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ABSTRACT 

Dynamic decision-making is a complex process that relies on our ability to generate, evaluate, 

and implement a variety of strategies. Understanding how people navigate this process is a 

difficult problem that requires a wide range of methodologies. This study details a combination 

of behavioral experiments, computational modeling, and neuroimaging that complement each 

other in describing how people engage in dynamic decision-making under uncertainty. To create 

opportunities to observe such decision-making participants were taught two categories by sorting 

sine-wave gratings selected by an adaptive, real-time computational model, PINNACLE 2.0. 

During the protocol, participants were presented with a challenging, dynamic decision-making 

task that experimentally prolongs strategy exploration while fMRI data were collected. During 

this task, participants displayed a broad range of behavior indicative of a variety of explicit 

strategy use and evaluation. Accounting for the results of this experiment proved challenging for 

existing computational models of category learning. In developing better accounts of the data, 

and how people navigated this task, we rule out several previously successful models. The 

models considered include exemplar, and rule-based models that include parallel and sequential 

strategy representations, incremental rule modification and rule replacement mechanisms, and 

single-step and hierarchical rule structures. Through competitive model fitting, we further the 

development of the PINNACLE architecture culminating in version 2.1a. This version represents 

the best account of participant behavior to-date. Finally, by contrasting successful and 

unsuccessful learning on this task, we describe preliminary evidence of the neural correlates of 

decision-making under uncertainty. How well people do on the task is a function of their 

performance expectation. Those with high expectations engage in more strategy generation, 

evaluation, and replacement, and tend to succeed by finding better rules whereas those with 

lower expectations tend to settle for less successful ones. 
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Chapter 1: Introduction 

Buy or sell? Accept or reject? Malignant or benign? And the all-important vanilla or 

chocolate? We are often faced with complex decisions in changing environments with access to 

limited options. To make matters worse the solution to these problems frequently requires 

exploring many possible strategies such as using rules, going with your gut, or similarity-based 

judgements in a short amount of time. The way people solve these problems can involve a 

complex process of strategy generation and evaluation. When this process succeeds, appropriate 

solutions are quickly found. Yet when it fails, valuable time can be spent exploring irrelevant 

strategies while overlooking partially successful ones. To study this complex process, we 

modified a well-established category learning task. This task required participants to adapt to 

changing task demands by searching for appropriate strategies when old ones failed. The task 

begins by presenting people with a simple image and asking a simple question: Is this an ‘A’ or a 

‘B’? 

 Much of the research on how people navigate such a task has focused on characterizing 

the learning process associated with acquiring categories. However, less attention has been spent 

on the decision-making component that leads to successful or unsuccessful learning. 

Unfortunately, we are not able to analyze people’s thought process directly. Instead, we need a 

way to plausibly account for how participants navigate this complex and dynamic decision-

making task. To achieve this, we leverage a substantial body of work on memory systems, 

decision-making, computational modeling, and neuroimaging.  
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Multiple Memory Systems 

Memory systems research (Squire, 1992; Squire & Dede, 2015) has provided substantial 

evidence for separate neural systems supporting learning and memory in the brain. Explicit 

memory can be acquired from a single experience, is consolidated over an extended period of 

time, and depends critically on neurobiological processes within the medial temporal lobe (MTL) 

memory system, particularly the hippocampus (Reber 2008; Ashby, 2013). When these 

structures are damaged, the effect is a profound deficit in the acquisition of new declarative 

memories (anterograde amnesia). 

However, patients with MTL damage exhibit intact learning on a variety of tasks, 

indicating selective preservation of some specific forms of memory (Squire, 1992; Knowlton, 

Mangels & Squire, 1996). This type of memory can be described as the product of learning 

without awareness, known as implicit memory. Implicit memory is mostly acquired gradually, is 

largely unavailable to conscious awareness, does not depend on the MTL memory system and is 

generally inflexible to generalization. It is knowledge we express effortlessly, does not require 

working memory, and can arise as an intuition or “gut feeling” (Reber, Beeman, Paller, 2013).  

In combining these two types of memory, we adopt a parallel, competitive, and 

interactive view of these two memory systems in which each system learns independently, and 

continuously vies for control of behavior. However, given our data this study is primarily 

focused on explicit rule discovery, hypothesis testing, and decision-making rather than the 

interplay between systems. 
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Decision-Making 

Whether one should continue using a specific strategy or abandon it in search of a better 

one depends on the context and scope of the problem being solved. What is good enough in one 

context may not be in another. For example, consider a scenario in which you discover a strategy 

that reliably leads to 60% success where chance is 50%. Consideration of whether or not to use 

this strategy is in part a function of whether one believes there is a better strategy to be found, 

and what the potential gain or loss is while attempting to find it. In circumstances where the 

stakes are high, such as in survival situations or where substantial amounts of money are 

involved, the rational course of action is to stick with the safe (60%) option. Even if one believes 

there is a better solution, the possibility of failure may not be worth the risk. On the other hand, if 

the penalty for low performance is not too costly, and one believes a better solution can be 

found, it is rational to sacrifice near-term performance for the possibility of discovering a better 

solution. 

 The question then becomes: what level of performance is “good enough”? In our 

example, we used 60%, but why should someone settle for 60% and not 55%, or 75%? One 

solution to this question comes from Herbert Simon who, in 1956, introduced the term 

“satisficing”. He argued that finding truly optimal solutions to most problems is unrealistic due 

to the sheer complexity of the world, our limited mental capacity, and a lack of information. 

Instead, people seem to settle on solutions that are both satisfy their aspirations, and suffice in 

accomplishing their goal, and thus satisfice. This simple yet intuitive framework for thinking 

about how people evaluate strategies has been a powerful tool in understanding decision-making, 

especially under situations of uncertainty. The overall strategy of satisficing seems to apply 
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across a wide range of human behavior. However, the question of what the individual satisficing 

standard is appears to be an individual difference that varies from person to person, and from 

task to task. 

Computational Modeling 

 The human ability to reason is a cornerstone of science and a primary way in which we 

learn. Unfortunately, human reasoning is not without its limitations. Beginning with Kahneman 

and Tversky (1975) and more recently Hintzman (1991) a long list of ways in which human 

reasoning fails seems to only get longer. Of note are limitations in working memory and our 

ability to reason about complicated interacting structures (e.g. White 2008). In addition, it is 

often the case that our understanding of a process is only as useful as our ability to communicate 

it clearly to others. Conveying mathematically accurate descriptions of a theory or hypothesis is 

invaluable in advancing the state of understanding.  

A practical solution to these limitations in the form of computational modeling was well 

described by Farrell and Lewandowsky (2010). In their argument they laid out various 

limitations that confront the pursuit of science as well as how computational modeling provides 

solutions to them. Addressing the concerns above, they point out that computational models are 

far less limited in terms of working memory and do not suffer from failures of memory retrieval 

under normal circumstances. In addition, the nature of computational operations avoids the 

limitations of complexities due to higher order interactions, massively parallel computations or 

handling distributed structures. Computational models must be programmed meticulously in 

order to function which allows for clear descriptions of a theory to be shared across people, thus 

avoiding issues of misunderstandings or underspecified hypotheses. 
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Moreover, when using computational models to describe data, the evaluation of how well 

a model accounts for the data happens in the context of alternative models. Through this 

competitive process of comparing and developing better models, we can systematically rule out 

alternative accounts for behavior. These formal systems behave identically regardless of who 

runs them and what their personal beliefs about the solution might be, thus avoiding the ever-

present confirmation bias. Finally, though not exhaustively, the process of developing rigorous 

accounts of behavior often leads to unanticipated insights into processes and mechanisms that 

were not apparent earlier thus furthering our understanding. To quote Herbert Simon,  

“If we can simulate it we have learned something about an important human activity”. 

 

 The current work examines a series of hypotheses about how people engage in a complex 

decision-making task under uncertainty. Several plausible accounts are ruled out based on 

available data and a new framework for explaining this process as well as its neural correlates are 

described. Understanding how people navigate the decision-making process is critical to many 

real-world applications from better education practices, to improved healthcare, to economic 

success and interpersonal relationships. By modeling this process we not only gain deeper 

insights into what is happening, but also gain a framework for testing hypotheses for how to 

improve outcomes across these various domains.   
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Chapter 2: Prior Work 

The laboratory category learning task provides a deceptively simple model of a rich and 

complex set of cognitive processes. In a typical design, the participant sits down to the task naïve 

to the underlying category structure. A stimulus is presented on the screen that can be a sine-

wave grating (or Gabor patch: Nomura et al., 2007), a simple single line (Ashby & Waldron, 

1999), an angle bracket (Ashby & Gott, 1988), a circle with a line through it (Maddox & Ashby, 

1993), an artificial animal (Smith & Grossman, 2008), etc. As a participant, you are directed to 

determine which of a small number of categorical options the stimulus belongs. The most 

common designs use two categories (2AFC) or a member or non-member discrimination (A, not 

A designs). The categories themselves can be given either arbitrary labels (A, B) or semantic ones 

(builder, digger). Generally little to no information is provided for the answer, so as a participant 

you are then posed with the problem of identifying the correct label, perhaps guessing initially, 

and then learning to choose more accurately over the course of many trials, usually guided by 

feedback. 

Considering the position of the participant who is early in the learning process with only 

a few trials of experience, it is clear that there are a number of different potential approaches that 

they could take. On trial 10, a participant might use an explicit memory comparison to prior 

examples they have seen, i.e., “this one looks like one I saw before that was an A, so maybe this 

one is an A too.” In addition, participants (often undergraduates) who have been instructed that 

there are two categories or types of stimuli are very likely searching for rules that make sense of 

the stimuli they have seen, e.g., “the ones with more stripes seem to be B’s.” The rule discovery 

process is a cognitively complex one, involving hypothesis generation and testing against the 
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experimental stimuli over trials, remembering prior outcomes, etc. The neuropsychological 

evidence on memory systems reviewed in Chapter 1 indicates that a third process is also likely to 

be involved: implicit learning of the underlying category stimulus dimension statistics that 

presents as a hunch or high-accuracy guessing about category membership without an ability to 

verbalize the information used to guide the response. While this study was initially concerned 

with both explicit and implicit processes and their interactions, the data suggest that participants 

primarily engaged in explicit strategy generation and use during the task. We thus focus our 

attention on the processes of explicit rule generation and evaluation. 

In the following sections we provide background information on decision-making under 

uncertainty as well as the systems neuroscience of this process. We then present several 

prominent cognitive computational models that have previously been used to study the category 

learning process. We discuss several approaches including single, hybrid, and multiple system 

models. These models all appear to converge on the need for multiple forms of knowledge 

representation to adequately describe human behavior across a broad set of data. This body of 

work provides a solid foundation for the current study aimed at furthering our understanding of 

the dynamic decision-making process.  

Decision-Making Under Uncertainty 

Much of the research on visual category learning has focused on the various learning 

processes by which participants come to know the category structure (i.e. explicit / implicit). 

However, less work has focused on the decision-making aspect of this task. Specifically, how do 

participants generate and test hypotheses that inform learning, and how do they respond to 

feedback? Ideally, participants would aggregate information and methodically test a variety of 
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potential solutions to find the best possible strategy. Unfortunately, several limitations stand in 

the way of such a strategy. Explicit strategy use is often necessary for early task performance or 

following situations where the task changes since any implicit knowledge previously gained may 

no longer apply. To that end, a good mental model of the task and stimulus space helps direct the 

search for appropriate strategies. Unfortunately, participants navigating this task must rely on 

working memory to create such models and attempt to map out the category structures. This 

process is intentionally hindered both by the rapid pace of the task and the complexity of the 

category structure which make keeping track of all the information they previously saw difficult 

or impossible. Since there is not enough time to explore every possible solution, and given the 

information constraints, participants must come up with alternative strategies for success. 

One approach for how people generate and evaluate different strategies comes from work 

done by Herbert Simon on rational decision making. In a 1956 paper Simon argued that people 

generally lack the capacity, information, and time to truly optimize their strategies, as is the case 

here. Instead, he introduced the concept of satisficing. As noted earlier the idea of satisficing is 

that instead of exploring all possible solutions in an attempt to optimize the outcome, people 

select a solution that is both sufficient for the task and that satisfies their aspiration, hence the 

term satisficing. This simple principle provides a powerful and intuitive account for how people 

actually behave in many real-world circumstances. For example, suppose we are in the market 

for a new shirt. From a rational decision-making framework, an optimal strategy would be to 

visit every clothing store and gather information on every shirt, then compute the optimal 

purchase choice while maximizing utility and minimizing cost. This is obviously not what people 

do. Instead, we may visit a few stores, look at several options and finally settle on a shirt that is 
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good enough for our needs. There is certainly a better shirt to be found, but we select one that is 

both sufficient (it is a shirt) and satisfies our criteria (aesthetics, price, quality, etc.). We satisfice. 

This principle can similarly be applied to situations in which participants search for a 

strategy that makes sense of the evidence they have seen thus far, such as in category learning 

experiments. If the goal were to discover the best possible solution to the task, several highly 

successful, though not perfect, solutions would need to be discarded along the way in the hope 

that a better one would be found. This is not what people seem to do during these tasks. Instead 

they seem to adopt a strategy that works most of the time and tolerate mistakes even though it 

demonstrates that their rule is not as good as it could be. They satisfice. 

Systems Neuroscience of Decision-Making 

Decades of research have identified key areas of the brain associated with various aspects 

of decision-making. No single area of the brain is solely responsible for such a complex process. 

Rather, various regions contribute to this process based on the particular nature of the task. Even 

so, there seem to be common denominators that support the types of computations necessary to 

evaluate between alternatives. A key area identified in the decision-making process across 

numerous studies is the dorsolateral prefrontal cortex (DLPFC). This area is well situated to send 

and receive inputs from a variety of brain areas, including the basal ganglia, the frontal cortex 

and primary and secondary association areas of neocortex, including parietal, and occipital areas 

(Tekin & Cummings, 2002; Dosenbach et al., 2007). It has been shown to play crucial roles in a 

variety of attention-demanding cognitive tasks such as decision-making (van’t Wout et al., 2005; 

Heekeren, Marrett, Bandettini & Ungerleider, 2006; Nomura & Reber, 2012), working-memory 

(Curtis & D’Esposito, 2003), reasoning (Goel & Dolan, 2004), and problem solving (Barbey & 
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Barsalou, 2009). Another key area found in several studies of decision-making, especially those 

involving a perceptual component is the parietal cortex. Several studies have shown its 

involvement in working-memory tasks (Bunge, Hazeltine, Scanlon, Rosen & Gabrieli, 2002; 

Olesen, Westerberg & Klingberg, 2004; Curtis, 2006), and perceptual decision-making 

(Heekeren et al., 2008; Andersen & Cui, 2009) through fronto-parietal connectivity.  

Several theories describing their interactions in support of decision-making suggest that 

they collaborate in the maintenance of working-memory and goal-directed behavior (notably 

WM: Curtis & D’Esposito, 2003; goal-directed: Rangel, Camerer & Montague, 2008). Across 

these views, DLPFC and Parietal areas coordinate in the maintenance of task relevant explicit 

memory and perceptual information in service of accomplishing the task at hand. Regarding 

category learning, this would likely manifest as tracking both stimulus information, coordinating 

long term memory access and retrieval, as well as maintaining and monitoring relevant explicit 

strategies. These strategies would be updated based on new evidence or may be replaced with 

new representations of possible solutions.  

Models of Category Learning 

The majority of category learning studies result in a behavioral trace of button presses 

that represent both the learning and decision-making process. We are thus confronted with the 

difficult task of inferring the mental processes that drove these behaviors from a pattern of ‘A’ 

and ‘B’ responses. Despite the potential complexity of the approaches used to learn the category 

structure, the fact that these categories have precise definitions within a defined set of perceptual 

dimensions makes the mathematical analysis of choice behavior tractable. This has led to a 

variety of analytical and simulation-based modeling approaches that instantiate specific 
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hypotheses about category learning theory. An early, influential example of this is the ‘context’ 

model described in Medin & Schaffer (1978) and generalized as ‘exemplar theory’ in Nosofsky 

(1986). This general approach aligns well with the explicit strategy described earlier in which 

new stimuli are compared to the previously seen exemplars. At the same time, Ashby & Gott 

(1988) described a mathematical characterization of how rules can be used to partition the 

stimulus space that was eventually formalized as ‘decision bound theory.’ While a great deal of 

debate ensued comparing and contrasting these approaches (e.g., Maddox & Ashby 1993; 

McKinley & Nosofsky, 1996), the fact that the use of both rules and exemplars aligns well with 

subjective experience (of both processes) also led to the development of hybrid models of 

category learning that included both of these strategies. In this section we describe several 

prominent models that have been used to account for a variety of category learning data to 

provide context for the work described in the following chapters. Importantly, these models 

constitute hypotheses as to the process by which humans learn categories. They are mathematical 

formulations of the proposed mechanisms people use when confronted with such tasks. As such 

they make specific predictions as to the type of behavior we should expect if people indeed use 

similar mechanisms. When behavior generated by the model disagrees with participant behavior, 

it serves to disprove the current hypothesis and indicates that a more robust model is necessary. 

A model whose data agrees with participant behavior allows us to test future predictions through 

additional behavioral and neuroimaging data. 

 We separate these models into three classes to illustrate the wide range of options that 

have been explored to-date. These classes are: 1) single process models that rely on a single 

knowledge structure to account for behavior, 2) hybrid models that incorporate both similarity- 
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and rule-based judgements, and 3) multi-system models that simulate distinct and parallel 

explicit and implicit processes.  

Single System Models 

If guided by parsimony, a legitimate question arises about whether a purely single-system 

computational model can account for the wide range of data on visual category learning. 

Proponents of such single system accounts of category learning have advanced models that 

account for observed behavior on a wide variety of tasks. However, in order to achieve this, 

these models must rely on differing internal knowledge structures that can arise from a single 

mechanism given different parameter values that cause the model to behave in qualitatively 

different ways. While they include a single mechanism to account for behavior, this mechanism 

results in more than one representation of the problem space thus demonstrating a necessity for 

more than one process. Two such models are the Generalized Context Model (GCM; Nosofsky, 

1984, 1986, 1991; Nosofsky & Johansen, 2000), and SUSTAIN (Love & Medin, 1998a, 1998b; 

Love, Markman & Yamauchi, 2000; Love, Medin & Gureckis, 2004). 

GCM 

The Generalized Context Model (GCM; recently Nosofsky & Johansen, 2000) is a 

similarity-based exemplar model that uses a multidimensional shaping mechanism to convert 

stimulus dimensions into a perceptual space. It predicts that each stimulus a person encounters is 

stored in long-term memory. When a new stimulus is encountered, a similarity score is computed 

between it, and all previously experienced stimuli. An attentional weighting mechanism is 

included to bias the system towards relevant dimensions based on feedback either exaggerating 
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or minimizing differences between stimuli. For example, a stimulus with two dimensions (line 

length and line orientation) might be associated with a category based only on line-length. 

People would thus learn to weight similarity across the length dimension more heavily than the 

orientation dimension, resulting in rule-like behavior. 

To illustrate a family of challenges that arise for a single system exemplar-similarity 

model, we consider one that was raised by Nosofsky & Johansen (2000) in which the model 

initially failed to match participant behavior on a category vs. similarity task. Participants were 

asked to imagine 3-inch diameter circles and decide if they were more similar to a pizza or a 

quarter, and then categorize them. Most participants said the stimulus was more similar to a 

quarter but categorized it as a pizza. These results make sense because while a 3-inch disk is 

small like a quarter, there are no 3-inch quarters. On the other hand, there are 3-inch pizzas (e.g. 

pizza bites). Attempting to model this behavior proved problematic due to the nature of 

knowledge representation within the model. Because quarters are all very similar in size, the 

variability of that category is quite small compared to the high variability of pizzas. As a result, 

any stimulus that is equidistant from boundary examples of each category (i.e. the largest quarter 

vs. the smallest pizza) will always be mathematically more similar to the less variable category 

(in this case, quarters). This is because the stimulus being considered is closer to the center of 

mass of the less variable category. This led the model to respond quarter for both judgments 

(similarity, and category membership). Mathematically, the failure of the model to account for 

participant behavior stemmed from the parameter that governs how quickly similarity decreases 

as a function of distance. To overcome this, the authors made an allowance for a similarity 

sensitivity parameter value specific to each category, thus allowing differential consideration of a 

single stimulus for each category. While it may seem like a minor alteration, the resulting 
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knowledge representations (i.e. sharp- vs. variable, gist-like categories) are reflective of 

fundamentally different processes in the brain corresponding to cortical vs. hippocampal 

representations. This issue is illustrative of a broader set of problems that systems with a single 

knowledge representation encounter in which different a single strategy must suffice for a variety 

of tasks.  

SUSTAIN 

SUSTAIN is a clustering model of human category learning that predicts that people 

follow five basic principles in how they learn: 1) simple is better, 2) cluster based on similarity, 

3) learning involves both unsupervised and supervised processes 4) inferred category structures 

are shaped by feedback, and 5) clusters compete to control behavior. Following these principles, 

SUSTAIN begins with a relevant stimulus dimension set (either featural or spatial) and a single 

cluster representing a simple hypothesis that governs category membership. In addition, an 

attentional weighting mechanism helps direct the model towards relevant features and down-

weight irrelevant ones. As the model engages with the task, it gradually adds complexity in 

response to surprising events such as negative feedback to an incorrect decision (supervised 

learning) or upon encountering a stimulus significantly different from any category 

(unsupervised learning). If a stimulus is encountered that is not similar enough to be considered 

part of an existing cluster, the model creates a new one to accommodate the stimulus. If the new 

cluster is found to be a more reliable predictor of future category membership, its attentional 

weighting is modified such that it comes to dominate the response competition versus the 

previous cluster. In this way, SUSTAIN suggests that people discover the minimally sufficient 
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complex rule for solving the given task. SUSTAIN has been very successful in accounting for a 

variety of human behavioral data. 

SUSTAIN, though considered a single-system model, employs two distinct processes. 

This can be seen in the process of creating new clusters. As described, when a stimulus is 

encountered, a similarity score is computed for all existing clusters. Mathematically, this is 

indistinguishable from a prototype (i.e. gist-like, cortical-based) calculation. If a stimulus is 

encountered that is dissimilar enough from all previous clusters, the model is capable of 

instantiating a new cluster based on a single trial. This is in essence single-trial episodic 

encoding, a process that is thought to occur in the hippocampus. Thus, SUSTAIN is capable of 

one process that is qualitatively similar to gist-like similarity judgments (i.e. cortical) and 

another process of rapid single-trial encoding (i.e. hippocampal). 

Interim Summary 

In the two models just discussed, we see a need for more than one form of knowledge 

representation in order to provide an accurate account of human performance. The necessity to 

incorporate two processes, as well as the neuroanatomical evidence for distinct memory systems, 

leads to an important theoretical question. Why would the brain need two distinct and potentially 

redundant systems that seem to violate principles of parsimony? First described by McClelland, 

McNaughton & O’Reilly (1995) the Complementary Learning Systems (CLS) model provides a 

compelling answer.  
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Complementary Learning Systems 

A long-standing fundamental limitation of neural network models of learning was that 

they exhibited catastrophic interference where newly acquired knowledge tended to completely 

overwrite earlier learning (McCloskey & Cohen, 1989). O’Reilly et al. showed that this 

phenomenon was an inevitable outcome of systems that employ highly overlapping knowledge 

representations that allow, for example, for generalization and inference. In the human brain, the 

cortex is thought to store such generalized (gist-ike) representations of knowledge and is known 

to learn gradually across days, months, and years as evidenced by anterograde amnesia observed 

in certain memory disorders involving the medial temporal lobe (MTL) structures (Scoville & 

Milner, 1957; Penfield & Milner; 1958; Zola-Morgan, Squire & Amara, 1986; Victor & 

Agamanolis, 1990; Rempel-Clower et al., 1996; Gold & Squire, 2006; Pascual et al., 2013). 

Their insight and solution to this problem of catastrophic interference was the existence of an 

additional, structurally distinct, system with complementary learning properties. This system 

uses sparse, non-overlapping representations that are robust to interference from later learning 

and is well represented in the medial-temporal lobe, specifically the hippocampus. Thus, in order 

to incorporate new knowledge in the cortex while avoiding the problem of overwriting existing 

knowledge, newly acquired information is rapidly encoded in the hippocampus. The 

hippocampus then slowly trains the cortex, allowing it to extract a more generalized 

representation of the information in a process of consolidation. 
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Hybrid Systems 

Embracing the need for multiple knowledge representations has led to a variety of hybrid 

and multi-system models that incorporate several strategies in service of learning and behavior. 

In this section we describe two hybrid systems that utilize several explicit strategies to represent 

human behavior: RULEX and ALCOVE & ATRIUM. 

RULEX 

The RULEX model (Nosofsky, Palmeri & McKinley, 1994) of category learning is a 

stochastic process in which the model attempts to discover increasingly complex rules governing 

category membership based on the stimulus dimensions and their combinations. It predicts that 

people begin with a simple one-dimensional rule and use it until it fails. They then either attempt 

other simple rules or adopt a more complex one. If no single-dimension or combination rule can 

account for all the data, exceptions begin to be stored such as to keep the rule as simple as 

possible while maintaining high accuracy. Exceptions are, therefore, only stored as a last resort 

after attempts to abstract an appropriate rule has failed. Generally, RULEX has been applied to 

category learning with two mutually exclusive categories. 

ALCOVE & ATRIUM 

ALCOVE is a three-layered connectionist model of category learning. In it, the input 

layer corresponds to stimulus features, the middle, hidden, layer corresponds to exemplars, and 

the output layer corresponds to category responses. This model is explicitly based on the 

exemplar-based “generalized context category learning model” (GCM: Nosofsky, 1986; 1987). It 
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predicts that when a new stimulus is encountered, people compute an attentional-weighted 

similarity score between it and every previously stored exemplar. People then assign the stimulus 

to a particular category based on similarity. 

ATRIUM is a hybrid connectionist model that predicts that people use rule- and 

exemplar-based representations during learning and was first described by Kruschke & Erickson, 

1994. The rule module contains both category and rule nodes. Each category node is connected 

to a number of rule nodes equal to the number of primary stimulus dimensions by learned, 

weighted connections. Thus, each category node learns to associate optimal rules based on 

feedback. The exemplar module is a full implementation of the ALCOVE model (Kruschke, 

1992). A competitive mixture of experts gating mechanism combines the activity of both 

modules to compute the probability that the exemplar module is used for the current trial. 

Essentially, people select between a similarity- and rule-based strategy that maximizes 

performance. Finally, feedback is backpropagated through the model to modify weights in order 

to reduce future errors (note that overconfident responses are not considered errors; i.e. humble 

teachers) based on gradient descent. 

Interim Summary 

While the two models above employ a hybrid of rules and exemplars, they do so with the 

implication that both strategies are explicit. That is, participants are fully aware of the strategy 

they are using and can report it when asked. An alternative approach to accounting for human 

behavior is to account for both explicit and implicit processes. The idea of modeling category 

learning with separate processes for different memory types was first proposed (presciently) by 

Ashby et al. in the Competition between Verbal and Implicit Systems theory (COVIS; 1998). 
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Multiple Memory Systems 

COVIS 

The COVIS model predicts that people use both explicit and implicit processes by 

allowing for separate memory representations that emerge from explicit (verbalizable) processes 

such as rules, and implicit (non-declarative stimulus-response) learning. Further, it predicts that 

these systems operate competitively across the learning process and that people are biased 

towards explicit rules via a gating mechanism. Formally, COVIS focuses on modeling 

neurobiological circuits in the basal ganglia and prefrontal cortex in the form of a spiking model 

that attempts to simulate individual and group level neuronal activity in order to produce 

behavior based on known neuroanatomical connections. COVIS has been shown to account for a 

wide range of category learning phenomena (Ashby & Valentin, 2017), including data that are 

challenging for single-system models (Ashby & Ell, 2002).  

PINNACLE 

A second framework that takes a similar approach is the Parallel Interactive Neural 

Networks Active in Competitive Learning architecture (PINNALCE; Nomura, Maddox & Reber, 

2007; Nomura & Reber, 2012; PINNACLE 2.0; Reuveni & Reber, in prep). PINNACLE 

predicts that people rely on separate information processing streams for explicit hypothesis 

testing and implicit learning with a decision-making mechanism that arbitrates between them. On 

each trial, explicit and implicit processes produce an independent prediction as to stimulus 

category membership, and the most confident of the two is selected to drive behavior. Feedback 

is then used to update each process’ internal category representation. This model has been 
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successfully used to guide analysis of functional neuroimaging data. In its original form, 

PINNACLE 1.0 incorporated an explicit module that tested a one-dimensional rule and an 

implicit module that tested a more complex two-dimensional rule. The model predicted that 

people spontaneously transition from relying on a simple explicit strategy, to a more complex 

implicit one over the course of the experiment. 

Interim Summary 

Setting theoretical assumptions of underlying neurophysiology aside for a moment, we 

note that all the models described so far share a commonality of employing more than one 

processes in order to account for behavior. In RULEX, there is a process for evaluating exemplar 

similarity (i.e. RULE), and a process for accounting for violations of those similarity-based 

judgments (i.e. X). In the ATRIUM model, there are similarly two processes (rule and exemplar 

modules). Both COVIS and PINNACLE employ two distinct, independent processes that map 

onto explicit and implicit strategies for solving category learning tasks. The success of these 

models in accounting for observed behavior across a wide range of paradigms suggests that a 

hybrid approach is well suited to fully capture categorization behavior. 

Studying Dynamic Decision Making 

Evidence both from converging two-process computational approaches as well as decades of 

behavioral and neuroanatomical work strongly imply that the brain uses two qualitatively 

different processes in categorization. Thus, we now turn our attention to the difficult problem of 

how these systems generate and evaluate different strategies: the decision-making process. 

Several questions arise in a framework where multiple strategies are available. 1) How do people 
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navigate the decision-making process given a potentially large set of possible solutions? 2) How 

is feedback used to update and select different strategies? 3) What is the nature of the strategy 

representation (i.e. parallel or sequential, modifying existing rules or generating new ones, 

similarity judgements, one-step or hierarchical strategies)? 

Before investigating these questions, a method for prolonging the period of strategy uncertainty 

during the category learning task is needed to provide more opportunities to observe the 

decision-making process. Traditional category learning experiments require participants to learn 

categories using random or pseudo-random stimulus selection in order to expose participants to 

the entire category throughout the experiment. To our knowledge, no paradigm currently exists 

that is aimed at intentionally prolonging the period of strategy exploration during category 

learning. The next chapter details the development of this new paradigm along with a detailed 

description of PINNACLE 2.0 that was developed to account for how people navigated this 

process and how it was used to provide trial-by-trial predictions of the observed strategy 

exploration. Chapter 4 describes two experiments that used PINNACLE 2.0’s predictions to 

drive adaptive stimulus selection in the new paradigm. Results of those experiments necessitated 

further development of the PINNACLE model. Chapter 5 describes neuroimaging data gathered 

while participants performed the task and describes preliminary efforts to identify neural 

correlates of the decision-making process. In addition, further refinement to the PINNACLE 

model is described model based on these findings. Finally, Chapter 6 provides a discussion of the 

results. 
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Chapter 3: Prior Behavioral Work & PINNACLE 2.0 

How do people converge on successful strategies in a new environment when a range of 

potential solutions exist? How do they adapt when environmental demands change, and those 

strategies no longer work? To understand these complex processes, we presented participants 

with increasingly difficult category learning tasks in which a both one- and two-dimensional 

explicit strategies as well as an implicit strategy are appropriate. We began with traditional 

diagonal category learning paradigms in which participants spontaneously explore a variety of 

explicit as well as implicit strategies and culminate with a new paradigm and dynamic protocol 

that experimentally induces strategy switching.  

If it were as simple a matter as introspection or asking a person how they accomplished 

these tasks psychology would be a much easier field. A major difficulty in studying the decision-

making process is the fact that on any given trial it is impossible to recover which strategy was 

used or what new rule was created by participants. In addition, developing a theory of how 

people navigate the dynamic decision-making process requires formal descriptions of the 

hypothesized underlying processes. To address both points we developed a computational 

cognitive model, PINNACLE 2.0. This model is capable of accounting for a wide range of 

behaviors that produces group- and individual-level data and provides trial-by-trial predictions as 

to the mental state of participants. The updated version represents a significant improvement 

over its predecessor, PINNACLE 1.0, which was unable to account for the range of these data. 

PINNACLE 2.0 describes a theory for how participants transition from one-dimensional to two-

dimensional rules, both explicit and implicit. It does so by incorporating multiple strategies, a 

simple yet effective decision-making mechanism, and neurally plausible feedback processing. 



35 

The more successful the model is at accounting for participant behavior, the more confidence we 

have that the model approximates the processes used by people. Importantly, a successful model 

generates specific testable hypotheses about the participant’s behavior and mental state. 

In experiment 1, we present an examination of task parameter variations on a classic 

visual category learning task as part of instantiating reliable learning of both rule-based (RB, 

explicit) and information-integration (II, sometimes implicit) types of categories. The goal was to 

re-instantiate the task and manipulate the initial difficulty and learning rate to observe both 

explicit-explicit and explicit-implicit strategy switching over a larger number of trials than prior 

paradigms had allowed. In addition, we sought to characterize the way in which participants 

approached solving the task using detailed verbal self-report of strategies by participants. During 

this process we discovered a higher than anticipated rate of successful explicit rule use during an 

II task, which has been traditionally thought of as an implicit learning task. Participants learned 

the diagonal categorization boundary used as a signature of implicit learning but verbally 

described a two-step explicit rule. This phenomenon has not been previously reported, but few 

prior studies have carefully examined the type of learning with a structured post-session 

interview. This result implies that some prior reports of II category learning that depend solely 

on analysis of choice behavior may actually reflect an explicit-II approach rather than implicit 

knowledge expression.  

In experiment 2, we introduced a new variation on the standard behavioral paradigm, 

Falling Cat, that used movement of the stimuli to create a greater sense of task engagement and 

urgency. This served to further obscure more successful strategies thus prolonging the period of 

strategy exploration. This paradigm then served as the basis for experiment 3, which introduces 

the Dynamic Cat protocol that experimentally induces strategy switching. In this approach, 
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participants are guided towards using an incomplete one-dimensional rule-based strategy at the 

beginning of training by selectively showing stimuli consistent with that rule. Over the next 

several hundred trials, the true structure of the task is gradually revealed and requires participants 

to explore a variety of strategies as they search for a better alternative. 

In the second part of the chapter we describe a computational cognitive model, Parallel 

Interactive Neural Networks Active in Competitive Learning (PINNACLE) 2.0, capable of 

accounting for a wider range of data than its previous 1.0 version including the Dynamic Cat 

protocol. We describe a general architecture for the model, the changes made to the previous 

version and how they aid in accounting for this broader set of data. PINNACLE 2.0 provides 

theory-driven hypotheses about the cognitive mental state of participants derived from their 

behavioral choice data. PINNACLE is a predictive information-processing model that can 

simulate group performance data that matches human performance from the same task conditions 

(stimuli and trial order). In addition, PINNACLE 2.0 can be yoked to an individual participant’s 

record of specific choice behavior to make predictions about their internal state on each trial. The 

ability to estimate strategy use in real time during learning was used to guide stimulus selection 

towards increased strategy switching in experiments 5 and 6, described in the following chapter.  

Experiment 1 – Static Cat 

The goal of experiment 1 was to modify the classic RB/II visual category learning task to 

create more opportunities for participants to switch between one-dimensional strategies as well 

as between one- and two-dimensional ones over approximately one hour. Previous work by 

Nomura & Reber (2012) used a diagonal category structure and identified a relatively low rate of 

spontaneous strategy switching between explicit and implicit strategies. In order to encourage 
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more instances of strategy switching we manipulated both trial length and category difficulty 

such that participants would not achieve ceiling performance, while allowing more time to 

abandon simple explicit rules and adopt more complex ones or shift to implicit decision-making. 

For this experiment, our criteria for success were: 1) an exclusion rate less than 30%, 2) between 

70% and 80% accuracy on the last block (50 trials) after 300 trials of learning. In addition, we 

sought to quantify the number of participants able to verbally report an appropriate explicit 

strategy indicating implicit learning. This metric would guide development of our model by 

informing likely strategies participants used while solving the task. 

Here we report the experiment parameter variations of a diagonal category structure that 

were tested to identify a protocol that reliably produced learning and complex strategy use within 

a one-hour protocol. The combination of relatively low rates of spontaneous strategy switching 

in participants within the first hour of learning as evidenced by low accuracy performance, and 

our strict criteria lead us to test eleven conditions. Across conditions, we varied several factors: 

1) experimental timings including the duration of stimulus presentation, response time, and 

feedback presentation 2) category offset from the category boundary (i.e. how distinct the two 

categories are from each other), 3) within-category variability (i.e. how large the standard 

deviation of each category distribution is), 4) number of trials (600 vs. 300), 5) feedback-delay & 

dual-task. 

Participants 

One-hundred and eight participants were recruited from the Northwestern University 

research participation pool. All participants had normal or corrected to normal vision, were 

required to be over 18, and were provided informed consent as well as a post-experiment 
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debriefing session as compliant with Northwestern University’s Institutional Review Board. In 

category learning paradigms there is a concern that participants who have previously taken part 

in similar category learning experiments may not reflect the same sort of learning that a naïve 

participant might due to their previous experience with the stimuli and/or stimulus space. To 

mitigate this concern, participants were only allowed to participate once regardless of which 

experiment they were assigned to. 

Procedure 

All data were gathered on laboratory windows-based computers with 23” flat screens at 

60Hz. Responses were made on a keyboard using the ‘d’ and ‘k’ keys. The experiment was 

written in python 2.7 using PsychoPy libraries (Peirce, 2007). Whenever possible, testing rooms 

were restricted to a single participant per session with no more than 2 performing the experiment 

at a time. Instructions were provided both verbally, and in writing presented on the screen, were 

self-paced, and read as follows: “In this experiment, you will be shown a series of images. These 

images belong to either category A or category B. Categorize each image by pressing "d" for A, 

or "k" for B. Please note that you have X second to make your decision. Press any key to begin.” 

Where X was either 1, or 5 seconds depending on the condition.  

Learning Rates & Accuracy 

Across the three experiments reported in this chapter, we assessed learning by dividing 

trials into blocks of 50 and computing the average accuracy for each block. Participants who 

failed to achieve 60% accuracy on the final block of learning were excluded from further 

analysis. Exclusion rates are reported per experiment and condition.  
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Verbal report & Explicit II 

On all but two of the experimental conditions in experiment 1, we employed a structured 

post-experimental interview to identify participants that used an explicit, verbalizable strategy 

during the task. This additional metric was added after two rounds of initial pilot testing, when 

we noticed that a proportion of participants would spontaneously report an accurate strategy they 

used during the post-experiment debriefing session. While the conventional wisdom of II 

category learning was that participants were using an implicit strategy, a proportion of 

participants demonstrated successfully using an explicit strategy (explicit II) that led to robust 

learning (e.g. “if it is thick it’s an A, unless it is also very tilty, then it’s a B” and vice versa.”)  

The post-experimental interview was divided into two parts: 1) a verbal interview, and 2) 

a drawing component. In the verbal interview, participants were prompted to report any 

strategies they might have used during the experiment without explicitly asking them for strategy 

use (i.e. we do not use the words “strategy”, “rules”, “how did you solve”, etc.) so as not to 

create an expectation of a strategy if they did not have one in mind already. We began by asking 

the participant to describe their experience in the experiment while making notes as they talk. 

This usually resulted in participants talking about what they thought about the stimuli, and their 

experience in attempting to learn the categories. If participants mentioned any strategies they 

tried such as “the thickness of the line seemed to matter” we prompted them to talk more about 

that, and whether it seemed to work for them. This sort of prompting continued until the 

participant had nothing more to say. Afterwards, we asked the participant to imagine that a new 

participant was about to perform the experiment and that they had the opportunity to give them a 

head-start by giving them tips on how to successfully sort the stimuli. What advice would they 
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give other than to stay attentive and alert? Finally, we asked participants whether there is 

anything else they would like to tell us about their experience.  

In the drawing portion, we provided a blank X by Y chart space with notations on the X-

axis for bar thickness (thick on left, thin to the right), and orientation on the Y-axis (vertical at 0, 

horizontal at the top). We explained how stimuli map to this space by selecting points on the 

chart and drawing the corresponding stimulus. For example, at (0,0) we drew a circle with thick 

vertical bars. At to top right of the chart we drew a circle with thin horizontal bars. We continued 

to provide examples until the participant understood the mapping. Once both the participant and 

the interviewer were satisfied, we provided a new, blank chart adjacent to the one just used and 

asked the participant to fill the chart by imagining what a circle would look like at multiple 

points, but instead of drawing the circle, to write down “A” if they thought that stimulus would 

belong to category “A” or write a “B” if it belonged to category “B”. In this way they had the 

opportunity to express non-verbal knowledge of the space. Successful knowledge expression on 

this task produced groups of hand-written “A”s and “B”s that were roughly divided by a 

diagonal line. 

Explicit or Implicit strategy use? 

An important discovery that arose from the interview process was that not all participants 

who demonstrated successful learning did so by using an implicit strategy. Previous visual 

category learning studies have traditionally associated success on diagonal category learning 

tasks as indicative of implicit strategy use. Results from the interview process show that a 

percentage of participants were able to articulate an appropriate verbal rule that matched their 

successful choice behavior. We classify these participants has having used an explicit II strategy. 
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Alternatively, in cases where participants 1) learn the task to at least 60% accuracy 2) fail 

to articulate an explicit strategy that matches their choice behavior during the interview are 

classified as using an implicit strategy since they seem to lack awareness of how they achieved 

their performance. For example, participants we take to have used an implicit strategy may report 

that they guessed, or that their fingers knew what to do, or that there is in fact no way to solve 

the task, or they may report using a simple explicit rule (i.e. thick | thin) but their accuracy levels 

and choice behavior indicate that they were taking both dimensions into account. 

Materials  

Stimuli were circular sine wave gratings (Figure 3.1; Top) that varied in spatial frequency 

(thickness of lines) and orientation (tilt of lines). Stimulus space ranged from 0-1 in arbitrary 

units. This stimulus space can be thought of as a Cartesian X by Y coordinate space in which the 

X-axis corresponds to Spatial Frequency (low S.F = thick bars, high S.F. = thin bars) and the Y-

axis corresponds to Orientation (low orientation = more vertical, high orientation = more 

horizontal). All stimuli were non-linearly transformed as described in (Treutwein, Rentschler & 

Caelli, 1989), which roughly equate the salience of each dimension (see Appendix A for details).  

All conditions used a category structure in which stimuli were divided into two categories 

based on a diagonal category boundary (X = Y) in which the formal rule is X > Y = ‘B’; Y > X = 

‘A’ (Figure 3.1; Bottom). This type of category structure requires that both dimensions be taken 

into account in order to achieve optimal performance. Each category (‘A’ and ‘B’) was 

constructed by generating stimuli according to a normal distribution centered along a diagonal 

spaced at a fixed distance from the category boundary. Thus, each category is defined by two 

numbers: 1) offset from the category boundary (i.e. half the distance between the categories), and 
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2) the standard deviation of the category (i.e. how spread out it is). Each participant saw one of 

10 pregenerated stimulus orders that were generated pseudo-randomly such that the entire space 

was sampled every 10 stimuli, and no more than 3 stimuli from the same category could appear 

in succession to avoid creating perceived order effects. 
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Figure 3.1 

 

Top: examples of how identical stimuli can be divided into different 

categories. Grey: orientation rule based on Y-axis. Green: thickness 

rule based on X-axis. Purple: diagonal rule based on both dimensions.  

 

Bottom: Example of a diagonal category distribution in perceptual 

space. Each point represents a set of coordinates that corresponds to a 

unique stimulus. 
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Procedure – Static Cat 

Each trial began with a 250ms white fixation cross that subtended 0.382° visual angle in 

the center of the screen followed by a circular sinewave grating that subtended 6.1° visual angle 

for a variable length of time presented in the center of the screen. This was then followed by a 

random noise square mask subtending 6.1° visual angle that totally obscured the stimulus for 

250ms. The participant was then prompted with “A or B?” for either 5,000ms, 2,000ms or 

1,000ms based on the condition. If a response was not made in time, they were prompted with 

“Too slow, please make your selection faster next time.” Feedback was presented either 

immediately, or after a 2,750ms delay, for either 500ms or 1,000ms depending on the condition 

in the form of a circular cartoon thumbs-up on a green background for correct trials, or a similar 

thumbs-down on a red background for incorrect trials that subtended 7.63° visual angle presented 

in the center of the screen. In the final block, no feedback was provided to measure category 

knowledge without any additional learning. Finally, a blank screen was shown for 250ms as an 

inter-trial-interval (ITI) before the next trial began. Self-terminated breaks were offered every 

100 trials in which participants were asked to keep them short, but no timer was enforced. 
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Figure 3.2  

Standard visual category learning paradigm “Static Cat”. A stimulus is shown followed by 

a mask. A response is then gathered, and feedback is shown. ITIs can be jittered or not to 

accommodate neuroimaging techniques. 
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Conditions 

 The conditions tested in experiment 1 are summarized in table 3.1. In addition to varying 

the category distributions, we varied the number of trials (600, 400, or 300) because the ultimate 

goal was to perform the task in a functional magnetic resonance imaging (fMRI) machine which 

requires a jittered inter-trial-interval (ITI) in order to deconvolve the blood-oxygen dependent 

(BOLD) signal for analysis thus lengthening each trial. Given considerations for participant task 

engagement, as well as the cost of scanning, we aimed for an hour-long protocol which restricted 

the number of trials possible. 

 Finally, in several conditions, to further support the possibility that participants were 

performing the task implicitly we added a feedback-delay condition which has been shown to 

selectively impair implicit learning and not explicit learning (Maddox, Ashby, Bohil, 2003). 

Thus, if learning persisted under these conditions, the likelihood of explicit learning is higher 

which would make the condition less viable. In one condition, we tested a tone-counting dual-

task which should impair explicit learning, but not implicit learning based on working-memory 

interference. 

Results 

Eleven conditions are reported in Table 3.1, participants who achieved less than 60% 

accuracy in the final block were excluded to ensure that our evaluation was reflective of the 

learning process. The offset: 10, sd: 4 (10 / 4) 300 trial condition produced an appropriate rate of 

learning (74%) with a low rate of exclusion (22%). It also produced a comparatively low 

proportion of participants who demonstrated explicit rule verbalizability (43%). While other 
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conditions provided higher estimates of learning, lower exclusion, or lower rates of explicit II 

rule report, the 10/4 – 300 condition provided the best combination of the three. 

  

Table 3.1 

 

Results of eleven conditions tested in Experiment 1. Columns are:  n – # of subjects after 

exclusion. Excld – # of excluded participants. Offset – distance from the category 

boundary to the center of the category distribution. SD – the standard deviation of each 

category from the offset midline Trials - # of trials. Stim dur. – stimulus presentation 

duration. FB dur. – feedback presentation duration. Final Acc – performance accuracy on 

the last 50 trials. % explicit II rule - % of participants that were able to articulate an 

appropriate two-dimensional rule based on 4 independent raters with an inter-rater 

reliability of 75% or higher. ב – Delay condition. ן – dual-task condition.  

n Excld Offset SD Trials Stim dur. FB dur.
Final 

Acc

% explict 

II rule

1 7 2 10 4 300 500ms 1,000ms 74% 43%

2 7 1 10 7 300 500ms 1,000ms 85% 57%

3 6 1 10 7 ב300 500ms 1,000ms 89% 83%

4 8 1 10 7 600 5,000ms 500ms 89% N/A

5 6 6 8 7 600 500ms 500ms 83% N/A

6 10 0 8 7 300 500ms 1,000ms 76% 50%

7 6 2 10 4 ב300 250ms 500ms 75% 50%

8 7 10 4 5 600 500ms 500ms 74% 57%

9 6 2 6 7 ב300 500ms 1,000ms 72% 17%

10 10 2 6 7 300 500ms 1,000ms 68% 10%

11 7 1 13 3 ן500 500ms 500ms 63% 0%

N = 108

ResultsParticipants Category Structure Timings
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Summary 

In experiment 1 we identified experimental timings as well as a category structure that 

produced robust learning (~70-80%) within a 1-hour, 300 trial protocol. The higher than 

anticipated rate of explicit II strategy use indicating that participants transitioned from relying on 

an explicit- to an implicit-strategy as well as discovering an appropriate two-dimensional explicit 

rule. A shortcoming of the classic paradigm is its static nature, which is both boring and affords 

participants more time to think about their decisions which may have contributed to the higher 

than anticipated rates of explicit II strategy use. To improve upon this design, we developed a 

new paradigm aimed at both engaging participants in the task as well as providing a greater sense 

of urgency associated with the decision. These changes also led to a relatively lower rate of 

explicit-II strategy use.  

Experiment 2 – Falling Cat 

Experiment 2 tested a new visual category learning paradigm, Falling Categories. This 

protocol incorporates motion, and a more gamified feel to both encourage greater participant 

engagement as well as adding a sense of urgency surrounding the decision-making process. 

Participants 

Sixty-two participants were recruited from the Northwestern University research 

participation pool. All participants had normal, or corrected to normal vision, were provided full 

informed consent in accordance with Northwestern University’s IRB protocols, and received 

course credit for their participation. 
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Methods & Materials 

Experiment 2 tested two stimulus speeds that corresponded to 1,000ms and 1,500ms. In 

addition, the target stimulus and feedback stimulus sizes were reduced to 3.82° visual angle. ITI 

times were removed in order to speed up the overall pacing of the experiment and to allow for 

more trials. 
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Stimulus falls 

from the top of 

the screen 

Participants sort and 

receive feedback 

Figure 3.3 

Depiction of a trial design in “Falling Cat”. Stimuli drop from the top of the screen giving 

participants 1,500ms to respond by pressing one of two buttons. Feedback appears for 500ms 

following the decision before the next trial begins. 

‘A’ ‘B’ 
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Procedure 

In this new paradigm Falling Cat, on each trial a stimulus appears at the top of the screen 

and immediately begins to fall at a fixed rate. Participants have to respond before the stimulus 

reaches the lever and are instructed to sort each stimulus into one of two categories (‘A’ or ‘B’) 

by pressing one of two buttons on a keyboard (‘d’ or ‘k’) and thus manipulating a lever (black 

line, Figure 3.3) on the screen. Once the stimulus is sorted, participants are provided immediate 

visual feedback in the form of either a green thumbs up or red thumbs down at the bottom of the 

screen for 500ms. If a response is not made in time, participants are prompted with “Too slow – 

Please make your selection faster next time”. The time required to complete an individual trial is 

much quicker, allowing for category learning protocols with up to 1,000 trials within an hour-

long session. 

Conditions 

 Experiment 2 tested five conditions across two category structures: RB (1 condition) and 

II (4 conditions). The RB condition was included as a control condition to ensure the protocol 

could also produce learning of a very simple category. The II conditions included two stimulus 

motion speed conditions: 1,000ms (2 conditions of a 13/3 category structure from experiment 1) 

and 1,500ms (3 conditions, one of a 13/3 category structure, and 1 10/4 category structures). We 

included the 13/3 distribution in this experiment for the possibility of changing the profile of 

strategy use from mostly explicit in experiment 1, to more implicit. The 10/4 condition was 

shown to be the best overall condition based on the same criteria as in experiment 1. 
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Results 

RB condition: n=10 (1 excluded), 600 trials, 1,500ms stimulus presentation time, group 

accuracy on last block = 93%, 100% verbal strategy reported.  

II conditions: 1) n=9 (3 excluded), 13/3 distribution, 1,000 trials, 1,000ms stimulus presentation 

time, group accuracy on last block = 75%, 0% explicit II strategy reported. 2)  n=5 (1 excluded), 

13/3 distribution, 600 trials, 1,000ms stimulus presentation time, group accuracy on last block = 

68%, no verbal report was collected. 3) n=12 (0 excluded), 13/3 distribution, 1,000 trials, 

1,500ms stimulus presentation, group accuracy on last block = 88%, 66% explicit II strategy 

reported. 4) n=20 (4 excluded), 10/4 distribution, 1,000 trials, 1,500ms, stimulus presentation, 

group accuracy on last block = 75%, 18% explicit II strategy reported. 

Summary 

 In experiment 2, we tested a new experimental paradigm that incorporated motion to 

create an increased sense of urgency, coupled with a more engaging cover-story and gamified 

trial design. This paradigm led to equivalent levels of participant accuracy while reducing the 

rate of explicit II report, thus allowing for a better model of both explicit-explicit and explicit-

implicit strategy switching. Even with high accuracy performance, and low rates of explicit 

verbal report, there was still a concern that the number of instances of strategy switching per 

participant would be too low to allow for reliable statistical analyses. We therefore set out to 

develop a protocol that would experimentally manipulate strategy use to increase the number of 

such occurrences. 
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Experiment 3 – Dynamic Cat 

Experiment 3 built upon experiments 1 & 2 by modifying the stimulus selection and 

presentation order to experimentally induce a strategy switch from a simple to more complex 

strategies. This novel experimental protocol Dynamic Categories can produce a shift from an 

initially successful unidimensional explicit strategy to a more complex two-dimensional strategy 

or in some cases an implicit one. Being able to experimentally manipulate strategy switching in 

this way is critical to studying the dynamic decision-making as it provides a robust testbed for 

neuroimaging, as well as future behavioral tests and manipulations. Here we report a pilot 

condition with 1,000 trials, and a follow-up with 545 trials that replicate these results. 

Participants 

Forty-one participants were recruited from the Northwestern University research 

participation pool. All participants had normal, or corrected to normal vision, were provided full 

informed consent in accordance with Northwestern University’s IRB protocols, and received 

course credit for their participation. 

Materials & methods 

 

All methods and materials in experiment 3 were identical to those in experiment 2 except 

for the following: 1) number of trials were either 1,000 (pilot) or 545 (replication) in order to 

accommodate a jittered ITI in anticipation of neuroimaging. 2) A jittered ITI of between 2-8 

seconds was added. 3) Most critically, the stimulus sampling method was altered to 

experimentally induce a shift from an explicit to an implicit strategy. In classic experimental 
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designs (including experiments 1 & 2 reported here), stimuli are sampled pseudo-randomly to 

ensure the entire category space is sampled evenly across the entire experiment. In Dynamic Cat 

we control the sampling of stimuli in three phases to encourage strategy switching: 

Phase 1: Bait 

For the first 100 trials of the Dynamic Cat protocol, participants were exclusively shown 

stimuli sampled from areas of each category that conform to a simple “thick = A, thin = B” rule 

(black and orange areas of Figure 3.4). This quickly establishes a simple explicit strategy in all 

participants as well as high accuracy. 

Phase 2: Switch 

During the next 100 trials stimuli were sampled such that they disconfirmed the simple 

rule learned in phase 1 (green and purple areas in Figure 3.4). We used a ratio of 3:1 

disconfirming to confirming stimuli such that participants saw far more trials in which their 

initially successful rule did not work. This sudden change in the stimuli participants experience 

leads to a reliable drop in accuracy as well as a period of strategy exploration in which a variety 

of strategies are explored in an attempt to recover from the change. 

Phase 3: Learning 

From trial 200 till the end of the experiment, the ratio of disconfirming to confirming 

stimuli was reduced to 2:1 in order to more evenly sample the space while still encouraging 

participants to abandon their initial explicit rule as participants tend to perseverate on an explicit 

rule even when the preponderance of evidence suggests it no longer works. 
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As in experiments 1 & 2, stimuli were sampled such that a maximum of 3 consecutive 

stimuli from the same category could be shown in a row. In addition, stimuli were sampled at a 

minimum distance from the previously seen stimulus to ensure uniform sampling of both 

categories. 
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Figure 3.4 

An example diagonal distribution identical to figure 3.1 (bottom) with areas of the 

category space colored based on whether they confirm (black and orange) or disconfirm 

(purple and green) a simple explicit rule based on thickness. Sine-wave gratings represent 

example stimuli from the indicated areas. 
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Procedure 

 

All procedures were identical to those in experiment 2 except for the stimulus 

presentation time (1,500ms or 1,000ms) and a either no ITI or a jittered ITI ranging from 2-8s in 

order to accommodate the proposed fMRI neuroimaging experiment. 

Results 

Pilot: n=11 (2 excluded), 1,000 trials, 10/4 distribution, 1,500ms stimulus presentation 

time, group accuracy on last block = 80%, 22% explicit II strategy reported. 

Replication: Accuracy results are shown in Figure 3.5. n=30 (9 excluded), 545 trials, 10/4 

distribution, 1,000ms stimulus presentation time, group accuracy on last block = 80%, 38% 

explicit II strategy reported.  

In Figure 3.5 we see very accurate performance as participants identify the simple 

explicit rule used to bait them over the first 100 trials. Entering the Switch phase, we see a sharp 

drop in accuracy as the rule is heavily disconfirmed. In the Learning phase, when the ratio of 

disconfirming-to-confirming stimuli is eased to 2:1 to allow a more even sampling of the 

category space, we see a gradual increase in accuracy as a proportion of participants settle into a 

more complex, and sometimes implicit, strategy. 
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Figure 3.5 

 

Group accuracy for experiment 3. Includes data from the 1,000 and 545 trial 

condition: n = 30. In the Bait phase (blocks 1-2) participants all perform at a high 

level of accuracy by using a simple thick | thin rule. In the Switch phase (blocks 3-4) 

participants all experience a reduction in accuracy. The Learning phase (blocks 5-

end) show a gradual increase in performance as more complex strategies are used.  

Dynamic Cat Group Accuracy 

Explicit rule is used 

The rules 

change 
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Summary 

In experiment 3, we introduced a new behavioral paradigm, Dynamic Cat, in which 

participants are initially invited to discover a simple one-dimensional explicit rule based on line 

thickness. This was done by selectively sampling stimuli from the appropriate regions of the 

diagonal category. In the second phase, this rule was then shown to be inaccurate by sampling 

stimuli from different regions of the category space that both disconfirm the rule and expose the 

true underlying category that requires the use of both line thickness, and orientation. Participants 

then gradually switched strategies from simple, to more complex rules over time with few 

participants able to explicitly report the strategy they used. Across both experiments participants 

learned the categories while exhibiting a learning profile indicative of strategy switching.  

PINNACLE 2.0 

The data obtained using the new Dynamic Cat protocol exposed several limitations 

within the original PINNACLE 1.0 framework that proved insufficient to capture human 

learning. The greater need to change from one- to two-dimensional strategies highlighted 

weaknesses in the mechanisms used for system-specific learning. In addition, limitations in the 

available one-dimensional hypotheses to consider within the explicit system, and feedback 

processing made the model unviable. PINNACLE 2.0, described here, builds on the original 

PINNACLE 1.0 description and improves our ability to describe human learning behavior. 

Importantly, it does this by allowing for separate learning rates for explicit and implicit systems, 

an explicit system that can rapidly shift its criteria based on evidence, and reward-prediction-

error (RPE) weighted feedback which allows for faster strategy shifting. 
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PINNACLE (Parallel Interactive Neural Networks Active in Competitive Learning; 

Figure 4.1) is a systems neuroscience inspired architecture for understanding interactions among 

memory systems and competing strategies during complex learning and decision making. The 

original PINNACLE 1.0 model was described in Nomura & Reber (2008, 2012) and reflected an 

initial effort towards an integrated model based on findings of separate neural systems for 

explicit and implicit category learning. While prior work had shown a clear dissociation between 

category learning systems that mirrored the dissociation between implicit and explicit memory 

systems, little attention had been paid to how these two different systems would interact in a 

cognitively healthy participant who would have simultaneous access to both kinds of processing. 

PINNACLE 1.0 added a hypothesized Decision Module to resolve competition between systems 

and showed a reasonable match to the available human behavioral data.  

Architecture 

The PINNACLE architecture incorporates separate and competitive information 

processing streams that reflect the separate neural bases for explicit rule-based learning and 

implicit II learning. Here explicit strategies are modeled as one-dimensional rules based on the 

fact that participants readily report simple strategy use. Prior visual category learning research 

has shown that as the complexity of the category increases, fewer participants are able to 

articulate rules that allow for high accuracy performance. Based on this, we model the implicit 

system as a two-dimensional (diagonal) rule. It is important to note that our data shows that 

participants are also able to approximate this rule explicitly and as such use of this more complex 

rule may be reflective of either explicit or implicit strategies. A competition resolution 

mechanism is necessary for selecting a single response even though each system is 
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independently attempting to predict the category of the stimulus. We termed this conflict 

resolution area, the Decision Module, reflecting the hypothesis that this process is carried out in 

a separate region of the brain to adjudicate between the category membership estimates from 

each of the explicit and implicit systems. In PINNACLE 1.0, a simple mechanism for this 

process was conjectured and this both provided a fit to data and appeared to match up with 

neuroimaging data for trials associated with high competition.  

Some process like the Decision Module is necessary for any multi-system or hybrid 

strategy model of categorization. In addition, these approaches pose a question about the process 

of learning from feedback, specifically assigning credit across systems after a correct or incorrect 

response. The simplest approach of only allowing the competition-winning model to both drive 

the response and learn from feedback was not used in PINNACLE for two reasons. First, as a 

model of the development of expertise, PINNACLE needs to be capable of a strategy shift from 

an explicit RB approach to an automatic, habitual II approach, which cannot happen if the II 

system does not learn from feedback even when RB is driving behavior. Second, comparative 

model fitting of different feedback approaches found that allowing both systems to learn in 

parallel simply fit human choice behavior better (Nomura & Reber, 2012). The apparently 

straightforward solution of having both systems learn independently raises a difficulty in terms 

of the neuroanatomical underpinnings of reward processing in the non-controlling (off) system. 

For example, if the implicit system was not selected but had the correct prediction and the 

controlling system was wrong, negative feedback is provided and no dopamine should be 

released. How then, does a basal-ganglia based, dopamine dependent implicit system learn in 

these cases? While the current study is not well situated to answering this question, the 

PINNACLE framework provides a good foundation for future research in this direction. 
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Figure 3.6 

Cartoon of PINNACLE 2.0. Stimulus information flows to two memory systems. The lower 

stream represents the explicit system which evaluates simple one-dimensional category 

boundary hypotheses. The upper stream represents the implicit system which evaluates a two-

dimensional category boundary hypothesis. Each system provides a prediction as to category 

membership. Information from both systems then flows to a decision module where a 

decision is made about stimulus category membership based on relative confidence. Feedback 

is provided, and each system updates its internal category representation based on reward 

prediction error weighted learning. 
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Several aspects of the architecture were updated in the development of PINNACLE 2.0 to 

provide a better fit to data from the new Dynamic Cat protocol.  

1) The explicit RB system was enhanced to allow for one-dimensional learning on either 

category dimension (previously, the RB subsystem could only learn categories based on 

line thickness). This raised some additional complexity by making explicit learning itself 

function as a multi-system model. However, it is clear that humans can hypothesize, learn 

and use a wide array of explicit strategies, even for a simple visual categorization task, so 

this enhancement increases the connection of the model to human cognition. 

2) The simple reinforcement learning mechanism in PINNACLE 1.0 did not fit the learning 

profile exhibited by participants over the Dynamic Cat protocol that forced greater 

strategy switching. Therefore, the mechanism for feedback learning that was enhanced to 

incorporate reward prediction error (RPE; recently Schultz, Stauffer & Lak, 2017; for 

computational models: Maia, 2009; Maia & Frank, 2011), using weighted feedback that 

better matched participant behavior. 

Three critical mechanisms of PINNACLE 2.0 allow us to reproduce participant behavior on the 

Dynamic Cat task: 1) a decision module that arbitrates two distinct systems (explicit \ implicit) 

capable of guiding behavior based on a measure of confidence. 2) A credit assignment 

mechanism that dictates how each system learns in light of feedback, and 3) Reward prediction 

error (RPE) weighted learning with separate learning rates for explicit and implicit systems. 

Together, these mechanisms allow PINNACLE 2.0 to display rapid explicit learning when 

confronting simple category structures, while simultaneously developing a more complex 

representation of the category space using a slower, implicit system. When task demands change, 

PINNACLE 2.0 is able to dynamically switch strategies to maintain optimal performance. 
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 Since PINNACLE 2.0 is an information processing model that aims to perform 

experiments like participants it is divided into several sub-systems through which information 

flows. Broadly speaking the information flows in the following order on a given trial: Perception 

→ Cognition/Decision-Making → Response → Feedback & Learning. In the next several 

sections we detail each sub system’s operation and how it contributes to PINNACLE 2.0’s 

success. 

Perception 

 PINNACLE 2.0 perceives a stimulus as a (X, Y) coordinate in an idealized perceptual 

space in which each dimension of the stimulus (i.e. thickness, orientation) corresponds to a 

different axis (see Chapter 3, Figure 3.1 for an example). Each stimulus dimension has random 

Gaussian noise applied to it to simulate a degree of uncertainty as to where in the space the 

stimulus is exactly located. This mechanism allows PINNACLE 2.0 to achieve a stable, non-

ceiling plateau in cases of category overlap, or when stimuli from each category are very close to 

the category boundary. The sd of the Gaussian noise applied to each stimulus dimension is taken 

as a free parameter. 

Memory Systems 

Stimulus information is then forwarded simultaneously to an explicit, and implicit 

memory module. Both modules use a decision bound theory (DBT; Ashby and Townsend, 1986) 

framework to represent categories in this perceptual space. DBT formalizes category separation 

with a decision boundary that bisects the space into two categories (e.g. ‘A’ and ‘B’) that can be 

thought of as a specific hypothesis as to what defines each category. For example, a category 
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might be defined by the thickness of the stimulus bars formalized as a linear vertical decision 

boundary with a specific value along the X-axis. In order to provide a probability-estimate of 

category membership, a perceptual shaping (PS) function is applied to each stimulus in the form 

of a bivariate Gaussian distribution centered on the stimulus coordinates. A single initial value 

for the standard deviation of this symmetrical 2D Gaussian is used for both systems and is taken 

as a free parameter and is fit to the data. Thus, category membership is calculated as the area 

under the Gaussian that falls on one side of the decision boundary referred to as p(A) (probability 

of ‘A’) according to formula 4.1. 

𝑝(𝐴) = ∬ 𝑒
−

1

2
(

𝐷𝐵 −(𝑙𝑜𝑐𝑥,𝑙𝑜𝑐𝑦)

𝑃𝑆
)

2

𝑑𝑥

∞ 𝐷𝐵

−∞−∞

                                                  (3.1) 

Where PS is the perceptual shaping parameter, and DB is the position of the decision boundary 

A p(A) > 0.5 constitutes evidence for category ‘A’ and vice versa for category ‘B’. 

 Based on the available stimulus dimensions, as well as the fact that a majority of 

participants readily report these two explicit hypotheses, the explicit system tests two simple 

one-dimensional rule-based (RB) hypotheses: thickness, and orientation, formalized as a linear 

vertical (X-axis; RB X), and linear horizontal (Y-axis; RB Y) decision boundary respectively. For 

each stimulus, each hypothesis provides a p(A) and the most confident is selected as the output of 

the explicit system. It is worth noting that we acknowledge that a far more sophisticated explicit 

system, capable of generating and testing complex hypotheses could be implemented. 

Nevertheless, we were able to account for the observed data from experiments 1-3 with these 

simple models. 

 The implicit system tests a single linear diagonal hypothesis with a slope fixed at 1 and a 

variable intercept that integrates information across both dimensions (II). The decision to 
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implement a simple implicit system was driven by the desire to maintain interpretability, as well 

as the fact that such a simple mechanism is sufficient to capture human behavior. The initial 

values of the three decision boundaries are set equal to the respective values of the first stimulus 

PINNACLE 2.0 encounters. As our data shows, some participants were able to articulate two-

dimensional rules commensurate with a diagonal strategy. As such, the diagonal strategy is taken 

to be reflective of an overall more complex strategy which in some cases can be implicit and in 

others explicit. 

Decision and Response 

A competitive two-system model requires placing these memory modules within an 

architecture that allows a single response to be made. On each trial, both the explicit and implicit 

systems each provide an estimation of p(A) but only one response can be made by the simulation. 

To account for this PINNACLE 2.0 models two flows of information into a Decision Module 

where the selection of a response is made. A variety of options for how the sources of 

information could be evaluated were considered and a simple model of selection between 

systems weighted by confidence and the addition of random normally distributed noise was 

found to provide a good fit to human category learning. For this calculation, confidence is 

defined as distance from chance (0.5) such that a system predicting p(A) at 0.9 would be 

preferred over predictions such as 0.6 and 0.4 (also note that a prediction of 0.1 is preferred over 

0.6 since it is further from chance). The sd of the Gaussian used to generate random noise 

(Decision Module Noise) is taken as a free parameter that is fit to behavior (and remains fixed 

across performance). 
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Of theoretical note, our implementation of a confidence based probabilistic selection 

mechanism embeds a strong hypothesis of fully independent and competitive systems. 

Alternative hypotheses that accomplish the same function are so-called mixture of experts 

mechanisms that sum evidence across the two systems, or a hard-gating mechanism that shunts 

control of one system while another is active (i.e. explicit overrides implicit while active). 

Nomura and Reber (2012) compared the current competitive implementation with a mixture-of-

experts mechanism and found the latter provided a poorer fit during competitive model fitting 

suggesting that the explicit and implicit systems work at least largely independently.  

Feedback Credit Assignment 

The resulting architecture highlighted a new consideration in attempting to simulate 

human behavior related to incorporating feedback. Both the explicit and implicit systems 

independently attempt to learn the category structure on each trial (typically with the one that 

reflects the experimental structure being more successful) but the actual feedback provided is 

tied to the response selection of the decision module. This poses a puzzle that will arise when 

strategy switching is necessary. For example, in Dynamic Cat, initially PINNACLE will learn to 

rely on the explicit system’s vertical line strategy. However, in the switch phase this strategy will 

cease to work, and in fact the implicit diagonal strategy may make more accurate predictions. 

This leads to a situation in which the non-controlling system is correct, but the feedback 

provided to the system is based on an incorrect prediction made by the controlling system. How 

should feedback be processed by the non-controlling system? Curiously, variations on 

mechanisms for handling feedback that allow the non-controlling system to learn based on its 

own predictions, independent of the controlling system, fit human behavior better (Nomura & 
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Reber, 2012). These results are challenging with respect to a basal ganglia based, dopamine 

dependent implicit system in terms of a plausible neural mechanism for this kind of feedback 

process. Specifically, strengthening confidence is hypothesized to depend on dopamine, but no 

dopamine would be released when the controlling system leads to an incorrect response. 

Questions about how feedback is handled in an integrated system are only revealed by 

instantiating and rigorously evaluating models such as PINNACLE and constitute an important 

motivation for the simulation modeling approach used here to build our theory of human 

category learning. 

Reward Processing & Learning 

In the context of the model, we define learning as the process of gaining confidence in a 

correct hypothesis as to what defines each category. As such, PINNACLE 2.0 modifies its 

A separate perceptual shaping learning rate (PS lr) is taken as a free parameter for 

the explicit and implicit systems respectively with the explicit parameter typically 

being much larger than the implicit PS lr parameter. 
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internal representation of the category structure (i.e. modify the decision boundary), as well as its 

confidence in each hypothesis being tested (i.e. the sd of the PS parameter) based on its behavior, 

and the feedback provided. To do this, PINNACLE 2.0 uses a reward prediction error (RPE) 

weighted function to modify its internal representation of the categories being learned according 

to equation 4.2. 

Incorporating RPE allows a strategy to gain or lose confidence proportional to its current 

confidence as task demands change. This is critical for modeling Dynamic Cat data as previously 

successful strategies must be abandoned in light of new evidence and increases competition 

between systems.  

Correct feedback 

When processing correct feedback for a given hypothesis, PINNACLE 2.0 does not 

modify the decision boundary since it was supported. The value of the Perceptual Shaping (PS) 

parameter for each correct hypothesis is reduced respectively to reflect an increase in confidence 

since more of the distribution will now fall to one side of the decision boundary.  

Incorrect feedback 

When processing incorrect feedback, the value of the PS parameter for each hypothesis is 

increased to reflect a loss in confidence since less of the distribution will fall on one side of the 

decision boundary.  

The implicit system modifies its decision boundary incrementally by a fixed amount in 

the direction that would have produced the correct response. The amount that the decision 

boundary is modified represents the learning rate for that system. It is taken as a free parameter 
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that is fit to the data and remains constant throughout the experiment. This value is typically very 

low thus facilitating slow and gradual learning in the implicit system. 

The decision boundaries for explicit hypotheses, however, are modified to be the relevant 

value of the current stimulus (e.g. the vertical decision boundary intercept takes on the value of 

the X coordinate of the current stimulus). This approach of “anchoring” the rule to the current 

stimulus represents updating the hypothesis to the most extreme instance of the category seen to-

date. The idea of effectively instantiating a new instance of the rule rather than incrementally 

modifying the previous one is a fundamentally different hypothesis as to how people explore 

solutions. The anchoring approach allows us to simulate the rapid explicit learning of these 

categories observed in participant data in which very few trials are required to achieve a near 

optimal decision boundary. Of note, versions of PINNACLE in which the explicit system 

modified its decision boundary incrementally by a fixed amount produced worse fits to 

participant data. 
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Figure 3.2 

PINNACLE 2.0 fits to participant group data across three conditions reported in Chapter 3. 

Left: RB condition (n=10) from experiment 2. Middle: 10/4 Falling Cat II condition (n=20) 

from experiment 2. Right: Dynamic Cat condition (n=30) reported in experiment 3. All 

blocks are of 100 trials. 
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Model fits and Strategy Diagnosis 

PINNACLE 2.0 is capable of reproducing group, and individual level data on simple one-

dimensional (vertical) categories, two-dimensional (diagonal) categories, as well as on the 

Dynamic Cat task in experiment 3. Figure 3.2 - A shows group level model fits. All three fits 

were produced using the same set of free parameters. For each condition, PINNACLE 2.0 

produced individual performance traces equal to the number of participants in the condition thus 

representing group level data. Behavior was then averaged across 100 trials and plotted. 

In addition to group-level modeling, PINNACLE 2.0 is capable of producing choice 

behavior similar to that of participants, the model can be fit to individual participants by 

maximizing the likelihood that the model will produce the same choice behavior as that 

participant. This provides a trial-by-trial prediction as to which strategy was used by each 

participant – thickness, orientation, or diagonal. 

Adaptive Tutoring 

 PINNCLE 2.0 can be fit to individual participant data on the order of several seconds 

which allows us to employ the model during the Dynamic Cat experiment and optimize its fit 

during the ITI periods. In this way, we obtain a real-time prediction of which strategy a 

participant is currently using (RB X, RB Y, or II). Using this information, we can adaptively 

select stimuli for the participant based on a number of criteria designed to facilitate a transition 

from unidimensional rules to two-dimensional explicit, and sometimes implicit strategies.  

Beginning after the first block (80 trials; to have enough data to provide an initial fit), on 

each trial a prediction of which strategy was the most confident, as well as the predicted values 
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of the decision boundary locations are provided by PINNACLE 2.0 based on the pattern of 

participant’s choice behavior produced thus far. If the most confident strategy was a one-

dimensional rule (RB X or RB Y), then a stimulus was selected that would be incorrectly 

classified by that strategy but classified correctly by the diagonal strategy. For example, if the 

most confident strategy is RB X (which is true in virtually all cases after the first block of 

Dynamic Cat), then a stimulus is selected that violates this rule, but conforms to that 

participant’s predicted diagonal decision boundary. Additional consideration is given to verify 

that 1) stimuli are sampled far enough away from the last stimulus in that area of space to ensure 

uniform sampling of the space. 2) A mixture of easy and hard stimuli are shown based on their 

distance from the decision boundary with the assumption that stimuli further from the decision 

boundary are easier than those closer to it. 

To validate this method, we replicated experiment 3 (Dynamic Cat) and substituted the 

previously used pre-determined stimulus presentation order for the adaptive stimulus selection 

method driven by PINNACLE’s predictions in experiments 4 and 5. 

Summary 

 Across three category learning paradigms we discovered an unanticipated propensity in 

participants to use more complex rules than previous assumed. This suggests a greater role for 

complex explicit decision-making than was accounted for in previous models. The Dynamic Cat 

protocol introduced the first attempt, to our knowledge, of experimentally inducing uncertainty 

into the category learning process thus driving strategy exploration. This feature allows us to 

develop increasingly accurate accounts of the decision-making process. 
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PINNACLE 2.0 was developed to better account for these data and represents a more 

complete theory of human cognition than its previous version. It predicts that people use both 

one- and two-dimensional rules to judge category membership across both explicit and implicit 

memory systems. These strategies independently compete for control of behavior as people 

process imperfect stimulus information due to intrinsic neural noise and incorporate feedback 

proportional to their confidence. This allows people to transition between simple strategies, and 

from simple to complex strategies based on task demands. Its success in accounting for a range 

of group- and individual-level behavior suggests it likely reflects a plausible account of how 

people navigate this process.  
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Chapter 4: Dynamic Cat & PINNACLE 2.1 

Following the success of experiment 3 and PINNACLE 2.0, two additional datasets were 

gathered using the Dynamic Cat protocol. Rather than the orderly transition from simple to 

complex rules seen in experiment 3 and modeled by PINNACLE 2.0, participants displayed a 

wide range of behaviors in response to the changing environmental demands. The first dataset, 

experiment 4, utilized PINNACLE 2.0’s predictions to drive adaptive stimulus selection during 

the task. Results indicated a mixture of transitions between one- and two-dimensional rules as 

well as explicit to implicit strategy switching, similar to results from experiment 3. For the 

second dataset, experiment 5, the Dynamic Cat task was performed while neuroimaging data 

were collected. Behavioral results of experiment 5 show a significant departure from previous 

results in several ways: 1) an unexpectedly high rate of participants (18/32) failed to achieve 

greater than 60% performance on the final block of learning; 2) participants (10/14) who did 

achieve higher than 60% accuracy were much more likely to verbally describe an appropriate 

two-dimensional rule; and 3) participants who did not achieve greater than 60% accuracy 

displayed prolonged periods of unsuccessful strategy exploration without evidence of a loss of 

motivation or disengagement from the task. 

These results expose several important limitations in PINNACLE 2.0’s approach. First, 

the data indicate that participants considered a broader set of explicit strategies in attempting to 

solve the task than the ones modeled by PINNACLE 2.0. To address this, we explored a wider 

variety of explicit strategies including one-dimensional, quadrant, and exemplar-based strategies. 

In addition, the high rates of explicit II strategy use indicated that relatively few participants 

adopted implicit strategies or even a rule approximating a diagonal line. This suggests a smaller 
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role for such a strategy in the model. Second, accounting for these data given a broader set of 

explicit strategies requires an update to both the decision-making mechanism as well as the way 

in which knowledge representations are modified.  

To address these limitations, we further developed PINNACLE to version 2.1, such that it 

could accommodate the richer set of behaviors seen across these experiments, thus providing a 

more accurate model of how participants navigate this dynamic and challenging task. In 

developing PINNACLE 2.1, specific attention was paid to capturing both the variability of 

performances as well as the wide range of behaviors exhibited by participants. 

Experiment 4 – Adaptive Tutor Pilot 

Participants 

Nineteen participants were recruited from the Northwestern University research 

participation pool. All participants had normal, or corrected to normal vision, were provided full 

informed consent in accordance with Northwestern University’s IRB protocols, and received 

course credit for their participation. 

Methods, Materials, and Procedure 

All methods, materials, and procedures were identical to experiment 3 except for the 

method of stimulus selection. In this experiment, PINNACLE 2.0 was fit to participant choice 

behavior on all trials for which a response was made (data from non-responses were omitted 

from model fitting) during the jittered ITI periods. Its predictions were used to select a stimulus 

that discouraged an explicit strategy, while encouraging an implicit one as described earlier.  
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Results 

Accuracy results were not significantly different from those in experiment 3. n=19 (6 

excluded), 480 trials, 10/4 distribution, 1,000ms stimulus presentation time, group accuracy on 

last block = 78%. Critically, using this method, we found only 2 of the 19 participants were able 

to verbally report an explicit II strategy (10%). 

Experiment 5 – Dynamic Cat with Neuroimaging 

Methods, Materials, and Procedure 

Thirty-five participants were recruited from the community in order to obtain a more 

diverse sample and performed the same task as in experiment 4 while in a fMRI scanner. Seven 

participants were excluded from data analysis, and their data was not used: participants and 

exclusion criterion are described in the Exclusions section. 

Our neuroimaging protocol used a Siemens 3T fMRI scanner. During our Dynamic Cat 

task, we ran a T2*-weighted echo planar (EPI) scan covering 35 interleaved axial slices (TR = 

2200 ms, TE = 21 ms, multiband = 2, voxel size = 2×2×2 mm) for 218 volumes in each of six 

scans. For anatomical localization, high-resolution, 3D MP-RAGE T1-weighted scans (voxel 

size = 1×1×1 mm; 128 axial slices) were collected for each participant following the functional 

runs. Neuroimaging work is discussed in Chapter 5. 

Behavioral Data 

All methods and procedures were identical to experiment 4 with the exceptions that the 

experiment was done in a fMRI scanner, recruitment was done more broadly from the 
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community, and that the compensation was higher given the added requirement of neuroimaging. 

All participants were provided informed consent and a preliminary medial screen before agreeing 

to participant in the study. No health complications due to the scanner were observed or reported, 

however, one participant stopped the experiment at the end of the first block due to feelings of 

uneasiness. 

Results 

 Results of experiment 5 differed significantly from those of experiments 3 and 4 in three 

distinct ways. First, the unexpectedly high rate of participants who could verbally report an 

explicit-II strategy. In experiments 3 and 4, participants who achieved >60% accuracy on the 

final block of learning were largely unable to report an explicit-II rule. In experiment 5, 10 of the 

14 participants who achieved >60% on block 5 were able to articulate the rule. Second, there was 

an unexpectedly high rate of participants (18/32) who failed to achieve greater than 60% 

accuracy on block 5. This is a significant deviation in terms of the number of excluded 

participants when compared to experiment 3 (9/30) and experiment 4 (6/19). Third, the range of 

accuracy performance seen by the end of the experiment. A summary of these results is shown in 

Figure 4.1.   
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Figure 4.1 

Accuracy by Block results for experiment 5. Participants show the expected behavior 

during the Bait (block 1) and Switch (block 2) phases. However, by the end of learning 

most participants remain at approximately 60% accuracy. These results suggest a 

prolonged period of unsuccessful strategy exploration compared to results of experiments 

3 & 4. 

Most participants remain 

near chance performance 

By the end, some 

participants do very 

well while some 

perform consistently 

below chance. 
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Analysis of Choice Behavior 

In visual category learning participants who fail to achieve greater than chance 

performance (typically 55%, 60% or 65% accuracy) by the end of the experiment are 

traditionally excluded from analysis. The motivation to exclude these participants is often that 

the researchers are interested in studying learning behavior and presumably these participants did 

not learn. In some cases, the decision to exclude these participants is further supported through 

competitive model fitting. This process attempts to account for their choice behavior through 

several models corresponding to different hypothesized rules such as DBT models based on 

individual dimensions as well as combinations of them (i.e. RB-X, RB-Y, diagonal, conjunctive, 

etc.). In addition, a so-called Random Responder model is fit which simulates either biased or 

unbiased random guessing throughout the experiment. When participants are best fit by this 

Random Responder model it is taken as support of the claim that these participants can be 

reasonably excluded from further analysis since they either failed to engage with the task or 

failed to learn it. 

In experiment 5, 18/32 participants failed to achieve greater than 60% accuracy on Block 

5. While it is tempting to simply exclude these participants, several factors lead us to believe the 

behavior observed here is not the product of so-called “random responding”. In the following 

section we look for evidence that these non-learners disengaged from the task. In cases where 

participants seem to respond in stimulus-independent ways we exclude those trials. Of the seven 

excluded participants, three were found to have disengaged form the task significantly 

throughout a majority of the experiment and were thus excluded from further data analyses. Of 
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the remaining 28 participants a total of 16% of trials were omitted based on the criteria described 

in the following sections. 

Engagement 

While in many instances chance performance may be attributed to a lack of motivation or 

engagement, participants in this study all report both being frustrated by the task, as well as 

trying to solve it throughout its duration. In addition, participants recruited for fMRI studies tend 

to be highly motivated and are compensated well for their time. Our participants did not show 

signs of falling asleep or prolonged periods of non-responses (aside from one participant who 

was excluded for an abundance of non-responses) that would indicate they were disengaged from 

the task. Total non-responses accounted for 1.14% of the data. 

Random Responding 

An established body of evidence demonstrates that humans are bad at producing random 

numbers (Ginsburg & Karpiuk, 1994; Rabinowitz et al., 1989), and when they attempt to it leads 

to marked increases in their reaction times on dual-tasks indicating that attempting to produce 

random responses acts as a working-memory task (Brown & Marsden, 1991). This is likely 

because people attempt to track the answers they have generated in an attempt to ‘balance’ the 

set such that it appears more random. In many cases this leads to an under production of long 

strings of the same response (i.e. 8 A’s in a row), and an over production of alternating responses 

(A, B, A, B). 
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Reaction Times 

To test whether learners and non-learners differed significantly on reaction time (RT), we 

performed an ANOVA using reaction time as the dependent variable, and block number and 

learners / non-learners as the independent variable. There was a reliable difference between 

learners’ RT (M=0.789, SD=0.120) and non-learners (M=0.735, SD=0.115) such that non-

learners responded approximately 0.054ms faster: F(1,190)=10.53, p=0.0014. There was no 

reliable difference between the two groups across blocks: F(5,190)=1.19, p=0.316. 

Stimulus-Independent Strategies 

Still, a reliable difference in reaction time may indicate differential engagement in the 

task, and in order to further rule out the possibility that participants were disengaged from the 

task we performed behavioral analyses on their response patterns in an attempt to identify 

plausible maladaptive behaviors. Critically, these strategies should lead to responses that are 

independent on the stimulus. Three obvious ways of disengaging from the experiment we tested 

in which responses are independent of the stimulus were 1) repeatedly pressing the same button 

(e.g. “A”, “A”, “A”, “A”, “B”, “B”, “B”, “B”, etc.), 2) consistently alternating responses from 

one to the other (e.g. “A”, “B”, “A”, “B”, “A”, “B”, etc.), 3) responding to the current stimulus 

based on the previous stimulus label (e.g. “The last stimulus was an “A”, so this one is a “B” or 

vice versa.).  
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Method: 

There are currently no established criteria for identifying trials of interest for exclusion 

regarding these strategies. Importantly, any sequence of responses to be excluded must be longer 

than one would reasonably expect by chance thus indicating a deliberate strategy. For example, a 

sequence of five ‘A’s in a row happens somewhat frequently in a randomly generated set of 480 

responses (~8% of trials), whereas a sequence of sixteen ‘A’s is considerably less common 

(<0.05% of trials). In order to support the claim that this was an intentional strategy rather than 

an incidental occurrence, the pattern should exceed expected rates. To characterize the frequency 

of expected occurrences of these strategies in our experiment, assuming true random responding, 

we ran a Monte Carlo simulation by generating a dataset of 10,000 instances of 480 (the number 

of trials in our experiment) random responses. These data were then used to create an expected 

distribution of two strategy frequencies. We then compared both learner and non-learner data to 

this expected frequency distribution. Figure 4.1 shows the distributions for both single response 

and alternating response strategies.  

Repeated Response 

The first maladaptive strategy we tested for was one in which the participant generates 

multiple trials of the same response. This strategy does not depend on stimulus information and 

indicates a lack of engagement with the task and would thus be grounds for exclusion. As seen in 

Figure 4.2 (top) learners and non-learners both under-produce sequences compared to the 

expected frequency up to length 8 but do not differ significantly from each other until length 



84 

15+. We thus excluded any block containing a sequence of 15 or more resulting in 4/102 blocks 

in two participants being excluded in the non-learners and no blocks in the learners. 

Alternating Responses 

The second maladaptive strategy we tested for was one in which the participant generates 

an alternating pattern of A’s and B’s. This strategy also does not depend on stimulus information 

and indicates a lack of engagement with the task and would thus be grounds for exclusion. As 

seen in Figure 4.2 (bottom) learners and non-learners match simulated data until length 7 

sequences after which they deviate from the expected distribution. However, they do not deviate 

from each other until lengths of 15+. Following the criteria for repeated responses, we excluded 

any block containing a sequence of 15 or more resulting in 13/102 blocks in ten participants 

being excluded in the non-learners and 3/84 blocks in three participants in the learners. In 

addition, participant 27 was entirely excluded from the non-learners due to having sequences of 

15 or more in 5/6 blocks and participant 10 was entirely excluded for having 39% of trials 

excluded. 
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Figure 4.2: Frequency distributions of 10,000 Monte Carlo simulations (orange), the bottom 

half of participants (blue) and top half of learners (yellow).  

 

Top: Distributions of sequences of the same response (‘AAA…’ or ‘BBB…’). Participants 

under-produce compared to expected frequencies until lengths of 8 but learners do not differ 

from non-learners. Non-learners and over-produce compared to learners at lengths of 15+. 

 

Bottom: Distributions of sequences of alternating patterns (‘ABAB…’). Both participant 

groups over-produce at lengths greater than 8 compared to expected data and non-learners 

over-produce compared to learners at lengths of 15+. 



86 

Transitional Probabilities and Response Bias  

Having excluded the participants and trials above we examined the transitional 

probability structure of the data. This analysis tested for evidence that participants exhibited a 

bias for same-same (i.e. responding ‘A’ after ‘A’ or ‘B’ after ‘B’) or same-different (i.e. 

responding ‘A’ after ‘B’ or ‘B’ after ‘A’) responses or whether they showed evidence of 

statistical learning of the true underlying stimulus label distributions. To characterize both the 

stimulus label orders and the participant’s response patterns, we divided the number of same-

different labels and responses by same-same labels and responses to get an odds-ratio that 

represents the rate of responding same-different compared to same-same. Overall, trial orders 

had approximately 6% greater tendency towards same-different trials as a consequence of 

limiting long consecutive same-same streaks during stimulus presentation. Participants showed a 

slightly stronger tendency to prefer same-different responses 11-20%. In addition, the increased 

tendency of participants to prefer same-different responses compared to the trial orders suggests 

this was not a consequence of statistical learning of the trial order frequencies since they do not 

match the rate but rather a response bias.  

Exclusions 

In sum, seven participants were excluded from analyses in experiment 5. As described 

earlier, two participants (10 & 27) were excluded for an abundance of trials accounted for by an 

apparent alternating response strategy. Participant 29 was excluded for failing to respond to 19% 

of trials. Participant 13 was excluded due to technical difficulties in the scanner during block 1 

such that they could only respond to category ‘A’. Participant 16 was excluded after it was 
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discovered that they required glasses for corrected to normal vision after having completed the 

experiment without corrective eyewear. Participant 19 withdrew from the experiment after 1 

block. Participant 8 was excluded due to concerns with their structural MRI scan. The concern 

was forwarded to the medical contact through the scanning center. Finally, we excluded any trail 

for which no response was made across all remaining participants. 

Decision-Making under Uncertainty 

The Dynamic Cat task affords us an excellent opportunity to study the decision-making 

process in a dynamic environment, especially during periods of uncertainty. The task requires 

that participants search a potentially broad space of possible strategies in a relatively short 

amount of time. As such, participants must generate, use, evaluate and discard strategies in short 

order to succeed in the task. Rather than a convergent profile of behavior on the task in which 

most participants perform roughly the same way, our participants displayed a wide variety of 

behaviors. Some participants were hardly affected by the change in task demands during the 

switch and maintain a consistently high level of accuracy throughout the experiment. These 

participants seem to have easily adapted to the change and exhibited an efficient process of 

strategy exploration. Other participants showed intermediate success in which they seem to 

gradually discover increasingly better strategies as evidence accumulated. Yet others 

experienced significant difficulties in finding appropriate strategies, often failing to do so for the 

rest of the experiment following the switch. Whether an appropriate solution never occurred to 

them, or they were profoundly unlucky, these participants showed a persistent pattern of trial-

and-error. As seen with PINNCALE 1.0 and 2.0, understanding this range of processes is greatly 



88 

aided by computational models that attempt to capture this behavior and account for as much of 

the data as possible using specific and detailed mechanisms. 

PINNACLE 2.1 

PINNACLE 2.0 is a model of rational learning that was designed to account for a wide 

range of data on category learning and decision-making. It is capable of producing human-like 

performance, even on a complex task like Dynamic Cat. However, matching the experiment 5 

dataset requires that not only learning behavior be accounted for, but also prolonged periods of 

near chance performance following high initial accuracy. PINNACLE 2.0 cannot achieve this 

since it incorporates an objectively accurate strategy (diagonal boundary) that incrementally 

gains accuracy and confidence even when not controlling behavior. As such, over time the model 

is guaranteed to both find an optimal strategy and control behavior. The only way to avoid this 

outcome is to effectively set the learning rate for that strategy, which in some cases represents 

implicit learning to zero. This modification simulates something like a dopamine or learning 

disorder. Since we do not believe our participants have neurological deficits - as evidenced at the 

very least by their ability to learn in block 1 - this is not an appropriate solution to the problem. 

In addition, doing so would limit the model’s ability to match the most successful learners. Thus, 

given PINNACLE 2.0’s implementation there is a trade-off between matching the best or the 

worst learners. The variability and wide range of performance exhibited by participants cannot 

be accounted for by PINNACLE 2.0. 

The high percentage of non-learners in experiment 5 demonstrate that participants can 

fall into periods of prolonged unsuccessful strategy exploration despite trying to succeed. This 

poses a general problem for models of learning. These models can account for non-learning 



89 

behavior by effectively shutting off learning, or through adding significant noise to either 

perception or decision-making. While these methods can allow such models to account for some 

of the performance seen in experiment 5, they are not appropriate solutions for these data. 

Because participants initially learn a simple strategy in the Bait phase, they demonstrate they are 

capable of rapid learning. This precludes modeling solutions that rely on near-zero learning rates, 

or high levels of system noise. We thus need a model capable of rapid early learning during the 

Bait phase, a reduction in accuracy during the Switch, and either successful or unsuccessful 

learning in the Learning phase.  

Importantly, this model should be able to account for the wide range of participant 

performance without the need to modify its parameters for each participant’s trial order. The idea 

is to create a model of the general process participants engage in rather than custom-make a 

solution for each participant. While the latter is certainly an interesting endeavor, creating a 

general framework that captures the rich variability that participants display is an important first 

step towards understanding the general process of dynamic decision-making. In this section, we 

consider and evaluate several candidate models in order to address these needs. The result is 

PINNACLE 2.1. Since the evidence for implicit or diagonal strategy use in experiment 5 is quite 

low, PINNACLE 2.1 focuses primarily on explicit strategy use. Thus, the implicit module is 

effectively ignored for the purpose of fitting these data. To further explore the role of a diagonal 

strategy we incorporate it in some of our models. Based on competitive model fitting, we show 

that it predicted to be a minor contributor to the set of strategies considered by participants. 

Future work should aim to reincorporate an implicit module with mechanisms for preferring 

explicit over implicit strategies during periods of targeted strategy search. 
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Datasets 

To build the most robust model of what participants do during this task, we aggregated 

data from experiments 3, 4, and 5 after filtering participants based on the previously described 

exclusion criteria for a total of 78 participants. As a brief reminder, experiment 3 included a set 

of 30 participants each of whom completed 500 trials of the Dynamic Cat task with 100 trials in 

the Bait phase, 100 trials in the Switch phase, and 300 in the Learning phase. As such, we 

divided their data into blocks of 100 trials for the purpose of averaging with a total of 5 blocks. 

In this experiment during the Switch phase, stimuli that disconfirmed the simple rule from the 

Bait phase were sampled at a ratio of 3:1 disconfirming to confirming stimuli and then 2:1 for 

the Learning phase. 

Experiments 4 & 5 had 19 and 28 participants respectively, each of which completed 480 

trials of the Dynamic Cat task with 80 trials in the Bait phase, 80 trials in the Switch phase and 

320 trials in the Learning phase. As such, we divided their data into blocks of 80 trials for the 

purpose of averaging with a total of 6 blocks. On the final block of the experiment feedback was 

withheld from the participants. This was intended as a pure test of their category knowledge 

without the ability for supervised learning. However, the adaptive tutor was mistakenly left 

enabled during these trials and thus continued to attempt to dissuade them from any simple 

strategies they might be using. Since this was not an intended aspect of the experiment, and in 

order to normalize block counts across the three datasets, we report results from the first five 

blocks of the experiment rather than all six. Accounting for the sixth block of the fMRI dataset is 

an interesting challenge that will be left to future work. 
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Candidate Models 

 Here we describe in detail the eight models we considered in an attempt to fit data from 

the current dataset. Each model is detailed in terms of specific mechanisms as well as the mental 

model it is intended to capture. We then evaluate how each model performs across our task 

describing limitations or successes during the Bait phase, Switch phase and Learning phase. As 

with PINNACLE 2.0 we organize the architecture into a standard flow of information: 

Perception → Cognition/Decision-Making → Response → Feedback & Learning. Across all 

these models both the perceptual and response systems were identical. While PINNACLE 2.0 

incorporated perceptual noise in the form of a random Gaussian number added to the X and Y 

coordinates of the incoming stimulus, PINNCLE 2.1 simplifies this approach and directly maps 

the stimulus to perceptual space. The various models we considered differ in two primary ways: 

1) the specific knowledge representations used as explicit strategies, and 2) how they update 

those knowledge representations based on feedback. In addition, in cases where more than one 

strategy is available, an alternative decision-making mechanism to the one used in PINNACLE 

2.0 is introduced. Table 4.1 summarizes the different models we considered while developing 

PINNACLE 2.1. The following sections detail each model in terms of the mechanisms and 

intended cognitive state. 

Parallel versus Sequential Systems 

 In PINNACLE 2.0, three strategies (RBx, RBy, Diagonal) operate in parallel and 

compete for control of behavior on each trial. When confronted with a new stimulus, 

PINNACLE 2.0 considers each strategy before selecting a response. While powerful, such an 
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architecture comes with necessary complexity. For example, it needs to keep track of every 

strategy available to it, and the question of how to select the winner must be solved. An 

alternative approach is a sequential system in which a single strategy is considered at any given 

time. For example, instead of selecting among RBx, RBy, or a Diagonal, the system might only 

consider RBx for a time, then switch to considering RBy. Sequential systems have the advantage 

of avoiding the problem of keeping potentially large numbers of alternatives in mind during the 

decision-making process. Explicitly evaluating even just three strategies seems unlikely given 

the limited response window available to participants. The models we considered for 

PINNACLE 2.1 included both parallel and sequential systems. 

Single Step versus Hierarchical Rules 

In PINNACLE 2.0, each strategy is comprised of a single step rule. These rules only 

check whether the stimulus is on one side of the boundary or the other in order to assign a 

category. A natural extension of this is a hierarchical process in which a series of rules are 

checked in the decision process to reach an answer. Such a process allows for more elaborate 

strategies to be constructed at the cost of complexity. Given our preference for simplicity and 

maintaining interpretability of our models, we only implemented hierarchical structures in 

sequential models, and restricted them to two-steps. 

Rule Updating versus Rule Replacement 

 In PINNACLE 2.0, each strategy is updated based on feedback. The diagonal rule is 

incremented towards an optimal position, the RBx and RBy boundaries are moved to the position 

of the current stimulus, and in all three cases the perceptual shaping (PS) parameter is increased 
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or decreased acting as a proxy for confidence in the rule. Thus, regardless of the position of the 

boundary, the RBx rule is considered a single strategy that the participant gains or loses 

confidence in while modifying it. Such a model predicts that people effectively edit, or overwrite 

existing strategies – “Oh, the boundary should be a bit more towards thick stimuli than I 

thought.” An alternative to this approach is to replace rules rather than update old ones. Under 

such a model instead of incrementing the decision-boundary by some amount, a new boundary is 

instantiated – “Oh, that old rule didn’t work, I think this new one is the right one.” A main 

difference between these approaches is whether rules are edited, or new rules are created. The 

models we considered for PINNACLE 2.1 included both rule updating and rule replacement 

mechanisms. 
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Table 4.1: Descriptions of nine models (rows) in terms of parallel or sequential 

systems (column 1), mechanisms of knowledge representations (column 2) and how 

those knowledge representations are updated (column 3).  

Exemplar 

Basic RBx 

Incremental 
 RBx 

Incremental 
RBx | RBy 

Satisficing  
Anchored 

Satisficing 
Anchored 

w/ Bias 

Incremental RBx 
w/ Exceptions 

Satisficing  
Anchored  

w/ Exceptions 

Knowledge 
Representation 

Representation  
Updating 

Similarity-based Stores previous examples 

Thickness Rule No Learning 

Thickness Rule Incremental Learning 

Thickness & Orientation 
Rules 

Incremental Learning 
PS grows when incorrect 
& shrinks when correct. 

Rules replaced when no longer 
good enough 

Rules replaced when no longer 
good enough 

Thickness & Orientation Rules  
w/ quadrant exceptions 

Incremental Learning. 
Exceptions replaced  
when not good enough  

Rules & Exceptions are replaced 
when not good enough 

Thickness & Orientation 
Rules 

Thickness & Orientation 
Rules 

Thickness, Orientation & Diagonal 
Rules w/ quadrant exceptions 

Parallel or 
Sequential 

Sequential 

Sequential 

Sequential 

Parallel 

Sequential 

Sequential 

Hierarchical 

Hierarchical 

PINNACLE 2.0 Parallel 
Thickness, Orientation & Diagonal 

Rules 

Incremental Learning 
PS grows when incorrect 
& shrinks when correct. 
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Exemplar Model 

 The first model we considered is the Nosofsky exemplar model. As discussed in chapter 

2, an exemplar model is one in which new stimuli are compared to previously seen examples on 

the basis of nearness or similarity. Thus, if the current stimulus is nearer in perceptual space to 

previously seen examples of category A than category B, the stimulus is assigned to category A. 

“This stimulus looks more like the ‘A’s I’ve seen than the ‘B’s. Exemplar models are necessarily 

one-step, sequential, and continuously update a single strategy in the form of storing previously 

seen stimuli. 

Exemplar models are successful at characterizing various learning profiles and are 

applicable in situations where stimuli can be mapped to a perceptual space such that distance can 

be calculated. Modeling the current dataset provides an interesting and difficult challenge since 

any solution must be capable of rapid successful early learning followed by a drop in accuracy 

and then either prolonged, stable sub-60% performance, or gradual learning to approximately 

80% accuracy. Exemplar models are capable of rapid, gradual, or no learning over prolonged 

periods of time. However, creating a model that is capable of producing a mix of all three 

behaviors is not possible without the addition of significant complexity or by customizing the 

model on a per-participant basis. In short, this is because learning models are good at learning. A 

model capable of incorporating feedback such that it learns rapidly in the Bait phase (block 1) 

will similarly be capable of learning rapidly during the learning phase (blocks 3-5). On the other 

hand, a model that does not learn rapidly will fail to match performance in the Bait phase. As 

such, a model that accounts for participant success cannot also account for participant failure. 
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Architecture 

 Figure 4.3 depicts a cartoon of how a decision is made in the exemplar model. A 

stimulus is encountered and mapped to perceptual space (thickness on X, orientation on Y). The 

distance to each category of previously seen exemplars is then calculated. The distance scores 

from both categories are compared and the current stimulus is assigned to the nearest category. 

In our models, the distance to each category was calculated using the linalg.norm() function in 

the Numpy library which calculates the L2 norm (Euclidean norm) though other distance 

calculations did not modify our results significantly. Feedback is obtained, and the current 

stimulus is added to the list of previously seen exemplars for the category it was assigned to. In 

this model, learning is the act of storing the stimulus as a previously seen exemplar and happens 

on every trial. The feedback signal has no influence on the mechanisms of the model. The 

distance and similarity functions remain static throughout the experiment.  
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Figure 4.3:  

 

A cartoon representation of the exemplar model’s decision-making process. A 

stimulus is mapped to perceptual space. Average distance to each category is 

calculated using Euclidean distance and a response is made based on the closest 

category. Feedback is obtained and the stimulus is stored in the correct category 

regardless of the actual decision. 
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Rule-Based models 

 The next six models we consider are based on the Ashby decision bound theory (DBT) 

discussed in chapter 2. These rule-based models are successful at describing category learning as 

evidenced by PINNACLE 1.0 & 2.0 as well as an abundance of prior studies. They capture the 

concept of explicit rules based on some criterion for deciding between alternatives as in: “The 

deciding factor is thickness. If thicker than some value, A, else B.” These models include parallel 

and sequential systems. Of the sequential models, we considered both single step and 

hierarchical versions. We also considered models that update existing strategies or replace them.  

Basic RBx 

The simplest model we considered was a sequential, single step model that does not 

learn. Figure 4.4 depicts a cartoon of how this model makes a decision. A stimulus is 

encountered and mapped to perceptual space (thickness on X, orientation on Y). A decision 

boundary based on some feature or combination of features that bisects the space is used to 

evaluate the stimulus and assign it a category label. In this model the boundary is based on the X 

axis: Rule Based X or RBx. The stimulus can either be on one side of the boundary or the other 

(left or right for RBx). Formally, this is calculated with the “less than”, “less than or equal to”, 

“greater than or equal to”, and “greater than” (<, ≤,  ≥, >) operators. For example, consider a 

RBx rule with a boundary at 0.5 in which all stimuli less than or equal to the boundary are 

labeled ‘A’ and those greater than the boundary are labeled ‘B’. A stimulus with the coordinates 

(0.2, 0.6) is encoutered. Since we are evaluating a RBx rule, the Y coordinate is ignored. Thus 

the stimulus X value: 0.2 is compared to the boundary: 0.5 as: 
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IF 0.2 ≤ 0.5: ‘A’, ELSE ‘B’. 

We therefore describe the rule using two pieces of information: 1) The comparator (i.e. <, ≤,  ≥, 

>) and 2) the category label associated with that comparator (i.e. whether a stimulus that meets 

the comparator criteria is labeled as ‘A’ or ‘B’).  

In all our Rule Based (RB) models the initial position of the decision boundary is set 

between the first ‘A’ and ‘B’ stimuli it encounters. For all trials before that, the model randomly 

assigns a category label. In the case of the basic RB model, the RBx rule always has the 

comparator ≤ and the label is ‘A’. Thus for all instances of the model, stimuli less than or equal 

to the boundary are assigned to category ‘A’ and those greater than the boundary are ‘B’. 

Feedback is then obtained and recorded. In its most basic form, this model does not learn and 

thus feedback is only used to track its performance. 
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Figure 4.4:  

 

A cartoon representation of a rule-based model’s decision-making process. A 

stimulus is mapped to perceptual space. A linear decision-boundary bisects the 

space into two categories. A category is assigned based on which side of boundary 

the stimulus is on. Feedback is strictly used to track performance. 
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Incremental Learning - RBx 

 The next model we considered was also a single step, sequential model that updates an 

existing rule by modifying its decision boundary incrementally in response to feedback as shown 

in Figure 4.5. In this model feedback is used to improve subsequent predictions. When incorrect, 

the boundary is incremented by a fixed learning rate in the direction that would have produced 

the correct answer. The learning rate is taken as a free parameter and a single value is found that 

provides the best fit across all trial orders. Thus, the incremental learning model simulates 

learning as continuously modifying a single rule. While it is unlikely that participants truly 

perseverate on a single rule endlessly trying to optimize it, this model has nonetheless shown 

success in the past at accounting for category learning behavior. 

Incremental Learning – RBx & RBy 

 The next model we considered was a single step parallel model that updates existing rules 

by modifying their decision boundaries incrementally in response to feedback. This model tested 

both RBx and RBy rules for each stimulus. The RBx rule labeled all stimuli less than or equal to 

( ≤ ) the boundary as ‘A’s and those greater than ( > ) the boundary ‘B’s. The RBy rule labeled 

all stimuli greater than or equal to ( ≥ ) the boundary ‘A’s and all those less than ( < ) the 

boundary ‘B’s. Since this model involves more than one possible solution, we implemented a 

simple decision-making as in PINNACLE 2.0. 

On each trial each rule provided a p(A) value by calculating the area under the curve of 

bivariate Gaussian centered on the stimulus and bisected by the decision-boundary. The resulting 

predictions were compared and the most confident one was selected to drive behavior. If correct, 
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the standard deviation (sd) on that rule’s Gaussian was reduced to simulate an increase in 

confidence since more of the distribution would fall on one side of the boundary. When incorrect 

the sd was increased and the boundary was incremented in the direction that would have 

produced the correct answer. Thus, these two strategies compete with each other for behavior 

with the most confident among them driving behavior. 
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Figure 4.5:  

A cartoon representation of an incremental learning rule-based model. Each time the 

model is wrong, the decision-boundary is incremented in the directed that would have 

produced the correct answer.  

 

In the case above, the black dot denotes the current stimulus. Since its X-value is 

greater than that of the decision-boundary it is assigned to category ‘B’ on the right 

(orange). However, this is incorrect and so the boundary is incremented by a fixed 

amount in the direction that would have produced the correct answer. 
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Satisficing Anchored Model  

Our current dataset confronts us with the difficult requirement of producing both learning 

and non-learning within a single framework. In this case we want a model that can produce both 

successful and unsuccessful rules and thus either exhibit learning or non-learning under the same 

set of parameters. A simple solution is to increase the possible set of rules available to the model, 

and to allow for random chance to influence the results. As discussed earlier, an alternative to 

incremental learning in which a single rule is continually modified is one in which the rule itself 

is replaced with a new one based on how well it is doing. This intuitive meta-strategy of using a 

rule until it is deemed no longer good enough and then replacing it with a new rule is called 

satisficing, as introduced in chapter 2. Instead of searching for the perfect rule, we settle for a 

rule that meets our criterion for “good enough”.  

The next model we considered was a single-step sequential model that replaces its rule 

rather than updating an old one. Rather than consider multiple competing strategies, only a single 

rule is evaluated on any given trial. To computationally formalize the satisficing concept, this 

criterion is defined as the base-rule satisficing threshold. For the following single step satisficing 

models, a base-rule satisficing threshold of 80% was found to be the optimal value. This means 

that according to our model, participants’ standard for a good enough rule was one that was 80% 

or better; a rule that performs worse is replaced. 

 In the incremental learning model, the emphasis is placed on learning with respect to rule 

modification, in this model the emphasis is shifted to decision-making (i.e. generating and 

evaluating rules) while learning takes the form of tracking an individual rule’s success (i.e. how 

well it has performed in the past). On each trial a response is made based on which side of the 
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boundary the stimulus is on. Note that since only one rule is considered at any given time there is 

no need for a p(A) estimate. After feedback is obtained the overall success of the current rule is 

updated and is then evaluated with respect to the base-rule satisficing threshold to decide 

whether it is good enough to keep using, or if it should be replaced. Figure 4.5 depicts a cartoon 

example of this process. 
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Thickness 

Figure 4.6: A cartoon representation of a satisficing anchored rule-based model. Each time the 

model is wrong, the current rule (left panel: in black) is evaluated based on its cumulative 

accuracy. If the accuracy is below a threshold value, the rule is replaced. 

 

In the case above, the black dashed line represents the current decision boundary anchored to the 

stimulus (red dot) used to generate it. In this case the rule is of the form: 

 

IF stimulus_X ≤ Boundary: ‘B’ ELSE ‘A’. 

 

The black dot denotes the current stimulus being evaluated. According to the rule the stimulus is 

assigned to category ‘A’ which is incorrect. This causes the cumulative accuracy of the current 

rule to drop below threshold and thus the rule is replaced with a new one (in the right panel) 

centered on the current stimulus. The new rule in this case was randomly selected as an 

orientation rule and has a randomly determined comparator, in this case ≥. Since the stimulus 

label is ‘B’ the new rule is of the form: 

 

IF stimulus_Y ≥ Boundary: ‘B’ ELSE ‘A’. 
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 Rule generation 

 In the non-learning and incremental learning models the thickness rule was always of the 

same form: IF stimulus_X ≤ boundary: ‘A’ ELSE: ‘B’. The comparator was always ≤ and the 

label was always ‘A’. For orientation category ‘A’ was always above the line and ‘B’ below: IF 

stimulus_Y ≥ boundary: ‘A’ ELSE: ‘B’. In the current model we allow for a wider range of 

possible rules to be considered. This is both to allow the model the possibility of success and 

failure and based on participant verbal report of trying a variety of different rules. Figure 4.6 

depicts an example of evaluating and generating a new rule. If the current rule’s cumulative 

accuracy falls below the base-rule satisficing threshold it is replaced. When generating rules we 

simulate the idea that the participant is in a state of uncertainty with respect to the state of the 

task. Perhaps the experimenter has surreptitiously switched all ‘A’s to be called ‘B’s and vice 

versa. Perhaps the rule is now based on orientation, or perhaps it is no longer an equal split 

across categories. All the participant can be sure about is the current stimulus. Rules are 

therefore anchored to the current stimulus such that whatever rule is created will accurately 

categorize the current stimulus. This is done by using information about the stimulus during rule 

generation. The model then generates a new rule in the following steps: 

1) Randomly decide between a thickness or orientation rule. If a thickness rule is selected, a 

vertical boundary is created centered on the stimulus with the stimulus’s X coordinate. 

For orientation rules a horizontal boundary is centered on the stimulus with the stimulus’s 

Y coordinate. Thus the decision boundary in each case is anchored to the current 

stimulu’s position.  

2) The model randomly decides whether the comparator will be ≤ or ≥.  
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3) The model assigns the current stimulus label to that side of the boundary.  

These simple steps guarantee that the current stimulus is assigned its actual label since it meets 

the criteria of the rule (≤ or ≥ to the boundary and thus assigned its own label). For example if a 

stimulus with corrdinates (0.2, 0.7) and a label of ‘B’ is encountered and a new rule must be 

generated the model may, at random, select an orientation rule with a ≤ comparator. Since it is a 

RB_Y rule the x-value of the stimulus is ignroed.  Thus the new rule will have the form:  

IF stimulus_Y ≤ 0.7: ‘B’ ELSE: ‘A’. 

And in this specific case: IF 0.7 ≤ 0.7: ‘B’ ELSE: ‘A’ resulting in a label of ‘B’. 

This model captures the idea that participants generate a rule based on their most recent 

experience and use it until it is not “good enough”. They then replace the rule with another one 

and repeat the process until a rule that meets their standard is found. We allow the model to 

explore a much wider range of rules, most of which inaccurate, in the hopes of finding an 

appropriate one that will meet its satisficing criteria. As the old saying goes: “There must be a 

pony in here somewhere”. 

Satisficing Anchored Model with Bias 

During the post-experimental interviews, participants nearly all report that they 

considered thickness more important than orientation during the first block. This is unsurprising 

both because the stimuli they see lend themselves to a thickness rule, and that most participants 

do very well on that block. To capture this tendency, as well as to improve the fit of the model, 

the fifth model we consider is identical to the previous one except that it has a bias towards 

generating thickness rules over orientation rules. All other mechanisms, as well as the base-rule 
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satisficing threshold were the same. During model optimizations, a RBx bias of 0.65 was found 

to be the optimal value across all trial orders. 

Hierarchical Rule Based Models 

 All the models described thus far have been single step models capable of testing one-

dimensional rules based on thickness or orientation. As discussed later, these models are not able 

to perform as well as the best learners in our experiments. We therefore need models that use 

more sophisticated rules in order to produce performance in line with participant behavior. The 

space of possible rule complexity we could add to the model is vast. Given that our guiding 

principle in model development is parsimony and interpretability, we restricted the set of 

possible rules based on participant verbal report. When interviewed, the best learners articulate a 

base rule “If it’s thick, then it’s an ‘A’” as well as an exception to this rule “unless it’s also very 

tilty, then it’s a ‘B’”. We thus restricted our hierarchical models to sequential versions and 

limited them to a two-step process where the second step takes the form of an exception to the 

base-rule. In the one-step rule evaluation, the rule takes the form: 

IF base_rule: answer; ELSE: alternate-answer. 

Where answer and alternate-answer may be ‘A’ and ‘B’ (or vice versa). 

The process is similar in the two-step evaluation except that instead of evaluating the base-rule 

first, an exception is first checked. If the exception does not account for the stimulus, the base-

rule is then evaluated. 

IF exception: answer; ELSE: base_rule (as above) 

(i.e. if the exception doesn’t apply, check the base_rule) 
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This feature was added to the incremental RBx learner and the Satisficing Anchored model with 

Bias. It was not implemented in the parallel incremental RBx & RBy learner since such a system 

would require much more complexity in order to function. For example, each of the hundreds of 

potential hierarchical rules would need to be tracked and would compete on each trial for 

behavior. This is both highly complex, and unlikely to reflect the mental state of participants. 

Though these models are capable of generating a two-step rule, they only begin 

generating them based on necessity. This was done because participants have no reason to invent 

exceptions to a simple thick | thin rule in the Bait phase since they never see any stimuli that are 

not accounted for by that rule. Each model initially attempts to discover simple rules drawing 

from either RBx in the case of the incremental RBx learner, or both RBx and RBy for the 

satisficing anchored model with bias. The first time a rule is modified from one- to two-steps is 

when a one-step rule whose accuracy exceeds the base-rule satisficing threshold subsequently 

drops below that threshold. This is meant to capture the idea that “I’ve found a really good (one-

step) rule, but it’s not as good as it used to be. Perhaps there’s something extra I need to add to 

this rule to make it better.”  

In the satisficing anchored models, when a one-step rule falls below the satisficing 

threshold it is replaced. We take a similar approach to the second step in a two-step rule. Once a 

second step (exception) is generated both the incremental RBx learner and the satisficing 

anchored models can replace their exceptions when they drop below an exception satisficing 

threshold. This threshold is a separate parameter from the base rule satisficing threshold and is 

necessarily set to a higher value. During optimization of the hierarchical incremental learner a 

value of 80% was found to produce the optimal fit across all trial orders. For the hierarchical 
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satisficing anchored model, values of 78% and 82% for the base rule satisficing threshold and 

exception satisficing threshold were found to provide the best fits.  

Figure 4.7 depicts an example of a hierarchical base rule and exception. In the case of the 

hierarchical satisficing anchored model, if a simple rule is found that achieves greater than 78% 

accuracy and then drops below that threshold the first exception is generated. This only happens 

from Block 2 onwards since any rule that achieves such a high level of accuracy in block 1 is 

used throughout the block. Once the exception is generated, each time the model is incorrect it 

first evaluates the exception. If the exception is not good enough, it is replaced. Then the base 

rule is evaluated and if it is not good enough, it is replaced. 

The process for generating an exception is identical to that of a base-rule except that both 

vertical and horizontal boundaries are generated. The steps are:  

1) Both horizontal (orientation) and vertical (thickness) boundaries are created centered on 

the current stimulus. This divides the space into quadrants. 

2) For each boundary a comparator is randomly selected. This isolates a specific quadrant.  

3) That quadrant is assigned the label of the current stimulus.  
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Figure 4.7: A cartoon representation of a hierarchical rule. If the model exceeds, then 

drops below the base-rule satisficing threshold, it generates and begins to consider 

quadrant exceptions to its base rules (thickness | orientation). If the exception accuracy 

falls below the exception satisficing threshold it is replaced. 
 

In the case above, the red dashed line represents the current base-rule decision boundary 

anchored to the stimulus (red dot) used to generate it. In this case the rule is of the form: 

IF stimulus_X ≤ Boundary: ‘A’ ELSE ‘B’.  
 

which is a fairly good rule. Notice that it only misses the bottom left of the orange (B) 

distribution including the current stimulus. 
 

A new quadrant exception rule is generated with both vertical and horizontal decision 

boundaries anchored to the current stimulus. For each boundary a comparator is 

selected at random. In this case the vertical boundary has the ≥ operator and the 

horizontal boundary has the ≤ operator. Since the stimulus is a ‘B’, the quadrant 

denoted by the conjoint comparators is assigned the label ‘B’. Thus, the rule is of the 

form: 

IF stimulus_X ≥ vertical_boundary  

                           & 

     stimulus_Y ≤ horizontal_boundary: ‘B’  

ELSE: check base rule. 
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For example, let us consider a case where an existing RBx base-rule with a boundary of 0.7, 

comparator of ≤ and a label of ‘A’ (i.e. IF stimulus_X ≥ 0.7: ‘B’ ELSE: ‘A’) already exists and 

we want to generate an exception. If the current stimulus coordinates are (0.5, 0.3) and the label 

is ‘B’, vertical and horizontal boundaries are set at 0.5 and 0.3 respectively. This divides the 

space into four quadrants. Then for the vertical boundary, the comparator ≥ is randomly selected 

and for the horizontal boundary the comparator ≤ is randomly selected. This isolates the bottom-

right quadrant. That quadrant is given the label ‘B’. On the next trial the model evaluates the 

stimulus based on the following order: 

1) Check the exception. If applicable, assign the label. If not: 

2) Check the base rule. 

If the stimulus on the next trial has the coordinates (0.6, 0.4) the order of operations would be: 

1. Check the exception: 

a. Is 0.6 ≥ 0.5 (vertical boundary)? True / False 

b. IF True: is 0.4 ≤ 0.3 (horizontal boundary)? True / False 

i. IF True: Assign exception label: ‘B’. 

2. Check the base-rule (IF either 1 or 1a are False): 

a. IF 0.6 ≥ 0.7: ‘B’ ELSE: ‘A’ 

In this case, the stimulus would be assigned the label ‘A’. It fails the second exception check 

(1b) and thus is not in the appropriate quadrant. It then fails the base rule check (2a) and is thus 

assigned label ‘A’. 

To test whether hierarchical rules were a better description of participant behavior than a 

diagonal rule as implemented in PINNACLE 2.0, we added an incremental diagonal strategy to 

the hierarchical satisficing anchored model with bias. Since no participant ever articulated a 
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diagonal strategy (i.e. IF thickness is greater than orientation: ‘B’ ELSE ‘A’) a model that 

predicted an abundance of diagonal strategy use could be taken as evidence for implicit strategy 

use rather than explicit II. In this model, if the base rule fell below the base-rule satisficing 

threshold the model was able to randomly select between thickness, orientation, or diagonal 

rules. Diagonal rules were restricted to one-step and had no exceptions attached to them. They 

were only modified while in use using an incremental learning style to approximate implicit 

learning similar to PINNACLE 2.0. 

Criteria for Model Success 

Our dataset includes several characteristics that are important to account for if we are to 

consider a model to be a good approximation of human performance. These criteria are: 

1. The model must match participant performance on Block 1. 

2. The model must show a significant reduction in accuracy in Block 2. 

3. The model must be capable of producing variability in performance similar to 

participants in Blocks 3-5. 

During the Bait phase (block 1), nearly all participants achieve a high degree of accuracy 

(m=0.83, sd = 0.10). In addition, they achieve this performance by quickly (approx. 15 trials) 

identifying an appropriate (but not perfect) rule and continuing to use it throughout the block. It 

is therefore important that any model we select be capable of this initial, rapid and successful 

performance. 

In Switch phase (block 2), all participants experience a decrease in accuracy (m=0.56, 

sd=0.07) due to the changing nature of the task. Thus, it is important that the model not have an 
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objectively accurate rule before block 2 (such as a diagonal rule) which is why it was not 

considered.  

To capture both the variability and range of performance on our task, we split our data 

into quartiles based on Block 2 performance (Figure 4.8: top). Participant data split this way 

shows rank order stability among the quartiles and thus seems to accurately describe the variance 

in performance. Participants who do well in block 2 continue to do well throughout the 

experiment whereas if they did poorly, they do not seem to recover. In addition, we see that the 

top quartile of participants performs much better than the bottom 3 quartiles, and the bottom two 

quartiles do not exceed 60% accuracy. 

 Of particular interest are the top and bottom quartiles. The top quartile exhibits 

performance between 71% in block 2 and 77% in block 5 which demonstrates they discovered a 

reasonably successful strategy. In addition, these participants all verbally report an accurate rule 

that involves a rule and an exception (i.e. If thick then A, unless tilty, then B). The bottom 

quartile, on the other hand, shows consistent performance around chance with 47% in Block 2 

and 57% in Block 5. 

Any model that we believe accurately describes our participants must account for both 

the variability and range of performance seen in our data. That is, it must be capable of 

succeeding like our participants succeed and failing like our participants fail. We are interested 

in developing a model of a general strategy we believe our participants used during this task 

rather than the idiosyncratic strategies each individual may have applied. In this case 

distinguishing between a similarity-based strategy, an incremental rule modification strategy, and 

a satisficing-based rule replacement strategy. To test whether such a general strategy is capable 

of accounting for both the variability and range of our dataset we run each model on every trial 
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order seen by participants. This produces a model trace for each participant for a total of 78 

model generated behavioral traces. Since each trial order participants saw is different, this 

produces a variety of results per model much like participants. We then split the data into 

quartiles based on Block 2 performance, like the participant data.  

To formally assess each model in the competitive model fitting process, we constructed 

an error formula that is sensitive to both the variability and range of our data according to: 

4.1  

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  ∑|𝑃𝑏,𝑞 − 𝑀𝑏,𝑞|

5,4

𝑏=1,
𝑞=1

+ ∑|(𝑃𝑏,𝑞1 − 𝑃𝑏,𝑞5) − (𝑀𝑏,𝑞1 − 𝑀𝑏,𝑞5)|

5

𝑏=1

 

 

The first part of the equation calculates the summed difference between average quartile 

performance within and across blocks. The second part of the equation calculates the difference 

between the top and bottom average quartile performance between the model and participants 

within and across blocks. Figure 4.8 (bottom) shows a cartoon of these measures.  

Here we first calculate the summed distance between the model’s performance across 

trial orders and participants. To that, we add the summed difference between the top and bottom 

quartiles for model’s performance and participants on each block since this feature is so salient. 

Thus, an error score of 0.5 is better than a score of 0.75 since it indicates that the former 

provided a closer account of both quartile differences, and the importance of the gap between the 

top and bottom quartiles. 
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Figure 4.8. Top: Modeling dataset split into quartiles based on Block 2 performance. 

Participants ranked this way show rank order stability through the rest of the experiment. 

 

Bottom: Depiction of the error function used to evaluate model fitness. Accuracy is split 

into quartiles based on block 2 performance. The difference between participant and 

model accuracy is calculated and aggregated for each block. In addition, the difference 

between the first and fourth quartiles for participants and the model is calculated. These 

error scores are then summed for a cumulative score indicating how different the two are. 
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Model Fitting 

 Given the potential complexity of modeling human behavior, we take parsimony as a 

guiding principle in our model development. We refrain from adding parameters and 

mechanisms to a model until we are satisfied that we cannot provide a better fit without them.    

In the following sections we consider the candidate models described earlier in an attempt to 

account for the current dataset as the experiment progresses. We begin with simple models that 

rely on a single rule without exceptions: exemplar, RB without learning, RB with incremental 

learning, satisficing anchored model with and without bias. At each stage we motivate the 

addition of a mechanism (i.e. learning, and bias respectively) based on limitations of the model 

without those mechanisms. 

 Importantly in competitive model fitting, models can only be evaluated with respect to 

other models under the same metrics. Since there is no objective measure of what a “good” 

model is, we rely on the metric to tell us which of our models is the best account of behavior. For 

instance, in some cases a model that does only 5% above chance is considered good since the 

alternatives all do worse. In other cases, a model that is 99.99% accurate is considered a bad 

model since the alternatives are all 99.99999% accurate. Thus, in the end we select the model 

with the lowest error score as the currently best fitting model, patiently awaiting the next better 

version to dethrone it. 

The Bait: Block 1 

 The first criterion for our models is matching Bait phase performance. Here participants 

quickly discover a simple strategy that produces a high level of accuracy as well as a wide range 
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of performance. An appropriate model should also be capable of this performance. Figure 4.9 

depicts boxplots for performance on block 1 for both participants, and the first five models (those 

that do not include exceptions).  
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Figure 4.9: Boxplots of block 1 performance across six different models (blue) 

compared to participants (red). Cumulative error is reported below each 

boxplot indicating the discrepancy between participant and model performance 

on Block 1.  

 

All models perform similarly and predict behavior somewhat in line with 

participants. The exemplar model predicts very consistent behavior. The non-

learning RBx only model predicts a range of performance but tends to over-

perform. Both satisficing models predict the largest range of behavior and 

provide a reasonable account of participant performance. 

 

The parallel incremental learning with RBx & RBy model has the lowest error 

score and this seems most likely to describe what participants did. Note that its 

performance is similar to the sequential incremental RBx only learner and 

differs in its ability to produce lower accuracy performance due to the RBy 

strategy. 
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Exemplar Model 

The exemplar model calculates the distance between novel stimuli and each category of 

previously seen stimuli as a proxy for perceptual similarity. It assigns the stimulus to the nearest 

category. In Block 1, the exemplar model provides a reasonably good fit to participant 

performance. It is capable of rapidly increasing its performance in line with participants and does 

so across all trial orders. Compared to participants, the average performances are quite similar, 

though the exemplar model has a more restricted range compared to participants because its 

performance only depends on the particular trial order it encounters with no additional sources of 

variance. The cumulative error for this model on block 1 was 0.19. Despite not accounting for 

the very best and worst performers, the exemplar model provides a reasonable account of 

behavior for most participants on this block. 

Rule Based Models 

Basic RB X 

The next model we consider is restricted to a single rule, based on thickness, and is 

unable to modify its boundary. The boundary is initialized between the first ‘A’ and first ‘B’ 

stimuli it sees and responds randomly before that. All stimuli to the left of the boundary are ‘A’s 

and those to the right are ‘B’s. While even this simple model achieves high accuracy, it tends to 

over-perform compared to participants. The cumulative error for this model on block 1 was 0.47. 

Since perseverating on the initial estimate of the boundary seems to produce better performance 

on average than our participants, it is unlikely they adopted this strategy.  
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Incremental Learning - RBx 

 The next model is one that can modify its decision boundary incrementally in response to 

feedback. When incorrect, the boundary is incremented by a fixed learning rate in the direction 

that would have produced the correct answer. Both the range and central tendency of this 

model’s performance is more in line with participant performance. The cumulative error score 

for this model on block 1 was 0.20 which was a significant improvement over the non-learning 

model.  It seems implausible that people strictly insist on optimizing a single rule rather than 

searching for new ones. Nevertheless, we see that even just a simple model produces a fair 

account of participant behavior which is what makes these decision bound theory models so 

attractive and important to rigorously test for validity. 

Incremental Learning – RBx & RBy 

The next model adds an additional strategy to the incremental learner in the form of a rule 

based on orientation. Each rule predicts category membership in the form of a p(A) value, and 

the most confident rule is selected to guide behavior. When correct, the rule becomes more 

confident and thus more likely to drive behavior in the future. When incorrect, the rule loses 

confidence and its boundary is incremented in the direction that would have produced the correct 

answer. This model performs very similarly to the version with only RBx strategies 

unsurprisingly as in this block it ends up relying almost exclusively on that strategy. The 

cumulative error for this model on block 1 was 0.14. The stimuli shown to participants vary on 

just two dimensions, both of which are represented by the model. It seems reasonable to presume 
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that participants tested both of these strategies before converging on the appropriate one, in this 

case thickness. 

Satisficing Anchored Model 

 The next model shifts the focus from modifying a set of fixed rules to generating and 

evaluating different rules. It considers strategies based on both thickness (RBx) and orientation 

(RBy) and is capable of generating four types of rules: RBx with ‘A’s on the right or left of the 

boundary, and RBy with ‘A’s above or below the boundary. The model uses a rule until it drops 

below a satisficing threshold at which point it replaces it with a new one. The cumulative error 

for this model on block 1 was 0.26 and importantly it produced a much wider range of behavior 

than previous models. That said, the abundance of underperformance means that it fails too often 

to find an appropriate rule in the Bait phase. It is therefore less likely that participants adopted a 

strategy of an unconstrained and unbiased search for an appropriate strategy. 

Satisficing Anchored with Bias 

 The final model we consider during the Bait phase is identical to the satisficing anchored 

model but has a preference towards thickness rules. This bias was added to both better reflect 

what we know about apparent participant preference for thickness over orientation rules as well 

as to allow it to converge on a successful strategy more consistently in the Bait phase. The 

cumulative error for this model on block 1 was 0.17. It produces both an appropriate variability 

as well as range when compared to participants though if anything it does have a slight tendency 

to underperform. This model represents a plausible alternative account to the incremental RBx & 

RBy model of how participants navigated this initial phase. 
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Interim Summary 

 During the Bait phase the differences between the exemplar, parallel incremental RBx & 

RBy, and sequential satisficing anchored with bias models were quite small. Each provides a 

plausible account of participant behavior. Since even the worst performing model – Basic single-

step RBx with no learning – is still in line with participant behavior, we retain all models as we 

consider the second criterion – matching behavior during the Switch phase.  

The Switch (Block 2) 

The second criterion for our models is matching performance during the Switch phase. 

Here participants are confronted with a sudden change in the experiment where we begin 

sampling from never-before-seen areas of the category space. These regions specifically 

disconfirm the previously successful thickness rule and thus pose a challenge to our participants. 

During this phase accuracy drops as participants adjust to the change and begin exploring various 

alternative strategies. An appropriate model should also exhibit this profile of performance. 

Figure 4.10 depicts boxplots for performance on blocks 1 and 2 for participants and block 2 

performance for each model we considered.  
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Figure 4.10: Boxplots of block 2 performance across six different models (blue) 

compared to participants (red). Cumulative error (block 1 + 2) is reported below 

each boxplot indicating the discrepancy between participant and model performance 

on Blocks 1 & 2.  

 

All models here tend to under-perform compared to participants indicating that 

participants are doing something more sophisticated than the current set of models.  

 

Notably the single step incremental learning RBx only model predicts a wide range 

of below chance performance suggesting this is not what participants were doing. 

The parallel incremental learning RBx & RBy model tends to over-perform 

suggesting that though successful, participants did not seem to adopt this strategy. 

 

The satisficing anchored model with bias had the lowest cumulative error across all 

models indicating it likely represents the closest account of what participants are 

doing. 
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Exemplar Model 

During the Bait phase, the exemplar model provided a reasonably good fit to participant 

performance. This was because it is capable of rapidly forming an accurate representation of the 

observed categories. In the Switch phase, we see its performance crash to hover around chance 

with a moderate range. Of note, it on average under-performs compared to participants and its 

range of possible performance is smaller than participants. That is to say, while it can fail like 

participants fail during the Switch, it cannot succeed like participants succeed. This is because 

the model depends on accumulating enough exemplars such that the average distance between 

new stimuli in the disconfirming areas and previously seen stimuli from the same category 

become smaller. Initially this is not the case, since a new stimulus might have thick lines but 

belong to category ‘B’ and thus be closer in space to the ‘A’ category. Until enough exemplars of 

these thick ‘B’s are encountered the model mistakenly attributes them to category ‘A’ (and vice 

versa for new ‘A’ stimuli with thin lines). If we wanted the model to do better on the switch, we 

would need to restrict the number of previous exemplars it has access to such that those seen in 

the Bait phase would have been effectively “forgotten”. While this solution would modify the 

central tendency of the model’s performance it would not increase its range of possible 

performance. Our participants perform both successfully and poorly while the model would be 

capable of only one or the other. The cumulative error for this model on blocks 1-2 was 0.53. 
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Rule Based Model 

Basic RB X 

The basic single-step RBx model predicts that participants should perform on average 

below chance during the Switch phase. This is because most stimuli shown during this phase 

specifically do not conform to a RBx rule though enough do to maintain near chance 

performance. The fact that this model cannot respond to feedback actually protects it from doing 

worse, as we will see with the next model. The cumulative error for this model on blocks 1-2 was 

1.08. While this model predicted reasonable behavior during the Bait phase, its inability to 

consider an orientation rule leads it to predict worse behavior than participants display. Further, 

considering that it cannot learn is grounds for ruling out this model as a plausible account of how 

participants navigated this task. Because of this, we will no longer consider this model as we 

move forward. 

Incremental Learning - RBx 

 The single-step incremental learning model displays the widest range of performances 

across all the models we consider. At its worst, its accuracy is as low as 15%, and at best around 

70% depending on the trial order and parameter values. Given that in many cases the model is 

confronted with an abundance of stimuli that do not conform to a thickness rule, the model 

thrashes between boundary values, leading to poor performance. While the model is capable of 

performing as poorly (and more so) as participants, it is not capable of performing as well as the 

best performers due to being restricted to thickness rules. The cumulative error for this model on 
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blocks 1-2 was 0.7. For similar reasons to the static RBx model, we will no longer consider this 

model as we move forward. 

Incremental Learning – RBx & RBy 

 The parallel incremental learner that uses both RBx and RBy strategies does better than 

both variants of the single-step RBx only model since it is able to account for at least some of the 

stimuli by shifting to a RBy strategy. This is especially true for stimulus orders from experiment 

3 in which the disconfirming zones are sampled at a 3:1 ratio during this phase. Since these 

stimuli are largely accounted for by an orientation rule this strategy leads to higher performance 

but misses stimuli from the areas seen in Bait phase. We thus see an increased range of possible 

performances predicted by this model. The cumulative error for this model on blocks 1-2 was 

0.40. Though the model still predicts that participants should be performing worse than they are, 

the increased range of performances suggests this model better approximates participants during 

this phase. 

Satisficing Anchored Model 

 The single-step satisficing anchored model performs similarly to the parallel incremental 

RBx & RBy model as it too is able to explore both thickness and orientation rules. It predicts a 

slightly over-performs compared to participants as they explore a wide range of strategies. In this 

phase, the model cannot find a rule that consistently meets its satisficing threshold because of the 

asymmetric stimulus sampling. This therefore predicts that participants are constantly searching 

for rules during this phase since no rule seems to account for all the stimuli they see. The 

cumulative error for this model on blocks 1-2 was 0.42. While it does provide a decent account 
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of behavior during this phase, the model’s inability to consistently match participant 

performance in the Bait phase led us to focus on the variant that includes a bias towards 

thickness rules. As such, this version of the satisficing anchored model will no longer be 

considered. 

Satisficing Anchored Model with Bias 

 The single-step satisficing anchor model with a bias towards thickness rules provides the 

best fit to our data across the Bait, and Switch phases. While it tends to under-perform on 

average, it predicts the wide range of behavior seen in participants. The difference in fit values 

between the no-bias and bias versions of this model suggest that participants tend to retain a 

preference for thickness rules even though they are presented with an abundance of evidence to 

the contrary. This is supported by prior data as well. In designing experiment 3, the reason we 

elected to sample the disconfirming areas so heavily (3:1 in the Switch phase, then 2:1 in the 

Learning phase) was because prior small sample pilot studies showed that participants 

perseverated on the thickness rule from the Bait phase, apparently electing to ignore or discount 

evidence that it was no longer a viable strategy. The cumulative error for this model on blocks 1-

2 was 0.35. The error low score and wider range produced by this model suggests that it provides 

the best account of the data thus far. 

Interim Summary 

During the Switch phase, several models demonstrated an inability to match key metrics 

of participant performance and were thus dropped from further consideration. Both the non-

learning and incremental learning versions of the RBx only model predicted an abundance of 
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below chance performance during the Switch phase due to their restricted strategy set. Though 

they made reasonable predictions during the Bait phase, it is unrealistic to think that participants 

only considered a single strategy during the entire experiment. We therefore ruled them out as 

plausible accounts of participants behavior. The parallel incremental learning with RBx & RBy 

model provided a good account of behavior by adaptively alternating between the two strategies. 

Interestingly, on several trial orders, this produced better performance than participants 

suggesting that participants adopted a less effective strategy during this phase. The single-step 

satisficing anchor model with no bias, while providing a decent account of the data, was outdone 

by the variant with bias both in the Bait, and Switch phases. In addition to that, the variant with 

bias provides a closer account of participant behavior and verbal report. We therefore elected to 

focus our attention on the variant with bias. This model predicts that participants failed to find a 

good enough rule during this phase and therefore constantly generated and replaced a variety of 

rules. The fact that this model does not predict an abundance of overperformance during this 

phase, like the parallel incremental learning RBx & RBy model, suggests this is a closer account 

of what participants were likely doing. 

The Learning Phase (Blocks 3-5) 

The third criterion for our models is matching the broad range of performance profiles 

observed in the Learning phase. Here participants seem to have adopted a wide range of 

strategies to varying degrees of success. The important aspect of these data for our modeling is 

creating a model whose mechanisms allow it to match behavior that range from the worst to the 

best learners. To capture participant success during this phase, PINNACLE 2.0 included a 

diagonal strategy meant to represent a two-dimensional explicit rule, or implicit strategy use. In 
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experiment 5 few, if any, participants zeroed in on a strategy as good as a diagonal since that 

would lead to perfect performance. To further support this claim, we included a diagonal strategy 

in the Satisficing Anchored Model with Bias and Exceptions model. Modeling results predict that 

participants considered this strategy only 10% of the time. We discuss the results in the relevant 

section. Figure 4.11 depicts boxplots for performance on blocks 1, 2 and 5 for participants and 

block 5 performance for each model we considered in the Learning phase.  
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Figure 4.11: Boxplots of block 5 performance across five different models (blue) 

compared to participants (red). Cumulative error (blocks 1 - 5) is reported below each 

boxplot indicating the discrepancy between participant and model performance across 

blocks 1 - 5.  

 

The exemplar model cannot account for the range of participant behavior and is 

restricted to matching the best learners. The parallel single-step incremental and 

hierarchical incremental learners also cannot account for the range of behaviors and 

are restricted to matching the worst learners. 

 

The two satisficing anchored models both approximate the range and variability of 

performance seen in participants. Importantly, the hierarchical satisficing anchored 

model is able to match both the worst and best learners while the single-step version 

cannot achieve do as well as the best participants. 
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Exemplar Model 

As early as block 3 (not shown) the exemplar model predicts that participants ought to 

perform at the level shown in Figure 4.9 and remain stable throughout the rest of the experiment. 

This is because by block 3 the model predicts that participants would have already experienced 

enough exemplars to recover from the Switch phase and perform consistently well. In fact, the 

model predicts performance in line with the best participants but cannot produce the range of 

performances that participants do. This is a fundamental limitation of the exemplar model. 

Versions that match the top performers cannot fail and versions that match the worst performers 

cannot succeed, even on block 1. The cumulative error across all blocks was 2.96, the highest of 

any model we considered. As such, it is highly unlikely that participants are using a decision-

making process analogous to a similarity-based judgments. If they were, the models predict we 

would see very different profiles of behavior. 

Rule Based Models 

Incremental Learning – RBx & RBy 

 By the end of the experiment, the parallel incremental learning model capable of using 

both RBx & RBy strategies does not do much better than it did in the Switch phase. We see its 

range has reduced, indicating that both strategies have narrowed in on their optimal solutions and 

simply trade-off between them, but it still tends to produce performance around chance. 

Critically, it is incapable of matching the best learners though in the Switch phase it found some 

success by more consistently favoring an orientation rule. The cumulative error across all blocks 
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was 1.93. While this model can fail like our participants it cannot succeed like them, the opposite 

problem of the exemplar model.  

Satisficing Anchored with Bias 

 The single-step satisficing anchor model with a bias towards thickness rules predicts a 

range of behavior more indicative of participant behavior. It produces a wide range of 

performance and captures low and moderately performing participants. However, it struggles to 

match the best learners. This suggests that no thickness or horizontal rule by itself is sufficient to 

produce such learning (also evidenced by the parallel incremental – RBx & RBy model which 

implies that participants are using a more complex strategy). The cumulative error across all 

blocks was 1.19. While this model produces a relatively low error score, it cannot succeed the 

way participants do indicating that it is an incomplete account of human behavior. As such we 

turn to more complex models to create a better theory of what people are doing. 

Hierarchical Models 

To address the limitation of the single step satisficing anchored model with bias and 

bring the model more in line with participant verbal report, we developed a hierarchical version 

that incorporates quadrant exceptions. A diagonal strategy was also incorporated to test whether 

the observed behavior was more in line with a hierarchical rule strategy, or a single-step diagonal 

one. Additionally, to provide an alternative to the hierarchical satisficing framework we 

developed a hierarchical incremental RBx model as well. 
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Incremental Learning - RBx with Quadrant Exceptions 

The first model capable of generating and testing exceptions we consider is the 

hierarchical incremental learner that only uses an RBx base-rule. We elected to implement 

exceptions within this simpler version of the incremental learner rather than the RBx & RBy 

version due to the added complexity inherent tracking the vast number of possible two-step rules, 

the p(A) calculations, and the decision-making associated with such a system. Moreover, the 

added benefit of the RBy strategy is mostly moot by the end of learning and removing it does not 

significantly change its performance in Block 4-5. While performance of the hierarchical model 

is similar to the single step version, we see an increased range of performance due to these 

exceptions. The cumulative error across all blocks was 2.2. Importantly, no instance of the model 

performed as well as the best participant indicating this is not a suitable description of what 

participants are doing.  

Satisficing Anchor with Bias, Diagonal, and Quadrant Exceptions 

 The final model we considered was the hierarchical satisficing anchored model that had 

access to thickness, orientation, and diagonal strategies, a bias towards thickness, and generated 

quadrant exceptions to its base-rule. Though it has access to an objectively perfect strategy 

(diagonal), the parameters that produce the best fit predict that participants only considered 

diagonal strategies 10% of the time and maintained a preference towards thickness rules 

throughout the experiment. Looking at the boxplot performance in Figure 4.9 we immediately 

notice that the model predicts behavior that is similar across the variability, range, and central 

tendency to participants. The model is capable of producing behavior similar to both the worst 
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and best performers. The cumulative error across all blocks was 0.75. This model provides the 

best fit out of all the models we tested and does so with just 3 parameters (RBx bias, exception 

satisficing threshold, base rule satisficing threshold; half the number that PINNACLE 2.0 had). 

The appeal of the model is not just due to its performance, but also because of its simplicity and 

intuitive operation. People explore different rules of varying complexity, using them until they 

are deemed not “good enough”, and then they are replaced. Despite the possibility of happening 

upon an explicit diagonal strategy, or switching to rely on implicit knowledge, participants seem 

to persist in using two-step explicit strategies. 

Summary 

In this chapter we presented eight models that attempted to account for participant 

behavior both conceptually and through specific mechanisms. We showed why both the 

exemplar and several incremental learning models – highly successful models of category 

learning –struggle to account for the data from Dynamic Cat. We introduced a new satisficing 

mechanism for decision-making we had not previously considered whose focus rests on rule 

generation and evaluation rather than modification of a fixed set of strategies. In addition to 

being a simpler model, this model provides both a better account of participant behavior and a 

more intuitive understanding of what they are likely doing. 

Though the hierarchical satisficing anchored with exceptions model accounts for both the 

range and variability of the data, it is important to temper success with realism. Whenever we are 

confronted with such high variability in behavior, it is almost certainly the case that participants 

adopt a wide range of behaviors absent in our models. We do not claim this is the best account of 
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our data, only that it is the best account of our data so far. The fact that such a simple model 

seems to predict behavior similar to participants is certainly an encouraging start. 

To further understand how our participants navigated this task we turn to the 

neuroimaging data collected during experiment 5. In the next chapter we describe results from 

preliminary neuroimaging analyses that identify neural correlates of successful vs. unsuccessful 

learning as well as how these results inform further development of the PINNACLE model. 
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Chapter 5: Neuroimaging Analysis 

To navigate the complex and dynamic decision-making task in Dynamic Cat participants 

relied on a broad range of strategies, both successful and not. The work discussed thus far has 

focused on characterizing specific mechanisms that provide a plausible account of this behavior 

culminating in PINNACLE 2.1. A crucial insight from the modeling work was the importance of 

generating and evaluating a wide variety of rules during the decision-making process for 

successful learning. Rather than perseverate on a specific strategy or explore a restricted set, 

participants displayed flexible behavior that was responsive to task demands which we captured 

in the satisficing and rule-generation mechanisms. In this chapter we describe preliminary 

evidence of the neural correlates of these processes. 

A critical moment in our experiment is the Switch phase (block 2) where participants are 

confronted with a significant and abrupt change in task demands. Participants had to adapt to 

maintain performance by searching for new appropriate strategies. This process began with the 

sudden change in the Switch phase and continued throughout the subsequent trials in the 

Learning phase. Such behavior requires engaging variety of functions including decision-

making, evidence accumulation and integration, and working memory. The more these processes 

are engaged the more likely successful solutions to the problem are to be found. Indeed, we see 

that the top learners display more activity right dorsolateral prefrontal cortex (BA-9), right 

inferior parietal lobule and right precuneus, areas previously linked with these processes, across 

the Switch and Learning phases (Blocks 2-5) compared to the worst learners based on a median 

split. Additionally, we find evidence for differential processing of correct versus incorrect 

feedback among these groups during the Switch phase (block 2). Throughout this phase left 
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dorsolateral prefrontal cortex (BA-8, BA-9), left precuneus, and left superior parietal lobule 

showed increased activity associated with incorrect trials for Learners compared to Non-

Learners. Considering these results in light of PINNACLE 2.1 implies that learners were less 

likely to satisfice with their rules and were thus more likely to engage in the rule generation and 

replacement process. Doing so reliably led to increased chance of discovering better solutions 

and thus better outcomes. 

Methods and Materials & Procedure 

As described in chapter 4, thirty-five participants were recruited from the community and 

performed the Dynamic Cat task in experiment 5 while in a fMRI scanner. In sum, seven 

participants were excluded as described in experiment 5’s Exclusions section. 

Our neuroimaging protocol used a Siemens 3T fMRI scanner. During the experiment, we 

ran a T2*-weighted echo planar (EPI) scan covering 35 interleaved axial slices (TR = 2200 ms, 

TE = 21 ms, multiband = 2, voxel size = 2×2×2 mm) for 218 volumes in each of six scans. For 

anatomical localization, high-resolution, 3D MP-RAGE T1-weighted scans (voxel size = 1×1×1 

mm; 128 axial slices) were collected for each participant following the functional runs. 

 All data were preprocessed using AFNI version 19.1.6. All anatomical scans were 

aligned and normalized to the MNI-152 atlas. EPI data were motion corrected, aligned to 

anatomical data and smoothed with a 6mm Gaussian kernel. A first level general linear model 

(GLM) analysis for each participant was run using the 3dDeconvolve function in AFNI. For all 

analyses each event was modeled as a 1.5s block beginning at trial onset. Second level group 

analyses were done using the 3dttest++ function in AFNI with two groups (top half vs bottom 

half of learners). 
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Results 

To identify the neural correlates of successfully navigating the dynamic decision-making 

process we began by contrasting all trials for the top and bottom half of learners based on a 

median split during the Switch phase (block 2). Learners showed increased activity in right 

dorsolateral prefrontal cortex (BA-9; peak voxel MNI-coordinates: 36, 52, 8; 51 voxels) across 

all trials when compared with non-learners (t=3.4, p<0.00, minimal cluster size of 40 contiguous 

voxels (320mm3)). Figure 5.1a shows activity for the top versus bottom learners on all trials in 

block 2.  

A main prediction of PINNACLE 2.1 is that on incorrect trials, participants evaluate their 

rule and consider whether it should be replaced. If so, they generate a new rule and update the 

current one under consideration. Based on this prediction, we contrasted correct versus incorrect 

trials for learners versus non-learners in the Switch phase where this behavior was most likely to 

be observed. Four areas including left dorsolateral prefrontal cortex (BA-8 peak voxel MNI-

coordinates: -52, 20, 34; 141 voxels, BA-9 peak voxel MNI-coordinates: -30, 54, 18; 66 voxels), 

left precuneus (peak voxel MNI-coordinates: -28, -50, 42; 71 voxels), and right superior parietal 

lobule (peak voxel MNI-coordinates: 26, -70, 54; 48 voxels) reflected increased activity for 

incorrect trials in learners (t=3.75, p<0.001, minimal cluster size of 40 contiguous voxels 

(320mm3)). Figure 5.2 shows activation regions and ROI activations for these regions. 

 During the Switch phase, participants were confronted with the difficult task of 

discovering new adaptive strategies to the task. According to PINNACLE 2.1 this process 

involves several steps: 1) evaluate the current rule, 2) if necessary, reject the rule, 3) generate a 

new rule, 4) replace the current rule with the new one. In the human brain, these operations are 
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plausibly associated with the regions showing increased activity just described. Dorsolateral 

prefrontal cortex has been identified in a variety of both decision-making and working memory 

tasks (DM: Barraclough et al., 2004; Van’t Wout et al., 2005; Heekeren et al., 2008; Rangel, et 

al., 2008; Nomura & Reber, 2012.  WM: Curtis & D’Esposito, 2003; Donahue & Lee, 2015; 

Cieslik et al., 2012). The precuneus has been associated with episodic memory tasks (Cabeza and 

Nyberg, 2000; Rugg and Henson, 2003) as well as memory retrieval (Buckner et al., 1996, 

Fletcher et al., 1998). Superior parietal lobule has been identified as active in sensorimotor 

integration and visuospatial processing and working memory (Wolpert, Goodbody & Husain, 

1998; Corbetta et al., 1995; Koenings et al., 2009) tasks. The increased activity observed in these 

areas associated with incorrect trials in learners suggests that these areas likely reflect activity 

related to processes analogous to rule evaluation, generation, and replacement. Simply put, 

learners are less satisfied with their performance during the Switch and are therefore less likely 

to satisfice (consider their rule ‘good enough’). They are therefore more likely to generate and 

evaluate rules when wrong than learners thus enabling them to eventually find a successful one.  

 To further characterize differences between successful learners and non-learners we 

contrasted all trials from both the Switch and Learning phases (blocks 2-5). The right inferior 

parietal lobule (peak voxel MNI-coordinates: 48, -40, 46; 82 voxels) and right precuneus (peak 

voxel MNI-coordinates: 8, -66, 38; 67 voxels) both showed increased activity for learners 

compared to non-learners (t=3.4, p<0.001, cluster size of 40 contiguous voxels (320mm3)). 

These areas have been found in previous studies of category learning (Forstmann et al., 2008; 

Braunlich, Gomez-Lavin, Seger, 2015) and perceptual decision-making (Wenzlaff et al., 2011) 

indicating that even after the critical Switch phase, learners do better by engaging areas that 

allow them to integrate information about the stimuli in meaningful ways and use that 
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information to guide better rule generation resulting in successful categorization. Table 5.1 

summarizes the neuroimaging findings.  

 

  

Regions Side t voxels x y z 

DLPFC – BA 9 R 3.4 51 36 52 8 

L 3.75 126 -52 20 34 

66 -30 54 18 

Precuneus L 3.75 71 -28 -50 42 

Superior Parietal Lobule R 48 26 -70 54 

Block 2: Learners > Non-Learners, All Trials 

DLPFC – BA 8 

DLPFC – BA 9 L 3.75 

3.75 

Inferior Parietal Lobule R 3.4 82 48 -40 46 

Precuneus R 3.4 67 8 -66 38 

Block 2: Learners > Non-Learners, Incorrect > Correct 

Blocks 2-5: Learners > Non-Learners, All Trials  

Table 5.1 

 

Areas of activity identified across conditions. t indicates the t-value for two-

sampled, two-tailed t-test with a top vs bottom median split of learners based on 

block 2 performance. Voxels indicates the size of the cluster of activity after 

surviving a minimal cluster size of 40 contiguous voxels equating 320mm3 of 

BOLD signal. XYZ coordinates denote peak voxel activity in MNI space. 
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R L 

Inferior Parietal Lobule 

DLPFC: BA-9 

Precuneus 

a.Block 2: All Trials 

b. Blocks 2-5: All Trials 

Figure 5.1: 

 

a. Neural activity associated with all 

trials for the top half of 

participants based on a median 

split of performance in block 2. 

Learners show greater activity in 

right dorsolateral prefrontal cortex 

(area BA-9) which has been 

previously shown to be associated 

with decision-making and working 

memory. 

 

 

b. Neural activity associated with all 

trials for the top half of 

participants based on a median 

split of performance in block 2. 

Learners show increased activity 

in right precuneus and right 

inferior parietal lobule. 

 

These areas have been found in 

previous studies of category 

learning and perceptual decision-

making indicating that even after 

the critical Switch phase, learners 

do better by engaging areas that 

allow them to integrate 

information about the stimuli in 

meaningful ways and use that 

information to guide better rule 

generation resulting in successful 

categorization.  
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Correct Trials 

Incorrect Trials 

Learners Non-Learners 
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Block 2 Activity Across 4 ROIs 

Superior Parietal Lobule 

BA-8 

Precuneus 

BA-9 

Block 2 Correct vs Incorrect trials 
 

TOP: Activations for 4 ROIs more 
active for Incorrect trials in Learners 
versus Non-learners. 
 

Bottom: Average beta values across 
all ROIs. Individual ROIs all show the 
same pattern of increased activity 
for Incorrect trials in Learners 
compared to the other conditions. 

Figure 5.2:  

R L 

Block 2: Correct - Incorrect 
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Summary  

Taken together these results suggest that people who did better on this task engaged more 

often in a process of assessing their current rule and if necessary, replacing it. This was most 

pronounced in response to incorrect feedback during block 2. Activity in the dorsolateral 

prefrontal cortex suggests an increased working-memory load associated with generating a new 

rule, as well as processes associated with goal-directed decision-making such as comparative 

evaluations (i.e. “Is this rule good enough?”). Precuneus involvement suggests a process of 

accumulating and updating relevant information as people try to make sense of all they have 

experienced thus far, as well as memory retrieval as they access and modify current rule 

representation. Superior and inferior parietal lobules suggest that people may be reevaluating 

stimuli (both current and previously seen) in light of new information (i.e. “perhaps the rules 

have changed and all ‘A’s are now ‘B’s!”). 

The observed results also help rule out accounts of behavior that do not predict 

differential processing between learners and non-learners as well as between correct and 

incorrect trials. For example, the exemplar model predicts the same activity on each trial 

regardless of feedback. The stimulus is stored in long-term memory with a label based on the 

response and feedback. There is no additional work to be done whether correct or incorrect. As 

we discuss in the following section, these data also rule out the current implementation of 

PINNACLE 2.1. 
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PINNACLE 2.1a 

 The differences in neural activity between learners and non-learners in block 2 indicate 

that learners responded differently to incorrect trials during this task. This pattern of results poses 

a challenge to PINNACLE 2.1. The current model predicts that both learners and non-learners 

have the same base-rule and exception satisficing thresholds and thus should be equally likely to 

engage in the rule evaluation, generation, and replacement processes. What distinguishes the two 

groups is effectively luck; some people happen upon a successful rule while others keep 

searching. To account for these data, the model would need to systematically produce more 

instances of strategy switching in learners than non-learners. This is possible if learners have a 

higher base-rule and exception satisficing thresholds than non-learners. In that case, learners 

have higher standards as to when they satisfice. Non-learners, on the other hand, satisfice at a 

lower accuracy and thus do not engage in as much rule evaluation, generation and replacement. 

 We incorporated these requirements into PINNACLE 2.1a leading to a new variant that 

provides a better fit than PINNACLE 2.1 and offers a plausible account for both the observed 

behavior and neural activity. Figure 5.3 shows participant and model performance across all five 

blocks of Dynamic Cat. The cumulative error for the model is 0.62. Optimization identified a 

base-rule threshold value of 72% and an exception rule satisficing threshold value of 92% for 

learners while non-learners are assigned thresholds of 52% and 57% respectively. These 

thresholds align with the observed mean accuracies on blocks 2-5 for the top and bottom half of 

learners in experiment 5 (Learners: accuracy ranged from 46% to 91%; Non-Learners: accuracy 

ranged from 47% to 63% with one participant in that group achieving up to 85% accuracy on 

block 5).  
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Figure 5.3: 

 

Boxplots for blocks 1-5 of participants (red) and PINNACLE 2.1a (blue). In this model 

the top half of participants based on a median split of block 2 performance were 

assigned a higher base-rule and exception satisficing threshold than the bottom half. 

This leads to learners engaging in more rule evaluation, generation, and replacement 

(i.e. not satisficing) compared to non-learners who satisficed at a lower accuracy level. 

This behavior provides a plausible account for both all behavioral and neuroimaging 

data on the Dynamic Cat task. 

Block 

1 2 3 4 5 

A
cc

u
ra

cy
 

Cumulative Error: 0.62 
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Chapter 6: Discussion 

In this study we challenged participants, across five experiments, to solve a deceptively 

complex decision-making task that forced them to dynamically explore a variety of strategies 

during category learning. Understanding these processes from both a psychological and 

neurological perspective is challenging due to the inability to directly measure them through 

introspection or observation. In many cases the outcome of a decision-making task is a button-

press or other physical response from which we cannot infer the driving cognitive mechanisms. 

This ambiguity has led to a variety of different explanations for how people acquire categories 

such as exemplar and decision-bound theory. Do people make category judgements based on a 

similarity comparison, or by applying a rule? From just the single button press available to us it 

is impossible to tell, and as my advisor says: “there’s more than one way to skin a cat-egory”. 

While a complete understanding of how humans navigate this problem will require much more 

work, our results help rule out several previously successful accounts of visual category learning 

and suggest a plausible framework for understanding the dynamic decision-making process. 

Exemplar models based on the Nosofsky general context theory suggest that people 

categorize novel stimuli by comparing them to previously seen exemplars of each category and 

associating them with the more similar one. Thus, a chihuahua seen for the first time is more 

likely to be called a dog than a cat (or rat) even though it may share some similarities with cats 

(or rats). While successful at describing a range of category learning data, this framework was 

insufficient for describing how people performed the Dynamic Cat task. Exemplar models can be 

tuned in a variety of ways that allow them to match a range of learning rates reflective of 

successful or unsuccessful learners. However, participants performing the Dynamic Cat 
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experiment showed profiles of being both successful and unsuccessful learners in the same trace 

as evidenced by the rapid initial success in the Bait phase followed by a range of behaviors from 

gradual increases in success to prolonged stable near-chance performance. Our modeling work 

rules out the possibility that participants primarily relied on this type of strategy. Were they to do 

so, the theory predicts that they would have recovered from the Switch phase far more rapidly 

than they did. Furthermore, the exemplar model learns by storing stimuli in long-term memory, 

to be retrieved the next time a comparison is needed. This operation happens regardless of 

whether the response elicited positive or negative feedback. Feedback is used to inform which 

category the stimulus should be associated with. This architecture thus predicts equal neural 

activity on correct and incorrect trials and would likely be less associated with areas involved in 

working-memory and evidence accumulation. The asymmetric neural activity on incorrect trials 

for learners we observed suggests a different process was at play. 

Another equally successful theory of how people learn categories is the Ashby decision-

bound theory. According to this theory, people use something analogous to a linear decision-

boundary that partitions a perceptual space into two categories and acts as a criterion for 

evaluating stimulus category membership. In its most common formulation, a rule-based model 

maintains a single decision-boundary and modifies it based on feedback. Conceptually, this 

implies that a single rule is maintained and tweaked until it produces the best performance it can. 

While it does not seem very plausible that people settle on a particular rule (in this case one 

based on thickness) and endlessly tweak it in search of success it has nonetheless been a 

successful model of category learning. Results of attempting to fit such a model to our data 

shows that while this approach reasonably predicted participant performance in the Bait, and 

Switch phases, it was unable to produce the range of behaviors seen by the end of learning. 
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Specifically, it was unable to succeed like participants succeeded and produce high performance 

by the end of the experiment. Ruling out this hypothesis implies that participants were engaging 

in a more sophisticated strategy while navigating this task. 

In considering more sophisticated accounts of participant behavior, we tested a parallel 

incremental learning model in which two one-dimensional rules (in this case thickness and 

orientation rules) compete for control of behavior on each trial. This model proved more 

successful than the single rule variant but was similarly unable to match the best learners in the 

dataset. This inability rules out the hypothesis that participants relied solely on simple one-

dimensional rules based on the stimulus features that learn incrementally and compete with each 

other for behavior. Indeed, in post-experimental interviews participants reported attempting a 

wide range of strategies as well as more elaborate hierarchical ones though their ability to 

describe the exact nature of these rules were limited due in part to the nature of post-

experimental reflection of strategy use. 

Clearly, a more elaborate framework was necessary to understand how participants 

navigated this task. To that end, the PINNACLE architecture was designed based on our 

understanding of the systems neuroscience of multiple memory systems, reward processing, and 

decision-making. It provides a theoretical framework for understanding people’s behavior using 

multiple competitive interacting strategies. According to the theory, for a given decision, people 

can rely on either explicit or implicit strategies and constantly incorporate feedback to improve 

those strategies. PINNACLE 1.0 was the first version of this model and included both explicit 

(vertical: thickness) and implicit (diagonal: thickness & orientation) representations with the 

ability to select between them based on relative confidence. It had previously been shown to 

account for learning of thickness- and diagonal-based categories. It was not, however, capable of 
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accounting for the Dynamic Cat data primarily because the two rules it used were, in a sense, too 

good. In this paradigm, a thickness rule is appropriate for the Bait, and Switch phases while the 

diagonal rule was appropriate for the learning phase. This led to over-performance compared 

with participants as the model predicted that participants would naturally transition between one 

appropriate strategy to the other. As a note, this account has been shown to be generally accurate 

when learning diagonal categories: participants start with simple one-dimensional rules and 

gradually transition to more complex ones based on evidence. Ruling out this hypothesis means 

that even though just two simple rules were appropriate to accomplishing the task, most 

participants did not seem to use this strategy and instead were engaged in a broader and longer 

strategy search. 

We therefore improved on the theory, in the form of PINNACLE 2.0, to address these 

shortcomings by allowing for more explicit strategies (thickness- and orientation-based rules) as 

well as an increased ability to switch among competing strategies. It also introduced the idea of 

replacing explicit rules rather than incrementally modifying them based on feedback and concept 

of anchoring these rules to the current stimulus. The anchoring approach seems far more 

plausible in terms of what people may actually be doing. Rather than thinking “Oh, the thickness 

rule should be 0.02 units less thick than it is now.” it is more akin to “Oh, this stimulus 

represents the boundary condition – everything thicker than this is an ‘A’.” This model showed 

initial success at providing a plausible account for how participants solved this task. Similar to 

PINNACLE 1.0 it predicted that participants began with simple explicit rules and then 

transitioned to more complex two-dimensional rules, some of which were inferred to be implicit. 

Unlike version 1.0, the updated model allowed for more transitions between one- and two-

dimensional strategies before ultimately adopting the more successful two-dimensional strategy. 
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PINNACLE 2.0 was capable of matching Bait, and Switch phases as well as successful learners. 

However, it was still unable to account for how participants managed to stay at near chance 

performance for extended periods of time. This is primarily due to two factors: 1) both one- and 

two-dimensional rules learned on each trial, and 2) the two-dimensional diagonal boundary was 

an objectively optimal solution. Together, these two mechanisms ensured that over time the 

model would find an optimal solution and never remain at near-chance performance for long. 

Ruling this hypothesis out meant that what participants were doing extended beyond 

transitioning between one- and two-dimensional rules based on stimulus dimensions. While it 

provided a fair account of how participants could succeed in the task, it could not explain how 

participants failed since failure in this circumstance did not mean random guessing, and did not 

rely on just rapid rule thrashing. 

Across all the rule-based accounts of human behavior described thus far, each one has 

assumed that whatever the strategy in use might be whether exemplar, or one and two-

dimensional rules, they reflected the true category space. Thickness rules always assumed 

category ‘A’ was to the left of the boundary and ‘B’ to the right, diagonal boundaries always 

assigned stimuli above the diagonal to category ‘A’ and those below to category ‘B’ while 

exemplar models saved stimuli to the appropriate true category. However, there is no a priori 

reason to assume participants always mapped space this way. For example, it is entirely plausible 

that a participant might think that we swapped stimulus labels “Everything I called ‘A’ is now 

‘B’ and vice versa.”  

Under this formulation, participants are presumed to generate a variety of different rules, 

some objectively appropriate and some inappropriate to the task. Since participants have no way 

of knowing what the true category structure is, they guess. In cases where the rule seems to 
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work, they keep using it and in cases where it does not, they replace it. Given such an approach, 

the decision-making solution, as well as the parallel structure implemented in PINNACLE 2.0 

was no longer appropriate to arbitrating between different strategies. This was primarily due to 

the complexity associated with the number of potential options. To do so would require keeping 

track of every possible strategy and comparing across them on each trial; an unlikely account of 

what people do. To capture a simpler and more intuitive mechanism of rule arbitration we 

implemented a well-established satisficing framework in which participants use strategies that 

are ‘good enough’ based on a potentially latent internal satisficing threshold and replace ones 

that are not.  

Essentially, the new version of PINNACLE, now 2.1, hypothesizes that participants 

begin the experiment by generating and using a simple one-dimensional rule. They used this rule 

so long as its cumulative accuracy stays above a given threshold. If the rule fails and drops below 

the satisficing threshold a new rule is generated to replace the old one. When generating a new 

rule, the model attempts to capture a state of uncertainty from the participant’s point of view. In 

these cases, whatever they thought might be happening has just been called into question. 

Perhaps the circumstances of the experiment have changed (again). This may mean that any 

previous information about the task could now be irrelevant or even misleading. The only thing 

participants can be sure of is the current stimulus. Thus, the new rule they generate must account 

for the current stimulus’s label and is therefore anchored to it. Practically, this means that when 

generating a vertical (thickness) rule, the boundary is set equal to the current stimulus’ thickness 

value (and similarly for orientation rules). This ensures that the current stimulus is categorized 

correctly by the new rule without necessarily making sense of any previously accumulated 

information.  
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A new rule can take on several forms: it could be based on either thickness, orientation, 

or a combination of both. It could swap which side of the boundary each category is on such that, 

for example, the left side of a vertical boundary could be either category ‘A’ or ‘B’. In addition, 

the model includes a limited hierarchical two step strategy in which quadrant exceptions are 

evaluated before linear decision boundaries. This capability was added based on participant 

verbal report. Another insight based on participant behavioral and interview data was that a bias 

towards thickness rules was necessary to account for the Bait phase. That is, people seem to be 

predisposed to focusing on thickness over orientation, an interesting topic for discussion in its 

own right. Taken together, this model predicts that people generate and test a variety of both 

objectively appropriate and inappropriate rules with varying degrees of complexity that make 

sense of the current stimulus until one is found that they deem ‘good enough’. 

Finally, we turned to neuroimaging data to further understand how participants 

approached this complex task. Preliminary results of neuroimaging analyses found increased 

activity in bilateral dorsolateral prefrontal cortex, bilateral precuneus, and right superior and 

inferior parietal lobules for top half of learners compared to the bottom half. These results were 

associated with activity on all trials as well as on correct versus incorrect trials. These areas have 

previously been shown to be involved in working-memory, decision-making, evidence 

accumulation, and sensory integration. The observed results pose a challenge for PINNACLE 2.1 

as they suggest that learners likely engaged in more rule evaluation, generation and replacement 

in response to incorrect trials than non-learners. This, however, is not predicted by the model 

since everyone shares the same satisficing thresholds and thus there should not be a systematic 

bias towards less satisficing in learners versus non-learners. 
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To make sense of these data in light of the success of PINNACLE 2.1, we incorporated 

this insight into our model leading to PINNACLE 2.1a which hypothesizes that learners have a 

more stringent threshold for what they consider to be a “good” rule compared to non-learners 

who may be willing to settle for lower rates of success. This new model therefore predicts more 

rule evaluation, generation and replacement following incorrect trials for learners than non-

learners. 

Conclusions 

In this study we attempted to provide a plausible account of how people navigated a 

complex and dynamic decision-making task through behavioral, computational and 

neuroimaging methods. Developing a better understanding of this process is crucial to a broad 

range fields including education, medical, retail, and financial sectors as well and interpersonal 

relationships. Across a series of models, we ruled out several plausible hypotheses of how people 

navigated this process. Ultimately the best account of behavior thus far involved one in which 

people search for both simple and complex solutions that are good enough rather than the best.  

Different people have different standards of what good enough is with some people being 

satisfied with moderate performance while other strive towards perfection. Clearly, more work 

needs to be done to characterize and understand the rich and complicated nature of decision-

making under uncertainty. The success of a relatively simple model in accounting for these 

processes is encouraging and provides a concrete step towards a fuller understanding of the 

human mind. Such a framework can be used to predict how people will behave in a broad range 

of circumstances to better inform optimal ways of making people’s lives better. 

 “We have learned something about an important human activity.” – Herbert Simon  
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