

(McHugh and Connolly 2003) who computed unphysically low fracture toughness values from 

their simple computational cell models of  WC-Co. The authors recognized that the unphysically 

small fracture toughness values were mainly due to a lack of any physical length scale in their 

model. Deformation localized in a mesh dependent manner, preventing the cobalt phase from 

contributing significantly to crack resistance. The authors recognized that the strain could be 

‘forced’ to localize over a predetermined length scale by using elements of that size. Hence they 

suggested using elements which are the same size as the cobalt grains. However it has been 

shown in Section 2.1, (figure 2.5), that inhomogeneous deformation in WC-Co composites 

occurs at smaller scales within the cobalt grains when microstructural instability events occur.   

 

In this thesis the problem of unphysical strain localization (and subsequent unphysical toughness 

predictions) is combated via a multiresolution continuum theory (MRCT). This theory aims to 

capture all of the characteristic length scales of inhomogeneous deformation while remaining  in 

the context of continuum mechanics. The multiresolution continuum theory is developed in  

Chapter 5 from the standpoint of a second gradient formulation. The extra microstress 

constitutive relations which are introduced to capture inhomogeneous deformation at each scale 

are described further in Chapter 6. The multiresolution formulation is then applied to the WC-Co 
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composite in Chapter 7. More physical toughness predictions, in terms of the key microstructural 

parameters, are then obtained using a multiresolution analysis. 
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5 Multiresolution Continuum Theory (MRCT) 

The underlying theme of this thesis is to predict macroscale mechanical properties as a function 

of the microstructure via numerical modeling. In Chapter 4 a homogenized continuum approach 

is used to perform numerical fracture toughness predictions for a cemented carbide; however 

predicted fracture toughness values were substantially lower than those observed experimentally. 

The fundamental problem with such an approach is that the scales of the underlying deformation 

mechanisms are lost during the homogenization process; the resulting continuum model is 

incapable of replicating the inhomogeneous deformation which is crucial in terms of toughness 

predictions.  

 

This is a well known problem, particularly when modeling materials which soften due to cracks, 

shear bands and other micromechanical phenomena causing material degradation. (Bazant and 

Belytschko 1987) have shown that in such cases the continuum governing partial differential 

equations change type from elliptic to hyperbolic and the deformation localizes unphysically to a 

set of measure zero. In terms of the numerical fracture toughness simulations in Chapter 4, all of 

the strain localizes within a single band of finite elements and the predicted model response is 

highly mesh dependent. Conventional continuum approaches also fail to predict a scale effect in 

strain hardening materials. For example (Zbib and Aifantis 2003) discussed how deformation in 

work hardening alloys is size dependent over length scales ranging from a few nanometers to 

100µm. The basic observation is that deformation at smaller scales results in more geometrically 

necessary dislocations (GNDs) and hence a stronger material response i.e. smaller is stronger.  
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The focus of this Chapter is to develop an efficient theory which can replicate the scale 

associated with each deformation mechanism within the context of a continuum model. This 

enables a more physical prediction of macroscale properties based on the inhomogeneous 

deformation at each scale. A preview of the proposed (MRCT) theory is given in Section 5.1. 

 

The remainder of Chapter 5 is structured as follows:  

A simple 1D example is used in Section 5.2 to illustrate how a conventional continuum approach 

cannot replicate the scale of inhomogeneous deformation. The ability of a higher order 

continuum theory to regularize the inhomogeneous deformation over a physical length scale is 

shown. The disadvantages of this approach are used as a motivation for developing a 

multiresolution higher order continuum theory (MRCT) in Section 5.3. Section 5.4 illustrates the 

usefulness of the microstresses for materials which undergo inhomogeneous deformation at 

multiple scales, and the microstructure transition points which determine when inhomogeneous 

deformation transitions from one scale to another. Section 5.5 describes a technique which 

reduces the number of degrees of freedom used in the proposed MRCT analysis. 

 

5.1 Proposed Multiresolution Theory - Preview 

The proposed theory follows from the work of (McVeigh et al. 2006a; Vernerey 2006; Vernerey 

et al. 2007a; b). This theory can replicate the evolving scale and magnitude of inhomogeneous 

deformation directly in terms of a parameterized description of the evolving microstructure. 

Remaining within the context of continuum mechanics, the conventional governing equations are 

supplemented with extra microstresses and higher order microstresses; these extra stress 
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measures capture microstructural length scale information which is usually lost in a conventional 

continuum approach. Each continuum microstress is interpreted as the resistance to 

inhomogeneous deformation at a particular scale. Each microstress is accompanied by a higher 

order stress which can be shown to be the first moment of the microstress.  

 

The extra microstress measures are simply extra continuum degrees of freedom; this is an 

efficient alternative to direct numerical simulation of the microstructure, bypassing the need to 

model complicated microstructural geometries in large scale simulations while still including the 

length scales associated with the microstructural features. In terms of the numerical 

implementation, a single finite element mesh can still be used to solve the resulting 

multiresolution governing equations.  

 

Extra microscale constitutive relations for the microstresses are used at each scale of 

inhomogeneous deformation and are unique to this theory. As with the macroscale constitutive 

relations, the microscale relations are pre-derived separately using computational cell models of 

the underlying microstructure.  

 

The multiresolution approach is essentially an intelligent variable length scale gradient enhanced 

model which acts to regularize strain over a length scale which evolves with the microstructure. 

This is particularly useful in materials where the scale f inhomogeneous deformation changes 

rapidly when microstructural transition events occur. For example in alloys when microvoid 

nucleation occurs deformation quickly localizes to the scale of the nucleated microvoids.  
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5.2 Higher Order Continuum Theory 

A simple 1D example is introduced in Section 5.2.1 to illustrate how a conventional continuum 

approach fails to replicate the scale of inhomogeneous deformation in a strain softening alloy. A 

higher order continuum theory is introduced in Section 5.2.2. This theory is applied to the 1D 

problem in Section 5.2.3 and successfully regularizes the deformation over a physically 

consistent length scale. The disadvantages of this higher order gradient enhanced approach are 

discussed in Section 5.2.4.  

 

5.2.1 Unphysical Inhomogeneous Strain Localization 

Consider a simple 1D problem in which a linear elastic-plastic rod is stretched. The material is 

considered to undergo linear strain softening immediately upon yielding as shown in (Figure 5.1). 

The elastic modulus is 80E GPa= , initial yield stress is 0 160MPaσ =  and the linear softening 

modulus is 150MPa ; the resulting softening response is shown in (Figure 5.1). J2 flow theory is 

used to represent the plastic behavior. 

 

A conventional finite element analysis is employed to solve for the displacement; the 

conventional governing equations of a continuum are given in equation (1.5). The rod is 

discretized and quasi-static displacement boundary conditions are applied. The central element is 

given an initial perturbation of 1% reduction in yield stress. As shown in (Figure 5.1) the strain 

localizes in a single element (which was initially perturbed), regardless of the mesh discretisation 

used. The macroscale performance is illustrated in terms of the rod’s force-extension behavior, 

shown in (Figure 5.1). The reaction force F  varies with the element size used due to the spurious 
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nature of strain localization; the predicted performance and properties are mesh dependent. Of 

course in reality the only length scale which should affect the macroscale performance is given 

by the microstructure. For example in alloys post instability inhomogeneous deformation occurs 

at a scale related to the spacing of nucleated voids. 

51 elements

31 elements

11 elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.10

0.15

0.20

0.25

x

E
n
g
in
e
e
ri
n
g
 S
tr
a
in

0 0.02 0.04 0.060

2

4

6

8

10

12

14

16

x 10
7

Engineering Strain

E
n
g
in
e
e
ri
n
g
 S
tr
e
s
s
 (
P
a
)

0 0.02 0.04 0.060

2

4

6

8

10

12

14

16

x 10
7

Engineering Strain

E
n
g
in
e
e
ri
n
g
 S
tr
e
s
s
 (
P
a
)

51 elements

31 elements

11 elements

0 0.5 1 1.5 2 2.5 3 3.5
x 10

-3

0

2

4

6

8

10

12

14

16

x 10
7

Load Point Displacement, u 

F
o
rc
e
 (
N
),
 F

51 elements

31 elements

11 elements

0 0.5 1 1.5 2 2.5 3 3.5
x 10

-3

0

2

4

6

8

10

12

14

16

x 10
7

Load Point Displacement, u 

F
o
rc
e
 (
N
),
 F

Uniaxial Rod with Strain 

Softening Constitutive 

Behavior

F, u

x

 

Figure 5.1. 1D problem illustrating mesh dependency in strain softening materials 

5.2.2 Strain Gradient Theory- Extending the Hill-Mandel Lemma 

Gradient enhanced continuum theories regularize (smooth) inhomogeneous deformation over a 

physically consistent length scale. The basic assumption used in gradient enhanced models is that 

the Hill-Mandel Lemma (Hill 1963; 1966; Hill and Rice 1972) can be extended to include higher 
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order terms. The Hill-Mandel Lemma essentially approximates the virtual power density pδ of a 

continuum material point as a volume average of the virtual power density mpδ  in a 

representative volume element (RVE) 0V  of the microstructure: 
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1
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m
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m m

V

p p dV
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dV
V

δ δ

δ

=

=

∫

∫ σ L

 (5.1) 

In this expression the internal power density mpδ  has first been rewritten in terms of the power 

conjugate stress mσ  and velocity gradient fields mL  computed within the RVE. Assuming mL  is 

fairly constant within the RVE (homogeneous deformation assumption), the virtual internal 

power can be approximated in terms of the continuum Cauchy stress σ  and velocity gradient L .  

 :pδ δ= σ L  (5.2) 

where  

 

0

0

0

1
m

V

dV
V

= ∫σ σ  (5.3) 

and 

 

0
0

1
m

V

dV
V

= ∫L L  (5.4) 

Gradient enhanced models extend this approximation to higher order; equation (5.2) becomes: 

 :pδ δ δ= +σ L β G⋮  (5.5) 

where G  is a third order tensor representing the second gradient of velocity i.e. it is the power 

conjugate of the higher order couple stress β . 
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The external virtual power is given by: 

 ( )extP d D dδ δ δ δ
Ω Γ

= Ω+ + Γ∫ ∫b v t v r vi i i  (5.6) 

where b  and t  are the body force and surface traction in the conventional continuum sense, r  is 

a double stress traction vector which balances the higher order tractions at the surface Γ , D  is 

the normal gradient on the surface given by D = ∇Ni  where N  is the unit normal to the surface 

Γ . The resulting equilibrium equations and boundary conditions are: 

 

( )( )
( )( ) ( ) ( ) ( )

0      in  

    on 

T

T T T
S S

∇ − ∇ + = Ω

= − ∇ + ∇ −∇ 
Γ

= 

σ β b

t N σ β N N N β N β

r N β N

i i

i i i i i i i

i i

 (5.7) 

where S∇  is the surface gradient defined by ( )S∇ = ∇I - NN i  and the full gradient is indicated 

by ∇ . The equilibrium equation includes the higher order stress β  which gives a continuum 

point a stabilizing ‘non-local’ character.  

 

5.2.3 Strain Gradient Constitutive Equations 

With reference to the governing equations, equation (5.7), two constitutive relationships are 

required: ( )σ Lɺ  and ( )β G
ɺ

 to solve the boundary value problem. Only one component of the 

stress tensor σ  is required  in the 1D analysis, called σ  here. The same linear elastic-plastic 

constitutive response illustrated in (Figure 5.1) is used to define the conventional stress-strain 

relationship. Only one component of the second gradient of velocity G  and higher order couple 
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stress β  are considered in the 1D problem. These are called β  and G  here and are assumed to 

be related via the materials elastic modulus E  as: 

 2El Gβ =ɺ  (5.8) 

where l  is the physical length parameter required to make the expression dimensionally 

consistent. The 1D strain softening problem is now solved using equation (5.7). The resulting 

strain profile is illustrated in (Figure 5.2) for several element sizes. The inhomogeneous strain 

profile and load point force are now independent of the mesh discretisation used. The scale of the 

inhomogeneous deformation is controlled by the length parameter l , equation (5.8). This type of 

approach has been developed by several authors e.g. (Aifantis 1992) to model strain softening 

materials. A similar approach has been used by (Gao et al. 1999) to model strain gradient 

hardening in alloys.  
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Figure 5.2. 1D problem illustrating the regularizing length scale introduced using a gradient method 

 

5.2.4 Strain Gradient Theory - Disadvantages 

A physical interpretation of the higher order stress β , and its relationship to the conventional 

stress measure σ , has not been well established. The higher order stress β  has been computed by 

(Kouznetsova et al. 2002) as the average moment of the stress over an RVE. This embeds a 

length scale in the model related to the size of the RVE. Often the inhomogeneous deformation 

occurs at much smaller scales i.e. the embedded length scale should relate to the smaller scales. 

The moments associated inhomogeneous deformation at these smaller scales are lost when 

averaging at the much larger RVE scale.  Furthermore several distinct scale of inhomogeneous 
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deformation may occur in a material at disparate length scales; the current gradient enhanced 

approach, equations (5.7), embeds a single length scale in the continuum model i.e. only a single 

scale of inhomogeneous deformation can be considered.  

 

Determination of the higher order constitutive relationship has proven difficult, particularly from 

physical experiments. (Kouznetsova et al. 2002) attempted to determine the relationship 

numerically ‘on the fly’; the higher order constitutive relationship was computed from 

computational RVEs at each material (integration) point. A further difficulty is that the second 

gradient of the displacement (strain gradient) must be computed in the gradient continuum. In a 

finite element implementation this requires at least 1C  interpolation functions to capture a linear 

variation in strain within an element.  

 

The concept of using gradient terms to capture a length scale effect in the continuum model is 

now employed to develop a multiresolution continuum theory in Section 5.3. This theory 

overcomes the disadvantages of the gradient enhanced theory outlined in Section 5.2. 

 

5.3 A General Higher Order Multiresolution Continuum Theory 

In this Section the Hill equation (1.1) is extended in such a way that the resulting continuum 

governing equations can replicate the inhomogeneous deformation observed at multiple length 

scales within the RVE. For example in (Figure 5.3), a simplified RVE is shown in which strong 

inhomogeneous deformation arises between debonded particles, at a scale 1V  which is clearly 

smaller than the RVE 0V . In (Figure 5.4) inhomogeneous strain occurs at two distinct scales 1V  
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and 2V  due to the presence of two scales of debonding particles. We begin however, by assuming 

inhomogeneous deformation occurs at a single distinct scale 1V  similar to (Figure 5.3). The 

theory is then extended to handle an arbitrary number of scales of inhomogeneous deformation. 

1V0V

 

Figure 5.3. Inhomogeneous deformation between two voids 
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1V0V
2V

 

Figure 5.4. Two scales of inhomogeneous deformation between voids at two scales 

 

5.3.1 Inhomogeneous Internal Power Density 

The continuum virtual internal power density can be decomposed into contributions arising from 

homogeneous and inhomogeneous deformation: 

 hom inhp p pδ δ δ= +  (5.9) 

The homogeneous contribution to the virtual internal power density, hompδ , has been defined in 

equations (5.1) and (5.2) as the average virtual power density at the RVE scale 0V : 

 

0 0

hom

0 0

0 0

1 1
: :m m m

V V

p p dV dV
V V

δ δ δ δ= = =∫ ∫ σ L σ L  (5.10) 

The inhomogeneous contribution to the virtual internal power inhpδ  is defined as the difference 

between  
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• the average virtual power density at the scale of the inhomogeneous deformation 1V  and  

• the average virtual power density at the RVE scale 0V   

 

1 0

inh

1 0

1 0

1 1
m m

V V

p p dV p dV
V V

δ δ δ= −∫ ∫  (5.11) 

Rewriting the first integrand in terms of the power conjugate local stress mσ  and velocity 

gradient mL  fields within the RVE and the second integral using the Hill-Mandel relation in 

equation (5.10): 

 

( )

( )

1

1

inh

1

1

1

1

1
: :

1
: :

m m

V

m m

V

p dV
V

dV
V

δ δ δ

δ δ

= −

= −

∫

∫

σ L σ L

σ L σ L

 (5.12) 

With reference to equation (5.12), the relative power : :m m −σ L σ L  contour is plotted on an 

RVE 0V  containing two debonded particles in (Figure 5.5), labeled ‘Inhomogeneous Power’. The 

tensor norm of the inhomogeneous velocity gradient field m −L L  is also plotted for reference, 

labeled “Inhomogeneous Velocity Gradient”. As expected the inhomogeneous power field is 

greatest where the inhomogeneous deformation is greatest - between the neighboring voids in 

this case where strain localization occurs.  
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Inhomogeneous 

Velocity Gradient
Inhomogeneous Power

Microstress
 

Figure 5.5. Local measures of the Inhomogeneous velocity gradient m −L L , inhomogeneous power 

: :m m −σ L σ L  and inhomogeneous microstress mβ  are plotted as contours. 

Given the power decomposition equation (5.12), it is possible to diverge in one of either two 

directions: 

• Formulate a coupled continuum-discrete microstructure (DNS) simulation in which the 

homogeneous power contribution, equation (5.10) is computed via a conventional 

continuum and the inhomogeneous contribution, equation (5.12) is computed via a  

superimpose simulation of the detailed microstructure. This involves two separate, 

coupled simulations i.e. a coarse and fine scale. 
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• Formulate a multiresolution continuum formulation in which the homogeneous, equation 

(5.10), and inhomogeneous, equation (5.12), contributions are coupled and both are 

computed within the same (higher order) homogenized continuum simulation. In this case 

the inhomogeneous contribution is represented via extra continuum fields; detailed 

microstructure simulations are not performed.  

 

Although both approaches have merit, the latter is more suitable for modeling larger domains as 

no discrete microstructural features need to be modeled, boundary conditions between scales are 

redundant and dynamic problems involving wave effects can be handled efficiently because no 

interscale boundaries exist. This approach is described in Sections 5.3.2-5.3.5.  

 

The continuum-DNS approach is described in (Liu and McVeigh 2007) in a hierarchical and 

concurrent framework. The continuum-DNS approach is also extended by (Liu and McVeigh 

2007) to the atomic scale by writing the atomic scale virtual power in terms of force and 

displacement measures via a virtual atom cluster homogenization technique. 

 

5.3.2  Inhomogeneous Power Equivalence Relationship 

The inhomogeneous contribution to the internal power, equation (5.12), is now developed into a 

continuum expression in order to formulate a set of multiresolution continuum governing 

equations. As shown in (Figure 5.5), there is a strong relationship between the local 

inhomogeneous power density : :m m −σ L σ L  and local inhomogeneous velocity gradient 

m −L L . This motivates us to rewrite equation (5.12): 
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( )

( )

1

1

inh

1

1

1

1

1
: :

1
:

m m

V

m m

V

p dV
V

dV
V

δ δ δ

δ δ

= −

= −

∫

∫

σ L σ L

β L L

 (5.13) 

where a variational power equivalence relationship has been used: 

 ( ): : :m m m mδ δ δ δ− = −β L L σ L σ L  (5.14) 

This expression introduces and defines a local microstress mβ  which is a power conjugate of the 

local inhomogeneous velocity gradient m −L L  within the microstructure. This microstress 

forms the basis of the proposed multiresolution approach as is plotted in (Figure 5.5) based on 

the definition given in equation (5.14). Just as the stress mσ   gives a measure of the resistance to 

deformation within the microstructure, mβ  is a measure of the resistance to inhomogeneous 

deformation within the microstructure.  

 

5.3.3 Continuum Microstress from Microscale Homogenization 

The inhomogeneous averaging volume 1V  used in equation (5.13) defines the scale of the 

inhomogeneous deformation. At this scale it is reasonable to assume that the local strain varies 

linearly. A linear approximation of the local velocity gradient mL  within the volume 1V  is given 

by defining two continuum quantities: 
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1
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1

1

1
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= ∇

∫

∫

L L

G L
�

 (5.15) 
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where 1L  is the volume average of the local velocity gradient and  1G  is the volume average of 

the local gradient of the velocity gradient in 1V . Furthermore y  is the local position with respect 

to the center of  1V . A linear approximation of the local velocity gradient can be made: 

1 1

m = +L L G yi       (5.16) 

Substituting for the local velocity gradient mL  in equation (5.13), the inhomogeneous virtual 

internal power density of a continuum point can now be written as 

 
( )

( )
1 1
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1 1

1 1 1 1

1 1
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   
   

= − +

∫ ∫β L L β y G

β L L β G

⋮

⋮

 (5.17) 

where the continuum microstress 1β  and the microstress couple 1β  are: 
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 (5.18) 

This expression contains volume averages of the microstress mβ  and its first moment m ⊗β y  at 

the scale of the inhomogeneous deformation. These volume averages are interpreted as 

continuum microstresses, resolved to the scale 1V .  

 

The continuum microstress 1β  and the microstress couple 1β  together represent the average 

resistance to inhomogeneous deformation at scale 1V . For example in (Figure 5.5) the continuum 

microstress 1β  would be a volume average of the local microstress mβ  at the scale of the 

inhomogeneous deformation, 1V  i.e. between the voids.   
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The total virtual power density expression is given by summing the homogeneous and 

inhomogeneous contribution to the virtual internal power density, equation (5.9): 

 
( )

hom inh

1 1 1 1: :

p p pδ δ δ

δ δ δ δ

= +

= + − +σ L β L L β G⋮
 (5.19) 

 

5.3.4 Extension to Multiple Scales of Inhomogeneous Deformation  

In many materials, inhomogeneous deformation may occur at successively smaller and distinct 

scales (Figure 5.4) as the microstructure evolves. The virtual internal power density can be 

written in terms of the homogeneous contribution and the inhomogeneous contributions arising 

from each scale: 
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n n V
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δ δ δ

δ δ δ
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∑
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 (5.20) 

where n  nested averaging volumes have been defined; each represents a scale at which 

inhomogeneous deformation occurs. As discussed in Section 5.3.1, this expression can be used 

as a framework for performing multiple nested coupled concurrent simulations (Liu and 

McVeigh 2007) involving both continuum and discrete microstructure scales. However, as 

before we proceed in the multiresolution continuum framework. Following the same approach as 

before, the resulting internal power expression is: 

 ( )( )int

1

: :
N

n n n n

n

pδ δ δ δ δ
=

= + − +∑σ L β L L β G⋮  (5.21) 

where the continuum microstress at scale n  is given by: 
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dV
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=

= ⊗

∫

∫

β β

β β y

 (5.22) 

Again, each of the continuum measures , , , ,n n nσ β β L L  and nG  are written either directly or 

indirectly in terms of volume averages of the local fields mσ  and mL . The continuum microstress 

nβ  is now simply the average resistance to inhomogeneous deformation at scale nV . 

 

Embedded Length Scales 

The key to this theory is that several length scales, given by the characteristic sizes of the 

averaging volumes nV , are embedded directly via the microstress couple nβ  averaging operation 

in equation (5.18). Although other higher order theories introduce stress couples, the difference 

here is that a microstress couple nβ  is averaged directly at each scale of inhomogeneous 

deformation. This naturally introduces length scales nl  which are equal to the width of the 

square averaging volumes nV .  

 

This becomes clearer in Chapter 6 where the microstress couples nβ  behave in an elasto-plastic 

manner. In the resulting microstress elastic constitutive relation, equation (6.10), a length scale 

parameter  nl  arises naturally when the averaging operation, equation (5.22), is performed at 

scale nV . In the plastic regime the same length scale is implicitly embedded in the microstress 

nβ  flow relation, equation (6.15). 
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The key multiresolution relationships are summarized in table 5.1 

Continuum Tensor... 

…is a Volume Average of 

Microstructure Field… 

…at Scale 

σ  mσ  0V  

nβ  mβ  nV  

nβ  m ⊗β y  nV  

L  mL  0V  

nL  mL  nV  

nG  m∇L
�
 nV  

Power Equivalence ( ): : :m m m m− = −β L L σ L σ L  

Virtual Internal Power Density 
( )

1

: :
N

n n n n

n

pδ δ δ δ δ
=

= + − +∑σ L β L L β G⋮  

 

Table 5.1 Continuum Measures and their origin within the microstructure 
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5.3.5 Multiresolution Governing Equations  

The principal of virtual power is used along with the divergence theorem to derive the 

multiresolution continuum governing equations.  

 

Internal Power 

The total virtual power density is the sum of the homogeneous and inhomogeneous parts, 

integrated over the entire body: 

 ( )
1

= : : ( )
N

n n n n

int

n

P dδ δ δ δ δ
=Ω

 
+ − + Ω 

 
∑∫ σ L β L L β G⋮  (5.23) 

Each of the continuum measures 1 1 1 1, , , , ,σ β β L L G  are written either directly or indirectly in 

terms of volume averages (over 1V  or 0V ) of the known local fields ,m mσ L  within the RVE. 

 

External Power and Kinetic power 

The external virtual power is obtained by extending the conventional external power expression: 
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 (5.24) 

The virtual external power is written in terms of the double traction forces nR  and the body 

couple stresses nB  which balance the microstresses on the surface Γ  and within the body Ω  

respectively. In a conventional continuum, applying a body force b  or surface traction t  will 
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drive a velocity gradient L  within the body; similarly the body couple stress nB and double 

traction force nR  drive the inhomogeneous velocity gradient n −L L . 

 

The virtual kinetic power is based on an extension of the expression developed by (Mindlin 

1964) to multiple scales (Vernerey 2006; Vernerey et al. 2007a; b). This introduces micro-

accelerations nγ  at each scale and relative densities nρ  which are the difference in average 

density between neighboring scales. The vector y  gives the coordinate with respect to the center 

of the averaging volume nV . 

 

Governing Equations 

By applying divergence theorem and making use of the arbitrariness of the variations δ v  and 

nδL , the resulting equilibrium equations and boundary conditions are: 
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 (5.25) 

which are identical to those proposed by (Vernerey 2006; Vernerey et al. 2007a; b). A key 

advance here is that the technique for deriving these governing equations from the standpoint of 

RVE modeling gives rise to a natural and systematic framework for deriving microstress and 

microstress couple constitutive relationships. 
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In order to solve the governing equations, with applied boundary conditions, several constitutive 

relationships must be defined to relate the continuum stress and deformation measures. These 

constitutive relationships, and how to derive them, are described in Chapter 6. 

 

5.3.6 Application to 1D Strain Softening Problem 

The multiresolution approach, equation (5.25), is used to model the 1D strain softening 

introduced in Section 5.2.1. The governing equations (5.25) are used with 1N = . Only a single 

component of the microstress, 1β  and microstress couple 1β  are required in the 1D analysis 

performed here. These are written as 1β  and 1β .  For simplicity, each is considered to obey a 

linear elastic relationship: 

 
( )

1 1

21 1

( )E L L

E l G

β

β

= −

=

ɺ

ɺ
 (5.26) 

where E  is the elastic modulus, l  is the length scale associated with the inhomogeneous 

averaging volume 1V  , 1L L−  is the inhomogeneous velocity gradient and 1G  is the  second 

micro-velocity gradient. The length scale parameter l  is given a value of 0.5 . Velocity boundary 

conditions are applied as before. The engineering strain measures 1ε  and ε  corresponding to the 

velocity gradients 1L  and L  are plotted in (Figure 5.6) along with the strain gradient 

corresponding to 1G . The result is almost identical to that obtained using standard strain gradient 

theory, (Figure 5.2). 
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Figure 5.6. A length scale is introduced through the multiresolution theory 

A comparison between the multiresolution theory developed here and an existing ‘Lagrange 

Multiplier’ approach used by (Herrmann 1983; Kouznetsova et al. 2002; Xia and Hutchinson 

1996) is given in the Appendix A6. In that approach a Lagrange multiplier behaved in a similar 

manner to the microstress nβ  introduced in the current formulation. However the Lagrange 

multiplier was not interpreted as having any physical meaning. Here the behavior of the 

microstress is explored in Section 5.4 

 

5.4  Exploring the Multiresolution Microstresses 

In this section the microstress nβ  and microstress couple nβ  are explored; in particular the 

influence they have on the macroscale constitutive response. In Section 5.3 the microstress nβ  is 

introduced and defined as the average resistance to inhomogeneous deformation at scale n , 

equations (5.14) and (5.22). Here the effect of microstress failure is examined. This reduction in 

resistance to inhomogeneous deformation has an obvious consequence - the deformation 

becomes increasingly inhomogeneous i.e. it localizes at a smaller scale. A systematic approach to 
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determining microscale constitutive relationships which describe the microstress nβ  and 

microstress couple nβ  is given in Chapter 6. 

 

5.4.1 Illustrative Example: Shear Problem 

A two dimensional plane strain quasi-static shear problem is used to illustrate the microstress 

behavior. The alloy plate is loaded under shear boundary conditions. The stress-strain 

constitutive relation illustrated in (Figure 5.7) is used to model the flow stress in a J2 Mises type 

plasticity model and used to represent the alloy plate’s constitutive response. The alloy work 

hardens before reaching a shear instability point at approximately 4% after which strain 

softening occurs.  
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Figure 5.7. A simple shear strain softening constitutive relation is used to model a 2D plane strain plate 
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5.4.2 Conventional Continuum versus Multiresolution 

The shear problem outlined in (Figure 5.7) is first solved using a conventional continuum 

approach, equations (1.5). (Figure 5.8) shows that the strain tends to localize unphysically in a 

single element, regardless of the element size used.  

Coarse mesh Fine mesh

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

Position

T
ru
e
 S
h
e
a
r 
S
tr
a
in

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

Position

T
ru
e
 S
h
e
a
r 
S
tr
a
in

εε

ε contour

Coarse mesh Fine mesh

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

Position

T
ru
e
 S
h
e
a
r 
S
tr
a
in

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

Position

T
ru
e
 S
h
e
a
r 
S
tr
a
in

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

Position

T
ru
e
 S
h
e
a
r 
S
tr
a
in

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

Position

T
ru
e
 S
h
e
a
r 
S
tr
a
in

εε

ε contour

 

Figure 5.8. Unphysical mesh dependent strain localization occurs 

The multiresolution continuum approach is now used, equation (5.25), with the same shear 

boundary conditions. It is assumed that inhomogeneous strain occurs at three successively 

smaller scales given by  1l , 2l  and 3l  (e.g. the steel alloy described in Chapter 2). The criteria for 

determining when inhomogeneous deformation transitions from scale 1l  to 2l  to 3l  is given in 

terms of the shear strain: 
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• During the elastic and plastic work hardening regime deformation is homogeneous and 

none of the microstresses are active 

• When the shear strain at a material point reaches 0.04 the material begins to soften as 

shown in the constitutive relation in (Figure 5.7). Inhomogeneous deformation at scale  1l  

commences. Microstress 1β  and microstress couple 1β  are active 

• When the shear strain reaches 0.175 at a material point, the inhomogeneous deformation 

transitions to scale  2l . Microstress 1β  and microstress couple 1β  fail. Microstress 2β  and 

microstress couple 2β  are active.  

• When the shear strain reaches 0.35 at a material point, the inhomogeneous deformation 

transitions to scale  3l . Microstress 2β  and microstress couple 2β  fail. Microstress 3β  

and microstress couple 3β  are active. 

• When the shear strain reaches 0.5 at a material point, the material breaks. The microstress 

3β  and microstress couple 3β  fail. 

 

A simple approach to the microstress constitutive relationships is used; each is considered to 

behave in a linear elastic manner when active as shown in (Figure 5.9). When inhomogeneous 

deformation is due to transition to scale 1n + , the microstress nβ  and microstress couple nβ  fail 

immediately (they are set to zero) as shown in (Figure 5.9).  

 

In (Figure 5.9) the shear strain contour is shown and the shear strain profile across the sample is 

plotted. The strain is regularized at scale 1l  while 1β  is active, 2l  while 2β  is active and 3l  while 
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3β  is active. The values of the scale transition strains used here (0.175, 0.35, 0.5) have not been 

rigorously determined from experiment or simulation. However the change in characteristic 

length scale of the inhomogeneous deformation does correspond to meaningful microstructural 

instability events in engineering materials. These microstructural instability events or transitions 

are discussed briefly in Section 5.4.3.  
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Figure 5.9. N  length scales can be introduced by using N  microstresses 
nβ  and N  microstress couples 

nβ . 

 

5.4.3  Microstructure Instability Events 

In Sections 5.4.2 the microstresses are assumed to fail at particular predefined shear strains 

during the course of the simulation. When microstresses nβ  and nβ  are active they regularize the 
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deformation at scale n . If these microstresses fail, the inhomogeneous deformation is regularized 

at scale 1n +  by the microstresses 1n+β  and 1n+β  and so on.  

 

Microstress failure is indicative of a microstructural instability event; these events are 

responsible for the transition of inhomogeneous deformation from one scale to the next. In 

multiscale material systems such as high strength steels and cemented carbides (Chapter 2) these 

instability events are well defined and can be determined using computational direct numerical 

simulations of the microstructure, as will be shown in detail in Chapter 7. The microstructure 

instability events in WC-Co are described in Section 2.1.6 and for a steel alloy in Section 2.2.2. 

Fortunately these events can often be predicted by homogenized constitutive relationships. For 

example a simple porous metal plasticity constitutive model tracks evolving void nucleation and 

coalescence – both can be used to determine when microstructural instability events occur. In 

terms of the multiresolution theory this is useful because the failure of the microstresses (which 

coincide with various microstructure instabilities) can be linked to the macroscale constitutive 

response. Hence the evolving microstructure is predicted by the macroscale constitutive model, 

which in turn provides information about when the microstresses should fail i.e. when the 

inhomogeneous deformation should transition to another scale.  

 

5.5 Reduction to a Variable Length Scale Elastic Microgradient Model 

The multiscale theory outlined in Sections 5.3 and 5.4 is useful for incorporating microscopic 

length scale effects in the macroscale solution. However, with each additional scale of analysis 

beyond the conventional macroscale, a further four degrees of freedom ( )11 22 33 12, , ,n n n nL L L L are 
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introduced at each node in a two dimensional finite element analysis, and six 

( )11 22 33 12 13 23, , , , ,n n n n n nL L L L L L  in a three dimensional analysis.  

 

As described previously each microstress (and its associated microstress couple) represents the 

resistance to inhomogeneous deformation at a particular scale. In most materials the 

inhomogeneous deformation transitions to successively smaller scales when microstructural 

instabilities occur (as described in Section 5.4.3). The transition from scale n  to scale 1n +  

generally occurs quite rapidly in as a function of the microstructural evolution. 

In terms of the multiresolution continuum theory, this means that the inhomogeneous 

microstresses are successively dominant. Hence as microstress nβ  fails, the next microstress 1n+β  

begins to dominate and so on until each microstress has failed. It is therefore possible to replace 

each of the microstresses nβ  with a single multiscale microstress msβ  which takes the place of  

the N  microstresses in equation (5.25).  The resulting governing equations are given by: 

 

( )

( )
( )

    in   

    in   

    on   

:     on   

ms

ms ms n

ms

t

ms

R

ρ∇ − + = Ω

∇ − + = Ω

= − Γ

= = Γ

σ β b v

β β B γ I

t N σ β

R rN N β NN

ɺi

i i

i

i

 (5.27) 

This multiscale microstress msβ  and its associated multiscale higher order microstress msβ  ensure 

that the inhomogeneous deformation occurs at the appropriate scale. In terms of microstress 

constitutive relationships, the Jaumann rate of the multiscale microstress ms
∇

β and higher order 

microstress  ms
∇

β  are given in terms of elastic relationships: 
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�
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 (5.28) 

where ms
ℂ  and ms

ℂ  are the multiscale microscale elastic matrices (we assume these are isotropic 

here). Note that ms
ℂ  contains an embedded length scale which determines the scale at which the 

microstresses act.  

 

The multiscale microscale elastic matrices ms
ℂ  and ms

ℂ  can be determined via a representative 

volume element (RVE) of the microstructure. Assume the local inhomogeneous velocity gradient 

( )m −L L , equation  (5.14), is related to the rate of change of the local microstress mβ  within the 

RVE by: 

 ( ):m m m= −β C L Lɺ  (5.29) 

where mC  is the local elastic tensor. Using the averaging equations (5.18) the elastic constants 

ms
ℂ  and ms

ℂ  are given by: 

 
1

ms

ms

m

ms V

dV
V

= ∫ Cℂ  (5.30) 

and 

 
1

ms

ms

m

ms V

dV
V

= ⊗ ⊗∫ C y yℂ  (5.31) 

where msV  is the volume which encompasses the currently dominant inhomogeneous 

deformation. Assuming mC  is constant within the evolving 2D area msV , the elastic constants 

become: 
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 (5.32) 

where I  is the identity tensor and msl  is the length of one side of area domain msV . The key to 

this approach is that the averaging volume msV  (and hence the length scale msl )  is now a 

dynamic parameter i.e. it evolves with the scale of the inhomogeneous deformation.  

 

In the multiresolution formulation, equation (5.25), the length parameter msl  can be used to 

control the scale at which regularization occurs in a manner which is consistent with the evolving 

microstructure. This is achieved by switching the length scale msl  to the appropriate scale when a 

microscale instability event occurs. A simple 2D quasi-static shear example is again used to 

illustrate the concept; the same example was used in Section 5.4.2. The microstresses 1 2 3, ,β β β  

and higher order microstresses 1 2 3, ,β β β  are replaced by a single multiscale microstress msβ  and 

higher order microstress msβ . For simplicity the microscale instability points are assumed to 

occur at shear strains of 0.175,0.3,0.5ε = . That is the inhomogeneous deformation transitions to 

a smaller scale when each of these strain levels is reached. 

 

The length scale parameter msl  embedded in the higher order constitutive relationship 

( )ms ms∇β L
ɺ

 varies with time as shown in (Figure 5.10): 

 

0.05     when   0.175
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ms p
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ms p
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l

ε

ε

ε
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= > ≥

= >

 (5.33) 
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The length scales in equation (5.33) have been chosen for illustration. In a real heterogeneous 

material these length scales are chosen to correspond to the characteristic length scales of 

inhomogeneous deformation. 
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Figure 5.10. The N  microstresses 
nβ  and N  microstress couples 

nβ can be replaced by a single multiscale 

microstress 
msβ  and a single microstress couple 

msβ  with a variable length scale. 

The resulting shear strain profile is plotted in (Figure 5.10) for the case where three individual 

microstress couples ( ) ( ) ( )1 1 2 2 3 3, ,l l lβ β β  were used and for the reduced case where only a 

single microstress couple ( )ms mslβ  is considered. In the case where three microstresses are used, 
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the appropriate microstress is set to zero when an instability event occurs according to equation 

(5.33) as shown in  (Figure 5.9). In the reduced model the instability points correspond to a rapid 

decrease in the characteristic length scale msl  as shown in (Figure 5.10). This immediately 

impacts the microstress couple ( )ms mslβ  through the constitutive equation (5.8). 

 

As shown in (Figure 5.10) the plastic strain profile across the sample, and the timing of scale 

switching is practically identical for both simulations. The reduced simulation achieves a 

reduction in computation time of over 60% in this simple example; the total number of degrees 

of freedom at each node is six, compared to fourteen for the full four scale 2D analysis. 

Furthermore there is now a single elastic microscale stress update, compared with having three 

elasto-plastic microscale stress updates in the full four scale approach.  
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6 Microscale Constitutive Relationships 

The macroscale constitutive relationships used in this thesis have been described in detail in 

Chapter 3. The goal of this Chapter is to develop elasto-plastic constitutive relationships for the 

continuum microstresses  ( )n n −β L Lɺ  and ( )n nβ G
ɺ

, introduced through the multiresolution 

continuum theory (MRCT), Chapter 5, equations (5.22). 

 

A form for the microstress constitutive relationships based on conventional associative plasticity 

constitutive models is proposed in Section 6.1. A procedure is outlined in Section 6.2 to calibrate 

such a constitutive model to the average microstress at the scale of the inhomogeneous 

deformation in a representative volume element (RVE) cell model. Scalar effective measures of 

the microstresses are used. The approach is illustrated for a voided alloy and a steel alloy in 

Section 6.3 (see Section 2.2 for a description of the micromechanics of a steel alloy).  

 

6.1 Constitutive Relations and Flow Rule 

In terms of constitutive modeling the microstresses  nβ  and nβ  are treated as any other stress i.e. 

it is assumed they can be characterized by an elastic and plastic stage of deformation. The elastic 

part of the microstress constitutive relationships is described in Section 6.1.1 and the plastic 

stage, which occurs after a microstress yields, is described in Section 6.1.2.   
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6.1.1 Microstress Elastic Constitutive Relationship 

A Jaumann rate of microstresses has been developed by (Vernerey et al. 2007b) as: 
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 (6.1) 

where indicial notation is used to better represent the third order tensor operations and W  is the 

rotation tensor. An elastic-plastic decomposition is given by: 

 
( ) ( ) ( )
( ) ( ) ( )
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The elastic constitutive relations at each scale are given by: 
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 (6.3) 

where n
ℂ  and n

ℂ  are the elastic matrices (we assume these are isotropic here) at the nth  scale. 

Note that n
ℂ  contains an embedded length scale and the elastic update at each scale is assumed 

to be independent of the others i.e. no scale coupling exists in the elastic regime. 

 

6.1.2 Flow Rule 

The plastic part of the microscale constitutive relations are based on a set of flow rules; one for 

each microstress and higher order microstress: 
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 (6.4) 

Although microstress and deformation measures are being used, this expression is completely 

analogous to conventional associative plasticity models found in (Belytschko et al. 2000) for 

example. The same consistency conditions apply i.e. the microstresses must stay on their yield 

surfaces: 

 
0,    0

0,    0

n n

n n

ϕ ϕ

ϕ ϕ

= =

= =

ɺ

ɺ
 (6.5) 

The form of the microscale plastic potentials nϕ  and nϕ  is generally problem specific. In the 

problems of interest in this thesis, the microscale behavior is generally dominated by deviatoric 

plastic flow. Hence simple Mises type yield surfaces are used to describe the post yield behavior 

of the microstresses: 
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 (6.6) 

where nβ  and nβ  are equivalent scalar measures of the microstress nβ  and microstress  couple 

nβ respectively. The functions n

yβ  and n

yβ are isotropic hardening functions which describe the 

contraction or expansion of the microstress yield surfaces. 
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6.2 Calibrating Microscale Constitutive Relations to RVE Simulations 

A method for determining the microscale elastic constants is discussed in Section 6.2.1. A 

general approach is then outlined for determining the microstress hardening functions  n

yβ  and 

n

yβ , equation (6.6), from computational RVE model simulations in Section 6.2.2. 

 

6.2.1 Elastic Constants 

It is assumed that the local inhomogeneous velocity gradient ( )m −L L  is related to the local 

microstress mβ  within the RVE by: 

 ( ):
e

m m m= −β C L Lɺ  (6.7) 

where mC  is a local inhomogeneous elastic tensor in the microstructure. Substituting this into the 

microstress averaging equations (5.18) the elastic constants n
ℂ  and n

ℂ  are given by: 

 
1

n

n

m

n V

dV
V

= ∫Cℂ  (6.8) 

and 

 
1

n

n

m

n V

dV
V

= ⊗ ⊗∫C y yℂ  (6.9) 

Note that the averaging operation for n
ℂ  incorporates a length scale related to the size of the 

averaging volume nV . For reference, assuming the local inhomogeneous elastic tensor mC  is 

constant within the 2D area nV , the elastic constants become: 
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where I  is the identity tensor and nl  is the length of one side of the averaging volume nV . This 

explicitly shows that a length scale parameter nl  is embedded in the model through the elastic 

part of the microstress constitutive relationship. 

 

6.2.2 Plastic Constants 

The goal here is to illustrate a method for finding the microstress hardening functions n

yβ  and 

n

yβ . These microstress hardening functions describe how the equivalent microstresses nβ  and 

nβ  evolve, equation (6.6). Motivated by the power equivalence equation (5.14) a local plastic 

work rate equivalence relationship is defined as: 

 ( ): : :p p p p

m m m m− = −β D D σ D σ D  (6.11) 

where p

mD  is the local plastic rate of deformation within the microstructure (RVE) and pD  is the 

average plastic rate of deformation at the RVE (macro) scale. The concept of equivalence of 

plastic work rate (Belytschko et al. 2000) is now used to rewrite the inhomogeneous plastic work 

expression in terms of scalar equivalent measures. The left hand side of this expression is first 

rewritten in terms of an equivalent local microstress mβ  and local strain rate p

mΣɺ : 

 ( ): p p p

m m m mβ− = Σβ D D ɺ  (6.12) 

where 
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and dev

mβ  is the deviatoric part of the local microstress dev

mβ .  Equation (6.11) can now be rewritten 

using the equivalent scalar description given by equation (6.12):  
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ɺ
 (6.14) 

This is a computable expression for the local equivalent microstress field mβ  within the 

microstructure. The equivalent microstresses at scale n  are simply volume averages of the local 

equivalent microstress field mβ  over nV : 
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where  is the magnitude of a vector and the local coordinate relative to the center of the 

averaging volume nV  is given by y . The equivalent inhomogeneous strain nΣ  and strain gradient 

nΣ  are similarly given by: 
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 (6.16) 

where 
1y

∇  and 
2y

∇  are the gradients in the 1y  and 2y  directions respectively.  
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A length scale parameter nl does not explicitly appear in equation (6.15), as it does in the elastic 

relation, equation (6.10). However the microstress couple nβ  is still a function of scale as the 

moment arm y  appears in equation (6.15); this ensures that a scale effect is present even during 

the plastic stage of the microstress constitutive response.  

 

The microstress hardening functions, ( )n n

yβ Σ  and ( )n n

yβ Σ , used in the microstress yield 

surfaces, equations (6.6), are calibrated to the microstress relationships ( )n nβ Σ  and ( )n nβ Σ , 

equations (6.15) and (6.16). The steps outlined in equations (6.14)-(6.16) are illustrated 

schematically in (Figure 6.1). 
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Figure 6.1. Method to calibrate microstress constitutive models to computational RVE models 
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The location of the averaging volume nV  within the RVE is determined by the location of the 

inhomogeneous deformation occurring at scale n . This is usually obvious from strain contours 

particularly in materials where severe localization occurs between microstructural features e.g. 

strain localization between neighboring voids. The size of the averaging volume is chosen such 

that the strain varies approximately linearly within the averaging volume; this is consistent with 

the approximation made about the local deformation in equation (5.15). The averaging volume 

nV  is then superimposed onto the RVE as shown in (Figure 6.1) and the averaging operation 

described by equations (6.15) and (6.16) can be performed. 

 

 

 

 

 

 

 

 

The macroscale and microscale constitutive model development is summarized in tables 6.1 and 

6.2. 

 Averaging Operation Scalar Measure 

Constitutive 

Model 

0
0

1
m

V

dV
V

= ∫σ σ  3
:

2

dev devσ = σ σ  

0
0

1p p

m

V

dV
V

= ∫D D  2
:

3

p p p

t

dtε
 

=   
 
∫ D D  

modelϕ  

Table 6.1 Macroscale averaging equations (3.4) and (3.5) used to determine average stress and strain within 

an RVE microstructure for the purposes of developing a constitutive model 
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Table 6.2 Local and average inhomogeneous stress and strain measures used to develop a microscale 

constitutive model. 
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6.3 Physical Material Systems 

Two material systems are now chosen to illustrate how macro and microscale constitutive 

relationships can be extracted through computational cell modeling; a porous alloy and an alloy 

with two populations of embedded particles.  

 

6.3.1 Voided Alloy: A Conventional Homogenization Approach 

Consider an elasto-plastic body containing a periodic arrangement of pre-existing voids. The 

representative volume element (RVE) consists of a single void in an elasto-plastic matrix as 

shown in (Figure 6.2). Displacement boundary conditions are applied to the left and right sides 

of the RVE to strain it in the direction shown in (Figure 6.2) by 15%. Lateral contraction is 

constrained to zero, resulting in quite substantial triaxiality and void growth. As the void grows, 

plastic deformation within the matrix localizes at the scale of the void (contour of true plastic 

strain in the loading direction is shown). The true plastic strain in the loading direction is plotted 

across a section of the RVE to highlight this naturally arising physical length scale, l , which is 

on the order of the void size. The average constitutive response ( )pσ ε  is plotted using the RVE 

averaging operation defined in equations (3.4) and (3.5). 

 

This average constitutive response, shown in (Figure 6.2), is used to define the flow stress 

( )pyσ ε  in a J2 flow plasticity model, as a series of data points. The softening J2 plasticity 

model is now used within a finite element analysis to model the behavior of a homogenized 

continuum, shown on the right in (Figure 6.2). The same boundary conditions are applied. The 
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conventional governing equations (1.5) are solved using a finite element approach. The 

governing equations and constitutive relations are summarized as: 

 
0     in   

    on   u

∇ = Ω
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u u

i
 (6.17) 
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=
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  − =
 
 

σ C Di

     (6.18) 

where C  is an elastic isotropic tensor with Young’s Modulus 200E GPa=  and Poisson’s ration 

0.31ν = . The J2 flow rule is written in terms of the Mises stress σ  and the hardening relation 

( )pyσ ε  given by the curve in (Figure 6.2). As shown, the inhomogeneous deformation (contour 

of true plastic strain in the loading direction is shown) localizes in a mesh dependent manner 

once the material begins to soften. The inhomogeneous deformation which occurs in the actual 

microstructure is not replicated. 
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Figure 6.2. Effective plastic strain is plotted in the RVE and in the homogenized continuum model. A simple 

voided alloy has a natural characteristic length scale of inhomogeneous deformation i.e. the void size.  

 

 

 

 

 

 

 

 

6.3.2  Voided Alloy: A Multiresolution Homogenization Approach 

The multiresolution approach described in Chapter 5 is now used to model the porous material. 

The local microstress field mβ  is plotted in the voided RVE in the left side of (Figure 6.3) using 

equation (6.14). The equivalent local inhomogeneous strain p

mΣ  is plotted using equation (6.13).   
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Figure 6.3. The multiresolution approach is used to embed the void length scale in the continuum model. 

Distances are in microns. 
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The averaging equations (6.15) and (6.16) are then employed to compute the microstress 

constitutive relationships ( )1 1β Σ  and ( )1 1β Σ  at the scale of the inhomogeneous deformation 1V , 

indicated in (Figure 6.3).  As the inhomogeneous deformation increases, the alloy matrix hardens 

and the resistance to inhomogeneous deformation increases. This manifests as a hardening effect 

in the microstress response ( )1 1β Σ  and ( )1 1β Σ . These microstress relationships are plotted in 

(Figure 6.3).  

 

The multiresolution governing equations (5.25) involve a single microstress i.e. 1N =  i.e.: 

 
( )1

1 1
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 (6.19) 

The macroscale constitutive relation is the same as in equation (6.18): 
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The elastic microstress relation is given by equation (6.3): 
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where 1
ℂ  and 1

ℂ  are given by equation (6.10): 
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 with a length parameter 1 200l nm= (the void size) and m =C C . The plastic microstress 

constitutive relationship is given by equation (6.6): 

( )
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     (6.23) 

 

where  ( )1 1

yβ Σ  and ( )1 1

yβ Σ  are given by the curves in (Figure 6.3).  

 

The same displacement boundary conditions are applied as before i.e. constrained in the lateral 

direction and stretched by 15% in the loading direction. The multiresolution solution is shown on 

the right in (Figure 6.3). The characteristic length scale and magnitude of inhomogeneous 

deformation are both predicted but with much fewer degrees of freedom then in the RVE, where 

the void has been modeled directly. The length scales of the microstress 1β  and inhomogeneous 

strain 1Σ  (bottom right contour plots  (Figure 6.3)) are comparable to the local microstress mβ  

and local inhomogeneous strain p

mΣ  within the microstructure (RVE) (bottom left contour plots  

(Figure 6.3)). 
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6.3.3 Alloy with Two Populations of Embedded Particles 

A more complex problem is now illustrated in which inhomogeneous deformation occurs at two 

distinct scales. The material consists of an alloy matrix with embedded primary inclusions of 1 

micron diameter and secondary precipitate particles with diameter 200 nanometers. The 

micromechanics of this system are described in more detail in Section 2.2.  

 

A simple model is constructed which captures the key physics within the RVE. Two primary 

inclusions are modeled along with several secondary precipitates in the region between the 

inclusions. The precipitates are modeled only where they are known to debond, between the 

weakly bonded inclusions, creating a clear pre-defined failure path while still capturing the 

failure mechanism. Periodic displacement boundary conditions are applied (Appendix A1) to 

induce an average shear strain of 50%. The average stress and strain are computed via equations 

(3.4) and (3.5). The average Mises stress- plastic Mises strain curve is plotted in (Figure 6.4).  
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Figure 6.4. The multiresolution model is used to embed two characteristic length scales of inhomogeneous 

deformation related to the embedded particles. 

The two characteristic length scales of inhomogeneous deformation can be observed by plotting 

the plastic shear strain across the RVE as shown in the bottom left corner of (Figure 6.4). The 

averaging equations (6.15) and (6.16) are again used to compute the microstress constitutive 

relationships ( )1 1β Σ  and ( )1 1β Σ  at the first scale of inhomogeneous deformation 1V  and the 

relationships ( )2 2β Σ  and ( )2 2β Σ  at the second scale of inhomogeneous deformation 2V . These 



235 

averaging volumes are shown in (Figure 6.4). The link between these microstress curves and the 

evolving microstructure is summarized as follows: 

• The large primary inclusions debond at an applied strain of 0.05pε = (First 

Microstructure Instability Event) and the deformation localizes at scale 1V . The 

microstress 1β  increases as the alloy matrix within 1V  work hardens.  

• The secondary precipitates debond at an applied strain of 0.35pε =  (Second 

Microstructure Instability Event) and the microstress 1β  begins to degrade.  

• Deformation localizes between the secondary precipitates at scale 2V . The microstress 

2β   grows as the alloy matrix within 2V  work hardens.  

 

The system is now modeled using a multiresolution approach; two microstresses are used in the 

governing equations (5.25): 
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The macroscale constitutive relation is the same as in equation (6.18): 
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where C  is an elastic isotropic tensor with Young’s Modulus 200E GPa=  and Poisson’s ration 

0.31ν = . The hardening function ( )pyσ ε  is given by the macroscale stress-strain curve in  

(Figure 6.4).  



236 

The elastic microstress relations are given by equation (6.3): 
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where 1 2,ℂ ℂ  and 1 2,ℂ ℂ  are given by equation (6.10): 
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with length parameters 1 1l mµ=  (the primary inclusion size), 1 200l nm=  (the secondary 

precipitate size) and m =C C . The plastic microstress constitutive relationships are given by 

equation (6.6): 
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The microstress hardening functions ( ) ( )1 1 2 2,y yβ βΣ Σ  and ( ) ( )1 1 2 2,y yβ βΣ Σ  are calibrated to the 

microstress curves in (Figure 6.3).  
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The resulting multiresolution solution is shown on the right in (Figure 6.4). The two 

characteristic length scales of inhomogeneous deformation observed in the alloy RVE are 

replicated but with much fewer degrees of freedom. The first set of microstresses ( )1 1β Σ  and 

( )1 1β Σ  regularize the solution at the scale of the primary inclusions. At a nominal strain of 

~35% the secondary precipitates debond the these microstresses degrade. The second set of 

microstresses ( )2 2β Σ  and ( )2 2β Σ  then take over, regularizing the solution at the scale of the 

secondary precipitates.  
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7 Multiresolution WC-Co Composite Model 
 

A hierarchical constitutive model for a WC-Co composite has been developed in Chapter 4. This 

constitutive model was used in a conventional continuum based numerical fracture toughness 

simulation in Section 4.5. In the current chapter fracture toughness predictions are again 

performed for a WC-Co composite. However the fracture simulations performed here use a 

multiresolution continuum (MRCT) analysis developed in Chapter 5. The same WC-Co 

composite constitutive relationship developed in Chapter 4 is employed at the macroscale. The 

extra microstress constitutive relationships required in the multiresolution analysis are developed 

here based on the approach outlined previously in Chapter 6.  

 

An idealized RVE of the WC-Co microstructure is proposed in Section 7.1 and discussed in 

Section 7.2. The proposed RVE is then used to compute the microstress constitutive relationships 

in Section 7.3. Finally the multiresolution approach developed in Chapter 5 is used as the basis 

for numerical fracture toughness simulations (of WC-Co) in Section 7.4. A parametric study is 

performed to gauge the effect of the microstructural parameters on the fracture toughness. The 

multiresolution fracture toughness simulation results are compared to the conventional 

continuum results. 

 

7.1 Idealized RVE Model for WC-Co 

An idealized 2D plane strain model of the WC-Co microstructure is now presented for the 

purposes of determining the microscale constitutive relations, based on the approach outlined in 

Chapter 6. This model, shown in (Figure 7.1), captures the micromechanics which control the 
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strength and fracture toughness of a WC-Co composite, while remaining simple enough for 

efficient computation of the microstresses.  

WC

Cobalt (Co)

Potential Voids

WC with fracture model (Section 4.2)

(110) directions(110) directions
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Figure 7.1. The simplified RVE for WC-Co. Crystal plasticity is used to represent the cobalt. A population of 

potential voids is modeled. The carbide fractures along a predefined path. 

A similar model has been used previously to model ductile reinforced brittle composites by 

(McHugh and Connolly 2003; Spiegler and Fischmeister 1992). In the proposed RVE model the 

cobalt binder is modeled as a square alloy pool of side 800nm enclosed by two tungsten carbide 

grains; the length of one side of the RVE is 2 microns. The cobalt binder is modeled using a 
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single crystal plasticity formulation which has been described previously in Chapter 3 and also 

used in Chapter 4, Section 4.1 to perform void growth numerical experiments.  

 

Carbide Grains 

The carbide grains are modeled using the tungsten carbide constitutive model developed in 

Section 4.2; this is a simple linear elastic model with fracture. However carbide fracture is 

modeled only in the grain boundary elements as shown in (Figure 7.1). This predefines the brittle 

fracture path through the carbide region. A total of 19816 finite elements are used to mesh the 

RVE; most of these elements are concentrated in the cobalt region where the interesting 

inhomogeneous deformation occurs. 

 

Microvoid Nucleation 

Nucleation of microvoids in the cobalt pool (Figure 7.1) plays an important role in composite 

failure, as described in Section 2.1.4; microvoid nucleation is modeled in a simplified manner in 

the RVE. Within the cobalt, a pre-defined set of circular element groups (Figure 7.1) are given 

the following property: when any element in a particular group reaches the mean strain for void 

nucleation εN , equation (4.3), stress is set to zero in all of the elements in that group, instantly 

creating a stress free void. This allows void nucleation to be modeled without explicitly creating 

a new void surface and by-passes complex remeshing. These element groups are called ‘potential 

voids’ here and are labeled as such in (Figure 7.1). Each is 20nm in diameter which is the size of 

a nucleated void used in Section 4.1.  
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Microstructure Parameters and Boundary Conditions 

In the following analysis, the RVE is loaded quasi-statically using periodic displacement 

boundary conditions applied perpendicular to the grain boundary described above. The cobalt 

grain size is 800d nm=  and an isothermal temperature of 353Kϑ =  is used. Constant triaxiality 

of 1
3

T = ,  is maintained by applying an evolving lateral pressure; this is explained further in 

Appendix A2. The volume (2D area) fraction of cobalt is 0.15f = . The orientation of the crystal 

lattice used in the crystal plasticity model is also shown in (Figure 7.1). 

 

7.2 Description of RVE Micromechanics 

The micromechanics of deformation within the proposed RVE is described here. The simplified 

RVE should capture the key micromechanics in the more complex WC-Co microstructure model 

used in Section 2.1. The plastic Mises strain in the RVE is illustrated in (Figure 7.2) at an applied 

nominal Mises strain of 5%. The stages in deformation which occurred to reach this strain level 

are described in terms of the microstructural instability events (a)-(d) as follows (see Section 

5.4.3 for a discussion on ‘microstructural instability events’): 

• The composite initially deforms homogeneously as the carbide and cobalt phases deform 

elastically.  

•  Brittle fracture occurs in the carbide grains (a) and the cobalt pool behaves as a crack 

bridging ligament; the ligament stretches and work hardening occurs across the entire 

ligament 1l .  
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• The stress within the ligament saturates (b) as work hardening reduces. The deformation 

subsequently localizes ahead of the brittle crack tip 2l . This is consistent with the idea 

that work hardening acts to reduce strain gradients.  

• The ‘potential voids’ within the most localized deformation region reach the nucleation 

criteria, equation (4.3) and become voids (c); deformation localizes between neighboring 

voids at scale 3l .  

• As the voids grow they begin to rapidly coalesce (d), the cobalt alloy between the voids 

necks and final ductile occurs. 

The Mises plastic strain is plotted along a section through the cobalt binder on the bottom right 

in (Figure 7.2) to illustrate the different length scales described above. This strain profile can be 

compared to the more complicated WC-Co model shown in (Figure 2.5). Both capture the 

characteristic length scales of inhomogeneous deformation, although the current model is much 

simpler. The average macroscale constitutive response is computed using the RVE averaging 

equations (3.4) and (3.5); the constitutive response and corresponding microstructural instability 

events are plotted in (Figure 7.3). 
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Figure 7.2. The characteristic length scales of inhomogeneous deformation in the cobalt pool, in the simplified 

WC-Co model. The strain profile on the bottom right can be compared to the strain profile in the more 

complicated model, Figure 2.5. 
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Figure 7.3. Average constitutive response of the simplified WC-Co RVE described in Section 7.1 

 

7.3 Extracting Microstress Constitutive Relationships 

The computational RVE introduced in Sections 7.1 and 7.2 is now used to compute the 

microstress constitutive relationships, following the approach described in Chapter 6. In 

particular this involves defining the  

• Elastic microstress behavior i.e. the microscale elastic constants in equation (6.10). This 

is performed in Section 7.3.1. 

• Plastic microstress behavior i.e. the microstress hardening functions at each scale n

yβ  and 

n

yβ  as described in equation (6.6). These functions are calibrated to the equivalent 
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microstresses nβ  and nβ  (computed in the RVE) in Section 7.3.2. The interaction 

between the microstresses nβ  and nβ  and microstructural instability events is discussed 

in Section 7.3.3. This interaction is built into the microstress hardening functions in 

Section 7.3.4. 

 

7.3.1 Elastic Regime: Microstress Constants 

The inhomogeneous elastic tensors n
ℂ  and n

ℂ  define the elastic microstress and couple 

microstress responses as described in equation (6.3). These elastic tensors can be computed as 

volume averages of the local inhomogeneous elastic tensor mC  within the microstructure as 

described in equations (6.10). The local inhomogeneous elastic tensor  mC  is approximated as 

being equal to the elastic tensor for cobalt. In an isotropic description of the local 

inhomogeneous elastic tensor mC , the Young’s modulus is 211GPa  and the Poisson’s ration is 

0.31 .  

 

The length scale parameters nl  are required to complete the elastic model as described in 

equation (6.10). These are given here according to the observations made in the RVE (Figure 

7.2) i.e. they are the characteristic length scales of inhomogeneous deformation at each scale 

which define the averaging volumes nV . These characteristic length scales are related to the 

underlying microstructural features and are summarized in Table 7.1.  
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Length Scale 

Parameter 
Value 

Related Microstructural 

Feature 

1l  0.8 microns Cobalt Grain Size  d  

2l  0.2 microns Characteristic Brittle Crack 

Opening Displacement 

3l  0.05 microns Microvoid Size 

Table 7.1 Characteristic length scales of inhomogeneous deformation observed in the simplified WC-Co RVE 

described in Section 7.1 

  

7.3.2 Plastic Regime: Microstress Constants 

The microstress hardening functions have been introduced in equation (6.6). These functions 

describe the how the microstress at each scale evolves with inhomogeneous deformation. The 

microstresses are essentially continuum measures i.e. each microstress is computed as a volume 

average of a local microstress within the RVE as described in equation (6.15).  

 

The local microstress field mβ  is first computed from the known stress and strain measures using 

equation (6.15) as shown in (Figure 7.4). The local microstress field mβ  can then be averaged at 

different scales nV  via equation (6.15) to extract the continuum microstresses nβ  and microstress 

couples nβ . These scalar microstress measures are then used to form a flow law for use in the 

microstress constitutive relationships, equation (6.6). 
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Figure 7.4. Contours of the local microstress mβ  in the cobalt pool evolving with microstructure 

Computing the Local Microstress Field mβ  

The local microstress mβ  represents the resistance to local inhomogeneous deformation within 

the RVE. As such it evolves with the inhomogeneous deformation in space and time: 

• When carbide fracture (a) occurs (Section 4.2) the local microstress mβ   extends 

throughout the cobalt ligament.  

• As the stress within the cobalt saturates (b) the local microstress mβ  retreats to the scale 

of the brittle crack tip.  

• When microvoids nucleate (c) the local microstress mβ  retreats to the scale of the 

microvoids.  
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• Finally the microvoids coalesce (d) and the local microstress dissipates as the material 

fails.  

The microstructural instability events (a)-(d) are also labeled on the macroscale average stress-

strain curve for the composite in (Figure 7.3); this illustrates that the microstress evolution and 

the macroscale constitutive response both depend on the evolving microstructure. 

 

Averaging the Local Microstress Field at Each Scale 

The microstresses nβ and nβ  can now be computed by averaging the local microstress field mβ  

at each characteristic scale of inhomogeneous deformation n  according to equation (6.15). 

Likewise the inhomogeneous strains nΣ  and strain gradients nΣ  can be computed via equation 

(6.16). The averaging volumes nV  are chosen such that the deformation varies linearly within it 

at each scale (Figure 7.5). This defines the size of the averaging volumes which in turn defines 

the length scales i.e. the square root of the averaging area in 2D. Only the cobalt zone in the RVE 

is shown in (Figure 7.5) as this is where the interesting inhomogeneous deformation occurs.  The 

microstresses nβ and nβ can then be plotted against the inhomogeneous strains nΣ  and strain 

gradients nΣ  as shown in (Figure 7.6). The macroscale average constitutive response is also 

plotted in (Figure 7.6). The occurrence of microstructural instability events (a)-(d) is also labeled. 
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Figure 7.5. Determination of averaging volume size used at each scale. The deformation varies approximately 

linearly at each scale (in each averaging box). 
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Figure 7.6. The local microstress mβ  is averaged at each scale using the averaging volumes nV . The collapse 

of each microstress coincides with a microstructural instability event. 
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7.3.3 WC-Co Microstructure Instability Points 

As shown in (Figure 7.6) the various microstresses ( ),   1, 2,3n n nβ β =  fail when specific 

instability events occur within the microstructure. In the WC-Co material being examined the 

instability events are briefly recapped as: 

• (a) carbide fracture 

• (b) saturation of the stress within the cobalt ahead of the brittle crack tip  

• (c) microvoid nucleation  

• (d) microvoid coalescence 

 

To relationship between the microstructure instability events, the macroscale stress and the 

microstresses is explored further in (Figure 7.7). The macroscale stress and the microstresses are 

plotted as a function of time during the RVE simulation. With reference to (Figure 7.7): 

• The first microstress 1β  dominates immediately after carbide fracture (a). 

Inhomogeneous deformation occurs at scale 1l . 

• The third curve from the top, ‘Mises Stress’, shows the average stress in the cobalt pool. 

The stress saturates in the cobalt (b) at around 0.4 seconds. Inhomogeneous deformation 

occurs at scale 2l . The microstress 1β  begins to degrade. The second microstress 2β  

then dominates. 

• The fourth curve from the top, ‘Porosity’, shows the average porosity in the cobalt pool. 

The voids nucleate (c) at approximately 0.6 seconds; the porosity increases rapidly. 

Inhomogeneous deformation occurs at scale 3l . The microstress 2β  begins to degrade. 

The third microstress 3β  then dominates. 
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• The final curve shows the average distance between voids which is an indicator of 

coalescence. At approximately 0.9 seconds the inter-void distance begins to decrease 

rapidly i.e. coalescence occurs (d). The microstress 3β  begins to degrade indicating final 

failure. 

 

Hence each of the microstresses begins to rapidly degrade due to some microstructural instability 

event. Furthermore each of these instability events has an obvious impact on the average 

macroscale constitutive response.  In the multiresolution continuum model the microstructural 

evolution is described in a parameterized manner through the evolving internal state variables in 

the macroscale constitutive relation. In Section 7.3.4 failure of each microstress is related 

mathematically to the appropriate microstructural instability event, as predicted by the 

macroscale constitutive relation. For example the second microstress fails when void nucleation 

(c) is predicted by the macroscale constitutive relation via the nucleation evolution equation (4.1).   
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Figure 7.7. Microstress failure as a function of the evolving microstructure. The microstructural instability 

events (b)-(d) are compared to the microstress failure points. 
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7.3.4 Microstress Softening Functions 

The computed microstress curves ,n nβ β  in (Figure 7.6) are now calibrated to appropriate 

hardening/softening functions ,n n

y yβ β  for use in the microstress yield surfaces, ,n nϕ ϕ  in 

equation (6.6). In a conventional linear strain hardening/softening material, two parameters are 

required to define a hardening law; an initial yield stress and a hardening/softening modulus. The 

same concept is applied here for the microstress hardening/softening functions ,n n

y yβ β  as shown 

in (Figure 7.8).  
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Figure 7.8. The microstress failure points are mathematically tied to the microstructure instability events 

The microstress curves in (Figure 7.6) each exhibit an initial yield followed by softening. Here 

the initial yield of the microstresses are called 0

n

yβ  and 0

n

yβ  respectively and the softening 

moduli which describe the post yield softening are called  S  and S  such that: 
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0

0

1

1

n n n n

y y

n n n n

y y

S

S

β β

β β

= + Σ

= + Σ
 (7.1) 

Initial microstresses yield ( )0 0,n n

y yβ β  coincides with the microstructural instability events 

described in Section 7.3.3. These microstructure instability events are used here as microstress 

yield flags i.e. when a microstructural instability event occurs (as predicted by the macroscale 

constitutive relation) the microstresses at the appropriate scale ( ),n nβ β  are considered to have 

reached microstress yield, 0 0,n n

y yβ β . Hence initial microstress yield is not a pre-defined constant. 

Just like the macroscale initial yield stress may vary with rate or temperature, the microstress 

initial yield varies with microstructure.  

 

In terms of the WC-Co composite, the microstress yields occurs as follows: 

• The first set of microstresses 1 1,β β  yield when the stress saturates in the cobalt. In the 

RVE simulation (Figure 7.3) this occurs at a macroscale Mises strain of approximately 

2%. This macroscale stain value is called satε  here and is used as a simple indicator of 

stress saturation in the cobalt – it is recognized that the macroscale strain corresponding 

to cobalt scale stress saturation will likely be a complex function of many parameters, 

particularly triaxiality, temperature, rate and work hardening.  

• The next set of microstresses 2 2,β β  yield when microvoid nucleation occurs i.e. at the 

macroscale mean strain for void nucleation, εN , equation (4.3).  
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• The final set of microstresses 3 3,β β  yield when microvoid coalescence is predicted by 

the macroscale constitute model, equation (4.9). Here final coalescence is considered to 

begin when porosity reaches a value of 25% as shown in (Figure 7.7).  

These relationships are summarized in Table 7.2.   

 

 

Microstructure 
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Microvoid 

Coalescence 

0.25φ =  
3 3

0
0.25

y φ
β β

=
=  3 3

0
0.25

y φ
β β

=
=  

Table 7.2 Summary of microstress failure criteria 

  

7.4 Application to Numerical Fracture Toughness Prediction 

The microscale constitutive relations developed in Sections 7.1-7.4 are now used within a 

multiresolution continuum based fracture toughness simulation. The problem is described in 

Section 7.4.1. The problems associated with a conventional continuum approach are highlighted 

in Section 7.4.2. 
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7.4.1 Fracture Simulation: Set Up 

A domain reduction technique is used for efficiency as illustrated in (Figure 7.9) for a crack with 

tip radius of 15nm. This technique assumes that small scale yielding occurs i.e. the dimensions of 

the crack process zone are small compared to the characteristic dimensions of the body. Hence 

any plasticity is confined to the local proximity of the crack tip. Under this assumption the 

displacement field surrounding the crack tip shown in (Figure 7.9) can be calculated using the 

equations of linear elastic fracture mechanics (LEFM). The analytical expressions for the 

displacement field are given in terms of the radius from the crack tip R , the angle measured 

from the crack tip Θ , the shear modulus µ  and the stress intensity factor associated with the 

crack tip IK  (Kanninen and Popelar 1985): 

 

2I
1

2I
2

K R
u cos -1 2sin

2 2 2 2

K R
u sin -1 2cos

2 2 2 2

 Θ Θ   = +    µ π     

 Θ Θ   = −    µ π     

k

k

 (7.2) 

where 3 4= − µk  for plane strain. Using this equation, displacement boundary conditions can be 

applied on a contour around the crack to induce a known stress intensity factor. 
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Figure 7.9. A reduced fracture model is used based on the assumption of small scale yielding 

 

7.4.2 Conventional Continuum Analysis of Crack Growth 

A conventional continuum approach is used to model crack growth using the model shown in 

(Figure 7.9). The microstructural parameters are: cobalt grain size 500d nm= , cobalt volume 

fraction 0.15f = , temperature 353Kϑ =  and loading is quasi-static. The experimentally 

determined value of fracture toughness for this microstructure is approximately 
1-
216.7MPam  

(McHugh and Connolly 2003). (Figure 7.10) shows how the deformation localizes in an 

unphysical manner leading to an unphysical fracture toughness – see Section 4.5 for more details. 

The simplest explanation is that no physical length scales exists in the model. Hence, due to the 
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softening nature of the constitutive relation, the plastic deformation is distributed over the 

smallest length scale possible i.e. the length scale of the elements ahead of the crack tip. The 

toughening effect of a diffuse plastic strain field is therefore lost. 
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Figure 7.10. A conventional continuum approach leads to unphysical strain localization ahead of the crack tip. 
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7.4.3  Multiresolution Continuum Analysis of Crack Growth 

The multiresolution continuum theory is now applied to the same crack growth analysis.  

 

Governing Equations and Constitutive Relationships 

A four scale analysis ( )3N =  is performed, with governing equations given by equation (5.25) 

and repeated here for clarity: 
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where u  is the displacement boundary condition given by equation (7.2) on S . The WC-Co 

hierarchical constitutive relationship developed in Chapter 4 is used to define the Cauchy stress 

σ ; a summary of this constitutive relation is given in (Figure 4.29). The microscale constitutive 

relationships are elasto-plastic. The elastic equation is given by equation (6.3): 
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and equation (6.10): 
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 (7.5) 

 where the isotropic elastic tensor mC  has a Young’s modulus of Young’s modulus is 211GPa  

and the Poisson’s ration is 0.31  (Section 7.3.1). The length scales nl  are related to the cobalt 

grain size, brittle crack opening size and microvoid size; these are given in Table 7.1. 
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The plastic part of the microstress constitutive update is performed through three sets of J2 flow 

models described in equation (6.6): 
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 (7.6) 

where the microstress hardening functions n

yβ  and n

yβ  are given by equation (7.1) and 

microstress  yield  ( )0 0,n n

y yβ β  occurs at the microstructural instability events as described in 

Table 7.2. 
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Evolution of the Microstresses 

The evolution of the microstresses is shown in (Figure 7.11). The effective (scalar) form of each 

microstress nβ  is plotted.  

• At time label (a) the microstress 1β  is active.   

• At time label (b), the first microstress 1β  fails ahead of the crack tip (cobalt stress 

saturation, see Table 7.2) and the second microstress 2β  becomes dominant.  

• At time label (c), the second microstress 2β  fails ahead of the crack tip (microvoid 

nucleation occurs, see Table 7.2) and the third microstress 3β  becomes active.  

• At time label (d), the third microstress fails 3β  (due to microvoid coalescence, see Table 

7.2) the material in that region is completely ruptured.  

Overall a much tougher response is predicted than in the conventional continuum analysis; the 

plastic strain is sequentially distributed over scale 1l  (cobalt grain size), followed by 2l  (brittle 

crack scale) and 3l  (microvoid scale) as shown in (Figure 7.12). 
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Figure 7.11. Microstress evolution in the crack tip process zone 
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Figure 7.12. Three length scales are embedded in the multiresolution model via equation (7.5); each is related 

to the microstructure 

A comparison between the stress intensity versus crack tip opening displacement curves for the 

conventional analysis and the multiresolution analysis is shown in (Figure 7.13). As expected the 

stress intensity factor predicted by the multiresolution analysis is higher due to the dispersed 

strain field. 
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Figure 7.13. The multiresolution analysis predicts increased stress intensity as the plastic strain is dispersed 

over a physical area. The conventional approach suffers from unphysical localization. 

 

7.4.4 Parametric Study 

A parametric study is now performed in which the following WC-Co microstructural parameters 

are varied to determine their effect on crack stress intensity factor: 

• cobalt grain size d  

• cobalt volume fraction f  

• temperature ϑ   

• loading rate D  

The chosen values of each parameter are described in Table 7.3 
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Parameter Base Value Value Value 

d  100nm  500nm  1000nm  

f  0.15  0.05  0.25  

ϑ  353K  553K  753K  

D  4 15 10 s− −×  1 15 10 s− −×  15s−  

Table 7.3 Parameter values used in parametric study 

 

 

The results using a conventional continuum and the multiresolution continuum are compared. 

The stress intensity factor is plotted as a function of crack tip opening displacement for each case. 

The typical effect of changing each parameter on the WC-Co constitutive response is also plotted 

in an effort to explain why the stress intensity changes with microstructure. The area under the 

stress-strain curve is loosely refereed to as the ‘toughness’ in this Section. 

 

Cobalt Grain Size d  

Cobalt grain size is changed in equation (4.14) and when the multiresolution model is used the 

length scale parameter 1l  in equation (7.5) also changes with the grain size d .  In (Figure 7.14) 

the effect of changing the cobalt grain size d  is observed in the macroscale constitutive response. 

If a larger cobalt grain size is used, the toughness (area under the macroscale stress-strain curve) 

does not change much; the increase in post fracture strength is offset by the earlier void 

nucleation and subsequent reduction in ductility. The conventional continuum analysis predicts a 

slight reduction in the stress intensity factor with increasing grain size.  
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Figure 7.14. Increasing cobalt grain size increases the stress intensity 
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However in reality the blunting effect of increasing the cobalt grain size d  is substantial; larger 

grains make the plastic strain extend over a larger area which blunts the crack tip. This more 

diffuse strain field is predicted by the multiresolution model through the embedded length scale 

1l  in equation (7.5) (which is equal to the grain size d ). Hence the increasing grain size  d  

results in a higher stress intensity factor. This is a clear example of where the multiresolution 

theory predicts a length scale effect which is missed by the conventional continuum analysis. 

 

Volume Fraction of Cobalt f  

The volume fraction of cobalt f  is changed in equation (4.14).  The volume fraction of cobalt 

f  is crucial as it determines the relative proportions of brittle and ductile material in the 

composite. Intuitively, an increase in the amount of tough cobalt will result in an increase in 

toughness as shown in the macroscale constitutive response (Figure 7.15). This increase in 

toughness leads to an increase in stress intensity in both the conventional continuum and 

multiresolution analyses as shown in (Figure 7.15). However the multiresolution approach 

predicts a greater toughness as the crack tip blunting effect is captured.  
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Figure 7.15. Increasing cobalt volume fraction increases the stress intensity 
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Temperature ϑ  

Temperature ϑ  is changed in equation (4.14). Temperature ϑ   affects the strength of the cobalt 

within the WC-Co composite as described in Section 4.1.5. In general decreasing temperature 

strengthens the cobalt and leads to an increase in toughness as shown in the constitutive response 

in (Figure 7.16). This manifests itself as a higher stress intensity factor at lower temperatures in 

(Figure 7.16) for both the conventional continuum and multiresolution analyses. Again the 

multiresolution approach predicts a greater toughness as the crack tip blunting effect is captured.  
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Figure 7.16. Increasing the temperature decreases stress intensity. 
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Rate D   

Deformation rate D  is treated as a material parameter for the purposes of this parametric study 

i.e. the sample is loaded quasi-statically and the strain rate is changed artificially in equation 

(4.14) to gauge its effect. This has the effect of increasing the post fracture strength S  of the 

WC-Co, equation (4.14). However void nucleation occurs sooner due to the inverse relationship 

between initial stress and void nucleation strain, equation (4.3), resulting in little or no increase 

in the toughness (area under the stress-strain curve) in (Figure 7.17). This is consistent with the 

resulting stress intensity curves which show little variation with rate D  for either the 

conventional or multiresolution cases. 
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Figure 7.17. Increasing the strain rate increases stress intensity 
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Fracture Toughness ( ), , ,IC ICK K d f ϑ= D  

Fracture toughness values are now determined from the stress intensity curves shown above. In 

(McHugh and Connolly 2003) the fracture toughness of a WC-Co composite was defined as the 

stress intensity factor at which the crack extends by a distance equal to the cobalt grain size d . A 

similar criterion is used here; the resulting fracture toughness values are plotted in (Figure 7.18) 

as a function of the underlying microstructure for the conventional and multiresolution cases. In 

each case the upper curve corresponds to the fracture toughness determined from multiresolution 

analysis. The lower curve corresponds to the conventional continuum analysis. In each case both 

models capture the design trend, however the conventional approach consistently underestimates 

the fracture toughness due to the lack of any physical length scale in the fracture simulation 

while the multiresolution approach captures the important design trends and fracture toughness 

values which are closer to those observed experimentally (McHugh and Connolly 2003).   
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Figure 7.18. Fracture toughness scales with cobalt grain size, cobalt volume fraction and strain rate. Fracture 

toughness decreases with temperature 

The simplest way of increasing the fracture toughness is through the addition of more cobalt 

during processing. However this also results in a decrease in strength as shown in (Figure 7.19). 

This occurs because the increasing cobalt fraction is accommodated by a decrease in the stronger 

carbide volume fraction. 
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Figure 7.19. Fracture toughness shows an inverse relationship with strength when the cobalt volume fraction 

is varied. 

7.5 Conclusion 

Macroscale properties are inherently a function of the underlying micromechanics of a material.  

The multiresolution continuum theory used here offers a framework by which the microstructural 

evolution and the characteristic wavelength of deformation at each scale influences the resulting 

macroscale response.  In the current fracture toughness simulations, toughness is predicted to 

increase with grain size and volume fraction of cobalt. These are both consistent with 

experimental observations (itia.org.uk 2006). The toughness is also predicted to increase with 
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loading rate –this has obvious benefits in terms of WC-Co cutting tools, however this has not 

been experimentally verified here.  It is also interesting that a decrease in toughness is predicted 

with increasing temperature. In many alloys the toughness would be expected to increase with 

temperature due to the increased flow. However in the micromechanical model developed in 

Chapter 4 for WC-Co the increasing temperature weakens the ligaments severely, equation 

(4.14) which reduces the fracture toughness.  
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8 Dynamic Adiabatic Shear Bands 

In Chapter 2, the micromechanics of deformation in a steel alloy are described (Section 2.2) for 

quasi-static loading and for dynamic loading (Section 2.3). Dynamic loading of an alloy 

complicates the micromechanics considerably; materials generally exhibit a stronger response 

when loaded at high rates. On the other hand rapid plastic flow often generates large temperature 

increases which result in a thermal softening effect. These effects, along with work hardening 

and microvoid damage, are all active during dynamic shear loading in a steel alloy.  

 

The focus of this Chapter is to model the formation of adiabatic shear bands using a strain 

hardening/recovery, thermal softening, rate hardening, and damage dependent BCJ constitutive 

model (Chapter 3), with a variable length scale embedded through the multiresolution continuum 

theory (Chapter 5). The numerical model used to analyze the shear band is outlined in Section 

8.1. In Section 8.2 the combined effects of microvoid damage and thermal softening are 

examined using a conventional continuum analysis. In Section 8.3 a length scale parameter 

related to the stable work hardening stage of deformation is introduced via the multiresolution 

formulation. In Section 8.4 a second length scale is introduced which is related to the post-

instability softening stage of material deformation. Hence as the material reaches a shear 

instability the dominant length scale switches from the ‘hardening’ length scale to the ‘softening’ 

length scale. The effect of the key microstructural parameters on the shear band initiation and 

propagation is examined in Section 8.5. A review of microvoid nucleation, growth and 

coalescence in high strength steels is given in Appendix A5 where a series of 1D examples are 

used to describe the physics of adiabatic shear bands.  
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8.1 Two Dimensional Shear Bands: Set Up 

The BCJ model (Bammann et al. 1990) described in Chapter 3 is used with three internal state 

variables: 

• a scalar variable κ  used to model isotropic hardening/recovery effects due to dislocation 

interactions (plasticity) – see equation (3.12) 

• a scalar variable φ  used to model porous damage – see equation (3.17) 

• temperature ϑ  used to model thermal softening and the temperature dependence of the 

other parameters – see equations (3.19)-(3.21). The temperature rise is due to plastic 

work dissipation; both adiabatic temperature rise and conductance effects are considered 

here.   

 

Following the work of (Medyanik et al. 2005), the problem set up is shown in (Figure 8.1). A 2D 

plane strain formulation is used to model a pre-notched pate with a further pre-crack at the notch 

tip. The pre-crack is modeled by setting the stress to zero in three elements i.e. the pre-crack is 

one element wide. There are 21 elements in the lateral direction in the refined region in front of 

the pre-notch. Each element in this region is approximately 11 mµ  in the ‘y’ direction which is 

small enough to model shear band widths on the order of tens of microns which are commonly 

reported in the literature (Wright 2002). An instantaneous velocity of 30m/s is applied to the 

bottom of the domain in the ‘x’ direction and the bottom surface is constrained in the ‘y’ 

direction.  The top surface is constrained in both directions. Shear velocity boundary conditions 

are applied to the bottom surface.  
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Figure 8.1. Finite element model for shear band simulations; a pre-notch and a pre-crack are modeled to 

initiate a shear band. The active length scales used in the multiresolution model, Section 8.4, are shown. 
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BCJ Parameters used in ASB Analysis 

Parameter  Value Parameter  Value 

Initial 

Temperature 
0θ  297K  7C  0  

Melt 

Temperature 
mθ  1750K  

Isotropic Static 

Recovery Modulus 
8C  0  

Thermal 

Softening 

Exponent 

t  1.03  9C  0  

Reference Strain 

Rate 
f  11s−  

Kinematic 

Hardening Modulus 

10C  0  

Magnitude of 

Rate Effect 
V  16MPa  11C  0  

Initial Yield 

Stress 
1C  792MPa  

Kinematic Dynamic 

Recovery Modulus 
12C  0  

Hall-Petch Effect 2C  0  13C  0  

3C  120MPaK −−  

Kinematic Static 

Recovery Modulus 
14C  0  Isotropic 

Hardening 

Modulus 
4C  22500MPa  Specific Heat ptc  500  

5C  131.3 10 Pa−×  Density ρ  
38000kgm−

 

Isotropic 

Dynamic 

Recovery 

Modulus 
6C  500K  Heat Fraction ch  0.9 

Table 8.1 BCJ model for a steel alloy (calibrated to the flow stress of a 4340 steel, Medyanik et al. 2005)  

 

 

 



282 

As stated previously the BCJ model is used to model the steel alloy. The BCJ constants are given 

in Table 8.1 for the flow behavior of the steel alloy being examined here; they are calibrated to 

an empirical rate and temperature dependent Johnson-Cook model used by (Medyanik et al. 

2005). Microvoid damage is also considered here. The microvoid damage equations for a steel 

alloy have been developed using computational cell modeling analysis by (Vernerey 2006) and 

(McVeigh et al. 2006b) under quasi-static conditions; these are described in more detail in 

Appendix A4. Here it is assumed the same microvoid damage equations can be used under high 

rate loading. The damage equations for nucleation, growth and coalescence are summarized in 

Table 8.2. Nucleation rate ηɺ  is considered to be normally distributed about a mean value of 

nucleation strain εN  which in turn is a function of the precipitate particle interfacial strength Sσ  

and the second stress invariant (pressure) 1I  (Vernerey 2006). The maximum number of 

nucleated voids per unit area is equal the precipitate number density given by *N . 

 

Void growth is described by the McClintock void growth equation (McClintock 1968) with a 

McClintock void growth constant, 0.3n =  and initial void radius equal to the precipitate radius 

50nm . Coalescence is described in terms of a coalescence criterion developed by (McVeigh et al. 

2006b) in terms of the Mises plastic strain and current level of porosity.  

 

In summary, the rate and temperature dependence of plastic flow are calibrated to empirical data 

while the damage equations have been developed through computational cell modeling. 
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Damage 

Phenomena 

Equation 

Required 

Constants 

Value 

pη = Dɺ N  - - 

*N  12 22.55 10 m−×  

( )

2

0.5

1
exp

22

p

ss

ε ε

π

  − 
= −  

   

*
N

NN

N
N  

sN  0.05  

1F  0.209−  

Nucleation 

( ) 1
1 2 1

3

S

S

I
F Fε σ

σ
 = + − 
 

N  

2F  0.228  

2v rπ=  - - 

( )0
3exp
2

pr r ε= G  0r  50nm  
Growth 

( )
( ) 1

2

23 3 1
sinh 1

2 1 2 33

I
n

n J

  
 − +   −   

G =  n  0.3  

3F  0.122  

4F  0.124−  Coalescence 

coal pφ = Dɺ C  

when 

3 4F F 0pφ ε+ + >  C  1 

Total 

Porosity 
coalvφ η φ= +  - - 

Table 8.2 Microvoid damage equations and parameters, from (McVeigh et al. 2006b; Vernerey 2006) 
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8.2 ASB: Thermal versus Void Assisted Instability 

In this Section the effect of microvoid nucleation is discussed in terms of its influence on shear 

banding. When thermal effects are considered an adiabatic approach is used i.e. thermal 

conductance is neglected (in this Section only). Three cases are examined for comparison: 

• Case (i) - No thermal or microvoid effects 

• Case (ii) - Only thermal effects are considered (microvoiding is neglected) 

• Case (iii) - Both thermal softening and microvoid nucleation are considered 

As shown in (Figure 8.2) in each case the plastic strain localizes inhomogeneously at the pre-

crack tip.  

 

Case (i): When both thermal and microvoid effects are neglected the material work hardens to 

high strains; the resulting plastic strain is quite diffuse in front of the pre-crack. Although plastic 

deformation is distributed throughout the specimen, the geometrical stress concentration effect of 

the sharp crack tip acts to concentrate the deformation. A shear band does not form. 

 

Case (ii): The specimen initially deforms quite homogenously as the material work hardens. 

However the temperature rise from plastic work dissipation leads to thermal softening in the 

material directly at the crack tip and a shear band propagates.  

 

Case (iii): The specimen initially deforms quite homogenously as in Case (i) and Case (ii).  

However the highly localized strain at the crack tip induces microvoid nucleation, growth and 

coalescence. The growing porosity and increasing temperature combine to produce sever strain 

softening immediately ahead of the crack tip – the resulting shear band progresses rapidly.   
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Figure 8.2. Thermal softening leads to a thermal shear instability. The addition of microvoiding acts to hasten 

the onset of a shear instability; the time for homogeneous deformation is reduced.  

The shear strain across a section is plotted (Figure 8.2) for each case at 15 microseconds. From 

this plot it is clear that the terminal shear instability and subsequent strain localization occurs 
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first for Case (iii) at a shear strain of 0.25 which corresponds to the strain at microvoid 

nucleation. Case (ii) undergoes localization at a shear strain of 0.6 which is the strain at which 

thermal softening becomes grater than work (and rate) hardening and a thermally driven shear 

instability occurs. Terminal localization does not occur in Case (i). When microvoid damage is 

considered the shear band penetrates through the plate in approximately half the time (compared 

to when microvoiding is neglected). This emphasizes the importance of considering microvoid 

assisted adiabatic shear bands. Some other observations can be made about this simulation:  

• When terminal localization occurs, the strain tends to localize spuriously in a single band 

of elements. It is likely that the post instability inhomogeneous deformation will be 

characterized by a length scale associated with the microvoids as described in Section 2.3.  

• Even when only hardening is considered in Case (i), the deformation tends to localize 

giving rise to strong gradients. An extra hardening effect may be necessary to capture the 

effects of extra geometrically necessary dislocations associated with strong gradients in 

hardening alloys. This is discussed in Section 8.3.  

• Thermal conductivity has not been considered in this simulation. The thermal 

conductivity effect will act to disperse the temperature rise over a wider area, possibly 

delaying the onset of a terminal shear instability or decreasing the severity of post 

instability strain localization (or both). 
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8.3 Hardening Length Scale 

Inhomogeneous deformation is not limited to strain softening materials. For example in the 

process zone ahead of a crack tip deformation is extremely inhomogeneous. This gives rise to an 

increased number of geometrically necessary dislocations (GND’s) resulting in increased work 

hardening (Gao et al. 1999) when small scale deformation occurs. In terms of the continuum 

constitutive response, (Gao et al. 1999) developed a flow stress relationship which accounts for 

the extra ‘gradient’ hardening at small scales: 

 2

0 n lσ σ ε η= +  (8.1) 

where σ  is the flow stress, 0σ  is the initial yield stress, ε  is the plastic Mises strain, η  is a 

scalar form of the strain gradient, n  is the strain hardening exponent and l  is the characteristic 

length scale of the deformation which induces extra hardening.  The length scale effect in 

equation (8.1) is clear; as the gradient increases the amount of hardening increases.  

 

The multiresolution approach developed in Chapter 5 is used here to demonstrate the effect of 

introducing a length scale into a continuum model of a work hardening material. Thermal 

softening and microvoid damage are neglected, resulting in a strain hardening BCJ constitutive 

relation (Table 8.1). A single microstress is used in the multiresolution governing equations 

(5.25) giving: 

 
( )1

1 1

    in   

    in   

− ∇ = Ω

∇ − = Ω

σ β 0

β β 0

i

i

 (8.2) 

and the microscale elastic constitutive response is given by equation (6.3), repeated here for 

clarity: 
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( )

( )

1 1 1

1 1 1

e

e

∇

∇

= −

= ∇

β L L

β L

ℂ i

�
ℂ i

 (8.3) 

The microscale elastic tensors 1
ℂ  and 1

ℂ  are defined according to equation (6.10) which is also 

repeated here: 

 ( )

1

2

1

12

m

h

m

l

=

= ⊗

C

C I

ℂ

ℂ

 (8.4) 

The embedded length scale hl  is related to the scale over which inhomogeneous deformation 

occurs. In the case of a hardening material it is assumed here that the inhomogeneous 

deformation extends over the mean dislocation path length which is given by the alloy grain size. 

For the current steel alloy examined here a value of  ~ 100hl mµ  is reasonable for the grain size. 

The microstructural elastic tensor mC  is considered to be isotropic and equal to the alloy’s 

elastic tensor i.e. a Young’s modulus of  200GPa  and Poisson’s rate of  0.29  are used.   

 

A conventional continuum simulation is also compared, in which no length scale effect is present. 

The resulting plastic strain contours are compared in (Figure 8.3); the shear strain across a 

section is also plotted for each case. 
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Figure 8.3. The addition of a hardening length scale in the model acts to reduce gradients during the work 

hardening stage of deformation. This is similar to introducing extra work hardening at small scales. Distances 

are normalized by the plate height i.e. y=1 corresponds to 4 mm as shown. 

When the conventional continuum approach is used, the deformation localizes ahead of the pre-

notch due to the geometrical stress concentrating effect. The strain gradients become quite high 

in this region. When the multiresolution approach is used, the deformation becomes more diffuse 

over the length scale associated with the embedded length hl . The couple stress in the 

multiresolution formulation act to resist local strain gradients. This has the same effect as 
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increasing the work hardening, equation (8.1). More details can be found in (McVeigh et al. 

2006a). 

 

8.4 Void Assisted ASB with Two Length Scales 

In this Section, the multiresolution approach is again used. Both microvoid damage and thermal 

softening are considered. The purpose of this section is to compare analysis techniques i.e. 

multiresolution versus conventional continuum and adiabatic versus fully couple thermal 

analysis. The problem is described in Section 8.4.1. Different analyses approaches are compared 

in Section 8.4.2. The shear band velocity is discussed in Section 8.4.3. A further length scale 

parameter vl  is introduced. This parameter becomes active when the material is softening i.e. in 

the post-shear instability regime of deformation. The value of this parameter is given by the 

length scale of strain localization observed in alloys which fail by micro-voiding which is often 

observed to be on the order of the microvoid spacing.  

 

8.4.1 Problem Description 

The length scales considered in the multiresolution analysis are related to: 

• the grain size, hl  as discussed in Section 8.3.  

• the microvoid spacing, vl . 

The hardening length scale hl  is given here by 100hl mµ= . The length scale of the post-

instability localizing deformation vl  is given by  20vl mµ=  i.e. on the order of the precipitate 
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spacing. This length scale is used here to characterize the post-instability softening response of 

the alloy. The reduced multiresolution model described in Section 5.5 is used here for efficiency: 

 
( ) 0    in   

0    in   

ms

ms ms

− ∇ = Ω

∇ − = Ω

σ β

β β

i

i

 (8.5) 

where the microstress constitutive relationship is given by equation (5.28): 
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( )

e
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e
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∇
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ℂ i

�
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 (8.6) 

The elastic tensors are given by equation (5.32): 

 ( ) 2

12

ms
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C

C I

ℂ

ℂ

 (8.7) 

The microstructural elastic tensor mC  is considered to be isotropic and equal to the alloy’s 

elastic tensor i.e. a Young’s modulus of  200GPa  and Poisson’s rate of  0.29  are used. There 

are two possible active length scales at any material point;  hl  is active during hardening (before 

the shear instability),  vl  is active during softening (after the shear instability). The shear 

instability occurs due to microvoid nucleation (Table 8.2) i.e. a microstructural instability event. 

Hence the microvoid nucleation strain εN  determines when the material begins to soften and the 

active length scale switches from hl  to vl  as shown in (Figure 8.1): 

 
100      when   

20        when   

ms h

ms v

l l m

l l m

µ ε ε

µ ε ε

= = <

= = ≥
N

N

 (8.8) 

The effects of thermal conductance (compared to adiabatic) are also examined. When thermal 

conductance is considered, the predicted temperature rise is generally lower and more diffuse as 
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described in Section 2.3. This delays the terminal shear instability and widens the post-instability 

localization length scale.   

 

Four combinations of thermal and mechanical analyses are examined in this Section: 

• Conventional continuum (no length scale) with adiabatic temperature rise 

• Conventional continuum (no length scale) with thermal conductance 

• Multiresolution continuum (two length scales) with adiabatic temperature rise 

• Multiresolution continuum (two length scales) with thermal conductance 

 

8.4.2 Comparison of Analysis Methods 

In (Figure 8.4) the plastic strain contours resulting from the four analyses are shown at 20 sµ . 

The plastic strain across a section in the ‘y’ direction is also plotted. Two immediate 

observations can be made: 

• the multiresolution analysis captures the micromechanical length scales associated with 

hardening and softening (compare the adiabatic cases) 

• the fully coupled thermal-mechanical analysis results in a wider shear band (compare the 

conventional continuum case) 
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Figure 8.4. Heat conduction acts to widen the shear band, whether a conventional or multiresolution 

continuum approach is used. The multiresolution continuum analysis captures the diffuse homogeneous 

deformation and the post-instability inhomogeneous length scale.  

When the multiresolution formulation is used in (Figure 8.4), the deformation ahead of the shear 

band is relatively homogeneous due to the embedded hardening length scale. This is consistent 

with physical shear band formation which is characterized by “high external strain…and extreme 
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internal strain” (Wright 2002). For example in (Figure 8.5) the high external strain field at the 

periphery of the localized shear band in a cold rolled steel can be observed.  

 

Figure 8.5. Shear bands usually exhibit an external region of high shear strain in addition to the shear band 

itself (Rogers 1983) 

The mesh is plotted in (Figure 8.6) (at 24 microseconds) for each simulation. Two observations 

can be made: 

• Conventional Continuum: The unphysical nature of strain localization predicted by the 

conventional continuum analyses can clearly be observed on the left most meshes. When 

a fully coupled simulation is used, the heat conduction delays the shear instability, 

however the post instability deformation still localizes unphysically in a single element.  
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• Multiresolution Continuum: The post-instability localization occurs at the length scale vl . 

When the heat conduction is considered the post-instability localization is more diffuse – 

the conductance acts to widen the shear band. 

A
d
ia
b
a
ti
c
 

Multiresolution Continuum

W
it
h
 H
e
a
t 
C
o
n
d
u
c
ti
o
n

Conventional Continuum

 

Figure 8.6. The conventional continuum analysis results in severe mesh dependency regardless of whether or 

not thermal conductance is included. The multiresolution analysis regularizes the post instability deformation 

over a physical scale, related to the microvoiding. 
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8.4.3 Shear Band Velocity 

The distance traveled by the shear band is plotted in (Figure 8.7) for each of the four analyses 

performed in Section 8.4.2, (Figure 8.4). An element is considered to be part of the shear band 

when the Mises stress drops to 50% of the initial yield stress due to damage and thermal 

softening.  
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Figure 8.7. The shear band speed is greatest for the conventional continuum with adiabatic temperature rise. 

The slowest shear band is predicted by the MRCT analysis with heat conduction. (Medyanik et al. 2005) 

predicted a curve approximately half way between the Conventional Adiabatic and MRCT Adiabatic cases. 

As expected the adiabatic conventional continuum case produces the fastest shear bands. 

Deformation is more localized even during the work hardening stage of deformation in front of 

the shear band and thermal softening is much more rapid due to the adiabatic temperature rise. 

Both of these effects accelerate the onset of shear instability. Once the instability occurs, the 
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deformation localizes within a single element band. The multiresolution (MRCT) approach with 

heat conduction predicts the slowest velocity; the embedded length scale gives rise to less diffuse 

deformation and the thermal conductance decreases the peak temperature. Both lead to a delay in 

the shear instability.  

 

The average speed of the fully coupled multiresolution shear band propagation is 416m/s; this is 

similar to the velocity predicted by (Medyanik et al. 2005) for the same geometry, material and 

loading conditions. In their work, they switched from a solid to a fluid model when a rate and 

temperature criterion was satisfied – this causes the shear stresses to collapse. Here, the 

combined effects of thermal softening and microvoid damage are sufficient to replicate a rapid 

shear stress collapse within the resulting shear band, and a fluid model is not required to model 

the subsequent shear band propagation.  

 

8.5 Design Considerations 

The ability to predict adiabatic shear band behavior in alloys in terms of the underlying 

microstructural parameters has obvious advantages in terms of materials design for ballistic 

impact. Here we examine the changes in shear band velocity in terms of the constitutive 

parameters such that ( )1, , , , ,S h v

ASB ASB mv v C l lσ ϑ= *N . Shear band velocity is assumed to be a 

good measure of resistance to adiabatic shear band formation and propagation. The key 

parameters which are varied are:  

• precipitate particle interfacial strength Sσ , equation (8.5) 

• initial yield strength 1C , equation (3.11) 
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• melt temperature mϑ ,  equation (3.11) 

• length scale of hardening i.e. grain size hl , equation (8.8) 

• length scale of post-instability softening i.e. microvoid spacing vl , equation (8.8) 

• initial concentration/number density of precipitates  *N , equation (8.4) 
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8.5.1 Precipitate Interfacial Strength 
Sσ  

Increasing the precipitate particle interfacial strength Sσ  increases the mean strain for nucleation 

εN  according to Table 8.2. This delays the shear instability and results in a slower shear band as 

shown in (Figure 8.8). It is notable that when the interfacial strength is very large (>2GPa) the 

precipitates do not debond. However a shear instability will still occur due to thermal softening.  
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Figure 8.8. ASB velocity decreases with increasing precipitate interfacial strength 
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8.5.2 Initial Yield Stress 1C  

The initial rate and temperature independent yield stress 1C , equation (3.11) is varied from 700-

1200 MPa as shown in (Figure 8.9). The general trend shows that the shear band velocity 

increases with yield stress. This is consistent with (Medyanik et al. 2005) who showed that shear 

bands propagated much faster in steel than in copper (steel has a much higher yield stress than 

copper).  
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Figure 8.9. ASB velocity increases with initial yield stress 
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8.5.3  Thermal Softening mϑ  

The effect of thermal softening is investigated by varying the melting temperature 
mϑ . This 

effectively scales the thermal softening function *ϑ  defined in equation (3.11) i.e. decreasing the 

melting temperature 
mϑ  magnifies the thermal softening effect.  As expected the model predicts 

increasing shear band velocity as melt temperature decreases (extra thermal softening is 

predicted), due to the extra thermal softening effect as shown in (Figure 8.10) 
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Figure 8.10. ABS velocity decreases with melting temperature 
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8.5.4 Length Scale of Hardening 
hl  

The hardening length scale hl  is varied from 100 to 25 microns as shown in (Figure 8.11). 

Larger values of hl  result in a more diffuse, homogenous strain field ahead of the shear band as 

shown in (Figure 8.3). This reduces the peak strain and stress, reducing thermal softening and 

delaying microvoid nucleation. Hence the shear instability is also delayed resulting in a lower 

shear band velocity.  
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Figure 8.11. ASB velocity decreases with the hardening length scale 
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8.5.5 Length Scale of Microvoiding 
vl  

The length scale associated with microvoiding vl  is varied from 20 microns to 30 microns as 

shown in (Figure 8.12). Smaller values of  vl  result in more localized post-instability 

deformation. The more localized plasticity results in greater thermal softening within the shear 

band which leads to a more rapid stress drop and hence faster shear band propagation.  
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Figure 8.12. ASB velocity decreases with increasing post-instability softening length scale 
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8.5.6 Number Density of Precipitates *N  

The number density of precipitates determines the magnitude of the microvoid porosity effect (-

see Table 8.2).  At larger values of *N  the stress collapse in the shear band is more rapid due to 

the higher porosity rate (Table 8.2). This leads to greater shear band velocities when more 

precipitates are present as shown in (Figure 8.13). The number of precipitates is varied here 

independently of precipitate/microvoid spacing (which is related to 
vl ) or precipitate size 

(which is not explicitly accounted for in the model). 
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Figure 8.13. ASB velocity increases with increasing precipitate number density  
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8.6 Conclusion 

The relationship between shear band speed ASBv  and microstructure and environmental 

conditions 1, , , , ,S h v

mC l lσ ϑ *N  has been examined for a steel alloy using a multiresolution 

continuum theory. The velocity of the shear band is related to (a) how quickly a shear instability 

initiates and (b) the nature of the post-instability localization. Increasing interfacial strength Sσ  

is predicted to reduce shear band speed; however even at very high interfacial strengths thermal 

effects alone still initiate a shear band. Reducing the thermal softening (increasing mϑ ) or the 

number density of precipitates  *N  also leads to a slower shear band. The reduction in strength 

which would accompany a reduction in the number of precipitates *N  is not accounted for in 

the model. However a reduction in initial yield stress 1C  has been shown to reduce the shear 

band speed. Increasing the length scale of hardening hl  reduces the shear band velocity, 

presumably because the deformation is more diffuse, which delays microvoid nucleation and 

thermal softening. Increasing the length scale associated with post-instability localization vl  also 

leads to a reduction in shear band speed. This spreads out the post instability localizing strain 

over a more diffuse region, slowing the shear band.  
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9 Conclusions and Future Direction 

The goal of this thesis was to develop a general material modeling approach which links material 

properties/component performance to evolving microstructure. In particular a method was sought 

which could retain the heterogeneous microstructure length scale effects within the context of a 

homogenized continuum. 

 

9.1 Conclusions 

An overview of current material modeling approaches including conventional continuum theory, 

higher order continuum and continuum-discrete coupling was been given in Chapter 1. The 

multiscale nature of two interesting materials (cemented carbide and a steel alloy) was discussed 

in Chapter 2. The form of the constitutive models used in this thesis were then outlined in detail 

in Chapter 3 in order to lay the ground work for building a hierarchical constitutive model of a 

cemented carbide (WC-Co composite) in Chapter 4. This hierarchical constitutive model 

incorporated the key microstructural–property relationships including the effects of temperature, 

strain rate, brittle damage and ductile damage, cobalt grain size and volume fraction. However 

when applied within a conventional continuum based numerical fracture toughness simulator, the 

predicted fracture toughness was lower than experimentally observed values.  

 

This discrepancy was not due to the constitutive model – the problem lies in the conventional 

continuum (finite element) analysis used to model the crack growth. Traditional finite element 

analysis is notorious for it inability to predict size effects which occur when the wavelength of 
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deformation approaches the microstructural length scale. The only length scale present in the 

model relates to the size of the finite element mesh discretisation used. The strain field ahead of 

the crack tip subsequently localizes within a single band of elements.  

 

However in the direct numerical simulations, where the discrete microstructural feature are 

modeled explicitly, the strain field ahead of a crack is observed to be spread out over several 

characteristic length scales which are directly related to the microstructural features. This 

multiscale inhomogeneous plastic deformation blunts the crack tip, leading to increased energy 

absorption by the material as the crack prorogates. Unfortunately this multiscale crack tip 

blunting cannot be replicated in the conventional continuum based fracture toughness simulator 

used in Chapter 4. 

 

In Chapter 5 a multiresolution continuum analysis approach is developed which can be used to 

replicate microstructure length scale effects within the context of a higher order gradient 

enhanced continuum. In particular  

• Extra ‘microstress’ and ‘microstress couple’ continuum fields were introduced into the 

continuum partial differential governing equations which capture the evolving scale of 

inhomogeneous deformation in a continuum simulation.  

• This theory was developed from the standpoint of RVE cell modeling, giving a natural 

and systematic framework to develop ‘microstress’ and ‘microstress couple’ constitutive 

relations from computational RVE models as described in Chapter 6.   

• The characteristic length scale of inhomogeneous deformation as linked to 

microstructural transition or instability events. 
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• A simplified single microstress approach, with a variable length scale parameter, was 

developed which leads to huge saving in computational cost. 

 

The multiresolution approach was employed in Chapter 7 to model crack growth and to predict 

the fracture toughness of a cemented carbide. The predicted fracture toughness values were much 

greater than those predicted using the conventional continuum approach in Chapter 4. The 

multiresolution continuum analysis predicted inhomogeneous deformation ahead of the 

propagating crack tip at scales which were directly linked to the underlying microstructural 

features; in particular the deformation was initially dispersed over the cobalt grain scale, directly 

capturing the well known grain size effect in cemented carbides. 

 

In Chapter 8 the multiresolution model was successfully applied to modeling the initiation and 

propagation of adiabatic shear bands in a steel alloy. A hardening length scale was introduced to 

capture the extra work hardening which occurs at small scales. When microvoid nucleation was 

predicted the length scale transitioned to a smaller scale which defined the size of the resulting 

shear band. Thermal shear band widening effects were also captured by coupling the 

multiresolution mechanical simulation to the conventional continuum energy equation. A 

parametric study was employed to gauge the effect of each of the underlying microstructural 

parameters on shear band velocity. Both the microstructural parameters and embedded length 

scales were shown to influence the timing of the terminal shear instability (initiation) and the 

subsequent propagation velocity of the shear band.  
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9.2 Future Directions 

Constitutive Modeling 

The multiresolution theory developed in this thesis is based on an extension of RVE averaging 

theory. As such it is quite natural to derive the necessary constitutive relations (stress, 

microstress and microstress couple) directly from RVE cell modeling. However in order to 

become a useful material modeling tool, empirical data should be used to either  

• validate the numerically determined constitutive relations (developed from RVE 

simulations) or   

• to directly formulate experimentally based microstress (and microstress couple) 

constitutive relationships. 

In particular, the necking section of a tensile test specimen contains enough information to define 

the length scale of failure in alloys. Micro-bending experiments may be useful in determining the 

extra hardening which occurs at small scales. This could be used to calibrate the hardening 

length scale which operates during the work hardening stage of deformation.    

 

Variable Length Scale Microstress Couple 

The idea of using a single variable length scale microstress couple has been introduced in this 

thesis. This is in contrast to previous work (Vernerey 2006; Vernerey et al. 2007a; b) were a 

microstress and microstress couple is introduced for each characteristic length scale of 

inhomogeneous deformation. The variable length scale microstress introduced here acts as a 

moment with a lever arm which changes length as the microstructure evolves. In particular it 

changes length at each microstructural instability/transition point.  

 



310 

In this case a simple elastic constitutive relationship is used for the microstress and (variable 

length scale) microstress couple.  

 

In order to develop a fully elastic-plastic constitutive relationship, an averaging volume must be 

defined which contracts or expands with the evolving characteristic scale of the inhomogeneous 

deformation. A method should be developed to construct such an averaging volume, which 

automatically senses the scale of inhomogeneous deformation (from the strain gradient field) and 

changes size accordingly. The shape of the averaging volume may also be variable in order to 

capture directional anisotropic effects.  
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Appendices 

 

A1 Periodic Displacement Boundary Conditions 

Throughout this thesis periodic boundary conditions are used as described in Section 3.1.1 and in 

equation (3.3). The method for applying periodic boundary conditions is described here. 

Consider four points on the RVE surface as shown in (Figure A.1) The following linear 

constraints are applied: 

 

1 2 1 2 1

2 1 2 1 2

1 1 1 1 3

2 2 2 2 4

, ,
2 2

, ,
2 2

, ,
2 2

, ,
2 2

l l
u x u x d

l l
u x u x d

l l
u x u x d

l l
u x u x d

   − − =   
   

   − − =   
   

   − − =   
   

   − − =   
   

 (A1) 

The values of 1d , 2d , 3d  and 4d  are applied displacements which define the average true strains 

in the 11ε , 22ε , 12ε  and 21ε  directions respectively as: 
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Hence only four displacements are required to define the average strain state in each direction, in 

2D. In finite element software packages, the displacements 1d , 2d , 3d  and 4d  are generally 

applied at a dummy node with four degrees of freedom. The surface displacements can then be 

constrained to the dummy node via equation (A1). A useful result of this application approach is 

that the tractions on the dummy node 1t , 2t , 3t  and 4t  can be used to compute the average 

Cauchy stress associated with the RVE: 
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Figure A.1. Periodic Boundary Conditions 
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A2 Constant Triaxiality 

Triaxiality is treated as a parameter in the constitutive relations used throughout this thesis. The 

goal is to perform computational RVE modeling while maintaining a constant average state of 

triaxiality. In the method used here, the stress ratio 11

22

R
σ
σ

=  is kept constant. This ratio is related 

to the stress triaxiality through the following equation: 

 
1 1

13

R
T

R

+
=

−
 (A4) 

The method relies on a feedback loop as shown in (Figure A.2). The approach is summarized as 

follows: 

• The periodic boundary conditions described in Appendix A.1 are applied 

• A spring of stiffness K  is attached to the dummy node 

• An average strain 22ε  is applied by displacing one end of the spring by 2d  ( - the other 

end of the spring naturally tries to follow, inducing a displacement 2d ) 

• The corresponding stress 22σ  is computed via the spring at the dummy node  

• A pressure is applied to ensure the stress ratio 11

22

σ
σ

 is constant, equal to R  

This sub-routine is called at the end of every time step.  
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Figure A.2. Constant Triaxiality Loop 
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A3 Calibrating the BCJ Model to Known Material Response 

The BCJ internal state variable model is general enough to be extended to include many physical 

phenomena including grain growth, recrystalization, phase changes, dislocation densities, etc. 

However each requires the addition of extra material parameters and constants. In the BCJ model 

described in this thesis, the constants which must be determined are given in Table 3.1. 

 

Constants such as the grain size d , density ρ , specific heat ptc , inelastic heat fraction ch , initial 

temperature 0θ  and melt temperature mθ  are self explanatory. The goal of this Section is to 

describe the process of calibrating the plastic flow constants to known material response. Known 

material response usually means the experimentally recorded response. However here the BCJ 

constants are calibrated to the predefined crystal plasticity model as shown in (Figure A.3). The 

concept is exactly the same as calibrating to experiment. The experiment here is replaced by the 

cobalt alloy crystal plasticity model summarized in Table (4.1). Calibration is performed in a 

simplified one dimensional analysis, similar to a uniaxial compression experiment. 

BCJ ModelBCJ Model
Crystal Crystal 

Plasticity Plasticity 

ModelModel

Physical Physical 

ExperimentsExperiments

 

Figure A.3. BCJ model is fitted to the crystal plasticity model 
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The 1D flow rule for the BCJ model is described by equations (3.23) and (3.24). Neglecting 

damage the flow stress is written as: 

 ( ) -1Vsinh 0
f

Y
ε

σ ϑ κ = + + =  

ɺ
 (A5) 

The parameters f , V  and ( )Y ϑ  are determined in Section A3.1-A3.3. The hardening and 

recovery parameters related to the isotropic hardening stress κ  are determined in Section A3.4. 

 

A3.1 Transition Strain Rate f  

The transition strain rate f  describes the strain rate at which rate hardening becomes important, 

in terms of initial yield. It is determined here by plotting the initial yield stress against strain rate 

(predicted by the crystal plasticity model). The strain rate at which rate effects become important, 

f , is approximately 5 12 10f s− −= × . 

 

A3.2 Magnitude of Rate Dependency V  

Referring to equation (A5) the rate dependent initial yield stress is given by ( ) -1Vsinh
f

Y
ε

ϑ  +   

ɺ
 

which is called rateY  here for convenience. If the strain rate εɺ  is much greater than the transition 

strain rate f , this can be approximated as: 

 ( ) ( ) ( )-1Vsinh V ln 2
f

rateY Y Y
ε

ϑ ϑ ε = + ≈ +  

ɺ
ɺ  (A6) 

The change in initial yield stress with respect to the strain rate εɺ  is given by: 
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This can be approximated by: 
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where 2εɺ  and 1εɺ  are two different loading rates. The rate dependency of initial yield, V , is 

computed via equation (A8) as 5C 69V MPa= = . 

 

A3.3 Rate Independent Yield ( )Y ϑ  

The temperature dependence of the initial rate independent yield stress ( )Y ϑ is given by 

equation (3.11): 
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 (A9) 

This is determined by using different temperatures at under rate loading, and keeping the grain 

size d  constant. The initial yield stress is determined at two different temperatures 1ϑ  and 2ϑ . 

This gives two equations: 
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with two unknowns 1C  and t . Values of 1C 750MPa=  and 1t =  found from the crystal 

plasticity simulations. The same procedure can be applied to determine the grain size constant 

2C . Now the temperature is held constant and the simulations are repeated using two different 

grain sizes 1d  and 2d . This leaves two equations: 
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which can be subtracted giving: 
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The value for 2C  determined from the crystal plasticity model is 53.35 10×  

 

A3.4 Hardening and Recovery Moduli 

According to equation (3.12), the hardening ( )H ϑ  and recovery ( ) ( ),d sR Rϑ ϑ  moduli must be 

determined to complete the expression for the isotropic hardening stress κ . These expressions 

are defined in equation (3.13) and repeated here: 
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The hardening modulus is estimated as the initial slope of the stress-strain curve at two different 

temperatures, 1ϑ  and 2ϑ  giving two equations: 
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and two unknowns 3C , and 4C . Values of 1

3C 69MPaK −= −  and 4C 31GPa= are determined 

from the crystal plasticity model. 

 

In order to determine the recovery moduli dR  and sR , it is necessary to integrate the flow rule, 

equation (3.22), giving:  
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d s

H R RH
Y

R R

εε
σ ε

ε ε

 +
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ɺɺ

ɺ ɺ
 (A15) 

This equation allows one to examine the difference between dynamic and static recovery in the 

case of uniaxial stress at a constant true strain rate. At large values of strain ε , the stress 

saturates (reaches an asymptote) at a stress of: 

 sat rate

d s

H
Y

R R

ε
σ

ε
= +

+

ɺ

ɺ
 (A16) 

At a particular temperature ϑ   it is possible to compute the recovery moduli sR  and dR  in terms 

of the variation of saturation stress satσ  with strain rate εɺ : 
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 (A17) 
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where 2εɺ  and 2εɺ  are two different strain rates.  

 

The values of the recovery moduli sR  and dR  can then be recomputed using the same formulae 

at a different temperature. When the value of each modulus is known at two different 

temperatures, the temperature dependence in equation (A13) can be computed. The values 

determined from the crystal plasticity model are -6

5 1.674 10C = × , 6 0C = , 7 0.02C =  

and 8 1877C K= − . The values 1 8C C−  , V  and f  are summarized in Table 4.3. 
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A4 Microvoid Assisted Adiabatic Shear Bands  

As described in Chapter 2, microvoid nucleation has been identified as a terminal shear 

localization mechanism in quasi-static and dynamic loading of high strength steels by (Cowie et 

al. 1989) and in (McVeigh et al. 2006); the physics of void assisted adiabatic shear band 

formation has been described by (Wright 2002). Microvoid nucleation, growth and coalescence 

are incorporated in the BCJ model, equation (3.9), and used in Chapter 8 to model adiabatic void 

assisted shear band formation and propagation. A brief overview of the continuum treatment of 

nucleation, growth and coalescence of voids in shear is now given, followed by one dimensional 

void assisted adiabatic shear band simulation examples. 

 

A4.1 Microvoid Evolution in a Steel Alloy 

Porosity is considered to arise in the alloy due to void nucleation and growth at these precipitate 

sites. The precipitates nucleate microvoids by debonding with the surrounding alloy matrix. In a 

continuum sense, the average porosity at a material point is the product of the average number of 

voids per unit volume η  and the average volume of a void v  plus any additional void growth 

effect arising from coalescence coalφ . This is originally given as equation (3.17): 

 coalvφ η φ= +  (A18) 

Expressions for these terms are developed here for a steel alloy.  
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A4.2 Nucleation 

The rate of change of the number of nucleated voids per unit volume η  is a simple rate equation, 

in terms of the plastic deformation rate, equation (3.15): 

 pη = Dɺ N  (A19) 

Nucleation rate ηɺ  is considered to be normally distributed about a mean value of nucleation 

strain εN . The nucleation parameter N  is therefore defined as follows, in terms of the number 

of precipitates per unit volume *N , the accumulated plastic strain pε , the mean value of strain 

at which nucleation occurs εN  and the standard deviation of nucleation ns  about the mean: 

 
( )
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22
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ss

ε ε
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= −  

   

*
N

NN

N
N  (A20) 

Assuming spherical precipitates which are 50nm in radius and a volume fraction of 0.2%, the 

number density of voids is approximately 12 22.55 10 m−= ×*N .  

 

(Vernerey 2006) performed computational cell models of a debonding precipitate in high 

strength steel and proposed an expression relating the strain at nucleation εN  to the interfacial 

strength Sσ  of a precipitate particle and the first invariant of the stress 1I : 

 ( ) 1
1 1 1

3

S

S

I
F Fε σ

σ
 = + − 
 

N  (A21) 
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A4.3 Growth 

Following the work of (Horstemeyer et al. 2000), the well known McClintock (McClintock 

1968) form of void growth is chosen to represent the growing void radius in terms of the initial 

void radius 0r , the plastic strain 
pε  and the first and second stress invariants 1I  and 2J : 

 

( )

( )
( )
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3exp
2

23 3 1
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pr r

I
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n J

ε=

  
 − +   −   

G

G =
 (A22) 

The McClintock void growth parameter n  has a value of 0.3. The evolving void area (2D) is 

computed as: 

 2v rπ=  (A23) 

 

A4.4 Coalescence 

These porosity evolution equations are particularly useful for capturing nucleation and growth of 

voids under high triaxiality loading; however void evolution under shear loading is not well 

documented. (McVeigh et al. 2006) used computational cell models to show that void growth 

and coalescence both contributed to failure in alloys over a range of triaxialities, even shear. 

Under pure shear loading conditions, nucleated voids, which subsequently undergo minimal 

hydrostatic growth, were observed to elongate and coalesce causing ductile rupture. The void 

growth observed in shear was similar to the growth of a Mode II crack i.e. a flat void which 

undergoes rapid increases in surface area but little or no increase in void volume as shown in 

(Figure A.4) for a 2d example and in (Figure A.5) for a 3d example. In these example, the 
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coalescence of neighboring microvoid ‘tails’ coincided with a terminal shear instability in the 

average stress-strain response. 

 

Figure A.4. A shear instability occurs in steel alloy due to shear driven void nucleation and coalescence 
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Figure A.5. Void tails grow in shear loading 

These computational cell models were used to develop an expression for predicting the onset of 

coalescence over a range of triaxialities as depicted in (Figure A.6). 

 

Figure A.6. Coalescence occurs due to shearing and void growth 
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Simple cell models containing particles were loaded under different triaxialities (a)-(d). It was 

observed that the plastic instability strain decreased with increasing triaxiality (lower right curve). 

This plastic instability strain is interpreted as the critical plastic strain for void coalescence. The 

critical strain is plotted against the critical porosity (at plastic instability) on the lower left curve. 

This curve defines the critical strain and porosity state when microvoid coalescence occurs, over  

a range of triaxialities. 

 

At high triaxiality (naturally accompanied by high porosityφ ) coalescence may occur at quite 

low plastic strains pε . At low triaxiality (indicated by low porosity φ ) coalescence still occurs if 

the plastic strain pε  is sufficiently large; this is the shear driven coalescence range. The 

following coalescence criterion was derived from the lower left curve in (Figure A.6): 

 3 4F F 0pφ ε+ + >  (A24) 

When this expression is satisfied the coalescence term coalφ  in equation (A18) begins to grow 

 coal pφ = Dɺ C  (A25) 

Here the parameter C  determines the magnitude of the coalescence effect; a value of 1 has been 

used by (Vernerey 2006) and (McVeigh et al. 2006). The damage parameters are summarized in 

Table 8.2. 
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A5 Thermal Adiabatic Shear Bands 

A simple one dimensional problem is used to illustrate the main features of adiabatic shear band 

formation in a high strength alloy. A brief description of the phenomena which have an effect on 

shear banding is offered in A5.1. A simple 1D simulation is performed in Section A5.2 to 

illustrate concepts such as stress collapse in the shear band. The effects of rate hardening and 

thermal softening are described in Section A5.3. The effect of heat conductance is described in 

Section A5.4. The effect of microvoiding is described in Section A5.5 within the context of a 

multiresolution formulation.  

 

A5.1 Description of Shear Band Controlling Factors  

In general, shear band formation is controlled by a number of factors, both in terms of the 

material constitutive behavior and the geometry and loading conditions: 

• Temperature effect on flow stress 

• Thermal conductivity  

• Rate hardening 

• Work hardening and dislocation recovery (both are temperature dependent) 

• Microvoid damage nucleation and accumulation 

• Initial perturbation (existence of a pre-notch) 

• Length scale of deformation during hardening – ‘smaller is stronger’ 

• Length scale of deformation during post-instability material softening  

• Applied loading rate 
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Unless otherwise stated, the BCJ parameters in Table A1 are used in the 1D analysis to follow in 

Sections A5.2-A5.5. No strain hardening or recovery is considered, however strain rate 

hardening and thermal softening are accounted for. Under quasi static loading the predicted 

response is perfectly plastic (when no damage is considered). Microvoid damage, considered in 

Section A5.5 and A5.6, is explained in Appendix A4 and the parameters are given in Table 8.2.  
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BCJ Parameters used in ASB Analysis 

Parameter  Value Parameter  Value 

Initial 

Temperature 
0θ  297K  7C  −  

Melt 

Temperature 
mθ  1750K  

Isotropic Static 

Recovery Modulus 
8C  −  

Thermal 

Softening 

Exponent 

t  1.03  9C  −  

Reference Strain 

Rate 
f  11s−  

Kinematic 

Hardening Modulus 

10C  −  

Magnitude of 

Rate Effect 
V  16MPa  11C  −  

Initial Yield 

Stress 
1C  792MPa  

Kinematic Dynamic 

Recovery Modulus 
12C  −  

Hall-Petch Effect 2C  −  13C  −  

3C  −  

Kinematic Static 

Recovery Modulus 
14C  −  Isotropic 

Hardening 

Modulus 
4C  −  Specific Heat ptc  500  

5C  −  Density ρ  
38000kgm−

 

Isotropic 

Dynamic 

Recovery 

Modulus 
6C  −  Heat Fraction ch  0.9 

Table A1 BCJ parameters used in 1D ASB problems 
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Velocity boundary conditions of 0.5m/s are applied at either end of a 100 micron wide one 

dimensional specimen giving a nominal strain rate of 15000s− . The domain is meshed with 51 

finite elements unless otherwise stated. Only the shear components of stress and strain are 

considered. A small perturbation is made to the rate independent initial yield stress ( )Y ϑ , 

equation (3.11), within the center-most finite element, ensuring that a shear band will initiate at 

the center of the specimen. Although not focused on here, the magnitude of the initial 

perturbation has a significant effect on the subsequent localization behavior during adiabatic 

shear band formation. Here the perturbation is a reduction of 0.1%.  

 

A5.2 Adiabatic Shear Band Simulation (1D) 

A conventional finite element continuum approach, equation (1.5), with adiabatic temperature 

rise, equation (3.21), is used to model the 1D problem. In (Figure A.7) the shear strain rate, 

mises stress and temperature within the initially weakened element are plotted with time. After 

approximately 7 sµ  the destabilizing effect of the plastic dissipation induced temperature rise 

overcomes the stabilizing rate hardening effect and an adiabatic shear band forms very rapidly, 

as evidenced by the drastically increased shear rate, decreasing stress and increasing temperature. 

Over a period of a few microseconds, the strain rate within the shear band increases one hundred 

fold and the temperature rises several hundred degrees resulting in a rapid stress collapse.  
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Figure A.7. Shear strain rate increases rapidly, stress collapses and temperature increases rapidly in an 

adiabatic shear band 
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The resulting post instability strain profile at 20t sµ=  is shown in (Figure A.8). As shown, the 

shear band is limited to a single element. The mesh dependency of the results is immediately 

obvious when the simulation is repeated with a different mesh discretisation; 13, 25 and 51 

elements are used in (Figure A.8). 
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Figure A.8. The shear band width is mesh dependent in an adiabatic analysis 

 

A5.3 Rate Hardening & Thermal Softening Effect (1D) 

The adiabatic simulation is repeated. Different rate hardening parameters V , equation (3.9), and 

melting temperatures mϑ , equation (3.11), are used to gauge the effect of rate hardening and 

thermal softening on shear band initiation (Figure A.9). The evolution of Mises stress within the 

resulting shear band is plotted with time for each case.  
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Figure A.9. Strain rate hardening delays shear band initiation. Thermal softening hastens shear band 

formation 

When a rate independent material is modeled, V 0=  in (Figure A.9), shear band formation 

occurs immediately upon yielding (left curve). Increasing the rate hardening to 16V MPa=  

delays terminal localization substantially. An interesting observation is that the material 

undergoes a period of stable thermal softening before a terminal localization occurs, due to the 

stabilizing rate hardening effect. This is consistent with experimental observations where 

terminal shear band formation occurs somewhat after shear instability is recorded (Wright 2002). 

The thermal softening effect is also illustrated in (Figure A.9), by arbitrarily increasing the 

melting temperature mϑ  in the thermal softening expression, equation (3.11). Decreasing the 

thermal softening effect (increased mϑ ) delays the onset and severity of terminal shear 

localization; stress collapse associated with shear band formation occurs later and is less severe.   
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A5.4 Heat Conduction Effects (1D) 

The effect of heat conduction on shear band initiation is considered here; a fully coupled 

thermal-mechanical analysis is performed. Three values of conductance are chosen; 

1 1200k Wm K− −= , 1 1100k Wm K− −=  and 1 150k Wm K− −= . The plastic strain rate within the 

perturbed central element is plotted with time in (Figure A.10). Increasing conductivity has a 

two-fold effect 

• it reduces the peak temperature and delays the onset of localization as shown in (Figure 

A.10).  

• a more diffuse localization occurs - wider shear bands and lower peak strains 

Although the localization is regularized to a certain degree, a significant dependency on the mesh 

discretisation remains; peak strains and temperatures within the shear band still vary 

substantially depending on the numerical discretisation used.   
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Figure A.10. Thermal conductance delays shear band formation and widens the  shear band. 
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A5.5 Microvoid Assisted ASB with Length Scale  

A mechanical length scale vl  is now embedded in the continuum model through the  

multiresolution continuum model developed in Chapter 5, equation (5.25): 

 
( )1

1 1

0    in   

0    in   

σ β

β β

− ∇ = Ω

∇ − = Ω

i

i

 (0.1) 

A simple linear elastic constitutive response is used to model the microstress 1β  and microstress 

couple 1β : 

 
( )
( )

1

2
1v

E

E l

β ε ε

β ε

= −

= ∇
 (A26) 

where E  is the elastic modulus of a steel alloy i.e. 200E GPa= . The length scale vl  is given as 

25 microns.  

 

101 equally sized elements are used to model the domain in order to resolve the shear band width.  

An adiabatic formulation is used first; in (Figure A.11) the resulting shear band width is related 

to the embedded length scale, vl . The final strain profile and temperature at 30t sµ=  are also 

plotted. 
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Figure A.11. The multiresolution analysis can be used to capture the localization length scale 

The multiresolution 1d simulation is repeated, now couple to a thermal analysis i.e. thermal 

conductance is considered. The thermal conductance acts to widen the shear band as shown in 

(Figure A.12), over an area related to the conductance and written as  thl  here. This widening 

effect can be observed by comparing the adiabatic and fully coupled approaches: (Figure A.11) 

and  (Figure A.12). 
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Figure A.12. Thermal conductance widens the localization band 
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A6 Multiresolution vs Lagrange Multiplier Formulations 

The multiresolution continuum theory developed in Chapter 5 is compared to a Lagrange 

multiplier approach used by several authors previously (Herrmann 1983; Kouznetsova et al. 

2002; Xia and Hutchinson 1996). Higher order strain gradient theories generally require special 

interpolation function is the numerical implementation scheme because the second gradient of 

displacement must be computed. (Herrmann 1983; Kouznetsova et al. 2002; Xia and Hutchinson 

1996) have each avoided using higher order interpolation functions by using a Lagrange 

Multiplier approach which is discussed here. The resulting expressions for internal power density, 

external power density and hence the final governing equations are similar in form to the 

multiresolution formulation derived in Chapter 5. However subtle differences exist, particularly 

in the interpretation of the Lagrange Multiplier term which corresponds to the multiresolution 

microstress. The Lagrange Multiplier approach is developed here and compared to the 

multiresolution approach.  

 

A6.1 Lagrange Multiplier Approach: Internal and External Virtual Power 

Consider the strain gradient formulation shown in equation (5.7). To avoid having to compute 

the second gradient of an unknown solution variable, a second unknown independent variable (a 

second order tensor field ′L ) is introduced in the virtual internal power expression of the 

gradient continuum.  The unknown field ′L  is kinematically constrained to the original velocity 

gradient L  by a Lagrange multiplier λ , earning it the name “relaxed” velocity gradient. Because 

L  and ′L  are equal, the original second gradient of velocity G  should be equal to the newly 

introduced  tensor ′G  which is the gradient of ′L  , symmetrized on the first and last indices: 
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 ( )1

2
ijk i jk k jiG L L′ ′ ′= ∇ +∇  (A27) 

Furthermore, a second Lagrange multiplier µ  is introduced to constrain the relaxed velocity 

gradient on the surface, S
′L , to the original velocity gradient on the surface s∇ v , where S∇  is 

the surface gradient defined by ( )S∇ = ∇I - NN i  (see equation (5.7)). The surface Lagrange 

multiplier µ  is considered to be a double traction tensor.  

 

The virtual internal power expression is rewritten as: 

 ( )( ) ( )( )= : : : S

int S

S

P d dSδ δ δ δ δ δ
Ω

′ ′ ′+ − + Ω− − ∇∫ ∫σ L λ L L β G µ L v⋮  (A28) 

The external virtual power expression is given by: 

 ext

S

P d dSδ δ δ δ
Ω

′= Ω+ +∫ ∫b v t v R Li i i  (A29) 

where R  is a double traction tensor related to the double traction vector r  used in the gradient 

formulation, equation (5.6), by: 

 = =R rN N σ NNi i  (A30) 

On examination of the external and internal virtual power expressions, only the first gradient of 

each unknown field i.e. ′G  and L  is required in the formulation and 0C  shape functions are 

sufficient.  
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A6.2 Derivation of the Governing Equations and Boundary Conditions 

Assuming that the Lagrange multiplier λ  is sufficient to kinematically constrain ′L  to Lwithin 

the homogenized body Ω , it is possible to reasonable to neglect the surface Lagrange multiplier 

µ ; the resulting equilibrium equations are: 
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 (A31) 

The multiresolution governing equations (5.25) are repeated here for ease of comparison: 
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    in   
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:     on   
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n

n n n

N
n

n

n n n
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 
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∑
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i

i

i

i

 (A32) 

It is clear that when 1N = , the two approaches are almost identical. One clear distinction is that 

the multiresolution approach contains various microstresses which act N  scales. Also, the 

multiresolution formulation does not explicitly tie the strain fields at each scale as the Lagrange 

Multiplier approach does i.e. 0′ − =L L  in equation (A31).  

 

Furthermore, the Lagrange multiplier λ  is a numerical tool which is used in an arbitrary way to 

constrain the dummy field ′L  to the velocity gradient L . There is no clear relationship between 

the Lagrange Multiplier λ  and the couple stress β  in equation (A31). On the other hand the 



354 

 

multiresolution microstress nβ  has a clear physical meaning – it is the average resistance to 

inhomogeneous deformation at scale n . Also, the relationship between the multiresolution 

microstress nβ  and the couple microstress β  is defined in equation (5.22). Both formulations 

decompose to the conventional continuum equilibrium equation 0∇ + =σ bi  when the Lagrange 

Multiplier λ  or Microstress nβ  is set to zero.  
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A7 Previous Analytical and Empirical Models of WC-Co 

An over view of previously reported hardness and toughness models are reported for cemented 

carbides. 

Hardness 

The simplest models for hardness consider individual contributions from the carbide phase and 

the cobalt binder phase. Lee and Gurland’s model (Lee and Gurland 1978) is based on a 

‘continuous carbide volume fraction’ which involves the volume fraction of carbide and the 

carbide contiguity.  They proposed the following empirical equation for composite hardness: 

 ( )1WC WC WC Co WC WCH H f C H f C= + −  (A32) 

where WCH  and CoH  are the hardness of tungsten carbide and cobalt respectively. Enqvist et al. 

(2002) proposed a model in which hardness decays exponentially with the cobalt grain size, d : 

 ( )exp
d

k
WC Co CoH H H H= − +  (A33) 

where k  is the empirically measured hardening range factor. 

 

Toughness 

Fracture toughness models are usually based on the strain energy release rate, G . The critical 

strain energy release rate ICG  is a material parameter which describes when a crack will cause 

fracture and is related to the critical stress intensity factor ICK  (for plain strain fracture): 

 
( )21

IC
IC

G E
K

v
=

−
 (A34) 
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Pickens and Gurland (1978) described a simple model in which the critical strain energy release 

rate is linearly related to the cobalt grain size d  and yield strength yσ : 

 IC yG dα σ=  (A35) 

where α is the linear coefficient. The yield strength is related to the hardness which may be 

computed from Lee and Gurland’s hardness model above. 

 

Sigl and Fischmeister (1988) presented a complex model in which cracks are assumed to 

progress through the cobalt binder (Co), binder/carbide interfaces (Co-WC), the carbide (WC) or 

carbide/carbide interfaces (WC-WC). The total strain energy release rate is based on the release 

rates of the four possible paths: 

 ( ) ( ) '

IC Co Co Co WC Co WC f WC WC WC ICG r A r A A A Gσ− − −= + + +  (A36) 

The area fractions of each crack path , , ,Co Co WC WC WC WCA A A A− −  are calculated using empirical 

relations. The distances Cor  and Co WCr −  are the average sizes of the binder plastic zone within the 

cobalt binder and at the cobalt binder/carbide interface. The flow stress in the binder is given by 

fσ  and the fracture energy of the carbide and carbide/carbide boundaries is given by '

ICG . 

 

Ravichandran (1994) developed a simpler model in which the strain energy release rate is a 

summation of the fracture energy of the brittle carbide phase '

WC ICf G  and fracture resistance of 

ductile binder phase Co ff dσ χ : 

 '

IC WC IC Co fG f G f dσ χ= +  (A37) 
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where '

ICG  is the fracture energy of carbide phase, fσ  is the bulk flow stress of the binder, and 

χ  is a rupture parameter associated with the cobalt binder. Each of these models has been 

compared to experimentally obtained hardness and fracture toughness values for various 

cemented carbides; none of the models performed well. 


