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Abstract

Space-Filling Designed Sampling from Databases

Boyang Shang

This thesis develops novel methods for generating space-filling designs inside a design

space and subsampling from a data set. It incorporates materials from two papers by the

author: Shang and Apley 2021; Shang, Apley, and Mehrotra 2022a.

Chapter 1 discusses space-filling designs of computer experiments, which is published

as Shang and Apley 2021. Fully-sequential (i.e., with design points added one-at-a-time)

space-filling designs are useful for global surrogate modeling of expensive computer ex-

periments when the number of design points required to achieve a suitable accuracy

is unknown in advance. We develop and investigate three fully-sequential space-filling

(FSSF) design algorithms that are conceptually simple and computationally efficient and

that achieve much better space-filling properties than alternative methods such as Sobol

sequences and more complex batch-sequential methods based on sliced or nested optimal

Latin hypercube designs (LHDs). Remarkably, at each design size in the sequence, our

FSSF algorithms even achieve much better space filling properties than a one-shot LHD
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optimized for that specific size. The algorithms we propose also scale well to very large

design sizes. We provide the FSSF R package to implement the approaches.

Chapter 2 focuses on diversity subsampling from a data set, which is published as

Shang, Apley, and Mehrotra 2022a. Subsampling from a large data set is useful in many

supervised learning contexts to provide a global view of the data based on only a fraction

of the observations. Diverse (or space-filling) subsampling is an appealing subsampling

approach when no prior knowledge of the data is available. In this chapter, we propose a

diversity subsampling approach that selects a subsample from the original data such that

the subsample is independently and uniformly distributed over the support of distribution

from which the data are drawn, to the maximum extent possible. We give an asymptotic

performance guarantee of the proposed method and provide experimental results to show

that the proposed method performs well for typical finite-size data. We also compare

the proposed method with competing diversity subsampling algorithms and demonstrate

numerically that subsamples selected by the proposed method are closer to a uniform

sample than subsamples selected by other methods. The proposed DS algorithm is shown

to be more efficient than known methods and takes only a few minutes to select tens of

thousands of subsample points from a data set of size one million. Our DS algorithm

easily generalizes to select subsamples following distributions other than uniform. We

provide the FADS Python package to implement the proposed methods.
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CHAPTER 1

Fully-Sequential Space-filling Design Algorithms for Computer

Experiments
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1.1. Introduction

When the objective is to obtain a globally-accurate surrogate model for an expensive

computer simulation model, and the experimental design size required to achieve some

desired accuracy is not known in advance (which is usually the case), a fully-sequential

space-filling design is useful. By fully-sequential and space-filling, we mean that design

points (i.e., simulation input locations) are added one-at-a-time, and as each new point

is added the design retains good space-filling properties. Fully-sequential designs are

useful because they allow the user to continue simulating the computer model response at

additional design points, each time updating and improving the surrogate model, stopping

when the desired accuracy level is reached. This avoids having to conduct more simulation

runs of the expensive computer model code than necessary.

Minimum pairwise distance and maximum hole size are two common measures of how

space-filling a design is. Minimum pairwise distance is the distance between the pair

of closest design points, and the largest hole size is the distance between any location

in the design region and its closest point in the design, maximized over all locations in

the design region. More specifically, let x ∈ Rq denote the vector of input variables for

a design point, where q denotes the number of inputs. We assume a rectangular input

design space Ω and, without loss of generality, that the inputs have been scaled so that

Ω = [0, 1]q is the unit hypercube. Let Sn = {x1, x2, · · · , xn} denote a design of size

n, where xi = {xi1, xi2, · · · , xiq} for i = 1, 2, · · · , n. And let d(x, y) = ∥x − y∥ be

the distance between point x and y, where x, y ∈ Ω. In this chapter we only consider
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Euclidean norm. Then the minimum pairwise distance of a design Sn is

(1.1) dmin(Sn) ∆= min
i,j∈{1,··· ,n}

i<j

d(xi, xj).

Similarly, the largest hole size of a design Sn is

(1.2) hmax(Sn) ∆= max
x∈Ω

min
i∈{1,··· ,n}

d(xi, x).

As a design construction criterion, for computational reasons most existing works use

the minimum pairwise distance criterion (Kennard and Stone 1969; Morris and Mitchell

1995; Jin, W. Chen, and Sudjianto 2005; R. Joseph and Hung 2008; Rennen et al. 2010;

S. Ba, Myers, and Brenneman 2015; V Roshan Joseph, Gul, and Shan Ba 2015) instead

of the maximum hole size criterion (Tan 2013). In this chapter we will consider both the

minimum pairwise distance criterion (Equation (1.1)) and a surrogate for the maximum

hole size criterion (Equation (1.2)). We do not discuss the space-filling performances of

designs in projected spaces, for which interested readers are referred to V Roshan Joseph,

Gul, and Shan Ba 2015.

For the objective of optimizing the response of an expensive computer simulation

model, sequential sampling is a well-researched area, with perhaps the most popular

method being the Gaussian process (GP) based method of Jones, Schonlau, and Welch

1998. For the response surface optimization objective, each new design point cannot be

determined until after the response is simulated at the previous design point. In contrast,

for the globally-accurate surrogate modeling objective that we consider in this chapter,

the entire sequence of design points can be determined in advance and then simulated
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one-by-one, or in batches if desired. For the popular GP (aka, kriging) surrogate models,

the response prediction mean square error (MSE) depends only on the input locations

and not on the response itself, assuming the covariance function is specified (Sacks et al.

1989). Hence, measures of the quality of the design based on the integrated or maximum

MSE can be calculated up front, given only the input locations in the design, prior to

simulating the response. However, the MSE depends on the covariance function, which

generally must be estimated based on the response observations to be simulated. Although

there are no theoretical proofs of MSE-optimality for space-filling designs in realistic non-

asymptotic scenarios, it has been observed via empirical studies that designs with good

space-filling properties generally have good MSE properties. Thus space-filling designs like

Latin hypercube designs (LHDs) have emerged as the most popular approach for designing

computer experiments for globally-accurate surrogate modeling (Santner, Williams, and

Notz 2013; V Roshan Joseph 2016). Indeed, Loeppky, Leslie M Moore, and Williams

(2010) investigated various sequential designs (both batch and one-at-a-time) and found

that maximin-distance designs perform competitively with sequential designs that observe

the response data and update the GP model accordingly at each design stage, and then

select the next design point(s) to optimize some criterion based on the predicted MSE

from the GP model (also see Johnson, L. M. Moore, and Ylvisaker (1990) for related

asymptotic results). Having good space-filling properties is important not only to ensure

that the input space is uniformly covered and the MSE properties are good, but also

because having input locations that are too closely spaced creates numerical difficulties

with Gaussian process models for deterministic computer simulations.
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There has been substantial recent work on batch-sequential (i.e., with design points

added in batches or groups) space-filling designs for computer experiments, most of which

are variations of sliced LHDs (SLHDs) or nested LHDs (NLHDs). These works include

P. Z. Qian and C. J. Wu 2009; P. Qian 2009; Rennen et al. 2010; P. Qian 2012; Yang,

Liu, and Lin 2014; S. Ba, Myers, and Brenneman 2015; Duan et al. 2017; Kong, Ai, and

Tsui 2017; D. Chen and Xiong 2017. There also exist two much older fully-sequential

(i.e., with design points added one-at-a-time) space-filling (FSSF) design approaches that

have received much less attention in the computer experiment literature. Sobol sequences

(Sobol 1967) are quasi-random fully-sequential sequences that are intended to uniformly

cover a rectangular design region. As we demonstrate later in this chapter, Sobol se-

quences have much poorer space-filling properties than the other fully-sequential method

Computer Aided Design of EXperiments (CADEX), introduced in Kennard and Stone

1969.

The CADEX algorithm is conceptually quite simple. It requires a set of candidate

design points whose size is much larger than the size of the largest desired design. Begin-

ning with a design comprised of the two furthest points in the candidate set, design points

chosen among the remaining candidate set are added to the existing design one-at-a-time,

with each new point added to satisfy a maximin criterion. That is, given Sn, a new point

xn+1 is added to maximize dmin(Sn ∪ xn+1). The CADEX method was originally con-

ceived for designing physical experiments with a relatively small candidate set, such as a

grid of values over a low-dimensional design space in which each input can assume only a

discrete set of values, and with the computational capabilities available in 1969. Methods

like CADEX – that select design points one-at-a-time from some large candidate set –
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appear to have been largely unexplored for the purpose of sequential design of computer

experiments.

The main purpose of this chapter is to develop and investigate a number of FSSF

design algorithms in the context of globally accurate surrogate modeling of computer ex-

periments. In particular, we demonstrate that our conceptually simple FSSF design ap-

proaches have the following substantial advantages over the more heavily researched SLHD

and NLHD methods (collectively, S/NLHD). First, our FSSF designs have much better

space-filling properties than S/NLHD designs (and also better than Sobol sequences), in

terms of both minimum pairwise distance and maximum hole size. Even more remark-

ably, we demonstrate that the FSSF designs at each design size in the sequence have much

better space filling properties than a one-shot LHD optimized for that specific size. The

second advantage over S/NLHDs is that our FSSF designs are fully-sequential, whereas

the S/NLHDs are only batch-sequential. Some S/NLHDs that allow batches of equal

size can be made closer to fully-sequential by reducing the batch size, but this further

degrades their space-filling performance. We reiterate that by ’sequential’, we mean a

series of nested designs of increasing size, such that the designs at each size retain good

space-filling properties. For example, the designs produced for sizes n = 10 and n = 20

should both be as space-filling as possible, and the size-10 design points must be a subset

of the size-20 design points (the nested property). The goal is to ensure that the sequential

design is as space-filling as possible at every stage/size. The third advantage is conceptual

simplicity and low computational expense relative to S/NLHD methods optimized with

respect to the dmin() (Equation (1.1)) or hmax() (Equation (1.2)) criteria.
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Neither one-shot designs, nor our sequential designs, take the response observations

into account while selecting the design points, but there is a fundamental difference be-

tween the two. If the experimenter decides to terminate a one-shot design early after

observing the response observations collected up to that point, then the incomplete one-

shot design may be poorly space-filling. Likewise, if the experimenter decides additional

runs are needed after completing a one-shot design, the augmented design may not be as

space-filling as possible. On the other hand, our sequential designs retain excellent space-

filling properties for each sample size, regardless of whether the experimenter decides to

terminate early or to augment the design.

The format of the remainder of the chapter is as follows. In Section 1.2 we introduce

three FSSF algorithms, denoted FSSF-f, FSSF-fr, and FSSF-b. The FSSF-f algorithm is

similar to the CADEX algorithm proposed by Kennard and Stone 1969 but with choice

of candidate set and computational improvements tailored to the situation of computer

experiments with modern computational capabilities. Here ’f’ stands for ’forward’, since

FSSF-f adds points to the design one-at-a-time. The FSSF-fr algorithm (Section 1.2.2),

where ’fr’ stands for ’forward reflected’, uses a modified version of the minimum pairwise

distance that also considers points reflected across the design region boundary. The pur-

pose of considering reflected points is to improve the maximum hole size (Equation (1.2))

performances of the designs. The FSSF-b algorithm (Section 1.2.3), where ’b’ stands

for ’backward’, uses backward removal (as opposed to forward addition) of the design

points from the candidate set, which improves computational expense for large designs.

In Section 1.2.3.2 we provide algorithm details and discuss computational strategies, such

as using an approximate nearest neighbors algorithm to quickly identify the points to
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remove. Section 1.3 discusses choice of the candidate set, including size of the candidate

set, and choice of criterion for removing candidate points. Section 1.4 numerically demon-

strates (1) the space-filling advantages of the three FSSF design algorithms, relative to

existing S/NLHD methods, Sobol sequences, and even one-shot LHDs optimized for each

design size and (2) the computational advantages of the FSSF-b algorithm relative to

FSSF-f and FSSF-fr. Section 1.6 concludes the chapter.

1.2. Three Fully-Sequential Space-filling (FSSF) Design Algorithms

We first introduce notation that will be used frequently throughout this section. Then

we present the FSSF-f algorithm (a slightly modified version of CADEX with Sobol se-

quence as the candidate set) and discuss its potential drawbacks in the context of mod-

ern computer experiment design. The FSSF-fr and FSSF-b algorithms (Sections 1.2.2

and 1.2.3, respectively) are designed to improve the maximum hole size and computa-

tional expense properties, respectively, relative to the FSSF-f algorithm.

Let nmax denote the user-chosen maximum number of design points that one would

need in the design space Ω. Let C = {x1, x2, · · · , xN} ⊂ Ω denote the candidate set with

size denoted by N . The candidate set C should be chosen to cover Ω fairly densely, and

N should be chosen substantially larger than nmax. We use a Sobol sequence for C (see

Section 1.3 for choices of C and N). Let {i1, i2, · · · , inmax} be the indices of candidate

points selected for the sequential design (i.e., xi1 is the first design point, xi2 is the

second design point, etc.) and note that {i1, i2, · · · , inmax} is a subset of {1, 2, · · · , N}.

Denote the design at stage-n by Sn = {xi1 , xi2 , · · · , xin} for n = 1, 2, · · · , nmax, so that
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S1 ⊂ S2 ⊂ · · · ⊂ Snmax ⊂ C is the nested design sequence from size 1 to size nmax. Denote

the set of indices of the points in Sn by In = {i1, i2, · · · , in}.

1.2.1. The FSSF-f Algorithm

The FSSF-f algorithm is a modified version of the CADEX algorithm (Kennard and Stone

1969) that uses a Sobol sequence as the candidate set, the motivation for which is to

improve space-filling properties while being computationally manageable for large design

size. As in the CADEX algorithm, we begin with no points in the design and sequentially

add points one-at-a-time, with each new point added according to a maximin criterion,

i.e., to maximize dmin(Sn ∪ xin+1). We summarize the FSSF-f algorithm in Algorithm 1.
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Algorithm 1 FSSF-f Algorithm
Input: nmax, N , q

1: Generate candidate set C = {x1, · · · , xN} as a Sobol sequence

2: Randomly select one point i1 ∈ {1, 2, · · · , N}

3: D ← an array of size N

4: for j = 1, 2, · · · , N do

5: Dj ← d(xi1 , xj)

6: end for

7: for n = 2, 3, · · · , nmax do

8: in ← arg maxj∈{1,2,··· ,N}\{i1,i2,··· ,in−1}Dj

9: for j = 1, 2, · · · , N do

10: Dj ← min{Dj, d(xin , xj)} (= min
x∈Sn

d(x, xj))

11: end for

12: end for

Output: Ordered FSSF design sequence Snmax = {xi1 , xi2 , · · · , xinmax}

The use of the N -length array D and its updating in line 10 of Algorithm 1 sub-

stantially improves the computational expense of finding the point in Sn closest to each

of the remaining candidate points, relative to a brute force search over all n points on

each iteration of the outer loop. In spite of this computational improvement, when nmax

is large, the Algorithm 1 computational expense may be prohibitive, as its complexity is

O(N2) under our choice of N = 1000q +2nmax (see Section 1.3 for this choice) and q fixed.

Our FSSF-b algorithm presented in Section 1.2.3 is more efficient for large nmax and has

complexity O(N log N) with N = 1000q + 2nmax and q fixed.
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Another potential drawback of the FSSF-f algorithm is that it tends to select design

points near the boundary of Ω at the early stages, i.e., when n is small. Figure 1.1a

shows a typical design at stage n = 20 using the FSSF-f algorithm for q = 2, from which

we see that almost half of the design points are very near the boundary. Having many

points on or very near the boundary does indeed does indeed improve the dmin behavior

of the design. However, the drawback is that it also worsens the hmax behavior by leaving

large areas in the interior region under-represented, especially in high dimension, as we

will demonstrate in Section 1.4. This may negatively affect the accuracy of the computer

model, especially for smaller n. For situations in which users prefer more emphasis on

good hmax and less on good dmin, in Section 1.2.2 we propose the FSSF-fr algorithm.
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(a) FSSF-f typical design
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(b) FSSF-fr typical design

Figure 1.1. Comparison of typical designs at stage n = 20 for (a) FSSF-f
(better dmin but worse hmax) vs. (b) FSSF-fr (worse dmin but better

hmax). Both designs are for nmax = 1000 and q = 2. The candidate set for
both designs are Sobol sequences with size N = 1000q + 2nmax.
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1.2.2. The FSSF-fr Algorithm

The goal in this section is to develop an algorithm that has better hmax performance

than the FSSF-f algorithm but that remains computationally efficient and retains good

dmin performance. Since directly optimizing hmax is computationally prohibitive, we still

use a criterion that is based on minimum pairwise distance and achieve our goal via a

simple modification of the FSSF-f algorithm that avoids selecting points too close to the

boundary, thereby encouraging smaller hole sizes in the interior regions.

Our approach is motivated by the observations from Figure 1.1a. Namely, the FSSF-

f algorithm results in larger-than-optimal hmax because it tends to select design points

very close to the boundary. Hence, for the FSSF-fr algorithm, we seek to avoid selecting

design points too close to the boundary (unless n is large). We achieve this as follows.

When deciding whether or not to add a candidate point, say x, to the current design

Sn, we pretend that its ”reflected” point R(x) with respect to the boundary ∂Ω of the

design region is also included in Sn. We define R(x) as the closest mirror image of x

with respect to all hyperplanes that form ∂Ω. Note that the distance between x and

R(x) is 2min
y∈∂Ω

d(x, y) = 2d(x, x∂), as illustrated in Figure 1.2, where x∂ = (x + R(x))/2

is the point on the boundary bisecting the line segment between x and R(x). By doing

this, candidate points that fall too close to the boundary will not be added until the later

stages, when n is large enough that interior hole sizes (i.e., hmax but restricted to points

in the interior regions) are small enough to be on par with exterior holes (i.e., d(x, x∂)

for design points x near the boundary). See Figure 1.2.
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xx∂R(x)

d(x, x∂)

Figure 1.2. Illustration of the closest boundary point x∂ and the reflected
point R(x) for a point x.

One potential problem with the idea mentioned above is that in higher dimensions

d(x, R(x)) may be inappropriately small compared to pairwise distances between design

points. This is because the vector R(x) − x always has a nonzero component in only

one of its q coordinates, by definition of the distance from x to the hypercube boundary

∂Ω. The result would be that even when n is relatively large, the algorithm would still

tend to place design points in the interior of Ω and leave larger holes near ∂Ω. To see

this, consider the design point x = (ϵ, · · · , ϵ) ∈ Rq for some small ϵ, so that x is near

∂Ω. Regardless of the value of q, the distance between x and R(x) is always 2ϵ, whereas

the hole size at the origin is d(x, 0) = √qϵ (assuming x is the closest design point to

the origin), which increases with q. Likewise, distances between pairs of design points

will tend to increase with q. In light of this, it may be helpful to weight d(x, R(x)) by

a factor that increases with q. Generally speaking, using a larger factor will result in

more points selected near ∂Ω, which improves dmin performance at the expense of hmax

performance. We have found through trial-and-error over various experiments (the results
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of which are omitted for brevity) that using
√

2q as the weighting factor provides a good

balance overall.

Algorithm 2 FSSF-fr Algorithm
Input: nmax, N , q

1: Generate candidate set C = {x1, · · · , xN} as a Sobol sequence

2: D ← an array of size N

3: for j = 1, 2, · · · , N do

4: Dj ← 2
√

2qmin
y∈∂Ω

d(xj, y)

5: end for

6: for n = 1, 2, · · · , nmax do

7: in ← arg maxj∈{1,2,··· ,N}\{i1,i2,··· ,in−1}Dj

8: for j = 1, 2, · · · , N do

9: Dj ← min{Dj, d(xin , xj)}

10: end for

11: end for

Output: Ordered FSSF design sequence Snmax = {xi1 , xi2 , · · · , xinmax}

Algorithm 2 summarizes the FSSF-fr algorithm, including the concept just discussed.

Since computing min
y∈∂Ω

d(xj, y) for any xj ∈ C is of O(q), we can see Algorithm 2 is of the

same computation time complexity with Algorithm 1. For q = 2, Figure 1.1b shows a

typical design produced by the FSSF-fr algorithm at stage n = 20. Comparing this to the

results of the FSSF-f algorithm in Figure 1.1a, the FSSF-fr algorithm selects fewer design

points near the boundary. We defer more quantitative comparisons of the hmax and dmin

performances and computational expense to Section 1.4.
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1.2.3. The FSSF-b Algorithm

The FSSF-b algorithm is intended to have lower computational expense than the FSSF-

f/fr algorithms for large N . We first give an overview of the major steps of the FSSF-b

design algorithm with pseudo-code (Section 1.2.3.1), followed by computational and other

technical details (Section 1.2.3.2).

1.2.3.1. Overview of the FSSF-b Algorithm. Our FSSF-b design algorithm removes

points one-at-a-time from C, so that the remaining points at each stage form a sequence

of nested designs. Now, {iN , iN−1, · · · , i2, i1} is the sequence of indices of points removed

in order (i.e., iN is removed first, and i1 is removed last). We still denote the design at

stage-n by

Sn = {xi1 , xi2 , · · · , xin} and its index set by In = {i1, i2, · · · , in}, so that the nested

sequence of designs from size 1 to size nmax is S1 ⊂ S2 ⊂ · · · ⊂ Snmax ⊂ C.

Given the candidate set C, the main idea behind the FSSF-b design algorithm is the

following. At each stage-n (sequentially, for n = N − 1, N − 2, · · · , 0), given In+1 and the

corresponding design Sn+1 from the previous stage-(n + 1), the goal is to find the index

in+1 ∈ In+1 of the next point xin+1 ∈ Sn+1 to remove in order to form Sn = Sn+1 \ xin+1 .

Our criterion is the maximin distance criterion (other criteria are discussed in Section 1.3),

i.e., we seek

(1.3) in+1 = arg max
i∈In+1

dmin(Sn+1 \ xi),

where dmin() is defined in Equation (1.1).
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Algorithm 3 summarizes the FSSF-b algorithm. Notice that a naive search proce-

dure in the optimization problems of Equation (1.3) and Equation (1.1) would result

in excessive computational expense (even lager than for FSSF-f) when N is large, and

N must generally be chosen large to achieve the best space-filling properties, especially

when nmax is large. Section 1.2.3.2 discusses the major computational strategies that we

use to substantially speed up the approach so that it is faster than FSSF-f for large N ,

which are based on fast nearest neighbor search algorithms and on appropriate choices

of data structures. Full details of the algorithm are provided in Algorithm 3 Details in

Appendix A.1.

Algorithm 3 Overview of FSSF-b Algorithm
Input: nmax, N , q

1: Generate candidate set C = {x1, · · · , xN} as a Sobol sequence

2: Initialize IN ← {1, 2, · · · , N}

3: Initialize SN ← C

4: for n = N − 1, N − 2, · · · , 1 do

5: Find in+1 = arg max
i∈In+1

dmin(Sn+1 \ xi)

6: Update In ← In+1 \ in+1

7: Update Sn = Sn+1 \ xin+1

8: end for

Output: Ordered FSSF design sequence Snmax = {xi1 , xi2 , · · · , xinmax}.

Before discussing the details of the algorithm, Figure 1.3 illustrates the operation of

the FSSF-b algorithm when sequentially removing points to produce the design Snmax =

{xi1 , xi2 , · · · , xinmax} for the case nmax = 200, q = 2 and N = 1000q + 2nmax = 2400
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(the rule for choosing N is discussed in Section 1.3). Figure 1.3a shows the candidate set.

Figure 1.3b shows the candidate set and the first 10 points that are removed (the point

labeled 2400 was removed first, 2399 was removed second, etc.). Although it is difficult

to discern from Figure 1.3b, the points having the closest neighbors are removed first.

Figure 1.3c shows the last 220 candidate points after removing 2180 candidate points

in total. Removing xi220 , xi219 , · · · , xi201 yields the final design S200. From Figure 1.3c

one sees that candidate points of which the nearest neighbor is closer to it gets removed

earlier than points of which the nearest neighbor is further apart. Figure 1.3d shows the

FSSF design S200 = {xi1 , xi2 , · · · , xi200} and the first 20 design points in the nested design

sequence. The latter are labeled in the order in which they are added to the design (i.e.,

the reverse order in which they were removed).
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(a) Candidate set (b) Candidate set showing the first 10 removed
points

(c) Remaining FSSF-b points S220 at stage-220
with the sequence {xi201 , xi202 , · · · , xi220}

labeled

(d) Final FSSF-b design S200 with the
sequence {xi1 , xi2 , · · · , xi20} labeled

Figure 1.3. Illustration of the FSSF-b design algorithm operation for
nmax = 200, q = 2 and N = 1000q + 2nmax.

1.2.3.2. Computational Strategies and Algorithm Details. In order to drastically

reduce computational expense of the optimization searches in Equation (1.3) and Equa-

tion (1.1), we use a number of computational strategies discussed in this section. First

notice that if {i1
n+1, i2

n+1}
∆= arg min

{i,j}∈In+1

d(xi, xj) denotes the indices of the pair of nearest
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neighbor points in Sn+1 (or a pair, if the nearest neighbor pair is not unique), then it

must be the case that in+1 ∈ {i1
n+1, i2

n+1}. That is, the minimizer of Equation (1.3) is

(1.4) in+1 = arg max
i∈{i1

n+1,i2
n+1}

dmin(Sn+1 \ xi).

Thus, the optimization goal in Equation (1.3) and Equation (1.1) reduces to finding the

nearest neighbor pair {i1
n+1, i2

n+1} ∈ In+1 at each stage n = N − 1, N − 2, · · · , 1, and then

removing one of the two. It will often be the case that dmin(Sn+1 \xi) does not depend on

whether in+1 = i1
n+1 or in+1 = i2

n+1, in which case either point from the pair {xi1
n+1

, xi2
n+1
}

can be removed. Regardless, the criterion is always optimized if we remove from the pair

the point whose distance to its second nearest neighbor in Sn+1 is the smaller. If the

nearest neighbor pair {i1
n+1, i2

n+1} is not unique (i.e, if multiple pairs of points in Sn+1

have the same minimum pairwise distance), then we also remove the point from among

all the nearest neighbor pairs, whose distance to its second nearest neighbor in Sn+1 is

the smallest.

On the surface, it may appear that in order to find the nearest neighbor pair {i1
n+1, i2

n+1}

at each stage n = N − 1, N − 2, · · · , 1, it requires finding the N × N distance matrix,

which would be computationally prohibitive. However, this is unnecessary, and a much

faster K-nearest neighbors (K-NN) algorithm (Hickernell, Bentley, and Finkel 1977) can

be used up front at stage N , before the algorithm begins removing points. We use a

k-d tree based algorithm, which is particularly fast (computational expense details are

discussed in Section 1.4.3). K-NN algorithms find only the K nearest neighbors for each

point in C, for some suitably chosen K. Our strategy is to choose K relatively small (in

the FSSF R package, we use K = 20 if q < 8 and K = 40 otherwise) and then rerun
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K-NN on the remaining points at some intermediate stage(s), if needed, which we discuss

in more details below. In general, choosing K too large incurs unnecessary computational

expense and computer memory issues, whereas choosing K too small incurs the risk of

having to rerun K-NN search too frequently, which would not be efficient.

We now discuss our strategy for using and updating the nearest neighbors information

on the remaining points, when implementing Equation (1.4) to determine which point to

remove at each stage. We represent the nearest neighbor information via the two arrays

D and J , which which are initially of size N ×K and contain the distances and indices,

respectively, of the K nearest neighbors of each of the N points. That is, the jth row, ith

column elements of J and D (denoted by Jji and Dji, respectively) are the index of the

ith nearest neighbor of xj and the distance between this neighbor and xj, respectively.

The rows and cells of D and J are updated each stage as points are removed, to reflect

the nearest neighbor structure of the remaining points.

We illustrate the concepts with the following simple toy example for q = 1, N = 10,

K = 3, nmax = 5, and candidate set C = {x1, x2, · · · , x10} = {0.40, 0.68, 0.14, 0.31, 0.79,

0.94, 0.43, 0.83, 0.69, 0.37}. Table 1.1 and Table 1.2 show the initial D and J for the

candidate set C. By scanning the first column of D to find its smallest element and then

finding the corresponding element of J , the nearest neighbor index pair at stage n = 9

is identified as {i1
10, i2

10} = {2, 9}. Since x9’s second-closest neighbor (which is x5, at a

distance of 0.10) is closer than x2’s second-closest neighbor (which is also x5, at a distance

of 0.11), we have i10 = 9, and the first point removed is x9, so that S9 = C \x9. Its row is

shaded in Tables 1.1 and 1.2 to indicate that it will be ignored when searching for nearest

neighbors in subsequent stages. All other cells corresponding to points for which x9 was
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among the three nearest neighbors are also shaded, since they must also be ignored in

subsequent stages. The deletion of an entire row, as opposed to only a cell or set of cells, is

indicated in Tables 1.1 to 1.6 by shading the entire row, including its first cell (containing

the label for the point).

Tables 1.1 and 1.2 show the updated D and J at the end of the first stage n = 9. Notice

that when searching for the nearest neighbor pair in stage n = 8, the matrices in Tables 1.1

and 1.2 produced at the end of the previous stage must be searched, excluding any shaded

cells and rows. This action can be accelerated because the nearest neighbor for each

remaining point is the first nonshaded cell in its row. Hence, to find the nearest neighbor

pair at each stage, we only need to search the first column of the D array, assuming that

in the coded implementation, the shaded cells are deleted and the remaining cells in each

row are shifted to the left. From searching the nonshaded entries of Tables 1.1 and 1.2,

the nearest neighbor index pairs at stage n = 8 are {i1
9, i2

9} = {1, 7} and {i1
9, i2

9} = {1, 10},

which both share the same minimum distance 0.03. Of the three points {x1, x7, x10},

the one having the closest second-nearest neighbor is x1 (at a distance of 0.03 from x10,

versus distances of 0.06 between the other two points and their second-nearest neighbors).

Hence, i9 = 1, and the second point removed is x1. The shaded rows and cells in Tables 1.3

and 1.4 indicate those associated with the two removed points {x9, x1}, which will be

ignored when searching for nearest neighbors in subsequent stages.

By searching Table 1.3 and Table 1.4 similarly at stage n = 7, we have {i1
8, i2

8} = {5, 8}.

This pair coincidentally have the same distance to their second-nearest neighbors, and so

we arbitrarily remove the first point x5. The remaining points and their corresponding

unshaded cells are shown in Table 1.5 and Table 1.6. At this point, we must re-do K-NN,
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because there exists remaining points ({x2, x6, x8} in this case) that have only a single

nonshaded cell in their row, which means their second-nearest neighbors (which are used

to determine which one of the nearest-neighbor points are removed) are unavailable in

the current K-NN results. In general, our strategy is to re-do K-NN on Sn after a stage

n whenever the second-nearest neighbor of any remaining point in Sn is not contained

in the table produced by the previous application of K-NN. With our choice of K (20

if q < 8 and K otherwise), we typically must re-do K-NN 3 to 5 times to produce one

design. Notice that each time K-NN is re-done it is for substantially fewer points than

the original N candidate points, and hence it is computationally faster than the initial

K-NN on the entire candidate set.

Tables 1.7 and 1.8 show the updated D and J arrays at the end of stage n = 7 after

re-doing K-NN on the remaining points in S7. At the beginning of n = 6, there are two

nearest neighbor pairs {i1
7, i2

7} = {4, 10} and {i1
7, i2

7} = {7, 10} having the same distance

0.06, of which point x10 was removed according to our second nearest neighbor rule.

This sequential procedure is continued until only a single pair remains, re-doing K-NN

whenever needed, as described above. In this example, the remain points are removed in

the order of {x8, x4, x2, x7, x6, x3} with the last two removed in arbitrary order. Thus,

the ordered sequence of indices is {i1, i2, · · · , i10} = {3, 6, 7, 2, 4, 8, 10, 5, 1, 9}, so that the

largest desired FSSF design is Snmax = {x3, x6, x7, x2, x4}, and the order in which we

have listed the points in Snmax indicates the entire FSSF design sequence up to size nmax.
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point index j Dj1 Dj2 Dj3

1 0.03 0.03 0.09
2 0.01 0.11 0.15
3 0.17 0.23 0.26
4 0.06 0.09 0.12
5 0.04 0.10 0.11
6 0.11 0.15 0.25
7 0.03 0.06 0.12
8 0.04 0.11 0.14
9 0.01 0.10 0.14
10 0.03 0.06 0.06

Table 1.1. Array D at
end of stage n = 9

point index j Jj1 Jj2 Jj3

1 7 10 4
2 9 5 8
3 4 10 1
4 10 1 7
5 8 9 2
6 8 5 9
7 1 10 4
8 5 6 9
9 2 5 8
10 1 7 4

Table 1.2. Array J at
end of stage n = 9

point index j Dj1 Dj2 Dj3

1 0.03 0.03 0.09
2 0.01 0.11 0.15
3 0.17 0.23 0.26
4 0.06 0.09 0.12
5 0.04 0.10 0.11
6 0.11 0.15 0.25
7 0.03 0.06 0.12
8 0.04 0.11 0.14
9 0.01 0.10 0.14
10 0.03 0.06 0.06

Table 1.3. Array D at
end of stage n = 8

point index j Jj1 Jj2 Jj3

1 7 10 4
2 9 5 8
3 4 10 1
4 10 1 7
5 8 9 2
6 8 5 9
7 1 10 4
8 5 6 9
9 2 5 8
10 1 7 4

Table 1.4. Array J at
end of stage n = 8
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point index j Dj1 Dj2 Dj3

1 0.03 0.03 0.09
2 0.01 0.11 0.15
3 0.17 0.23 0.26
4 0.06 0.09 0.12
5 0.04 0.10 0.11
6 0.11 0.15 0.25
7 0.03 0.06 0.12
8 0.04 0.11 0.14
9 0.01 0.10 0.14
10 0.03 0.06 0.06

Table 1.5. Array D at
end of stage n = 7

point index j Jj1 Jj2 Jj3

1 7 10 4
2 9 5 8
3 4 10 1
4 10 1 7
5 8 9 2
6 8 5 9
7 1 10 4
8 5 6 9
9 2 5 8
10 1 7 4

Table 1.6. Array J at
end of stage n = 7

point index j Dj1 Dj2 Dj3

2 0.15 0.25 0.26
3 0.17 0.23 0.29
4 0.06 0.12 0.17
6 0.11 0.26 0.51
7 0.06 0.12 0.25
8 0.11 0.15 0.40
10 0.06 0.06 0.23

Table 1.7. Array D at
end of stage n = 7, after

re-doing K-NN

point index j Jj1 Jj2 Jj3

2 8 7 6
3 4 10 7
4 10 7 3
6 8 2 7
7 10 4 2
8 6 2 7
10 7 4 3

Table 1.8. Array J at
end of stage n = 7, after

re-doing K-NN
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1.3. Choice of Candidate Set and Design Criterion

For all of our FSSF algorithms (FSSF algorithms refer to FSSF-f (Algorithm 1), FSSF-

fr (Algorithm 2), and FSSF-b (Algorithm 3) algorithms), we have used Sobol sequences

for the candidate set C and a maximin-like criterion when selecting or removing points

from C. In this section we discuss the rationale behind these choices, compared with

alternatives for C and for space-filling (and briefly for other non-distance-based) criteria,

and we also discuss the choice of N .

1.3.1. Choice of Candidate Set

The general requirement for C is that it should cover Ω as evenly and densely as possi-

ble, without leaving large holes. We have investigated both Sobol sequences and LHDs

optimized with respect to some space-filling criteria (S. Ba, Myers, and Brenneman 2015;

Rennen et al. 2010). We compared the space-filling performances of the FSSF design

sequences resulting from these two choices of C (results are not shown, for brevity), and

we did not observe any significant performance differences. Because Sobol sequences are

much faster to generate than optimized LHDs, we henceforth use Sobol sequences exclu-

sively as the candidate set. By themselves, Sobol sequences are undesirable as space-filling

designs for deterministic computer experiments, because they tend to place some points

very close to each other (see, e.g., Figure 1.7c). However, when used as the candidate set

in the FSSF algorithms, this drawback disappears. For instance, the backward removal

portion of the FSSF-b algorithm removes points that are too closely spaced.
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1.3.2. Choice of N

After q and nmax are specified, one must also choose N . Using larger N generally provides

better space-filling performance of the FSSF design, but the obvious drawback of larger

N is increased computational expense. We have found that for a fixed q and nmax, when

N increases beyond a certain value there is little further improvement in the space-filling

properties. Therefore, our rule is to choose N as small as possible (for computational

reasons), but just larger than the value after which there is little further space-filling

performance improvement. This value depends on q and nmax, and through extensive

investigations we have found that using N ≥ 1000q + 2nmax usually suffices. As a default

value, we use N = 1000q + 2nmax in our FSSF R package, which was used in all the

examples in this chapter.

1.3.3. Choice of Space-filling Criterion

We have also investigated different space-filling criteria for sequentially adding (FSSF-f/fr)

or removing (FSSF-b) points, analogous to Equation (1.1). As discussed earlier Equa-

tion (1.2) is not a practical design criterion because of excessive computational expense.

In addition to the minimum pairwise distance criterion (Equation (1.1)), we have also

investigated the average reciprocal distance criterion (Morris and Mitchell 1995) defined

as follows. The average reciprocal distance of a set Sn = {x1, x2, · · · , xn} is

(1.5)
[ n−1∑

i=1

n∑
j=i+1

1(
d(xi, xj)

)p

] 1
p

,
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where p is some positive integer. The average reciprocal distance criterion with p = 1

is sometimes referred to as the energy criterion (V. R. Joseph et al. 2015). We chose

to use the minimum pairwise distance criterion, instead of an average reciprocal distance

criterion, for the FSSF algorithms because the latter can lead to designs that are not

suitably space-filling. Figure 1.4 demonstrates this by comparing designs from the FSSF-

b algorithm using the minimum pairwise distance criterion (Figure 1.4a) and the average

reciprocal distance criterion with p = 1 (Figure 1.4b). For the designs in both Figures 1.4a

and 1.4b, q = 2, nmax = 50 and the candidate set is Sobol sequence with N = 1000q +

2nmax. The FSSF-b design using the average reciprocal distance criterion has much poorer

space-filling behavior with too many design points located on the boundary of the design

space Ω. This undesirable characteristic of the average reciprocal distance criterion was

also observed in Currin et al. 1988. Other choices of p could lead to better space-filling

property. However, the best choice of p is not clear, and this may depend on q. Moreover,

minimizing the average reciprocal distance would be substantially more computationally

expensive than maximizing the minimum pairwise distance criterion (Equation (1.1)). In

light of this, we have chosen the computationally simpler and parameter-free criterion

Equation (1.1), which turned out to work quite well in our performance comparisons (see

Section 1.4).
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Figure 1.4. Example FSSF-b designs comparing (a) the minimum pairwise
distance criterion versus (b) the average reciprocal distance criterion with

p = 1. The numbers beside each point indicate the order in which the
points are added in the final FSSF-b design sequence.

1.4. Sequential Space-Filling Performance Comparisons

We first (Section 1.4.1) illustrate qualitatively the sequential space-filling behavior of

the FSSF design sequences (FSSF-f, FSSF-fr, FSSF-b) relative to each other and relative

to alternatives including the standard non-sequential maximin LHD (S. Ba, Myers, and

Brenneman 2015), optimized SLHD (S. Ba, Myers, and Brenneman 2015), multi-layer

NLHD (P. Qian 2009), and Sobol sequence (Sobol 1967). For this, we plot the produced

designs at low (q = 2) dimension. We then provide more extensive numerical comparisons

of space-filling performances (Section 1.4.2) and computation times ( Section 1.4.3) of

the various FSSF and alternative methods. We note that the standard non-sequential

maximin LHD is included only as a benchmark, since it is not a sequential method; and

the SLHD and NLHD methods are block-sequential and not one-at-a-time sequential.
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1.4.1. Qualitative Comparisons via Example Designs

Figures 1.5 and 1.6 show typical design sequence examples for the FSSF-b and FSSF-

fr algorithms, respectively, for q = 2, nmax = 320, and N = 1000q + 2nmax at stages

n = 10, 20, 40, 80, 160,

and 320. Typical results for the FSSF-f algorithm are very similar to those shown in

Figure 1.5 for the FSSF-b algorithm and are omitted for brevity. In each panel, the red

diamonds are the additional points added to the smaller nested design shown in the pre-

vious panel, and the latter is indicated by gray circles. For example, in Figure 1.5d the

gray circles represent the same FSSF design S40 shown in Figure 1.5c, and the red dia-

monds are the additional 40 points that, together with the gray S40 circles, constitute the

FSSF design S80. Although the designs are only shown as batch-sequential in Figures 1.5

and 1.6, the sample points were actually chosen fully-sequentially (i.e., one-at-a-time).

Visually, the design sequences in Figures 1.5 and 1.6 have good space-filling proper-

ties at each stage n = 10, 20, 40, 80, 160, 320, and the design sequences tend to fill the

design space gradually and evenly as sample size increases. Moreover, as intended, the

FSSF-fr designs avoid selecting points too close to the boundary, especially for smaller n,

whereas the FSSF-b (and FSSF-f) algorithms tend to do this (see for example Figures 1.5a

and 1.6a). As demonstrated more quantitatively in the next section, this generally re-

sults in better hmax performance for the FSSF-fr designs, at the expense of worse dmin

performance.
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Figure 1.5. Qualitative visual illustration of the space-filling behavior of a
typical FSSF-b design sequence for q = 2 and nmax = 320, showing designs

from the nested FSSF sequence at sizes n = 10, 20, 40, 80, 160, 320. The
gray circles in each panel are the smaller nested design from the previous

panel, and the red diamonds are the additional points added to the
smaller design to comprise the larger design.
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Figure 1.6. Qualitative visual illustration of the space-filling behavior of a
typical FSSF-fr design sequence for q = 2 and nmax = 320, showing designs

from the nested FSSF sequence at sizes n = 10, 20, 40, 80, 160, 320. The
gray circles in each panel are the smaller nested design from the previous

panel, and the red diamonds are the additional points added to the
smaller design to comprise the larger design.

Figure 1.7 visually compares the space-filling performances of typical realizations of

a FSSF-b design, a FSSF-f design, a FSSF-fr design, a NLHD of P. Qian 2009, a Sobol
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sequence, and a one-shot (non-sequential) maximin LHD of S. Ba, Myers, and Brenne-

man 2015 (using 1000 iterations; using more iterations may lead to better space-filling

performance at the cost of computation efficiency) for n = nmax = 160 and q = 2. As

in all the examples in this chapter, we have used N = 1000q + 2nmax. The FSSF de-

signs (Figures 1.7d to 1.7f) clearly have visually superior space-filling behavior than other

designs, which is consistent with the numerically-superior performances demonstrated in

the next section. One should keep in mind that among the six designs in Figure 1.7, only

the FSSF designs and Sobol sequence are fully-sequential. The NLHD is batch-sequential

(we used batches of size 20, 40, 80, 160), and the one-shot maximin LHD is not sequential

at all.
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Figure 1.7. Comparison of typical design results for six different methods
at size n = nmax = 160. The FSSF designs appear more evenly

space-filling.

1.4.2. Numerical Performance Comparisons in Terms of dmin and hmax

Figure 1.8 shows the performances of FSSF-b, FSSF-f, FSSF-fr, Sobol sequence, NLHD,

SLHD with slice sizes 2 and 10, and one-shot maximin LHD, in terms of the minimum

pairwise distance criterion dmin (defined in Equation (1.1), the larger the better) and the
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maximum hole size criterion hmax (defined in Equation (1.2), the smaller the better) in

dimensions q = 2, 8, 16 respectively. The dmin and hmax values plotted in Figure 1.8 were

average values across 10 independent replicates. The maximum hole size criterion was

computed by generating 106 test points from a uniform distribution over Ω, calculating

the minimum distance between each test point and the design points in Sn, and then

calculating hmax as the maximum (across all test points) of these minimum distances.

The FSSF designs, used nmax = 320 for q = 2, 8, 16 as well as nmax = 1280 for q = 16,

with the candidate set being a Sobol sequence of size N = 1000q + 2nmax. The NLHDs

were generated using batch sizes 20, 40, 80, 160, 320 for the first three rows in Figure 1.8

and batch sizes 20, 40, 80, 160, 320, 640, 1280 for the last row in Figure 1.8. The one-

shot maximin LHDs and SLHDs were generated using the package provided by S. Ba,

Myers, and Brenneman 2015 with 1000 iterations. We have again included the one-

shot LHD only as a benchmark, since it is not sequential. The "One-shot LHD" curves

plotted in each panel are not truly a nested sequence, but rather a set of independently

generated designs of size 20, 40, 80, 160, 320 for the first three row in Figure 1.8 and of size

20, 40, 80, 160, 320, 640, 1280 for the last row in Figure 1.8. Moreover, when comparing

performance results, readers should keep in mind that the NLHD and SLHD designs are

not fully-sequential; for instance, NLHD did not produce designs of sizes in between the

values 20, 40, 80, 160, 320.

Comparing the FSSF algorithms against the benchmark (one-shot maximin LHD) and

other designs, we draw the following conclusions based on the results shown in Figure 1.8.

First, all FSSF designs performed better than the benchmark (the one-shot maximin

LHD) in terms of the dmin criterion (Equation (1.1)) for all tested dimensions q = 2, 8, 16
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and sample sizes n. In contrast, the NLHD and Sobol sequences performed consistently

worse than the benchmark for all tested q and n values (see the four figures in the left panel

of Figure 1.8). The SLHD with slice size 10 performed comparably with the benchmark,

whereas the SLHD with slice size 2 consistently performed worse than the benchmark.

Note that the SLHD with smaller slice size is closer to being fully sequential like our FSSF

algorithm, whereas with larger slice size it is only block-sequential. Figure 1.8 shows that

the space-filling performance of SLHD degrades as slice size decreases and it becomes

closer to fully sequential. In addition, the FSSF designs are superior to the benchmark in

terms of dmin not only for small values of n but also for relatively large ones. For instance,

in the bottom-left panel of Figure 1.8, the dmin values for the FSSF-b and FSSF-fr design

are larger than the benchmark dmin value by around 0.6 for all n values ranging from 20

to 1280.

The performances in terms of hmax of Equation (1.2) are somewhat different. The FSSF

designs show better (smaller) hmax than the benchmark when n is beyond a reasonably

large value. For example, when q = 2, all the FSSF designs have better hmax values than

the benchmark for all tested n values (see the top-right panel of Figure 1.8). For q = 8,

all the FSSF designs performed consistently better than the benchmark when n is larger

than around 100 (see the middle-right panel of Figure 1.8). The FSSF-f and FSSF-fr

designs were consistently better than the benchmark for n larger than around 50. For

q = 16, the the FSSF-f and FSSF-b designs had worse hmax than the benchmark (but

better dmin), whereas the FSSF-fr designs had better hmax and dmin for all n values. In

contrast, relative to the benchmark, the NLHD and Sobol sequence had comparable hmax

but substantially worse dmin for all q and n values considered. The SLHD performance
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relative to the benchmark is similar to what was found for the dmin criterion. SLHD with

slice size 10 performed comparably with the benchmark but is only batch-sequential. In

contrast, SLHD with slice size 2 is closer to fully-sequential but has hmax performance

that is much worse than the benchmark.

Figure 1.8 also confirms that the three FSSF designs (FSSF-f, FSSF-fr and FSSF-b)

have different relative advantages. The FSSF-f and FSSF-b designs generally have better

(larger) dmin values than the FSSF-fr designs and substantially better dmin values than

the other designs considered, and the difference is more pronounced in higher dimensions.

The FSSF-f designs performed slightly better than FSSF-b designs in terms of dmin, but

as will be shown in Section 1.4.3, FSSF-b can be orders of magnitude faster than FSSF-f.

As expected, the space-filling performance of FSSF-f and FSSF-b relative to FSSF-fr, is

reversed for the hmax criterion, since the FSSF-fr algorithm was designed to have better

hmax at the expense of worse dmin. The FSSF-fr designs have better (smaller) hmax values

than the FSSF-f and FSSF-b designs, especially in higher dimensions. In lower dimensions

(q ≤ 8) the hmax performances of the FSSF-fr, FSSF-f, and FSSF-b designs are all roughly

comparable.
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Figure 1.8. Comparisons of dmin (left column) and hmax (right column)
space-filling performances of eight algorithms (FSSF-f, FSSF-fr, FSSF-b,

NLHD, Sobol sequence, one-shot LHD, SLHD with slice size 2, and SLHD
with slice size 10).

1.4.3. Runtime Comparisons

In this section we analyze the theoretical time complexity and memory complexity of

the FSSF algorithms and also investigate their computation time in practice. We used a

computer with 16GB memory and 3.3 GHz Intel Core i7 processor to test the computation

time.

In short, the FSSF-b algorithm has better time complexity than FSSF-f/fr algorithms,

O(qN log N) as opposed to O(qN2). It is well-known that by utilizing the k-d tree data

structure (Bentley 1975), the time complexity of the K-NN algorithm for finding the K

nearest neighbors of every point in a set of size N in dimension q is O(qN log N). By

using the computational strategies discussed in Section 1.2.3.2 and choosing appropriate

data structures and strategies as described in Algorithm 3 Details in Appendix A.1, the

theoretical time complexity of the FSSF-b algorithm is also O(qN log N). For example,

when searching the remaining rows and cells in the K-NN tables D and J (analogous
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to those shown in Tables 1.1 to 1.8), we use a balanced binary tree. This results in, in

the worst case, an O(log n) search at stage n. Considering that the K-NN algorithm

only needs to be called a few times during the FSSF-b algorithm, the entire backward

elimination portion of the FSSF-b algorithm is O(qN log N), the same as the K-NN

portion of the algorithm. For a fixed q, since we use N = 1000q + 2nmax (see Section 1.3),

i.e., N = O(nmax), the theoretical time complexity becomes O(nmax log nmax). When q

is fixed, the memory complexity of the FSSF algorithms are all linear with respect to N

(and thus to nmax).

We should point out that the major contributor to the computational expense of

the FSSF-b algorithm is the K-NN portion, even though it has the same theoretical

O(N log N) complexity as the backward removal portion. The additional expense of the

Sobol sequence candidate set generation and the backward removal portion was less than

10% of the overall expense of the FSSF-b algorithm in all experiments shown in this

chapter. In the provided FSSF R package, we used an approximate nearest neighbor

(ANN) searching algorithm (the ANN library that we used is Mount and Arya 2010),

which allows some small potential inaccuracies in finding the exact nearest neighbors in

exchange for faster speed and less memory cost.

Figure 1.9 shows the actual computation time of the FSSF-b/f/fr algorithms versus

nmax for different dimensions q = 2, 8, 16. The FSSF designs in each plot are for

nmax = 10, 100, 1000, 10, 000, 50, 000, with the candidate set being a Sobol sequence of size

N = 1000q + 2nmax. The statistics in Figure 1.9 are based on a single replicate, because

we have observed in separate experiments (which we omit, for brevity) that the runtime

variation between different replicates of the FSSF algorithms is negligible. Notice that the
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runtimes of the FSSF-f and FSSF-fr algorithms are almost identical, and hence the red

and black curves overlap in Figure 1.9. As before, the candidate set was a Sobol sequence

of size N = 1000q + 2nmax. We note that the computation times shown in Figure 1.9

are for the entire algorithm. For instance, the computation time reported in Figure 1.9

of the FSSF-b algorithm includes generating the candidate set, conducting K-NN, and

conducting the backward elimination sequence. Based on the theoretical computational

expense results, and since the axes in Figure 1.9 are in log scale, one might expect the

runtime curves in Figure 1.9 to be nearly straight lines, with the lines for the FSSF-f/fr

algorithms having larger slopes than for the FSSF-b algorithm. This was not the case

for the FSSF-b algorithm, and this may be due to the fact that the actual run time of

the FSSF-b algorithm is largely a function of N , and when nmax <= 103, our choice of

N = 1000q + 2nmax is dominated by q and is not proportional to nmax.

Figure 1.9 shows that the FSSF algorithms, and especially the FSSF-b algorithm,

are computationally efficient. For instance, even when nmax = 50, 000 and q = 16, the

FSSF-b algorithm only took around one minute. From Figure 1.9, we observe that in any

tested dimension (q = 2, 8, 16), when nmax is large, the FSSF-b algorithm can be much

faster than the FSSF-f/fr algorithms, which is consistent with the above theoretical time

complexity analysis. The value of nmax beyond which FSSF-b is faster than FSSF-f/fr

increases with q. For instance, when q = 2, FSSF-b is faster than FSSF-f/fr when nmax is

larger than around 102, while when q = 16, FSSF-b is faster than FSSF-f/fr when nmax is

larger than around 103. One also observes from Figure 1.9 that the efficiency advantage

of the FSSF-b algorithm, relative to the FSSF-f/fr algorithms, is more significant as nmax
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increases. For example, for q = 8, FSSF-b is around 5 times faster than FSSF-f/fr when

nmax = 103, versus around 100 times faster when nmax = 50, 000.
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Figure 1.9. Runtime comparisons of the FSSF algorithms. The runtimes
of the FSSF-f and FSSF-fr algorithms are virtually identical, so their

curves overlap.

1.5. FSSF Design Extensions

This section briefly discusses potential extensions of the FSSF algorithms to a weighted

Euclidean distance (Section 1.5.1), which may be desirable if the response smoothness is

different in different input coordinates, and to non-distance based design criteria (Sec-

tion 1.5.2).

1.5.1. FSSF Designs for Inputs with Different Lengthscale Parameters

The FSSF designs discussed so far are generated without taking into account any response

observations or any underlying statistical model for the response, as they are based en-

tirely on space-filling criteria. In this context, response observations and modeling would

only be used to decide when to stop experimentation. However, even for the purpose

in this chapter of obtaining a globally accurate surrogate model (as opposed to response

optimization), one might consider incorporating response observations at each stage when

deciding the remaining sequence of design points. When using GP surrogate models, a
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potential advantage of this is to detect if the lengthscale parameters for each input differ

and to incorporate this into the design accordingly. In this section, we extend the FSSF

designs to unequal scaling in the inputs (via changing the standard distance to a weighted

distance), investigate its effect on the integrated mean square error (IMSE) performance

for GP response surfaces, and compare this to the GP-based maxMSE sequential design

strategy (defined shortly) that automatically incorporates lengthscale information via the

GP covariance model.

1.5.1.1. Scaled FSSF Designs. Suppose the response surface Y (x) is modeled as a GP

with constant prior mean and squared-exponential covariance function Cov(Y (x), Y (x′)) =

σ2R(x, x′), where σ2 is the prior variance,

(1.6) R(x, x′) =
q∏

j=1
exp

−(xj − x′
j

θj

)2
,

x = (x1, x2, · · · , xq), x′ = (x′
1, x′

2, · · · , x′
q), and θj represents the lengthscale parameter

for the jth input coordinate. Intuitively, a larger θj means the response depends on xj in

a smoother manner, and the best design may have points that are less densely spaced in

the xj direction than in other input directions.

We accomplish this within the FSSF algorithms by replacing the regular Euclidean

distance by the weighted distance (Johnson, L. M. Moore, and Ylvisaker (1990))

(1.7) dθ(x, x′) =

√√√√ q∑
j=1

(xj − x′
j

θj

)2

.

We refer to designs generated using the weighted and unweighted distance as scaled and

non-scaled designs, respectively. The reflected distance in line 4 of the FSSF-fr algorithm

(Algorithm 2) should be modified when using the weighted distance. Otherwise, if (1.7) is



61

used in line 4 without modification, we have found that design points tend to be clustered

too much towards the center of the design space in xj coordinate directions having large

θj. We have found that replacing line 4 of the FSSF-fr algorithm (Algorithm 2) by

the following avoids this: Set Dj = 2
√

2q
(∏q

i=1
θi∗(j)

θi

) 1
q

miny∈∂Ω dθ(xj, y), where i∗(j) =

arg mini∈{1,··· ,q} min{xji

θi
, 1−xji

θi
}.

For nmax = 100, q = 2 and θ = (1, 20)× 0.5, Figure 1.10 shows the designs generated

by the FSSF-f algorithm (Algorithm 1), the FSSF-fr algorithm (Algorithm 2) and the

maxMSE algorithm. The latter is a heuristic that attempts to reduce the MSE in general

by selecting the design point at stage n + 1 as the candidate point having the largest

predicted MSE after stage n, i.e.

(1.8) xn+1
def= arg max

x∈C\Sn

MSE(x, Sn),

where

(1.9) MSE(x, Sn) = σ2
[
1−

(
1 rT (x)

) 0 11×n

1n×1 R


−1 1

r(x)

],

is the predicted MSE of Y (x) given the hypothetical response observations at design Sn

(Sacks et al. (1989)). In the preceding, rT (x) =
(

R(x1, x) R(x2, x) · · · R(xn, x)
)

,

and R is the n× n correlation matrix whose (i, j)-th element is R(xi, xj).

We see from Figure 1.10 that because the response dependence in the x2 coordinate

is much smoother than in the x1 coordinate (i.e., θ2
θ1

= 20), the maxMSE design (Fig-

ure 1.10c) tends to form horizontal bands of points and essentially place points more

densely in the rougher x1 direction than in the smoother x2 direction. The scaled FSSF-f
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and FSSF-fr designs in Figures 1.10a and 1.10b show similar patterns as the maxMSE de-

sign. As the numerical IMSE results in Section 1.5.1.2 will demonstrate, this does indeed

tend to give a smaller IMSE than the non-scaled designs. Figure 1.10 also indicates that

the scaled FSSF-fr design does not put as many design points on the boundary as the

scaled FSSf-f and maxMSE designs do, and we will further demonstrate in Section 1.5.1.2

that this also helps to reduce the IMSE.
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(a) Scaled FSSF-f design
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(b) Scaled FSSF-fr design
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(c) Scaled maxMSE design

Figure 1.10. Designs produced by FSSF-f, FSSF-fr and maxMSE
algorithms for θ = (1, 20)× 0.5 and q = 2 with design size n = 100.

1.5.1.2. IMSE Performances of Scaled and Non-scaled FSSF Designs. To com-

pare the performances of the scaled and non-scaled FSSF designs and the maxMSE design,

we use the IMSE (see Appendix A.2 for discussions about the link between IMSE and the

space-filling property). For a design Sn of size n, the IMSE is defined as

(1.10) IMSE(Sn) =
∫

Ω
MSE(x, Sn) dx.

Tables 1.9 and 1.10 compare the IMSE results for various n and θ for q = 2 and q = 8,

respectively. The IMSE in Equation (1.10) is computed via Monte Carlo integration with
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106 Sobol sequence points inside [0, 1]q. In all cases we used σ2 = 1, and all designs

began with the same point xi1 = 0.5 × 1q, where 1q denotes a q-length vector of ones.

We averaged the IMSE values across ten Monte Carlo replicates, each using a different

Sobol sequence as the candidate set, and the square root of the averaged IMSE values are

reported in the tables. The sample standard deviations of the IMSE values across the ten

replicates were negligible and are omitted for brevity.

From Tables 1.9 and 1.10 we see that FSSF-fr algorithm usually achieves better IMSE

than the maxMSE and FSSF-f algorithms for either q = 2 or q = 8. The highlighted cells

in both Tables 1.9 and 1.10 are the IMSE results when one uses the correct lengthscale

parameter (i.e., θtrue = θassumed). The FSSF-fr algorithm generally achieves better accu-

racy not only when θtrue = θassumed, but also when θtrue ̸= θassumed. We also observe that

when the scaling truly is different in different input coordinates (i.e., when θtrue ̸= c1q

for some scalar c) the scaled FSSF-f and FSSF-fr algorithms do indeed performed better

than the non-scaled versions when q = 2. But when q = 8, the relative performance of

the scaled vs. non-scaled FSSF-fr algorithms are mixed. This may be because of our rule

described above for handling the reflected distances with different scaling. A potentially

more effective rule warrants further investigation.
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n θtrue Method
θassumed

(1, 1)× 1 (1, 5)× 1 (1, 1)× 0.5 (1, 5)× 0.5

10 (1, 1)× 1

FSSF-f 0.0416 0.0651 0.0416 0.0651

FSSF-fr 0.0225 0.0301 0.0225 0.0301

minMMSE 0.0395 0.0514 0.0385 0.0758

10 (1, 1)× 0.5

FSSF-f 0.2704 0.3591 0.2704 0.3591

FSSF-fr 0.1538 0.2129 0.1538 0.2129

minMMSE 0.2549 0.3042 0.2533 0.3797

10 (1, 5)× 0.5

FSSF-f 0.1182 0.0380 0.1182 0.0380

FSSF-fr 0.0414 0.0344 0.0414 0.0344

minMMSE 0.0979 0.0324 0.1066 0.0402

20 (1, 1)× 1

FSSF-f 0.0023 0.0052 0.0023 0.0052

FSSF-fr 0.0024 0.0028 0.0024 0.0028

minMMSE 0.0022 0.0043 0.0021 0.0044

20 (1, 1)× 0.5

FSSF-f 0.0558 0.0982 0.0558 0.0982

FSSF-fr 0.0430 0.0575 0.0430 0.0575

minMMSE 0.0653 0.0886 0.0582 0.0977

20 (1, 5)× 0.5

FSSF-f 0.0101 0.0028 0.0101 0.0028

FSSF-fr 0.0033 0.0023 0.0034 0.0023

minMMSE 0.0049 0.0029 0.0052 0.0024

Table 1.9. For q = 2, IMSE performance and robustness comparison of
FSSF-f, FSSF-fr, and maxMSE designs. The reported values are the

square root of the IMSE for various combinations of true and assumed θ.
The shaded cells indicate when the assumed and true θ coincide.
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n θtrue Method
θassumed

(16, 12)× 4 (16, 52)× 4 (16, 12)× 2 (16, 52)× 2

40 (16, 12)× 4

FSSF-f 0.0301 0.0345 0.0301 0.0345

FSSF-fr 0.0259 0.0319 0.0259 0.0319

minMMSE 0.0273 0.0302 0.0280 0.0318

40 (16, 12)× 2

FSSF-f 0.1502 0.1625 0.1502 0.1625

FSSF-fr 0.1251 0.1492 0.1251 0.1492

minMMSE 0.1394 0.1452 0.1404 0.1502

40 (16, 52)× 2

FSSF-f 0.0888 0.0868 0.0888 0.0868

FSSF-fr 0.0720 0.0767 0.0720 0.0767

minMMSE 0.0817 0.0782 0.0819 0.0802

80 (16, 12)× 4

FSSF-f 0.0130 0.0128 0.0130 0.0128

FSSF-fr 0.0102 0.0115 0.0102 0.0115

minMMSE 0.0114 0.0116 0.0116 0.0118

80 (16, 12)× 2

FSSF-f 0.0862 0.0895 0.0862 0.0895

FSSF-fr 0.0691 0.0795 0.0691 0.0795

minMMSE 0.0806 0.0824 0.0818 0.0831

80 (16, 52)× 2

FSSF-f 0.0469 0.0428 0.0469 0.0428

FSSF-fr 0.0342 0.0352 0.0342 0.0352

minMMSE 0.0431 0.0421 0.0435 0.0423

Table 1.10. For q = 8, IMSE performance and robustness comparison of
FSSF-f, FSSF-fr, and maxMSE designs. The reported values are the

square root of the IMSE for various combinations of true and assumed θ.
The shaded cells indicate when the assumed and true θ coincide.
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1.5.1.3. FSSF Designs with a Warm Start. As mentioned earlier, θ is usually un-

known, in which case it must be estimated via some initial design and corresponding

response observations. Our FSSF R package includes a "warm-start" feature that allows

an initial design to be specified and then generates the additional FSSF design points

sequentially to add to the initial design. If θ is estimated based on the initial design, it

can also be included as an argument to the warm-start feature to generate the remainder

of the design using a scaled-distance FSSF criterion. As an example, Figure 1.11 shows a

design of size n = 120 for q = 2 using an initial non-scaled FSSF-fr design of size 20. The

initial design, which is indicated by red squares, is evenly spaced inside [0, 1]2. Suppose

the estimate of θ based on this initial design is (1, 20) × 0.5. The round open circles in

Figure 1.11 show the additional 100 design points selected via the scaled FSSF-fr algo-

rithm using this estimated θ. These additional design points form horizontal bands in

the rougher x1 coordinate direction, similar to those in Figure 1.10.
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Figure 1.11. Scaled warm-start FSSF-fr design of total size nmax = 120
using an initial non-scaled FSSF-fr design of initial size 20 (red squares)
for q = 2. The additional 100 points from the warm-start scaled FSSF-fr

algorithm (open black circles) are for θassumed = (1, 20)× 0.5.

1.5.2. Extension to Non-distance-based Design Criteria

In this chapter we have focused on computer experiments (the presumption being that a

GP model will be fitted), for which distance-based space-filling criteria (Equations (1.1)

and (1.2)) are the most relevant. If one were interested in fitting a polynomial regression
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model instead of a GP model, then other criteria such as the polynomial canonical correla-

tion criteria (Jobson (2012) and Tang (1998)) or any of the alphabetic optimality criteria

(Montgomery (2017)) may be relevant. Here we briefly discuss how one could extend the

forward FSSF-f approach to the D-optimality criterion (assuming a linear model) and to

the first order polynomial canonical correlation criterion. It would be more difficult to

extend the backward FSSF-b approach to these other criteria, for reasons that will be

discussed shortly.

Suppose one has already obtained a design of size n, Sn = {xi1 , · · · , xin}, and the

immediate goal is to select another design point in the candidate set C = {x1, · · · , xN} to

add to the current design to form Sn+1 according to the D-optimality criterion. Here, we

assume a main-effects linear model with Gaussian errors, so that the Fisher information

matrix for Sn is (a scalar constant times) In = ∑n
k=1 xik

xT
ik

. The optimal candidate point

to be added to Sn is the one that maximizes the determinant of In+1, i.e.,

(1.11) xn+1 = arg max
z∈C\Sn

|In + zzT | = arg max
z∈C\Sn

|In|(1 + zT I−1
n z) = arg max

z∈C\Sn

zT I−1
n z,

where |•| denotes the determinant of a matrix. The second equality in Equation (1.11)

follows from the matrix determinant lemma for rank-one modifications (Harville (1997)).

Note that I−1
n can also be conveniently updated using the Sherman-Morrison formula

(Sherman and Morrison (1950)) for the inverse of a rank-one modification of a matrix.

Now consider the total first order polynomial canonical correlation criterion, which is

equivalent to the sum of absolute values of the sample correlations for all pairs of input

variables (see Jobson (2012) and Tang (1998) for detailed definitions). If the next design
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point is chosen to minimize this criterion, we have

xn+1

= arg min
z∈C\Sn

∑
1≤l<j≤q

∣∣∣∣∣ 1n
( n∑

k=1

(
xikl − x̄l

n+1

)(
xikj − x̄j

n+1

)
+ (zl − x̄l

n+1)(zj − x̄j
n+1

)∣∣∣∣∣
= arg min

z∈C\Sn

∑
1≤l<j≤q

∣∣∣∣∣zl

n∑
k=1

xikj + zj

n∑
k=1

xikl − nzlzj

∣∣∣∣∣
= arg min

z∈C\Sn

∑
1≤l<j≤q

∣∣∣zlx̄
j
n + zjx̄

l
n − zlzj

∣∣∣

(1.12)

where x̄j
n+1 = x̄j

n+1(z) = 1
n+1(∑n

t=1 xitj +zj), x̄j
n = 1

n

∑n
t=1 xitj and zj is the jth coordinate

of z. To efficiently compute xn+1 in Equation (1.12), quantities like x̄j
n for each j ∈

{1, · · · , q} can be updated and stored at each iteration.

Equations (1.11) and (1.12) provide convenient formula to be used in a forward algo-

rithm with D-optimality or polynomial canonical correlation as the criteria for selecting

the next design point. Although the same formula could be used in a backward-elimination

algorithm (analogous to Algorithm 3), we do not recommend extending the FSSF-b al-

gorithm to these criteria. This is because the FSSF-b algorithm (Algorithm 3) for our

distance-based criteria requires use of KNN for computational efficiency, which allows

each xik
to be found in O(log N) time after eliminating xik+1 . However, it is not clear

how to use KNN to achieve the same computational efficiency for the D-optimality or

first-order polynomial canonical correlation criteria.

1.6. Conclusions

In this chapter, we developed and investigated various versions of fully-sequential

(one-at-a-time) space-filling design algorithms. The FSSF-fr and FSSF-b algorithms are
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modifications of the FSSF-f algorithm, which is similar to the CADEX algorithm pro-

posed by Kennard and Stone 1969. The FSSF-fr algorithm improves the performance of

the FSSF-f algorithm in terms of hmax criterion (Equation (1.2)) by making use of the

reflected design points. The FSSF-b algorithm improves the computational expense of the

FSSF-f algorithm for large nmax using backward elimination and a fast K-NN algorithm.

For fixed dimension q, the theoretical time complexity of FSSF-b is of O(nmax log nmax)

versus O(n2
max) for FSSF-f/fr. In terms of actual runtime for the examples we considered,

the FSSF-b algorithm was as much as 100 times faster than the FSSF-f algorithm (see

Figure 1.9b).

We also proposed extensions of the FSSF algorithms to other distance-based and

non-distance-based design criteria. As discussed in Section 1.5, the FSSF methods can

be readily extended to other user-defined distances and can be modified to select fully-

sequential design points according to certain non-distance-based design criteria.

For practitioners using the FSSF designs for computer experiments, we recommend

the following guidelines. If computational expense is not an issue (e.g., for small nmax, or

for large nmax but with unlimited run time resources), then we recommend using either

(i) FSSF-f, if dmin is the primary performance measure of interest or (ii) FSSF-fr, if hmax

is the primary performance measure of interest. If computational expense is a concern

and nmax is large, we recommend using FSSF-b. The computational expense may be

approximated from Figure 1.9.

We note that the runtime of the FSSF-b algorithm could be further improved by uti-

lizing parallel computing. As we noted earlier, in all experiments shown in this chapter,

more than 90% of computation time of the FSSF-b algorithm was for the K-NN portion
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of the algorithm. Consequently, improving the computational expense of the K-NN algo-

rithm can reduce the runtime of the FSSF-b algorithm. For example, instead of using the

kd-tree structure (the performance of which degrades as q increases), one could imple-

ment the K-NN on a GPU in parallel (Garcia, Debreuve, and Barlaud 2008). In contrast,

none of the other sequential methods would be able to take much advantage of parallel

processing, because most of their computational expense comes from the sequential part

of the algorithm, and sequential algorithms by nature cannot be parallelized.

One potential disadvantage of the proposed FSSF algorithms is that they do not

consider the space-filling properties of designs when projected into lower-dimensinal sub-

spaces of the design space. As future work, we are investigating incorporating concepts

in V Roshan Joseph, Gul, and Shan Ba 2015 into the FSSF algorithms to provide better

space-filling properties in projected subspaces.

1.7. Supplementary Material

The code implementing all proposed algorithms in the chapter can be found in the R

package FSSF (Shang and Apley 2020), which is available on the online Supplementary

Materials section for Shang and Apley 2021.
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CHAPTER 2

Diversity Subsampling: Custom Subsamples from Large Data

Sets



73

2.1. Introduction

Diversity subsampling selects a subset of points from a data set with the goal of having

the selected points spread out evenly over the data space. It has been found useful in

various fields. For instance, diversity subsampling from massive scRNA-seq data sets

helps preserve rare cell types (Song et al. 2022b); it serves as a data splitting tool in

building predictive models (Puzyn et al. 2011); it is frequently used as a pre-processing

step to select representative subsample points (Silveira and Barbeira 2022); and it has

been applied to active learning algorithms (Yu and Kim 2010; Haussmann et al. 2020).

Suppose we have data set D consisting of an identically and independently distributed

(i.i.d.) sample of size N of some random vector X ∈ Rq; i.e., D = {x1, x2, · · · , xN},

where xi ∈ Rq. Let Sn = {xj1 , · · · , xjn} ⊂ D, for {j1, · · · , jn} ⊂ {1, 2, · · · , N} denote

a subsample of size n selected from D. In the literature, loosely speaking, Sn is called

a diverse subsample from D if the points it constitutes are as different from each other

as possible (sometimes called the repulsiveness property, such as in Wang et al. 2018;

Bıyık et al. 2019) and cover as much of the effective support of the data as possible. The

typical setting is that one will observe some response variable for the n cases in Sn (e.g.,

by conducting some follow-up experimental or observational study, surveying the cases,

etc.) which will then serve as the training data for fitting some supervised learning model.

Existing popular methods for diversity subsampling from given data include Determi-

nantal Point Processes (DPP, Bıyık et al. 2019), Computer Aided Design of EXperiments

(CADEX, Kennard and Stone 1969), Poisson Disk Sampling (PDS, Cook 1986; Yuksel

2015) and k-means clustering (MacQueen et al. 1967; D. Wu 2018). DPP can be used

for diversity subsampling by first specifying an appropriately constructed kernel matrix
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so that the most diverse set of points will have the largest probability of being selected

under this DPP; this set is thus the mode of the DPP. It has been shown that finding this

mode is an NP-hard problem (Ko, Lee, and Queyranne 1995); various algorithms have

been proposed to approximate the mode of a DPP, such as (Bıyık et al. 2019; Han and

Gillenwater 2020). CADEX selects points sequentially from data such that the distance

between each newly selected point and its closest point in the previously selected point

set is as large as possible. Song et al. 2022b recently proposed an efficient heuristic for

the CADEX algorithm, which is called the scSampler algorithm. PDS is a conceptually

simple algorithm that selects subsequent points outside of the union of hyper-spherical

neighborhoods of all selected points. The radius of these hyper-spherical neighborhoods

is usually user-specified and taken as an input of the algorithm, which ensures that the

pairwise distances between all selected points are no smaller than twice the specified ra-

dius (Cook 1986). Existing PDS algorithms that do not require the users to pre-specify a

fixed radius include McCool and Fiume 1992 and Yuksel 2015. D. Wu 2018 proposed the

RD ALR method (Representativeness and Diversity, Active Learning for Regression) that

uses k-means clustering (MacQueen et al. 1967) to select a diverse subsample from D; it

selects each point in Sn sequentially. At iteration j, RD ALR clusters the entire data into

j + 1 clusters using k-means, and the newly selected point are chosen from clusters that

do not contain any previously selected points.

One common property of the above-mentioned methods is that the subsamples they

select are all repulsive, in the sense that they attempt to ensure that the selected points are

as far away from each other as possible. Although repulsiveness is an appealing property

of a uniform or space-filling subsample, it might not be achievable when there are many
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replicated observations in D. In contrast to the existing subsampling algorithms, we

define our diversity subsampling goal as to select a subsample that follows, as closely as

possible, a mutually independent uniform distribution over the effective support of D, and

we refer to our proposed algorithm as the diversity subsampling (DS) algorithm. Our DS

algorithm has substantial benefits compared with existing ones. First, aiming to select an

i.i.d uniform subsample over the effective support of D allows replications to occur in the

subsample. This has advantages in machine learning applications in which the response

variable Y is observed with error and/or when there are additional latent variables, since

in these situations it may be desirable to observe Y at multiple very similar X values.

Second, our DS algorithm handles data with large numbers of replicated values along all

or certain dimensions much better than existing algorithms: In this challenging situation,

the subsample selected by the DS algorithm is still as evenly spread out over the data

space as possible, but the subsamples selected by existing algorithms degraded to random

sampling (we provide an example to illustrate this shortly). Third, our DS algorithm turns

out to be much more computationally efficient, especially with larger N and n (which is

increasingly common in the big data era) than existing methods (see Section 2.5.3 for

details). Lastly, it is easy to generalize our DS algorithm to select subsamples following

any desired distribution (not just uniform).

To illustrate the better uniformity properties of the DS subsample than existing meth-

ods when there are many replicated observations in D, consider the following simple

example in which X follows a bivariate standard normal distribution with independent

components. We set q = 2, N = 10, 000 and n = 2, 000 in this example. The 10, 000

data points were generated using 2, 000 independently drawn points from the bivariate
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standard normal distribution, each of which was replicated five times. Figure 2.1 com-

pares heat maps of the estimated density of typical subsamples selected by three different

methods: random sampling from a data set, scSampler-sp1 (Song et al. 2022b), and our

DS algorithm (see Section 2.2 for details of the DS algorithm). The densities were esti-

mated using a Gaussian kernel with a bandwidth of 0.1. As Figure 2.1 shows, the points

selected by random sampling (the left plot of Figure 2.1) follow the original bivariate

standard normal distribution, i.e., they concentrate in the middle region of the plotted

area, where the data points (not shown in Figure 2.1) are denser. The subsample selected

by the scSampler-sp1 algorithm (the middle plot of Figure 2.1) also exhibits the same

phenomenon. In contrast, the subsample selected by DS (the right plot of Figure 2.1) is

much closer to being uniformly distributed over the effective support of the data.

2.5 0.0 2.5

2

0

2

Random Sampling

2.5 0.0 2.5

scSampler-sp1

2.5 0.0 2.5

DS

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21

Figure 2.1. Heat maps comparing the estimated densities of the selected
subsamples using three different methods for q = 2. The left, middle, and

right plots are for the subsamples selected by random sampling,
scSampler-sp1, and DS, respectively. The DS subsample is far more

uniformly distributed than the other two.

The structure of this chapter is as follows. Section 2.2 presents our DS algorithm.

Section 2.3 discusses generalizations of the proposed DS algorithm to select subsamples
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following any desired distribution and proves that under mild conditions, the subsample

(of fixed size n) selected by the generalized DS algorithm converges in distribution to an

i.i.d sample following the desired distribution, as N approaches infinity. Section 2.5 nu-

merically demonstrates the effectiveness of the DS algorithm and its advantages compared

to known methods using data exhibiting a variety of distributions. Section 2.6 concludes

the chapter.

2.2. The DS Algorithm for Diversity Subsampling

The goal of our DS algorithm is to select a subsample Sn of size n (typically, n is

much less than the data size N) points in D = {x1, x2, · · · , xN} that is distributed as

closely as possible to an i.i.d. sample from the uniform distribution over S, the effective

support of the data distribution. First, we discuss the case when the distribution of X is

continuous, then we extend our DS method for general data sets with discrete or mixed

continuous and discrete data distributions. Let f(x) and S denote the probability density

function (p.d.f) of X and its support, both of which are assumed unknown. We develop

two versions of the DS algorithm, for sampling from D with or without replacement,

the former being relevant in a smaller class of applications in which it is desirable to

observe the response Y multiple times for the same observation X. For brevity, we focus

on the sampling-without-replacement version of the DS algorithm (denoted as the DS

algorithm) in this section and discuss the sampling-with-replacement version (denoted as

the DS-WR algorithm) briefly. In this section, we also discuss the relation of the proposed

DS algorithm to the well-known acceptance-rejection sampling approach (Casella, Robert,

and Wells 2004), as the DS algorithm has certain conceptual similarities but is developed
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for the more challenging situation of sampling from a given finite data set D, as compared

to generating random samples from some specified proposal distribution. We prove certain

asymptotic performance results for the DS algorithm in a more general way in Section 2.4,

where we demonstrate that under certain assumptions the uniformity and independence

of points in Sn can be guaranteed asymptotically.

Procedure 1 summarizes the DS algorithm for sampling without replacement, which

we describe as follows. We first estimate the density f(x) at each data point in D using

some suitable density estimator 1 (see Appendix B.1 for details). Denote the estimated

density at xi as f̂(xi), for i = 1, · · · , N . Then the DS algorithm selects the n points in

Sn from D sequentially at each iteration k as follows (for k = 1, 2, ..., n).

At iteration k = 1, the DS algorithm selects the index j1 ∈ {1, · · · , N} of the first

point in Sn, denoted by xj1 , with probability

(2.1) P (j1) =
1

f̂(xj1 )∑N
i=1

1
f̂(xi)

.

At iteration k ≥ 2 , the DS algorithm selects the index jk ∈ {1, · · · , N} \ {j1, · · · , jk−1}

of the next sampled point xjk
with probability

(2.2) P (jk|j1, · · · , jk−1) =
1

f̂(xjk
)∑N

i=1
1

f̂(xi)
−∑k−1

i=1
1

f̂(xji
)

.

Two practical issues must be addressed when applying the above idea to real data

sets. One issue is that n might not be negligibly small compared to N . Since we are

sampling without replacement, the size of the remaining data set D \ Sk−1 at iteration

1One wants to make sure that there are no zero or negative values in the estimates e.g., due to numerical
errors.
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k decreases with k; thus the distribution of the remaining data can change dramatically

from the distribution of the original data D. We remedy this by updating the estimated

density regularly so that it reflects the distribution of the remaining data and not the

distribution of D. In particular, we update the density of remaining points in D after

every M = max{100, ⌊ n
U
⌋} points have been selected, where U is a user-chosen integer

(we use U = 10 in all examples) . Here the symbol ⌊ n
U
⌋ denotes the largest integer not

larger than n
U

. We provide a method to update density efficiently in Appendix B.1.

The other issue is that the density estimation method proposed in Appendix B.1 only

applies when the data distribution is continuous. In the case when the data distribution

is discrete or mixed continuous and discrete, we approximate the true distribution with

a continuous one by adding a small Gaussian noise (lines 3–10 of Procedure 1). For

simplicity and since data are often rounded, we apply this Gaussian perturbation for all

data sets regardless of the true data distribution being discrete or not. To be specific, for

the density estimation step, ∀i ∈ {1, · · · , N}, we replace xi with xi +σpZi, where {Zi}N
i=1

follow i.i.d multivariate normal distribution N (0q, 1q×q), where 0q is the zero vector in

Rq and 1q×q is the identity matrix in Rq×q. We choose σp > 0 to be a small number

compared to the pairwise distances of D. Note that adding Gaussian noise is actually

consistent with the notion of Gaussian kernel density estimation (KDE), which can be

viewed as convolving the empirical distribution of D with a Gaussian "noise" density with

standard deviation related to the kernel bandwidth.

Procedure 1 summarizes the DS algorithm.
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Procedure 1 DS Algorithm: Diversity Subsampling without Replacement
Input: n, D = {x1, · · · , xN} ⊂ [0, 1]q

1: N ← |D|

2: Standardize D into [0, 1]q, and store this new data set as D̃ = {x̃i}N
i=1

3: ns ← min{2000, ⌊N
4 ⌋}

4: Randomly select {r1, · · · , rns} ⊂ {1, · · · , N} with equal probabilities

5: Dsub ← all unique points in {x̃rj
}ns

j=1

6: Repeat line 4 and 5 until |Dsub| > 1

7: σp ← 1
8 min{x̃,ỹ}⊂Dsub∥x̃− ỹ∥2

8: for i = 1, · · · , N do

9: Independently generate Zi ∼ N (0q, 1q×q)

10: x̃i ← x̃i + σpZi

11: end for

12: Estimate density f̂(x̃i), for each i = 1, 2, · · · , N (see Appendix B.1)

13: f̂(xi)← f̂(x̃i), for each i = 1, 2, · · · , N

14: Set index array I1 ← {1, · · · , N}

15: Select j1 randomly from I1 with probabilities given by Equation (2.1)

16: S1 ← {xj1}

17: Set an estimated number of density estimation updates U (e.g. U ← 10)

18: Set the number of points to select before conducting a density update. M ←

max{100, ⌊ n
U
⌋}

19: Set UpdateState← {M, 2M, · · · , ⌊ n
M
⌋M}

20: for k = 2, · · · , n do

21: Ik ← Ik−1 \ jk−1

22: if k − 1 ∈ UpdateState then

23: Re-Estimate {f̂(x̃i)}i∈Ik
by efficient updating (See Appendix B.1 for details)

24: Reset f̂(xi)← f̂(x̃i), for each i ∈ Ik

25: end if

26: Select jk randomly from Ik with probabilities given by Equation (2.2)

27: Sk ← Sk−1 ∪ {xjk
}

28: end for

Output: Subsample set Sn = {xj1 , xj2 , · · · , xjn}
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Sampling-With-Replacement Version of the DS Algorithm In certain situ-

ations, subsampling from D with replacement may be relevant. In our primary setting

where D is unlabeled data and the intent is to observe a response Y for each point in Sn,

sampling with replacement is only relevant if it is possible to experiment on (i.e., observe

a response yi for) the same subject xi multiple times, each time observing a potentially

different stochastic value for yi. As an example, suppose xi is a set of measured charac-

teristics of sample i of a chemical compound from a large set D of samples over which

X varies randomly, yi is some output property of a subsequent chemical reaction with

reactants taken from sample i, and yi can vary randomly if the reaction is repeated using

reactants from sample i again. In this case, one may want to use sampling from D with

replacement, so the same sample can be experimented on multiple times if needed. On

the other hand, suppose xi is a set of clinical, phenotypical, and demographic character-

istics of a patient i having a particular condition, and yi is the efficacy of a treatment for

that condition administered to patient i. In this case, it is not meaningful to apply an

experimental treatment to the same patient twice, so sampling with replacement becomes

irrelevant.

For the sampling-with-replacement version of the DS algorithm, denoted by DS-WR,

at each iteration k ∈ {1, 2, · · · , n}, we select the next point xjk
from D as follows. The

index jk ∈ {1, 2, ..., N} is selected with probability

(2.3) P (jk|j1, · · · , jk−1) = P (jk) =
1

f̂(xjk
)∑N

j=1
1

f̂(xj)

,

independently of which points have been selected in earlier iterations. The DS-WR algo-

rithm is identical to Procedure 1, except that for DS-WR, one repeats line 15 n times to
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produce the indices {j1, j2, ..., jn} of the desired subsample of size n, and all lines after

line 15 are omitted. The asymptotic performance of DS-WR can be proven similarly to

Theorem 1, which we omit for brevity.

If the DS-WR version is relevant for a particular problem, there is a potential drawback

that should be considered if there are severe outliers in the data. Most existing density

estimation techniques tend to underestimate the density in extremely sparse tail regions

of S, where there are only a few outlier points in D. This causes the estimated density at

the outlier x points to have extremely low values and therefore very high probabilities of

getting selected in an iteration of the DS algorithm. To provide the most diversity, it is

generally desirable to select these points for the subsample, which the DS algorithm does.

However, in the DS-WR algorithm, the same outlier points may get selected repeatedly

for the subsample, which ends up being counterproductive for the diversity goal.

Figure 2.2 shows an example to illustrate this. The subsample of size n = 100 was

selected by the DS-WR algorithm from a data set D with N = 3000 and q = 2. The

open red circles are the selected points in Sn, and the numbers beside them indicate how

many times each point was selected. Notice that there are only 11 unique points in the

subsample of size 100, and over half of the 100 points are repeated values of only three xi

points that were repeated 30, 15 and 14 times, respectively. The DS algorithm (without

replacement, see Procedure 1) would likely have selected each of the outlier points, but

only once each, which seems more desirable in this case.
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Figure 2.2. Illustration of the oversampling of outliers that can occur
when sampling with replacement is used. The open red circles are the
subsample Sn with n = 100, and the gray points are the set D of size
N = 3000. The numbers next to the outlier points indicate how many

times that point was selected in Sn.

Connection to acceptance sampling. The fact that in the DS algorithm the prob-

ability a point xi is selected is inversely proportional to f̂(xi) is reminiscent of the popular

acceptance-rejection sampling approach (Casella, Robert, and Wells 2004). To relate our

DS algorithm to acceptance-rejection sampling, suppose f(x) denotes some specified pro-

posal distribution in acceptance sampling, and the target distribution is uniform over S.

Then acceptance-rejection sampling generates points {xi : i = 1, 2, · · · } randomly from

f(x), and each xi is accepted with probability 1S(xi)
c|S|f(xi) . Here c ≥ supx∈S

1
|S|f(x) = 1

|S|f ,
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where f def= infS f(x), |S| denotes the volume of S and 1S(x) is an indicator function

that equals 1 if x ∈ S and 0 otherwise. The optimal choice of c is 1
|S|f (Casella, Robert,

and Wells 2004). Although acceptance-rejection sampling draws samples from a specified

distribution f(x) and not from D, one could hypothetically consider modifying it so that

it does the latter. In particular, we could consider selecting points {xi : i = 1, 2, · · · }

randomly from D with equal probability, and then accepting each xi with probability
1S(xi)f

f(xi) , where we take c = 1
|S|f .

There are a number of reasons why this modified acceptance-rejection sampling is not

well-suited to our objective of sampling from D. First, to produce the target uniform

distribution, the acceptance probability 1S(xi)f
f(xi) requires that f is known, which in turn

requires a region S to be specified (our DS algorithms do not require that S is known).

Second, even with optimal choice of c, the probability of accepting a randomly generated

subsample from D is 1
c

= |S|f (see Remark 2.5 of Asmussen and Glynn 2007), which

will typically be small if we want to include regions in which f(x) is very small. This

problem is compounded by the fact that we must use a density estimator f̂(x) instead

of f(x), because density estimators often underestimate the tail densities (for example,

KDE (Rosenblatt 1956 or K-nearest neighbor density estimation (Mack and Rosenblatt

1979)). With such a small average acceptance probability, there may not even be enough

points in D to allow acceptance of n points for the subsample Sn.

2.3. Generalization to Customized Non-Uniform Subsamples

In this section, we discuss how to generalize the DS method to select subsamples

following desired distributions other than uniform and provide an example using the
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generalized DS method to select a subsample with desired properties without using a well-

defined target distribution. The theoretical performance of the generalized DS algorithm

is shown in Section 2.4.

Analogous to acceptance-rejection sampling (Casella, Robert, and Wells 2004), the DS

algorithm can also be generalized to select a subsample from D that follows a general, and

not just uniform, target distribution. Consider the same setting with as in Section 2.2, and

suppose we want to select an i.i.d. subsample from D following some desired distribution

with specified density g(x) = cg̃(x) having support Sg ⊂ S. Here g̃(x) is known but c (the

constant necessary for g(x) to be a proper density) can be unknown. The generalized DS

algorithm differs from the DS algorithm only in that each xi is selected with probability
g̃(xi)
f(xi)∑N

k=1
g̃(xk)
f(xk)

for the generalized DS. Specifically, at iteration k = 1, the generalized DS

algorithm selects the index j1 ∈ {1, · · · , N} of the first select point xj1 , with probability

(2.4) P (j1) =
g̃(xj1 )
f̂(xj1 )∑N
i=1

g̃(xi)
f̂(xi)

.

At iteration k ≥ 2 , the generalized DS algorithm selects the index jk ∈ {1, · · · , N} \

{j1, · · · , jk−1} of the next sampled point xjk
with probability

(2.5) P (jk|j1, · · · , jk−1) =
g̃(xjk

)
f̂(xjk

)∑N
i=1

g̃(xi)
f̂(xi)
−∑k−1

i=1
g̃(xji

)
f̂(xji

)

.

Consequently, Procedure 1 applies to the generalized DS algorithm with only line 15 and

line 26 modified according to Equation (2.4) and Equation (2.5) respectively. We note

that since N is finite in practice, the performance of the generalized DS algorithm will

degrade if the tail of f(x) happens to be the mode of g(x), since in D there may not
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be enough points to choose to form a subsample with density g(x). The same issue is of

course present in the DS algorithm, since the uniform target density also will be much

larger than f(x) in its tail regions. Thus, the points in D falling in the tail regions of

f(x) will be depleted to quickly to allow for a uniform subsample over the tails. We

consider this phenomenon in our examples in Section 2.5, where we also observe that this

is a unavoidable problem for any existing diversity subsampling algorithm.

We now provide an example using the generalized DS algorithm in the case when g(x)

is not a well-defined p.d.f. For classification problems in active learning, uncertainty and

diversity are two desirable properties of the selected subsample. And many works have

found that a subsample incorporating both properties can be more beneficial (Ren et al.

2021). Here we provide a simple example illustrating how to use the generalized DS for

such purposes.

Consider the following binary classification problem with q = 2. The data set D of

predictor vectors is the same as in the MGM example described in Section 2.5.1, and we

generate the binary response variable Y (= 0 or 1) via

(2.6) P (Y = 1|X) = P (Y = 1|X1, X2) = 0.3 1
1 + e−2X1

+ 0.7 1
1 + e3(X2−4) .

We use the Euclidean norm of the gradient of Equation (2.6) as a simple surrogate measure

of classification uncertainty (a large gradient means the predicted probability P (Y = 1|X)

is changing rapidly in that region, which usually translates to higher classification uncer-

tainty) and denote it as u(x) def= ∥∇XP (Y = 1|X)∥2. To incorporate both uncertainty

and diversity into the subsample, we let g(x) = u(x) + uα, where uα is a constant (and

thus represents a uniform distribution to promote the diversity, whereas u(x) considers
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the classification uncertainty) that we take to be the lower α quantile of set {u(xi)}N
i=1 for

some specified α. Here g(x) typically will not be a well-defined p.d.f. For the generalized

DS algorithm, the sampling probability of each data point will be proportional to g(xi)
f(xi) .

Selecting a larger α will promote more diversity, and selecting a smaller α will result in

more subsample points chosen in the areas with higher uncertainty. Figure 2.3 shows the

selected subsamples for various α. The colorbar shows the values of Equation (2.6). We

observe that when α = 0, most of the selected points locate close to the decision bound-

ary x : P (Y = 1|x) = 0.5 (see Figure 2.3a), where the highest uncertainty occurs in this

model. And using a larger α, such as α = 50% allows more subsample points in other

regions in the predictor space (see Figure 2.3c). And when α = 100%, the subsample

appears to be quite diverse.
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Figure 2.3. Subsample selected by generalized DS method with varying α.
The red open circles indicate a selected subsample point. The color bar on

the right side of each plot shows the value of the event probability
specified in Equation (2.6).

2.4. Theoretical Performance Analysis

We state and prove the asymptotic performances of the generalized DS algorithm (see

Section 2.3) in Lemma 1 and Theorem 1.

Lemma 1. Let XN = (Xi : i = 1, 2, · · · , N), where X1, X2, · · · , XN ∈ Rq are

independently and identically distributed (i.i.d.) copies of random vector X. We assume

that these random variables are all defined on the same complete probability space. Let
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X have absolutely continuous cumulative distribution function (c.d.f) F (x) and density

function f(x) with support S ⊂ Rq. Let g(x) = cg̃(x) be the desired density function

for the selected subsample that is known up to a constant c ∈ R+. Let G(x) be the c.d.f

corresponding to g(x). Assume that the support of g(x), Sg ⊂ S. Conditional on XN , let

ZN |XN be a discrete random variable drawn from XN with probability mass function

(2.7) P (ZN = Xi|XN) =
g̃(x)

f(Xi)∑N
j=1

g̃(x)
f(Xj)

,

for i = 1, 2, · · · , N . Then as N → ∞, ZN converges in distribution to a random vector

following distribution G, which we denote by Z∞ ∼ G.

Proof. Consider any x = (x1, x2, · · · , xq)T ∈ Rq, and let R(x) = (−∞, x1] ×

(−∞, x2] × · · · × (−∞, xq] ⊂ Rq denote the rectangle southwest of x. The distribution

function of ZN is

(2.8) FZN
(x) := P (ZN ∈ R(x)) = E[IR(x)(ZN)] = E

[
E
[
IR(x)(ZN)

∣∣∣XN
]]

,

where IR(x)(ZN) denotes the indicator function of the event ZN ∈ R(x). In other words,

IR(x)(ZN) = 1 if ZN ∈ R(x); and IR(x)(ZN) = 0 otherwise. The last equality in Equa-

tion (2.8) holds by the law of total expectation. The inner expectation in Equation (2.8)

is
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E[IR(x)(ZN)|XN ] =P (ZN ∈ R(x)|XN) =
N∑

i=1
P (ZN = Xi|XN)IR(x)(Xi),

=
∑N

i=1
g̃(Xi)
f(Xi)IR(x)(Xi)∑N

i=1
g̃(Xi)
f(Xi)

=
∑N

i=1
cg̃(Xi)
f(Xi) IR(x)(Xi)∑N

i=1
cg̃(Xi)
f(Xi)

,

=
∑N

i=1
g(Xi)
f(Xi)IR(x)(Xi)∑N

i=1
g(Xi)
f(Xi)

.

(2.9)

Combining Equations (2.8) and (2.9) and taking the limit as N →∞ gives

(2.10) lim
N→∞

FZN
(x) = lim

N→∞
E

[∑N
i=1

g(Xi)
f(Xi)IR(x)(Xi)∑N

i=1
g(Xi)
f(Xi)

]
.

Now consider the random variables 1
N

∑N
i=1

g(Xi)
f(Xi) and 1

N

∑N
i=1

g(Xi)
f(Xi)IR(x)(Xi). Since

X, X1, · · · , XN are i.i.d. and ∀z ∈ S, f(z) > 0 and g(z) > 0, we have ∀i ∈ {1, 2, · · · , N},

(2.11)

E

[∣∣∣∣∣ g(Xi)
f(Xi)

∣∣∣∣∣
]

= E

[
g(Xi)
f(Xi)

]
=
∫

S

g(z)
f(z)f(z) dz =

∫
S

g(z) dz =
∫

Sg

g(z) dz = 1 <∞,

and

E

[∣∣∣∣∣ g(Xi)
f(Xi)

IR(x)(Xi)
∣∣∣∣∣
]

=E

[
g(Xi)
f(Xi)

IR(x)(Xi)
]

=
∫

S

g(z)
f(z)IR(x)(z)f(z) dz,

=
∫

Sg

g(z)IR(x)(z) dz =
∫

R(x)∩Sg

g(z) dz =
∫

R(x)
g(z) dz < 1 <∞.

(2.12)
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Therefore, by the strong law of large numbers,

1
N

N∑
i=1

g(Xi)
f(Xi)

a.s.−−→ 1, and(2.13)

1
N

N∑
i=1

g(Xi)
f(Xi)

IR(x)(Xi) a.s.−−→
∫

R(x)
g(z) dz,(2.14)

where the a.s.−−→ symbol denotes almost sure (a.s.) convergence, and so their ratio also

converges a.s., i.e.,

(2.15)
1
N

∑N
i=1

g(Xi)
f(Xi)IR(x)(Xi)

1
N

∑N
i=1

g(Xi)
f(Xi)

a.s.−−→
∫

R(x)
g(z) dz.

Noticing that
∣∣∣∣∣ 1

N

∑N

i=1
g(Xi)
f(Xi) IR(x)(Xi)

1
N

∑N

i=1
g(Xi)
f(Xi)

∣∣∣∣∣ ≤ 1 a.s., we can apply bounded convergence theo-

rem to obtain

(2.16) lim
N→∞

E

[ 1
N

∑N
i=1

g(Xi)
f(Xi)IR(x)(Xi)

1
N

∑N
i=1

g(Xi)
f(Xi)

]
= E

[ ∫
R(x)

g(z) dz

]
=
∫

R(x)
g(z) dz.

Then by using Equations (2.10) and (2.16) we have

lim
N→∞

FZN
(x) = lim

N→∞
E

[∑N
i=1

g(Xi)
f(Xi)IR(x)(Xi)∑N

i=1
g(Xi)
f(Xi)

]
= lim

N→∞
E

[ 1
N

∑N
i=1

g(Xi)
f(Xi)IR(x)(Xi)

1
N

∑N
i=1

g(Xi)
f(Xi)

]

=
∫

R(x)
g(z) dz,

(2.17)

which implies ZN converges in distribution to a random vector following distribution

G. □
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Theorem 1. Let XN , X, F (x), f(x), G(x), g(x), c, g̃(x), S, Sg and ZN be as in the

statement of Lemma 1, and define Z1
N

def= ZN . Suppose n ≥ 2 is fixed. We further assume

that supx∈S
g(x)
f(x) < +∞. For each N = 1, 2, · · · , let (Zk

N : k = 2, 3, · · · , n) be drawn

sequentially from XN , without replacement, according to the conditional probability mass

function

(2.18) P (Zk
N = Xi|XN , Z1

N , · · · , Zk−1
N ) =

g̃(Xi)
f(Xi)∑N

j=1
g̃(Xj)
f(Xj) −

∑k−1
j=1

g̃(Zj
N )

f(Zj
N )

,

for i = 1, 2, · · · , N and i /∈ {jN
1 , jN

2 , · · · , jN
k−1}. Here jN

1 , jN
2 , · · · , jN

n are the indices of the

sampled observations in XN , i.e., Zk
N = XjN

k
, for k = 1, 2, · · · , n. Then as N →∞, the

joint distribution of (Zk
N : k = 1, 2, · · · , n) converges in distribution to n i.i.d. random

vectors following distribution G, which we denote by (Zk
∞ : k = 1, 2, · · · , n) ∼ Gn.

Proof. As in the proof of Lemma 1, we consider point x = (x1, · · · , xq)T ∈ Rq and let

R(x) = (−∞, x1]× (−∞, x2]× · · · ,×(−∞, xq] ⊂ Rq denote the the rectangle southwest

of point x. We prove Theorem 1 by induction. Note that when n = 1, Theorem 1 holds

by Lemma 1. Now if we assume for some n > 1, (Zk
∞ : k = 1, · · · , n − 1) ∼ Gn−1, the

goal is to show (Zk
∞ : k = 1, · · · , n) ∼ Gn.
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For any n > 1, the joint cumulative distribution function (c.d.f) of (Z1
N , Z2

N , · · · , Zn
N)

is

F(Z1
N ,··· ,Zn

N )(x1, · · · , xn)

=P (Z1
N ∈ R(x1), · · · , Zn

N ∈ R(xn))

=E

[
n∏

k=1
IR(xk)(Zk

N)
]

=E

[(
n−1∏
k=1

IR(xk)(Zk
N)
)

E
[
IR(xn)(Zn

N)|XN , Z1
N , · · · , Zn−1

N

]]
,

(2.19)

where xi ∈ Rq, for i = 1, 2, · · · , n. As before, the symbol IR(xk)(Zk
N) denotes the indicator

function of Zk
N ∈ R(xk). The third equality in Equation (2.19) holds due to the law of

total expectation.

By design of sampling mechanism specified in Equation (2.18), the inner expectation

in Equation (2.19) is

E
[
IR(xn)(Zn

N)|XN , Z1
N , · · · , Zn−1

N

]

=
N∑

i=1

g̃(Xi)
f(Xi)∑N

j=1
g̃(Xj)
f(Xj) −

∑n−1
j=1

g̃(Zj
N )

f(Zj
N )

IR(xn)(Xi)(1− I{Z1
N ,··· ,Zn−1

N }(Xi))

=
N∑

i=1

cg̃(Xi)
f(Xi)∑N

j=1
cg̃(Xj)
f(Xj) −

∑n−1
j=1

cg̃(Zj
N )

f(Zj
N )

IR(xn)(Xi)(1− I{Z1
N ,··· ,Zn−1

N }(Xi))

=
N∑

i=1

g(Xi)
f(Xi)∑N

j=1
g(Xj)
f(Xj) −

∑n−1
j=1

g(Zj
N )

f(Zj
N )

IR(xn)(Xi)(1− I{Z1
N ,··· ,Zn−1

N }(Xi))

=
∑N

j=1
g(Xj)
f(Xj)IR(xn)(Xj)−

∑n−1
j=1

g(Zj
N )

f(Zj
N )IR(xn)(Zj

N)∑N
j=1

g(Xj)
f(Xj) −

∑n−1
j=1

g(Zj
N )

f(Zj
N )

(2.20)
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Equations (2.19) and (2.20) together yield

F(Z1
N ,··· ,Zn

N )(x1, · · · , xn)

=E


(

n−1∏
k=1

IR(xk)(Zk
N)
) ∑N

j=1
g(Xj)
f(Xj)IR(xn)(Xj)−

∑n−1
j=1

g(Zj
N )

f(Zj
N )IR(xn)(Zj

N)∑N
j=1

g(Xj)
f(Xj) −

∑n−1
j=1

g(Zj
N )

f(Zj
N )

 ,

(2.21)

the limit of which we seek as N → ∞. Towards this end, consider the convergence of

random sequence
(∏n−1

k=1 IR(xk)(Zk
N)
) ∑N

j=1
g(Xj )
f(Xj ) IR(xn)(Xj)−

∑n−1
j=1

g(Z
j
N

)

f(Z
j
N

)
IR(xn)(Zj

N )∑N

j=1
g(Xj )
f(Xj ) −

∑n−1
j=1

g(Z
j
N

)

f(Z
j
N

)

as N →∞.

First consider the convergence of ∏n−1
k=1 IR(xk)(Zk

N) as N → ∞. By the induction

assumption, we have

(2.22) (Z1
N , · · · , Zn−1

N ) D−→ Gn−1,

as N → ∞, where symbol D−→ denotes convergence in distribution. We use the notation

Gn−1 = (G1, · · · , Gn−1) with G1, · · · , Gn−1 being i.i.d. random vectors following distri-

bution G. By the continuous mapping theorem (Theorem 2.3 in Van der Vaart 2000), we

obtain

(2.23)
n−1∏
k=1

IR(xk)(Zk
N) D−→

n−1∏
k=1

IR(xk)(Gk).

Next we discuss the convergence of
1
N

∑N

j=1
g(Xj )
f(Xj ) IR(xn)(Xj)− 1

N

∑n−1
j=1

g(Z
j
N

)

f(Z
j
N

)
IR(xn)(Zj

N )

1
N

∑N

j=1
g(Xj )
f(Xj ) − 1

N

∑n−1
j=1

g(Z
j
N

)

f(Z
j
N

)

as N →

∞. We do so by considering the convergence of random sequences 1
N

∑N
j=1

g(Xj)
f(Xj)IR(xn)(Xj),

1
N

∑N
j=1

g(Xj)
f(Xj) ,

1
N

∑n−1
j=1

g(Zj
N )

f(Zj
N )IR(xn)(Zj

N), 1
N

∑n−1
j=1

g(Zj
N )

f(Zj
N ) . In the proof of Lemma 1, we have
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argued that (see Equations (2.13) and (2.14)), as N →∞,

1
N

N∑
j=1

g(Xj)
f(Xj)

IR(xn)(Xj) a.s.−−→
∫

R(xn)
g(z) dz and,(2.24)

1
N

N∑
j=1

g(Xj)
f(Xj)

a.s.−−→ 1,(2.25)

where symbol a.s.−−→ denotes almost sure convergence. Since supx∈S
g(x)
f(x) < +∞, by using

the first Borel-Cantelli Lemma (see Theorem 18.1 in Gut 2013), it is easy to show that

as N →∞, ∀ϵ > 0,

P

∣∣∣∣∣∣ 1
N

n−1∑
j=1

g(Zj
N)

f(Zj
N)

∣∣∣∣∣∣ ≥ ϵ i.o.
 = 0 and,(2.26)

P

∣∣∣∣∣∣ 1
N

n−1∑
j=1

g(Zj
N)

f(Zj
N)

IR(xn)(Zj
N)

∣∣∣∣∣∣ ≥ ϵ i.o.
 = 0,(2.27)

where i.o. stands for infinitely often. Therefore,

− 1
N

n−1∑
j=1

g(Zj
N)

f(Zj
N)

a.s.−−→ 0 and,(2.28)

− 1
N

n−1∑
j=1

g(Zj
N)

f(Zj
N)

IR(xn)(Zj
N) a.s.−−→ 0.(2.29)
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Since by assumption the probability space is complete, Equations (2.24), (2.25), (2.28)

and (2.29) together yield

∑N
j=1

g(Xj)
f(Xj)IR(xn)(Xj)−

∑n−1
j=1

g(Zj
N )

f(Zj
N )IR(xn)(Zj

N)∑N
j=1

g(Xj)
f(Xj) −

∑n−1
j=1

g(Zj
N )

f(Zj
N )

=
1
N

∑N
j=1

g(Xj)
f(Xj)IR(xn)(Xj)− 1

N

∑n−1
j=1

g(Zj
N )

f(Zj
N )IR(xn)(Zj

N)
1
N

∑N
j=1

g(Xj)
f(Xj) −

1
N

∑n−1
j=1

g(Zj
N )

f(Zj
N )

a.s.−−→
∫

R(xn)
g(z) dz,

(2.30)

where we used the properties of almost sure convergence and continuous mapping theorem

(Theorem 2.3 in Van der Vaart 2000).

Noticing that the limit in Equation (2.30) is a constant, we apply Slutsky’s Theorem

(Slutsky 1925) with Equations (2.23) and (2.30) and obtain

(
n−1∏
k=1

IR(xk)(Zk
N)
) ∑N

j=1
g(Xj)
f(Xj)IR(xn)(Xj)−

∑n−1
j=1

g(Zj
N )

f(Zj
N )IR(xn)(Zj

N)∑N
j=1

g(Xj)
f(Xj) −

∑n−1
j=1

g(Zj
N )

f(Zj
N )

D−→
∫

R(xn)
g(z) dz

n−1∏
k=1

IR(xk)(Gk),

(2.31)

as N →∞.
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Now consider the random variable on the left-hand-side of Equation (2.31). We have

P


∣∣∣∣∣∣∣∣
(

n−1∏
k=1

IR(xk)(Zk
N)
) ∑N

j=1
g(Xj)
f(Xj)IR(xn)(Xj)−

∑n−1
j=1

g(Zj
N )

f(Zj
N )IR(xn)(Zj

N)∑N
j=1

g(Xj)
f(Xj) −

∑n−1
j=1

g(Zj
N )

f(Zj
N )

∣∣∣∣∣∣∣∣ ≤ 1



≥P


∣∣∣∣∣∣∣∣
∑N

j=1
g(Xj)
f(Xj)IR(xn)(Xj)−

∑n−1
j=1

g(Zj
N )

f(Zj
N )IR(xn)(Zj

N)∑N
j=1

g(Xj)
f(Xj) −

∑n−1
j=1

g(Zj
N )

f(Zj
N )

∣∣∣∣∣∣∣∣ ≤ 1



≥P

∣∣∣∣∣∣
∑

j∈{1,··· ,N}\{jN
1 ,··· ,jN

n−1}
g(Xj)
f(Xj)IR(xn)(Xj)∑

j∈{1,··· ,N}\{jN
1 ,··· ,jN

n−1}
g(Xj)
f(Xj)

∣∣∣∣∣∣ ≤ 1


=1

(2.32)

Thus the random variable
(∏n−1

k=1 IR(xk)(Zk
N)
) ∑N

j=1
g(Xj )
f(Xj ) IR(xn)(Xj)−

∑n−1
j=1

g(Z
j
N

)

f(Z
j
N

)
IR(xn)(Zj

N )∑N

j=1
g(Xj )
f(Xj ) −

∑n−1
j=1

g(Z
j
N

)

f(Z
j
N

)

is bounded

from above by a constant with probability 1, which indicates that it is uniformly inte-

grable (Theorem 4.4 of Gut 2013). Further considering Equation (2.31), we conclude (see

Thm 25.12 in Billingsley 1995 on page 338) that as N →∞,

E


(

n−1∏
k=1

IR(xk)(Zk
N)
) ∑N

j=1
g(Xj)
f(Xj)IR(xn)(Xj)−

∑n−1
j=1

g(Zj
N )

f(Zj
N )IR(xn)(Zj

N)∑N
j=1

g(Xj)
f(Xj) −

∑n−1
j=1

g(Zj
N )

f(Zj
N )


→E

[∫
R(xn)

g(z) dz
n−1∏
k=1

IR(xk)(Gk)
]

=
∫

R(xn)
g(z) dz

∫
Sg

· · ·
∫

Sg

(
n−1∏
k=1

IR(xk)(yk)g(yk)
)

dy1 · · · dyn−1

=
∫

R(xn)
g(z) dz

n−1∏
k=1

∫
R(xk)

g(z) dz

=
n∏

k=1

∫
R(xk)

g(z) dz.

(2.33)
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The result follows immediately from Equations (2.21) and (2.33). □

Remark 1. Theorem 1 applies to the DS algorithm (Procedure 1) for producing a

uniform sample by setting g̃(x) = 1, ∀x ∈ Sg in Lemma 1 and Theorem 1.

The significance of Theorem 1 is that it shows that, as N → ∞, the generalized DS

algorithm does indeed produce an i.i.d. sample following the desired target distribution

G, providing that the support of f contains the support of g and that g
f

is bounded from

above by a finite number.

2.5. Numerical Performance Analysis of the DS Algorithm

In this section, we test the performance of the DS algorithm using data sets following

various distributions and compare it with competing subsampling methods. Section 2.5.1

discusses performance evaluation criteria and the experimental settings for the compar-

ative examples. Section 2.5.2 provides numerical results comparing uniformity perfor-

mances of DS with competing algorithms, and Section 2.5.3 compares runtime of the

algorithms.

2.5.1. Experimental Settings

As a performance evaluation criterion, we use the sample version of energy distance (G.

Székely 2003; Gábor J Székely and Rizzo 2004) to measure the extent to which a subsample

is drawn from an i.i.d uniform distribution over some specified Ω ⊂ S, where Ω is compact.

We provide further details of the choice of Ω below. Let X, U be mutually independent

random variables in Rq. The sample version of energy distance is as follows. Let An =

{X1, · · · , Xn} and U = {U1, · · · , UN1} be i.i.d. samples of size n and N1, respectively,
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from the same distributions followed by X and U , respectively. The energy distance

between samples An and U is (G. Székely 2003)

(2.34) e(An,U) = 2
nN1

n∑
i=1

N1∑
j=1
∥Xi −Uj∥ −

1
n2

n∑
i=1

n∑
j=1
∥Xi −Xj∥ −

1
N2

1

N1∑
i=1

N1∑
j=1
∥Ui −Uj∥.

The Euclidean norm will be used throughout this chapter unless otherwise specified.

By Proposition 1 in G. Székely 2003, as n → ∞ and N1 → ∞, one can show that

E[e(An,U)]→ 0+ if and only if X
D= U . Here D= denotes equality in distribution.

We use Equation (2.34) in the following way. We choose U to be a large uniform

sample over Ω of size N1 >> n, and we take An to be the subsample of size n selected

from D using some subsampling algorithm. If points in subsample An (subsample points

located outside of Ω are excluded under this criterion) follow an i.i.d uniform distribution

over Ω, E[e(An,U)] should be close to zero if n is sufficiently large (we take a fixed large

N1 in this chapter), and the more An differs from an i.i.d uniform distribution over Ω,

the larger we expect E[e(An,U)] to be.

Intuitively, in order to produce a diverse and space-filling subsample, it is typically

desirable to select all or most of the points in the regions for which f(x) has low-density,

which we denote by Ωc, where S = Ω ∪ Ωc. Since we cannot expect uniformity over both

Ω and Ωc for large n (unless N is extremely large) as the points in Ωc will be quickly

depleted, we use a separate measure for performances within Ωc. Since data are sparse

in Ωc, it is generally desirable to select as high a percentage of points in Ωc as possible.

Consequently, we define the following low-density region sampling ratio to measure this

property. Suppose Ω is chosen such that ∀x ∈ Ω, f(x) ≥ δ and ∀x ∈ Ωc, f(x) < δ, for

some specified value δ. Then for a subsample Sn of size n selected from D, the low-density
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region sampling ratio of Sn is defined as

(2.35) r(Sn) =
∑n

k=1 IΩc(xjk
)∑N

i=1 IΩc(xi)
.

In situations where a uniform subsample over S of size n will exhaust points in Ωc, a

larger r(Sn) is desirable, with r(Sn) = 1 typically being the ideal goal (in conjunction

with a uniform distribution over Ω).

For the examples, we consider data sets in which each element of X follows inde-

pendent Gaussian, gamma, exponential, geometric, and multivariate Gaussian mixture

(MGM) distributions. We refer to these five different data distributions as the normal,

gamma, exponential, geometric, and MGM. The normal example illustrates the perfor-

mances of the subsampling algorithms when the data distribution is symmetric; the mode

of the density is achieved in the interior region of S; S is unbounded. The gamma example

illustrates the performances when the data distribution is skewed and S had boundaries

but is unbounded. The exponential distribution, which is an extreme case of the gamma

distribution, illustrates the performances when the data distribution is extremely skewed

and the mode is located at the boundary. The MGM examples are to compare the sub-

sampling algorithms when the data distribution is multimodal with correlated predictors.

We also include geometric examples to illustrate the performances of different algorithms

when the data distribution is discrete. For all examples in this section, the size of D is

N = 104 for q = 2 and N = 105 for q = 10.

The data distributions of each simulation example are as follows. For the normal,

gamma, and exponential examples, the elements of X are independent and the data

distribution has density f(x) = ∏q
j=1 f(xj), where f(x) = 1√

2π
e− x2

2 , f(x) = 1
4Γ(2)xe− x

2 and
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f(x) = e−x, respectively, where Γ() denotes the gamma function. For the MGM example,

D was generated as a mixture of two Gaussian clusters in Rq. The true density function

is as follows.

(2.36) f(x) = 0.5f1(x; µ1, Σ) + 0.5f2(x; µ2, Σ),

where

(2.37) fi(x; µi, Σ) = 1√
(2π)q|Σ|

exp
(
−1

2(x− µi)T Σ−1(x− µi)
)

,

for i = 1, 2. That is, the two Gaussian clusters have a common covariance matrix Σ

but different means µ1, µ2. We let µ1 = 0q and µ2 = 5.0((−1)i)q

i=1. For the common

covariance matrix Σ, we set Σ = σ2Iq×q + αaaT . Here σ2 = 4.0, α = 1.0, Iq×q ∈ Rq×q is

the identity matrix, and a = (ai)q
i=1, for ai = 0.2(i − 2)(−1)i. The data distribution of

the geometric example also has independent covariates; thus the joint probability mass

function (p.m.f) is f(x) = ∏q
j=1 f(xj), where f(x) = (1 − p)x−1p. We set p = 0.5 for

q = 2 and p = 0.9 for q = 10. The supports of the p.d.f functions of the normal, gamma,

exponential, MGM and geometric examples are respectively S = Rq,Rq
+,Rq

+,Rq,Zq
+.

We choose Ω = {x ∈ S|f(x) ≥ δ}, where δ is chosen such that 99% of the data

points in D fall inside of Ω when q = 2 and 99.9% of the data points in D do so when

q = 10. Figure 2.4 depicts Ω for selected examples with q = 2. To be clear, for discrete

distributions, the target uniform distribution is a discrete uniform distribution over S.

This distinction between continuous and discrete distributions is not used in any way in

the DS algorithm, although it is used in our performance measures.
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(a) Normal example
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(c) Geometric example

Figure 2.4. Depictions of the distribution of D (black dots) for N = 2000
and the chosen regions Ω (the boundaries of which are the red solid

curves) for the normal, exponential, and geometric examples used in this
section for q = 2. For normal and exponential examples, the red curve

indicates the boundary of Ω. For the geometric example, the red dotted
curves show region {x ∈ Rq|f(x) ≥ δ}, and the union of solid red dots

corresponds to the region Ω = S ∩ {x ∈ Rq|f(x) ≥ δ}, which consists of a
finite number of discrete points. 2000 randomly chosen data points are

plotted in this graph for each example and are shown by black dots. The
geometric data is perturbed for easy visualization.



103

2.5.2. Numerical Results for Performance Comparison

The competing algorithms that we compare include scSampler-sp1, scSampler-sp16, DPP,

WSE (Weighted Sample Elimination algorithm, an heuristic for PDS proposed by Yuksel

2015), and simple random sampling. Here scSampler-sp1 (Song et al. 2022b) serves as

an efficient heuristic for the CADEX algorithm. scSampler-sp16 (Song et al. 2022b) is

included as a modification of scSampler-sp1 for better computational efficiency. We used

published codes for scSampler-sp1 and scSampler-sp16 (Song et al. 2022a) , DPP (Bıyık

2019) and WSE (Yuksel 2016). We omit the results for RD ALR in this chapter, as we

found that it generally did not perform as well as other methods.

The implementation details for competing methods are as follows. For the two versions

of the scSampler algorithm, no additional parameters need to be set. For DPP, we set

hyperparameters α = 4.0, γ = 0.0 and steps = 0 (Bıyık et al. 2019 recommended setting

α >= 2.0 and γ = 0.0 in their chapter to get the most diverse subsample; we chose steps =

0 for computational efficiency at the cost of the resulted subsample being deterministic).

For WSE, we used the default weighting function in Yuksel 2016 and set Progressive =

True to make the selected subsample sequential.

2.5.2.1. Visual Illustration of Typical Subsamples for Various Methods. This

section shows typical subsamples of the random sampling, DS, scSampler-sp1, scSampler-

sp16, DPP and WSE at n = 200, q = 2 using the normal example. From Figures 2.5b

to 2.5f we see that the subsamples selected by DS, scSampler-sp1, scSampler-sp16, DPP

and WSE all appear to be spread-out over S. The subsample selected by Random Sam-

pling (see Figure 2.5a) appears concentrated in the region where the data points are
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dense. Different from the subsamples selected by scSampler-sp1, and DPP, the subsam-

ple selected by DS (see Figure 2.5b) is non-repulsive, i.e. allows replicates to occur, and

looks like a uniform sample over S, while the subsamples selected by scSampler-sp1 and

DPP (Figures 2.5c and 2.5e) are repulsive, i.e. do not allow replicates to occur, and

looks like Poisson disk distribution (see McCool and Fiume 1992 for definition) samples

over S. Although aiming at selecting a subsample following the Poisson disk distribution,

the WSE subsample (Figure 2.5f) does have subsample points located very close to each

other. Different from the DS and scSampler-16 (Figures 2.5b and 2.5d) subsamples, the

WSE subsample does not appear to be similar to either a uniform sample over S or a

Poisson disk sample over S. The DS subsample and scSampler-sp16 subsample appear

visually similar at n = 200 for the normal example at q = 2. Section 2.5.2.2 shows that

the DS subsamples actually have superior uniform property than the subsamples selected

by scSampler-sp16.
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(c)scSampler − sp1
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(d)scSampler − sp16
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Figure 2.5. Typical subsamples selected by random sampling, DS,
scSampler-sp1, scSampler-sp16, DPP and WSE at n = 200 and q = 2
using the normal example. Rep open circles represent selected points.

Gray dots represent 2000 randomly chosen data points from D with equal
probabilities.

2.5.2.2. Numerical Results using Quantified Measurements. Figure 2.6 shows

that average value of e(Sn,U) for Uniform Sampling converges to 0 as n increases, whereas

for most subsampling algorithms it first decreases and then increases instead of monoton-

ically decreasing with n. This is because Uniform Sampling generates sample points from

Ω directly, while the subsampling algorithms select points from a finite D without replace-

ment. After points in D in the lower-density regions in Ω are depleted, the subsampling
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algorithms can no longer produce uniform samples. We discuss this phenomenon in more

detail in Appendix B.2.

We also observe from Figure 2.6 that some algorithms have an average e(Sn,U) mea-

sure that is actually less than Uniform Sampling, such as DPP and WSE for the normal

example at q = 2 and n ≤ 1000 (see Figure 2.6a). This is a well-known phenomenon,

by which points on a uniform grid can have a lower e(Sn,U) measure than a truly uni-

form sample (Mak and V Roshan Joseph 2018). For instance, in separate experiments

(not shown here, for brevity), we found that, a grid of size n = 100 in [0, 1]2 often has

a smaller sample energy distance to U than a true uniformly distributed sample. Con-

sequently, we can view a subsampling algorithm whose performance is as close to the

Uniform Sampling as possible as the most effective method in terms of selecting i.i.d uni-

formly distributed subsamples over Ω. From Figure 2.6, we see that overall, the average

sample energy distances of DS deviates least from the Uniform Sampling results for most

cases, compared with other subsampling algorithms.
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Figure 2.6. Averaged e(Sn,U), as a function of n, for subsamples selected
by DS, random sampling from D (‘Random Sampling’), scSampler-sp1,

scSampler-sp16, WSE, and DPP. Uniform Sampling serves as a reference
(the closer an algorithm is to the Uniform Sampling curve, the better).

We also repeated the experiments in Figure 2.6 using data sets in which observations

were replicated, for the continuous distributions. Specifically, we generated a data set

of size N
5 and then replicated this data set five times to generate the set D of size N ,

which we refer to as replicated data sets. The results using the replicated data sets are

shown by Figure 2.7. Compared to Figure 2.6, the DS performance has barely changed,

while the scSampler-sp1 performance has degraded significantly. We conclude that the

performance of DS relative to the existing methods further improves, often substantially,

for replicated data.
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Figure 2.7. Averaged e(Sn,U), as a function of n, using replicated data,
for subsamples selected by DS, random sampling from D (‘Random

Sampling’), scSampler-sp1, scSampler-sp16, WSE, and DPP. Uniform
Sampling serves as a reference (the closer an algorithm is to the Uniform

Sampling curve, the better).
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2.5.3. Computation Time Comparisons

Table 2.1 provides runtimes for the DS, scSampler-sp1, scSampler-sp16, DPP, and WSE
2 algorithms. We implemented the DS algorithm in Python 3 and tested the runtimes of

the above-mentioned algorithms on the Quest High Performance Computing Cluster of

Northwestern University. The runtimes were for the normal examples (runtime is rela-

tively invariant to the underlying distribution) with varying data set sizes. The reported

runtime statistics in Table 2.1 are in seconds and were averaged over 100 independent

replications, although there was not much replicate-to-replicate variability. ‘NA’ indi-

cates that a subsampling algorithm took longer than 1 hour to run (for each replicate),

in which case the experiment was terminated and the approach was considered to be

computationally prohibitive for that case.

From Table 2.1, DS and scSampler-sp16 are far more efficient than other methods,

often multiple orders of magnitude faster. One should keep in mind, however, that the

uniformity performance of scSampler-sp16 was overall far inferior to DS in Figures 2.6

and 2.7. Notice also that for n ≥ 1000, the runtime of DS remains relatively unchanged

with varying n, while the runtime of scSampler-sp16 (and of scSampler-sp1 and DPP)

grows super linearly with n increasing. Consequently, for the largest n in Table 2.1, DS

becomes faster than scSampler-sp16. Moreover, for larger scale examples with even larger

n, we can expect DS to be substantially faster than even scSampler-sp16 (in addition to

2We wrapped the published WSE code (Yuksel 2016) in Python and tested its runtime directly from
Python.
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having substantially better performance). Notice also that DPP and WSE were prohib-

itively slow for even the smallest size examples in Table 2.1, and were too slow to be

included in the table for the larger size examples.
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DS scSampler-sp1 scSampler-sp16 DPP WSE

q = 10
N = 105

n = 1, 000 1.17× 101 1.29× 101 8.34× 10−1 NA 3.09× 103

n = 8, 000 1.16× 101 9.79× 101 6.34× 100 NA 3.05× 103

n = 20, 000 1.14× 101 2.33× 102 1.52× 101 NA 2.92× 103

q = 10
N = 106

n = 1, 000 1.17× 102 1.59× 102 7.84× 100 NA NA

n = 8, 000 1.17× 102 1.29× 103 6.15× 101 NA NA

n = 20, 000 1.15× 102 3.01× 103 1.60× 102 NA NA

q = 20
N = 106

n = 1, 000 1.40× 102 2.31× 102 1.02× 101 NA NA

n = 8, 000 1.40× 102 1.72× 103 7.69× 101 NA NA

n = 20, 000 1.40× 102 3.42× 103+ 1.97× 102 NA NA

q = 40
N = 106

n = 1, 000 1.73× 102 3.36× 102 1.32× 101 NA NA

n = 8, 000 1.73× 102 2.64× 103+ 1.02× 102 NA NA

n = 20, 000 1.74× 102 NA 2.54× 102 NA NA

Table 2.1. Runtime comparisons of subsampling algorithms. The runtime
is reported in seconds and averaged over 100 replications. ‘NA’ means the

subsampling algorithm took longer than 1 hour to finish for all tested
replications. + on the right side of a number indicates the real statistic
was no smaller than the reported statistic (replicates that took longer

than 1 hour were terminated and excluded from the average, in which case
the reported numbers are somewhat lower than actual runtimes).

The DS algorithm mainly consists of three parts: estimating the density of D up-

front from scratch (line 12 in Procedure 1), updating the density periodically (line 23 in
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Procedure 1) and selecting subsample points (line 15 and line 26 in Procedure 1). For

convenience, we will refer these three parts to ‘Initial Density Estimation’, ‘Density Up-

dating’ and ‘Subsample Selection’ respectively. We observe that for all tested examples,

Initial Density Estimation and Density Updating cost around 95% of the total compu-

tation time, and the computational costs of ‘Initial Density Estimation’ and ‘Density

Updating’ are roughly comparable (results are not shown here for brevity). Consider-

ing that the density estimation accounts for most of the computational cost, for large N

the DS expense could be reduced by randomly sampling some fraction of D to use for

the density estimation. This is somewhat similar to the computational strategy used by

scSampler-sp16 to reduce computational expense relative to scSampler-sp1. The former

randomly partitions D into 16 subsets and applies scSampler-sp1 to each subset, and then

combines the 16 subsamples.

2.6. Conclusions

This chapter presents a novel diversity subsampling algorithm, the DS algorithm,

that selects an i.i.d. uniform subsample from a data set over the effective support of the

empirical data distribution, to the largest extent possible. The asymptotic performances

of the DS algorithm were proven, and its advantages over existing diversity subsampling

algorithms were demonstrated numerically: Overall, the DS algorithm selects subsamples

more similar to a true i.i.d uniform sample than existing algorithms do with much lower

computational cost. We have also presented a generalized version of the DS algorithm to

select subsamples following any desired target density (or non-negative target function in
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general) and proven its asymptotic accuracy. All methods proposed in the chapter are

implemented in the FADS (Shang, Apley, and Mehrotra 2022b) Python package.
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APPENDIX A

Additional Materials for Chapter 1



123

A.1. Detailed Pseudo-code for FSSF algorithm

Algorithm 3 Details is the detailed version of Algorithm 3.
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Algorithm 3 Details Details of FSSF-b Algorithm

Input: nmax, N , q

1: if q < 8 then

2: K ← 20

3: else

4: K ← 40

5: end if

6: Generate candidate set C = {x1, · · · , xN} as a Sobol sequence

7: Set indicator of whether or not to (re)run the KNN algorithm startover = 1

8: for n = N, N − 1, · · · , 4, 3 do

9: if startover = 1 then

10: Re← {1, 2, · · · , N} \ {iN , iN−1, · · · , in+1}

11: n̂← |Re|

12: if n̂ ≤ K then

13: K ← n̂− 1

14: end if

15: Rn← K1n̂

16: D ← 0n̂×K

17: J ← 0n̂×K

18: for i = 1, 2, · · · , n̂ do

19: for j = 1, 2, · · · , K do

20: Find ni
j such that xRe[ni

j ] is the jth nearest neighbor of xRe[i] among

{xRe[k]}n̂
k=1
k ̸=i

▷ Continued on the next page.
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21: Jij ← ni
j

22: Dij ← d(xRe[i], xRe[ni
j ])

23: end for

24: end for

25: Create an empty linked list D ← {}

26: Let Id be an array of empty linked list with size n̂

27: for i = 1, 2, · · · , n̂ do

28: for j = 1, 2, · · · , K do

29: Insert i after the first element of linked list Id[Jij]

30: end for

31: end for

32: Construct a balanced binary tree Tr using array (D11, D21, · · · , Dn̂1), with each

child node storing both the distance and the corresponding index, i.e. each child node

has index Di1 and value i, for some i ∈ {1, 2, · · · , n̂}. The keys are sorted in non-

decreasing order and do not have to be unique.

33: startover = 0

34: end if

35: Find the smallest index in the balanced binary tree Tr, store the corresponding

value as ĩ1
n.

36: ĩ2
n ← Jĩ1

n1

37: if Jĩ2
n1 ̸= ĩ1

n then

38: d1 ← Dĩ2
n1 ▷ Continued on the next page.
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39: else

40: d1 ← Dĩ2
n2

41: end if

42: d2 ← Dĩ1
n2

43: Set ĩn = ĩ1
n, DeleteKey = Dĩ1

n1 if d1 ≥ d2, and ĩn = ĩ2
n, DeleteKey = Dĩ2

n1 other-

wise.

44: Insert ĩn before the first element of linked list D

45: in ← Re[̃in]

46: Find and Remove the corresponding child node with index DeleteKey from the

balanced binary tree Tr.

47: Rn[̃in]← 0

48: for u ∈ Id[̃in] do

49: Rn[u] = Rn[u]− 1

50: if Rn[u] = 1 then

51: set startover = 1

52: break from the innermost loop.

53: end if

54: Find j ∈ {1, 2, · · · , K} such that Juj = ĩn

55: if j = 1 then

56: In the balanced binary tree Tr, try to find child nodes whose indices equal

Du1, and whose value equals u

57: if such locations do not exit then

58: Go to the next iteration for the innermost loop ▷ Continued on the

next page.
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59: end if

60: remove this child node from the balanced binary tree Tr

61: insert the new child node with index Du2 and value u into the balanced

binary tree Tr.

62: end if

63: Shift Juj to the last element of Ju,

64: Shift Duj to the last element of Du,

65: end for

66: end for

67: {i1, i2} ← R \ {Re[D[1]], · · · , Re[D[|D|]]}

Output: Ordered FSSF design sequence Snmax =
(
xi1 , xi2 , · · · , xinmax

)

A.2. Mathematical Link between IMSE of GP and the Space-filling Design

The Minimax Design proposed by Johnson, L. M. Moore, and Ylvisaker (1990) is

defined as arg minSn⊂Ω hmax(Sn), where hmax(Sn) is defined in Equation (1.2). Johnson,

L. M. Moore, and Ylvisaker (1990) showed a version mathematical link between IMSE

of GP and the Minimax Design. We here provide a slightly different derivation to show

the link between IMSE of GP and the Minimax Design under the unbiasedness assump-

tion (see Sacks et al. (1989) for the derivation of Equation (1.9), which is derived under

unbiasedness assumption on the predictor).

Proposition 1. The solution of problem arg minSn⊂Ω IMSE(Sn) can be approximated

by the solution of the Minimax problem arg minSn⊂Ω hmax(Sn).
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Proof. In this proof, we use the same notation and same assumptions as in Chapter 1.

Some proof ideas are borrowed from Johnson, L. M. Moore, and Ylvisaker (1990).

We observe in Equation (1.6), function R(x, x′) only depends on dθ(x, x′). So for

convenience, we define

(A.1) R(d(x, x′)) = e−d(x,x′).

Note that in Equation (A.1), d(x, x′) may depend on θ, we drop the subscript θ for

simplicity. In addition, we define

(A.2) d(x, Sn) = min
i=1,··· ,n

d(x, xi),

where Sn = {xi}n
i=1.

It is easy to observe that R(d(x, x′)) in Equation (A.1) is a decreasing function of

d(x, x′) the range of which is (0, 1]. ∀k ∈ Z+, Rk(d(x, x′)) has the similar properties

with R(d(x, x′)). We show the link between IMSE of GP with minimax design using

Rk(d(x, x′)) as the correlation coefficient when k → +∞ and n→ +∞.

As in Equation (1.10),

IMSE(Sn) =
∫

Ω
MSE(x, Sn) dx

= σ2|Ω| − σ2
∫

Ω

(
1 rT (x)

)
0 11×n

1n×1 R


−1

1

r(x)

 dx.

(A.3)
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Let λmin, λmax be the smallest and largest eigenvalue of


0 11×n

1n×1 R


−1

. Then by

Rayleigh Principle,

λmin(1 +
n∑

i=1
R2k(d(xi, x)))

≤
(

1 rT (x)

)
0 11×n

1n×1 R


−1

1

r(x)


≤λmax(1 +

n∑
i=1

R2k(d(xi, x))).

(A.4)

Now we consider the case when k → +∞. Clearly, Rk(d(x, x′)) → 1 if d(x, x′) = 0

and Rk(d(x, x′))→ 0 if d(x, x′) > 0. Thus, R→ In×n, i.e., the identity matrix in Rn×n,

as k → +∞.

Using the properties of Schur complement, the eigenvalues of matrix


0 11×n

1n×1 R


−1

can be easily found as λ1 = · · ·λn−1 = 1, λn = 2
1−

√
1+4n

< 0 and λn+1 = 2
1+

√
1+4n

∈ (0, 1).

So as k → +∞, λmin → 2
1−

√
1+4n

< 0 and λmax → 1. Taking n → +∞, we also have

λmin → 0−.
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Therefore as k → +∞ and n → +∞,


0 11×n

1n×1 R


−1

is asymptotically positive

semi-definite. Hence by Equation (A.3),

(A.5) arg min
Sn⊂Ω

IMSE(Sn) = arg max
Sn⊂Ω

∫
Ω

(
1 rT (x)

)
0 11×n

1n×1 R


−1

1

r(x)

 dx.

In addition, as k → +∞,

n∑
i=1

R2k(d(xi, x)))

=
n∑

i=1

R2k(d(xi, x)))
R2k(d(Sn, x)))R2k(d(Sn, x)))

=R2k(d(Sn, x)))
n∑

i=1
[1d(xi,x)=d(Sn,x) + o(1)1d(xi,x)>d(Sn,x)].

(A.6)

Thus, as k → +∞ and n→ +∞, Equation (A.4) becomes

0 ≤
(

1 rT (x)

)
0 11×n

1n×1 R


−1

1

r(x)


≤ 1 + R2k(d(Sn, x)))

n∑
i=1

[1d(xi,x)d(Sn,x) + o(1)1d(xi,x)>d(Sn,x)]).

(A.7)

Considering Equation (A.5), we have arg minSn⊂Ω IMSE(Sn) can be approximated by

(A.8) arg max
Sn⊂Ω

∫
x∈Ω

R2k(d(Sn, x)))
n∑

i=1
1d(xi,x)d(Sn,x) dx.
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By Equation (A.2), we have ∀x ∈ Ω, ∑n
i=1 1d(xi,x)d(Sn,x) ≥ 1. And since R() is a

decreasing function, we have

(A.9)
∫

x∈Ω
R2k(d(Sn, x)))

n∑
i=1

1d(xi,x)d(Sn,x) dx ≥ |Ω|R2k(max
x∈Ω

d(Sn, x))

So we can maximize R2k(maxx∈Ω d(Sn, x)) to approximate Equation (A.8), which is equiv-

alent to solve the Minimax problem, i.e.,

(A.10) arg min
Sn⊂Ω

max
x∈Ω

d(Sn, x) = arg min
Sn⊂Ω

hmax(Sn).

□
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APPENDIX B

Additional Materials for Chapter 2
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B.1. Density Estimation for the DS algorithm

The DS algorithm (Procedure 1) can be used with any density estimation method,

whether or not the estimated density integrates to 1, for instance, fixed or variable band-

width KDE (Rosenblatt 1956; Parzen 1962; Terrell and Scott 1992), KNN density es-

timation (Mack and Rosenblatt 1979), and Gaussian Mixture Model (GMM) density

estimation (Reynolds 2009). Taking both density estimation accuracy and computational

efficiency into consideration, we found that GMM density estimation with diagonal co-

variance matrices was overall the most effective for use in the DS algorithm. In all of our

examples, we estimate the parameters of the GMM model using the popular Expectation-

Maximization (EM) technique (Dempster, Laird, and Rubin 1977; Reynolds 2009).

The GMM approach models the density as

(B.1) f(x) =
M∑

k=1
ckfk(x|θk),

where ck ≥ 0, ∀k = 1, · · · , M and ∑M
k=1 ck = 1. Here M is the number of components

for the GMM model, and fk(x|θk) is the gaussian p.d.f with mean µk and a diagonal

covariance matrix Diag(σ2
k1, · · · , σ2

kq). We denote θk = (ck, µk, σk1, · · · , σkq) and write

(B.2) fk(x|θk) =
q∏

j=1

1√
2πσkj

e
−

(xj −µkj)2

2σ2
kj .

Given initial guesses for θ
(0)
1 , · · · , θ

(0)
M , we apply the EM algorithm a fixed number

(denoted niter) of iterations to estimate the parameters θ1, · · · , θM . The algorithm is

outlined as Procedure 2. See, for example Reynolds 2009, for detailed discussions and

derivations for GMM density estimation.
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Procedure 2 GMM density estimation using EM for the DS algorithm (Procedure 1)

Input: N , q, D = {x1, · · · , xN}, niter, M , θ
(0)
1 , · · · , θ

(0)
M

1: for t ∈ {1, · · · , niter} do
2: for k ∈ {1, · · · , M} do
3: for i ∈ {1, · · · , N} do
4: p

(t−1)
ik ← c

(t−1)
k

fk(xi|θ
(t−1)
k

)∑M

j=1 c
(t−1)
j fj(xi|θ

(t−1)
j )

5: end for
6: for j ∈ {1, · · · , q} do
7: µ

(t)
kj ←

∑k

i=1 p
(t−1)
ik

xij∑k

i=1 p
(t−1)
ik

8: σ
(t)
kj ←

√∑k

i=1 p
(t−1)
ik

x2
ij∑k

i=1 p
(t−1)
ik

−
(
µ

(t)
kj

)2

9: end for
10: c

(t)
k ← 1

N

∑N
i=1 p

(t−1)
ik

11: end for
12: end for
13: for k = 1, · · · , M do
14: for i = 1, · · · , N do
15: Compute fk(xi|θ(niter)

k ) according to Equation (B.2)
16: end for
17: end for
18: for i = 1, · · · , N do
19: f̂GMM(xi)←

∑M
k=1 c

(niter)
k fk(xi|θ(niter)

k )
20: end for
Output: Density estimation at data points in D, {f̂GMM(xi), for i = 1, 2, · · · , N}

For all of our examples, we chose niter = 10 and M = 32 for the ‘Initial Density

Estimation’ (line 12 of Procedure 1) of DS and used an existing implementation by Pe-

dregosa et al. 2011 for the GMM density estimation. We set all GMM density estimation

parameters as their default values except for niter and M . The ‘Density Updating’ of the

DS algorithm (line 23 of Procedure 1) is methodologically similar to the ‘Initial Density

Estimation’, except that for better efficiency, we use the estimated values of {θk}M
k=1 from

the previous update as the initial guesses in the current updating procedure, and we set
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niter = 1. Note that for the ‘Density Updating’ procedure, we fit the GMM model to

only the data points in D that have not been previously selected.

B.2. Estimating the Deviation Point of the DS Algorithm

In this section, we take the DS subsample as an example to illustrate the point that

for finite N , any subsampling algorithm will inevitably deviate from uniform sampling

after a certain subsample size n, due to points in sparser regions being depleted from D.

For a subsample of size n selected by the DS algorithm, denoted by Sn = {xj1 , · · · , xjn},

with {j1, · · · , jn} ⊂ {1, · · · , N}, we use nΩ = ∑n
k=1 1Ω(xjk

) to denote the number of

selected points in Sn lying inside Ω. Consider a small region dV in the lowest density

region inside Ω and denote the lowest density function value of f(x) inside Ω by fmin, Ω.

Then among data points in D, there are, on average, approximately Nfmin, Ω|dV | data

points inside region dV . Similarly, if Sn is i.i.d uniformly distributed over Ω, then Sn

contains on average approximately nΩ
|dV |
|Ω| selected points inside region dV . Therefore the

deviation from uniformity over Ω of a subsample theoretically must begin no later than

when nΩ
|dV |
|Ω| = Nfmin, Ω|dV |, i.e. when nΩ = Nfmin, Ω|Ω| def= nb

Ω. We refer to the DS

subsample size, nb, at which there are nb
Ω points inside Ω as the ‘deviation point’ of the

DS algorithm.

Figure B.1 shows an example with estimated nb ≈ 590 (denoted by the vertical black

dash line) using the normal example with q = 2. The experimental setup is the same as in

Section 2.5.2. From Figure B.1 we see that the average e(Sn,U) for the DS algorithm starts

to deviate from the results of Uniform Sampling at around nb, as the above theoretical

arguments predict.
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0 500 1000 1500 2000 2500 3000 3500 4000
n

10 3

10 2

10 1

E[
e(

n,
)]

nb 590

DS
Uniform Sampling

Figure B.1. Estimation of nb (shown by the vertical dotted line) for the
DS algorithm. Uniform Sampling serves as a reference (the closer an

algorithm is to the Uniform Sampling curve, the better).

B.3. Numerical Performance Results for the Low Density Region Sampling

Ratio Criterion

Figure B.2 shows the average low-density region sampling ratio (Equation (2.35))

for the six subsampling algorithms, namely random sampling, DS, WSE, scSampler-sp1,

scSampler-sp16, and DPP. The Uniform Sampling reference is irrelevant under this crite-

rion, because it only generates samples within Ω. In 8 out of 10 examples (Figures B.2a

and B.2c to B.2i), the average low-density region sampling ratio of the DS algorithm

converges to 1 faster than (Figures B.2a, B.2c, B.2d and B.2f to B.2h) or comparably to

(Figures B.2e and B.2i) the other subsampling algorithms, which demonstrates its effec-

tiveness for selecting data points in the low-density regions when n is small. For the other



137

two examples (Figures B.2b and B.2j) performances of DS are not far behind the best

performing method.
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Figure B.2. Averaged r(Sn) (Equation (2.35)), as a function of n, for
subsamples selected by DS, random sampling from D (‘Random

Sampling’), scSampler-sp1, scSampler-sp16, WSE, and DPP.

Analogous results for the replicated D examples are shown in Figure B.3, from which

we see that the results of DS are not adversely affected much when the data sets have many

replications, and DS remains among the best performing algorithms for all examples. For

some examples (e.g., Figures B.3a, B.3c, B.3e, B.3g and B.3h), DS performs substantially

better than the next best performing method.
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Figure B.3. Averaged r(Sn) (Equation (2.35)), as a function of n, using
replicated data, for subsamples selected by DS, random sampling from D
(‘Random Sampling’), scSampler-sp1, scSampler-sp16, WSE, and DPP.
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