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ABSTRACT 
 This dissertation focuses on the development of quantitative approaches for characterizing 

endogenous signaling pathways and designing new pathways in mammalian cells. I demonstrate how 

mathematical descriptions that are formulated to explain gene expression patterns can also serve as a 

powerful springboard for deeper analyses into the properties and functions of pathways. Throughout, a 

recurring theme is that by measuring the behaviors of single cells and building models that directly 

incorporate these observations, we are better equipped (1) to uncover fundamental biological mechanisms 

and (2) to achieve genetic engineering design goals. 

 To the first point, I investigated the macrophage response to pathogenic stimulus. Heterogeneity is 

a hallmark of this cell type, but whether or how this variation relates to protective immune functions is not 

well understood. By integrating single-cell tracking and dynamical systems modeling approaches, I 

identified a previously unrecognized form of intercellular coordination that we termed quorum licensing. I 

found that macrophages track the history of their density, and then in a manner independent of previous 

explanations for how cytokine production is amplified in this system, the cells preemptively decide on the 

proportion of the population that will become highly activated in response to an inflammatory cue. This 

behavior involves coordinating heterogeneous cellular activation states in a way that generates a nonlinear 

response at the population level. The role of this newly defined collective decision-making strategy might 

be to both amplify inflammatory responses and limit them within sites of injury. 

 To the second point, cells have a vast capacity to be repurposed, and engineered cell-based 

devices are finding applications in the targeted treatment of diseases. Because the genetic components 

such as synthetic receptors and transcription factors for building cellular functions are nascent, quantitative 

principles governing their effective integration are very much needed. I developed statistical and dynamical 

modeling approaches to elucidate mechanisms by which a variety of genetic parts operate. I subsequently 

demonstrated an approach for predictively implementing complex genetic programs in mammalian cells. 

These efforts, and the collaborations they entail, comprise part of a transformation in the field of mammalian 

synthetic biology from a reliance upon biophysical intuition to the utilization of model-guided interpretation 

and design. By imparting greater specificity to activation and robust performance to heterogeneity, in the 

long-term these studies can inform more effective and sophisticated cell-based devices.  
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 This chapter begins with an overview of dynamical modeling with a focus on how I have used it. 

The second section on innate immune cell biology provides a background for Chapters 2 and 5, and the 

third section on mammalian cell-based devices relates to Chapters 3 and 4.  

 

1.1 Dynamical modeling in cell biology 

 Models: In a broad sense, a model can be thought of as an idealized representation of some aspect 

of reality. Any modeling project begins with a question or a purpose, such as to organize information, define 

and test hypotheses, identify important elements, or make predictions about new scenarios. In the biological 

sciences, computational models have become immensely valuable in helping to derive insights from data 

and shape research directions. In my experience, some of the goals at the outset of a project can often be 

achieved directly through the deliberate process of model construction, even prior to any simulations. Thus, 

at its core, the application of modeling in the biological sciences provides a framework for distilling the 

fundamental essence of a question and illuminating a path forward to address it. 

 There are several well-known aphorisms that have been attributed to various sources on this topic, 

and at the risk of contributing to their frequent quotation, I think the lessons to be learned from these 

statements remain at least as meritorious now as ever. Box and Draper said that "all models are wrong, but 

some are useful,"2 meaning that the goal is not to represent all of reality exactly, but rather to make useful 

approximations within a defined scope. A conceptual or mathematical model need not be true or complete 

to be useful. Naisbitt said that "we are drowning in information but starved for knowledge,"3 emphasizing 

the need for ways to extract useful information from large amounts of data—a sentiment that seems all the 

more salient in the omics age. Eigen said that "a theory has only the alternative of being right or wrong. A 

model has a third possibility: it may be right, but irrelevant,"4 meaning that modeling should be pursued in 

a manner that aligns with the ultimate goals of a study. This idea has been central to my work in making 

the design and implementation of genetic programs in mammalian cells more practical. More humorously, 

Brewster, Einstein, Eigen, Berra, and others have said that "in theory there is no difference between theory 

and practice, while in practice there is."5 At the end of the day, I hope that my work will lead to practical 

advances, and there will certainly still be room for refinement of the models. 
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 Dynamical modeling: The primary framework I have employed across different projects involves 

ordinary differential equations (ODEs), which can be made to represent dynamic processes using various 

levels of mechanistic granularity6. In particular, physicochemical modeling describes biochemical reactions 

using state variables for the components and parameters for the kinetics. Mass action kinetics are used, 

assuming determinism (rather than stochasticity), high numbers of molecules (as is known to be generally 

the case for the systems investigated here), and that transport is more rapid within than between cellular 

compartments7,8. 

 The process of model development differs on a case-by-case basis, but some general ideas seem 

to hold (Figure 1.1). First, equations are formulated based on prior knowledge, hypotheses, and 

assumptions. This step is often associated with turning cartoons depicting a hypothesis as to how a system 

works into more precise and useful cartoons, and then into the equations. Second, simulations are 

conducted by formulating variations on the original system of equations corresponding to the applicable 

perturbative conditions (e.g., differences in ligand treatments and the timing and dosing), providing initial 

values for the state variables, and assigning values to the parameters. Third, the simulations are compared 

to a set of experimental observations, and a search is conducted to determine whether there exist sets of 

parameter values that provide a suitable fit to the data based on defined criteria in the form of objective 

functions. Where there are multiple datasets or features of datasets to which the simulations are compared, 

multi-objective optimization is used9,10. In practice, this whole process involves multiple iterations in which 

candidate models are proposed, tested, and assessed. If a suitable fit is obtained, then there are several 

types of analysis that can be conducted. For example, if there are several models representing competing 

Figure 1.1. Parameter fitting. High-level schematic for parameterizing a model to data. 
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hypotheses, then differences in their goodness of fit can be used to identify certain mechanisms as being 

more explanatory for the experimental observations. As another example, a trained model can be applied 

to simulate untested scenarios, either to identify specific regimes within a system (e.g., for improving the 

performance of a genetic program) or to validate the model's predictive capacity more broadly. 

 Parameter estimation11 is a rich area of study for which many algorithms have been developed12,13. 

Despite these advances, perhaps surprisingly, in systems that are complex and high-dimensional (with 

many free parameters), it can still be a challenge to find a solution that yields a good fit. The other side of 

this coin is that after conducting a parameter search, there are often many parameter sets that yield similarly 

good fits. These models are called sloppy (as compared to stiff) and are common where nonlinear 

interactions are involved14. Sloppiness arises from correlations in sensitivities of ODE solutions to 

parameters and does not necessarily reflect a model's quality or utility15. Because some parameters are 

inevitably unconstrained, it can be useful to focus on model predictions and behaviors rather than on finding 

a definitively best parameter set, and this is the perspective that I have taken in characterizing endogenous 

pathways and in building new ones, for which background is provided in Sections 1.2 and 1.3, respectively. 

 

1.2 Immune cell heterogeneity and coordination 

 Macrophages in innate immunity: Innate immune cells play a tremendous range of roles such 

as phagocytosing pathogens, regulating tissue homeostasis, and recruiting and presenting antigens to 

adaptive immune cells. A deeper understanding of these roles is coming into focus with new technologies 

and tools to gather, integrate, and make inferences from data16. Within the innate immune system, the 

mononuclear phagocyte lineage comprises monocytes, macrophages, and other cells that migrate or reside 

throughout the body and are responsible for trophic, inflammatory, and protective activities17. Here I focus 

on macrophages, which become activated in response to cues like growth factors, cytokines, and pathogen-

associated molecular patterns (PAMPs) and functionally polarize, i.e., differentiate into specific phenotypes 

to carry out context-dependent activities. 

 This polarization is typically categorized as follows: M1 or classically activated macrophages are 

microbicidal, pro-inflammatory, and antigen-presenting; M2 or alternatively activated macrophages are anti-

inflammatory and promote wound healing; and tumor-associated macrophages (TAMs) are M2-like with 
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some M1 characteristics. Many genes are involved in polarization at the level of signal transduction, gene 

expression, metabolism, and cytokine production18. Interestingly, it has recently become evident that the 

M1–M2 axis is an oversimplification. Xue et al. analyzed macrophage transcriptomes in response to a panel 

of stimuli, and through a machine learning and network analysis, found that polarization was better 

described by a high-dimensional phenotypic space19. This study underscores how much remains to be 

uncovered on the fundamental biology of macrophage activation. 

 Heterogeneity and communication: Single-cell analyses have revealed striking heterogeneity at 

the RNA20-22 and protein23,24 levels among genetically identical immune cells, including macrophages and 

other cell types following treatment with the same cues. It is possible that these differences could arise from 

underlying variation in the expression of key regulatory genes. This explanation would indicate a role for 

extrinsic noise, which describes different initial conditions that take deterministically different trajectories—

as opposed to intrinsic noise, which describes similar initial conditions that deviate due to stochasticity25. 

Additionally, it has been proposed that heterogeneity might confer advantageous properties to immune cell 

populations26, although specific ways in which this might play out are still being elucidated. Example types 

of cellular heterogeneity that could potentially be uncovered are illustrated in Figure 1.2.  

Figure 1.2. Cellular heterogeneity. Variation comes in different varieties. The cartoon illustrates 
scenarios that differ in whether cells respond in a graded or all-or-none manner, whether the decision 
to activate is unanimous or split, and whether activation is simultaneous or staggered. Each circle 
represents a cell, and its activation state is color-coded. The three close circles represent a cell 
population that changes over time (three diagrams from left to right). 
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 An important concept that goes hand in hand with heterogeneity is intercellular communication. 

Immune cells need to coordinate their response to threats, and this line of communication is generally 

established by secreting factors such as cytokines that other immune cells sense and respond to. Several 

studies have documented immune cell behaviors and likened them to bacterial quorum sensing (QS)—a 

phenomenon in which bacteria secrete a molecule that acts as a proxy for cell density, and once a threshold 

concentration of that molecule is reached (indicating high cell density), target gene expression is induced27. 

In this way, the activities of individual cells are connected to each other. For immune cells, density appears 

to be a recurring and crucial regulator of activity, and there are also activities that regulate cell density28,29. 

Some of these instances differ from the QS concept and can be more directly ascribed to paracrine 

signaling, e.g., canonical explanations for the macrophage tumor necrosis factor (TNF) response to 

lipopolysaccharide (LPS)30,31. However, other instances are QS-like. As one example, hair follicle 

regeneration involves the recruitment of macrophages, and this process occurs above a threshold amount 

of injury to the hair follicles32. As another example, in the pathogen-induced accumulation of monocytes in 

vivo, the monocytes produce nitric oxide, and when high nitric oxide levels are reached (corresponding to 

high cell density), the population undergoes a coordinated metabolic shift towards lower cytokine production 

and ultimately the resolution of inflammation33. In these examples, as in bacterial QS, cells sense a secreted 

molecule to "get on the same page" and act similarly. An exciting frontier is the interplay between cellular 

heterogeneity and intercellular communication. As I show in Chapter 2, macrophages employ a form of 

coordination that leads them to activate differently in response to a threat, but in such a way that amplifies 

the population-level outcome in cases where many macrophages are present. 

 

1.3 Engineering mammalian cellular functions  

Cell-based therapies are a rapidly advancing medical frontier. Cells can carry out tasks that are inaccessible 

pharmacologically, such as directed trafficking, therapeutic production in situ, and cell-mediated killing. One 

promising approach, as evidenced by the growing number of trials for chimeric antigen receptor (CAR) T-

cell therapies34, is to genetically engineer cells to perform defined sense-and-respond behaviors. Currently, 

there is a need for tools and principles to make these types of behaviors more sophisticated and reliable. 

Here, I outline at a high level several challenges and forward-looking possibilities that may be broadly 
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applicable to mammalian cellular engineering, and some of these topics (particularly relating to increasing 

sophistication and reliability) can be aided by the advances described in Chapters 3 and 4. 

 Design priorities and trade-offs: In considering the steps that go into developing a cell-based 

device, it becomes apparent that this process necessarily involves a prioritization of multiple objectives. 

This prioritization, whether explicit or implicit, could affect the development of a prototype to a final product. 

Currently, it is unclear how the decisions that are made in early-stage research funnel biomolecular designs 

and constrain outcomes in subsequent preclinical and clinical evaluations. Moreover, the choices that 

improve performance in a lab setting do not necessarily guarantee robustness35: the ability to perform a 

function under wide-ranging conditions that the cells would encounter in a recipient. 

 In analyzing situations with multiple objectives, it is useful to consider trade-offs that might arise as 

a result of prioritization. In this context, trade-offs include the accuracy versus rapidity with which a device 

responds to a cue36, and the sensitivity of a device to the cue versus the specificity with which the device 

responds only to that particular cue. Each of these trade-offs can shift the balance between device safety 

and efficacy (Figure 1.3a). These concepts have already proven useful for CAR T-cell therapies: small 

molecule-inducible kill switches37 and activation-ON switches38 for improved safety; requiring multiple cues 

to trigger an activation event to confer improved specificity39; and varying the cell dose or route of 

administration, or the affinity of the receptor for the target ligand, to achieve decreased on-target off-tissue 

activation40. New therapies will benefit from a more defined understanding of the relationships between 

initial prioritization, prototype evaluation, and success in translation. 

 Extracellular sensor properties: Sense-and-respond programs can be engineered using natural 

or synthetic cell surface receptors. Key choices include the type of ligand-binding domain employed (e.g., 

native receptor domain, single-chain variable fragment, or nanobody41) and its size, valency, stability, 

orientation, and ligand-binding mechanism and kinetics (Figure 1.3b). Experience from CAR T cells 

indicates that tuning ligand-binding affinity can improve how and under what conditions a device activates40. 

A challenge is that although physiological ligand concentrations can be estimated for some species in 

vivo42, local ligand concentrations in vivo are generally less understood and vary between milieus. 

 Consequences of intercellular variation: There now exist various methods to implement genetic 

programs in cells, and elucidating the relationship between implementation method and cellular device 
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Figure 1.3. Considerations and 
principles for engineering mammalian 
cell-based devices. a Designing a cell-
based device involves balancing trade-offs 
for various characteristics, which may each 
be desirable but cannot be realized 
simultaneously. To illustrate, we consider a 
cell that is intended to become activated 
only under a specified physiological 
condition, by expressing an engineered 
receptor for sensing a cue and producing a 
measurable readout in response. Fold 
difference is calculated as the ligand-
induced readout divided by the ligand-
independent (background) readout. 
Sensitivity and specificity are defined using 
classification terms: T = true, F = false, P = 
positive, N = negative. These performance 
metrics differ from robustness, which is the 
extent to which performance is maintained 
under perturbations or cell variation. While 
an ideal device is both high-performing and 
robust, in practice these characteristics 
may come at some expense of one 
another. b The target ligand imposes 
constraints on how a receptor can be made 
to form a productive signaling complex. For 
a ligand with multiple subunits, better 
performance may be realized using a 
receptor that has a corresponding valency, 
oligomerizes, or undergoes cooperative 
binding; however, these features can also 
introduce geometric or kinetic tuning 
requirements. c Intercellular variation can 
impact the design, development, and 
performance of a cell-based device. Such 
variation is related to how endogenous and 
exogenous genes are expressed and other 
sources of biological noise. Metrics such as 
EC50 (half maximal effective concentration 
of ligand) or ultrasensitivity (the steepness 
of the dose-response) that are derived from 
a mean profile of a heterogeneous 
population do not represent all cells. 
Therefore, single-cell analysis is an 
important part of characterization. d 
Strategies for intercellular coordination 
could potentially diminish the effects of 
intercellular variation and enhance the 
robustness of engineered functions. 
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performance is an area of active investigation. A key choice is whether to integrate a genetic payload 

genomically or to maintain it extra-genomically and potentially transiently. Each delivery method has 

advantages and disadvantages. Lentiviral and retroviral vectors carry payloads up to ~10 kb, integrate 

pseudorandomly in the genome, and can become silenced in certain cell types depending on the integration 

site43. Transposon and transposase systems deliver larger payloads but are less efficient than lentiviral and 

retroviral vectors and integrate randomly (with a less biased pattern of integration)44. Recombinase-based 

landing pads provide site-specific integration and more homogeneous gene expression, but thus far the 

required insertion of the initial landing pad precludes the use of this technology in primary cells45, and it is 

not yet clear whether a given safe harbor site for targeting genomic integration is effective across 

applications46. Targeted integration by Cas9-mediated DNA editing can confer site specificity, and sgRNAs 

are relatively straightforward to design, but integration efficiency remains a challenge47. Extra-genomic 

artificial chromosomes are emerging vectors that are maintained at a single copy, replicate during mitosis, 

and carry payloads of up to many megabases48. Finally, plasmid transfection, RNA replicons49, and non-

integrating viral vectors are transient delivery options. Each method confers its own profile of variation in 

gene expression and risk of gene silencing, and how such variation can impact device characterization and 

performance is a topic of ongoing investigation. 

 Intercellular variation in device performance can be attributed to external sources, such as sample 

preparation, cell density, and cell-to-cell contact, as well as internal sources like cell cycle asynchrony, 

unequal inheritance in cell division, and stochastic fluctuations in gene expression50,51. While design goals 

may be framed using digital metaphors like circuits, ultimately cells operate within a continuum of variation 

in both component doses and signals, and such variation can limit the extent to which a device reliably 

performs an engineered function (Figure 1.3c)52. It has been suggested that if the factors that contribute to 

variation are correlated, then distributions of cell behavior will be skewed by outlier cells53. Indeed, it was 

recently shown that cells expressing high levels of exogenous components produced outlier responses that 

dominated the average behavior of the population54. More broadly, such effects may influence iterative 

tuning to bias design choices toward those in which many cells do not exhibit the desired functionality. 

Therefore, precise characterizations for ligand detection limits, dose response profiles, and parameter 

sensitivities require individual-cell resolved analyses55. Rigorous consideration of how intercellular variation 
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impacts device performance, and perhaps minimization of such variation in the manufacturing process56, 

may lead to devices that perform better at translational stages. 

 Coordination of cellular functions: The desired function of a cell-based device is often specified 

as a cell-intrinsic input-output relationship. However, in vivo, cells operate as populations and interact with 

other cell types in complex and dynamic environments. As a result, it may not be obvious how many cells 

are required to achieve a desired outcome, or what fraction of the population will exhibit an intended 

function. Engineering intercellular coordination (e.g., orthogonal to native signaling) is a promising strategy 

to enhance the reliability or synchrony of programmed behaviors and thus mask the effects of inevitable 

cell variation and unexpected perturbations (Figure 1.3d). For example, negative paracrine feedback could 

be used to confer adaptive responses to sustained stimuli, and positive paracrine feedback could be used 

to provide more digital (“yes or no”) commitment to population-level decisions57,58. 

 Recent studies suggest that more sophisticated functional programs can be realized by multiplexing 

different receptors54 or different types of receptors in a cell59, or potentially by distributing the job of sensing 

across multiple cell subpopulations. Non-receptor components have been distributed in this way, allowing 

subpopulations to exchange metabolites60 and to coordinate transgene expression in a manner dependent 

on the subpopulation densities and for how long the subpopulations are in communication61. Whether such 

coordination will increase or decrease the challenges of designing and implementing a therapeutic product 

remains to be seen, but this type of approach may eventually augment the safety and efficacy of cell-based 

devices.  
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CHAPTER 2. Collective decision-making in macrophage activation 
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2.1 Abstract 

This chapter represents a central focus of my graduate study. In addition to pursuing a fundamental 

question on how macrophages coordinate their activation, I developed a computational skillset that was 

key to addressing topics of dynamics, heterogeneity, and robustness that arose in and enabled other 

projects (e.g., Chapters 3–4, Appendixes 3–6). In particular, identifying a role for gene expression noise 

on quorum licensing was subsequently the inspiration for developing a way to account for the effects of 

gene expression variation on the performance of synthetic genetic components in other settings. 

 Macrophage-initiated inflammation is tightly regulated to eliminate threats such as infections while 

suppressing harmful immune activation. However, individual cells’ signaling responses to pro-inflammatory 

cues are heterogeneous, with subpopulations emerging with high or low activation states. Here, we use 

single-cell tracking and dynamical modeling to develop and validate a revised model for LPS-induced 

macrophage activation that invokes a mechanism we term quorum licensing. The results show that bimodal 

phenotypic partitioning of macrophages is primed during the resting state, dependent on cumulative history 

of cell density, predicted by extrinsic noise in transcription factor expression, and independent of canonical 

LPS-induced intercellular feedback in the TNF response. Our analysis shows how this density-dependent 

coupling produces a nonlinear effect on collective TNF production. We speculate that by linking 

macrophage density to activation, this mechanism could amplify local responses to threats and prevent 

false alarms. 

 

2.2 Introduction 

In responding to external cues, cells are faced with many options, but by sharing information a population 

of cells can make more effective decisions than can each individual alone63. These decisions are generally 

mediated by secreted products. Bacteria use QS molecules to coordinate when and whether to form 

biofilms, and social amoeba secrete cyclic AMP to coordinate their aggregation. In each case, a proxy is 

used to convey information about the local number of cells available to coordinate the task.  

In immunology, an established example of coordination is the amplification of the response to a 

perceived threat. During infection, cells such as macrophages provide an immediate line of defense by 

initiating inflammation to eliminate invading microbes64. This process often begins when the bacterial 
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membrane component and pro-inflammatory cue LPS is sensed by Toll-like receptor 4 (TLR4). Prior to 

TLR4 activation, the transcription factor NF-κB is sequestered in the cytoplasm by Inhibitor of κB (IκB). 

Upon activation, IκB kinase (IKK) targets IκB for degradation65,66, allowing NF-κB to translocate to the 

nucleus. There, NF-κB induces the transcription of genes such as TNF, a cytokine that mediates 

inflammation and pathogen clearance16,67,68. Other pathways downstream of TLR4 increase TNF production 

by stabilizing the mRNA and promoting translation and cleavage of the pro-protein for secretion. 

Extracellular TNF then signals through TNF Receptor 1 (TNFR1), driving NF-κB activation in positive 

feedback31,69-72, and this is a general explanation for how macrophages and other cells amplify their 

response to LPS. 

The regulation of TNF has multiple layers. Recently, it was found that when the concentration of 

LPS exceeds a certain threshold, the induced signaling through NF-κB drives the transcription of its own 

RelA subunit in a process termed the feedback dominance (FBD) switch, producing intracellular positive 

feedback on NF-κB expression and activity73. Other pathways act to constrain the response to LPS and 

ensure its eventual resolution: cell-intrinsic regulators (those with intracellular origins) include microRNAs 

and mRNA-binding proteins that decrease Tnf stability and translation74, as well as IκB65,75 and various 

inhibitors of IKK66,69,76 induced by NF-κB in negative feedback; cell-extrinsic regulators (those with 

extracellular origins) include interleukin 10 (IL-10), in that IL-10 signaling via the IL-10 receptor (IL-10R) 

antagonizes NF-κB activity and destabilizes Tnf stability and translation. In combination, these interlocking 

positive and negative motifs confer the functional plasticity necessary for immune cells to balance pathogen 

clearance with harmful side effects such as cytotoxicity and tissue damage77. 

Given the many facets of the regulation of NF-κB and TNF, computational models have proven 

valuable for elucidating the properties of these systems and the roles of individual components. Early 

models explicated intracellular signaling65,66,78-80, and subsequent models included newly appreciated 

mechanisms such as intercellular feedback31,69,71,81-84. Recent studies have incorporated cell heterogeneity 

by attributing observed differences in gene expression either to stochastic fluctuations85-87 or to variation in 

initial values88, kinetic parameters73,89-91, or timing of signaling events92. A key consideration for 

understanding signaling and regulation in macrophages, in particular, is that these cells characteristically 

exhibit broad phenotypic heterogeneity19,23,93. It has been proposed that this variation could have important 
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functional consequences, such as to broaden the repertoire of responses to stimuli94, propagate or restrain 

coordinated actions, or convert digital single-cell decisions into analog population-level ones26. While these 

ideas are interesting, specific mechanisms by which such heterogeneity might confer functional gain are 

not well understood.  

In this study, we investigate the intriguing observation that when macrophages are treated with 

LPS, cell subpopulations emerge with high and low activation states. We propose a revised model in which 

macrophages use a process that we term quorum licensing to link the history of their density to the 

proportion of cells that become highly activated. This investigation provides new insights into how 

populations of macrophages use density information to regulate their collective activation. 

 

2.3 Materials and Methods 

RAW cell culture. RAW 264.7 cells were cultured in complete DMEM medium containing 1% 

DMEM (Gibco #31600091), 0.35% w/v D-glucose (Sigma #50-99-7), 0.37% w/v sodium bicarbonate (Fisher 

#S233-500), 10% heat-inactivated FBS (Gibco #16140071), 4 mM L-glutamine (Gibco #25030081), and 

100 U ml–1 penicillin and 100 μg ml–1 streptomycin (Gibco #15140122) in tissue culture-treated dishes 

(Corning) at 37°C in 5% CO2. To passage, medium was aspirated, and cells were washed in PBS, incubated 

in PBS-EDTA (5 mM EDTA in PBS pH 7.4) (37°C, 5 min), detached by gentle scraping, pelleted by 

centrifugation in 50 ml conical tubes (125×g, 5 min), and resuspended in fresh medium and plated. Reporter 

cells were cultured under the same conditions. For higher density passaging (Figure 2.2g), reporter cells 

were grown to cover a large majority of surface area of dishes, and this condition was maintained for several 

days leading up to the functional experiment. RAW 264.7 cells were a gift from David Segal (NIH), and 

reporter cells73 were a gift from Iain Fraser (NIH). Cell lines were not authenticated further. 

Confocal microscopy. Experiments were conducted using reporter cells and a Zeiss inverted Axio 

Observer Z1 confocal microscope with a custom environmental control chamber for CO2, humidity, and 

temperature control. Data were exported, and fluorescence was quantified using ImageJ software95: at each 

time point, the mean signal for each cell was quantified and the mean background signal based upon 

multiple sampled regions without cells was subtracted. The resulting value was multiplied by the area 

enclosed by the plasma membrane in the image slice to determine EGFP-RelA signal and mCherry signal. 
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A similar method was applied using the area within the nuclear membrane to determine nuclear EGFP-

RelA signal. For conditions at high density, 30 cells were quantified; cells were not quantified if they divided 

or exited the field of view during the timecourse. For low density, 20 cells were quantified; due to the low 

number of trackable cells within the field of view in this case, some traces start or end within the timecourse.  

Generation of monoclonal lines. The original reporter cell line was generated73 via lentiviral 

integration of the two reporters encoded in a single vector—using a low multiplicity of infection, such that 

the large majority of cells underwent at most one integration96—followed by fluorescence-activated cell 

sorting for EGFP-positive clones, clonal expansion, and functional screening for a clone exhibiting LPS-

inducible EGFP-RelA nuclear translocation and mCherry expression. In the current study, seven 

monoclonal sublines (A–G) were generated from the parental line by limiting dilution and clonal expansion. 

L929 cell culture. L929 fibroblasts (ATCC) were cultured in RPMI-1640 medium (Gibco 

#11875093, containing L-glutamine) supplemented with 10% heat-inactivated FBS, 100 U ml–1 penicillin, 

and 100 μg ml–1 streptomycin in tissue culture-treated dishes at 37°C in 5% CO2. For passaging, medium 

was aspirated, and cells were washed in PBS, incubated in trypsin-EDTA (Gibco #25300054) (37°C, 5 min), 

detached by tapping the dish and pipetting in fresh medium, pelleted by centrifugation in 50 ml conical 

tubes (150×g, 5 min), resuspended in fresh medium, and plated. L929-conditioned medium was prepared 

by filtering supernatant at two or three days after the previous passage, by which time the cells had covered 

a large majority of the surface area of dishes. Conditioned medium was stored at –20°C and thawed for 

differentiating primary cells. 

Bone marrow harvest and primary cell culture. C57BL/6 male mice (Jackson Labs; 5–10 weeks 

old) were sacrificed, and bone marrow cells were harvested from femurs and tibias97. All of the animals 

were handled according to the animal protocol (#IS00003438), which was approved by the Northwestern 

University Institutional Animal Care and Use Committee and complies with all relevant ethical regulations 

for animal testing and research. Cells were cultured in differentiation medium containing complete RPMI-

1640 medium (as used for culturing L929 cells) supplemented with 10% L929-conditioned medium in non-

treated 10 cm dishes (Corning #CLS430591) (4×104 monocytic cells ml–1, 10 ml per dish) at 37°C in 5% 

CO2. At three days post-harvest, medium was aspirated without removing the partly adherent cells and 

replaced with differentiation medium containing fresh complete RPMI-1640 medium supplemented with 
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15% L929-conditioned medium. Cells were cultured for four more days, by which time the cells had become 

adherent BMM.  

BMM surface staining. At seven days post-harvest, BMM were stained for surface markers of 

differentiation and assayed by flow cytometry. Medium was aspirated, and cells were washed in PBS, 

incubated in FACS buffer (FB; 5 mM EDTA and 0.1% BSA in PBS) (4°C, >10 min), detached by tapping 

the dish firmly and pipetting in FB, aliquoted as 2.5×105 cells per FACS tube, and pelleted by centrifugation 

(400×g, 5 min). Supernatant was decanted, paraformaldehyde (PFA; 4% in PBS, 30 μl) was added, and 

tubes were flicked to mix and incubated (4°C, 20 min). 1 ml FB was added, tubes were flicked to mix and 

centrifuged, and supernatant was decanted; this step was performed a total of three times. To block, normal 

mouse serum (Sigma #M5905, 10 μl) was added, and tubes were flicked to mix and incubated (room 

temperature—approximately 22°C, 15 min). Staining was conducted with primary conjugated antibodies 

(BD Biosciences): PE rat anti-CD11b (#553311, 0.04 μg) and Alexa Fluor 647 rat anti-mouse F4/80 

(#565854, 0.04 μg). Isotype controls were PE rat IgG2b, κ isotype control (#553989, 0.04 μg) and Alexa 

Fluor 647 rat IgG2a, κ isotype control (#557690, 0.04 μg). Compensation control samples were prepared 

using anti-surface marker antibodies separately, and a no-antibody control sample was prepared. Tubes 

were flicked to mix and incubated (4°C, 1 h). 1 ml FB was added, tubes were flicked to mix and centrifuged, 

and supernatant was decanted; this step was performed a total of three times. Several drops of FB were 

added, and tubes were covered in foil and kept on ice until flow cytometry. 

RAW functional experiments. High density (3.3×105 cells ml–1) and low density (4.1×104 cells ml–

1) conditions used 1.35 ml of cell culture per well of a 6-well plate. The very low density condition for reporter 

cells (5.2×103 cells ml–1) used 8 ml of cell culture in a 10 cm dish. Ligand treatments included recombinant 

mouse IL-10 (R&D Systems #417-ML, 10 ng ml–1 except as indicated in Figure 2.1b) at –12 hps, 

recombinant mouse sTNFR (R&D Systems #763208, 8.3 μg ml–1) at –1 hps, E. coli 055:B5 LPS (Sigma-

Aldrich, varied doses) or PMA (Cayman Chemical #10008014, varied doses) at 0 hps (36 h post-plating), 

and BFA (2 μg ml–1, Sigma-Aldrich #B5936) at 1 or 2 hps. Medium was not exchanged during ligand 

treatments. Cells were harvested at the time indicated for each experiment (3, 6, or 12 hps). 

BMM functional experiments. At seven days post-harvest, medium was aspirated, and cells were 

washed with PBS, incubated in PBS-EDTA (>10 min), and detached by firmly tapping plates and pipetting 
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in PBS-EDTA. Cells were centrifuged in 50 ml conical tubes (400×g, 5 min), supernatant was discarded, 

and cells were resuspended in complete RPMI-1640 medium without L929-conditioned medium and re-

plated at varying densities: high density in non-treated 6-well plates (Falcon #351146) (3.3×105 cells ml–1, 

1.35 ml per well) and 1/4th, 1/8th, and 1/16th of high density in non-treated 10 cm dishes (8 ml). Ligand 

treatments included IL-10 (10 ng ml–1) at –12 hps, sTNFR (8.3 μg ml–1) at –1 hps, LPS (varied doses) at 0 

hps, and BFA (2 μg ml–1) at 1 hps. Medium was not exchanged during ligand treatments. Cells were 

harvested at 3 hps. Conditions were carried out in biological replicates indicated in figure legends. 

TNF staining for RAW cells and BMM. Medium was aspirated, and cells were washed with PBS, 

incubated in FB (37°C, 5 min for RAW cells; 4°C, >10 min for BMM), detached from plates (by gentle 

scraping for RAW cells; by pipetting for BMM), pipetted into two FACS tubes per sample (one for the anti-

TNF stain and one for the isotype control stain), and pelleted by centrifugation (150×g, 5 min for RAW cells; 

400×g, 5 min for BMM). Supernatant was decanted, PFA was added, and tubes were flicked to mix and 

incubated (4°C, 20 min). 1 ml FB was added, tubes were flicked to mix and centrifuged, and supernatant 

was decanted; this step was performed a total of three times. 1 ml permeabilization wash buffer (PWB; 

0.5% saponin and 0.1% BSA in PBS) was added, tubes were flicked to mix and centrifuged, and 

supernatant was decanted; this step was performed a total of two times. To block, normal mouse serum 

(10 μl) was added, and tubes were flicked to mix and incubated (room temperature, 20 min). PE-conjugated 

rat anti-mouse TNF antibody (BD Bioscience #554419, 0.1 μg) or PE-conjugated rat isotype control 

antibody (BD Bioscience #554685, 0.1 μg) was added, and tubes were flicked to mix and incubated (4°C, 

1 h). 1 ml PWB was added, tubes were flicked to mix and centrifuged, and supernatant was decanted; this 

step was performed a total of three times. Several drops of FB were added, and tubes were covered in foil 

and kept on ice until flow cytometry. 

Preparation of reporter cells for flow cytometry. Medium was aspirated, and reporter cells were 

washed with PBS, incubated in FB (37°C, 5 min), detached from plates by gentle scraping, pipetted into 

FACS tubes, and pelleted by centrifugation (150×g, 5 min). Cells were fixed to prevent loss of reporter 

signal: supernatant was decanted, PFA was added, and tubes were flicked to mix and incubated (4°C, 20 

min). 1 ml FB was added, tubes were flicked to mix and centrifuged, and supernatant was decanted; this 

step was performed a total of three times. Several drops of FB were added, and tubes were covered in foil 
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and kept on ice until flow cytometry. 

Flow cytometry. Samples were run on a BD LSRII or BD LSR Fortessa flow cytometer using the 

FITC channel for EGFP-RelA, PE-Texas Red channel for mCherry, PE channel for TNF intracellular 

staining and for CD11b surface staining, and APC channel for F4/80 surface staining. Data were gated 

using FlowJo software on live (FSC-A vs. SSC-A) and single-cell (FSC-A vs. FSC-H) bases, and 

fluorescence values were exported from FlowJo and imported into MATLAB for further analysis. 

Secretion assay. For the BMM experiment in Figure 2.5, supernatant for each condition was 

collected at 3 hps in chilled Eppendorf tubes, clarified by centrifugation (14,000×g, 4°C, 10 min), pipetted 

into new chilled tubes, and stored (–80°C). Clarified supernatants were later thawed on ice, and analytes 

were measured using the Bio-Plex Pro mouse cytokine 23-plex Group I assay (Bio-Rad #M60009RDPD), 

a Bio-Plex 200 instrument, and Milliplex Analyst software. Each biological replicate was assayed in 

technical duplicate. Protein concentrations were determined based on a standard curve as described by 

the manufacturer-provided protocol and values for Lot #64209360. This assay reflects analytes that were 

secreted between the time of plating and time of BFA treatment. For the condition with sTNFR treatment, 

in which extracellular TNF is bound by sTNFR, low TNF signal is potentially attributable to an inaccessibility 

for binding by assay detection reagents. 

 

2.4 Results 

 TNF expression is heterogeneous and varies with cell density: Macrophage phenotypic 

heterogeneity has been observed in several studies19,23,93, and non-genetic heterogenous activation has 

been described in the widely used model cell line RAW 264.773,93. We selected the RAW 264.7 model 

system to investigate how perturbations that modulate the response to LPS affect the heterogeneity with 

which macrophages become activated, as represented by expression of TNF (Figure 2.1a). Pre-treatment 

of cells with IL-10, prior to treatment with LPS, diminished the average intracellular TNF protein expression 

measured at 3 h post-stimulation (hps), although TNF distributions across IL-10 doses were broad and 

overlapping (Figure 2.1b). TNF expression also was not highly correlated with flow cytometric proxies for 

cell size, suggesting the heterogeneity was not due to cell cycle asynchrony alone. 
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Figure 2.1. The TNF response to LPS is heterogeneous and requires intercellular 
communication. a The diagram summarizes the perturbations and stimuli applied to investigate TNF 
expression and intercellular communication (hps, hours post-stimulation with LPS). LPS activates TLR4 
signaling, which induces TNF expression. IL-10 pretreatment activates IL-10R signaling, which inhibits 
LPS-induced TNF expression. Secreted TNF activates TNFR signaling, which induces TNF further 
through intercellular feedback. BFA prevents secretion, causing TNF to accumulate intracellularly. 
Varying the cell density modulates the concentrations of secreted factors such as TNF. sTNFR binds 
extracellular TNF and prevents TNFR signaling. b IL-10 pretreatment diminishes LPS induced TNF 
expression. c TNF expression is heterogeneous with high-expressing and low-expressing 
subpopulations. After pretreatment with IL-10 (10 ng ml–1) and/or treatment with LPS (100 ng ml–1), 
cells were treated with BFA for 1 or 2 h. Arrows in c–e indicate low and high modes of the TNF 
distributions. d The full TNF response to LPS requires intercellular communication. e Intercellular 
feedback through secreted TNF is necessary for the full response. 
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 To obtain a more direct readout of TNF production, we applied brefeldin A (BFA) to inhibit 

anterograde transport from the endoplasmic reticulum to the Golgi apparatus and prevent secretion. We 

reasoned that if variation in TNF secretion were a main source of heterogeneity, then BFA would diminish 

heterogeneity, and if gene regulation were the main source, then BFA would exaggerate it. Without LPS, 

BFA had no appreciable effect on intracellular TNF, indicating no detectable basal TNF production. 

However, when added after stimulation with LPS, BFA led to wide-ranging accumulation of on average 

several-fold more TNF cell-1 h-1 (Figure 2.1c). Unexpectedly, while most cells accumulated more TNF with 

longer BFA treatment, some cells accumulated little or no TNF over time. When cells were pre-treated with 

IL-10 prior to LPS, TNF accumulation was less than when treated with LPS only, as expected, yet TNF 

accumulation was still wide-ranging for most cells and low for others. Therefore, blocking secretion 

unmasked substantial hidden variation in TNF production and showed that the cell population includes both 

high (wide-ranging) and low responders to LPS regardless of IL-10 pre-treatment. 

Since LPS-induced TNF intercellular signaling is known to contribute to NF-κB activity31,69-72, we 

examined the effect of intercellular communication on TNF production. To modulate communication in a 

manner that is not biased toward or against specific secreted factors, we varied cell density at plating (full, 

half, and one-eighth of previously used conditions) as a general handle for tuning the magnitude of coupling 

between cells. Without IL-10 and with LPS, a cell density-dependent effect was evident (Figure 2.1d). At 3 

hps, average TNF expression correlated with density. At 6 hps, half and full density were TNF-high while 

one-eighth density remained low, and by 12 hps expression had decreased for each case. All of the 

distributions were heterogeneous, but at high density intracellular TNF remained skewed toward high 

expression over time and at low density it remained skewed toward low expression. With IL-10 or without 

LPS, little to no intracellular TNF was detectable. Thus, the full response to LPS requires intercellular 

communication, and cell density-associated effects on TNF production persist over time. 

To investigate whether secreted TNF sustains its own LPS-induced expression, cells were pre-

treated with excess soluble TNF receptor (sTNFR) to titrate extracellular TNF from binding cell surface 

receptors. As TNF is bound by sTNFR, TNFR signaling is blocked71. With LPS, cells at high density with 

sTNFR pre-treatment expressed TNF at an intermediate level on average—less than at high density without 

sTNFR, and more than at low density without sTNFR—and the distribution remained heterogeneous 
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(Figure 2.1e). Therefore, although TNF intercellular feedback is required for full TNF production as 

expected, this mechanism does not explain the wide-ranging expression or the distinct high and low 

activation states observed. Thus, an additional explanation is required. 

 The activation states’ proportions depend on cell density: To investigate the phenomena 

described above, we examined regulation upstream of the TNF protein using a previously validated clonal 

macrophage cell line with two genomically integrated reporters73. Such a reporter system enables one to 

resolve the dynamics and heterogeneity of individual cell signaling responses. The first reporter is a fusion 

of enhanced green fluorescent protein (EGFP) and RelA (the p65 subunit of NF-κB) driven by the Rela 

promoter. In the resting cell state, EGFP-RelA is sequestered primarily in the cytoplasm. Upon activation 

such as through TLR4 signaling, this protein translocates to the nucleus and induces the transcription of 

NF-κB target genes. Above a sufficient LPS dose, EGFP-RelA also induces the expression of endogenous 

RelA (and of EGFP-RelA) via an intracellular positive feedback loop termed FBD73. Thus, EGFP-RelA 

tracks both the localization and expression of NF-κB. The second reporter is a fusion of mCherry and a 

destabilizing PEST tag driven by the Tnf promoter. mCherry RNA lacks the Tnf-specific 3’ UTR and is 

decoupled from Tnf-specific post-transcriptional regulation. These features make the mCherry protein a 

proxy for transcription from the Tnf promoter, rather than for downstream TNF protein expression, after 

accounting for the time delay for mCherry translation and maturation98. 

We utilized this reporter system to examine RelA expression and localization and Tnf promoter 

activity under the perturbations used above (Figure 2.2a). In all cases without LPS, EGFP-RelA and 

mCherry expression were low. With LPS, the mCherry distribution shifted from unimodal to bimodal, 

consistent with the observed expression of endogenous TNF (Figure 2.1c). At the three high density 

conditions most cells were mCherry-high, and at low density a greater proportion was mCherry-low. EGFP-

RelA mirrored the pattern for mCherry. We also observed that average levels of TNF and mCherry ranked 

differently across conditions. In particular, cells at high density with IL-10 and LPS treatment had greater 

mCherry expression than did cells at low density with LPS treatment (Figure 2.2a), yet this order was 

reversed for TNF expression (Figure 2.1). The difference could be due to post-transcriptional 

downregulation of Tnf via IL-10R signaling99-102, which would diminish TNF protein more than Tnf 

transcription, and mCherry is a proxy for the latter. 
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Figure 2.2. Cell density modulates the heterogeneity of macrophage activation. a Reporter protein 
fluorescence was measured by flow cytometry for the indicated cell densities, time points, and ligand 
treatments. Percentages of highly activated cells were determined using a threshold (dotted vertical 
line) at the nadir between the two modes (arrows) of mCherry distributions. b Reporter trajectories for 
n = 30 cells at high density after treatment with sTNFR and LPS. Cells are ordered by cumulative 
mCherry expression and color-coded by fluorescence magnitude within heat maps. c Single-cell 
trajectories for total EGFP-RelA expression. The mean is in bold. d–e Relationship between initial and 
cumulative total EGFP-RelA (R2 = 0.61, one-tailed permutation test p = 2×10−7) and between 
cumulative nuclear EGFP-RelA and cumulative mCherry (R2 = 0.59, one-tailed permutation test p = 
3×10−7). Dotted lines are linear fits, and axes are linearly scaled. In c–e, color-coding denotes rank-
ordered cumulative mCherry expression. f Single-cell mCherry trajectories, with the mean in bold. 
Values are in a.u. specific to each panel. g Effect of culture density-associated conditions on 
macrophage activation heterogeneity. Fluorescence units are comparable within each reporter protein 
and passaging density. Dotted vertical lines distinguish low and high activation. h Revised conceptual 
model for macrophage activation with differently activated cell density-dependent subpopulations. 
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Altogether, macrophage activation was bimodal, and subpopulation proportions varied with cell 

density. This observation held under perturbations to TNF-regulating pathways such as TNFR and IL-10R 

signaling. The dependence of the decision to become highly activated on cell density has some 

resemblance to bacterial QS, in that the phenotypes of individual cells are determined by information shared 

by the population. However, an important distinction is that in QS essentially all cells become activated if a 

threshold concentration of QS molecule is surpassed27, whereas here the proportion of highly activated 

cells increases with density. Therefore, because only a fraction of the cells become licensed to reach a 

state of high activation, the population exhibits an analog response rather than a digital one. To distinguish 

these two phenomena, we refer to the macrophage behavior as quorum licensing (QL). 

 Single-cell analysis supports a revised model for activation: We next investigated whether 

heterogeneous activation was due to variation in the magnitude and/or timing of the response to LPS. 

Variation in magnitude would indicate a role for intrinsic or extrinsic noise, due to stochastic fluctuations or 

to deterministic outcomes of variation in initial (pre-LPS) conditions, respectively. Variation in timing could 

indicate a domino effect where early high-expressing cells activate other cells. To track the dynamics of 

EGFP-RelA expression and localization and mCherry expression, cells were stimulated and monitored over 

a one-day timecourse using confocal laser-scanning microscopy. Quantification of individual trajectories 

showed that Tnf promoter activation varied primarily in magnitude rather than timing (Figure 2.2b). For 

EGFP-RelA (at high density with sTNFR and LPS), the mean expression increased and peaked at 14±4 

hps (± standard deviation among cells), after peak nuclear signal (10±6 hps) and around peak cytoplasmic 

signal (15±4 hps). The peak signal was greater in the cytoplasm than in the nucleus (1.4±0.4 fold), and 

depletion of the nuclear portion mid-timecourse coincided with cytoplasmic accumulation. The expression 

of mCherry was initially low and then increased and peaked at 18±5 hps. A small subpopulation of cells 

expressed very little mCherry or EGFP-RelA (consistent with flow cytometry observations for TNF and the 

reporters), and reporter expression appeared unrelated to which cells were in physical contact. Intriguingly, 

although high induction of both reporters co-occurred in the same cells, the bimodality in TNF expression 

(measured at 3 hps in Figure 2.1c) was evident before the observed increase in EGFP-RelA (Figure 2.2b), 

even considering the ~1 h chromophore maturation time. Since target gene expression would be expected 

to increase after an increase in the expression of a transcriptional regulator, the observed sequence 
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indicates that the FBD switch cannot be causal for the early TNF burst observed. Instead, these events are 

conditionally independent, i.e., regulated by an upstream process and not by each other. 

The microscopy analysis revealed additional dynamical features of the single-cell responses. For 

nuclear-localized EGFP-RelA, while the average profile underwent an overall increase and subsequent 

decrease, some cells showed multiple peaks of varied amplitudes in agreement with a recent study91. There 

was also variation in an apparent nuclear reservoir of transcription factor, in agreement with another study90. 

For total EGFP-RelA, pre-LPS expression varied and was correlated with post-LPS cumulative expression 

(Figure 2.2c–d). The predictive power of this initial condition indicates a role for extrinsic noise (variation 

initially present in the system) in determining the post-FBD amount of transcription factor. Cumulative 

nuclear EGFP-RelA and cumulative mCherry were also correlated, as expected for a transcription factor 

and target gene (Figure 2.2e). These outcomes indicate that extrinsic noise in RelA expression propagates 

to activity at the Tnf promoter. To further examine promoter activity, we quantified mCherry trajectories 

under each perturbation (Figure 2.2f). At high density with LPS, mCherry increased for 16±2 hps, indicating 

continued transcription after the intracellular TNF protein showed a decrease (Figure 2.1d). This protein 

decrease is consistent with known post-transcriptional mechanisms that downregulate Tnf74, and such 

simultaneously opposing transcriptional and post-transcriptional regulation represents a type of control that 

has been compared to operating both the throttle and brake pedals of a vehicle103. Cells at low density took 

more time to reach peak mCherry signal compared to at high density. Cells pretreated with IL-10 increased 

in mCherry for 12±3 hps and then decreased toward basal levels. Cells treated with sTNFR responded to 

LPS similarly to cells without this antagonist. Together, the measurements from flow cytometry and 

microscopy show how TNF is differently regulated under each perturbation. 

Another phenomenon related to cell density was that EGFP-RelA levels differed between low and 

high density both with and without LPS stimulation (Figure 2.2a). This difference suggested that secreted 

factors might affect cells’ resting states in a way that predicts the response to LPS. To more carefully 

investigate how high density-associated conditions impact the patterns described above, we exposed cells 

to combinations of standard or higher density passaging (for at least three days), low or high density plating 

(at 36 h pre-LPS), and different conditioned media (fresh, low density, or high density; at 12 h pre-LPS). In 

general, exposure to more high density-associated conditions increased both the basal and induced 
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reporter expression (Figure 2.2g). For cells that were passaged at higher density and later provided 

conditioned medium from cells cultured at high density, the outcomes were similar regardless of the cell 

density at plating (which determines the number of cells present), indicating that sustained exposure to high 

density-associated secreted factors was sufficient to prime and enable full LPS-induced activation. For the 

highest-density combination of conditions, reporter bimodality was prominent and right-shifted, even prior 

to LPS stimulation (Figure 2.2g). The effect of passaging, which took place several days prior to plating at 

36 h pre-LPS, indicates that the effects of culture density are heritable across cell generations. These 

observations motivate our proposal of a revised model for macrophage activation by QL, in which 

modifications to the extracellular milieu that occur during the resting state modulate the propensity for cells 

to become highly activated (Figure 2.2h).  

 A new computational model explains heterogeneous activation: To integrate our observations 

with prior knowledge on macrophage activation, we developed a dynamical model for the intracellular and 

intercellular signaling network. We reasoned that such a framework could enable us to investigate how TNF 

is regulated and whether heterogeneity confers advantages to a population. Key aspects of model 

development were to include the most essential components, concisely portray biochemical processes, 

identify salient features of the data, fit parameters, and evaluate the extent to which simulations could 

explain the observations. To start, we examined studies on NF-κB and TNF31,71-73,79,84,90,91,99-101,104-109 and 

synthesized this information to produce a preliminary system of ordinary differential equations representing 

a cell that can inducibly express, secrete, and sense TNF. We reduced the model to decrease complexity110, 

and proposed, evaluated, and refined network topologies and their corresponding formulations (sets of 

equations) to produce the network depicted in Figure 2.3a. 

Extrinsic noise featured prominently in the data. Therefore, we hypothesized that it might be 

possible to train a homogeneous model (a one-cell model) based on mean flow cytometry and microscopy 

data and subsequently to incorporate heterogeneity among cells. Parameters were split into two groups for 

separate rounds of fitting using parameter sweeps, multi-objective optimization, and an evolutionary 

algorithm (Appendix 2). The first round used a focused model of NF-κB activation with cell-intrinsic 

influences: TLR4 signaling; NF-κB activation, nucleocytoplasmic translocation, and inactivation; IκB 

expression; and FBD. A fit to data for sTNFR and LPS (to exclude the influence of TNFR signaling) resulted 
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Figure 2.3. A dynamical population model explains intracellular and extracellular signaling and 
regulation. a The diagram summarizes variables, reactions, and mechanisms in the model of 
macrophage activation. Symbols: bold non-italicized text for variables; horizontal bars for compartment 
boundaries; n for nuclear and c for cytoplasmic; asterisks for activated receptors or kinases; delta 
symbol and circles for perturbation-specific effects; diagonal arrows for a perturbation’s effect; and 
graphs for time-dependent processes. b Generation of comparable distributions of initial values. The 
observed distributions in (i) are in non-comparable units. To initiate simulations with NF-κB distributions 
that vary between high and low cell density and that match experimental observations for EGFP-RelA, 
we impute from an observed high density distribution (black) a low density distribution (teal) that 
matches the observed low density distribution (blue). The transform shifts the distribution (ii) and adjusts 
the proportion of cells in high vs. low states using a Gaussian mixture model of two populations fit to 
the high density distribution (iii), such that the combined transform (iv) generates an imputed distribution 
matching the observed low-density distribution (blue) with units relatable to high density (black). c–d 
Simulated TNF distributions from the calibrated model match experimental trends for cell density and 
ligand conditions and BFA conditions. All cells have the topology in a and are heterogeneous in initial 
value and transcription of Rela RNA and initial value of cytoplasmic NF-κB–IκB, derived from b. e–h 
Comparison of simulated and experimental outcomes for n = 30 cells at high density with sTNFR and 
LPS treatment. e–f Cumulative total EGFP-RelA (R2 = 0.61, one-tailed permutation test p = 3×10−7) 
and cumulative nuclear EGFP-RelA (R2 = 0.60, one-tailed permutation test p = 4×10−7), calculated 
using time-integrated values. The dotted diagonal is the identity line, and axes are linearly scaled. g 
Coefficient of variation (CV) in mCherry and total EGFP-RelA expression over time. h Trajectories were 
grouped post hoc by high or low activation. Mean values are in bold. Simulations are shown with and 
without FBD. 
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in a family of parameter subsets with similar outcomes. The second round used the full model, incorporating 

Tnf transcriptional, post-transcriptional, and translational regulation; mCherry expression; effects of IL-10; 

TNF secretion and its inhibition by BFA; population growth; and TNFR signaling. Each perturbation was 

simulated by modifying equations to capture its mode of action. A simultaneous fit to all of the data, in which 

some parameters were constrained to subsets from the first round and others underwent a free search, 

yielded a suitable outcome. We next adapted the model to represent a population coupled by TNF 

intercellular feedback, in which each cell varies in the basal state with extrinsic noise in NF-κB. Initial values 

for NF-κB were assigned based on EGFP-RelA confocal microscopy measurements (Figure 2.2d). 

Additionally, we observed that EGFP-RelA distributions differed between high and low density by a shift in 

values and a shift between the two activation modes (Figure 2.3b), and applying a transformation in silico 

to the initial values at high density could produce a distribution in comparable units for initial values at low 

density. In summary, the model was trained on homogeneous post-LPS data and initialized with 

heterogeneous pre-LPS data. 

Remarkably, the use of varied pre-LPS EGFP-RelA levels, and the transformation of this 

distribution between high and low density conditions, enabled resulting simulations to capture the 

heterogeneity in the data, including intracellular TNF expression across perturbations and over time (Figure 

2.3c, compare to Figure 2.1d–e) and TNF accumulation following treatment with BFA (Figure 2.3d, 

compare to Figure 2.1c). These simulations also accounted for the majority of the variation in cumulative 

transcription factor expression and localization (Figure 2.3e–f). Furthermore, they closely tracked the 

distributions and trajectories of reporter expression (Figure 2.3g–h) and supported the conclusion that both 

the high and low activation subpopulations underwent FBD (Figure 2.3h). These findings support our 

strategy of first training the model on mean data and then introducing heterogeneity in a way that 

incorporates how the density-dependent pre-LPS state predicts the response to LPS. 

  Model validated by observations from a distinct test dataset: We sought to validate the model 

by testing whether it could predict responses to conditions not included in model development or fitting. To 

this end, we simulated populations at different densities and LPS doses. FBD was included for LPS 

treatment at or above 1 ng ml–1 (our estimate for a threshold at which this mechanism is active, based on 

the original study73). To obtain a test dataset, reporter cells were assayed under the same conditions  
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(Figure 2.4a). Model predictions were broadly in agreement with the data: distributions for EGFP-RelA and 

mCherry had more rightward shifts with higher LPS doses, and two subpopulations were present with 

density-dependent proportions across doses. At lower doses and densities, the high-activation 

subpopulation had diminished reporter expression, resulting in more overlap between subpopulations. 

To test if any of the above observations were specific to TLR4 signaling, we evaluated the same conditions 

but for the stimulus used phorbol 12-myristate 13-acetate (PMA), a membrane-permeable small molecule 

that activates protein kinase C (PKC), which then activates IKK and by extension NF-κB. As was observed 

with LPS stimulation, PMA-induced expression of both reporters was bimodal with cell density dependence, 

and mCherry expression was ligand dose-dependent (Figure 2.4a). Therefore, QL-associated activation of 

the Tnf promoter via NF-κB does not require that NF-κB be activated via TLR4. Interestingly, unlike trends 

observed with LPS, EGFP-RelA expression following PMA addition differed little from the case without 

PMA, which indicates that FBD was induced by NF-κB activation via TLR4 but not via PKC. 

Simulations elucidate roles for TNF regulatory mechanisms: We next applied the validated 

model to examine roles of TNF regulatory mechanisms. First, we evaluated the robustness of simulations 

to global parameter variation by sampling parameter values from distributions with different coefficients of 

variation (CV) centered on fitted values. Variation was tolerated to some extent—consistent with a general 

feature of systems biology models—sloppy parameter sensitivities14, in which various combinations of 

values yield similar fits. However, for variation beyond a CV of ~0.1–0.2 the outcomes began to diverge, 

suggesting sensitivity to certain mechanisms. We then used the model to explore how varying the effect 

magnitudes of six individual mechanisms (#1–6 in Figure 2.4b) would affect key readouts: the mean 

cumulative expression of NF-κB and mCherry (phenotypic consequences) and the total cumulative 

secretion of TNF (a functional consequence). The mCherry and TNF readouts were sensitive to 

transcriptional induction by NF-κB (#2), as expected. The TNF readout was the most sensitive to TLR4 

signal transduction (#1), stabilizing regulation (#3), and destabilizing regulation (#4). Notably, FBD (#6) was 

the only mechanism to which the NF-κB readout was sensitive, indicating an apparent buffer from other 

processes, and all three readouts were affected by FBD, indicating FBD has wide-reaching effects. Also 

notable was that TNFR signal transduction (#5) affected the mCherry and TNF readouts only modestly, 

suggesting that even if cells were more tightly coupled by greater TNFR signal transduction, there would 
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Figure 2.4. Mechanisms of TNF regulation differ in phenotypic and functional consequences. a 
Predicted and measured distributions of reporter expression across cell densities and doses of LPS or 
PMA at 12 hps. Very low density is 1/8th of low density. Arrows denote modes of the distributions for 
high density without stimulus or with 100 ng ml−1 of LPS or PMA. For simulations: low and very low 
density used the same initial values; mCherry distributions without stimulus were obtained without FBD 
and without intercellular feedback; and FBD was applied for LPS doses at and above 1 ng ml−1. b 
Simulated outcomes after individually varying the effect magnitudes of mechanisms that regulate TNF, 
with perturbations numbered and depicted in the diagram. Outcomes were assessed using the 12 hps 
time-integrated amounts of total EGFP-RelA, mCherry, and secreted TNF (cumulative secreted flux) 
per cell at high density. Conditions corresponding to the zero on the x-axis indicate base case effect 
magnitudes (1× on the color scale). Abbreviations: stabilizing regulation (SR) and destabilizing 
regulation (DSR). c Comparison of activation for homogeneous (hypothetical) or heterogeneous 
(observed) initial distributions of transcription factor expression. For each readout, a value of 1× was 
set for the outcome given a heterogeneous population at low density with low initial values. 
Homogeneous initial values were set to the mean of corresponding heterogeneous distributions. In the 
right panel, the effect of the number of cells is incorporated into the total amount of secreted TNF. 
Arrows indicate comparisons from the main text, and key trends are noted on the right.  
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not be a large functional gain. Overall, the analysis showed that the most consequential mechanisms were 

FBD and transcriptional induction by NF-κB. 

To investigate whether the observed heterogeneity could produce outcomes that differ from a 

hypothetical homogeneous population, we examined scenarios of high and low cell density in combination 

with high and low resting state levels of NF-κB. Homogeneous cells were assigned the mean value (without 

extrinsic noise) of NF-κB derived from the corresponding heterogeneous distribution, and LPS-induced 

outcomes were assessed by the three readouts. Unexpectedly, across scenarios, the homogeneous 

population was slightly more activated than was the heterogeneous one (Figure 2.4c left panel). Within 

both populations, initial conditions had a larger effect on the readouts for cells than did the number of cells 

(depicted by a greater distinction between rows than columns in the heatmaps). For total TNF secretion, 

both factors were important, and the coupling of initial NF-κB to cell density produced a greater fold change 

in TNF than would be the case if these factors were independent (Figure 2.4c right panel, diagonal arrow 

vs. horizontal arrows). This coupling was also more consequential than the distinction between 

heterogeneity and homogeneity. Therefore, we conclude that it is not heterogeneity per se that is important, 

but rather that heterogeneity is regulated in a density-dependent manner; density controls the partitioning 

of a population of macrophages into high and low responders, yielding an effective strategy for driving 

population-level activation nonlinearly with cell density. 

 Primary macrophages employ quorum licensing: To determine whether QL also occurs in 

primary cells, we generated murine bone marrow-derived macrophages (BMM). Cells were plated at 

different densities, subjected to combinations of stimuli, and assayed for intracellular TNF expression at 3 

hps. We observed that BMM exhibit the key features of QL: LPS-induced TNF expression was bimodal; the 

proportion of cells in the high activation mode increased with cell density; and TNF expression was bimodal 

even when cells were pre-treated with sTNFR or IL-10 (Figure 2.5a). This outcome is consistent with 

observations in RAW cells and reporter cells (Figures 2.1–2.2) that QL is independent of canonical TNF-

regulating pathways including LPS-induced TNF intercellular feedback. 

Lastly, to investigate how cell density might impact the products secreted by BMM, we used a 

multiplexed assay to evaluate cytokines and chemokines in the supernatant (Figure 2.5b). At high cell 

density, there was a large boost in secreted TNF. This nonlinear scaling of collective TNF secretion with 
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cell density supports our proposed explanation that this is a central functional consequence of QL. 

Additionally, the assay ruled out several analytes—those that were not basally secreted and thus cannot 

coordinate the population to be poised for activation, and those that did not trend with density—as candidate 

mediators of QL. Of the twenty-three analytes evaluated, only the five chemokines examined (KC, MCP-1, 

MIP-1α, MIP-1β, and RANTES) were detected in the basal state and generally increased with cell density. 

Although these factors exhibit several necessary features of a QL mediator, chemokine receptor signaling 

activates multiple intracellular pathways, and evaluation of causality requires substantial further 

investigation. Nonetheless, these observations demonstrate that QL occurs in primary macrophages, 

mediating a nonlinear relationship between cell density and population-level TNF production. 

 

Figure 2.5. Primary macrophages regulate TNF production through quorum licensing. a Bone 
marrow-derived macrophages exhibit cell density-dependent bimodality in LPS-induced TNF 
expression. The first two conditions (columns) are in biological duplicate and the other three conditions 
are in biological triplicate. b Secreted factors were measured in cell culture supernatants. The minimum 
value on each y-axis is the observed lower limit of detection of the assay. Bar graphs represent the 
mean of the biological replicates and S.E.M.  
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2.5 Discussion 

This study explores the observation that within a population of genetically identical macrophages, a potent 

activating stimulus (LPS) drives high expression of TNF in only a subset of cells. The observation of TNF 

heterogeneity is consistent with a recent study that showed cellular responses vary widely in response to 

such cues30. In examining the regulation that underlies this variation, we observed heterogeneity in 

transcription factor expression and localization, Tnf promoter activation, and TNF expression. Furthermore, 

the measured distributions showed states for high (wide-ranging) and low activation. This bimodality was 

tunable by modulating conditions related to cell density, indicating a role for intercellular communication 

potentially via secreted proteins, metabolites, or extracellular vesicles111. Using single-cell tracking, 

dynamical modeling, and primary cell experiments, we proposed, developed, and validated a revised model 

for activation by QL, in which a population’s experience of density over time impacts the extent to which 

cells become poised for activation. 

 Although bacterial QS provides a useful conceptual reference point, QL more closely resembles 

other types of phenotypic bimodality, which have been observed in native and synthetic contexts, across 

species, and stem from various mechanisms. Some of these mechanisms do not require intercellular 

communication. For example, continuous variation in protein expression in a population can produce digital 

outcomes for kinase activity in cells due to activation thresholds112, and intracellular positive feedback on 

synthetic promoters can support stochastic activation through transcriptional bursting113. Other instances 

of phenotypic bimodality do use intercellular communication. For example, in T cells, secretion of the 

cytokine IL-2 feeds back through IL-2R signaling and promotes further IL-2 expression. As the sensing 

involves capturing extracellular IL-2, feedback is confined locally and only some cells sense high 

amounts114; TNF intercellular signaling similarly involves competitive uptake of TNF115. In the case of a 

synthetic genetic circuit in yeast with topological similarity to TNF intercellular signaling, two modes of 

activation were observed with proportions that varied with cell density58. Mathematical modeling analysis 

revealed that if cells rely on autocrine signaling more at low density than at high density, and if at low density 

few cells activate through autocrine signaling alone, then at high density a greater proportion of cells should 

activate as the balance shifts toward paracrine signaling via a shared cue. QL could belong to this same 

family of bimodal activation behaviors. It could even comprise a broader phenomenon—many genes are 
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regulated by pathways that overlap with those that regulate expression of TNF101, and single-cell RNA-seq 

analyses have revealed bimodality in hundreds of immune response genes20,22. In addition, macrophages 

were recently found to use a quorum-based mechanism to resolve inflammatory processes via production 

of nitric oxide33. Investigating the various mechanisms by which heterogeneity and coordination interact 

represents an exciting avenue for future investigation. 

Our study suggests nuanced interpretations for several phenomena. First, it was recently shown 

that NF-κB can induce RelA in intracellular positive feedback termed the FBD switch73. We found that this 

effect persists over the long-term and coincides with sustained Tnf promoter activity. However, these 

dynamics differ from those of intracellular TNF protein, which undergoes a burst (in which bimodality in its 

production is evident) before FBD takes effect, and then begins to decline before mCherry reaches peak 

expression. Second, phenotypic variation among genetically identical cells is often attributed to stochasticity 

(intrinsic noise). However, in this system, the predictive power of the pre-LPS state indicates a substantial 

role for extrinsic noise. If additional species were measured to more fully characterize the pre-LPS state, 

we anticipate that the multivariate initial conditions would provide further predictive power as to how 

individual cells are poised to respond to LPS. Third, we observed an inherited density-dependent propensity 

for activation involving an accumulation of transcription factor in the resting state. This result suggests that 

one way in which a population can become and remain at least temporarily poised for high activation is for 

cells to stockpile a transcription factor (or conceivably other molecules), and in the absence of continued 

high density-associated conditions, these levels would eventually decrease. Whatever the underlying 

mechanisms are for maintaining long-term activation propensity, a strategy that enables cells to calibrate 

their response to future threats by integrating their experience of the surroundings over time (including 

information about whether other cells have been recruited to that site) could provide functional utility. 

A fourth insight is that even though the role of TNF in intercellular communication is established31,69-

72, we found that as an intercellular signal, TNF had a modest influence on FBD and Tnf promoter activity. 

Intercellular TNF signaling had a larger effect on TNF protein expression, consistent with known 

mechanisms through which TNFR signaling enhances TNF expression through post-transcriptional 

regulation107. Since chronic TNF production is implicated in various diseases, therapeutic strategies have 

focused on blocking TNF from binding surface receptors by administering anti-TNF antibodies or sTNFR116 
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or by administering antagonists of TLR4 or associated proteins117. While we did not attribute QL to specific 

mediators, if these factors can be identified in future work, they could represent targets for 

immunomodulation. For example, the BMM secretion assay showed that chemokines accumulate with cell 

density prior to LPS treatment—a necessary feature of any candidate mediator. It has been shown that 

chemokines mediate leukocyte recruitment to sites of infection118-121, chemokine receptor signaling 

regulates NF-κB activity122-124, and NF-κB itself induces the expression of certain chemokines125. While the 

observations from the secretion assay are intriguing, there are many chemokines and they signal through 

overlapping pathways, and thus our findings identify an opportunity for future investigation as to whether 

these molecules have a role in QL. 

Looking beyond the scope of this investigation, it is interesting to speculate whether QL may be 

adaptive for immune function. Such a mechanism could provide a way for a cell population to preemptively 

coordinate a response to microbial incursion prior to LPS-induced intercellular signaling. As an example, 

we consider a scenario in which a wound is experienced, resulting in microbial incursion. Since tissue 

damage can immediately trigger local sterile inflammation (via damage-associated molecular patterns, 

DAMPs)126, macrophages among other cells could locally accumulate and become primed for high 

activation through QL. Then, should replication of invading microbes produce more pathogen-associated 

molecular patterns (PAMPs) such as LPS, the local inflammatory response would escalate. Another 

consequence would be to limit potent inflammation to local environments. In the scenario posed above—a 

wound experiencing an infection—some DAMPs could travel to sites that are remote from the wound, even 

if the microbes are limited to the wound site. QL could act to limit the most potent macrophage-mediated 

responses to sites characterized by both the presence of DAMPs and the local accumulation of 

macrophages, nonlinearly driving local cytokine production. If macrophage recruitment could be coupled to 

activation in this way, then QL would enhance the specificity of this potent but potentially harmful facet of 

innate immune function. Conversely however, for conditions such as sarcoidosis, fibrosis, and 

atherosclerosis127,128 characterized by abnormal accumulation of macrophages and related cells, QL would 

be maladaptive by supporting chronic inflammation. These ideas each comprise compelling avenues for 

future investigation, building upon the insights gained here into mechanisms linking heterogenous immune 

cell activation to intercellular communication. 
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3.1 Abstract 

Advances in the design of synthetic genetic programs have enabled the engineering of cells with new 

sense-and-respond capabilities. As increasingly sophisticated functions are developed for fundamental 

research and medical applications, there remains a need for cells to carry out programs precisely and as 

intended. Achieving this level of control requires molecular components that are well-characterized, 

tunable, and can be predictably arranged. To this end, I collaborated with colleagues on the development 

of the Composable Mammalian Elements of Transcription (COMET) toolkit, comprising zinc finger 

transcription factors (ZF-TFs) and cognate promoters for regulating gene expression. I developed concise 

mathematical models that explain the experimental data, and which provide a basis to understand 

mechanisms for tuning gene expression based on modular features of the TFs (zinc finger, mutant variant, 

and activation domain) and promoters (number, spacing, and arrangement of binding sites). The analysis 

shows how COMET benefits from several properties, including certain dose response characteristics, direct 

relationships between model parameters and physical aspects of TFs and promoters, and a unique dual 

mechanism for inhibitory TFs. By applying a formal approach to define rules and parameters that govern 

the activities of these genetic parts, I identified distinct advantageous properties for this system, which as 

investigated in Chapter 4 enable the design of complex genetic programs in mammalian cells. 

 

3.2 Introduction 

The construction of genetic programs has emerged as a powerful approach for investigating cell signaling130 

and for engineering cell-based devices1,131. These systems often make use of transcriptional regulation, 

and for research on eukaryotic cells, TetR132,133 and Gal4134 are established TFs. However, there remains 

a need to be able to program the activation and inhibition of gene expression with greater flexibility and 

precision, and to be able to use greater numbers of TFs that are orthogonal to each other and still 

interoperable with other genetic technologies such as upstream sensors. Recently, various families of TFs 

have been investigated for programmable sequence-specific binding capabilities135-139. Among these are 

zinc finger (ZF)-TFs140,141, which also have the benefit of being relatively small, thus affording more space 

under constraints such as cargo limits of certain gene delivery methods. The COMET toolkit was developed 

by colleagues with these properties in mind, by drawing from designed ZF-TFs142 and modifying or 
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appending other domains onto these proteins to confer new functions. I developed mathematical models 

to provide mechanistic insights into the performance characteristics of these genetic parts and to help 

enable their use in future applications. 

 

3.3 Materials and Methods 

Methods are described in Appendix 5. 

 

3.4 Results 

  Elucidating mechanisms of COMET gene expression: My colleagues obtained ZFs that were 

previously characterized in yeast by Khalil et al.143 and investigated the use of these domains in inducing 

transcription in mammalian cells (Figure 3.1). Each TF has a ZF DNA-binding domain (DBD) fused to an 

activation domain (AD) such as VP16, which forms a ZF activator (ZFa) that recruits RNA polymerase II 

(RNAPII) to initiate transcription144. A cognate promoter was produced for each ZFa by placing a ZF binding 

site upstream of a minimal promoter that has been shown to confer low background and inducible 

expression145,146.  

To help elucidate the mechanisms by which this system operates, I developed a mathematical 

model. As summarized in Figure 3.2, this process involved considering steps involved in gene expression, 

writing equations to encapsulate these steps (writing equations is tantamount to formulating a hypothesis  

Figure 3.1. COMET. The schematic shows the features of the TFs and promoters. 
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Figure 3.2. A model for COMET-mediated gene regulation. This figure summarizes the process of 
model development, refinement, and fitting. a The COMET model (model outputs are represented by the 
lines on each plot) explains experimentally observed trends (circles) for reporter expression as a function 
of ZFa dose and promoter features. This model uses a fitted response function for ZFa-induced gene 
expression (discussed in b–e) and simulates a cell population to account for variation in gene expression; 
lines depict the average outcome for the population. The experiment was conducted in biologic triplicate. 
Error bars represent the S.E.M. b We started with a detailed model of transcriptional activation in which 
reporter expression depends on TF concentration, a metric related to TF-DNA-binding affinity (w), TF-
DNA-binding cooperativity (n = 1 for non-cooperative, n > 1 for cooperative), RNAPII recruitment 
cooperativity by each multiple-TF configuration at a promoter (ρ = 0 for non-cooperative, ρ > 0 for 
cooperative), and maximum promoter activation by each configuration (0 ≤ α ≤ 1). c This model yielded 
four types of landscapes (i–iv) under different assumptions, and two representative examples of each type 
are shown. COMET most closely resembles (iii). d, e A model that represents ZFa-induced reporter 
expression by a response function was used to fit the data in a (the workflow for parameter estimation is 
depicted in e). The terms in this concise model can be related to terms in the mechanistic model. 
Landscapes in c,d are simulations of a single cell (homogenous model), and those in a are simulated 
mean values for a heterogeneous population. The outputs of this final fitted model are represented 
alongside experimental data in a. 
 



 54 
as to how gene expression operates), identifying a formulation consistent with experimental observations, 

and simplifying this representation by removing details not required to describe observed trends in order to 

generate a concise model. Then, the last step was fitting parameters for the concise model to data to 

quantitatively describe experimental observations. I hypothesized that this process should generate a set 

of experimentally grounded parameters representing interpretable features of TF-promoter activity. 

Throughout, the goal was not to predict TF or promoter sequences de novo, but rather to describe and 

provide insight into observed trends. The explanatory value of such a model often exceeds insights that are 

accessible by intuition alone, and ultimately this framework could be used to design new genetic functions 

based upon COMET parts. 

I initiated this process by using first principles to produce a detailed model with features of 

transcriptional control147 including physical and functional interactions between the promoter, TFs, and 

proteins like RNAPII (Figure 3.2b, Appendix 5). This detailed model relates transcriptional output to TF 

concentration, TF-DNA binding affinity, TF-DNA binding cooperativity, RNAPII recruitment cooperativity, 

and maximum promoter activation. I then generated a series of theoretical landscapes analogous to the 

experimental landscapes in (Figure 3.2a), varying parameters across a biologically reasonable range, and 

observed that the landscapes fell within one of four categories defined with respect to the concavity and 

sigmoidicity of cross-sections along each axis (Figure 3.2c). The experimental data most closely resembled 

case (iii), indicating that TF-DNA binding is non-cooperative, but RNAPII recruitment is cooperative, and 

the maximum transcription rate (at a high ZFa dose) increases with both the number and compactness of 

binding sites. Therefore, the enhanced potency of the compact promoters stems from the cooperative 

recruitment of transcriptional machinery. 

Based upon the observed ZFa dose response profiles (Figure 3.2a) and these insights, I proposed 

a concise response function to represent the rate of transcription (f) as a function of ZFa dose with three 

parameters: background (TF-independent) transcription (b), a steepness metric (w) related to TF-DNA-

binding affinity, and a metric for maximum transcription (m) (Figure 3.2d). As indicated, the three 

parameters in this concise response function can be related to the additional parameters in the original 

detailed representation. For a given ZFa-promoter combination, m is experimentally determined and is 

based upon the number and spacing of binding sites in the promoter, and b is determined based on reporter 
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expression without ZFa; w can be fit to ZFa dose response data by our previously developed method that 

improves parameter estimation by accounting for variation in gene expression54 (Figure 3.2e, Appendix 3; 

fitted parameters are in Appendix 5). Simulated data from the calibrated model provided close agreement 

with the experimental data, demonstrating that a concise representation can be used to analyze and 

describe COMET-mediated gene expression.  

Comparison of the calibrated model and experimental data confirmed two trends that hold across 

conditions. First, the dependence of relative reporter output on binding site number is independent of the 

dose of ZFa plasmid when the output is scaled to its maximum value in each binding site series. Second, 

the dependence of relative reporter output on ZFa dose is independent of the number of binding sites when 

the output is scaled to its maximum value in each dose series. Thus, inducible gene expression follows a 

pattern that holds across various promoter designs and that is captured by a concise model. The occurrence 

of these similar patterns, when paired with the properties elucidated by the model, makes ZFa-induced 

gene expression readily interpretable—a desirable feature for a transcriptional toolkit. 

 Tuning transcription through protein engineering: We next investigated strategies for tuning 

gene expression through two approaches for TF engineering: altering the affinity of the ZF for the DNA and 

altering the strength of the AD. For the first strategy, four arginine residues in the ZF that interact with the 

DNA backbone were mutated (Figure 3.3a); mutations to alanine ablate favorable charge interactions and 

have been shown to decrease inducible target gene expression in yeast143,148,149. As intended, ZFa-

mediated gene expression decreased with an increasing number of substitutions (Figure 3.3). Interestingly, 

while changing the promoter architecture affected only the maximum transcription (m) (Figure 3.2), ZF 

mutations affected both the maximum transcription and relative steepness of the dose response curve (m 

and w). Additionally, changes in these values were correlated, revealing an axis along which ZFa R-to-A 

mutations tune TF strength. 

For another tuning strategy, two ADs were tested in place of VP16 (VP64150 and VPR151; Figure 

3.3c) to investigate whether these stronger ADs could increase gene expression conferred by TFs with low-

affinity ZFs. Comparison of the dose response for the weakest-binding ZFa mutant (AAAA) with each AD 

to the VP16 ZFa bearing a wild-type (WT) ZF domain (Figure 3.3d) shows that  as AD strength increased, 

both m and w increased. Although the two domains of a ZFa are physically modular, since they affect the 
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same parameters in the response function, the domains are functionally intertwined. In summary, the 

observations show how gene expression can be tuned through selection of physical features—ZF domain 

choice, mutations that affect DNA binding affinity, AD choice, and the number, spacing, and arrangement 

of binding sites in the promoter—and together this ensemble of designs provides a variety of realizable 

response profiles (Figure 3.3e). 

 Design of inhibitory TFs: Inhibitors comprise a key component of a versatile TF toolkit. My 

colleagues hypothesized that removing the AD from the ZFa would result in an inhibitor that binds DNA 

without inducing transcription (ZF inhibitor, ZFi), and that inhibition could be made more potent by 

incorporating a bulky domain to sterically block ZFa from binding adjacent sites in the promoter or to block 

Figure 3.3. Tuning transcription through ZF mutants and AD variants. a The cartoon illustrates 
arginine-to-alanine (R-to-A) mutations in the ZF domain, which decrease the DNA-binding affinity. b Left: 
ZF mutations modulate the steepness and the maximum of the ZFa dose response profile. Circles 
represent experimental data and solid lines represent fitted response function models. Right: correlation 
between m and w parameters across mutants. The regression line is m = 7.3 × 102w + 8.6, and the shaded 
region is the 95% confidence interval (one-tailed permutation test p < 0.001). c The cartoon depicts 
evaluated ADs. d The choice of AD affects the steepness and the maximum of the dose response. Circles 
represent experimental data and solid lines represent fitted response function models. e The cartoon 
summarizes expected trends in output gene expression that result from tuning each modular feature of 
the ZFa and promoters. These design choices can produce either a vertical shift or diagonal shift in 
response profiles with respect to the number of binding sites and the dose of ZFa. Experiments were 
conducted in biologic triplicate. Error bars depict S.E.M. 
 



 57 
the recruitment of RNAPII or associated factors (Figure 3.4a). To test this hypothesis, DsRed-Express2 

(abbreviated throughout as DsRed) was fused to the ZF domain. To help understand the mechanism of 

transcriptional inhibition, I considered that within each cell, promoters occupy an ensemble of states that 

depend on the promoter architecture and the ZFa and ZFi that are present (Figure 3.4b). As the relative 

dose of ZFi to ZFa increases, the distribution of the ensemble should shift toward states that are more 

inhibited; a trend towards more inhibition should also occur by increasing the relative DNA binding affinity 

of the ZFi versus that of the ZFa. Given our understanding of ZFa-mediated transcriptional activation, I 

speculated that the inhibitors should act via a dual mechanism with these properties: (i) competitive 

inhibition: since each site in the promoter can accommodate at most one TF, the binding of an inhibitor 

should prevent the binding of an activator; and (ii) decreased cooperativity: since inhibitors intersperse 

between activators, the spacing between activators should widen, and the effective m should resemble that 

of a promoter with lower cooperativity. 

To experimentally test the proposed dual mechanism of inhibition, dose responses were conducted 

for the ZFi and ZFi-DsRed inhibitors using the ZF1x6-S and ZF1x6-C promoters, with ZFa dose held 

constant (Figure 3.4c). When ZFi was applied to the compact promoter, reporter expression matched the 

concise model for competitive inhibition alone. However, for the other three cases, observed reporter 

expression began to deviate with increasing doses of inhibitor, and by high doses it showed complete loss 

of cooperative RNAPII recruitment. The inhibitor dose at which the experiment began to deviate from the 

model was lower for ZFi-DsRed compared to ZFi and for spaced promoters compared to compact 

promoters. At intermediate doses of inhibitor, reporter expression ramped down toward single-site promoter 

behavior (Figure 3.4b middle column, Figure 3.4c dotted lines), and by high doses the ramp down was 

complete (Figure 3.4b right column). The highest dose of ZFi-DsRed, used with the compact promoter, 

resulted in a profound 400-fold decrease in reporter expression. To further examine the case where the 

employed inhibitor did not disrupt cooperative RNAPII recruitment (i.e., ZFi used with the x6-C promoter), 

we paired a panel of ZFi varying in DNA-binding affinity with a reduced-affinity ZFa mutant (Figure 3.4d). 

For all cases examined, ZFi-mediated inhibition was still predicted by competitive inhibition alone. Thus, 

the compact promoter is more capable of cooperative RNAPII recruitment than is the spaced promoter, and 

ZFi is a weaker inhibitor than is ZFi-DsRed, such that the dual inhibition mechanism applies to three of the 
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four types of inhibitor-promoter pairings evaluated, and the pairing most responsive to inhibition is ZFi-

DsRed with a compact promoter. The mechanism by which cooperative transcriptional machinery 

recruitment renders the compact promoter architecture highly activatable by a ZFa also causes such 

promoters to be substantially inhibited through disruption of this mechanism by a ZFi-DsRed. 

  
Figure 3.4. Transcriptional inhibition. a The schematic depicts two types of inhibitors that were 
evaluated. b The cartoon summarizes the proposed conceptual model of ZFi-mediated inhibition. Within 
each cell, a promoter can occupy states with different configurations of ZFa and ZFi. Several example 
states are shown for three conditions of increasing dose or strength of inhibitor (i.e., DNA-binding affinity) 
relative to activator. c ZFi and ZFi-DsRed differ from standard competitive inhibitors. Predictions for 
competitive inhibition alone, for various promoter configurations, are depicted with solid lines. COMET 
inhibitors track the dotted lines, which represent fits to the dual mechanism model, except in the case of 
ZFi paired with x6-C, which tracks the competitive inhibition-only prediction. Each condition uses ZF1a at 
a dose of 40 ng. X-axes are scaled linearly from 0 to 10 ng and logarithmically above 10 ng. d Measured 
and predicted reporter expression were compared for a panel of ZFi mutants. Each condition uses ZF1a 
(RAAR) at a dose of 40 ng and the ZF1x6-C compact promoter. Experiments were conducted in biologic 
triplicate. Error bars represent the S.E.M. 
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 Implementing Boolean logic: Finally, we explored whether COMET could be used to encode 

Boolean logic functions within individual promoters. Colleagues pursued a strategy of hybrid promoters with 

alternating sites for combinations of ZFa to implement AND logic (Figure 3.5a), with the hypothesis that 

cooperative activation on compact promoters would occur only when both species of ZFa are present. 

Synergistic activation from closely arranged binding sites has been used to make AND gates in mammalian 

cells152, but arranging sites in alternating patterns does not necessarily guarantee this outcome54. For a 

three-pair hybrid promoter, AND gate behavior was observed even at low ZFa levels; 5 ng of each plasmid 

encoding ZF2a and ZF3a together produced more reporter expression than did 200 ng of plasmid encoding 

either ZFa alone (Figure 3.5b). The steep OFF-ON transition along the perimeter of the landscape is due 

to the effective transition between x3-S and x6-C architectures—an advantageous behavior of COMET that 

differs from previously reported AND gates utilizing tTA and Gal4 (Figure 3.5c, Appendix 5)54.  

 

 
Figure 3.5. Composing Boolean logic. a The cartoon summarizes a strategy for single-layer, promoter-
based logic gates with ZF-TFs. We hypothesized that AND gate promoters could be designed by using 
multiple repeats of a paired ZF3/ZF2 motif. Full occupancy of this promoter by both ZF2a and ZF3a mimics 
a fully occupied x6-C promoter, and partial occupancy (with either ZFa alone) mimics an x3-S promoter. 
Thus, there is a large increase in gene expression when the promoter is occupied by two types of ZFa 
compared to one type. b Two-input dose response for the AND gate with three repeats of paired binding 
sites. The landscape is shaded from green to purple to facilitate visualization in the z-axis direction. c A 
theoretical model of COMET AND behavior is compared with other models of transcriptional AND gates; 
the latter vary in whether activators have multiplicative cooperativity (ρ) and whether maximum activation 
(α) is equivalent for TFs individually and together. 
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3.5 Discussion 

The engineering of cellular functions often involves multiple iterations of the design-build-test-learn cycle. 

In prokaryotes, this process has been streamlined by the development of large libraries of well 

characterized genetic parts and computational tools such as Cello153. COMET similarly provides a set of 

TFs and promoters, and the characterization of these components and their tunable features provided a 

foundation for a mathematical model. I used the model to elucidate mechanisms by which activators and 

inhibitors operate at promoters and fitted parameters to describe how these activities vary across the design 

choices examined. This integrated approach helped us move from the identification of general qualitative 

trends (e.g., increasing the number of binding sites in a promoter generally increases inducible gene 

expression) to arrive at quantitative and mechanistic understanding as to how design choices affect TF-

promoter activity. This insight could not have been deduced from prior knowledge, including biophysical 

intuition or characterization of similar TFs and promoters in yeast143. Whether the design rules elucidated 

here enable model-driven predictive design is an important question that is the investigated in Chapter 4.  

 In nature, transcription is regulated by the combined activities that take place across promoters, 

enhancers, insulators, and other non-coding elements. Despite the precision with which TF activities must 

be coordinated, there is a growing appreciation that TF binding and gene expression are often leaky154. 

Findings that binding site sequences are often degenerate and that individual TF binding events are often 

low-affinity suggest that multiple TFs and binding sites might be not only useful, but necessary, to confer 

specificity to gene expression. Indeed, enhancers generally contain groups of binding sites for various TFs. 

In some cases with multiple binding sites, cooperativity can arise, either from TF-DNA binding, TF-TF 

interactions at nearby sites, or from ways in which multiple TFs act to recruit co-activators or co-repressors. 

It is thought that cooperativity could confer certain advantages, e.g., buffering against variation in TF levels: 

as long as a TF is present in a sufficient amount, this would be sufficient to induce gene expression154. 

 Several mechanisms can produce cooperativity in TF binding. TFs can bind to each other and 

increase their affinity for a DNA sequence; TFs with low affinity for each other can bind to DNA and form 

more stable TF-TF associations; and the binding of one TF to DNA can alter the shape of the DNA in a way 

that increases the energetic favorability of a second TF binding to the DNA155. In a study on the TF Gal4, a 

reporter readout was measured from integrated constructs containing one or two binding sites compared 
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to the wild type yeast sequence with four sites. Synergistic reporter induction was evident with as few as 

two sites, and footprinting analysis showed that TF binding to DNA was cooperative and trended with the 

reporter readout. Although synergy was characteristic of the low-affinity binding sites, the outcomes were 

only additive for the high-affinity sites. Thus, cooperativity stemmed from TF-DNA binding if the interaction 

was weak, and transcriptional activity was related to the number of TF molecules bound156. Using Figure 

3.2c as a guide, the case of high-affinity sites resembles case (i) and the case of low-affinity sites resembles 

case (ii). 

 TFs based on ZF domains coordinate many functions in nature157, and different characteristics with 

respect to cooperativity have been identified. One study reported cooperative binding to DNA for the 

progesterone receptor158. Another study reported that DNA binding could be either positively or negatively 

cooperative, or neither, depending on the specific DNA element, for the estrogen receptor159. In a recent 

study that implemented synthetic ZF-TFs in yeast, cooperativity was generated by using promoters 

containing multiple binding sites and a system to load multiple TFs onto a co-expressed protein scaffold; 

Hill coefficients fitted to dose response data were higher when the binding sites and scaffold repeats were 

extended160. These studies show that there are many ways in which transcriptional activation properties 

are tunable, including with ZF-TFs, and that tunability occurs in nature and also can be engineered. 

 In the COMET study, a key insight is that promoter strength was explained by the cooperative 

recruitment of transcriptional machinery, rather than TF-DNA binding, and in a way that was tunable by 

altering the number of and spacing between binding sites. This promoter-based cooperativity is useful in 

that it confers both low background expression and high fold induction, enables single-layer logic gates, 

and can be potently modulated by DsRed-ZFi to inhibit ZFa-mediated expression. For these reasons and 

more, we expect that this toolkit will provide useful capabilities for designing mammalian cellular functions. 
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4.1 Abstract 

Genetically engineering cells to perform customizable functions is an emerging field with a range of 

technological and translational applications, however it generally remains challenging to engineer these 

functions systematically in mammalian cells. To address this need, here we develop a method enabling 

accurate genetic program design using high-performing genetic parts and predictive computational models. 

We build multi-functional proteins integrating transcriptional and post-translational control, validate models 

for these mechanisms, implement digital and analog processing, develop a strategy for topological circuit 

compaction, and effectively link genetic circuits with sensors to carry out multi-input evaluations. The 

functional modularity and compositional versatility of these parts enable one to readily encode a given 

design objective in numerous ways. This approach substantially elevates our capacity to predictively design 

sophisticated mammalian cellular functions. 

 

4.2 Introduction 

Early demonstrations of genetically engineered functions in mammalian cells show great promise for 

applications in cell differentiation, regenerative medicine, and cell-based therapies. These applications 

generally require precise control of gene expression and the capability to sense and respond to external 

cues162-166. Despite the growing availability of parts for doing so, assembling parts to compose customized 

genetic programs remains laborious and challenging and often requires iterative experimental tuning or 

down-selection to identify functional configurations. This process limits the scope of programs that one can 

feasibly compose and debug, and likely the performance of even functional programs. Thus, there is a need 

for a more systematic and precise design process. 

 Model-guided design has been demonstrated in the composition of some functions, including 

transcriptional logic in bacteria153 as well as logical and analog behaviors in yeast160, but this type of 

approach remains relatively new in mammalian systems. Associated challenges include the availability of 

appropriate parts, suitably descriptive computational models that enable predictions using these parts, and 

computational and conceptual tools that enable the identification of designs that function robustly despite 

inherent biological variability. In this study, we sought to address these challenges by developing a model-
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driven process that enables one to propose a tractable set of candidate circuits for construction and testing 

and applied this framework to implement a variety of logical, analog, and sense-and-respond behaviors. 

 

4.3 Materials and Methods 

 Plasmid cloning and purification: Plasmids were designed in SnapGene (GSL Biotech LLC), 

and primers were ordered from Integrated DNA Technologies. Several domains were sourced from 

Donahue, et al.129, but prior to the COMET study: VP16 and ZF domains are from Khalil, et al.143, VP64 is 

from Chavez, et al. (Addgene #63798)151, FRB and FKBP are from Daringer, et al. (Addgene #58876, # 

58877)167, and DsRed-Express2 is a gift from David Schaffer.  

 Split inteins are from Hermann, et al. (Addgene #51267, #51268)168. The ABA-binding domains 

PYL1 and ABI1169-173 from Gao, et al.174 were utilized to make ABA-ZFa. The PEST tag is from the mouse 

ornithine decarboxylase gene175. Two types of plasmid backbones are used: pcDNA (pPD005, Addgene 

#138749), which was modified from Thermo Fisher Scientific #V87020 as described by Donahue, et al.129; 

and a series of transcription unit positioning vectors (TUPVs), which are derived from the modified pcDNA 

and previously published by Donahue, et al.129, and based upon the mMoClo system from Duportet, et al.45. 

Insulator sequences in TUPVs are from Bintu, et al. (Addgene #78099)176. 

 Cloning was performed primarily using standard PCR, restriction, and ligation methods (reagents 

from New England Biolabs and Thermo Fisher Scientific), and in some cases through Golden Gate 

assembly, followed by transformation into chemically competent TOP10 E. coli (Thermo Fisher Scientific). 

Transformed E. coli were grown on LB/Ampicillin agar plates at 37°C, colonies were picked and grown in 

liquid LB/Ampicillin cultures, plasmid DNA was isolated (E.Z.N.A. plasmid mini kit, Omega Bio-tek), and 

DNA inserts were sequence-verified (ACGT, Inc.). Plasmids were prepared using polyethylene glycol-

based extraction as described previously129. DNA purity and concentration were measured using a 

Nanodrop 2000 (Thermo Fisher Scientific). 

 Mammalian cell culture: HEK293FT cells were cultured in complete DMEM medium containing 

1% DMEM powder (Gibco #31600091), 0.35% w/v D-glucose (Sigma #50-99-7), 0.37% w/v sodium 

bicarbonate (Fisher #S233-500), 10% heat-inactivated FBS (Gibco #16140071), 4 mM L-glutamine (Gibco 

#25030081), and 100 U ml–1 penicillin and 100 μg ml–1 streptomycin (Gibco #15140122) in tissue culture-
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treated 10 cm dishes (Corning # 500001672) at 37°C in 5% CO2. To passage, medium was aspirated, and 

cells were washed in PBS, incubated in trypsin-EDTA (Gibco #25300054; 37°C, 5 min), detached by 

tapping the dish, and resuspended in fresh medium and plated. This cell line tested negative for 

Mycoplasma using the MycoAlert Mycoplasma detection kit (Lonza #LT07-318). 

 Transfection: Cells were plated in 24-well plates (Corning #3524; 3×105 cells ml–1, 0.5 ml per well) 

and transfected after adhering to the plates, typically between 8–14 h after plating. Transfections were 

carried out using the calcium phosphate protocol129: plasmids are mixed together in defined amounts, CaCl2 

(2 M, 15% v/v) is added, and this solution is pipetted dropwise into an equal volume of 2x HEPES-buffered 

saline (500 mM HEPES, 280 mM NaCl, 1.5 mM Na2HPO4); the solution is gently pipetted four times, and 

three minutes later it is vigorously pipetted 20 times and added dropwise onto plated cells. In this study, 

DNA doses are reported in plasmid mass (ng) per well of cells or gene copies per well of cells. In each 

transfection experiment, “empty vector” (pPD005) was included in the transfection mix to maintain a 

consistent total mass of DNA per well. At one day after plating, medium was aspirated and replaced with 

fresh medium. In some experiments, the fresh medium contained vehicle or ligand. In Figure 4.3, the 

vehicle was 0.1% DMSO (v/v in cell culture) and the ligand was 100 nM rapamycin in 0.1% DMSO. In 

Figure 4.4a,b, the vehicle was 0.1% EtOH and the ligand was either 100 nM rapalog (Takara #AP21697) 

or 100 μM abscisic acid (ABA; Goldbio #21293-29-8) in 0.1% EtOH. In Fig. 4d,e, the vehicle was 0.2% 

EtOH, and the ligand conditions included 100 nM rapalog, 100 μM ABA, or both ligands in 0.2% EtOH. 

 Flow cytometry: Samples were prepared for flow cytometry generally at 40–48 h post-transfection. 

For each well, medium was aspirated, five drops of PBS were added, PBS was aspirated, and two drops 

of trypsin-EDTA were added. Cells were incubated (37°C, 5 min), plates were tapped to detach cells, and 

four drops of cold (4°C) DMEM were added. The contents of each well were pipetted up and down several 

times to detach cells and pipetted into FACS tubes containing FACS buffer (FB; 2 ml; PBS pH 7.4, 5 mM 

EDTA, 0.1% w/v BSA). Tubes were centrifuged (150×g, 5 min), liquid was decanted, and two drops of FB 

were added. Samples were kept on ice and wrapped in foil, and then run on a BD LSR Fortessa special 

order research product using the following configuration: Pacific Blue channel with 405 nm excitation laser 

and 450/50 nm filter for EBFP2; FITC channel with 488 nm excitation laser and 505LP 530/30 nm filter for 
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EYFP; and PE-Texas Red channel with 552 nm excitation laser and 600LP 610/20 nm filter for mKate2. 

Approximately 104 live single-cell events were collected per sample. 

 Flow cytometry data analysis: Flow cytometry data were analyzed using FlowJo software 

(FlowJo, LLC) to gate on single-cell (FSC-A vs. FSC-H) and live (FSC-A vs. SSC-A) bases, compensated 

using compensation control samples, and gated as transfection-positive. The mean reporter signal in MFI 

was obtained for each sample. UltraRainbow Calibration Particles (Spherotech #URCP-100-2H) were run 

in each flow cytometry experiment. Beads were gated on an FSC-A vs. FSC-H basis, the nine bead 

subpopulations of varying intensities were identified, and the mean MFI for each subpopulation in the FITC 

channel and PE-Texas Red channel was obtained. These values in combination with manufacturer-

supplied MEFL and MEPTR values for each subpopulation were used to fit a regression line with y-intercept 

equal to zero. The mean and S.E.M. for the three biological replicates were calculated. Autofluorescence 

background signal was subtracted using samples transfected with the transfection control marker, and error 

was propagated. MFI values were converted to MEFL or MEPTR using the slope of the regression line, and 

error was propagated. Histograms in supplementary figure panels represent reporter signal in MFI. 

 Nomenclature: Genes are named by their protein domains in order from N-terminus to C-terminus. 

Domains are generally connected by flexible linkers comprising glycine and serine. Several abbreviations 

are used: ZFa is an AD-ZF for any choice of AD and ZF; similarly, RaZFa is an AD-FRB and FKBP-ZF, and 

ABA-ZFa is an AD-PYL1 and ABI1-ZF. DsRed refers to wild type DsRed-Express2, and DsDed is an 

DsRed-Express2 R95K mutant. We use a streamlined nomenclature that differs from that used in the 

original COMET report129, in that inhibitors do not use ZFi notation: ZFi is now termed ZF, and DsRed-ZFi 

is now termed DsRed-ZF.  

 The constitutive promoters used are CMV and EF1α. The inducible promoters used are COMET 

promoters, which are named as “[ZF domain]x[number of binding sites]-[binding site arrangement]”. For 

example, ZF1x6-C has six compact sites for ZF1. There are two non-standard cases: ZF1/2x6-C has six 

compact overlapping sites for ZF1 and ZF2 (up to six sites occupied, and up to six per ZF); (ZF2/ZF6)x3 

has six compact sites alternating between ZF2 and ZF6 (up to six sites occupied, and up to three per ZF). 

 Statistical analysis: Each sensor in Fig. 4.4a,b was assessed using a one-tailed Welch’s unpaired 

t-test, with the null hypothesis that reporter signal was equal with and without ligand treatment. Genetic 



 67 
programs in Fig. 4d,e were assessed using a three-factor ANOVA and Tukey’s honest significant difference 

(HSD) test, with the null hypothesis that reporter signal was equal across the two input types, four 

topologies, and four input combinations. Effects were considered significant if p < 0.05, and additionally for 

the HSD test if the comparisons had an adjusted p < 0.05. 

 Computational method details—Described further in Appendix 6. The modeling approach 

accounts for variation in gene expression using the constrained sampling method54,129 (which is used here 

to describe the distribution of gene expression observed when cells are harvested via trypsin digest). Some 

parameter values are from the COMET study129 and others are newly estimated or fitted (Table A6.1). 

 Diagrams: Genetic programs for digital operations are depicted using genetic diagrams and 

electronic diagrams. The former represents each promoter, protein, and regulatory interaction, and the 

latter represents the logic underlying these interactions. 

 

4.4 Results 

 Biological parts for integrating transcriptional and post-translational control of gene 

expression: The strategy that we pursued for genetic program design was uniquely enabled by the 

development of the COmposable Mammalian Elements of Transcription (COMET): a toolkit of transcription 

factors (TFs) and promoters with tunable properties enabling precise and orthogonal control of gene 

expression129. These TFs comprise a zinc finger (ZF) DNA-binding domain and a functional domain, e.g., 

VP16 and VP64 are activation domains (AD) that with a ZF form an activator (ZFa). The promoters contain 

binding sites (e.g., ZF1x6-C has six compactly arranged ZF1 sites), and transcriptional activity can be 

evaluated by measuring the signal from an inducible reporter gene. We also developed mathematical 

models to characterize how protein domain and promoter choices affect TF-promoter activity. Here, we 

investigated whether these biological parts and descriptive computational tools could be adapted and 

applied to achieve predictive genetic program design. 

 Although COMET includes many parts for transcriptional regulation, we hypothesized that genetic 

program design would be further facilitated by introducing a mechanism for regulation at the post-

translational level (Figure 4.1a,b). To investigate this possibility, we evaluated new parts based on split 

inteins: complementary domains that fold and trans-splice to covalently ligate flanking domains (exteins)177.  
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We selected the split intein gp41-1 for its rapid splicing kinetics178. To test an application of this mechanism, 

we appended an AD to the gp41-1 N-terminal fragment (intN) and a ZF to the C-terminal fragment (intC). 

These parts were used to construct an AND gate in which a reporter gene was induced only when both 

fragments were present (Figure 4.1c), demonstrating that COMET-mediated gene expression can be 

controlled using split inteins. We next incorporated this reconstitution mechanism into our modeling 

framework by modifying ordinary differential equations from the original study, which concisely represent 

transcriptional regulation, and fitting newly introduced parameters to the data. We also extended the model 

to incorporate split inteins onto two types of inhibitors: ZF, which competes with ZFa for binding site 

occupancy in the promoter; and ZF fused to DsRed-Express2 (abbreviated as DsRed-ZF), which through 

a dual mechanism of inhibition also reduces the cooperativity of ZFa-mediated RNAPII recruitment at multi-

site promoters129. Here, we introduced an R95K mutation to ablate the DsRed chromophore179, yielding a 

non-fluorescent inhibitor we termed DsDed-ZF. The extended model accurately recapitulated the 

component dose-dependent performance of the AND gate (Figure 4.1c, lower), providing verification that 

this extension can describe split intein-based circuits.  

Figure 4.1 Logical evaluation is enabled by transcriptional and post-translational regulation. (a,b) 
Cartoons depict (a) the genetic components and (b) their arrangement and use in simulations to produce 
intended functions. Transcription is mediated by COMET TFs, which here are modified with split inteins 
to incorporate post-translational regulation via splicing. Genetic parts that carry out specified activities 
and that can be described mathematically should enable the predictive customization of mammalian 
cellular functions. In the schematics, circles are protein domains, arrows are splicing or regulation, 
yellow highlighting indicates the inputs, and the red node is the output. (c–j) A panel of logic gates was 
designed, simulated, and experimentally evaluated. Synthetic digital logic in cells is inherently analog, 
and component doses were selected to examine this behavior and underscore particular features; e.g., 
in c, reporter signal decreases at a high intC-ZF1 dose because unspliced intC-ZF1 inhibits ZFa-
mediated transcription. In the electronic diagrams that represent the logical evaluations (teal 
background), lines denote splicing or regulation. Processes that have a modest effect within the dose 
range examined, and that because of fundamentally analog behavior do not carry out a fully digital 
function, are denoted by dotted lines. In the mechanistic diagrams (blue background), the purple bent 
arrows are promoters, and the black arrows are splicing and regulation. Yellow highlighting indicates 
the components for which dose is varied (in gene copies). Simulation and experimental results are 
presented in heatmaps that indicate how the two inputs affect reporter output (mKate2 signal in 
MEPTRs); color-coding denotes the mean reporter signal from three biological replicates, scaled by 
maximum value in each heatmap. Simulations in c are a fit to the data, and subsequent panels (d–j) 
are predictions. (k) Some of the motifs that were used in the gate designs confer sharp ON/OFF 
transitions in reporter output. For example, a standard activation dose response was not ultrasensitive, 
but layering two inhibitors in a cascade did produce ultrasensitivity (Hill coefficient n > 1). 
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 Model-guided design of genetic programs: As a first test of the predictive capacity of the revised 

model, we designed a panel of genetic logic gates. Our modeling objective was to identify promising designs 

that implement a given function. Given this objective, we opted to not include additional model complexity 

that might be required to predict all aspects of circuit behavior. To date, TFs based on ZFs129,141, TALEs180-

183, dCas9184,185, and other proteins152 have been used to implement transcriptional logic in mammalian 

cells, and some of these studies make use of splicing141,180,184. Logic has also been implemented using 

RNA-binding proteins186, proteases187,188, and designed protein-binding domains183. However, we would 

still benefit from a way to precisely predict behaviors that can realized using directly corresponding genetic 

parts, and so we set out to test whether we could use our model to guide the design of a panel of gates. 

 Throughout, simulations employed a statistical model for gene expression variation, which we have 

previously shown to be important in accounting for the effect of cellular variation on how an engineered 

function is carried out across a cell population54,129. To make an IMPLY gate, the AND gate was modified 

by appending DsDed to intC-ZF1 and co-expressing a VP64-ZF1 activator. Experimental outcomes (i.e., 

reporter signal readout across component doses) were consistent with the prediction that readout would be 

low only if DsDed-intC-ZF1 were present in sufficient excess over its splicing partner, VP64-intN, to function 

as an inhibitor (Figure 4.1d). To make a NAND gate, an inhibitor was split into DsDed-intN and intC-ZF1 

and co-expressed with an activator. Outcomes were consistent with the prediction that readout would be 

low only with sufficient reconstitution of the inhibitor (Figure 4.1e). These cases demonstrate that model-

guided design can identify effective topologies as well as the precise relationship between input component 

levels and circuit outcomes. 

 An ideal framework would confer the versatility to achieve a given objective in various ways. We 

speculated that in all, the properties of COMET, the use of splicing, and potentially the layering of regulators 

in series might provide a sufficient basis for this capability. As a test, we compared four designs for a 

NIMPLY gate utilizing different mechanisms. The first two designs used inhibition mediated by ZF1 (Figure 

4.1f) or DsDed-ZF1 (Figure 4.1g). The third used splicing of an VP64-intC-ZF1 activator to a DsDed-ZF1 

inhibitor, such that the readout would be high only if VP64-intC-ZF1 were in sufficient excess of its splicing 

partner DsDed-intN (Figure 4.1h). The fourth used a double inversion cascade, in which an upstream 

inhibitor prevented a downstream inhibitor from acting on the reporter (Figure 4.1i); this represents a 
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variation on a topology that was previously examined in a bacterial context189. All four designs produced 

NIMPLY as predicted. We next tested whether the above properties could be utilized simultaneously, and 

indeed we were able to build an AND gate by splitting the cascade upstream inhibitor into DsDed-intN and 

intC-ZF10 (Figure 4.1j). Unlike ZFa-mediated activation, the cascade exhibited ultrasensitivity (Hill 

coefficient n = 2.8)—a signal transformation in which a small change in input yields a large change in output, 

and high output is produced only with sufficient input. Ultrasensitivity buffered the circuit against low inputs, 

such that the output remained low for input levels that in the ZFa case would have produced half-maximal 

activation (Figure 4.1k). 

 Across the panel, five of the eight gates exhibited a goodness of prediction metric (comparing the 

simulated and observed outcomes, Q2) of at least 90%, indicating a high predictive capacity across the 

dose response landscapes. Even for the gate with the lowest Q2 (IMPLY), the model correctly predicted the 

trend across most input dose combinations. Altogether, these results demonstrate the feasibility of model-

guided design of genetic logic gates in mammalian cells, and that the choice of parts and mechanism 

employed to implement a given function yield predictable performance characteristics. 

 Compression of circuit design using functional modularity: We next investigated whether 

predictive design could be extended beyond individual gates to generate multi-input multi-output (MIMO) 

gates. A putative advantage of using orthogonal parts like COMET TFs and promoters is that these parts 

may be combined without disrupting their functions. However, simply appending modules can lead to 

inefficient and cumbersome designs, and thus a central focus of our approach was genetic compactness 

as well as performance. Ultimately, enhancing compactness and minimizing redundancy in the design 

process might eliminate failure modes and facilitate implementations within the constraints of gene delivery 

vehicles . Although genetic compression—reducing the number of components required to implement a 

given specification—has been investigated in other ways such as through recombinase-mediated DNA 

rearrangement190, here we sought a previously unattainable form of topological compaction by protein multi-

tasking (Figure 4.2a). We hypothesized that because our genetic parts operate through direct interactions 

without relying on long-range mechanisms such as chromatin modification, they might exhibit functional 

modularity, i.e., domains could be concatenated and retain their functions. This property would be of great  
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Figure 4.2. Compact multi-output logic is attained through functional modularity. (a) A strategy 
for multi-output logic is proposed by using multi-tasking proteins that retain the functions of their 
constituent domains. The cartoons depict the use of multiple DNA-binding domains on a TF to regulate 
multiple genes, the embedding of a split intein fragment within a functioning TF to enzymatically alter its 
activity, and the merging of features from multiple genetic programs to enable their compact 
simultaneous implementation. (b–f) A panel of multi-input-multi-output gates was designed, simulated, 
and experimentally evaluated. As an example, c is deconstructed to show how separate topologies 
containing proteins that have some domains in common and are amenable to the appending of 
additional domains can be overlaid. In the plots, color-coding denotes the mean mKate2 and EYFP 
reporter signal from three biological replicates, scaled by maximum value in each heatmap. (g) These 
plots summarize the complexity of the gates that were designed and validated in Figure 4.1 (red) and 
Figure 4.2 (purple), with complexity defined based on the size and depth of their logical representation 
(upper) or based on the numbers of genes, regulatory connections, and regulatory proteins employed 
(lower). The expanded toolkit of genetic parts and model-guided approach was successful for building 
circuits spanning a range of attributes, which suggests that this design process could be executed 
reliably for many future objectives. 
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utility by enabling multi-tasking proteins that act at multiple promoters or in both transcriptional and post-

translational roles, and that could be arranged to execute multiple functions in an efficient fashion. 

 To investigate these questions, we designed and tested a panel of MIMO gates. As a base case, 

we simply appended a NIMPLY gate and a NOT gate (Figure 4.2b). This success demonstrates the 

potential for composite functions, but it brings no efficiency relative to the individual gates. To test the 

possibility of topological compaction, we first designed an IF/NIMPLY gate, hypothesizing that VP64-ZF1-

intC-ZF10 would act as a bispecific activator (on two promoters) and interact with an inert DsDed-intN to 

produce a VP64-ZF1-intC/intN activator and a DsDed-ZF10 inhibitor (Figure 4.2c). The second gate, 

IF/AND, used an activator and an inhibitor to produce a bispecific activator and an insert protein, through 

essentially the inverse mechanism of that in the IF/NIMPLY gate (Figure 4.2d). Third, a NIMPLY/AND gate 

used a VP64-intC-ZF1-DsDed activator and an intN-ZF10 inhibitor to invert their respective activities. We 

hypothesized that the former protein would act as an activator, in that DsDed would not preclude VP64 from 

conferring transcriptional activation (Figure 4.2e). Lastly, a NIMPLY/NIMPLY gate used two activators to 

produce a bifunctional inhibitor and an inert protein. We note that if this circuit had used the same readout 

for both reporters it would be a XOR gate (Figure 4.2f). Overall, the predictions explained most of the 

variance in the outcomes, and several cases were in close agreement (≥90% Q2). Minor deviations are 

potentially attributable to effects such as differences in stability for different proteins; however, we chose 

not to add such effects because increasing model complexity could lead to overfitting. Moreover, this choice 

did not preclude model-guided identification of high-performing designs. 

 A surprising finding was that when we examined performance at the single-cell level, some 

population-level outcomes were driven by cell subpopulations. In some circuits, subpopulations induced 

one reporter or the other, but not both, and thus population outcomes were driven by shifts in subpopulation 

frequencies. In other circuits, this task distribution was not apparent. Although neither behavior was an 

explicitly designed feature, both types of behavior were predicted by simulations. Altogether, the gates 

described in Figures 4.1,4.2 span a wide range of attributes including the number of genes, regulatory 

connections, and regulatory proteins (Figure 4.2g). The successful development of these circuits without 

the need for additional tuning demonstrates that this framework may be well-suited to overcoming 

complexity-associated barriers with mammalian genetic program design. 



 74 
 Implementation of analog signal processing: Although digital logic has many uses, biology also 

employs analog signal processing for many purposes, and we next examined whether our tools could be 

employed in this way. The first property that we sought to implement was ultrasensitivity, which is desirable 

in engineering sharp activation191,192 and is observed in the natural control of processes like cell growth, 

division, and apoptosis193. The second property was bandpass concentration filtering, in which an output is 

produced only within a range of input values187,194. Bandpasses are salient for both natural and synthetic 

spatial patterning195. To develop a strategy for implementing these properties, we made use of existing 

mechanistic insights. Previously, we determined that ZFa-mediated activation is cooperative at the level of 

transcription initiation, and in comparing promoter architectures, maximal transcription increased with the 

number and compactness of binding sites129. This COMET promoter feature confers both high inducibility 

and potent inhibition. We also deduced that TF binding to promoters is generally non-cooperative, so 

transcriptional output is not ultrasensitive (n = 1) to ZFa dose. To construct systems exhibiting 

ultrasensitivity (n > 1), we examined several strategies in which the output is inhibited only at low activator 

doses. The first design paired a VP16-intN input with intC-ZF. We reasoned that at low VP16-intN doses, 

intC-ZF-mediated inhibition would dominate, and at high doses, transactivation by reconstituted VP16-ZF 

would dominate. We also tested this concept with the addition of DsDed-ZF to promote more relative 

inhibition at low input doses. However, the increase in ultrasensitivity was modest for these cases. We 

reasoned this was due to insufficient inhibition at low activator doses based on decreased stability conferred 

by the intC domain to the inhibitor.  

 In comparison to a ZFa base case (Figure 4.3a) (n = 1.0), a VP16-ZF input with DsDed-ZF was 

more ultrasensitive (n = 1.8) (Figure 4.3b). This led us to consider a vehicular analogy: the circuits with 

DsDed-ZF are akin to applying the brake (inhibition) while applying the accelerator (activation), but a more 

effective approach might be to release the brake as the accelerator is applied. To realize this concept and 

circumvent stability effects, we used a chemically responsive COMET TF (RaZFa) in which rapamycin-

induced heterodimerization domains FRB and FKBP are fused to an AD and a ZF, respectively. In the 

presence of rapamycin (which in this scenario is not an input, but rather an environmental species), 

heterodimerization of VP16-FRB and FKBP-ZF converts FKBP-ZF (brake) into RaZFa (accelerator), which  
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Figure 4.3. Analog behaviors are constructed by using TFs that play multiple roles. 
Reconstitutable TFs have dose response properties that are conducive to analog signal processing. 
Simulated and experimentally observed responses are shown relating to (a–c) ultrasensitivity and (d–i) 
bandpass concentration filtering. Several designs were evaluated for the ability to meet these objectives. 
To implement ultrasensitivity, the Hill coefficient (n) was most effectively increased through a strategy 
of removing an inhibitor in the process of producing an activator (c). To implement bandpass 
concentration filtering, a tighter upper threshold was best achieved through a similar strategy that also 
included additional regulation: moderate levels of FKBP-ZF act primarily to reconstitute RaZFa, and 
high levels of FKBP-ZF act to inhibit the reporter and VP16-FRB (i). Simulations in a and d are fitted to 
data, and the other panels are predictions. The prediction plots present simulations for how output gene 
expression varies with dose of the component highlighted in yellow; each plot includes a set of 
responses varying the component highlighted in red-to-blue gradation. Doses for the x-axes and above 
the varied component in the diagrams are in plasmid ng. Each experimental plot corresponds to the 
simulated condition with the dark line (for the middle dose of the varied component). The ZF1/2x6-C 
promoter has six partially overlapping ZF1 and ZF2 sites. DMSO is the vehicle for rapamycin, which is 
used here as an environmental species (not an input). The simulations with RaZFa correspond to 
conditions with rapamycin treatment. Experiment plots represent the mean and S.E.M. of EYFP reporter 
signal from three biological replicates. 
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induces the reporter. With rapamycin, the response of this circuit to VP16-FRB input indeed exhibited 

greater ultrasensitivity (n = 3.3), consistent with the prediction (Figure 4.3c). Thus, in this system, 

ultrasensitivity can arise through cascades (Figure 4.1) or reconstitution (Figure 4.3), and neither 

mechanism requires the cooperativity in TF-DNA binding that is often associated with ultrasensitive 

responses. 

 We next investigated circuits to implement bandpass concentration filtering, which can be used to 

produce a response within a range of input signal. Our strategy was to use mechanisms that inhibit reporter 

output only at high doses of activator input, and the predictions were based on a fitted ZFa base case 

(Figure 4.3d). We hypothesized that although FKBP-ZF is necessary for RaZFa-mediated activation, 

excess FKBP-ZF would be inhibitory. We confirmed that FKBP-ZF acted as an inhibitor (Figure 4.3e), and 

implemented a test circuit with VP16-FRB and rapamycin; as predicted, the response to FKBP-ZF input 

showed a peak in output, but no sharp upper threshold (Figure 4.3f). Based on these results, we designed 

a new topology for a sharper bandpass; of the motifs in this design, simulations suggested the two paths 

of negative regulation from FKBP-ZF were the most important. With VP16-ZF or VP16-FRB as the input, 

responses were activating (Figure 4.3g,h), demonstrating cross-sectional predictive capacity for a complex 

genetic system. With FKBP-ZF as the input, we expected that at zero dose there would be no activation, at 

moderate doses there would be, and at high doses excess FKBP-ZF would decrease reconstitution (by 

inhibiting induction of VP16-FRB) and inhibit the reporter. The outcome closely matched the prediction of a 

bandpass with a sharp upper threshold (Figure 4.3i). These results demonstrate a design capability for not 

only digital gates, but also analog behaviors, which can be realized using chemically responsive parts and 

non-canonical topologies. 

 Integrating genetic circuits with sensors to build sense-and-respond functions: While the 

predictive design of genetic programs is a substantial technical advance, translating this capability to other 

technologies will require integrating genetic circuits with native or synthetic parts that sense and modulate 

the state of the cell or its environment. A recurring challenge associated with this compositional goal is 

level-matching the output of a sensor to the input requirements of a downstream circuit54,196. We 

investigated whether our designed circuits could overcome this challenge and be effectively linked to 

sensors without requiring trial-and-error tuning. In support of the feasibility of adding an upstream sensor 
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layer, simulations suggested that ZFa could be arranged in series without prohibitively driving up 

background or dampening induced signal, Thus, we examined two classes of synthetic sensors 

(transmembrane and intracellular) for which we hypothesized signaling could made COMET-compatible. 

For the first, we selected the modular extracellular sensor architecture (MESA)—a self-contained receptor 

and signal transduction system that transduces ligand binding into orthogonal regulation of target 

genes167,197. In this mechanism, ligand-mediated dimerization of two transmembrane proteins called the 

target chain (TC) and protease chain (PC) promotes PC-mediated proteolytic trans-cleavage of a TC-bound 

TF. We explored several strategies for building COMET-compatible MESA based on a recent scaffold198 

and the parts developed in the current study. The best performance was observed using rapalog-inducible 

MESA that release ZFa for activating signaling or DsDed-ZF for inhibitory signaling (representing a new 

function for this receptor), and the ZFa format was carried forward.  

 For the second sensor, we built a new TF—ABA-ZFa, which is analogous to RaZFa—by fusing the 

abscisic acid (ABA)-binding domains PYL1 and ABI1174 to an AD and a ZF, respectively. We observed that 

both sensors displayed excellent performance with reporter induction upon ligand treatment (Figure 

4.4a,b). For Rapa-MESA-ZF6a (ZF6a was selected for its high potency stemming from cooperative 

transcriptional activation129), the ligand-inducible fold difference in signal was ~200x, several fold higher 

than for recent receptors using tTA198 and that signal through a distinct mechanism199, and thus the highest 

for this system to date. For ABA-ZF2a (ZF2a was also selected for its high potency), ligand-independent 

signal was unobservable and induced signal was high, yielding essentially perfect performance. Thus, both 

sensors have a low off state and a high on state and benefit from the advantageous property of COMET 

promoter-based cooperativity. 

 We carried forward the two validated sensors and examined whether downstream circuits 

comprising genetic parts and designed topologies from this study could be seamlessly linked with the new 

input layer. To this end, we designed a panel of synonymous topologies that implement AND logic through 

different mechanisms (Figure 4.4c): (1) a hybrid promoter with alternating TF sites (based on a similar 

architecture from the COMET study), (2) splicing (as in Figure 4.1c), (3) splicing with DsDed (as in Figures 

4.1d, 4.2d for tighter inhibition), and (4) and splicing with feedback (as in Figure 4.3g–i). All four topologies 

exhibited AND behavior when tested using ZFa as inputs (Figure 4.4d), demonstrating the versatility for  
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Figure 4.4. Sensors can be linked to genetic programs to make signaling cascades. MESA and 
COMET technologies can be combined to construct functional biosensors, and upstream biosensor 
output is well matched to the requirements for downstream promoter input. (a,b) ABA-ZF2a and Rapa-
MESA-ZF6a each ligand-inducibly signal (p = 2×10–3 and p = 1×10–3, respectively, one-tailed Welch’s 
unpaired t-test). EtOH is the vehicle for both ligands. For MESA, the TC contains an FRB ectodomain 
and intracellular COMET TF, and the PC contains an FKBP ectodomain and intracellular TEV protease 
(TEVp). Each receptor chain contains an FGFR4 transmembrane domain. (c–e) Validated sensors were 
applied to implement multi-input sensing. AND logic was selected as a design goal, and four 
synonymous topologies—those that are intended to achieve the same goal through different 
mechanisms—were proposed and evaluated. For each input type (two columns for upstream ZFa or 
ligand sensing) and topology (four rows), reporter signal with two inputs was observed to differ from that 
with either or no input (p < 2×10–16 in each case, three-factor ANOVA and Tukey’s HSD test), indicating 
successful AND gate outcomes. Notably, topologies #2–4 displayed negligible background signal 
(comparable to the signal with only the reporter), despite involving multi-layer signaling which can be a 
potential source of leak. The (ZF2/ZF6)x3 promoter has three pairs of alternating ZF2 and ZF6 sites. 
Bar graphs represent the mean, S.E.M., and values of mKate2 reporter signal from three biological 
replicates (depicted as dots; near-zero values are below the log-scaled y-axis lower limit). The numbers 
above bar pairs are the fold difference, and a fold difference of ∞ indicates that the denominator signal 
is less than or equal to zero. 
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attaining a given objective in multiple ways. Moreover, when coupled to ligand-activated sensors, these 

circuits still conferred AND behavior, and there was no substantial loss of performance (i.e., fold induction 

with two ligands remained much greater than with each one individually) in carrying out this more complex 

sensing function (Figure 4.4e). A comparison across the designs provides some insights. The hybrid 

promoter in topology 1 was high-performing, and the splicing topologies in 2–4 generally yielded 

improvement, despite the additional cascade layer, by reducing  one-input signals not only to near zero-

input levels, but also to near reporter-only background. Of the topologies examined, 2 and 3 were the most 

effective at producing a high two-input signal and low signals in other cases. These results demonstrate 

that genetic programs can be designed by a model-driven process that uses directly corresponding parts 

and varied mechanisms, and then these programs can be readily linked to different classes of sensors for 

multiplexed evaluation of ligand inputs without incurring a performance hit. 

 

4.5 Discussion 

In this study, we generated regulators integrating transcriptional and post-translational control and validated 

a modeling framework for accurate genetic program design and prediction. Experimental observations of 

dose response behavior closely matched simulations, even in scenarios employing new proteins, including 

those with many domains, and new topologies, including those with many interacting components. The 

gates spanned a range of logical complexity and genetic complexity (Figure 4.2g), and the capability to 

construct these functions represents an advance in mammalian synthetic biology. Throughout, no trial-and-

error was needed to arrive at the specified design goals. Once the base case parts had been characterized, 

no additional parameterization was needed to simulate new regulators. Since the mechanisms employed 

for binding, splicing, activation, and inhibition can be described by concise formalisms, no fundamental 

revamping was needed to make predictions from an originally descriptive model. Lastly, even though a 

relatively small set of protein domains was utilized, we were able to combine the domains in many ways, 

and no large libraries were needed to produce the variety of behaviors observed. 

 Key properties that enabled sophisticated design included antagonistic bifunctionality200, in which 

a component can exert opposing effects on a target gene depending on the other components in the circuit, 

and functional modularity, which enabled multiple activities to be encoded in proteins. Sophisticated design 
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was also enabled through split genetic parts, including those that splice or dimerize. Split parts are 

conducive to encoding both digital (Figures 4.1,4.2) and analog (Figure 4.3) functions. It is also worth 

noting that split parts shift some of the regulation from the transcriptional level to protein-protein interactions, 

which could increase the speed of signal processing and in the genomic context might reduce the risk of 

gene silencing. Another benefit, relating to circumventing cargo limitations of gene delivery vehicles, is that 

large programs could be distributed across multiple vectors201 such that a function is reconstituted only in 

cells receiving all vectors. 

 Finally, we demonstrated that COMET TFs can be fused to MESA to produce best-in-class 

receptors and that these are interoperable with downstream programs (Figure 4.4b,e); seamless level-

matching was achieved through the cooperative potency of the released TF aligning with the 

responsiveness of the promoter in the downstream layer. Altogether, these attributes, in combination with 

the many ways in which components can be arranged to regulate each other, greatly expand the genetic 

program design space. We conclude that the new components and quantitative approaches developed 

here should be effective for engineering mammalian cellular functions. 
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5.1 Abstract 

Immune cells such as monocytes and macrophages use the pattern recognition receptor TLR4 to sense 

pathogen-related or damage-related cues and initiate signaling to regulate antimicrobial and inflammatory 

responses. TLR4 was of central importance in the macrophage quorum licensing study, in that it mediated 

the response to LPS by signaling to activate the transcription factor NF-κB to induce TNF expression 

(Chapter 2). In previous work203, the Leonard lab investigated structural perturbations to TLR4 and 

proposed that the standard model describing the initiation of signaling needs refinement. The revised model 

involves a putative TLR4-inhibitory complex (TIC) that retains the receptor in a signaling-incompetent state 

prior to ligand binding. Here, we set out to evaluate the TIC hypothesis, starting with a genome-scale 

CRISPR/Cas9 knockout screen in THP-1 monocytes for constitutive negative regulators of the activity of 

NF-κB. The results provide a set of genes that in future work can be investigated to elucidate TLR4-

dependent or TLR4-independent roles in regulating NF-κB activity and for identifying TIC. 

 

5.2 Introduction 

Toll-like receptors (TLRs) mediate the recognition of microbial patterns and tissue damage204-206. Aberrant 

TLR signaling is implicated in autoimmunity and cancer207-209, and the modulation of TLR signaling is a 

therapeutic target210,211. Each TLR has a ligand-binding ectodomain, a transmembrane domain (TMD), and 

an intracellular Toll/IL-1 receptor (TIR) domain. In the canonical model for the initiation of signaling, ligand 

binding to ectodomains (ECDs) leads to receptor dimerization and the recruitment of downstream mediators 

to dimerized TIR domains. Although downstream mediators have been identified, the mechanism by which 

receptor dimerization induces signaling is not well understood212. Among the TLRs, TLR4 induces 

inflammation in response to the lipid A component of LPS from bacteria. Excessive signaling, however, 

leads to harmful inflammation, and in the extreme, septic shock204,207,208,210. TLR4 also senses a variety of 

non-canonical ligands213-219, though the mechanism and utility of this capability remain unclear. 

 TLR4 is a structurally and mechanistically distinct TLR. The adaptor protein myeloid differentiation 

factor 2 (MD-2)220 binds to the TLR4 ECD and facilitates TLR4-MD-2 cell surface colocalization221. When 

the MD-2 hydrophobic core binds lipid A, MD-2 exposes an interface that binds the ECD of another TLR4, 

leading to formation of a heterotetrameric TLR4-MD-2 that is stabilized by ECD-ECD interactions222. The 
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TLR4 ECD is involved in preventing constitutive signaling, and in the steric occlusion model, ECDs sterically 

occlude TIR dimerization in the absence of ligand223. However, several observations challenge this model. 

For example, it was shown that the deletion of nearly the entire ECD did not induce constitutive signaling 

whereas deletion of a slightly larger portion did223. Additionally, the insertion of a flexible amino acid linker 

between the TMD and ECD decreased LPS-inducible signaling but did not lead to constitutive signaling224. 

 A recent study in the Leonard lab provides a basis for a revised model of TLR4 signaling. Daringer 

et al.203 generated and studied structural perturbations to the receptor and made the following observations: 

(i) transmembrane-anchored TIR domains (without ECDs) were sufficient to initiate constitutive signaling; 

(ii) sequestering TIR domains inflexibly at the membrane by deleting the native 10 aa intracellular linker 

prevented signaling; and (iii) introducing a long intracellular linker did not elevate signaling in the absence 

of ligand, and signaling remained LPS-inducible; this outcome is inconsistent with the steric occlusion 

model, because this long linker when fully extended would span nearly twice the distance to bridge the 

widest part of the ECD222. Furthermore, signaling from this receptor variant was LPS-inducible, which does 

not support a mechanism in which ligand-induced receptor dimerization or conformational rearrangement 

of ECDs leads to an intracellular conformational change that alleviates steric inhibition of TIR dimerization.  

 The above observations led to a hypothesis that in the absence of ligand, TLR4 is retained in a 

signaling-incompetent conformation through interactions between TLR4 and one or more as-of-yet 

unidentified species termed the TLR4-inhibitory complex (TIC) (Figure. 5.1). TIC would bind the C-terminal 

region of the TLR4 ECD, TIR domain, and one or more interaction partners, which could be adaptor proteins 

and/or other molecules. If TIC-bound TIR domains were held in this conformation, then upon ligand-binding-

induced ECD dimerization and/or rearrangement, interactions with TIC would be disrupted and TIR domains 

would dimerize and initiate signaling. TIC would retain the TIR domains in a membrane-proximal location, 

Figure 5.1. The TIC hypothesis. Illustration from Daringer, et al. of the hypothesis in which a TLR4 
inhibitory complex negatively regulates the initiation of TLR4 signaling in the absence of ligand. 
 



 84 
which prevents signaling, or otherwise preclude interactions between TIR domains and adapter proteins. 

This model could explain why TLR4 signaling is inducible by non-canonical ligands: if induction of signaling 

requires disruption of TIC binding, rather than ligand-guided formation of a specific conformation, then there 

could exist multiple mechanisms for inducible signaling.  

 Given the unknown of what constitutes TIC, we set out to evaluate the TIC hypothesis using a 

genome-scale screen. The use of libraries is an established approach for phenotype-to-genotype screens, 

and in combination with next-generation sequencing they can be implemented in pooled format. 

CRISPR/Cas9 has been adapted for this purpose to identify genes that regulate various cellular 

processes225-227. Here we used CRISPR/Cas9 screening to identify regulators of basal NF-κB activity in a 

THP-1 monocyte reporter cell line that we generated. We note that several screens have been conducted 

previously for regulators of NF-κB activity, generally differing from our approach, as described in Table 5.1. 

Table 5.1. Prior NF-κB screens. 
Study Description 
Chew, et 
al.228 

Genome-scale pooled knockdown screen by transfecting siRNAs into an A549 cell line 
containing an integrated NF-κB-inducible luciferase reporter and treating with or without 
TNF. 

Teo, et al.229 Genome-scale arrayed gain-of-function screen by transfecting cDNAs and an NF-κB-
inducible luciferase reporter into the 293T cell line and treating with TNF. 

Gewurz, et 
al.230 

Genome-scale arrayed knockdown screen by transfecting siRNAs into an HEK293 cell 
line containing an integrated NF-κB-inducible GFP reporter and a Tet-inducible LMP1 
gene. 

Lee, et al.231 Genome-scale pooled insertional inactivation screen by transducing the KBM7 cell line 
with a gene-trap retrovirus that has an NF-κB-inducible blasticidin resistance gene and 
treating with blasticidin to select for resistant cells. 

Olarerin-
George, et 
al.232 

Middle-scale arrayed screen by transfecting miRNA mimics (several hundred) into an 
HEK293 cell line containing an integrated NF-κB-inducible luciferase reporter and treating 
with/without TNF. 

Feldman, et 
al.233 

Middle-scale imaging-based pooled screen for perturbations that affect NF-κB 
nucleocytoplasmic translocation by transducing a lentiviral sgRNA library into a HeLa cell 
line containing integrated p65-mNeon and inducible Cas9, and treated with IL-1β or TNF; 
screens were also conducted in other cell lines. 

Verma, et 
al.234 

Genome-scale arrayed knockdown screen by transfecting siRNA into macrophages 
(differentiated from the THP-1 monocyte cell line using PMA) containing an integrated 
NF-κB-inducible luciferase reporter and treating with LPS or TNF. 

Zablocki-
Thomas, et 
al.235 

Genome-scale pooled screen by lentivirally transducing the GeCKO v2 sgRNA library into 
a KBM7 cell line containing an integrated NF-κB-inducible GFP, constitutive TLR3, and 
constitutive Cas9, with poly(I:C) treatment. 

Covarrubias, 
et al.236 

Genome-scale pooled screen by lentivirally transducing a customized sgRNA library into  
immortalized murine bone marrow-derived macrophages containing an integrated NF-κB-
inducible GFP reporter and constitutive Cas9237 and treating with/without LPS. 

Sfikas, et 
al.238 

Middle-scale arrayed screen by transfecting siRNA (several hundred) into a U2OS 
osteosarcoma cell line containing an integrated NF-κB-inducible luciferase and treating 
with etoposide or ionizing radiation to induce DNA damage. 
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5.3 Materials and Methods 

 Vector cloning and purification: A lentiviral vector containing an NF-κB-inducible EGFP and a 

CMV-driven Cas9 fused via T2A peptide to a hygromycin resistance gene was generated to provide a 

readout for the screen. To construct the vector, an NF-κB-responsive cassette (NF-κB-ELAM-EGFP) was 

PCR-amplified from the NEE vector239 and inserted into a vector (pPD094) containing a CMV-driven 

mCherry fused via T2A peptide to a hygromycin resistance gene. Cas9 was PCR-amplified from lentiCas9-

Blast (Addgene #52962) and inserted into the vector to replace mCherry. Cloning was conducted using 

standard restriction and ligation methods (New England Biolabs and Thermo Fisher Scientific), followed by 

transformation into chemically competent TOP10 E. coli (Thermo Fisher Scientific). Cells were plated onto 

LB/ampicillin agar plates and incubated at 37°C, and colonies were picked and grown in LB/ampicillin 

medium at 37°C in a shaking incubator. Vector was isolated using an E.Z.N.A. plasmid mini kit (Omega 

Bio-Tek), and inserts were sequence-verified using DNA sequencing services through ACGT, Inc. Vector 

was prepared using polyethylene glycol-based extraction. DNA purity and concentration were measured 

using a Nanodrop 2000 (Thermo Fisher Scientific). 

 HEK293FT cell culture: HEK293FT cells were cultured in complete DMEM: 1% DMEM powder 

(Gibco #31600091), 0.35% w/v D-glucose (Sigma #50-99-7), 0.37% w/v sodium bicarbonate (Fisher 

#S233-500), 10% heat-inactivated FBS (Gibco #16140071), 4 mM L-glutamine (Gibco #25030081), and 

100 U ml–1 penicillin and 100 μg ml–1 streptomycin (Gibco #15140122). Cells were grown in tissue culture-

treated 10 cm dishes (Corning #500001672) at 37°C in 5% CO2. To passage, medium was aspirated, and 

cells were washed in PBS, incubated in trypsin-EDTA (Gibco #25300054; 37°C, 5 min), detached by 

tapping the dish, and resuspended in fresh medium and plated. 

 Lentiviral packaging and harvest: Lentivirus was produced by transfecting HEK293FT cells using 

the calcium phosphate method. Cells were plated (3 × 105 cells ml–1, 10 ml) in fresh medium in 10 cm 

dishes. At ~8 h after plating, by which time the cells had adhered, the reporter vector (10 μg), a plasmid for 

constitutive expression of EYFP (1 μg) as a transfection control, and the second-generation lentiviral 

packaging plasmids pSPAX2 (8 μg) and MD2G (3 μg) were mixed with 2M CaCl2 (150 μl) and sterile water 

(for a total volume of 1 ml) and pipetted dropwise into sterile 2× HEPES-buffered saline (500 mM HEPES, 

280 mM NaCl, 1.5 mM Na2HPO4; 1 ml). This mixture was pipetted four times gently, incubated for 3 minutes, 
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pipetted many times vigorously, and added dropwise onto cell culture. Cells were incubated overnight, and 

the next day medium was aspirated and replaced with fresh medium. At 28 h after the medium change, 

EYFP expression was confirmed by fluorescence microscopy, the medium was pipetted from cell culture 

into conical tubes and centrifuged (500 × g, 2 min, 4°C), and the lentivirus-containing supernatant was 

filtered through a sterile 0.45 μm filter and stored at –80°C. 

 THP-1 monocyte cell culture: Monocytes were cultured in complete RPMI-1640 medium: RPMI-

1640 (ATCC #30-2001 or Gibco #A1049101), 10% FBS, and 100 U ml–1 penicillin and 100 μg ml–1 

streptomycin. Cells were grown in suspension in tissue culture-treated 10 cm dishes and incubated at 37°C 

and 5% CO2. Cells were passaged at a density of 105–106 cells ml–1 by diluting with fresh complete medium, 

or by centrifuging in 50 ml conical tubes (150 × g, 5 min), removing the medium, resuspending the cells in 

fresh medium, and plating. 

 Cell line generation: THP-1 cells were transduced with the lentiviral reporter by spinoculation. 

Cells (105 cells ml–1, 2 ml) and viral suspension (4 ml) were combined in 50 ml conical tubes. A no-virus 

control was included and was brought to 6 ml with complete RPMI-1640 medium. Polybrene (Sigma-Aldrich 

#TR-1003; 6 µl, for 0.1% v/v in the mixture) was added. Following centrifugation (1200 × g, 1 h, 25°C), the 

supernatant was aspirated, and cells were resuspended in complete RPMI-1640 medium (2 ml) and plated 

in a tissue culture-treated 6-well plate (Corning). After two days, each sample was split into two wells, and 

to one of these wells, hygromycin B (Thermo Fisher Scientific #400053; 300 µg ml–1) was added. Cells 

were cultured for one week (passaging with 50% fresh medium and 50% conditioned medium) to select for 

transduced cells. Non-transduced cells were observed not to survive the antibiotic treatment. Reporter cells 

were subsequently cultured using a maintenance concentration of 200 μg ml–1 hygromycin B. 

 Reporter validation by analytical flow cytometry: To test for reporter inducibility, THP-1 cells 

and reporter cells were plated in 6-well plates and treated with E. coli 055:B5 LPS (Sigma-Aldrich; 100 ng 

ml–1) or not treated in biologic triplicate. 24 h later, samples were prepared for flow cytometry. The contents 

of each well were pipetted into FACS tubes and centrifuged (150 × g, 5 min), the liquid was decanted, and 

two drops of FACS buffer (PBS pH 7.4, 5 mM EDTA, 0.1% BSA) were added. Samples were kept on ice 

and wrapped in foil, and then run on a BD LSR Fortessa special order research product. EGFP signal was 

measured in the FITC channel with a 488 nm excitation laser and a 505LP 530/30 nm filter. Approximately 
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104 live single-cell events were collected per sample. Data were analyzed using FlowJo software (FlowJo, 

LLC) to gate on single-cell (FSC-A vs. FSC-H) and live (FSC-A and SSC-A) bases. The mean reporter 

signal in MFI for each sample was converted to units of Molecules of Equivalent Fluorescein (MEFLs) using 

a calibration curve generated from UltraRainbow Calibration Particles (Spherotech #URCP-100-2H). 

 Library transduction: The Brunello library contains sgRNA lentiviral vectors for the pooled 

knockout of 19,114 genes in human cells. For each screening replicate, reporter cells were independently 

transduced (1 h centrifugation at 1000 × g, followed by 4–5 h in a 37°C culture incubator) in 12-well plates 

with 8 µg ml–1 polybrene and an amount of lentivirus corresponding to an MOI of approximately 0.3. Enough 

cells were transduced to achieve coverage of approximately 400–500 cells per sgRNA in the library. 

Transduced cells were selected by treating with puromycin (Invivogen #NC9138918, 1 μg ml–1) for four 

days. Brunello-transduced reporter cells were cultured for an additional four days in the absence of 

puromycin prior to FACS. 

 Flow-activated cell sorting: At approximately one week after library transduction, cells were 

sorted using a BD FACS Aria four-laser special order research product. Gates were drawn to identify live 

single-cell events (based on forward scatter and side scatter) and to distinguish EGFP signal (using the 

FITC channel with a 488 nm excitation laser and a 505LP 525/30 nm filter). The mid gate was drawn to 

cover the 5% of cells with the highest EGFP signal, except for the 0.25% of cells with the highest signal 

which were covered by the hi gate. Approximately 1–2 × 106 mid cells and 5–7 × 105 hi cells were collected. 

 Sample preparation, NGS, and bioinformatic analysis: Pre-sort, GFP-mid sorted, and GFP-hi 

sorted cell populations from each replicate were stored at –80°C until genomic DNA extraction was 

performed. Genomic DNA was extracted from cell pellets using a Quick-DNA kit (Zymo #D4068 or #D4075). 

Library preparation was performed by PCR using Ex Taq polymerase (Takara #RR001A) with up to 10 µg 

of genomic DNA per reaction. A mix of P5 stagger primers and P7 primers with a unique barcode for pooled 

sample deconvolution were used to amplify the sgRNA-containing region from genomic DNA240. PCR 

products were analyzed by agarose gel electrophoresis, and amplicons of the expected size were isolated 

using Zymoclean gel DNA recovery kit (Zymo #D4008). Samples were sequenced at NUSeq using an 

Illumina NextSeq500 instrument with a 75 bp single-end protocol to generate approximately 108 reads. Data 

were processed using CRISPRCloud2 by comparing the mid post-sort to pre-sort and the hi post-sort to 
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pre-sort. This step amalgamated the data across the three replicate screens and yielded two types of 

ranked lists of hits: barcode-centric, which considers each barcode separately, and gene-centric, which 

incorporates the results across the four barcodes for each gene. Thus, there were four lists: mid barcode-

centric, mid gene-centric, hi barcode-centric, and hi gene-centric. In each list, the hits contained associated 

metrics such as log2 fold enrichment and p-value. The mid lists were more enriched in low p-values among 

the top hits for log2 fold enrichment, suggesting more reliable outcomes (consistent with obtaining a greater 

number of cells for mid than for hi during FACS), and the barcode-centric lists distinguished which specific 

sgRNAs might be effectively employed in follow-up validation, so we chose to focus on the mid barcode-

centric list.  

 Prioritization of candidate regulators: We analyzed the 454 hits (439 genes) from the mid 

barcode-centric list that showed greater than two-fold enrichment. Genes were annotated based on prior 

knowledge from Uniprot and literature sources by criteria: localization (if known, then if a membrane protein, 

and if so, then if integral membrane, peripheral membrane, or lipid-anchored; or if not membrane-

associated) and function (if known, then if a regulator of NF-κB activity; or, if unknown, then if suspected to 

be a regulator). Of the hits that were known or suspected regulators of NF-κB activity, 100 barcodes (96 

genes) were known or suspected to be membrane-associated, and 40 barcodes (35 genes) were known or 

suspected not to be membrane-associated. 

 

5.4 Results 

The first goal was to produce a cell line with which to conduct a screen for genes that constitutively 

negatively regulate NF-κB activity. Starting with the THP-1 monocyte cell line, which expresses TLR4 and 

can signal through this receptor, we generated a reporter line by lentivirally transducing a vector containing 

a constitutive Cas9 fused via T2A peptide to a hygromycin resistance gene and an NF-κB-inducible GFP 

reporter. This line was subsequently transduced with the Brunello sgRNA library (Figure 5.2a). The logic 

of the screen is that reporter signal would be expected if a negative regulator of NF-κB were knocked out, 

and not in the absence of knockout or if unrelated genes were knocked out (Figure 5.2b). The reporter line 

exhibited approximately 50-fold LPS-inducible reporter signal, indicating that TLR4 signaling could be 

distinguished by this readout    (Figure 5.2c). Screens were conducted in biologic triplicate by transducing 
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the library, isolating cells using FACS that in the basal state expressed EGFP, and identifying hits through 

sgRNA barcode sequencing  (Figure 5.2d). In this process, two post-sort populations were collected: the 

mid gate covered the 5% of cells with the highest signal, except for the 0.25% with the highest signal, which 

were covered by the hi gate. Bioinformatic analysis using CRISPRCloud2241, in which results from the three 

replicate screens were combined, yielded barcode and gene lists with associated fold enrichment and p-

values for the comparison of mid post-sort to pre-sort and of hi post-sort to pre-sort. 

 To identify candidate regulators independent of potential sgRNA-to-sgRNA variation in knockout 

efficiency for each gene, we took a barcode-centric approach, i.e., post-sort enrichment of each barcode 

was treated independently of other barcode outcomes, rather than amalgamating outcomes for each gene. 

The hits displayed up to several fold enrichment and spanned several orders of magnitude in p-values 

Figure 5.2. Screen design and implementation. a Diagram of the vectors for the reporter and Cas9 
and for the sgRNA library. b Strategy for identifying negative regulators of NF-κB activity through gene 
knockouts. c THP-1 monocytes transduced with the reporter and Cas9 vector inducibly express EGFP. 
Fluorescence was measured at one day after LPS treatment (100 ng ml–1) (one-tailed Welch’s t-test, 
p = 4 × 10–4 for the reporter line). Conditions are in biologic triplicate, and bars indicate the mean. F.D. 
is the fold difference in signal. d Summary of the methodology for screening and identification of 
candidate regulators. Library transduction and FACS were conducted in biologic triplicate. 
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based on the enrichment across replicate screens (Figure 5.3). We chose to focus on the mid results, 

because, compared to the hi results, the barcodes that were most enriched were more likely to have low p-

values (< 0.05). 454 hits (439 genes) had greater than two-fold enrichment. The hits were annotated based 

on prior knowledge of protein subcellular localization and potential role in regulating NF-κB activity. 140 

barcodes (131 genes) were known or suspected regulators of NF-κB activity. Going forward, I recommend 

that the fuller set, particularly of the 439 genes, is also reviewed by others to identify any other promising 

hits; e.g., there are numerous general RNA-binding proteins that were not carried over to this stage.  

 

 

 

5.5 Discussion 

The screen results provide a list of candidate genes that can be investigated in validation experiments for 

roles in regulating basal NF-κB activity, and potentially TLR4 signaling in the form of TIC. There are several 

ways in which individual-gene arrayed validation experiments could proceed. In one version, the monocyte 

reporter line would be transduced with a panel of sgRNA lentiviruses for individual gene knockouts; an 

observed increase in reporter signal compared to in an sgRNA-less control transduction would validate a 

gene as a negative regulator. In another version, experiments could use CRISPRi knockdown, and/or be 

Figure 5.3. Screen results. Waterfall plots and volcano plots for barcodes that were enriched in 
the post-sort populations compared to the pre-sort population. The hi and mid results encompass 
4,224 genes and 15,921 genes, respectively. 
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carried out with primary human monocytes. In any case, it could be useful to examine prior knowledge such 

as transcriptomic profiling data that would indicate whether a gene is transcribed in the cell type of interest, 

prior to investigating the gene's role.  

 Another route to validation that could more directly address the TIC hypothesis is illustrated in 

Figure 5.4. Freestyle 293-F cells, which do not express TLR4 or MD-2, could be transduced with the 

reporter from Figure 5.1a, and following selection, lipofected with or without TLR4/MD-2 and with the 

sgRNA panel. After ~1 week, reporter signal would be assayed by flow cytometry. The expectation is that: 

for the sgRNA-less control or for the knockout of a gene that is not a regulator of basal NF-κB activity, 

reporter expression would remain low regardless of whether TLR4/MD-2 is present; for knockout of a 

negative regulator that is not TIC, reporter expression would increase regardless of TLR4/MD-2; and for 

knockout of TIC, reporter expression would increase only if TLR4/MD-2 is present.  

 

 

 Below, genes from the set of 131 are categorized into different rationales for potential subsequent 

investigation. This first set includes non-membrane associated proteins in relation to annotated roles with 

respect to NF-κB activity. 

• Known negative regulators: STK11, CMIP, SIK3, RASSF1, UBA7, CCDC122, TRAFD1, TOLLIP, 

NISCH, TNFAIP3, PRKAA2 

Figure 5.4. Validation of candidate regulators of NF-κB activity. The cartoon depicts the proposed 
methodology for validating candidate regulators by arrayed knockout screening. 
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• Potential regulators: NLRP3, FYB, MAPKAPK5, APOD, NUDT4, MAPK11, HECTD1, USP45, 

YWHAB, JOSD1, LRRC71, BCL7C, SBK3 

• Known regulators, and potentially a positive or negative role is known: AIRE, SH3BGR, MAP3K2 

• Known positive regulators, which is interesting because the screen indicated a negative role: 

NRAS, SERPINB4, PTPN11, COPS8, GIMAP6, GUCY1A3 

This second set includes membrane-associated (integral, peripheral, lipid-anchored) proteins. 

• Known negative regulators: CYLD, RAMP1, CALCOCO2, RHOH, PIK3CG 

• Potential regulators: PPAP2A, GNGT1, KCNMB2, TMEM210, GPR151, AQP2, BACE2, GPR84, 

TBC1D9, SLC1A2, CNR2, MR1, GPR182, COMT, ADGRE3, TMEM161A, SLC4A10, DRP2, 

HEPH, P2RY8, HTR6, TMEM185B, KCND3, SI, OR8G2, SLC44A2, PRND, SNAP23, RND1, 

RERGL, MAPKAP1, SLCO4A1, FRS3, LPPR2, VNN3, AQP1, PCDHGA4, SLC44A3, TVP23C, 

ZNRF2, SLC35F4, JPH3, PTPRD, HPCAL1, ANKRA2, ANTXR1, CMTM5, LRRTM3, CSPG5, 

OR10Q1, MCOLN2, GPR85, OPRM1, OR5C1, OR52A5, CDH7, TM9SF1, ADCY6, ABCA7, 

CRTAM, TMEM110, EMC4, DNAJC25-GNG10, NSMF, ROR2, GPC2, KCNN2, APLP1, GCGR, 

TRHDE, SLC24A2, OR52K1, RNFT2, NEURL1, OR14J1, EFNA3,  RRNAD1, TSPAN14, 

EPB41L2, PLEKHA1, PLIN4, CLIC3, ABCC6, SLC22A18, XKRX 

• Known regulators, and potentially a positive or negative role is known: CDCP1, KLRG1, PCP2 

• Known positive regulators, which is interesting because the screen indicated a negative role: 

MST1R, IFNAR1, LRRC4 

Lastly, it may be worthwhile to examine genes that are known negative regulators that did not appear in the 

list of 439 genes, such as NFKBIA, NFKBIB, NFKBIE, TNFAIP3. 
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CHAPTER 6. Conclusions 

 

 This chapter highlights key themes, ongoing research, and potential future directions for the QL 

study, the set of studies on genetically programming mammalian cellular functions, and the TIC study. 

 Quorum licensing: Inflammation is the body's protective response to eliminate a perceived threat. 

When immune cells like macrophages sense an infection, they secrete factors that recruit other cells to 

clear the microbes. Cells need to tightly regulate the amplitude and duration of this response; 

hyporesponsiveness carries the risk of microbes persisting, leading to sepsis, and hyperresponsiveness 

carries toxic side effects, leading to chronic diseases in which the tissue does not return to homeostasis. 

Recently, it has become evident that this highly regulated response involves cell-to-cell heterogeneity in 

the production of cytokines. Chapter 2 elucidates an example of this phenomenon in which cell density 

modulates the proportion of cells that exhibit a high TNF response to LPS through a mechanism we termed 

quorum licensing (Figure 6.1). Intriguingly, growing evidence suggests there are many factors that shape 

cell-to-cell variation. For example, desynchronization of the molecular clock contributes to heterogeneous 

responses to LPS; the expression of certain clock genes was found to influence the proportion of cells that 

produce high levels of IL-12p40 (though this mechanism did not affect TNF production)242. There are 

accumulating reports of genes that are expressed bimodally upon immune cell activation, and it might be 

that there are many contributors that act in different ways on different cytokines, rather than a single 

overarching explanation. 

Figure 6.1. Quorum licensing. In this newly recognized form of immune coordination, macrophages 
sense how many of them are present, and then decide on how many should become highly activated. 
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 A metaphor that I suggest for imagining the above scenario is that immune cells each have a 

dashboard for controlling the production of pathogen-responsive proteins. When one considers a standard 

diagram depicting the transduction of extracellular information about a pathogen across the cell membrane 

by receptors, through the cytoplasm by signaling proteins, and into the nucleus by transcription factors, 

what one is really doing is zooming in on one section of this dashboard. However, there are also other 

controls that exist, which may not be depicted in the diagram and might operate separately from canonical 

pathways. e.g., IL-12 and TNF are both LPS-inducibly expressed, yet there is also circadian control of IL-

12 but apparently not TNF, and QL control of at least TNF. Furthermore, our ability to hypothesize as-of-

yet undiscovered controls might not be well-supported by standard choices for visual representation. 

Indeed, the features of QL illustrated in Figure 2.2h and Figure 6.1 are not readily incorporated using the 

pathway notation in Figure 2.3a. Going forward, it may be that some of the additional knobs and dials on 

the dashboard will continue to be illuminated through serendipitous observations. Alternatively, perhaps 

these controls will be more systematically uncovered by creative examination of new independent variables, 

technologies for integrating single-cell measurements of pathway activity with global cell profiles243, and the 

use of whole pathogens rather than purified ligands as stimuli244. 

 In considering the implications of the QL study, it is worth noting the densities of macrophages in 

vivo vary widely by tissue, an organism’s health, and perturbations used in studies that report these 

values245-247. Additionally, cell culture density has been shown to affect the phenotype (e.g., expression of 

surface markers of differentiation) and function (e.g., secretion of cytokines like TNF) of bone marrow-

derived macrophages (BMM)248. Although we used a standard protocol for BMM differentiation and cell 

culture densities that are within the general range of values reported for in vivo studies, we avoid making 

assumptions or comparisons on the expected effects between in vitro and in vivo densities. Rather, the 

main takeaway is that cell density has an effect that might provide functional utility by enabling cells to 

calibrate their responses to future threats.  

 Our observation that certain chemokines (KC most prominently, and perhaps also others that were 

not measured) trended with BMM cell density in the absence of stimulus suggests a potential avenue for 

future investigation into factor(s) that mediate QL. If it turns out that a single chemokine is responsible, then 

assays for TNF production from a panel of cells that have various chemokine knockout genotypes or from 
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cells that have undergone blockade pre-treatment such as with a panel of soluble recombinant receptors 

against each chemokine could be useful. Furthermore, cells could be pre-treated with recombinant 

chemokines individually to test whether any of these conditions shifts the proportion of high-TNF-producing 

cells. However, if multiple chemokines are involved, which seems plausible, then alternative strategies 

would be necessary. For example: assay at the RNA level or secreted protein level for many chemokines 

from non-stimulated cell cultures at different densities, identify the chemokines that exhibit a profile 

consistent with that of a QL mediator, and then take subsequent steps to narrow down this list. These steps 

could be used to identify the pathways that cells use to carry out the QL phenomenon. 

 Achieving engineering design goals: Chapters 3 and 4 and Appendices 3–6, 8, and 9 

encompass several projects in which I developed new methods and tools to modulate gene expression and 

build new signaling pathways. There has been great progress on these fronts for organisms such as 

bacteria and yeast, and more recently for mammalian systems, but for a variety of applications, we are still 

in need of high-performing parts for programming cellular functions as well as quantitative approaches to 

guide how we choose parts and link them together to carry out operations that work as intended. It would 

be useful if we had the tools and the conceptual and formal models to enable us to engineer biological 

systems with a reliability more like that of electronic systems, or at least using a more formal design process. 

 Through several collaborations, I have focused on two areas in mammalian cellular engineering: 

sensing cues using receptors, and processing signals using transcription factors and enzymatic reactions. 

The impetus for the approaches that I developed comes from a study on multiplexing MESA receptors to 

sense two ligands and signal to a downstream promoter (Appendix 4)54. We found that although a panel 

of engineered promoters exhibited AND gate behavior as intended when paired with intracellular TFs, it 

was difficult to level-match receptor signaling output with promoter input requirements to achieve AND gate 

behavior. I developed models to describe the activity of the promoters and receptors, and in considering 

how to train the models to experimental data, noted that the cells were highly varied in their activation levels; 

with the QL study fresh in mind, I considered that this variation might be important to understand. I decided 

to simulate not a single representative cell, but rather a population of cells that resembled the data. To 

account for cellular variation, I developed an algorithm that provides general way to model a population of 

cells (Appendix 3), by extending statistical features of gene expression distributions for any specified 
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number, dose, and type of regulation of genes in a circuit. This framework enabled an analysis of not only 

population-average outcomes, which is what is experimentally most accessible and can be compared, but 

also inferred representative single cells. This strategy is similar to the QL study, in that there is one 

dynamical model that describes a mechanism, and variation is introduced using a statistical distribution. 

 In applying this framework, I found that reporter expression for the population mean was 

consistently greater than that for a cell expressing the mean amount of each component. Thus, our 

perception of typical behavior is skewed (generally overestimated) by outlier cells. More broadly, any 

genetic circuit with nonlinear behaviors might be biased in this way, so a model that captures variation could 

improve the interpretation of those cases too. I did a subsequent analysis and identified effects that come 

about in linking parts together for the full system, and identified properties that we could change to improve 

performance, but overall it was clear that what we really needed was a different set of parts and descriptions 

to more effectively program cell behaviors. This conclusion supported and was motivation for subsequent 

studies in which my colleagues and I developed the COMET toolkit of tunable TFs and promoters for 

customizable gene expression129, high-performing next-generation MESA receptors198, and genetic parts 

and computational tools for predictively designing genetic programs161. 

 COMET: This toolkit benefits from a relatively large number of characterized TFs and promoters, 

a modular design that facilitates the addition of new parts, and a methodology for incorporating these parts 

into a concise modeling framework. It might be that the parameter values that were fitted in this study are 

specific to the DNA delivery method and cell type in which the characterizations were conducted. However, 

fundamental mechanisms of transcription are maintained across contexts, so it is possible that certain 

trends will extend across cell types and delivery methods, e.g., the general rank order of values for the 

parameter w, which describes the steepness of a dose response and is related to TF-DNA binding affinity. 

 COMET TFs confer dose response properties that differ from those of tTA and Gal4 (used in the 

multiplexing study in Appendix 4) and thus appear better suited for use with hybrid promoters (Figures 

3.5c, Figure 4.4c) and synthetic receptors (Figure 4.4d). It is notable that the multiplexing study (Appendix 

4), COMET study (Chapter 3), and genetic programs study (Chapter 4) each make use of single-layer 

transcriptional AND gates in which two TFs converge at a multi-site promoter, yet the outcomes were very 

different. Perhaps there is a difference in the stage in which cooperativity takes effect, such as TF-DNA 
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binding for the former study and post-binding for the latter two. However, the key factor could have been 

level-matching. The input requirements of the COMET hybrid promoters appear to be sufficiently level-

matched to the signaling from sensors such as a small molecule-responsive TF and MESA receptor to 

enable an exceptional AND gate (Figure 4.4c,d) and potentially other operations. The improved outcome 

for the VP64-ZF2 AND VP64-ZF6 gate (Figure 4.4c) compared to the VP16-ZF2 AND VP16-ZF3 gate 

(Figures 3.5c) suggest that ZF3 is a non-ideal DBD. We also know from the COMET characterization that 

ZF2 and ZF6 have high m values with VP16 and should be more ideal than ZF3, however the switch in AD 

choice from VP16 to VP64 might have also been important in achieving the observed improvement. Overall, 

these outcomes suggest that the use of COMET hybrid promoters to carry out logical operations is more 

effective when using potent TFs. 

 The advances from this study have enabled several subsequent ongoing projects. In one project, 

the original model has been revamped to more formally described chemical responsiveness conferred by 

the use of small molecule-binding domains on transcriptional activators. Extensions may also be taken to 

characterize chemically responsive inhibitors, which represent a complementary approach for external and 

temporal control of gene expression. In another project, some of the principles from the original model are 

being applied to design cell-based devices for sensing hypoxic conditions and secreting therapeutic 

payloads within solid tumors. Here, because the genetic programs will be genomically integrated rather 

than transiently delivered, the framework with fitted b, m, and w parameters would not be used, and instead 

the utility of these values could be to guide the choice of potent TFs. However, we do know from the COMET 

study that the cooperativity boost from increasing the number of binding sites in a promoter does transfer 

to the genome, which bodes well for applications involving genomic integration, including those that 

modulate cooperativity through inhibitors utilizing the dual mechanism of inhibition. 

 Genetic programs: This investigation involved a synthesis of technologies and conceptual 

advances from multiple projects54,129,198 that generated new genetic parts and explanatory models, and for 

the first time demonstrated how these parts could be predictively combined to make cells carry out high-

performing functions. These functions included digital logic, topologically compact multi-output logic, analog 

operations with chemical responsiveness, and interfacing of genetic programs with sensors to produce 

signaling cascades. Thus, in a sense, this project closed the loop on the multiplexing study. I suggest that 
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future directions could include continued development of receptors for new ligands (in particular, cytokines), 

testing circuits in a genomic context (with insertion mediated by either recombination, viral vector, or Cas9), 

and validating functional outputs such as secreted proteins with therapeutic roles. Additionally, it would be 

ideal if circuits were designed in such a way to bypass complications associated with heterogeneity, and 

on this topic a preliminary unpublished investigation of COMET in the genome bodes well. 

 The broad capability for accurate design-driven engineering represents a key advance in 

mammalian synthetic biology, a field that has grown substantially in recent years. With more designed 

genetic parts becoming available, and a growing understanding of how to effectively use these parts, 

applications spanning directed cell differentiation (such as into tissues and organoids), cell-based implants 

for detecting disease biomarkers or augmenting homeostasis, and cell-based immunotherapies are coming 

into reach163,164,249. Principles from Chapter 4 are enabling ongoing research directions including the design 

of cell-based devices that use split intein-based parts and feedback, with potential applications in closed-

loop metabolic homeostasis and eventually treating metabolic disorders. 

 There are several benefits of using split intein-based parts and small molecule-reconstitutable 

parts. One benefit relates to shifting regulation from the transcriptional level to protein-protein interactions, 

which would be expected to increase the speed of a cell-based device's response (as protein-protein 

interactions are generally on a faster timescale than the interactions in gene expression) and could bypass 

the issue of gene silencing250. Another benefit relates to gene delivery. To accommodate the limited cargo 

capacities of viral vectors, one could distribute a large genetic program across multiple vectors in such a 

way that its function is reconstituted only in cells that receive all of the vectors. A last benefit is that split 

parts are inherently conducive to encoding logical operations. As an example that incorporates the above 

ideas, the following hypothetical genetic program would be expected to carry out a four-input AND gate, in 

which one of the inputs is externally supplied ABA: genes for VP64-PYL1, ABI1-intN, and intC-ZF2 are 

each regulated by a respective condition-specific promoter, and an output transgene is regulated by a 

ZF2x12-C promoter. Alternatively, a synonymous design could use ZF2-PYL1, ABI1-intN, and intC-VP64 

as the inducible genes, which again highlights the flexibility demonstrated in the genetic programs study for 

proposing a tractable panel of candidate topologies for achieving a design goal. 
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 TIC: If TIC is identified through the validation experiments described at the end of Chapter 5, then 

the next step would be to characterize TIC. It would be useful to perform a clonal all-allele knockout of TIC 

and evaluate its role in signaling through both arms of the TLR4 pathway (MyD88 and TRIF). One option 

would be to use cell lines with and without TIC that induce the expression of one reporter in response to 

NF-κB activation (which is downstream of both MyD88 and TRIF) and another reporter in response to 

Interferon Regulatory Factor (IRF) activation (which is TRIF-specific). An additional line of investigation 

would be to use RNA-Seq to characterize whether and how the role of TIC modulates downstream gene 

expression with and without LPS treatment. 

 It would also be useful to investigate whether TIC interacts physically with TLR4, such as through 

co-immunoprecipitation assays. HA-tagged TLR4 and 3xFLAG-tagged TIC could be co-expressed following 

transient transfection in HEK293FT cells. TLR4 would be precipitated from cell lysates using anti-HA-

antibody-conjugated beads, washed, and denatured, and the released precipitate could be analyzed by 

anti-FLAG Western blot. The reciprocal assay could also be conducted: precipitating by anti-FLAG-

antibody-conjugated beads and detecting by anti-HA Western blot. The expectation is that TIC and TLR4 

would co-precipitate without LPS treatment. The specific way in which the physical interaction would be 

disrupted with LPS treatment does not have a pre-defined expectation, because in the proposed model, 

LPS treatment need not necessarily disrupt all physical interactions. Lastly, TIC and TLR4 could be 

fluorescently tagged, and microscopy could be used to evaluate their co-localization in cells with and without 

LPS treatment. These steps would elucidate a putatively important layer of immune regulation. 

 Concluding thoughts: With rapidly advancing technologies to interrogate and engineer cells, in 

combination with new models and algorithms to extract meaning from datasets, there is tremendous 

potential to improve our understanding of cell signaling and ultimately to improve human health. In graduate 

school, I have developed rigorous ways to characterize gene regulation as well as genetic parts and 

principles to design new functions in mammalian cells. Throughout, I have been able to untangle complex 

and non-intuitive problems by developing a skillset that bridges experimental and computational 

approaches. In this journey, I have had the opportunity to pursue projects working with excellent mentors, 

collaborators, and mentees, to whom I am very grateful.  
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APPENDIX 1. Vectors and cell types 

Table A1.1 Vectors 
Addgene submissions: ◊ COMET kit. △	COMET individual. * Genetic programs. ^ Receptor mechanisms. # mMoClo kit. 
 

 ID Promoter Gene Notes 
MESA protease mutagenesis 
 pJM001 CMV PC FKBP-CD28-TEVp-intermediate Intermediate 
^ pJM002 CMV PC FKBP-CD28-TEVp-AIP(M)  
^ pJM003 CMV PC FKBP-CD28-TEVp-AIP(A)  
^ pJM004 CMV PC FKBP-CD28-TEVp-AIP(K)  
^ pJM005 CMV PC FKBP-CD28-TEVp-AIP(Y)  
^ pJM006 CMV PC FKBP-CD28-TEVp-PRS  
^ pJM007 CMV PC FKBP-CD28-TEVp-PRS(M)  
^ pJM008 CMV PC FKBP-CD28-TEVp-PRS(A)  
^ pJM009 CMV PC FKBP-CD28-TEVp-PRS(K)  
^ pJM010 CMV PC FKBP-CD28-TEVp-PRS(Y)  
Outdated TUPV backbones 
 pJM400 EF1α EBFP2-P2A-BlastR (TUPV1) Use pJM450 instead 
 pJM401 EF1α EBFP2-P2A-BlastR (TUPV2) Use pJM451 instead 
 pJM402 EF1α EBFP2-P2A-BlastR (TUPV3) Use pJM452 instead 
 pJM403 EF1α EBFP2-P2A-BlastR (TUPV4) Use pJM453 instead 
 pJM404 EF1α EBFP2-P2A-BlastR (TUPV5) Use pJM454 instead 
 pJM405 EF1α EBFP2-P2A-BlastR (TUPV6) Use pJM455 instead 
 pJM406 EF1α EBFP2-P2A-BlastR (TUPV7) Use pJM456 instead 
 pJM407 EF1α EBFP2-P2A-BlastR (TUPV8) Use pJM457 instead 
 pJM408 EF1α EBFP2-P2A-BlastR (TUPV9) Use pJM458 instead 
First set of TUPVs and IVs for COMET-LP 
 pJM409 CMV mKate2  
* pJM410 ZF1x6-C mKate2  
 pJM411 ZF1x6-S mKate2  
 pJM412 tRE3GV mKate2  
 pJM413 EF1α mKate2  
 pJM414 tRE3GV 3xFLAG-NLS-VP64-ZF1(RRRR)-P2A-EYFP Do not use 
 pJM415 tRE3GV 3xFLAG-NLS-VP16-ZF1(RRRR)-P2A-EYFP Do not use 
 pJM416 tRE3GV 3xFLAG-NLS-VP64-ZF1(AAAA)-P2A-EYFP Do not use 
 pJM417 tRE3GV 3xFLAG-NLS-VP16-ZF1(AAAA)-P2A-EYFP Do not use 
 pJM418 EF1α 3xFLAG-NLS-FKBP-ZF1(RRRR)-P2A-EYFP Do not use 
 pJM419 EF1α 3xFLAG-NLS-VP64-ZF1(RRRR)-P2A-EYFP Do not use 
 pJM420 EF1α 3xFLAG-NLS-VP16-ZF1(RRRR)-P2A-EYFP Do not use 
 pJM421 EF1α rtTA3  
# pJM422 EF1α rtTA3  
 pJM423 EF1α NES-FRB-VP64  
 pJM427 Integration vector with pJM410, pJM414, pJM422, pJM403, pPD614, pPD630 Do not use 
 pJM428 Integration vector with pJM410, pJM415, pJM422, pJM403, pPD614, pPD630 Do not use 
 pJM429 Integration vector with pJM410, pJM416, pJM422, pJM403, pPD614, pPD630 Do not use 
 pJM430 Integration vector with pJM410, pJM417, pJM422, pJM403, pPD614, pPD630 Do not use 
 pJM431 Integration vector with pJM411, pJM415, pJM422, pJM403, pPD614, pPD630 Do not use 
 pJM432 Integration vector with pJM410, pJM418, pJM423, pJM403, pPD614, pPD630 Do not use 
 pJM433 Integration vector with pJM410, pJM419, pJM402, pPD613, pPD630 Do not use 
 pJM434 Integration vector with pJM410, pJM420, pJM402, pPD613, pPD630 Do not use 
 pJM435 Integration vector with pJM412, pJM421, pJM402, pPD613, pPD630  
 pJM436 Integration vector with pJM413, pJM401, pPD612, pPD630  
 pJM437 Integration vector with pJM409, pJM401, pPD612, pPD630  
 pJM442 Integration vector with pJM410, pJM401, pPD612, pPD630  
TUPV backbones 
# pJM450 EF1α EBFP2-P2A-BlastR (TUPV1)  
# pJM451 EF1α EBFP2-P2A-BlastR (TUPV2)  
# pJM452 EF1α EBFP2-P2A-BlastR (TUPV3)  
# pJM453 EF1α EBFP2-P2A-BlastR (TUPV4)  
# pJM454 EF1α EBFP2-P2A-BlastR (TUPV5)  
# pJM455 EF1α EBFP2-P2A-BlastR (TUPV6)  
# pJM456 EF1α EBFP2-P2A-BlastR (TUPV7)  
# pJM457 EF1α EBFP2-P2A-BlastR (TUPV8)  
# pJM458 EF1α EBFP2-P2A-BlastR (TUPV9)  
Second set of TUPVs and IVs for COMET-LP 
 pJM460 tRE3GV 3xFLAG-NLS-VP64-ZF1(RRRR)  
 pJM461 tRE3GV 3xFLAG-NLS-VP16-ZF1(RRRR)  
 pJM462 tRE3GV 3xFLAG-NLS-VP64-ZF1(AAAA)  
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 pJM463 tRE3GV 3xFLAG-NLS-VP16-ZF1(AAAA)  
 pJM464 EF1α NLS-FKBP-ZF1(RRRR)  
* pJM465 EF1α 3xFLAG-NLS-VP64-ZF1  
△ pJM466 EF1α 3xFLAG-NLS-VP16-ZF1  
# pJM467 tRE3GV EYFP  
 pJM468 EF1α EYFP  
# pJM469 EF1α rtTA3  
 pJM470 EF1α NES-VP64-FRB  
 pJM471 Integration vector with pJM410, pJM460, pJM467, pJM469, pJM404, pPD615, pPD630  
 pJM472 Integration vector with pJM410, pJM461, pJM467, pJM469, pJM404, pPD615, pPD630  
 pJM473 Integration vector with pJM410, pJM462, pJM467, pJM469, pJM404, pPD615, pPD630  
 pJM474 Integration vector with pJM410, pJM463, pJM467, pJM469, pJM404, pPD615, pPD630  
 pJM475 Integration vector with pJM411, pJM461, pJM467, pJM469, pJM404, pPD615, pPD630  
 pJM476 Integration vector with pJM410, pJM464, pJM468, pJM470, pJM404, pPD615, pPD630  
 pJM477 Integration vector with pJM410, pJM465, pJM468, pJM403, pPD614, pPD630  
 pJM478 Integration vector with pJM410, pJM466, pJM468, pJM403, pPD614, pPD630  
First set of TFs and FPs for genetic programs 
 pJM500 EF1α EYFP  
 pJM501 EF1α EBFP2  
* pJM502 ZF1x6-C EYFP  
* pJM503 EF1α 3xFLAG-NLS-ZF1  
 pJM504 EF1α 3xFLAG-NLS-ZF1  
* pJM505 EF1α 3xFLAG-NLS-DsRed-ZF1  
* pJM506 EF1α 3xFLAG-NLS-DsDed-ZF1  
* pJM507 EF1α 3xFLAG-NLS-DsDed-ZF10  
 pJM508 EF1α 3xFLAG-NLS-VP64-Intermediate Intermediate 
 pJM509 EF1α 3xFLAG-NLS-VP64-intN (with incomplete, non-enzymatic intN) Do not use 
 pJM510 EF1α 3xFLAG-NLS-DsDed-intN (with incomplete, non-enzymatic intN) Do not use 
 pJM511 ZF10x6-C 3xFLAG-NLS-DsDed-ZF1  
* pJM512 EF1α 3xFLAG-NLS-VP64-ZF1  
 pJM513 EF1α 3xFLAG-NLS-VP64-ZF1  
 pJM514 EF1α 3xFLAG-NLS-VP64-ZF1  
 pJM515 EF1α 3xFLAG-NLS-VP64-ZF1  
* pJM516 EF1α intC-ZF1-NLS-HA  
 pJM517 ZF10x6-C 3xFLAG-NLS-VP64-ZF1  
 pJM518 EF1α 3xFLAG-NLS-VP64-ZF10  
 pJM519 EF1α 3xFLAG-NLS-VP64-ZF10  
* pJM520 EF1α 3xFLAG-NLS-VP64-ZF10  
 pJM521 EF1α 3xFLAG-NLS-VP64-ZF10  
* pJM522 EF1α intC-ZF10-NLS-HA  
 pJM523 EF1α 3xFLAG-NLS-VP64-ZF1_NLS-HA  
* pJM524 EF1α 3xFLAG-NLS-VP64-intC-ZF1-NLS-HA  
* pJM525 EF1α 3xFLAG-NLS-DsDed-intC-ZF1-NLS-HA  
 pJM526 EF1α 3xFLAG-NLS-VP64-LL-ZF1-NLS-HA  
 pJM527 EF1α 3xFLAG-NLS-VP64-LL-ZF10-NLS-HA  
 pJM528 EF1α 3xFLAG-NLS-VP64-intC-ZF10-NLS-HA  
* pJM529 EF1α 3xFLAG-NLS-DsDed-intC-ZF10-NLS-HA  
uORFs and IVs 
 pJM532 Integration vector with pJM410, pJM511, pJM513, pJM520, pJM454, pPD615, pPD630  
 pJM535 Integration vector with pJM410, pJM525, pJM452, pPD613, pPD630  
 pJM543 EF1α ACC_uORF ACC_3xFLAG-NLS-VP64-ZF1  
 pJM544 EF1α TTT_uORF GAA_3xFLAG-NLS-VP64-ZF1  
 pJM545 EF1α ACC_uORF ACC_3xFLAG-NLS-VP64-ZF10  
 pJM546 EF1α ACC_uORF ACC_3xFLAG-NLS-DsDed-intC-ZF1-NLS-HA  
 pJM547 Integration vector with pJM410, pJM511, pJM513, pJM545, pJM454, pPD615, pPD630  
 pJM548 Integration vector with pJM410, pJM511, pJM544, pJM545, pJM454, pPD615, pPD630  
 pJM549 Integration vector with pJM410, pJM511, pJM543, pJM545, pJM454, pPD615, pPD630  
 pJM550 Integration vector with pJM410, pJM546, pJM452, pPD613, pPD630  
Second set of TFs and FPs for genetic programs 
 pJM551 EF1α 3xFLAG-NLS-DsDed-ZF1-PEST  
 pJM552 EF1α 3xFLAG-NLS-DsDed-ZF10-PEST  
* pJM553 ZF10x6-C 3xFLAG-NLS-DsDed-ZF1-PEST  
* pJM554 EF1α 3xFLAG-NLS-VP64-intN  
* pJM555 EF1α 3xFLAG-NLS-DsDed-intN  
 pJM556 EF1α 3xFLAG-NLS-VP64-intN_K43A  
 pJM557 EF1α 3xFLAG-NLS-VP64-intN_K45A  
 pJM558 EF1α 3xFLAG-NLS-VP64-intN_E52A  
 pJM559 EF1α 3xFLAG-NLS-VP64-intN_fiveA  
 pJM560 EF1α intC-ZF1-NLS-HA_E102A  
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 pJM561 EF1α intC-ZF1-NLS-HA_E104A  
 pJM562 EF1α intC-ZF1-NLS-HA_sixA  
 pJM563 EF1α 3xFLAG-NLS-VP64-intN_K43A_K45A  
 pJM564 EF1α 3xFLAG-NLS-VP64-intN_K45A_E52A  
 pJM565 EF1α intC-ZF1-NLS-HA_E98A_E104A  
 pJM566 EF1α intC-ZF1-NLS-HA_E102A_E104A  
 pJM567 EF1α 3xFLAG-NLS-VP64-intN-ZF10_K45A_E52A  
 pJM568 EF1α 3xFLAG-NLS-DsDed-intN-ZF10_K45A_E52A  
 pJM569 EF1α NLS-ZF10-intC-ZF1-NLS-HA_E102A_E104A  
 pJM570 EF1α NLS-intC-ZF1-NLS_E102A_E104A  
* pJM571 ZF2x6-C 3xFLAG-NLS-VP64-intN  
* pJM572 ZF6x6-C intC-ZF1-NLS-HA  
* pJM573 ZF6x6-C 3xFLAG-NLS-DsDed-intC-ZF1-NLS-HA  
* pJM574 ZF2x6-C 3xFLAG-NLS-DsDed-ZF1  
* pJM575 ZF6x6-C 3xFLAG-NLS-DsDed-ZF10  
* pJM576 ZF2x6-C 3xFLAG-NLS-VP64-intC-ZF1-NLS-HA  
* pJM577 ZF6x6-C 3xFLAG-NLS-DsDed-intN  
 pJM578 ZF2x6-C 3xFLAG-NLS-VP64-ZF1  
 pJM579 ZF2x6-C 3xFLAG-NLS-VP64-ZF10  
* pJM580 ZF6x6-C 3xFLAG-NLS-VP64-ZF1  
 pJM581 ZF6x6-C 3xFLAG-NLS-VP64-ZF10  
* pJM582 EF1α 3xFLAG-NLS-VP64-ZF2  
* pJM583 EF1α 3xFLAG-NLS-VP64-ZF6  
* pJM584 ZF2x6-C mKate2  
* pJM585 ZF6x6-C mKate2  
 pJM586 ZF10x6-C mKate2  
* pJM587 ZF10x6-C EYFP  
* pJM588 EF1α 3xFLAG-NLS-VP64-intC-ZF1-DsDed-NLS-HA  
* pJM589 EF1α intN-ZF10-NLS-HA  
* pJM590 EF1α 3xFLAG-NLS-VP64-ZF1-intC-ZF10-NLS-HA  
* pJM591 EF1α 3xFLAG-NLS-VP64-ZF1-intN  
* pJM592 EF1α 3xFLAG-NLS-DsDed-ZF10-intN-VP64  
 pJM593 ZF1x5-

C/ZF2x1 
3xFLAG-NLS-VP64-intN  

 pJM594 ZF1x5-
C/ZF6x1 

intC-ZF1-NLS-HA  

* pJM595 ZF6x6-C intC-ZF1-ZF2-NLS-HA  
 pJM596 ZF1x5-

C/ZF6x1 
intC-ZF1-ZF2-NLS-HA  

* pJM597 ZF(2/6)x3 mKate2  
First set of MESA receptors for genetic programs 
* pJM600 EF1α PC 3xFLAG-FKBP-FGFR4-TEVp  
 pJM601 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-tTA  
 pJM602 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-intermediate Intermediate 
 pJM603 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-NLS-VP64-intN Do not use 
 pJM604 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-intC-ZF1-NLS Do not use 
 pJM605 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-NLS-DsDed-intN Do not use 
 pJM606 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-intC-ZF10-NLS Do not use 
 pJM607 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-NLS-VP64-intC-ZF10-NLS Do not use 
 pJM608 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-NLS-VP64-ZF1 Do not use 
 pJM609 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-NLS-DsDed-ZF10 Use pJM620 instead 
 pJM610 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-NLS-DsDed-ZF1 Use pJM621 instead 
 pJM611 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(G)-NLS-VP64-ZF1 Do not use 
* pJM612 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-ZF1  
 pJM613 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GSG)-NLS-VP64-ZF1  
 pJM614 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)x2-NLS-VP64-ZF1  
 pJM615 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-intN Do not use 
 pJM616 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-intC-ZF1-NLS Do not use 
 pJM617 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-DsDed-intN Do not use 
 pJM618 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-intC-ZF10-NLS Do not use 
 pJM619 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-intC-ZF10-NLS Do not use 
 pJM620 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-DsDed-ZF10  
* pJM621 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-DsDed-ZF1  
 pJM622 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-intN_K43A Do not use 
 pJM623 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-intN_K45A Do not use 
 pJM624 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-intN_E52A Do not use 
 pJM625 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-intN_fiveA Do not use 
 pJM626 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-intC-ZF1-NLS_E102A Do not use 
 pJM627 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-intC-ZF1-NLS_E104A Do not use 
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 pJM628 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-intC-ZF1-NLS_sixA Do not use 
 pJM629 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-Link18-intN-3xFLAG-NLS-VP64-ZF1 Do not use 
 pJM630 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-Link18-intN-3xFLAG-NLS-VP64-ZF1_K45A Do not use 
 pJM631 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-Link18-intN-3xFLAG-NLS-VP64-

ZF1_K43A_K45A 
Do not use 

 pJM632 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-Link18-intN-3xFLAG-NLS-VP64-
ZF1_K45A_E52A 

Do not use 

 pJM633 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-intC-ZF1-NLS_E98A_E104A Do not use 
 pJM634 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-intC-ZF1-NLS_E102A_E104A Do not use 
Membrane-tethered competitors for split inteins 
 pJM650 EF1α 3xFLAG-Link40-PDGFR-intermediate Do not use 
 pJM651 EF1α 3xFLAG-Link40-PDGFR-Link6-beta3 Do not use 
 pJM652 EF1α 3xFLAG-Link40-PDGFR-Link12-beta3 Do not use 
 pJM653 EF1α 3xFLAG-Link40-PDGFR-Link18-beta3 Do not use 
 pJM654 EF1α 3xFLAG-Link40-PDGFR-Link6-beta6 Do not use 
 pJM655 EF1α 3xFLAG-Link40-PDGFR-Link12-beta6 Do not use 
 pJM656 EF1α 3xFLAG-Link40-PDGFR-Link18-beta6 Do not use 
Second set of MESA receptors for genetic programs 
 pJM657 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)x3-NLS-VP64-ZF1  
 pJM658 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)x4-NLS-VP64-ZF1  
 pJM659 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)x5-NLS-VP64-ZF1  
 pJM660 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)x6-NLS-VP64-ZF1  
 pJM661 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)x2-intC-ZF1-NLS_E102A_E104A Do not use 
 pJM662 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)x3-intC-ZF1-NLS_E102A_E104A Do not use 
 pJM663 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)x4-intC-ZF1-NLS_E102A_E104A Do not use 
 pJM664 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)x5-intC-ZF1-NLS_E102A_E104A Do not use 
 pJM665 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)x6-intC-ZF1-NLS_E102A_E104A Do not use 
 pJM666 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-intN-ZF10_K45A_E52A Do not use 
 pJM667 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-DsDed-intN-ZF10_K45A_E52A Do not use 
 pJM668 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-ZF10-intC-ZF1-

NLS_E102A_E104A 
Do not use 

 pJM669 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-intC-ZF1-NLS_E102A_E104A Do not use 
 pJM670 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-ZF2  
* pJM671 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-ZF6  
 pJM672 EF1α TC 3xFLAG-FRB-FGFR4-PRS(M)-(GS)-NLS-VP64-ZF10  
synNotch lentiviral vectors from Addgene 
 pJM700 SFFV GFP-PDGFR Addgene #79129 
 pJM701 pGK Myc-LaG17nanobody-coreNotch-Gal4-VP16 Addgene #79127 
synNotch in TUPVs 
 pJM702 EF1α GFP-PDGFR  
 pJM703 EF1α Myc-LaG17nanobody-coreNotch-Gal4-VP16  
 pJM704 EF1α Myc-LaG17nanobody-coreNotch-intermediate Intermediate 
Intermediate plasmids for Gib-MESA and ABA-MESA 
 pJM750 CMV PC intermediate Intermediate 
 pJM751 CMV TC intermediate Intermediate 
Gib-MESA PC with varying linker lengths 
^ pJM752 CMV PC 3xFLAG-GID1-Link30-FGFR4-TEVp  
^ pJM753 CMV PC 3xFLAG-GID1-Link50-FGFR4-TEVp  
^ pJM754 CMV PC 3xFLAG-GID1-Link70-FGFR4-TEVp  
^ pJM755 CMV PC 3xFLAG-GID1-Link90-FGFR4-TEVp  
^ pJM756 CMV PC 3xFLAG-GAI-Link30-FGFR4-TEVp  
^ pJM757 CMV PC 3xFLAG-GAI-Link50-FGFR4-TEVp  
^ pJM758 CMV PC 3xFLAG-GAI-Link70-FGFR4-TEVp  
^ pJM759 CMV PC 3xFLAG-GAI-Link90-FGFR4-TEVp  
Gib-MESA TC with varying linker lengths 
^ pJM760 CMV TC 3xFLAG-GID1-Link30-FGFR4-PRS(M)-tTA  
^ pJM761 CMV TC 3xFLAG-GID1-Link50-FGFR4-PRS(M)-tTA  
^ pJM762 CMV TC 3xFLAG-GID1-Link70-FGFR4-PRS(M)-tTA  
^ pJM763 CMV TC 3xFLAG-GID1-Link90-FGFR4-PRS(M)-tTA  
^ pJM764 CMV TC 3xFLAG-GAI-Link30-FGFR4-PRS(M)-tTA  
^ pJM765 CMV TC 3xFLAG-GAI-Link50-FGFR4-PRS(M)-tTA  
^ pJM766 CMV TC 3xFLAG-GAI-Link70-FGFR4-PRS(M)-tTA  
^ pJM767 CMV TC 3xFLAG-GAI-Link90-FGFR4-PRS(M)-tTA  
Gib-MESA TC with varying linker types 
 pJM768 CMV TC 3xFLAG-GID1-LinkHelical-PRS(M)-tTA  
 pJM769 CMV TC 3xFLAG-GID1-LinkIgG4hinge-PRS(M)-tTA  
 pJM770 CMV TC 3xFLAG-GID1-LinkIgG4hingeCH3-PRS(M)-tTA  
 pJM771 CMV TC 3xFLAG-GID1-LinkIgG4hingeCH2CH3-PRS(M)-tTA  
 pJM772 CMV TC 3xFLAG-GID1-Link70CD33SS-PRS(M)-tTA  
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 ABA-MESA PC with varying linker lengths 
^ pJM773 CMV PC 3xFLAG-ABI1-Link30-FGFR4-TEVp  
^ pJM774 CMV PC 3xFLAG-ABI1-Link50-FGFR4-TEVp  
^ pJM775 CMV PC 3xFLAG-ABI1-Link70-FGFR4-TEVp  
^ pJM776 CMV PC 3xFLAG-ABI1-Link90-FGFR4-TEVp  
^ pJM777 CMV PC 3xFLAG-PYL1-Link30-FGFR4-TEVp  
^ pJM778 CMV PC 3xFLAG-PYL1-Link50-FGFR4-TEVp  
^ pJM779 CMV PC 3xFLAG-PYL1-Link70-FGFR4-TEVp  
^ pJM780 CMV PC 3xFLAG-PYL1-Link90-FGFR4-TEVp  
ABA-MESA TC with varying linker lengths 
^ pJM781 CMV TC 3xFLAG-ABI1-Link30-FGFR4-PRS(M)-tTA  
^ pJM782 CMV TC 3xFLAG-ABI1-Link50-FGFR4-PRS(M)-tTA  
^ pJM783 CMV TC 3xFLAG-ABI1-Link70-FGFR4-PRS(M)-tTA  
^ pJM784 CMV TC 3xFLAG-ABI1-Link90-FGFR4-PRS(M)-tTA  
^ pJM785 CMV TC 3xFLAG-PYL1-Link30-FGFR4-PRS(M)-tTA  
^ pJM786 CMV TC 3xFLAG-PYL1-Link50-FGFR4-PRS(M)-tTA  
^ pJM787 CMV TC 3xFLAG-PYL1-Link70-FGFR4-PRS(M)-tTA  
^ pJM788 CMV TC 3xFLAG-PYL1-Link90-FGFR4-PRS(M)-tTA  
ABA-MESA-COMET 
 pJM789 EF1α PC 3xFLAG-ABI1-Link50-FGFR4-TEVp  
 pJM790 EF1α TC 3xFLAG-PYL1-Link90-FGFR4-PRS(M)-VP64-ZF1  
 pJM791 EF1α TC 3xFLAG-PYL1-Link90-FGFR4-PRS(M)-VP64-ZF2  
 pJM792 EF1α TC 3xFLAG-PYL1-Link90-FGFR4-PRS(M)-VP64-ZF6  
 pJM793 EF1α TC 3xFLAG-PYL1-Link90-FGFR4-PRS(M)-VP64-ZF10  
Gib-MESA PC with varying TMDs 
^ pJM794 CMV PC 3xFLAG-GID1-Link90-CD28-TEVp  
^ pJM795 CMV PC 3xFLAG-GID1-Link90-GpA-TEVp  
^ pJM796 CMV PC 3xFLAG-GID1-Link90-FGFR1-TEVp  
^ pJM797 CMV PC 3xFLAG-GID1-Link90-Valine-TEVp  
Gib-MESA TC with varying TMDs 
^ pJM798 CMV TC 3xFLAG-GAI-Link70-CD28-PRS(M)-tTA  
^ pJM799 CMV TC 3xFLAG-GAI-Link70-GpA-PRS(M)-tTA  
^ pJM800 CMV TC 3xFLAG-GAI-Link70-FGFR1-PRS(M)-tTA  
^ pJM801 CMV TC 3xFLAG-GAI-Link70-Valine-PRS(M)-tTA  
ABA-MESA PC with varying TMDs 
^ pJM802 CMV PC 3xFLAG-ABI1-Link50-CD28-TEVp  
^ pJM803 CMV PC 3xFLAG-ABI1-Link50 GpA-TEVp  
^ pJM804 CMV PC 3xFLAG-ABI1-Link50-FGFR1-TEVp  
^ pJM805 CMV PC 3xFLAG-ABI1-Link50-Valine-TEVp  
ABA-MESA TC with varying TMDs 
^ pJM806 CMV TC 3xFLAG-PYL1-Link90-CD28-PRS(M)-tTA  
^ pJM807 CMV TC 3xFLAG-PYL1-Link90-GpA-PRS(M)-tTA  
^ pJM808 CMV TC 3xFLAG-PYL1-Link90-FGFR1-PRS(M)-tTA  
^ pJM809 CMV TC 3xFLAG-PYL1-Link90-Valine-PRS(M)-tTA  
Other vectors used in the genetic programs study 
◊ pPD005 CMV n/a  
◊ pPD100 CMV 3xFLAG-NLS-VP16-ZF1  
 pPD133 CMV EYFP  
◊ pPD189 CMV 3xFLAG-NLS-VP16-ZF2  
 pPD193 CMV EBFP2  
◊ pPD270 ZF1/2x6-C EYFP  
◊ pPD290 ZF1x6-C EYFP  
◊ pPD303 CMV 3xFLAG-NLS-VP64-ZF1  
◊ pPD341 CMV 3xFLAG-NLS-FKBP-ZF1  
◊ pPD353 CMV 3xFLAG-NLS-VP16-FRB  
◊ pPD545 ZF2x6-C EYFP  
* pPD1122 CMV 3xFLAG-NES-PYL1-VP64  
* pKD011 CMV 3xFLAG-NLS-ZF2-ABI  
* pJB001 CMV 3xFLAG-NLS-FKBP-ZF2  
* pJB002 CMV 3xFLAG-NLS-DsDed-ZF1  
* pJB003 ZF1/2x6-C 3xFLAG-NLS-VP16-FRB  
* pJB004 CMV 3xFLAG-NLS-VP16-intN  
* pJB005 CMV 3xFLAG-NLS-intC-ZF2  
Vectors used in the CRISPR study 
 pSS005 Lentiviral vector containing NF-κB-inducible EGFP and CMV-driven Cas9-T2A-HygroR  
Other vectors used in the receptor mechanisms study 
^ pPD806 CMV PC 3xFLAG-FKBP-FGFR4-TEVp  
^ pPD815 CMV TC 3xFLAG-FRB-FGFR4-PRS(M)-tTA  
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Table A2.2 Cell types 
 

Cell type Notes 
RAW 264.7 macrophages Provided by David Segal (NIH) 
RAW 264.7 reporter 
macrophages 

Monoclonal line; generated by Sung, et al.73 by transducing with a 
lentivirus containing NF-κB-inducible EGFP-RelA and Tnf promoter-
driven mCherry-PEST 

RAW 264.7 reporter 
macrophage sublines 

Monoclonal sublines; generated by limiting dilution and clonal expansion 
of RAW 264.7 reporter macrophages 

L929 fibroblasts From ATCC 
bone marrow-derived 
macrophages 

Differentiated from bone marrow-derived monocytes from C57BL/6 mice 

HEK293FT cells For transfections and for lentivirus production 
THP-1 monocytes Parental line (not used for the library generation in the CRISPR screen) 
THP-1 reporter monocytes Polyclonal line; transduced with a lentivirus containing NF-κB-inducible 

EGFP and CMV-driven Cas9-T2A-HygroR 
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APPENDIX 2. Model equations for macrophage quorum licensing 

 

 

This appendix corresponds to Chapter 2, and a version of this appendix was previously published as: 

 

Muldoon J.J., Chuang Y., Bagheri N.^, Leonard J.N.^ Macrophages employ quorum licensing to regulate 

collective activation. Nat Commun 11, 878 (2020).62 ^Co-corresponding 
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Overview 

A computational model was developed to incorporate the new findings with prior knowledge on macrophage 

activation. The scope is focused processes to which the new findings most directly pertain. This section 

describes prior knowledge and the model formulation, development, parameterization, and analysis. 

 

Model formulation based upon prior knowledge 

Cellular mechanisms and their representation in the model are described below. Salient state variables are 

in parentheses. 

 TLR4 signaling (ẋ1, ẋ2, ẋ5, ẋ6, ẋEC2): Mechanism: LPS activates TLR4 signaling through two 

pathways named after the adaptor proteins MyD88 (Myeloid differentiation primary response gene 88) and 

TRIF (Toll/interleukin-1 receptor (TIR)-domain-containing adapter-inducing interferon-β)91. While these 

pathways differ in certain components and downstream effects, they overlap in NF-κB activation. MyD88 

signaling involves the formation of a multi-subunit protein complex at the plasma membrane called the 

Myddosome, whose activity is induced and terminated rapidly. TRIF signaling requires TLR4 internalization 

to endosomes; signaling is initially delayed as activated TLR4 begins to reversibly shuttle from the plasma 

membrane to endosomes, but it is longer-lasting than MyD88 signaling. Signaling from activated receptors 

terminates after maturation of early endosomes to late endosomes. Model: LPS has an initial value of 1 

a.u., corresponding to a dose of 100 ng ml–1. The inactive (TLR4) and active (TLR4*) forms of the receptor 

are assigned initial values of 0.1 and 0 a.u., respectively. Since LPS is in large molar excess of the receptor, 

its loss over time can be represented simply by first-order degradation. TLR4 is synthesized constitutively 

in its inactive form and undergoes first-order degradation. Receptor activation depends on LPS dose, not 

cell density. For the signaling cascade, we developed a reduced complexity version of a previously 

published model91, e.g., that does not distinguish MyD88-mediated and TRIF-mediated signaling. As a 

general principle, we used a minimal number of variables to represent the most salient processes. During 

model development, we observed that reducing the granularity of certain mechanisms had little impact on 

the dynamics of interest such as NF-κB translocation. 

NF-κB activation (ẋ7, ẋ8, ẋ10, ẋ11, ẋ13, ẋ14, ẋ15, ẋ16, ẋ17, ẋ18): Mechanism: NF-κB is a dimer composed 

from five subunits: RelA (p65), cRel, RelB, p50, and p5279. In TLR4 signaling and in TNFR signaling, IKKK 
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phosphorylates IKK (IκB kinase), which phosphorylates IκB, targeting IκB for degradation. The de-

sequestered NF-κB can then translocate to the nucleus and induce target gene transcription. NF-κB is 

eventually re-sequestered by IκB, and NF-κB–IκB translocates to the cytoplasm. This activation and 

inactivation comprise one cycle of NF-κB nucleocytoplasmic translocation91. Model: we reduced and 

modified a portion of a previous model91 while retaining NF-κB oscillatory behavior. Since RAW reporter 

cells express a functional EGFP-p65, and p65/p50 is the primary NF-κB dimer, we represent EGFP-p65-

containing and native p65/p50 dimers as the same NF-κB variable. The variable IκB represents the IκBα 

gene product104. 

RelA feedback dominance switching (ẋ9, ẋ11): Mechanism: RAW cells treated with LPS above a 

certain dose threshold enter a positive feedback loop in which NF-κB induces Rela expression251. This 

feedback dominance (FBD) switch counters the negative feedback from the induction of IκB by NF-κB. 

Since the switch requires de novo expression of the TF Ikaros, it takes effect starting several hours post-

LPS. LPS at 100 ng ml–1 is well above the dose threshold. Model: NF-κB undergoes the FBD switch in all 

cells at and above a presumed dose of 1 ng ml–1. A time-dependent function was formulated for NF-κB-

induced activity at the Rela promoter, based on previously published timecourse ChIP data251 for NF-κB 

localization at the Rela promoter in RAW cells. 

Early regulation of Tnf translation (ẋ24, ẋ25): Mechanism: in the resting cell state, Tnf mRNA lacks 

a poly(A) tail and is not translated101. After LPS treatment, the mRNA is polyadenylated, allowing poly(A)-

binding protein (PABP) to pseudo-circularize the mRNA, which increases ribosome recycling for rapid 

translation. TRIF signaling also promotes translation, by activating p38 mitogen activated protein kinase 

(MAPK), which activates MAP kinase-activated protein kinase 2 (MK2) to phosphorylate eukaryotic 

translation initiation factor 4E (eIF4E), which binds to the 5’ mRNA cap and recruits the 40S ribosomal 

subunit. TRIF signaling also dephosphorylates eukaryotic initiation factor 2 (eIF2), which de-represses 

translation by recruiting the 60S subunit101. Model: Since TNF production requires LPS treatment, the initial 

values of Tnf mRNA and TNF protein are set to zero regardless of the initial value of NF-κB. 

Tnf post-transcriptional regulation (ẋ19, ẋ20, ẋ24, ẋ25): Mechanism: Tnf mRNA is regulated post-

transcriptionally through AU-rich elements (AREs) in its 5’ UTR, with binding sites for over 20 proteins101. 

Some proteins such as Tristetraprolin (TTP) destabilize the mRNA by recruiting deadenylases and 
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degradation factors, and others such as Hu-antigen R (HUR) stabilize the mRNA by competing with 

destabilizing proteins for occupancy101. In unstimulated macrophages, TTP is expressed at low levels105. 

Shortly after LPS treatment, kinases including p38 and Erk are activated and Tnf mRNA is stabilized106. 

However, TLR4 and TNFR signaling also induce TTP expression via p38 and ERK signaling107 (and IL-10R 

signaling also induces TTP expression, via STAT3105). TTP binds to Tnf mRNA and leads to its 

destabilization100. The outcome is a limited-duration burst in TNF expression106. Model: To capture the 

limited-duration burst in TNF expression while limiting model complexity, stabilizing regulation (SR) is 

represented by one variable and destabilizing regulation (DSR) is represented by another. SR becomes 

active after LPS (downstream of TLR4* and TNFR* via IKKK*), and it decreases in activity over time. SR 

slows the degradation of Tnf mRNA. DSR becomes active after a delay. DSR increases Tnf mRNA 

degradation and suppresses TNF translation. 

Action of IL-10 pre-treatment through STAT3 (represented through a parameter, not state 

variables): Mechanism: Bcl-3 is a nuclear-localized protein that dimerizes with p50 or p52 and binds NF-

κB-responsive promoters108. Bcl-3 expression is induced by STAT3 in IL-10R signaling. Model: To limit 

model complexity, rather than introducing variables for IL-10R signaling, STAT3 activation, or Bcl-3 

interactions, we found that representing the effect of IL-10 on FBD via a fitted parameter was sufficient to 

capture the observed decrease in reporter expression. 

Action of IL-10 pre-treatment through MAPKs (ẋ19, ẋ20): Mechanism: MAPKs regulate the initial 

response to LPS and the resolution109. Their effects on downstream targets are complex and have been 

described as incoherent—having seemingly opposing effects. Signaling via MyD88 and TRIF activates p38, 

extracellular-signal-regulated kinases 1 and 2 (ERK1/2), and c-Jun N terminal kinase (JNK). MK2, a 

phosphorylation target of p38, regulates Tnf and Il10 mRNA stability by: (a) preventing recruitment of the 

adenylase CCR4-associated factor 1 (CAF1), thereby preventing proteins like TTP from destabilizing target 

mRNAs, and (b) inducing TTP expression. IL-10R signaling also regulates Tnf, by activating STAT3 (which 

induces TTP) and increasing expression of dual specific phosphatase 1 (DUSP1, which dephosphorylates 

p38 and inhibits late-phase p38 activity)109. In macrophages, IL-10R signaling destabilizes inflammatory 

cytokine mRNAs like Tnf that contain 3’ UTR AU-rich elements (AREs), by: (a) repressing LPS-induced 

activation of p38 MAPK, and (b) inhibiting expression of HuR, a protein that stabilizes mRNAs by binding 
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AREs99. Model: IL-10 treatment decreases stabilizing regulation and increase destabilizing regulation of 

Tnf mRNA. Effects of the MAPKs are represented by SR downstream of IKKK activation, and effects of 

TTP are represented by DSR. IL-10 pre-treatment prevents SR, and it activates DSR by 0 hps. 

TNFR activation (ẋ3, ẋ4, ẋ5, ẋ6, ẋEC1): Mechanism: Extracellular TNF binds TNFR1, and the 

receptor-ligand complex is internalized72. Adaptor proteins activate IKKK and MAPK signaling, leading to 

NF-kB activation. Model: the TNF pool has an initial value of 0 a.u. The inactive (TNFR) and active (TNFR*) 

forms of the receptor are assigned initial values of 0.1 and 0 a.u., respectively, analogous to the TLR4 

receptor. TNFR* and TLR4* converge at IKKK activation, and thus overlap in regulating Tnf. 

Cell density (ẋEC1): Mechanism: Cell density affects the proportion of highly activated cells and the 

amount of secreted TNF. Model: To account for population growth over time, the rate at which secreted 

TNF contributes to the extracellular TNF pool is multiplied by a time-dependent function. The multiplier is 

applied to the pool, not individual cells. The proportion of highly activated cells is based on experimental 

observations.  

Blockade of TNFR signaling (ẋ3, ẋ4): Mechanism: At 1 h pre-LPS, cells were treated with soluble 

TNF receptor (sTNFR), which competes with surface TNFR for TNF. The dose of sTNFR was chosen based 

on a prior study such that it would be in molar excess of secreted TNF71. Model: sTNFR blockade prevents 

TNFR activation. As a result, following LPS treatment, downstream nodes such as IKKK are activated to a 

lesser extent than they would be with paracrine feedback. 

Secretion (ẋ25, ẋEC1): Mechanism: p38 modulates the activity of proteins involved in endocytic 

trafficking to enhance cytokine secretion during the LPS response. At the cell surface, TNF precursor is 

released in soluble form following cleavage by TNFα-converting enzyme (TACE), which is activated by an 

LPS-activated lipid hydrolase109. Model: since simulations begin at 0 hps, TNF secretion is assigned a 

constant rate parameter. 

Blockade of secretion (ẋ25, ẋEC1): Mechanism: Brefeldin A (BFA) prevents secretion involving 

Golgi transport. After BFA treatment, TNF is no longer secreted, and it can accumulate intracellularly. 

Model: A time-dependent step-down function represents prevention of TNF secretion. Since some TNF is 

secreted prior to BFA, some paracrine signaling occurs, though to a lesser extent than without BFA.  
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Model formulation for other cellular processes 

Receptor activation: Receptors are synthesized constitutively in an inactive form and are initially 

at steady state. Receptors become activated through a second-order reaction with the extracellular cue, 

and initiate the downstream cascade. Certain rate constants differ for TLR4 and TNFR. 

Kinase cascade: Kinases are present at a constant level. They are initially inactive, and become 

activated by a second-order reaction with an upstream node. Basal deactivation is first-order. For example, 

TLR4* and IKKK react to convert IKKK to IKKK*, which eventually returns to IKKK (due to the action of 

phosphatases). 

Translocation: Translocation between the cytoplasm and nucleus is first order. Rate constants 

differ by species (NF-κB, IκB, and NF-κB–IκB) and direction of movement. 

Transcription: Transcription was formulated using fractional activation. Terms for transcriptional 

activators are in both the numerator and denominator. Terms for inhibitory effects are in the denominator.  

Translation: Translation is generally treated as first order with mRNA. However, Tnf translation 

has additional regulation. 

Secretion: There are 30 cells in the model, and the sum of their TNF secretion contributes to the 

extracellular pool. 

Degradation: Degradation is generally treated as first order. Cases involving regulated 

degradation are nonlinear. 

 

Model development, parameterization, and implementation 

Before parameterizing the full model, we started with a model of cell-intrinsic effects on NF-κB that includes 

TLR4 signaling, regulation of NF-κB activation, and RelA and IκB expression. Following LPS treatment, 

TLR4 is activated to TLR4*, which activates IKKK to IKKK*, which activates IKK to IKK*. In the cytoplasm, 

IKK* associates with IκB or NF-κB–IκB to form IKK–IκB or NF-κB–IKK–IκB, respectively. IKK–IκB and NF-

κB also associate to form NF-κB–IKK–IκB, and IKK targets IκB for degradation. (Formally, degradation 

occurs regardless of whether NF-κB is complexed, but for the purpose of model reduction we represented 

this process for NF-κB–IKK–IκB only. This decision did not have a noticeable impact on NF-κB activity.) 

The reaction releases NF-κB and IKK, and NF-κB can then enter the nucleus and induce transcription of 
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Rela and Ikba. NF-κB, IκB, and NF-κB–IκB translocate between the nucleus and cytoplasm. Since NF-κB–

IκB exits the nucleus with a much faster rate constant than that with which it enters, its translocation is 

treated as unidirectional. As with the representation of the effect of IKK on IκB, this model reduction had no 

discernable impact. During model development, we encountered many such instances where complexity 

could be reduced for reasons such as separation of timescales, redundant pathway effects, or negligible 

reaction fluxes. 

To conduct an broad search of parameter space for fitting the model, we tested many parameter 

sets using a Sobol sequence—a pseudorandom number list that uniformly samples the unit hypercube in 

the limit of the sequence252. This initial sweep was followed by multi-objective optimization using a genetic 

algorithm with many generations, each comprising the following steps:  

 

1. Evaluation: quantify goodness of fit for each parameter set based on the deviation of simulated 

outcomes from experimental data. 

2. Selection: identify parameter sets that yield the best fits in the current generation. Stringent criteria 

were applied to eliminate sets for which the population-mean simulated outcomes fell outside of 

any specified windows of acceptable deviation from the population-mean experimental data. 

3. Repopulation: replicate the selected sets to restore the population size.  

4. Mutation: introduce random variation to the parameter values, drawing from Gaussian distributions 

centered on current values. Simulated annealing was used, in which coefficients of variation were 

decreased after many generations, to narrow in on solutions. 

 

The algorithm yielded a family of similar-performing four-parameter sets for the NF-κB module. 

These sets were carried forward and sampled during the fitting of the remaining eight parameters in the full 

model, and this fit yielded the homogeneous (one-cell) model. Fitting, simulations, and analysis were 

conducted in MATLAB. 

To investigate the NF-κB module independent of TNF intercellular feedback, the homogeneous 

model  was run under various conditions. The results depict how, following TLR4 activation, NF-κB enters 

the nucleus and induces target gene transcription. Damped oscillations are attributable to the negative 
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feedback between NF-κB activation and IκB expression and the time required for de novo IκB expression. 

We find that depending on the LPS dose, FBD switch, and initial value of inactive NF-κB, simulations yield 

qualitatively distinct trajectories for total and nuclear NF-κB, consistent with wide-ranging outcomes 

observed by confocal microscopy.  

A population of 30 cells was generated using equivalent intracellular state variables and reactions, 

which all had access to LPS and the extracellular TNF pool. Heterogeneity was introduced by assigning 

differences to the basal transcription rate of NF-κB RNA, initial value of NF-κB RNA, and initial value of 

cytoplasmic NF-κB–IκB (corresponding to 0 hps). These values are proportional to confocal microscopy 

measurements for the 30 cells at high density. Values for cells at low density, in equivalent units, were 

obtained as described for Figure 2.3b. 

 

Model parameterization: cell growth 

RAW cell density was monitored over time for different cell densities and treatment conditions. 

These data were used to fit a logistic model for time-dependent growth. 

 

Model formulation: representing the experimental perturbations 

Perturbations were modeled as described below. Parameters are denoted by k for kinetic 

processes and w for weights in transcriptional regulation. Variables are abbreviated as: NFkBn, nuclear 

NF-κB; Tnfm, Tnf mRNA; TNF, intracellular TNF; TNFpool, extracellular TNF pool; SR, stabilizing regulation 

on Tnf mRNA; DSR, destabilizing regulation on Tnf mRNA. 

 

Terms containing 𝛿 indicate a treatment or perturbation that is either present or absent for each 

scenario to be analyzed. 

𝛿'()* = ,	𝑛𝑜	IL10 ⟶ 0
	IL10 ⟶ 1	  (A.21) 

𝛿45678 = ,𝑛𝑜	sTNFR ⟶ 0
	sTNFR	 ⟶ 1  (A2.2) 

𝛿(>? = ,	𝑛𝑜	LPS ⟶ 0
LPS ⟶ 1	  (A2.3) 
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𝛿B7C = ,𝑛𝑜	BFA ⟶ 0

	BFA	 ⟶ 1  (A2.4) 

 

Time-dependent cell density (ρ) is described by a logistic equation. Units are relative to high cell 

density (1 a.u.) at the time of LPS treatment (t	=	0). From a fit to data (Supplementary Fig. 3c) with 

constraints for eight-fold difference at plating and for equal density in the limit of time, the horizontal 

asymptote for maximum density (r1) is 1.99 a.u., the rate of logistic growth (r2) is 0.0365 h-1, and τdensity is –

0.247 h for high density and 62.6 h for low density. 

𝜌Q𝑡, 𝜏UVW4XYZ[ =
𝑟)

1 + e^_̀ ∙Qb^cdefghij[
 (A2.5) 

 

Total TNF secretion by cells i=1:N, accounting for population growth and sTNFR pre-treatment, is: 

𝜌 ∙ (1– 𝛿45678) ∙ 𝑘4VpqVYXrW ∙s[TNFu]
w

u

 
(A2.6) 

The effect of FBD on Rela transcription is represented by a unitless time-dependent function	F7Bx, 

which was formulated and fitted based on timecourse ChIP data251 for RelA localization at the Rela promoter 

post-LPS. 

F7Bx = 	
1
6 ∙ 𝛿(>? ∙ 𝑡

z ∙ 𝑒^b (A2.7) 

 

Rela transcription involves basal transcription, inducible transcription including the effect of FBD, 

and the inhibitory effect of IL-10 pre-treatment. 

𝑘Y|
𝑤~�4��Y|67�B + F7Bx ∙ 𝑤67�BY|67�B ∙ [NFkBn]

1 + F7Bx ∙ 𝑤67�BY|67�B ∙ ([NFkBn] + 𝑤'()*Y|7Bx ∙ 𝛿'()*)
 

(A2.8) 

 

Tnf and mCherry transcription are each induced by nuclear NF-κB. 

F67�B_5W� = 𝑤67�BY|5W� ∙ [NFkBn] (A2.9) 

 

An additional consideration with IL-10 pre-treatment is that we experimentally observed a decrease 

in Tnf promoter activity beginning after some delay post-LPS. This can be described by a time-dependent 
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ramp down function (F'()*_5W�) starting at time τIL10_1 and ending at time τIL10_2, where H is the Heaviside 

function. 

F'()*_5W� = 1 − 𝛿'()* ∙ �1 −
maxQ𝑡 − 𝜏'()*_), 0[
𝜏'()*_� − 𝜏'()*_)

� ∙ �1 −
1

1 + 𝐻Q𝑡 − 𝜏'()*_�[
� 

(A2.10) 

 

Transcription from the Tnf promoter, incorporating IL-10’s effect, is: 

𝛿(>? ∙ 𝑘Y| ∙
F67�B_5W�

1 + F67�B_5W�
∙ F'()*_5W� 

(A2.11) 

 

For post-transcriptional regulation of Tnf mRNA, there are two opposing effects: stabilizing 

regulation slows the degradation, and destabilizing regulation promotes the degradation. 

F4Y�~X�X�V =
1

1 + 𝑤4Y�~X�X�V ∙ [SR]
 (A2.12) 

FUV4Y�~X�X�V =
𝑤UV4Y�~X�X�V ∙ [DSR] ∙ (𝑤��|UV4Y�~X�X�V − 1)

1 + 𝑤UV4Y�~X�X�V ∙ [DSR]
 

(A2.13) 

 

With these effects, Tnf mRNA degradation is: 

𝑘UV�5W�� ∙ [Tnfm] ∙ (F4Y�~X�X�V + FUV4Y�~X�X�V) (A2.14) 

 

Destabilizing regulation also acts to repress translation of the TNF protein: 

FqV�qV44_Y� =
1 + 𝑤UV4Y�~X�X�V ∙ [DSR]

1 + 𝑤��|UV4Y�~X�X�V ∙ 𝑤UV4Y�~X�X�V ∙ [DSR]
 (A2.15) 

 

Translational repression is represented as: 

𝑘Y� ∙ [Tnfm] ∙ FqV�qV44_Y� (A2.16) 

 

sTNFR pre-treatment blocks TNFR signaling. Its effect is a zero multiplier on TNFR activation. 

(1	– 𝛿45678) ∙ 𝑘�pYX��YV5678 ∙ [TNFR] ∙ [TNFpool] (A2.17) 
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BFA prevents secretion starting at the time of BFA treatment (τBFA). 

𝛿B7C(𝑡, 𝜏B7C) = 1 − 𝐻(𝑡 − 𝜏B7C) (A2.18) 

 

BFA’s effect is represented by a step-down multiplier on TNF secretion for each cell. 

𝑘4VpqVYXrW ∙ 𝛿B7C ∙ [TNF] (A2.19) 

 

State variables, parameters31,69,84,90,91,251, stimulus-specific and perturbation-specific parameters, and 

ODEs are provided in Tables A2.1–A2.4. 
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Figure A2.1. Primary cell experiments. a–b Surface staining for markers of differentiation. At seven days 
after each of the two bone marrow harvests, differentiation to macrophages was assessed by surface 
staining for CD11b and F4/80. A signal that is distinguishable from the isotype control was observed for 
both harvests. c An independent experiment from Figure 2.5 varying the plating density and treatment 
conditions shows cell density-dependent bimodality in LPS-inducible TNF expression. Treatment conditions 
(columns) were sampled in biological triplicate, except for the fourth condition (with sTNFR), which was 
sampled using one biological replicate. Bar graphs represent the mean of the biological replicates and 
S.E.M. 
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Figure A2.2. Secreted factors. Secreted factors in the supernatant were evaluated by multiplexed assay 
(23 analytes). These cell culture supernatants correspond to the experiment in Figure 2.5. Bars graphs 
represent the mean of the biological replicates and S.E.M. The minimum value on each y-axis is the 
observed lower limit of detection of the assay. For each analyte-density-treatment combination, if at least 
one biological replicate was below the limit of detection, then the mean for the set of replicates was 
considered to be below the limit. 
  



 138 
Table A2.1. State variables 
 

# a Names Descriptions Initial values (a.u.) 
ẋ1 TLR4 Inactive TLR4 0.1 
ẋ2 TLR4* Active TLR4 0 
ẋ3 TNFR Inactive TNFR 0.1 
ẋ4 TNFR* Active TNFR 0 
ẋ5 IKKK Inactive 0.1 
ẋ6 IKKK* Active 0 
ẋ7 IKK Inactive 0.1 
ẋ8 IKK* Active 0 
ẋ9 NFkBm Rela mRNA varies by cell a 
ẋ10 NFkBc NF-κB cytoplasmic 0 
ẋ11 NFkBn NF-κB nuclear 0 
ẋ12 IkBm Ikba mRNA 0 
ẋ13 IkBc IκB cytoplasmic 0 
ẋ14 IkBn IκB nuclear 0 
ẋ15 NFkB_IkBc NF-κB–IκB cytoplasmic varies by cell b 
ẋ16 NFkB_IkBn NF-κB–IκB nuclear 0 
ẋ17 IKK_IkB IKK–IκB 0 
ẋ18 NFkB_IKK_IkB NF-κB–IKK–IκB 0 
ẋ19 Stabilizing_regulation Stabilizing regulation 1 without IL-10; 0 with IL-10 
ẋ20 Destabilizing_regulation Destabilizing regulation 0 without IL-10; max. with IL-10 
ẋ21 mCherrym mCherry mRNA 0 
ẋ22 mCherry mCherry protein 0 
ẋ23 mCherryf mCherry protein folded 0 
ẋ24 Tnfm Tnf mRNA 0 
ẋ25 TNF TNF protein 0 
ẋEC1 c TNFpool Extracellular TNF protein 0 
ẋEC2 c LPS LPS stimulus 1 (corresponds to 100 ng/ml) 

 
 

a Variables #1 through 25 are intracellular, and the last two variables are extracellular. 
ODEs for one cell are in Table A2.4. A system of 30 cells has 25x30+2 = 752 ODEs. 
 

b Estimated steady-state initial value for Rela mRNA: NFkBm = 0.007 * NFkB_IkBc 
 

c Initial values of the inactive cytoplasmic complex, based on experimental quantification of 
of initial EGFP-RelA from confocal microscopy, and normalized so that the mean is 0.1. 
 
NFkB_IkBc = [ 0.0022, 0.0046, 0.0065, 0.0068, 0.0085, 0.0146, 0.0355, 0.0437, 0.0460, 0.0465, 
0.0619, 0.0667, 0.0668, 0.0676, 0.0826, 0.0940, 0.1023, 0.1151, 0.1180, 0.1320, 
0.1417, 0.1533, 0.1543, 0.1594, 0.1689, 0.1775, 0.2052, 0.2216, 0.2418, 0.2540] 
 
Imputed values for low density: 
 
NFkB_IkBc = [ 0.0016, 0.0034, 0.0049, 0.0051, 0.0064, 0.0109, 0.0266, 0.0328, 0.0180, 0.0299, 
0.0130, 0.0305, 0.0326, 0.0058, 0.0069, 0.0349, 0.0500, 0.0507, 0.0620, 0.0705, 
0.0767, 0.0885, 0.0990, 0.1063, 0.1157, 0.1267, 0.1331, 0.1539, 0.1662, 0.1813] 
 

d The two extracellular (EC) variables are appended to the end of the system of ODEs for one or more cells. 
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Table A2.2. Parameters 
 

Names Descriptions Values Units a Sources 
ksynthesis_TLR4  synthesis of TLR4 0.0185 μM h-1 Calculated based on degradation rate 

kactivate_TLR4 activation of TLR4 10 μM-1 h-1 
Estimated, to produce oscillatory 
translocations at 100 ng/ml LPS and 
lesser effects at lower doses 

kdeg_TLR4 degradation of TLR4 0.185 h-1 Estimated from a reduced model of 
Cheng et al. 201591 

ksynthesis_TNFR synthesis of TNFR 0.0102 μM h-1 Calculated based on degradation rate 
kactivate_TNFR activation of TNFR b 0.614 / nc μM-1 h-1 Fitted 

kdeg_TNFR degradation of TNFR 0.102 h-1 From Werner et al.69 and used by 
Caldwell et al.31 

kTLR4_IKKK  activation of IKKK by TLR4 0.588 μM-1 h-1 Estimated in order to produce oscillatory 
translocations 

kTNFR_IKKK  activation of IKKK by TNFR 0.588 μM-1 h-1 Assumed equal to kTLR4_IKKK 
kinactivate_IKKK inactivation of IKKK 150 h-1 Cheng et al. 201591 
kactivate_IKK  activation of IKK 60000 μM-1 h-1 Cheng et al. 201591 
kinactivate_IKK inactivation of IKK 19.4 h-1 c Fitted in the NF-κB module 
kassoc_IKK_IkBc association of IKK and IκBc 81 μM-1 h-1 Cheng et al. 201591 
kassoc_IKK_NFkBIkBc association of IKK and NF-κB–IκBc 666 μM-1 h-1 Cheng et al. 201591 
kdeg_NFkBIkBIKKc degradation of NF-κB–IκB–IKKc 432 h-1 Cheng et al. 201591 
ktx max. transcription 1 μM h-1 Assumed equal for all genes 

wbasaltx_NFkB basal transcription of NF-κB mRNA d mean=10-4 μM Estimated to maintain NF-κB expression 
in absence of FBD 

wNFkBtx_NFkB transcription of NF-κB mRNA by 
NF-κB 0.219 N/A c Fitted in the NF-κB module 

wIL10tx_FBD repression of transcription of NF-κB 
mRNA by NF-κB, by IL-10 Fitted: 7.27 μM c Fitted in the NF-κB module 

kdeg_NFkBm degradation of NF-κB mRNA 0.14 h-1 Assumed 5 h half-life 
ktl translation 15 h-1 Cheng et al. 201591 

kimport_NFkBc import of NF-κB from the cytoplasm 
to the nucleus 324 h-1 Cheng et al. 201591 

kexport_NFkBn export of NF-κB from the nucleus to 
the cytoplasmic 1.5 h-1 Estimated to produce oscillatory 

translocations 
kassoc_NFkB_IkB association of NF-κB and IκB 1800 μM h-1 Cheng et al. 201591 
kassoc_IkBIKKc_NFkBc association of IκB–IKKc and NF-κBc 1800 μM h-1 Cheng et al. 201591 

kdeg_NFkB degradation of NF-κB 0.36 h-1 
Matched to the estimate for IκB in the 
resting state (where IKK is inactive); 
Sung et al.73 

wNFkBtx_IkB transcription of IκB mRNA by NF-κB 6.53 N/A c Fitted in the NF-κB module 
kdeg_IkBm degradation of IκB mRNA 2.1 h-1 Cheng et al. 201591 

kimport_IkBc import of IκBc from the cytoplasm to 
the nucleus 1.08 h-1 Cheng et al. 201591 

kexport_IkBn export of IκBn from the nucleus to 
the cytoplasmic 0.72 h-1 Cheng et al. 201591 

kdeg_IkB degradation of IκB 4.2 h-1 Cheng et al. 201591 
kexport_NFkBIkBn export of NF-κB–IκBn 49.7 h-1 Kalita et al. 201190 

taustabilize timing of stabilizing regulation 
ending 0.234 h-1 Fitted 

tauIKKK contribution of IKKK activity to 
stabilizing regulation 3.96 * 105 μM-1 Fitted 

cstabilize threshold IKKK activity for 
stabilizing regulation 3.92 * 10-5 μM 

Estimated; involved in stabilizing 
regulation, and is based on the values of 
the IKKK* state variable  

taudestabilize timing of destabilizing regulation 
starting 7.3 h Fitted 

wNFkBtx_Tnf transcription of Tnf mRNA & 
mCherry mRNA by NF-κB 1.99 N/A Fitted 

kdeg_mCherrym degradation of mCherry mRNA 2.1 h-1 Assumed equal to half-life of other short-
lived mRNAs 

kdeg_mCherry degradation of mCherry 0.5 h-1 Assumed half-life near 1 h; estimated 
based on avg. time to peak expression  
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kmature maturation (folding) of mCherry 0.7 h-1 Assumed half-life for maturation of 1 h 

kdeg_Tnfm degradation of Tnf mRNA 2.1 h-1 Assumed equal to half-life of other short-
lived mRNAs 

wstabilize effect of stabilizing regulation 1.7 μM-1 Fitted 

wmaxdestabilize maximum stabilizing regulation 3 N/A Estimated constant involved in 
destabilizing regulation  

wdestabilize effect of destabilizing regulation 0.747 μM-1 Fitted 
ksecretion TNF secretion 4.17 h-1 Fitted 
kdeg_TNF degradation of TNF (intracellular) 0.7 h-1 e See note 
r1 max. relative population density 1.99 RCD f Separately fitted 
r2 population growth rate 0.0365 h-1 f Separately fitted 
kdeg_TNFpool degradation of TNF pool 0.27 h-1 Maiti et al. 201584 
kdeg_LPS degradation of LPS (in media) 0.058 h-1 Assumed half-life of 12 h 

 
 

a Units are: concentration (μM), time in hours (h), relative cell density (RCD), number of cells (nc), or no units (N/A). 
 

b The parameter for TNFR activation was scaled by dividing by the number of cells. For nc=30, the value is 0.0206 μM–1 h–1. 
 

c Four parameters were first fit in the NF-κB module; the other eight were fit in the full model. 
 

d Varies by cell; equal to 0.001 times the initial concentration of total cellular NF-κB. 
 

e We found that given the data available, it would be challenging to estimate values for parameters representing both possible 
fates of the TNF protein (degradation and secretion). Since degradation is first order and has no downstream consequence in 
the model, whereas secretion does have a consequence in the activation of TNFR signaling, we chose to prioritize the estimate 
for secretion. To constrain the search for the free parameter for secretion, we set the value for intracellular degradation to that 
also used for extracellular degradation (which for simulated outcomes should affect the histograms in Figures 2.3–2.4 in a 
linearly proportional manner, and not affect the conclusions). 
 

f Separately fitted by constrained nonlinear least squares optimization, prior to fitting the ODE model. 
 
 
 
Table A2.3. Stimulus-specific and perturbation-specific parameters 
 

Names Descriptions Values Units 
dLPS LPS treatment at 0 h 1 with; 0 without N/A 
dsTNFR sTNFR pre-treatment at –1 h 1 with; 0 without N/A 
dIL10 IL-10 pre-treatment at –12 h 1 with; 0 without N/A 
tauIL10_1 time when transcription of Tnf begins to decrease due to IL-10 6 h 
tauIL10_2 time when transcription of Tnf effectively ceases due to IL-10 18 h 
tauBFA time of BFA treatment varies with; infinity without h 

taudensity parameter for initial cell density at time of plating (at –36 h) –0.247 high density; h 62.6 low density 
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Table A2.4. Ordinary differential equations 
 

# ODEs Reactions  

ẋ1 
  ksynthesis_TLR4  synthesis:      0 → TLR4 

- dLPS * kactivate_TLR4 * [TLR4] * [LPS]  activation:     TLR4 → TLR4* 

- kdeg_TLR4 * [TLR4] degradation: TLR4 → 0 

ẋ2 
  dLPS * kactivate_TLR4 * [TLR4] * [LPS] activation:     TLR4 → TLR4* 

- kdeg_TLR4 * [TLR4*] degradation: TLR4* → 0 

ẋ3 
  ksynthesis_TNFR synthesis:      0 → TNFR 

- kactivate_TNFR * [TNFR] * [TNFpool] * (1 - dsTNFR) activation:      TNFR → TNFR* 

- kdeg_TNFR * [TNFR] degradation:  TNFR → 0 

ẋ4 
  kactivate_TNFR * [TNFR] * [TNFpool] * (1 - dsTNFR) activation:      TNFR → TNFR* 

- kdeg_TNFR * [TNFR*]  degradation:  TNFR* → 0 

ẋ5 
- kTLR4_IKKK * [TLR4*] * [IKKK]  activation:      IKKK → IKKK*, via TLR4* 

- kTNFR_IKKK * [TNFR*] * [IKKK] activation:      IKKK → IKKK*, via TNFR* 

+ kinactivate_IKKK * [IKKK*] inactivation:   IKKK* → IKKK 

ẋ6 
  kTLR4_IKKK * [TLR4*] * [IKKK] activation:      IKKK → IKKK*, via TLR4* 

+ kTNFR_IKKK * [TNFR*] * [IKKK] activation:      IKKK → IKKK*, via TNFR* 

- kinactivate_IKKK * [IKKK*] inactivation:   IKKK* → IKKK 

ẋ7 
- kactivate_IKK * [IKKK*] * [IKK] activation:      IKK → IKK* 

+ kinactivate_IKK * [IKK*] inactivation:   IKK* → IKK 

ẋ8 

  kactivate_IKK * [IKKK*] * [IKK] activation:      IKK → IKK* 

- kinactivate_IKK * [IKK*] inactivation:   IKK* → IKK 

- kassoc_IKK_IkBc * [IKK*] * [IkBc] association:   IKK* + IkBc → IKK-IkBc 

- kassoc_IKK_NFkBIkBc * [IKK*] * [NFkB_IkBc] association:   IKK* + NFkB-IkBc → NFkB-IkB-IKKc 

+ kdeg_NFkBIkBIKKc * [NFkB_IKK_IkB] degradation:  NFkB-IkB-IKKc → IKK + NFkBc 

ẋ9 
  ktx * (wbasaltx_NFkB + dLPS * t^3 * exp(-t) / 6 * wNFkBtx_NFkB * [NFkBn]) / (1 + dLPS * t^3 * exp(-t) 
/ 6 * wNFkBtx_NFkB * ([NFkBn] + wIL10tx_FBD * dIL10)) transcription:  0 → NFkBm 

- kdeg_NFkBm * [NFkBm] degradation:  NFkBm → 0 

ẋ10 

  ktl * [NFkBm] translation:     0 → NFkBc 

- kimport_NFkBc * [NFkBc] import:           NFkBc → NFkBn 

+ kexport_NFkBn * [NFkBn] export:           NFkBn → NFkBc 

- kassoc_NFkB_IkB * [NFkBc] * [IkBc] association:   NFkBc + IkBc → NFkB-IkBc 

- kassoc_IkBIKKc_NFkBc * [NFkBc] * [IKK_IkB] association:   IkB-IKKc + NFkBc → NFkB-IkB-IKKc 

+ kdeg_NFkBIkBIKKc * [NFkB_IKK_IkB] degradation:  NFkB-IkB-IKKc → IKK* + NFkBc 

- kdeg_NFkB * [NFkBc] degradation:  NFkBc → 0 

ẋ11 

  kimport_NFkBc * [NFkBc] import:           NFkBc → NFkBn 

- kexport_NFkBn * [NFkBn] export:           NFkBn → NFkBc 

- kassoc_NFKB_IkB * [NFkBn] * [IkBn] association:   NFkBn + IkBn → NFkB-IkBn 

- kdeg_NFkB * [NFkBn] degradation:  NFkBc → 0 

ẋ12 
  ktx * wNFkBtx_IkB * ([NFkBn]) / (1 + wNFkBtx_IkB * [NFkBn]) transcription:  0 -> IkBm 

- kdeg_IkBm * [IkBm] degradation:  IkBm -> 0 

ẋ13 

  ktl * [IkBm] translation:     IkBm → IkBc 

- kimport_IkBc * [IkBc] import:           IkBc → IkBn 

+ kexport_IkBn * [IkBn] export:           IkBn → IkBc 

- kdeg_IkB * [IkBc] degradation:  IkBc → 0 

- kassoc_NFkB_IkB * [NFkBc] * [IkBc] association:   NFkBc + IkBc → NFkB-IkBc 
- kassoc_IKK_IkBc * [IKK*] * [IkBc] 
  

association:   IKK* + IkBc → IKK-IkBc 
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ẋ14 

  kimport_IkBc * [IkBc] import:           IkBc → IkBn 

- kexport_IkBn * [IkBn] export:           IkBn → IkBc 

- kdeg_IkB * [IkBn] degradation:  IkBn → 0 

- kassoc_NFKB_IkB * [NFkBn] * [IkBn] association:   NFkBn + IkBn → NFkB-IkBn 

ẋ15 
  kexport_NFkBIkBn * [NFkB_IkBn] export:           NFkB-IkBn → NFkB-IkBc 

+ kassoc_NFkB_IkB * [NFkBc] * [IkBc] association:   NFkBc + IkBc → NFkB-IkBc 

- kassoc_IKK_NFkBIkBc * [IKK*] * [NFkB_IkBc] association:   IKK* + NFkB-IkBc → NFkB-IKK-IkBc 

ẋ16 
- kexport_NFkBIkBn * [NFkB_IkBn] export:           NFkB-IkBn → NFkB-IkBc 

+ kassoc_NFKB_IkB * [NFkBn] * [IkBn] association:   NFkBn + IkBn → NFkB-IkBn 

ẋ17 
  kassoc_IKK_IkBc * [IKK*] * [IkBc] association:   IKK* + IkBc → IkB-IKKc 

- kassoc_IkBIKKc_NFkBc * [IKK_IkB] * [NFkBc] association:   IkB-IKKc + NFkBc → NFkB-IkB-IKKc 

ẋ18 
  kassoc_IKK_NFkBIkBc * [IKK*] * [NFkB_IkBc] association:    NFkB-IkBc + IKK* → NFkB-IkB-IKKc 

+ kassoc_IkBIKKc_NFkBc * [NFkBc] * [IKK_IkB] association:    IkB-IKKc + NFkBc → NFkB-IkB-IKKc 

- kdeg_NFkBIkBIKKc * [NFkB_IKK_IkB] degradation:   NFkB-IkB-IKKc → IKK* + NFkBc 

ẋ19 - (1 - dIL10) * taustabilize * [Stabilizing_regulation] * 1 / (1 + tauIKKK * max(0, [IKKK*] - cstabilize)) time-dependent function 

ẋ20   1 - (1 - dIL10) * (1 - 1 / (1 + exp(-(t - taudestabilize)))) time-dependent function 

ẋ21 
  dLPS * (ktx * wNFkBtx_Tnf * [NFkBn] / (1 + wNFkBtx_Tnf * [NFkBn])) * (1 - dIL10 * (1 - (1 - max(t - 
tauIL10_1, 0) / (tauIL10_2 - tauIL10_1)) * (1 - 1 / (1 + exp(-99 * (t - tauIL10_2))))))) 

transcription: 0 → mCherrym; delayed effect of IL-10 
pre-treatment 

- kdeg_mCherrym * [mCherrym] degradation: mCherrym → 0 

ẋ22 
  ktl * [mCherrym] translation:    0 → mCherry 

- kdeg_mCherry * [mCherry] degradation: mCherry → 0 

ẋ23 
  kmature * [mCherry] maturation:   mCherry → mCherryf 

- kdeg_mCherry * [mCherryf] degradation: mCherryf → 0 

ẋ24 

  dLPS * (ktx * wNFkBtx_Tnf * [NFkBn] / (1 + wNFkBtx_Tnf * [NFkBn])) * (1 - dIL10 * (1 - (1 -  max(t - 
tauIL10_1, 0) / (tauIL10_2 - tauIL10_1)) * (1 - 1 / (1 + exp(-99 * (t - tauIL10_2))))))) 

transcription: 0 → TNFm; delayed effect of IL-10 
pre-treatment 

- kdeg_Tnfm * [Tnfm] * (1 / (1 + wstabilize * [Stabilizing_regulation]) + (wmaxdestabilize - 1) * 
wdestabilize * [Destabilizing_regulation] / (1 + wdestabilize * [Destabilizing_regulation])) degradation: TNFm → 0 

ẋ25 

  ktl * [Tnfm] * ((1 + wdestabilize * [Destabilizing_regulation]) / (1 + wmaxdestabilize * wdestabilize * 
[Destabilizing_regulation])) translation:   0 → TNF 

- ksecretion * [TNF] * (1 - (1 + exp(-99 * (t - tauBFA)))^-1) secretion:     TNF → TNFpool 
- kdeg_TNF * [TNF] degradation: TNF → 0 

ẋEC1 
 (r1 / (1 + exp(-r2 * (t - taudensity)))) * (1 - (1 + exp(-99 * (t - tauBFA)))^-1) * ksecretion * 
SUM([TNF]) secretion:     TNF → TNFpool 

- kdeg_TNFpool * [TNFpool] degradation: TNFpool → 0 

ẋEC2 - kdegLPS * [LPS] degradation: LPS → 0 
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APPENDIX 3. Modeling gene expression heterogeneity 

 

 

The original methodology for this appendix was described and published in: 

 

Hartfield R.M.*, Schwarz K.A.*, Muldoon J.J.*, Bagheri N., Leonard J.N. Multiplexing engineered receptors 

for multiparametric evaluation of environmental ligands. ACS Synthetic Biology 6, 2042–2055 (2017).54 

*Equal contributions 

 

refined and published in: 

 

Donahue P.S., Draut J.W.*, Muldoon J.J.*, Edelstein H.I.*, Bagheri N., Leonard J.N. The COMET toolkit for 

composing customizable genetic programs in mammalian cells. Nat Commun 7, 779 (2020).129 *Equal 

contributions 

 

and modified and is in preparation as: 

 

Muldoon J.J., Kandula V., Hong M., Donahue P.S., Boucher J.D., Bagheri N., Leonard J.N. Design-driven 

engineering of mammalian genetic programs. In preparation.161 
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 Overview: In developing models to investigate genetic programs, I account for two phenomena: 

cell heterogeneity using a statistical model (Figure A3.1), and gene regulation using a dynamical model. 

 Statistical model: Heterogeneity is represented by simulating genetic programs in a way that 

resembles their outcomes in cells, which vary in the expression of the components. The in silico population 

(Z) is an N x P matrix, where N is the number of cells (n = 1:N, for N = 200) and P is the number of plasmids 

(p = 1:P). Components that are encoded on separate plasmids are assigned separate columns. For 

example, the ZF1a gene is assigned one column and the reporter gene is assigned another column. Z is 

generated using the constrained sampling method253 using the following steps. 

1. Specify parameters for the target marginal distribution of gene expression. Based on flow cytometry 

measurements of constitutively expressed fluorescent proteins from co-transfected plasmids (and FACS 

buffer-based harvest in flow cytometry preparation), the characteristic distribution for each protein was log-

bimodal Gaussian, described by the parameters μ1 = 1.95, σ1 = 0.3, μ2 = 3.4, and σ2 = 0.6 a.u. on a log10-

scaled axis253. (Different parameters are used for trypsin-based harvest161.) 

2. Specify a target correlation coefficient to model gene expression from co-transfected plasmids. A 

Pearson correlation of r = 0.8 was used based on observed correlations. 

3. Based on the target correlation, specify a lower bound and upper bound of acceptable values. Values 

should be chosen that are close to the target, such as 0.765 and 0.835. 

4. Generate a joint distribution using the parameters for the marginal distribution and the target 

correlation coefficient. This output is a candidate N x P matrix for population variation. Distributions can be 

generated using the multivariate normal random number generator in MATLAB. 

5. Compute the correlation coefficient matrix (P x P). 

6. While any non-diagonal entries in the correlation coefficient matrix are outside of the range of 

acceptable values specified in step 3, repeat steps 4 and 5. (The time required to run this step greatly 

increases with the value of P.) 

7. For the accepted matrix, normalize the values in each column to a mean of one to obtain the 

population matrix Z. It is useful to plot the generated distributions and correlations to confirm resemblance 

to the target outcomes. 
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Implementation: Dynamical models are run in a for-loop for each cell in a simulated population, 

and mean end-point simulated reporter protein level is calculated. Some figures use a single-cell 

(homogeneous) model; these cases forgo the heterogeneity for-loop and instead correspond to the mean-

transfected cell, which is a scenario for the average protein expression from each transfected plasmid. 

Each row (cell) and column (plasmid) in Z is a scalar for the relative expression of a gene. The z 

value is used as a multiplier on the production term for each RNA species in dynamical models. 

𝑧u,� · 𝑘Y| · 𝐒𝐩𝐞𝐜𝐢𝐞𝐬𝐑𝐍𝐀 (A3.1) 

 

 
 
Figure A3.1. Distribution of gene expression in a population. A statistical model matching observed 
variation in gene expression was used to simulate heterogeneous cell populations. The flow cytometric 
distributions (collected in the same experiment) show EBFP2 signal and EYFP signal after gating on 
EBFP2-expressing (transfected) cells. The genetic programs study uses a trypsin harvest, and the MESA 
multiplexing study and COMET study use a FACS buffer harvest. The right panels show unit-normalized 
simulated distributions of gene expression and simulated correlations for co-expressed genes on 
transfected plasmids, all based on the generated population matrix for a trypsin harvest. Relative 
expression from each simulated plasmid species is similarly distributed across cells (upper right), and 
expression across plasmid species is similarly correlated (r ~ 0.8) within cells (lower right).   
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APPENDIX 4. Multiplexing receptors 

 

 

A version of this appendix was previously published as: 

 

Hartfield R.M.*, Schwarz K.A.*, Muldoon J.J.*, Bagheri N., Leonard J.N. Multiplexing engineered receptors 

for multiparametric evaluation of environmental ligands. ACS Synthetic Biology 6, 2042–2055 (2017).54 
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 Summary: In this study, we investigated whether MESA receptors could be multiplexed. My 

colleagues developed hybrid promoters that exhibited AND gate activation by two TFs (tTA and Gal4) and 

evaluated these promoters when paired with receptors. The multiplexed system responded differently to 

cues applied individually and in combination, but the same synergy was not observed as when the 

promoters were characterized with soluble TFs. To improve our understanding of how these genetic 

components interface, I developed a mechanistic model incorporating the experimental observations. The 

analysis highlighted key factors that affect the receptors and promoters and enabled an in silico exploration 

of potential modifications towards improved performance. The methods and conclusions that I arrived at 

through this study represent an important precursor to several subsequent investigations129,161,198. 

 Background: Engineered receptors have proven useful for building cell functions. For example, 

using chimeric antigen receptors (CARs), which induce signaling downstream of the T cell receptor, 

multiplexing strategies have been developed to achieve NOT logic as a safety switch254, or AND logic255 to 

reduce off-target activation. Layered AND logic cascades have also been used for activation precision256. 

Other non-receptor Boolean logic strategies include using multilayer transcriptional cascades257-260, hybrid 

promoters with multiple TF binding sites261,262, post-transcriptional or post-translational regulation141,186,263, 

DNA recombinases264-266, or distributing tasks across cells267,268. Computational approaches have proven 

important for identifying effective designs, through case-by-case studies269,270 and tools for automated 

design153,262,270. Going forward, receptors that perform logical operations could support numerous 

applications271, and these innovations may be facilitated by integrating experimental and computational 

methods. Towards this goal, we investigated how and whether two MESA receptors could be multiplexed 

with their outputs converging at the same promoter. 

 Experimental investigation: As a strategy for multiplexing, my colleagues investigated a single-

layer transcriptional gate (Figure A4.1) by designing promoters that could be activated by two TFs (tTA 

and Gal4) that can drive transcription from reporter constructs comprising 5–7 repeated DNA motifs (TetO 

and UAS, respectively) upstream of a minimal promoter. The hypothesis was that since multiple TF 

molecules must be recruited to induce transcription132,272, some hybrid promoters containing both TetO and 

UAS sequences in certain patterns might exhibit AND logic by requiring the recruitment of both tTA and 

Gal4. As hypothesized, several of the promoters exhibited AND gate behavior when tested with and without 
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each TF co-transfected in HEK293FT cells. Two of these promoters (named H1 and H2) were carried 

forward and evaluated with: the two TFs at varied doses; one of two receptors (for sensing VEGF197 and 

releasing tTA, and for sensing rapamycin167 and releasing Gal4) at varied TC and PC doses and the soluble 

TF for the other receptor, and the reciprocal case, with and without ligand treatment; and both receptors 

with and without ligand treatment. 

 Ideal genetic circuit performance requires the output of upstream components to match the input 

requirements of downstream components273. We reasoned that this level-matching requires that the 

amounts of TFs released from receptor signaling match the amounts required for synergistic activation of 

the hybrid promoter. However, the results showed a lack of AND gate behavior when receptors were used 

in place of soluble TFs, suggesting that receptor signaling was insufficient to match promoter requirements. 

We hypothesized that modifications to receptor dosing could potentially improve outcomes. Given the large 

space of choices involved, and the challenge of gaining systematic understanding from empirical tuning 

alone, I next developed a computational model to facilitate interpretation of these observations, elucidate 

factors that affect receptor and hybrid promoter performance, and potentially identify an improved setup. 

 Model-guided characterization: Guiding our next approach was a key observation that only a 

small percentage of cells exhibited distinguishable promoter activation (were ON) with both TFs compared 

to with reporter alone. As a result, mean reporter expression was generally much greater for the ON 

subpopulation than for the whole population. The percentage of ON cells also generally varied with setup: 

experiments with two soluble TFs and the reporter (three components on three plasmids) had percentages 

that correlated with TF plasmid doses and reached about 20% at the highest doses; experiments with one 

Figure A4.1 Multiplexed receptors and hybrid promoter implementation. a In the proposed 
strategy, two receptors each ligand-inducibly release a TF that enters the nucleus. b Hybrid promoters 
are regulated by both TF1 and TF2, and contain TetO (red) and UAS (blue) sites in different 
configurations (shown and evaluated in the published study). Single-TF promoters are illustrated for 
comparison. 
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receptor, one soluble TF, and the reporter (four components on four plasmids) and with two receptors and 

the reporter (five components on five plasmids) had successively lower percentages that still correlated 

with plasmid doses. I hypothesized that small ON percentages might arise from two types of intercellular 

variation: (i) each cell might receive a different number of molecules of each plasmid, which could restrict 

level-matching to a subset of cells, and/or (ii) cells might exhibit differences in transcription rate, translation 

rate, and/or transfection efficiency (the efficiency with which a plasmid, once taken up, enters the nucleus 

and becomes transcription-competent), which comprise sources of variation that are distinct from the 

amounts of plasmids received. Although these two types of variation cannot be readily distinguished in the 

data, we can treat them as together determining the effective initial conditions for the dose-dependent 

amount of each transfected gene that each cell can express. Based on these principles, I developed a 

model to investigate the effects of intercellular variation, and incorporated the combined effects of these 

two types of intercellular variation by assigning different amounts of each plasmid to each cell. 

 Heterogeneity is represented by modeling a population of cells in which key metrics of variability 

match those observed in experiments. I developed a method to generate in silico populations with the 

statistical features observed in a cotransfection experiment, for any specified number of plasmids (Figure 

A4.2a, Appendix 3); this representation is consistent with a recent analysis of how gene expression can 

be distributed in a cell population53. From the in silico population, we can interrogate individual cells or 

calculate population-level metrics, such as mean reporter expression. From a principal component analysis 

(PCA), the first principal component explained 84–90% of the variation (depending on the number of 

cotransfected plasmids, from five to two, respectively) and corresponded to an axis along which plasmid 

amounts vary but their ratio is constant. Thus, in a cotransfection with equal amounts of two plasmids A 

and B, most cells will express similar amounts of each. Some cells will express more of plasmid A than 

plasmid B, or vice versa, which explains the remaining variation. 

 This result predicts that consolidating the genes encoding receptor chains and hybrid promoters 

onto fewer plasmids would not substantially affect intercellular variation or increase the percentage of ON 

cells. However, the system is sensitive to the number of different components. We consider the following 

idea: for a system of n different components, there exists an n-dimensional space that represents the 

amount of each component expressed per cell. In an experiment, each cell occupies a coordinate in this 
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space. There also exists in this space a functional region, which might be unknown a priori, corresponding 

to various combinations of amounts of each component that yield desirable ligand-inducible promoter 

activation, quantified by F.D. As n increases, such as by replacing one soluble TF for the two receptor 

chains, it is possible that the overlap in space between the functional region and the region occupied by a 

cell population will change. From this perspective, one way to frame the goal of implementing an engineered 

function that is robust to intercellular variation is to choose component doses (and system designs) that 

yield high overlap between the functional region and the region that is populated by cells. We define the 

Figure A4.2. A model that accounts for cell variation to explain heterogeneous promoter 
activity. a A statistical model was formulated and trained on data to account for intercellular variation. 
The marginal distribution was modeled by a Gaussian mixture model. The resulting population exhibits 
the expected covariance between plasmids (inferred from constitutive expression of fluorescent 
proteins). PCA identified two sources of variability: the major contributor is inherent variation, and the 
minor contributor is variation due to cotransfection of multiple plasmids. The Pearson correlation 
coefficient (r) in the cross-section is 0.8 on a linear scale and 0.9 on a log10 scale. b A dynamical model 
for TF expression and hybrid promoter activity was formulated and trained on mean average data for 
various tTA and Gal4 plasmid dose combinations. c The promoter model maps from a three-
dimensional plasmid transfection distribution onto a one-dimensional reporter expression distribution. 
The distributions depict the reporter expression for hybrid promoters H1 and H2, when quantified for 
the population mean and the mean-transfected cell.  
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robustness of a system as the extent to which a performance metric (e.g., F.D.) is maintained as doses are 

varied. As robustness increases, more cells in a population exhibit the desired function. Robustness is 

therefore distinct from performance, which is the F.D. as calculated for a single cell in principle or as 

measured for a population mean average in practice. Having established a statistical and conceptual model 

for intercellular variation, I next addressed the mechanisms by which this system operates. 

 I started by developing a model for the hybrid promoters H1 and H2. For each promoter, inducible 

transcription was formulated as fractional activation f: 

𝑓 =
𝑤¤ ⋅ 𝐭𝐓𝐀	 +	𝑤¨ ⋅ 𝐆𝐚𝐥𝟒	 +	𝑤¤ ⋅ 𝑤¨ ⋅ 𝜌 ⋅ 𝐭𝐓𝐀 ⋅ 𝐆𝐚𝐥𝟒

1 + 𝑤¤ ⋅ 𝐭𝐓𝐀	 +	𝑤¨ ⋅ 𝐆𝐚𝐥𝟒	 +	𝑤¤ ⋅ 𝑤¨ ⋅ 𝜌 ⋅ 𝐭𝐓𝐀 ⋅ 𝐆𝐚𝐥𝟒
 (A4.1) 

Parameters wT and wG are responsiveness to tTA and Gal4, respectively; ρ is synergy; and tTA and Gal4 

are simulated protein levels. Populations were initialized using the intercellular variation model, and 

parameters were fit to data (equations and parameter values are in the published study). The fitted values 

indicate that between the promoters, H1 is more responsive and H2 is more synergistic. H1 is 29x more 

responsive to Gal4 than tTA, H2 is 33x more responsive to Gal4 than tTA, the tTA response is 6.3x greater 

for H1 than H2, the Gal4 response is 5.5x greater for H1 than H2, and synergy is 21x greater for H2 than 

H1. Notably, although the calibration utilized only the mean reporter measurements, the model predicted 

trends in the observed heterogeneity, including for the fraction of ON cells and the mean reporter expression 

in this subpopulation (Figure A4.2b). These predictions validate our approach for describing intercellular 

variation and how variation affects system performance.  

 An important feature of the dose response landscapes was that the mean reporter expression was 

consistently greater than the reporter expression for a cell receiving the mean amount of each plasmid, i.e., 

the mean-transfected cell (Figure A4.2c). Cells that received greater than average plasmid amounts had 

even greater than average reporter expression, and reporter distributions were right-skewed. An implication 

is that the experimental characterization was in part driven by outlier cells that received high amounts of 

plasmids in each condition. Since characterization of not only the hybrid promoters, but also other genetic 

circuits, could be driven by outlier cells, we posit that a model-guided investigation of single-cell outcomes 

in which intercellular variation is represented explicitly might improve the interpretation of experimental 

results. Indeed, similar ideas have been used in characterizing other engineered genetic circuits274,275. 
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 Elucidating properties of multiplexed receptor performance: A model for multiplexed MESA 

signaling was formulated at a level of granularity that includes interactions for various receptor complexes 

(Figure A4.3a). Key features based on prior knowledge, including receptor-ligand interactions and findings  

 

Figure A4.3. A dynamical model that links receptor signaling to promoter activity. a The 
illustration summarizes the 28 types of receptor reactions, which are grouped into nine categories 
(named) and four modalities (boxed). Reactions that occur for both MESA (Rap-MESA and VEGF-
MESA) are bolded, categories that release a soluble TF are highlighted (yellow arrow), and the 
modality for canonical ligand-induced signaling is highlighted (yellow box). For the four modalities: (i) 
background signaling is the only one that occurs without ligand, (ii) ligand-binding and dimerization 
involve ligand but do not directly result in signaling, (iii) dimerization signaling is the canonical pathway, 
and (iv) the remaining categories involve, but are not directly mediated by, the ligand and are subject 
to crosstalk. b Data that were used to determine F.D. are compared to simulated outcomes for VEGF-
MESA, soluble Gal4, and promoter H1, with and without VEGF treatment. Experimental data (originally 
in MFI) were linearly scaled to enable a more direct visual comparison with simulations. c Timecourse 
H1 reporter trajectories across TC and PC doses are shown for the mean-transfected cell with and 
without each ligand treatment (V, VEGF; R, Rap; VR, VEGF and Rap). In the left panel, VEGF-MESA 
doses are varied while Rap-MESA dose is constant, and in the right panel, Rap-MESA doses are 
varied while VEGF-MESA dose is constant. Simulations are grouped into five outcome cases 
(represent by box shading and outline color) based on the rank-ordered expression with each ligand 
treatment. d Three cases from c are examined in more detail. The left panel shows the absolute 
reporter expression, and the right panel shows ligand-induced reporter expression after the 
background (without ligand) is subtracted, to illustrate the additive ligand-induced response to these 
ligands. There is a trade-off for two-ligand-induced signaling, in which adjustments to the MESA 
plasmid dose that increase the F.D. for one ligand also decrease F.D. for the other ligand.  
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Figure A4.4. Level-matching between receptor signaling and the promoter. a Level-matching is 
depicted by yo-yo plots, which represent the trajectories of free TF and reporter variables without a 
time axis. Reporter expression across the timecourse (the string) and at the circled end point (the yo-
yo, corresponding to the time of measurement) is color-coded. Each profile begins at the origin, 
proceeds through state space depending on plasmid doses and treatment with either, both, or no 
ligand, and ends at the circled coordinate. b Outcomes for each ligand treatment are shown for varied 
plasmid doses in three scenarios: (1) two soluble TFs, (2) one soluble TF and one receptor, and (3) 
two receptors. TFs are in comparable arbitrary units, and reporter expression is color-coded by 
reporter-specific a.u. Profiles in which the circled coordinate differs from the maximum coordinate 
along an axis indicate that the trajectory of the corresponding TF peaks and decreases during the 
timecourse. Diagonal lines indicate that the trajectories of both TFs are changing proportionately, 
curved lines indicate that both are changing and in a way that is not proportional, and vertical and 
horizontal lines indicate that one is changing while the other has reached a steady state. In the second 
scenario, only the TF released from MESA (and not the soluble TF) is plotted, and a slight downward 
curvature for the 36 h timecourse is shown for clarity. In the third scenario, ideal level-matching for 
AND gate functionality would be conferred by TF trajectories that lead to much higher reporter 
expression with both ligands compared to either or no ligand. In such a scenario, the upper-right yo-
yo would be the only one of the four that is able to access the synergistic regime of the hybrid promoter.  
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from previous MESA studies167,197, are: receptors are synthesized intracellularly, exocytosed to the cell  

surface, and degrade from both compartments; rapamycin ligand can diffuse intracellularly, but VEGF 

ligand cannot; VEGF-MESA can heterodimerize or homodimerize, and Rap-MESA can heterodimerize but 

not homodimerize; crosstalk in non-ligand mediated signaling is possible, because both receptors use the 

same PC protease and TC cleavage recognition sequence; and chains that recognize the same ligand can 

form stable dimers, but chains that recognize different ligands cannot. Calibration of this model to data 

provided estimates for the synthesis of receptors (relative to soluble proteins), background signaling, 

receptor degradation, ligand-binding to each receptor, and stable chain dimerization. The equations and 

parameter values are in the published study. 

 The model formulation makes relatively few assumptions and avoids overfitting peaks and valleys 

that deviate from the main observed trends. By smoothening (or discounting) individual outlier data points, 

such an analysis improves the overall interpretability of the dose-response landscape. When comparing 

observed vs. simulated ligand-inducible VEGF-MESA signaling in the presence of excess Gal4, the 

simulations were consistent with observed trends (Figure A4.3b). For a soluble TF and a MESA receptor 

(TC and PC) transfected at the same plasmid dose, the TF tended to contribute more to promoter activity. 

A model-guided interpretation for this outcome is that (i) rapid production of soluble TFs (relative to 

receptors) offsets rapid degradation, leading to high accumulation, and (ii) for the receptors, not all TCs are 

cleaved following ligand treatment. We next analyzed multiplexed receptors at different plasmid doses, and 

in doing so identified a trade-off: tuning receptor levels to increase the difference in two-ligand-induced 

reporter expression with respect to one ligand led to a decrease in the difference with respect to the other 

ligand. To highlight this effect, we grouped reporter trajectories into different outcome cases (Figure A4.3c). 

Examining three examples in more detail (Figure 4.3d) shows that across different receptor doses, reporter 

expression was additive: the two-ligand-induced increase in reporter expression above background 

equaled the sum of both single-ligand induced increases above background. The additivity indicates that 

promoter activity had a linear dependence on the TFs, rather than the synergy that would be expected for 

the AND gate promoters based upon characterizations with soluble TFs. These findings support the 

conclusion that the amounts of TFs released from receptors were below the amounts required to access 

promoter synergy, so the system exhibited an additive rather than synergistic response to ligands. 
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 To better understand how multiplexed receptors interface with the hybrid promoter, we investigated 

the role of level-matching, i.e., the relationship between the amounts of TFs that are released by receptors 

under different ligand treatments, and the amounts that are required to activate promoter synergy only when 

both ligands are sensed. This relationship is challenging to observe directly, yet it is also key for explaining 

multiplexed receptor performance. Since nonlinear TF profiles from ligand-induced signaling depend on 

more components and are more complex than their linear counterparts from experiments with soluble TFs, 

we could not visualize level-matching with a dose-response landscape as in Figure A4.2b. Therefore, I 

opted to introduce a representation termed yo-yo plots, in which timecourse TF trajectories with various 

ligand combinations are represented without a time axis, and reporter expression across the timecourse 

(the string) and at the endpoint (the yo-yo) is color-coded (Figure A4.4a). Using this approach, I examined 

how free TFs were released over time under conditions in level-matching experiments (Figure A4.4b). The 

analysis confirmed the expectation that mean reporter outcomes were driven by outliers. Furthermore, it 

showed how outlier effects became magnified as each soluble TF was replaced by the two receptor chains. 

Across experiments, reporter expression for the population mean was consistently greater than for the 

mean-transfected cell, which poses a challenge to achieving level-matching by simply tuning component 

doses. Moreover, these analyses confirmed that across the MESA doses evaluated in experiments, the 

amounts of TFs released by receptors were below the levels required to induce synergistic activation of the 

H1 promoter. This case study illustrates how model-guided analysis of combined sensor and processor 

modules can identify quantitative properties that benefit and that limit system performance. This approach 

may also be inverted to guide the selection of components with properties that achieve performance goals. 

 Strategies to improve AND gate functionality: Given the bounds on AND gate performance, I 

examined whether alternative promoter and receptor properties could better achieve performance goals. In 

this prospective analysis, I considered parameter values that could reasonably be implemented, even if it 

is not yet possible to predict specific physical modifications that would result in specific new parameter 

values. One benefit of using a mechanistic model, compared to a more abstract formalism, is that the 

parameters do ultimately correspond to physical features that in future investigations could be tuned. For 

example, background signaling could be decreased by mutating the protease active site, protease cleavage 
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sequence, or transmembrane domain, or ligand binding could be modulated by mutating or replacing the 

ECD. Thus, an analysis of potentially realizable scenarios could guide subsequent investigations. 

 H1 served as a base case (promoter #1) for hypothetical promoters that vary in responsiveness to 

each TF and/or in synergy (Figure A4.5a). Properties of promoters (cases #3–9) are reported relative to 

promoter #2 (H1=), in which tTA responsiveness was set equal to Gal4 responsiveness. For a controlled 

comparison between promoters #3–9, I chose transcriptional weights that yielded dose-response 

landscapes that differ from the base case but resemble each other’s maximal activity within the range of 

TF doses examined (Figure A4.5b). This range more closely matches the inferred range of TFs released 

from signaling (Figure A4.4), and synergistic activation for the new promoters occurs within this range. 

 To assess how each promoter affects MESA multiplexing, independent of a single-dose-specific 

implementations, I conducted a four-dimensional sweep of receptor doses. The outcome for the mean-

transfected cell from each population is presented as one data point in the plot for each promoter (Figure 

A4.5c). F.D. for the two-ligand case relative to each one-ligand case is indicated by the position along the 

horizontal and vertical axes, and F.D. for the two-ligand case relative to the no-ligand case is color-coded. 

Perimeters define the performance bounds of the promoters, and the most ideal AND behavior is realized 

in the upper-right, where the two-ligand F.D. is greater than each one-ligand F.D. and the trade-off with 

respect to each ligand (described in Figure A4.4d) has been balanced. For each case, a selected ideal 

outcome is denoted by a box. As was observed with the soluble TF sweeps, simply setting the 

responsiveness of each TF to be the same (#2) conferred minimal changes. However, large improvements 

in AND functionality were realized by increasing promoter synergy either alone (#6) or in combination with 

TF responsiveness (#7-9). To interpret the selected ideal F.D. outcomes in Figure A4.5c, I examined 

reporter expression (Figure A4.5d). Compared to promoter #1, reporter expression with different ligand 

treatments increased by ~50x with promoter #2, and by up to another order of magnitude with promoters 

#3–9. However, improved AND gate functionality did not necessarily follow from changes that conferred 

the largest increases in expression (e.g., promoter #4). Rather, improvements arose from the largest 

difference in increased expression between the two-ligand case and one-ligand cases (e.g., promoter #6). 

 To evaluate the effects of intercellular variation, I calculated F.D. across a range of amounts of total 

plasmid received by transfected cells (Figure A4.5e). The maximum F.D. for each promoter was achieved   
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Figure A4.5. Promoter engineering to improve performance. a Hypothetical promoters that vary in 
responsiveness to each TF and/or in synergy were simulated. Multipliers for transcriptional weight 
parameters in cases #3−9 are in comparison to case #2, in which tTA responsiveness is set equal to 
Gal4 responsiveness. Case #2 is a responsiveness-balanced version of H1 (base case, #1). b 
Promoters were characterized by reporter expression for the population mean and the mean-
transfected cell, using doses of soluble TFs that match the inferred range of TFs released in MESA 
signaling. c Multiplexed MESA performance was assessed by a sweep of 1,000 receptor plasmid dose 
combinations (0 to 0.5 μg per plasmid), each of which is represented by a point. Plots show three 
performance metrics—two-ligand-induced F.D. calculated with respect to: (i) VEGF treatment (x-axis), 
(ii) rapamycin treatment (y-axis), and (iii) no ligand (color-coded). Metrics are calculated for the mean-
transfected cell. Better AND gates are realized towards the upper-right of each plot. All three metrics 
cannot be maximized simultaneously, as evidenced by the absence of outcomes in the upper-right 
corner, because choosing doses that maximize any one metric comes at the expense of decreasing 
one or both others. Therefore, the best AND gate requires each metric to be increased only to an 
extent, in a way that balances the trade-off with the others. A representative ideal instance for each 
case is indicated by a box and is examined further in d and e. The best promoter overall (#6) is outlined 
in yellow. d A comparison of reporter expression for instances identified by the boxes in c using the 
mean-transfected cell. e Effects of cell variation on the three metrics. X-axis numbers are multipliers 
for the relative amounts of plasmids received by cells (determined without the variance from the minor 
principal component that is due to cotransfection), such that a value of 1 is the mean-transfected cell. 
The multipliers 1/16, 1/4, 1, and 4 correspond to the 23rd, 45th, 62nd, and 85th percentiles, 
respectively, for plasmid transcription for cells in a population, as determined from the intercellular 
variation model. Each line represents the F.D. from simulations of increasing plasmid dose, from left 
to right. Greater robustness to intercellular variation (in context of the specific plasmid doses for each 
case) is indicated by increase in F.D. across a wider range of x-axis values.  
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by a subpopulation, and the location of this window differed between promoters. Interestingly, while the 

base case was the lowest performing, it was the most robust to variation in plasmid dose, with a relatively 

flat profile. Promoters #3–9 exhibited distinct maxima for F.D. at specific plasmid doses and exceeded the 

maximum F.D. of promoter #1, indicating that for these hypothetical promoters, obtaining transfected cells 

with intermediate amounts of plasmids (given the specified dose) would confer maximal performance. 

Alternatively, any strategy that reduces intercellular variation in expression levels, perhaps such as genomic 

integration of MESA expression constructs, could improve the performance of such promoters, although 

this appears to be less promising for H1. Altogether, this analysis provides new insights into how future 

promoters may be designed, evaluated, and utilized with receptors. 

 I next investigated how MESA may be modified to tune performance in multiplexing applications. 

Mirroring the approach for exploring promoter variations, hypothetical modifications to receptor kinetics and 

design were introduced individually and in combination in silico to generate a panel of distinct cases (Figure 

Figure A4.6. Receptor engineering to improve performance. a Hypothetical modifications to MESA 
receptor kinetics and design features were produced in silico in reference to the base case (#1). Cases 
#2−5 are modifications to #1, and #6−9 are combinations of the modifications in #3−5. b Multiplexing 
was assessed and plotted as described Figure A4.5. Outcomes are shown for two promoters: base 
case (promoter #1, upper row) and a high-performing promoter from Figure A4.5 (promoter #6, lower 
row). For promoter #6, a representative ideal instance for each receptor modification is indicated by a 
box and is examined further in c and d. The best receptor overall (#9) is outlined in yellow.  
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A4.6a). For each case, system performance was compared to the base case, comprising the existing 

receptor, which was paired with either the base case promoter (promoter #1) or the best hypothetical 

promoter from Figure A4.5 (promoter #6) (Figure A4.6b). Although making changes to the receptor while 

retaining the base case promoter had little impact on performance, larger improvements were possible with 

promoter #6. The greatest effects were conferred when multiple modifications were implemented together: 

orthogonal cleavage recognition sequences, slower basal cleavage, and faster ligand-induced receptor 

dimerization (receptor case #9). Examining the reporter expression shows how each modification affected 

F.D. (Figure A4.6c). Importantly, not all intuitively attractive changes improved system performance, and 

so this analysis helps identify promising strategies. For example, decreasing the receptor degradation rate 

in receptor case #2 could increase the amount of TF that can be released, but this increases the background 

and one-ligand expression more than it increases two-ligand expression. In contrast, modifications such as 

receptor cases #6 and #9 increase the two-ligand induced signaling while maintaining or driving down 

background. That is, the amounts of TFs released when both ligands are sensed can activate the new 

promoter synergistically, whereas TF levels in the presence of neither or only one ligand drive much less 

promoter activation. We also found that although engineering both the promoter and receptors in 

combination still resulted in a scenario in which maximal F.D. was observed within windows of plasmid dose 

(Figure A4.6d), AND behavior remained robust across about an order of magnitude in cell variation, 

representing a large subpopulation. These results help to identify potential strategies that could be explored 

for engineering receptors and promoters to achieve level-matching. The model developed in this study 

could be similarly utilized to prospectively evaluate the future use and design of MESA for other cell 

functions. More broadly, this approach highlights the utility of quantitative analyses that capture intercellular 

variation to guide the design of engineered systems that confer desired performance objectives. 

 Discussion: We investigated how MESA receptors can be multiplexed. AND gate logic served as 

a useful test case for level-matching with a downstream promoter. We anticipate that other types of logic 

may be achieved using a similar approach, other engineered systems may exhibit similar phenomenology, 

and the construction of such functions may be realized by using in silico analysis to examine the system 

components and constraints and to guide design choices. Furthermore, other logical programs might have 

less stringent requirements for design criteria. For example, an OR gate in which each MESA releases the 
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same TF to induce a single-TF promoter could require less tuning. Since the output of each receptor can 

in principle be exchanged, our results suggest that other regulators such as ZF-TFs143 or dCas9-based 

TFs276,277 could also be used in receptor multiplexing to program mammalian cell functions. 

Acknowledgements: I thank Rachel Hartfield and Kelly Sarnese for collaboration on this study. 
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APPENDIX 5. Model equations for transcription factors 
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Gene regulation is represented using a system of ODEs. The example below depicts a 

constitutively expressed ZFa inducing the expression of a reporter. Transcription of ZFa RNA scales linearly 

with plasmid dose. Transcription of reporter RNA depends on ZFa protein concentration via a response 

function f, which is described in subsequent sections. RNA degradation, protein translation, and protein 

degradation are represented as first-order processes. The k terms are fixed parameters that are either 

defined as equal to 1 unit or are based on a previous estimate: ktranscription = 1 arbitrary transcription unit, 

kdegRNA = 2.7 h–1 based on a previous study278, ktranslation = 1 arbitrary translation unit, kdegZFa = 0.35 h–1 based 

on another study279, and kdegReporter = 0.029 h–1 based on another study280. 

𝑑𝐙𝐅𝐚𝐑𝐍𝐀
𝑑𝑡 = 𝑘Yq�W4pqX�YXrW ⋅ 𝑑𝑜𝑠𝑒±7� − 𝑘UV�86C ⋅ 𝐙𝐅𝐚𝐑𝐍𝐀 

(A5.1) 

𝑑𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧
𝑑𝑡 = 𝑘Yq�W4��YXrW ⋅ 𝐙𝐅𝐚𝐑𝐍𝐀 − 𝑘UV�±7� ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧 (A5.2) 

𝑑𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐑𝐍𝐀
𝑑𝑡 = 𝑘Yq�W4pqX�YXrW ⋅ 𝑓(𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧) − 𝑘UV�86C ⋅ 𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐑𝐍𝐀 (A5.3) 

𝑑𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐏𝐫𝐨𝐭𝐞𝐢𝐧
𝑑𝑡 = 𝑘Yq�W4��YXrW ⋅ 𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐑𝐍𝐀 − 𝑘UV�8V�rqYVq ⋅ 𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐏𝐫𝐨𝐭𝐞𝐢𝐧 (A5.4) 

Although the rate constants for transcription and translation for both the ZFa and reporter are set 

equal to 1 unit, these processes differ in living cells. As a result, 1 unit of ZFa RNA can correspond to a 

different number of molecules in a living cell than 1 unit of reporter RNA, and likewise for 1 unit of each 

protein. However, importantly, 1 unit for a given species (e.g., reporter protein) can be treated as equivalent 

across simulation conditions (e.g., ZFa plasmid doses), and these are the comparisons of interest in our 

analysis. 

For a ZFa-inducible promoter, the response function f is defined as: 

𝑓 =
𝑏 +𝑚 ⋅ 𝑤 ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧
1 + 𝑤 ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧

 (A5.5) 

where b is a non-negative value for TF-independent (leaky or background) transcription; m is a unitless 

value for maximum activation (for ZF1a, m ≥ 1) that depends on the number and spacing of binding sites 

and the TF; and w is a positive value related to the steepness of the ZFa dose response. The ZFa variable 

refers to the simulated protein level—this is a function of plasmid dose, but is in distinct units from and is 

not equivalent to plasmid dose. 
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The parameter m describes the maximum transcription that a specific ZFa can drive at a promoter 

with a specific number and spacing of binding sites. An m value of 1 is defined for ZF1a with a x1 promoter. 

We found that values for m vary with the numbers of binding sites (BS). This relationship can be 

approximated by sigmoid functions as shown below for ZF1a. The max argument ensures that m does not 

go below 1 and that it increases monotonically with the number of binding sites. 

𝑚4��pVU = 𝑚𝑎𝑥 º
8.5

1 + 𝑒^*.¾¿(ÀÁ^Â.Ã) , 1Ä 
(A5.6) 

𝑚pr���pY = 𝑚𝑎𝑥 º
41

1 + 𝑒^*.Æ¿(ÀÁ^¾.Ã) , 1Ä 
(A5.7) 

For TFs that follow similar binding site-response behavior, sigmoids appear vertically stretched or 

squashed. This effect can be represented by changing the numerator value in the fraction for the m function. 

 Calibration: The model was implemented with modifications to RNA production terms to 

incorporate cell heterogeneity: 

𝑑𝐙𝐅𝐚𝐑𝐍𝐀
𝑑𝑡 = 𝑘Yq�W4pqX�YXrW ⋅ 𝑧u,�ÇÈÉ ⋅ 𝑑𝑜𝑠𝑒±7� − 𝑘UV�86C ⋅ 𝐙𝐅𝐚𝐑𝐍𝐀 (A5.8) 

𝑑𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧
𝑑𝑡 = 𝑘Yq�W4��YXrW ⋅ 𝐙𝐅𝐚𝐑𝐍𝐀 − 𝑘UV�±7� ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧 (A5.9) 

𝑑𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐑𝐍𝐀
𝑑𝑡 = 𝑘Yq�W4pqX�YXrW ⋅ 𝑧u,�ÊeËÌÍieÍ ⋅ 𝑓(𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧) − 𝑘UV�86C ⋅ 𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐑𝐍𝐀 (A5.10) 

𝑑𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐏𝐫𝐨𝐭𝐞𝐢𝐧
𝑑𝑡 = 𝑘Yq�W4��YXrW ⋅ 𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐑𝐍𝐀 − 𝑘UV�8V�rqYVq ⋅ 𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐏𝐫𝐨𝐭𝐞𝐢𝐧 (A5.11) 

where z denotes the intracellular and intercellular variation, using values for the ith cell and pth plasmid. The 

model was run by iterating through each cell in the population (over a 42 h simulated duration corresponding 

to a typical experimental duration), and the population mean was calculated. 

 In experiments from which data were used to estimate parameters, a ZF1a dose response (0, 5, 

10, 20, 50, 100, 200 ng plasmid) with a ZF1x6-C promoter-driven reporter (200 ng plasmid) was included 

as a fiducial marker for normalizing experiment-specific MEFLs to model-specific units that would be 

consistent across simulations. For each new ZFa, parameters can be estimated from dose response data 

using the following steps. First, data for the new ZFa are normalized to the within-experiment ZF1a series: 

to arrive at the m-equivalent units required for steps 2 and 3 below, divide the MEFL values for the new 

ZFa series by the mean of the MEFL values for the [5, 10, 20, 50, 100, 200] ng portion of the ZF1a series, 

and multiply by 22.4 (this value is determined from the ZF1a experiment in which m was originally defined). 
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Second, specify m for the new ZFa series using the maximum observed (or expected) reporter expression. 

Third, determine b from the data point for ZFa-independent reporter expression. Lastly, fit w by minimizing 

the sum of squares error between experimental data and simulated population means. The experimental 

series and simulated series should use the same ZFa plasmid doses, and they should be normalized 

equivalently such as by dividing by the mean reporter expression of the series. For cases of non-monotonic 

reporter expression, data points above the ZFa dose yielding maximum reporter expression should not be 

used to fit w, as the response function is intended to describe only the data from zero ZFa plasmid dose 

through the maximum reporter expression. 

 Standard models of transcription: Figure 3.2 compares the COMET model with standard models 

of transcription that use more parameters147. Fractional activation f by a TF (y) with promoter affinity w and 

Hill cooperativity n for TF-DNA binding, at a promoter that has one binding site, exhibits leaky transcription 

α0, and can be maximally activated by the TF to an amount α, is represented as: 

𝑓 =
𝑎* + 𝑎(𝑤𝐲)Ï

1 + (𝑤𝐲)Ï  
(A5.12) 

This formulation can be extended to other scenarios. For two TFs (y1 and y2) with respective 

maximal activation α1 and α2, a combined activation α12, and TF cooperativity ρ for RNAP recruitment, at a 

promoter with one site per TF, the formulation is: 

𝑓 =
𝑎* + 𝑎)(𝑤)𝐲𝟏)ÏÑ + 𝑎�(𝑤�𝐲𝟐)Ï` + 𝑎)�𝜌(𝑤)𝐲𝟏)ÏÑ(𝑤�𝐲𝟐)Ï`

1 + (𝑤)𝐲𝟏)ÏÑ + (𝑤�𝐲𝟐)Ï` + 𝜌(𝑤)𝐲𝟏)ÏÑ(𝑤�𝐲𝟐)Ï`
 

(A5.13) 

If in this scenario both TFs are the same (one TF species can bind up to two sites), and additionally 

if maximal activation is 100% (α = 1), this simplifies to: 

𝑓 =
𝑎* + 2(𝑤𝐲)Ï + 𝜌(𝑤𝐲)�Ï

1 + 2(𝑤𝐲)Ï + 𝜌(𝑤𝐲)�Ï  
(A5.14) 

In a scenario without Hill cooperativity for TF-DNA binding (n = 1) and without TF cooperativity (ρ = 1), this 

further simplifies to: 

𝑓 =
𝑎* + 2𝑤𝐲 + (𝑤𝐲)�

1 + 2𝑤𝐲 + (𝑤𝐲)�  
(A5.15) 

We extend the above case to any number of binding sites. Adding sites could affect ρ for each term 

in the numerator and denominator, but for simplicity we constrain the possible values by assuming all ρ = 
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1. This assumption is applied in the lower plots of the first and second landscapes in Figure 3.2c. Examples 

are shown below for three, four, five, and six binding sites. Coefficients are derived using Pascal’s triangle: 

𝑓z =
𝑎* + 3(𝑤𝐲)Ï + 3(𝑤𝐲)�Ï + (𝑤𝐲)zÏ

1 + 3(𝑤𝐲)Ï + 3(𝑤𝐲)�Ï + (𝑤𝐲)zÏ  
(A5.16) 

𝑓¾ =
𝑎* + 4(𝑤𝐲)Ï + 6(𝑤𝐲)�Ï + 4(𝑤𝐲)zÏ + (𝑤𝐲)¾Ï

1 + 4(𝑤𝐲)Ï + 6(𝑤𝐲)�Ï + 4(𝑤𝐲)zÏ + (𝑤𝐲)¾Ï  
(A5.17) 

𝑓Ô =
𝑎* + 5(𝑤𝐲)Ï + 10(𝑤𝐲)�Ï + 10(𝑤𝐲)zÏ + 5(𝑤𝐲)¾Ï + (𝑤𝐲)ÔÏ

1 + 5(𝑤𝐲)Ï + 10(𝑤𝐲)�Ï + 10(𝑤𝐲)zÏ + 5(𝑤𝐲)¾Ï + (𝑤𝐲)ÔÏ  
(A5.18) 

𝑓Ã =
𝑎* + 6(𝑤𝐲)Ï + 15(𝑤𝐲)�Ï + 20(𝑤𝐲)zÏ + 15(𝑤𝐲)¾Ï + 6(𝑤𝐲)ÔÏ + (𝑤𝐲)ÃÏ

1 + 6(𝑤𝐲)Ï + 15(𝑤𝐲)�Ï + 20(𝑤𝐲)zÏ + 15(𝑤𝐲)¾Ï + 6(𝑤𝐲)ÔÏ + (𝑤𝐲)ÃÏ  
(A5.19) 

For iii–iv in Figure 3.2c, m values for spaced and compact promoters were substituted for α in each 

term of the numerator and denominator. As an example, the equation for three sites is: 

𝑓z =
𝑎* + 3𝑚)(𝑤𝐲)Ï + 3𝑚�(𝑤𝐲)�Ï +𝑚z(𝑤𝐲)zÏ

1 + 3𝑚)(𝑤𝐲)Ï + 3𝑚�(𝑤𝐲)�Ï +𝑚z(𝑤𝐲)zÏ
 

(A5.20) 

Since m values can exceed 1, f no longer represents fractional activation defined with the range of 

zero to one. This interpretational note also applies to f in the COMET model. 

To investigate modes of transcriptional regulation independent of the effects of cell heterogeneity, 

the plots in Figure 3.2c,d depict homogeneous (one-cell) expression (whereas the fits shown as lines in 

Figure 3.2a depict heterogeneous population means). In Figure 3.2c, outcomes were scaled for a 

maximum attainable value of 1 within each model.  

Transcriptional inhibition: The model used to generate predictions presented in Figure 3.4c,d 

was developed as follows. Within the COMET framework, a competitive inhibitor is represented as: 

𝑓 =
𝑏 +𝑚 ⋅ 𝑤C ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧

1 + 𝑤C ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧 + 𝑤' ⋅ 𝐙𝐅𝐢𝐏𝐫𝐨𝐭𝐞𝐢𝐧
 (A5.21) 

 
where m and wA correspond to the ZFa, and wI corresponds to the inhibitor. However, the observed effect 

of the inhibitors (Figure 3.4) was greater than that predicted by competitive inhibition alone. We found that 

outcomes with ZFi-DsRed or with a spaced promoter could be explained by also accounting for a decrease 

in effective cooperativity at the promoter. Removal of cooperativity from a multi-site promoter is a complex 

process involving an ensemble of promoter states within and between cells. For simplicity, we represent 

this as a non-mechanistic heuristic function that depends upon the amounts and properties of both the ZFa 
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and the ZFi. The value m is replaced by a ramp down function from baseline cooperativity without inhibitor 

to no cooperativity at a high amount of inhibitor: 

𝑓 =

𝑏 +max	(minÕ
Ö 𝑤' ⋅ 𝐙𝐅𝐢𝐏𝐫𝐨𝐭𝐞𝐢𝐧𝑤C ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧

− 𝑙Ø (1 −𝑚)
𝑢 − 𝑙 +𝑚,𝑚Ú , 1) ⋅ 𝑤C ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧

1 + 𝑤C ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧 + 𝑤' ⋅ 𝐙𝐅𝐢𝐏𝐫𝐨𝐭𝐞𝐢𝐧
 

(A5.22) 

where l and u are empirically determined values for the weight-normalized ratio of inhibitor to activator at 

which the ramp down from m to 1 begins and ends, respectively. 

We found that compared to ZFi, ZFi-DsRed was a more potent inhibitor. Multiplying its weight in 

the equation by a factor of four improved the fit to data, and ramp down parameters were adjusted 

accordingly to maintain the shape profile: 

𝑓 =

𝑏 +max	(minÕ
º4𝑤' ⋅ 𝐙𝐅𝐢𝐃𝐬𝐑𝐞𝐝𝐏𝐫𝐨𝐭𝐞𝐢𝐧𝑤C ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧

− 4𝑙Ä (1 −𝑚)
4𝑢 − 4𝑙 +𝑚,𝑚Ú , 1) ⋅ 𝑤C ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧

1 + 𝑤C ⋅ 𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧 + 4𝑤' ⋅ 𝐙𝐅𝐢𝐃𝐬𝐑𝐞𝐝𝐏𝐫𝐨𝐭𝐞𝐢𝐧
 

(A5.23) 

 
For inhibitor dose responses in Figure 3.4c, cooperativity was more readily removed with ZFi-

DsRed than with ZFi, and with a spaced promoter than with a compact one. However, cooperativity was 

maintained with ZFi and a compact promoter, and this held across ZF1i mutants and doses in Figure 3.4d. 

 Transcriptional logic gates: In Figure 3.5c, we used the standard model from Figure 3.2 to 

investigate properties of AND gates. For simplicity, leaky transcription (a0) is set to zero and Hill coefficients 

(n1 and n2) are set to one. Figure 3.5c shows four variations that differ in whether each TF’s maximal 

activation (a1 and a2) is less than or equal to the maximum activation with both present (a12 = 1), and 

synergy (ρ) is present or absent. 

𝑓 =
𝑎)𝑤)𝐲𝟏 + 𝑎�𝑤�𝐲𝟐 + 𝑎)�𝜌𝑤)𝑤�𝐲𝟏𝐲𝟐
1 + 𝑤)𝐲𝟏 + 𝑤�𝐲𝟐 + 𝜌𝑤)𝑤�𝐲𝟏𝐲𝟐

 (A5.24) 

TFs were assigned identical properties such that landscapes were symmetric about the dose 

response diagonal. Simulations used the homogeneous model. 

In Figure 3.5c, TF dose responses span 0 to 200 ng of plasmid, and target gene expression is 

linearly scaled to a maximum attainable value of 1. Comparison between experiments and simulations 
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shows that the hybrid COMET promoter exhibits hybrid cooperative activity: it resembles x3-S with either 

ZFa individually, and it resembles x6-C if both ZFa are present in sufficient amounts. 

To explain this effect, we consider a scenario of a ZFa inducing transcription at a x6-C promoter: 

𝑓 =
𝑚Ã|Ýr���pY ⋅ 𝑤 ⋅ 𝐙𝐅𝐚

1 + 𝑤 ⋅ 𝐙𝐅𝐚  (A5.25) 

Hypothetically, if the pool of ZFa protein in a cell could be partitioned into two sub-pools of equal 

concentration, each with access to a distinct set of three alternating sites on the reporter promoter, then if 

only one sub-pool were active the promoter activity would decrease to: 

𝑓 =
𝑚z|?��pVU ⋅ 𝑤 ⋅

1
2𝐙𝐅𝐚

1 + 𝑤 ⋅ 12𝐙𝐅𝐚
 

(A5.26) 

If sub-pools differed in properties that affected m and w, then they could be treated as distinct TFs: 

𝑓 =
𝑚z|?��pVU±7�) ⋅ 𝑤) ⋅ 𝐙𝐅𝐚𝟏

1 + 𝑤) ⋅ 𝐙𝐅𝐚𝟏
 (A5.27) 

𝑓 =
𝑚z|?��pVU±7�� ⋅ 𝑤� ⋅ 𝐙𝐅𝐚𝟐

1 + 𝑤� ⋅ 𝐙𝐅𝐚𝟐
 (A5.28) 

An inhibitor for either ZFa would act specifically on the corresponding binding sites, such that 

maximal inhibition would require inhibitor species that tile both sets of sites. 

In the limit of high doses of both ZFa, the contribution of each individually to total activation is: 

𝑓 =
𝑚Ã|Ýr���pY±7�)±7�� ⋅ 𝑤) ⋅ 𝐙𝐅𝐚𝟏
1 + 𝑤) ⋅ 𝐙𝐅𝐚𝟏 + 𝑤� ⋅ 𝐙𝐅𝐚𝟐

 (A5.29) 

𝑓 =
𝑚Ã|Ýr���pY±7�)±7�� ⋅ 𝑤� ⋅ 𝐙𝐅𝐚𝟐
1 + 𝑤) ⋅ 𝐙𝐅𝐚𝟏 + 𝑤� ⋅ 𝐙𝐅𝐚𝟐

 (A5.30) 

Together, these contributions sum to: 

𝑓 =
𝑚Ã|Ýr���pY±7�)±7�� ⋅ (𝑤) ⋅ 𝐙𝐅𝐚𝟏 + 𝑤� ⋅ 𝐙𝐅𝐚𝟐)

1 + 𝑤) ⋅ 𝐙𝐅𝐚𝟏 + 𝑤� ⋅ 𝐙𝐅𝐚𝟐
 

(A5.31) 

 If both ZFa are identical, this expression becomes identical to the original expression. 

 
  



 168 
Table A5.1. ZFa and fitted parameters for x6-C promoters. These ZFa contain VP16. The reference 
number is the nomenclature used by Khalil, et al.143 *Certain ZFa exhibited squelching at high ZFa plasmid 
doses. n.d. indicates no data. 
 

Zinc 
finger 

Reference 
number b m w 

ZF1  43-8 0.08 33 0.036 
ZF2 37-12 0.25 54 0.018 
ZF3 158-2 

n.d. ZF4 97-4 
ZF5 92-1 
ZF6 150-4 0.02 58 0.043 
ZF7 172-5 0.11 46 0.025 
ZF8* 173-3 0.07 43 0.041 
ZF9* 42-10 0.46 33 0.096 
ZF10 13-6 0.01 31 0.037 
ZF11 36-4 0.08 32 0.025 
ZF12* 62-1 0.15 33 0.065 
ZF13 21-16 0.04 41 0.012 
ZF14* 14-3 0.20 30 0.069 
ZF15* 129-3 0.18 33 0.007 
ZF16 54-8 

n.d. ZF17 55-1 
ZF18 93-10 
ZF19 151-1 

 
 
 
Table A5.2. Fitted parameters for modifications to promoter architecture and ZFa domain. 
 

ZF AD Promoter b m w 

ZF1 VP16 

ZF1x1 

0.08 

1.0 

0.036 

ZF1x3-S 1.3 
ZF1x6-S 3 
ZF1x12-S 8.5 
ZF1x3-C 7.1 

ZF1x6-C v1 33 
ZF1x12-C 41 

ZF1 VP16 

ZF1x6-C 
CMV_Min 0.26 33 0.058 

ZF1x6-C 
SV40_Min 0.43 7.5 0.046 

ZF1(RARR) 

VP16 ZF1x6-C v1 0.08 

26 0.018 
ZF1(ARRR) 19 0.010 
ZF1(AARR) 15 0.011 
ZF1(RAAR) 13 0.0043 
ZF1(RAAA) 13 0.0023 
ZF1(AAAR) 7 0.0040 
ZF1(AAAA) 7 0.0017 

ZF1(AAAA) VP64 ZF1x6-C v1 0.08 24 0.012 
VPR 78 0.020 
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APPENDIX 6. Model equations for genetic components 

 

 

This appendix corresponds to Chapter 4, and a version of this appendix is in preparation as: 

 

Muldoon J.J., Kandula V., Hong M., Donahue P.S., Boucher J.D., Bagheri N., Leonard J.N. Design-driven 

engineering of mammalian genetic programs.161 In preparation. 
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Dynamical models: Genetic programs are represented by systems of ODEs. State variables 

include RNA and protein species in arbitrary concentration units. Processes include transcription 

(constitutive, inducible, inhibitable), RNA degradation, protein translation, split intein-mediated splicing, 

small molecule-based reconstitution, and protein degradation. Some parameter values are from the 

COMET study129 and others are newly estimated or fitted (Table A6.1). 

Constitutive transcription from an EF1α or CMV promoter is treated as proportional to plasmid dose 

(ng). Functions for regulated transcription are broadly represented by f. The dose term d for a regulated 

gene is empirically defined and calculated by dividing the plasmid dose (ng) by 200 ng; then, the square 

root of this fraction is used. E.g., for 200 ng, d1/2 = 1, and for 50 ng, d1/2 = 0.5. 

Inducible transcription uses the COMET model with b, m, and w. We model the activation mediated 

by AD-ZF-containing proteins that also contain intC, intN, or additional ZF domains like that by a ZFa. 

Transcription can be inhibited by a ZF, which sterically blocks the activator from binding sites in a promoter. 

We model the inhibition mediated by ZF proteins that also contain intC, intN, FKBP, or additional ZF 

domains like that by a ZF. Transcription can also be inhibited by a DsDed-ZF, which uses the dual 

mechanism. The effect of the latter mechanism is that at increasing strength or dose of inhibitor compared 

to activator, the effective cooperativity ramps down to m = 1. Inhibition mediated by DsDed-ZF-containing 

proteins that also contain intC, intN, or additional ZF domains is modeled like that by a DsDed-ZF. 

Split intein-mediated splicing is a second-order reaction with a fitted rate constant between intN-

containing and intC-containing proteins. 

𝑘qVp · 𝐒𝐩𝐞𝐜𝐢𝐞𝐬𝟏𝐏𝐫𝐨𝐭𝐞𝐢𝐧 · 𝐒𝐩𝐞𝐜𝐢𝐞𝐬𝟐𝐏𝐫𝐨𝐭𝐞𝐢𝐧 (A6.1) 

Small molecule-based reconstitution to form a RaZFa uses the Heaviside function H with ligand 

treatment at time τ (hours) post-transfection. 

𝑘qVp · 𝐀𝐃-𝐅𝐑𝐁𝐏𝐫𝐨𝐭𝐞𝐢𝐧 · 𝐅𝐊𝐁𝐏-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧 · 𝐻(𝑡 − 𝜏) (A6.2) 

Prior to reconstitution, FKBP-ZF can act as a ZF-like inhibitor against RaZFa or ZFa at a promoter. 

𝑘Y|±7 ·
𝑏 +𝑚 · 𝑤 · 𝐑𝐚𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧

1 + 𝑤 · 𝐑𝐚𝐙𝐅𝐚𝐏𝐫𝐨𝐭𝐞𝐢𝐧 + 𝑤 · 𝐅𝐊𝐁𝐏-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧
 

(A6.3) 
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 The  following system of equations represents the reconstitution of a ZFa and induction of a 

reporter. This system produces an AND gate for: if AD-intN and intC-ZF are present, then induce reporter. 

𝑑𝐀𝐃-𝐢𝐧𝐭𝐍𝐑𝐍𝐀
𝑑𝑡 = 𝑧u,) · 𝑘Y|à7)� · doseCx-XWY6 

−𝑘UV�86C · 𝐀𝐃-𝐢𝐧𝐭𝐍𝐑𝐍𝐀 

(A6.4) 

𝑑𝐀𝐃-𝐢𝐧𝐭𝐍𝐏𝐫𝐨𝐭𝐞𝐢𝐧
𝑑𝑡 = 𝑘Y� · 𝐀𝐃-𝐢𝐧𝐭𝐍𝐑𝐍𝐀 

−𝑘qVp · 𝐀𝐃-𝐢𝐧𝐭𝐍𝐏𝐫𝐨𝐭𝐞𝐢𝐧 · 𝐢𝐧𝐭𝐂-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧 
−𝑘UV�±7> · 𝐀𝐃-𝐢𝐧𝐭𝐍𝐏𝐫𝐨𝐭𝐞𝐢𝐧 

(A6.5) 

𝑑𝐢𝐧𝐭𝐂-𝐙𝐅𝐑𝐍𝐀
𝑑𝑡 = 𝑧u,� · 𝑘Y|à7)� · doseXWYÝ-±7 

−𝑘UV�86C · 𝐢𝐧𝐭𝐂-𝐙𝐅𝐑𝐍𝐀 

(A6.6) 

𝑑𝐢𝐧𝐭𝐂-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧
𝑑𝑡 = 𝑘Y� · 𝐢𝐧𝐭𝐂-𝐙𝐅𝐑𝐍𝐀 

−𝑘qVp · 𝐀𝐃-𝐢𝐧𝐭𝐍𝐏𝐫𝐨𝐭𝐞𝐢𝐧 · 𝐢𝐧𝐭𝐂-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧 
−𝑘UV�XWYÝ · 𝐢𝐧𝐭𝐂-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧 

(A6.7) 

𝑑𝐀𝐃-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧
𝑑𝑡 = 𝑘qVp · 𝐀𝐃-𝐢𝐧𝐭𝐍𝐏𝐫𝐨𝐭𝐞𝐢𝐧 · 𝐢𝐧𝐭𝐂-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧 

−𝑘UV�±7> · 𝐀𝐃-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧 

(A6.8) 

𝑑𝐢𝐧𝐭𝐂/𝐢𝐧𝐭𝐍𝐏𝐫𝐨𝐭𝐞𝐢𝐧
𝑑𝑡 = 𝑘qVp · 𝐀𝐃-𝐢𝐧𝐭𝐍𝐏𝐫𝐨𝐭𝐞𝐢𝐧 · 𝐢𝐧𝐭𝐂-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧 

−𝑘UV�XWYÝ · 𝐢𝐧𝐭𝐂/𝐢𝐧𝐭𝐍𝐏𝐫𝐨𝐭𝐞𝐢𝐧 

(A6.9) 

𝑑𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐑𝐍𝐀
𝑑𝑡 = 𝑧u,z · 𝑘Y|±7 · d8V�rqYVq

)/� ·
𝑏 + 𝑚 · 𝑤 · 𝐀𝐃-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧

1 + 𝑤 · 𝐀𝐃-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧 + 𝑤 · 𝐢𝐧𝐭𝐂-𝐙𝐅𝐏𝐫𝐨𝐭𝐞𝐢𝐧
 

−𝑘UV�86C · 𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐑𝐍𝐀 

(A6.10) 

𝑑𝐏𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐏𝐫𝐨𝐭𝐞𝐢𝐧
𝑑𝑡 = 𝑘Y� · 𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐑𝐍𝐀 

−𝑘UV�8V� · 𝐑𝐞𝐩𝐨𝐫𝐭𝐞𝐫𝐏𝐫𝐨𝐭𝐞𝐢𝐧 

(A6.11) 

Ultrasensitivity: Ultrasensitivity is a type of nonlinear signal processing in which a small change 

in an input produces a large change in an output. We demonstrate how this property can be achieved with 

motifs such as a double inhibition cascade (Figure 4.1k), activation thresholded by an inhibitor (Figure 

4.3b), and reconstitutable activation (Figure 4.3c). The ultrasensitivity of experimental and simulated dose 

responses is quantified using the Hill coefficient n from a modified Hill equation, in which x is input plasmid 

dose (ng), y is reporter signal (MEPTRs or MEFLs), y0 is reporter signal for zero input, and a and b are other 

fitted parameters. Standard ZFa dose responses have n ~ 1. Ultrasensitive responses have n > 1. 

𝑦 = 𝑦* +
𝑎 · 𝑥Ï

Ö1𝑏Ø
Ï
+ 𝑥Ï

 
(A6.12) 
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Table A6.1. Model parameters for genetic programs. 
 

Symbol Description Value Source 

b1 Basal transcription at ZF1x6-C promoter 0.08 COMET 

m1 Max. induction for CMV-driven VP16-ZF1 at ZF1x6-C promoter 33 COMET 

w1 Steepness for CMV-driven VP16-ZF1 at ZF1x6-C promoter 0.036 Fitted here 

m1E64 Max. induction by EF1α-driven VP64-ZF1 at ZF1x6-C promoter 52 Fitted here 

w1E64 Steepness for EF1α-driven VP16-ZF1 at ZF1x6-C promoter 0.192 Fitted here 
 

b2 Basal transcription at ZF2x6-C promoter 0.25 COMET 

m2 Max. induction by CMV-driven VP16-ZF2 at ZF2x6-C promoter 54 COMET 

w2 Steepness for CMV-driven VP16-ZF2 at ZF2x6-C promoter 0.082 Fitted here 
 

bH Basal transcription at ZF1/2x6-C promoter b1 Assumed 

m1H Max. induction by CMV-driven VP16-ZF1 at ZF1/2x6-C promoter m1 Assumed 

m2H Max. induction by CMV-driven VP16-ZF2 at ZF1/2x6-C promoter m2 Assumed 

w1H Steepness for CMV-driven VP16-ZF1 at ZF1/2x6-C promoter 0.072 Fitted here 

w2H Steepness for CMV-driven VP16-ZF2 at ZF1/2x6-C promoter 0.170 Fitted here 
 

b10 Basal transcription at ZF10x6-C promoter 0.01 COMET 

m10E64 Max. induction by EF1α-driven VP64-ZF10 at ZF10x6-C promoter m1E64 Assumed 

w10E64 Steepness for EF1α-driven VP16-ZF10 at ZF10x6-C promoter w1E64 Assumed 
 

l Start of loss of cooperativity (0.5 in COMET) 0 Adjusted here 

u End of loss of cooperativity (2 in COMET) 1.5 Adjusted here 

wr1E64 Steepness for DsDed-ZF1 inhibition of EF1α-driven VP64-ZF1 at ZF1x6-C 4 * wr1E64 Definition 

wr10E64 Steepness for DsDed-ZF10 inhibition of EF1α-driven VP64-ZF10 at ZF10x6-C 4 * wr10E64 Definition 

wr1H Steepness for DsDed-ZF1 inhibition of CMV-driven VP64-ZF1 at ZF1/2x6-C 4 * wr1H Definition 
 

rec Reconstitution of split TFs (fitted based on split inteins; also applied to RaZFa) 0.34 U–1 h–1 Fitted here 
 

ktxCMV Transcription at CMV promoter 1 Default 

ktxEF1a Transcription at EF1α promoter 1 Default 

ktxZF Transcription multiplier for COMET promoters 1 Assumed 
 

ktl Translation 1 Default 
 

kdegR Degradation of RNA 2.7 h–1 COMET 

kdegZFP Degradation of TF protein (default) 0.35 h–1 COMET 

kdegZFP_PEST Degradation of PEST-tagged TF protein 0.7 h–1 Assumed 

kdegintC Degradation of intC-containing TF protein 1.3 h–1 Fitted here 

kdegRep Degradation of reporter protein 0.029 h–1 COMET 

 
  



 173 
 

 

 

 

 

 

APPENDIX 7. Identification of determinants of network inference algorithm performance 

 

 

A version of this appendix was previously published as: 

 

Muldoon J.J.*, Yu J.S.*, Fassia M.-K., Bagheri N. Network inference performance complexity: a 

consequence of topological, experimental and algorithmic determinants. Bioinformatics 35, 3421–3432. 

(2019).281 *Equal contributions 
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Summary: Network inference algorithms aim to uncover regulatory interactions governing cellular 

decision-making, disease progression and therapeutic interventions. Having a blueprint of this regulation is 

essential for understanding and controlling cell behavior. However, the utility and impact of these 

approaches are limited because the ways in which various factors shape inference outcomes remain largely 

unknown. We identify and systematically evaluate determinants of performance—including network 

properties, experimental design choices and data processing—by developing new metrics that quantify 

confidence across algorithms in comparable terms. We conducted a multifactorial analysis that 

demonstrates how stimulus target, regulatory kinetics, induction and resolution dynamics, and noise 

differentially impact widely used algorithms in significant and previously unrecognized ways. The results 

show how even if high-quality data are paired with high-performing algorithms, inferred models are 

sometimes susceptible to giving misleading conclusions. This new characterization approach provides a 

way to more rigorously interpret how algorithms infer regulation from biological datasets.  

Background: The advent of genome-scale and high-throughput experiments demands network 

inference algorithms that accurately uncover regulation of gene expression and protein activity282-286. These 

computational tools have been invaluable for studying cell differentiation287, identifying genetic regulators 

and their targets in disease288-292, classifying diseases into subtypes293,294, and predicting mechanisms of 

drug responses295-300. Having a blueprint of the underlying network comprising genetic components and 

their regulation is key to understanding and controlling cellular processes. Elucidating these blueprints 

directly from experimental data has proven challenging. Each algorithm offers advantages and limitations, 

and its reliability is shaped by biological context and experimental design. For instance, algorithms infer 

certain motifs with different accuracy, and so their performance depends on the presence of these motifs285. 

These observations have helped spur efforts to benchmark algorithm performance on experimental or in 

silico datasets with varying properties301-306, and some of these studies have yielded tools for further 

exploration of algorithm-dataset pairings307-309. Throughout, the most widely used metrics are predominantly 

AUROC and AUPR: the area under the receiver operator characteristic and precision-recall curves, 

respectively. This approach treats the inference as a binary classification, which is possible only if a gold 

standard network is known. However, applications with experimental data rarely have a gold standard 

network, making it infeasible to use AUROC or AUPR. We postulate that factors relating to network 
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properties, experimental design and data processing affect algorithm performance, but that the type and 

extent of these effects remain challenging to discern, in part, because of how they typically might be 

assessed.  

Here, we develop an in silico framework and new confidence metrics [edge score (ES), edge rank 

score (ERS)], and evaluate effects of kinetic parameters, network motifs, logic gates, stimulus target, 

stimulus temporal profile, noise, and data sampling on algorithms spanning widely used statistical learning 

methods. The analysis distinguishes between inference accuracy and confidence, quantifies how well 

algorithms utilize the input data, and enables comparisons in a manner that was not previously possible. 

The guiding principle is that outcomes across algorithms can now be assessed in like terms through 

normalization to null models, circumventing the need for a gold standard network. The results show that 

several factors—some within and others outside one’s direct control—exert significant and previously 

unrecognized effects, raising questions on how datasets and algorithms ought to be effectively paired. 

Methods: Five-node networks were formulated in which the nodes represent genes or proteins 

and the signed directed edges are regulation. Each network has two nodes (A, B) that fan in to a target 

node (C), and two nodes (D, E) that fan out from the target node. The fan-in is assigned a logic gate. 

Various gates have been described for cellular mechanisms310-314, For AND, OR, and SUM gates, both 

inputs are activators. For AND, inputs act with multiplicative synergy, and for OR and SUM they act 

independently. In OR, either input can yield maximum activation, and in SUM both are required. For NAND, 

NOR, and SUB, both inputs are inhibitory. For NAND, both are required for inhibition, and for NOR and 

SUB either is sufficient. While SUB has not yet been described in a cellular context, it is included for 

completeness w.r.t. SUM. Six motifs and six logic gates are considered, for 36 motif-gate combinations. 

Target node activation is defined as a function of the concentrations of the inputs and their affinities for the 

target node315-317. 

In silico data were generated from simulations. Each network is specified by a system of ODEs. 

The change over time in the concentration X of a node i regulated by nodes j = 1:J is given by: 

𝑑𝑋u
𝑑𝑡 =

𝒔(𝑖) + ∑ 𝑘 ⋅ 𝑀éu ⋅ 𝑋é
ê
éë)

1 + 𝒔(𝑖) + ∑ 𝑘 ⋅ 𝑀éu ⋅ 𝑋é
ê
éë)

− 𝑘ì ⋅ 𝑋u 
(A7.1) 
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where s(i) is a time-dependent stimulus to node i, Mji is an adjacency matrix entry indicating the presence 

or absence of a directed edge between nodes j and i (Table A7.1), and kd is a degradation constant (0.5 

inverse time units). In the five-node networks, non-logic gate nodes have at most one incoming edge. For 

the gate node c: 

𝑑𝑋í
𝑑𝑡 = 𝒈(𝑎, 𝑏) − 𝑘ì𝑋í 

(A7.2) 

 

where g(a,b) is the gate function indicating how nodes a and b activate node c (Table A7.2). 

Efficiencies (kcat/KM) for enzyme activity and gene regulation span [100, 10–9] M–1 s–1 318-320. To 

capture wide kinetic variation, different values for gate edge parameters k were evaluated. Values between 

[10–2, 102] were observed to produce a variety of dynamical profiles given the network formulation and 

range of node concentrations, and values outside of this kinetic range tended not to provide further variety 

to the profiles. Non-gate edges were set to 0.5 inverse concentration units, and the two gate edges were 

varied across 17 log-spaced values in the range [10–2, 102]. 

Stimulus was applied to either or both gate parent nodes. The base case stimulus was applied for 

the first half of the timecourse and removed for the second half to produce activation and relaxation 

dynamics. Initial values are steady-state concentrations in the absence of stimulus. The initial value of each 

node is set to the steady-state value for the given combination of motif, gate, and stimulus. For most cases, 

the initial value is zero. Simulations were run from time = 0 to 10 a.u. Trajectories were sampled at intervals 

of 0.5 a.u. to yield a 21 data points per node. For each data point x, relative noise was added such that: 

𝑥 = 𝑥* º1 +
𝜌𝒩(0,1)

3 Ä 
(A7.3) 

 

where x0 is the original simulated value, ρ is the percent noise (0, 5, 10, 20, or 50%), and N(0,1) is a random 

number drawn from a Gaussian distribution with zero mean and unit variance. With a Gaussian, 99.7% of 

values are within 3 S.D. of the mean. Division by 3 therefore ensures the noise is essentially bounded by 

[–ρ, ρ]. We note that data with a value of zero remain zero, x values are non-negative, and in principle other 

distributions could also be used to introduce noise. 

Algorithms assign a weight to each edge describing the regulation of one node by another. For 

each true dataset and each of N = 100 null datasets, inferred weights (IW) and null weights (NW) were 
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inferred for each edge, respectively, in triplicate; replicates were averaged before calculating ES and ERS. 

The panel of algorithms includes GENIE3321 (which uses Random Forests322), TIGRESS323, BANJO324,325, 

MIDER326, and correlation (abbreviated here as CORR). Our focus was not to span a large number of 

algorithms or to determine a most effective one, but rather to evaluate determinants of performance using 

a concise set of established algorithms spanning different statistical methods. Therefore, and per 

convention, we do not include an exhaustive analysis with other algorithms, but note that the presented 

analysis is extensible. Null datasets for five-node networks were generated by shuffling data across 

gate/motif dimensions. Null datasets for GNW networks were generated by shuffling data across nodes and 

stimulus conditions. To calculate ES and ERS, the necessary outcome from any method of generating the 

nulls is that the inferred weights (IW) and null weights (NW) are uncorrelated.  

Simulated data have the dimensions: (6 motifs) x (6 gates) x (3 stimulus conditions) x (5 noise 

levels) x (17 values for ka) x (17 values for kb) x (5 nodes) x (21 time points). Inference outcomes have the 

dimensions: (6 motifs) x (6 gates) x (3 stimulus conditions) x (5 noise levels) x (3 time intervals) x (17 values 

for ka) x (17 values for kb) x (5 algorithms). Inference outcomes include four metrics for each possible edge: 

IW, NW (averaged across the 100 nulls), ES, and ERS. Instances of non-inferable edges are removed from 

true data and null data before calculating ES and ERS. For each algorithm, depending on whether it infers 

edges in a manner that is affected by other edges, nodes with identical trajectories can be assigned edge 

weights that are necessarily identical or potentially different. If the data for nodes A and B are identical, this 

affects whether the ES and ERS landscapes are diagonally symmetric. 

A methodology to assess and compare algorithm performance: To identify how different 

factors affect inference outcomes in a controlled manner, we started by formulating in silico networks 

representing scenarios for cellular regulation. Given the large combinatorial space, and the potential for a 

large network to complicate interpretation, we used a concise testbed (a strategy that has also been used 

in other studies305,306,327). Each network has five nodes: three (A, B, C) comprise a fan-in and the other two 

(D, E) are downstream of the fan-in target (C). Regulation among A, B and C is specified by a motif, and C 

is activated via a logic gate (Figure A7.1a). We considered 36 gate-motif combinations and four orders of 

magnitude of kinetic variation in gate edges. For the network inference, we chose algorithms representative 

of widely used statistical methods, including top performers in DREAM challenges321,323 (Figure A7.1b).  
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We take a multifactorial approach to evaluate performance. Parameter values for gate edges are 

varied to reflect different strengths of regulation. Nodes A and/or B receive a stimulus representing the start 

of an experiment, such as ligand-induced pathway activation. At the halfway point, the stimulus is 

discontinued, representing its removal (or treatment with an inhibitor) as in the DREAM challenge328. 

Timecourse data from simulations are sampled at regular intervals, and varying levels of noise are added. 

Lastly, algorithms are provided for different time intervals of the data.  

Figure A7.1. Evaluating performance of network inference. Evaluating performance of network 
inference. a Networks differ in features such as motifs and gates. Gates differentially regulate node C 
based on the activity of nodes A and B. Color-coding (white to purple for low to high activity) 
characterizes node C in the fan-in motif. b Panel of algorithms that use distinct statistical learning 
methods. c Networks were simulated under different conditions to produce timecourse data. Noise was 
added before data samples were obtained, and true data were permuted to produce null data. 
Regulation was inferred by each algorithm, and inferred weights (IW) and null weights (NW) were 
compared to determine the confidence metrics ES and ERS. d Left: for a true edge, the two possible 
outcomes from a binary classification are true positive and false negative. The IW classification 
threshold depends on algorithm and context. Right: four-quadrant analysis of confidence and IW 
suggests reasons for algorithm performance. Confidence values above 0.5 indicate that a predicted 
model tends to outperform null models. Ideal outcomes are in the upper-right quadrant. e Left and 
middle: analysis with IW and confidence; right: comparison of confidence metrics. Results are color-
coded by algorithm. For the 36 gate-motif combinations, inference outcomes are shown that are specific 
to edge A→C, using: nine representative kinetic parameters (kA, kB ∈ [10–2, 100, 102]), stimulus to nodes 
A and B, no added noise, and data sampled from the full timecourse. 
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Importantly, as each algorithm uses a distinct statistical method and infers edge weights with 

different ranges and distributions, the output values cannot be directly compared. Additionally, if an 

algorithm correctly identifies an edge, it is not possible to determine if this outcome was discerned from 

information within the data or if it could have been recovered spuriously. These shortcomings motivated us 

to develop new, generalizable metrics to compare performance across algorithms and assess the 

confidence of true edges, which we arrive at by comparing IW from true data to NW from N permuted 

datasets (Figure A7.1c). The first metric, ES, quantifies the frequency with which the true-data model 

outperforms a set of permuted-data models. It represents the confidence of the IW. ES for the edge from 

node i to node j, across N null datasets indexed by k, is given by:  

𝐸𝑆ué =
1
𝑁sô

1.0, 𝐈𝐖ué > 𝐍𝐖uéø
0.5, 𝐈𝐖ué = 𝐍𝐖uéø
0.0, 𝐈𝐖ué < 𝐍𝐖uéø

ú
w

øë)

 
(A7.4) 

 

The second metric, ERS, quantifies the frequency with which an edge is more highly ranked in the 

true-data (predicted) model versus permuted-data models. ERS represents the confidence for if a true edge 

is inferred relative to other edges in a network, and is given by:  

𝐸𝑅𝑆ué =
1
𝑁sô

1.0, rank(𝐈𝐖ué) > rank(𝐍𝐖uéø)
0.5, rank(𝐈𝐖ué) = rank(𝐍𝐖uéø)
0.0, rank(𝐈𝐖ué) < rank(𝐍𝐖uéø)

ú
w

øë)

 
(A7.5) 

 

Both metrics quantify the extent to which algorithms utilize the input data. Values between (0.5, 1] 

indicate that the predicted model outperforms null models; 0.5 indicates equivalent performance; and [0, 

0.5) indicates that null models outperform the predicted model. The use of permuted data, as opposed to 

random values, ensures that the null data have a distribution consistent with that of the true data.  

To situate the new metrics in an existing framework, we consider a standard binary classification. 

Among the four outcomes [true positive (TP), false positive (FP), true negative (TN) and false negative 

(FN)], a true edge can be TP or FN (Figure A7.1d, left). An algorithm that predicts true edges correctly has 

high recall (i.e., sensitivity), defined as TP divided by condition positive (TP+FN). However, the recall does 

not inform whether an algorithm truly discerns regulation based on the data or if the inference can be made 

by chance. To gain this insight, we use confidence to sub-categorize TP and FN (Figure A7.1d, right). If 
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IW is high and confidence > 0.5, then we deduce that the algorithm is correct for the right reasons. If IW is 

high but confidence < 0.5, it is correct for the wrong reasons; it guessed correctly by chance. If IW is low 

and confidence > 0.5, it is incorrect due to deception; it does not uncover the edge well but still outperforms 

the nulls, suggesting features of the data deceive the algorithm. Lastly, if IW is low and confidence < 0.5, it 

is incorrect due to a difficult inference; the outcome is incorrect and has no confidence. Among the four 

quadrants, ideal performance is in the upper right. We note that this analysis applies to true edges. For 

false edges, while IW should be low, the interpretation is not defined analogously for the four quadrants.  

We observed that each algorithm has characteristic trends for its IW distribution and the relationship 

between IW and confidence (Figure A7.1e, left). For the IW values, Random Forests is low, regression is 

intermediate, dynamic Bayesian is binary (as expected), mutual information is clustered, and correlation is 

wide-ranging. Because of these differences, a low IW by one algorithm can potentially convey better edge 

recovery than a high IW by another, confounding direct comparisons. However, this limitation could be 

overcome by mapping each IW distribution onto a shared metric. To this end, we note that (i) the IW–ES 

relationship is monotonic for each algorithm, and (ii) for algorithms that are continuous in IW, ES surpasses 

0.5 (y-axis) at a characteristic IW value (x-axis)—which in this context is 0.15 for Random Forests, 0.2 for 

correlation and 0.4 for regression—such that these values indicate equivalent performance compared to 

null models. Therefore, for a given network context, ES can be used as a common currency to directly 

compare IW across algorithms.  

The relationship between IW and ERS is different than that with ES, because ERS also accounts 

for within-model rankings. ERS therefore captures the possibility that a low IW can convey better recovery 

than a high IW by the same algorithm (such as given a difference in motif, gate, kinetics). For example, the 

vertical Random Forests pattern (Figure A7.1e) shows that one IW value can occupy different within-model 

rankings relative to the null expectation, and the horizontal pattern for correlation shows that different IW 

values can occupy similar ones. In summary, ES and ERS provide complementary information that can be 

applied across algorithms to augment the standard interpretation of IW.  
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Performance characteristics are highly variable: Given the high dimensionality of the data, we 

focus on the region where combinatorial variation was introduced and for which the results might be the 

most informative: the fan-in edges. The kinetic landscapes for confidence show striking patterns that vary 

as uniform, graded, steep boundaries and speckled. The shapes of the regions for these patterns also vary 

as kinetically symmetric (mirror imaged across the diagonal), bounded by one or both kinetic parameters, 

or thin bands with linear or curved boundaries. Many landscapes have surprising combinations of features 

resembling phase diagrams with phase boundaries and triple points. As a representative example, we 

highlight a single network that produces different timecourse trajectories depending on the kinetics and 

stimulus (Figure A7.2a), and for which algorithm performance varies as a function of kinetics, stimulus, 

time interval of input data and gate edge (Figure A7.2b). The range of outcomes all from the same network 

underscores the fundamentally challenging task of network inference.  

Figure A7.2. Network confidence varies across algorithms. Network confidence varies across 
algorithms. a Trajectories of nodes A, B, and C, and b ERS for the two gate edges (A→C and B→C) for 
a network containing an FFFB motif and OR gate. ERS is provided as a function of stimulus condition 
(A only, B only or both A and B), time interval of input data (first half, second half and full timecourse), 
and gate kinetics (plot axes are in log space). Simulations in a show a subset of the kinetic landscape, 
and heatmaps in b show the full 17×17 landscape. Gate kinetics (a network property), stimulus target 
(an experimental choice), and time interval and algorithm (post-experimental choices) strongly affect 
inference outcomes. 
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Despite wide variation, the results are still informative. First, much of the variation originates from 

decisions that in principle are within one’s control but in practice are nonobvious. For instance, confidence 

varies based on the employed algorithm and the time interval of input data. Additionally, stimulus choices 

that increase confidence in one edge are not necessarily advantageous for recovering another edge. 

Second, some outcomes of low confidence are due to high NW (rather than only low IW), which, in context, 

suggest that an algorithm would have an elevated propensity to call FPs. For regression, NW values are 

relatively high, and for mutual information, NW values are low with the full timecourse dataset but high with 

the first and second time intervals. Lastly, each algorithm has characteristic contours in the landscapes: 

Random Forests, dynamic Bayesian and mutual information have defined boundaries; regression is usually 

highly uniform; and correlation often has several tiers. These patterns hold across networks, indicating that 

algorithms differ in sensitivity to kinetic variation.  

Discussion: This study develops a way to evaluate the confidence and robustness of inference 

outcomes, which is enabled through comparisons to null models. Although the analysis utilizes in silico data 

with many timepoints, it can also be applied to experimental datasets with fewer timepoints, and in principle 

it is extensible to any algorithm. Overall, we find that performance is significantly shaped by previously 

unrecognized factors, some within and others outside of one’s control. The no free lunch theorems for 

optimization329 state that one should expect identical average algorithm performance in the limit of all 

possible problems, but that some algorithms will outperform others if better aligned with the subset of 

problems at hand. In this light, network inference applications would benefit from a greater understanding 

of the types of data that algorithms interpret well and the circumstances under which experiments produce 

data that align with these criteria. Achieving this goal will require experimental design (e.g., stimulus 

target/profile and number/spacing of measurements) that is based, in part, on how well the experiments 

position algorithms to extract information. Reciprocally, this goal will also require more study on which 

algorithms effectively utilize data portraying characteristic features of gene regulation and cell signaling. 

Further characterization of the factors that benefit and hinder algorithms, and investigation on how data and 

algorithms should be paired, will enable more accurate models and their effective applications.  

Acknowledgements: I thank Jessica Yu for rigorous and creative analysis in this collaboration, 

and Mohammad-Kasim Fassia for the opportunity to be a part of this project. 
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Table A7.1. Network motifs. Six three-node motifs containing a fan-in are considered. In each adjacency 
matrix, entries indicate the presence (1) or absence (0) of a directed edge from one node (row) to another 
node (column), for nodes A, B, and C. All networks have two nodes (D and E) downstream of the fan-in. 
 

Motif Abbreviation Adjacency Matrix 

Two-node fan-in FI ü
0 0 1
0 0 1
0 0 0

ý 

Feedforward FF ü
0 1 1
0 0 1
0 0 0

ý 

Upstream feedback UFB ü
0 1 1
1 0 1
0 0 0

ý 

Single feedback SFB ü
0 0 1
0 0 1
0 1 0

ý 

Double feedback DFB ü
0 0 1
0 0 1
1 1 0

ý 

Feedforward with feedback FFFB ü
0 1 1
0 0 1
1 0 0

ý 

 
 
Table A7.2. Logic gates. Functions defining the gates for the fan-in to node C, with parameters for edges 
kA and kB from nodes A and B, respectively. 
 

Gate Function 

AND 
𝑘þ𝑘À𝐴𝐵

1 + 𝑘þ𝐴 + 𝑘À𝐵 + 𝑘þ𝑘À𝐴𝐵
 

OR 
𝑘þ𝐴 + 𝑘À𝐵 + 𝑘þ𝑘À𝐴𝐵

1 + 𝑘þ𝐴 + 𝑘À𝐵 + 𝑘þ𝑘À𝐴𝐵
 

SUM 
𝑘þ𝐴/2 + 𝑘À𝐵/2 + 𝑘þ𝑘À𝐴𝐵
1 + 𝑘þ𝐴 + 𝑘À𝐵 + 𝑘þ𝑘À𝐴𝐵

 

NAND 1 −
𝑘þ𝑘À𝐴𝐵

1 + 𝑘þ𝐴 + 𝑘À𝐵 + 𝑘þ𝑘À𝐴𝐵
 

NOR 1 −
𝑘þ𝐴 + 𝑘À𝐵 + 𝑘þ𝑘À𝐴𝐵

1 + 𝑘þ𝐴 + 𝑘À𝐵 + 𝑘þ𝑘À𝐴𝐵
 

SUB 1 −
𝑘þ𝐴/2 + 𝑘À𝐵/2 + 𝑘þ𝑘À𝐴𝐵
1 + 𝑘þ𝐴 + 𝑘À𝐵 + 𝑘þ𝑘À𝐴𝐵
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APPENDIX 8. New ligand-sensing for receptors 

 

 

A version of this appendix was submitted as: 

 

Edelstein H.I.*, Donahue P.S.*, Muldoon J.J., Kang A.K., Dolberg T.B., Battaglia L.M., Allchin E.R., Hong 

M., Leonard J.N. Elucidation and refinement of synthetic receptor mechanisms. In revision.198 *Equal 

contributions 
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Extending MESA sensing to new cues: As part of an investigation into mechanisms of MESA 

signaling, I investigated whether the trends observed for different transmembrane domains (TMDs) on a 

rapamycin-sensing receptor would extend to different ectodomains (ECDs) and ligands. I built new 

receptors to sense small molecules—gibberellin (GA3-AM is a cell-permeable analog) and abscisic acid 

(ABA)—and explored considerations that are typically expected to be ECD-specific, such as how linker 

length affects expression and cell-surface localization41,174. Functional assays showed similar TMD-

associated trends across ECDs (Figure A8.1–A8.2). The TMD choice for each chain significantly affected 

background signaling and induced signaling, and the interaction between TMD choices was also significant, 

indicating that the choice of TC TMD or PC TMD alone does not fully explain the trends. Additionally, the 

TMD choices together account for most of the variance in background and induced signaling observed. 

The observations show that satisfying any one design objective (e.g., maximizing F.D, minimizing 

background) requires choosing a pair of TMDs suited to that goal. Additionally, some general trends held 

across the new receptors. For example, high background and modest induced signaling were observed for 

pairs including FGFR1-TMD TC, resulting in generally low F.D. Conversely, FGFR4-TMD–containing pairs 

often exhibited low background signaling and high F.D. In summary, some effects of TMD choice extend 

across receptors, and a limited scan of these choices enables one to generate new functional receptors. 

Acknowledgements: I thank my colleagues Hailey Edelstein, Patrick Donahue, Anthony Kang, 

Taylor Dolberg, Lauren Battaglia, Everett Allchin, and Amy Hong for collaboration on this study. 
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Figure A8.1. Development of gibberellin-MESA. Receptor development using the gibberellin-binding 
domains GAI and GID1A. a Functional assays with varying extracellular linker lengths. b Staining for 
surface expression. c Western blots for whole-cell expression. d Functional assays with varying TMDs. e 
Staining for surface expression. f Western blots for whole-cell expression. g Functional assays with varying 
plasmid doses. 
 

 
 
Figure A8.2. Development of absiscic-acid MESA. a–g Analogous receptor development process as for 
gibberellin-MESA using the ABA-binding domains PYL1 and ABI1.  
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APPENDIX 9. New intracellular cargo for receptors 

 

 

This appendix corresponds to Chapter 4, and a version of this appendix is in preparation as: 

 

Muldoon J.J., Kandula V., Hong M., Donahue P.S., Boucher J.D., Bagheri N., Leonard J.N. Design-driven 

engineering of mammalian genetic programs.161 In preparation. 
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 We expanded the COMET toolkit by incorporating gp41-1: a split intein that was identified putatively 

in a bioinformatic analysis330, characterized in vitro and in E. coli178, and later utilized in mammalian cells168. 

The TRSGY motif from the native sequence upstream of intN (at the end of the intN-adjoining extein) was 

maintained, as done by178,331-333 to retain high splicing activity; however, gp41-1 splicing has also been 

reported without this motif168. An additional note is that it is important to use cysteine as the first amino acid 

of intN (“1” site) and serine as the first amino acid downstream of intC (“+1” site)334. 

 

The protein sequence for intN was: 

CLDLKTQVQTPQGMKEISNIQVGDLVLSNTGYNEVLNVFPKSKKKSYKITLEDGKEIICSEEHLFPTQTGE

MNISGGLKEGMCLYVKE, where the first amino acid is the “1” site, and TRSGY precedes this site. 

 

The protein sequence for intC was: 

MMLKKILKIEELDERELIDIEVSGNHLFYANDILTHNS, where the last amino acid is the “+1” site. 

 

 The mutagenesis investigation was informed by a crystal structure of the gp41-1 C1A catalytically 

dead mutant335. Electrostatic interactions between the β3 strand at the end of intN and β6 strand at the start 

of intC were previously identified to form a charge zipper and proposed to be important in the capture and 

collapse mechanism that precedes splicing. In this mechanism, was which previously elucidated using the 

Npu DnaE split intein336, capture involves electrostatic interactions between extended regions of the two 

fragments and collapse involves compaction and stabilization of their initially disordered regions. 

 Based on the investigation here, split inteins were ultimately used in non-receptor components. 

However, COMET activators and inhibitors were usable as receptor cargo. 
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Figure A9.1. Split intein mutagenesis. A strategy was investigated for modulating split intein splicing 
efficiency. 11 glutamine and lysine residues across intN and intC were selected based on crystallographic 
evidence335 for electrostatic involvement in the initial capture step in the mechanism for gp41-1 folding and 
splicing. We hypothesized that mutating residues to alanine (either individually or in combination, to reduce 
the number of electrostatic interactions) would decrease the likelihood of intN and intC folding upon coming 
into contact with each other—and by extension decrease TF reconstitution efficiency—and that this effect 
would be greater for intC as membrane-proximal cargo on a MESA target chain (TC) than as an intracellular 
protein. We reasoned that a sufficient differential effect between these two contexts would enable effective 
fusion of intC-ZF1 onto a TC, such that interactions with intracellular intN-containing components would 
occur only after proteolytic cargo release in ligand-induced receptor signaling. Abbreviations: ectodomain 
(ECD), transmembrane domain (TMD). (a) The cartoon illustrates the evaluation of reconstitution between 
two intracellular components (VP64-intN and intC-ZF1) and between an intracellular component and a 
receptor (VP64-intN and Rapa-MESA TC:intC-ZF1). Mutations were considered ideal if reporter signal was 
retained in the former scenario and not produced in the latter. (b–c) Several mutants were generated and 
tested (b), and based on these results, double mutants with K45A for intN and with E104A for intC were 
generated and tested (c). Heatmaps denote the mean reporter signal from three biological replicates (left 
heatmaps) and the fold difference in mean signal with intC-ZF1 vs. TC:intC-ZF1 (right heatmaps). The 
results indicate that the new pairings disrupted interactions with intN more for TC-fused intC than for 
intracellular intC. In some cases, pairings also produced up to several fold greater reporter signal in the 
intracellular context than did the WT-WT case, and in tandem with the reduction in signal in the receptor 
context there was a several thousand fold context-dependent difference. High-performing variants were 
carried forward for further investigation. For the mutation of all 11 residues using the pairing of intN fiveA 
(K41A, K43A, K45A, K48A, E52A) and intC sixA (K92A, K93A, E98A, E99A, E102A, E104A) (C), reporter 
expression was not induced in either context. Thus, mutations can be used tune reconstitution efficiency 
from WT level to effectively none, and there exists an intermediate regime with a differential effect based 
on whether intC is TC cargo or intracellular. 
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Figure A9.2. Functional test of split intein cargo signaling. a A functional assay was conducted for 
ligand-inducible receptor signaling incorporating split inteins. A panel of intC and intN pairings from the 
mutagenesis assay was evaluated for compatibility with the MESA signaling mechanism by measuring 
reporter signal in three scenarios: (1) VP64-intN and TC:intC-ZF1 with vehicle (EtOH), (2) VP64-intN, 
TC:intC-ZF1, and MESA protease chain (PC) with vehicle, and (3) VP64-intN, TC:intC-ZF1, and PC with 
receptor ligand (rapalog). Outcomes are considered ideal if reporter signal is low in the first two scenarios 
and high in the third. However, we observed that for each pairing, reporter signal was similar regardless of 
PC co-expression or ligand treatment. This result does not support the ability of PC to cleave intC-
containing cargo from the TC, and instead indicates that the conditions in which reporter signal was 
observed were due to residual interactions between intracellular intN and TC-bound intC partial-mutant 
variants. These designs were not carried forward, but variants with different intracellular linker lengths were 
evaluated in the next panel. b Functional assay to assess the effect of TC intracellular linker length. We 
hypothesized that introducing more physical distance or geometric flexibility between the protease 
recognition sequence (PRS) and cargo would enable PC-mediated cleavage of TC:intC-ZF1. The base 
case TC linker had one glycine-serine (GS) repeat, and between one and five repeats were tested for 
mutant intC-ZF1 cargo co-expressed with mutant VP64-intN and for VP64-ZF1 cargo. For the case with 
intC-ZF1 cargo, reporter signal increased with increasing linker length; however, a signal increase occurred 
regardless of PC co-expression and ligand treatment. Therefore, modifications to the TC membrane-
proximal region did not alleviate the inability of the PC to cleave these TCs. It is possible that the effect of 
increasing linker length is to make the membrane-proximal intC more accessible (resembling intracellular 
intC) to intracellular intN. For the case with VP64-ZF1 cargo, there was low reporter signal with PC and no 
ligand, and there was high reporter signal with PC and ligand, demonstrating that a ZFa can be effectively 
used on MESA. For increasingly long linkers, the reporter signal decreased. Based on these findings, we 
chose to use full transcription factors such as ZFa as cargo. Linkers for subsequent TCs contained one GS 
repeat.  
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Figure A9.3. Adapting MESA for inhibitory signaling. MESA with DsDed-ZF1 cargo can ligand-inducibly 
signal to inhibit target gene expression. In this assay, treatment with EtOH or rapalog was applied both at 
the time of transfection and at the time of media change (rather than only at the latter) to promote inhibitory 
signaling upon expression of the receptor, analogously to inhibition that could take place upon expression 
of the intracellular inhibitor. 
 
 


