
NORTHWESTERN UNIVERSITY

Methods for Improving Natural Language Processing Techniques

with Linguistic Regularities Extracted from Large Unlabeled Text Corpora

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Michael Ryan Lucas

EVANSTON, ILLINOIS

September 2019



2

Abstract

Natural Language Processing methods have become increasingly important for a variety of high-

and  low-level  tasks  including  speech  recognition,  question  answering,  and  automatic  language

translation.  The state  of  the art  performance of  these  methods  is  continuously  advancing,  but

reliance on labeled training data sets often creates an artificial upper bound on performance due to

the limited availability of labeled data, especially in settings where annotations by human experts

are expensive to acquire. In comparison, unlabeled text data is constantly generated by Internet

users around the world and at scale this data can provide critical insights into human language.

This work contributes two novel methods of extracting insights from large unlabeled text

corpora in order to improve the performance of machine learning models. The first contribution is

an  improvement  to  the  decades-old  Multinomial  Naive  Bayes  classifier  (MNB).  Our  method

utilizes  word  frequencies  over  a  large  unlabeled  text  corpus  to  improve  MNB’s  underlying

conditional  probability  estimates  and  subsequently  achieve  state-of-the-art  performance  in  the

semi-supervised setting.  The second contribution is  a novel  neural  network method capable of

simultaneous generation of multi-sense word embeddings and word sense disambiguation that does

not rely on a sense-disambiguated training corpus or previous knowledge of word meanings. In

both cases,  our  models  illustrate  the benefit  of  how modern machine learning approaches can

benefit from the disciplined integration of large text corpora, which are constantly growing and

only becoming cheaper to collect as technology advances.



3

Acknowledgments

I would like to extend my deepest gratitude to my PhD advisor, Doug Downey. I found every

minute we spent together invaluable and I am humbled by the depth of knowledge and experience

you shared throughout our work together. Thank you for your research advice, real-world advice,

teaching and leadership opportunities, and helping me through good and bad times over the years.

You were my navigator through the murky world of graduate research studies and helped me find

my own path to becoming a better researcher, educator, mentor, and dreamer.

I would also like to extend sincere thanks to my dissertation committee members, Brenna

Argall and Haoqi Zhang, who provided indispensable feedback and direction at various stages of

my research at Northwestern. Your insights into the strengths and weaknesses of my work and

helped me discover and share the bigger picture of my work.

Over the years, I had countless engaging interactions with a number of other incredible

professors at Northwestern University. I especially want to thank Lance Fortnow, Jason Hartline,

Nicole Immorlica, Brent Hecht, Ming Kao and Jorge Nocedal for your mentorship and advice.

To  Yi  Yang,  Chandra  Sekhar  Bhagavatula,  Thanapon  Nor,  Mohammed  Alam,  Zack

Witten,  and  David  Demeter  –  my  colleagues  in  the  WebSAIL  program –  thank  you  for  the

countless  hours  we  spent  at  whiteboards,  pouring  over  papers,  having  a  beer,  writing  code,

rewriting code, and being great friends along the way. I always look forward to hearing about your

recent accomplishments.

I would like to thank all of the incredible who made a significant impact on my life during

my graduate education: Justine Albert, Matt McLure, Yorgos Askilidis, Mark Cartwright, Christine

Hosey, Soraya Lambotte, Philipp Tillmann, Dan Zou, Dan Nguyen, Jessica Evans, Parker Guidry,

Royen Kent, Micah Kronlokken, Zafar Rafii, Arefin Huq, Chen Liang, Jody Moser, Marc Palmeri,



4
Rob & Haley Yaple, Robert Sandoval, Justin Connell, Eric Sczygelski, Martin McBriarty, Albert

Lipson,  Reda Al-Bahrani,  Eric  Sheets,  Matt  Montalbano,  Paul  Olczak,  David  Meyer,  Douglas

Boyd, Anthony Giannini,  Ray Laurens,  Tri Banh, Nima Haghpanah, Greg Stoddard,  Bach Ha,

Darrell  Hoy,  Jason  Sendelbach,  Monique Filardi,  Bo Guthrie,  Dustin  Fox,  Mat  Barber,  Jason

Taylor, and Zane Blanton. You kept me sane. You opened my eyes to so many unique perspectives.

I hold every one of you close to my heart. I hope that as we spread across the world, we find new

ways to share the best of ourselves with the lives we touch.

Above all, I want to thank my family. Aunt Patsy, thank you for the years of education you

gave me when I was young and PhD advice you shared with me years later. My brother Thomas

will always feel like a twin to me. To sufficiently express my full appreciation of him would require

another PhD of research, but I hope that all of the positive energy and work that I put into this

world find their ways back to him. My parents Theresa, Bill, and Hilary can’t be thanked enough.

They are my guiding lights, my shining stars in the night.

This work would not have been possible without the funding provided by Northwestern

University and DARPA contract D11AP00268.



5

Dedication

For Frances Ryan, Willy & Mary Helen Almaraz, and Mary Lucas & Terry Vanduzee.

This work is a manifestation of the unconditional love and support you gave me at every step.



6

Table of Contents

Abstract 2

Acknowledgments 3

Dedication 5

Table of Contents 6

List of Figures 7

List of Tables 9

Chapter 1: Introduction 10

Chapter 2: Multinomial Naive Bayes with Feature Marginals 14

2.1 Topic Classification and Sentiment Analysis 16

2.2 Multinomial Naive Bayes 20

2.3 Augmenting Multinomial Naive Bayes with Feature Marginals 24

2.4 Experimental Results 33

2.5 Conclusions 38

2.6 Multi-Class Extensions of MNB-FM 39

2.7 Analysis of Zhao et al. (2016) 40

Chapter 3: Multi-prototype Neural Network Language Models 44

3.1 Language Modeling 49

3.2 Overview of Neural Networks 55

3.3 Neural Network Language Modeling Methods 63

3.4 Previous Multi-Prototype Word Embedding Methods 70

3.5 A Multi-Prototype Neural Network Language Model 79

3.6 Experimental Results 90

3.7 Conclusions 105

Chapter 4: Conclusions and Future Work 108

References 112



7

List of Figures

Number Page

1 Left: A biological neuron (BruceBlaus, 2017)....................................................... 55

2 Left:  A single-layer  perceptron can only  solve linearly-separable classification
problems.  Right:  An example of the perceptron’s  limited ability  to create an
XOR classifier (http://playground.tensorflow.org).................................................. 58

3 According  to  the  Universal  Approximation  Theorem,  any  function  can  be
approximated with a large enough hidden layer. Illustrations generated by (http://
playground.tensorflow.org) demonstrate how two neural networks with different
hidden  layer  dimensions  may  generate  different  approximations  of  the  XOR
function.................................................................................................................. 59

4 Illustrations  from  (http://playground.tensorflow.org)  demonstrate  a  neural
network  with  2  hidden  layers  solving  the  XOR problem over  1000  training
iterations of backpropagation................................................................................. 62

5 Word embeddings are capable of encoding deeper linguistic information such as
concept relationships. Seen here are 2- and 3-dimensional projections of high-
dimensional  word  vectors  that  demonstrates  analogies  encoded  in  the  word
embedding............................................................................................................. 64

6 An n-gram-inspired neural network language model (Bengio et al., 2003)............ 65

7 The recurrent neural network language model proposed by Mikolov et al. (2010). 68

8 The  context-clustering  step  proposed  by  Reisinger  and  Mooney  (2010).  The
words listed for each cluster are determined by highest cosine similarity to each
respective cluster mean.......................................................................................... 72

9 A neural network language model proposed by Huang et al. (2012)...................... 73

10 The Multi-Sense Skip-Gram Language Model (Neelakantan et al., 2014)............ 75

11 Illustrations of the skip-gram models proposed by Liu et al. (2015). Each model
incorporates document-level topic predictions to identify word senses.................. 78

12 The MPNNLM is very similar to the neural network language model proposed
by Bengio et al. (2003), but has a tanh output layer that predicts back into the
word embedding vector space................................................................................ 80

13 Perplexities of competing initial vector-to-vector settings. In the legend, Input
refers  to  whether  the  model  continues  backpropagation  to  the  input  words.
Output is whether the model uses a tanh activation function for the output layer... 93

14 An initial distribution of 50 cities (red), 25 words related to “last” (yellow), and
25 random words (purple) projected to 2 dimensions using the t-SNE algorithm.. 94

15 Distribution of word vectors from Figure 14 after 25 iterations of training over



8
the 50Cities corpus................................................................................................

16 Distribution of single-prototype word vectors after 25 iterations of training over
the 50Cities corpus when the word “last” and “Chicago” have been conflated....... 97

17 Adding a second prototype vector for the conflated words (“last” and “Chicago”)
during unsupervised training of the MPNNLM allows the model to correctly
identify appropriate meaning clusters for the two word prototypes........................ 100

18 The distribution of multiple prototype vectors per word after training over a 5
million token subset of the Google Gigaword corpus for 4 iterations. Using the
same settings as in the last_Chicago experiment results in a less semantically
interesting distribution........................................................................................... 102

19 Perplexity of the MPNNLM trained in the fully multi-prototype setting over 21
million word tokens................................................................................................ 103

20 The distribution of various words vectors related to polysemous words (“man”,
“Washington”, “plant”, and “day”) after training over a 5 million token subset of
the Google Gigaword corpus for 4 iterations.......................................................... 104



9

List of Tables

Number Page

1 Summary of the Amazon reviews data set from Yang and Liu (1999), reprinted
from Lucas and Downey (2013)............................................................................. 30

2 Summary of the Reuters ApteMod data set from Blitzer et al. (2007), reprinted
from Lucas and Downey (2013)............................................................................. 30

3 Summary of the RCV1 data set from Blitzer et al. (2007), reprinted from Lucas
and Downey (2013)............................................................................................... 31

4 F1-Score for various text classification experiments, number of documents in the
labeled corpus in parentheses (Lucas and Downey, 2013)..................................... 34

5 F1-Score over the RCV1 corpus with with a labeled corpus of 10 documents....... 34

6 F1-Score over the RCV1 corpus with with a labeled corpus of 100 documents..... 34

7 R-Precision  for  various  text  classification  experiments,  training  size  in
parentheses (Lucas and Downey, 2013)................................................................. 35

8 Scalability  of  competing  SSL  methods  as  the  number  of  documents  in  the
unlabeled  text  corpus  grows  (Lucas  and  Downey,  2013).  The  table  displays
average run-times measured in seconds................................................................. 36

9 Conditional  Probability  Improvement  of  MNB-FM  over  MNB  (|DL|  =  10)
(Lucas and Downey, 2013).................................................................................... 37

10 Conditional  Probability  Improvement  of  MNB-FM over  MNB (|DL|  =  100)
(Lucas and Downey, 2013).................................................................................... 37

11 Comparison of the Amazon data set summary between Zhao et al. (2016) (left)
and Lucas and Downey (2013) (right).................................................................... 41

12 Perplexity  of  different  initial  vector-to-vector  settings  corresponding  to  the
charted results in Figure 13.................................................................................... 93



10

Chapter 1

Introduction

After  decades of artificial  intelligence research,  computational  methods for interpreting natural

language have yet  to achieve human-level performance,  in large part  due to the complexity of

human languages. Modern natural language processing (NLP) approaches can create approximate

representations of linguistic concepts such as vocabulary and grammar, but these methods lack a

true  means  of  interacting  with  non-digital  aspects  of  the  world,  so  they  lack  the  ability  to

understand human experience and the many reasons that language exists in the first place.

Fortunately,  many  other  research  fields  within  artificial  intelligence  (AI)  have  achieved

super-human abilities in recent years without requiring an understanding of the physical world. The

AI milestones of IBM’s Deep Blue beating Kasparov in 1999 and Google’s AlphaGo beating Lee

Sedol in 2016 gathered the world’s attention as search-based methods have mastered increasingly

complex adversarial games. Similarly, image processing methods are being used to navigate self-

driving cars (Bojarski et al., 2016) and scan high-resolution images of tissue biopsies to detect the

cancer composition at a higher rate than professional cancer histologists (Sirinukunwattana et al.,

2017).

The most public exhibition of state-of-the-art NLP was a performance by IBM’s Watson

engine over the course of three episodes of NBC’s Jeopardy!, in which Watson competed against

the two winningest human contestants in the show’s history, Ken Jennings and Brad Rutter. Watson

soundly  beat  both  human  opponents  despite  making  occasional  errors.  This  victory  relied  on

pairing  game-theoretic  strategies  with  a  number  of  advanced  NLP  techniques  including:  the

parsing of short phrases, identification of explicit and implied concepts, disambiguation of words or



11
phrases that have multiple meanings, utilization of expansive knowledge bases and ontologies, and

logical chaining of concepts and “thoughts” to arrive at a single final answer for each prompt. Many

of these tasks require hand-tuned symbolic reasoning approaches over extensive knowledge bases,

which contrast heavily against neural network approaches which are trained over billions of words

of human writing.

Historically,  training the large neural  networks of today’s  AI research was prohibitively

expensive due to the limitations of computer hardware and a lack of effective technologies for

distributed  computing.  Theoretically  interesting  models  such  as  Long  Short  Term  Memory

networks (Hochreiter and Schmidhuber, 1997) achieved state-of-the-art results over a decade after

their initial conception due to drastic decreases in the cost of computation (Sundermeyer et al.,

2012). Many other neural network advancements were driven by new software frameworks such as

Torch (Collobert et al., 2011),  Tensorflow (Abadi et al., 2016), and Keras (Chollet et al., 2015),

which  provide  user-friendly  abstractions  of  most  fundamental  neural  network  components,  a

variety of training and analysis methods, and automatic support for distributed computing.

In NLP research, many modern advancements are due to unsupervised neural networks that

learn from enormous collections of high-quality human writing. These models have demonstrated a

surprising ability to extract and compress the semantic meaning of vocabularies by learning one

high-dimensional vector per word. A number of distinct neural network architectures have been

shown to learn a final distribution of words within high-dimensional space that is also intuitive to

human  interpretation  (e.g.  synonyms  are  often  found  very  close  to  each  other).  Even  more

incredible, these vector representations can be applied to a variety of NLP tasks that the initial

neural network wasn’t explicitly learning to accomplish such as word sense disambiguation (Huang

et al., 2012), language-to-language translation (Zou et al.,  2013), and named entity recognition

(Pennington et al., 2014). A notable advantage to training these neural networks is that they only



12
require large amounts of human writing as a training input. Enormous data sets of news articles,

books,  product  reviews,  research  publications,  and  conversations  have  been  gathered  from the

Internet and shared to the NLP research community. Training these models over larger and more

diverse  data  sets  typically  provides  better  results,  so  faster  neural  network  frameworks  and

felicitous neural architectures are vital to the advancement of neural network NLP research.

The work we present in this dissertation focuses on the second direction: extending previous

machine learning methods to identify and learn specific features of language from large unlabeled

text corpora. Models that can efficiently learn from unlabeled text increasingly outperform state-of-

the-art  supervised  models,  especially  in  settings  where  training  labels  must  be  provided  by

expensive human annotators.

Our major contributions are two novel machine learning methods that can integrate a large

unlabeled text corpus during training in order to drastically improve the model’s representations of

the English language.  The first  of these contributions  is  a  semi-supervised modification to the

Multinomial Naive Bayes (MNB) method for text classification.  Our work demonstrates how a

highly scalable measurement of word frequencies over large text corpora can be calculated once in

advance and subsequently used to generate improved MNB classifiers over any binary classification

task within this corpus. Our experiments show that these improved classifiers outperform existing

semi-supervised  models  in  the  Sentiment  Analysis  and  Topic  Classification  tasks  while

simultaneously incurring only a marginal cost to training time over the traditional MNB model.

Historical  methods  for  integrating  large  unlabeled  corpora  for  text  classification  tasks  are

significantly  slower  and  only  outperform  our  proposed  model  in  a  small  fraction  of  our

experiments.

The second major contribution is a fully unsupervised neural network language model that

is capable of learning and distinguishing between distinct meanings of polysemous words in the



13
English language.  We demonstrate  that  an n-gram neural  network language model designed to

predict  into  high-dimensional  word  embedding  space  is  capable  of  learning  distinct  vector

representations  for  each  distinct  meaning  of  a  polysemous  word.  Our  experiments  show  that

conflating multiple  meanings  of  a  word into a  single  vector  has  a  negative  effect  both on the

model’s performance and on the interpretability of the model’s learned word embedding. Although

our experiments are limited to variations of our own model, we expect that the results of these

experiments indicate that traditional neural network language models may be constrained by the

assumption  that  a  single  vector  representation  per  word  is  sufficient  for  modeling  the  English

language. The most interesting result of this model is in its ability to disambiguate the meaning of

polysemous  words  using  the  surrounding  context  words.  Word  Sense  Disambiguation  is  a

traditionally supervised and requires humans to manually label the meaning of each occurrence of a

polysemous word, however we find that our model is capable of inferring the number of meanings

of polysemous words as well as training representative word vectors for each meaning.



14

Chapter 2

Multinomial Naive Bayes with Feature Marginals

Multinomial  Naive  Bayes  (MNB)  is  a  machine  learning  method  can  be  trained  to  classify

documents as belonging to one of two or more distinct predefined classes. MNB classifiers are

generic and can be used for a variety of text classification tasks (e.g. to predict whether a play was

authored by Shakespeare, to estimate the star-rating of an Amazon review, or to categorize a news

article within a fixed number of of news categories). Importantly, the traditional implementation of

MNB is a supervised machine learning method, which means that it can only learn from documents

that were previously tagged with the correct classification (Manning, 1999). Subsequently, every

new classification task to be learned over the same text corpus requires a new labeling effort – if

each document in a corpus of blog posts is labeled as being about cosmetic supplies or not, it would

need to be labeled again to train a MNB classifier if blog posts are about computers or not.

Labeling a text corpus for tasks such as text classification requires human effort,  which

means limits the size of the labeled corpus by the cost of obtaining human labels. This is especially

challenging in settings where highly-paid experts are required for labeling. In contrast, the Internet

has  provided  a  wonderful  medium  for  global  communication  and  humans  are  increasingly

connecting the Internet in order to write news articles, product reviews, messages for their friends,

and an almost  uncountable  number  of  other  reasons.  Our work in  Lucas  and Downey (2013)

provides  a  method  for  utilizing  information  extracted  in  advance  from a  large  unlabeled  text

corpora  to  improve  the  performance  of  the  traditional  MNB  classifier.  Our  method,  called

Multinomial Naive Bayes with Feature Marginals (MNB-FM), requires a single pass over a large

unlabeled text corpus in which we calculate word frequencies.  Notably,  calculating these word



15
frequencies is efficient and easily parallelizable. MNB-FM is designed to use these frequencies to

improve the MNB’s classification performance for classification tasks over documents within this

corpus. When training over a labeled data set,  MNB-FM specifically updates MNB’s per-word

parameters to correct those which are over- or under-represented in any small labeled corpus given

more global estimates of word frequency within the large unlabeled corpus. Existing state-of-the-

art  semi-supervised  text  classifiers  require  multiple  iterations  over  the  unlabeled  corpus  and

sometimes prohibitively complex training calculations for every new classification task. MNB-FM’s

distinct advantages over these methods are word frequency calculations over the unlabeled corpus

are both efficient to compute and are limited to a single run before any training begins. Afterwards,

the frequencies be efficiently be applied to any number of classification tasks within this large text

corpus. The time required during training and evaluation of MNB-FM is independent of the size of

the unlabeled corpus. Furthermore, MNB-FM generally outperforms supervised classifiers that use

larger labeled data sets (details in Section 2.4), allowing us to explore practical trade-offs such as

labeling  smaller  data  sets  over  many  more  classification  tasks  while  still  achieving  the  same

classification performance of previous state-of-the-art methods.

In this chapter, we will explain the common text classification tasks of Topic Classification

and Sentiment Analysis (Section 2.1) as well as the standard design of the MNB classifier and its

limitations  when trained over small  labeled data  sets (Section 2.2).  Next,  we will  describe the

Multinomial Naive Bayes with Feature Marginals (MNB-FM) classifier published in  Lucas and

Downey (2013) (Section 2.3).  We demonstrate  how MNB-FM’s improved parameter estimates

increase its performance in the Topic Classification and Sentiment Analysis tasks (Sections 2.4 and

2.5). Finally, we explain a method for expanding the MNB-FM classifier to the multi-class setting

(Section 2.6) and follow up on unexpectedly poor results of the MNB-FM model in Zhao et al.

(2016) (Section 2.7).



16

2.1 Topic Classification and Sentiment Analysis

Machine learning research in natural language spans a large number of challenges, from translating

a document between two languages to identifying which Wikipedia article is most relevant to a

mention of Chicago (the Broadway musical or the city in Illinois)  to identifying the verb in a

sentence such as “The old man the boats” (the answer is “man,” though it’s not obvious even to

humans). In our work on extending the Multinomial Naive Bayes classifier to the semi-supervised

setting, our experiments were limited to the tasks of Topic Classification and Sentiment Analysis.

This section will  explain both tasks as well as the numerous metrics that are used to measure

performance of text classifiers.

Topic  Classification.  Given  a  fixed  set  of  known  document  labels,  topic  classification is  the

challenge of identifying which labels are relevant to a given document. For example, one might

expect that a newspaper article titled “President Obama Celebrates Chicago Cubs' World Series

Win at the White House” should be labeled as a sports article instead of a politics article even

though Barack Obama and the White House are mentioned in many political articles. The article

text will likely focus more on sports than on politics, but this case illustrates how topic classification

can be challenging for machine learning methods – it’s simply not enough to count topic-related

words or concepts. The overall context must be taken into account, which is much more difficult.

The task of topic classification specifically assumes that for any given set of target topics, T,

there is a function f that can map individual documents to the subset of topics each contains:

f T : d→T d⊆T

Machine  learning  methods  for  topic  classification  assume  that  the  hypothetical  fT can  be

approximated given a large enough set  of documents with corresponding accurate topic labels.

Most text classification methods convert the multi-topic classification problem of into a series of

one-versus-all  problems  that  rely  on  classifying  |T| binary  classifiers.  Each  binary  classifier  is



17
responsible  for  generating  a  prediction  of  whether  its  topic  applies  to  a  given  document  by

approximating a theoretical topic-specific labeling function:

f i :d→{True , False}

Depending upon the machine learning classifier, binary classification may require heavily redundant

computations when  |T| dependent classifiers are independently trained. The results we explain in

Section 2.5 compare implementations of MNB, MNB-FM, and state-of-the-art topic classifiers in

the binary classification setting.

Sentiment Analysis. In Sentiment Analysis, document labels are focused on subjective aspects of

the writing,  such as whether the writer is  happy or enjoyed a recent  restaurant visit.  One can

imagine  that  phone  manufacturers  are  interested  in  whether  online  discussions  about  a  newly

released phone are generally positive or negative, but that it would cost too much money to pay

employees to read and label every conversation. Instead, training a Sentiment Analysis classifier on

a smaller set of labeled phone reviews can allow the manufacturer to quickly assess whether the

general reaction to the phone is positive or negative at a much lower cost.

We limit our experiments to binary classification, but provide multi-class extensions to our

work in Section 2.6 (page 39). Multi-class sentiment analysis models can be trained to distinguish

between multiple emotions such as happiness, sadness, frustration, and indifference, but a separate

approach is to use one-vs-many binary classifiers that learn one target emotion per classifier. Our

work focuses on a single sentiment for which there are large available data sets: whether an online

product review is positive or negative. We use a well-known collection of Amazon product reviews

and assume that any review with a rating below 3 stars is negative, above 3 stars is positive, and

discard 3-star ratings altogether. The Amazon sentiment classification data set Blitzer et al. (2007)

is described in more detail in Section 2.3 (page 24).



18
Our experiments on the Blitzer et al. (2007) data set accurately reflect the above example of

determining whether a cell-phone review is positive or negative. Sentiment classification of this

data set is traditionally trained and evaluated separately for each distinct category of product, which

allows researchers to identify if there are category-specific differences in language that can assist or

hinder various classifiers. For example, the word ‘buckle’ in a product review may indicate that a

ladder collapsed (indicating a likely negative review) or refer to a piece of an article of clothing

(which is unlikely to indicate review polarity). In Sentiment Analysis, the binary classification task

for each product category is reduced to independently approximating functions of the form:

f i :d→{Positive , Negative}

Evaluation Metrics. To evaluate the performance of various machine learning methods on Topic

Classification and  Sentiment  Analysis,  we use standard binary  classification metrics.  Individual

binary classifiers are trained to predict  whether documents in a training corpus  D  belong to a

specific topic Ti. In the supervised setting, human labels are provided for every document in D that

assert whether the document belongs to topic  Ti. If  D was selected uniformly at random from a

larger pool of documents, classification methods that use prior estimates of the frequency of topic

Ti will  often  perform much better  when  applied  to  the  documents  that  were  not  selected  for

labeling.  Once  the  training  stage  is  complete,  we  can  objectively  evaluate  the  classification

performance of a classifier by having it predict the labels of documents in a held-out evaluation

corpus, D*.

The  metrics  we  use  to  evaluate  model  performance  directly  compare  the  models’

predictions for each document in the evaluation corpus against its corresponding human label. For

documents in D* that a human labeled as belonging to topic Ti, correct predictions by any classifier

are known as true positives (often abbreviated as  TP), while incorrect predictions are known as



19
false positives (FP). Similarly, the documents labeled by the classifier as not belonging to topic Ti

are either correct, true negatives (TN), or incorrect, false negatives (FN).

The above intermediate collations provide the foundation for higher-level metrics, which are

designed  to  more  accurately  convey  classification  performance  because  simple  metrics  can  be

misleading in a variety of settings. One of the most basic classification metrics is  accuracy – the

fraction of predictions over the test corpus that were correct:

Accuracy=
TP+TN

TP+FP+FN+TN
(1)

One can imagine a  number of  settings  in  which accuracy may not  be the  ideal  measure.  For

example, it may be of critical importance that a binary classifier designed to diagnosis medical

patients  always  identifies  patients  who are positive  for  the disease,  even if  the classifier  has  a

tendency to overly predict the presence of disease because a doctor can perform a followup analysis

without risking that the disease goes undiagnosed. In such a setting, the  recall  metric explains a

model’s ability to detect all at-risk patients:

Recall=
TP

TP+FN
(2)

Conversely, the precision metric is useful in settings where it is much more important to be correct

when a positive prediction is made than to incorrectly classify a negative as a positive. One example

is an essay plagiarism classifier, which would be responsible for detecting whether a student has

submitted an essay that likely plagiarizes a known document. It would be dangerous to rely on such

a model unless it was known that the model rarely flags a paper unless it is plagiarized. Precision is

defined as follows:

Precision=
TP

TP+FP
(3)

F1-Score.  One of  the most  important  metrics  used for  evaluating binary  classification models

natural language applications is the F1-Score, a simplified version of the F-Measure, which strikes a



20
balance between Precision and Recall and only yields a perfect score when both scores are perfect,

but yields a 0% if either Precision or Recall is 0. The F-Measure is frequently used in place of

accuracy when the positive and negative classes are heavily imbalanced, which is often the case in

natural  language tasks  where identification  of  a  rare  text  topic  is  common.  F-Measure  uses  a

predefined parameter β and is defined as follows:

Fβ=(1+β
2
)⋅

Precision⋅Recall
β

2
⋅Precision+Recall

=
(1+β2

)⋅TP

(1+β2
)⋅TP+β2

⋅FN+FP
(4)

The best value for  β depends upon the relative importance of Precision and Recall for the given

application. When β<1, F-Measure is more heavily weighted toward the recall metric and similarly

when β>1, it is weighted more toward precision. For our experiments, we rely on the F-Measure

metric  to evaluate classification performance because F-Measure penalizes classifiers  that  over-

classify  toward  the  majority  class  in  highly-skewed  data  sets,  while  accuracy  encourages  this

behavior. Our experiments do not have a motivation for favoring either precision or recall, so we

set β=1 for our use of the F-Measure. This is also known known as the harmonic mean of precision

and recall or the F1-Score:

F1=2⋅
Precision⋅Recall
Precision+Recall

(5)

2.2 Multinomial Naive Bayes

Multinomial  Naive Bayes (MNB) is  a classic machine learning technique for binary document

classification. MNB classifiers  learn from a set of training documents that are labeled as either

positive (belonging to a specified target class) or negative.  For example, if a company wanted to

determine whether new blog posts about their newly released product was positive or negative, the

company could train a MNB classifier over the text of known positive and negative reviews for



21
similar products, feed the text of a new blog post into the MNB classifier, and receive a prediction

of whether model believes the author had a positive sentiment for the product..

Traditionally, the MNB classifier is a supervised machine learning method – it learns from a

training set of documents with known labels. For the above task, a training set could be cheaply

collected by purchasing an existing collection of Amazon reviews or automating a web browser to

navigate Amazon product listing pages, extracting customer review text and ratings, and labeling

each review as positive or negative based on its associated star rating. Regardless of the method

used to collect the text of the Amazon reviews, we assume that the corresponding star-rating for

each review is also included, which makes labeling the training reviews essentially free compared to

the cost of collecting the reviews themselves. Amazon reviews with 4-5 stars (out of 5) are typically

interpreted as positive labels, while reviews with 1-2 stars are labeled as negative and reviews with

3 stars are discarded.

Training.  At its core, the  MNB classifier estimates conditional word probabilities over a labeled

text corpus so that it  can then classify future unseen documents.  In the training data set,  each

document is labeled as positive or negative, depending on whether or not it belongs to the target

class. The MNB model ignores order of text within a document and instead a sparse bag-of-words

representation for each document as its input, d = {w1, …, w|V|}, where wi is the number of times

word  i occurs in the given document. This clearly has the effect of removing any contextual or

nuanced information that  must  be discerned from word order.  For example,  the  bag-of-words

representation of an Amazon review such as “The shipping time was awful, but the phone itself is

amazing” is equivalent to that of “The shipping time was amazing, but the phone itself is awful,”

but we expect the second review to have a much lower star-rating than the first.

Training a MNB classifier boils down to the calculation of conditional word frequencies. For

each word, we calculate the word’s frequency within the positive and negative classes separately.



22
For  the  positive  class,  these  conditional  word  frequencies  are  represented  as  P(wi|C)  – the

probability that a word token drawn uniformly at random from all known documents of class C will

be word  wi.  For clarity,  we use  P(wi|¬C) to  represent  word’s  conditional  probability  over the

negatively labeled training documents (i.e. documents that belong to “not the class”).  P(wi|C) is

calculated over the labeled training documents according to Equation 6.

P(w i|C)=
∑
d∈DC

wi

∑
d∈DC

∑
w j∈d

w j (6)

Calculation of these feature marginals is straightforward: Take one pass over the training set and

accumulate  word counts  for  every  unique word  in  the  training set’s  vocabulary,  distinguishing

between occurrences in positive and negative documents. Then for each word, calculate the ratio of

occurrences of that word vs all words separately for both classes.

Classification. Given an unknown document d = {w1, …, w|V|}, the MNB classifier determines the

likelihood that  d was drawn from the class  C using the marginal probabilities according to the

Bayes’ theorem of conditional probability:

P(C|d)=
P(C)P(d|C)

P(d )
=

P (C)P (w1 , ... ,w|V||C)

p(w1 , ...,w|V|
)

(7)

The  MNB classifier  assumes  that  the  class  that  produces  the  highest  probability  according  to

Equation 7 is the most likely class for the given document. Our experiments are limited to binary

classification, so Equation  7 is evaluated twice – once to estimate the probability of the positive

class  using conditional  word frequencies  estimated  over the positive training documents  and  a

second time for the negative class.  Note that  the denominator in Equation  7 is equal  for both

classes, so calculations can be simplified by calculating and comparing only the numerator for each

class. One can iteratively simplify this calculation as follows:



23

P(C|d)∝P(C )P(d|C )

P(C|d)∝P(C )P(w1|C)
w i

P (w2 , ... ,w|V||C)

P(C|d)∝P(C )P(w1|C)
w i

P (w2|C ,w1)
w2

... P(w|V||C ,w1,... ,w|V|−1)
w|V|

(8)

MNB classifications that use Equations 7 or 8 are generally impossible to calculate for documents

of any interesting length because they would require many documents with exactly the same bag-

of-words representation to be labeled, but human writing has incredible variety and we don’t expect

to see this in practice. Instead, the numerator of Equation  7 can be simplified if one makes the

naive Bayes assumption – the MNB classifier assumes pair-wise independence in the conditional

probabilities between words, allowing the following simplification:

P(C|d)∝P(C )P(w1|C)P(w2|C)... P(w|V||C)

P(C|d )∝P(C)∏
w∈d

( p (w i|C )
w i

) (9)

Smoothing Techniques.  MNB implementations require the use of a smoothing technique to give

non-zero probability to words that haven't been seen. One argument in favor of naively smoothing

0-probability words is that any word should have a non-zero probability of occurring in any context,

especially given that the conditional probabilities are estimated over small labeled data sets in the

supervised learning setting. The standard baseline smoothing technique is Add-1 Smoothing:

θw
C
=

N w
C
+1

N C
+∣V∣

(10)

Unknown words.  When classifying  documents  that  don’t  belong  to  the  training  set,  it  is  not

uncommon to encounter a word that didn't occur in the positive or negative training documents.

For  a  word  that  did  not  occur  in  a  specific  class’s  labeled  training  documents,  a  literal

implementation of Equation 9 would assign 0 probability to that class when P(w i|C)=0 for any

word  wi.  Many  MNB  implementations  add  an  unknown  word  to  the  vocabulary,  wunk.  The

conditional frequency assigned to wunk in each class depends on the implementation, but the most

common values are 1 (because of Add-1 Smoothing) or to combine the rarest words in the labeled



24
corpus order to estimate the likelihood of new unknown rare words. This combination process is

often called  pruning,  which involves replacing all words that occur less than a fixed number of

times over the training set (often 3) with wunk. This typically reduces the model’s understanding of

any individual rare word, but allows it to accurately model the general likelihood of rare words in

aggregate.

2.3 Augmenting Multinomial Naive Bayes with Feature Marginals

This section and the remaining sections of Chapter 2 discuss our published results in Lucas and

Downey (2013). The traditional Multinomial Naive Bayes (MNB) classifier is a supervised machine

learning method, meaning it requires each document in the training corpus to be hand-labeled, but

we are motivated by classification tasks for which document labels are not affordable on a large

scale.  Creating a data set  of news articles with labels of political  and apolitical  would require

collecting a  large number of  news articles,  which is  very cheap compared to  having a  human

annotator read each article and label it according to the target class for a training corpus. There are

a number of existing news article data sets that include topic labels assigned by human annotators

for each document (Lewis et al., 2004; Yang and Liu, 1999), but more challenging labeling tasks

are inherently more expensive. Another common caveat is that human annotators may disagree

about  subjective labels or  provide an incorrect  label  altogether,  so accurately  labeled data  sets

generally require multiple human annotators per document and agreement metrics such as inter-

rater reliability are used to verify the accuracy of the training labels (Artstein and Poesio, 2008). It

is  no  surprise  then  that  Amazon  review  data  sets,  which  assume  that  written  reviews  about

purchased products are in agreement with the reviewer’s assigned numeric rating (Amazon’s rating

system is a range of 1 to 5 stars), are significantly cheaper to collect than news topic data sets.



25
There are a number of important  natural  language tasks for which we still  need hand-

labeled data sets to train machine learning algorithms. To collect large training sets affordably, one

obvious approach is to minimize the per-label cost. Alternatively, the same improvement achieved

by  labeling  larger  data  sets  can  often  be  obtained  by  maximizing  the  amount  of  information

gleaned from each human annotation.

A variety of approaches have been designed to augment small human-labeled data sets by

including  external  sources  of  data.  Semi-Supervised  Learning (SSL)  is  a  category  of  machine

learning methods that learn from both labeled and unlabeled training instances of the same type

(documents  in  our case),  taking distinct  advantage of  the fact  that  unlabeled data  sources  are

constantly growing and becoming more cheaply available while hand-labeling remains expensive.

SSL methods have shown that intelligent use of unlabeled data can often lead to a drastic increase

in the performance of machine learning methods (Chapelle, 2006).

In Lucas and Downey (2013), we consider the scalability concerns of existing SSL methods

for binary document classification. Existing approaches such as Expectation-Maximization (Nigam

et al., 2000) and Label Propagation (Zhu and Ghahramani, 2002) require multiple passes over the

entire unlabeled corpus, but this often limits the size of the unlabeled text corpus that can be

utilized by these methods. Of further concern is that some SSL methods can't transfer knowledge

extracted from the unlabeled corpus to another model, so training must begin anew for each new

target concept.  Our approach, which we call  Multinomial  Naive Bayes with Feature Marginals

(MNB-FM), utilizes word counts over a very large unlabeled corpus to improve existing classifiers

that can be trained over different classes at a later time. These word counts will not change, so they

only need to be computed once in advance and can then be utilized to improve any number of

MNB classifiers.



26
The traditional MNB classifier requires a training set of documents that are labeled as to

whether or not each document belongs to a target class. At training time, MNB calculates every

word’s  frequencies  in  both  the  positive  and  negative  labeled  document  classes.  These  word

frequencies are the parameters the MNB classifier uses to generate predictions on new unseen

documents. Our MNB-FM model relies on the fact that most labeled text training sets are relatively

small compared to some of the recently available text corpora collected for NLP research that

contain sometimes billions of words (Chelba et al., 2013). Calculating word counts over extremely

large text corpora can be made more efficient with distributed computation methods and does not

rely on human-curated labels.

MNB-FM utilizes these word frequencies from the large unlabeled text corpus to improve

the accuracy of the MNB classifier’s marginal probabilities, especially for words that have large

difference  in  estimated  frequencies  between  the  labeled  and  unlabeled  data  sets.  One  clear

advantage to this method is that only word counts are recorded over the large unlabeled corpus,

which is a relatively compact amount of information and counting word tokens scales easily for

massive  corpora.  A  second  advantage  is  that  MNB-FM  improves  the  estimates  of  MNB’s

conditional probabilities while simultaneously accounting for the fact that natural language data sets

are often heavily skewed – for example, Amazon reviews in the Music category of the Amazon

Aptemod data set are 91.7% positive (4 or 5 stars in a scale from 1 to 5) (Blitzer et al., 2007). We

will  show  how  MNB-FM’s  MLE  constraint  (Equation  17,  page  29)  accounts  for  imbalances

between  the  token  counts  within  the  positive  and  negative  labeled  document  classes  and

accordingly adjusts the conditional probability estimates.

We compared MNB-FM against both Supervised and Semi-Supervised Learning methods:

Multinomial  Naive  Bayes,  Naive  Bayes  with  Expectation  Maximization  (Nigam et  al.,  2000),

Logistic Regression (Cox, 1958), Label Propagation (Zhu and Ghahramani, 2002), and a recent



27
state-of-the-art method known as Semi-supervised Frequency Estimation (Su et al., 2011). Our

experiments require drastic limitations of the Label Propagation method due to its computational

requirements  and  the  number  of  documents  in  our  unlabeled  corpora.  Our  experiments

demonstrated that MNB-FM was faster and more accurate than the competing SSL methods. 

MNB-FM.  In  Lucas  and  Downey  (2013),  we  utilized  accurately  measured  feature  marginals

(single-word frequencies)  from a large unlabeled corpus,  DU,  to improve the noisy conditional

probability estimates that the MNB classifier typically only learns using a small labeled corpus.

MNB-FM showed that these simple measurements were sufficient to smooth the MNB's conditional

probabilities more accurately than simple smoothing methods such as Add-1 Smoothing (Equation

10) and state-of-the-art semi-supervised text classifiers. After calculating the feature marginals over

the unlabeled text corpus,  our MNB-FM method can be used to improve any MNB classifier.

Consider the following equation:

P(w)  = θw
C Pt (C)+θw

¬C Pt(¬C)   

               =  θw
C Pt (C)+θw

¬C
(1−Pt(C ))

(11)

Equation 11 decomposes the marginal probability of word w into its conditional probabilities given

the positive and negative classes, and Pt(C), the probability that a randomly drawn token from the

labeled data set, DL, occurs in a document of class C can be calculated using Equation 12:

Pt(C )=

∑
d∈DC

|d|

∑
d∈D L

|d|
(12)

The equality in Equation 11 holds for estimates of P(w) over the labeled corpus. However, if we

assume that that the language in the unlabeled and labeled corpora are very similar, we can rely on

the more reliable estimate of  P(w) by replacing it with  PU(w), the marginal probability for the

same word over the much larger unlabeled corpus. In our work, we assume that we can substitute

PU(w) directly for P(w) in Equation 11, but this will break the equality in most cases. The key idea



28
in MNB-FM is to assume that PU(w) is the correct value of word w’s frequency, so it is similarly

logical to assume that at least one of the three remaining parameters in Equation 11 must also be

adjusted for the equality to hold. Each word token in the training corpus contributes to the estimate

of Pt(C), so we assume that Pt(C) is accurately estimated by the training corpus and use MNB-FM

to identify more accurate values for the conditional probabilities θw
C and θw

¬C .

Solution  Derivation.  MNB-FM uses  a  Maximum Likelihood  Estimation  (MLE)  approach  to

adjust the marginal probabilities. For a given word w, the maximum likelihood estimates of θw
C

and θw
¬C given the training data are:

argmax
θw

C ,θw
¬c ;∀w∈V

P(DL|θw
C ,θw

¬C
)

= argmax
θw

C ,θw
¬c ;∀w∈V

(θw
C
)
(N w

C
)
(1−θw

C
)
(N¬w

C
)
(θw

¬C
)
(N w

¬C
)
(1−θw

¬C
)
(N ¬w

¬C
)

= argmax
θw

C ,θw
¬c ;∀w∈V

Nw
C ln(θw

C
)+N¬w

C ln(1−θw
C
)+N w

¬C ln(θw
¬C
)+N¬w

¬C ln(1−θw
¬C
)

(13)

Note that the third line in Equation  13 is the natural log of the second line, though steps were

skipped in simplifying the distribution of the natural log function. Taking the natural log is a strictly

monotonic increasing transformation of line 2, so maximizing line 3 is equivalent to maximizing

line 2. Before we take the derivative, we rewrite the constraint from Equation 11 as:

θw
¬C
=K−θw

C L (14)

Where  we  made  the  following  substitutions  for  compactness  and  interpretability  of  the

subsequent equations:

K=
P(w)

Pt (¬C )
; L=

P t(C)
P t(¬C)

(15)

By substituting Equation 14 into Equation 13, the optimization is reduced to one free variable:



29

argmax
θw

C , θw
¬c

P (DL∣θw
C ,θw

¬C
)

= argmax
θw

C

N w
C ln(θw

C
)+N¬w

C ln(1−θw
C
)+N w

¬C ln(K−Lθw
C
)+N ¬w

¬C ln(1−K+θw
C
)

(16)

Now, to identify the values which maximize Equation 16, we take its derivative. The optimal values

for θw
C can be found at the solutions of Equation 17:

0=
Nw

C

θw
C +

N¬w
C

θw
C
−1

+L
N w

¬C

Lθw
C
−K

+L
N¬w

¬C

θw
C
−K+1

(17)

There  are  four  solutions  to  this  equation,  but θw
C and θw

¬C are  probabilities  and  are  thus

constrained to values in [0,1]. This only occurs for both probabilities when 0<θw
C< K

L . If Nw
C

and Nw
¬C have non-zero counts, then vertical asymptotes at 0 and K

L guarantee a solution in this

range. We use the Newton-Rhapson method to solve this equation (Newton, 1969). If an answer

does not exist in the valid range, we default to Add-1 Smoothing of the conditional probabilities, a

standard practice of the MNB classifier. Finally, after optimizing θw
C and θw

¬C for every word,

we normalize the sum of the marginals for each class to 1 in order to obtain valid probabilities.

Data Sets.  A number  of  classification experiments  were conducted over multiple  data  sets  to

determine whether MNB-FM was capable of improving MNB's classification performance.  We

compared our results  against  those of existing state-of-the-art  Supervised and Semi-Supervised

methods and used multiple data sets to conduct our evaluations, specifically Amazon sentiment

analysis data set (Blitzer et al., 2007), the ApteMod Reuters news corpus (Yang and Liu, 1999),

and the RCV1 news corpus (Lewis et al., 2004).



30

The Amazon data set  is  composed of online product  reviews and was designed for  Sentiment

Analysis evaluations. Specifically, each document includes the text of a review from the internet

retailer Amazon.com as well as the reviewer's corresponding rating of the product. A 4-star or 5-

star rating is interpreted as positive, while a 1-star or 2-star rating is negative and 3-star ratings are

discarded  as  ambiguous.  The  classifiers  are  trained  to  determine  whether  a  product  review is

positive based solely upon the review text. As Table  1 demonstrates, the Amazon categories are

skewed strongly toward 4- and 5-star reviews, presumably because higher-rated items are purchased

more frequently, which biases the overall likelihood of a positive review.

Table 1. Summary of the Amazon reviews data set from Yang and Liu (1999), reprinted from
Lucas and Downey (2013).

Table 2. Summary of the Reuters ApteMod data set from Blitzer et al. (2007), reprinted from
Lucas and Downey (2013).



31

The  Reuters  Aptemod  and  RCV1  data  sets  are  two  traditional  news  article  data  sets

collected  for  topic  classification.  Each  data  set  specifies  a  series  of  news  topics  that  machine

learning classifiers are expected to learn to identify (e.g. “economics” or “agriculture”). ApteMod

consists of only 10,788 categorized news articles, each of which can have multiple classes. Our

experiments were limited to the 10 largest classes, which are listed in Table  2. The class skew

varies considerably, but only Earnings comes close to a 50/50 split (which makes it difficult for

models to simply default to one class or another).

ApteMod was a popular data set for many years, but is now considered too small to model

the  “large  unlabeled  data  sets”  that  motivate  semi-supervised  techniques.  RCV1  is  a  Text

Classification data set of news articles with multiple labeled categories, as with the ApteMod data

set,  however the  document  categories  are  nested  hierarchically,  so  we took the  5 largest  base

classes, shown in Table 3.

In order to evaluate the various methods, we trained each one on small labeled data sets of

10, 100, or 1000 documents. These training sets were selected as uniform random subsets of 1000

documents from the training corpus. The smaller training sets were simply the first 10 or 100

documents generated for each training set of 1000 documents. The remaining (N-1000) documents

were used as the evaluation set, but the SSL methods were given these (N-1000) documents as the

unlabeled training corpus, which is a practice known as Transductive Learning.

Table 3. Summary of the RCV1 data set from Blitzer et al. (2007), reprinted from Lucas and
Downey (2013).



32
Competing Methods.  In order to evaluate the performance of  our model  against  other  likely

choices,  we  used  a  variety  of  Supervised  and  Semi-Supervised  classifiers.  The  first  was  an

implementation of Naive Bayes with Expectation Maximization based on (Nigam et al., 2000). We

selected our parameters on a separate data set (Mann and McCallum, 2010) and found that they

slightly outperformed the published results, validating our design choices. Our implementation ran

Expectation Maximization for 15 iterations and weighted unlabeled examples as 1/5 the weight of

labeled examples.

Our  Logistic  Regression  implementation  used  L2-Normalization,  which  we  found  to

outperform  the  L1-Normalized  and  Non-normalized  implementations  for  our  data  sets.  The

strength of the normalization was a parameter that we selected using cross-validation separately for

each training set. The selection of this parameter was based upon F1-Score using 10-fold cross-

validation.

To provide a more broad comparison of state-of-the-art semi-supervised methods, we also

implemented  a  heavily  constrained  version  of  label  propagation  (Newman,  2004).  A  true

implementation of label propagation creates an edge between all pairs of documents in both the

labeled  and  unlabeled  corpora.  Given that  the number  of  edges  in  a  fully  connected graph is

proportional to the square of the total document count, this becomes prohibitively large to model

for  larger  data  sets,  including  those  that  we  evaluate.  Instead,  our  implementation  of  label

propagation calculates a tf-idf weighted bag-of-word vector for each document in the labeled and

unlabeled corpus and uses cosine similarity (Equation 29, page 71) to connect each document to its

10 most similar documents. 

In label propagation, the labeled documents propagate their labels using their connections to

unlabeled documents. If the entire corpus is connected, we assume that the labels will eventually

propagate through the network over a number of propagation runs. During classification, the model



33
classifies each unlabeled document according to the class with the higher weight. We limited our

implementations to 100 iterations of the label propagation algorithm. Even with these aggressive

constraints, label propagation was only able to be evaluated over the smallest 10 of our 20 data sets.

Finally, we implemented a version of a recent model called Semi-Supervised Frequency

Estimate (SFE) (Su et al., 2011). Like MNB, SFE requires a smoothing method, but Su et al.

(2011)  did  not  specify  one.  Our  implementation  uses  Add-1  Smoothing,  which  yields  similar

results in our experiments to those the published by Su et al. (2011), but may not be optimal. SFE

is designed to improve MNB with marginal probability estimates P(w) computed over an unlabeled

corpus, but differently to the approach in MNB-FM, by leveraging the following equality:

P(C|w)=
PC(w)
P (w)

(18)

SFE then uses the P(w) estimate from the corpus to adjust both P(C|w) and PC(w). However, it

does so in a way that adjusts P(C|w) and PC(w) the same amount, where we use word counts to

estimate the accuracy of our feature marginals and adjust the probabilities accordingly.

2.4 Experimental Results

The primary results of our classification experiments are shown in Table  4. Unfortunately, Label

Propagation scales too inefficiently to run within the memory limits of our evaluation servers for all

of  our data  sets,  but  results  on the ApteMod data set  and the 5 smallest  Amazon classes  are

included for comparison.



34

The F1-Score evaluations from Lucas and Downey (2013) are summarized in Table 4. Not only did

MNB-FM drastically  improve  upon  the  performance  of  the  standard  MNB classifier  in  most

settings, but it outperformed competing state-of-the-art semi-supervised classification methods on

6 of the 9 binary classification tasks. Specific breakdowns of topic classifications within the RCV1

data set on smaller labeled training set sizes provide deeper insight into the results:

Table 4. F1-Score for various text classification experiments, number of
documents in the labeled corpus in parentheses (Lucas and Downey, 2013).

Table 6: F1-Score over the RCV1 corpus with with a labeled corpus of 100 documents
(Lucas and Downey, 2013).

Table 5: F1-Score over the RCV1 corpus with with a labeled corpus of 10 documents
(Lucas and Downey, 2013).



35
With 100 labeled documents, MNB-FM outperforms every method on the 5 RCV1 classes (Table

6). We can also see that SFE, a state-of-the-art semi-supervised method, performs very similarly in

the 3 largest topics, but MNB-FM notably outperforms all competing methods over the 2 smaller

topics where labeled document distribution is much more heavily skewed away from the target

topic (ECAT and GPOL respectively account for 15% and 7% of the RCV1 corpus).

Limiting  our  training  set  to  only  10  labeled  documents,  we  can  see  that  MNB-FM

outperforms all  competing methods in only 2 out of 5 classes (Table  5).  Notably,  MNB-FM's

performance  remains  competitive  in  every  topic,  especially  in  those  with  highly-skewed  class

distributions.  Both  Logistic  Regression  and  Label  Propagation  perform  poorly  in  these  cases

because they tend to default to the majority class when the labeled data set is highly skewed (this

results in high accuracy, but F1-Score penalizes this form of over-fitting).

Analysis –  While calculating the F1-Score in  our experiments,  we also evaluated each

method's ability  to rank documents using the  R-Precision metric.  R-Precision doesn't require a

perfect ordering of the test documents. Instead it measures the Precision (Equation 3, page 19) of

the R test documents the most positively, where R is the total number of positive instances in the

test set.

Table 7: R-Precision for various text classification experiments, training size in
parentheses (Lucas and Downey, 2013).



36
Table  7 shows the result  of our R-Precision experiments in  Lucas and Downey (2013).  These

experiments show that MNB-FM is a poor ranking measure over the ApteMod data set, where it

performs in the bottom half of the models for each training set size. On the Amazon and RCV1

data sets, we see that MNB-FM is quite competitive with the state-of-the-art methods, but Logistic

Regression is very well suited to ranking in a way that maximizes R-Precision.

We also measured run times for varying sizes of the unlabeled data set, which are recorded

in Table 8. NB+EM and Label Propagation methods scale poorly due to the number of passes they

require over the entire unlabeled data set during training. MNB scales well due to the Naive Bayes

assumption and MNB-FM’s calculations based on previously measured feature marginals results in

only  a  small  run-time  increase,  but  yields  a  significant  increase  in  F1-Score  and  R-Precision

performance.

Finally, we analyzed the impact that our MNB-FM method has on the feature marginals

themselves. In order to determine whether MNB-FM actually improved the MNB estimates, we

compared  the  final  conditional  probabilities  of  both  classifiers  with  the  true  conditional

probabilities over the large unlabeled set.

Table 8: Scalability of competing SSL methods as the number of documents in the unlabeled
text corpus grows (Lucas and Downey, 2013). The table displays average run-times measured

in seconds.



37

Tables  9 and  10 demonstrate that MNB-FM improves the marginal estimates for a majority of

unknown words, as well as the most common known and half-known words, even with only 10

labeled documents. We bucketed words by their frequencies and whether they occurred in both the

positive and negative classes (“Known” words), only in one of the two classes (“Half Known”), or

only in the unlabeled data set that the Feature Marginals were extracted from (“Unknown”). Both

tables  display  the  fraction  of  improved  feature  marginals  as  well  as  the  average  absolute

improvement applied to each feature marginal, where  improvement  is how much closer a feature

marginal is to the ground truth value after the MNB-FM adjustment. For context of the impact of

these results, we also include the total probability mass of each bucket. These experiments were

conducted over the MCAT category, which comprises 25% of the 801k documents in the RCV1

corpus.

Table 10: Conditional Probability Improvement of MNB-FM over MNB (|DL| = 100) (Lucas
and Downey, 2013).

Table 9: Conditional Probability Improvement of MNB-FM over MNB (|DL| = 10) (Lucas and
Downey, 2013).



38
In Table 9, the buckets that showed an improvement over MNB accounted for 80.0% of the

total  probability  mass.  This  demonstrates  that  with  only  10  labeled  documents,  we  can  still

calculate accurate marginal probabilities if we leverage a large unlabeled data set. In Table 10, we

find that the improved probability mass is reduced to 55.9%.

2.5 Conclusion

In  Lucas  and  Downey  (2013),  we  proposed  MNB-FM,  a  new method  for  smoothing  MNB's

conditional  probability  estimates  using  simple  estimates  from  a  large  unlabeled  corpus.  The

evaluations show that the improved conditional probability estimates calculated by MNB-FM not

only improved the performance of the traditional MNB classifier, but outperformed state-of-the-art

supervised and semi-supervised learning methods on text classification and sentiment analysis. In

particular, MNB-FM consistently outperformed the recent SFE model which also used marginal

probabilities from unlabeled corpus to directly improve MNB classification performance.

These results were obtained without increasing the computational complexity of the MNB

classifier. Instead, MNB-FM relies on counting marginal probabilities over a large unlabeled corpus

only once, which can be used later to optimize the conditional probabilities for any MNB classifier.

Given the ability to reuse the same marginal probabilities and the inherent simplicity of the MNB

classifier’s  training  calculations,  MNB-FM  scales  extremely  well  compared  to  existing  SSL

methods.



39

2.6 Multi-Class Extensions of MNB-FM

Our work in Lucas and Downey (2013) was limited to the binary classification setting of the MNB

classifier. However, MNB’s conditional probabilities are calculated independently for each class and

it is trivial to extend MNB to any number of classes (we simply need a set of labeled documents for

each considered class). In the multi-class setting, the final prediction of a MNB classifier is the

class which has the largest probability according to Equation 9 (page 23).

A multi-class extension of MNB-FM is less straightforward, but not difficult to implement.

However, we have not derived a method for calculating the exact conditional probability values that

optimize the MLE equation (Equation 13, page 28). In the multi-class setting, optimizing the MLE

equation  is  equivalent  to  identifying  the  conditional  probabilities  that  maximize  the  following

generalization of Equation 13:

argmax
θw ;∀w∈V

P(DL
|θw

c2,θw
c1 ,... ,θw

ck)

=argmax
θw ;∀w∈V

∏
c∈C

(θw
c
)
(N w

c
)
(1−θw

c
)
(N ¬w

c
)

=argmax
θw ;∀w∈V

∑
c∈C

Nw
c ln(θw

c
)+N¬w

c ln(1−θw
c
)

(19)

In the binary classification setting, we use Equation 11 (page 27) to reduce Equation 13 to one free

parameter for which we can solve. In the multi-class setting, Equation 11 generalizes to: 

P(w)  =  ∑
c∈C

θw
C Pt(C) (20)

Although under-specified optimization problems do not guarantee a single solution, we expect that

the  easiest  method  of  solving  this  system  of  equations  for  any  number  of  classes  is  by

implementing an existing optimization method that doesn’t require fully-specified systems.



40

2.7 Analysis of Zhao et al. (2016)

Following  our  publication  of  Lucas  and  Downey  (2013),  our  model  was  independently

implemented for comparison against other semi-supervised text classifiers in Zhao et al. (2016).

This  publication demonstrated an alternative  method for  semi-supervised scaling of  MNB and

directly  compared  against  an  independent  implementation  of  the  MNB-FM  method.  The

performance of the Zhao et al. (2016) implementation performed much worse than expected given

the results in Lucas and Downey (2013). We have thoroughly compared these implementations and

found that differences in the preprocessing of text data sets thoroughly explain the results in both

publications.  The  following  section  will  resolve  the  discrepancies  between  these  papers  and

demonstrate that MNB-FM’s poor performance in Zhao et al. (2016) can be traced to the removal

of rare words.

In 2016, another semi-supervised improvement to MNB that leverages feature marginals

was published (Zhao et al., 2016). In a direct comparison between the two approaches, Zhao et al.

(2016) found that  their  Multinomial Naive Bayes model with Word-level Statistical Constraints

(MNB-WSC) frequently outperformed both MNB-FM and SFE (introduced at the end of Section

2.3). Many of Zhao’s experiments were performed over the same data sets we used in Lucas and

Downey (2013), but the reported results over identical classes showed that MNB-FM performed

much worse in Zhao et al. (2016) than in Lucas and Downey (2013). We found it very important to

resolve  these  differences  due  to  the  surprising  difference  in  performance  between  these  two

implementations of our method.



41

In  Zhao et  al.  (2016),  many of  the  reported  experiments  showed that  MNB-FM only  slightly

improved over the traditional MNB classifier. This was unexpected given the calculated significance

of the improvements we published in Lucas and Downey (2013). Fortunately, many of the data sets

between the two publications overlapped, which made it very easy to re-evaluate our model and

determine the reasons for the poor performance. Zhao et al. (2016) published experimental results

over 5 different data sets, two of which were RCV1 and Amazon ApteMod. This included 4 of the

10  Amazon  classes  in  Lucas  and  Downey  (2013).  Crucially,  table  11 displays  fundamental

disagreements of the data set and vocabulary sizes for a number of document classes used in both

publications. 

Although both publications relied on the same source data sets for our experimentation, we

were able to contact the authors of this publication and obtain the data sets they used to train the

various models. Notably, these data sets were were preprocessed and converted to the Weka ARFF

format, a format compatible with the Weka machine learning platform (Holmes et al., 1994). An

initial inspection showed that the number of documents and vocabulary size matched the values

published in Zhao et al. (2016), but not the values in Lucas and Downey (2013).

Next, we found that we could duplicate the results published in Zhao et al. (2016) using the

provided  ARFF-format  data  sets  with  our  own  implementation  of  MNB-FM,  the  same

implementation we used in Lucas and Downey (2013). Our implementation verified the MNB-FM

Table 11: Comparison of the Amazon data set summary between Zhao et al. (2016) (left) and
Lucas and Downey (2013) (right).



42
performance in Zhao et  al.  (2016).  The two MNB-FM implementations have slightly different

results over the ARFF-format data sets, but these slight differences are likely explained by rounding

errors or different approaches to solving the MLE equation from MNB-FM (Equation 17, page 29).

As a reminder, we used a Scipy (Jones et al., 2001) implementation of Newton’s method to solve

Equation 17 and are unsure of the specific details of the implementation in Zhao et al. (2016).

At this stage, our original implementation of MNB-FM agreed with the performance of

Zhao  et  al.  (2016)  over  the  same  input  data,  but  discrepancies  in  the  published  results  and

differences in the data set statistics remained unresolved. We expected that identifying the cause of

the data set discrepancies would explain the difference in MNB-FM’s performance. Notably, Zhao

et al. (2016) explains that the authors “preprocess Multi-Domain Sentiment data set in a similar

way as Lucas and Downey (2013), since punctuation could indicate strong sentiment,” a reference

to our statement that we removed punctuation and stopwords. Both the Amazon Sentiment and

Reuters Aptemod data provide lists of stopwords for removal, which makes duplicating this process

straightforward.  Our  inspection of  the ARFF files  provided in  email  correspondence from the

authors of Zhao et al. (2016) showed that word counts for the rarest words were not included, those

words that occurred fewer than 3 times in a given class’ documents. We then verified that removing

stopwords,  punctuation,  and words with fewer than 3 occurrences from these data sets yielded

counts that matched those reported in Zhao et al. (2016).

In Lucas and Downey (2013), our analysis of MNB-FM included an explanation that many

of  the  performance  gains  of  MNB-FM  were  due  to  better  predictions  of  the  conditional

probabilities for rare words. MNB fails to take into account the fact that very rare words have a

non-zero  probability  of  occurring  in  a  small  labeled  data  set  and  the  estimated  conditional

probabilities for rare words will often be overestimated. Contrarily, MNB-FM considers the global

frequency of rare words and will decrease them if the word’s frequency within the much larger



43
unlabeled documents is lower than estimated over the labeled documents.  Removing words that

occur  fewer  than  3  times  from the  vocabulary  many  of  the  words  that  MNB-FM utilized  to

improve the MNB classifier. Our analysis in  Lucas and Downey (2013) demonstrated that rare

words  were  one  of  the  largest  segments  of  the  vocabulary  where  our  adjusted  conditional

probability estimates directly contributed to the improved performance of MNB-FM (Table  10,

page 37). Words this rare are very hard to model statistically due to the inherent random and noisy

nature of sampling events with very low probability. However,  accurately modeling conditional

probabilities for rare words may not have much  individual value, but  Lucas and Downey (2013)

shows that MNB-FM uses these words  in aggregate. Due to the long-tailed distribution of word

frequency, rare words make up a large fraction of a typical text corpus – 23% of RCV1’s MCAT

vocabulary occurs less than once per 100,000 tokens (Table 10). MNB-FM adjusts the conditional

probabilities of these rare words in the same manner as all other words, but the frequency of rare

words as as whole allows them to provide a significant impact to the performance of MNB-FM’s

predictions.

Our follow-up analysis of the  Lucas and Downey (2013) and Zhao et al. (2016) and the

conflicting results therein provide clear evidence that the different preprocessing techniques lead to

poor performance of the MNB-FM model in Zhao et al. (2016). This analysis allowed us to gain

further  insight  into  how  the  mathematical  underpinnings  that  drive  MNB-FM  lead  to

methodological and sensible improvements in the conditional probability estimates of the MNB

classifier.



44

Chapter 3

Multi-prototype Neural Network Language Models

The neural  network  is  one  of  the  oldest  machine  learning  models,  dating  back  to  perceptron

networks (Rosenblatt,  1957) that were inspired by new discoveries of how brain cells send and

receive  electrical  signals.  Many  subsequent  improvements  showed  promising  theoretical

implications,  but  were computationally  infeasible  to  evaluate or  even train given limitations  of

computer  hardware  (Rowe,  1969).  The  advent  of  the  backpropagation  algorithm  for  training

complex  neural  networks  (Rumelhart,  1985)  and  recent  advances  in  computing  hardware  and

programming languages have facilitated the efficient training of complex neural networks on large

data sets. Significant improvements in neural network performance have been achieved thanks to

the  modern computational  power of  GPU’s  paired  with  matrix-based neural  network software

frameworks such as  Torch (Collobert et al.,  2011),  Tensorflow  (Abadi et al.,  2016), and Keras

(Chollet et al., 2015). Simultaneously, these technologies have driven a revival of previous neural

network architectures.  With modern software and hardware,  these historical architectures often

achieve state-of-the-art performance in a number of language-related tasks, for example Recurrent

Neural Networks (RNN’s) (Williams and  Zipser,  1989) and Long Short Term Memory Neural

Networks (LSTM’s) (Hochreiter and Schmidhuber, 1997) have respectively achieved state-of-the

art  performance  in  Language  Modeling  experiments  thanks  respectively  to  modern

implementations by Mikolov et al. (2010) and Sundermeyer et al. (2012).

Natural  Language Processing (NLP) research in the early 21st century has been heavily

driven by the recent realization that neural networks are capable of generating powerful encodings

of  human  vocabularies  that  can  be  trained  over  huge  amounts  of  human-generated  text  and



45
subsequently  applied  to  many  supervised  and  unsupervised  NLP tasks.  These  neural  network

approaches  are  similar  to  previous  methods  that  simultaneously  learned  vocabulary  and  task-

specific  information  from  unlabeled  corpora.  For  example,  Landauer  and  Dumais  (1997)

demonstrated that Latent Semantic Analysis could estimate word similarity while simultaneously

discovering  and  clustering  documents  by  latent  topics.  Bengio  et  al.  (2003)  showed  that  by

representing each word as an initially random high-dimensional vector and using these word vectors

as inputs  to  a  neural  network,  the backpropagation algorithm for training neural  networks can

update  the  encoding  of  these  word  vectors  and  the  result  is  a  full  encoding  of  a  language’s

vocabulary. Experimental results also showed that many variations of this neural architecture were

capable of outperforming n-gram language models in the Language Modeling task (Bengio et al.,

2003).

After this breakthrough result, neural network architectures have achieved increasing state-

of-the art performance in a variety of linguistic tasks – Question Answering (Liu et al., 2017),

Sentiment Analysis (McCann et al., 2017), and Named Entity Recognition (Peters et al., 2017).

This capability is due in large part to learning high-dimensional vector encodings of vocabularies

using  neural  networks  as  demonstrated  by  Bengio et  al.  (2013).  These  encodings  are  now

commonly referred to as  word embeddings. Word embeddings were initially thought to be useful

only  as  inputs  the  specific  model  that  created  these  embeddings  while  learning to  accomplish

another  NLP  task.  It  was  later  shown  that  word  embeddings  can  encode  general  linguistic

information, such as in the surprising analysis of the word2vec model proposed by Mikolov et al.

(2013a).  Mikolov  et  al.  (2013b)  later  showed that  neural  networks  designed for  the  language

modeling task (essentially predicting which word that was removed from a given sub-sentence) were

capable of encoding complex relational information in their word embeddings. Fully training a



46
word2vec model produces a word embedding that can be used independent of the word2vec model

to complete SAT-style analogies such as “man:woman::king:____”.

Most modern state-of-the-art word embeddings are generated under the assumption that

each word has a single meaning, though we know this is not the case in human languages such as

English. For example, consider the multiple definitions of the polysemous word “pound,” which is

frequently used as a British currency, a synonym for “hit” (pounding a table), a unit of weight, and

a building for containing stray animals. Traditionally, neural networks are not taught to identify or

disambiguate a word’s disparate meanings and instead represent each word as a single vector in the

word embedding. Our analysis shows that this conflation warps the word embeddings related to

polysemous  words  and  has  a  downstream  effect  of  reducing  overall  language  modeling

performance. Using the above example, two meanings of the word pound – the British currency, a

noun, and the synonym for “hit”, a verb – are distinct not only in their meanings, but in their

contexts.  Due to the grammatical  differences  in the way nouns and verbs  are used,  these two

meanings will have different positions within English sentence structure, but we also expect the

meanings to be used in very different contexts – one when speaking about currency or transactions,

the other when applying force to an object (perhaps with another object). As such, any neural

network that trains only one vector per word must fold information about these distinct meanings

of “pound” into a single representation.

Our work provides thorough evidence that two problems arise when polysemous words are

represented with a single vector. First, there may not be a sensible location for a polysemous word’s

vector that will suit the needs of a neural network for input for every meaning of the word. Neural

networks that achieve state-of-the-art performance on NLP tasks rely on the fact that linguistically

similar words are co-located within the high dimensional vector space of a word embedding. This



47
is intuitively useful – if synonyms such as “bucket” and “pail” can be used interchangeably, learning

an  embedding  where  their  vector  representations  are  as  similar  as  possible  allows  the  neural

network to interpret these words interchangeably as well. We also find that antonyms are often co-

located when word embeddings are trained over the Language Modeling task (discussed in detail in

Section 3.1) due to the fact that words are used in similar contexts as their antonyms (e.g. “The

weather is a lot hotter/colder than it was yesterday.”). It then stands to reason that “pound” could be

co-located with currencies such as “dollar” and “yen” or with verbs such as “hammer” and “hit” in a

word embedding. However, we don’t expect that both sets of words should be co-located because

words like “hammer” and “yen” don’t share contexts or meanings, they are simply linked through

the word “pound.” It is then unclear where “pound” should be located, but our analysis shows that

polysemous words that have one dominant meaning are typically located with words related to that

meaning. For example, we find that neural networks learn representations for the word “Chicago”

close to American cities, but not next to Broadway musicals or classic rock bands.

The second notable issue can be illustrated with our previous example of the word “pound”

above. We find that when two meanings of a word are equally common, word embeddings will

frequently represent the polysemous word’s vector in the space between the two regions with words

related to these two meanings. When the distance between these two regions is large (as we find it

to be between currencies and synonyms for “hit”), the word is then interpreted as unlike both sets

of related words. We similarly find that the sets of words related to these two meanings are also

negatively affected – the unrelated words actually grow closer  together due to the difficulty of

placing just one word.

The fact that neural networks should only learn one representation per word is due to the

most  common method  for  training  word  embeddings.  Most  word  embeddings  are  created  by



48
training a neural network on the task of  Language Modeling,  which is the task of scanning over

huge amounts of text and learning to predict which word would most likely fill the blank in a given

context (e.g. “I ate _____ for breakfast today”). This is a generalization of the Language Modeling

task, but variations of Language Modeling and their specific objectives are discussed in Section 3.1.

Language  Modeling  is  a  very  complicated  challenge  for  machine  learning  algorithms  –  high

performance requires a deep understanding of a language’s vocabulary and a comprehensive range

of contexts for most words. Further, the task itself is inherently impossible to perform perfectly in

English – if only one word can fill any given blank, language would be incredibly rigid and less

expressive.

Recent research has shown that some neural network architectures are very capable of high

performance on language modeling tasks. Word embeddings are learned over incredibly large text

corpora billions of words in length, making  it prohibitively expensive to label every token of a

polysemous  word  with  its  corresponding  meaning  throughout  a  training  corpus.  Nevertheless,

modern neural network language models perform well under the assumption that all constituent

meanings  of  a  given  word  can  be  encoded in  a  traditional  word  embedding. Crossley  (2010)

reasons that polysemy is a natural trait of human languages due to the law of least effort: “speakers

will  economize their vocabulary by extending word senses in order to conserve lexical  storage

space... Because frequent words have the most senses, learners encounter highly polysemous words

most often.” The failure of modern word embeddings to learn multiple meanings per word implies

that the disparate natural locations of a polysemous word’s many synonyms must be compressed

into a single representation and we theorize that this undermines the semantic structure of trained

word embeddings.



49
In this chapter, we will demonstrate the design and performance of our proposed Multi-

Prototype Neural Network Language Model (MPNNLM). This model was designed to alleviate a

number  of  limitations  of  previous  single-prototype  and  multi-prototype language  models.  The

MPNNLM was designed with the following motivations:

• Model multiple word embedding vectors for polysemous words.
• Use  high-error  predictions  to  identify  when  a  word  has  an  unmodeled  meaning  that

requires a new vector representation.
• Disambiguate  words  in  any  unlabeled  unlabeled  text  without  relying  on  an  external

clustering or topic modeling approach.

The following sections will provide a comprehensive background of the language modeling task

and neural network models designed for generating single and multi-prototype word embeddings.

In Sections 3.5 and 3.6, we will explain the design of our multi-prototype neural network language

model and demonstrate its performance in a number of linguistic tasks.

3.1 Language Modeling

At a general level, a language model is any machine learning model that algorithmically learns from

human writing to accurately estimate the probability that  a human would write or say a given

sequence of  words.  Calculating  the likelihood of  a  single  phrase  is  not  itself  very  useful,  but

comparing the likelihood of similar phrases is the underpinning of a number of natural language

processing systems. For example, modern computers are capable of transcribing human speech to

text because accurate language models understand that “It was great to meet you” is more likely to

be written by a human than “It was grate to meat you.”

N-gram Language Models.  A variety of language model designs have been proposed over the

years and, for the most part, these models have a fixed ‘window size’ that defines the number of

input words. Limiting the size of the input alleviates a number of empirical concerns, including



50
how a  model  could store every  known sentence  and  its  likelihood of  occurring.  When longer

sequences of words are broken into chunks of n sequential words, it is called an n-gram and the any

language model that limits its input to n-grams is called an  n-gram language model. In the first

example above, a 4-gram model would compute individual probabilities for the “It was great to”,

“was great to meet”, and “great to meet you,” combine the estimates into a single probability for the

entire phrase and finally compare this probability to a variety of rhyming sentences’ probabilities to

determine which transcription is most likely.

Early logic-based and rule-based models could not scale to large text data sets, but early n-

gram models could efficiently extract statistics over and achieve state-of-the-art results in language

modeling (Jelinek and Mercer, 1980) and variations of the n-gram language model represented the

state of the art in language modeling from the early 80s to the late 90s (Goodman, 2001). The most

straightforward n-gram language model is a lookup table that stores the number of occurrences of

each n-gram that appears in the training text. This makes individual n-gram frequencies easy to

compute.

Over  time,  text  corpora  grew in  size  and  the  combination of  increasing  computational

efficiency and decreased data  storage costs  lead to  improved n-gram language models.  3-gram

(trigram) models were shown to outperform 2-gram (bigram) models, but it was often the case that

certain word triplets were too rare to get accurate frequency estimates. Language models rely on

the assumption that language is randomly generated based upon preceding contextual words. In

such a setting, very rare words are difficult to accurately model because they have high variance

compared  to  their  expected  probabilities.  As such,  a  number of  back-off n-gram models  were

designed,  which  smoothed  language  modeling  probabilities  with  bigrams  where  trigram

probabilities were sparse (Jelinek and Mercer, 1980; Katz 1987). Since then, data sets large enough



51
to yield accurate 5-gram probabilities have been released (Brants and Franz, 2006) and back-off

models continue to perform well (Chelba et al., 2013).

The storage required for n-gram lookup tables is theoretically exponential in the value of n,

but  in practice many n-gram data sets  remove any sequence of words that  occurs less  than a

specific number of times over the entire corpus. The Brants and Franz (2006) data set compresses a

1 trillion word corpus into a 5-gram lookup table with 13.6 million unigrams, 315 million bigrams,

977 million trigrams, 1.31 billion 4-grams, and 1.18 billion 5-grams. In this data set, grams of any

size that occurred less than 3 times were removed from the final lookup table and the initial release

was still 24 gigabytes when compressed. Generating and storing accurate n-gram language models

with large values of n remain prohibitively expensive, so NLP research is often focused on more

clever approaches that focus on more efficient parameter encodings.

N-gram models are often used to chain conditional probabilities for a given sequence of

words to predict the next word in a sequence. For example, a bigram model can be used to estimate

the probability that “England” follows the sequence “The queen of …” by computing:

P(The ,queen ,of ,England )
                 ∝P(The|<s>)P(queen|The)P(of|queen)P(England|of)

(21)

In this case, P(The | <s>) is the likelihood that “The” begins a sentence. We use the meta word

<s> to  represent  a  “start-sentence”  token,  which  allows  us  to  estimate  the  probability  that

sentences begin with the word “The”. As discussed previously, n-gram approaches requires a large

text  corpus  to  accurately  estimate  conditional  probabilities  for  common  and  especially  rare

sequences of words. Then, we can estimate the true probability that “England” would occur next,

but this requires calculating Equation 21  for every word in the vocabulary in place of “England.”

With  accurate  bigram probabilities,  we  expect  words  like  “France,”  “Sheba,”  and  “hearts”  to

receive higher probabilities than words unrelated to queens.



52
Purpose. Language modeling is very important for a variety of natural language processing tasks

where the context provided by previous words in a sequence can improve accuracy on subsequent

predictions.  The most  competitive  speech  recognition  methods  use  two models:  an  underlying

language model,  which attempts to reduce the search space over a given set of words,  and an

acoustic  model,  which  parses  an  audio  recording  into  a  sequence  of  phonemes  – sounds  that

combine to form words (e.g. “tough” is composed of the phonemes T-UH-F). For example, when a

speech recognizer reaches the word “park” in an audio recording of the sentence “He is reading in

the  park,”  an  acoustic  model  may  output  P-AH-R-K.  If  the  acoustic  model  has  trouble

determining whether the final word is “park” or “pork,” it can rely on a language model, which can

combine the previously predicted words with its learned model of the human language over many

previous mentions of “reading in the” to inform a more accurate prediction. 

In  general,  language  models  perform well  when  they  are  trained  on  large  amounts  of

human-generated  text.  Early  machine  learning  approaches  for  language  were  trained  on

comparatively small corpora, frequently in the form of digitized newspaper articles. This raises a

common concern in training machine learning models on text – a domain-specific corpus will likely

bias the model for better or good. Speech recognition algorithms generally rely on an underlying

language  model  and  a  newspaper  trained  language  model  may  perform very  well  for  a  news

reporter transcribing notes, but very poorly for a doctor.

Fortunately, modern technology provides access to massive amounts of human-generated

text in a variety of  formats,  qualities,  and topics.  Provided access  to  enough computation and

storage, n-gram lookup tables generated from large text corpora are capable of performing well,

even on domain-specific tasks (Chelba et al., 2013). For larger values of n, the increased context

window allows the n-gram model to capture consistencies in language in a way that surreptitiously

fragments domain-specific language.



53
Perplexity. The perplexity metric is frequently used to determine how different language models

compare in overall modeling of a given corpus. Language modeling requires a model to “read” a

sequence of words in text “w(t-i) … w(t-1) w(t)” as context and output a probability distribution

over the entire vocabulary for the next word – a vector containing a probability estimate for every

word in the vocabulary:

P⃗(t)=⟨P (w1|context ) ,P (w2|context ) ,... , P (w|V||context )⟩ (22)

A perfect model would assign 100% of the probability mass to word w(t+1) at every time t, which

is essentially impossible given the stylistic variety of human-generated text. Even given the first

99% of Shakespeare's Othello, it seems unlikely that any computational or human method will ever

reliably generate the remaining 1% of the script. As such, accuracy is a highly restrictive metric

that ignores the unpredictable nature of human language.

Perplexity  is  effectively  a  variation  of  accuracy –  it  rewards models  for  assigning  high

probabilities to the correct next word in a sequence, but ignores the predicted probabilities of all

other words. For any given text sequence,  s,  and a language model’s prediction over the entire

vocabulary for every word in s, P∈ℝ|d|
×ℝ|V| , perplexity is defined as:

Perplexity=2−L    where     L=
1
|s|
∑
t=0

|s|

P t(s t) log2(P t(st)) (23)

L is the  log-likelihood, but perplexity is more generally interpretable – a perplexity of 10 means

that on average, the language model assigned the correct word a probability of 1/10 = 0.1. For

clarity, Pt(st) is the probability the language model assigned to the correct value of w(t) at time t.

High  values  of  log-likelihood,  and  in  turn  low  Perplexity,  indicate  that  the  model  has  high

predictive ability over the sequence in s.

Word Error Rate. A popular alternative to perplexity is word error rate (WER), which is suited to

fields such as speech recognition. If a language model predicted “He reads in the pork” in the

previous speech recognition example, the subsequent time step would assume the prediction was



54
correct and generate a subsequent prediction over an incorrect input sequence, which can cause

errors to propagate quickly. Language models that perform well on WER return to the correct text

quickly after an incorrect prediction.

WER measures is specifically designed to measure the relatedness between the true text and

the predicted text, which can differ in content and length. Using hand-labeled test examples (in

Speech Recognition, this would be audio transcriptions), WER is evaluated as:

WER=
S+D+ I

N
(24)

The numerator  totals  the  number  of  errors  made by the language model:  S is  the number of

substitutions, D is the number of deletions, and I is the number of insertions. The denominator, N,

is the total number of words in the test corpus text.

Perplexity and WER provide a general idea of a model’s performance for most language

model use cases. Perplexity measures whether a language model is representative of given text

sequence and WER evaluates performance when language model doesn't know if its input sequence

is grammatical or sensible, but is especially useful when a language model is used in generative

settings. Language Modeling papers tend to show both metrics, giving both perspectives to the

reader. 

Recently, a simple n-gram-inspired neural network was shown to outperform the best 5-

Gram models, decreasing perplexity by 24% (Bengio et al., 2003). Our proposed language model

continues in the direction of neural network language modeling, which can be seen in Section 3.4.

Section 3.2 will provide the background necessary to interpret the design and results of the present

state-of-the-art neural network language models which are described in detail in Section 3.3.



55

3.2 Overview of Neural Networks

Here  we  provide  a  technical  background  of  the  various  neural  network  concepts  and  models

required to understand many of the concepts in subsequent sections. We will explain the important

aspects of neural network design, training/backpropagation, and evaluation, but we limit the scope

of  this  section  to  the  topics  necessary  for  explaining  the  multiple-prototype  neural  network

language  model  we propose  in  Section  3.5.  For  a  more  comprehensive  introduction  to  neural

networks, Bishop (1995) is an excellent resource.

Perceptrons.  Artificial  neural  networks are machine learning models  that  have a  long history,

dating back to early  attempts  to  computationally  model the brain’s  cellular  structure.  The first

successful  models  were  based  upon  the  concept  of  a  perceptron,  a  simplified  computer

implementation  of  the  cellular  neuron.  Modern  neural  networks  are  capable  of  multi-class

classification and regression, perceptrons are limited to binary output.

Figure 1. Left: A biological neuron (BruceBlaus, 2017).
Right: An illustration of a single neuron-inspired perceptron with n inputs.

Inside of the brain, specialized cells called neurons provide the basis for anatomical computation.

Due  to  the  brain’s  heavily  interconnected  structure,  its  computations  are  massively  parallel.



56
Computationally simulating a neural network of the scale of the human brain remains infeasible,

but a number of simplifications boosted perceptron network research to the forefront of artificial

intelligence research.

Each neuron receives chemical signals from its neighbors through its dendrites. The neuron

has  a  complicated  chemical  logic  that  determines  which  chemical  signals  it  should  emit  to

neighboring neurons through its  axon terminals.  Similar  to  the brain’s  neuronal  structure,  each

perceptron may  be connected to a number of other perceptrons and can aggregate signals from

other  perceptrons  through  its  input  connections.  A perceptron  may  also  emit  signals  to  other

perceptrons through its  output connections. The perceptron design retains a simplified version of

this concept of neuronal firing: a single perceptron will weight each of its input connections and

when the total weighted signal is above a given threshold, the perceptron will itself fire and signal to

its output connections. This firing was calculated with a very simple model:

output={1 if w⋅x+b>0
0otherwise } (25)

Feed-forward Networks. The human brain provided initial motivation for the perceptron network,

but  the brain’s  highly  connected nature was computationally  infeasible  to  model.  Many of  the

successful perceptron networks of the 1960’s were limited to  Feed-forward designs,  where the

input layer of perceptrons don’t receive signals from other perceptrons, but instead directly receive

data  as  input  from an  external  data  set  and  propagate  their  outputs  to  the  next  layer  in  the

perceptron network. In feed-forward networks, this process is repeated in a layer-by-layer fashion:

each  layer  receives  input  from the  perceptrons  in  the  previous  layer,  computes  the  activation

function for each of its perceptrons, and its activated outputs are then passed to the connected



57
perceptrons in the next layer. The final output layer yields the network’s overall prediction of the

objective function.

Feed-forward perceptron networks are binary classifiers with one or more outputs. For any

given binary function f over a real feature space of d dimensions, a perceptron classifier attempts to

approximate f :ℝ d
→{0,1}|o| . A training set can be used to verify the accuracy of the perceptron

network,  but  learning the optimal  structure and weights  of the connections  was a  complicated

process.

Unfortunately, programmatic methods for training complex perceptron networks had not

been designed. The best approaches for training complex perceptron networks, hand-tuning and

heuristic-informed  brute  force,  were  inefficient  and  unreliable  and  ultimately  limited  the

complexity of perceptron networks.  Rather than create multi-layer  networks,  many approaches

found success in one- or two-layer perceptron networks, but the difficulty of identifying optimal

weights  for deeper perceptron networks limited their  classification abilities  (Minsky an Papert,

1969). If perceptrons were expected to generate powerful models, they were expected to solve

atomic  logic  problems  in  a  simple  manner  in  order  to  scale.  Further  obstacles  to  advancing

perceptron network research arose when Minsky an Papert (1969) demonstrated that single-layer

perceptron networks were fundamentally limited in their classification ability, including generating

a simple XOR classifier from a single perceptron.



58

A  three-layer  solution  to  the  XOR-problem  exists,  but  Minsky  an  Papert  (1969)  provided  a

thorough exposition of the limitations of perceptron networks. If a complex classification problem

required a number of chained XOR layers, it would be nearly intractable to identify the correct

weights for the perceptron network without obviating the need for neural networks altogether. If an

oracle  is  necessary  to  identify  the  structure  and  weights  for  a  perceptron  network  to  best

approximate a target  function with heavy XOR logic,  using the same oracle  to build an XOR

network would be much more sensible.

Figure 2. Left: A single-layer perceptron can only solve linearly-separable classification
problems. Right: An example of the perceptron’s limited ability to create an XOR classifier

(http://playground.tensorflow.org).



59

Two decades after Minsky an Papert (1969), the advent of the backpropagation algorithm provided

an efficient method for training neural networks  (Rumelhart, 1985), again fueling interest in the

area of neural network research. Cybenko (1989) proved the  Universal Approximation Theorem,

demonstrating that neural networks with a single hidden layer that has a large enough number of

nodes could approximate any given function of any number of inputs and outputs variables and was

not limited to simple such as the XOR problem. In Figure 3, one can see that a 2-node hidden layer

is capable of solving the XOR problem with inputs x∈{0,1}2 and that doubling the hidden layer

allows for x∈[0,1]2 though we can see that the second neural network in Figure 3 is myopically

overfit to match XOR very close to the origin, but its predictions do not generalize as the values

move further from the origin.  In many cases, a neural network can achieve a similar or better

approximation by increasing the number of hidden layers and decreasing the number of nodes per

hidden layer. Although neural networks with multiple hidden layers or many nodes per hidden layer

may  be  theoretically  capable  of  approximating  any  function,  identifying  optimal  weights  of  a

Figure 3. According to the Universal Approximation Theorem, any function can be approximated
with a large enough hidden layer. Illustrations generated by (http://playground.tensorflow.org)

demonstrate how two neural networks with different hidden layer dimensions may generate
different approximations of the XOR function.



60
complex neural  network by hand or  through brute force is  becomes  incredibly  difficult  as  the

complexity of the neural  network increases.  The backpropagation algorithm is  an  instrumental

method for efficiently determining correct weights for feed-forward neural network structures and

facilitated the training of the deep neural networks we see in research today.

Backpropagation. Many of the perceptron network limitations described by Minsky an Papert

(1969) are caused by the difficulty of communicating to the network how to identify the optimal

weights  for  multi-layer  or heavily connected perceptron networks.  These limitations  were later

dispatched with the introduction of  backpropagation,  an algorithmic method for improving the

weights in  neural network models without requiring human hand-tuning or brute force methods

(Rumelhart, 1985). The backpropagation algorithm proposed by  Rumelhart (1985) required the

softening of the activation function such that it is continuously differentiable (sigmoidal functions

such  as  the  logistic  function  or  tanh  are  common choices).  Backpropagation  also  allows  each

neuron to improve its input weights based only on local information gathered through its input and

output connections. The modern concept of a neural network is simply a perceptron network that

uses a continuously differentiable activation function in place of the traditional step function and a

continuously differentiable loss function to judge the error of each prediction by the network. The

continuously differentiable requirement was the critical change that enabled the training of neural

networks  to  learn  using  gradient  descent.  Training  a  supervised  neural  network  with

backpropagation  follows  an  iterative  process  over  a  set  of  input  examples  with  corresponding

expected outputs. In this loop, we assume that the inputs and outputs are numeric, but we later

discuss how text can be converted to a representative numeric form:

1. One training example is given as the input to the neural network and propagated forward
through the network to generate output values in the same feed-forward manner as in a
perceptron network;



61
2. If  the  model’s  prediction  is  different  from the  corresponding  training  label, a  human-

specified loss function is used to estimate the loss (or error) of the network, which we then
use in the following gradient descent step;

3. A gradient  descent  method  is  applied  to  slowly  decrease  the  network  loss  over  many
training  examples  by  updating  the  network  weights  in  reverse  order  (called
backpropagation) – from the output layer to the input layer. 

The forward propagation step of neural networks differs from perceptron networks only in the

requirement that the activation function in each node is continuously differentiable, an important

requirement for gradient descent (step 3). One effect of using sigmoidal activation functions is that

the output of each node is generally limited to the ranges [-1,1] or [0,1], though a threshold can be

used to convert the output to a binary prediction (Cybenko, 1989).

One large benefit of backpropagation is that it is an automated method for using a labeled

data  set  to  train  a  neural  network.  When  training  the  neural  network,  a  single  input  vector

x i∈ℝ
d is  used  in  each  iteration  in  order  to  improve  the  model’s  ability  to  predict  its

corresponding label y i∈{0,1}|o| . The forward propagation step of the model concludes when the

neural network outputs pi, the model’s current prediction of xi’s label.

Once the neural network generates a prediction, the prediction loss is calculated using a loss

function. The loss function, L( y i , pi) , is specified before training the neural network begins and

converts  the  error  between  the  prediction  pi and  the  expected  output  yi to  a  real  value.  The

backpropagation algorithm is designed to decrease the loss of the neural network during training.

The loss function must align with the purpose of the neural network – minimizing loss should

maximize  the  performance  of  the  neural  network.  Similar  to  the  activation  function,

backpropagation requires that the loss function is partially differentiable with respect to the neural

network output, pi.



62
Given any neural  network constructed with continuously partially differentiable loss and

activation functions, backpropagation can be used to train the network over a labeled data set. At a

given time step t, the training instance xt is fed as input to the neural network, which generates a

prediction, pt, of the corresponding training label yt in a typical feed-forward fashion. Once the loss

is calculated, the weights connecting the output layer to the final hidden layer are updated:

δ ij=
∂ L( y t , p t)

∂wij =
∂L
∂ ot

j

∂o t
j

∂net j

∂ net j

∂wij

(26)

After every weight feeding into the output layer is updated, the backpropagation is sequentially

used to update input weights for each hidden layer in reverse order, from the output layer toward

the input layer. A full explanation and example of the backpropagation algorithm can be found in

Rumelhart (1985).

Figure 4. Illustrations from (http://playground.tensorflow.org) demonstrate a neural network
with 2 hidden layers solving the XOR problem over 1000 training iterations of backpropagation.

Backpropagation is  a gradient  descent algorithm, so it  requires  a large number of  incremental

updates in order to converge to a stable setting of the weights within a neural network. In practice,

this frequently involves iterating over the training set multiple times. Figure 4 illustrates the output



63
of a neural network solving the XOR-problem. The total loss calculated over the test and training

set is plotted in the top right and shows two major loss drop-offs. The first major improvement

occurs  around  250  iterations,  when  the  model  is  capable  of  fully  distinguishing  the  negative

(orange) points, visible in the middle snapshot taken at 500 iterations. The second major drop in

total loss occurs at approximately 600 iterations, when the neural network begins distinguishing the

upper left negative region from the remaining positive (blue) points. This plateauing behavior is

typical of the backpropagation algorithm – if the gradient is small, it may take many iterations

before the neural network may make progress.

3.3 Neural Network Language Modeling Methods

The first state-of-the-art performance achieved in language modeling achieved by a neural network

model was demonstrated in Bengio et al. (2003). The approach outperformed smoothed n-gram

language models, which were the previous state-of-the-art, but a more exciting result of the neural

network was unknown at the time: the neural network was designed to learn high-dimensional real-

valued  feature vectors for every word in the vocabulary and these vector representations would

prove extremely useful as inputs to machine learning for other natural language processing tasks.

For the remainder of this chapter, we will refer to these feature vectors as word vectors, which is

the more common terminology today. These terms are synonymous, but there may be confusion

when referencing earlier citations.  Similarly, when word vectors are learned by neural network

language models, it is standard to encode the entire vocabulary into the same high-dimensional

space, which is commonly referred to as a word embedding.



64

Figure 5. Word embeddings are capable of encoding deeper linguistic information such as
concept relationships. Seen here are 2- and 3-dimensional projections of high-dimensional word

vectors that demonstrates analogies encoded in the word embedding.
(http://www.tensorflow.org/tutorials/word2vec)

Fully-trained word embeddings have proven surprisingly useful for downstream tasks. Mikolov et

al. (2013b) demonstrated that some word embeddings can encode relational information that may

allow one to complete analogies such as “man:woman::king:__?__”. Machine translation can be

improved by embedding English and Chinese words in the same high-dimensional vector space

(Zou et  al.,  2013) or by training a dual-language neural network language model (English and

French) to simultaneously model both languages and generate related word embeddings (Bahdanau

et al., 2014).

This section will cover various models that represent the state-of-the-art of the nascent field

of neural network language modeling and that provide important context and background for our

neural network language model. Notably, these models assume that each word should have a single

meaning, though the following section provides a broad overview of existing models that can learn

multiple encodings per word.

Feed-forward  Language  Models. Bengio  et  al.  (2003)  proposed  the  first  Neural  Network

Language Model (NNLM) that  was capable of outperforming state-of-the-art  n-gram language



65
models. Bengio’s proposed neural network is itself an n-gram model, as inspired by state-of-the-art

smoothed n-gram language models of the era – the neural network takes n words as input (wt-n, …,

wt-1) and makes a prediction of the next word in the sequence, wt.

By design, neural networks require real numbers as inputs, so the input words must be

encoded as a real-valued vector. For each of the  n inputs, Bengio et al. (2003) used a one-hot

encoding of the entire vocabulary – in a vocabulary of size V, each input word was represented as a

V-dimensional  vector  entirely  composed  of  zeros  except  for  a  single  1  one  at  the  index

corresponding to the given input word.

Figure 6. An n-gram-inspired neural network language model (Bengio et al., 2003)

Figure  6 captures the design of the neural network language model proposed by Bengio et al.

(2003). Given a the input word sequence, a prediction of the next word begins with the input layer.

The model finds the word representation for each of the n-1 context words in Lookup Table C, a

matrix that stores d-dimensional word representations for every word in the vocabulary. In Bengio

et al. (2003), the hidden layer outputs are calculated using tanh, a sigmoidal activation function:



66

hi=tanh( ∑
x j∈input layer

V ij x j) (27)

After  the  values  for  the  hidden  layer  nodes  are  calculated,  the  output  layer  calculates  a

probability distribution over the entire vocabulary predicting which word is likely to occur next

in the sequence. The output layer has a node for every word in the vocabulary, each signaling the

likelihood of its corresponding word occurring next. The value for each output node,  o(wi), is

calculated using a weighted sum of the hidden layer values and a  softmax function normalizes

the outputs into a valid probability distribution summing to 1:

softmax (o (w i))=
eo(w i)

∑
j=1

|V|

eo(w j)

    where     o(wi)=∑
h j∈H

W ijh j
(28)

When training the neural  network, the backpropagation step improves both the overall  model’s

predictive ability and the vector representations of the input words. Given a prediction of  w(t),

backpropagation  adjusts  the  weights  within  the  neural  network  to  increase  the  likelihood  of

predicting the  w(t) in future similar contexts. Updates of the network weights propagate to the

input layer and input word vectors are similarly updated according to the standard gradient descent

algorithm for backpropagation. As the model is trained over a text corpus, the word vectors in the

lookup table are constantly updated, eventually generating a well-structured word embedding.

The real strength of the neural network in Bengio et al.  (2003) is in the nature of this

simultaneous update. In a training process over a large vocabulary of human-generated text, each

word vector is modified by backpropagation over hundreds or thousands of training iterations. The

ideal destination for each word is uncertain, but the most intuitive result of this training process is

that  synonyms are  frequently  very  close  to  each  other  –  if  an  input  word  is  replaced  with  a

synonym, we expect the output prediction to be very similar.



67
Initial experiments demonstrated that  this NNLM outperformed the best  comparable n-

gram language model by 24%. The number of parameters in this model scales in Θ(|V|)  whereas

traditional n-gram models scale in  O(|V|^N) (Bengio et al., 2003), though the backpropagation

algorithm, which is calculated per word, is computationally expensive and often requires multiple

passes over the training corpus.

Recurrent Neural Network Language Models. N-gram neural network language models limit

the input context window to a fixed number of words and it has been shown that short contexts

provide insufficient information to complete sentences, even for humans. Owens (1997) polled 8

human  subjects  over  96  sentence-completion  tasks.  Given  a  10-word  string  with  one  word

randomly removed from the middle, participants were asked to rank the 3 words most likely to fill

the gap. Humans were capable of guessing the correct word with their first choice 26% of the time,

which was statistically significantly better than the 21% achieved by an n-gram approach. Of note is

that humans very strongly outperformed the traditional n-gram methods in predicting the part-of-

speech of the missing words. When humans guessed incorrectly, their top choices had the same

part-of-speech as the missing word in 70% of their predictions, while the n-gram model was only

capable of 52% accuracy (Owens, 1997). By design, n-gram models make predictions based on the

limited  window of  input  words  and  as  a  result  lack  other  contextual  clues  such  as  sentence

structure, writing style, or any understanding of mentioned concepts.

Machine learning models can achieve super-human performance at difficult challenges such

as playing chess,  but some challenges remain  AI-Complete – the category of machine learning

problems that are currently believed to require human-level intelligence to perform. Many language

tasks  are  AI-Complete,  such  as  translation,  conversation,  and  question  answering,  though it  is

uncertain whether achieving human-level language modeling performance is as difficult and some



68
modern  approaches  demonstrate  that  these  may  all  be  equally  achievable  by  neural  network

language  models  (Radford  et  al.,  2019).  Given  that  humans  have  a  difficult  time  accurately

completing the language modeling task, one must consider that human performance may provide

an artificial ceiling to the performance of machine learning models, but human performance has

historically provided insights into how we may improve language modeling algorithms. As with

human  predictions,  the  performance  of  both  traditional  n-gram  models  and  n-gram NNLM’s

improve as the input window increases (Bengio et al.,  2003). Unfortunately, traditional n-gram

models require exponentially large training texts to accommodate larger input windows. Given that

humans performed poorly with only 9 context words, it was considered unlikely that an n-gram and

neural network language models could perform well given a context window limited to only 5-10

words. A competing NNLM was later proposed by  Mikolov et al. (2010)  that added an internal

memory loop which gives the model statefulness – the model retains information between words as

it scans over the training text – and provides a significant increase in results over Bengio et al.

(2003).  The  structure  of  the  RNNLM limited  input  to  a  single  word,  but  added  a  recurrent

connection to the hidden layer, which effectively adds temporal memory or persistent state that

allows it to outperform all previous n-gram models of any context window width.

Figure 7. The recurrent neural network language model proposed by Mikolov et al. (2010).



69
The RNNLM operates very similarly to the standard feed-forward NNLM. At time t, the current

word, w(t), is given as one of the two inputs to the model. w(t) is a vector with length equal to the

number of unique words in vocabulary and is composed of zeroes for every word except for the

word that occurs at time t, which has a value of 1. This is commonly referred to as a one-hot vector.

Because any input of 0 has no effect on the inputs to  s(t), it is expected that we don’t actually

represent the input as a one-hot vector and calculate O(|V|) multiplications that result in 0. Instead,

a separate lookup table stores the weights of U and at time t, we pass the Uw(t) directly as input to

s(t). The hidden layer contains the state nodes, s(t), which simultaneously generate the prediction

for the next word and encode the current state of the text as it is processed. The width of s(t) is

manually  specified before  training  and  research  has  shown that  300-  and  500-dimension  state

vectors are sufficient to compete against previous state-of-the-art language models, but increasing

the number of nodes as high as 1600 continues to improve performance at the cost of increasing

training time and storage requirements (Mikolov et al., 2013a).

The second input  vector  represents  the  previous  state and  is  typically  represented  as  a

recurrent connection from the hidden layer at time t-1. At time t, the computed states of s(t) from

the previous time period, t-1, are given as input to the neural network. This recurrent connection

allows the RNNLM to retain contextual information over a theoretically infinite sequence of words,

which in turn improves the model's prediction accuracy (Mikolov et al., 2010). Training a RNNLM

does  not  limit  backpropagation  to  the  current  time  step.  One  of  the  necessary  parameters  in

training a RNNLM is the number of time periods that  should be cached for backpropagation.

When the model weights are updated, the backpropagation continues through the series of cached

hidden states,  which improves  the  RNNLM’s  ability  to  selectively  retain  information that  will

improve future predictions (Mikolov et al., 2010).



70
Notably, the RNNLM is impacted by the  vanishing gradient problem if backpropagation

continues through the recurrent connection for too many time steps (Mikolov et al., 2014). Small

gradient steps of the tanh and other sigmoidal functions decrease exponentially through each layer

in backpropagation, so the vanishing gradient problem describes the fact that error will eventually

reduce to zero and beyond a certain number of cached time steps, backpropagation will no longer

improve the performance of a RNNLM (Mikolov et al., 2014). Similarly, the RNNLM’s recurrent

connection can retain contextual information for a theoretically infinite number of time steps, but

contextual information provided by more recent words drowns this information out and the context

retention of a RNNLM is limited to approximately 10 or 20 words in practice (Mikolov et al.,

2014).

3.4 Previous Multi-Prototype Word Embedding Methods

The neural network language models described in previous sections have a number of strengths and

have achieved state-of-the-art  performance on a  number  of  natural  language processing  tasks.

These models all make the same naive assumption – that every word should only be represented

with a single word vector. This is due to the assumption is that high-dimensional embeddings are

capable of encoding a polysemous word’s independent meanings and that the word’s surrounding

context is sufficient to disambiguate the word during training and evaluation, but we find that this

assumption disagrees with the semantic structures evident in modern word embeddings.

However, assuming that each word should only have a single word vector has two benefits: it

decreases the amount of storage required to store the entire vocabulary and disarms the difficult

technical question of how one can learn the multiple meanings per word if polysemous words aren’t

disambiguated in a training text. The latter benefit is especially important due to the nature of



71
training modern NNLM’s on huge amounts of text collected from a variety of sources (typically

through the Internet).  Learning effective  word embeddings  requires  a  large text  corpus with  a

variety of topics and linguistic styles, so disambiguation of every word in such a large corpus is

impossible. The following approaches rely on a disambiguation algorithm to cluster word meanings

in the training corpus before training of the neural network language model begins, which requires

a predetermined number of word meanings that  are chosen either  by checking the number of

definitions in of each word in a dictionary such as WordNet or assuming  K meanings for every

word.

Clustering Approaches. A number of neural network language models have been designed with

the  belief  that  encoding  polysemous  words  with  a  single  vector  representation  will  negatively

impact the structure of word embedding spaces. The first successful multi-prototype model was

proposed by Reisinger and Mooney (2010). This model generates K prototype vectors for every

word in the vocabulary using the Word Sense Discovery method described in Schütze (1998). That

is, for every word, all of the word’s occurrences over the training text corpus are collected and

converted  into  occurrence  vectors by  calculating  the  bag-of-words  representation  of  its  10

surrounding  words.  These  occurrence  vectors  are  then  clustered  using  the  Buckshot  algorithm

(Cutting et al., 1992), a generalized agglomerative clustering algorithm. To generate a word’s  K

prototype vectors using the Buckshot algorithm, one would initially cluster only √K⋅n of the

word’s n occurrence vectors. The remaining occurrence vectors are then assigned to their respective

nearest cluster using cosine similarity. Cosine similarity is an effective metric for semantic analysis

of fully trained word embeddings and is defined as the cosine of the angle between any two vectors:

cosine similarity (v1 , v2)=cos(θ(v1 , v2))=
A⋅B

‖A‖2‖B‖2

∈[−1,1] (29)



72
Finally, an Expectation Maximization stage iteratively re-calculates cluster centroids and then re-

assigns documents until a locally optimal solution is found. The K discovered cluster means are

used as the embedding vectors for each of the word’s K prototypes.

Figure 8 demonstrates the intuition behind the Reisinger and Mooney (2010) clustering approach.

Tasked  to  find  four  meanings  for  the  word  “position,”  the  Buckshot  algorithm identifies  four

clusters of occurrence vectors. The “single prototype” centroid is the mean of all of the word’s

occurrence  vectors  and  demonstrates  how  single-prototype  models  conflate  the  meanings  of

polysemous words in such a way that the word’s final encoding may not be near any of its meanings’

synonyms.

Reisinger and Mooney (2010) also demonstrate how different similarity metrics can be used

to identify synonyms and words that are conceptually related to each of the word prototypes. Figure

8 illustrates four clustered regions of context vectors for the various contexts of the word “position”

in the training text. Reisinger and Mooney (2010) note the “hurricane” cluster is unusual. It can be

Figure 8. The context-clustering step proposed by Reisinger and Mooney (2010). The words
listed for each cluster are determined by highest cosine similarity to each respective cluster

mean.



73
expected that techniques that make naive assumptions on the number of prototypes per word will

make these mistakes.

The largest  notable  difference  between  Reisinger  and  Mooney  (2010) and other  multi-

prototype word embeddings (including our own) is that word embeddings are not just affected by a

given word’s multiple contexts, but directly calculated from them. It is also the only multi-prototype

encoding  technique  that  does  not  rely  on  neural  network  language  models  to  generate  word

embeddings.  However,  the  Reisinger  and  Mooney  (2010)  technique  demonstrates  that  multi-

prototype models designed to encode the multiple meanings of a given word can outperform their

single-prototype counterparts in word-similarity tasks.

A  second  clustering-based  approach  for  generating  multi-prototype  word  embeddings  was

proposed by  Huang et al. (2012). This approach used a neural network of a unique design for

language modeling. In comparison to the neural network language models proposed by Bengio et

al. (2003) and Mikolov et al. (2010), the Huang et al. (2012) neural network’s output did not make

a prediction of the next word. Instead, a candidate for the next word is one of the model’s inputs

and the neural network is trained to output a score indicating whether the candidate word likely to

occur as the next word in the sequence. A second major difference to this model was that the word

vectors for all of the words in the document were given as one of the input vectors to the neural

Figure 9. A neural network language model proposed by Huang et al. (2012).



74
network. To allow documents of any size to be given as input, all of the vectors were averaged

together, weighted by their respective idf scores calculated over all of the documents in the entire

training corpus, D.

idf (w , D)=log
|D|

|{d∈D ;w∈d}|
(30)

The Huang et al. (2012) model has a number of benefits. The number of weights in the model is

drastically reduced compared to preceding models that used a soft-max output layer to calculate a

probability distribution over the entire vocabulary. As such, training and computation time can be

reduced. Training can mix positive reinforcement (using backpropagation to increase the output

score of the correct word) and negative reinforcement (choosing random incorrect words and using

backpropagation  to  decrease  their  scores).  The  model  also  contributes  a  novel  method  for

integrating global document context for the prediction. Previous models with contextual memory

faced difficulties with the vanishing gradient problem, such as the Mikolov et al. (2010) recurrent

neural  network  language  model,  which  would  lose  contextual  information  after  5-10  words

(Mikolov et al., 2014). Although the idf-weighted global semantic vector may average out critical

contextual clues, the model avoids exponentially decaying memory.

Once the neural network training performance stabilizes, Huang et al. (2012) explain how

the resulting single-prototype word embeddings can be used to generate a multi-prototype word

embedding. The approach is very similar to the Reisinger and Mooney (2010) method described

above. For every word, the occurrences over the training set are collected. The vectors for the 5

words before and after the target word are averaged, weighted by their respective idf scores. The

resulting occurrence vectors are then clustered using the Spherical K-Means algorithm with K=10.

Each occurrence of the word in the training set is  then labeled with its  corresponding cluster.

Afterwards, a new word embedding is trained on the labeled corpus.



75
The Huang et al. (2012) model provides an effective method for generating multi-prototype

word embeddings in two stages. A single-prototype word embedding is generated in the first stage

and facilitates the disambiguation of word occurrences in text. This model relies on the context-

clustering algorithm to be highly accurate in order to learn accurate prototype vectors in the second

training iteration. We will  return to this assumption later, when we discuss our neural network

language model  and how it  is  designed to explicitly  learn word sense disambiguation over the

training  corpus  and  create  a  multi-prototype  embedding  that  is  useful  for  both  word  sense

disambiguation and language modeling.

Inspired by both Reisinger and Mooney (2010) and Huang et al. (2012), Neelakantan et al.

(2014) proposed a model architecture that further expanded upon the clustering-based approaches

for  generating multi-prototype word  embeddings.  The  Multi-Sense  Skip-Gram (MSSG) model

proposed  by Neelakantan et  al.  (2014) utilizes  a  traditional  skip-gram model  (Mikolov  et  al.,

2013a), which is explained in detail in Section 3.4, and subsequently trains a multi-prototype word

embedding using the MSSG model illustrated in Figure 10.

Figure 10. The Multi-Sense Skip-Gram Language Model (Neelakantan et al., 2014).



76
The  MSSG  approach  first  utilizes  a  skip-gram  model  to  generate  a  single-prototype  word

embedding over the entire vocabulary. These single-prototype vectors are called global vectors and

referred to as  vg(w)  for any given word  w. Although the MSSG model is designed to generate

multi-prototype vectors, it continues to use the learned single-prototype global vectors as input. 

Once initial training of the single-prototype word embedding is complete,  context vectors

are calculated for every word in the corpus and are then clustered to induce sense vectors. For each

word in the vocabulary, each of its occurrences in the training corpus is encoded as a context vector

by calculating the non-weighted average of the 4 surrounding words in text.  Then, a K-means

clustering algorithm is run over the context vectors for a given word to identify K=3 sense regions.

The cluster centroids,  μg(w), are saved for disambiguation and training the multi-prototype word

embedding.

Training sense vectors for the entire vocabulary relies on using the MSSG model (Figure

10). At time t, the global vectors for the context words surrounding word w(t) are averaged. The

context vector, vcontext(ct), is compared to the word’s context cluster centroids, μ(wt), and the correct

word sense is assumed to be the sense with the nearest centroid. The final two layers in Figure 10

represent a standard Skip-gram model. Once the word sense is chosen according to the nearest

centroid, the Skip-gram model is trained to increase the likelihood that the chosen sense vector can

predict the original input context’s global vectors.

MSSG’s backpropagation step at each time t updates the global vectors for the surrounding

context words, the chosen sense vector, and also updates the context cluster associated with the

chosen sense. After updating the context words, the averaged context vector is added to the chosen

cluster and the cluster centroid is recalculated. This leads to a parallel training process in which the

word senses themselves and the disambiguation method are simultaneously improved.



77
Neelakantan  et  al.  (2014)  also  proposes  a  non-parametric  variant  of  the  MSSG  that

removes the assumption that  every  word has  only  K senses  or  prototype vectors.  Instead,  the

proposed NP-MSSG model utilizes an online clustering method originally designed for optimal

facility placement (Meyerson, 2001). The Meyerson (2001) algorithm is capable of clustering high-

dimensional  vectors as they arrive in an online fashion and determining when a new cluster is

necessary. The algorithm has a run-time of O(1)-competitive time per vector when vectors arrive

in random order and worst-case run-time of O(log(n)) in the adversarial setting. This allows the

NP-MSSG model to generate new word senses when a newly encountered average context vector

vcontext(ct) is too distant from the existing context centroids μ(wt). When all cluster centroids have a

cosine similarity below the hyperparameter λ=-0.5, a new sense cluster is generated and vcontext(ct)

becomes its only member.

Topic Modeling Approach. Liu et al. (2015) proposed three models in which a word’s meaning

can be identified  using topic modeling approach.  Each word in  the training corpus is  initially

labeled with one of T global topics that are shared by the vocabulary. Topic modeling approaches

do not directly cluster vectors, but the document regularities are used to identify likely topics for

each document and assign word senses based upon the document’s  assigned topic. The models

proposed by Liu et al. (2015) utilize the latent Dirichlet allocation (LDA) algorithm (Blei et al.,

2003) and Gibbs sampling (Griffiths and Steyvers, 2004) to generate the initial topic labels over the

training corpus.



78

Figure 11. Illustrations of the skip-gram models proposed by Liu et al. (2015). Each model
incorporates document-level topic predictions to identify word senses.

The neural network structure of the three models, labeled TWE-1 through TWE-3, are compared

to  a  standard  Skip-gram model  in  Figure  11.  Every  word  token  wt in  the  training  corpus  is

randomly  assigned  a  topic  z  ∈ T with  probabilities  weighted  according  to  the  conditional

probabilities learned from LDA according to the following equation:

Pr (zt|w t , d)∝Pr (wt|z t)Pr (zt|d ) (31)

The probabilities Pr(wt|zt) and Pr(zt|d) are estimated by the LDA algorithm during the initial topic

modeling calculations. In Figure 11, one can see that the TWE-1 and TWE-3 models encode global

topic vectors that are shared among all words in the vocabulary. This is unlike our motivation of

generating unique sense-specific vectors for every word in the corpus. As such, we focus on the

design of the TWE-2 model for direct comparisons to our own work.

TWE-2 is a Skip-gram approach that encodes multiple prototypes for every word in the

corpus, similar to existing approaches to the MPNNLM model we describe in Section 3.5. All

word tokens in the training set are labeled before training the Skip-gram model.  All three TWE

models  evaluated  by  Liu  et  al.  (2015) outperformed  existing  state-of-the-art  multi-prototype



79
models mentioned above. Notably, all TWE models label  word tokens according to the predicted

topic of the parent document.

3.5 A Multi-Prototype Neural Network Language Model 

For the remainder of this work, we will discuss the design and results of a novel neural network

language model (NNLM) that  generates multi-prototype word embeddings and probabilistically

disambiguates words given their contexts. Our Multi-Prototype Neural Network Language Model

(MPNNLM) is influenced by many of the neural network language models in sections 3.3 and 3.4,

but is most similar to that of Bengio et al. (2003) and was designed specifically to address previous

models’ shortcomings in modeling polysemous words with multiple prototypes.

The Multi-Prototype NNLM. The structure of the MPNNLM is most similar to the n-gram

inspired NNLM proposed by Bengio et al. (2003) (see Figure 12, page 27). The input to this model

is a concatenation of the word vectors for the previous n words, {wt-n , … , wt-1} and its output is a

soft-max prediction over the entire vocabulary of which word is most likely to occur next wt.



80

Figure 12. The MPNNLM is very similar to the neural network language model proposed by
Bengio et al. (2003), but has a tanh output layer that predicts back into the word embedding

vector space.

The MPNNLM is also an n-gram feedforward NNLM with a single hidden layer. To generate a

prediction, the input is a concatenation of the prototype vectors corresponding to the preceding n

word  meanings  in  text,  {pt-n  ,  …  ,  pt-1}.  We  operate  under  the  assumption  that  all  text  the

MPNNLM will encounter in the training or evaluation text will not include word meanings, so the

selection  of  each  corresponding  word’s  prototype  can  be  done  at  random  or  through  more

systematic  methods.  We will  later  discuss  how the  MPNNLM may  be  used  for  Word  Sense

Disambiguation of word wt and how this can be used to disambiguate input words to determine the

prototypes for input.

The major structural difference between the MPNNLM and Bengio et al. (2003) is in the

replacement of the softmax output layer with a vector-space prediction layer. Bengio et al. (2003)

directly generates a prediction of the next word using a softmax layer as the output, which has two

advantages: the softmax layer estimates the conditional probability over the entire vocabulary and is

continuously  differentiable,  an  important  requirement  for  backpropagation.  The  MPNNLM

replaces the softmax layer with  d-dimensional vector prediction back into the word embedding

space. Note that because the MPNNLM uses tanh activation functions in the hidden and output



81
layer, the output is a real-valued prediction vector, p̊∈[0,1]d , which we later use to generate the

actual probability distribution over the next word.

Vector-Space  Predictions. Many  historical  NNLM’s  make  their  prediction  of  wt using  a

vocabulary-sized softmax output layer, which generates a well-formed probability distribution over

the entire vocabulary. As mentioned above, the MPNNLM has a similar design to Bengio et al.

(2003). The input layers of both models are a n∙d-length concatenation of the word vectors for the

previous  n  words,  {wt-n  , … , wt-1}. In place of Bengio et al. (2003)’s softmax output layer, the

MPNNLM  generates  a  d-dimensional  prediction  vector of  the  same  dimension  as  the  word

embedding.

Note that the MPNNLM is trained over an unlabeled text corpus without access to labeled

meanings for each word token in the corpus, so it is unclear which prototype of  wt may be the

target output vector. In the language modeling sense, the MPNNLM is tasked to predict wt, so we

combine the prototype-level predictions for each word into a single word-level probability. We will

explain how the MPNNLM chooses the appropriate prototype vectors for the input layer at time t

and determines the “correct” output prototype for wt in our subsequent discussion of Word Sense

Disambiguation.

When the MPNNLM makes its vector-space predictions back into the word embedding,

this does not yield a direct probabilistic prediction of the next word as is expected of an NNLM.

There are a variety of ways to generate a probability distribution over the target vocabulary given a

prediction  into  the  word  embedding.  For  the  MPNNLM,  we  use  the  following  softmax  cost

function:



82

P(w t=wi|wt−n , ...wt−1)=P(wi|p̊)=
∑

pk∈w i

e
−D (p k , p̊)2

2

∑
w j∈V

∑
pk∈w j

e
−D ( pk , p̊ )2

2

(32)

Provided that the distance function D is universally continuously differentiable, the overall softmax

of  calculation  in  Equation  32 satisfies  the  continuous  differentiability  requirement  of  the

backpropagation algorithm (Rumelhart, 1985). In vector-space models, the typical considerations

for distance functions are cosine similarity (Equation 29, page 71) and Euclidean distance. The use

of  cosine  similarity  as  a  distance  metric  may  be  a  beneficial  feature  to  consider  in  future

implementations of the MPNNLM, but for our experiments we used Euclidean distance.

Modeling Word Prototypes. The English language is highly polysemous and state-of-the-art word

embeddings typically encode only a single embedding per word. We find that this leads to word

embeddings that are accurate for single-meaning (monosemous) words, but single-prototype word

embeddings often strand a polysemous word’s vector representation in an area between various

regions that contain the word’s synonyms (Li and Jurafsky, 2015). Similarly, due to the focus on

high-likelihood predictions, word embeddings often neglect to accurately represent rare meanings

of polysemous words (Li  and Jurafsky,  2015).  The MPNNLM is designed to encode multiple

prototype vectors that individually model a single meanings or atomic concept within a word. By

unbinding these meanings, we expect that the word’s prototype vectors will to these regions of

synonymy and further improve model’s language modeling performance.

In general, it is difficult to determine the appropriate number of meaning vectors for each

word and previous multi-prototype models determine the number of prototypes for each word

before analyzing the text corpus. A number of previous multi-prototype models have assumed that

exactly  K  prototype vectors  should be encoded for  every  word in  the vocabulary.  Training  K

prototype  vectors  for  every  word  in  the  vocabulary  relies  on  an  inherent  assumption  that



83
polysemous and monosemous words require the same number of representations and that the same

must be true for extremely rare and common words. This is akin to the assumption that every word

should  be encoded with  a  single  vector,  but  modeling  K prototypes  per  word been  shown to

improve  language  modeling  performance  (Reisinger  and  Mooney,  2010;  Huang  et  al.,  2012;

Neelakantan et al., 2014; Liu et al., 2015). An alternative approach proposed by Chen et al. (2014)

allows each word to have a different number of prototypes relies on the number of dictionary

definitions  in  WordNet  to  determine  the  number  of  prototypes  per  word.  This  is  an  intuitive

assumption, but requires that WordNet’s meanings for each word are fully annotated and may not

perform well if some meanings of a word are not used in a given corpus, which is especially likely

if we expect the word embedding to be learned over a smaller domain-specific corpus. Further

detail about these models can be found in Section 3.3.

Our model is designed to first train a single-prototype word embedding, which provides

initial semantic structure to the vector space, and to later generate new prototypes for polysemous

words before resuming its training over the text corpus. This is intended to give our model the

freedom  to  identify  unknown  word  meanings  that  the  MPNNLM  has  difficulty  predicting.

However, we do limit the number of prototypes per word based upon the word’s frequency in the

training text. This is inspired by the analysis of Zipf (1945), which demonstrated that a power-law

distribution can be fitted to estimate the number of meanings of a word given its word’s frequency

in written text.

Word Sense Induction. When evaluating the MPNNLM’s ability to disambiguate a word token’s

meaning given its context, we are hindered by the fact that we do not have ground truth meanings

for any given token in the training text. The text corpora used to generate word embeddings with

NNLM’s are typically very large (in the millions or billions of words) and are too expensive to fully

disambiguate. Machine learning methods approach this situation in different ways: by bootstrapping



84
the training corpus with a small sense-disambiguated corpus (this would make the MPNNLM a

semi-supervised method) or we can infer the meanings of the words in the unlabeled corpus and

remain fully unsupervised. In our case, we use the MPNNLM’s ability to predict into the vector

space to make a prediction of the meaning of a word given its context.

Furthermore, unless prototypes align with clear synonyms or conceptual clusters, it is not

always clear exactly what meaning a prototype vector may represent given only its relative position

within  the  word  embedding.  We  may  be  able  to  infer  various  word  meanings  based  on  the

selections  it  makes  over  a  word  corpus,  but  the  probabilistic  selection method may  negatively

impact  that  process.  Instead,  the  MPNNLM is  evaluated  on  word  sense  induction  (WSI),  an

unsupervised version of word sense disambiguation (WSD).

We can  interpret  predictions  of  the  MPNNLM to  be  similar  to  a  human approach  to

language modeling. Due to the difficulty and highly probabilistic nature of language modeling, we

do not expect the MPNNLM to generate predictions that are closer to a prototype of wt than any

other prototype in the word embedding every time. Instead, we expect each prediction to identify a

region of perhaps synonymous words that  are most likely to occur next  given the context.  By

training multiple prototypes per word, the MPNNLM can model each meaning of a word as a

prototype located near related prototypes of synonymous words, which allows us to  to infer the

actual meaning of wt given its context.

In our design of the MPNNLM, we make the assumption that words will cluster with their

synonyms, near other words that belong to the same categories categories, and according to other

linguistically  similar  words.  The  MPNNLM  generates  predictions  based  upon  the  preceding

context, so the backpropagation algorithm will improve predictions by effectively clustering words

that occur in the same context. This even includes antonyms, although this may defy expectations –

“I adjusted the thermostat because it was too ____,” has two very likely answers, “hot” and “cold”.



85
When the MPNNLM generates an actual probability distribution during its prediction of

wt, Equation  32 sums all of the individual prototype probabilities for each candidate word. The

MPNNLM  also  uses  these  probabilities  to  infer  the  meaning  of  wt. The  MPNNLM  draws

uniformly random from the prototype probabilities of wt and weights the selection according to the

individual softmax distance from Equation 32.

P( pi|w t−n , ...wt−1 ,wt , p̊)=
e
−D( pi , p̊ )2

2

∑
pk∈w j

e
−D (pk , p̊)2

2
(33)

Once the meaning of wt is inferred, we assume that the selected prototype is correct for training of

the neural network with backpropagation. Initially, we expect this process to be highly random, but

as words begin to cluster, predictions of semantically clustered word vectors will likely identify the

prototypes most relevant to a given context. Finally, after the backpropagation step is complete, we

can update  the  input  words for  the  next  step.  We shift  the  input  context  vector  by  d (which

effectively removes the oldest input prototype from the input) and append the selected prototype

for wt to the input vector.

It is clear that the accurate selection of the target word’s prototype is critical to the training

process  for  the  MPNNLM. If  the  selection  process  is  inaccurate,  the  MPNNLM will  have  a

difficult time training a meaningful word embedding and its subsequent predictions will rely on an

input vector containing an incorrect meaning of wt.

By  using  the  input  context  to  select  the  input  word  prototype  for  the  next  time  step,

interesting implications arise. At time t+1, the prediction of wt is not based solely on words wt-n

through wt-1, but also on the preceding words that informed prototype selection for the input words

as well. As such, the MPNNLM has an inherent memory retention property and predictions are not

limited to the simple n-gram input.



86
Backpropagation. The cost function in Equation 32 allows us to train our word embedding in a

more advanced way than typical of NNLM’s. We make a number of adjustments to the standard

backpropagation algorithm that  allow us to not only update the network weights of the neural

network  and the  vector  representations  of  the  input  prototypes,  but  we can  also  use  the  cost

function  to  intelligently  update  prototypes  for  the  target  word  wt and  all  other  words  in  the

vocabulary.  Once  the  MPNNLM  has  generated  a  prediction  vector  for  wt,  backpropagation

proceeds as follows:

1. Generate the probability distribution over the vocabulary using Equation 32 and infer the

meaning of wt by selecting one of its prototypes according to Equation 33.

2. Update all prototypes for wt by first taking the partial derivative of Equation 32 and moving

each  prototype  slightly  toward  the  MPNNLM  output  prediction  vector  using  a  small

gradient descent step.  This increases  the probability  that  wt will  be predicted in future

iterations with similar contexts.

3. Update all remaining prototypes in the vocabulary using the same partial derivative, but

moving  away from the  predicted  output  vector  of  the  MPNNLM.  This  decreases  the

probability of competing words from being predicted in similar contexts in the future.

4. Finally, update the neural network weights using traditional backpropagation by first taking

the partial derivative of Equation 32 with respect to each output node. Beyond the fact that

the  NPNNLM calculates  a  softmax  probability  based  upon  the  full  vocabulary’s  word

embedding and the MPNNLM output vector, the probability distribution is calculated in a

very similar method a the softmax output layer of Bengio et al. (2003), so we take a similar

gradient step here to determine the output error of the MPNNLM prediction vector before

backpropagating to the hidden layer in the traditional way.



87
Step 3 is the most computationally expensive step of training the MPNNLM. By generating the

probability  distribution over the entire vocabulary and updating all  incorrect  words’  prototypes

according to gradient descent, each training iteration requires computation that scales linearly in

the number of prototypes in the word embedding. However, we can speed up the training process

by calculating the output probability distribution only over a random subset of the words at each

training iteration. In order to speed up our experiments, we select only a subset of the incorrect

words for every prediction and scale their output probability mass to estimate the total probability

mass of the entire vocabulary. For a vocabulary in the hundreds of thousands of words, this greatly

reduces the time required to train the MPNNLM while 

We also used a  momentum-based gradient descent algorithm for backpropagation. Neural

networks are sensitive to the setting of the learning rate parameter, which determines how small of

an adjustment the neural network should make based upon the gradient of the current prediction,

but the learning rate often needs to be adjusted by hand based upon the neural network structure

and the data set. Momentum approaches allow the neural network to effectively continue increasing

the  learning  rate  as  its  performance  improves  and  then  decrease  the  learning  rate  once  the

performance seems to decrease (perhaps by taking too large of a gradient descent step).

Prototype Creation.  A methodical  approach for correct  placement  of new prototypes  for  the

MPNNLM is the largest challenge for generating functional multi-prototype word embeddings. As

we will see in Section 3.6, various experiments allowed us to determine methodological approaches

for generating prototypes that accurately modeled the English language. We we summarize these

insights here as well.

The  MPNNLM  is  not  inherently  a  multi-prototype  model.  In  fact,  if  the  MPNNLM

encodes  only  one  prototype  for  each  word  in  the  vocabulary,  the  MPNNLM framework  will

sufficiently  operate  in  the  single-prototype  setting.  We  have  found  that  initially  training  the



88
MPNNLM as a single-prototype model allows the word embedding to learn a high-level semantic

structure of  the vocabulary  based on contextual  information and word synonymy.  This  single-

prototype  word  embedding  provides  the  foundation  for  the  subsequently  generated  word

prototypes. Ideally, these new prototypes will navigate to a region that is synonymous or otherwise

semantically relevant to one of the word’s meanings and underrepresented by existing prototypes.

A methodical approach to generating new prototypes is a critical component to our model.

After the backpropagation step is completed for the current word wt, the MPNNLM will add a new

prototype for wt if the following criteria are satisfied:

1. The MPNNLM perplexity over a held-out data set must be less than P̂.

2. All existing prototypes for wt must have been selected at training time at least T̂ times.

3. If wt occurs n times in the training corpus, it is limited to log10(n) prototypes.

4. The  new  prototype  must  be  generated  at  least  euclidean  distance  D̂ from the  nearest

existing prototype.

The first two criteria are straightforward. The MPNNLM periodically evaluates perplexity over a

small held out data set. The held-out perplexity must be below P̂, a preselected threshold that we

find  is  corpus-dependent.  It  is  expected  that  a  model’s  final  perplexity  is  dependent  on  the

uniformity of language within the corpus and size of the modeled vocabulary. During training,

most neural network language models have a sharp initial drop in perplexity and begin to level out

and we have found that a good value of P̂ is after perplexity begins plateauing. Similarly, to ensure

that new prototypes are not generated unless necessary, the second criteria requires that a new

prototype is not created until all existing prototypes for a given word have been trained at least T̂

times.

The third criteria is inspired by  Zipf (1945), which found that the number of definitions

known for a polysemous word correlates logarithmically with its frequency in written text. We use



89
this insight to create limit the number of prototypes the MPNNLM may generate for a given word,

regardless of the word’s number of definitions.  This is in contrast to previous approaches, which

decide the number of prototypes a word will have without determining the.  Similarly, limiting a

word’s  prototypes based on its frequency over the training corpus seems  sensible given that the

word will have fewer unique contexts to accurately train its various prototypes.

Finally, once a prototype meets the previous criteria, its location must be chosen. We rely

on the previous MPNNLM predictions for a given word to determine likely regions of meaning for

a given word. During training, the we store P̂ predictions for every word. These are the MPNNLM

predictions into word embedding space that were generated when the model previously attempted

to predict word wt. Assuming that the MPNNLM is sufficiently accurate, we can imagine that even

incorrect  predictions  for  a  word  may  be  generated  into  a  synonymous  space  for  an  unknown

meaning of the word and we attempt to identify one of these regions when creating a new word

prototype.

We clustered the previous P̂ predictions for wt using agglomerative clustering, a hierarchical

approach that begins with all previous prediction vectors in their own clusters and iteratively joins

the  two clusters  with  the  “closest  centroids”  until  a  single  cluster  remains.  We use the cosine

similarity metric to measure proximity and given a cluster of vectors, the euclidean average of is

used to define the cluster’s centroid. With P̂ previous predictions, the agglomerative clustering will

yield between  P̂  and  2P̂-1  candidate cluster centroids for the new prototype. Of these candidate

prototypes, we choose the candidate pertaining to the largest cluster with distance at least D̂ from

all existing prototypes for the given word.



90

3.6 Experimental Results

Google Gigaword Data Set. Modern corpora for linguistic tasks are typically chosen based on the

task at hand. For example, classification algorithms are frequently evaluated over newspaper articles

with topic labels or Amazon reviews with the associated star rating. For the neural language models

such  as  the  MPNNLM,  very  large  text  corpora  are  necessary  for  learning  general  linguistic

regularities over a broad range of topics. We used the Google Gigaword corpus  (Chelba et al.,

2013), a general text corpus comprised of sentences (not documents or even sequential sentences)

with 793,471 vocabulary words and 820 million tokens.

50Cities Corpus.  Many of our experiments were run on the 50Cities corpus, a sample of the

Google  Gigaword  corpus  that  we  created  for  the  purpose  of  evaluating  the  MPNNLM’s

performance on targeted NLP tasks. Modern text corpora for modern NLP tasks are either very

large and unlabeled (e.g. Google Gigaword (Chelba et al., 2013)) or small and hand-labeled with

metadata related to a specific task (e.g. Reuters Aptemod). Our motivation is to train a model that

learns linguistic patterns from large unlabeled corpora, but we also want guarantees that our corpus

contains linguistic patterns relevant to our objective tasks. In order to evaluate our model on our

target  tasks  of  language  modeling  and  set  expansion,  we  sampled  the  Gigaword  corpus  for

sentences within a targeted domain.

Our  custom  50Cities  corpus  includes  7,219  sentences  from  the  Gigaword  corpus  that

mention at least one of the 50 largest cities in the USA as of January 2015 (US Census Bureau,

2016). Another 15,573 sentences were selected from the data set to provide general coverage of

writing style, yielding 20,794 total sentences in our training set and 570,619 tokens. A held-out test

set of 400 sentences was sampled from the Gigaword corpus in the same fashion that contained

11,221 word tokens.



91
Single-Prototype  Vector-to-Vector  NNLM. In  order  to  validate  our  vector-to-vector  neural

network  language  model,  our  initial  experiment  generated  a  standard  single-prototype  word

embedding. In these experiments,  we set  the dimension of the word embedding to  d=50.  The

neural network was constructed with a context window of 4 input words and 100 hidden layer

nodes. All initial weights of the neural network were drawn independently at random from [-0.01,

0.01] for all layers.

We focused our initial evaluations on identifying proper design settings and parameters for

the MPNNLM that enable a successful training of a single-prototype word embedding. Due to

operating in a vector-to-vector setting, a variety of typical neural network choices needed to be

considered.  One immediate question was how to generate  a  prediction for  the first  word in  a

sentence without preceding words to generate a prediction. Given zero background information of

the context of a new sentence, we use n start sequence prototypes for use as the n-gram input at the

beginning of a sentence,  <seq>1 through <seq>4. These prototypes are given as the input to the

model before every sentence begins,  so we expect that  the MPNNLM will  eventually learn to

generate the unigram distribution of the first word of every sentence in the corpus. An alternative

approach is to use a single <seq> start token n times at the beginning of each sentence, but initial

experiments showed that the model had a marginally improved perplexity when using  n distinct

<seq> words and our analysis showed that this was due to improvements of predictions for words

2 through n-1. We did not evaluate this in later experiments or evaluate the significance of these

performance improvements. We also create n end sequence prototypes that are expected to occur at

the end of the sentence.

Our early experiments on the MPNNLM began with two questions: how or whether the

output  layer  should  be  normalized.  Most  neural  networks  utilize  a  sigmoidal  function  as  an

activation function for each neuron, but it was unclear whether a vector-to-vector model would be



92
improved with an unconstrained word embedding. Without an activation function, calculating each

dimension of the prediction would be a simple unscaled dot product, p̊i=∑ W i⋅H , and would

allow the neural network to generate unconstrained predictions in ℝd. Initial experiments indicated

that the tanh activation function provided the best perplexity scores.

The loss function of the MPNNLM (Equation 33, Page 85) has a gradient that we use to

improve the model’s performance via backpropagation. This gradient can be used in four ways that

improve the model’s  ability  to  predict  wt:  standard backpropagation of  the MPNNLM (which

updates the model’s weights to make a prediction of  wt more likely in the future given the same

input words in the future); moving wt a small amount toward the prediction of the MPNNLM (also

increasing the probability the MPNNLM would assign to wt given the same input words); moving

all  words  other  than  wt a  small  amount  away  from the  prediction  of  the  MPNNLM (slightly

reducing the probability assigned to words other than wt); and using the estimated backpropagation

error at the input layer to modify the input word vectors as well. We specifically evaluated whether

using backpropagation to  update the input words would conflict  with our updates  to  the word

embedding at the output layer. In other words, updating the entire word embedding according to

the gradient of the loss function at the output layer optimizes word vectors as targets for prediction

by the MPNNLM. By updating the input words with backpropagation, we’re also adjusting weights

to  be better  inputs  to  the  MPNNLM and this  experiment  was designed to  determine whether

optimizing for both objectives simultaneously would have a positive effect on model perplexity.



93

Figure 13. Perplexities of competing initial vector-to-vector settings. In the legend, Input refers
to whether the model continues backpropagation to the input words. Output is whether the

model uses a tanh activation function for the output layer.

In Figure 13, we see how the these considerations impact the performance of the MPNNLM. We

trained the MPNNLM over 2 million tokens of the 50cities corpus. During the evaluation of these

four Input/Output combinations of settings, we used the same random seed to generate network

weights. Through these experiments, we found that both enabling backpropagation to the input

word  vectors  and  using  a  tanh  activation  function  for  the  output  layer  directly  improved  the

MPNNLM’s perplexity. In the above chart, perplexity was calculated by generating a prediction

over a 1000-word sequence from the held-out corpus.

Table 12. Perplexity of different initial vector-to-vector settings corresponding
to the charted results in Figure 13.

1000 33962.8 33963.4 34007.9 34008.1
500000 838.208 799.2 789.512 637.878

1000000 805.061 759.97 702.176 590.135
1500000 790.015 742.453 683.344 553.214
2000000 782.44 713.064 655.45 516.488

Training 
Iterations

Input=F; 
Output=F

Input=F; 
Output=T

Input=T; 
Output=F

Input=T; 
Output=T



94
By enabling both settings, the MPNNLM finishes with a Perplexity of 516 after 2 million training

iterations, compared to the next best performance – a perplexity of 655 achieved by disabling the

tanh activation of the output layer. In the single-threaded setting, the training of these four models

took approximately 20 hours each. We can see that both settings (backpropagating to input words

and  enabling  tanh  activation  function  of  the  output  layer)  individually  improve  MPNNLM’s

performance  and  the  overall  performance  is  best  when  both  settings  are  enabled.  The  next

important evaluation was to determine whether the word embeddings were semantically reasonable.

For this experiment, we used the 50cities corpus.

Figure 14. An initial distribution of 50 cities (red), 25 words related to “last” (yellow), and 25
random words (purple) projected to 2 dimensions using the t-SNE algorithm.

The initial word embeddings were distributed uniformly randomly in 50-dimensional space. Each

word and each dimension of each word was drawn uniformly at  random between -0.0001 and

0.0001. In Figure 14, we provide a 2-dimensional t-SNE projection (van der Maaten and Hinton,

2008) of the initial distribution of 150 words in the 50-dimensional word embedding space – the

50 top cities in the US by population, 25 words that were nearest to the word “last” in the and 25



95
randomly selected words. Each prototype has a color based upon its membership to these groups, a

word label, and also is shown with its prototype to differentiate prototype locations in the multi-

prototype setting (in Figure  14, there is only one prototype per word). The choice of the word

“last” is due to it having a similar frequency in text as the word “Chicago”, which will be important

in our last_Chicago experiment later. Early in our experiments, we collected the list of 25 words

nearest to “last” that appear in Figure 14. Although this list consistently changes as we adjustment

parameters  or  the  training  text  corpus,  we use  this  same list  of  words  throughout  our  t-SNE

projections of our experimental results to provide context and grounding for our results.

The t-SNE algorithm projects the word embeddings onto a 2-dimensional plane such that

the linear distance between any two points in the projection is nearly proportional to the Euclidean

distances of the corresponding prototype vectors in the high-dimensional word embedding space

(van der Maaten and Hinton, 2008). t-SNE is an iterative non-deterministic process, so consecutive

runs  may  differ  globally  (with  reflections  or  rotations)  or  locally  (generally  with  small

perturbations), but the output is very useful for visualizing word embeddings. As expected, one can

see in Figure 14 that the initial random placement of words is fairly uniformly distributed.



96

Figure 15. Distribution of word vectors from Figure 14 after 25 iterations of training over the
50Cities corpus.

After training the neural network over the 50Cities corpus for 25 epochs (nearly 15 million word

tokens),  semantic word clusters are visible in the t-SNE projection in Figure  15.  The 50Cities

corpus was created to determine the affects of polysemy on the word embedding space. In this

traditional single-prototype setting, the visibly clustered words appear reasonable. The word vectors

of the 50 cities (red) are tightly clustered in comparison to the randomly selected words (purple).

We also see that the words related to “last” are fairly spread apart in comparison to the random

words. In this case, it is partly due to many of the random (purple) words being fairly rare, so they

are nearer to the origin than many of the other embeddings – untrained vectors are created near the

origin and common words are updated the most, so they end up leaving the origin earlier. The

words related to “last” are fairly common and although they are the 25 words nearest “last”, they

are generally more spread apart than the random and city word clusters.

These results provide a very exciting validation of the initial model design. We can see that

words find appropriate semantic clusters and that the MPNNLM is capable of reducing perplexity



97
significantly while generating a word embedding. In the single-prototype setting,  the perplexity

scores are by no means state-of-the-art. However, our future experiments will continue to allow the

MPNNLM model to develop deeper insights as it extends into the multi-prototype setting.

The last_Chicago Experiment. In comparison to the single-prototype vector-to-vector NNLM,

the last_Chicago experiment is an incremental step forward. We wanted to determine whether the

model could differentiate between two meanings of a known polysemous word. Rather than rely on

a small word sense disambiguation corpus with labeled meanings of polysemous words, we used

the unlabeled 50Cities corpus. The only change we made to the 50Cities corpus for this experiment

was replacing all tokens of the words “last” and “Chicago” with “last_Chicago”. These words were

chosen because they have very different meanings but very similar word counts over the corpus

(760  tokens  for  “last”  and  723  tokens  for  “Chicago”)  so  they  would  affect  the  training  of

“last_Chicago” nearly equally.

Figure 16. Distribution of single-prototype word vectors after 25 iterations of training over the
50Cities corpus when the word “last” and “Chicago” have been conflated.



98
As we can see in Figure 16, representing the word last_Chicago as only a single prototype vector

has confused the MPNNLM about the meaning of either word. We intentionally chose two words

with similar  frequencies in order to control  for any frequency effects,  ensuring that  the model

cannot maximize perplexity by choosing the more common meaning. In this case, we find that the

model leans more toward the Chicago meaning of last_Chicago. Some of the words nearest “last”

in the simple vector-to-vector experiment may have been dragged into this open space (e.g. “first”

and “only”), while others seem less affected (e.g. “late”, “next”, “early”, and “left”). Similarly, the

cities cluster is less homogeneously connected than before. By conflating two unrelated words, it

appears we have actually disturbed the semantic structure of the words related to the independent

meanings of last_Chicago.

Once we simulated the effect of conflating distinct concepts with a single word and finding

that it was detrimental to the word embedding, we wanted to determine whether the MPNNLM

would  be  capable  of  disambiguating  word  meanings  and  modeling  multi-prototype  words  as

theorized.  For  the  next  stage  of  the  last_Chicago  experiment,  we  attempted  to  model  two

prototypes for the word “last_Chicago”, but the straightforward approach of initializing the word

embedding  with  two  last_Chicago  prototypes  near  the  origin  among  the  other  words  in  the

vocabulary generally resulted in the two prototypes remaining tightly bound throughout training. In

order to train two prototypes for last_Chicago, it required addressing the following open questions:

• Given a prediction, how do we know which prototype for target word wt we should select as

the truth for training the MPNNLM using backpropagation?

• If generating all prototypes for the vocabulary before training begins doesn’t work, what is

the best method and schedule for prototype generation?

• If a new prototype is generated after training has begun, can we utilize training information

for better placement of new prototypes?



99
One natural method for disambiguating wt given a prediction vector generated by the MPNNLM is

to assume that the nearest prototype for wt is correct. Alternatively, we can rely on estimates made

by the MPNNLM when it generates the probability distribution over the vocabulary for  wt using

Equation 32 (page 82). Although the probability distribution discards information about how much

probability  mass  each  prototype  contributes,  we  hypothesized  that  we  could  draw  the  “true”

prototype for wt by normalizing the individual prototype probabilities for wt such that they sum to

1 and drawing one uniformly at  random according to  these weights.  We found that  the  naive

method of choosing the nearest word performed poorly in comparison to this probabilistic method

and in settings where a new prototype for a word is generated at the origin or at random, the naive

method tends to cause the model heavily favor selection of the original prototype.

As in the initial vector-to-vector experiments, we answered the second question through a

number  of  simple  experiments  that  varied  the  initial  placement  of  a  second  prototype  for

last_Chicago and considered methods for determining when a prototype should be generated. We

found that by delaying the generation of the second prototype until the MPNNLM trained over the

word “last_Chicago” a few hundred times in the training corpus, the two prototypes were unlikely

to converge and obviate the need for multiple prototypes. We found 100 occurrences of the word to

be a sufficient amount of time to wait  before generating new prototypes,  but ran most of our

remaining experiments with a delay of 400 training iterations – in later experiments with more than

two  prototypes  for  a  given  word,  every  existing  prototype  needs  to  be  selected  at  least  400

iterations.



100

Figure 17. Adding a second prototype vector for the conflated words (“last” and “Chicago”)
during unsupervised training of the MPNNLM allows the model to correctly identify appropriate

meaning clusters for the two word prototypes.

As Figure 17 illustrates, our methodical approach to parameter selection enabled the MPNNLM to

identify semantically meaningful locations for the prototypes of last_Chicago that align with our

initial  unconflated embedding.  Although this is  a fairly simple experiment,  it  validates that  the

MPNNLM is capable of disambiguating word tokens of a single conflated word.

Importantly, the last_Chicago experiment is a useful illustration of how we can tune the

MPNNLM parameters for a new text corpus. As we have seen, the MPNNLM has a number of

parameters that need to be tuned and it is likely that training the model on a very different text

corpus would require a different set of parameters. We do not have a method for algorithmically

determining optimal settings of the various parameters discussed, but we believe an automated

method could be constructed as follows: randomly choose a set of k common words with similar

(or even different) frequencies, conflate them in the training corpus, create  k prototypes for the

conflated  word,  and  use  a  cross-validation  experiment  to  determine  optimal  parameters  for

minimizing the affect of the conflation. Presumably, we can identify where the individual words



101
naturally occur in a fully single-prototype setting, so it would make sense to compare the final

conflated word embedding with the single-prototype word embedding.

The Multi-Prototype Vector-to-Vector NNLM. The final experiment was to run the MPNNLM

according to its initial intention. The initialized word embedding space is contains single-prototype

word vectors to start, but all words may generate up to log10(n) prototypes during training time, as

specified in Section 3.5.

During this experiment, we found that the initial method of staggering prototype generation

was causing many word prototypes to be generated when they were unnecessary, causing a number

of words to have a redundant number of tightly grouped prototypes. We returned to the idea of

exploring methods for  identifying unrepresented word meanings  in  text  using the MPNNLM’s

prediction vectors. Our hypothesis is that once the MPNNLM is well-trained, it should be able to

predict regions that are related to one of wt’s meanings. We believe that if many failed predictions

tend to cluster in regions without prototype vectors, we can use these as starting points for newly

generated prototypes. Similarly, we may find that predictions for a given word are consistently close

to existing prototypes and that the generation of a new prototype is unnecessary.

After the backpropagation step is completed for the current word wt, the MPNNLM will

add a new prototype for wt if the following criteria are satisfied:

1. The MPNNLM perplexity over a held-out data set must be less than P̂=400.

2. All existing prototypes for wt must have been selected at training time at least T̂=400 times.

3. If wt occurs n times in the training corpus, it is limited to log10(n) prototypes.

4. The new prototype must be generated at least euclidean distance  D̂=1 from the nearest
existing prototype.

Criteria 1 through 3 are straightforward in light of previous experiments. In order to determine

candidate prototype locations based on previous predictions, we found that a simple agglomerative

clustering  technique was very effective. Agglomerative clustering methods generate a hierarchical



102
cluster  over the entire  set  of input vectors  based upon a given distance metric.  We compared

Euclidean distance against  the cosine similarity metric  due to its  previous success at  semantic

interpretations of word embeddings (Equation 29, page 71). Agglomerative clustering is an iterative

process that begins by assigning every input vector its own cluster. As long as multiple clusters

remain, distances between the centroids of each cluster are calculated and the two clusters with the

smallest distance are merged.

Agglomerative clustering produces a tree with a  single  root of all  of  wt’s  previous 100

prediction vectors as members and the leaves are individual prediction vectors. When the process is

complete, we navigate the tree from the root and identify the top-most branch that contains a split

at least as large as 90% to 10%. This guarantees that we find a large group and we consider the

cluster’s centroid as the proposed prototype location. Our experiments showed that using cosine

distance as the distance metric regularly outperformed Euclidean distance.

Figure 18. The distribution of multiple prototype vectors per word after training over a 5 million
token subset of the Google Gigaword corpus for 4 iterations. Using the same settings as in the

last_Chicago experiment results in a less semantically interesting distribution.



103
After determining functioning rules for generating new word prototypes based upon latent clusters

of previous predictions, the final experiment was run over the general Google Gigaword corpus to

determine how the model scales. In this case, we did not filter the corpus to a hand-picked subset as

we did with the 50Cities corpus. However we did limit the model to 4 iterations of a 5 million

token subset of the corpus (closer to 5.31 million including the <seq> and </seq> tokens added for

each sentence). Figure 18 illustrates a final embedding of the same words we previously analyzed

after training completed. The final parameters tuned to the targeted 50Cities corpus do not appear

to  translate  well,  demonstrating  the  difficulty  of  designing  a  system for  the  training  of  multi-

prototype word embeddings.

Figure 19. Perplexity of the MPNNLM trained in the fully multi-prototype setting over 21 million
word tokens.

Figure 19 shows the MPNNLM’s perplexity as it trains over the Google Gigaword corpus. After

21.2 million word tokens, the model achieves a perplexity of approximately 265. Figure 19 uses a

log-log scale to allow the reader to more easily identify notable achievements in perplexity and the



104
approximate number of tokens at which these perplexities were achieved (which is more difficult

with linear-scaled axes), but this has the effect of appearing that the model has not converged after

21.2 million tokens. We may see improvements of perplexity and small qualitative improvements in

our word embedding projections with more training, but Figure  19 implies that it would require

orders of magnitude more training.

Figure 20. The distribution of various words vectors related to polysemous words (“man”,
“Washington”, “plant”, and “day”) after training over a 5 million token subset of the Google

Gigaword corpus for 4 iterations.

In Figure  20,  we use t-SNE to project a number of polysemous words (“man”, “Washington”,

”plant”, and “day”) along with words related to two of their meanings. As we can see from the t-

SNE projection, few polysemous words seem to cluster with related word prototypes. Although the

MPNNLM achieves 260 perplexity over this data set, that is not a state-of-the-art performance

(state-of-the-art  perplexity  is  typically  below  60).  We  were  capable  of  fully  deconflating  the

meanings of  last_Chicago in the previous experiments  over the 50Cities  corpus,  but the same

settings of hyperparameters do not naturally extend to the general GigaWord corpus.



105

3.7 Conclusions

In this chapter, we presented the MPNNLM, a novel machine learning model that can learn an

expanded  word  embedding  that  contains  multiple  prototype  vectors per  for  polysemous  words

thanks to a custom loss function designed to incentivize each prototype to represent an independent

meaning of the word. Our model is a step toward human-level understanding of language – by

modeling explicit representations of distinct meanings of a word, we find that the model can learn

to infer which meaning of a word is used in text given the surrounding context and improve the

semantic structure of the generated word embedding. Furthermore, the MPNNLM is trained in an

unsupervised setting over human-generated text (it does not require a human to disambiguate the

meaning of polysemous words in text for it to learn accurate prototypes for each meaning) and is

capable of word sense induction, which is a traditionally supervised task.  Our work makes the

following contributions:

• We share results of a word-conflation experiment with empirical evidence that the single-

prototype assumption made by modern neural network language models disrupts a word

embedding’s ability to distinguish between semantically similar clusters of words.

• We demonstrate a successful vector-to-vector n-gram NNLM with a custom loss function

that  is  capable  of  learning  a  semantically  meaningful  vector  for  each  word  in  the

vocabulary.  Notably, this model is a feed-forward network (not recurrent), which reduces

training time.

• We demonstrate that this NNLM can be extended to learn a distinct prototype vector for

each meaning of a polysemous word.

• We specify a loss function for backpropagation of the MPNNLM that is designed to update

the  weights  of  the  MPNNLM,  the  vector  representation  of  the  target  word’s  various

prototypes, the vector representation of the context words that were given as inputs to the

model, and make small improvements to every word in the word embedding.



106
• The  gradient  of  our  loss  function  directly  incentivizes  the  MPNNLM  to  improve  its

performance on both the standard language modeling task as well as unsupervised word

sense induction, which is typically a supervised task.

• We demonstrate that a randomized approach to selecting non-target words when calculating

the model’s loss for each prediction decreases training time without negatively affecting the

MPNNLM’s ability to generate accurate predictions and intuitive word embeddings.

• We provide a methodological approach for identifying when a new prototype should be

generated  for  a  given  word,  unlike  existing  methods  which  assume a  fixed number  of

meanings per word or calculate the number of meanings based upon a word’s frequency in

the manner of Zipf (1945).

• We specify an agglomerative clustering method over the MPNNLM’s previous predictions

into the word embedding and find that  we can determine when the model  is  regularly

generating predictions for a given target word in a region of the word embedding without a

prototype and find that this is a valuable method for identifying when and where to generate

new prototypes for existing words while training the MPNNLM.

We began with a goal of observing whether the traditional assumption that a single representation

would negatively impact word embeddings. Our controlled experiments demonstrate that neural

networks  are  capable  of  learning  multiple  meanings  per  word  and  that  the  single-prototype

assumption may have negative impacts on neural network performance and the interpretability of

their word embeddings.

In our experiments, we found that our custom neural network framework and MPNNLM

implementation  share  drawbacks  with  other  custom  and  early  neural  network  frameworks,

specifically that they are sensitive to values of the hyperparameters and require a significant amount

of manual tuning.  The last_Chicago experiment is a useful illustration of how we can tune the

MPNNLM  parameters  for  a  new  text  corpus.  As  previously  discussed  in  this  chapter,  the

MPNNLM has a number of manually-tuned parameters and we find it  likely that  training the



107
model on a very different text corpus would require different values. We have not identified an

optimal method for  algorithmically determining the best  values for these parameters,  but Grid

Search, Bayesian Optimization (Močkus, 1975) and kriging (Krige, 1951) are generic approaches

that will identify near-optimal values. One could also programmatically score the performance of a

model trained with specific parameter settings by using conflation experiments similar to what we

have demonstrated. Such an experiment would operate as follows: randomly choose a set of  k

common words, conflate them in the training corpus, create k prototypes for the conflated word,

and use a cross-validation experiment to determine the optimal parameters for minimizing the

effect of the conflation. We can identify where the individual words would have naturally occurred

in the single-prototype setting, so a comparison of the final conflated word embedding with the

single-prototype word embedding would determine how well the MPNNLM is able to reverse the

simulated conflation.

We also expect that an alternative implementation of the MPNNLM in a modern open-

source neural network framework such as Torch (Collobert et al., 2011), Tensorflow (Abadi et al.,

2016), or Keras (Chollet et al., 2015) would have a number of advantages over our custom neural

networks – these frameworks provide improved model and training stability as well as a much

larger  set  of  training  and  analysis  tools  provided  by  the  open  source  community.  An

implementation of the MPNNLM using any of these frameworks would likely provide more stable

results and enable more efficient exploration of the MPNNLM’s hyperparameter space.



108

Chapter 4

Conclusions and Future Work

In this work, we presented two novel methods for extracting informative corpus-level statistics to

inform a NLP model. We first demonstrated that the critical parameters of the Multinomial Naïve

Bayes  (MNB)  algorithm  –  the  conditional  probabilities  –  are  subject  to  high  variance  when

estimated  over  a  small,  supervised  training  text  corpus.  Our  method,  MNB-FM,  provides  a

theoretically motivated approach for accounting for word frequencies measured over a much larger

unlabeled corpus in order to tangibly improve the accuracy of MNB’s conditional probabilities

when  they  don’t  accord  with  the  unsupervised  corpus.  MNB-FM’s  information  theoretic

underpinnings consider the expected variance of noisy parameter estimates and adjust the least

reliable  conditional  probabilities  the  most.  The  MNB-FM  method  achieves  state-of-the-art

performance over two text classification tasks: Sentiment Analysis and Topic Classification. This

performance increase  effectively  improves the  amount  of  information  extracted per  document,

which can be of critical  importance in domains where labeling training documents by hand is

expensive. For experiments with 100 labeled training documents, MNB-FM is capable of achieving

a performance similar to what MNB would get with 1000 labeled documents. 

Spurred by the publication of Zhao et al. (2016), we conducted a follow-up examination of

our MNB-FM model which provided deeper insights into the model’s performance improvements.

We found that rare words had a more significant role in the state-of-the-art performance of MNB-

FM than previously realized. Due to the long tail of word frequency distributions Zipf (1945), rare

words account for a large fraction of probability mass in large text corpora – our analysis in Lucas

and Downey (2013) showed that words occurring less than once every 100,000 words accounted



109
for 23% of the MCAT corpus. Many text classification algorithms discard very rare words from the

vocabulary  because their  high variance makes them difficult  to model and very  rare words by

definition  have  little  individual  impact  on  classification  performance.  Our  follow-up  analysis

validates the results of Lucas and Downey (2013), which demonstrated that MNB-FM significantly

improved MNB’s conditional probability estimates for rare words, and that in aggregate these rare

words contributed a significant amount of our performance gains. This improvement in estimating

conditional probabilities is specifically due to how MNB-FM compares word frequencies within the

unlabeled  corpus  with  frequencies  in  both  classes  of  the  labeled  corpus  while  simultaneously

accounting for the expected variance of these counts. MNB-FM’s variance-minded approach truly

enables it to infer more accurate conditional probabilities for the rare words that drive a significant

amount of the performance gains that make MNB-FM a state-of-the-art algorithm.

The second contribution we presented was a novel multi-prototype neural network language

model (MPNNLM). Many previous attempts at using a neural network language model to generate

multiple vectors per word exist and demonstrate that there is an interest in the multi-prototype

setting. Proper training of a multi-prototype NNLM should be capable of achieving the state-of-

the-art performance of NLP tasks, but in practice multi-prototype models typically have a difficult

time outperforming the best single-prototype models (Li and Jurafsky, 2015). The MPNNLM was

designed  with  the  primary  motivation  of  unsupervised  training  of  multiple  prototype  vector

representations  for polysemous words.  Our experimental  results  motivated the following design

decisions within the MPNNLM to address challenges that arise in the multi-prototype setting:

• New Prototype Generation – Prototypes are only generated when an unknown meaning is

detected and cluster previous predictions of a given word to identify regions that most likely

represent an unknown meaning for a word as candidates for new prototype locations.



110
• Word Sense Induction –  The MPNNLM must be capable of word sense induction in

order to properly train multiple prototypes per word. As such, the MPNNLM can be used

for word sense induction on held-out data sets as well.

• Backpropagation –  We provide methods for updating the neural network weights, input

and output word prototype vectors, and all remaining vectors in the corpus during each

backpropagation step.

• Backpropagation  Sampling  –  We  also  find  that  training  a  random  sample  of  the

vocabulary during each iteration of the backpropagation step leads to drastic increases in

the without affecting the model’s ability to learn a multi-prototype word embedding.

The  most  exciting  result  of  our  MPNNLM  research  was  the  successful  disambiguation  of

artificially conflated words in our custom 50Cities data set. However, we found it difficult to fully

generalize this result to multiple prototypes for every word in a corpus. This was partly due to the

difficulty of identifying correct parameter settings for the general setting – we used a custom neural

network framework developed in C++, which gave us a greater flexibility to prototype various

components of the MPNNLM that are not typical in standard neural network frameworks (such as

the  integration  of  agglomerative  clustering  methods  and  integrating  a  softmax  smoothing  of

Euclidean distances in the cost function). Given the promising results of the current design of the

MPNNLM,  we  expect  that  implementing  the  MPNNLM  in  a  modern  framework  such  as

Tensorflow (Abadi et al., 2016) would allow for better generalization of the model. Our custom

research framework provided great flexibility for prototyping, but we also find it more brittle than

modern frameworks when it comes to tuning the parameters of a well-defined neural network.

We also consider other limitations of the MPNNLM which provide directions for further

investigation in the future. The cost function of the MPNNLM uses Euclidean distance in the word

embedding space to determine a prototype’s distance from the output prediction. One may consider

using cosine similarity (Equation 29, page 71) in place of Euclidean distance because it has proven



111
to be consistently intuitive in semantic evaluations (Mikolov et al., 2013b, Reisinger and Mooney,

2010). Of course, changing the distance metric has deeper implications in the backpropagation of

the  MPNNLM  –  word  vectors  updated  at  the  output  layer  of  the  MPNNLM  during

backpropagation will not move directly toward or away from the prediction point, but instead rotate

around the origin toward (due to the nature of cosine similarity and its  gradient).  In contrast,

backpropagation updates to word prototypes at the input layer will continue to be made according

to the gradient of the tanh function and are not limited to hypersphere rotations and may be at odds

with the output update methodology.

One final consideration is in investigating the interesting memory-retaining aspects of the

model. The MPNNLM relies on its output prediction to determine which prototype of the target

word should be used as the input vector for subsequent predictions, allowing the model to aggregate

contextual  information in the input layer.  Models such as the RNNLM (Mikolov et  al.,  2010)

provide insight into how backpropagation can be extended to update the neural network and word

vectors  in  previous  time  periods,  so  it  may  be  worth  considering  methods  for  extending  the

backpropagation  step  of  the  MPNNLM  into  previous  training  tokens.  Further,  we  have  not

investigated how varying the  prototypes  of  input  words may affect  the  predictions,  though we

expect this to allow us to both verify the model’s performance and to enable a second opportunity

for word sense induction. For example, consider the different probability distributions we expect to

see given an input context of “The newborn weighed 7 pounds, 3” – we may be able to determine

that “pounds” is related to weight and not the British currency by determining which prototype for

“pounds” generates a higher probability for the known next word, presumably “ounces”.



112

References

Abadi,  Martín,  et  al.  "Tensorflow:  Large-scale  machine  learning  on  heterogeneous  distributed
systems." arXiv preprint arXiv:1603.04467 (2016).

Artstein,  Ron,  and  Massimo  Poesio.  "Inter-coder  agreement  for  computational  linguistics."
Computational Linguistics 34.4 (2008): 555-596.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly
learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).

Bengio,  Yoshua,  et  al.  "A  neural  probabilistic  language  model."  Journal  of  machine  learning
research 3.Feb (2003): 1137-1155.

Bishop, Christopher M. “Neural networks for pattern recognition.” Oxford university press, 1995.

Blitzer,  John,  Mark  Dredze,  and  Fernando Pereira.  "Biographies,  bollywood,  boom-boxes  and
blenders: Domain adaptation for sentiment classification." ACL. Vol. 7. 2007.

Brants, Thorsten, and Alex Franz. "Web 1T 5-gram Version 1." (2006).

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." Journal of
machine Learning research 3.Jan (2003): 993-1022.

Bojarski,  Mariusz,  et  al.  "End  to  end  learning  for  self-driving  cars."  arXiv  preprint
arXiv:1604.07316 (2016).

Chapelle, Olivier, Bernhard Scholkopf, and Alexander Zien. "Semi-supervised Learning." IEEE
Transactions on Neural Networks 20.3 (2009): 542-542.

Chelba, Ciprian, et al. "One billion word benchmark for measuring progress in statistical language
modeling." arXiv preprint arXiv:1312.3005 (2013).

Chen, Xinxiong, Zhiyuan Liu, and Maosong Sun. "A unified model for word sense representation
and  disambiguation."  Proceedings  of  the  2014  Conference  on  Empirical  Methods  in  Natural
Language Processing (EMNLP). 2014.

Chollet, François, et al. “Keras.” GitHub: https://github.com/fchollet/keras (2015).

Collobert, Ronan, Koray Kavukcuoglu, and Clément Farabet. "Torch7: A matlab-like environment
for machine learning." BigLearn, NIPS workshop. Vol. 5. 2011.

Cox,  David  R.  "The regression  analysis  of  binary  sequences."  Journal  of  the Royal  Statistical
Society: Series B (Methodological) 20.2 (1958): 215-232.



113
Crossley,  Scott,  Tom Salsbury,  and  Danielle  McNamara.  "The  development  of  polysemy  and
frequency use in English second language speakers." Language Learning 60.3 (2010): 573-605.

Cutting, Douglass R., et al. "Scatter/gather: A cluster-based approach to browsing large document
collections." Proceedings of the 15th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM, 1992.

Cybenko,  George.  "Approximation by superpositions of a sigmoidal  function." Mathematics of
Control, Signals, and Systems (MCSS) 2.4 (1989): 303-314.

Goodman, Joshua T. "A bit of progress in language modeling." Computer Speech & Language
15.4 (2001): 403-434.

Griffiths, Thomas L., and Mark Steyvers. "Finding scientific topics." Proceedings of the National
academy of Sciences 101.suppl 1 (2004): 5228-5235.

Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8
(1997): 1735-1780.

Holmes, Geoffrey, Andrew Donkin, and Ian H. Witten. "Weka: A machine learning workbench."
Intelligent  Information  Systems,  1994.  Proceedings  of  the  1994  Second  Australian  and  New
Zealand Conference on. IEEE, 1994.

Huang,  Eric  H.,  et  al.  "Improving  word  representations  via  global  context  and  multiple  word
prototypes."  Proceedings  of  the  50th  Annual  Meeting  of  the  Association  for  Computational
Linguistics: Long Papers-Volume 1. Association for Computational Linguistics, 2012.

Jelinek, Fred and Mercer, Robert L.. "Interpolated estimation of Markov source parameters from
sparse data." In Proceedings, Workshop on Pattern Recognition in Practice (1980): 381-397.

Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python, 2001-,
http://www.scipy.org/ [Online; accessed 2017-03-20].

Krige,  Daniel  G.  "A  statistical  approach  to  some  basic  mine  valuation  problems  on  the
Witwatersrand." Journal of the Southern African Institute of Mining and Metallurgy 52.6 (1951):
119-139.

Landauer, Thomas K., and Susan T. Dumais. "A solution to Plato's problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge." Psychological review
104.2 (1997): 211.

Lewis, David D., et al. "Rcv1: A new benchmark collection for text categorization research." The
Journal of Machine Learning Research 5 (2004): 361-397.

Li,  Jiwei,  and  Dan  Jurafsky.  "Do  multi-sense  embeddings  improve  natural  language
understanding?" arXiv preprint arXiv:1506.01070 (2015).

Liu, Yang, et al. "Topical Word Embeddings." AAAI. 2015.



114

Liu, Xiaodong,  et  al.  "Stochastic  answer networks for machine reading comprehension." arXiv
preprint arXiv:1712.03556 (2017).

Lucas, Michael, and Doug Downey. "Scaling semi-supervised naive bayes with feature marginals."
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Vol. 1. 2013.

van  der  Maaten,  Laurens,  and  Geoffrey  Hinton.  "Visualizing  data  using  t-SNE."  Journal  of
Machine Learning Research 9.Nov (2008): 2579-2605.

Manning,  Christopher  D.,  and  Hinrich  Schütze.  “Foundations  of  statistical  natural  language
processing.” Vol. 999. Cambridge: MIT press, 1999.

McCann, Bryan, et al. "Learned in translation: Contextualized word vectors." Advances in Neural
Information Processing Systems. 2017.

Meyerson, Adam. "Online facility location." Foundations of Computer Science, 2001. Proceedings.
42nd IEEE Symposium on. IEEE, 2001.

Mikolov, Tomas, et al.  "Recurrent neural network based language model." Interspeech. Vol. 2.
2010.

Mikolov,  Tomas,  et  al.  "Efficient  estimation  of  word  representations  in  vector  space."  arXiv
preprint arXiv:1301.3781 (2013a).

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic regularities in continuous space
word representations." Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. 2013b.

Mikolov, Tomas, et al.  "Learning longer memory in recurrent neural networks." arXiv preprint
arXiv:1412.7753 (2014).

Minsky, Marvin, and Seymour A. Papert. Perceptrons: An introduction to computational geometry.
MIT press, 2017.

Mnih,  Andriy,  and  Geoffrey  E.  Hinton.  "A  scalable  hierarchical  distributed  language  model."
Advances in neural information processing systems. 2009.

Močkus, Jonas. "On Bayesian methods for seeking the extremum." Optimization Techniques IFIP
Technical Conference. Springer, Berlin, Heidelberg, 1975.

Murphy, Gregory. The big book of concepts. MIT press, 2004.

Neelakantan, Arvind, et al. "Efficient non-parametric estimation of multiple embeddings per word
in vector space." EMNLP (2014).

https://people.cs.umass.edu/~arvind/emnlp2014.pdf
https://people.cs.umass.edu/~arvind/emnlp2014.pdf
https://people.cs.umass.edu/~arvind/emnlp2014.pdf
http://web.cs.ucla.edu/~awm/papers/ofl.pdf
http://web.cs.ucla.edu/~awm/papers/ofl.pdf


115
Newman, Mark EJ. "Detecting community structure in networks." The European Physical Journal
B-Condensed Matter and Complex Systems 38.2 (2004): 321-330.

Newton, I. "De analysi per aequationes numero terminorum infinitas (1669)." London, UK: W.
Jones 1711.

Nigam,  Kamal,  et  al.  "Text  classification  from  labeled  and  unlabeled  documents  using  EM."
Machine learning 39.2-3 (2000): 103-134.

Pennington,  Jeffrey,  Richard Socher,  and Christopher D. Manning.  "Glove:  Global  Vectors for
Word Representation." EMNLP. Vol. 14. 2014.

Peters,  Matthew  E.,  et  al.  "Semi-supervised  sequence  tagging  with  bidirectional  language
models." arXiv preprint arXiv:1705.00108 (2017).

Radford, Alec, et al. "Language Models are Unsupervised Multitask Learners."

Reisinger,  Joseph,  and  Raymond  J.  Mooney.  "Multi-prototype  vector-space  models  of  word
meaning." Human Language Technologies: The 2010 Annual Conference of the North American
Chapter  of  the  Association  for  Computational  Linguistics.  Association  for  Computational
Linguistics, 2010.

Rosenblatt, Frank. The perceptron, a perceiving and recognizing automaton Project Para. Cornell
Aeronautical Laboratory, 1957.

Rowe, William D. "Gestalt  pattern recognition with arrays of predetermined neural  functions."
Proceedings of the 1st international joint conference on Artificial intelligence. Morgan Kaufmann
Publishers Inc., 1969.

Rumelhart,  David  E.,  Geoffrey  E.  Hinton,  and  Ronald  J.  Williams.  Learning  internal
representations by error propagation. No. ICS-8506. California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

Schütze, Hinrich. "Automatic word sense discrimination." Computational linguistics 24.1 (1998):
97-123.

Sebastiani, Fabrizio. "Machine learning in automated text categorization." ACM computing surveys
(CSUR) 34.1 (2002): 1-47.

Sirinukunwattana,  Korsuk,  et  al.  “Gland  segmentation  in  colon  histology  images:  The  GLaS
challenge contest.” Medical image analysis 35 (2017): 489-502.

Su, Jiang, Jelber S. Shirab, and Stan Matwin. "Large scale text classification using semi-supervised
multinomial naive bayes." Proceedings of the 28th International Conference on Machine Learning
(ICML-11). 2011.



116
Sundermeyer, Martin, Ralf Schlüter, and Hermann Ney. "LSTM Neural Networks for Language
Modeling." Interspeech. 2012.

U.S.  Census  Bureau,  Population  Division.  “Annual  Estimates  of  the  Resident  Population  for
Incorporated Places of 50,000 or More, Population: April 1, 2010 to July 1, 2015. ” Retrieved
from https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml (May 2016).

“Vector  Representations  of  Words.”  TensorFlow,  21  May  2017,
http://www.tensorflow.org/tutorials/word2vec

Wikipedia User BruceBlaus. “Multipolar Neuron.” Wikimedia Commons, version 2, Wikipedia, 24
May 2017, http://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png. 

Williams,  Ronald  J.,  and  David  Zipser.  "A  learning  algorithm  for  continually  running  fully
recurrent neural networks." Neural computation 1.2 (1989): 270-280.

Yang, Yiming, and Xin Liu. "A re-examination of text categorization methods." Proceedings of the
22nd annual international ACM SIGIR conference on Research and development in information
retrieval. ACM, 1999.

Zhao,  Li,  et  al.  "Semi-supervised  multinomial  naive  bayes  for  text  classification  by leveraging
word-level statistical constraint." Thirtieth AAAI Conference on Artificial Intelligence. 2016.

Zhu,  Xiaojin,  and  Zoubin  Ghahramani.  Learning  from labeled  and  unlabeled  data  with  label
propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.

Zipf, George Kingsley. "The meaning-frequency relationship of words." The Journal of general
psychology 33.2 (1945): 251-256.

Zou,  Will  Y.,  et  al.  "Bilingual  Word  Embeddings  for  Phrase-Based  Machine  Translation."
EMNLP. 2013.


