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ABSTRACT

Atomistic Modeling of Defects and Phase Transformations in Energy Materials

Shane Patel

Atomistic methods offer a powerful set of tools in the study of materials systems, as

they allow materials scientists to ask questions with a high degree of specificity. They

are well suited for studying and designing energy materials, critical due to the climate

crisis, in part due to their ability to probe defect properties. In this document, we present

projects that extend the reach of these tools, and use them to study both long established

materials systems, such as Zr cladding in nuclear reactors, as well as cutting edge materials

such as disordered layered Li-ion battery cathodes. We begin with a brief overview of how

defects are studied using atomistic methods, and how this can apply to different energy

material systems, in Chapter 2.

In Chapter 3, we adapt the minima hopping method (MHM) to interfacial structure

prediction and apply it to study a canonical problem, the non-stoichiometric grain bound-

aries in SrTiO3. Our method employs a hybrid approach by first exploring the potential

energy surface with an empirical force field to generate candidate structures, which are

then refined using ab-initio Density Functional Theory (DFT) calculations. Using this
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approach, we find stable interfacial structures for SrTiO3 (111) and (112) grain boundaries

that are lower in energy compared to those reported in the literature for given system size.

Our method allows the prediction of interfacial structure at the atomic scale to improve

our understanding of grain boundaries and heterointerfaces.

In Chapter 4, we study the role of cation disorder in Li3IrO4 cathodes, which have

alternating cation planes of pure Li layers and a disordered Ir-Li plane, in facilitating

anionic redox, using DFT. We calculate a cluster expansion to explore structural stability

in the fully lithiated phase, and subsequently calculate the behavior upon delithiation of

both a stable ordered structure and a model disordered structure. We then perform a

high-throughput screening of Li3MO4 structures, uncovering novel phases and identifying

Li3OsO4, Li3PtO4, and Li3RhO4 as potential candidates for further study as a battery

cathode.

In Chapter 5, we have developed a novel Moment Tensor Potential (MTP), a class of

machine learning interatomic potentials, to flexibly treat dissolved hydrogen in hexagonal

α-Zirconium in tetrahedral and octahedral interstitial sites, as well as the variety of rele-

vant hydride phases: γ-ZrH, the dominant δ-ZrH2−x, and ϵ-ZrH2. Our approach is to train

MTP using an active learning scheme based on NPT classical molecular dynamics (MD)

simulations at varying temperatures. Our trained MTP is capable of modeling the phase

transformation at the solvus boundary between metallic α-Zr and the hydride phases in

excellent agreement with DFT, while also capturing the temperature and compositional

dependence of the ϵ-ZrH2 to δ-ZrH2−x transformation. Finally, we validate the capability

of the MTP to capture relevant phenomena such as H diffusion, H-vacancy ordering, and

point and planar defect behavior.
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CHAPTER 1

The Energy Transition and Computational Materials Science

Climate change is the great challenge facing society broadly in the 21st century, and

one that requires coordination between actors with disparate economic means, interests,

and histories. The exploitation of fossil fuels, on one hand, has increased atmospheric CO2

from a pre-industrial baseline of 280 parts per million (ppm) to about 415 as of 2021 [44],

and on the other, has undergirded an energy system that has been the bedrock for the

rapid advancement of both lifespans and quality of life across the world. One of the key

geopolitical dynamics that colors our response to climate change is that governments and

individuals who have benefited the least from fossil fuel exploitation and have therefore

emitted the least CO2 are the most vulnerable to the negative effects of climate change,

which require economic means and built physical infrastructure to weather. Front line

communities and governments, including many regions with the fastest growing popu-

lations, must therefore rapidly develop economically, ideally with minimal exploitation

of fossil fuels. Wealthy countries must transition their energy systems to be carbon-free

as rapidly as possible, while maintaining quality of life. The Intergovernmental Panel

on Climate Change (IPCC) refers to this urgently necessary process as climate resilient

development [63]. This energy transition will require new raw industrial inputs, such as

cobalt and lithium for batteries. Many of these inputs will be sourced from developing

economies such as the Democratic Republic of Congo [138] and Bolivia [129], opening
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new frontiers for both economic development where it is needed, and the potential for

exploitation.

Materials science & engineering offers a powerful toolbox in addressing these funda-

mental tensions between the need to decarbonize the economy sector while supporting

development of emerging economies. Ideally, materials science can assist us in both im-

proving the efficiency of existing technologies, reducing the raw inputs needed for tech-

nologies in the present day, while also enabling the deployment of new technologies that

can decarbonize intensive industries.

At the heart of materials science is the concept that materials processing influences

atomic structure, which in turn governs materials properties. Atomistic computational

simulations allow materials scientists to finely study the relationship between structure

and materials properties, while also giving insight in how materials processing may im-

pact structure. The rapid expansion of computational power at the disposal of materials

theorists has presented new opportunities over the last couple decades. First, materials

theorists may increase theoretical complexity at the cost of increased computational cost

in order to capture phenomena such as correlated electrons more accurately. Second, we

may treat many more systems at a fixed level of theory, enabling high-throughput (HT)

studies. Finally, we may treat larger system sizes, more accurately treating complex phe-

nomena such as point and planar defects or atomistic disorder. While I have explored all

of these directions during my PhD., the bulk of the work I have led has followed the third

route.

We will begin this dissertation with a brief discussion of the approaches computational

materials scientists use to model defects in materials, and their application to energy
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materials. Then, this dissertation will explore three projects that I have led during my

PhD. First we adapt the Minima Hopping Method, a structural search method often used

for molecules, clusters, and crystal structures, for interfacial structure, exploring how the

combination of point and planar defects lead to a difficult structural optimization problem.

Then, we will consider study the role of cation disorder in facilitating anionic redox in

Li3MO4 type layered cathode materials. In the last project we cover, we developed a

novel machine learning interatomic potential (MLP) to model the Zr-H binary system.

Using this potential, we investigate the role of H defects in α-Zr in mediating a phase

transformation at the solvus boundary, as well as the role of disorder in the ϵ-ZrH2 to

δ-ZrH2−x phase transformation. We then evaluate the ability for this potential to capture

other defect behavior relevant to the Zr-H system. Finally, we summarize the work covered

in this dissertation, and offer an outlook on related work that might build off our results.
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CHAPTER 2

Background: Computational Approaches to Materials Defects

and their Application to Energy Materials

In this chapter, we will provide a brief background of how computational materials

science can be leveraged to study materials defects, and its particular application to energy

materials. We aim to provide useful background and context for the work carried out in

later chapters, as well as a stand-alone document that can serve as a useful introduction

to new researchers in the field. Energy materials form a vast category, ranging from

battery materials including electrodes and electrolytes, thermoelectrics, catalysts, and

high temperature structural metals used to withstand harsh conditions during energy

production. Atomistic methods allow for fine control in the study of structure-property

relationships, making it a toolbox with a wide variety of applications for energy materials.

2.1. Atomistic Modeling

2.1.1. First Principles Calculations and High-Throughput Databases

As the name suggests, atomistic modeling approaches the task of predicting the behavior

of materials based on the interactions of the constituent atoms. For solids, which we will

be primarily treating in this dissertation, these calculations are facilitated by the appli-

cation of periodic boundary conditions, which allow for infinite systems to be captured

in finite simulation cells. First principles methods approach the problem by solving for
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the electronic structure of a group of atoms, using various approximations to make the

problem computationally tractable. The choice of approximation presents an accuracy-

efficiency trade-off. When the level of accuracy is chosen appropriately, these methods

can capture both thermodynamic aspects of a materials system and electronic behavior

capably [99]. Density Functional Theory (DFT) sits at a favorable point on this accuracy-

efficiency landscape, allowing for the calculation of 100s of atoms in a single simulation

cell, and has become a workhorse for computational scientists in a variety of fields. DFT is

built on the two theorems of Hohenberg and Kohn [56]. The first proves that the external

potential vext(r) acting on N electrons uniquely determines the ground state electron den-

sity ρ(r). Within the Born-Oppenheimer approximation, in which electrons are treated as

dynamic and the much more massive nuclei as fixed, vext(r) corresponds to the potential

supplied by the charge of the atomic nuclei. This simplifies the problem of solving for the

the 3N-dimensional system of interacting electrons, to treating the 3-dimensional electron

density. The second theorem proves that there is a universal functional of the energy,

F[ρ(r)], which is minimized by the exact ground state. Kohn and Sham built upon this

by introducing a Schrödinger-like equation:

(2.1)

[
− ℏ
2me

∇2 + vext(r) + e2
∫

ρ(r′)

|r′ − r|
dr′ + vXC(r)

]
ψ(r) = ϵiψi(r)

Here, the first term in brackets is the kinetic energy (where ℏ and me are respectively

the reduced Planck constant, the third corresponds to the Coulomb repulsion between

the electrons (often called the Hartree term), and vXC is the exchange-correlation (XC)

interaction. At its simplest, the XC can be approximated as being a local functional

of simply the charge density, as within the Local Density Approximation (LDA), or the
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charge density and its gradient, as within the Generalized Gradient Approximation (GGA)

[119]. Though many DFT packages exist, throughout this work we will use the Vienna

Ab-Initio Simulation Package (VASP) [83, 84, 81, 82].

GGA, in combination with the the rotationally invariant approach developed by Du-

darev (DFT+U) [33] used to treat the self interaction error, have become the founda-

tion for many computational studies, including those used to populate high-throughput

databases, including the Open Quantum Materials Database (OQMD) [127], Materials

Project (MP)[69], and AFLOWLIB.org [25, 26]. These databases are primarily composed

of bulk calculations, which have been leveraged for countless studies of energy materials.

For example, the OQMD has been used for several studies related to batteries, including

to search for HF scavenging coatings and for potential cathode materials [6]. The OQMD

has also been used to search for promising novel thermoelectric materials with ultralow

lattice thermal conductivity [53]. MP has also been leveraged for several energy material

studies, including a study of the relationship between voltage and safety by considering

O2 release [68]. While it is often beneficial to go beyond the GGA when studying energy

materials with significant electron correlation, including meta-GGAs or approaches that

capture dynamical correlations such as Dynamical Mean Field Theory (DMFT) [64], the

bulk of the work presented in this dissertation will be carried out at the level of DFT+U.

2.1.2. Interatomic Potentials and Machine Learning

Interatomic potentials are much less computationally intensive to evaluate than first prin-

ciples methods, because they bypass the need to explicitly calcualte electronic structure,
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and instead rely on energy and forces calculated from geometric relationships. The func-

tional form of these interatomic potentials are usually motivated by physical intuition. A

simple example is the modified Buckingham potential [13], which defines the pair inter-

action energy between two atoms, i and j, as:

(2.2) Uij = A exp
−rij
ρ

− C6

r6ij
+
qiqj
rij

Here, A, ρ, and C6 are fitting parameters, while rij is the interatomic distance between

i and j, and q is their charge. On the right hand side, the first two terms constitute the

Buckingham interaction; the first exponential term describes a short range repulsive term

between pairs of ions, the second is a longer-range van der Waals attractive interaction

between ions. The final term describes the Couloumb interaction between a pair of ions.

At the other end of the complexity spectrum are potentials such as the second nearest

neighbor modified embedded atom method + charge equilibration (2NN MEAM + QEq)

potentials, which have proved useful when studying complicated battery cathode phases

[88].

These interatomic potentials can often successfully reproduce the mechanical proper-

ties of a single phase, but their rigidity means they struggle with capturing the interaction

of multiple phases. Machine Learning Interatomic Potentials (MLP) are a class of poten-

tials that seek to gain both further flexibility and accuracy, by eschewing rigid functional

forms and the introducing clever local descriptors and representations of interactions. We

include a discussion of the different forms of MLP and in section 5.1, and Deringer has

written a nice overview of some of the early work in modeling battery materials using

MLP [28], in particular highlighting their use in modeling Li diffusion in complicated
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liquid and solid electrolytes, which are very difficult to model with DFT due to disorder

and structure size. We use a Buckingham potential to guide interfacial structure search

in Chapter 3, and train a Moment Tensor Potential, a class of MLP, to model Zr-H phase

transformations and defects in Chapter 5.

2.2. Planar and Point Defects

We will begin this section by discussing how point and planar defects are modeled, as

they share a similar mathematical and conceptual frameworks, and will then discuss their

application to energy materials. We will make some simplifying assumptions. In general,

when calculating a defect formation energy, a surface energy, or interfacial energy, we

would like to consider the Gibbs free energy ∆Gf , which accounts for finite temperature

effects. For now, we will assume that the calculated internal energy, EDFT at 0K is a

suitable approximation. For the calculation of a point and planar defect, we generally

follow a supercell approach, in which a large structure is created to incorporate the desired

defect, with the size sufficient such that the periodic images of the defect do not interact

and can be considered isolated.

For a point defect x with a charge q, such as an interstitial, vacancy, or substitutional

atom, we can calculate a defect formation energy ∆Ex,f

(2.3) ∆Ex,f = Ex,tot − Ebulk,tot −
∑
i

(niµi) + (q ∗ EF )

The above equation gives the formation energy per defect (or defect complex) consid-

ered. Here, Ex,tot is the calculated internal energy of a supercell incorporating a defect x,

Ebulk,tot is the energy of the reference bulk phase sans defect, ni is the number of atoms
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of species i added or removed to incorporate the defect vs. bulk, and µi is its respective

chemical potential. For a charged defect, we must also consider the chemical potential of

the electron added or removed to incorporate the defect, equivalent to the Fermi level EF ,

which gives rise to the final term. We note that the study of charged defects introduces an

electrostatic potential that emanates throughout the cell, which greatly increases [86, 43].

There have been useful packages developed to automate parts of the defect calculation

workflow, such as PyCDT [19].

Planar (2D) defects - surfaces, grain boundaries, and heterointerfaces - break the

symmetry of the constituent bulk phase(s) in 1 dimension. Surfaces are created by cleaving

a supercell of the bulk phase along a specific plane (defined by the Miller indices), leaving

two identical surfaces in contact with vacuum. The free energy of a surface γ can be

calculated as:

(2.4) γ =
Etot,slab − Etot,bulk −

∑
i(niµi)

2A

Here, Etot,slab is the total energy of the surface slab, while Etot,bulk is the reference bulk

phase of the corresponding size. The term 2A arises from the fact that the total surface

energy is an extensive quantity which scales with the area of the surface (A), with the 2

arising from the 2 surfaces created by cleaving the bulk structure due to periodic boundary

conditions. ni is the number of atoms of species i, and µi is their chemical potential, which

are needed to account for deviations from the ideal stoichiometry. These deviations from

ideal stoichiometry may simply be the result of how planes of atoms are removed when

a bulk structure is cleaved to form a surface slab. In the simple case of rock-salt NaCl,

cleaving along either the (110) or (100) plane leaves will result in a charge neutral surface
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plane, in which each plane is identical, with Na+ ions balanced by Cl−. However, creating

a (111) surface gives rise to alternating planes of pure Na+ and Cl−, giving rise to polar

surfaces [87]. Thus, the requirement of 2 identical surfaces will lead to an excess of Na or

Cl, which must be accounted for by considering the excess ni. The breaking of symmetry

at the surface also means that it may be energetically favorable to form planes that are

different than what forms in the bulk, which are known as surface reconstructions. Surface

reconstructions will too often lead to non-stoichiometric surfaces.

Finally, we will discuss the calculation of interfacial structure. The construction of in-

terface structures requires the cleaving and reorientation of bulk structures along desired

planes, which, in the case of hetero-interfaces, must then be strained off their equilib-

rium lattice parameters such that the two slabs can be matched. This introduces a

coherency strain, δ Ecs. When calculating an the formation energy of an interfacial struc-

ture, ∆ Ef,int, we assume that we can decompose this energy into δ Ecs and a term that

is proportional to the interfacial energy σ. For the sake of simplicity, we will assume that

the interface cell does not contain vacuum, and instead contains two identical interfaces.

(2.5) ∆Ef,int = Etot,int − Etot,bulk −
∑
i

(niµi) = δEcs ∗N + 2σA

Here, ∆Ef,int is the formation energy of the interfacial structure, Etot,int is the calculated

total energy of the interface cell, Etot,bulk is the reference energy of the two bulk phases, and∑
i(niµi) once again accounts for the penalty of off-stoichiometry. δ Ecs is the coherency

strain per atom, N is the total number of atoms in the structure, σ is the interfacial energy,

and A is the area of the interface. The coherency strain can be directly calculated, by
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calculating the energy cost of straining the bulk phases to the shared lattice parameter

[168], or by calculating a series of similar super cells, and applying a linear fit to back

out δ Ecs [73]. Analogously to ensuring periodic images of point defects are sufficiently

isolated by unperturbed bulk, interface and surface structures should be thick enough

(and have enough vacuum) such that the two planar defects do not interact.

We will now turn our attention to a brief discussion of the determination of µi, which

applies to the discussion of both point and planar defects. Fundamentally, µi is the change

in free energy when a unit of particle i is removed:

(2.6) µi =
∂G

∂ni T,P

It thus represents the change in energy when a particle is taken from or given to a reservoir.

The determination of µi requires identifying the relevant phases which are acting as a

reservoir, and finding the µi which stabilize the coexistence of these phases. This involves

solving a system of equations in which µi are unknown and the total energy of a set

of phases have been calculated. As a simple example, consider the coexistence of an

elemental phase A with a binary compound AB2. We can define the chemical potential

as such:

µA = EA

µA + 2µB = EAB2

(2.7)

Here, Ex refers to the total energy of a phase x per formula unit. One of these phases

will generally be the structure hosting the defect or forming the surface (and in the case

of heterointerfaces, you might supply two phases like this), however the other possible
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phases may not be so obvious. One choice might be to consider possible coexistence

regions around the phase of interest, ie for a ternary system, all of the three phase regions

surrounding the phase of interest in the phase diagram, and using these phases to bound

the range of the chemical potentials. The chemical potential may also be used to predict

finite temperature behavior, for example, in the case of a gaseous O2 reference. Thus, a

careful study of what defect structures are predicted to arise at a given set of chemical

potentials can help guide experimental processing conditions.

The study of point defects has a wide applicability in energy materials. For instance,

in thin-film photovoltaics, defects levels must be carefully engineered to allow for shallow

donor and acceptor states in the band structure to form p-n junctions, while also limiting

the carrier trapping [117]. In thermoelectrics, the introduction of a low concentration of

Na and Sb point defects in a host of PbSe has been shown to result in a very low lattice

thermal conductivity due to strong phonon scattering, leading to zT (the thermoelectric

figure of merit) values that are about 20% higher than the defect free PbSe [140]. Cal-

culation of oxygen point defects has been used to screen perovskite ABO3 compounds in

high-throughput for applicability for thermochemical water splitting. [35].

Surfaces and interfaces also provide a rich design space for engineering energy materi-

als. The careful consideration of various LiMn2O4 battery cathode surface reconstructions

and their stability against varying chemical potentials can guide experimental processing

conditions to suppress manganese dissolution[163, 75]. Surface and interface calculations

can also be used to predict charge transfer and the formation of space-charge layers at

electrode-electrolyte interfaces in solid-state batteries,. [144, 164, 143]. The structure
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of polyelemental nanoparticles can be predicted by the incorporation of interface and sur-

face energies [21]; this approach can also be used to predict the formation of high-index

surfaces useful in catalysis [61]. Grain boundaries in thermoelectrics have also proven

a fruitful design space due to their ability to scatter phonons and drive down thermal

conductivity [182].

In this dissertation, we will discuss the search for interfacial reconstructions in non-

stoichiometric SrTiO3 grain boundaries in Chapter 3, point defects of Li and O in LixMO4

cathodes. Point defects are especially important in the work of the Zr-H binary system

presented in Chapter 5, as their thermodynamics contribute to the solvus boundary be-

tween α− Zr and the formation of hydride phases.

2.3. Atomic Disorder

Related to the idea of point defects is the concept of structural disorder. In the extreme

case are amorphous phases which lack any long range order, we will instead discuss in this

section the concept of disorder on fixed lattice sites, a phenomenon commonly found when

studying alloys. These systems prove challenging to model by straight-forward atomistic

modeling, as the presence of disorder eludes the use of a single compact unit cell with

periodic boundaries. In particular, we would like to use Monte Carlo to sample many large

configurations to estimate configurational entropy, but this would prove to be intractable

if all calculations were carried out at the level of first principles. Two powerful tools

atomistic modelers have for addressing atomic disorder are cluster expansion and special

quasirandom structures (SQS), both of which have been successfully used beyond their

initial use in modeling metal alloys. Both cluster expansion and SQS rest on the idea



32

of representing structures by their constituent clusters. We’ll first consider the cluster

expansion formalism, which is a generalized Ising model. In the simple Ising model for

spin systems, interaction terms up to the nearest neighbor pair are considered before

truncation; we call this nearest neighbor pair interaction term J2,1, the 2 signifying a pair

interaction and 1 signifying the nearest neighbor. In the generalized Ising model, we build

of a model for the energy per lattice site based on further interaction terms:

(2.8) E(σ) = Ece(σ) =
∑
f

JfΠf (σ)

Here, σ is a vector indicating the species of occupying each mixing site, and can be used

to define a single finite structure. When considering the simple case of binary mixing

(as we do in this dissertation), in which two distinct species share a single fixed lattice

site, we assign a spin variable, σi = ±1. f are the distinct, non-equivalent clusters

which can be formed from each lattice site, including pair, triplet, quadruplet clusters,

and further. Πfσ are the correlations, and are the averaged spin-products for each type

distinct cluster type for a structure represented by σ. For example, if we imagine a

simple 2D grid of alternating spins (in which each site’s nearest neighbor in each direction

is the opposite spin), the averaged spin-product for the nearest neighbor pair cluster is

1 ∗ −1 = −1. We could continue to define the correlation matrix by considering more

clusters of increasing complexity and separation (in addition to the point clusters), for the

structures of interest. Thus, the challenge of fitting a cluster expansion becomes supplying

enough training examples to fit the Effective Cluster Interaction (ECI) terms, Jf , for each

type of cluster, by minimizing some measure of the error, such as the root mean square
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error. We can guard against over-fitting by using cross validation.

(2.9) CV = (
1

n

n∑
i=1

(EDFT
i − ECE

i )2)
1
2

Once Jf has been fitted, it can quickly be used to calculate the energy of structures, either

to explore other ordered ground states, or as a Hamiltonian for Monte Carlo.

The goal when generating an SQS is to create a compact unit cell that most closely

matches the correlation matrix for the disordered state, which can easily be calculated due

to the independence of site occupations [183]. The SQS can thus be searched for through

generating structures and evaluating the difference between Πf (σ) and Πf (σ
rnd), either

through enumeration of all possible structures under a given size, or a search guided by

an optimization method such as Monte Carlo [157].

Atomistic disorder has a wide applicability in understanding and designing energy ma-

terials. For example, in battery cathodes, computational tools have been used to study

the delithiation of LiCoO2 as a function of temperature [169], the design of core-shell

particles for olivine LiM1−yMyPO4 [141] , and have found further importance recently

in the study of high capacity disordered-rocksalt materials [94, 37, 173]. In thermo-

electrics, disorder has been used to introduce valley degeneracy in CaZn2Sb2-CaMg2Sb2

solid solutions for increased electrical conductivity [170]. We use cluster expansions and

SQS in chapter 4 to model Li and Ir mixing in Li(LiIr)O2, and in chapter 5 to model

H-Vacancy disorder in tetrahedral interstices of an fcc Zr lattice.
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CHAPTER 3

Predicting Interfacial Structure by Adapting the Minima

Hopping Method

This chapter is adapted from a publication in preparation for submission. Once ac-

cepted, permission will be requested

3.1. Introduction

The microscopic structure of interfaces in multicomponent systems fundamentally in-

fluences the bulk performance of functional materials, and constitutes a critical factor in

materials design. At the atomic scale, the presence of interfaces leads to the breaking of

symmetry and the introduction of novel chemical bonding environments, leading to com-

plex structure-property relationships that continue to be the subject of intense research.

Interfaces in the form of grain boundaries in polycrystalline materials or heterointerfaces

can greatly impact mechanical and electronic properties, as well as transport phenom-

ena [8], which either lead to performance degredation or can be exploited to improve

materials behavior [80]. Examples include a correlation between higher degrees of order-

ing at grain boundaries and improved flexural strength in Al2O3 [40], the ability to tailor

grain boundary structure and in turn grain boundary thermal transport via dopants in

β-SiC for use as thermoelectrics [49], and similarly the tuning of grain boundary struc-

ture and electrical conductivity in Cu nanowires via dopants [20]. Interfaces between

different phases introduce further complexity due to the relative alignment of electronic
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bands, strongly impacting electronic behavior [27]. Negative effects of grain boundaries

and hetero-interfaces are prominent in battery applications due to the salience of both

electronic and ion transfer, as these interfaces are often the site of space-charge regions

and can lead to sluggish charge transfer [95, 162].

The examples above demonstrate that a better understanding of the structure-property

relationships of interfaces would advance defect engineering both when their presence is

desired to improve materials performance, or when avoiding their formation leads to

detrimental effects. Experimentally, high resolution transmission electron microscopy

(HRTEM) is often used to study interfacial structure [36, 60, 171]. HRTEM results,

however, are often difficult to interpret on their own in the vicinity of the interface, due to

the breaking of symmetry and the role of hetero-interfaces and grain boundaries as sources

and sinks of defects [59]. Therefore, numerical simulations are particularly powerful to

complement experimental techniques with theoretical insight [128, 103]. Atomistic sim-

ulations of interfacial structures with ab intio or classical methods have become popular

in the last decades, but they remain challenging due to the absence of bulk (translational)

symmetry that lead to unexpected atomic reconstruction in the vicinity of the interface.

Further, at heterointerfaces, differences in chemical potentials of elements between two

phases can drive species across the interface, creating deviations from the bulk stoichiom-

etry in the vicinity of the grain boundary which further lead to complexity in atomic

structure.

To address this issue, several strategies have emerged to determine interfacial struc-

tures. Some attempts treat interface structure holistically, starting from the search for

low-strain interface orientations and following through to structure optimization [145],
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while others include experimental information [134]. In single phase systems, von Alfthan

et al. studied ordering at Σ = 5 (001) Si twist grain boundaries using a Tersoff potential

by varying the number of atoms in the system and annealing using molecular dynamics

(MD) simulations [159]. Tschopp et al. have extensively used a scheme of varying atomic

density in the vicinity of the grain boundary, combined with rigid cell translations to

study asymmetric tilt grain boundaries in Cu and Al [151, 152], later explicitly studying

the role of vacancies and interstitials in α-Fe through enumeration [153] followed by local

relaxation.

Non-stoichiometric grain boundaries in multicomponent systems are particularly chal-

lenging for interfacial structure prediction, since the interfaces act as sources and sinks of

defects. In particular, the Σ3 (111) and Σ3(112) [110] grain boundaries in SrTiO3 have

been the subject of multiple studies using atomistic simulations, and has meanwhile be-

come a canonical problem and somewhat of a benchmark system for interfacial structure

prediction algorithms. Chua et al. first used a genetic algorithm (GA) to find candidate

structures with a Buckingham potential which were subsequently relaxed using DFT [24].

The foundation of this work was laid out in Ref. [13], which carefully compared the trans-

ferability of interatomic potentials in SrTiO3 for the study of grain boundaries. Later, the

Ab-Initio Random Structure Search (AIRSS) approach was used to treat the (111) grain

boundary [132], while an adaptive genetic algorithm (AGA), for which the embedded

atom method (EAM) potential energy landscape was refit during the search, was used to

treat the (112) grain boundary [178].

Here, we present an algorithm based on the minima hopping method (MHM) [2] to

predict the atomistic structure of interfaces. In our approach, we drive the search towards
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low-energy interface structures by efficiently sampling atomic configurations that are gen-

erated using bursts of short molecular dynamics simulation, where the initial atomic

velocity are weighted with a spatially-resolved order parameter while preserving the grain

boundary orientation. We apply our algorithm to study both (111) and (112) grain bound-

aries of SrTiO3 and discover interface structures that are lower in energy than previous

reports for selected system sizes.

3.2. Methods and Computational Details

3.2.1. Biasing the Minima Hopping Search Towards Conserving Interfacial

Structures

The minima hopping method (MHM) is a structural search method that aims at glob-

ally optimizing the potential energy of a system by using a sequence of short molecular

dynamics trials to overcome kinetic barriers on the potential energy landscape followed

by local structural relaxations [2, 4]. A sophisticated feedback mechanism on the kinetic

energy of the escape trials based on the history of explored structures is employed to

accelerate the search [180]. While the MHM was first developed to predict the struc-

tures of molecular systems [48, 9] it was later extended to study periodic systems [2],

surface reconstructions [1, 42], high-pressure phases [3], protein folding [125], and to find

chemical reaction pathways [131].

To adapt the MHM for interfacial structure prediction, we modify how the structures

are generated in the algorithm by biasing the initial velocities of the MD escape trials.

We first initialize the atomic velocities with randomized directions and magnitudes drawn

from a Gaussian distribution, which are then rotated approximately along low-barrier
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transitions by a process called softening [2]. Then, we employ one of two means to weight

the velocities.

In the first method, which we call distance order method (DOM), we simply gradually

scale the coefficient of the initial velocity to zero as the distance to the interface increases.

Assuming that the interface normal is oriented along the z-axis of the simulation cell, we

use a smooth weighting function, a Gaussian N (cz, σ) centered at the interface location

cz. Since our simulation cells employ periodic boundary conditions, two interfaces exist

in one cell with their centers at cz, j, where j ∈ {1, 2}. The velocity of each atom i at r⃗i

is then scaled based on the distance along the z-direction from both cz, j, summing the

contributions from the two interfaces.

In the second method, which we call local order method (LOM), we use an adaptive

scheme to capture the local environment of each atom which serves as a scaling function.

For this purpose, we use the atomic bond-orientational order parameter oα, which was first

introduced to study the distribution of bond environments in liquids and glasses [142],

and was later adapted for the study of grain boundaries in silicon [159], and implemented

for interfacial structure prediction in SrTiO3 [24]. Briefly, the order parameter is derived

by comparing the local environment of each atom α of species Zα in the structure with

the local environment of atoms of the same species within a certain radius r, a set of

atoms Nα in the vicinity of α around its position r⃗α. For each atom of species Zα, we

define the following quantity, by summing over Laplace’s spherical harmonics defined by

its angular relationship with the atoms within its neighborhood:

(3.1) qml (α) =
1

Cα

∑
β∈Nα

Y m
l (Θαβ, ϕαβ)
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Here, Θαβ and ϕαβ are respectively the colatitude and azimuthal angle between α and a

single neighbor β, while Cα is a normalization constant such that ⟨qml |qml ⟩
!
= 1. For each

neighbor β, we define the similarity bαβ as

(3.2) bαβ =
l∑

m=−l

qml (α)q
m
l (β)

oα is then defined as the average over all bαβ for which Zα = Zβ, and is zero if no neighbors

exist of the same species. The absolute value of the order parameter will be between zero

and one, where values closer to one correspond to a more ordered environment. Our final

weighting function to scale the initial velocity is then 1 − |oα|. For atoms in the bulk,

where the environment is highly ordered, the escape trial velocities will be small, while

near the interface they will not be substantially damped. For our investigation of SrTiO3

we used a cutoff radius of σ = 1.1a0 to define the local environment of an atom, where

a0 is the lattice constant of SrTiO3, 3.865 Å. This value of σ was empirically found to be

appropriate for our MHM simulation.

Both methods described above are visualized in Fig. 3.1, which shows a schematic of

two phases composed of the same two species forming an interface. While our benchmarks

showed that both approaches work well to bias the MHM simulations towards sampling

interfaces structures, we found that using the LOM is more efficient. Hence, for the results

shown in the remainder of this work we use the LOM scheme to weight the initial velocities.

In fact, the LOM approach is an elegant means for biasing the structural rearrangements

to the interface without arbitrarily freezing regions within the structure, as the size of that

region would need to be converged, and would not be able to adapt during the structural

search. Note that in structures where a single species occupies multiple symmetrically
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Figure 3.1. A schematic comparison of the two methods to bias the search
towards new interface structures. The green (left) and cream (right) regions
are distinct phases containing the same two atomic species, represented by
orange and blue circles. The interface between the two phases is repre-
sented by the vertical dashed line. Points labeled a. and b. correspond
to an ordered and disordered environment, respectively, showing the com-
parison of bond environment based on the LOM. Far from the interface,
the two central blue atoms have identical environments (the dashed and
solid circles around a. represent the identical environments), while in the
vicinity of the interface there is a greater variety of bond environments and
therefore higher disorder (the dashed and solid circles around b. have dif-
ferent environments). The horizontal dashed line connecting the atom at c.
shows its distance to the interface, which can be used by a Gaussian decay
function to bias the structural search with DOM: atoms farther away from
the interface are initialized with lower kinetic energy in an MHM cycle.

distinct sites, the order parameter may classify crystalline regions as disordered. Hence,

distinct Wyckoff sites of the same species have to be labeled independently.

3.2.2. Interfacial MHM with the Buckingham Potential

The MHM simulations were carried out on the empirical Buckingham potential energy

landscape, as parametrized in Ref. [24], to facilitate comparison with the original GA

approach by Chua et al. As in that work, we used the parameters from the Thomas
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potential [148], with a cutoff of 20 Å and fifth order polynomial tapering between 18 and

20 Å following the work of Ref. [13]. The potential was implemented using the General

Utility Lattice Program (GULP) [45, 46].

In the MHM runs, we use the Gaussian orbital method [180] with a cutoff radius of 8 Å

in order to compare the atomic structures of the local minima. During the search, the cell

vectors in the grain boundary plane were fixed to experimental values, while the lattice

vector along the grain boundary normal was left unconstrained (along the z-direction).

The local relaxations were considered converged when the maximal force components were

less than 0.005 eV/Å.

The size of the initial grain boundary cell was determined from the theoretical lattice

parameter of the cubic perovskite SrTiO3, which we fully relaxed using density func-

tional theory (DFT) calculations (see Sec. 3.2.3 for details). As mentioned in Sec. 3.2.1,

our simulation cells are constructed with two equivalent grain boundaries due to peri-

odic boundary conditions, however they are not constrained to be equivalent during the

structural search.

3.2.3. Density Functional Theory and First Principles Thermodynamics

Candidate structures found using the MHM are subsequently refined using DFT calcula-

tions within the projector augmented wave (PAW) formalism and the local density ap-

proximation (LDA) to the exchange-correlation functional, as implemented in the Vienna

Ab-Initio Simulation Package (VASP)[83, 84, 81, 82]. A 4 × 4 × 1 Γ-centered k-points

mesh and a 520 eV plane-wave cutoff energy were used during these calculations, settings

are similar to Refs. [24, 132]. For each stoichiometry, the 15 lowest energy structures
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found with the MHM were considered during an initial coarse relaxation where we kept

the in-plane lattice parameters fixed until the atomic forces were less than 0.05 eV/Å.

From this set, the 5 lowest energy structures were further relaxed with forces converged

to 0.005 eV/Å, using the FIRE algorithm [15] and no constraints on the lattice degrees

of freedom.

In addition to the structures from the MHM runs, we also re-relaxed the ones found by

the GA [24] and AIRSS [132] with the same workflow in order to facilitate comparison.

Since those previous works used ultrasoft pseudopotentials with the CASTEP DFT code,

we also show a comparison of their calculated interfacial energies with those found using

our settings in Fig. 3.4.

We employ the same thermodynamic analysis scheme presented in Refs. [24, 132, 178]

by treating SrTiO3 as a pseudobinary system of SrO and TiO2, facilitating the comparison

between non-stoichiometric grain boundaries with varying chemical potentials. The full

treatment of this approach is shown in Ref. [71]. For a given structure, we define the

interfacial free energy σ as

(3.3) σ =
1

2A
(G−NSrOµSrO −NTiO2

µTiO2
)

We estimate the Gibbs Free Energy G with the DFT total energy, while N is the number

of formula units for the given binary in the structure. We use DFT total energies corre-

sponding to the cubic perovskite SrTiO3 phase, the rocksalt SrO phase, and rutile TiO2

as reference values. We bound the values of the chemical potential by relating them to
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the formation energy of SrTiO3:

(3.4) ∆G0
f,SrTiO3

= g0SrTiO3
− g0SrO − g0TiO2

(3.5) µSrO + µTiO2
= g0SrTiO3

This is necessary for SrTiO3 to be in equilibrium. By combining above equations we

arrive at:

(3.6) ∆G0
f,SrTiO3

= µSrO − g0SrO + µTiO2
− g0TiO2

If µTiO2
> g0TiO2

, TiO2 would precipitate out of the interface (likewise for SrO), so we

know the opposite must be true, µTiO2
≤ g0TiO2

. Rearranging yields:

(3.7) ∆G0
f,SrTiO3

− (µSrO − g0SrO) + g0TiO2
= µTiO2

≤ g0TiO2

Now, consider:

(3.8) ∆G0
f,SrTiO3

≤ µSrO − g0SrO ≤ 0

The left hand inequality becomes an equality (i.e., the middle expression reaches its

minimum) when µTiO2
= g0TiO2

. The right hand inequality becomes an equality (i.e., the

middle term reaches its maximum) when µSrO = g0SrO. Using these bounds on the term

−(µSrO − g0SrO) and introducing 0 ≤ λ ≤ 1.

(3.9) µTiO2
= g0TiO2

+ λ∆G0
f,SrTiO3



44

Similarly

(3.10) µSrO = g0SrO + (1− λ)∆G0
f,SrTiO3

This formalism allows us to compare the stability of interfaces across stoichiometries with

added or removed TiO2 or SrO units.

3.3. Results and Discussions

We employ our interfacial MHM framework to study the Σ3 (111) and Σ3(112) [110]

grain boundaries of SrTiO3. Following the procedure of Ref. [24, 132], we fix the total

system size such that the stoichiometric grain boundary supercells contain 120 total atoms,

and off-stoichiometric boundaries are deficient of TiO2 and SrO units. We first verify that

MHM is able to recover the SrO3-terminated stoichiometric (111) grain boundary and the

SrTiO-terminated stoichiometric (112) grain boundary, by initializing the search with

a randomized configuration in the vicinity of the grain boundary (within three atomic

planes of the interface in either direction).

Next, we search for non-stoichiometric (111) and (112) grain boundaries while consid-

ering systems that incorporate charge-neutral vacancies. Interfacial energies are shown in

Fig. 3.2, both for structures found in this work and structures found in previous studies.

As in Refs. [24, 132, 178], we do not include vacuum in our structural models, so there

are two interfaces present in each simulation cell (see also Sec. 3.2 for details). Note that

our comparisons with structures from the literature are based on Refs. [24, 132] for the

(111) grain boundary, and Refs. [24, 178] for the (112) grain boundary.
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3.3.1. SrTiO3Σ3 (111)

First we discuss the (111) grain boundaries, for which our MHM simulations discovered

more stable grain structures than previous efforts using the GA and AIRSS. For both the

TiO2 and SrO deficient grain boundaries, we recover structures that are about 0.17 J/m2

lower in energy than best structures previously found by AIRSS.

To compare our results and the performance of our method to earlier reports in the

literature we first have to bring all calculations onto the same footing, which is not straight-

forward. For example, our work and Ref. [24] both use a hybrid approach, using classical

interatomic potentials for the structural search (the empirical Buckingham potential)

and refining the top candidate configurations with ab-initio DFT. On the other hand,

Ref. [132] perform the structural search directly at the level of DFT.

Further, the energetic ordering of interfacial structures with the Buckingham potential

does not necessarily correspond to the ordering with DFT. As an example, we show

a comparison of structures deficient of a SrO in Table 3.1, where we list the energies

computed with the Buckingham potential and DFT for configurations found by the MHM,

GA, and AIRSS. For both grain boundaries SrTiO3 (111) and (112), no structure found

by Refs. [24, 132] relaxed to a lower energy with the Buckingham potential than the

minimum found during our structural search. However, we note that the structure that

is the lowest energy with the Buckingham potential is only the fourth most stable with

DFT. Hence, although the MHM performs well in identifying the low-lying portion of the

PES, the refinement of a range of low-energy candidate structure with DFT is crucial [47].

To circumvent this issue the structural search itself can be performed at the DFT level,
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Figure 3.2. Comparison of interfacial energies of structures found by various
methods, with a varying chemical potential range: the far right of the chem-
ical potential range corresponds to SrTiO3 in equilibrium with TiO2, and
the far left corresponds to SrTiO3 in equilibrium with SrO (see Sec. 3.2.3 for
extended discussions). Different line colors correspond to varying stoichiom-
etry, while different line styles correspond to different structure prediction
algorithms employed. Panel a. shows the thermodynamics of SrTiO3 grain
boundaries with a (111) grain boundary (GB) plane. All approaches are
able to recover the stoichiometric GB shown in solid black, but MHM is
able to find more stable off-stoichiometric GB. b. shows the same for (112)
grain boundary structures.
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Table 3.1. Interfacial energy as calculated using the Buckingham potential
and DFT, for structures found by the MHM, the GA [24], and AIRSS [132]
algorithms (first column), for structures deficient of a single SrO unit. The
top and bottom part correspond to SrTiO3 (STO) (111) and SrTiO3 (112),
respectively. Column 2 shows the 5 most stable interfacial structures found
during the MHM searches with the Buckingham potential. The correspond-
ing DFT energies after a local relaxation are shown in column 4. Since GA
and AIRSS structures were reported as DFT minima, we re-relaxed all DFT
structures with the Buckingham potential (column 3). The reported GA
and AIRSS structures are not more stable with DFT or the Buckingham
potential than the lowest energy structures found by MHM. The chemical
potentials µTiO2

and µSrO are chosen to minimize the reported interfacial
energy, i.e., the condition µTiO2

=g0TiO2
. The lowest energy values are in

boldface.

σBuck (J/m2) σDFT (J/m2)

From MHM
Relax from
DFT min

DFT min

STO (111)
AIRSS 2.050 1.019
GA 2.058 1.119

MHM 1.840 1.840 0.969
1.847 1.847 0.851
1.901 1.901 0.913
1.909 1.884 0.928
1.915 1.915 0.961

STO (112)
GA 2.431 1.407

MHM 1.809 2.279 1.432
2.178 1.938 0.928
2.203 2.203 1.132
2.217 2.217 1.193
2.268 2.268 2.199

however the complexity of the configurational space at an interface combined with the

high cost of DFT relaxations renders sampling all possible minima costly.

We will now take a closer look at the TiO2 deficient (111) grain boundary structures

found via MHM and AIRSS. These structures are of particular interest because the cation
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Figure 3.3. Panel a. shows the TiO2 deficient (111) grain boundary struc-
tures, found by AIRSS (left) and the MHM (right). The insets show the
orthogonal view of the grain boundary plane, where circles and arrows indi-
cate the transition taken by the oxygen atoms. Panel b. shows the energy
along the transition pathway between the two structures in panel a., cal-
culated using the NEB method. All structural visualizations are drawn in
VESTA [104].

occupation is consistent between the two structures, however the structure found via MHM

is lower in energy by ≈ 0.11 J/m2. This difference in energy stems from a rearrangement

of the anion sublattice, where one oxygen atom is shifted in the grain boundary region, as

shown in Fig. 3.3 a. In fact, the two structures are so similar otherwise that we can easily

determine a transition path between them and calculate the energy barrier. We employ

the climbing image-nudged elastic band (NEB) method as implemented within the VTST

toolkit [55], with fixed lattice vectors (taken from the structure found by AIRSS) and

allowing all internal coordinates to relax. The energy along the NEB path is plotted in
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Figure 3.3 b, showing that the forward reaction barrier (from AIRSS to MHM) is merely

0.022 Jm−2.

Note also that the transition pathway between the two structures actually contains two

distinct energy barriers, with the rate determining one located at a reaction coordinate

of ≈ 2a.u.. This illustrates the complexity of the PES for interfacial structure searching

– even a seemingly simple transition towards the ground-state structure may encounter

complicated intermediate states. Further, the MHM is particularly well suited to overcome

such low barriers leading to low-energy structures, since the moves on the PES exploits

the Bell-Evans-Polanyi principle which states that exothermic reactions tend to exhibit

low activation energies [126].

We will briefly compare different DFT approaches to evaluate the interfacial structures

of the (111) interface. Previous work using GA and AIRSS structural search algorithms

utilized the CASTEP DFT code, while in the present work we use VASP with comparable

DFT settings, similar to Ref. [178]. The comparison between structures as calculated

using CASTEP and VASP is shown in Fig. 3.4. The differences in the results between

the two DFT packages is small, with discrepancies within less than 0.1 Jm−2. Most

importantly, there is no change in the energetic ordering between the methods for either

TiO2 poor or SrO poor grain boundary structures.

3.3.2. SrTiO3Σ3 (112)

In the (112) system, we recover the same grain boundary as Ref. [24] when two SrO units

are removed at each interface (2 SrO-poor), but find a significantly more stable structure

when the interface is deficient of a single SrO unit (SrO-poor). Similarly to SrTiO3 (111),
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Figure 3.4. Comparison of interfacial energy of (111) GB structures found
by GA and AIRSS, as reported in the literature using CASTEP, and re-
caculated in this work using VASP. A full discussion of the thermodynamic
treatment is given in section 3.2.3. Different colors correspond to varying
stoichiometries, while different line styles correspond to different structural
search methods. Dashed lines and solid lines refer to Ref. [24] and [132],
respectively. The lighter lines correspond to values reported in the literature
(using CASTEP), while the opaque lines are from the current work (using
VASP).

the lowest energy structure with DFT is the second lowest with the Buckingham potential,

while the most stable structure under the Buckingham potential is less stable than many

of the others reported with DFT (see lower part of Tab. 3.1). The lowest-energy structure

we found with the MHM is slightly lower in energy than the energy value reported by

Zhao et al. [178] at this stoichiometry. We contacted the authors in order to obtain the

original atomic structure data reported in Ref. [178], however they were unable to locate
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the data. Our careful visual inspection shows that the two structures appear similar,

sharing a structural motif of one Ti coordinated by 5 O atoms in the vicinity of the grain

boundary, with the orientation of this motif inverted at one grain boundary.

This structure begins to be more stable than the stoichiometric grain boundary un-

der slightly TiO2 favoring conditions. In the thermodynamic analysis of Ref. [24], off-

stoichiometry is only predicted at extreme conditions, where TiO2 is in equilibrium with

SrTiO3. While Chua et al. [24] were unable to find TiO2 deficient structures for this

stoichiometry, we were able to recover low-energy structures with 1 and 2 units of TiO2

removed. Zhao et al. [178] find a very stable structure with 2 TiO2 units removed, while

at this stoichiometry we are only able to recover a significantly less stable structure. Note,

however, that structure found with the AGA is larger in the direction perpendicular to

the interfacial plane: Zhao et al. [178] varied the total number of atoms in their cells,

including supercells that we did not consider in our work.

Since our computational setup in terms of system sizes is identical to Ref. [24], the

ability of MHM to recover the TiO2 deficient structures gives further evidence that our

algorithm is more useful in predicting structure at interfaces than a GA approach. Using

an adaptive scheme as in Ref. [178] or machine learning interatomic potentials in con-

junction with the MHM [38, 34] for interface structure prediction might further improve

the efficiency of our method.

3.4. Conclusion

To summarize, we have successfully adapted the MHM to predict complex interface

structures, using local order parameters to drive the search towards reconstructions in
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the vicinity of the interface. We applied our method to study off-stoichiometric SrTiO3

Σ3 (111) and Σ3(112) [110] grain boundaries using a hybrid approach to approximate the

PES, namely by conducting the structural search with an empirical potential, and sub-

sequently refining the lowest energy candidates using local DFT relaxations. We found

energetically more stable structures than those reported by Chua et al. [24], who used a

genetic algorithm with the same Buckingham potential, and those reported by Schuster-

itsch et al. [132], who searched directly on the DFT PES using a random search approach.

We found similar structures to Zhao et al. [178] for the same cell sizes, who used an adap-

tive method to improve the correspondence between their empirical EAM PES landscape

and DFT.

Our calculations illustrates the complexity of interfacial structure prediction, where

many configurations can exist in a very small energy range. Even a seemingly simple

structural transition between two distinct interface structures exhibits a rather complex

minimum energy pathway, as we demonstrate through our NEB calculations for a TiO2

deficient (111) grain boundary. Effective structural search algorithms are hence called for

to accurately predict the interface structures at the atomic scale, a necessary prerequisite

to improve our understanding of structure-property relationships and interface engineering

that probe grain boundaries as tuning parameters. By coupling our MHM with highly

accurate machine-learning interatomic potentials we will be able to tackle larger system

sizes with larger chemical complexity in the future.
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CHAPTER 4

Cation Disorder and Oxygen Redox in Li3MO4 Cathodes

This chapter is adapted from a publication in preparation for submission. Once ac-

cepted, permission will be requested

4.1. Introduction, Background, and Crystal Structure

In the last two decades, lithium-ion batteries (LIB) have become ubiquitous in con-

sumer technologies, enabling conveniences such as cordless tools, and technological revo-

lutions such as the smartphone. Their role in society will only grow as they are primed to

play a major role in the next phase of the energy transition in the transportation sector,

as they power the electric vehicles and micromobility devices such as e-bikes that will

replace miles traveled by conventional internal combustion engine vehicles. Batteries are

also poised for widespread deployment into the electricity grid, where they will offer a host

of grid services as more variable renewable energy sources are brought online. Improv-

ing the performance of batteries, evaluated by a host of metrics such as specific capacity

(mAh/g), cost ($/Wh), or cycle life, will allow for more rapid deployment as costs are

driven down and products are improved.

In Li-ion cathode materials, such as layered LiCoO2[102] or LiNixMnyCozO2 [7] ,

spinel LiMn2O4 [146], or olivine LiFePO4 [116], energy is reversibly stored by the facile

incorporation and removal of lithium while other species generally remain in the cathode.

In the conventional cathodes listed above, this reversible reaction can occur because the
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transition metal(s) (TM) in the cathode are capable of taking various redox states as the

Li content varies. For example, as LiCoO2 is delithiated and subsequently relithiated, the

average nominal oxidation state changes from Co3.5+ to Co4+.

In recent years, there have been efforts to increase the ratio of Li content to the heavy

TM, in order to increase the capacity of these cathodes. One strategy has been to search

for chemistries that form in the layered R3m structure, but are capable of incoporat-

ing excess lithium into the TM layer, often called lithium excess layered oxides (LLO),

such as Li[Li1/6Ni1/6Co1/6Mn1/2] [123]; these LLO are considered a solid solution of (1-

y)Li2MnO3(y)LiTMO2[62]. Within this strategy, researchers have found cathode materi-

als in which the TM is not the only participant of the host oxide structure that is capable

of reversible redox: oxygen too is capable of redox participation, flexibly moving from a

nominal redox state of O2− to O1− [135] and even O0 [173]. This strategy has shown to

be fruitful in cathodes with chemistries such as Li1.17Ni0.25Mn0.58O2, Li2Ru0.5Sn0.5O3, and

Li1.25Mn0.5Nb0.25O2 [135].

In 2017, Perez et. al introduced the layered Li3IrO4 cathode material. They found

the structure was able to cycle up to Li4.7IrO4, exploiting traditional cationic redox on

iridium, as well as reversibly down to LiIrO4, exploiting anionic redox. This gives rise to

a superlative capacity of about 3.5 e−1/Ir and 340 mAh g−1.[120].

Li3IrO4 forms in the R3m layered crystal structure, shown in 4.1 like LiCoO2. In

LiCoO2, there are alternating layers of pure Li and pure transition metal (Co) layer. In

Li3IrO4, the pure Li layer remains, however the transition metal layer is instead replaced

with a disordered layer that is half Ir and half Li.
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In this work, we will use Density Functional Theory (DFT) calculations to study

cation ordering in Li3IrO4, and its influence on anionic redox during delithiation. DFT

has proven to be a powerful tool in studying Li-ion battery cathodes, by enabling careful

study of the mechanisms for delithiation and high-throughput screening of novel candidate

materials. [147, 67, 107, 74, 174].

Current theoretical studies of anionic redox in Li3IrO4 have only considered a single

ordered phase, P2/c, which has been dubbed the chain structure due to the Ir ordering,

inherited from the study of Li3RuO4. More recently, Li et al. have studied an additional

disordered phase, for which one Li and Ir in the chain ordering are exchanged [90]. This

provides novel local bonding environment for IrO6 octahedra in terms of the character of

the neighboring O, but the thermodynamics of the defect, or ordering in general, were

not considered in this work. The present work will be outlined as follows. First, we

will search for an ordered ground state for Li3IrO4, and introduce a disordered model

structure created using special quasirandom structures [183]. Next, we will conduct

a thermodynamic comparison upon delithiation of the ordered and disordered phases,

quantifying predicted stability during delithiation with a convex hull construction, and

predicted intercalation voltages. Then, we will consider signs of anionic redox in both the

ordered and disordered Li3IrO4, including the density of states (DoS) at the fully occupied

maaterial, the change in local magnetization upon delithiation, and the formation of short-

range O-O with anti-bonding character upon delithiation. We will then consider the role of

cation disorder in the formation of oxygen defects, wrapping up our study of Li3IrO4. We

will then apply what we’ve learned to screen for potential Li3MO4 cathodes, considering

the stability of ordered and disordered Li3MO4 and LiMO4 phases. This search finds
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Figure 4.1. Crystal structures of lithiated LixIrO4 phases. a. shows the
crystal structure of Li3IrO4 with R3m symmetry. With this symmetry, all
cations sit in octahedral sites, with a mixed cation layer containing 50%
Li and Ir, with no long range order. b. shows the previously studied
chain ordering, corresponding to P2/c symmetry, which is known to form
for Li3RuO4. c. shows the Li4.7IrO4 structure with symmetry. Here, the
mixed cation layer remains in octahedral sites, while the pure lithium layer
becomes tetrahedrally coordinated. All structural visualizations are drawn
in VESTA [104].

Li3OsO4 and to be a feasible candidate for further study, along with uncovering novel

ordered compounds for Li3FeO4, Li3TcO4, Li3RhO4, Li3PtO4, LiOsO4, and LiCuO4, which

may be synthesizable.
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4.2. Methods

In this work, we use two distinct but similar calculation settings for the initial study

of Li3IrO4 and the high-throughput study of Li3MO4. In the case of the initial study, we

use the Vienna Ab-Initio Simulation Package (VASP) for our DFT simulations [83, 84,

81, 82]. We use Projector Augmented-Wave potentials [16, 85], a plane-wave energy

cut off 520 eV, and 8000 k-points per reciprocal atom (KPPRA) on a Γ centered mesh.

Electronic steps are converged to within 1*10−5 eV. Relaxation is carried out with a force

convergence of -0.005 eV/A, using the Methfessel-Paxton of order one to describe partial

oribital occupation, with a smearing width of 0.2 eV. A final static calculation is done

with tetrahedron method smearing with Blöchl corrections. All calculations are spin-

polarized, with Ir initialized in the high-spin state of 5 µB. We use a Hubbard U value

of 2 eV to correct for self-interaction errors, using the rotationally invariant scheme of

Dudarev [33], a common strategy when treating transition metal battery cathodes [5, 65].

Previous studies of lithium iridates have used a U value of = 1 [89] In addition, due to

the layered nature of Li3IrO4, we use the optB88-vdW [78, 77] functional to correct for

the inability of semilocal GGA methods to address non-local correlations that lead to

dispersion, which are commonly found to be significant in delithiated layered oxides such

as LiCoO2 [5] [64]. optB88-vdW was found to most effectively model Li0.5CoO2 among

7 van der Waals correction schemes considered [5].

The literature unfortunately lacks experimental structural data for the Li3IrO4 system

upon delithiation, when Hubbard U values and van der Waals (vdW) corrections would

be most necessary, so evaluating the suitability of these corrections empirically is difficult.
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However, using these settings, we find that the volume per atom of the previously con-

sidered chain structure, and the low energy structure found in this work, are both within

1.1% of the experimentally measured volume per atom of 9.09 A3 of Li3IrO4.

For high-throughput calculations, we follow a multi-stage relaxation approach as used

in the Open Quantum Materials Database (OQMD), as described previously [127, 76],

which uses a multi-stage relaxation scheme for efficiency, followed by a high quality static

calculation at the same energy cutoff and KPPRA as described above. Notably, Hubbard

U is only used for a set of TM (V, Cr, Mn, Fe, Co, Ni, Cu, Th, U, Np, Pu), which do not

include Ir. There is no vdW correction used for the high-throughput study.

4.3. Investigation of Li3IrO4, Results and Discussion

4.3.1. Cation ordering in disordered Li3IrO4 layer

Elucidating the effect of cation ordering in Li3IrO4 is essential because it creates novel

bonding environments for oxygen, which may influence the electronic behavior during

delithiation. In previous work by Perez et al. and Li et al., treatment of Li3IrO4 considered

only the chain ordering of cations. In the chain ordering, half of the oxygen are coordinated

by 4 Li and 2 Ir, and the other half are coordinated by 5 Li and 1 Ir. In later work by Li

et. al, an anti-site defect was considered in which a 1x2x1 supercell of the chain-ordering

structure was created, and then an Ir and Li were swapped. This defect arrangement does

not change the total number of oxygen of each coordination in the structure, but leads

to subtle changes in the reported electronic density of states (DoS) and x-ray absorption

spectra (XAS). Li et. al argue that the oxygen coordinated by 4 Li and 2 Ir have 2 lone

pairs, (O2LP ), and the oxygen coordinated by 5 Li and 1 Ir have 3 lone pairs (O3LP ).
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Their proposed defect arrangement leads to a novel environment for Ir, in terms of O2LP

and O3LP . In the base chain ordering, all of the Ir are coordinated by 4 O2LP and 2 O3LP ,

while in the antisite defect, there are Ir coordinated by 3 O3LP .

We’ve taken three main approaches to address structural disorder in Li3IrO4. The

first is by building a binary cluster expansion of the disordered cation sites on the R3m

crystal structure. As described in section 2.3, a cluster expansion is a means of creating a

generalized Ising-like Hamiltonian, fit using calculated energies such as those from DFT.

The atoms in the mixed cation layer are labeled Si = ±1, indicating occupation by either

Li or Ir. Though the oxygen and pure lithium layers are involved in calculating the energy

of each structure, they do not have explicit occupation labels. Thus, we are building a

cluster expansion of the Li4−2xIr2xO4, 0 ≤ x ≤ 1 system.

We note that near extreme values of x, we expect to form structures that may have

qualitatively different bonding, which might be challenging to capture with a cluster

expansion model. At x = 0, we are forming LiO, at x=0.5, we form our target composition

of Li3IrO4, and at x = 1, we form LiIrO2. If we assume oxygen has a charge state of O2−,

the cation charge states for these phases are: Li2+ at x = 0 (likely indicating an ionic

picture does not fit); Li1+, Ir5+ at x = 0.5, and Li 1+, Ir 3+ at x = 1. According to the

OQMD and the ICSD, iridium forms oxides in the phases IrO2 and IrO3, corresponding

to charge states of Ir4+ and Ir6+ respectively. Further, there are no compounds known

to form with the composition LiIrO2; the layered LiIrO2 structure is the lowest energy

structure in the OQMD at this composition, with a stability of 0.182 eV/atom above the

convex hull. Fig. 4.2 shows the details of the cluster expansion, fitted using the maps

program as implemented in ATAT [156] on 121 total structures. Panels a) and b) show
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the formation energies as predicted by the cluster expansion and as calculated by DFT,

respectively, while panel c) shows the effective cluster interaction as a function of the

cluster diameter. To calculate formation energies, ∆ E from total energies, we take end

members as reference states, subtracting their energy in a ratio dependent on the value

of x:

(4.1) ∆ELi4−2xIr2xO4
= ELi4−2xIr2xO4

− 4(1− x) ∗ ELiO − 2x ∗ ELiIrO2

Here, E refers to total energies per formula unit. For example, at x = 0.5

(4.2) ∆ELi3IrO4
= ELi3IrO4

− 2ELiO − ELiIrO2

For the plotted convex hulls, these energies are normalized per mixing site. We note

the very strong nearest neighbor pair interaction dominates the cluster expansion. The

cross-validation score of the cluster expansion 24.7 meV / mixing site, and known and

predicted ground states agree. The low energy structure at the composition of Li3IrO4

is not the chain structure with P2/c symmetry, but instead a structure with monoclinic

C2/m symmetry. This structure is shown in Fig. 4.3. The cluster expansion approach

has limitations due to the size of cell considered, as well as the fact that it covers sto-

ichiometries besides Li3IrO4. In addition, we’ve generated more possible structures via

enumeration using the Supercell package, generating all structures up to 64 atoms that

can be formed using AxBxC size supercells of the primitive cell, where A, B, and C are

integers less than or equal to 4. Finally, we have also generated a Special Quasirandom

Structure (SQS) as a model for the fully disordered cation layer [183], generated using the

mcsqs routine implemented in ATAT [157]. The SQS is generated by considering clusters
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up to 6A for pair, triplet, and quadruplet clusters. We show the energy of the enumerated

structures and SQS, along with the previously discussed line, chain, and chain disordered

structures, in Table 4.1. The structures containing oxygen coordinated by 6 Li are notably

high in energy, compared to the structures without these formations. We notice a mono-

tonic relationship between the fraction of O coordinated by 6 Li and the calculated DFT

stability. The SQS structure is 136 meV/atom higher in energy than the ordered phase,

and though we have not accounted for the stabilizing factor configurational entropy with

increasing temperature, the experimental synthesis temperataure of 1223 K would not

come close to countering this penalty for disorder. However, inspired by investigations in

the Li5FeO4 system [175], in which these oxygen coordinated by 6-Li were found to be

critical in anionic redox, we will consider their behavior upon delithiation and their role

in anionic redox.

4.3.2. Thermodynamics of Delithiation and Lithiation of Ordered and Disor-

dered Li3IrO4 Phases

We will next discuss the role of cation ordering in thermodynamic behavior of Li3IrO4

upon lithiation and delithiation. During extreme delithiation, the competing phases with

LixIrO4 are, according to the OQMD, the formation of IrO3 and 1
2
O2. The under predic-

tion of oxide formation energies from elemental references when using GGA methods such

as PBE, is well established, and has been ascribed to the high reference energy of O2. We

will follow the work of Grindy et. al, and calculate a set of 14 binary oxides using our

settings to correct for this effect. We have used an identical set of oxides for this correction

this previous work, with the exception of In2O3, and find that it is just C=-0.013 eV/O2,
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Figure 4.2. a) Formation energies predicted by the cluster expansion. b)
Formation energies as calculated by DFT c) Effective cluster interaction of
fitted cluster expansion, as a function of cluster diameter.
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Table 4.1. Summary of Li3IrO4 structures screened using the enumeration
approach, with the addition of other structures discussed in the text. Also
included is the lattice system and space group, as well as the fraction of O
with a specific nearest neighbor coordination environment. All oxygen are
6 fold coordinated by a combination of Li and Ir. Formation energies are
given as calculated using electrostatic interactions by the initial enumera-
tion facilitated by supercell, as well as DFT. For both, predicted ground
states are set to 0.

Frac of O Coord. by x Li
Struct.
name

Lattice
System

Space
Group

ES Stab.
(eV/atom)

3 4 5 6
DFT Stab.
(eV/atom)

Line Monocl. C2/m 0.027 0 0.5 0.5 0 0.000
scell-1 Orthorh. P2/m 0.000 0 0.5 0.5 0 0.009
chain dis. Monocl P2 0 0.5 0.5 0 0.029
chain Monocl. P2/c 0 0.5 0.5 0 0.031
scell-2 Triclinic P-1 0.326 0.062 0.437 0.437 0.062 0.067
scell-3 Triclinic P-1 0.473 0.083 0.416 0.416 0.083 0.080
scell-6 Triclinic P-1 0.764 0.166 0.25 0.5 0.083 0.095
scell-5 Triclinic P1 0.757 0.166 0.25 0.5 0.083 0.099
scell-4 Triclinic P1 0.757 0.083 0.5 0.25 0.166 0.118
scell-7 Triclinic P1 0.764 0.083 0.5 0.25 0.166 0.119
SQS Triclinic P1 0.125 0.375 0.375 0.125 0.136

far smaller than chemical accuracy (about 40 meV/formula unit), when calculated with

opt-B88-vdW, and thus do not include it in future analysis. For comparison, for PBE

and LDA, Grindy et al. found values of C = -1.198 and 0.254 respectively. Our analysis

is shown in Fig. 4.4.

In order to investigate the interplay of cation disorder and anionic redox in Li3IrO4,

we have chosen to delithiate both the low energy C2/m phase and the disordered SQS

structure, as limiting cases for ordered and disordered models.

Structural screening via a simple proxy method such as electrostatics proves challeng-

ing here for two reasons. First, the multiple possible charge states of O (O2−, O1−, O0)
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Figure 4.3. a) The low energy structure found via cluster expansion at the
composition Li3IrO4, with C2/m symmetry b) the view of the mixed cation
plane.

and Ir (Ir5+, Ir6+, Ir7+) increases the complexity of the screening. Second, as delithia-

tion opens voids in the structure, we see more severe atomic relaxation off lattice sites.

In particular, we note significant shortening of oxygen-oxygen neighbor distance in the

delithiated disordered cells. Thus, we instead enumerate cells at stoichiometries Li2IrO4

and LiIrO4. For the ordered phase, which just contains 2 symmetrically distinct Li sites in

the primitive unit cell, we generate the 2 possible structures for Li2IrO4 and LiIrO4 from

a single unit cell. Further, to probe whether more complex delithiated structures might

be energetically favorable, we built structures from a 2x2x2 parent supercell containing

64 total atoms at a composition of Li3IrO4. We removed atoms such that zero, 0.25, 0.5,

0.75, or all lithium atoms were remaining in the mixed layer, creating 3 such structures

for each occupation possibility. This leads to 15 delithiated structures each of Li2IrO4
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Figure 4.4. Comparison formation energy of binary oxides as calculated
using the optB88-vdW functional and experiment. The correction of C=-
0.013 eV/O2 is within chemical accuracy, and is thus not added to future
analysis.

and LiIrO4 from the parent Li3IrO4 supercell. We follow a similar procedure for the SQS

disordered cell, which is originally a 64 atom supercell. In this case, we create 5 structures

for each occupation possibility. This leads to 25 delithiated structures each of Li2IrO4 and

LiIrO4 from the parent Li3IrO4 supercell. There are many more possible structures, some

quite likely lower in energy than what we have found, that we have not explored for the

disordered cation case; with 24 total lithium atoms that are all unique in the SQS, there
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are
(
24
8

)
=

(
24
16

)
= 735, 471 total candidates. Though 25 structures is very small compared

to this number, we highlight that the relaxations are very computationally expensive for

the delithiated disordered phases. Each took between 300-500 atomic steps to fully relax,

likely due to the slow formation of O-O bonds, and each step is quite expensive due to low

symmetry and large unit cell. Thus, our goal is not to find the exact lowest energy phase,

but to find structural motifs that reveal signs of anionic redox. We have also calculated

structures for which all Li have been removed, forming IrO4 structures from parents with

ordered and disordered cation layers.

We plot the formation energies for these delithiated structures on a convex hull, against

the formation of IrO3+
1
2
O2 for the IrO4 composition (as predicted by the OQMD), and

Li3IrO4 in Figure 4.5. We show two convex hulls, the first with formation considered

against the stable C2/m Li3IrO4 phase, which contains information on delithiated struc-

tures from both the ordered and disordered structures. In the second, we show the convex

hull against the formation of the disordered Li3IrO4 phase from the SQS, containing just

the structures formed from the SQS parent cell. We could consider this as analogous to

the Ir sites being kinetically trapped at their disordered positions, while the facile Li are

able to move during cycling. The definition of the formation energy ∆ E is similar to the

case for the cluster expansion, shown in Equation 4.1.

(4.3) ∆ELixIrO4
= ELixIrO4

− (
x

3
) ∗ ELi3IrO4

− (
3− x

3
) ∗ (EIrO3

+
1

2
EO2

)

We note that the energy difference between ordered and disordered structures becomes

significantly smaller as we delithiate. At a composition of about Li3IrO4 the difference is

about 110 meV/atom, which reduces to 50 and 60 meV for Li2IrO4 and LiIrO4. We also
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Figure 4.5. Convex hulls of formation energies during delithiation, defined
against Li3IrO4, IrO3, and O2, as in Equation 4.3. a) is defined against
the ordered Li3IrO4 structure with C2/m symmetry. We note the stable
formation of an ordered structure at LiIrO4, corresponding to a structure
without any lithium remaining in the mixed layer. The energy difference
between ordered and disordered structures becomes significantly smaller
upon delithiation.b) shows the convex hull, considering only structures con-
structed from the disordered parent.
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note that at Li2IrO4, all structures derived from the ordered parent structure are closely

clustered, and much lower in energy than the structures derived from the disordered

parent structure, while at LiIrO4 the two types of delithiated structures overlap in energy

range.

4.3.3. Calculation of OCV

For the lithiation of delithiation of Li3IrO4, we can define the open circuit voltage (OCV)

relative to Li/Li+ as follows:

(4.4) V =
∆Gf

F∆NLi

Here F is the Faraday constant, and ∆NLi is the amount of Li removed. ∆Gf is the

change in free energy per mole, and can be approximated from the total energy ∆E from

DFT calculations.

(4.5) ∆E = ELixIrO4
− ELix′ IrO4

− (x− x′)ELi

This is equivalent to stating that the open-circuit voltage is proportional to the difference

in chemical potential of lithium, µLi between the cathode and anode:

(4.6) −eV (x) = µLi(LixIrO4)− µLi(Li metal)

The voltage profiles are shown in Figure. 4.6, and overlayed on the voltage profile obtained

during reversible cycling up to LiIrO4 from Perez et al [120]. We note that the ordered

cation voltage, calculated to be about 3.75 V vs. Li/Li+, is in good agreement with the
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Figure 4.6. Open circuit voltage, as calculated using 4.4, for structures
with ordered and disordered mixed cation layers. Here, the ordered cation
voltage profile is calculated from Li5IrO4, Li3IrO4, and LiIrO4 structures
with the line ordering for the mixed cation layer, with the LirIrO4 structure
with Cm symmetry found during delithiation. The disordered cation voltage
profile is calculated from Li5IrO4 and Li3IrO4 structures with the disordered
cation layer, as modeled using SQS. For both cases, the state for IrO4 is the
formation of IrO3 and 1

2
O2. Overlayed is the experimental voltage profile

during cycling, delithiating up to x = 1, from Ref. [120]

flat voltage profile during the first cycle, while the disordered cation voltage, at about

3.48, is close to the average voltage during the subsequent cycles. However, during the

subsequent cycling, we see a climbing voltage profile that is reminiscent of the delithiation

of LiCoO2.
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4.3.4. Signs of Anionic Redox and the Role of Cation Disorder

We will now consider three signs of anionic redox. As we discussed in the previous section,

cation disorder could play an important role in anionic redox due to the presence of novel

bonding environments, particularly for oxygen. The first will be by considering the density

of states (DoS) of the ordered and disordered Li3IrO4 structures. Seo et. al argue that the

excess of O2p states, below the Fermi level, unmatched by cation states, is an indication

that the oxygen site is capable of facilitating redox [135]. The DoS for the C2/m ordered

structure and the SQS are shown in Figure 4.7, and were plotted using the Sumo program

[96], with a Gaussian broadening of 0.1 eV applied. We can clearly see that the presence

of disorder increases the excess O2p states below the Fermi level.

Next, we consider behavior the calculated local magnetization of Ir and O during

delithiation, which we can use to understand unpaired electron spins. A schematic of the

expected magnetization behavior of O and Ir ions in octahedral sites is shown in Figure

4.8, as well as the expected behavior of hybridized O 2p orbitals upon bond formation,

following the arguments made by Chen et al. The loss of electrons from the 2p orbitals

of O2− should increase the local magnetization, which would be a simple sign of anionic

redox activity upon delithiation. Further complicating the matter is possibility of oxygen

bonding: in the case of peroxo-like O2−
2 formation, we expect the hybridized bond to

show no local magnetic moment. Further electron loss upon formation of superoxo-like

O1−
2 would reintroduce a local magnetic moment. Chen et al. report typical values of

1.49 and 1.28 Å for peroxo and superoxo O-O bond length. The magnetization of each Ir

and O ion during delithiation is shown for structures with ordered and disordered parent

structures in Figure 4.9. We can see that the introduction of disorder increases the range
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Figure 4.7. Density of States for a) ordered and b) disordered Li3IrO4. c)
shows the Disordered DoS from oxygen specifically, averaged over all O sites
with the same nearest neighbor environment. For all figures, the Fermi level
EF = 0. The DoS of the disordered structures shows significant excess O2p
states near the band edge.

of magnetization values for O for both Li3IrO4 and Li2IrO4. Interestingly, we calculate

that the stable Cm structure of ordered LiIrO4 does not exhibit magnetism at all.

Looking more closely at the magnetic behavior of iridium in the disordered structures,

we see a decline in the magnetic moment during delithiation, which would indicate an

increase in the positive charge state of the Ir cation, corresponding to some degree of
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Figure 4.8. Schematics showing expected magnetization behavior. Panel
a) shows the possible magnetization behavior for oxygen and iridium as
we delithiate, and the remaining ions in the system lose electrons as the
system loses Li+ ions. For oxygen in octahedral sites, we show that a change
in charge oxidation state from O2− to O1− leads to an unpaired electron,
and therefore non-zero magnetization. For Ir in octahedral sites, we show
that we should initially increase magnetization as an electron loses its pair,
followed by a decrease of magnetization as electrons are lost. Panels b)
and c) show the expected behavior when two oxygen form a bond and the
2p valence states hybridize. Panel b) corresponds to peroxo-like bonding,
in which each oxygen are missing an electron vs O2− and form a bond
with negligible magnetization c) corresponding to superoxo-like bonding,
in which one oxygen is missing a further 2p valence electron, leading to a
bond with sizable magnetization. Both types of oxygen bonding lead to
significant anti-bonding character due to the population of π∗ type bonds.
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traditional cation redox. However, the disordered structures also show significantly more

oxygen with substantial magnetic moments.

Further, we note that disordered Li2IrO4 have 5 oxygen with short O-O bond distances,

one set of 3 oxygen forming a linear chain across the mixed cation layer, and another pair

of bonded oxygen, all with distances of about 1.42 Å. LiIrO4 has 4 oxygen with short

O-O bond distances of about 1.24 Å. In both cases, all of these oxygen are calculated to

have negligible local magnetic moment, indicating their peroxo-like character. We confirm

the anti-bonding character of these bonds by calculating the projected Crystal Orbital

Hamilton Populations (pCOHP) using Lobster [32, 29]. We show the average for short

O-O bonds found in the disordered Li2IrO4 and LiIrO4 in Fig. 4.10. Note that we follow

convention in plotting the -pCOHP, with negative values in the vicinity of the Fermi level

EF corresponding to anti-bonding states.

Next, we will discuss the predicted stability against oxygen vacancy formation of

the Li3IrO4 and delithiated LixIrO4, 0 ≤ x ≤ 2 structures inheriting both ordered and

disordered cations from the Line and SQS structures respectively. The formation energy

of a dilute oxygen vacancy ∆EO
v is calculated as:

(4.7) ∆EO
v = ELixIrO4−δ − ELixIrO4 + µO

Here, ELixIrO4−δ and ELixIrO4 are the DFT energy of the structures, with and without

the oxygen vacancy incorporated, and µ0 is the chemical potential of oxygen, correspond-

ing to the uncorrected 1
2
O2 reference state.

Oxygen vacancy results are shown in Figs. 4.11 and 4.12. The initial introduction

of disorder to the Li3IrO4 leads to oxygen fully coordinated by 6 Li, the least stable
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Figure 4.9. The local net magnetic moment of O and Ir ions during delithi-
ation, for LixIrO4 structures with ordered and disordered parent lattices,
taking the lowest energy structure found as an example. Boxes show the
range of magnetization, while the solid circles mark the average magneti-
zation value. Also shown are the minimum O-O bond distances in each
structure. We can see that the presence of disorder shifts up both the av-
erage magnetization of oxygen, as well as the extreme values, and leads to
short O-O bonds ¡1.5 Å at Li2IrO4 and LiIrO4.
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Figure 4.10. projected Crystal Orbital Hamilton Populations of short O-O
bonds formed during delithation of disordered Li3IrO4. Note that we have
plotted the -pCOHP values, with the shown negative y-axis values indicat-
ing anti-bonding states. This analysis confirms the anti-bonding character
of the observed O-O bonds from the schematic shown in Fig. 4.8.
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Figure 4.11. ∆EO
v of Li3IrO4 and Li2IrO4 structures, with ordered and dis-

ordered cation lattice. The Li2IrO4 structures inherit the initial cation
ordering from the fully lithiated Line and SQS structures, here we report
results for the lowest energy delithiated Li2IrO4 found during structural
search. On the x-axis, we plot the number of coordinating Ir of the re-
moved O, while the marker shade indicates the number of coordinating Li.

of which has a very low ∆EO
v of about 0.183 eV, so we still predict stability against

spontaneous O release. In the fully lithiated case, oxygen coordinated by 4 and 5 Li

in the disordered structure are lower in energy by about 1eV compared to the similarly

coordinated oxygen in the ordered case. During delithiation, we see a reduction in defect

formation energy for the ordered cation Li2IrO4, comparable with similarly coordinated
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Figure 4.12. ∆EO
v of LiIrO4 and IrO4 structures, with ordered and dis-

ordered cation lattice. The LiIrO4 and IrO4 structures inherit the initial
cation ordering from the fully lithiated Line and SQS structures, here we
report results for the lowest energy delithiated LiIrO4 found during struc-
tural search. On the x-axis, we plot the number of coordinating Ir of the
removed O, while the marker shade indicates the number of coordinating
Li.

oxygen in the disordered cation case. The oxygen were initially coordinated by 6 Li

experience significant local delithiation, such that they are now coordinated by 3 or 4

Li, however the lowest defect formation energy actually increases to about 0.24 eV, likely

due to the formation of a short range O-O bond. The lithium coordinated by 1 Ir see
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a significant reduction in ∆EO
v . When delithiation reaches LiIrO4, ∆E

O
v is comparable

between the ordered and disordered cation structures, at about 1 eV for the O coordinated

by 1 Ir. It is not until total delithiation to IrO4 that we predict spontaneous oxygen loss.

This surprisingly contradicts calculations presented by Jacquet et. al, which predicts

oxygen release for the ordered LiIrO4, but not for the fully delithiated IrO4. One possible

cause may be their use of PBE and choice not to correct the oxygen reference state. [66].

Our close study of the role of disorder in the LixIrO4 system shows the tradeoffs

4.4. High Throughput Screening of Li3MO4 Cathodes

Informed by the previous study of Li3IrO4, we will now screen candidate Li3MO4

cathodes for similar behavior. Our screening approach is fairly simple: we calculate the

energies of all Li3MO4 candidates in the C2/m and P2/c symmetry, as well as a smaller

24 atom SQS structure. We also calculate the energies of LiMO4 candidate structures in

the lowest energy structures found during the previous delithiation study of Li3IrO4, for

structures inheriting C2/m, P2/c, and the SQS cation order. Finally, we also calculate

the energies of Li5MO4 structures, using the line ordering as discussed in the previous

section. Here, M = Ag, Au, Cd, Co, Cr, Cu, Fe, Hf, Hg, Ir, Lu, Mn, Mo, Nb, Ni, Os, Pd,

Pt, Re, Rh, Ru, Sc, Ta, Tc, Ti, V, W, Y, Zn, Zr.

The results of the Li3MO4 and LiMO4 structural screens are shown in Fig. 4.13. In

these figures, we compute the stability against competing phases, as determined by the

OQMD. The structural screen of Li3MO4 shows a host of ordered structures that may be

stable, including Li3FeO4, Li3OsO4, Li3PtO4, Li3RhO4, Li3RuO4, and Li3TaO4. Li3TaO4

and Li3NbO4 are predicted to be within 15 meV of the OQMD convex hull, and have
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been previously reported [179, 172]. Li3OsO4 was recently reported in the disordered

rocksalt phase [39], while Li3RuO4 [66] and Li3FeO4[175] are also known compounds.

Li3PtO4, Li3RhO4 and Li3TcO4 have not been reported previously, and the SQS for each

of these compositions is also predicted to be comparable to Li3IrO4, and merit further

investigation. However, the delithiated LiMO4 phases for each of these structures is found

to be very unstable, unlike LiIrO4, which likely means that the Li cannot be reversibly

removed electrochemically. This leaves Li3OsO4 as an interesting cathode candidate that

may be synthesizable in the disordered layer structure.

Average voltages for the lithiation and delithiation Li3MO4 structures that are within

75 meV of the hull are shown Fig. 4.14. We note that the high voltages corresponding to

the delithiation of Li3MO4 are to the competing phases the OQMD predicts to form at

MO4. This introduces a small error in the average voltage for phases that are predicted

to form a stable LiMO4, such as Li3IrO4; in this case, the predicted average voltage would

be 0.15 eV higher for this first step, before the delithiation step against the formation

of IrO3 and 1
2
O2. This high throughput screening screening shows that Li3OsO4 merits

further study, with a voltage plateau useful in battery applications, and similar behavior to

Li3IrO4. Li3PtO4, Li3RhO4, and Li3TcO4 also show voltage plateaus that would be useful

for battery applications, but would require unveiling more intricate delithiation behavior

(such as cation migration [173]), as we do not find LiMO4 phases of these compositions

to be stable.
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Figure 4.13. Thermodynamic stability of Li3MO4 and LiMO4 candidates
assessed during high throughput. Structures on the lower dashed line at
0 eV are predicted to be stable, while those within 75 meV/atom of the
OQMD hull are characterized as metastable and potentially synthesizable.
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Figure 4.14. Calculated average voltage of Li3MO4 cathodes as found dur-
ing high throughput screening. The low voltages correspond to lithiation
up to Li5MO4, those which are negative are predicted to be unable to in-
corporate further Li, even without the consideration of competing phases
found along delithiation. The high voltage is calculated for the delithiation
of Li3MO4 against the competing phases found at a composition of MO4.

4.5. Conclusion

In this chapter, we have discussed the role of cation ordering in Li3MO4. We have

found that while the fully random disorder captured by the SQS is predicted to be ther-

modynamically unfavorable, the disordered cation layer enables the formation of oxygen

fully coordinated by 6 lithium, which we argue leads to further capability of anionic redox,

as shown by changes in the DoS, the magnetization upon delithiation, and the formation

of short O-O bonds with antibonding character. Finally, we calculate the oxygen defect



82

formation energy as the cathode material is delithiated, showing that these oxygen fully

coordinated by 6 lithium have low vacancy formation energies, though this is not pre-

dicted to be spontaneous. We finish this chapter with a high throughput search, which

unveils a few novel candidates that merit further investigation.
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CHAPTER 5

Phase Transformations and Defects in Zr-H using

First-Principles and Machine Learning Interatomic Potentials

This chapter is adapted from a publication in preparation for submission. Once ac-

cepted, permission will be requested

5.1. Introduction

Zirconium alloys are widely used as cladding materials for nuclear fuel rods, due to

their low neutron absorption cross section compared to other structural metals. In the

high temperature, aqueous environments nuclear fuel rods are exposed to in light water

reactors, the corrosion reaction of the alloy with the coolant water leads to the formation

of ZrO2 as well as H2. A small amount of this produced H2 gas is then picked up by

the zirconium alloy, occupying interstices [106]. The hydrogen are highly mobile in the

alloys, and are responsive to concentration, temperature, and stress gradients, leading to

local concentrations that can easily exceed solubility limits, and can lead to precipitation

of brittle hydride phases even at elevated operating temperatures in cooler regions. The

formation and subsequent cracking of hydrides in the alloy can lead to a cascading cracking

mechanism, in which hydrogen in solution will concentrate at the head of a crack tip,

forming more of the hydride phase and continuing the cycle [165].

Four key Zr-H phases of interest are present in the Zr-H rich portion of the phase

diagram, visualized in Fig. 5.1. Namely, we aim to capture the α-Zr phase, as well as the
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behavior of H tetrahedral and octahedral defects, the tetragonal γ-ZrH phase (c>a), the

fcc δ-ZrH2−x phase containing hydrogen-vacancy disorder and most commonly observed

in experiment, and the tetragonal ϵ-ZrH2 phase (c<a). The γ-ZrH and ϵ ZrH2 are most

commonly described as having face-centered tetragonal (fct) symmetry, in analogue to

the face-centered cubic δ-ZrH2−x, though the unit cell can be described more compactly

as body-centered tetragonal. We will follow the convention of describing them as fct.

We also highlight some challenges encountered when using atomistic methods to model

these phases. Most notably, δ-ZrH2−x contains intrinsic hydrogen-vacancy disorder, and

the fully ordered fcc-ZrH2 phase is also dynamically unstable against transformations into

the fct ϵ-ZrH2 phase. Other candidate cubic structures of δ-ZrH2−x, such as δ-ZrH1.5 as

first studied by Domain et. al [30], are also dynamically unstable against tetragonal

distortion. This combination of factors means that there is not a single δ-ZrH2−x phase

with fcc symmetry that is found at 0K, and it is instead stabilized with temperature.

We also note that hydrogen-vacancy interactions are important in ϵZrH2, due to their

relevancy in determining its stability against the formation of δ-ZrH2−x. Finally, we

note that there are many subtle hydrogen-vacancy effects in the elemental α-Zr phase,

including H congregation in Zr vacancies [100]. In addition, due to the small mass of

H, zero point energy and vibrational free energy in general play a significant role in the

system, particularly in the consideration of H defects in α. Thus, the Zr-H system is

interesting not only due to its relevance in nuclear systems, but for the intrinsic challenge

it presents to probing via atomistics.
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Figure 5.1. Structural schematics of relevant phases in the Zr (peach) -
H (red) system, including α-Zr, showing tetrahedral (T) and octahedral
(O) sites, , γ-ZrH phase, with H occupying tetrahedral sites in the [110]
plane and other tetrahedral vacancies shown in white, δ-ZrH2−x phase with
hydrogen-vacancy disorder on tetrahedral sites, and ϵ-ZrH2 with fully oc-
cupied tetrahedral sites. The second column shows that hydrogen-vacancy
disorder is critically important in capturing the intrinsically disordered δ-
ZrH2−x phase. The subtleties of the importance of hydrogen-vacancy dis-
order in the α-Zr and ϵ-ZrH2 are discussed in the text. We also note that
the fcc-δ-ZrH2−x phase is dynamically unstable at 0K. All structural visu-
alizations are drawn in VESTA [104].
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Density Functional Theory (DFT) has been the tool of choice among ab-initio atom-

istic computational methods when studying material phenomena that require high accu-

racy coupled with computational tractability. DFT is suitable for treating phenomena

that can be captured in simulations containing dozens to hundreds of atoms, spanning

bulk material phases to relatively simple point and planar defects [99]. In the past couple

decades, DFT has been widely used to study the Zr-H system, including H in Zr inter-

stices and bulk hydride phases [30, 114, 161, 18], plane defects including surfaces and

interfaces [31, 154, 93], the effect of alloying metals [23], and the behavior of H-Vacancy

interactions on the hcp-Zr [58, 57] and fcc-Zr latices [14, 160]. The hundreds of atoms

that DFT is capable of treating cannot capture mesoscopic phenomenon discussed above,

motivating the use of empirical potentials that can be used to treat many thousands to

millions of atoms. Empirical potentials such as the ZrH-v4 [22], an Embedded Atom

Method potential based on the Zr-Zr interactions of Mendelev-Ackland [101], a Charge

Optimized Multi Body (COMB) potential [110], and the recent BMD 19.1 and 19.2 po-

tentials [165] have been used to treat H interstices in Zr. A second COMB potential was

introduced to also capture bulk zirconium hydride phases, however it erroneously finds

ZrH2 to be fcc instead of tetragonal [176], with many δ-ZrH2−x ordered phases found to be

on the convex hull. The dominant phase found in experiment and when studying hydrides

found in used cladding materials, the δ-ZrH2−x phase, is of particular interest in modeling

with an empirical potential, as it does not form a single ordered phase at 0K. Instead,

it’s formation competes with ϵ-ZrH2; the phase boundary between these two structures

shows an increasing transformation temperature with increased H content. Capturing the
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temperature and composition dependence requires a potential that accurately models the

vibrational and hydrogen-vacancy configurational properties.

Machine learning potentials (MLP) are growing in popularity as a means of capturing

the high chemical accuracy of DFT, but with the tractability of empirical potentials. MLP,

lacking a rigid functional form, are capable of capturing a wider variety of structural con-

figurations and symmetries than a single empirical potential [11, 108]. Behler-Parrinello

were the first to develop machine learning interatomic potentials, using neural network po-

tentials (NNP) coupled with a local descriptor of atomic environments to model molecular

systems [12]. Since then, numerous new MLP have been introduced, most prominently

Gaussian approximation potentials (GAP)[10], and spectral neighbor analysis potentials

(SNAP),[149]. MLP are typically trained on ab-initio data of the energy, forces, and

stresses of a given geometry of atoms, and map these values onto a set of local descriptors

of atomic environments. Careful consideration of the intended application of the MLP is

thus critical in determining the contents of the training set, as they may lack transfer-

ability to atomic environments that are outside the scope of the training set. MLP have

been used to study the zirconium system, including its mechanical properties [92] , the

α to ω [182] and α to β[91] phase transformations, as well as phase transformations in

ZrO2 [158], but have as of yet not been applied to the study of hydrides.

Here, we will develop a Zr-H moment tensor potential (MTP), a class of MLP, which

represent interatomic interactions on a polynomial-like basis set [136, 121]. MTP have

been used to produce Ag-Pd alloy phase diagrams [124], search for novel phases in Cu-

Pd, Co-Nb-V, and Al-Ni-Ti systems [50], study vacancy diffusion in metals [113], and

high temperature elastic behavior in β-Ti [137]. The demonstrated capability of MTP to
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capture phase transformations, mixing behavior, diffusion, and elastic behavior, combined

with the favorable low-cost and high accuracy of MTP, make the method appealing for

studying the Zr-H system. We will train a novel MTP to study the Zr-H system, first

focusing on its ability to capture phase transformations, and then finally validating its

use on other properties of interest, including H diffusion, H-vacancy ordering, and defect

properties.

The trained MTP captures lattice and elastic constants in excellent agreement with

DFT, but it does not capture the predicted dynamic instability of δ-ZrH2. Similarly,

it calculates a modeled solvus boundary in excellent agreement with DFT, though both

under predict experiment by about 200 K. It also captures the experimental behavior

that increasing H concentration increases the phase transformation temperature between

ϵ-ZrH2 to δ-ZrH2−x. Considering defects, it reproduces 0K migration barrier heights for

T-T, T-O, and O-O transitions by 20 meV, 3 meV, and 25 meV, when compared with

DFT. The MTP captures the diffusion of H in δ-ZrH2−x as having an activation energy

within 0.01 eV of experiment. Of the other point and planar defects explored, all are well

reproduced vs. DFT, except for the basal stacking fault energy, which is underpenalized

by the MTP.

5.2. Methods

5.2.1. Density Functional Theory Calculations

Density functional theory (DFT) calculations were carried out using the Vienna Ab-Initio

Simulation Package (VASP) [83, 84, 81, 82] . The following settings were used for all

DFT calculations presented in this work. We use Projector Augmented-Wave potentials
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[16, 85] , within the Perdew-Burke-Ernzerhof formulation of the Generalized Gradient

Approximation [119], with Zr valence electrons including 4s. A k-point mesh with a

minimum density of 0.15 Å−1 centered at Γ was used to sample the Brillouin zone, and

the planewave cutoff was set to 400 eV. Gaussian smearing with a width of 0.05 eV was

used, and the precision was set to Accurate.

5.2.2. Active Learning of Moment Tensor Potentials and Description of Train-

ing Sets

We have used Moment Tensor Potentials (MTP) to model Zr and Zr-H interactions, as

implemented in the MLIP package [112], the formalism for which we will briefly describe

here. MTPs represent the total energy of a system, E, as the sum of local contributions

for each atom in the system, V (ni), depending on (ni), the neighborhood of an atom i

within the potential cut-off distance, represented by a set of vectors.

(5.1) V (ni) =
m∑
j=1

ξjBj(ri)

Here, ξj are coefficients found by minimizing the root mean square prediction error of

energy, forces, and stresses against the DFT data set, each given a predetermined weight

as input. Bj are the set of predefined basis functions, further information for which can be

found here [112]. The functional form of the basis set defines a level of moments, increas-

ing which increases the size of the basis set, in terms of radial and angular contributions.

In recognizing the importance of the quality of the training set, MLIP also implements
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Figure 5.2. Flowchart of the process for training MTP using active learning
for simulating structural phase transformations containing training sets for
n phases. The dashed box constitutes a unit in which active learning occurs
to iteratively provide new training examples. The NPT-MD steps consistent
of heating or cooling across a temperature range of interest.

an active learning scheme [122, 51, 52, 112], thus enabling effective selection of con-

figurations for accurate interpolation. The active learning scheme adopts a special form

of query strategy, known as the D-optimality criterion[51], which employs the so-called

extrapolation grade γ based on a geometric criterion . γ is calculated by determining the

most linearly independent set of structures already in the training set, and assessing the

amount by which a candidate structure will increase the determinant (see more details in

Ref. [122, 51, 52, 112] (see more details in Ref. [122, 51, 52, 112] ).

Inspired by the on-the-fly MLP implemented in VASP[70], here we devise a semiauto-

matic algorithm to build training structures for MTP for materials systems with multiple

structures and phases by taking advantage of the already implemented active learning

scheme within MLIP. One advantage of our strategy is that it does not require explicit

ab-initio molecular dynamics (AIMD) simulations, which are often time-consuming and



91

performed with low accuracy. This is achieved by (i) generating a seed MTP, either us-

ing lattice dynamics information from phonon calculations, or elastic constant and bulk

modulus calculations, and (ii) iteratively refining the MTP by adding training structures

evaluated by a DFT and selected from LAMMPS-MD simulations (run using an MTP)

via active learning , the latter step resembling the on-the-fly-learning strategy. The com-

plete schematic is displayed in Fig. 5.2. Specifically, we proceed with the construction of

MTP as follows:

I. Identify various phases involved during the structural phase transformation for

given chemical composition. These may include bulk phases, but could also

include structures relevant to the thermodynamics of phase transformations, such

as dilute point defects or interfaces.

II. Compute a simple initial training set to form the basis of a seed interatomic

potential. Examples of relevant information that may be used to form a seed

potential include supercell structures generated from the frozen phonon method,

or structures generated while calculating elastic constants and bulk modulus.

III. Perform NPT-MD simulations for each phase using LAMMPS for a wide tem-

perature range covering the structural phase transformation, using the MTP.

IV. Select training structures from the configurations generated in (3) using the active

learning scheme available within MLIP.

V. Calculate the selected structures using VASP with high convergence thresholds

and retrain MTP after updating the training set with newly computed structures.

VI. Iterate steps from (3) to (5) (an iteration of which we call an epoch) until no new

structures are selected by active learning.
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We find it necessary and advantageous to perform NPT-MD simulations using LAMMPS

through a heating process in step (3) instead of NVT-MD. It is because if the structural

phase transformation occurs at relatively high temperatures, thermal expansion effects

would be crucial while the isothermal-isobaric ensemble can naturally capture these ef-

fects. We also find that the NPT-MD simulations need not be lengthy, as long as they

approximately cover the volume changes and magnitudes of atomic displacements in the

targeted temperature range. Furthermore, a typical time scale ranging from 50 ps to 100

ps with a time step of 0.5 fs works well.

The trained potential presented here focuses on providing a proof of concept of the

ability of MTP to capture multiple phase transformations, and thus the training set is

targeted towards capturing bulk energetics and lattice dynamics of relevant phases. For

each of the desired phases in the training set, we iterate through our active learning

scheme, refining the trained potential each epoch. We continue this until no new phases

are found during NPT MD, while setting the extrapolation grade γthreshold=5. γthreshold

is a metric for estimating the amount of new geometric information a structure adds to

the training set, based on the D-Optimality criterion. For a full treatment please refer

to Ref. [112]. We use the Zr-ZrHx MTP to predict phase transformations at the solvus

boundary between α-Zr and the model γ-ZrH phase, and use MD simulations to capture

the temperature and composition dependence of the ϵ and δ-ZrH2−x transformation.

For the Zr-ZrHx MTP, the training set includes the following:

• structures used to fit elastic constants and bulk modulus values of:

– α-Zr (2 atoms, 35 total structures)

– dilute H in tetrahedral site of α-Zr (37 atoms, 45 total structures)
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– dilute H in octahedral site of α-Zr (37 atoms, 45 total structures)

– γ-ZrH,(12 atoms, 45 total structures)

– δ-ZrH2 (12 atoms 28 total structures)

– ϵ-ZrH2 (12 atoms in 45 total structures)

• NPT molecular dynamics snapshots for bulk phases, carried out until no new

phases were added during active learning:

– α-Zr (36 atoms, 303 structures from 3 epochs, heating from 100K to 1000K)

– dilute H in tetrahedral site of α-Zr (37 atoms, 556 total structures over 3

epochs, heating from 100K to 1000K)

– dilute H in octahedral site of α-Zr (37 atoms, 481 total structures over 3

epochs, heating from 100K to 1000K)

– γ-ZrH,(64 atoms, 449 total structures over 3 epochs, heating from 100K to

1000K)

– δ-ZrH2 (96 atoms, 203 total structures from 2 epochs, cooling from 1000K

to 100K)

– ϵ-ZrH2 (96 atoms in 191 total structures from 2 epochs, heating from 100K

to 1000K)

• NPT molecular dynamics snapshots for accessory phases and defects, carried out

for a single epoch:

– ZrH orthorhombic competing phase (32 atoms in 259 total structures, heat-

ing from 100K to 1000K)

– ZrH fcc competing phase (64 atoms in 69 structures, heating from 100K to

1000K)
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– ZrH bcc competing phase (64 atoms in 30 total structures, heating from

100K to 1000K)

– Zr fcc competing phase (32 atoms in 42 total structures, heating from 100K

to 1000K)

– Zr basal surface (54 atoms in 11 total structures, heating from 100K to

1000K)

– Zr vacancy (35 atoms in 56 total structures, heating from 100K to 1000K)

– ZrH (111) surface (80 atoms in 23 total structures, heating from 100K to

1000K)

– Zr(001)-ZrH(111) interface (48 atoms in 73 total structures, heating from

100K to 1000K)

– δ-ZrH1.66 (96 atoms in 80 total structures, cooling from 1000K to 100K)

The first 4 accessory phases are included to provide information on low energy phases that

may be accessed during MD. The next four accessory phases are defects that we would

like the MTP to describe well. The final accessory phase provides some information on

the hydrogen-vacancy ordering at the composition close to the δ-ZrH2−x to ϵ-ZrH2 phase

boundary. The training information is summarized in Table 5.1.

5.2.3. Suppression of lost atoms during high temperature molecular dynamics

The flexibility of the functional form of MTP, and MLP in general, come with the draw

back of potential non-physical interactions when relevant training examples are not in

the training set. For the work presented here, we observed this in form of a strong non-

physical attraction of H-H in short pair distances of < 1 Å, interactions which were not
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Table 5.1. Summary of training information for the MTP presented in this work.

Training Information Zr-ZrHx

LAMMPS-MD
Ensemble

NPT

Temperature (K) 100K to 1000 K
Length (ps) 2.5
Step (fs) 0.25
MTP-AL

# of epochs 2-3
# of structures 3069

Level of Moments 22
Training RMS Error
Energy (meV/atom) 2.24

Force (eV/ Å ) 0.056
Stress (kBar) 1.770

probed by our training set but did occasionally lead to lost atoms during MD simulations

above 900K when studying the δ-ZrH2−x and ϵ-ZrH2 phases. The nearest H-H distances in

these structures, at equilibrium, are 2.2-2.3 Å, so these interactions are quite rare during

molecular dynamics, but still must be suppressed. When necessary, we have achieved this

by overlaying a Ziegler-Biersack-Littmark (ZBL) style potential [181], using values of 6.0

and 40.0 for ZH and ZZr respectively, with inner and outer cutoff distances of 0.01 and

1.0 Å. This is achieved using the pair style hybrid/overlay command in LAMMPS, which

simply adds the ZBL potential to the MTP. The H-H pair interaction is shown in Fig. 5.3,

with and without the ZBL applied. We will show that, because these interaction distances

are rarely seen during MD, the addition of the ZBL does not change thermodynamic

properties such as equilibrium lattice constants, or diffusion behavior.
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Figure 5.3. H-H Pair interaction, under the trained MTP and with an over-
layed ZBL interaction to suppress the spurious attraction under 1 Å. The
inclusion of the ZBL is required when close H-H interactions are probed
during high temperature MD in H-saturated phases.

5.3. Results: Bulk and Vibrational Properties, and Phase Transformations

in Zr-H

Results will be structured as follows. First, we will compare bulk and vibrational

properties calculated using DFT and MTP, including lattice parameter, elastic constants,

phonon dispersion, and Bain path distortions at ZrH and ZrH2 compositions. Then, we

will consider phase transformations, starting with the first-order phase transformation

between α- and β-Zr before moving onto the Zr-H system. Within the Zr-H system, we

will treat the solvus boundary between α-Zr and the ordered γ-ZrH model hydride phase,
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and then the phase transformation between δ-ZrH2−x and ϵ-ZrH2 . After treating phase

transformations, we will then validate the use of the Zr-H potential (which we have named

Zr-ZrHx MTP), for various properties related to phase transformations. These include

H-vacancy ordering in δ, H diffusion in α and δ, and finally defects in Zr, including point

defects, surfaces, and the interface with γ-ZrH.

5.3.1. Comparison of calculated bulk properties between DFT and trained

MTP

5.3.1.1. Lattice and elastic constants of bulk phases. Table 5.2 summarizes the

lattice constants and elastic behavior of the pure α-Zr phase and ordered hydride phases,

both calculated using DFT and the trained MTP presented in this work, and experiment

when available. Lattice constants predicted by the MTP are in excellent agreement with

DFT, however there is some inaccuracies in capturing the elastic behavior of the hydride

phases, especially the two ZrH2 phases. We have also used NPT MD to estimate the

thermal expansion coefficients of a and c in Zr, respectively at 6.7 x 10−6/deg and 7.95 x

10−6/deg, compared to 5.5 x 10−6/deg and 10.8 x 10−6/deg as measured experimentally

[139].

5.3.1.2. 0 K Energetics of Bulk Phases. In order to capture the relevant bulk en-

ergetics in Figure. 5.4, we plot the Zr and ZrH2 convex hull calculated using DFT and

the trained MTP. We set the chemical potentials of µZr and µH by solving the following

system of equations:
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Table 5.2. Comparison of equilibrium lattice parameters and elastic con-
stants using VASP-PBE (this work) and the trained MTP. We compare
with results from two theoretical results from the literature, the first using
PBE within VASP as well [22] , and the other using PBE within the GPAW
package [18]. Experimental lattice parameters for α-Zr, γ-ZrH, and ϵ-ZrH2

are taken from Zuzek et al [184], while the experimental Bv of α-Zr is from
Fisher et al [41]. We note excellent agreement between our DFT calcu-
lated lattice parameters and those calculated under the MTP. The largest
deviation is in the a lattice parameter of γ-ZrH, at about 0.35. Elastic
properties are reported in GPa. More significant deviations exist in the
elastic properties. The properties of α-Zr are very well reproduced, while
the γ-ZrH phase is predicted to have a slightly harder bulk modulus under
the trained MTP than DFT, and slightly softer shear and Young’s moduli.
The two ZrH2 phases offer a more complex potential energy surface due
to the dynamic instability of the δ-ZrH2 phase, which the trained MTP is,
unsurprisingly, not fully able to capture.

Phase Method a c c/a C11 C33 C12 C13 C44 C66 Bv Gv Ev

α-Zr VASP-PBE 3.23 5.16 1.59 136.40 153.94 73.32 67.01 25.30 31.54 93.49 31.05 83.88

Blomqvist 3.24 5.16 1.59 157.00 158.00 51.00 62.00 15.00 44.00 91.33 34.60 92.16
Christensen 96.00 33.00 88.82

Zr-ZrHx MTP 3.23 5.16 1.60 130.24 184.24 78.89 62.33 24.92 25.68 94.65 31.18 84.29

Experiment 3.23 5.15 1.59 155.00 173.00 67.00 65.00 36.00 44.00 97.44 42.27 110.78

γ-ZrH VASP-PBE 4.58 5.03 1.10 122.62 183.96 118.17 95.70 49.97 64.91 116.48 40.95 109.95

Blomqvist 4.59 5.00 1.09 131.00 176.00 123.00 92.00 64.00 75.00 116.89 49.33 129.75
Christensen 113.00 25.00 69.85

Zr-ZrHx MTP 4.57 5.02 1.10 141.07 185.89 140.99 116.81 38.65 56.26 135.25 32.94 91.40

Experiment 4.596 4.97 1.08

ϵ-ZrH2 VASP-PBE 5.00 4.40 0.88 174.92 158.77 148.55 103.42 32.05 64.47 135.49 35.93 99.03
Blomqvist 5.00 4.43 0.89 156.00 132.00 144.00 107.00 40.00 60.00 128.89 33.73 93.08
Christensen 130.00 24.00 67.83

Zr-ZrHx MTP 4.99 4.41 0.88 176.77 146.65 145.64 123.34 58.43 65.79 142.76 43.72 119.01
Experiment 4.975 4.45 0.89

δ-ZrH2 VASP-PBE 4.80 4.80 1.00 73.82 73.82 164.43 164.43 -49.56 -49.56 134.23 -47.86 -162.94
Christensen 132.00 -66.00 -238.00

Zr-ZrHx MTP 4.80 4.80 1.00 109.91 109.91 128.18 128.18 35.79 35.79 122.09 17.82 50.98

(5.2) µZr = Eα-Zr
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(5.3) µZr + 2µH = Eϵ-ZrH2

Here, Eα-Zr and Eϵ-ZrH2 are energies per formula unit. These reference chemical potentials

are used to calculate the formation energy per atom of each phase. For an arbitrary ZraHb

the formation energy ∆E is calculated as

(5.4) ∆EZraHb
=
EZraHb

− aµZr − bµH

a+ b

This choice of chemical potentials corresponds to the coexistence of α-Zr and ϵ-ZrH2,

and is thus relevant for the conditions leading to hydride formation in Zr fuel cladding.

In addition to the bulk phases we have discussed so far, we include the ordered fcc ZrH1.5

introduced by Domain et al [30] that is commonly used as a proxy for the cubic ZrH2−x

phase. We also plot the formation energies of special quasi-random structures [183]

(SQS), which capture disordered phases in finite computational cells. Here, we use SQS

to account for hydrogen-vacancy disorder in hydride phases. SQS were generated using

the mcsqs [157] code within the Alloy Theoretic Automated Toolkit (ATAT) package

[155]. Pair, triplet, and quadruplet interactions were set to a cutoff distance of 6 Å and a

maximum number of atoms set to 64. SQS were generated corresponding to ZrH, ZrH1.5,

ZrH1.6, ZrH1.66, and ZrH1.75, corresponding to 42, 20, 26, 46, and 22 atoms.

The convex hull construction is the starting point for understanding the thermody-

namics of phase stability in the Zr-H system. At 0 K, and without accounting for zero

point energy, we predict the formation of a pure γ-ZrH phase, though with very low

driving force as the formation energy just -1 meV. The trained MTP is able to nearly

match the predicted formation energy of γ-ZrH under DFT. The SQS phases offer a rough
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Figure 5.4. Convex Hull of formation energies, as calculated in Equation
5.4, against the formation of Zr and ZrH2. Solid markers indicate values
from DFT calculations, while empty markers indicate values calculated un-
der the MTP. Red circles indicate ordered phases, while blue circles indicate
special quasi-random structures, which approximate hydrogen-vancay dis-
order. At a temperature of 0K and ignoring zero point energy, we predict
γ-ZrH to be a stable equilibrium phase, nearly degenerate in energy with the
formation of Zr + ZrH2. The low energy of the disordered SQS phases be-
tween 1.5 ≤x≤ 1.75 indicates the low barrier to the stability of the δ-ZrH2−x

phase with increasing temperature, accessible by a combination of vibra-
tional and configurational entropy. MTP shows a fairly strong agreement
with DFT especially across disordered phases. The strongest disagreement
is the over-stabilization of the cubic ZrH1.5 phase.
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quantification of the barrier to formation of the δ-ZrH1.6 to ZrH1.75 phases. At 0 K, these

SQS have a formation energy between 10-15 meV/atom under DFT and 15-20 meV/atom

under the trained MTP, in reasonable agreement. The ordered model δ-ZrH1.5 phase is

lower in energy under MTP by about 10 meV/atom, which we expect would suppress

the transformation temperature under MTP of ϵZrH2 to δZrH2−x. The strong agreement

between MTP and DFT in this composition range indicates an ability for the MTP for-

malism to accurately interpolate between ZrH and ZrH2, based on the Hydrogen-Vacancy

information from high temperature ZrH NPT snapshots.

The epitaxial Bain path (EBP) is of interest when studying tetrahedral and cubic

phase transformations, making them a useful testcase for testing the ability of our trained

MTP to capture hydride behavior. The EBP corresponds to varying biaxial stress in the

(001) plane of the phase of choice, while allowing for relaxation along the perpendicular

direction<100> path. The EBP for ZrH (with the hydrogen ordering corresponding to the

γ-ZrH phase) and ZrH2 are shown in Figs. 5.5 and 5.6. For both Bain paths, we show the

total energy per atom, plotted vs. the c/a ratio and as a ratio of the lattice parameter over

the equilibrium lattice parameter. For the ZrH composition, we see maximal deviation of

about 0.15 eV/atom. We also observe an inability for the trained MTP to capture the

subtlties of the potential energy landscape, as it shows a purely monotonically increasing

second derivative with distance from the minima in either plot. Under DFT, the second

derivative changes sign around a c/a ratio of 0.9, however neither predicts a stable cubic

phase or another minima besides γ-ZrH. The ZrH2 EPB shows the ϵ phase at the minimum

of both plots, the δ phase at the local maximum, and a third tetrahedral phase with a c/a

ratio > 1. However, the cubic phase is significantly more stable under the trained MTP
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Figure 5.5. ZrH epitaxial Bain path

than DFT, at about 12 meV vs. 5.5 meV, so the local maximum it sits at is very subtle

and nearly degenerate in energy with the tetragonal phase with c/a ration >1. This phase

may be synthesizable by introducing an epitaxial strain by growing ZrH2 on a suitable

substrate.
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Figure 5.6. ZrH2 epitaxial Bain path. The most notable feature is the lower
energy of the metastable fcc δ phase.

5.3.2. Vibrational Properties and Finite Temperature Thermodynamics

We use the Parlinski-Li-Kawazoe frozen phonon method [118] as implemented in the

phonopy package to calculate phonon dispersions and density of states within the har-

monic approximation, using both DFT and our trained MTP [150]. Dispersion and

density of states are shown in Fig. 5.7. We use a 4x4x4 supercells for α for a total of

128 atoms, a 3x3x3 supercell of γ-ZrH for a total of 216 atoms, and 2x2x2 supercells of
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the ZrH2 phases, which total 96 atoms. The two α-Zr defect cells contain 36 Zr atoms

and 1 H atom, and we use the same size cell for supercell calculations. In general, we see

excellent agreement between DFT and our trained MTP, in both dispersion behavior and

density of states.

Previous theoretical treatments have attempted to address the significant effect of

anharmonicity in the vibrational properties of dilute hydrogen in α-Zr. These treatments

ascribe all significant vibrational behavior to the light H atom, while fixing the Zr atoms

which vibrate at lower frequencies and therefore may contribute less significantly to the

vibrational free energy. Christensen and colleagues only treat the anharmonicity of the

H defect in a tetrahedral site [22], by decomposing the vibrations of the dilute H atom

into a harmonic mode parallel to the basal plane, and then add the contribution of the

anharmonic double-well potential between neighboring tetrahedral sites by solving the 1-D

Schrodinger equation, in the two limiting cases of freezing Zr atoms corresponding to the

equilibrium H position, and freezing Zr atoms while H is in the transition state. In their

calculations, the fully harmonic treatment makes the octahedral site lower in energy than

the tetrahedral by 40 meV. Using their approach, the tetrahedral site remains preferred

across the temperature range, in agreement with experiment.

Christensen and colleagues claim that the octahedral site is well described by the

fully harmonic treatment. However, we have calculated the transition pathway between

tetrahedral and octahedral sites, as well as between two octahedral sites using Nudged

Elastic Band (NEB), and our results show significant anharmonicity for these sites as well,

in addition to the well established anharmonicity in the tetrahedral-tetrahedral transition.

These transition pathways are shown in Fig. 5.8 and the calculations details discussed
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Figure 5.7. Phonon dispersions and Density of States (DoS) of α-Zr, α-Zr
containing Hydrogen in interstices, and relevant hydride phases, comparing
the Zr-ZrHx MTP with DFT results. DFT results are shown as a solid
line, while predicted behavior calculated under the MTP are shown as the
dashed line, and are generally in excellent agreement. The modes below 10
Thz are dominated by Zr, while the high frequency modes above 20 Thz
correspond to H behavior.
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Figure 5.8. Migration pathway of H in α-Zr, calculated using DFT (solid
markers and lines) and MTP (empty circles and dashed lines), first between
neighboring tetragonal-tetragonal sites, then tetrahedral to octahedral, and
finally octahedral to octahedral. Barrier heights are well reproduced, with
errors of 20 meV, 3 meV, and 25 meV for T-T, T-O, and O-O transitions.

thoroughly in section 5.4.2. Wang and colleagues treat anharmonicity in both defect sites

[161], following the procedure of Nazarov et. al [109]. This approach displaces the defect

H atoms along <100>, <110>, and <111>directions, applies a quartic fit, and then solves

the anharmonic Schrodinger equation. Wang’s approach calculates octahedral defects as

more stable at 0 K when the vibrational zero point energy (ZPE) is considered, by 10-20

meV across supercell sizes, contradicting Christensen et. al. In the work presented here,

we use the results from the fully harmonic treatment, the octahedral site is more stable

at 0 K by about 20 meV, when ZPE is considered, as shown in Fig. 5.9.
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5.3.3. Calculation of Solvus Boundary and Applicability of MTP

We next investigate the effect of temperature on the prediction of the solvus boundary.

The experimental phase diagram shows increasing solubility of H into α, up to about

6 % at 850K. Beyond the solubility limit, the δ-ZrH2−x phase is found to precipitate

in experiment. However the consideration of configurational entropy in the disordered

hydrogen-vacancy sublattice of the δ-ZrH2−x phase adds extra complexity to the question.

Thus, similarly to Christensen and colleagues, we substitute the ordered γ phase in our

thermodynamic analysis. We follow the ideal solution formulation Ozoliņš and Asta used

to study the solubility of Sc in Al to formulate the solubility limit cs,x(T ) of H in a given

defect site x in the α-Zr lattice. [115]. Analogous to their work, ∆G(ZrH) is the formation

value of the Gibbs free energy per atom of ZrH, while ∆G(H) is the solution free energy

for a dilute H atom in the host α-Zr lattice, expressed per H atom.

(5.5) cs,x(T ) = exp

[
2∆G(ZrH)−∆G(H)

kBT

]

In order to account for the two possible defect sites, we simply add the concentrations

in both sites, scaled by the number of sites per Zr.

(5.6) cs,Total(T ) = cs,Octa(T ) + 2 ∗ cs,Tetra(T )

We note that the only entropy considered is non-configurational:

(5.7) ∆G = ∆H − T∆Snc
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Vibrational free energy contributions to H defects in α-Zr and γ-ZrH are show in Fig. 5.9.

Our trained MTP over-stabilizes the interstitial defects when vibrational effects are ig-

nored, however applying the fully harmonic treatment to calculate the vibrational free

energy predicts less stable defects under the trained MTP than DFT. These differences

are counteracting, such that the deviation in the predicted solvus boundary between DFT

and MTP is only 25K at 6% atomic concentration. There is also a difference of about

220K between the solvus boundary predicted by the trained MTP and experiment 6%.

We note that the boundary predicted using the ordered γ-ZrH phase as a reference state

should be lower than in experiment at , in which the more stable δ-ZrH2−x phase forms. If

we assume this effect is purely entropic (motivated partially by the disorder of δ-ZrH2−x,

a temperature-independent ∆Scorr value of 1.4 kB per hydrogen atom added on to our

calculated solvus boundaries would bring them into excellent agreement with experiment.

This value is significantly larger than what would be provided by configurational entropy,

so it’s quite likely either DFT is not fully accurate, or the harmonic approximation intro-

duces significant error.

5.3.4. Phase Transformation of ϵ-ZrH2 to δ-ZrH2−x

The cubic δZrH2−x and tetragonal ϵ-ZrH2 phases are closely related and establishing an ex-

act temperature for the phase transformation is challenging due to the presence of oxygen

and difficulty in equilibrating samples [184]. The phase diagram of Zr-H usually includes

a coexistence region between the two phases [105], and correlation between increasing

hydrogen content and transition temperature. Moore et. al measure up to ZrH1.81, above

which there is significant hydrogen disassociation pressure. At that concentration, they
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Figure 5.9. a) Free energy per hydrogen atom of dilute hydrogen defect in
α-Zr interstitials and in ordered γ-ZrH, with temperature dependence mod-
eled from the vibrational free energy, calculated under the fully harmonic
approximation. Single markers at 0K are purely internal energy values,
while lines include vibrational free energy, including Zero Point Energy.
Note that the free energy of α-Zr is subtracted from each, while no refer-
ence H state is used, as the MTP is not trained on molecular H2. Values are
set such that the free energy of γ − ZrH is set to 0 at 0K. Solid lines indi-
cate results from DFT, while dashed lines indicate results predicted by the
trained MTP. We find strong agreement for the ordered ZrH phase, while
a significant deviation in the defect phases. At 0K, the trained MTP over
stabilizes the defects by about 40 meV. However, with increasing tempera-
ture, DFT predicts more stable defects within the harmonic approximation.
MTP. b) Predicted solvus boundary as calculated from equations 5.5 and
5.6, using DFT (solid lines) and MTP results (dashed lines).

measure a transformation temperature of about 1000K. We further note that their sam-

ples contained 4 at % uranium, which may also add some uncertainty. Maimaitiyili et. al.

find from their in-situ synchotron x-ray diffraction experiments that no two-phase region

exists, and argue that the phase transformation is second-order in nature and does not

display any discontinuities.[97]. The coexistence region does not extend for the full extent



110

of the phase boundary, so it is plausible that the order changes from first to second with

increasing temperature.

We next probe phase transformations using NPT molecular dynamics simulations with

a Nose-Hoover thermostat, run over our trained MTP. We will carefully track the lattice

parameters, searching from a transformation from ϵ, in which a = b > c, to the cubic

δ-ZrH2−x phase, in which all three lattice vectors are equal. The determination of whether

the phase transformation is first or second order is beyond the scope of this work, the

signals which we carefully monitor during MD could plausibly correspond to either a

continuous second order phase transformation, or the coexistence region characteristic of

a first order transformation.

Experimentally, at a composition of ZrH1.83, the c lattice vector in ϵ increases with

rising temperature gradually, starting from about 4.5 Å at room temperature, and rising

to about 4.6 Å at 900K, before quickly and continuously rising to 4.8 Å at 1000K. Between

room temperature and 900K, the a and b lattice parameters only drop by about 0.03 Å

. For each simulation, a time step of 0.5 femtosecond was used, with a time damping

parameter of 50 femtoseconds and a pressure damping parameter of 500 femtoseconds.

We begin with an 8x8x8 supercell of conventional δ-ZrH2, containing 2048 Zr atoms

and 4096 H atoms. We then randomly remove hydrogen to achieve stoichiometries of

ZrH1.6, ZrH1.66, ZrH1.75, ZrH1.83, and ZrH1.9. For each of these stoichiometries and the

fully occupied ZrH2, we equilibrate at 900K for 50 picoseconds, to minimize the effects of

initial hydrogen occupancy on the simulation. We then conduct multiple simulations using

these initial structures, each set to constant temperatures across the range of interest, up

to 1000K, and equilibrate over 200 picoseconds. We take a time average of the lattice
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parameters every 50 femtoseconds, averaging over 4 snapshots spaced by 5 femtoseconds,

and then take the running average over the last picosecond. We plot the time average of

the last 100 picoseconds for each individual simulation in Fig. 5.10.

The transformation temperature as, measured in experiment is usually taken at a

limiting stoichiometry of about ZrH1.81, above which significant hydrogen dissociation

occurs, with phase diagrams of this region usually drawn off the work of [105]. At this

stoichiometry, Moore and colleagues measure a transformation temperature of about 950

K, while for ZrH1.83, we simulate a transformation temperature of about 700 K, so we

underestimate the transformation temperature by about 250 K. They extrapolate from

here, indicating that ZrH2 should have a transformation temperature of about 1150 K, a

200 K difference vs the measurement at ZrH1.81, while we simulate that the difference is

about 100 K under our trained MTP.

The inclusion of the overlayed ZBL was needed to suppress lost atoms during MD

equilibration runs for ZrH1.83, ZrH1.9, ZrH2 structures at 900K, and for treating ZrH2

at 850K. We confirmed that the overlayed ZBL did not meaningfully change the MD

trajectories at 800K for these structures.

We have also plotted the Zr-Zr radial distribution function (rdf) captured during these

MD simulations in Fig. 5.11, which also confirm the trend of increasing transformation

temperature with higher hydrogen content. The rdf is averaged in a similar fashion to

the lattice parameter.

We have plotted the phase boundary as determined by the above molecular dynamics

simulations, and compared it with experimental measurements from Moore and Young

[105], including extrapolated sections, shown in Fig. 5.12. Though the boundary is well
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Figure 5.10. Time averaged lattice vectors for hydride stoichiometries rang-
ing from ZrH1.6 to ZrH2 vs. the temperature set by the thermostat during
molecular dynamics. Lattice vectors have also been normalized per num-
ber of unit cells along each direction. Marker type corresponds to stoi-
chiometry, with more sides incidcating higher H content, while darkness
corresponds to the order of the lattice parameter, with the lightest marker
corresponding to the shortest lattice parameter. We highlight in yellow a
rough area corresponding to the cubic lattice parameter range, accounting
for thermal expansion. There is a clear trend that the transformation tem-
perature increases as more hydrogen is loaded into the hydride, consistent
with experiment, though the trained MTP underestimates the transforma-
tion temperature by about 250 K.

estimated for lower hydrogen compositions, we have simulated a less steep temperature

dependence with respect to composition. At the limit of experimental measurements,

at about ZrH1.81, we underestimated the boundary temperature by about 275K. This

underestimation is due in some part to the overstabilization of the fully occupied δ ZrH2

phase. Other factors may be inaccuracies in the underlying DFT training set, the lack of
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Figure 5.11. Zr-Zr radial distribution function as captured during molecular
dynamics, with varying stoichiometry and temperature. The transforma-
tion temperature as estimated from 5.10 is marked with a black horizontal
line. The trends in the rdf are consistent with the experimental observation
that higher hydrogen content corresponds to higher ϵ to δ transformation
temperature.
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Figure 5.12. Temperature and compositional dependence of the phase
boundary between ϵ and δ phases, calculated using MD simulations us-
ing the trained MTP and experiment [105].

quantum effects during simulation, or more information being needed in this portion of

the training set.
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5.4. Results: Validation of Zr-ZrHx MTP for Defects Thermodynamics and

Migration

We will now validate the trained MTP for defects that are desirable to capture with

a Zr-H MLP. These include H-vacancy ordering in the region of the δ-ZrH2−x phase, H

migration in α-Zr and δ-ZrH2−x, and various point and planar defects.

5.4.1. H-Vacancy ordering on fcc-Zr lattice

In order to more closely evaluate the ability for the trained MTP to accurately capture

the dominant δ-ZrH2−x phase, we have fit a real space cluster expansion using the maps

program as implemented in ATAT [156], of H distributed on tetrahedral sites in fcc-Zr.

Besson and Candela have previously fit cluster expansions of the same system, using short

range and long range interactions, and considered the transformation between ordered γ-

ZrH and δ-ZrH2−x, building on previous use of reciprocal-space cluster expansions to

model H in the hcp-Zr lattice [57]. In our work, we use 147 total training examples to fit

the cluster expansion, as generated automatically using ATAT. We allow these structures

to fully relax within DFT before fitting, following modes permitted by their underlying

symmetry (ie, a phase that preserves tetragonal symmetry with its H-Vac sublattice will

not follow arbitrary triclinic distortions). The results of the cluster expansion fit are shown

in Fig. 5.13, with formation energies as calculated in Equation 5.4. A cross-validation score

of 3.8 meV/tetrahedral site was found during fitting.

We have primarily fit this cluster expansion for the purpose of generating low energy

ordered phases in the composition range corresponding to the δ-ZrH2−x phase in order

to evaluate the trained MTP. A comparison of the convex hulls of the phases used to
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Figure 5.13. a) Cluster expansion fit and b) DFT calculated structures used
to fit cluster expansion of tetrahedral H and vacancies decorating fcc Zr
lattice. c) shows Effective Cluster Interaction, which is dominated by a
short-range pair interaction. End members for the convex hulls are fcc-Zr
and fcc-ZrH2, which are higher in energy than true ground states.
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fit the cluster expansion, as calculated under DFT and the trained MTP, are shown in

Fig. 5.14, however in these plots we have computed the convex hull with the known α-

Zr and ϵZr-H2 end members, as well as the γ-ZrH phase, as we are interested in the

formation against realistic competing phases. The MTP significantly over-stabilizes the

low hydrogen content ZrHx, x < 1, but is able to accurately capture behavior in the low

energy region corresponding to the δ-ZrH2−x phase. Most importantly, the MTP does not

erroneously predict any of these phases to be a ground state, though the fcc ZrH1.5 phase

comes close to breaking the convex hull.

Figs. 5.15 and 5.16 compare formation energies for these compounds as calculated by

DFT and the trained MTP, with insets showing just the compounds with x>1 in ZrHx.

We see that the most significant error is about 20 meV per atom among high hydrogen

content structures. The root mean square error for the entire dataset of structures used to

calculate the cluster expansion is 11.3 meV, while the rmse for the high hydrogen content

subset is 6.3 meV. We note that these structures were not explicitly included in our

training set, and the predictions of hydrogen-vacancy interaction is based off information

from the MD of the ZrH and ZrH1.66 phases.

5.4.2. Migration of H in α-Zr and δ-ZrH2−x

It is critical that our trained MTP can accurately capture H diffusion in α-Zr, as it is

a necessary step in the phase transformations and coexistence between α and hydride

phases. We first begin our analysis of H migration in α-Zr by explicitly computing the

three relevant energy barriers: tetrahedral to tetrahedral (T-T), tetrahedral to octahedral

(O-T), and octahedral to octahedral (O-O), using the climbing image-Nudged Elastic
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Figure 5.14. Convex Hull of 147 ZrHx structures used to fit a cluster ex-
pansion (red) and SQS (blue), calculated under DFT and the trained MTP.
The low energy phases at x = 0, 1, 1.5, and 2 are hcp α-Zr, γ-ZrH, the
model δ-ZrH1.5, and ϵ-ZrH2, as shown in Fig. 5.4.
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Figure 5.15. Comparison of formation energy of structures used to fit cluster
expansion as calculated by DFT and the trained MTP. Insets show just the
set of phases where x > 1 in ZrHx, which is better spanned by our training
set, and more relevant in simulating bulk hydride behavior.

Band (ci-NEB) method [55] [54], using the Transition States Tools for VASP (VTST)

package, and as implemented in LAMMPS. Defect cells were constructed using 36 Zr

atoms and a single dilute H atom, and cell sizes were fixed at the equilibrium tetrahedral

during ci-NEB. The transition pathways are shown in 5.8. DFT barrier heights are in

good agreement with those calculated by Wimmer et al[165].

Tetrahedral interstices have only a single tetrahedral nearest neighbor, and thus the T-

T transition presents an energy basin that must be exited in order to achieve net migration.

Accelerated Kinetic Monte Carlo calculations carried out by Zhang and colleagues [177],

in which this intra-basin step has been sidestepped by an analytical form, have predicted

that about 80% of net migration moves are O-T or T-O, and 20% of moves being net

T-T steps. These decline as a function of temperature, compensated by increasing O-O
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Figure 5.16. Prediction error as a function of hydrogen composition among
the cluster expansion training set (red) and SQS structures (blue). We see
significantly smaller errors for the hydrogen rich phases above x>1, with
the highest error of about 20 meV.

steps which read about 5% at 1000 K. Their work also includes an interesting discussion

of how diffusion along < a > vs < c > directions are mediated by the different types

of jumps, finding that H diffusion along < a > occurs primarily via TO and OT moves,

which have opposite < c > components that would cancel out as well. Net diffusion along

< c > requires T-T and O-O jumps. Thus all three transition barriers are important in

capturing total diffusion in α-Zr.

We’ve calculated the diffusion of H in α-Zr using NVT MD simulations, by tracking

the mean-squared-displacement (msd) as a function of time. Cells containing 18 H and

648 Zr atoms were used. Equilibrium volumes were first determined using NPT MD

simulations, similar to those carried out in section 5.3.4 concerning ϵ and δ ZrH2−x. We
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ran the NVT simulations for 3 total nanoseconds, with the first 0.25 ns being treated as

equilibration steps. Calculations were carried out at between 700 and 1000 K in intervals

of 100 K. We then use linear regression to fit the slope of the final 2.75 ns vs. msd, to

estimate the diffusivity as a function of temperature using the following equation.

(5.8) D =
msd

6t

The factor of 6 coming from the fact that we are treating diffusion in 3 dimensions. Though

the presence of multiple relevant barriers means the behavior is not strictly Arrhenius, we

can still fit the data to obtain the diffusion coefficient D0 and energy barrier Ea, which

we estimate to be 4.45 x 10−7 m2/s and 0.3433 eV.

(5.9) D = D0 exp
−Ea

KT

We show our calculated diffusivities in Fig. 5.17, plotted alongside with experimental

measurements. We calculate diffusivities that are greater than those in experiment, how-

ever the slope compares well, indicating that our activation energy is in good agreement.

Zhang and colleagues calculate a D0 and Ea of 5.55 x 10−7 m2/s and 0.41 eV respectively

from their KMC simulations, and note that the deviation from experiment is narrowed by

the inclusion of impurity defects. The diffusion coefficient predicted by the trained MTP

is in good agreement, though the calculated energy barrier is about 60 meV lower than

in the KMC simulations. The lower activation barrier as estimated by our calculations

maybe due to the lower barrier heights with pathways originating from the octahedral

site, or a higher proportion of basin-exiting T-T steps.
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Figure 5.17. Diffusivity of dilute H in α-Zr as calculated using our trained
MTP (yellow) vs a variety of experimental measurements [72, 98, 130,
133], and theoretical KMC calculations [177].

We have also modeled the diffusion behavior of hydrogen in the dominant δ-ZrH2−x

hydride. The tetrahedral sites in which H sit in the fcc Zr lattice form a simple cubic lattice

and permit net diffusion. For these calculations, we use volumes and cells as equilibrated

in the previous section on the hydrogen-rich phase transformation, each containing 256

Zr atoms. Due to the larger number of H atoms, and therefore less statistical noise than

when treating H defects in α-Zr, we ran the NVT simulations for a shorter overall time

of 0.5 ns, acquiring diffusivities from the final 0.4 ns.

Experimental studies of the diffusivity in the δ-ZrH2−x phase are less common in the

literature. Korn and Doren conducted an NMR study of diffusivity in both δ-ZrH2−x

and ϵ-ZrH2−x phases, comparing three models of extracting diffusivity T−1
1d from the total
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relaxation rate T−1
1 [79]. We compare with diffusion coefficients and activation energies fit

using the theory of Bloembergen, Purcell, and Pound [17]. To convert from their diffusion

coefficients A, reported as a jump rate in Hz, we use the following equation [166].

(5.10) D = a2(1− c)f(c)A

a is the lattice parameter of the hydrogen sublattice, about 2.2 Å in the δ-ZrH2−x phase,

c=2−x
2

is probability of any individual tetrahedral hydrogen site being occupied, and f(c)

is a correlation factor, which is approximated by:

(5.11) f(c) =
1+ < cosθ >

1+ < cosθ > ∗2−3c
2−c

Here, θ is the angle between successive diffusive moves in the limit of a fully occupied

H sublattice. The expectation value of the cosine is well approximated by -0.2098.

The diffusivities and activation energies are summarized in Table 5.3. As Korn and

Doren [79] note, the diffusion coefficient should correlate inversely with H occupation, as

there are more vacancies into which diffusion is possible, which our measurements reflect.

The modeled activation energies are in excellent agreement with experiment, however

calculated diffusion coefficients are an order of magnitude higher than experiment. Some

of the inaccuracy in the diffusion coefficient may be similar to the case of α-Zr, in which

sample impurity may suppress diffusion rates. The diffusion coefficient should decrease

monotonically with increasing concentration, as is the case in experiment, due to the

reduction in neighboring vacancies to jump into. The magnitudes of the diffusivities as
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Figure 5.18. Diffusivity of H in δ-ZrH2−x as calculated using our trained
MTP (dashed lines) vs experimental measurements.

a function of temperature follow this trend in our calculations, indicating that this may

simply be a numerical issue due to the small temperature range treated, and the relatively

small number of H diffusion steps captured, compared to experiment.

The calculation of MSD at 1000K required the inclusion of the overlayed ZBL to

suppress lost atoms during MD, as described previously. To test the effect including

the ZBL on diffusion, we also overlayed the ZBL on simulations conducted at 900 K.

For ZrH1.6 and ZrH1.75, nearly identical trajectories were undergone, with no change in

diffusion, indicating the close H-H interactions are very rare at this temperature. A small

change of trajectory was seen for ZrH1.66, however the difference in diffusivity was just

4.92 x 10−5 cm/s2 to 4.60 x 10−5, a minimal change that would not meaningfully effect
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Table 5.3. Fit of H diffusion constant and activation energy in δ-ZrH2−x

phases with varying composition, compared with experimental quantities
measured from NMR [79]. The calculated diffusion coefficients are an or-
der of magnitude higher than in experiment, but activation energies are in
excellent agreement.

Comp D0 (m2/s) Ea (eV)

MTP ZrH1.6 1.27 x 10−6 0.556
ZrH1.66 1.60 x 10−6 0.584
ZrH1.75 1.07 x 10−6 0.570

Exp. [79] ZrH1.588 1.18 x 10−7 0.578
ZrH1.629 9.47 x 10−8 0.578
ZrH1.684 6.76 x 10−8 0.576

the calculated diffusion coefficient or activation energy. The presented result is without

the overlayed ZBL.

5.4.3. Modeling of Defects in Zr

As a matter of practical use of this Zr-H potential, we model its ability to capture a variety

of other defects, namely point defects: vacancies and self-interstitials in α-Zr, and planar

defects: surfaces and stacking faults in α-Zr. These values are summarized in Table 5.4.

For point defects, we used a 3 x 3 x 2 supercell of α-Zr, with one atom removed

for the vacancy and one atom added to an octahedral site for the self interstitial, with

calculation accuracy similar to that used to assemble the training set. Though snapshots

of MD simulations of the vacancy were included in the training set, the error is quite large

at about 0.5 eV higher compared to DFT, which may lead to inaccuracies when using our

MTP to study related phenomena, such as H accumulation at vacancy loops. However,

the self interstitial defect as calculated by MTP is in excellent agreement with DFT. The

basal surface energy was calculated using 6 layers of Zr and about 15 Å of vacuum, and is
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also captured well by the trained MTP. The basal stacking fault, however, is overstabilized

by our trained MTP, by about 10 meV/Å2. This is similar to the error for the stacking

fault as calculated under the BMD 19.1 and 19.2 EAM potentials, however in that case,

Wimmer and colleagues contextualize this by the overstabilization of the fcc case (only

about 9 meV/atom less stable than the groundstate hcp). The trained MTP does not

overly stabilize the competing fcc phase, but does overstabilize the stacking fault. The low

formation energy may lead to the nucleation of many stacking faults in α-Zr, especially

in the presence of hydride phases.

In order to estimate the interfacial energy of the basal α-Zr (001) in contact with γ-

ZrH (111), we follow a similar approach to Louchez and colleagues [93]. We first construct

a series of interfacial multilayers with a 2:3 ratio of formula units of Zr and ZrH. We then

calculate the formation energy of each interfacial multilayer cell ∆Emulti(f, x):

(5.12) ∆Emulti(f, x) = Etotal − nZrµZr − nHµH

Here, ni and µi are the number of the each species in a given supercell, and their chemical

potential. For this portion of the work, we set chemical potentials such that Zr and ZrH

are in equilibrium. f and x are respectively the total number of formula units of α-Zr and

γ-ZrH, while x is the ratio of α to γ. Etotal is the internal energy after full relaxation of

the internal coordinates as well as the cell vectors.

We then decompose the energy of each supercell to an interfacial contribution that is

proportional to the interfacial area, and an elastic part that is proportional to the total

volume of the cell.
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Table 5.4. A comparison of point and planar defects in α-Zr, as calculated
by our trained MTP and DFT, as well as a comparison of other possible pure
Zr constructures. The point defects are Evac and ESIA which are respectively
vacancies and self interstitial atoms in Zr. The planar defects EBSF , EBS,
and EBI , which are respectively the energies of basal stacking faults, basal
surfaces, and basal interfaces of Zr in contact with ZrH. The majority of
DFT reference values are from the work of Wimmer et al. [165] , with
the exception of EBS[154] and EBI [93]. Wimmer et. al show calculated
energies of these defects and competing phases using their BMD potentials
along with previous potentials from the literature, COMB3 and MA#3, in
Table 3.

Evac

(eV)
ESIA

(eV)
EBSF

(meV/Å2)
EBS

(meV/Å2)
EBI

(meV/Å2)
Ebcc−hcp

(meV/atom)
Efcc−hcp

(meV/atom)

MTP 2.49 2.91 2.59 95.97 18.49 65.04 29.81
DFT 1.94 3.02 10.77 90.01 20.80 82.62 36.59
DFT (ref) 2.05 2.96 13.80 100.00 12.48 83.00 43.00

(5.13) ∆Emulti(f, x) = 2Aσ + ecs(x)fVf

Here, A is the area of the interfacial cell, with the factor of two coming from the

two interfaces contained in a single cell due to periodic boundary conditions, ecs is the

coherency strain energy, and Vf is the volume per formula unit. After dividing both sides

by 2A and applying a linear fit, we can see that σ, the interfacial energy, can be estimated

by the y intercept of the fitted line, while the slope of the fitted line is proportional to f,

while the slope is equal to ecs(x)Vf/2A. The results are shown in Fig. 5.19. We estimate

an interfacial energy and coherency strain of σ=333.25 mJ/m2 and ecs = 129.4 J/cm3 for

DFT, while for MTP we estimate an interfacial energy and coherency strain of σ=296.28

mJ/m2 and ecs = 62.6 J/cm3
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Figure 5.19. Multilayer energies for basal interfaces of α-Zr and γ-ZrH, at
a fixed ratio of α:γ of 2:3 for DFT (solid line and filled markers) and our
trained MTP (empty marker and dashed line). By decomposing multilayer
energies into interfacial and coherency strain contributions, we can estimate
an interfacial energy and coherency strain.

We note Louchez and colleagues calculate a significantly lower interfacial energy than

we do for the same cell geometries, at about 200 mJ/m2. We suspect that this is primarily

due to their use of ultrasoft pseudopotentials. For a cell containing 10 formula units, they

calculate a Emulti/2A of about 250 mJ/m2, while we calculate about 278 mJ/m2 by using

ultrasoft pseudopotentials, which would explain the bulk of the difference. As they report,

we find that the interfacial cell undergoes significant distortion during relaxation. We note

that in γ-ZrH in the (111) plane, the Zr-Zr nearest neighbor distances are 3.251 and 3.34

Å , vs in the (001) plane of α-Zr the nearest neighbor distance is about 3.243. However,
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after relaxation, the nearest neighbor distances within the interfacial plane range between

3.16-3.20 Å in the short case, and 3.35-3.38 Å in the long case. The relaxed cells also have

a tilt in the β angle of about 85 ◦, deviating from the constructed 90 ◦. This distortion

of the nearest neighbor distance hints that the ZrH phase is taking a different phase than

the tetragonal γ phase, accessible by symmetry due to the presence of the interface.

5.5. Discussion

The worked presented here concerning hydrides was conducted using a single MTP,

however in the course of investigation we trained many MTP, and noticed that several

key properties were quite variable. The properties we have screened for are summarized

in Table 5.5. Most notably, the magnitude of the energy of dilute H interstices in α-Zr

showed significant variability, with standard deviations of about 40 meV, enough to change

the ordering of octahedral vs tetrahedral defects. Because of our interest in modeling

the solvus boundary and subsequent use of the γ-ZrH phase to simplify the picture, we

were also wary of a low symmetry orthogonal ZrH phase, which formed during molecular

dynamics. This phase is just 0.5 meV/atom less stable than γ in DFT, and the vast

majority of the trained MTP overstabilized it, despite it being in the training set. We

chose from 5 MTP that correctly stabilized γ at 0K, opting for the potential that best

captured the ordering of the formation energy of H in tetrahedral and octahedral sites, as

well as γ-ZrH. The potential was also chosen because it compares well with the average

behavior predicted by MTP from this ensemble for the formation energies of the δ-ZrH2

and δ-ZrH1.5, which show a tendency to overstabilize these structures compared to DFT.

The variability of certain phases might motivate new approaches when training MLP,
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Table 5.5. Summary of outputs considered when screening for candidate
MTP during training. Statistical values are all using the same training
set and an MTP rank of 22, over a variety of initial weights for energy,
force, and stress errors during optimizations. Considered, in order, are the
defect formation of octahedral and tetrahedral H interstices in α-Zr, the
formation energy of γ-ZrH and a low energy orthorhombic phase at ZrH, the
difference formation energy per H for γ-ZrH and the tetrahedral defect, the
difference in formation energy for tetrahedral and octahedral interstitials,
the formation energy of the fcc δ-ZrH2 phase, and the formation energy of
the fcc δ-ZrH1.5 phase. We show these quantities for DFT, the chosen MTP,
and statistics for the 60 trained MTP in this set. All units are meV/atom,
except the values involving defect formation energies, which are meV/H

FH,oct(meV) FH,tet FZrH FZrH,ortho FZrH,H -Ftet,H Ftet,H -Foct,H FδZrH2
FδZrH1.5

DFT 416.71 346.27 -0.39 0.08 -347.05 -70.44 8.79 12.13
MTP 374.71 309.44 -1.87 -1.87 -313.19 -65.27 3.49 0.70
average 335.19 288.52 -0.57 -3.06 -289.65 -46.68 3.60 0.86
std dev 40.60 43.09 1.01 1.66 42.89 33.06 1.31 3.52
min 230.28 189.25 -2.93 -7.39 -383.46 -116.73 0.88 -9.18
max 430.47 384.12 2.48 -0.43 -189.93 41.55 6.04 9.84

within the MTP framework or otherwise. For instance, it may be advantageous to modify

the loss function as to ensure accurate prediction of 0K behavior.

5.6. Conclusion

In this work, we have presented a novel Moment Tensor Potential that is applicable to

studying multiple phases in the Zr-H system, primarily trained on DFT static calculations

selected during active learning during NPT molecular dynamics. The MTP faithfully

captures bulk energetics and vibrational properties of both pure α-Zr and hydride phases

of interest, as well as H interstitials in α-Zr, as calculated with DFT. In addition, the

MTP is capable of capturing H-vacancy ordering in δ-ZrH2−x and ϵ-ZrH2−x phases. Thus,

the MTP estimate of the solvus boundary is in good agreement with DFT, and we are
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able to capture the direction of the temperature and composition dependency of the δ-

ZrH2−x to ϵ-ZrH2 phase transformation, albeit under estimating the temperature by about

250K. The MTP also performs well on other point and planar defects, with the notable

exceptions of understabilizing Zr vacancies and significantly overstabilizing Zr stacking

faults in α-Zr. We hope this MLP will be used in the future for interesting studies of the

Zr-H system or extended upon in the future.
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CHAPTER 6

Summary and Outlook

In this dissertation, I have presented three investigations that centered on the study of

defects in energy materials. In the first, we adapted the Minima Hopping Method (MHM)

to study fine atomic structure at grain boundaries of SrTiO3, uncovering structures that

are lower in energy than those previously found in the literature. In the second, we

studied the role of cation disorder in Li3MO4 cathodes in thermodynamic stability and

facilitating anionic redox. In the third, we trained a novel Zr-H Moment Tensor Potential

that is capable of accurately capturing a suite of defects that are critical in reproducing

phase transformations, and is capable of capturing the finite temperature behavior of

structures with an impressive level of variation.

There are a few interesting problems that can be addressed using the information and

tools developed in this document. In particular, I would like to highlight the possible use

of the minima hopping method for studying interfacial structure beyond the benchmarking

work presented here. Of course, during my PhD, I spent much effort in doing this myself,

in particular attempting to extend its use to the study of batteries. Unfortunately, the

potentials available in the literature for Li-ion electrodes and electrolytes did not prove

fruitful. Many reproduce grain boundaries that are unphysically found to be unstable

against amorphization, at low temperatures of molecular dynamics. Others proved to have

very deep energy wells for certain defect structures, likely due to the simple structural form

of the interatomic potentials. Of course, an interatomic potential capable of describing
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both an electrode and a solid electrolyte phase would be even more difficult to develop than

in the case of a single phase. With the availability of computational time always growing,

the MHM approach to interfaces might also be useful for generating candidate structures

for high-throughput databases of solid-solid interfaces [167] by searching directly using

DFT, when attempting to treat non-trivial interfaces which may have reconstructions.

I have implemented routines for creating solid interfaces in qmpy, the python back end

of OQMD, to help begin the production of our own interface database, and I hope the

adapted MHM will be of use there as well.

The recent introduction of magnetic Moment Tensor Potentials (mMTP) [111] may

also facilitate the study of complicated battery systems, perhaps even allowing the study

of charge transfer. This could allow for more thorough investigations of the relationship

between anionic redox and disorder during delithiation.

The inability to find a suitable battery system is what drove my initial interest in

working on developing an MTP for Zr-H. The development of the MTP was concurrent

with the first attempts in our research group of training MLP, and required that we first

develop experience. While we did successfully develop a high-performance MTP for the

system, the complications of treating the bulk phases of Zr-H meant I did not have time

to treat realistic interfaces of the δ-ZrH2−x and matrix α-Zr. I hope a researcher reading

this dissertation or the future publication is inspired to use the MTP we’ve developed to

further study fine interactions between δ-ZrH2−x and matrix α-Zr, as it may guide the

field to better understand the nature of hydride formation, and eventually learn how to

suppress its formation.
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stein, N., Csányi, G., and Hart, G. L. Machine-learned interatomic potentials
for alloys and alloy phase diagrams. npj Computational Materials 7, 1 (2021), 1–9.

[125] Roy, S., Goedecker, S., Field, M. J., and Penev, E. A Minima Hopping
Study of All-Atom Protein Folding and Structure Prediction. The Journal of Phys-
ical Chemistry B 113, 20 (may 2009), 7315–7321.

[126] Roy, S., Goedecker, S., and Hellmann, V. Bell-evans-polanyi principle for
molecular dynamics trajectories and its implications for global optimization. Phys.
Rev. E 77 (May 2008), 056707.

[127] Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., and Wolverton, C.
Materials design and discovery with high-throughput density functional theory: The
open quantum materials database (OQMD). Jom 65, 11 (2013), 1501–1509.

[128] Sakaguchi, N., Ichinose, H., and Watanabe, S. Atomic Structure of Faceted
Σ3 CSL Grain Boundary in Silicon: HRTEM and Ab-initio Calculation. MATERI-
ALS TRANSACTIONS 48, 10 (2007), 2585–2589.

[129] Sanchez-Lopez, D. Sustainable Governance of Strategic Minerals: Post-
Neoliberalism and Lithium in Bolivia. Environment: Science and Policy for Sus-
tainable Development 61, 6 (nov 2019), 18–30.

[130] Sawatzky, A. The diffusion and solubility of hydrogen in the alpha phase of
zircaloy-2. Journal of Nuclear Materials 2, 1 (mar 1960), 62–68.



147

[131] Schaefer, B., Mohr, S., Amsler, M., and Goedecker, S. Minima hop-
ping guided path search: An efficient method for finding complex chemical reaction
pathways. Journal of Chemical Physics 140, 21 (2014).

[132] Schusteritsch, G., and Pickard, C. J. Predicting interface structures: From
SrTiO3 to graphene. Physical Review B - Condensed Matter and Materials Physics
90, 3 (2014), 1–7.

[133] Schwartz, C. M., and Mallett, M. W. Observations on the Behavior of
Hydrogen in Zirconium. undefined.

[134] Schwenker, E., Kolluru, V. S. C., Guo, J., Zhang, R., Hu, X., Li, Q.,
Paul, J. T., Hersam, M. C., Dravid, V. P., Klie, R., Guest, J. R., and
Chan, M. K. Ingrained: An Automated Framework for Fusing Atomic-Scale Image
Simulations into Experiments. Small 18, 19 (2022), 1–10.

[135] Seo, D. H., Lee, J., Urban, A., Malik, R., Kang, S., and Ceder, G. The
structural and chemical origin of the oxygen redox activity in layered and cation-
disordered Li-excess cathode materials. Nature Chemistry 8, 7 (2016), 692–697.

[136] Shapeev, A. V. Moment Tensor Potentials: A Class of Systematically Improvable
Interatomic Potentials. Multiscale Modeling & Simulation 14, 3 (jan 2016), 1153–
1173.

[137] Shapeev, A. V., Podryabinkin, E. V., Gubaev, K., Tasnádi, F., and
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