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Abstract

Decentralized Persistent Shape Formation in Large-Scale Homogeneous Robotic Swarms

Hanlin Wang

This research looks at the robotic shape formation problem, which is one of the funda-

mental problems in robotic swarm systems. Here, the task is to move a group of robots

to form a user-specified shape. In this dissertation, the task of shape formation is divided

to four problems: (i) using local information to estimate the swarm size; (ii) using arbi-

trary number of robots to display a user-specified shape; (iii) localizing a swarm of robots

with peer-to-peer measurements; and (iv) assigning each robot a location in the shape and

routing each robot to quickly reach its assigned goal location. Accordingly, four algorithms,

each solves a problem above, are presented. The presented algorithms are validated using

a custom physical 100-robot swarm, and a custom efficient swarm system simulator. The

results from both the simulation and physical experiments show that: each presented algo-

rithm is able to solve its corresponding problem efficiently and reliably. Furthermore, those

four presented algorithms are brought together into a fully decentralized persistent shape

formation algorithm. With the developed simulator and physical robotic swarm, it is further

demonstrated that: this integrated algorithm allows the swarms with any size to persistently

form arbitrary user-specified shapes, requiring only the use of local information.
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CHAPTER 1

INTRODUCTION

1.1. Background

A swarm system generally refers to a large group of similar agents, often numbering in the

hundreds or more, that displays emergent behavior arising from local interactions among the

agents [1]. Across countless species such as birds [2], bees [3], and ants [4], nature has shown

us that by working together with peers as a unified systems, even the simplest creature, like

an ant, can accomplish some extremely complex tasks.

In swarm systems, the swarm’s shape is an important and fundamental property. It

has been found in nature that shape formation can allow simple creatures to amplify their

group ability, for example, flocks of birds fly in an aerodynamically optimum V-shape to

achieve energy efficiency [2], army ants form bridges across gaps to allow the swarms to

travel efficiently [4] and reach locations not accessible by any single individual, and fish

school to better protect themselves from predators. See Fig. 1.1 for a graphical illustration

of these examples.

Figure 1.1. Example of shape formations in nature. (Left) flocks of birds fly
in V shape [5]. (Middle) Ants build bridge across a gap [6]. (Right) A school
of fish [7].
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Figure 1.2. Example of robotic shape formation in the work of fiction. (Left)
Microbots from the film Big Hero 6. (Right) The robot swarm from the film
Tau.

Similar to their natural counterparts, swarm shape plays a critical role in robotic swarms.

When mapped to robotic systems, the task of shape formation is often framed as moving

a set of robots, which are initially located randomly in space, into a given arbitrary target

formation. The concept of shape formation on robotic swarms has frequently been depicted

or described in works of fiction, for example, the microbots in the film Big Hero 6 can connect

together to form various shapes and perform tasks cooperatively; the robotic swarm in the

film Tau can work together to guard the house. See Fig. 1.2 for a graphical illustration of

these two examples.

Recently, several real-world applications has brought this concept from the fiction to

reality. SMORES-EP is a modular robot [8] designed and built at the UPenn, and used

by researchers at UPenn and Cornell [9]. Each SMORES-EP module is extremely simple:

it has only the capability of moving on the flat surfaces, the capability of connecting with

the other modules, and the capability of talking to a central controller. That said, when

multiple SMORES-EP module connect with each other and transform into different shapes,

they are able to address many complex tasks that are beyond any individual’s capability,

such as climbing up the stairs, picking up an object, or exploring the environment. See Fig.

1.3 for a picture of SMORES-EP robot.
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Figure 1.3. Example of robotic shape formation in the reality. From left to
right: SMORES-EP robot system from UPenn and Cornell [9]; a drone light
show from Intel [10]; Kiva system from Amazon Robotics [11]; the envisioned
Starlink system from SpaceX [12].

Another famous example is the drone light show from the company Intel [10], which has

been shown to be an eco-friendly alternative to the traditional firework show. The firework

show has been playing an important role in a lot of entertainment events, but it has been

criticized for contributing to air and water pollution, as well as the extreme high expense.

The drone show from the Intel, on the other hand, is noise-free, smoke-free, reusable, and

is able to provide almost the same performance compared to the traditional firework show

from entertainment perspective. See Fig. 1.3 for a picture of a drone light show from Intel.

Besides the entertainment applications, a more example of a commercial application is

Kiva system from the Amazon Robotics. Kiva system is a automated storage and retrieval

system that consists of thousands of ground robots. It has been shown that Kiva system can

increase the overall efficiency of the picking system by 3.5 times. Kiva robots are capable

of delivering a item to a worker every 6 seconds, which results in 600 picks an hour. Other

warehouse designs would require about 150 people to complete the same amount of work in

a day as 50 could with Kiva system [13]. See Fig. 1.3 for a picture of Kiva system.

Furthermore, beyond the examples on Earth, robotic shape formation also plays an im-

portant role in the space applications. Starlink is a satellite constellation constructed by

the company SpaceX [12]. This system will consist of thousands of small satellites in low
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Earth orbit, working in combination with ground transceivers. By forming a mesh pattern

surrounding Earth, these small satellites will be able to bring the internet connectivity to

almost everywhere on this planet. See Fig. 1.3 for a picture of Starlink system.

In addition to the examples above, the concept of shape formation can also to found

in many other applications, such as manufacturing [14], environment monitoring [15], and

more [16–18]. Given countless examples found in both the nature and the real world, it is

clear that the robotic shape formation is a problem that has both the scientific and practical

importance, motivating the study presented in this dissertation.

In the past, many solutions to the shape formation problem have been proposed. Many

past efforts have concentrated on a fixed-scale version of the problem. In the fixed-scale

shape formation problem, the swarm size is assumed to stay the same all the times, and

the representation of the desired shape is often pre-computed and given to the swarm as an

input. There is a related body of work controlling groups of robots that uses centralized

planning or controllers, for example, some shape formation in large groups of quadrotors

[19–21], or some applications in warehouses [13].

Figure 1.4. Example of centralized shape formation in quadrotor swarms.
(Left) Long exposure of 32 Crazyflie quadrotors flying through a hole on a
wall [20]; (Right) 25 quadrotors perform a periodic wave motion using the
method proposed in [21].

Previous works includes the methods solving the problem in a discrete setting [22–24] and

the methods solving the problem in a continuous setting [25–27]. While these systems provide
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exciting results, the centralized approach creates a single point of failure which reduces the

fault tolerance of the group, and suffers from the extremely high computation complexity

as the complexity will exponentially escalate over the swarm size. As a result, centralized

method does not scale well to very large groups of robots. To reduce the computational

cost, an alternative is to design an artificial potential function to guide the swarm to the

goal configuration [28–30]. Despite that this type of method can significantly reduce the

computation complexity of the problem, it often takes a long time to converge and lack

completeness guarantees [27].

Figure 1.5. Example of decentralized shape formation in ground robotic
swarms. (Left) 1024 Kilobots cooperatively form various shapes [31]; (Right)
50 Elisa robots display a sequence of images [32].

One strategy that helps to break the problem’s computational bottleneck is distributing

the computational cost among the agents. The decentralized methods have been shown to

empirically scale well with swarm size [27, 31–36]. The decentralized methods can be catego-

rized into progressive methods [31, 33, 37], and parallel methods [32, 35, 36]. In progressive

methods, the shape “grows” from an pre-determined leader agent, which is essentially a se-

quential process. These methods require an additional leader selection phase to select the

leader agents, furthermore, its has not been shown that these methods are collision-free.

To the contrary, in parallel methods [27, 32, 35, 36], each agent takes on the same role and



24

cooperatively forms the shape in parallel. Compared to the progressive methods, the parallel

methods are more efficient and do not require the leader selection phase. For the parallel

methods, when including the collision avoidance in algorithm design, one challenge is that:

in reality, agents have limited communication range and bandwidth, which makes it hard

for the agents to get access to global information, therefore, the approaches in the past have

not provided completeness guarantees.

Figure 1.6. Example of persistent robotic shape formation. In both examples,
the formed shape is damaged by the robot removal. (Top) The swarm recovers
the desired shape by changing the robot density [38]; (Bottom) The swarm
repairs the desired shape by forming the shape at a smaller scale [33]

Different from the fixed-scale shape formation, the other more advanced version of the

problem is so called persistent (or scale-independent) shape formation [38–40]. In this version

of shape formation problem, robots can be removed from or added to the swarm in real-time.

When the swarm size changes, two strategies allowing the swarm to adapt have been proposed

[38–40]: one strategy is to keep the scale of the desired shape fixed, and change the density

of the robots [38]; the other strategy is to keep the density of the robot fixed, and change

the size of the desired shape [39, 40]. It has been shown that, both of those two methods

[39, 40] allow the system to adapt to the swarm size change. On the other hand, these

previous methods either have an implicit requirement on the swarm size to perfectly display
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the desired shape [38, 40], or require the swarm to wait “long enough” to sense the swarm

size change, making the time for the swarm to adapt to the swarm size change relatively

long [39]. See Fig. 1.6 for a graphic illustration of persistent shape formation.
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1.2. Summary

In this dissertation, I present a method that allows a large swarm of identically pro-

grammed (homogeneous) robots to persistently form a user-specified 2D shape. The pre-

sented method requires only the use of local information (decentralized), in addition, for

each robot, besides the desired shape, no other information needs to be known a priori. Fur-

thermore, when the formed shape is damaged by external disturbances such as the addition,

the removal, or the shifting of robots, the presented method will enable the swarm to recover

the desired shape (it is persistent).

The organization of this dissertation is as follows:

• After chapter 1, chapter 2 states the problem to be solved and introduces the model of

the robots used in this research;

• Chapter 3 presents a custom 100-robot physical swarm as well as two swarm system

simulators. These systems are important tools for developing and validating the algorithms

presented in the later chapters;

• In chapter 4, an overall pipeline for persistent robotic shape formation is presented.

This pipeline reduces the task of shape formation to four problems: (i) swarm size estimation

– using local information to estimate the swarm size; (ii) goal configuration generation – using

arbitrary number of robots to represent a user-specified shape; (iii) cooperative localization

– localizing a swarm of robots with peer-to-peer measurements; and (iv) task assignment

and formation control – assigning each robot its location in shape and routing each robot to

reach its assigned goal location;

• Next, from chapter 5 to chapter 8, four algorithms, each solves a problem above, are

presented. For each presented algorithm, a comprehensive literature survey is conducted
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in the corresponding chapter. In addition, each presented algorithm is validated via the

experiments running on both the simulated swarm and the physical swarm;

• Chapter 9 brings together the four algorithms presented in chapter 5 - 8 into a fully

decentralized persistent shape formation algorithm. This integrated algorithm is further

demonstrated using both the simulated swarm and the physical swarm;

• Lastly, I conclude in the chapter 10.



28

1.3. Contributions

The major contribution of this dissertation is the design and analysis of a collection of

algorithms such that when combined, they allow the swarms with any size to persistently

form arbitrary user-specified shapes without the use of any global information. In particular,

I present the following work:

• A provably correct decentralized algorithm for estimating the number of robots in a

swarm. In addition, this algorithm is able to adapt to the addition or removal of robot,

making it possible for the robot to constantly monitor the swarm size at run time [41].

• An algorithm that generates the goal configuration for a given swarm to display the

given shape. The generated goal configuration is given in the format of a set of goal points

such that: the number of goal points exactly matches the swarm size. This algorithm is able

to generate the goal configurations for the swarms with arbitrary sizes, in addition, when the

swarm size changes and the swarm needs to transform to a new configuration corresponding

to the new swarm size, the algorithm will minimize the swarm’s effort required [42].

• A provably correct decentralized algorithm that allows a swarm of identically pro-

grammed agents to cooperatively estimate their global poses using the local range and bear-

ing measurements. The novelty of this algorithm is that: it does not require the robot to

actively maintain the communication links between itself and its neighbors, or synchronous

its local clock with the others, making it possible for the algorithm to work in the situations

where the swarm’s communication topology is dynamically changing [43].

• A provably correct decentralized algorithm for assigning a set of goal locations to a

group of robots, and routing each robot to its assigned goal location. As stated in [44],

to the best of my knowledge, this algorithm is the first provably correct fully decentralized
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shape formation algorithm that can also provide absolute collision-free and deadlock-free

guarantees, requiring only the use of local communication [44].

• These four presented algorithms above into a fully decentralized persistent shape for-

mation algorithm.

In addition, to verify the presented algorithms, the following swarm systems are developed

in this dissertation:

• A 100-robot platform that allows researchers to easily test their work;

• A simulator that simulates the developed physical robotic swarm in a very realistic

way. It is designed in a way that the user can use exactly the same copy of code to control

both the simulated swarm and real swarm. It allows the user to test their codes before

implementing them on the real swarm, which helps to avoid the potential hardware damage

introduced by inappropriate user code.

• An efficient simulator for swarm systems that is able to simulate large-scale swarms (≥

1000 robots) in the real time. It allows the users to quickly and safely test their ideas on

large-scale swarms.
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CHAPTER 2

PRELIMINARIES

In this chapter, I will formally state the problem to be solved in this research, and

introduce the robot model used in the design and analysis of the presented algorithms.

2.1. Problem Statement

The main objective of this research is to develop a fully decentralized method that enables

a large swarm of identically programmed (homogeneous) robots to persistently form a user-

specified 2D shape. To be more specific: It is assumed that the desired shape is given to the

swarm in the format of a binary image. For each robot, this input binary image is the only

information known a priori. Note that the number of in-shape pixels on this input image

does not necessarily match the number of robots. Given the desired shape, the developed

method must enable the swarm to reliably form this input shape without the use of any

global information (decentralized). Furthermore, besides forming the desired shape, the

developed method must also enable the swarm to maintain the desired shape, that is: when

the formed shape is damaged by external disturbances such as robot addition, removal, or

the shifting, the swarm should be able to recover the desired shape (persistent). An example

of up to 100 robots persistently forming a shape “N” is shown in Fig. 2.1: (a) The input

given to each robot, which is a binary image of a shape “N”; (b) initially, 70 robots are

randomly dispersed on a 2D plane; (c) the robots form the input shape; (d) 30 robots are

added to the swarm, damaging the formed shape; (e - f) the swarm form the shape “N” at
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a bigger scale so as to recover the desired shape; (g) the formed shape is damaged by robot

shifting; (h - i) the swarm recover the desired shape; (j) 23 robots are removed from the

swarm, which damages the formed shape; (k - l) the swarm recover the desired shape by

forming the shape at a smaller scale.

Figure 2.1. An example of the persistent shape formation on a swarm of up to
100 robots. Time for each frame: b - 0s; c - 166s; d - 210s; e - 420s; f - 605s;
g - 644s, h - 740s; i - 860s; j - 990s; k - 1167s; l - 1320s.
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2.2. Robot Model

When developing the algorithm, one key consideration is the required robot capabilities to

execute the algorithm. For the real-world robotics swarms, it is apparent that the complexity

and cost of individual robots are the important factors in limiting the size of the swarm.

Therefore, in order to make it possible for the developed algorithm to work on a large swarm,

the required robot capabilities to execute the algorithm must not be complex. Similar to [31,

33, 34, 38–40, 45–52], in the design and analysis of the presented algorithms, it is assumed

that the robot only has the capability communicating with physically nearby neighbors, the

capability of sensing the nearby robots’ relative positions, and the capability of moving on

a 2D plane. To be more specific, I assume the following:

• Each robot is in a disk shape with a radius of r, moreover, it is able to move on a 2D

plane;

• Each robot’s clock has the same frequency but can be asynchronous in phase;

• Each robot can communicate with any nearby robots lying within its communication range

R ≥ 2
√

2r;

• Each robot has a locally unique ID. It was shown in [33, 45] that each robot can easily

generate this locally unique ID in a probabilistic way on the fly;

• Each robot is identically programmed;

• Each robot holds a local coordinate frame where the local coordinate frame’s origin is fixed

on the center of the robot and the x-axis’ direction is aligned with the robot’s heading. In

addition, considering the fact that most real-world sensors have a right-handed coordinate

system, it is assumed that each robot’s local coordinate frame is always right-handed.

When an robot ai receives a message from a neighbor aj, the robot ai is able to sense
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the transmitter aj’s relative bearing angle Bij and the distance dij in its local coordinate

frame. See Fig. 2.2 for a graphical illustration of robot’s sensing capabilities;

• Each robot has the odometry capability.

Figure 2.2. Graphical illustration of the robot’s sensing capability. Each disk
is a robot. The red and green arrow lines are each robot’s local coordinate
frame, where red arrow line is the x-axis
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CHAPTER 3

SWARM SYSTEMS

As the proverb goes: “You can’t make bricks without straw”, we won’t get anywhere

without the appropriate resource. Thus, before introducing the algorithms, in this chapter, I

will present a 100-robot physical swarm, and two swarm simulators. These three systems are

important tools for developing and validating the algorithms presented in the later chapters.

3.1. General Swarm Robotic Simulator

For swarm-robotic research, the simulation is a powerful and safe tool to prototype the

theories and algorithms. For this task, I developed an simulator that can realistically and ef-

ficiently simulate robot’s locomotion, communication, and sensing. In simulation, each robot

is modeled as an omni-directional robot able to sense its position and orientation in a com-

mon coordinate system. In addition, the simulated robots are able to communicate with any

other robot who lies within an user-specified communication range. The simulator consists

of two major components: the graphical engine, which graphically displays the simulated

results to the user, and the world engine, which handles the computation of simulation of

the swarm. The graphical engine is developed using OpenGL (Open Graphics Library). The

world engine is developed using C language and accelerated by the multithreading technique.

It has been shown that the simulator is efficient enough to simulate large-scale swarm (≥

2000) in real time. This simulator offers a safe and convenient way to develop and test new



35

algorithms. The source code and associated documentation for the developed simulator can

be found at: https://tinyurl.com/ypm5avbk.

3.2. Coachswarm

Often, simulations are used as a safe and convenient way to develop and validate swarm

theories and algorithms. However, it is not possible for a simulator to capture all real-world

uncertainties, such as communication uncertainty, sensing error, and imperfect robot motion.

These real-world uncertainties can affect algorithm performance in unexpected ways [48]. It

is therefore imperative for swarm-robotics researchers to validate their work on physical

swarm systems.

Many previous swarm-robotic platforms have been developed [17, 53–64] in which great

efforts were made to reduce the robot’s cost and footprint so as to increase the size of

swarms [56–60]. Unsurprisingly, this often results in swarms with limited computation,

communication, and locomotion capabilities. E-puck [55], r-one [53], and swarmbot [54] are

three more powerful robots. However, the cost and complexity of constructing these robots

makes it hard for them to be used for large-scale swarm-robotic research.

Two robots that attempt to achieve a balance between the capability of robot, its cost,

and the complexity of its construction are Colias IV [62] and mROBerTO 2.0 [64]. Colias

IV is a small robot with a camera that allows a user to deploy vision-based algorithms on

a swarm of small robots. mROBerTO 2.0 is a robot with stepper motors and an associated

control algorithm that enables reliable open-loop motion control. Although these robots offer

users powerful per-robot performance, they have not yet been deployed in large numbers.

Only a handful of works considered the complexity of swarm operation [17, 60, 61]. The

Kilobot swarm [60] was developed with the objective of deploying decentralized algorithms on

https://tinyurl.com/ypm5avbk
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a large-scale, 1,000-robot swarm. Unfortunately, the communication from operator to Kilo-

bot swarm is one-directional, making it hard for the operator to collect detailed experimental

data directly from the swarm, such as the state of each robot. Zooid [17] is another platform

that allows the user to control many small robots. However, Zooid has not yet been shown

to perform decentralized algorithms, and the robots are manually and individually charged,

increasing the difficulty of maintaining the swarm. Robotarium [61] is a swarm-robotic plat-

form that offers users remote access. When executing user’s code, Robotarium uses several

additional layers to guarantee the safety of the operations. These intermediate layers will

interfere user’s algorithms with respect to motion control, robot-to-robot communication,

etc, making the experimental results less realistic.

In this section, I present the Coachswarm, a high-performance and low-cost 100-robot

platform that allows researchers easily and reliably test their work. This platform offers me

a way to test the algorithms’ robustness to real-world uncertainties.

The Coachbot V2.0 platform consists of two key components: 100 Coachbot V2.0 robots,

and a central server that manages the swarm.

3.2.1. Coachbot V2.0 Robot

The Coachbot V2.0 robot is a compact, modular, and inexpensive differential driven mo-

bile robot. Coachbot V2.0 has a modular design, and is composed of three independently-

manufactured modules: a locomotion and power module, a computation module, and a

sensing module.

The locomotion and power module consists of five elements. First, two wheels driven

by two DC gear-motors allow the robot to drive across flat surfaces. Second, an H-bridge
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Figure 3.1. Illustration of hardware used in experiments. (1 ) Key components
of the Coachswarm system: (1 Left) Robot used in the experiments. The
robot is in a cylinder shape with a height of 0.12m and a radius of 0.05m.
Key components are: (a) Localization system based on the HTC Vive, (b)
Raspberry PI b+ computer, (c) electronics mother board, (d) rechargeable
battery. (1 Right) Robot arena used in experiments: (e) overhead camera
(only used for recording videos), (f) overhead HTC Vive base station, (g)
swarm of 100 robots. (2 ) Illustration of the Coachswarm communication
network. The green link is an ethernet connection between the base station
and the Wi-Fi router. The blue links are TCP/IP connections, and the black
links are layer 2 broadcasting connections. (3 ) The swarm of 100 robots. (4 )
The robots charging by connecting to two metal strips attached to the wall.

independently controls the speed and direction of each DC motor. Third, a Bluetooth low

energy (BLE) module that is able to remotely turn the robots on, or put the robots into a low-

energy sleep mode. The reason for having this BLE based remote switch is that: manually

switching the power on or off on a large swarm becomes impractical, as the time to perform

this necessary operation increases linearly with swarm size. Fourth, a 4.2v, 2500mAh lithium

ion battery powers the robot continuously for about four hours, or allows the robot to sleep

for over one month. Finally, two metal pads are mounted on the front of the robot chassis

to allow the robot to charge its battery by contacting an external power bus (see Fig. 3.1
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(4)). A custom PCB connects all five of these elements, simplifying assembly and increasing

system robustness and reliability.

The robot uses Raspberry Pi 3B+ as its main computer. The Raspberry Pi 3B+ was

selected due to its powerful computation and communication capabilities and low power

consumption. A Raspberry Pi 3B+ is approximately the size of a credit card, and contains

a 1.4GHz 64-bit quad-core CPU, 1GB RAM, and dual-band 802.11ac wireless LAN (2.4GHz

and 5GHz).

The Coachbot V2.0 robot’s position and orientation sensor is based on the HTC Vive

virtual reality system. This sensor consists of two TS3633-CM1 light-to-digital converters

and an Atmel ATtiny87 microcontroller mounted on a custom PCB. The two TS3633-CM1

modules convert the infrared signals from a HTC vive base station mounted on the ceiling to

a digital output. The microcontroller uses the timing of these digital outputs to determine

the position of each sensor relative to the base station, and transmits this information to the

computation module via UART. Using this information, the the computational module can

accurately and robustly estimate the robot’s position and orientation.

In addition, a custom 3D-printed chassis holds those three modules together. When

fully-assembled, the robot is a cylinder with a height of 0.12m and a radius of 0.05m, see

Fig. 3.1 (1) for a picture of Coachbot V2.0 robot.

On the software side, in order to make it easy for user to operate the robot, I developed

COS (Coachbot operating system), a lightweight communication middleware built on the top

of the Raspbian operating system. COS focuses on satisfying on the following requirements:

First, to make it easy for user to operate the robot: COS must reliably execute user

commands, such as starting or stopping the experiment, updating robot code, etc. Moreover,
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COS should abstract all hardware resources (sensing module, actuation module, etc) such

that a user can manipulate the robot without considering low-level hardware.

Second, to offer reliable performance. COS must enable the robot’s hardware modules to

efficiently and reliably exchange data. To perform decentralized algorithms, COS must also

allow the robots to efficiently and reliably communicate with each other with low latency. To

perform centralized algorithms, COS must offer a reliable communication channel to operate

the robots as well as to collect telemetry and reports from the robots.

Figure 3.2. The architecture of COS. The elements in the orange region are
hardware modules, the elements in the blue region are part of the Raspbian
OS, and the elements in the green region are the COS elements. Among
COS elements, solid boxes are processes and dashed boxes are shared memory.
Arrows indicate the direction of data flow between two elements.

The design of COS uses the component model, and its architecture is illustrated in

Fig. 3.2. In COS, each component is a process in Raspbian OS that exposes several pieces

of shared memory as the interface. The current COS consists of five components: three

components to read the data from the localization sensor, drive the motor, and handle the
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inter-robot communication (IRC); a user component to execute the user code; and a main

component to coordinate data from the other four components, listen to operator commands,

and manage the user component according to user’s command. The communication between

and function of each module is described in detail below.

Inter-process communication (IPC) among components: COS handles IPC using

shared memory. Four pieces of shared memory are used in COS to allow the components to

exchange data:

• pose: Contains robot’s x-y position and orientation.

• msg recv : Contains the messages received from other robots. msg recv is managed as a

ring buffer, meaning that it will only keep the latest incoming messages once full.

• msg send : Contains the message that the robot intends to transmit to other robots.

• motor speed : Contains the user’s desired directions and speeds for robot’s left and right

wheels.

User Component: The process that loads and executes the user code. User code is

given to the robot as a Python script. Hardware resources are abstracted to several system

calls and availible to the user as APIs. The system calls that COS offers to the user are:

• get pose(): Returns robot’s current orientation and x-y position.

• get msg(): Returns the messages received from the other robots, then cleans the shared

memory msg recv.

• send msg(msg): transmits the message msg to the other robots.

• drive robot(l, r): Allows the user to send the speeds and directions of robot’s left and right

wheels.
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• set led(r, g, b): Allows user to configure the color as well as the brightness of the led on

top of the robot.

• get clock(): Returns the time elapsed since the user code started.

Localization Component: This process reads the data from the localization sensor

via UART, calculates robot’s position and orientation, then writes this information into the

shared memory pose.

Actuation Component: This process takes the user’s desired velocities of robot’s left

and right wheels from shared memory motor speed, converts the velocities into PWM signals

that it outputs to the H-bridge.

IRC Component: This process writes all messages received from other robots into the

shared memory msg recv, and transmits the message in shared memory msg send to the

other robots. Currently, COS offers the user a vanilla broadcast IRC channel that is built

directly on the data link layer, that is, COS passes/takes the IRC packets directly to/from

the data link layer without going through transport layer and network layer. By bypassing

the OS’s default network stack, COS avoids the unnecessary communication overhead and

latency, as well as the possible congestion incurred by the router. Depending on the user’s

demand, it is also possible to integrate other data distribution service (DDS) components

into COS to offer user more advanced communication model.

Main Component: The main component continually monitors the status of the other

components, recovering them from crashes, and, if commanded by a user, starting or stopping

user code by sending the user component an OS signal. The main component communicates

with the user through a TCP/IP communication channel, guaranteeing the reliable delivery

of user commands to the robot. Moreover, the same TCP/IP channel is also used by the
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main component to report the robot’s status (such as the robot’s position, battery voltage,

etc.) to the user, making it easy to manage the swarm.

3.2.2. Central Server

A computer workstation manages all robots in the swarm at once, allowing a single person

to easily operate the entire swarm without any direct interaction. However, the workstation

does not control robots during experiments. The workstation can communicate with all

robots using Wi-Fi, and can power the robots on and off using Bluetooth.

On the workstation, a custom coordination system makes use of the communication on the

star network (TCP/IP links) to operate and manage the swarm in a easy, scalable way. This

system has three software components: a FTP server, a monitor module, and a broadcaster

module. The FTP server is used to update the code running on the robots. It can push

new software to all robots at once. The monitor module is used to monitor the status of all

robots, which is transmitted from each robot to the base station. It monitors information

such as battery voltage, firmware version, etc. and displays it to the operator. See Fig .3.3

for a screenshot of the operator information display. The broadcaster module is used to send

commands to the swarm which help in its operation, such as starting and stopping execution

of the user code, turning the robots on/off, and moving robots to a charging station. The

broadcaster module makes use of both Wi-Fi and Bluetooth communication.

Figure 3.3. The screenshot of the operator information display, showing status
of 6 (of 100) robots displayed to the operator.
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3.3. Coachswarm Simulator

To assist users to execute their code on Coachswarm, I also developed a Coachswarm

simulator. This simulator offers users a convenient way to develop and test their codes

on their own machine before running them on the real Coachswarm. It helps to avoid

the potential hardware damage caused by inappropriate user codes, in addition, it also

simplifies the development of user code. This simulator consists two main components:

a world engine written in C that simulates robot’s on-board hardware resources, and an

user-code loader written in python that executes user’s code. The world engine simulates

the Coachbot V2.0 robot’s motion, sensing and communication in a very realistic way: the

specifications of all the simulated hardware, including the maximal speed of robot’s wheel,

sampling rate of robot’s positioning sensor, throughput of the inter-robot communication

channel, etc, are made to be consistent with the real robot. In addition, the user-code

loader is designed in a way that: the code used to operate the simulated robot can be used

to operate the actual Coachbot V2.0 robot without any modification. The Docker image

and an associated documentation for the developed Coachswarm simulator can be found at:

https://hub.docker.com/r/hanlinwang/coachswarm

https://hub.docker.com/r/hanlinwang/coachswarm
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CHAPTER 4

OVERALL PIPELINE DESCRIPTION

When the given task is complex, it has been shown that the modular programming [65]

is an useful design technique. The idea is to separate the overall task into sub-problems and

solve each sub-problem independently. It helps to simplify the debugging processes, more-

over, the developed solution to each sub-problem can also be reused by other applications.

In this chapter, I present a pipeline that breaks the overall task of persistent shape formation

into four independent problems. This presented pipeline also serves as the roadmap of this

dissertation.

The pipeline for persistent shape formation can be briefly described as follows: given the

desired shape (a binary image), each robot will first estimate the swarm size n, and then

encode the desired shape to a set of n goal points. In addition, each robot will constantly

monitor the swarm size on the fly, once it detects that the swarm size has changed, it will

update the goal point set accordingly. At the same time, the robots will use the local sensing

and communication to actively and cooperatively occupy those goal points corresponding to

the current swarm size, forming the input shape persistently.

Following the pipeline above, the overall method is made up four algorithms:

• swarm size estimation: a decentralized algorithm that uses the local information to esti-

mate the number of robots currently in the swarm.

• goal configuration generation: an algorithm that uses arbitrary number of robots to rep-

resent a user-specified shape.
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Figure 4.1. Diagram illustrating the robot’s overall behavior. Each box indi-
cates an algorithm developed in this dissertation. Arrows indicate the data
exchanged between components. Note that each algorithm is executed in par-
allel, allowing the algorithm to adapt to the unexpected external disturbances
at run time.

• cooperative localization: a decentralized algorithm for localizing a swarm of robots with

peer-to-peer measurements.

• task assignment and formation control : a decentralized algorithm that assigns each robot

its location in shape and routes each robot to reach its assigned goal location.

From chapter 5 to chapter 8, I will present four algorithms that solve those four problems

above. Furthermore, in chapter 9, I will describe in detail how to assemble all those four

developed algorithms into a full persistent shape formation algorithm. See Fig.4.1 for an

diagram illustrating how each developed algorithm module will interact with each other.

Note that, each presented algorithm is not the only solution to its corresponding subproblem.

Depending on the user’s application, it is possible to replace each presented algorithm module

with some other different algorithms to obtain a better performance.
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CHAPTER 5

SWARM SIZE ESTIMATION

This chapter describes a decentralized algorithm for computing the number of robots in

a swarm, only requiring communication with neighboring robots. The algorithm can adjust

the estimated count when the number of robots in the swarm changes, such as the addition

or removal of robots. Probabilistic guarantees are given, which show the accuracy of this

method, and the trade-off between accuracy, speed, and adaptability to changing numbers.

The proposed approach is demonstrated in simulation as well as a real swarm of robots. The

algorithm presented in this chapter has been published as [41].

5.1. Background

The number of robots in a robotic swarm is used in a wide variety of applications; from

self-assembling a shape at a scale proportional to the number of robots in a swarm, to

optimizing behaviors based on swarm size. While some approaches make use of the swarm

size given to it a priori [31], having the swarm learn its size on the fly offers more flexibility

to behaviors and make it more tolerant to failures that may inadvertently change the swarm

size.

One application in swarm robotics that explicitly or implicitly uses the swarm size is

shape formation. In [31] the shape is sized to fit the number of robots in the swarm. For

[34, 40] the number of robots is implicitly learned by building the shape at larger and larger

scales until the shape can no longer be built completely with the swarm. Building these
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intermediate sizes increases assembly time, and in some cases [40], it limits the types of

shapes that can be formed. Quickly knowing the size of the swarm would greatly increase

assembly speed.

Other application to swarm robotics could take advantage of knowing the swarm size

to optimize various behaviors of robots. For example in task allocation [66] when assigning

tasks to individuals, inefficiencies can occur for larger swarms [67] due to interference and

traffic, if the number of robots was known, the allocation of tasks could be adjusted for

optimality. Other tasks, such as computing a distributed consensus value [68] require waiting

for messages to reach all individuals in the swarm. To ensure this, implementations of these

algorithms assume a maximum number of robots in the swarm and set the wait time to allow

the message to reach all robots in a swarm that size. If the swarm size was known, a less

conservative wait time could be used, speeding up the distributed computation.

Additionally, knowing the swarm size could allow for new approaches that change be-

havior based on swarm size. For example, a swarm could use more conservative behaviors

for small numbers, but could use riskier behaviours for larger sized swarms, where the loss

of individuals would have less of an impact on outcome.

Some previous approaches for counting in robot swarms and adhoc networks include

electing a leader then using distributed token passing [69] and counting the number of times

a token is passed, or building a network tree [70] and propagating counting information from

the leaves to the root. These types of approaches are difficult to implement in a moving

robotic swarm where the communication topology can be dynamic.

Other approaches are based on a distributed gossip algorithm [71], however there is an

implicit maximum number allowed, based on the time allowed for each gossip round. The
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approach by [72] and extended by [73] can measure swarm size in dynamic systems, but

either requires long range communication or an additional messaging overhead to propagate

local messages globally. Similar approaches first elect a single leader and then run distributed

consensus between the leader’s value of 1 and all others with a value of 0 [74]. The average

here will be 1
n

where n is the swarm size. This approach requires synchronized communication

and has an implicit maximum size based on the time the distributed consensus algorithm is

run.

5.2. Algorithm Description

This chapter proposes an algorithm that can estimate the number of robots in the swarm,

which is scalable, can adapt to changing numbers of robots, works in the dynamic commu-

nication environments of swarms and does not have an implicit maximum it can count.

The proposed algorithm is inspired by the following simple idea: Let s1, ...sn be n inde-

pendent samples that are taken from a uniform probability distribution between 0 and 1,

we compute the max value of all samples, max1≤i≤n si. The more samples that are taken,

i.e. the larger n, the closer max1≤i≤n si is expected to be to 1. Furthermore, the value of

max1≤i≤n si can be used to estimate the number of samples, n. This can be repeated multiple

Algorithm 1: Pseudo code for swarm size estimation

1 maxs ← {} // the variable to record sample maximums in all m rounds

2 for j ← 0 to m do
3 max ← 0 // the variable to find the sample maximum in current round

4 for i← 0 to n do
5 si ← Xi ∼ U(0, 1)

6 if si > max then
7 max ← si

8 maxs ← {max} ∪maxs

9 k← average of all the elements in maxs

10 n∗ = k

1−k // calculate the estimation of the swarm size
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rounds, where in each round, j, a new set of n samples are generated and the maximum is

computed just for the samples in that round maxj1≤i≤n si. The average of these max samples

found in all m rounds, k =
∑m

j=1 maxj
1≤i≤n si

m
, can be used to provide an estimate of n with less

variance when compared to any single rounds max1≤i≤n si. See Algorithm 1 for the detailed

pseudo code.

This idea is mapped to a robotic system by having each robot generate a random number

sampled from a uniform probability distribution between 0 and 1. The swarm then com-

municates amongst themselves to compute the largest number generated by any robot, and

uses that number to estimate the number of robots in the swarm. As before, this process

can be repeated for multiple rounds to give better estimates of n.

5.3. Theoretical Results

This section studies the correctness and efficacy of the proposed algorithm. I first use

lemma 5.1 to show that the algorithm is correct, and then use the theorem 5.1 to show that

the error of estimation will linearly converge to 0 in probability.

Definition 5.1. Let n be the actual swarm size, n∗ be the estimation obtained from

Algorithm 1, I define the RE (relative error) of the estimation n∗ as:

RE(n∗) =
|n∗ − n|
n∗ + 1

Lemma 5.1. The sample maximum of n i.i.d. U(0, 1) random variables is an unbiased

estimator of n
n+1

.

Proof. See Appendix 1. �
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Theorem 5.1. Given an error margin ε, the probability that the RE(n∗) exceeds ε will

linearly decay over number of trials m. Specifically:

Pr{RE(n∗) ≥ ε} < 1

mε2

Proof. See Appendix 2. �

Remark: The result obtained in Theorem 5.1 suggests that the convergence rate of RE(n∗)

is independent of number of samples n, which suffices to show that the algorithm is scalable

from a theoretical perspective.

5.4. Algorithm Implementation

In practice, when implementing the proposed algorithm, each agent needs to wait “long

enough” between trials so as to give the swarm sufficient time to find the largest number in

each trial, i.e, enable the random number generated by itself to propagate through the entire

swarm. However, this waiting time is essentially a function of swarm size, which incurs the

“chicken and egg” paradox, as the task here is to estimate the swarm size.

To tackle this problem, I developed an error-driven method with which each agent ai can

use the local-only observation to maintain an estimation of the necessary waiting time. The

idea is shown as following: It is assumed that each agent ai transmits the messages at the

same constant frequency f . Through the experiment, each agent will maintain an estimation

of swarm’s communication diameter di, i.e. the longest distance (in term of communication

hop) between one agent to another in swarm, and it use this di to calculate the waiting time.

To be specific, between two adjacent trials, ai waits 4di
f

amount of time.
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To estimate di, during each trial j, each agent uses the hop-count algorithm [48] to

estimate the distance (in term of communication hop) hopji between itself and the agent that

generates the largest number of the trial. If the agent underestimates the communication

diameter, then two error events may occur, where ai will update di:

• ai sees a neighbor aj such that dj > di: This implies some other agent has seen a larger

pairwise communication distance. In this case, ai set di = dj;

• di is less than the hopji : This suggests the agent’s diameter estimation is less than the

communication distance between itself and some other agent. This is a more serious error

because hopji is already a lower bound of the communication diameter, hence in this case

we punish di by setting di = 2 hopji .

It is straight forward to examine that the waiting time 4di
f

is sufficient to enable the agent

to detect these two errors before it starts the next trial.

The other challenge I have when developing a decentralized implementation of the algo-

rithm is that: In reality, agent’s clocks are not perfectly synchronized. To solve this problem,

I embedded a sequence number in each trial, and enforce the agent to only use the infor-

mation coming from the message that has the same sequence number. See Algorithm 2 for

implementation details.

The algorithm is implemented in a “listen-think-talk” manner. Specifically, the algorithm

consists of three modules: main module, broadcast module, and message handler module.

The broadcast module constantly transmits messages to neighbors at a fixed frequency f ;

the main module handles computation and memory management, and message handler mod-

ifies the local variables according to the incoming messages. These three modules can be

implemented using three separate threads that communicate through shared memory. The
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sketches of these three modules are shown in Algorithm 2, 3, and 4. Note that all the

variables are thread-public.

5.4.1. Main module

The Main module takes two inputs: f and m where f is the communication frequency and

m is the number of trials that will be used for estimation. The algorithm first claim and

initialize the variables that will be used in the later calculation, to be specific (Algorithm 2,

Line 1-10):

• buff : a ring buffer whose length is m, it is used to store the most recent m trials’ results

in the history;

• index : the variable that helps to operate buff ;

• seq #: each trial’s sequence number;

• sample max : the largest number of current trial;

• n∗: agent’s estimation of swarm size;

• diameter : agent’s estimation of the communication diameter of swarm;

• hop and max hop seen: the variables that help to update diameter ;

• last check : the beginning time of current trial.

After the initialization phase, the agent enters the main loop. At the beginning of each

iteration, the agent first forges the message that will be transmitted by Broadcast Module

(Algorithm 2, Line 12), then checks whether it has already waited long enough to start the

next trial (Algorithm 2, Line 13). If the agent has waited long enough already, it first checks

whether the current estimation of swarm’s communication diameter needs to be updated

(Algorithm 2, Line 14-18), and if the current diameter estimation is correct, the agent then
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adds the result to buff (Algorithm 2, Line 19), updates the estimation n∗ (Algorithm 2, Line

21-22), and initiates another trial (Algorithm 2, Line 13-25).

Algorithm 2: Main Module

Input: m, f
1 buff ← {0}
2 index ← 0

3 seq #← 0

4 sample origin ← rand(0, 1)

5 sample max ← sample origin

6 n∗ ← 0

7 hop ← 0

8 max hop seen ← 1

9 diameter ← max hop seen

10 last check ← clock()

11 while agent is active do
12 msg ← {seq #, sample max, hop, max hop seen}
13 if clock() - last check > 4 diameter

f
then

14 last check ← clock()

15 if hop > max hop seen then
16 max hop seen ← hop

17 if diameter < max hop seen then
18 diameter ← max hop seen

19 continue

20 buffer [index ] ← sample max

21 index = (index + 1) mod m

22 k ← average(buff )

23 n∗ ← k

1−k

24 seq #← seq # + 1

25 sample origin ← rand(0, 1)

26 sample max ← sample origin

Algorithm 3: Broadcast Module

1 while agent is active do
2 transmit msg

3 sleep 1

f
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5.4.2. Message Handler

When receiving a message, the Message Handler first compares msg.seq # with the local

seq #. There are three possible cases:

• If msg.seq # - 1 > seq #, it implies that the local clock is slower than the neighbor by

more than one trial, the agent then sets seq # = msg.seq # - 1 so as to catch up with the

neighbor (Algorithm 4, Line 3-4).

• If msg.seq # < seq # , it suggests that there is a neighbor that is slower than the agent,

then the agent will delay the next trial so as to give the neighbor time to catch up.

• If the neighbor and the agent have the same sequence number, then the agent will use the

information in the message to update its local variables (Algorithm 4, Line 8-15): Algo-

rithm 4, Line 8-9 is for finding the largest random number in the current trial; Algorithm

4, Line 10-13 is for finding the distance (in term of communication hop) between itself

and the agent that generates the largest number of the trial; Algorithm 4, Line 14-15 is

for finding the largest pairwise communication distance in swarm.

5.4.3. Complexity

First, one can easily examine that the algorithm’s memory complexity is dominated by the

size of buffer to store the trials’ results in Algorithm 2, In the other words, the algorithm’s

memory complexity is O(m).

Next, if it is assumed that the computation complexity of querying a random number

generator isO(1), then the computational cost of each iteration of the algorithm is dominated

by the calculation to find the average over buff, as a result, the algorithm’s computation

complexity is O(m).
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Algorithm 4: Message Handler

1 while agent is active do
2 if receive a msg then
3 if msg.seq # - 1 > seq # then
4 seq # ← msg.seq # - 1

5 if msg.seq # < seq # then
6 last check ← clock()

7 if msg.seq # == seq # then
8 if msg.sample max > sample max then
9 sample max ← msg.sample max

10 if msg.hop < hop then
11 hop ← msg.hop + 1

12 if sample max == sample origin then
13 hop ← 0

14 if max hop seen < msg.max hop seen then
15 max hop seen ← msg.max hop seen

Last, it is straight forward to examine that the algorithm’s communication complexity,

i.e., the length of each message, is O(1).

Remark: The results I obtained in this section suggests that the algorithm’s cost is in-

dependent of swarm’s size n with respect to computation complexity, memory complexity,

and communication complexity, which suffices to show that the algorithm is scalable from

a engineering perspective.

5.5. Performance Evaluation

5.5.1. Basic Simulations

To simulate the estimation algorithm on a large number of robots, and on a large number of

experiments, I first implemented the behavior on a simplified simulation in python. In this

simplified simulation, It is assumed robots are all synchronized and have global communi-

cation. Here, the non-ideal effects of a robotic implementation are ignored to allow for fast



56

Figure 5.1. The distribution of estimates for the number of robots for varying
swarm size. The distribution is normalized by the true number of robots. Each
boxplot represents the distribution of 2000 experiments in which the swarm
used 1000 rounds to estimate the number of robots.

and efficient experiments on up to 100,000 simulated robots. These first simulations were

used to validate predicted properties of the algorithm such as scalability and the effect the

number of rounds has on precision of estimates.

Figure 5.2. From left to right: the histograms of estimates of the swarm size
for a 1000 robot swarm after 10, 100, 1000, or 10000 rounds. Each histogram
represents the range of estimates of 10,000 experiments.

Figure 5.3. The average, and 1 standard deviations above and below average
of 1000 experiments with 100 simulated robots as increasing number of rounds
are included in the size estimate.
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One property of this algorithm predicted in our analysis is that the normalized error

(i.e. the percentage of error) is only dependent on the number of rounds, not the swarm

size. To show this, I looked at swarms sized from 10 to 100,000 and ran the estimation for

1000 rounds. This was repeated for 2000 experiments. Figure 5.1 shows that the normalized

accuracy of swarm size estimates are indeed independent of swarm size.

Next, the simplified simulation was used to show how the number of rounds used to

estimate swarm size has an effect on the accuracy of the estimate. In this test, the swarm

size is set to 1000, in each experiment, the robots use 10, 100, 1000, and 10000 rounds trials

to estimate the swarm size. Fig. 5.2 shows the estimation of 10,000 experiments for varying

numbers of rounds. As expected, the result of this test shows that increasing the number of

rounds produces less variance in the estimated swarm size.

A third test quantitatively studies how the variance of swarm size estimate changes over

the number of rounds included in the estimate. In this test, the swarm size is set to 100,

the task is to estimate this swarm size using different numbers of trials ranging from 10 to

100,000. The result of this test is shown in Fig. 5.3. As we can see in the plot, the variance

of the swarm size estimate sharply decreases as more rounds are included in the estimate.

5.5.2. Kilobot Simulations

To validate the method’s performance on a large-scale swarm system, I tested the algorithm

using an agent-based simulator that is originally developed for [75]. The simulator imple-

ments both the Kilobot’s motion and communication in a very realistic way. Moreover, the

user interface of the simulator is exactly the same as the one that is on actual Kilobot. In

the simulation, each agent communicates with neighbors at a frequency of 15Hz and the

maximum transmission unit is 9 bytes.
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First, I use simulation to investigate the effect of the buffer size m on the algorithm’s

accuracy and adaptability to changes. In simulation, up to 1000 agents execute our algorithm

to estimate the swarm size using varying of trials in the past. The initial swarm size is 1000,

and after 1000 seconds, I remove half of agents from the swarm. Fig. 5.4 shows the each

agent’s estimation about swarm size over time.

In the second test, I use simulation to investigate the convergence rate of the method.

In these experiments, swarms of size 10 to 1000 agents use all the trials in the history to

estimate the swarm size. The result is shown in Fig. 5.5.

Figure 5.4. The results for the test where up to 1000 agents estimate the
swarm size using fixed number of trials. From left to right: m = 20, 100, 200.
The black dotted line is the actual swarm size n and the solid colored lines are
agents’ estimations over time. The different colors indicates the results from
different agents, plots are overlapping as many have similar estimates.

Figure 5.5. The results for the tests where agents estimate the swarm size
using all the trials in the history. The black dotted line is the actual swarm
size n and the solid colored lines are agents’ estimations over time, plots are
overlapping as many have similar estimates.
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A third simulation is given to demonstrate our algorithm’s performance on the swarm

with extremely large size. In this test, 5000 simulated agents perform two experiments: In

first experiment, agents use 200 trials in the past to estimate the swarm size, and the swarm

size is initialized to be 5000 then drops to 2500 after 3000 seconds, the result of this test is

shown in Fig. 5.6 (Left). In the second experiment, 5000 simulated agents use all the trials

in the history to do the estimation, and the swarm size does not change in this experiment,

the result of this second test is shown in Fig. 5.6 (Right).

Figure 5.6. The experiments to demonstrate the algorithm’s performance on a
swarm of 5000 simulated agents. The black dotted line is the actual swarm size
n and the solid colored lines are agents’ estimations over time. The different
colors indicates the results from different agents, plots are overlapping as many
have similar estimates.

5.5.3. Real Kilobot implementation

To validate our algorithm’s performance beyond simulation, I implemented our algorithm

on a swarm of 35 Kilobots [51]. In reality, it is hard to collect the data from each individual

in real-time. As a result, instead of paying attention to each individual’s estimation, I use a

“probe message” to collect the minimal and maximal estimation amongst the swarm.

I performed two tests on the physical Kilobot swarm: The first test is given to demon-

strate the algorithm’s convergence rate, and the second second test is given to show the
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algorithm’s accuracy and adaptability to changes. In the first test, 35 Kilobots are tasked

to use all the trials in their history to estimate the swarm size, the result for this test is

shown in Fig. 5.7 (top); in the second test, Kilobots use 100 most recent trials to estimate

the swarm size, moreover, the swarm size is initialized to be 35 then drops to 25 after 2600

seconds. The result for the second test is shown in Fig. 5.7 (bottom).

Figure 5.7. The results from physical experiments. The black dotted line is
the actual swarm size n, the red and blue solid lines are largest and smallest
estimation amongst the swarm, respectively.

5.5.4. Real Coachbot V2.0 robot implementation

Due to the fact that the Kilobot’s hardware capabilities are fairly limited, in the experiments

presented in Section 5.5.3, it took a long time for the Kilobot swarm to accurately estimate

the swarm size. In this section, I implement the algorithm on the Coachbot V2.0 swarm. The

result of the experiment shows that, for the robots with more advanced hardware capabilities,

Coachbot V2.0 for example, the presented algorithm can actually estimate the swarm size

pretty fast. Initially, 100 robots are located in the arena, then, at t = 50 s, the robots that

are located in the left half of the arena are removed from the swarm. In this experiment,

The robot’s communication rate is set to 25 hz, each robot uses 300 most recent trials to

estimate the swarm size. The result of this experiment is shown in Fig. 5.8. As we can see
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in the plot, Coachbot V2.0 swarm is able to accurately estimate the swarm size within in

15 s, in addition, when the swarm size changes, the swarm is able to adapt within 10 s.

Figure 5.8. The experiment running on a swarm of up to 100 Coachbot V2.0
robots. The black dotted line is the actual swarm size n and the solid colored
lines are agents’ estimations over time. The different colors indicates the results
from different agents, plots are overlapping as many have similar estimates.
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CHAPTER 6

GOAL CONFIGURATION GENERATION

This chapter presents an algorithm that automatically encodes a user-defined complex

2D shape to a set of cells on a grid each characterizing a robot currently in the swarm. The

algorithm is validated via up to 200 simulated robots as well as up to 100 physical robots.

The results show that the goal configurations generated by the algorithm for the swarms

with any size are consistent with the input shapes, moreover, it allows the swarm to adapt

to the swarm size change quickly and robustly. The algorithm presented in this chapter has

been published as [42]. A summary video of the presented algorithm can be found in [76].

6.1. Background

In this past, many methods to represent the desired shapes has been presented, including

curves or regions explicitly described by a mathematical formula [77, 78], potential fields [79],

masked grid [39, 40, 44], and more [49, 50]. The mathematical formula-based representations

[77–80] can help to derive the formation control laws when the robot’s kinematic or dynamic

constraints need to be considered. However, when the desired shape is complex, it is time-

consuming (sometimes even impossible) to encode the desired shape to a mathematical

formula. Masked grid, also known as ”binary image” in 2D case [39] or ”binary volumes” in

3D case [40], is a grid where each cell is labeled with either a 1 or a 0, indicating whether

the cell is in the shape or not, and the desired shape is described as the set of in-shape cells

on the grid [39, 40, 44]. Masked grid is a convenient way to encode the complex shape, in
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Figure 6.1. From left to right: the target shape – “N”; the swarms with dif-
ferent sizes forming the configurations generated by the proposed algorithm

addition, for the swarm of modular robots that are with discrete attachment locations [8,

81], the masked grid is a natural way to describe the collective’s configuration.

Among previous methods, most of them assume that the swarm size does not change [44,

77–80] , only a few consider the situations where the swarm size could dynamically change

[38–40]. When the removal or addition of the robots occurs, there are two strategies for the

swarm to adapt. One option is to keep the scale of the desired shape fixed, and change the

density of the robots [38]. One drawback of this method is that: when the robot’s physical

size is finite, the size of swarm to display the shape will be limited, as one can fit only finite

amount of robots in a unit of space. On the contrary, the other option is to keep the density

of the robot fixed and change the size of the desired shape [39, 40]. When using the masked

grid to describe the target shape, there are two options to scale the goal configuration:

change the number of robots in each cell and fix the number of in-shape cells [39], or, change

the number of in-shape cells and fit exactly one robot to each cell [40]. As shown in [39, 40],

both of these two methods can offer the swarm the capability of self-healing, making the

system resilient to the removal and addition of robots. On the other hand, for the algorithm

proposed in [39], when the swarm size changes, it takes the swarm a long time to adapt, as

the swarm needs to wait “long enough” to sense the change of the swarm size. Moreover,
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the algorithm presented in the [40] only works for certain types of shapes, and the generated

configurations can be perfectly formed only by the swarms with certain sizes.

This chapter presents an algorithm that automatically encodes an input 2D shape (given

by an binary image) to a masked square grid where each in-shape cell characterizes a robot

current in the swarm. Given an input shape and the swarm size n, the algorithm will first use

naive binary image scaling methods to generate two reference grids, in which one has slightly

more than n in-shape cells and the other has slightly less than n in-shape cells, then use a

second subroutine, called interpolation, to refine those two reference grids so as to obtain the

final output – a masked grid with exactly n in-shape cells. The algorithm is validated via

both the simulated and physical experiments, the results show that the goal configurations

generated by the algorithm are consistent with the original input shapes, moreover, when

the swarm size changes, it allows the swarm to adapt quickly and robustly.

6.2. Preliminaries

In this section, I will formally state the problem, and introduce the notations frequently

used in the rest of the chapter.

6.2.1. Goal Configuration Generation: Problem Statement

The proposed algorithm takes two inputs: an binary image describing the desired shape, and

the size of the swarm to display the desired shape. Note that a binary image is essentially a

2D masked grid, therefore, for the sake of description, in the rest of this chapter, I use the

word “pixel” and the word “cell” interchangeably. The output of the algorithm is a masked

grid such that: the number of in-shape cells must equal to the input swarm size.
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When designing the algorithm, there are two factors to be considered: first, the generated

goal configurations should be consistent with the input shape; second, in order to allow the

swarm to quickly adapt to the removal and addition of the robots, the goal configurations

generated for different swarm sizes should be similar to each other as well.

6.2.2. Notations

Let Gi be a 2D m ×m masked square grid i, c
(x,y)
i ∈ {0, 1} denotes the label of the cell in

the x-th row and y-th column from the left-top corner, and S(Gi) = {(x, y) | c(x,y)
i = 1}

denotes the set of the coordinates of all in-shape cells on Gi. Given a set A, |A| denotes its

cardinality. For a pair of sets A and B: A∪ B denotes the union of set A and set B; A∩ B

denotes the intersection of set A and set B; A − B denotes the set of all the elements that

are in set A but not in set B. For n ≥ 3 sets A0,A1, . . . ,An−1, their union is denoted as⋃n
i=0Ai, in addition,

⋃a
i=aAi = ∅.

6.3. Approach

It is assumed that the desired shape is given to the swarm in the format of a 100× 100

binary image, however this approach can be generalized to any size binary image. The

Algorithm 5: Pipeline for proposed algorithm

Input: Input shape Gin, swarm size n
Output: Configuration for the swarm Go

1 Glo,Gho ← scaling(Gin, n)

2 if |S(Glo)| is n then
3 Go ← Glo
4 else
5 if |S(Gho )| is n then
6 Go ← Gho
7 else
8 Go ← interpolation(Glo,Gho , n)

9 return Go
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Figure 6.2. The graphical illustration of the overall pipeline of the presented
algorithm. From left to right: (a) The input shape, which is given in the for-
mat of a binary image. In this example, the task is to find a goal configuration
for a swarm of 12 robots; (b) The scaling subroutine is applied to the input
masked grid so as to find two reference grids with approximately 12 in-shape
cells; (c) Two reference masked grids with each pixel enlarged for the visual-
ization purpose; (d) A configuration with 12 in-shape cells is constructed by
the interpolation subroutine using those 2 reference grids in (c).

proposed algorithm consists of two subroutines – scaling and interpolation. Given the desired

shape Gin and the swarm size n, the algorithm will first use the scaling subroutine to find

two reference masked grids Glo and Gho such that: Gho has slightly more in-shapes than n and

Glo has slightly less in-shapes than n, then apply the interpolation subroutine to Glo and Gho

so as to obtain an output that is with exactly n in-shape cells. A graphical illustration of the

overall pipeline is shown in Fig. 6.2 and a detailed description of algorithm’s overall pipeline

is shown in Alg. 5.

6.3.1. Scaling

The scaling subroutine first uses the image scaling to change the number of in-shape pixels.

Image scaling is a well studied topic [82, 83], here, the task is to create a new version of

the image with a different width and/or height in pixels. Many strategies to scale a binary
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Algorithm 6: scaling subroutine

Input: Input shape Gin, swarm size n
Output: Two reference masked grids Glo, Gho

1 m← 100 // inialize m to the size of Gin
2 iter← 1

3 last← Gin // variable to store the last scaled grid

4 if |S(Gin)| is n then
5 Glo ← Gin, Gho ← Gin

6 if |S(Gin)| < n then
7 while 1 do
8 m ← m+ 1 // gradually increase scaled grid size

9 cur ← scale the grid Gin to size m×m

10 if |S(cur)| ≥ n then
11 Glo ←last, Gho ←cur

12 break

13 else
14 last←cur

15 iter←iter + 1

16 if |S(Gin)| > n then
17 while 1 do
18 m ← m− 1 // gradually decrease scaled grid size

19 if m < 15 then // switch to skeletonization

20 cur ← skeletonize the grid last

21 if |S(cur)| ≤ n then
22 Glo ←cur, Gho ←last

23 break

24 else
25 Abort: the input n is too small.

26 cur ← scale the grid Gin to size m×m

27 if |S(cur)| ≤ n then
28 Glo ←cur, Gho ←last

29 break

30 else
31 last←cur

32 iter←iter + 1

33 return Glo, Gho

image have been proposed in the past, in the presented algorithm, I use the nearest neighbor

interpolation [82] as the image scaling method.

Given an input shape Gin and swarm size n, there are three possible cases: If the number

of in-shape cells on the input grid |S(Gin)| equals to n, the algorithm will return Gin directly

(Alg. 6, Line 4-5). If the |S(Gin)| < n, the algorithm will first keep upscaling the Gin (Alg.

6, Line 6-15) until a grid that has more than n in-shape cells is found (Alg. 6, Line 10 - 12),

then return the two scaled images obtained most recently, and exit this subroutine (Alg. 6,

Line 11-12). Similarly, if |S(Gin)| > n, the algorithm will keep downscaling the Gin until

finding a grid that contains less than n in-shape cells (Alg. 6, Line 16-32).

One issue for using the image scaling to reduce the number of in-shape cells is that:

When the size of the scaled image is too small (≤ 15× 15 according to the experiments), it

often fails to preserve the main structure of the input shape. Therefore, to prevent the main
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structure of the shape in scaled image being distorted by over-downsampling, the size of the

scaled image cannot be smaller than a threshold (Alg. 6, Line 20). This limits the minimal

number of in-shape cells in the outputs that can be generated.

Besides the image scaling, an alternative to reduce the pixels required to display a shape

is the operation skeletonization [84]. The operation skeletonization generates a “thinner”

version of the input shape that emphasizes shape’s geometrical and topological properties.

The scaling subroutine uses the operation skeletonization to extend the range of swarm sizes

for which the presented method can work: if the image scaled with the minimal size still has

more than n in-shape cells, the algorithm then applies the operation skeletonization to this

scaled image so as to obtain the shape’s skeleton, which is a masked grid with fewer in-shape

cells (Alg. 6, Line 20). It is possible that the number of in-shape cell on the skeleton is still

more than n, if that happens, algorithm will abort as the input swarm size n is too small for

displaying the desired shape Gin (Alg. 6, Line 25). See Alg. 6 for the detailed pseudo code

for the scaling subroutine.

Remark: By combining the image scaling and the operation skeletonization, one desirable

feature that scaling subroutine offers is that: when swarm size is large enough, the generated

masked grids will preserve the input shape’s details; on the other hand, when the swarm size

is small, the algorithm will prioritize the shape’s main structure so as to make the generated

configuration be “conceptually similar” to the input shape.

6.3.2. Interpolation

The high-level idea behind the interpolation subroutine can be described as follows: Say we

have a l × l binary image Glo and a h× h binary image Gho with a and b amount of in-shape
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Figure 6.3. The graphical illustration of the interpolation subroutine. From
left to right: (a) Two reference grids Glo and Gho with 9 and 13 in-shape cells,
respectively; (b) The Glo is aligned to Gho (Alg. 7, Line 1). There are 4 possible
locations to place Glo on a 5 × 5 gird, and the algorithm chooses the one in
the right-up corner because the difference score between this grid and Gho is
the lowest; (c) The algorithm calculates the set Dl−h, which is the set of cells
filled with blue color, and the set Dh−l, which is the set of cells filled with red
color, and then split these two sets into two sets of 4 subsets {d0

l−h, . . . , d
3
l−h}

and {d0
h−l, . . . , d

3
h−l}, the number on each cells indicates the subset that it

belongs to (Alg. 7, Line 2-24); (d) 5 configurations generated using Glo and Gho
with different input swarm size n s. From top to bottom: the configuration
generated for the swarm with a size of 9, 10, 11, 12, 13, respectively (Alg. 7,
Line 25-27).

cells, respectively. Assume h > l and b > a, we want to generate a sequence of h × h

binary images Ga, . . . ,Gb, in which each generated image Gi has exactly i amount of in-shape

cells. To do so, the algorithm will first place the input grid Glo on a empty h × h grid at

a location such that the overlapping between the newly formed binary image and the Gho is

maximized. Then, the algorithm will calculate the difference between the newly formed Glo

and Gho , which can be characterized by the cells that are with different labels on those two

grids. The sequence of the binary images Ga, . . . ,Gb can be constructed by gradually toggling

the labels of those difference cells on the grid Glo. To be more specific, for the aligned Glo and

Gho , their difference can be characterized by two sets: Dl−h = S(Glo)−S(Gho ), which is the set

of cells that are in the shape on Glo but off the shape on Gho , and Dh−l = S(Gho )−S(Glo), which
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is the set of cells that are in the shape on Gho but off the shape on Glo. (Alg. 7, Line 3-4).

Next, let k = |S(Gho )|− |S(Glo)| be the difference between the numbers of in-shape cells on Glo

and Gho (Alg. 7, Line 2), the algorithm splits those two sets into two groups of k disjointed

subsets d0
l−h, . . . , d

k−1
l−h and d0

h−l, . . . , d
k−1
h−l such that:

⋃k−1
i=0 d

i
l−h = Dl−h and

⋃k−1
i=0 d

i
h−l = Dh−l.

In addition, for a pair of subsets dih−l and dil−h, the algorithm enforces their sizes to be

such that: |dih−l| = 1 + |dil−h| (Alg. 7, Line 5-24). With this constraint on each subset’s

cardinality, given an swarm size n, its corresponding configuration can be constructed as

follows: first, set the labels the cells
⋃n−|S(Glo)|
i=0 dil−h to 0 on Glo, then, set the labels of the

cells
⋃n−|S(Glo)|
i=0 dih−l to 1 on Glo (Alg. 7, Line 25-27). It is straight forward to examine that

the masked grid constructed via the procedure above will have exactly n in-shape cells. The

pseudo code for the interpolation subroutine is shown in Alg. 7. A graphical illustration of

the interpolation subroutine is shown in Fig. 6.3.

Assume that the reference grid Glo has a size of l × l and Gho has a size of h × h, where

h ≥ l according to Alg. 6. The interpolation subroutine will first draw the Glo on an empty

h × h grid (Alg. 7, Line 1). Before drawing Glo on this empty h × h grid, the algorithm

needs to determine the location to place the Glo on this h×h grid, as there might be multiple

choices since h ≥ l. To do so, I first define a metric called difference score as follows:

Definition 6.1. Given two masked grids A and B, the difference score between A and

B is given by |S(A) − S(B)| + |S(B) − S(A)|, i.e, the number of cells that are in shape on

A but not in shape on B plus the number of cells that are on in shape on B but not in shape

on A.

With this metric, the location to place the grid Glo on the new h × h grid can be deter-

mined as follows: the algorithm will exhaustively search all possible translations, and choose
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Algorithm 7: interpolation subroutine

Input: Reference grids Glo,Gho , swarm size n
Output: The generated masked grid Go

1 Glo ← align Glo to Gho
2 k ← |S(Gho )| − |S(Glo)| // calculate the difference of in-shape numbers on two reference grid

3 Dl−h ← S(Glo)− S(Gho ) // the set of cells that are in the shape on Glo but off the shape on Gho
4 Dh−l ← S(Gho )− S(Glo) // the set of cells that are in the shape on Gho but off the shape on Glo
5 Initialize sz 0, . . . , sz k−1 to be all 0s // the size of each subset used in interpolation

6 for i← 0, . . . , k − 1 do // determine each subset’s size

7 if i ≤ |Dl−h| mod k then

8 sz i ← b |Dl−h|
k
c+ 1

9 else

10 sz i ← b |Dl−h|
k
c

11 dt(Glo)← apply distance transform to Glo // calculate each in-shape cell’s distance to the boundary

12 buf sub←use each cell’s value in dt(Glo) as the key to sort S(Glo) in ascending order

13 Initialize d0
l−h, . . . , d

k−1
l−h to be all ∅s // the subsets of cells to be turned off on Glo

14 for i← 0, . . . , k − 1 do // assemble the subsets of cells to be turned off on Glo
15 dil−h ← dil−h∪{the first sz i cells in buf sub}
16 buf sub←buf sub - dil−h

17 Initialize d0
h−l, . . . , d

k−1
h−l to be all ∅s // the subsets of cells to be turned on on Glo

18 buf add← Dh−l
19 for i← 0, . . . , k − 1 do
20 dih−l ← dih−l∪{szi amount of cells in buf add that are closest to the cells in dil−h}
21 buf add←buf add - dih−l

22 for i← 0, . . . , k − 1 do
23 dih−l ← dih−l∪{the first cell in buf add}
24 buf add←buf add - dih−l

25 Go ←a copy of Glo // make a copy of Glo and toggle the labels of cells on it so as to construct the

output

26 set labels of all the cells in
⋃n−|Glo|
i=0

dil−h to 0 on Go
27 set labels of all the cells in

⋃n−|Glo|
i=0

dih−l to 1 on Go
28 return Go

the translation that gives the minimal difference score between the grid Gho and the newly

generated Glo (Alg. 7, Line 1).

After aligning Glo to Gho , the algorithm will first calculate the difference between Glo and Gho

(Alg. 7, Line 2-4), then pack the set Dl−h into k subsets (Alg. 7, Line 5-16). szi denotes the

size of the subset dil−h of Dil−h, the algorithm will first calculate the size of each subset dil−h

(Alg. 7, Line 5-10). After determining the size of each subset dil−h, the algorithm then start



72

to determine the contents of each subset dil−h. When removing the cells from the shape, it is

desired to remove the cells following the order such that: the cells closer to shape’s boundary

will be removed first. This order helps to avoid generating “holes” in the remaining shape.

To address this design consideration, for all the cells in Dl−h, the algorithm will first calculate

each cell’s Manhattan distance to the boundary using the operation distance transform [85]

(Alg. 7, Line 11), and then use each cell’s distance to boundary as the key to sort all

the cells in Dl−h in ascending order (Alg. 7, Line 12). The sorted Dl−h is stored in the

variable buf sub. Next, the algorithm will start to assemble each subset dil−h according to

the determined pack size szi (Alg. 7, Line 14-16): for each subset dil−h, the algorithm pack

the first szi cells in buf sub into it (Alg. 7, Line 15), and then delete those szi cells from

the buf sub right after so as to avoid the case where the same cell shows up in two difference

subsets (Alg. 7, Line 16).

Next, the algorithm starts to assemble the subsets d0
h−l, . . . , d

k−1
h−l (Alg. 7, Line 18 - 24).

It will first make a copy of Dh−l and store it to variable buf add (Alg. 7, Line 18). Note

that when removing a subset dil−h of cells from the shape, the algorithm will damage the

structure of the shape. To reduce the effect of the removal of dil−h, when packing each subset

dih−l, which are the sets to be added to the remaining shape, it is desired that the cells

in dih−l are as “close” to cells in dil−h as possible (Alg. 7, Line 20). To be more specific,

given a subset dil−h and the set buf add, the algorithm treats each cell in dil−h as a “job”

and each cell currently in buf add as a “worker”, and the cost for each “worker” doing each

“job” is given by the Manhattan distance between those two cells. The algorithm uses the

Hungarian algorithm [86] to assign exactly 1 “worker” to each “job” in each subset dih−l such

that the total cost is minimized, and these assigned “workers” will be packed into dih−l (Alg.

7, Line 20). Recall that as stated in the overall description of the interpolation subroutine,
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there is a constraint on the each pair of subsets’ cardinalities that: |dih−l| = 1 + |dil−h|. On

the other hand, it is straight forward to examine that after Alg. 7, Line 19-21, each pair of

subsets dih−l and dil−h have the same cardinality. In order to satisfy the cardinality constraint

above, in Alg. 7, Line 22-24, the algorithm will add one extra cell to each of those subsets

d0
h−l, . . . , d

k−1
h−l .

So far, both the subsets d0
l−h, . . . , d

k−1
l−h and the subsets d0

h−l, . . . , d
k−1
h−l have been assembled,

the algorithm then constructs the desired masked grid Go following the procedure described

at the beginning of the Section 6.3.2 (Alg. 7, Line 25-27). See Fig. 6.3 for a graphical

illustration of the interpolation subroutine.

In interpolation subroutine, one key element is the way to determine szi, which is the

size of each subset dih−l (Alg. 7, Line 6-10). Given two masked grids Glo and Gho , there

might be multiple feasible combinations of each subset’s size. One can consider a case where

|Dl−h| = 2, |Dh−l| = 4, k = 2, one way to split Dl−h and Dh−l is: |d0
l−h| = 1, |d1

l−h| =

1, |d0
h−l| = 2, |d1

h−l| = 2, and the other way is: |d0
l−h| = 2, |d1

l−h| = 0, |d0
h−l| = 3, |d1

h−l| = 1.

According to the overall pipeline of the algorithm (Alg. 5), for the same pair of reference

grids Glo and Gho , they could be used to construct |S(Gho )|−|S(Glo)|+1 different configurations

with n = |S(Glo)|, |S(Glo)|+ 1, . . . , |S(Gho )| amount of in-shape cells, respectively. It is trivial

to see that different ways to determine each subset’s size will result in different difference

scores among these generated masked grids. Recall that as stated in the Section 7.2.2, to

allow the swarm to quickly adapt to the swarm size change, one of my design considerations

is: the configurations generated for different swarm sizes should be similar to each other.

Responding to this design consideration, given a pair of reference grids Glo and Gho , for the

configurations generated from them, a desirable way to determine each subset’s size should
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make the difference score between any pair of masked grids with adjacent number of in-

shape cells as small as possible. In the following, I will show that: given two reference grids

Glo and Gho , the way that the algorithm determines each subset’s size (Alg. 7, Line 6-10) is

actually the optimal way that can minimize the maximal difference score between any pair

of generated masked grids whose difference of in-shape cell number is one.

Problem 6.1. (Fair packing) Given a set A and an integer k, Pk(A) denotes a k-

partition of the set A, which is a set of k subsets {a0, . . . , ak−1} such that: (i)
⋃k−1
i=0 ai = A,

and (ii) ∀i 6= j, ai ∩ aj = ∅. The task is to find a Pk(A) that minimizes the maximal

cardinality among all those k subsets ai ∈ Pk(A). That is, given a set A and an integer k,

find a partition P∗k(A) such that:

P∗k(A) = argmin max
ai∈P∗k (A)

|ai|

To interpret Problem 1, one can consider a simple instance of it: Say we have 10 balls

and we are tasked to put those 10 balls into 3 bins. The task is to find a way to assign

those 10 balls to those 3 bins such that the maximal number of balls among all 3 bins is

minimized. Next, in the Lemma 6.1, I will show an sufficient condition for a solution to be

optimal to Problem 1.

Lemma 6.1. Given a set A and an integer k, let P ′k(A) be a k-partition of the set A, if

the P ′k(A) is made such that:

(6.1) max
ai∈P

′
k(A)
|ai| − min

ai∈P
′
k(A)
|ai| ≤ 1

Then P ′k(A) is an optimal solution to Problem 1.
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Proof. See Appendix 3 �

Theorem 6.1. (Smooth transition) Given two reference masked grids Glo and Gho with a

and b amount of in-shape cells, respectively, let Ga,Ga+1, . . . ,Gb be the masked grids generated

for the swarms with a size of a, a+1, . . . , b. Among all the ways to determine the size of each

subset used in interpolation subroutine, Alg. 7 Line 6-10 is the optimal way for minimizing

the following objective:

(6.2) max
a≤i≤b−1

|S(Gi)− S(Gi+1)|+ |S(Gi+1)− S(Gi)|

Proof. See Appendix 4 �

6.4. Performance Evaluation

In this section, I empirically study the performance of the presented algorithm. Given

a goal shape, in Section 6.4.1, I first study the quality of configurations generated for the

swarms with different sizes. Then, in Section 6.4.2, a swarm of simulated robots used the

shape formation algorithm proposed in [44] to form those generated configurations. In ad-

dition, beyond simulation, in Section 6.4.3, the generated configurations were formed by a

swarm of physical robots. The results from both the simulations and physical experiments

show that: the proposed algorithm can indeed make the swarm adapt to the swarm size

change quickly and robustly.

In the experiments, I use four complex shapes as the goal shapes: the “N”, the “star”,

the “wrench”, and the “circle”. These four goal shapes are shown in the Fig. 6.4.
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6.4.1. Experiments on Generated Configurations

First, given each goal shape, I use the proposed algorithm to generate the goal configurations

with in-shape cell number ranging from around 20 to 1024. Recall that as stated in the

Section 7.2.2, we have two design considerations: the similarity between each generated

configuration and the goal shape, and the similarity between the configurations generated

for difference swarm sizes. The videos of the configurations generated for different swarm

sizes can be found in [76]. In addition, I introduce two metrics to qualitatively evaluate the

similarity between each pair of the binary images whose difference of in-shape cell number is

one: the normalized difference score (NDS), and the normalized inter-shape distance (NISD).

The NDS is the ratio between those two configurations’ difference score and the sum of two

configurations’ in-shape cell numbers. The NISD is defined as follows: given two masked

grid A and B where |S(A)| ≤ |S(B)|, we assign cells in S(B) to the cells in S(A) in a way

such that: (i) for each in-shape cell on A, we assign exactly one in-shape cell on B to it, in

addition, (ii) each in-shape cell on B can be assigned to no more than one cell on A. The

cost of each pair of in-shape cell on A and its assigned in-shape cell from B is given by the

Manhattan distance between them in cells. The NISD is the ratio between the minimal total

cost that any feasible assignment can achieve and sum of two configurations’ in-shape cell

numbers. Intuitively, the NDS shows the “mismatch” between two configurations, and NIDS

Figure 6.4. Goal shapes used in the experiments. From left to right: the shape
“letter N”, the shape “star”, the shape “wrench”, and the shape “circle”.
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Figure 6.5. Comparison between the proposed algorithm and two baselines.
For each swarm size n, its corresponding data points on the plots are the NDS
and NISD between the generated masked grids with n and n+1 in-shape cells,
respectively. The red plots are the results for the proposed algorithm, the blue
plots are the results for the baseline 1, and the green plots, which overlap with
the red plots in all NDS plots, are the results for the baseline 2.

essentially characterizes the minimal average distance traveled by the swarm to transform

from one configuration to the other. The plots showing these two metrics over difference

in-shape cell numbers for each goal shape are shown in Fig. 6.5. In addition, I also compare

the proposed algorithm with two baselines. Both of those two baselines use the same pipeline

as the presented algorithm does. The difference between the presented algorithm and the

baseline 1 is that: when executing the interpolation subroutine, instead of using Alg. 7 Line

6-10 to determine each subset’s size, the baseline 1 will aggressively set sz0 to be |Dl−h| and

set szi . . . szk−1 to be 0. The difference between the presented algorithm and the baseline 2

is that: when executing the interpolation subroutine, instead of using Alg. 7 Line 11-24 to
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assemble each subset, the baseline 2 will naively fit the cells into each subset by the lexical

order of each cell’s coordinate. In the interpolation subroutine, there are two subproblems

to be solved: how to determine each subset’s size, and how to determine the content of each

subset. These two baselines are essentially two naive solutions to those two subproblems.

As expected, in these plots, we can see that the presented algorithm outperforms two

baselines with respect to both NDS and NISD for all four goal shapes, confirming that the

presented way to determine the size and content of each subset in interpolation subroutine

(Alg. 7 Line 6-10, Line 11-24) can indeed make the transition between goal configurations

generated for different swarm sizes more “smooth”. Note that the presented algorithm and

baseline 2 uses the same way to determine each subset’s size in interpolation subroutine, as

a result, in all NDS plots, the presented algorithm (black) overlaps with baseline 2 (green).

The other counter-intuitive observation here is that: the NISD for the shape “circle” is 0

for all the swarm sizes, this is because: using the pipeline presented in the chapter, for any

swarm size n, the “circle” generated for the swarm size n will always be “inside” the “circle”

generated for the swarm size n + 1, therefore, the “circle’s” NISD is by definition 0 for all

the swarm sizes.

6.4.2. Experiments on Simulated Robotic Swarm

In the simulation, a swarm of up to 100 simulated Coachbot robots were tasked to use

the shape formation algorithm proposed in [44] to form the configurations generated from

the presented algorithm. In the simulation, the communication rate is 20hz, the maximal

speed of robot’s wheel is 0.1m/s, and each edge on the grid has a length of 0.3m. The

demonstration videos of the simulated swarms with different sizes forming the goal shapes

can be found in [76].
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Figure 6.6. The results from the addition experiment. Each solid line is the
average result from 50 trials, and the colored shade areas show the confidence
intervals for NTD and RT over swarm size at a confidence level of two σ. Each
green dotted line is the shape’s NISD obtained from the previous section.

In the first experiment, I study the how the addition of the robots will affect the swarm’s

behavior. In this experiment, the swarm size is initialized to be around 20. Every time

when robots currently in the swarm complete forming the shape, I add one more robot in

a random location near the swarm and broadcast the new swarm size to the swarm. The

robots will update their goal configuration according to the new swarm size, and then start

to form the new goal configuration. This process will be repeated until the swarm size gets

to 100. For each goal shape, I repeat this experiment 50 times, and in each trial, I study

two metrics: the response time (RT), which is time between the swarm size change and the

swarm forming the shape at the new scale, and the normalized travel distance (NTD), which

the average distance traveled by the swarm to form the shape at the new scale. The results

from 50 trials are shown in Fig. 6.6.

In addition, besides the addition of the robots, I am also interested in effect of the removal

of robots on the swarm’s behavior. In the second experiment, the swarm size is initialized

to 100, and similar to the first experiment, every time when the current swarm complete
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forming the shape, I randomly choose one robot currently in the swarm, remove it from

the swarm, and broadcast the new swarm size to the robots. The robots will update their

goal configuration according to the new swarm size, and then start to form the new goal

configuration. This process will be repeated until the swarm size gets to minimal swarm size

required to display the shape. For each goal shape, I repeat this experiment 50 times, and

in each trial, the metric RT and NTS are investigated, see Fig. 6.7 for the results from all

50 trials. As we can see in the plots, in both addition and subtraction experiments, every

time when the swarm size change occurs, the swarm is able to adapt quickly, within 40 s

to be more specific. Moreover, one can observe that for each shape, at some certain swarm

sizes, the RT and NTD change sharply in both subtraction and addition experiments. For

example, for the shape “wrench”, the RT and NTD spike at the swarm size 52. To investigate

the cause of these spikes, I compare the NISD obtained from previous section (green dotted

line) with the NTD and RT obtained from the simulation. Unsurprisingly, the results show

that the swarm sizes where the NTD and RT spike are consistent with the swarm sizes where

the shape’s NISD spikes, in the other words, the swarm sizes where the RT and NTD spike

are the swarm sizes where the generated goal configurations change greatly.

Recall that the swarm size estimation algorithm presented in chapter 5 is a probabilistic

method, making it possible for each robot’s swarm size estimate to be slightly different

from the actual swarm size. In addition, due to the asynchrony of each robot’s local clock,

it is also possible that each robot’s swarm size estimate is different from each other. In

this test, I study how the each robot’s swarm size estimate error, and the inconsistency

between each robot’s swarm size estimate, will affect the algorithm’s performance. In this

test, a swarm of 200 simulated robots are tasked to use the algorithm presented in [44]

to form a shape “N”. In addition, every 1.5 seconds, each robot will update its swarm
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Figure 6.7. The results from the substraction experiment. Each solid line is the
average result from 50 trials, and the colored shade areas show the confidence
intervals for NTD and RT over swarm size at a confidence level of two σ. Each
green dotted line is the shape’s NISD obtained from the previous section.

size estimate with a probability of 10%. This probabilistic periodic swarm size estimate

update is for simulating the asynchrony of each robot’s local clock. When updating its

swarm size estimate, each agent will sample from a Gaussian distribution bN (200, σ2
s)c, and

update its goal configuration accordingly. This noise injection is for simulating each robot’s

swarm size estimate error. Three noise profiles are used in this test: σs = 2, σs = 10, and

σs = 20. Furthermore, each time when a robot updates its goal configuration, it will check

if the current goal point is in the new goal configuration, if not, it will set its goal point

to the closest one in the new goal point set. For each noise profile, 10 trials were run. I

study how the different noise profile will affect the quality of formed configuration, which is

characterized by the NDS between the goal configuration and the swarm’s configuration at

each time step, as well as the robot’s effort to form the shape, which is characterized by the

swarm’s NTD over time. The results are shown in Fig. 6.8.

As we can see in the plots, instead of converging to a stationary point, the swarm’s NTD

keeps increasing over time, in the other words, the swarm’s configuration keeps changing
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Figure 6.8. Each solid line is the average result from 10 trials, and the colored
shade areas show the confidence intervals for NTD and NDS over swarm size
at a confidence level of two σ. The color indicates the noise profile used in the
experiment: blue – σc = 2, green – σc = 10, red – σc = 20

over time. This is because: in this test, every time when a robot updates its swarm size

estimate, it is always possible for this robot to change its goal point, as a result, at any

time of the experiment, it is always possible for some robots to move, increasing the swarm’s

NTD. As expected, in the plots, we can see that the higher swarm size estimate error will

result in a larger NTD, in the other words, the higher the swarm size estimate error is, the

less stable the swarm’s configuration will be. In addition, the swarm size estimate error will

also affect the quality of the formed shape: the higher the swarm size estimate error is, the

less consistent the swarm’s configuration will be to the desired configuration.

Figure 6.9. The change in swarm’s configuration over time. The intensity of
each cell indicates the amount of time that cell is occupied by a robot. From
left to right: σc = 2, σc = 10, and σc = 20
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As we discussed before, in this test, the swarm’s configuration will keep changing over

time. A graphical illustration of the change in the swarm’s configuration over time can be

found in Fig. 6.9. In this figure, each heatmap shows the swarm’s configuration during the

last 1000 seconds of a 3000-second-long trial, the intensity of each cell indicates the amount

of time that cell is occupied by a robot. Unsurprisingly, a higher swarm size estimate error

will make the swarm’s configuration less stable.

6.4.3. Experiments on Physical Robotic Swarm

Beyond the simulations, I also experiment on a swarm of up to 100 real Coachbot robots.

In the experiment, the robots are tasked to form the shape “N”. The swarm size starts as

100, every time when the current swarm complete forming the shape, I remove a batch of

robots from the swarm and then broadcast the new swarm size to the robots. The robots

use the presented algorithm to update their goal configuration according to the new swarm

size, and then start to form the new goal configuration. This process is repeated until the

swarm size gets to 23. See Fig. 6.1 for the still images from the experiment, and the video

for this experiment can be found in [76]. As we can see in the video, when the swarm size

changes, the robots adapt quickly and robustly.
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CHAPTER 7

COOPERATIVE LOCALIZATION

This chapter presents a decentralized algorithm that allows a swarm of identically pro-

grammed agents to cooperatively estimate their global poses using the local range and bear-

ing measurements. The design of the presented algorithm explicitly considers the asynchrony

of each agent’s local clock, moreover, the theoretical analysis about the effect of each agent’s

sensing noise and communication loss is given. The presented algorithm is validated via

experiments running on a swarm of up to 256 simulated robots, and a swarm of 100 physical

robots. The results from the experiments show that the presented algorithm allows each

agent to estimate its global pose quickly and robustly. The algorithm presented in this chap-

ter has been published as [43], a summary video of the presented algorithm can be found in

[76].

7.1. Background

Localization plays an important role in swarm systems. In many collective tasks, such

as shape formation [44, 49, 50], shepherding [87], and more [88], it is valuable to have each

agent knowing its pose in a global coordinate system.

It has been shown that when the swarm works in a well-controlled environment, agents

can obtain their poses through an external infrastructure such as HTC Vive Virtual Reality

system [44] or GPS system [89]. However, when the swarm is deployed in the environments

where the external infrastructures are not available, underground or underwater for example,
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Figure 7.1. (Top) 100 Coachbot V2.0 robots are placed in three patterns; (Bot-
tom) The robots’ position estimates obtained via the proposed algorithm.

those infrastructure-based solutions will become impractical. A more flexible alternative to

infrastructure-based methods is the local-measurement-based methods. Here, it is assumed

that each agent is able to communicate with nearby agents, in addition, each agent is also

able to measure its distance [31, 90–94], bearing [95, 96], or both [97–99], relative to its

neighbors. The agents will calculate their global poses using the local communication and

relative measurements. The type of methods only require the use of peer-to-peer information

therefore permit the operations in environments without external infrastructure.

The previous local-measurement-based methods can be categorized into centralized meth-

ods [100, 101] and decentralized methods [31, 91, 92, 94, 96, 102]. In centralized methods

[100, 101], a central controller will collect all the peer-to-peer measurements from the entire

swarm and use these collected measurements to calculate each agent’s pose. The centralized

methods are generally more computationally efficient, and can be more robust to the sensing

noise. However, it is not easy for them to scale to the swarms with large sizes because they

suffer from the single point of failure problem.

On the contrary, the decentralized methods are inherently more scalable and more robust

to the failures. The decentralized methods can be categorized into two types: progressive
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methods [31, 91, 92, 96, 102] and concurrent methods [94]. In progressive methods, each

agent has two possible states: localized and unlocalized. The unlocalized agents will localize

themselves using the inter-agent measurements and the pose estimates from their already

localized neighbors, then, these unlocalized agents will become localized agents and their

pose estimates will later be used by their unlocalized neighbors. It was shown in [31, 91,

102] that with certain amount of pre-localized anchoring agents, it is possible to accurately

localize a densely placed swarm using the local information only. However, each agent’s

position error will increase over the communication hops away from the anchoring agents. In

addition, this type of methods require an additional phase to set certain agents as anchoring

agents. The beacon-free solutions are proposed in [92, 96]. In [92], agents use inter-agent

distance information to organize robust quads with their nearby agents. The adjacent robust

quads can recover their relative positions using the information from the set of agents in

common between two quads. However, it has not been shown that this method can estimate

agent’s orientation. The work presented in [96] allows agents to estimate their orientation

using the inter-agent bearing information, in addition, this methods is also able to localize

only a subset of the agents in the swarm. However, the coordinate system established by this

method is scale-free, requiring an additional step to recover the coordinate system’s scale

[103].

Different from the progressive methods, in concurrent methods [94, 104, 105], agents do

not explicitly hold a Boolean state of being localized or unlocalized. Instead, all the agents

will constantly and cooperatively refine their pose estimates using their local measurements

such as distance [94], bearing [104], or both [105]. The concurrent methods are generally

more robust to the sensing noise, in addition, these types of methods are more robust to the

unexpected external disturbances such as the removal or the addition of the agents. One
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drawback for this type of methods is that compared to the progressive methods, the concur-

rent methods’ commutation cost is often more expensive, as each agent needs to frequently

exchange its pose estimates with its neighbors. This chapter presents a fully decentralized

concurrent localization algorithm for localizing a swarm of identically programmed agents.

As stated in chapter 2, it is assumed that each agent can transmit messages to nearby

agents, in addition, each time when an agent receives a message from a neighbor, it can

sense the transmitter’s bearing and distance. The agents will estimate their global poses by

cooperatively minimizing the disagreement between the inter-agent measurements and their

pose estimates. The novelty of the presented algorithm is that: the design of the algorithm

explicitly considers the asynchrony of the agent’s local clock, moreover, the algorithm does

not require the agent to actively maintain the communication links between itself and its

neighbors, which helps to avoid the unnecessary communication overhead and makes the

presented algorithm more flexible. The theoretical analysis about how the communication

loss and sensing noise will affect the swarm’s behavior is given, in addition, the algorithm’s

performance is thoroughly investigated via the experiments running on a swarm of up to

256 simulated agents as well as a swarm of 100 physical robots. The results from the exper-

iments show that the presented algorithm is able to localize the swarms with different sizes

and configurations quickly and robustly.
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7.2. Preliminaries

This section introduces the agent model used in the analysis of the algorithm, and for-

mally states the decentralized localization problem.

7.2.1. Agent model

Given the robot capabilities proposed in chapter 2, in this chapter, the robot is modeled as

follows: It is assumed that the agents are placed on a 2D plane. Each agent holds a local

coordinate frame where the local coordinate frame’s origin is fixed on the center of the agent

and the x-axis’ direction is aligned with the agent’s heading. It is assumed each agent’s

clock has the same frequency but can be asynchronous in phase. In addition, it is assumed

that each agent has a locally unique ID. Each agent is able to broadcast messages to all the

physically nearby agents lying within its communication range R. Moreover, when an agent

ai receives a message from a neighbor aj, the agent ai is able to sense the transmitter aj’s

relative bearing angle Bij and the distance dij.

Furthermore, in order to make the agent model used in this chapter more realistic, it is

assumed that the inter-agent communication channel is lossy, that is, for an agent ai, when

a nearby neighbor aj transmits a message, ai will receive this message with a probability of

λ, where 0 < λ < 1. In addition, it is assumed that the agent’s bearing and range sensor

is noisy. That is: let Bij and dij be agent aj’s actual bearing angle and distance in agent

ai’s local coordinate frame, respectively. When agent ai attempts to measure those two

quantities, the actual measurements returned from the sensor will be two random variables

B̂ij = 〈Bij + εB〉2π and d̂ij = dij + εd, where 〈·〉2π := · + 2πbπ−·
2π
c denotes the 2π modulus

operator [106], which is an operator that wraps an angle from the real space to the interval
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(−π, π], and εB ∼ N (0, σ2
B), εd ∼ N (0, σ2

d) are two independent zero-mean Gaussian random

variables. The distribution used to model the agent’s bearing sensor noise is also known as

wrapped normal distribution [107].

7.2.2. Problem statement

The task is to design an algorithm that enables each agent to use the local information to

estimate its orientation and position in a global coordinate frame. In the presented algorithm,

this task is achieved by enforcing agents to constantly refine their pose estimates to reduce

the inconsistency between their pose estimates and the inter-agent relative measurements. To

be more specific, let A = [a1, a2, ..., an] be a set of n agents, the undirected graph G = {A, E}

is used to describe the network’s communication topology, for a pair of agents ai and aj,

(i, j) ∈ E iff they are located in each other’s communication and sensing range R, and for

each agent ai, the set of all the agents located in its communication range is denoted as Ni =

{aj|aj ∈ A, (i, j) ∈ E}. Each agent ai uses the vector [θix, θiy] and vector [xi, yi] to describe

its orientation estimate and position estimate, respectively, where θi = arctan 2(θiy, θix)

indicates the agent’s orientation estimate, and xi, yi are agent’s estimate of its xy position.

The agents will estimate their pose by cooperatively solving the following two problems:

Problem 7.1. (Orientation Estimation): Let Wij be the true orientation difference be-

tween two agent ai and aj, we define the swarm’s orientation estimate error fo as:

1

4

∑
ai∈A

∑
aj∈Ni

1

|Ni|
1

|Nj|

∥∥∥∥∥∥∥
cos(Wij),− sin(Wij)

sin(Wij), cos(Wij)


θix
θiy

−
θjx
θjy


∥∥∥∥∥∥∥

2

2
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The task is to find each agent ai’s orientation estimate [θx∗i , θ
y∗
i ] that minimizes the objective

fo above.

Problem 7.2. (Position Estimation): For each agent ai, given ai’s orientation estimate

θi = arctan 2(θiy, θix), we define the swarm’s position estimate error fp as:

1

4

∑
ai∈A

∑
aj∈Ni

1

|Ni|
1

|Nj|

∥∥∥∥∥∥∥
xi
yi

+ dij

cos(Bij + θi)

sin(Bij + θi)

−
xj
yj


∥∥∥∥∥∥∥

2

2

The task is that: given each agent’s orientation estimate obtained from problem 7.1, find

each agent ai’s position estimate [x∗i , y
∗
i ] that minimizes the objective fp above.

The objective fo and fp can be intuitively interpreted as the normalized sum of the

inconsistency between each pair of agents’ pose estimates and their distance, orientation

difference, as well as bearings relative to each other.

7.2.3. From bearing angle to orientation difference

One can see that in order to solve problem 7.1, each agent ai needs to be able to measure

nearby agent aj’s orientation difference Wij. On the other hand, as stated in chapter 2,

agent ai is not able to measure the neighbor aj’s orientation difference directly, the only two

measurements it can obtain from the sensor are: aj’s bearing and distance. As pointed out

in [96], for two agents ai and aj, given their bearing angles in the other’s local frame Bji and

Bij, their orientation difference Wij can be explicitly written as:

Wij = 〈Bij − Bji + π〉2π

where 〈·〉2π denotes the 2π modulus operator introduced in Section 7.2.1.
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7.3. Approach

As briefly discussed in Section 7.2.2, in the presented algorithm, the agents will actively

refine their pose estimates to minimize the objective fo and fp. When doing so, each agent

will treat the objective fo and the objective fp separately: each agent ai updates its orien-

tation estimate [θix, θiy] only according to objective fo (Algorithm 8, Line 20-21), and then

uses the obtained orientation estimate [θix, θiy] to calculate objective fp so as to update its

position estimate [xi, yi] (Algorithm 8, Line 22-24).

In the presented algorithm, each agent will consistently broadcast its current pose esti-

mate to the neighbors at a fixed frequency of f (Algorithm 8, Line 28), meanwhile, at the

same frequency, it will periodically update its pose estimate using the messages received

(Algorithm 8, Line 10-26). For each agent, the message received from another agent can be

characterised by a 3-tuple msg = (data, B̂, d̂), where data is the payload of the message, B̂ is

the measurement of transmitter’s bearing angle, and d̂ is the measurement of transmitter’s

distance. See Algorithm 8 for the detailed pseudo code of the proposed algorithm, and below

is a detailed description of the main variables used in the algorithm:

• id : the agent’s id, which is locally unique;

• α, β: the variables to control the step size of the update of the agent’s pose estimate;

• msg buff : the buffer to store the messages received in the latest 1
f

amount of time;

• last check : the intermediate variable that assistants to execute periodical broadcast;

• clock(): the syscall that returns the time elapsed since the program started;

• θix, θiy, xi, yi: the agent ai’s pose estimate;

• echo id, echo B, echo msg : the variables that assist the agent to execute the “random

echo” protocol so as to obtain its own bearing angle measured in the other’s local frame;
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• msg out : the message to be transmitted.

• msg in: a 3-tuple that contains the payload of received message, the measurement of

message’s transmitter’s bearing angle, and the measurement of the message’s transmitter’s

distance.

For each agent in swarm, every time when it receives a message, it will store it in the

buffer msg buff (Algorithm 8 Line 31-32). Each agent will periodically process the messages

in buffer msg buff (Algorithm 8, Line 9-26) and then empty the buffer (Algorithm 8, Line

29) at a fixed frequency of f (Algorithm 8, Line 8). When an agent ai attempts to update

its orientation estimate [θix, θiy], the first task is to measure the orientation differences from

its neighbor aj. As stated in Section 7.2.3, for an agent ai, the calculation of its orientation

difference from its neighbor aj requires two measurements: B̂ij, which is the measurement of

aj’s bearing angle in ai’s local frame, and B̂ji, which is the measurement of ai’s bearing angle

in aj’s local frame. On the other hand, the second measurement B̂ji cannot be obtained by

ai via local sensing directly. In order to allow each agent to obtain its own bearing angle

measured by its neighbor, the agents will cooperatively execute a “random echo” protocol:

for each agent in the swarm, every time when forging msg out, which is the message to be

transmitted, it will first uniformly and randomly select a message echo msg in the buffer

msg buff, then embeds the id and the measurement of bearing angle of this echo msg ’s

transmitter in the msg out (Algorithm 8, Line 11-13, Line 26). By cooperatively doing so,

each agent ai will be able to obtain its own bearing angle measured by any neighbor aj with

a non-zero probability. See Fig. 7.2 for a minimal working example for this “random echo”

protocol. In this example, there are three agents involved. Recall that it is assumed that

the agents’ clocks are asynchronous in phase, therefore, from a global observer’s perspective,

despite that each agent is programmed to broadcast at the same frequency, they still might
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Algorithm 8: Proposed algorithm (runs on each agent ai)

Input: id, f , α, β
1 msg buff ← ∅
2 echo id ← id

3 echo B ← 0

4 last check ← clock()

5 Initialize the pose estimation θix, θiy, xi, yi

6 msg out ← {id, θix, θiy, xi, yi, echo id, echo B}
7 while True do
8 if clock() - last check > 1

f
then

9 last check ← clock()

10 if msg buff is not empty then
11 echo msg ← uniformly and randomly choose a element in msg buff

12 echo id ← echo msg.data.id

13 echo B ← echo msg.B̂
14 msg selected ← uniformly and randomly choose a element in msg buff

15 if msg selected.data.echo id == id then
16 θjx, θjy, xj , yj ← the pose estimates contained in msg selected.data

17 B̂ij ← msg selected.B̂
18 d̂ij ← msg selected.d̂

19 B̂ji ← msg selected.data.echo B
20 Ŵij ← 〈B̂ij − B̂ji + π〉2π

21 δθ ←

 cos
(
Ŵij

)
, sin

(
Ŵij

)
− sin

(
Ŵij

)
, cos

(
Ŵij

)[θjx
θjy

]
−

[
θix
θiy

]
22 θi ← arctan 2(θiy, θix)

23 θj ← arctan 2(θjy, θjx)

24 δxy ←

[
xj
yj

]
− d̂ij

2

cos
(
B̂ij + θi

)
− cos

(
B̂ji + θj

)
sin
(
B̂ij + θi

)
− sin

(
B̂ji + θj

)− [xi
yi

]

25

[
θix
θiy

]
←

[
θix
θiy

]
+ αδθ

26

[
xi
yi

]
←

[
xi
yi

]
+ βδxy

27 msg out ← {id, θix, θiy, xi, yi, echo id, echo B}
28 transmit msg out

29 msg buff ← ∅

30 else
31 if receive a message msg in then
32 msg buff ← msg buff ∪ {msg in}



94

transmit messages at different times, as shown in Fig. 7.2. Due to the space constraints,

in the example, we will only track the agent 0’s behavior, which suffices to demonstrate the

“random echo” protocol as all the agents are identically programmed. At t0 and t1, agent

0 receives messages from agent 1 as well as agent 2 and stores them in the buffer msg buff

(Algorithm 8, Line 33). At t2, agent 0 generates a message and transmits it out. When

generating this message, agent 0 uniformly and randomly selects a message in the msg buff

(which is the message from agent 1 at t2), and embeds the id as well as the measurement

of the bearing angle of this selected message’s transmitter in the message to be transmitted

(Algorithm 8, Line 11-13). This transmitted message will allow the agent 1 to obtain its

own bearing angle measured by agent 0. Right after transmitting the message, agent 0 will

empty its buffer msg buff. The agent 0’s behaviors at t3, t4 and t5 are almost the same as

t0, t1 and t2, except that at t5, it forges the message using the message from agent 2 instead

of the message from agent 1.

As discussed before, each agent ai will use the messages in the buffer msg buff to update

its pose estimate at a fixed frequency of f (Algorithm 8, Line 9-29). To be more specific,

every 1
f

amount of time, each agent ai will first uniformly and randomly select a message in

the buffer msg buff, which is denoted as msg selected in Algorithm 8 (Algorithm 8, Line 14).

Then, ai will check if the value of the field echo id in msg selected matches its own id, i.e.,

if this msg selected contains ai’s bearing angle measured by the other. If so, ai will use the

information in msg selected to update its pose estimate (Algorithm 8, Line 16-26) and then

empty the buffer msg buff (Algorithm 8, Line 29). Otherwise, ai will do nothing but empty

the buffer msg buff directly (Algorithm 8, Line 29). Each time when agent ai updates its

pose estimate (Algorithm 8, Line 25-26), the step size is controlled by the variables α and β.
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Figure 7.2. (Left) Physical positions of agents: each disk represents an agent,
the number on the disk indicates the agent’s id, the dotted line connecting
two agents indicates that those two agents are located within each other’s
communication range. (Right) The horizontal colored arrow lines are agents’
local clocks running from the left to the right. Each vertical dotted arrow
line is a broadcast event, which points from the transmitter to the receiver(s).
Each filled box is a transmitted message, the box’s color shows its transmitter.
The array of unfilled boxes attached to agent 0’s clock on the bottom shows
the values of agent 0’s variable msg buff at different times t0, ..., t5, each filled
box inside the msg buff is a received message currently stored in agent 0’s
buffer msg buff.

7.4. Theoretical Results

This section studies how each agent’s sensing noise and the communication loss will

affect the swarm’s behavior in expectation, and I show that when the agent’s communication

loss and sensing noise is low, the swarm’s behavior can be approximated as the unbiased

stochastic gradient descent (SGD) on the objective fo and fp, In addition, the analysis about

the algorithm’s complexity is given.

7.4.1. Analysis of the swarm’s behavior

For the sake of analysis, first, I describe the swarm’s behavior from a global observer’s

perspective. Say there is a global observer holding a clock that has the same frequency as
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Algorithm 9: Swarm’s behavior (From a global observer’s perspective)

1 for k ← 1, 2, ...,∞ do
2 for each agent ai ∈ A do

3 Assign each neighbor aj ∈ Ni a probability: 1−(1−λ)|Nj |

|Nj |
1−(1−λ)|Ni|

|Ni|
, where (1− λ) is the packet loss

rate

4 randomly select a neighbor aj according to its probability assigned above

5 B̂ij ← 〈Bij + εB〉2π, where εB ∼ N (0, σ2
B)

6 B̂ji ← 〈Bji + εB〉2π, where εB ∼ N (0, σ2
B)

7 d̂ij ← dij + εd, where εd ∼ N (0, σ2
d)

8 Ŵij ← 〈B̂ij − B̂ji + π〉2π

9 δθ ←

 cos
(
Ŵij

)
, sin

(
Ŵij

)
− sin

(
Ŵij

)
, cos

(
Ŵij

)[θk−1
jx

θk−1
jy

]
−

[
θk−1
ix

θk−1
iy

]
10 θi ← arctan 2(θk−1

iy , θk−1
ix )

11 θj ← arctan 2(θk−1
jy , θk−1

jx )

12 δxy ←

[
xk−1
j

yk−1
j

]
− d̂ij

2

cos
(
B̂ij + θi

)
− cos

(
B̂ji + θj

)
sin
(
B̂ij + θi

)
− sin

(
B̂ji + θj

)− [xk−1
i

yk−1
i

]

13

[
θkix
θkiy

]
←

[
θk−1
ix

θk−1
iy

]
+ αδθ

14

[
xki
yki

]
←

[
xk−1
i

yk−1
i

]
+ βδxy

each agent’s local clock. This global observer will record every agent’s pose estimate at a

fixed frequency f , which is the same as the frequency at which each agent will attempt to

update its pose estimate (Algorithm 8, Line 9-29). It is straight forward to examine that:

by doing so, this global observer will be able to capture all the changes of each agent’s pose

estimate, see Proposition 7.1 for the formal proof of this conclusion.

Proposition 7.1. Let θkix, θ
k
iy, x

k
i , y

k
i be agent ai’s pose estimate observed by the global

observer at time k 1
f

, the swarm’s behavior can be described by the Algorithm 9 without loss

of any information.

Proof. See Appendix 5. �
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It is worth noting that the objective fo and fp are defined using the true inter-agent

relative bearing angles and distances, whereas in reality, the actual measurements that each

agent uses to update its pose estimate will be corrupted by the sensing noise (Algorithm 9,

Line 5-7). Next, I will show how the sensing noise and the communication loss will affect

the swarm’s behavior.

Lemma 7.1. Let Θk
i = [θkix, θ

k
iy]
ᵀ be agent ai’s orientation estimate at kth iteration, in

addition, let ∂fo
∂Θi

k
be the value of partial derivative of objective fo with respect to Θi calculated

using agents’ orientation estimates at kth iteration, we have:

E(Θk+1
i −Θk

i ) = −µα{ ∂fo
∂Θi

k

+ γkΘ}

In which:

(7.1) µ = 1− (1− λ)|Ni|

(7.2) γkΘ =
∑
aj∈Ni

1− exp{−σ2
B}{1− (1− λ)|Nj |}
|Nj|

R(−Wij)Θ
k
j −

(1− λ)|Nj |

|Nj|
Θk
i

where R(·) =

cos(·),− sin(·)

sin(·), cos(·)

 is the rotation matrix constructed from the angle · .

Proof. See Appendix 6. �

Lemma 7.2. Assume the agents’ orientation estimates have converged to a stable state.

Let X k
i = [xki , y

k
i ]ᵀ be agent ai’s position estimate at kth iteration, moreover, let ∂fp

∂Xi

k
be the

value of partial derivative of objective fp with respect to Xi calculated using agents’ position
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estimates at kth iteration, we have:

E(X k+1
i −X k

i ) = −µβ{ ∂fp
∂Xi

k

+ γkX}

In which:

(7.3) µ = 1− (1− λ)|Ni|

(7.4) γkX =
∑
aj∈Ni

1− exp
{
−σ2

B
2

}
{1− (1− λ)|Nj |}

2|Nj|
P(i, j)dij +

(1− λ)|Nj |

|Nj|
{X k

j − X k
i }

where P(i, j) = −

cos(Bij + θi)− cos(Bji + θj)

sin(Bij + θi)− sin(Bji + θj)

 is the matrix constructed from a pair of

agents ai and aj’s relative bearing angles as well as their orientation estimates.

Proof. See Appendix 7. �

Lemma 1 and Lemma 2 suggest that: at each iteration, in expectation, each agent will

update its pose estimate along a direction that is slightly deviated from the objective’s

gradient direction, with a step sizes that is slightly smaller than the user-specified one. As

we can see in Lemma 1 and Lemma 2, the bias of the update direction γΘ, γX , and the

depreciation factor of the step size µ, are essentially functions of the packet loss rate and the

variance of agent’s sensing noise, in other words, the deviation of agent’s expected update

direction from the gradient and the depreciation of the step size are essentially introduced

by the agent’s communication loss and sensing noise. The equation 7.1 and 7.3 suggest that:

in expectation, the communication loss will “shorten” the each agent’s step size. Moreover,

the effect of the communication loss can be reduced by agent ai’s degree, i.e., the number of
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the ai’s neighbors |Ni|. As to the biases of expected update direction γΘ and γX , according

to the equation 7.2 and 7.4, these biases are a result of both the communication loss and the

sensing noise.

On the other hand, one can observe that: the bias of the update direction γΘ, γX , and

the depreciation of the step size will super-linearly decay over the packet loss rate as well

as the agent’s sensing noise. This suggests that: when the communication loss and sensing

noise are reasonably small, the bias of update direction γΘ, γX , and the depreciation of the

step size will become negligible.

Assumption 7.1. Each agent ai’s degree |Ni| is not too low and the packet loss rate

1− λ is not too high such that: (1− λ)|Ni| ≈ 0.

Assumption 7.2. The variance of agent’s bearing sensing noise σ2
B is not too big such

that: exp
{
−σ2

B
2

}
≈ 1.

Remark: The assumption 1 and 2 are actually pretty mild. One can consider a case where

the packet loss rate 1−λ is 10% and the lowest degree of any agent in the swarm is 2. In this

case, (1 − λ)|Ni| = 0.01 ≈ 0. For assumption 2, consider a case where each agent’s bearing

sensing noise has a standard deviation (std) of 0.3 rad, which is around the same as the

std of the angle measurements obtained from the Bluetooth 5.1 devices [98]. In this case,

exp
{
−σ2

B
2

}
= exp{−0.045} ≈ 1.

Theorem 7.1. If Assumption 1 and 2 hold, then the swarm’s behavior can be approxi-

mated as the unbiased stochastic gradient descent on objective fo and fp. Namely:

E(Θk+1
i −Θk

i ) ≈ −α
∂fo
∂Θi

k

, E(X k+1
i −X k

i ) ≈ −β ∂fp
∂Xi

k
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Proof. Theorem 1 can be easily obtained by substituting (1− λ)|Ni| with 1 and substi-

tuting exp
{
−σ2

B

2

}
with 1 in equation 7.1, equation 7.2, equation 7.3, and equation 7.4. �

So far, we have seen that when the communication loss and sensing noise is reasonably

small, the swarm’s behavior is equivalent to the unbiased SGD on the objective fo and fp.

In other words, in expectation, the algorithm allows the swarm to constantly reduce the

disagreement between their pose estimates and their local measurements, which suffices to

show the algorithm’s correctness.

7.4.2. Complexity

First, it is straight forward to examine that the memory to execute the algorithm is dom-

inated by the size of buffer msg buff. Therefore, for an agent ai, the algorithm’s memory

complexity is O(|Ni|), where |Ni| is the number of ai’s neighbors.

Next, if it is assumed assume that the complexity of querying a random number generator

is O(1), then, the cost to execute Algorithm 8 Line 8-32 is O(1). In addition, during a unit

of time, each agent ai can receive at most f |Ni| messages, that is, in a unit of time, ai will

execute Algorithm Line 8-32 at most f |Ni| times. Thus, for an agent ai, the computation

complexity of the algorithm is O(f |Ni|).

Lastly, given the fact that the length of each message exchanged amongst the agents

is O(1), one can easily conclude that the algorithm’s communication complexity, i.e., the

amount of data to be transmitted by each agent in a unit of time, is O(f).

7.5. Empirical Evaluation

This section investigates the performance of proposed algorithm empirically in a 100-

robot swarm and in simulation.
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To qualitatively evaluate the algorithm’s performance, I first introduce two metrics NOEE

(normalized orientation estimate error) and NPEE (normalized position estimate error),

which are the metrics to evaluate the error of agents’ orientation estimates and position

estimates, respectively. The NOEE and NPEE are defined as follows: θki = atan 2(θkiy, θ
k
ix)

and [xki , y
k
i ] denote agent ai’s orientation estimate and position estimate observed by the

global observer at kth iteration, in addition, θgi and [xgi , y
g
i ] denote agent ai’s true pose in a

global coordinate system. At each iteration k, I first calculate the rotation and translation

that can match the agents’ estimated positions and their true positions the best, namely,

find θk∗ ∈ (−π, π], tk∗ ∈ R2 that minimize the following objective:

min
∑
ai∈A

∥∥∥∥∥∥∥
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Then, the NOEE and NPEE at kth iteration are defined as:
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where 〈·〉2π denotes the 2π modulus operator introduced in Section 7.2.1, and n is the

swarm size. The NOEE is the normalized geodesic distance between agents’ transformed

orientation estimates and their true orientations, and POEE is the normalized Euclidean

distance between agents’ transformed position estimates and their true positions.
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7.5.1. Simulation

In simulation, the robot’s communication range is set to 0.3 m, the robot’s communication

frequency f is set to 30 Hz. Moreover, the inter-robot communication channel has a packet

loss rate of 10%. In each test, the simulated robots are placed in three patterns: the circle,

the shape “N”, and the random mesh. See Fig. 7.3 for a graphical illustration of these three

patterns. In the circle pattern, n robots are evenly distributed on on a circle. The circle’s

radius is made such that the distance between two adjacent robots is 0.25 m, in addition,

each robot’s orientation is set to be such that: each agent faces straight towards to the center

of the circle. In the shape “N” pattern, the robots’ positions form a “N” shape on a grid,

moreover, the distance between any pair of adjacent robots is 0.2m. In the random mesh

configuration, n agents are randomly placed in a 0.25
√
n m × 0.25

√
n m space, moreover,

when generating each robot’s position, the swarm’s communication graph is enforced to be

connected. In both shape “N” pattern and random mesh pattern, each robot’s orientation

is set randomly.

Figure 7.3. From left to right: the circle pattern, the shape “N” pattern,
and the random mesh pattern for a swarm of 35 robots. Each dot represents
a robot, the line connecting two robots indicates that those two robots are
located within each other’s communication range.

The first test studies how the sensing noise will affect the algorithm’s performance. In this

test, a swarm of 100 simulated robots estimate their poses with a step size of α = β = 0.2.
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Each robot ai’s pose estimate is randomly initialized in a way that x0
i ∼ U(−20, 20), y0

i ∼

U(−20, 20), θ0
i ∼ U(−π, π), where U(a, b) stands for uniform distribution between the interval

(a, b). I test the algorithm’s performance with three noise profiles: σB = 0.05 rad, σd =

0.01 m; σB = 0.1 rad, σd = 0.02 m; and σB = 0.2 rad, σd = 0.04 m, where σB, σd are the

standard deviations of robot’s bearing sensing noise and range sensing noise, respectively.

For each noise profile, 30 trials were run. The results are shown in Fig 7.4. As we can see in

the figure, for all three patterns, the convergence rate of swarm’s pose estimate is almost the

same for different noise profiles. On the other hand, as expected, the sensing noise will affect

the accuracy of the swarm’s pose estimate: the bigger sensing noise will result in swarm’s

pose estimate converging to a state with higher error.

A second test studies the algorithm’s performance on different swarm size. In this test,

swarms of 64, 128, 256 robots estimate their poses with a step size of α = β = 0.2. Each

robot ai’s pose estimate is randomly initialized in a way such that x0
i ∼ U(−20, 20), y0

i ∼

U(−20, 20), θ0
i ∼ U(−π, π). In addition, the sensing noise is set to σB = 0.05 rad, σd = 0.01 m.

For each swarm size, 30 trials were run. The results are shown in Fig 7.5. Unsurprisingly,

Figure 7.4. Each colored solid line is the mean from 30 trials, and the colored
shade areas show the confidence intervals at a confidence level of two σ. The
color indicates the noise profile used in experiment: blue – σB = 0.05 rad, σd =
0.01 m; green – σB = 0.1 rad, σd = 0.02 m; red – σB = 0.2 rad, σd = 0.04 m.
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the results from experiments suggests that for all three patterns, the swarm size will affect

both the convergence rate and the accuracy of the swarm’s pose estimate: the larger the

swarm size is, the slower the swarm’s pose estimate will converge, and the higher the swarm’s

localization error will be.

Figure 7.5. Each colored solid line is the mean from 30 trials, and the colored
shade areas show the confidence intervals for a confidence level of two σ. The
color indicates the step size used in experiment: blue – α = β = 0.1; green –
α = β = 0.2; red – α = β = 0.3.

A third test studies the effect of the step size α and β on the algorithm’s performance.

In this test, a swarm of 100 simulated robots estimate their poses using three different step

sizes: α = β = 0.1, α = β = 0.2, and α = β = 0.3. The noise profile used in this test is

σB = 0.05 rad, σd = 0.01 m. Each robot ai’s pose estimate is randomly initialized in a way

such that x0
i ∼ U(−20, 20), y0

i ∼ U(−20, 20), θ0
i ∼ U(−π, π). For each step size, 30 trials

were run. The results are shown in Fig 7.6. As we can see in the figure, larger step size will

enable the swarm’s pose estimate to converge faster, at a cost of swarm’s pose estimate’s

accuracy.

In all three tests, we can see that: compared to the other two patterns, it takes much

longer for the circle pattern to converge. One possible explanation is that: given n agents,



105

Figure 7.6. Each colored solid line is the mean from 30 trials, and the colored
shade areas show the confidence intervals for a confidence level of two σ. The
color indicates the step size used in experiment: blue – α = β = 0.1; green –
α = β = 0.2; red – α = β = 0.3.

the circle pattern’s communication diameter, i.e., the maximal pairwise inter-agent com-

munication hop, is O(n), whereas the random mesh pattern and shape “N” pattern has a

communication diameter of O(
√
n). The communication diameter essentially characterizes

the cost to spread an agent’s information across the entire swarm. The larger the communi-

cation diameter is, the longer it will take to spread a agent’s information across the swarm.

As a result, the larger communication diameter makes circle pattern converge much slower

than the others. In addition, the difference of each pattern’s communication diameter can

also be used to explain the observation that the circle pattern has a higher localization error,

as the sensing error will accumulate over the communication hop.

7.5.2. Experiments

This section examines the algorithm’s performance on a swarm of 100 Coachbot V2.0 robots.

Note that Coachbot V2.0 robot does not have real bearing and range sensor. In order to

implement the presented algorithm on Coachbot V2.0, in experiments, I embed the robot’s

position in the transmitted data packet, and the receiver can calculate the transmitter’s
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bearing and distance by comparing its own pose with the position contained in the received

message. In addition, embedding the transmitter’s position in data packet can also be used

to simulate the limited communication range. In the experiment, the robot’s communication

frequency f is 30 Hz, and the step size is set to α = β = 0.2. The robots are placed in three

patterns: the rectangle pattern, the random mesh pattern, and the shape “N” pattern. See

Fig. 7.1 for a graphical illustration of these three patterns. In the rectangle pattern, the

robots are densely placed on the perimeter of a rectangle, where the distance between two

adjacent robots is 0.15 m, and each robot faces straight towards the center of the rectangle.

The robot’s communication range is set to 0.2 m in rectangle pattern so as to make each

robot’s degree to the consistent with the circle pattern used in simulation. The remaining

two patterns are the same as the ones used in the simulation, and in those two patterns,

the robot’s communication range is set to 0.3 m. For the random mesh pattern and the

shape “N” pattern, 15 trials were run; for the rectangle pattern, 6 trials were run due to

its long convergence time. The results are shown in Fig 7.7. In all the trials, the algorithm

reliably converge to all the robots accurately localizing themselves. We can see that for

each pattern, its convergence rate is approximately the same as the results obtained in the

simulation (the rectangle pattern is corresponding to the circle pattern). The random mesh

pattern and the shape “N” pattern can converge in less than a minute, while it takes much

longer for the rectangle pattern to converge. In addition, one can see that: for random mesh

pattern and the shape “N” pattern, the average converged NPEE, i.e., normalized position

error, is smaller than 2 cm, and the average converged NPEE for the rectangle pattern is

around 5 cm. Given the fact that the robot is in a disk shape with a diameter of 13 cm, it

can be concluded that: for all three patterns, the robots’ average converged position error
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Figure 7.7. Each colored solid line is the mean from multiple trials, and the
colored shade areas show the confidence intervals for a confidence level of two
σ.

is smaller than the robot’s footprint, and in the case of shape “N” pattern and the random

mesh pattern, much smaller.

7.5.3. Example use case: decentralized robotic shape formation

One desirable feature of the presented algorithm is that: the algorithm does not require

the agent to actively maintain the communication links between itself and its neighbors, or

synchronous its lock clock with the others. This feature makes it possible for the algorithm to

work in the situations where the swarm’s communication topology is dynamically changing.

In this demonstration, 100 robots use the presented algorithm to execute the shape formation

algorithm presented in Section 8 and [44]. Different from the original version of the algorithm

presented in [44], where the agents need to acquire their poses from a global position system,

in this experiment, the agents will estimate their poses according to the local measurements

and the odometry. Each robot will keep using it on-board odometry to capture the change

in its pose (including orientation and position) over time. At a fixed frequency fodom, the

robot will add the change in it pose during the past 1
fodom

amount of time (measured by its
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on-board odometry) to its pose estimate. At the same time, it will also constantly refine

its pose estimate according to the local measurements using the algorithm presented in this

paper. The video of this experiment can be found in [76].
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CHAPTER 8

TASK ASSIGNMENT AND FORMATION CONTROL

The task of shape formation in robot swarms can often be reduced to two tasks: assigning

goal locations to each robot, and creating a collision-free path to that goal. This chapter

presents a distributed algorithm that solves these tasks concurrently, enabling a swarm of

robots to move and form a shape quickly and without collision. A user can specify a desired

shape as an image, send that to a swarm of identically programmed robots, and the swarm

will move all robots to goal locations within the desired shape. This algorithm was executed

on a swarm of up to 1024 simulated robots, and a swarm of 100 real robots, showing that it

reliably converges to all robots forming the shape. The algorithm presented in this chapter

has been published as [44], a summary video of the presented algorithm can be found in [76].

8.1. Background

In general, the complete shape formation problem can be divided into two subproblems:

assignment of robots’ locations in shape, and routing each robot to reach its assigned location.

The assignment subproblem tries to divide the goal locations among the individuals, often

in an optimal way such as minimizing the total distance traveled by the swarm. This problem

has been well studied and there are several algorithms which can find the optimal assignment,

including the Hungarian algorithm [86], auction algorithms [108, 109], and iterative methods

[110, 111]. Recent work shows that some certain assignments which minimize a cost of

interest can help to reduce the computational complexity of path planning problems. One
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Figure 8.1. Still images from a 100 robot shape formation experiment. The
robots start in a random configuration, and move to form the desired “N”
shape. Once this shape is formed, they then form the shape “U”. The entire
sequence is fully autonomous using the distributed algorithm described in this
chapter.

typical cost of interest used is the sum of the distance traveled by all agents [27, 112, 113],

and the other cost of interests are the sum of the square distance traveled [114] and the

maximal distance traveled [115], which help to minimize the total time elapsed. In these

methods, the calculation for the assignment is handled by a centralized coordinator. These

centralized strategies can deliver a solution to the assignment problem, but do not easily

scale to large numbers of robots, present a single point of failure, and do not easily adapt to

situations where the number of robots is unknown or can vary.
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Unsurprisingly, the distributed assignment methods, on the other hand, can often scale

well to the number of robots, and can be more robust to failures [116] and varying numbers

of robots. Past efforts try to solve the distributed assignment problem by following an

incremental distributed refinement process [117, 118]. Here, the order how agents explore

each goal has significant effect on convergence rate. In [117], the agents follow a pre-assigned

order which assures that a correct assignment of agents to tasks is always achieved after

exploring at most a polynomial number of assignments. In [118], authors obtained an efficient

convergence by forcing agents to follow a certain path. This path is collision-free when

agents have infinitely small size, but when agents have finite size, the path cannot provide a

collision-free guarantee.

After determining the role in shape, each agent then needs to move cooperatively to

form the desired shape. In the past, many methods to produce the formation have been

proposed. According to the types of actively controlled variables [119] such as agent’s position

or distances to the neighbors, formation control methods can be categorized into local-

measurement-based methods [120–132], and position-based methods [22–30, 35, 46, 47, 52,

112–115, 133–139].

In local-measurement-based methods [120], the agents form the desired shape by actively

controlling its distance [121–125], bearing [126], or both [127–131], relative to its neighbors.

This type of methods only require the use of relative measurements therefore can be employed

in the GPS-denied environments, e.g. indoor environments. For local-measurement-based

methods, the challenge is how to obtain the global stabilization to the desired formation

using only peer-to-peer information [127].

Some methods achieve the global stabilization by relying on the leader agents [125, 129–

131]. In these methods, the leader tracks its desired trajectory, and the non-leader agents
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are tasked to maintain certain graph structures rooted from the leader agent where each

vertex characterizes an agent and each edge characterizes an inter-agent measurements, such

as distance or relative position. These methods allow the swarm to stabilize to a formation

that is even dynamically moving, but require an additional leader selection phase to assign

a role (leader or non-leader) to each agent.

The methods proposed in [127, 128] are leaderless, these methods enable a group of

agents to reliably produce a rigid shape, using the relative positions of agent’s neighbors.

Nevertheless, in order to achieve global stability, the method proposed in [128] needs the

communication graph amongst agents to be complete, and the method proposed in [127]

requires the desired formation to satisfy some specific topological conditions.

While local-measurement-based methods permit operations in GPS-denied environments,

they often require a centralized coordinator, or the use of a complete communication network,

to initially assign each robot a position in final shape. Moreover, without any additional

mechanism, it often fails to provide an absolute collision avoidance guarantee when agents

have finite size.

To the contrary, in position-based methods, the desired formation is achieved by actively

controlling the agents’ positions. This type of methods require that each agent is able to

measure their own positions with respect to a global coordinate system. Here, the challenge

is how to efficiently generate collision-free trajectories where agents can achieve the desired

formation by moving to goal locations.

Some previous work tackled the problem in a discrete setting [22–24, 133], while others

solved the problem in a continuous setting [25, 26, 134, 135]. As expected, these centralized

methods suffer from the curse of dimensionality (because the dimension of swarm’s joint
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configuration space increase exponentially over swarm size), hence often cannot easily scale

to large-scale swarms, such as a swarm of over 1000 agents.

An alternative method is to use an artificial potential function to guide agents to the de-

sired formations using gradient descent. Some authors make use of gradient descent to drive

agents to goals [28, 29], and some use the potential function to modify current trajectories

locally to prevent collision and maintain connectivity [30]. The drawbacks for this kind of

method are that it may take a long time to converge, and there is no guarantee provided

that they can form the desired shape [27, 138].

Distributed multi-agent path planning is a well studied topic. Some methods are based on

local measurements, either relative velocities [47, 136, 137], or relative positions [35], but none

of these methods can provide a deadlock-free guarantee, agents can get stuck in a situation

where no action can be made for further progress, yet the shape is incomplete. In fact, in

the presented review of distributed path planners [35, 46, 47, 132, 136, 137], none of the

methods can provide a deadlock-free guarantee and absolute collision-free guarantee at the

same time. This is also suggested in [35], which also claims that no deadlock-free distributed

path planner that is with absolute collision-free guarantee exists. Other approaches make

use of the communication among agents, but in order to guarantee the correctness of the

method, require either a lossless fully connected network [52], or precise velocity control [27],

which can be difficult to guarantee when implemented in a physical system. In [46], authors

presented a distributed collision avoidance strategy which can resolve some certain types

of deadlocks using local communication only, but the method cannot resolve all types of

deadlocks. A distributed receding horizon control (RHC) based method is proposed in [132],

this method requires only the use of relative sensing in robot’s local coordinate frames, and

is able to provide mathematical guarantees on the achievement of the rendezvous, however,
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it has not been shown that the method can provide collision-free guarantee and absolute

deadlock-free guarantee at the same time.

This chapter presents a fully distributed shape formation algorithm where each agent is

identically programmed and takes the same input, a set of goal points that describes the

desired shape. Each agent will use local communication to actively refine the goal assignment

and control its position in a distributed fashion. To the best of my knowledge, and supported

by [35], the proposed algorithm is the first provably correct fully distributed shape formation

algorithm that can also provide absolute collision-free and deadlock-free guarantees, requiring

only the use of local communication. Moreover, the physical experiments and simulations

presented show that the presented algorithm is robust to real world non-idealities, such as

communication errors, sensing errors, and imperfect robot motion.

8.2. Problem Definition

This chapter proposes an algorithm that when given a set of desired target points (which

are described by a set of nodes on a grid), moves a swarm of mobile agents so that each

agent is located at a target position, and no target position has more than one agent. For

each agent, the set of target positions are known a priori, moreover, all the agents agree

on the same global reference frame. This algorithm must distribute the target positions

among the agents and then drive the agents to their corresponding target position without

collision. The system is distributed, agents are identically programmed, and act based on

local information gathered through communication. In this section, I will formally state the

problem and introduce the notations used in this chapter.
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8.2.1. Agent Model

Given the robot capabilities proposed in chapter 2, in this chapter, each agent is modeled as a

2D omni-directional robots that is in a disk shape with a finite radius r, and can move in any

direction at speed vm, or stop. In addition, with the algorithm presented in chapter 7, it is

assumed that each agent can measure its own position and orientation in a global coordinate

system at all times. Additionally, each agent is able to communicate with any agent lying

within its communication range R ≥ 4
√

2r. To simplify the analysis and description, here,

it is assumed that:

• Each agent has the same clock frequency fclock;

• Each agent is able to constantly transmit messages to the neighbors in communication

range at a fixed rate fcomm;

• The local inter-agent communication is lossless;

• Each agent has the same vm;

• The communication latency is negligible.

Note that here I do not have any assumption on the phase of the agent’s clock relative to

each other, they can be asynchronous in phase. When the algorithm is implemented in the

real world, these assumptions can be relaxed to accommodate the real-world non-idealities,

see Section 8.5.2.1 for detailed discussion.

8.2.2. Notations

For the sake of describing the presented algorithm and formulating the problem, I introduce

the notations as follows:
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Let A = {a1, a2, ..., an} be a set of agents, where each agent ai ∈ A has a position

pai(t) ∈ R2 at time t. For all p ∈ R2, px, py denote p’s x and y components, respectively. || · ||

denotes the Euclidean norm on R2 space and � denotes the lexicographic order on R2 space,

namely, p1 � p2 if and only if: px1 > px2 , or px1 = px2 and py1 > py2. Let Q = {q1, ..., qm} be a set

of distinct target locations, where qi ∈ R2, it is assumed that ∀qi, qj ∈ Q, ||qi − qj|| ≥ 2
√

2r,

i.e, in the desired shape no pair of robots collide with each other. Moreover, Tai(t) ∈ Q

denotes ai’s assigned target position at time t. It is assumed that every agent has the same

communication range R and same radius r, and Nai(t) ⊂ A denotes the set such that at

time t, ∀aj 6= ai, ||pai(t)− paj(t)|| ≤ R if and only if aj ∈ Nai(t), in the other words, Nai(t)

is the set of agents that are able to communicate with ai at time t.

8.2.3. The Problem Formulation

The task is to design an algorithm to move a swarm of n identical robots, represented by

set A, from their initial positions to an arbitrary connected target formation, represented

by set Q. To simplify the problem, it is assumed that |Q| = |A|. The algorithm should be

deadlock-free and collision-free, that is:

• ∃tmax > 0 such that at any time t > tmax, it holds that: ∀ai ∈ A, pai(t) = Tai(t), moreover,

∀aj 6= ai, Taj(t) 6= Tai(t),

• ∀t ≥ 0, for any two agents ai 6= aj, ||pai(t)− paj(t)|| ≥ 2r.

8.3. Approach

To form the goal shape, each agent needs to pick a valid goal, and then move on a

collision-free and deadlock-free path towards that goal without any centralized coordination.
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Algorithm 10: General Framework for Shape Formation

Input: Q = {q1, q2, ..., qm}
1 Tai(t)← random element in Q

2 while True do
3 if ∃aj ∈ Nai

(t), s.t. Taj (t) = Tai(t) then
4 run new goal selector (Alg. 13 Line 3-10)

5 run motion planner (Alg. 11 Line 25-29)

For this task, two subproblems arise. One of them is solving duplicated assignments, which

is caused by the limited sensing ability of the agents. Agents have limited communication

range so they have to determine their targets based only on the local information. This makes

it possible that there exist multiple robots holding the same target. The other subproblem

is planning each robot’s motion based on local information so as to generate collision-free

and deadlock-free paths toward the goals. Additionally, if every agent’s target is unique, the

motion planner should guarantee that each agent will reach the target in a finite amount of

time.

In the presented algorithm, the task is handled by two modules: the new goal selector,

which is used to pick a valid goal, and the motion planner, which is used to plan the agent’s

motion. Each agent uses the motion planner to move to its current goal, and if it encounters

another agent holding the same goal, one of them uses the new goal selector to pick another

goal, while the other one will stay with its current goal. A detailed description is shown as

Alg. 10. Note that this algorithm runs on each agent of the swarm.

8.3.1. Motion planning

To generate a collision-free path, the continuous environment is first converted into a discrete

grid, as shown in Fig. 8.2. While this grid representation of the environment will make

agent’s motion less efficient, it helps to reduce the computational cost of motion planning.
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Note that the grid here is the same grid goal points are located on. Let l be the length

of the grid edge, where the constraint that 2
√

2r ≤ l ≤ R
2

is enforced for the purpose of

collision avoidance. Furthermore, it is assumed that there are no obstacles located in the

environment. With this representation, each agent’s path is given by a sequence of the

waypoints, i.e. the nodes of the grids.

Figure 8.2. Illustration of the grid discretization of space and possible collision
cases. The intersections of grey dashed lines represent the feasible waypoints,
and agents travel on the edges between waypoints. Each agent’s position is
shown with a colored circle and its goal point is shown with a square of the
same color. Moreover, each agent is labeled with a unique number and the
arrow shows agent’s incentive for next step. (Left) A valid trajectory for a
single agent to move to its goal. The trajectory is shown as a sequence of
arrows. (Middle) An edge collision, where blue and green robots both intend
to travel on the edge in black, in opposite directions. Here neither can make
progress without collision. (Right) Collision happens on a waypoint, where
the blue and green robots try to move to the same waypoint at the same time,
physically colliding.

For every two adjacent waypoints, the motion controller enforce that the robots travel

on the line segment between them. The motion controller plans every robot’s motion, such

that the following constrains are satisfied:

Constraint 8.1. At any time t, no agent moves to the waypoint that is currently occupied

by the other, and no pair of agents move towards the same waypoint at the same time.

Constraint 8.2. At any time t, no pair of agents travel on the same edge in opposite

directions.



119

For each agent located at any waypoint, there are five possible actions: move north, east,

south, west, and wait. Agents should choose the action that greedily reduces the Manhattan

distance to its goal point. Once the agent determines its next action, and if this action is not

wait, it first uses communication to check whether the waypoint is occupied by any other

agent. If it is occupied, the agent executes wait and continues using communication to check

the availability of the waypoint (Alg. 11 Line 26-27). If there is no other agent occupying

this waypoint, the agent then starts to check if any other agent wants to move to the same

waypoint as it does. If there are multiple robots intending to go to the same waypoint (x, y)

at the same time t, then the robot ai whose current position pai(t) is the lexically largest

will go first (Alg. 11 Line 28-29).

As the agent moves towards its goal, it continually tries to improve its goal assignment,

changing its goal based on local information. When it senses a neighbor with whom a

swapped goal would result in a reduced pairwise traveled distance (in terms of Manhattan

distance), it swaps goals with that neighbor (Alg. 13 Line 11-15). If swapping goals with a

neighbor does not change the pairwise distance traveled, they swap goals with a probability

0 < β < 1 (Alg. 13 Line 16-21). When a goal conflict is sensed, i.e. a neighbor is seen

that is holding the same goal point, one of the agents picks a new goal from Q to eliminate

the duplicated goal (Alg. 13 Line 3-10). An illustration of the cases in which an agent may

change its goal are shown in Fig. 8.3.

It is possible that multiple agents (more than two agents) intend to swap the goals at

the same time, for example, at time t, ai intends to swap the goal with aj while aj intends

to swap the goal with the third agent ak. In my implementation, the pairwise goal swap

is achieved by 2-way handshake (Alg. 13 Line 12, 18). Only the pair of who successfully

handshake with each other can swap the goal. To be specific, when agent ai intends to swap
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Figure 8.3. Illustration of possibles cases where an agent may change its goal.
All the information is encoded in the same way as Fig. 8.2. (Left) For any pair
of agents located within each other’s communication range, if goal swap can
help them to reduce the pairwise total distance traveled (in term of Manhattan
distance), then goal swap occurs. (Middle) If the goal swap doesn’t affect the
total pairwise travel distance, these two agents randomly decide whether to
swap. (Right) If both agents hold the same goal, one of them will run the new
goal selector algorithm to select a new goal from Q.

the goal with aj, if paj(t) � pai(t), then it will take the role of client in this handshake,

otherwise if pai(t) � paj(t), ai will act as server in the handshake. A client agent ai will send

a handshake request to its intended goal swap peer aj, which is a handshake server since

paj(t) � pai(t), and then wait for the acknowledgement (ACK) from this server agent aj for

certain amount of time. On the other hand, a server agent aj will wait for the handshake

request from its intended goal swap peer ai for certain amount of time, which is a client agent

since paj(t) � pai(t), and send back an ACK to ai after receiving the handshake request from

ai. Note that it is possible that a server agent aj receives the handshake requests from

other agents that is not its intended goal swap peer. When this happens, it will answer the

requests from these agents with a negative acknowledgement (NACK) (or does not answer

these requests at all so as to trigger the handshake timeout). The client agent ai will update

its goal only after receiving the ACK from the intended goal peer aj, and the server agent aj

will update its goal after receiving the handshake request from its intended goal swap peer

ai.

Remark: Beyond the situations where the agents’ goals are interchangeable, it is also

possible to extend the motion planner presented in the section to the situations where some
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agents cannot swap their goals with the others, for example, the shape formation tasks where

the agents hold different roles [33]. To do so, the main challenge is how to implement the

primitive swap when the agents cannot swap their goals directly. Here, the idea is that:

instead of swapping the goals, the agents will swap their positions. It was shown in [88] that

the position swapping between two agents can be achieved by a sequence of intermediates

moves without affecting the others’ positions, making it possible to extend the presented

motion planner to more complex situations.

8.3.2. New goal selecting

As we want each agent to have a unique goal in the end, the algorithm needs to eliminate

any duplication in the assigned goals. For the new goal selector algorithm, It is desired

that the swarm has as many different goals assigned as possible. When the total number of

assigned goals is equal to the size of the swarm, no pair of agents will have the same goal.

This implies that the new goal selector should keep the number of assigned goals growing.

Therefore, every time a new goal is selected, the total number of assigned goal points should

be non-decreasing.

8.3.2.1. Random selector. A simple new goal selector would be a random selector. For

every pair of agents ai, aj that detect that they hold the same goal, if paj(t) � pai(t), where

� denotes the lexical order on R2 space, then ai randomly picks a new goal from the set Q.

While the random selector can guarantee the process to be almost surely convergent,

the probability of picking an unassigned goal will decay over the number of assigned goals,

leading to a relatively long convergence time. I therefore introduce a heuristic to speed

convergence.
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8.3.2.2. Gradient-based selector. The gradient algorithm, which is a well-known collec-

tive behavior, also known as hop-count algorithm [48, 49], can be adapted to improve goal

selection. It is a simple algorithm that involves two agent roles, the common agent and

the anchoring agent, and both roles transmit a single message containing a position qu and

a hop-count h. Each common agent listens to messages from its neighbors in communica-

tion range R, finds the message with the lowest hop-count received, (qxu, q
y
u, hop), and then

transmits the message (qxu, q
y
u, hop+ 1) (Alg. 11 Line 17-19).

The basic hop-count algorithm from [48, 49] can be modified in the following way to allow

for better goal selection. An agent will take on the anchoring role when it is one grid length

away from an unassigned goal point (qxu, q
y
u) (by “unassigned goal” I mean the goal that

is not assigned to any of the agent’s neighbors in communication range), and transmit the

message (qxu, q
y
u, 0) (Alg. 11 Line 20-24). An anchoring agent will become a common agent

when it no longer detects a unassigned goal that is one grid length away. Every agent ai

Figure 8.4. An example of agents using gradient-based selector to update their
goals. Goal positions are shown as a colored square, agent positions are shown
as a circle who’s color matches its current goal. Agents are labeled with its in-
dex i, hop-count value hop, and candidate goal qu color (r-red, b-blue, g-green),
respectively. For this example, it is assumed that each agent’s communication
range is one grid length. Initially, in frame1 , the goal, T , for agent a1 and a3

is blue, and a2 is red. In frame 2 agent a1 and a3 move towards their goal,
with a3 arriving at its goal. In frame 3 the hop-count is updated for agents
and a1 continues towards its current goal. In frame 4 agent a1 sees a3 with
the same goal, and since a3 � a1, a1 changes goals, choosing the goal indicated
by the hopcount message.
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keeps the latest goal point (qxu, q
y
u) it transmitted as the candidate goal qu. When ai detects

that there is another agent aj holding the same goal and paj(t) � pai(t), it then uses the

current candidate goal qu to update its goal Tai(t) (Alg. 13 Line 3-10).

This gradient-based selector helps to prevent an agent from selecting a goal that is already

occupied, while also propagating information about valid goals throughout the entire swarm.

This helps increase the possibility (compared to random goal selector) that the new goal

generated from “new goal selector” is valid, i.e. the goal has not been occupied by other

agents yet. See Fig. 8.4 for a graphical illustration.

In addition, the swarm can also use the gradient hop-count to detect whether the shape

is completed. If the shape is completely formed, there will be no anchor nodes in the swarm,

so the gradient value of each agent will increase temporally. If any agent holds a gradient

value larger than the number of agents, then the agent knows there are no anchor nodes,

and therefore the shape is completed. Once any agent detects that the shape is complete, it

will send a message which propagates across the entire swarm telling every other agent that

the shape is complete.

8.3.3. Implementation

In this section, I describe the implementation of shape formation algorithm using gradient-

based selector in detail. The algorithm consists of three components: main component,

broadcast component, and goal manager. The main component coordinates agent’s motion

based on the information coming from its neighbors in communication range so as to avoid

collision; the broadcast component constantly transmits messages to neighbors at a fixed

frequency fcomm, and the neighbors in communication range will use this information to
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coordinate their traffic; the goal manager refines agent’s assigned goal so as to eliminate

the duplicated assignment and resolve the deadlocks. These three components can be im-

plemented using three separate threads running on each agent that communicate through

shared memory. The sketches of these three modules are shown in Alg. 11, Alg. 12, and

Alg. 13. Note that all the variables are thread-public.

8.3.3.1. Main Component. In main component, the agent has two tasks: use the mes-

sages from its neighbor to plan its motion (Alg. 11 Line 25-29), and perform the gradient

algorithm so as to help to propagate the information about unassigned goal through the

swarm (Alg. 11 Line 15-24). The variables and system calls that are used in this component

are:

• hop: Agent’s current hop-count value;

• qu: Agent’s candidate goal;

• T : Agent’s current goal, i.e., the goal that the agent is moving towards;

• wp: The waypoint that agent is claiming, i.e., the waypoint that agent is currently moving

to or staying at;

• p: The agent’s position;

• next step: Agent’s next waypoint;

• ∆t: The amount of time such that: If the agent tries to plan its motion at time t, then it

will use all the messages received between t−∆t and t to do the calculation;

• clock(): The system call that returns the time elapsed since the program started;

• last check: The variable to record the time when the agent arrived at current waypoint;

• surroundings: The set of four waypoints that are one grid length away from current

waypoint;

• msg buff: The set of messages that are received in the last ∆t amount of time;
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Algorithm 11: Main Component

Input: Q = {q1, q2, ..., qm}, β.
/* Q is the set of goal points, β is a constant where 0 < β < 1. */

1 wp← current waypoint

2 hop←∞
3 qu ← random element in Q

4 T ← random element in Q

5 next step ← current waypoint

6 ∆t← 2

fcomm

7 last check ← clock()

8 while True do
9 surroundings←{(wpx − l, wpy), (wpx, wpy − l), (wpx + l, wpy), (wpx, wpy + l)} /* the set of waypoints

one grid length away from current waypoint. */

10 wait flag ← 0

11 for i in surroundings do /* find the next waypoint */

12 if choice of i reduces distance to goal then
13 next step ← i

14 Break

15 msg buff← all messages received since clock() - ∆t

16 if msg buff is not empty then
/* find the message that contains the lowest hop-count value. */

17 msg min ← the message in msg buff that contains the lowest message.hop

18 hop←1 + msg min.hop

19 qu ←msg min.qu
20 for i in surroundings do /* check if there is any unassigned goal one grid length away */

21 if i ∈ Q and ∀ msgj in msg buff, msgj.T 6= i then
22 qu ← i

23 hop← 0

24 Break

25 for i in msg buff do /* loop through all the messages in msg buff to check if there is any potential

collision */

26 if i.wp == next step then
27 wait flag ← 1 /* next step is occupied */

28 if i.next step == next step and i.p � p then
29 wait flag ← 1 /* other agent with higher priority intends to go to the same waypoint */

30 if wait flag == 0 and clock() - last check > ∆t then /* there is no potential collision and the agent

has stay at the current waypoint long enough */

31 wp←next step

32 agent moves to wp

33 last check ← clock()

34 else
35 stay at current waypoint
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Algorithm 12: Broadcast Component

1 while True do
/* Forge the message to be transmitted, the message contains: agent’s current position, current

waypoint, next waypoint, current goal, candidate goal, and hop-count value. */

2 msg←{p, wp, next step, T , qu, hop}
3 transmit msg

4 sleep 1
fcomm

Algorithm 13: Goal Manager

1 while True do
/* ai denotes the agent that is executing this thread */

2 if receive a msg in from any other agent aj then
3 if aj holds the same goal then
4 if paj � pai then
5 if rand(0, 1.0) > 0.1 then
6 T ← qu
7 last check ← clock() /* The goal changes, as a result, Alg. 11 Line 11-13 may change next step,

hence we need to reset the timer for safety checking so as to avoid collision */

8 else
9 T ← random element in Q

10 last check ← clock() /* Same reason as Alg. 13 Line 7. */

11 if the goal swap with aj can reduce cost then
12 Execute the 2-way handshake with aj
13 if 2-way handshake succeeds then
14 updates agent’s goal

15 last check ← clock() /* Same reason as Alg. 13 Line 7. */

16 if the goal swap with aj doesn’t effect cost then
17 if rand(0, 1.0) < β then
18 Execute the 2-way handshake with aj
19 if 2-way handshake succeeds then
20 updates agent’s goal

21 last check ← clock() /* Same reason as Alg. 13 Line 7. */

• wait flag: The flag variable that helps agent to check the potential collisions, specifically,

if wait flag is 0, then agent can move to the next waypoint; otherwise if wait flag is 1, then

the agent needs to stay at the current waypoint.

Recall that the agents’ clocks could be asynchronized in phase. In order to avoid collisions,

the agent is enforced to move in a “listen-think-walk” manner, namely, before moving from

one waypoint wpa to the other waypoint wpb, the agent will wait at wpa long enough, more
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than ∆t amount of time to be specific, so as to collect the neighbor’s information and

broadcast its information to the neighbors. Moreover, when the agent waits at waypoint

wpa, it keeps using the messages received in last ∆t amount of time to determine whether it

is safe to move to the wpb. The collision-free guarantees of this traffic scheduling strategy is

shown in Section 8.4.1.

8.3.3.2. Goal Manager. In goal manager component, when agent receives a message from

its neighbor, the agent will first check that if this neighbor are holding the same goal point

as it does, if so, then the one whose current position is lexcially smaller will change its goal

(Alg. 13 Line 3-10). After this, the agent will then check whether the conditions (Alg.

13 Line 11, Line 16) for goal swap are triggered, if so, then it tries to execute the 2-way

handshake with the intended agent, and if the 2-way handshake succeeds, the agents then

updates their goals accordingly.

Note that this thread is executed concurrently with the main component (Alg. 11), as a

result, when agent’s goal changes in this thread (Alg. 13 Line 6, 9, 14, 20), the Alg. 11 (Line

11-14) may change the agent’s next step, therefore, in order to avoid the physical collision

that is incurred by the concurrency, right after changing the goal in Alg. 13, the agent will

reset the timer for the safety checking (Alg. 13 Line 7, 10, 15, 21).

8.4. Theoretical Results

8.4.1. Safety

In this section, I show that if the assumptions proposed in Section 8.2.1 are satisfied, then

the presented algorithm is safe, i.e., the algorithm is collision-free.
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Recall that as shown in Section 8.3.1, to provide collision-free guarantee, the implemen-

tation of motion planner should satisfy the Constraint 8.1 and Constraint 8.2. First, I show

that my implementation satisfies Constraint 8.1.

Lemma 8.1. Let wpai(t) be the waypoint that agent ai is claiming at time t. If agent ai

changes the wpai from wp0
ai

to wp1
ai

at time t∗, then there is no agent aj such that wpaj(t
∗) =

wp1
ai

.

Proof. See Appendix 9. �

Theorem 8.1. At time t = 0, if each agent starts with a unique waypoint, then for any

time t > 0, Constraint 8.1 will be satisfied.

Proof. If each agent starts with a unique waypoint, then Lemma 8.1 suffices to show

that Theorem 8.1 holds. �

Next, I show that my implementation satisfied the Constraint 8.2 as well.

Theorem 8.2. At time t = 0, if each agent starts with a unique waypoint, then for any

time t > 0, Constraint 8.2 will be satisfied.

Proof. See Appendix 10. �

8.4.2. Almost sure convergence

In this section, I show that if the new goal selector can pick a valid new goal point with non-

zero probability, then the algorithm can enable the swarm to successfully form the desired

shape with probability 1, regardless of the swarm’s initial configuration.
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To prove the convergence of the algorithm, for every time step t, I construct the following

objective functions:

J1(t) =

|A|∑
i=1

di(t)

J2(t) = |A| −
|Q|∑
i=1

ei(t)

In which, di(t) is the Manhattan distance from agent ai’s current position to its current

goal at time t, i.e., the number of edges to be traversed in the grid. Moreover, for each goal

position qi, I define ei(t) as follows:

ei(t) =


1, if at time t, ∃ j s.t. Taj(t) = qi

0, otherwise

One can see that these two objective functions will both equal 0 only if all agents success-

fully arrive at a unique goal. Therefore, it is sufficient to show that the presented method can

always drive the swarm to the desired final configuration by proving the presented method

can make both J1 and J2 converge to 0, regardless of the initialization.

Proposition 8.1. Let Pr{·} be the probability that event · will occur, for any function

J(t) ∈ Z≥0, it will almost surely converge to 0 if:

• ∃C ∈ Z≥0, s.t. ∀t, J(t) ≤ C

• ∀ t1 ≤ t2, J(t1) ≥ J(t2)

• ∃τ, ε > 0, s.t. ∀t, Pr{J(t+ τ) ≤ J(t)− 1|J(t) 6= 0} ≥ ε

Proof. See Appendix 8. �
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Next, to prove that both J1 and J2 can almost surely converge to 0, I show that both

these two functions satisfy all three conditions proposed in Proposition 8.1.

Lemma 8.2. Both J1 and J2 are bounded by a finite constant.

Proof. See Appendix 11. �

Lemma 8.3. J2 is monotonically decreasing, moreover, J1 is monotonically decreasing

if J2 equals 0.

Proof. See Appendix 12. �

To describe swarm’s traffic condition, at every time step t, I construct a directed graph

Gt = (V , Et), in which V = A and Et = {(vi, vj)} as its edge set, where (vi, vj) ∈ Et if aj occu-

pies ai’s next waypoint at time t. By definition, each vertex on Gt essentially characterizes an

agent, therefore, in the rest of the section I use the notation ai and vi interchangeably. For

the sake of the description, at time t, I call agent aj is agent ai’s successor, or ai is aj’s pre-

decessor, if (vi, vj) ∈ Et. Additionally, I call those agent(s) ai whose out degree deg+(ai) = 0

the head agent(s), in the other words, a head agent is an agent that is not blocked by any

other agent.

Lemma 8.4. If (vi, vj) ∈ Et, then a goal swap between ai and aj will happen with a

non-zero probability.

Proof. See Appendix 13. �

Lemma 8.5. If J2 = 0, then if J1 6= 0, J1 will decrease by at least 1 within a finite

amount of time with non-zero probability, independent of the history.
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Proof. See Appendix 14 �

Lemma 8.6. The motion planner will make the position of each assigned goal’s owner

to greedily move toward the position of the goal point with non-zero probability, regardless of

the swarm’s configuration.

Proof. See Appendix 15. �

Lemma 8.7. If J2 6= 0, then the event that: two agents that are holding the same goal at

the same time are located within distance R, will occur within a finite amount of time with

non-zero probability. Namely, at time t, if J2 6= 0, then ∃ τ , ε > 0, ai 6= aj, such that:

Pr{||pai(t+ τ)− paj(t+ τ)|| ≤ R, Tai(t+ τ) = Taj(t+ τ)} ≥ ε

Proof. See Appendix 16. �

Lemma 8.8. If J2 6= 0, then J2 will decrease by at least one within a finite amount of

time with non-zero probability, independent of the history.

Proof. See Appendix 17. �

Theorem 8.3. Both J1 and J2 will almost surely converge to 0, regardless of the swarm’s

initial configuration.

Proof. Using Lemma 8.2, Lemma 8.3, Lemma 8.5, and Lemma 8.8,on can see that both

J1 and J2 satisfy all three conditions proposed in Proposition 8.1. Hence both J1 and J2 will

almost surely converge to 0, regardless of the initialization of the swarm. �
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8.4.3. Complexity

In the section, I study the cost of implementation of the algorithm proposed in Section 8.3.3

with respect to its time complexity, memory complexity, and communication complexity.

First, I study the time complexity for each agent planning their action, i.e., the time

complexity for executing Alg. 11 Line 9-35. One can see that the time cost is dominated by

the time complexity for looping through all the messages received in last 2
fcomm

amount of

time. In the msg buff, there will be at most 2|Nai(t)| amount of the messages, on the other

hand, each agent can have at most b2R
l
c2 amount of neighbors in communication range,

where R is agent’s communication range, l is the grid length. This suffices to show that the

time complexity for the decision making is O(bR
l
c2).

Next, the algorithm’s memory footprint is dominated by the memory to store the input

point set, as a result, the algorithm’s memory complexity is O(|Q|).

To investigate the algorithm’s communication complexity, i.e., the amount of data each

agent will transmit during one unit of time, I first study the amount of data that each agent

will transmit within each communication round, i.e., 1
fcomm

amount of time. During each

communication round, an agent ai will broadcast one message with a length of O(1) (Alg.

12 Line 2), and process at most |Nai(t)| 2-way handshakes, as ai can receives no more than

|Nai(t)| amount of messages from the neighbors in communication range. Additionally, the

amount of data exchanged to process a 2-way handshake is O(1), as a result, during one

communication round, the amount of data that each agent ai will transmit to its neighbors

is O(bR
l
c2), as each agent can receive no more than b2R

l
c2 neighbors in communication range,

where R is agent’s communication range, l is the grid length. On the other hand, in a unit
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of time, there will be O(fcomm) communication rounds, which suggests that for each agent,

the amount of data transmitted during a unit of time is O(bR
l
c2fcomm).

8.5. Performance Evaluation

To demonstrate the correctness and performance of the algorithm presented in this chap-

ter, the algorithm is implemented and tested in both simulated and physical experiments.

For all experimental tests, the shape was successfully formed. I also compared the per-

formance of the proposed algorithm with the centralized algorithm proposed in [113]. In

this centralized approach, every agent is initially assigned a unique goal. In addition, this

assignment minimizes the total traveling distance. It is shown in [113] that with such opti-

mal initial assignment, the agents’ paths will form an acyclic direct graph (DAG), and each

agent’s motion can be then scheduled via vertex ordering. While the centralized method can

produce the distance-optimal solution, which outperforms the presented method, it could

suffer from a single-point of failure and therefore is less robust than the presented method.

8.5.1. Simulation

In simulation, each agent is modeled as an omni-directional robot able to sense its position

and orientation in a common coordinate system. The simulation treats each agent as a circle

with a radius of 0.05m. Agents are able to communicate with any other agent who lies within

its communication range of 0.6m, and travel at a speed of 0.05m/s. These values match the

physical robot described in chapter 3.

In each test, the goal shape is given to the swarm in the form of a binary figure, i.e. a

black and white image. The figure is scaled such that the number of goal pixels on the figure
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Figure 8.5. 1024 agents form four user-defined shapes. (Bottom) example
input binary images and (top) corresponding collective formations.

0 s 99 s 147 s 838 s

877 s 888 s 906 s 1031 s

Figure 8.6. Still images from simulation where 1024 agents try to form two
different shapes in a row. In this simulation, a swarm of 1024 agents first form
a letter ”N”, then switch to a letter ”U” when it is detected that all robots
have reached a goal.

equals the number of agents. Example input images and corresponding shapes formed by

the collective are shown in Fig. 8.5. See Fig. 8.6 for images from one simulation where 1024

agents formed the letters “N” and “U” in sequence.
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First, the simulation is used to investigate the effect of the swarm size on the algorithm’s

convergence time, i.e. the total time it takes for the swarm to complete shape formation, as

well as average robot travel distance, i.e., the total distance traveled by all robots normalized

by the number of robots. In this task, swarms of size 16 to 529 agents formed a given target

configuration from a random initialization. For every swarm size, 200 trials were run, and

in each trial the target shape is randomly generated as a set of connected random positions.

The large number of trials are with varying swarm sizes able to eliminate the bias on the

final result that is introduced by the target shape, since in each trial the target shape is

randomly generated. Fig. 8.7 shows the distributions of convergence time as well as the

average distance traveled for different swarm sizes, and a comparison to the centralized

method [113].

One counter-intuitive observation here is that the convergence time for centralized meth-

ods does not monotonically increase over the swarm size, sometimes even goes down. It is

shown in [113] that the worst case convergence time for the centralized method is |A|+dmax−1

where |A| is the number of agents, and dmax is the maximal individual travel distance (the

distance from one agent’s initial position to its goal) amongst swarm. On the other hand,

in simulations, the swarm moved in a fixed-size arena, hence when swarm size |A| increases,

i.e., the density of the swarm increases, the dmax will decrease. As a result, the convergence

time for centralized methods will not necessarily increase over the swarm size. The fact that

agents move in a fixed-size arena can also help to explain the trend of the total distance plots.

As |A| increases, the swarm’s initial position will be “closer” to the target positions (one can

consider an extreme case where number of the agents equals to the number of the vertices

in arena, in this case, the average distance traveled will be 0), hence the overall trend of the

distance plot is that the average distance traveled goes down as number of agents goes up. In
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these plots, we can see that the distance traveled incurred by the presented method is only

around 20% more than the one that is incurred by the centralized method. Moreover, when

the density of the swarm is low (less than 225 agents in arena), the difference on convergence

times for both methods are considerably small. When the density of the swarm increase, the

convergence time for the presented method sharply increases, this is because in this case,

the random goal swaps, i.e., the goal swaps to resolve the deadlock, will more likely happen,

as a result, the algorithm will converge slower.

A second test compares the two approaches for new goal selector. It measures the con-

vergence rate as well as the total distance traveled by a fixed-size swarm. In this experiment,

400 agents try to form 200 different randomly generated shapes. For each shape, the swarm

executes the formation algorithm 200 times, giving a total of 40,000 simulation runs. For

each of these runs, agents are initialized with a uniform random distribution centered at

the shape’s center of mass. For every time step, I measure the average completion rate, the

average distance traveled, and the confidence interval at a confidence level of 2σ for both

convergence and distance travel, at that time for all 40,000 runs. The results are shown

in Fig. 8.8. In these plots, we can see that the gradient-based selector can dramatically

increase the algorithm’s convergence rate and helps to eliminate the long tail of convergence

incurred by the random goal selector. Besides that, unsurprisingly, the gradient-based goal

selector can also reduce the variance of the convergence time and total distance traveled.

Simulation was also used to compare the convergence rate as well as swarm’s total traveled

distance for both the presented method and the centralized one. The experiment contains

40,000 trials; in every trial, 400 agents tried to drive toward a set of randomly generated

goal points. First, agents were initialized with random starting locations. Next, either the

presented method or the centralized method was used to drive the agents to the goal points.



137

Figure 8.7. Simulation results for both the presented method (red) and the
centralized method [113] (blue) in standard box-plot format. For each number
of agents, 200 trials were run, and in each trial the target shape was randomly
generated.

The simulation results of the presented method and the centralized method are shown in the

Fig. 8.9. The difference between Fig. 8.9 and Fig. 8.7 is that: Fig. 8.7 shows the statistics of

the final solution’s quality, i.e., the total distance and convergence time, whereas the Fig. 8.9

helps to understand how the algorithm’s convergence and distance traveled change during
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Figure 8.8. Illustration of the improvement made by the gradient-based selec-
tor on the algorithm convergence rate and total distance traveled compared
to using a random selector. The red plots are the results of gradient-based
selector and the blue plots are the results of random selector. Each solid line
in the plot is the average result from 40,000 simulations of 400 agents, and
the colored shade areas show the confidence interval for convergence and total
distance traveled over time at a confidence level of 2σ (two standard deviations
above or below the average).

execution. The plot shows average result and the confidence interval with a confidence level

of 2σ for both the convergence rates and total distance traveled for both methods. Note that

at the beginning, from time 0s to 80s, the presented algorithm makes faster progress than

the centralized method. This is because in the centralized method, agents take goals located

in the inner area of the shape first so they will not block other moving agents’ paths, while

in the presented method, agents initially choose goals at random. As a result, the agents are

more likely to take the goal points nearby first, giving the presented method a short-term

win at the beginning.

8.5.2. Experiments

To validate the correctness and efficiency of the presented algorithm beyond simulation,

several physical experiments were performed using 100 Coachbot V2.0 robots.
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Figure 8.9. Performance comparison between the presented method (red line)
and centralized method (blue line). Each solid line in the plot is the average
result from 40,000 simulations of 400 agents, and the colored shade areas show
the confidence interval for convergence and total distance traveled over time at
a confidence level of 2σ (two standard deviations above or below the average).

8.5.2.1. Dealing with real-world non-idealities. In reality, some assumptions proposed

in Section 8.2.1 are difficult to be guaranteed in real robot hardware. To compensate the real-

world non-idealities such as communication errors, imperfect robot motion, sensing errors,

etc., the assumptions proposed in Section 8.2.1 are relaxed as follows:

(a) For any agent, the frequency of its clock is bounded, specifically: ∃fmaxclock, f
min
clock s.t. for

any agent ai, we have fminclock ≤ f iclock ≤ fmaxclock.

(b) Note that for each agent ai, its communication rate f icomm is defined according to its

on-board clock, i.e. the clock that is with frequency f iclock. As a result, even though

each agent is programmed to broadcast at the same frequency fcomm (Alg. 12 Line 4),

from a global observer’s perspective, their communication rate could be still different

due to the difference on clock’s frequency f iclock.

(c) The inter-agent communication packet loss rate is small enough such that: for each

robot, if it sends the same message m times in a row, it is guaranteed that this message

can be received by all its neighbors in communication range.

(d) For any agent ai, the speed vim at which it moves on a grid edge is bounded, namely:

∃vmax, vmin s.t. for any agent ai, we have vmin ≤ vim ≤ vmax.
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First, note that as shown in Section 8.4.1, the proof of Theorem 8.1 and Theorem 8.2

does not rely on any assumption about robot’s physical speed, in the other words, only the

relaxation of assumption (a), (b), (c) will effect the correctness of Theorem 8.1 and Theorem

8.2. To preserve the correctness of Theorem 8.1 and Theorem 8.2, in practice, I extend ∆t

to make the robot to act more conservatively, so as to compensate the difference on robots’

clock frequency and packet loss. To be specific, I extend ∆t such that:

∆t ≥ 2m
fcomm

fmax
clock

fmin
clock

.

Here, the first term 2m
fmin
comm

is for accommodating the communication loss, and the second

term
fmax
clock

fmin
clock

is for compensating the difference on robots’ clock frequency. The reason for the

second term is that when one agent executes Alg. 11 Line 30 and Alg. 12 Line 4, it will use

the on board clock to do the calculation, and different clock frequency will yield different

results. Therefore, I add the second term to guarantee that for the robot with the fastest

clock, it will wait long enough to accommodate the one with the slowest clock.

So far, it is showed that the correctness of Theorem 8.1 and Theorem 8.2 can be preserved

when the assumptions proposed in Section 8.2.1 are relaxed. However, when agents move

on grids in different speeds, collisions could still happen. To accommodate the difference on

robot’s physical speeds, I stretch the grid length l so as to give robots some “buffer space”.

Specifically, we want the l large enough such that:

• When two robots move on two orthogonal adjacent edges, no collision happens, that is:

min
√

(l − vmaxt)2 + (vmint)2 ≥ 2r, subject to t ∈ [0, l
vmax

].

• When two robots move on two collinear adjacent edges, no collision happens, that is:

min(l − vmaxt + vmint) ≥ 2r, subject to t ∈ [0, l
vmax

].
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Solving those two inequalities above, we have:

l ≥ 2

√
v2max+v2min

vmin
r.

Additionally, in the algorithm, there is the assumption that the robot can move in any

direction directly, which does not hold for the Coachbot V2.0, as Coachbot V2.0 is a differen-

tial drive robot. When a Coachbot V2.0 moves from one waypoint wpa to another waypoint

wpb, it will first spin at waypoint wpa to adjust its orientation to be parallel with the grid

edge connecting wpa and wpb, before moving to wpb. Note that for each step, the robot may

change its orientation by 0 rads or π
2

rads (because the robot can move both forwards and

backwards, hence it does not need to adjust its orientation by more than π
2

rads). Different

heading adjustments will take different amount of time, as a result, for those robots that

transit to their next waypoints at the same time, the robots who need to spin by π
2

rads

will start moving towards their next waypoint later than the ones that do not need to spin,

so a collision may occur. To compensate this difference on the adjustments of the robot’s

heading, I introduce another type of “buffer space” to grid length l, that is to say, assume

the robot’s minimal spin speed is ω∗, I enforce the grid length l to be:

l ≥ 2

√
v2max+v2min

vmin
r + vmax

π
2ω∗ .

In experiments, my choice of grid length l is 0.20m.

8.5.2.2. Results. In these physical experiments, it is demonstrated that the presented al-

gorithm can be easily implemented on a relatively large scale physical swarm, and it can

provide reliable performance. Additionally it is robust to real-world noise in both commu-

nication, sensing, and motion. In this experiment, 100 robots start randomly dispersed and

form the letters “N”, “U” in sequence. With the help of hop-count information, robots can
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detect when the first letter is completed and then switch to form the second shape, an “U”.

Images from one of these experiments using the presented algorithm is shown in Fig. 8.1.

I also compared the real-world performance between the presented algorithm and the

centralized approach. A shape was formed 15 times with both approaches, and I compared

the average convergence rate and average total distance traveled for both approaches. In

all these 30 experiments, the shape formation successfully completed. The results from this

comparison experiment are shown in Fig. 8.10.

Figure 8.10. Illustration of average performance comparison between the pre-
sented method (red line) and the centralized method (blue line). Each solid
line is the average result from 15 physical experiments of 100 robots, and the
colored shade areas show the confidence interval for convergence and total dis-
tance traveled over time at a confidence level of 2σ (two standard deviations
above or below the average).

In these plots, we can observe that the presented method gets a short-term win of con-

vergence rate at the beginning compared to the centralized method, which is consistent with

the simulation result. On the other hand, one observation here is that in the simulation plots

(Fig. 8.9), both the convergence and the distance traveled monotonically increase over time,

whereas in Fig. 8.10, during the first 20 seconds, the convergence plot fluctuates. This is

because in simulation the agents are tasked to form a set of random shapes from a random

initialization of positions whereas in all physical experiments the robots are tasked to form

the same shape, letter “N”, which will introduce the bias to the final result. Additionally,
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noise in robot’s motion, communication, and sensing, can not be captured by the simula-

tion very well, and the number of trials are not large enough to eliminate the noise’s effect

on the convergence rate. As a result, the convergence plot for physical experiment is not

monotonically increasing over time.
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CHAPTER 9

INTEGRATING THE ALGORITHMS

This chapter assembles those four algorithm modules presented in chapter 5 - 8 into a

full persistent shape formation algorithm.

9.1. Approach

In the proposed method, each robot’s overall behavior can be described by the state

diagram shown in Fig. 9.1.

Figure 9.1. The state diagram describing the robot’s overall behavior. The
black box is the robot’s state, the arrow line is the transition between states,
the red text is the event triggering the state transition, and the blue text is
the action performed by the robot when the transition occurs.

When executing the combined shape formation algorithm, each robot has two possible

states: active and halt. In both states, the robot will use the algorithm presented in chapter

5 to monitor the swarm size, and use the algorithm presented in 6 to generate the goal

configuration according to the current swarm size. The robot is initialized to be in the halt
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state. In the halt state, the robot will stay stationary and use the algorithm presented in

chapter 7 to estimate its pose. Meanwhile, it will keep checking if the current pose estimate

is consistent with the local measurements and the neighbors’ pose estimates. If so, the

robot will transit to the active state. Recall that, in order to execute the formation control

algorithm presented in the chapter 8, each robot needs to convert the work space to a discrete

grid, and claim a vertex on the grid. When transiting from halt state to active state, the

robot will discretize the work space to a grid in the way that: the grid vertex (i, j) has a

position of (i × l, j × l), where l is the grid’s edge length. In addition, the robot will claim

the grid vertex that is closest to its current position, and move to this claimed vertex.

When a robot is in the active state, it will estimate its pose according to the local

measurements and the odometry using the algorithm presented in chapter 7, and use this

pose estimate to execute the algorithm presented in chapter 8 so as to form the generated

goal configuration. In addition, every time when the swarm size estimate is updated, the

robot will update its goal configuration immediately, and check whether its current goal

point is in the updated goal configuration. If the robot’s current goal point is not in the

new goal configuration, the robot will change its goal point to the closest goal point in the

new goal configuration. Meanwhile, it will also keep checking if the current pose estimate

is consistent with local measurements and the neighbors’ pose estimates. Once the robot

senses that its pose estimate is no longer consistent with local measurements and neighbors’

pose estimates, it will transit back to the halt state.

As stated in chapter 8, for each active robot, in order to avoid colliding with the others,

every time when it intends to move to the next waypoint, it needs to check if its next

waypoint is currently claimed by any other robot. This safety checking requires each robot

to actively tell its neighbors about the vertex currently claimed by itself. On the other hand,
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it is possible that an active robot has a neighbor that is in halt state. It is obvious that the

halt robots cannot participate the safety checking motioned above, as they do not have a

vertex claimed yet, which might result in the physical collisions between active robots and

halt robots. To handle the potential physical collisions introduced by the asynchrony of the

robots’ states, each robot needs to actively broadcast its current state to its neighbors, in

addition, for the active robots, before moving to the next waypoint, besides checking those

two conditions stated in Algorithm 11 Line 26 - 29, they also need to check if there is any

halt robot nearby. If there is any neighbor currently being in the halt state, the robot needs

to stay stationary so as to avoid colliding with the nearby halt robots.

9.2. Performance Evaluation

To investigate the combined algorithm’s performance, the algorithm is implemented and

test in both a swarm of up to 200 simulated robots, and a swarm of up to 100 physical

robots.

9.2.1. Simulation

In the simulation, a swarm of up to 200 simulated Coachbot V2.0 robots were tasked to use

the proposed method to persistently form a shape “N”. In the tests, the robots are placed in

a 2D rectangle-shape arena. The communication rate is 25 hz, the maximal speed of robot’s

wheel is 0.1m/s, and edge length of the grid is set to 0.3m. In each test, three metrics are

used to quantitatively analyze the swarm’s behavior: NPEE, NOEE, and the NDS between

the swarm’s current configuration and desired configuration. The metric NPEE and NOEE

are two metrics to evaluate the swarm’s position estimate error and orientation estimate

error, which are defined in chapter 7; the metric NDS is the metric to evaluate the difference
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between two configurations, which is defined in chapter 6. When calculating the NDS, the

swarm’s configuration is given by the set of grid vertices claimed by the robots in the swarm,

and the desired configuration is the configuration corresponding to the actual swarm size

generated by the algorithm presented in chapter 6. In addition, recall that the halt robot

does not have a vertex claimed yet, in the calculation of the metric NDS, we give each halt

robot a dummy claimed vertex of (∞,∞). The videos of simulation can be found in [76].

Figure 9.2. From top to bottom: still images from one trial of robot removal
test; the NPEE, NOEE, and NDS for the swarm over time. Each colored solid
line is the mean from 10 trials, and the colored shade areas show the confidence
intervals for a confidence level of 2 σ.

The first test studies the algorithm’s adaptability to the event of robot removal. The

swarm size is initialized to be 200, then, at t = 500s, the robots that are located in the

bottom half of the arena are removed from the swarm. As we can see in the simulation, the
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proposed algorithm allows the robots to form the desired shape at the right scale, in addition,

when the removal of robots happens, the remaining robots are able to sense the change in

swarm size, and fix the damaged shape by forming the shape at a smaller scale. The results of

this test are shown in Fig. 9.2. One can observe that the NDS sharply increases at t = 500 s,

this is because the robot removal that happens at t = 500 s will damage the formed shape,

increasing the NDS. In addition, we can see that: from t = 500 s to t = 550 s, the NDS

stays almost the same, the NDS starts to decrease only after t = 500 s. This is because: it

will take some time for swarm to sense the change in the swarm size. Therefore, when the

robot removal happens, there will be a delay between the occurrence of robot removal and

the swarm’s response.

The second test studies the swarm’s adaptability to the addition of the robots. The

swarm size is initialized to be 100, then, at t = 500s, another 100 robots are added to the

swarm. As we can see in the simulation, the proposed methods allows the swarm to robustly

adapt to the robot addition. The results from this test are shown in Fig. 9.3. Similar to the

robot removal test, in this test, at t = 500 s, the NDS sharply increases, as the robot addition

will damage the formed shape. The other observation is that: at t = 500 s, the NOEE and

NPEE spike as well, this is because: the newly added robots are initialized with random

pose estimate, which will corrupt the swarm’s original coordinate system. In addition, this

corruption of the coordinate system will bring robots into halt state. Recall that in the

calculation of NDS, we give each halt robot a dummy claimed vertex of (∞,∞). Therefore,

since almost all the robots will transit to the halt state when the robot addition occurs, at

t = 500 s, the NDS goes all the way to 1.

A third test studies the swarm’s adaptability to the shifting of the robots. In this test,

the swarm size is set to 200. At t = 500s, the robots located in top half of the arena are
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Figure 9.3. From top to bottom: still images from one trial of robot addition
test; the NPEE, NOEE, and NDS for the swarm over time. Each colored solid
line is the mean from 10 trials, and the colored shade areas show the confidence
intervals for a confidence level of 2 σ.

shifted 0.3 m upwards, in addition, each shifted robot’s orientation is rotated 0.3 rad counter

clockwise. It is assumed that this external disturbance of robot’s pose shifting cannot be

captured by the robot’s on-board odometry. As we can see in the simulation, the proposed

method enables the swarm to reliably recover the shape from the event of robot shifting.

The results from this test are shown in Fig. 9.4. Similar to the robot addition test, in this

test, at t = 500 s, all three metrics spikes, as the shifting of robots will not only damaged

the formed shape, but also corrupt the swarm’s original coordinate system.
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Figure 9.4. From top to bottom: still images from one trial of robot shifting
test; the NPEE, NOEE, and NDS for the swarm over time. Each colored solid
line is the mean from 10 trials, and the colored shade areas show the confidence
intervals for a confidence level of 2 σ.

9.2.2. Experiment

To validate the combined algorithm beyond simulation, I also implement the algorithm on

the swarm of up 100 real Coachbot V2.0 robots. In this experiment, up to 100 robots are

tasked to persistently form a shape “N”. Initially, 70 robots were randomly dispersed in

the arena. After those 70 robots formed the desired shape, I added another 30 robots to

the swarm. Those newly added robots damaged the formed shape, the swarm recovered the

desired shape by forming it at a bigger scale. Then, I shifted a group of robots’ physical

positions, and rotated each shifted robot’s orientation 0.6 rad clockwise. Note that this

change in robot’s position and orientation will not be captured by the on-board odometry,
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damaging both the swarm’s coordinate system and the formed shape. With the proposed

algorithm, the swarm recovered their coordinate system and recovered the desired shape.

Lastly, I removed a group of robots from the swarm, the swarm recovered the desired shape

by forming it at a smaller scale. The still images from this experiment can be found in Fig.

2.1, and the video of the experiment can be found in [76]. As we can see in the video, with

the proposed algorithm, the swarm is able to reliably form the desired shape, in addition, it

can also quickly adapt to the external disturbances.
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CHAPTER 10

CONCLUSION AND FUTURE WORK

This dissertation addresses the decentralized robotic-swarm shape formation, a problem

that has both scientific and practical importance. In this dissertation, I developed a collection

of algorithms such that when combined, they allow the swarms with any size to persistently

form arbitrary user-specified shapes without the use of any global information. This col-

lection of algorithm includes: an algorithm that allows the swarm to use local information

only to estimate the current swarm size, an algorithm that encodes an user-specified shape

into arbitrary number of points, an algorithm localizing a swarm of robot using peer-to-peer

measurements, and an algorithm that assigns a set of goal points to a swarm of robots and

drives each robot to reach its assigned goal point. For each presented algorithm, both the

theoretical analysis and the thoroughly experimental evaluation are provided, In addition, I

further assembled these four algorithms into a fully decentralized persistent shape formation

algorithm. The combined algorithm was examined using a custom efficient swarm simulator

as well as a custom 100-robot swarm. The result shows that: the work presented in this

dissertation allows the swarm to robustly form the desired shape, in addition, when the ex-

pected external disturbance occurs, such as robot addition or robot removal, the presented

method enables the swarm to quickly adapt. I am confident that this dissertation positively

contributes to the field of robotic swarm system research.

In this dissertation, I investigated the robotics shape formation in 2D space. For the

future research, it might be worth trying to extend the method presented in this dissertation



153

to 3D space. In addition, the current path planning module requires the robot to represent

the work space as a grid. Since the grid representation of the space makes the robots

motion less efficient, in the future works, it would be beneficial to remove the requirement

of grid representation of the space from the path planner. From the hardware’s perspective,

currently, the developed platform (Coachswarm) still requires users to manually charge the

robots and initialize each robot’s position, it will be desirable for the users if the operation

of Coachswarm can be made more automated. Furthermore, in the current implementation,

the robot’s peer-to-peer sensing capability is emulated by a GPS sensor, it would be desirable

if the proposed method could be implemented on the swarms equipped with real peer-to-peer

sensors.
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APPENDIX

PROOFS

1. Proof of Lemma 5.1

Suppose we have n i.i.d. uniform random variables:

Xi ∼ U(0, 1), i = 1, 2, .., n

The CDF (cumulative density function) of their sample maximum Y = max1≤i≤nXi is:

Pr(Y ≤ x) =
n∏
i=1

Pr(Xi ≤ x) =



1, x > 1

xn, 0 ≤ x ≤ 1

0, x < 0

and the PDF (probability density function) of Y is:

p(Y = x) =
dPr(Y ≤ x)

dx
=



0, x > 1

nxn−1, 0 ≤ x ≤ 1

0, x < 0

From this, it is straight forward to develop the Y ’s expected value E(Y) and variance

Var(Y):

E(Y) =

∫ 1

0

nxndx =
n

n+ 1
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Var(Y) =

∫ 1

0

nxn−1(x− n

n+ 1
)2dx =

1

(n+ 1)2

n

n+ 2
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2. Proof of Theorem 5.1

It is well known that for m i.i.d random variables Y1, ...,Ym that have a expected value

µ and a variance σ2, it holds that:

E(

∑m
i=1 Yi
m

) = µ, Var(
∑m

i=1 Yi
m

) =
σ2

m

In our case, specifically, let k =
∑m

i=1 Yi
m

and Yi be the sample maximum of n i.i.d. U(0, 1)

random variables, using the result obtained in lemma 5.1, we have:

E(k) =
n

n+ 1
, Var(k) =

1

m

1

(n+ 1)2

n

n+ 2

By Chebyshev inequality, we have:

Pr(|k − E(k)| ≥ δ) ≤ Var(k)

δ2

On the other hand, let n∗ = k
1−k , it is straight forward to examine that:

RE(n∗) =
|n∗ − n|
n∗ + 1

= (n+ 1)|k − E(k)|

that is:

Pr(
RE(n∗)

n+ 1
≥ δ) ≤ 1

mδ2

1

(n+ 1)2

n

n+ 2

Note that n+ 1 is a constant. Let ε = δ(n+ 1), by this variable change we have:

Pr(RE(n∗) ≥ ε) ≤ 1

mε2
n

n+ 2
<

1

mε2
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3. Proof of Lemma 6.1

For the sake of description, given a partition P , P and P denote the maximal and

minimal cardinality of any subsets in P , moreover, aP denotes the subset in P that holds

the maximal cardinality. I prove Lemma 1 by showing that: given the condition (6.1), it

is impossible to get P ′k(A) any lower. In order to lower P ′k(A), we need to remove at least

1 element from aP ′k(A), in addition, to satisfy the constraint (i) stated in Problem 1, the

removed element should be packed into some other subset a
′
j. On the other hand, given

the condition: P ′k(A) − P ′k(A) ≤ 1, no matter which subset a
′
j this removed element will

be packed into, let a
′′
j be the newly formed a

′
j, we have: |a′′j | = |a′j| + 1 ≥ P ′k(A). That is,

let P ′′k (A) be this newly formed k-partition of set A, we have P ′′k (A) ≥ |a′′j | ≥ P
′
k(A). This

suggests that any attempt to lower P ′k(A) will fail eventually, which completes the proof.
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4. Proof of Theorem 6.1

Theorem 6.1 suggests that: given two reference grids Glo and Gho , the way that we deter-

mine each subset’s size (Alg. 7, Line 6-10) is the optimal way that minimizes the maximal

difference score between any pair of generated masked grids whose difference of in-shape

cell number is 1. First, according to Alg. 7 Line 25-27, we have S(Gi) − S(Gi+1) = di−al−h

and S(Gi+1) − S(Gi) = di−ah−l, we can then rewrite |S(Gi) − S(Gi+1)| + |S(Gi+1) − S(Gi)| as

|di−ah−l|+ |d
i−a
l−h|. In addition, recall that we have the constraint on each pair of subsets’ cardi-

nalities that: |di−ah−l| = |d
i−a
l−h|+ 1, combining this constraint with the result we just obtained,

the objective (6.2) can be rewritten as follows:

(A.1) max
a≤i≤b−1

2|di−al−h|+ 1

One helpful observation here is that: finding the optimal way to determine each subset’s size

that minimizes the objective (A.1) is essentially an instance of Problem 1, with A = Dl−h

and k = b − a. Next, it is straight forward to examine that Alg. 7, Line 6-10 satisfy the

condition (6.2) stated in Lemma 6.1, that is, Alg. 7, Line 6-10 is the optimal way that

minimizes the objective (A.1) by Lemma 6.1, completing the proof.
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5. Proof of Proposition 7.1

. The proof of proposition 1 is sketched as follows: First, in Lemma A.1, we show that

the global observer is able to capture all the changes of each agent’s pose estimate. Next, in

the rest of the section, we establish the equivalence relationship between Algorithm 9 and

the swarm’s behavior.

Lemma A.1. From the global observer’s perspective, between the clock tick k
f

and the

clock tick k+1
f

, each agent will execute Algorithm 8 Line 8-29 exactly one time.

Proof. We prove Lemma A.1 by contradiction. First, we suppose that there is an agent

executing Algorithm 8 Line 8-29 ≥ 2 times during the time interval ( k
f
, k+1

f
], then it implies

that the interval between two times agent executing Algorithm 8 Line 8-29 is smaller than

1
f
, which contradicts to the fact that each agent is programmed to execute Algorithm 8 Line

8-29 at a fixed frequency of f .

Next, we suppose that there is an agent executing Algorithm 8 Line 8-29 0 time during

the time interval ( k
f
, k+1

f
]. This suggests that the time span between the last time it executed

Algorithm 8 Line 8-29 and the next time it executes Algorithm 8 Line 8-29 will be greater

than 1
f
, where contradiction occurs.

By far, we have showed that it is incorrect to assume an agent can execute Algorithm

8 Line 8-29 ≥ 2 times or 0 time during the time interval ( k
f
, k+1

f
], which suffices to prove

Lemma A.1. �

Note that the Algorithm 8 Line 8-29 is the only place where an agent can update its pose

estimate. The lemma A.1 suggests that : between two times the global observer record each

agent’s pose estimate, each agent is able to change its pose estimate no more than one time,
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which is sufficient to show that the global observer will not miss any change of any agent’s

pose estimate. A more intuitive but less formal explanation can be found in Fig. A.1.

Figure A.1. The graphical illustration of the observer’s sampling scheme. The
green horizontal arrow line is an agent ai’s local clock and the blue horizontal
arrow line is the observer’s clock. Each cell on each clock arrow line indicates
a time span of 1

f
. Each vertical dotted arrow line indicates an event of the

observer recording agent ai’s pose estimate. The ticks on the green arrow line
are the clock ticks when ai execute Algorithm 8 Line 9-29, which is the only
place where an agent might change its pose estimate in our algorithm. As
we can see in the figure, in this example, ai has at most seven different pose
estimates, despite that the observer’s clock is asynchronous with the agent, all
these pose estimates will be captured by the observer.

Next, we start to show the equivalence relationship between Algorithm 9 and the swarm’s

behavior.

Algorithm 9 Line 2-3 suggests that: each time when an agent ai attempts to update its

pose estimate, it will first pick a neighbor aj with a probability 1−(1−λ)|Nj |

|Nj |
1−(1−λ)|Ni|

|Ni| , where

Ni is the set of all ai’s neighbors, then use this neighbor’s information to do the update.

In Lemma A.2 and Lemma A.3, we show how this probability of selecting each neighbor

is calculated. According to Algorithm 8, Line 14 - 15, for each agent ai, in order to use

neighbor aj’s information to update its pose estimate, two conditions must be satisfied: (i)

when ai randomly and uniformly sample buffer msg buff, it picks the message from aj, and

(ii) this message from aj contains ai’s bearing measured by aj. On the other hand, when

agent aj choose the neighbor to echo the measured bearing (Algorithm 8, 11 - 13), this echo

neighbor is also randomly and uniformly picked from aj buffer msg buff. In the other words,

the probability of the event “ai uses aj to update its pose estimate” = the probability of the
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event “ai picks aj when sampling its msg buff ” × the probability of the event “ai picks aj

when sampling its msg buff ”. Obviously, here, the key is to calculate the probability of one

agent picks one of its neighbors when randomly and uniformly sampling its msg buff.

Given the fact that each agent’s communication frequency is the same as the frequency

at which each agent executes Algorithm 8 Line 8-29, it is straight forward to conclude the

following fact:

Lemma A.2. From an agent ai’s perspective, between the two times it executes Algorithm

8 Line 8-29, each of its neighbors aj ∈ Ni will transmit exactly one message.

Proof. The Lemma A.2 can be proved in the same way as Lemma A.1. �

It is worth noting that due to the communication loss, for each agent ai, when one of its

neighbor transmits a message, it will receive this message with a probability of λ < 1. Next,

in Lemma A.3, we calculate the probability of “ai picks aj when sampling its msg buff ”.

Lemma A.3. For each agent ai, when it samples its buffer msg buff (Algorithm 8, Line

11, 14), the probability of the message from neighbor aj ∈ Ni being picked is 1−(1−λ)|Ni|

|Ni| .

Proof. Given the result from Lemma A.2, when ai samples its buffer msg buf, for each

of its neighbors aj, the probability that aj’s message is in msg buf is λ, in addition, there

will be not more than one message from the same neighbor in the msg buff. Let e be the

event of “ai picks the message from aj when sampling msg buff ”, we here decompose e into

a set of disjointed events:

e =

|Ni|−1⋃
m=0

em
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In which, em is the event that: “aj’s message is in msg buff ” ∩ “the messages from m other

neighbors are also in msg buff ” ∩ “aj is picked given the fact that aj’s message is in msg buff

and m other neighbors’ messages are also in msg buff ”.

It is straight forward to develop the probability of event em:

(A.2) Pr{em} = λ

(
|Ni| − 1

m

)
λm(1− λ)|Ni|−1−m 1

m+ 1

Note that for any pair of sub-events em and el, they are disjointed, namely: ∀m 6=

l, P r{em ∩ el} = 0. Combing this conclusion and the result obtained in equation A.2, we

have:

Pr{e} =

|Ni|−1∑
m=0

λ

(
|Ni| − 1

m

)
λm(1− λ)|Ni|−1−m 1

m+ 1
=

1

|Ni|

|Ni|∑
m=1

(
|Ni|
m

)
λm(1− λ)|Ni|−m

On the other hand, it is well known that:

(A.3) {λ+ (1− λ)}n =
n∑

m=0

(
n

m

)
λm(1− λ)n−m = 1

With equation A.3, the probability of event e Pr{e} can be rewritten as:

Pr{e} =
1− (1− λ)|Ni|

|Ni|

�

As we discussed before, the probability of the event “ai uses aj to update its pose es-

timate” = the probability of the event “ai picks aj when sampling its msg buff ” × the
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probability of the event “ai picks aj when sampling its msg buff ”. This conclusion, in com-

bination with the result we obtained in Lemma A.3, suffices to show that the probability of

ai using the message from aj to update its pose estimate is 1−(1−λ)|Nj |

|Nj |
1−(1−λ)|Ni|

|Ni| .

So far, the remaining part for proving Proposition 7.1 is to compare the way how each

agent update its pose estimate given an neighbor’s message in Algorithm 8 and Algorithm

9. It is straight forward to examine that the way how each agent update its pose estimate

in the Algorithm 9 (Algorithm 9 Line 5-14) is the same as Algorithm 8 (Algorithm 8 Line

16-26), completing the proof of Proposition 7.1.
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6. Proof of Lemma 7.1

. At k + 1th iteration, given each agent ai’s orientation estimate Θk
i at kth iteration, the

agent ai’s expected orientation estimate update is:

(A.4) E(Θk+1
i −Θk

i ) = α
∑
aj∈Ni

1− (1− λ)|Nj |

|Nj|
1− (1− λ)|Ni|

|Ni|
E(∆Θk

ij)

In which:

(A.5) ∆Θk
ij =

 cos
(
Ŵij

)
, sin

(
Ŵij

)
− sin

(
Ŵij

)
, cos

(
Ŵij

)
Θk

j −Θk
i

To calculate the term E(∆Θk
ij) in equation A.4, we first need to calculate two quantities

E{cos(Ŵij)} and E{cos(Ŵij)}. According to our agent model, we have B̂ij = Bij +εB, where

εB ∼ N (0, σ2
B) is agent ai’s bearing sensing noise. On the other hand, by the Algorithm 2,

Line 8, we have: Ŵij = 〈〈Bij + εiB〉2π−〈Bji + εjB〉2π +π〉2π, where εiB and εjB are agents ai and

aj’s bearing sensing noise, respectively. Here, one helpful property of 2π modulus operator

〈·〉2π is that: given an angle θ, by definition we have:

(A.6) cos(〈θ〉2π) = cos(θ), sin(〈θ〉2π) = sin(θ)

That is:

(A.7) cos(Ŵij)
(A.6)
= cos(〈Bij + εiB〉2π − 〈Bji + εjB〉2π + π)

(A.6)
= −cos(Bij + εiB)cos(Bji + εjB)− sin(Bij + εiB)sin(Bji + εjB)
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(A.8) sin(Ŵij)
(A.6)
= sin(〈Bij + εiB〉2π − 〈Bji + εjB〉2π + π)

(A.6)
= −sin(Bij + εiB)cos(Bji + εjB) + cos(Bij + εiB)sin(Bji + εjB)

Rearrange the equation A.7 and equation A.8, we have:

(A.9) cos(Ŵij) = cos(Bij−Bji+π+ εiB− ε
j
B) = cos(Wij)cos(ε

i
B− ε

j
B)−sin(Wij)sin(εiB− ε

j
B)

(A.10) sin(Ŵij) = sin(Bij−Bji+π+εiB−ε
j
B) = sin(Wij)cos(ε

i
B−εiB)+cos(Wij)sin(εiB−ε

j
B)

Obviously, agent ai and aj’s bearing sensing noise εiB, ε
j
B are independent with each other,

therefore:

(A.11) E{sin(εiB − ε
j
B)} = E{sin(εiB)cos(εjB)− cos(εiB)sin(εjB)}

independence
= E{sin(εiB)}E{cos(εjB)} − E{cos(εiB)}E{sin(εjB)}

(A.12) E{cos(εiB − ε
j
B)} = E{cos(εiB)cos(εjB) + sin(εiB)sin(εjB)}

independence
= E{cos(εiB)}E{cos(εjB)}+ E{sin(εiB)}E{sin(εjB)}

On the other hand, it is well known that for an random variable ε ∼ N (0, σ2), it holds

that:

(A.13) E{cos(ε)} = exp

{
−σ

2

2

}
, E{sin(ε)} = 0
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That is:

(A.14) E{sin(εiB − ε
j
B)} (A.13,A.11)

= 0

(A.15) E{cos(εiB − ε
j
B)} (A.13,A.12)

= exp
{
−σ2
B
}

By combining equation A.14 with equation A.10 and combining equation A.15 with

equation A.9, we have:

(A.16) E{cos(Ŵij)}
(A.9,A.15)

= cos(Wij) exp
{
−σ2
B
}
− 0 sin(Wij) = exp

{
−σ2
B
}
cos(Wij)

(A.17) E{sin(Ŵij)}
(A.10,A.14)

= sin(Wij) exp
{
−σ2
B
}

+ 0 cos(Wij) = exp
{
−σ2
B
}
sin(Wij)

That is:

(A.18) E{∆Θk
ij} = exp

{
−σ2
B
} cos(Wij), sin(Wij)

− sin(Wij), cos(Wij)

Θk
j −Θk

i

From this it follows that:

(A.19) E(Θk+1
i −Θk

i )

= α
∑
aj∈Ni

1− (1− λ)|Nj |

|Nj|
1− (1− λ)|Ni|

|Ni|
{exp

{
−σ2
B
} cos(Wij), sin(Wij)

− sin(Wij), cos(Wij)

Θk
j −Θk

i }

On the other hand, given each agent ai’s orientation estimate Θi at kth iteration, it is

straight forward to develop the value of the partial derivative of objective fo with respect to
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Θi at kth iteration:

(A.20)
∂fo
∂Θi

k

= α
∑
aj∈Ni

1

|Ni|
1

|Nj|
{Θk

i −

 cos(Wij), sin(Wij)

− sin(Wij), cos(Wij)

Θk
j}

By rearranging the equation A.19, we have:

E(Θk+1
i −Θk

i ) = −µα{ ∂fo
∂Θi

k

+ γkΘ}

In which:

(A.21) µ = 1− (1− λ)|Ni|

(A.22)

γkΘ =
∑
aj∈Ni

1− exp{−σ2
B}{1− (1− λ)|Nj |}
|Nj|

 cos(Wij), sin(Wij)

− sin(Wij), cos(Wij)

Θk
j −

(1− λ)|Nj |

|Nj|
Θk
i
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7. Proof of Lemma 7.2

. At k + 1th iteration, assume each agent ai’s orientation estimate has converged to a

stable value θi, given each agent ai’s position estimate X k
i at kth iteration, the agent ai’s

expected position estimate update is:

(A.23) E(X k+1
i −X k

i ) = β
∑
aj∈Ni

1− (1− λ)|Nj |

|Nj|
1− (1− λ)|Ni|

|Ni|
E(∆X k

ij)

In which:

(A.24) ∆X k
ij = X k

j −
d̂ij
2

cos
(
B̂ij + θi

)
− cos

(
B̂ji + θj

)
sin
(
B̂ij + θi

)
− sin

(
B̂ji + θj

)
−X k

i

According to the agent model stated in Section II.A., d̂ij = dij + εd, B̂ij = Bij + εB, and

B̂ji = Bji + εB, where εd ∼ N (0, σd), εB ∼ N (0, σB). The equation A.24 can be rewritten as:

(A.25) ∆X k
ij = X k

j −
dij
2

cos(Bij + εB + θi)− cos(Bji + εB + θj)

sin(Bij + εB + θi)− sin(Bji + εB + θj)



− εd
2

cos(Bij + εB + θi)− cos(Bji + εB + θj)

sin(Bij + εB + θi)− sin(Bji + εB + θj)

−X k
i

Next, similar to equation A.16 and equation A.17, we have:

(A.26)

E{cos(Bij+θi+εB)} (A.13)
= cos(Bij+θi) exp

{
−σ

2
B
2

}
−0 sin(Bij+θi) = exp

{
−σ

2
B
2

}
cos(Bij+θi)
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(A.27)

E{sin(Bij+θi+εB)} (A.13)
= sin(Bij+θi) exp

{
−σ

2
B
2

}
+0 cos(Bij+θi) = exp

{
−σ

2
B
2

}
sin(Bij+θi)

From this it follows that:

(A.28) E{∆X k
ij}

(A.26,A.27,A.25)
= X k

j − exp

{
−σ

2
B
2

}
dij
2

cos(Bij + θi)− cos(Bji + θj)

sin(Bij + θi)− sin(Bji + θj)



− E{εd
2

cos(Bij + εB + θi)− cos(Bji + εB + θj)

sin(Bij + εB + θi)− sin(Bji + εB + θj)

} − X k
i

It is worth noting that in Section II.A. we assume that εB and εd are independent,

therefore:

(A.29) E{εd
2

cos(Bij + εB + θi)− cos(Bji + εB + θj)

sin(Bij + εB + θi)− sin(Bji + εB + θj)

}

= E{εd
2
}E{

cos(Bij + εB + θi)− cos(Bji + εB + θj)

sin(Bij + εB + θi)− sin(Bji + εB + θj)

} = 0

That is:

(A.30) E{∆X k
ij}

(A.28,A.29)
= X k

j − exp

{
−σ

2
B
2

}
dij
2

cos(Bij + θi)− cos(Bji + θj)

sin(Bij + θi)− sin(Bji + θj)

−X k
i
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Substitute equation A.30 in equation A.23, we have:

(A.31) E(X k+1
i −X k

i )
(A.30,A.23)

= β
∑
aj∈Ni

1− (1− λ)|Nj |

|Nj|
1− (1− λ)|Ni|

|Ni|

{X k
j − exp

{
−σ

2
B
2

}
dij
2

cos(Bij + θi)− cos(Bji + θj)

sin(Bij + θi)− sin(Bji + θj)

−X k
i }

On the other hand, given each agent ai’s orientation estimate Xi at kth iteration, it is

straight forward to develop the value of the partial derivative of objective fp with respect to

Xi at kth iteration:

(A.32)
∂fp
∂Xi

k

= β
∑
aj∈Ni

1

|Ni|
1

|Nj|
{X k

i +
dij
2

cos(Bij + θi)− cos(Bji + θj)

sin(Bij + θi)− sin(Bji + θj)

−X k
j }

Rearrange the equation A.31, we have:

(A.33) E(X k+1
i −X k

i )
(A.31,A.32)

= −µβ{ ∂fp
∂Xi

k

+ γkX}

In which:

(A.34) µ = 1− (1− λ)|Ni|

(A.35) γkX =
∑
aj∈Ni

1− exp
{
−σ2

B
2

}
{1− (1− λ)|Nj |}

2|Nj|

cos(Bij + θi)− cos(Bji + θj)

sin(Bij + θi)− sin(Bji + θj)

 dij
+

(1− λ)|Nj |

|Nj|
{X k

j −X k
i }
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8. Proof of Proposition 8.1

Proposition 8.1 suggests that: if a bounded non-negative objective is non-increasing and

will strictly decrease with a non-zero probability when it is not zero, then it will almost

surely converge to zero. Without loss of generality, let J(t0) = C, we have:

lim
n→∞

Pr{J(t0 + nτ) = 0} ≥ lim
n→∞

n∑
k=C

(
n

k

)
(ε)k(1− ε)n−k

Hence, lim
n→∞

Pr{J(t0 + nτ) = 0} = 1
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9. Proof of Lemma 8.1

Lemma 8.1 suggests that the algorithm can guarantee that when an agent changes the

waypoint it is moving to, there is no other agent moving to this waypoint, or staying at

this waypoint, at the same time. We prove Lemma 8.1 by contradiction. Let ∆t be 2
fcomm

,

according to the Alg. 11, in order to allow agent ai to change wpai from wp0
ai

to wp1
ai

at time

t∗, the following conditions must hold:

• Condition 1: For each message msg that aj received between t∗ −∆t and t∗, msg should

not trigger the two conditions stated in Alg. 11 Line 26, 28;

• Condition 2: For all the times t ∈ (t∗−∆t, t∗], wpai(t) = wp0
ai

, as ai needs to wait at wp0
ai

for more than ∆t amount of time before changing wpai (Alg. 11 Line 30).

For any other agent aj 6= ai, wp
1
aj

denotes the wpaj(t
∗) and wp0

aj
denotes the waypoint

that aj is claiming prior moving to wp1
aj

, moreover, we use t0→1
j to denote the time that aj

changes wpaj from wp0
aj

to wp1
aj

. Suppose that there is an agent aj such that wp1
aj

= wp1
ai

.

We here exhaustively outline two possible cases:

Case 1. t0→1
j ≤ t∗−0.5∆t: This case suggests that for all the times t ∈ [t∗−0.5∆t, t∗],

wpaj(t) = wp1
ai

. On the other hand, since aj transmits the messages at fixed frequency fcomm,

during time span [t∗− 0.5∆t, t∗], it will transmit at least one message to the neighbors, as a

result, ai will receive a message that triggers Alg. 11 Line 26 during [t∗ − 0.5∆t, t∗], which

contradicts to Condition 1.

Case 2. t∗−0.5∆t < t0→1
j ≤ t∗: By Condition 2, in this case we have: For all the times

t ∈ (t∗ −∆t, t∗ − 0.5∆t], it holds that wpaj(t) = wp0
aj

and wpai(t) = wp0
ai

. Since we assume

wp1
ai

= wp1
aj

, we can conclude that these two agents intend to go the same waypoint, i.e.,

wp1
ai

, during (t∗ − ∆t, t∗ − 0.5∆t]. On the other hand, the period of time between t∗ − ∆t
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and t∗ − 0.5∆t is long enough that ai, aj will have communicated next step to each other.

Given the fact that aj changes wpaj after receiving ai’s next step, one can conclude that aj

has higher priority to move to the wp1
aj

, as a result, the message transmitted by aj during

(t∗ −∆t, t∗ − 0.5∆t] will trigger Alg. 11 Line 28 on ai, which contradicts the Condition 1,

completing the proof.
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10. Proof of Theorem 8.2

We prove Theorem 8.2 by contradiction. Suppose that at time t∗, there are two agents

ai, aj traveling on the edge connecting waypoint wp0, wp1 in the opposite direction. Without

loss of the generality, we assume ai is moving from wp0 to wp1 and aj is moving from wp1 to

wp0. Let t0→1
i be the time that ai changes wpai from wp0 to wp1 and t1→0

j be the time that

aj changes wpaj from wp1 to wp0, we have two cases:

Case 1. t0→1
i 6= t1→0

j : This case contradicts to Lemma 8.1, as the agent who changes

its wp later will change its wp to a waypoint that is already claimed by the other.

Case 2. t0→1
i = t1→0

j : By Alg. 11 Line 30, before t0→1
i , there is sufficient time for each

of these two agent to sense that its next step is claimed by the other, as a result, Alg. 11

Line 26 will be triggered, and the agents’ wps will not change, where contradiction occurs.
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11. Proof of Lemma 8.2

At any time t, we can always find a minimal rectangle that covers all agent positions and

goal positions. Let cxt, cyt be the length of the rectangle’s edge in the x and y direction,

respectively, and let ct be cxt + cyt. Using the fact that each agent moves to its goal point

greedily, we have ∀t1, t2, if t1 ≤ t2, then ct1 ≥ ct2 , in the other words, ∀t, ct ≤ ct0. Note that

ct is always larger than or equal to the Manhattan distance between any pair of points in

the rectangle at time t, therefore, we have J1 ≤ |A|ct0. On the other hand, since at least one

goal will be assigned to the swarm, we have J2 ≤ |A| − 1, which completes the proof.



185

12. Proof of Lemma 8.3

Recall the way that the new goal selector works: if two agents realize that they are

holding the same goal, then only one of them will select a new goal while the other agent

will keep holding the current goal. As a result, no matter whether the new goal is valid or

not, J2 will never increase.

On the other hand, if J2 = 0, then the new goal selector will no longer be triggered, so

the robots will move greedily toward their goals. Thus when J2 = 0, J1 will never increase.
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13. Proof of Lemma 8.4

If (vi, vj) ∈ Et, then the goal swap between ai and aj will not increase di + dj. By Alg.

13 (Line 16-21), the goal swap between ai and aj will happen with a non-zero probability,

completing the proof.
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14. Proof of Lemma 8.5

We prove Lemma 8.5 via case analysis. If J1(t) 6= 0, then at least one agent intends to

move to the next waypoint, there are three possible cases:

• Case 1. The graph Gt is cyclic:

Assume that at time t0, there exists a cycle C on Gt0 . Let len(C) be the length of C, i.e.

the number of the agents that are on cycle C at time t0. We use a1, a2, ..., alen(C) to denote

the agents that are on C at time t0, for the sake of description, we order these agents in the

way such that:

• If i < len(C), then (ai, ai+1) ∈ Et0 ,

• If i = len(C), then (ai, a1) ∈ Et0 .

Note that it does not matter how we pick the first agent a1, a1 could be any agent that is

on cycle at time t0.

We show that Lemma 8.5 holds in case 1 by contradiction.

Suppose that ∀τ > 0, P r{J1(t0 +τ) ≤ J1(t0)−1} = 0, i.e., the probability that J1 strictly

decreases after t0 is 0. One can conclude that if the assumption is true, then:

• No agent can change its position after t0, as J1 will decrease every time when any agent

moves, moreover,

• No agent can execute the goal swaps that can decrease J1.

In the other words, the only two possible actions left for agents are: doing nothing, or

executing the goal swaps that cannot change the J1 (Alg. 13 Line 16-21). It is worth noting

that if these two actions are the only ones available for agents, then each time when an



188

agent tries to decide an action to execute, the action “doing nothing” will be picked with a

non-zero probability, as stated in Alg. 13 (Line 16-21).

Next, let q∗ be a1’s goal at t0, combing Lemma 8.4 and the conclusion we just obtained,

we have that the following will happen with a non-zero probability:

• q∗ propagates among the agents a1, ..., alen(C) via swap in the order that: a1 →

alen(C) → alen(C)−1 → ...→ a2.

• For any agent ai 6= a1 that is on C at time t0, it will do nothing but wait to take

q∗ from its successor (via goal swap) and then pass q∗ to its predecessor (via goal

swap).

That is, q∗ will traverse agents a1, ..., alen(C) in the opposite direction of C with a non-zero

probability, an graphical illustration of this event is shown in Fig. A.2.

Let t1 be the time that q∗ is passed to a2, we have J2(t1) ≤ J2(t0)− len(C), because the

owners of goals of all the agents that are on C have moved one step closer to goal via goal

swap, see Fig. A.2 for a more intuitive illustration. This observation suffices to show that it

is incorrect to assume that the probability that J1 strictly decreases after t0 is 0, completing

the proof in case 1.

Figure A.2. From left to right: A shape that contains 4 goal points; a sequence
of events where J1 strictly decreases. The frames of this sequence of events
are ordered from left to right. All the information is encoded in the same way
as Fig. 8.2.
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On the other hand, if the Gt is acyclic, we can find at least one head agent, i.e., the

agent that is not blocked by any other agent. The head agent(s) can either be an agent that

already arrived at the goal, or an agent that is still moving to the goal.

• Case 2. The graph Gt is acyclic, moreover, there exists one head agent ai

that has not arrived at its goal Tai(t) yet:

If at least one head agent has not arrived at its goal yet, J1 will decrease by one because

its next waypoint is open, thus Lemma 8.5 holds in case 2.

• Case 3. The graph Gt is acyclic, moreover, all the head agents have arrived

at their goals:

If all the head agents have already arrived at their goals, then there is at least one non-

head agent who is blocked by a head agent. Using Lemma 8.4, we have that the blocked

agent can make progress with a non-zero probability by swapping with the blocking head

agent that has already arrived at its goal. With at most |A|− 1 swaps, the agents will either

form a cycle, as shown in Fig. A.3 (right), which is case 1, or generate a head agent that

hasn’t reached its goal, shown in Fig. A.3 (left), which is case 2. Hence in case 3, J1 will

decrease within a finite amount of time with non-zero probability as well, completing the

proof.
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15. Proof of Lemma 8.6

We prove this lemma via case analysis. At time t, for any agent a, let q be Ta(t), i.e.,

agent a’s target at time t. We here exhaustively outline all two possible cases:

• Case 1. a has not arrived at q:

Figure A.3. Illustration of two possible cases (shown by a sequence of two
figures on the left and a sequence of two figures on the right) where the head
agent has already arrived at its goal. The goal shape is shown in Fig. A.2
(left). All the information is encoded in the same way as Fig. 8.2.

If a has not arrived at q, a will intend to move to the next waypoint to get closer to q. If

the waypoint is unoccupied, then a moves one step closer to q. Otherwise, if the waypoint

is occupied, using Lemma 8.4, q will be passed to the agent that is occupying the waypoint

with non-zero probability. In either of these two cases, the distance between position of q’s

owner and q decreases by one with non-zero probability.

• Case 2. a is already at q:

If a is already at q, then a can stay at q with non-zero probability, completing the proof.
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16. Proof of Lemma 8.7

If J2 6= 0, then at least two agents are holding the same goal point. Let qd be a goal which

is assigned to more than one agent. Lemma 8.6 is sufficient to show that two of qd’s owners

can concurrently keep moving greedily to qd with non-zero probability, shown in Fig. A.4

(left), unless one of qd’s owners blocks the other owner’s way in the trip, shown in Fig. A.4

(right). However, one agent being blocked by the other implies that the distance between

two agents is one grid length, which is smaller than R, completing the proof.

Figure A.4. Illustration of two possible cases (shown by a sequence of two
figures on the left and a single figure on the right) where two of qd’s owners
(circles in green) meet each other. All the information is encoded in the same
way as Fig. 8.2.
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17. Proof of Lemma 8.8

Lemma 8.7 suggests that if J2 6= 0, then two agents holding the same goal will meet each

other within a finite amount of time with non-zero probability, which means new goal selector

will be triggered within a finite amount of time with non-zero probability. Additionally, the

when new goal selector (Alg. 13 Line 3-10) is triggered, all the goal points in Q will be

picked with a non-zero probability, which implies that a goal that has not been assigned

to swarm yet will be picked with non-zero probability. As a result, J2 will decrease with

non-zero probability, completing the proof.
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