

NORTHWESTERN UNIVERSITY

Question-Answering with Structural Analogy

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Maxwell Crouse

EVANSTON, ILLINOIS

September 2021

2

© Copyright by Maxwell Crouse 2021

All Rights Reserved

3

Abstract

Designing intelligent systems that can answer questions has been an ongoing and active challenge

for the artificial intelligence community. In the past, researchers were focused on producing

specialized language systems for particular domains and datasets. Such approaches would require

deeper-than-ideal amounts of expertise to design, and often necessitated the expensive manual

annotation of datasets with logical forms. Modern methods have since shifted to being deep

learning-based, which has allowed for effective and flexible question-answering systems that can

be constructed in a more hands-off approach.

 Both paradigms have their advantages and disadvantages. The earlier systems were far

more interpretable as they often involved learning explicit grammar rules. However, they were

less performant and had to start from scratch for each new domain to which they were applied.

Mainstream deep learning-based methods are very effective, easier to train, and do exhibit some

degree of transferability (largely due to their use of techniques like word embeddings), but their

internal reasoning processes are opaque, and they generally require a significant amount of data to

train on to achieve good performance.

 In this thesis, we approach question-answering from an analogical perspective. In

particular, we introduce an approach that uses analogy to adapt an existing general-purpose

semantic parser to answer questions in novel domains. The adaptation is learned automatically and

performs well when given either natural-language question-answer pairs or questions annotated

with logical forms. The incorporation of a general-purpose semantic parser allows the system to

avoid having to learn from scratch for each new domain to which it is applied, while also making

the question-answering task simpler, which allows for better performance and data efficiency.

4

 We demonstrate the effectiveness and generality of our approach by applying it to three

different datasets that each require a distinct type of reasoning. We show that the method is

competitive with modern neural approaches to question-answering while maintaining

interpretability and explainability.

5

Acknowledgements

First and foremost, I would like to thank my advisor, Ken Forbus. It is easy for me to point to the

numerous individual actions and ways in which he helped me grow (e.g., this entire thesis is based

on conversations he networked me into early in my career). However, I think what I have

appreciated most of all in my time at Northwestern is the culture that Ken fosters in the QRG lab.

 In the lab, we learn to pay attention to what the methods du jour of the research community

are, but to never blindly follow a trend just because it’s popular. As a graduate student, it can be

easy to lose sight of what meaningful science is when in the pursuit of the metrics by which we

are often judged (e.g., conference papers and citations). These metrics are, of course, important to

keep in mind, but they should never be the sole reason for tackling a particular problem. In the

QRG lab, we are taught to look for interesting problems to solve and to solve such problems in a

principled, general-purpose way. This is more challenging than the all-too-common practice of

taking some existing neural model and trivially modifying it such that it achieves state-of-the-art

on some dataset. But, as Ken has taught me, “problems worthy of attack, prove their worth by

fighting back.”

 I would like to thank the Air Force Office of Scientific Research, the Office of Naval

Research, and Northwestern University for their generous funding and support of my work through

the years.

 A graduate student is shaped by their mentors, and for that reason I would like to thank

Michael Witbrock and Achille Fokoue for their mentorship at IBM Research. The two internships

I had working with them were some of my most valuable learning experiences as a graduate

student, and I cannot thank them enough for providing those opportunities for me. Similarly,

6

Ibrahim Abdelaziz and Maria Chang at IBM and Tom Hinrichs at Northwestern were wonderful

to work with, and I appreciate their patience with me as I bounced no fewer than ten million ideas

off of them.

 I would like to thank Ian Horswill for his guidance on my thesis and for serving on my

thesis committee. The class I took from Ian on Logic Programming was one of the most

entertaining courses I have taken, and it served to partially inspire some of the methods in this

thesis.

 I would like to thank CJ McFate, Irina Rabkina, Joe Blass, Chen Liang, Constantine Nakos,

and Kezhen Chen for the frequent debates and interesting conversations in the early years that

made starting out in the QRG lab so entertaining. To the newer graduate students: Sam Hill, Will

Hancock, Danilo Ribeiro, Cathy Lin, and Taylor Olson, thank you for bringing new insights and

ideas into the lab. I would particularly like to thank my frequent co-authors CJ and Constantine

for making the papers we worked on together so much better, and my cohort-buddy Irina Rabkina

for going through the struggles of graduate student life with me.

 To my friends Aabesh De, Prathik Kini, and Jonathan Leganza, thank you for keeping life

constantly entertaining through this degree with all of the gaming, debates, poker, and time

together. To my partner Carolyn Wahlen, thank you for being my rock through the past few years,

keeping me steady and moving forward through both the good times and the bad. I could not be

more excited to see what lies ahead for the two of us together.

 To Mimi, Popi, Grandpa, Granddad, and Grandma, though you all could not be here to see

this, I am sure you all would be proud. The memories I have with each of you I cherish every day.

7

 To my sister Claire, thank you for being the competitive force through my life that always

drove me to be better. I always looked to you to see what person I should strive to be.

 This thesis is dedicated to my parents, Jane and Eric Crouse. They inspired my love of

science from an early age while also encouraging me to live a well-balanced and well-rounded life

beyond just academic performance. They are my role models, and I could not ask for better or

more supportive parents.

8

Table of Contents

Abstract ... 3

Acknowledgements ... 5

Table of Contents .. 8

Table of Figures .. 11

Table of Tables ... 12

1 Introduction .. 13

1.1 Claims and Contributions ... 15

1.2 Organization .. 16

2 Preliminaries .. 17

2.1 Symbolic Representations ... 17

2.2 The Structure-Mapping Theory of Analogy ... 19

2.3 Finding Substitutions Between Individual Expressions ... 22

3 Background .. 25

3.1 Semantic Parsing ... 25

3.2 Connection Subgraphs .. 30

3.3 Qualitative Process Theory ... 30

3.4 Comparative Analysis ... 32

9

3.5 Knowledge Base and Ontology .. 33

3.6 Ontological Similarity ... 34

3.6 Analogical Processing ... 35

4 Analogical Question-Answering Overview ... 36

5 Analogical Question-Answering Training ... 39

5.1 Self-Annotation of Training Data ... 40

5.1.1 Connection Graph Query Generation .. 40

5.1.2 Combining Paths to Build Queries .. 42

5.1.3 Handling Queries Involving Additional Computation ... 43

5.2 Training from Annotated Question-Answer Pairs .. 44

5.2.1 Analogical Entity Matching ... 44

5.2.2 Inducing Query Cases .. 49

6 Applying Query Cases ... 55

6.1 Instantiation of Query Cases ... 55

6.2 Composing Query Cases ... 59

7 GeoQuery ... 63

7.1 Training for GeoQuery ... 64

7.2 Testing for GeoQuery ... 66

7.3 Experiments and Results ... 67

10

7.4 GeoQuery Related Work ... 71

8 Science Test Process Identification ... 73

8.1 Training for Process Identification ... 74

8.2 Testing for Process Identification ... 76

8.3 Experiments and Results ... 77

8.4 Process Identification Related Work .. 79

9 QuaRel ... 81

9.1 Training for QuaRel .. 84

9.2 Testing for QuaRel .. 88

9.3 Experiments and Results ... 88

9.4 QuaRel Related Work ... 92

10 Related Work ... 94

11 Conclusions .. 97

11.1 Claims Revisited ... 97

11.2 Contributions Revisited .. 98

11.3 Open Questions and Future Work... 99

References ... 101

11

Table of Figures

Figure 1. An example of an SMT-satisfying match between two sets of expressions 21

Figure 2. Expression matching algorithm ... 23

Figure 3. Nulex entries for “changes” ... 25

Figure 4. Semtrans for verb form of “change” ... 27

Figure 5. Alternative syntactic parse trees for “The snow changes to water.” 28

Figure 6. An example of choice sets for “The snow changes to water” 29

Figure 4. A qualitative model of melting .. 31

Figure 5. A multiple-choice comparative analysis question from the QuaRel dataset 32

Figure 6. Choice sets for the NLU semantic parse for an example question 36

Figure 7. A relevant subset of the KB for answering the question in Figure 6 37

Figure 8. A query case that bridges between semantic parser outputs and KB facts 38

Figure 9. The three main processes for training AQA .. 39

Figure 10. A connection graph between the entities of the question and answer 41

Figure 11. An example of a query for "What is the largest state that borders Texas?" 43

Figure 12. A subset of the semantic parse and the expressions of the target query 45

Figure 13. Rerepresented semantic parse and target query expressions 46

Figure 14. Structure-aware alignment algorithm .. 48

Figure 15. Semantic parse and target logical expressions after substitution has been applied 49

Figure 16. Overview of AQA’s process for applying QCs ... 55

Figure 17. QC retrieval algorithm ... 56

file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960429
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960430
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960431
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960432
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960433
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960434
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960435
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960436
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960437
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960438
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960439
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960440
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960441
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960442
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960443
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960444
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960445
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960446
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960447
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960448

12

Figure 18. Antecedent matching algorithm .. 57

Figure 19. Choice sets from the semantic parse for an example question 58

Figure 20. Example of a query case available to AQA ... 59

Figure 21. Examples of instantiated query cases .. 60

Figure 22. Query case composition algorithm .. 61

Figure 23. Semantic parses for two semantically similar questions ... 65

Figure 24. Learning curve experiment .. 68

Figure 25. Example science test question ... 73

Figure 26. Model fragments for the process of evaporation ... 74

Figure 27. Choice sets from the semantic parse for the question in Figure 25 75

Figure 28. The query case learned for the evaporation question of Figure 25 76

Figure 29. A question from the QuaRel dataset .. 81

Figure 30. Partial inputs to DQA for the example question ... 83

Figure 31. Partial semantic parse for a fill-in-the-blank question .. 84

Figure 32. Semantic parse but with world substitutions and word-level statements 84

Figure 33. A query case that would apply to the semantics shown in Figure 32.......................... 85

Figure 34. Automatically generated natural language outputs for the question in Figure 1 91

Table of Tables

Table 1. GeoQuery Main Results.. 67

Table 2. Science Test Process Identification Main Results .. 77

Table 3. QuaRel Main Results .. 89

file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960449
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960450
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960451
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960452
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960453
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960454
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960455
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960456
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960457
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960458
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960459
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960460
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960461
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960462
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960463
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960464
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960465
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960466
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960467
file://///Users/maxtennis/Downloads/max_crouse_final_dissertation-w-edits.docx%23_Toc73960468

13

1 Introduction

Creating systems that can learn to answer natural language questions has been a longstanding

challenge for artificial intelligence research. The most recent approaches tackling this challenge

have focused on engineering systems via machine learning over massive amounts of data, often

using neural networks. With enough data and craft in the dataset construction and training process,

these systems can produce good results. However, such methods are generally uninspectable (a

problem made more concerning by their susceptibility to adversarial attacks, e.g., (Jia and Liang

2017, Marcus 2018), and are known to require tremendous amounts of data to successfully train.

Symbolic approaches seem like they would handle these issues, since they are highly inspectable

and have been demonstrated to yield data efficiency for many tasks (Chen et al., 2019).

Unfortunately, their application to natural language question answering is far from a simple

problem. The messiness, breadth, and ambiguity of language pose significant challenges to purely

symbolic approaches that are typically considered inflexible in how they reason and what they can

reason over. So where does this leave us? What would an approach that takes the strengths of both

machine learning-based techniques (e.g., their flexibility in handling a breadth of language) and

symbolic methods (e.g., their innate inspectability) look like?

 In this thesis, I propose a new approach to question-answering over structured knowledge

that is driven by analogy, which I refer to as AQA (analogical question-answering). The design

of AQA is motivated by the concerns above, namely that a question-answering system should be

flexible and powerful enough to well handle question-answering over varied natural language

while maintaining inspectability into both what and how it learns. Analogy provides AQA the

14

flexibility needed to handle the diverse language it encounters, and its purely symbolic nature gives

it the inspectability missing from deep learning-based approaches.

In addition to flexibility and transparency, AQA also exhibits remarkable data efficiency.

A key part of how AQA achieves efficiency is that it approaches answering a question more

compositionally than standard machine learning-based methods. In particular, most prior methods

would view question-answering as a one-step process where text is mapped directly to a logical

form. In contrast, AQA considers question-answering as a two-step process. First, a domain-

general, broad-coverage semantic parser is applied to a given question. Then, the outputs of the

parser are adapted via analogy to domain-specific logical forms needed to answer the question at

hand. The general-purpose semantic parser is carried across domains, meaning that AQA avoids

starting from scratch for each new task to which it is applied. Learning how to adapt an existing

domain-general semantic parser to domain-specific question-answering tasks is a simpler problem

than learning to map from language directly to task-specific logical forms, and thus AQA is

capable of far more efficient learning than traditional machine learning methods.

In this work, the use of analogy is ubiquitous. During training, AQA uses analogy to

identify the most salient subparts of a question that provide evidence for the use of a particular

logical form. When AQA is applied to test questions, it uses analogy to propose candidate solutions

that have been adapted from training examples. The centrality of analogy can be ascribed to a key

fundamental assumption; namely, that questions can be understood (and answered) through

analogies with solved questions. Going even further, AQA was designed with the assumption that

the Structure Mapping Theory (SMT) of analogy (Gentner, 1983) provides a useful set of rules for

constraining how questions should be compared against one another for the purposes of question-

15

answering. But is analogy the right tool for the job? In this thesis, we will show that in many cases

it is, i.e., that analogy (in the form of SMT) is a powerful enough tool to successfully handle

question-answering for a variety of domains and question types.

1.1 Claims and Contributions

The claims of this dissertation are as follows:

1. It is possible to design an approach to question-answering with analogy as its core

operation that performs effectively on a variety of question-answering domains and tasks.

2. Adapting an existing domain-general semantic parser to domain-specific question-

answering tasks leads to far more efficient learning on those tasks than would starting from

scratch.

3. Combining machine learning (in the form of inductive logic programming) with traditional

symbolic reasoning methods can produce an approach to semantic parsing that is

completely transparent as to what it is learns and how it applies what it learns, that also

performs competitively with black-box neural methods.

The contributions of this dissertation are as follows:

1. It provides a method, Analogical Question-Answering (AQA), for adapting a general-

purpose semantic parser to question-answering tasks in multiple domains that each require

different types of reasoning.

2. It demonstrates that the method can perform on both annotated and unannotated question-

answering datasets.

3. It characterizes the conditions that allow AQA to learn in data-sparse situations.

16

1.2 Organization

Section 2 of this thesis provides terminology definitions for the basic operations and algorithms

seen throughout the thesis. It also includes a detailed description of analogy as it relates to this

thesis. Section 3 provides the relevant background needed to understand the rest of the thesis.

Summaries of connection subgraphs, comparative analysis (Weld, 1990) and Qualitative Process

Theory (Forbus, 1984) are given, along with aspects of the domain-general semantic parsers that

AQA relies upon. Section 4 provides a high-level overview of AQA, to provide the context for

Section 5 and 6. Section 5 describes how the adaptation between a domain-general semantic parser

and domain-specific logical forms is learned, i.e., both what AQA learns and how AQA learns.

Section 6 describes how the adaptation is carried out to answer novel questions, i.e., how AQA

applies what has been learned. Sections 7, 8, and 9 provide experimental results for AQA on three

different question-answering domains. The first domain is GeoQuery (Zelle and Mooney, 1996),

a standard benchmark for question-answering approaches. The second domain, introduced for this

thesis, consists of science test questions given to elementary school students. The last domain is

QuaRel (Tafjord et al., 2019), which is a larger dataset designed to test question-answering

approaches for an important subset of qualitative reasoning. Section 10 provides related work for

previous question-answering approaches. Lastly, Section 11 summarizes the claims and

contributions of this thesis, ending with conclusions, open questions, and future work.

17

2 Preliminaries

2.1 Symbolic Representations

AQA reasons over sets of logical expressions. In this thesis, logical expressions are constructed

from symbols drawn from the OpenCyc ontology (Matuszek et al, 2006). Expressions may contain

constants, variables, functions, collections, relations, and other expressions. Abstractly, constants

represent objects drawn from some universe. Typically, constants will be the entities of questions

given to AQA, e.g., people or places. Functions are mappings from a tuple of objects to another

object. Collections are used to represent concepts, and relations are used to represent relationships.

Collections and relations are unary and binary predicates, respectively, that take arguments and

express a truth assertion. As an example, we write (bordersOn (TerritoryFn Indiana-State)

(TerritoryFn Michigan-State)) to indicate that the relation bordersOn holds between the territories

of Indiana and Michigan, with the territories denoted by the function TerritoryFn separately applied

to both Indiana-State and Michigan-State. Collections are most often found in isa statements, e.g.,

(isa Indiana-State State-UnitedStates), which denotes that Indiana is an instance of a U.S. state.

This isa statement is equivalent to (State-UnitedStates Indiana-State). We use camel case notation

when writing collections, functions, and relations (with upper case initially for collections and

functions and lower case initially for relations).

Throughout this thesis, the representations being manipulated will be given as lisp-style s-

expressions. When describing algorithms, we use infix notation with standard symbols for

representing logical connectives. This is done for both stylistic reasons (i.e., to use notation

18

consistent with prior work in this space) and to maintain a separation between the logical

operations used in each algorithm from the representations being reasoned over.

As they will be used in this thesis, logical connectives take s-expressions as arguments and

maintain their usual definitions and notations (e.g., “¬” for negation, “∧” for conjunction, “→” for

implication, etc.). We will mostly deal with negation and conjunction, where a typical setting will

be describing operations over sets of logical expressions subject to pairwise “nogoods”, which are

inconsistent combinations of expressions (e.g., ¬ (s1 ∧ s2) where s1 and s2 are logical expressions).

Unless otherwise specified, a set of logical expressions will be given an uppercase italicized

variable name and its constituent elements will be lowercase italicized, e.g., S = {s1, s2, s3}.

A key operation within AQA is the determination of how to fit the entities of a test question

to those seen in training questions. For instance, if asked “How big is Indiana?”, it may analogize

to the training question “How big is Texas?”. To do this, it determines how entities from the test

question (“Indiana”) match with entities of the training question (“Texas”). These matchable

entities must be explicitly separated from other entities found in the logical expressions given to

AQA. To see why, consider one of the logical expressions used to represent “How big is Texas”:

(possessiveRelation Texas-State (HighAmountFn Size)). Clearly, when matching a statement like

this to an expression specific to “How big is Indiana?”, the only entity we would want to be

substitutable is Texas-State and not Size or (HighAmountFn Size). To denote the set of matchable

entities, we define a function m-ents(S), which returns the set of such matchable entities from a set

S of logical expressions.

For sets of expressions S and T, we use σ to denote a substitution between m-ents(S) and

m-ents(T). A substitution σ between S and T is a set of pairs σ ⊆ m-ents(S)×m-ents(T), where each

19

pair is of the form <sent, tent>, with sent ∈ m-ents(S) and tent ∈ m-ents(T). We write Sσ (or σ(S) if

otherwise ambiguous) to denote the expression that results from simultaneously substituting every

occurrence of a left-hand-side entity in σ with its corresponding right-hand-side entity. In our

previous example, we may have σ = { <Texas-State, Indiana-State> }, with the result of applying

σ to our expression then being (possessiveRelation Indiana-State (HighAmountFn Size)).

2.2 The Structure-Mapping Theory of Analogy

The Structure-Mapping Theory (Gentner, 1983) of analogy is central to AQA’s design. From an

operational perspective, it drives the key pattern matching operation within AQA that allows it to

reason about new test questions with respect to older training questions. It also has more subtle

influence in heuristics that AQA uses during both training and testing, as described in Sections 5

and 6 before going into the specifics for how analogy is applied with AQA, we will first give a

high-level overview of SMT.

Structure-Mapping Theory (SMT) centers around the structural alignment of logical

expressions (see Figure 1). Structural alignment is the process of producing a mapping between

two relational representations (referred to as the base and target). Each mapping is a triple <M, C,

S>, where M is a set of correspondences between the base and target, C is a set of candidate

inferences (i.e., inferences about the target that can be made from the structure of the base), and S

is a structural evaluation score that measures the quality of M. In this work, we will only consider

the set of correspondences M and the score S.

Correspondences are pairs of elements between the base and target (i.e., expressions or

entities) that are identified as matching with one another. While entities can be matched together

20

irrespective of their labels, there are more rigorous criteria for matching expressions. SMT asserts

that matches should satisfy the following properties:

1. One-to-One: Each element of the base and target can be a part of at most one

correspondence.

2. Parallel Connectivity: Two expressions can be in a correspondence with each other only if

their arguments are also in correspondences with each other.

3. Strict / Tiered Identicality: Relations of expressions in a correspondence must match

identically by default, however if two relations are sufficiently close then they may be

allowed to match (where closeness is typically defined by whether or not they share a

common superordinate in a predicate hierarchy). Functions need not be identical if their

correspondence would support structural connectivity.

4. Systematicity: Preference should be given to mappings with more deeply nested

expressions.

To understand these properties, we use a classic analogy (see Figure 1) from (Gentner,

1983) which draws an analogy between the Solar System and the Rutherford model of the atom.

A set of correspondences M between the base (Solar System) and target (Rutherford atom) is a set

of pairs of elements from both sets, e.g., {<[1], [8]>, <[2], [9]>}. The one-to-one constraint

restricts each element to be a member of at most one correspondence. Thus, if <[7], [15]> was a

member of M, then <[7], [16]> could not be added to M. Parallel connectivity enforces

correspondence between arguments if the parents are in correspondence. In this example, if <[7],

[15]> was a member of M, then both <[3], [10]> and <[4], [11]> would need to be members of M.

Parallel connectivity also respects argument order when dealing with ordered relations. Tiered

21

identicality is not relevant in this example; however, if [10] used the label WEIGHT instead of

MASS, tiered identicality could be used to match [3] and [10], since such a correspondence would

allow for a match between their parents. The last property, systematicity, results in larger

correspondence sets being preferred over smaller ones. Note that the singleton set {<[1], [8]>}

satisfies SMT's constraints, but it is clearly not useful by itself. Systematicity captures the natural

preference for larger, more interesting matches.

It is well known that, in the general case, finding an SMT-satisfying mapping between two

expressions is an NP-Hard problem (Veale and Keane, 1997). The most effective computational

method for solving the general case has thus far been the Structure-Mapping Engine (SME)

(Falkenheiner et al., 1989; Forbus et al., 2017). It solves the SMT problem with a middle-out

matching procedure that operates in roughly quadratic time (the most complex step of SME

[1] nucleus [8] sun

[2] electron [9] planet

[3] (mass [1]) [10] (mass [8])

[4] (mass [2]) [11] (mass [9])

[5] (attracts [1] [2]) [12] (temperature [8])

[6] (revolves-around [2] [1]) [13] (temperature [9])

[7] (greater [3] [4]) [14] (revolves-around [9] [8])

 [15] (greater [10] [11])

 [16] (greater [12] [13])

 [17] (attracts [9] [8])

 [18] (causes (and [15] [17]) [14])

 [19] (yellow [8])

Figure 1. An example of an SMT-satisfying match between two sets of expressions, with green
edges representing correspondences

22

operates in time O(n2 log(n)), with n being the number of elements in the larger of the two

representations being matched). Though not guaranteed to yield the most optimal mapping, it has

empirically been observed to produce mappings that are optimal or near optimal in many

benchmark tests of analogical reasoning.

Recall that for sets of logical expressions S and T, a substitution σ is a mapping between

m-ents(S) and m-ents(T). Within AQA, SMT is used as a hard constraint on which substitutions

are allowable. Letting M be the set of correspondences in an SMT-satisfying mapping between S

and T, the substitution σ will be a subset of M that involves only entities from m-ents(S) and m-

ents(T). As mentioned in the previous subsection, not all entities from S and T are matchable, and

thus we restrict M to only allow non-identical matches for those correspondences that form σ, i.e.,

only those involving entities from m-ents(S) and m-ents(T). We further restrict M to be from an

SMT-satisfying mapping between full logical expressions, rather than between subexpressions as

is shown in Figure 1 (i.e., for two subexpressions to match, their full parent expressions must

match as well). In the context of this work, these added constraints mean that the full power of

SME in most cases is not needed. In particular, without arbitrary entity and subgraph matching,

finding a constrained SMT-satisfying mapping between two expressions can be done in linear

time. For the remainder of this thesis, a substitution σ will be assumed to meet the criteria listed

above.

2.3 Finding Substitutions Between Individual Expressions

In this section, we will detail the procedure used to compute the substitution for the matchable

entities of two individual expressions. For our purposes, the matching of two expressions to

produce an entity substitution can be performed by a simple linear time algorithm that walks down

23

two expressions simultaneously and checks for variable / symbol mismatches as it goes along. We

present this algorithm, Match, in Figure 2, where the algorithm given returns a substitution

 With variables
 B = base s-expression
 T = target s-expression
 binds = {}
 With functions
 is-list? = returns True if argument is list
 car = returns first element of list
 cdr = returns the rest of the list beyond the first element
 zip = returns list of pairs where each of the i = 1,...,n elements of
 both lists are paired together
 either-imm-genls? = returns True if one argument is an immediate genls
 of the other
 m-ents = returns the matchable entities of its input argument expression

1. Define Match(B, T, binds):
2. If is-list?(B) and is-list?(T):
3. If car(B) == car(T) == isa:
4. B-col = car(cdr(cdr(B)))
5. B-ent = car(cdr(B))
6. T-col = car(cdr(cdr(T)))
7. T-ent = car(cdr(T))
8. If B-col == T-col or either-imm-genls?(B-col, T-col):
9. return Match(B-ent, T-ent, binds)
10. Else:
11. return False
12. If car(B) == car(T) and length(B) == length(T):
13. for b_el, t_el in zip(cdr(B), cdr(T)):
14. binds = Match(b_el, t_el, binds)
15. If not binds:
16. return False
17. return binds
18. Else:
19. return False
20. If not is-list?(B) and not is-list?(T):
21. If B in binds and binds[B] == T and binds[T] == B:
22. return binds
23. If B in binds or T in binds:
24. return False
25. If B in m-ents(B) and T in m-ents(T):
26. binds[B] = T
27. binds[T] = B
38. return binds
29. If B == T:
30. return binds
31. Else:
32. return False
33. Else:
34. return False

Figure 2. Expression matching algorithm

24

between the matchable entities of two expressions or indicates a failure to match. AQA uses this

algorithm whenever two individual expressions are matched together. Important to note is the

condition specifying isa matches (line 3). In particular, when matching two isa statements, the

standard strict equality check for symbols is relaxed to allow collections (i.e., the third argument

to an isa) to match if one is an immediate superordinate to the other (i.e., a direct genls statement

holds between the two collections). This is a simplified form of minimal ascension (Falkenhainer,

1988), a common way to implement tiered identicality.

25

3 Background

3.1 Semantic Parsing

The work in this dissertation uses the Companion NLU semantic parser (Tomai and Forbus, 2009).

Companion NLU is a bottom-up rule-based chart parser that uses a feature-based grammar and

Baker et al’s (1998) FrameNet. FrameNet ties words to a semantic schema and describes how

semantic roles are bound to arguments in syntactic patterns. To illustrate how CNLU operates, we

will use as our running example the simple sentence “The snow changes to water.”

 To build up a semantic parse for its input sentence, CNLU first tokenizes the input. For our

example sentence, this would produce the list (the snow changes to water punc-period). Each

token is assigned a discourse variable, which is a unique identifier specific to each token (e.g.,

snow18587 for the token snow and change18419 for the token changes). The tokens are matched

against entries in the Nulex lexicon (McFate and Forbus, 2011), which maintains information

about parts of speech and other syntactic features. Figure 3 shows the two entries for the word

“changes”. As shown in the figure, morphology is accounted for through separate entries for each

form of the word (e.g., for different parts of speech, different tenses, etc.).

(definitionInDictionary Nulex changes Change-TheWord Noun
 (TheSet (root change) (agr (TheSet 3p)) (countable +)))

(definitionInDictionary Nulex changes Change-TheWord Verb
 (TheSet (root change) (vform (TheSet pres)) (agr (TheSet 3s))
 (subcat (TheSet adv-middle np np-pp np-pp-agent np-pp-pp np-pp-theme pp pp-pp))))

Figure 3. Nulex entries for “changes”

26

 Because CNLU is a bottom-up parser, it begins its parse with terminal constituents (i.e.,

words or groups of words treated as a single unit) at the leaves of a parse tree. The different lexical

entries form the basis for terminal constituents. Phrasal constituents are formed by taking

sequences of lower-level constituents (either terminal or other phrasal constituents) and matching

them against grammar rules. Importantly, as phrasal constituents are being built, they maintain key

syntactic information (e.g., the subject and object of a verb along with their associated discourse

variables) that will be used to build up possible semantic representations of their underlying phrase.

 Each semantic representation for a word or phrase originates from a terminal constituent.

The mappings between terminal constituents and semantic meaning representation are stored as

Semtrans statements. In Figure 4, we provide an example of a verb Semtrans statement for the

word “change”. In the figure, the first and second arguments indicate the underlying word / phrase

(in this case, only a single word). The third argument indicates the constituent’s associated concept

from the OpenCyc ontology (Matuszek et al., 2006), here being an IntrinsicStateChangeEvent. The

fourth argument provides the source FrameNet frame from which all role relations for this

Semtrans are derived (e.g., FN_Undergo_change). The bindingTemplate argument provides a

discrimination tree which specifies triple consisting of grammatical function (e.g., :OBJECT), part

of speech, and individual role relation / frame element (e.g., fromState). The groupPatterns

argument specifies a set of valence patterns, which are valid combinations of syntactic patterns

that are used to instantiate the frame-derived semantic representations from a phrasal constituent.

These are stored as sets of offsets into the discrimination tree, where each offset is considered a

path in the tree. For instance, the list (0 0 1) maps into the bindingTemplate discrimination tree to

return the triple (:SUBJECT NP objectActedOn). The valence pattern can be combined with the

27

meaning of the terminal constituent to yield a semantic representation, e.g., a phrasal constituent

that matches with the valence pattern ((0 0 1)) would result in (and (isa :ACTION

IntrinsicStateChangeEvent) (objectActedOn :ACTION :SUBJECT)). Each phrasal constituent

maintains syntactic information that can be used to instantiate these abstract forms. In this case,

:ACTION would be bound to the discourse variable change18419 (associated with the token

changes) and :SUBJECT would be bound to the discourse variable snow18587 (associated with the

(FNVerbSemtrans (TheList) Change-TheWord
 (and (isa :ACTION IntrinsicStateChangeEvent))
 (frame FN_Undergo_change)
 (bindingTemplate
 (TheList (:SUBJECT (NP fe_attribute objectActedOn fromState))
 (:OBJECT (NP fe_attribute))
 (:OBLIQUE-OBJECT
 ((PPFn with) (InverseBinaryPredicateFn causes-Underspecified))
 ((PPFn to) toState)
 ((PPFn in) toState)
 ((PPFn from) fromState)
 (AVP fe_degree frequencyOfEventType mannerOfAction)
 ((PPFn before) mannerOfAction)
 (Sub situationConstituents temporallyIntersects)
 ((PPFn during) temporallyIntersects)
 ((PPFn over) temporallyIntersects)
 ((PPFn throughout) temporallyIntersects))
 (:GAP (2nd objectActedOn) (DNI toState fromState)
 (INI fe_attribute toState toState fromState fromState
 fe_value_range)) (:NOUN (N objectActedOn))))
 (groupPatterns
 (TheSet ((4 0 0)) ((0 0 0)) ((0 0 1) (2 5 0)) ((0 0 1) (2 4 2))
 ((0 0 1) (2 4 0)) ((0 0 0) (2 4 2)) ((0 0 1) (2 6 1))
 ((0 0 1) (2 1 0) (2 3 0)) ((0 0 1) (2 4 0) (2 8 0))
 ((0 0 2) (2 2 0) (2 6 0)) ((0 0 1) (2 0 0) (2 4 0))
 ((0 0 1) (1 0 0) (2 7 0)) ((0 0 1) (0 0 1) (2 4 1) (2 4 2) (2 9 0)))))

Figure 4. Semtrans for verb form of “change”

28

token snow), leading to the instantiated representation (and (isa change18419

IntrinsicStateChangeEvent) (objectActedOn change18419 snow18587)).

 CNLU continues to build constituents until no more can be generated, at which point it

returns the highest-level constituents that span the most input tokens (in our case, returning

sentence-level constituents that cover the entirety of the input). These highest-level constituents

are the possible syntactic parse trees for the input, as shown in Figure 5.

Figure 6 shows the semantic representation produced for the example input. The set of

semantic representations associated with each word is referred to as a choice set. In the context of

this work, a choice set is a set of mutually exclusive alternative meanings for a particular terminal

constituent. These alternative meanings are referred to as choices, and the mutual exclusion

constraint prohibits more than one choice per choice set from being believed to be true at a time.

Choice sets arise when there are multiple applicable Semtrans statements for a given token (e.g.,

“water” as an instance of (LiquidFn Water) or as an instance of BodyOfWater). In addition to

constraints between the members of an individual choice set, there can also be constraints between

Figure 5. Alternative syntactic parse trees for “The snow changes to water.”

29

the choices of distinct choice sets. For instance, there are constraints between choices that

originated from different parse trees (in our example, all choices derived from the first parse tree

conflict with all choices derived from the second parse tree).

CNLU and its outputs have many favorable qualities for our purposes. First, as CNLU

defers ambiguity resolution (through the use of choice sets), the decision for how best to interpret

a sentence is always left to AQA. This is ideal, as disambiguation can then be incorporated into

the objectives explicitly optimized by AQA for question-answering. Second, FrameNet (and thus

CNLU) has a reasonably sized set of frames and frame elements (around 1,200 combined) with

which it can represent language (for reference, a popular alternative such as AMR has only around

100 relations (Banarescu et al. 2013)). We thus believe that FrameNet achieves a reasonable level

1. “snow”
 1a. (isa snow18587 SnowMob)
 1b. (isa snow18587 SnowProcess)

2. “changes”
 2a. (and (isa change18631 (CausingFn IntrinsicStateChangeEvent))
 (fe_final_value change18631 water18653)
 (doneBy change18631 snow18587))
 2b. (and (isa change18631 IntrinsicStateChangeEvent)
 (objectActedOn change18631 snow18587))

3. “to”
 3a. (to-Generic change18631 water18653)
 3b. (toLocation change18631 water18653)

4. “water”
 4a. (isa water18653 (LiquidFn Water))
 4b. (isa water18653 BodyOfWater)
 4c. (isa water18655 Irrigation)

Figure 6. An example of choice sets for “The snow changes to water”

30

of resolution, providing a level of representation that is neither too general nor too specific. Last,

CNLU maintains the actual spans in text from which a particular semantic choice was generated.

This is not the case for the current best neural-based domain general semantic parsers that map to

AMR (Bevilacqua et al. 2021; Zhang et al. 2019a; Zhang et al. 2019b). By leveraging the link

between a semantic choice and text, AQA can produce natural language explanations for its

outputs (thus making it more understandable to a novice user).

3.2 Connection Subgraphs

Connection subgraphs have a long history in computer science (e.g., see (Kowalski, 1975) for an

early example). Generally, they are considered a set of paths that each connect two nodes in some

larger graph. Their use in this thesis was most motivated by the work of Faloutsos, McCurley, and

Tomkins (2004). In their work, the connection subgraph of two nodes is a subgraph that maintains

only the most relevant paths connecting the two nodes in a larger graph. For instance, in a social

network the connection subgraph between two people may include their shared friends or family,

but may exclude extremely common relationships (e.g., that they both follow a famous celebrity).

AQA uses connection subgraphs to connect two entities in a knowledge base. They provide

heuristics for selecting semantic choices, as well as forming the basis for a procedure that allows

for the self-annotation of training data.

3.3 Qualitative Process Theory

Qualitative Process Theory (Forbus, 1984) formalizes continuous processes as the mechanism

underlying continuous change. The direct effects of a process (e.g., liquid flow into a tub) are

called direct influences (represented as i+ and i-), and their indirect effects are called indirect

31

influences (represented as qprop / qprop-), e.g., the level of the water in the tub. Model fragments

are compositional schemas that define types of entities and relationships in the world. They have

participants which are related by the model fragment, constraints among participants that

determine when the model fragment should be considered, and conditions of activation. When a

model fragment is active, its consequences hold. These are frequently influences, though other

relationships can be consequences as well. Consider the model fragment in Figure 4, which

describes the process of melting. Lines 2 and 3 define the participants, entities that are instances

of the collections SolidTangibleThing and ChemicalCompoundTypeByChemicalSpecies. They play

the role of focusOf and substOf respectively (the thing melting and the chemical substance of the

thing melting) in an instantiated model fragment. Lines 4 and 5 define constraints, enforcing that

this model fragment will only be considered when the thing melting is composed of a chemical

substance for which one knows the freezing point. Line 6 defines the condition that must hold for

the model fragment to be considered active, which is that the thing melting must have a

temperature greater than that of its freezing point. The remaining lines provide the consequences,

1. (isa ?self NaiveMeltingProcess)
2. (mfTypeParticipant NaiveMeltingProcess ?thing-melting SolidTangibleThing focusOf)
3. (mfTypeParticipant NaiveMeltingProcess ?sub ChemicalCompoundTypeByChemicalSpecies substOf)

4. (mfTypeParticipantConstraint NaiveMeltingProcess (substanceOfType ?thing-melting ?sub))
5. (mfTypeParticipantConstraint NaiveMeltingProcess (relationAllInstance freezingPoint ?sub ?m-temp))

6. (mfTypeCondition NaiveMeltingProcess (qGreaterThan (TemperatureFn ?thing-melting) ?m-temp))

7. (mfTypeConsequence NaiveMeltingProcess (qGreaterThan (LiquidGenerationRateFn ?self) 0))
8. (mfTypeConsequence NaiveMeltingProcess
 (qprop (LiquidGenerationRateFn ?self) (TemperatureFn ?thing-melting)))
9. (mfTypeConsequence NaiveMeltingProcess
 (i- (AmountOfFn ?sub Solid-StateOfMatter ?thing-melting) (LiquidGenerationRateFn ?self)))

10. (mfTypeConsequence NaiveMeltingProcess
 (i+ (AmountOfFn ?sub Liquid-StateOfMatter ?thing-melting) (LiquidGenerationRateFn ?self)))

Figure 7. A qualitative model of melting

32

including things like an indirect influence that holds between the amount of liquid accumulating

in the object melting and the rate of liquid generation of the melting process.

3.4 Comparative Analysis

Comparative analysis (Weld, 1990) uses qualitative representations to ascertain the causal

consequences of differences. These differences may be a hypothetical change to a system (e.g.,

using a stiffer spring in a mechanical design) or the differences between two physical systems

(e.g., the difference in the periods of two pendulums based on differences in their lengths). An

example from the QuaRel (Tafjord et al., 2019) dataset (one of the three datasets explored in this

thesis) is shown in Figure 5. In the example, because distance is inversely proportional to

resistance, the change in the distance of rolling can be attributed to the added resistance of the

carpet as compared to the wood floor.

 Two techniques have been developed to solve comparative analysis problems. The first

technique is differential qualitative analysis (DQA) (Weld, 1990), which uses a set of rules to

compute relative values across the descriptions of two systems, based on assumed differences

between them. For example, the duration rule says that if a rate is lower in one system versus

another, then the time required to reach a limit point will be longer in that system. In (Weld, 1990)

the problem of aligning the two systems to be compared was simplified by only considering

“Alan noticed that his toy car rolls further on a wood
floor than on a thick carpet. This suggests that:”

 (A) “The carpet has more resistance”
 (B) “The floor has more resistance”

Figure 8. A multiple-choice comparative analysis
question from the QuaRel dataset

33

changes in parameters, but as (Klenk et al., 2005) showed, the same techniques can be generalized

by using analogical mappings to automatically align two systems under analysis.

The second technique is exaggeration (Weld, 1990), which uses qualitative simulation with

extreme values substituted to reason about perturbations. Given a proposed perturbation to a

system, exaggeration first transforms the problem with the perturbation being an extreme value,

i.e., infinite if increased, zero if decreased. For example, when reasoning through how a car would

roll on a carpet if the carpet had more resistance, the reformulated model would have the resistance

of the carpet being infinite, and thus the rolling speed would decrease to zero. This result would

then be rescaled, to respond that there would be a decrease in speed.

3.5 Knowledge Base and Ontology

This work leverages NextKB as its underlying knowledge base (KB). NextKB integrates the

OpenCyc ontology (Matuszek et al., 2006) with FrameNet (Baker et al., 1998) and richer support

for qualitative and analogical reasoning. This thesis draws heavily upon the large set of structural

relations present in the OpenCyc ontology. These relations define structural, meta-level

relationships between entities, collections, predicates, and functions in the knowledge base.

Important examples from the OpenCyc ontology in NextKB include type argument constraints

(e.g., (arg1Isa cityInState City)), instance relations (e.g., (isa Indiana-State State-UnitedStates)),

type hierarchies (e.g., (genls State-UnitedStates State-Geopolitical)), and predicate hierarchies

(e.g., (genlsPreds majorCityInState cityInState)).

 Knowledge in the NextKB knowledge base uses the Cyc concept of microtheories (Guha,

1991). A microtheory is a collection of facts that is treated as a unit for reasoning. For example,

we use a Geobase microtheory which contains geographical knowledge of the US. Microtheories

34

enable a knowledge base to contain multiple perspectives which, taken together, might be

contradictory (e.g., Newtonian versus Relativistic mechanics). Microtheories can inherit from

other microtheories through the genlMt relationship. Every reasoning operation is done with

respect to some microtheory and those it inherits from, which constitute its logical environment.

Each microtheory on its own is assumed to be consistent.

3.6 Ontological Similarity

We often use the conceptual similarity of logical expressions as a heuristic during reasoning.

Conceptual similarity is determined as in (Crouse et al. 2018; Ribeiro et al., 2019; Wilson et al.,

2019), which we briefly describe here. At a high level, the similarity of two expressions is given

as a function of the connectedness of their constituent elements in our underlying knowledge base.

Given expressions EA and EB, the constituent elements of both expressions (i.e., predicates,

functions, collections, and entities) are extracted into sets 𝐴 and 𝐵. Following that, a connection

subgraph (Faloutsos et al., 2004) is found between each pair of elements in the cross product of A

and B (i.e., each p in 𝐴×𝐵) through the set of all structural facts in the knowledge base.

 A structural fact is treated as a labeled hyperedge between two or more concepts in the KB

(where the structural fact’s predicate is the edge’s label). In this context, a connection subgraph

then corresponds to a set of paths that connect two entities, where each path is constructed from

only structural facts. We compute the ontological similarity score between a pair of expressions as

the sum of weights between each of their constituent elements. Let Π = {𝑃1, …, 𝑃𝑛} be the set of

paths between two nodes 𝑋 and 𝑌 with 𝑃𝑖 = (𝑣𝑖,1, …, 𝑣𝑖,𝑚) being the vertices in each of these paths.

Let deg(𝑣𝑖,𝑗) be the out-degree of a vertex 𝑣𝑖,𝑗.The ontological connection weight (𝑜𝑐𝑤) between

nodes 𝑋 and 𝑌 is then

35

𝑜𝑐𝑤(𝑋, 𝑌) = ∑ ∑
1

𝑑𝑒𝑔 (𝑣𝑖,𝑗)
𝑣𝑖,𝑗∈𝑃𝑖𝑃𝑖∈Π

The intuition behind this equation is to favor those pairs of nodes which are connected through

less dense regions of the knowledge base (with the assumption that less dense regions of the KB

will yield less common, more informative connections between entities).

3.6 Analogical Processing

AQA uses the Structure Mapping Engine (SME) (Forbus et al, 2017) during training. SME is a

computational implementation of Gentner’s (1983) Structure Mapping Theory that aligns

hierarchical structured representations (predicate calculus) according to the principles of SMT. It

provides a means of determining how entities can be aligned between two sets of logical

expressions.

36

4 Analogical Question-Answering Overview

By design, the NLU system’s outputs are task independent. That is, they provide a translation of

an input utterance into logical forms, but those logical forms are sometimes too high-level for

domain specific reasoning tasks. Analogical Q/A provides a data-efficient and inspectable means

of learning how to adapt such outputs to the representations needed for specific tasks. Training

produces query cases (QCs), which are rule-like constructs that treat semantic choices as

antecedents and task specific logical forms as consequents. To apply a query case, the semantics

for a question are aligned to the query case’s antecedents to find an SMT-satisfying substitution

which can be used to produce an instantiation of its consequent logical form with the entities of

the question at hand. The instantiated consequents can then be passed to a task-specific reasoner

(e.g., QR module, KB fact-lookup, etc.) to carry out the actions needed to respond to the input.

 Consider the choice sets from the semantic parse for the question in Figure 6. The question

can be answered with the facts from the KB (Figure 7). As can be seen, there is a stark difference

1. “states”
 1a. (isa state5288 State-Geopolitical)
 1b. (isa state5288 PhysicalStateOfMatter)
2. “border”
 2a. (bordersOn-AgentAgnostic state5288 Texas-State)
 2a. (and (isa border5311 BorderingSomething)

 (fe_ground border5311 Texas-State)
 (focalSubject border5311 state5288))
 2b. (isa border5311 RelativeLocationalPredicate)
3. “Texas”
 3a. (isa Texas-State State-UnitedStates)

Figure 9. Choice sets for the NLU semantic parse for the question "What states
border Texas?"

37

between the representation used for the semantic parse and the more traditional KB

representations. AQA bridges between these two representations with query cases.

An example QC is shown in Figure 8, with the consequent being the first argument to

queryCaseFor and the non-abducible and abducible antecedents being the second and third

arguments, respectively. A simple matching procedure (described in Section 2.3) is used to apply

QCs to parses. In this case, it would match the semantic choices of Figure 6 to the antecedents of

the QC in Figure 8 to produce a substitution like {<state123, state5288>, <border123,

border5311>, <Indiana-State, Texas-State>}. This would then be used to instantiate the consequent

as (bordersOn (TerritoryFn state5288) (TerritoryFn Texas-State)), which is then variablized (i.e., its

discourse variables replaced with universally quantified variables) and passed to a KB fact lookup

operation.

 Training consists of automatically learning a mapping between domain-general semantic

choices (antecedents) and task-specific logical forms (consequents). The input to AQA’s training

procedure is a set of questions and either natural-language answers or logical forms (referred to as

unannotated / annotated training settings). If operating in the unannotated setting, AQA first takes

the natural-language question-answer pair and generates a target logical form for the question from

(bordersOn (TerritoryFn Arkansas-State) (TerritoryFn Texas-State))

(bordersOn (TerritoryFn Louisiana-State) (TerritoryFn Texas-State))

(bordersOn (TerritoryFn NewMexico-State) (TerritoryFn Texas-State))

… … …
(isa Arkansas-State State-UnitedStates)

(isa Louisiana-State State-UnitedStates)

(isa NewMexico-State State-UnitedStates)

… … …
Figure 10. A relevant subset of the KB for answering the question in Figure 9

38

a connection-graph-based procedure operating on the KB. With a question and target logical form

in hand, AQA must then determine a mapping between the entities from the semantic parse of the

question to the entities within the target logical form. Once these entities have been determined,

all that remains is to select a consistent set of choices from the semantic parse of the question

(pertaining to the entities of the mapping) that will be used to form the returned QC.

 Given a new question to answer, AQA applies the query cases it learned during training.

First, AQA uses CNLU to produce a semantic parse of the question. Then, it retrieves relevant

prior QCs based on their antecedents, aligning their antecedents with the semantic parse via

analogy to produce a substitution between prior and current entities that can be used to instantiate

the retrieved QC’s consequent. A special query construction algorithm operates over instantiated

QCs to determine the set of consequents to return. Once selected, the set of consequents is given

to a task-specific reasoner (e.g., a fact-lookup operator) to produce the answer to the question. The

next section describes AQA’s training phase, where QCs are learned from a set of training

examples.

(queryCaseFor
 (and (bordersOn (TerritoryFn state123) (TerritoryFn Indiana-State)))
 (and (isa state123 State-Geopolitical)
 (isa Indiana-State State-UnitedStates)
 (and (isa border123 BorderingSomething)
 (fe_ground border123 Indiana-State)
 (focalSubject border123 state123))))

Figure 11. A query case that bridges between semantic parser outputs and KB facts

39

5 Analogical Question-Answering Training

The input to training consists of a set of natural-language questions, each of which is paired with

either natural-language answers or a target logical form. A high-level overview of the different

steps involved in training AQA is given in Figure 9. We first describe how AQA handles being

given natural-language answers using a question from GeoQuery as our running example.

Figure 12. The three main processes for training AQA

40

5.1 Self-Annotation of Training Data

In the unannotated training setting questions are not hand-annotated with logical forms, but instead

natural language answers are provided. Given a question and a set of such answers, the training

procedure first builds a query that evaluates to only the answers given, consistent with the semantic

constraints of the question. This is posed as a connection graph problem, wherein the objective is

to find a connection-subgraph in the knowledge base that connects each answer to the entities of

the question. With any sizable knowledge base, the graph is too large to attempt undirected search,

so AQA leverages the semantic forms produced by a CNLU semantic parse of the input question

to guide the search procedure. This approach assumes that the semantic parse of the question is

(mostly) complete and is appropriately linked to the facts in the knowledge base that are needed

to answer the given question. To understand this method, we use as a running example the

following question, “What states border Indiana?”, with answers being “Michigan, Ohio, Illinois,

Kentucky”.

5.1.1 Connection Graph Query Generation

For each possible interpretation of every answer, a breadth-first expansion is performed through

the knowledge base constrained by the semantic choices for the nouns and proper nouns of the

question (“states” and “Indiana”).

In Figure 10, paths branch from possible answer interpretations to the possible

interpretations of constituents of the question. For instance, Illinois can be a state that bordersOn

Indiana. Answer ambiguity is possible (e.g., “Michigan” can be a lake) and so separate paths are

maintained for each interpretation. Each path links to the elements of the semantic interpretation

used in their construction. Initially, the only requirement is that paths align with the interpretations

41

for nouns and proper nouns (in this case, “state” and “Indiana”). This facilitates path finding when

there are missing links between the parser semantics and KB facts. In this example, the predicate

bordersOn does align with an interpretation for the verb “border” via inheritance, and this

information is used to prefer this path in the next step. In Figure 10, solid lines indicate paths in

the KB while dashed lines indicate connections to the CNLU semantic parse.

In some cases, questions rely on an implicit connection to an entity in the KB (e.g., “How

many states?” can be interpreted as “How many states in the United States?”). The approach

proposes connecting entities by looking for KB entities that are most often associated with

instances of the last observed type in the sentence (e.g., “states”). To do this, all KB facts

containing an instance of the last type in the sentence are retrieved and the most commonly re-

occurring entity from those facts is selected.

When a link in a path aligns with a token in the semantic interpretation (e.g., “Michigan”

to State-Geopolitical to “state”) it is replaced by the discourse variable (e.g., state123) from the

parse. Thus, the path (bordersOn (TerritoryFn Michigan) (TerritoryFn Indiana)) becomes

Figure 13. A connection graph between the entities of the question and answer

42

(bordersOn (TerritoryFn state123) (TerritoryFn Indiana)). This facilitates query building in the next

step because it maps the relevant KB entities to discourse variables in the question.

5.1.2 Combining Paths to Build Queries

A subset of these variablized paths are combined into a query. First, each path is paired with all

the answers the path accounts for. For example, (bordersOn (TerritoryFn state123) (TerritoryFn

Indiana)) accounts for “Michigan”, “Ohio”, “Illinois”, and “Kentucky” which are all states that

border “Indiana”. Second, each path is assigned a score based on how well its expressions align

with CNLU’s parse. The path (bordersOn (TerritoryFn state123) (TerritoryFn Indiana)) receives a

higher weight because it connects to bordersOn-AgentAgnostic by predicate inheritance (i.e.,

genlPreds). Third, with the answer pairings and alignment weights, the training algorithm finds

the minimum combination of paths producing at least the target set of answers using a weighted

set cover algorithm. It prohibits combining paths paired with conflicting choices (e.g., “state” as

both State-Geopolitical and PhysicalStateofMatter).

In any large knowledge base concepts can be represented with different levels of

granularity. For example, the question “Where is Indianapolis?” has two explicit answers, Indiana

and the USA. Cyc has a finer-grained representation of location that uses different predicates for

statehood versus countryhood. This is accounted for by allowing differing representations to be

combined with a disjunction (e.g., set cover would produce (or (cityInState Indianapolis Indiana)

(countryOfCity Indianapolis USA))). Combined queries that over-generate answers are pruned out,

and the best scored query is returned.

43

5.1.3 Handling Queries Involving Additional Computation

To perform well on question-answering, AQAT must handle questions involving additional

computations (e.g., superlatives, cardinality, and summation). Cardinality and summation require

only a minor extension to the process presented above. At first, the query generator builds a path

with respect to the nouns and proper nouns of the question while ignoring the answer (a number).

These paths are each paired with the answer and passed into the set cover algorithm as before. For

each query generated by the set cover, two new queries are generated, one that includes a

cardinality operator and one that includes a summation operator. The new set of queries is then

filtered as usual, removing those that produce the incorrect answer.

Superlatives require more subtlety. For each superlative in the question, the word in the

query that the superlative predicates is first identified (e.g. for “largest state”, this is the

interpretation of “state”). To evaluate the superlative, it finds all methods by which each path

instance of the word predicated by the superlative can be sorted (e.g., for “state” interpreted as

State-Geopolitical, there are assertions in the knowledge base about the area and population of

states, thus both alternatives are explored). It evaluates whether sorting by greater-than or less-

 (and (evaluate ?resp-state1
 (TheClosedRetrievalSetOf (TheList ?state1 ?NUM-VAR-1)

(and (areaOfRegion (TerritoryFn ?state1) (SquareMile ?NUM-VAR-1))
 (bordersOn (TerritoryFn Texas-State) (TerritoryFn ?state1))

 (isa ?state1 State-Geopolitical))))
 (evaluate ?ans
 (FirstInListFn

(FirstInListFn
(SortFn ?resp-state1 lessThan

(FunctionToArg 2 (Kappa (?a ?b) (evaluate ?b (SecondInListFn ?a)))))))))

Figure 14. An example of a query for "What is the largest state that borders Texas?"

44

than returns the correct answer, and thus discovers both the method of sorting and its direction. An

example of a generated superlative logical form is shown in Figure 11.

5.2 Training from Annotated Question-Answer Pairs

Using the logical form annotation process described above, AQA can convert unannotated data

into annotated data. From annotated data (either through self-annotation or if it is provided by the

dataset), AQA must then determine which part of the semantic parse justifies which parts of the

logical form. For this to occur, AQA requires a correspondence between the entities of the semantic

parse for a question and the entities for the target logical form of the question. Referring back to

Figure 8, notice how both the antecedents and consequent of the QC share entities (state123 and

Indiana-State) in common. When QCs are used to answer questions, this allows for matches

between a new set of semantic choices and the antecedents of a QC to produce a substitution that

can be applied to the consequent of the QC. In the case of GeoQuery, this entity substitution is

given to us, as we are constructing the target logical form from the semantic parse of our question.

However, this does not hold generally (e.g., the science test process identification experiment in

Section 8), and when it is not given, AQA must determine the most appropriate substitution of

entities to make. We next explain how AQA determines this substitution, and then explain how

QCs are induced.

5.2.1 Analogical Entity Matching

We pose the problem of finding the most appropriate entity substitution in terms of analogy.

Though this procedure is not used in the GeoQuery domain, for simplicity, we explain its workings

with the GeoQuery example shown in Figure 12. The figure includes a set of semantic choices

45

(left) and a set of query expressions (right). The system must determine a mapping from the entities

of the semantic choices (e.g., Texas-State, state91893, etc.) to the entities of the target query (e.g.,

?river, ?state, Texas-State). For this problem, the ideal substitution would be σ =

{<state91893,?state>, <river91880,?river>, <Texas-State,Texas-State>}.

 We first define some notation. Let S be the set of semantic choices, T be the target set of

logical expressions, and C be a set of conflict pairs derived from our semantic parser’s choice

constraints) between elements of S. That is, if (sk, sl)  C, this means that sk and sl cannot be

asserted as true simultaneously. Within S and T we have a set of substitutable entities ES and ET,

with the goal being to find a substitution σ between the elements of both sets. ES is defined as the

set of noun discourse variables from S. In Figure 12, this is ES = {state91893, Texas-State,

river91800}. For this example, ET is simply the set of all entities in T, however, this will not always

be the case, as examples in Section 8 illustrate.

 A naïve method might try only matching entities that have similar type constraints (e.g.,

state91893 to ?state or Texas-State); however, such a scheme would face problems with

(isa Texas-State State-UnitedStates)

(isa state91893 State-Geopolitical)

(isa state91893 MatterTypeByPhysicalState)

(isa border91960 RelativeLocationalPredicate)

(focalSubject border91960 Texas-State)

(fe_ground border91960 state91893)

(situationLocation flow91807 state91893)

(primaryObjectMoving flow91807 river91800)

(isa river91800 River)

(flowsInRegions ?river (TerritoryFn ?state))

(isa ?river River)

(bordersOn (TerritoryFn ?state) (TerritoryFn Texas-State))

(isa ?state State-Geopolitical)

(isa Texas-State State-Geopolitical)

Figure 15. A subset of the semantic parse (left) and the expressions of the target query
(right) for the question "What rivers flow through states that borders Texas?"

46

ambiguous matches (e.g., that state91893 can match to two entities in the target expressions). Our

method instead looks at both type constraints as well as structural features to determine how best

to match entities. Intuitively, since both sets of expressions are alternative representations for the

same question (one set of expressions as the semantic parse and the other as the appropriate KB-

level query), we might expect them to share a sort of structural parallelism. That is, entities close

together in one set of expressions would likely correspond to entities closer together in the other

set of expressions. To express this notion of closeness, we introduce the symmetric predicate

closeConnection. This holds between two elements of ES / ET when there is a path between them

in S / T that does not go through another element of ES / ET. For instance, (closeConnection

state91893 Texas-State) holds because there is a path between those two variables that avoids

river91800. However, no such path exists between river91800 and Texas-State and thus a

closeConnection statement between those two entities does not hold. Figure 13 shows a

rerepresentation of both sets of expressions that incorporates only the relevant type constraints on

ES and ET with closeConnection statements.

 With the rerepresented sets of expressions, the problem of finding the most appropriate

substitution can now be treated as the problem of finding an SMT-satisfying set of

(isa Texas-State State-UnitedStates)

(isa state91893 State-Geopolitical)

(isa state91893 MatterTypeByPhysicalState)

(isa river91800 River)

(closeConnection state91893 Texas-State)

(closeConnection state91893 river91800)

(isa ?river River)

(isa ?state State-Geopolitical)

(isa Texas-State State-Geopolitical)

(closeConnection ?river ?state)

(closeConnection ?state Texas-State)

Figure 16. Rerepresented semantic parse (left) and target query expressions (right)

47

correspondences between the two sets of expressions. This is almost solvable with SME alone,

however, the presence of C (choice set constraints) makes the problem more challenging. Choice

set constraints in this context preclude sets of correspondences M from simultaneously including

pairs (si, tj) ∈ M and (sk, tl) ∈ M where (si, sk) ∈ C. This negative-disjointness constraint makes

even the standard bipartite matching problem NP-Hard (Darmann et al., 2011). For efficiency, we

utilize a hill-climbing local search procedure that starts from a promising candidate solution

produced by SME and moves amongst better neighboring solutions until it can no longer improve.

For a conflict-free correspondence set M, it expands outwards to all conflict-free sets that differ by

at most two edges from M. The score of M is determined by two properties: KB relatedness and

structural parallelism.

Calculating and Using the Score

For the KB relatedness score, we use the connection graph-based score introduced in Section 3.5,

which computes the relatedness between two concepts as a function of how they are connected in

the underlying KB. In this case, this is the relatedness of the type constraints (which may, for

instance, match through genls, isa). We define ocw as a function that takes in two choices and

returns this relatedness score. For structural parallelism, we simply compute the number of aligned

closeConnection statements. We define a function sr which takes a set of correspondences M and

simply counts the number of such statements in M. Then, the overall score of a correspondence set

M between S and T is given as

𝑠𝑟(𝑀) + ∑ 𝛼 ∗ 𝑜𝑐𝑤(𝑠𝑖, 𝑡𝑗)

(𝑠𝑖,𝑡𝑗)∈𝑀

where 𝛼 is a preference weight for the KB relatedness score.

48

 Figure 14 gives the local-search algorithm. The local-search algorithm obtains a first-pass

candidate solution by using SME to find a correspondence set M. From that initial M, the algorithm

begins to iteratively improve its solution by exploring the conflict-free alterations that differ by at

most two edges from M (this is determined by the Neighbors function) until it can no longer find

a match with a higher score as determined by the equation above. When no new set is found with

a higher score, it returns M.

 The final set contains pairings of expressions in S with expressions in T which can be used

to extract entity mappings. Though this matching procedure can readily align entities in the

 With variables
 S = rerepresented set of semantic choices
 T = rerepresented set of logical expressions
 M = a set of correspondences between two sets of expressions

1. Define Neighbors(M, S, T):
2. one-neigh & two-neigh = empty
3. For edge1 in M:
4. M′ = M - {edge1}
5. For (s, t) in S×T:
6. If s and t are not used in M′ and s does not conflict with a choice in M′:
7. new-M = M′ ∪ {(s, t)}
8. one-neigh = one-neigh ∪ {new-M}
9. For edge1, edge2 in M×M:
10. M′ = M - {edge1, edge2}
11. For (s1, t1), (s2, t2) in (S×T)×(S×T):
12. If none of s1, t1, s2, t2 are used in M′ and
13. neither s1 nor s2 conflicts with a choice in M′ or each other:
14. new-M = M′ ∪ {(s1, t1), (s2, t2)}
15. two-neigh = two-neigh ∪ {new-M}
16. return one-neigh ∪ two-neigh

1. Define Align(S, T)
2. best-M = SME(S, T)
3. While True:
4. curr-M = best-M
5. For matching M in Neighbors(curr-M, S, T)
6. 𝐬𝐜𝐨𝐫𝐞 = 𝒔𝒓(𝐌) + ∑ 𝛂 ∗ 𝒐𝒄𝒘(𝐬, 𝐭)(𝐬,𝐭)∈𝐌
7. If score > best-score:
8. best-score = score
9. best-M = M
10. If curr-M == best-M
11. return best-M

Figure 17. Structure-aware alignment algorithm

49

absence of their type constraints matching (i.e., SME could produce a set of entity correspondences

from closeConnection statements alone), we extract only those entity substitutions where the pair

of entities had matching type constraints as well. In the example from Figure 12, our procedure

yields the substitution σ = {<state91893,?state>, <river91880,?river>, <Texas-State,Texas-

State>}. The substitution is applied to T (i.e., Tσ), producing the target set of expressions shown

in Figure 15.

 The analogical entity substitution procedure is applied to every training question,

producing a new set of training examples that consist of pairs of the form <S, T> where both S and

T share entities in common. This is utilized during the QC induction procedure, described next.

5.2.2 Inducing Query Cases

Once the target logical form for each training question has had its relevant entities substituted for

entities in the semantic parse, all that remains is to determine which semantic choices justify which

expressions from the target form. This is formulated as an inductive logic programming (ILP)

(Muggleton, 1992) problem.

(isa Texas-State State-UnitedStates)

(isa state91893 State-Geopolitical)

(isa state91893 MatterTypeByPhysicalState)

(isa border91960 RelativeLocationalPredicate)

(focalSubject border91960 Texas-State)

(fe_ground border91960 state91893)

(situationLocation flow91807 state91893)

(primaryObjectMoving flow91807 river91800)

(isa river91800 River)

(flowsInRegions river91800 (TerritoryFn state91893))

(isa river91800 River)

(bordersOn (TerritoryFn state91893) (TerritoryFn Texas-State))

(isa state91893 State-Geopolitical)

(isa Texas-State State-Geopolitical)

Figure 18. Semantic parse (left) and set of target logical expressions (right) after substitution
has been applied

50

 Consider again the filtered semantic parse for “What rivers flow through states that border

Texas?” shown in Figure 12. AQA assumes that each question is paired with a set of logical

expressions. We refer to the question as Q and to its target set of logical forms as T. In general,

there are no restrictions on the size of the set T other than that it is non-empty. It is often the case

that it contains only one element (e.g., in the science test process identification experiments, T is

always a singleton set). Each expression in T will become the consequent of its own separate query

case, which allows for a greater degree of flexibility when answering novel questions. How a given

logical form for a question (e.g., a conjunct of expressions in GeoQuery or a qualitative model for

answering a science test question) is broken into a set of logical forms T varies by domain (this

will be described in the relevant sections of the experiments). In the GeoQuery example of Figure

12, T would contain the two non-isa expressions (flowsInRegions river91800 (TerritoryFn

state91893)) and (bordersOn (TerritoryFn state91893) (TerritoryFn Texas-State)).

 To distill query cases, we start by pairing Q with a set of base statements S = {s1, ..., si}

and a set of pairwise nogood (i.e., inconsistency) constraints C = {c1, ..., ck} between pairs of

elements in S (with constraints taking the form ¬(sj ∧ sk)). The elements of S include the semantic

choices produced for Q (i.e., the NLU outputs), but can include additional statements as needed

(e.g., in the comparative analysis experiment in Section 9, it includes statements for the root forms

of words in Q). In our example, S would be the set of statements shown in Figure 12, and C would

be nogood constraints asserted between semantic choices. For instance, two choices for “state” are

(isa state91893 State-Geopolitical) and (isa state91893 MatterTypeByPhysicalState), representing

different word senses. C will include a constraint that prevents these from being simultaneously

51

true. With S and C fixed, the ILP procedure is run for each expression L in the target set of forms

T. The ILP procedure selects a subset of S to be considered the antecedents to the consequent L.

 Given a set of positive examples Pos (this is often the set of all questions for which the

consequent L is a member of its set of target logical forms) and negative examples Neg (this is

often the set of all questions for which L is not a member of its set of target logical forms), our

approach selects the expressions to add to the antecedent set A of a query case incrementally (with

A = {} initially). At each step, it selects an element si from S to add to A, i.e., A {si}.

 The choice of which elements from S to add to A made using the information gain heuristic

of FOIL (Quinlan, 1990). Let E1 and E2 be sets of expressions and let C2 be a conjunction of

pairwise nogoods between the elements of E2 (i.e., a set of mutual exclusivity constraints between

elements of E2) and define the pair p = (E2, C2). E1 is said to cover the pair p if there exists an

SMT-satisfying substitution σ (as described in Section 2.2) between the entities of E1 and E2 such

that the following holds

𝑐𝑜𝑣(𝐸1, 𝑝) = (𝐸1σ ⊆ 𝐸2) ∧ (𝐸1σ ∧ 𝑁2 ⊨ ⊤)

Informally, this means that there exists a substitution that can be applied to the set of expressions

E1 such that they can be found within E2 and the subset of E2 found is non-conflicting. We write

that E1 covers p rather than the other way around because E1 is an abstraction that will be used to

draw inferences from multiple other sets of expressions. We write the coverage score of a set of

expressions to be E

𝐸+ = { 𝑝 ∈ 𝑃𝑜𝑠 ∶ 𝑐𝑜𝑣(𝐸, 𝑝) }

𝐸− = { 𝑝 ∈ 𝑁𝑒𝑔 ∶ 𝑐𝑜𝑣(𝐸, 𝑝) }

𝑐𝑠(𝐸) = − log2

|𝐸+|

|𝐸+| + |𝐸−|

52

With these definitions, we can define the value of adding a statement si to A as

𝑔𝑎𝑖𝑛(𝑠𝑖, 𝐴) = |𝐴+| ∗ (𝑐𝑠(𝐴 ∪ { 𝑠𝑖 }) − 𝑐𝑠(𝐴))

which can be thought of as a coverage-weighted information gain heuristic. At each iteration, the

element from S maximizing the gain value is added to the query case.

 Intuitively, this can be viewed as adding statements that maximize the number of positive

examples with matching constituent statements while minimizing the number of negative

examples with matching constituent statements. It is often the case that two statements will have

the same gain because they cover the same numbers of positive and negative examples. When such

a tie occurs, AQA picks the statement that is most closely related to the target logical form L as

measured by the connectedness weight from Section 5.2.1 (i.e., the ocw function).

 Choices from S are added to A until no elements from Neg are covered. The result is a set

of expressions that can be interpreted as the antecedents to a query case. Additionally, we store

with each query case its particular coverage of positive questions. This gives our approach a rough

estimate of quality / confidence in the query case, with query cases that cover a substantial number

of questions being of greater value than those covering only a few questions.

 QCs allow for two separate sets of antecedents (i.e., A is partitioned into two disjoint sets)

to be specified, which correspond to the sets of non-abducible and abducible antecedents. The non-

abducible should be considered the necessary conditions for a QC to hold, i.e., it specifies the

smallest set of conditions needed to confidently apply this QC to novel inputs. The abducible set

of antecedents should be considered additional evidence for a QC. These antecedents are those not

considered necessary but provide further indication when satisfied that a particular QC should hold

in some new scenario. Following the ILP procedure, the resultant set of expressions is partitioned

53

into those two sets, paired with the consequent expression L, and stored in the KB for later use.

How an expression is selected to be a member of the non-abducible set versus the abducible set

varies by domain, and thus we will describe the particular selection mechanism used in the relevant

sections of the experiments.

ILP with Constraints

While the ILP procedure allows AQA to capitalize on structural regularities across questions, it is

not entirely obvious that it would avoid the data-dependence pitfalls of standard machine learning

approaches to question-answering. In particular, we would like AQA to still operate in the most

data-sparse cases where it would be given a single positive example and zero negative examples.

Fortunately, this can be addressed in the AQA framework through the use of constraints on the set

of valid QCs.

 AQA currently implements two general-purpose types of constraints. The first are

inclusion-exclusion constraints that force the ILP procedure to add or exclude particular choices

from the final QC returned. An example of this is the forced inclusion of type-constraining

semantic choices, i.e., any isa choices that were used in the connection graph procedure to annotate

a question with a logical form are forced to be included in the QC for a given question (e.g., the

State-Geopolitical, Texas-State, and River semantic choices in the example of Figure 12). The

second are termination constraints that force the ILP procedure to continue selecting expressions

to add to a QC until some output criteria is met. An example of this for GeoQuery are connectivity

constraints, i.e., that every entity in a returned QC must be connected through semantic choices (in

the example of Figure 12, if both state91893 and Texas-State were a part of a QC then they would

need to be connected through some set of choices, e.g., { (focalSubject border91960 Texas-State),

54

(fe_ground border91960 state91893) }. For any constraint given to the ILP procedure, if the

conditions specified cannot be met, then QC induction is considered a failure, and nothing is

returned. As with the determination of the non-abducible and abducible sets of expressions, the

specific constraints used will vary by domain, and thus we will describe which constraints are used

in the relevant experiment sections (as well as our intuitions guiding why we use a particular

constraint for a given domain).

55

6 Applying Query Cases

Once training has completed, its output is a set of QCs that can be applied to new, unseen questions.

A high-level depiction of the testing process is given in

Figure 16. We will explain AQA’s process for applying QCs with an example question from the

GeoQuery domain.

6.1 Instantiation of Query Cases

Given a question, AQA first parses the question with CNLU to produce a set of semantic choices.

We use the same notation from Section 5.2.2, with the question as Q, base statements (produced

from Q) as S = {s1, ..., si}, a set of pairwise nogood (i.e., inconsistency) constraints C = {c1, ..., ck}

between pairs of elements in S, and the pair p = (S, C).

 For larger datasets, many QCs will be generated during training (e.g., over 2000 QCs are

generated for the QuaRel experiment in Section 9). To quickly filter out inapplicable QCs, AQA

removes all QCs without at least one antecedent that can be matched with a choice from the

semantic parse. This is made very efficient by capitalizing on the fact that, for two expressions to

successfully match together they must be syntactically equivalent with respect to a renaming of all

Figure 19. Overview of AQA’s process for applying QCs

56

their matchable entities with indices representing their occurrence within the expression (this is

analogous to the concept of De Bruijn (De Bruijn, 1972) indices from lambda calculus). More

concretely, given an arbitrary expression like (focalSubject border123 state123), the renaming

procedure walks down the expression and replaces each matchable entity with an index

representing the point at which it was encountered (e.g., border123 is the first entity encountered,

and thus it would be renamed as matchable-ent1). In this case, that would yield the more generic

expression (focalSubject matchable-ent1 matchable-ent2). Checking for matchable expressions

then involves only checking for equality, which allows for an efficient indexing scheme where a

hash table is constructed that keeps generic expressions as keys and associated query cases as

values. For a particular problem, each semantic choice is renamed and used as a key to retrieve

applicable QCs, with the final set retrieved being the union of such query cases across choices. We

provide pseudo-code in Figure 17.

 For a particular QC, individual antecedents from A = AN  AA (where AN is the set of non-

abducible antecedents and AA is the set of abducible antecedents) of the QC are matched against

elements of S using the Match procedure of Section 2.3 to find every maximal subset M of A for

 With variables
 QC-index = a hash table that has key-value pairs of the form
 <renamed-antecedent, (list of QCs sharing that renamed antecedent)>
 choices = the set of semantic choices

1. Define Retrieve-QCs(QC-index, choices)
2. rel-qcs = empty
3. For choice in choices:
4. renamed-choice = swap entities in choice with generic entities
5. rel-qcs = rel-qcs ∪ QC-index[renamed-choice]
6. return rel-qcs

Figure 20. QC retrieval algorithm

57

which cov(M, p) holds (using the same definition of cov from Section 5.2.2). More concretely,

every subset M of A will be found that meets the following conditions:

 1. M ⊆ A

 2. AN ⊆ M

 3. Mσ ⊆ S (where σ is an SMT-satisfying substitution between the entities of A and S)

 4. Mσ ∧ C ⊨ ⊤

i.e., that M is a subset of A that covers the non-abducible antecedents and can be matched to a

consistent subset of S to yield an SMT-satisfying substitution σ (as defined in Section 2.2). We

present the algorithm Match-QC-Antecedents in Figure 18, which returns a list of substitutions

 With variables
 AN = the set of non-abducible QC antecedents
 AA = the set of abducible QC antecedents
 choices = the set of semantic choices

1. Define Match-QC-Antecedents(AN, AA, choices)
2. all-insts = empty
3. For expr in AN:
4. expr-insts = empty
5. For choice in choices:
6. For <existing-binds, used-choices> in all-insts:
7. new-binds = Match(expr, choice, existing-binds)
8. If new-binds and choice does not conflict with used-choices:
9. expr-insts = expr-insts ∪ {<new-binds, used-choices ∪ {choice}>}
10. If expr-insts:
11. all-insts = expr-insts
12. Else:
13. return False
14. For expr in AA:
15. expr-insts = empty
16. For choice in choices:
17. For <existing-binds, used-choices> in all-insts:
18. new-binds = Match(expr, choice, existing-binds)
19. If new-binds and choice does not conflict with used-choices:
20. expr-insts = expr-insts ∪ {<new-binds, used-choices ∪ {choice}>}
21. If expr-insts:
22. all-insts = all-insts ∪ expr-insts
23. max-insts = remove pairs from all-insts whose bindings are subsets of other pairs
24. return max-insts

Figure 21. Antecedent matching algorithm

58

paired with the choices that justified them. At a high-level, the procedure iteratively combines the

substitutions found between the current iteration’s antecedent and each semantic choice (as

determined by the Match algorithm) with non-conflicting substitutions found in previous iterations

(i.e., it joins substitutions together when the combined substitution would not violate one-to-one

constraints between entities and the semantic choices underlying both substitutions are non-

conflicting). In the figure, lines 3-13 and 14-22 show the matching processes for the non-abducible

and abducible sets of antecedents, respectively. The key differences between how both sets of

antecedents are handled can be observed in lines 10-13 and 21-22. For non-abducible antecedents

(lines 10-13), the set of all possible bindings is either overwritten with the new bindings discovered

for the current iteration or the procedure terminates because no valid bindings could be found (line

1. “states”
 1a. (isa state5288 State-Geopolitical)
 1b. (isa state5288 PhysicalStateOfMatter)
2. “border”
 2a. (bordersOn-AgentAgnostic state5288 state3259)
 2a. (and (isa border5311 BorderingSomething)

 (fe_ground border5311 state3259)
 (focalSubject border5311 state5288))
 2b. (isa border5311 RelativeLocationalPredicate)
3. “states”
 3a. (isa state3259 State-Geopolitical)
 3b. (isa state3259 PhysicalStateOfMatter)
4. “border”
 4a. (bordersOn-AgentAgnostic state3259 Texas-State)
 4a. (and (isa border3115 BorderingSomething)

 (fe_ground border3115 Texas-State)
 (focalSubject border3115 state3259))
 4b. (isa border3115 RelativeLocationalPredicate)
5. “Texas”
 5a. (isa Texas-State State-UnitedStates)

Figure 22. Choice sets from the semantic parse for the
question "What states border states that border Texas?"

59

13). In contrast, for abducible antecedents, any valid bindings found are added to the list of all

possible bindings and there is no early termination. With all valid substitutions determined, the

returned list is then the list of all pairs of substitutions with the semantic choices used in their

construction.

 For a given pair in the returned list of Match-QC-Antecedents, the substitution σ of the pair

is used to instantiate the consequent with the exchangeable entities of the given question, and the

pairing of the semantic choices with the instantiated consequent is passed to the recombination

procedure, which we describe next.

6.2 Composing Query Cases

Each instantiated QC is associated with a set of choices from the semantic interpretation and a

consequent logical expression. In Figure 21, we provide examples of QCs that would be

instantiated from the choice sets in Figure 19 given the training query case shown in Figure 20.

Recall that the question was “What states border states that border Texas?” In the figure, the top

two instantiated query cases are clearly the two query cases that would be best to return (due to

their structural connectedness and large numbers of matched antecedents).

(queryCaseFor
 (and (bordersOn (TerritoryFn state123) (TerritoryFn Indiana-State)))
 (and (isa state123 State-Geopolitical)
 (isa Indiana-State State-UnitedStates)
 (and (isa border123 BorderingSomething)
 (fe_ground border123 Indiana-State)
 (focalSubject border123 state123))))

Figure 23. Example of a query case available to AQA

60

 The final logical form used to answer the given question will be some set of QC

consequents combined together. The QCs selected will also produce a set of choices (the union of

their antecedents), which can be considered a complete semantic interpretation of the question.

AQA treats the selection of QCs as a coverage problem, where the objective is to select the minimal

set of QCs whose combined antecedents cover S. At a high level, what we are asserting is that the

two outputs (the combined antecedents drawn from S and the combined consequents) are

equivalent (i.e., that both are alternative ways of characterizing the same thing). This is a stronger

assertion than that of implication, where implication would instead yield a procedure that forward-

chains exhaustively (not terminating when it has found a set of QCs whose antecedents cover S).

1. (queryCaseFor
 (and (bordersOn (TerritoryFn state3259) (TerritoryFn Texas-State)))
 (and (isa state3259 State-Geopolitical)
 (isa Texas-State State-UnitedStates)
 (and (isa border3115 BorderingSomething)
 (fe_ground border3115 Texas-State)
 (focalSubject border3115 state3259))))

2. (queryCaseFor
 (and (bordersOn (TerritoryFn state5288) (TerritoryFn state3259)))
 (and (isa state5288 State-Geopolitical)
 (isa state3259 State-UnitedStates)
 (and (isa border5311 BorderingSomething)
 (fe_ground border5311 state3259)
 (focalSubject border5311 state5288))))

3. (queryCaseFor
 (and (bordersOn (TerritoryFn state5288) (TerritoryFn Texas-State)))
 (and (isa state5288 State-Geopolitical)
 (isa Texas-State State-UnitedStates)
 (and))

Figure 24. Examples of instantiated query cases

61

In this sense, QCs can loosely be viewed as rewrite rules, where the antecedents for a QC are

transformed into its corresponding consequent.

 Selecting QCs is made challenging by the constraint that the final set of returned elements

from S be non-conflicting (i.e., two QCs cannot both be chosen if any of their antecedents conflict

with one another). The composition algorithm, shown in Figure 22, finds such a set of non-

conflicting QCs. It ranks each QC based on a function score which takes an argument qc and

scores it based on the following properties:

 1. Question Coverage – How many uncovered elements from S are present in qc

 2. Overlap – How many antecedents are shared with the already-chosen elements of S

 3. Conflict – How many elements from S are ruled out by selecting qc

 4. Abduced Ratio – The fraction of antecedents for qc matched to elements of S

 5. Positive Training Coverage – How many positive training examples did qc cover

 6. Negative Training Coverage – How many negative training examples did qc cover

 With variables
 choices-remaining = all semantic choices

1. Define Compose-QCs(choices-remaining)
2. ret-expressions & choices-made = empty
3. While choices-remaining not empty
4. qc-options = empty
5. For qc = <consequent, antecedents> in set of instantiated QCs
6. cov_ct = length of intersection between choices-remaining and antecedents
7. If cov_ct > 0:
8. Add <score(qc), qc> to qc-options
9. best-qc = qc from qc-options with maximum score
10. Add antecedents in best-qc to choices-made
11. Remove choices in max-qc from choices-remaining
12. Remove choices conflicting with choice in best-qc from choices-remaining
13. Add consequent of best-qc to ret-expressions
14. return ret-expressions and choices-made

Figure 25. Query case composition algorithm

62

Once each QC is scored, it selects the highest scoring QC and adds the antecedents and consequent

of that QC to the final sets of returned antecedents and consequent expressions. When there are no

more QCs that can be selected (either because no remaining QC covers new elements of S, is non-

conflicting with the selected QCs thus far, or there are no elements of S left to cover), the selected

elements of S and the combined set of consequent expressions are returned.

 Of the three instantiated QCs in Figure 21, the first QC selected by Compose-QCs would

either be the first or second QCs (i.e., 1 or 2 in the figure) given that they cover the same number

of elements from the semantic parse and have the same number of conflicts. Supposing the first

QC were to be selected, its antecedents would be removed from the uncovered set of semantics

(i.e., the choices-remaining variable in the algorithm), along with any other semantic choices that

conflict with those antecedents. The consequent of that QC (i.e., (bordersOn (TerritoryFn

state3259) (TerritoryFn Texas-State))) would then be added to the return variable ret-expressions.

The next QC selected would be the second QC in the figure. Again, its antecedents (and the choices

conflicting with those antecedents) would be removed from the set of uncovered semantics and its

consequent would be added to ret-expressions. Once those two QCs have been selected, there

are no more uncovered semantic choices, and thus the last QC (whose two isa antecedents were

accounted for by the selected QCs) is simply discarded. When there are no choices remaining, the

list of expressions (ret-expressions) as well as the list of choices (choices-made) are returned.

The expressions are transformed into a format acceptable to the domain-specific reasoner being

used for the current task (e.g., for GeoQuery this includes translating discourse variables into

logical variables).

63

7 GeoQuery

The first domain is GeoQuery (Zelle and Mooney, 1996). It consists of 880 questions paired with

logical forms, intended to be evaluated against the Geobase knowledge base.

 To work with GeoQuery, we first translated Geobase into CycL and imported it into a Cyc

microtheory. The GeoQuery answers were generated by running the GeoQuery gold-standard

queries in a Prolog interpreter loaded with the Geobase rules and KB. The system’s answer was

scored as correct only if it exactly matched the answer generated by GeoQuery.

 The NextKB knowledge base contained a substantial amount of pre-existing geographical

knowledge. In order to ensure a fair comparison to other GeoQuery systems, path search was

restricted to exclude these geography-related microtheories. Otherwise, the learned queries

actually generated correct answers that Geobase did not account for. For example, the query

learned for a question like, “What cities are in Indiana?” uses the predicate cityInState to retrieve

all cities in the state of Indiana. When the query is evaluated with respect to the Geobase

microtheory, the returned answer is a subset of the full list of cities in Indiana because Geobase

does not include all cities in Indiana. However, when the same query is evaluated with respect to

other geography microtheories, the returned answer is a more complete set of cities in Indiana.

 To lessen the effect of broken parses (i.e., sentences for which the CNLU syntactic parse

fails to produce a singular parse tree, and instead produces parse tree fragments for the sentence’s

constituent phrases) on AQA’s performance, the semantic parse for each sentence is automatically

augmented with a series of connectivity statements. Each connectivity statement connects two

entities identified in the syntactic parse as either a noun or proper name and takes the form

(closeConnectionBetween ent123 ent234). The entities connected are adjacent within the sentence

64

(e.g.., for “cities in states bordering Indiana”, there would be a connectivity statement between

“cities” and “states” and a statement between “states” and “Indiana”), which allows for some

structural information to be available even when the syntactic parse fails.

7.1 Training for GeoQuery

As GeoQuery consists of natural-language question-answer pairs, AQA must first self-annotate

each training example. This replaces the natural language answer with a formal query as described

in Section 5.1. Following self-annotation, AQA applies the ILP approach of Section 5.2.2 which

then learns a set of QCs that can be used to answer the test questions. Notably, the entity matching

step outlined in Section 5.2.1 is not used for this dataset because the self-annotation process

produces logical forms that use discourse variables and entities from the semantic parse of each

question. Questions in GeoQuery are frequently compositional in that they have target logical

forms that are conjunctive queries. To aid with generalization, when AQA is given a question to

train on, it produces query cases for each of the elements of the provided conjunct (this is the target

set of logical forms T referred to in Section 5.2.2). In addition, AQA employs two constraints for

the ILP component of training (mentioned at the end of Section 5.2.2), which are inclusion

constraints forcing any type-constraining semantic choices to be included in generated QCs and

termination constraints forcing the entities of the set of semantic choices selected by the ILP

procedure to be a member of the same connected component.

 The subtlety with training AQA for different datasets lies mostly in the ILP procedure of

Section 5.2.2. Specifically, within that procedure there is an important choice to be made as to how

to partition the set of all training examples into positive and negative sets for a particular question.

Suppose for a particular question with a target set of logical expressions E1, ..., En, we are trying

65

to induce a QC for the expression E1. For instance, given a “cities in” question, this might mean

that we are trying to induce a QC with the consequent expression (cityInState city123 California).

A naïve proposal to generating the positive and negative examples (i.e., those examples that our

QC should cover and should not cover) would be to use as positive and negative examples all those

training questions where a cityInState expression is or is not one of the associated expressions for

the target logical form. Though appealing for its simplicity, this scheme ultimately does not work

when there are expressions that can be related through the specPreds relation. Consider the two

questions “What are the cities in California?” and “What are the major cities in California?”. The

predicate for the target expression of the first question is cityInState while the predicate for the

second question’s target expression is majorCityInState. Looking at the associated semantic parses

for each question (provided in Figure 23), it can be seen that the “cities in” question has a semantic

parse that is a subset to the “major cities in” question. Thus, if the majorCityInState question was

used as a negative example when inducing a QC for the cityInState question, AQA would not be

able to successfully induce a QC because there does not exist a choice in the semantic parse of the

cityInState question that would allow it to not cover the choices of the majorCityInState question.

(isa California-State State-UnitedStates)

(objectFoundInLocation city3810 California-State)

(groupMembers California-State city3810)

(isa city3810 City)

(isa city3810 UrbanArea)

(isa California-State State-UnitedStates)

(objectFoundInLocation city4405 California-State)

(groupMembers California-State city4405)

(isa city4405 City)

(isa city4405 UrbanArea)

(significanceOfSituation city4405 highAmountOf)

Figure 26. Semantic parses for “What are the cities in California?” (left) and “What are the
major cities in California?” (right)

66

 The solution we use for this is quite simple. When training for a particular question with

expressions E1, ..., En, AQA simply does not include in the negative examples any question that

involves an expression that can be linked via specPreds to any of E1, ..., En. Notably, the converse

is not enforced, i.e., the negative examples can include those questions with expressions linked via

genlPreds to any of E1, ..., En. This distinction is made under the assumption that more specific

questions (e.g., “major cities in” is more specific than “cities in”) will involve additional semantic

choices that are relevant to the QC, which at least appears to hold for GeoQuery.

 There are two other training considerations to note. First, for superlative questions that

involve a quantity (e.g., population, area, etc.), we also include in their positive examples all

training questions that involve that quantity (with negative examples being otherwise unchanged).

Second, for a particular question’s induced QC, the non-abducible antecedents of the QC are

chosen to be any adjective, superlative, and noun choices that were chosen by the ILP procedure,

and the abducible antecedents are all other choices. In the “major cities” example, this would mean

that the semantic choices for both “major” and “cities” would be included in the non-abducible

antecedents of the induced QC.

7.2 Testing for GeoQuery

To answer a question in this dataset, AQA is applied to the semantic parse for the question (see

Section 6 for the application process) to produce a set of query expressions. The output expressions

of AQA are combined with a conjunction and have their discourse variables converted to

universally quantified variables. For instance, if AQA output the set of expressions { (bordersOn

state123 Indiana-State), (isa state123 State-Geopolitical) } the query evaluated against the

knowledge base would be (and (bordersOn ?state123 Indiana-State) (isa ?state123 State-

67

Geopolitical)). The result is compared against the gold-standard answer and only if it exactly

matches is it considered correct.

7.3 Experiments and Results

The test set for GeoQuery consists of 280 questions annotated with logical forms. As with training,

we execute the logical forms to produce a set of answers for each question. Success is measured

by the number of questions for which AQA generates the exact same answers as the gold-standard.

 Our main results for this domain are presented in comparison to other high performing

GeoQuery systems in Table 1. Liang, Jordan, and Klein (2013) provide the current state of the art

on GeoQuery question answering and, like us, train using natural-language QA pairs. They

introduce dependency based compositional semantics, a formalism that encodes logical forms in

trees that are generated from a fixed set of domain predicates tied to lexical triggers. They evaluate

their system with base triggers, where domain predicates are attached to parts-of-speech for the

words that trigger them, and augmented triggers, where the predicates are manually mapped to

specific prototypical words.

 One theoretical benefit of AQA is that it only needs to see each part of a query once to

apply those parts to a novel question. To test this, the system was evaluated on a set of training

System Acc.

Zettlemoyer, 2005 79.3%

Kwiatkowski, 2010 88.6%

Liang, 2013 91.4%

Jia, 2016 89.3%

Cheng, 2017 86.7%

Dong, 2018 88.2%

AQA 87.5%

Table 1. GeoQuery Main Results

Table 1. GeoQuery Main Experimental
Results

68

questions ranging from 20 to 120 QA-pairs automatically selected with a max-coverage

optimization algorithm to maximize the number of questions covered. The training questions were

taken from the training set (600 questions) and the learned QCs were then tested on the standard

GeoQuery test set (280 questions).

 The learning curve from 20-100 examples is shown in Figure 24. With only twenty

questions, performance reached 51%. Comparable performance to full training is reached around

120 QA-pairs, where AQA achieves about 80% correct. The ability to extract large performance

gains (50% from 20 questions) from very little data is a chief contribution of AQA. To our

knowledge, none of the other comparable systems have evaluated their performance with so few

examples.

 Assessing Performance

We performed an error analysis of the 35 missed questions and found that there were four main

types of errors. The first type of error affected 15 questions and involved the test question having

some key component being too dissimilar from a training question. For instance, the phrase “total

length” in the question “What is the total length of all rivers in the USA?” was never seen in the

Figure 27. Learning curve experiment

69

training set, and thus AQA did not have a query case that could be used to map the semantics for

this phrase to the appropriate query pattern. Another 10 were missed simply because the query

composition algorithm, Compose-QCs, produced the incorrect query, even though there were

correct query cases that could be utilized. As an example, for the question “What is the population

of Washington?”, AQA generated a query for the population of Washington D.C., rather than the

correct interpretation of Washington the state. Three questions were missed due to parsing failures

that resulted in AQA not being given the inputs needed to answer the question (e.g., the semantics

for “long” were not produced in “How long is the longest river in California?” due to a broken

parse). Lastly, 7 were missed due to the logical form being annotated incorrectly in the test set,

e.g., the question “What state has the longest river?” has a logical form that evaluates to all states

in the U.S. with rivers.

 The error analysis suggests a few directions for improvement. The first is to learn query

cases that better generalize to unseen words and phrases. An example of where this could be

explored is in the selection of non-abducible antecedents which restrict a query case’s

applicability. The current implementation of AQA has isa constraints on the entities of a query

case in the non-abducible set of antecedents which restricts the applicability of query cases to those

that involve the same types of entities. Finding a way to relax such constraints without resulting in

the overgeneration of incorrect query cases may be one way of improving generalizability of query

cases (in preliminary experiments, overgeneration was found to be the main difficulty with such a

strategy). Another clear area for improvement is in the composition algorithm. The algorithm is

currently designed to be general-purpose enough to handle the three drastically different tasks of

this thesis. It is possible that there is some level of output-type-specific (but not task-specific)

70

tuning that may improve performance for this domain. That is, it may be that for factoid question-

answering, there are useful strategies that could be implemented within AQA that are reasonably

general and could improve performance but are not useful for answering scenario questions (as

explored in the following experiments of this thesis).

 We believe that a key source of AQA’s data efficiency lies in the use of termination

constraints within the ILP query case generation procedure. Termination constraints force AQA to

produce query cases that have properties known to be desirable for a particular domain. For

instance, because GeoQuery is highly compositional, the particulars of how the many entities

within a question relate to one another provides useful information for constructing well-formed

queries. To explore the utility of termination constraints, we performed a follow-up ablation

experiment where we measured AQA’s performance when the connectivity termination constraint

was removed (i.e., we removed the constraint noted at the beginning of Section 7.1 that stops AQA

from producing query cases with disconnected entities). For this experiment, we used the same

minimal set of 10 questions from the learning curve experiments which provided us with the most

extreme data sparse setting. The effect of this change was dramatic, resulting in a drop in

performance of 30% (from 50% down to 19%). Without the connectivity termination constraint,

AQA learned query cases that were extremely overfit to the training set (e.g., a query case was

learned that would assert a bordersOn relation between two states because there were no questions

in the negative set of examples that involved two states). These query cases would regularly lead

to overgeneration of query expressions during testing (i.e., queries with too many constituent

subexpressions) because their antecedents were far less restrictive than before.

71

7.4 GeoQuery Related Work

Sharma and Forbus (2013) produced horn axioms for the Cyc knowledge base with connection

subgraph techniques. Given a query to justify, their algorithm built a subgraph between the entities

of that query, with paths limited to particular predicate types. These types were learned via

reinforcement learning over examples. In contrast, this work starts with natural language and uses

QA-pairs to learn query patterns rather than higher-order knowledge.

 The use of connection subgraphs is similar to recent applications of path ranking algorithms

for relational learning (Lao et al., 2011). With this approach, paths are found via random walks.

By contrast, the method in this work relies on finding the same path between many answers and a

question entity. Random walks could lead to missing overlapping paths, leading set cover to

produce inflated queries. The key constraints here come from the linkage between question and

answer interpretations; whereas path ranking techniques that replace random walk with a more

exhaustive search need to add more heuristic restrictions, e.g. avoid expanding nodes with large

out-degrees (Gardner and Mitchell, 2015).

 Berant et al.’s (2013) SEMPRE maps phrases to predicates using a lexicon and composes

across the sentence to over-generate semantic derivations. They also use a bridging operation

which injects new predicates based on the types of neighboring predicates in the question. They

then train a log-linear model to select good derivations using QA pairs. The connection-graph

technique presented here is like bridging in that it proposes expressions to connect entities in the

question.

 Dong and Lapata (2018) introduced a two-stage neural semantic parsing model that

operated by mapped language into a coarse-grained logical form that would subsequently be

72

transformed into a final formal logical form. Conceptually this is quite similar to our two-stage

approach to question-answering; however, unlike our approach (which uses a domain-general

semantic parser to produce the intermediate representation), their intermediate representations are

derived from the annotated logical forms themselves (i.e., their approach abstracts out details of

the provided target logical forms). This means that their intermediate representations are task-

specific and must be provided as annotations for the dataset.

73

8 Science Test Process Identification

While GeoQuery presented interesting challenges due to the highly compositional nature of its

questions, it came with a number of simplifications that do not hold for general question-

answering. For instance, the questions, while compositional, were decomposable into simple

logical form primitives (e.g., “What states border states through which the Mississippi flows?”,

can be decomposed into two simple fact lookups). Additionally, there was very little in the way of

distracting or irrelevant information in each question (i.e., each part of a question would be a part

of the activation conditions for some query case). The second domain of this thesis uses process

identification in science test questions to demonstrate how to extend AQA to domains for which

those advantages do not hold. Science tests often involve questions with complicated scenarios

concerning multiple entities, relationships, and processes. Naturally, the logical form

representations of such questions are more complicated than the case of GeoQuery, where the

questions were relatively compact and straightforward.

 Consider the simple example question in Figure 25. For a system to understand this

question, it would require a conceptual model of evaporation and a means of fitting the elements

of that model to the specifics of the question. In Figure 26, we present one possible simple

“Which of the following processes is responsible
for changing liquid water into water vapor?”

 A. “photosynthesis”
 B. “condensation”
 C. “evaporation”
 D. “precipitation”

Figure 28. Example science test question

74

qualitative model for evaporation. Informally, the model specifies that there is a liquid and a gas

involved (lines 1 and 2), and that liquid evaporates into the gas (lines 5, 8, and 9).

8.1 Training for Process Identification

For science test process identification, the system is given as inputs a natural-language scenario

concatenated with the correct multiple-choice answer paired with a process name. For the problem

in Figure 25, it would be given the scenario text concatenated with answer C along with the model

fragment name NaiveEvaporationProcess. AQA then retrieves the specified initial set of model

fragments (in this case, for NaiveEvaporationProcess), any model fragment participants, as well as

any fragments that they depend on. This retrieved set will be referred to as the target set of

expressions.

 In GeoQuery the alignment between entities in the logical form and entities in the semantic

parse was determined by the query generation procedure. In this domain, this is not explicitly

provided and thus we must determine the alignment through other means. This is done with the

Align algorithm (presented in Section 5.2.1) that determines which entities from our semantic

parse correspond with which entities of our target model fragment. When the algorithm is given

1. (mfTypeParticipant NaiveEvaporationProcess ?liquid LiquidTangibleThing liquidOf)
2. (mfTypeParticipant NaiveEvaporationProcess ?gas GaseousTangibleThing gasOf)
3. (mfTypeParticipant NaiveEvaporationProcess ?sub ChemicalCompoundTypeByChemicalSpecies substanceOf)
4. (mfTypeParticipantConstraint NaiveEvaporationProcess (substanceOfType ?liquid ?sub))
5. (mfTypeCondition NaiveEvaporationProcess (touches-Directly ?liquid ?gas))
6. (mfTypeConsequence NaiveEvaporationProcess (qprop (EvaporationRateFn ?self) (TemperatureFn ?liquid)))
7. (mfTypeBiconditionalConsequence NaiveEvaporationProcess (hasQuantity ?self (EvaporationRateFn ?self)))
8. (mfTypeConsequence NaiveEvaporationProcess (i+ (AmountOfFn ?sub Gaseous-StateOfMatter ?gas)
 (EvaporationRateFn ?self)))
9. (mfTypeConsequence NaiveEvaporationProcess (i- (AmountOfFn ?sub Liquid-StateOfMatter ?liquid)
 (EvaporationRateFn ?self)))

Figure 29. Model fragments for the process of evaporation

75

the semantic choices from Figure 28 along with the model fragment shown in Figure 26, it

determines the best entity matches to be <liquid65646, ?liquid>, <water-vapor65365, ?gas>, and

<water52719, ?sub> due to the relations between their constraining collections (in this case, Water

from (isa water4250 (LiquidFn Water)) is an instance of

ChemicalCompoundTypeByChemicalSpecies, LiquidTangibleThing matches identically, and

VaporFn is related to GaseousTangibleThing through a resultGenl relation). The matched entities

from the semantic parse are then substituted into the model fragments to allow the logical form to

share variables with the semantic parse. Following the substitution, the ILP procedure learns a

single query case for the entire set of model fragments at once. That is, unlike in GeoQuery where

separate query cases were learned for each expression of a question’s conjunct, the ILP procedure

will learn only one query case for each question that incorporates the entire process involved in

the question (i.e., T in Section 5.2.2. is a singleton set consisting of a conjunction of the target

process’s model fragment statements). For this dataset, AQA partitions positive and negative

“changing”

 - (isa change98547 IntrinsicStateChangeEvent)
 - (isa change98547 (CausingFn IntrinsicStateChangeEvent))

...
“liquid”

 - (isa liquid65646 Liquid-StateOfMatter)
...

“water”

 - (isa water52719 (LiquidFn Water))
 - (isa water52719 Water-Ingestible)

...
“water vapor”

 - (isa water-vapor65365 (VaporFn Water))
...

Figure 30. Choice sets from the semantic parse for the
question in Figure 28

76

examples based on whether they share the same underlying process (e.g., for our running example,

the positive and negative sets would be those that do and do not, respectively, involve evaporation

as their target process). Figure 28 shows the query case learned for the evaporation question. For

this dataset, the non-abducible antecedents are those semantic choices used in the matching

procedure and the abducible antecedents are all other choices.

8.2 Testing for Process Identification

A question in this dataset comes paired with natural language answer options (typically four per

question). For a particular question, each answer option is processed separately, with the question

being concatenated with each answer and fed to CNLU to produce distinct semantic parses for the

different options. For a particular answer option, its corresponding semantic parse was passed to

(queryCase
 (and (isa evaporation46201 NaiveEvaporationProcess)
 (mfTypeConsequence NaiveEvaporationProcess
 (i+ (AmountOfFn water52719 Gaseous-StateOfMatter water-vapor65365)
 (EvaporationRateFn ?self)))
 (mfTypeConsequence NaiveEvaporationProcess
 (i- (AmountOfFn water52719 Liquid-StateOfMatter liquid65646)
 (EvaporationRateFn ?self)))
 (mfTypeConsequence NaiveEvaporationProcess (qprop (EvaporationRateFn ?self)
 (TemperatureFn liquid65646)))
 (mfTypeBiconditionalConsequence NaiveEvaporationProcess (hasQuantity ?self (EvaporationRateFn ?self)))
 (mfTypeCondition NaiveEvaporationProcess (touches-Directly liquid65646 water-vapor65365))
 (mfTypeParticipantConstraint NaiveEvaporationProcess (substanceOfType liquid65646 water52719))
 (mfTypeParticipant NaiveEvaporationProcess water-vapor65365 GaseousTangibleThing gasOf)
 (mfTypeParticipant NaiveEvaporationProcess water52719
 ChemicalCompoundTypeByChemicalSpecies substanceOf)
 (mfTypeParticipant NaiveEvaporationProcess liquid65646 LiquidTangibleThing liquidOf))
 (and (isa water-vapor65365 (VaporFn Water))
 (isa liquid65646 LiquidTangibleThing)
 (isa water52719 (LiquidFn Water)))
 (and (isa evaporation46201 NaiveEvaporationProcess)
 (isa process18654 MethodType)
 (to-Generic change98547 water-vapor65365)
 (isa change98547 Transaction)
 (fe_themes change98547 liquid65646)))

Figure 31. The query case learned for the evaporation question of Figure 28

77

the QC application component of AQA (Section 6) to determine the single best matching QC and

its instantiation with the entities of the question-answer pair. The answer option selected would be

the one with the best matching QC as measured by coverage (i.e., the QC that matched with the

largest number of semantic choices overall) that also involved at least one semantic choice from

the parse of the answer option.

 Though not necessary for this task (due to its purely natural-language multiple-choice

evaluation), the output of the composition algorithm is a set of statements that can be used to

instantiate model fragments relevant to the scenario at hand (i.e., the model fragment participants

and conditions). A model formulation algorithm could thus be used to instantiate applicable model

fragments for subsequent reasoning.

8.3 Experiments and Results

The result in Table 2 describes the performance of AQA on a set of 30 process-identification

questions from 4th and 5th grade elementary science tests. This set of questions was extracted by a

script that searched across a large set of science test questions (collected by the Allen Institute for

Artificial Intelligence). The questions the script returned had keywords associated with the model

fragments outlined in Crouse and Forbus’ (2016) science test analysis. The original script returned

45 questions, however the 15 questions we did not include required reasoning beyond process

identification, and thus were out of scope for the methods presented above. Furthermore, the

System Acc.

Random 25.0%

AQA 77.0%

Table 2. Science Test Process Identification Main
Results

78

questions were restricted to those involving reasoning about a scenario, not questions involving

definitions or taxonomies.

 Due to the small size of the dataset, leave-one-out cross validation was used to measure

performance. That is, at each test question the system had access to all QCs learned for each

question except the question currently being tested (meaning 29 out of 30 questions were usable

for each test question). Performance for this dataset was measured in terms of multiple-choice

answer accuracy as there are no pre-specified gold-standard logical forms to compare against.

Random guessing on this dataset would lead to 25% correct.

 Assessing Performance

We performed an error analysis to better determine the source of AQA’s failures in this domain

and found that the most impactful source of errors was overfitting. In particular, while the higher-

level components of a particular scenario type would be consistent across questions (e.g., 3 out of

4 evaporation questions involved a liquid disappearing outside on a hot day), the specific scenario

elements would differ. For instance, though most evaporation questions involved a liquid

disappearing outside on a hot day, the particular liquid disappearing differed between questions.

The evaporating liquids were given as “puddle”, “rainwater”, and “water” in three different

questions, which were parsed into isa semantic choices involving the collections Puddle,

Rainwater, and (LiquidFn Water), respectively. Though these collections are very closely related

(both Puddle and Rainwater can be linked through (LiquidFn Water-Fresh) to (LiquidFn Water)),

they do not match to one another during QC instantiation because there is not an immediate genls

statement that can link them.

79

 Though we leave the resolution of this issue to future work, two possible solutions seem

like viable options to explore. The first is to match semantic choices more loosely to QC

antecedents during instantiation through a connection graph search (rather than the current system

that allows collections to match only with immediate genls statements). The difficulty with this

approach, however, will be in finding a principled matching criterion that does not lead to

overgeneration of allowable matches. Another possible option is to generalize learned QCs after

training such that they become more broadly applicable. For instance, one might use SAGE

(McLure, 2015) to automatically determine the best collections to generalize between query cases

and then use concept learning (Mitchell, 1978) to explicitly determine the best generalized

collection to substitute into a new, abstracted query case.

8.4 Process Identification Related Work

The alignment method used during the training portion of AQA is intended to find a mapping

between the outputs of a semantic parser to some task-specific logical form. This is similar to the

work of Fan and Porter (2004), which introduced Loose-speak, an algorithm that would take in a

(possibly malformed) novice user’s query and map it to a query more likely to return the results

the user was expecting. As part of the mapping process, their algorithm employed a range of

heuristics, some of which are analogous to the ontological alignment heuristics of our approach

(e.g., type hierarchy similarities).

 Khot et al. (2017) introduced a method for answering complex, compositional science test

questions from OpenIE (Schmitz et al., 2012) extracted knowledge bases. They posed the problem

of multiple-choice question-answering as a search for an optimal subgraph connecting a question

and answer through the knowledge base. While their approach is similar to the training procedure

80

presented for the GeoQuery domain, it is unclear how they would adapt their system to perform

for non-multiple-choice questions.

 Other works have explored reading comprehension for science textbooks specific to

biological processes (Berant et al., 2014; Rajagopal et al., 2019). Those works differ in that they

focus entirely on biological processes (e.g., photosynthesis) and involve less formal reasoning;

however, their high-level approach of matching the entities of a paragraph into a structured model

of a process to be able to reason about the outcomes of the process shares much in common with

ours.

81

9 QuaRel

QuaRel (Tafjord et al. 2019) is a dataset consisting of 2,771 questions that tests the ability to

answer comparative analysis questions about 19 different quantities. Figure 29 provides an

example from this dataset. In the example, because the distance of an episode of rolling is

qualitatively inversely proportional to the friction of the floor, rolling further on the wood floor

implies that (A) is the correct choice. Here the qualitative reasoning is straightforward, the

complexity is formulating a qualitative model from language.

 Each question in QuaRel comes annotated with multiple choice answers and a

representative logical form. In this work, we consider only the semantic parsing task (i.e., we do

not attempt the multiple-choice portion) where our objective is to produce logical forms that match

the gold-standard logical forms provided. Within their logical forms, QuaRel denotes situations being

compared as worlds. Each problem includes exactly two worlds. The comparison between worlds

is made with respect to their entities, which can be either different entities (e.g., a “rough ball”

versus a “smooth ball”) or the same entity at two different points in time. In the prior example of

a car rolling on wood versus the same car rolling on carpet, the worlds would be the two rolling

events. The associated logical form for the question is given as the implication qrel(distance,

“Alan noticed that his toy car rolls further on a wood floor than
on a thick carpet. This suggests that ...”

 (A) “The carpet has more resistance”
 (B) “The floor has more resistance”

Figure 32. A question from the QuaRel dataset

82

higher, world1) → qrel(friction, higher, world2), where the antecedent represents the question setup

and the consequent represents the correct answer option.

 We use automatically translated variants of their logical forms to have representations that

are compatible with our off-the-shelf comparative analysis reasoner. In particular, we map their

quantity representations to our hasQuantity statements (e.g., (hasQuantity world1 ((QPQuantityFn

Strength) world1))), their direct comparative qrel to our qGreaterThan statements (e.g.,

(qGreaterThan ((QPQuantityFn Friction) world1) ((QPQuantityFn Friction) world2))) and their

indirect comparative qval to our valueOf statements (e.g., (and (valueOf ((QPQuantityFn Friction)

world1) (LowAmountFn Friction)) (valueOf ((QPQuantityFn Friction) world2) (HighAmountFn

Friction))).

 The system automatically constructs three microtheories per problem, one for each world

and one for the problem as a whole, which inherits from the two world microtheories. These are

populated with facts automatically constructed by the NLU system (see Figure 30). For example,

the world-specific microtheories describe which quantities are relevant (e.g., (hasQuantity world1

((QPQuantityFn Friction) world1))) and information about values (e.g., (valueOf ((QPQuantityFn

Friction) world2) (HighAmountFn Friction))). The problem-level microtheory contains facts

involving both worlds (e.g., (qLessThan ((QPQuantityFn Friction) world1) ((QPQuantityFn Friction)

world2))). In our system, microtheories can be treated as cases for analogical reasoning, thereby

simplifying the DQA alignment process.

 QuaRel includes a hand-generated domain theory describing qualitative proportionalities

(Forbus, 1984) between quantity types. For example, q-(speed, friction) represents that if friction

goes up, speed goes down. These are translated into our knowledge base into relations between

83

fluents, e.g., (qprop- ((QPQuantityFn Speed) world1) ((QPQuantityFn Friction) world1)), which are

added automatically when a relevant quantity is mentioned.

 The baseline methods provided for QuaRel do not handle problems compositionally. That

is, they take as input the concatenation of the question setup with an answer option and generate a

single logical form that represents both problem components jointly. For instance, given the

example of Figure 29, their approach would take as input the concatenation of the question and

answer, i.e., “Alan noticed that his toy car rolls further on a wood floor than on a thick carpet. This

suggests that the carpet has more resistance”, and produce as output qrel(distance, higher, world1)

→ qrel(friction, higher, world2). When selecting between the two answer options, they take the

answer for which the generated logical form has highest probability (as predicted by the neural

model).

World 1 Microtheory

(hasQuantity world1 ((QPQuantityFn Distance) world1))

(qprop- ((QPQuantityFn Distance) world1) ((QPQuantityFn Friction) world1))

...

(qprop ((QPQuantityFn Sound) world1) ((QPQuantityFn Distance) world1))

World 2 Microtheory

(hasQuantity world2 ((QPQuantityFn Distance) world2))

(qprop- ((QPQuantityFn Distance) world2) ((QPQuantityFn Friction) world2))

...

(qprop ((QPQuantityFn Sound) world2) ((QPQuantityFn Distance) world2))

Problem Microtheory

(qGreaterThan ((QPQuantityFn Distance) world1) ((QPQuantityFn Distance) world2))

Figure 33. Partial inputs to DQA for the example question

84

 Our approach handles QuaRel questions differently. In particular, our technique processes

each QuaRel problem in two stages. First, AQA is used to predict a logical form for only the

question setup (e.g., “Alan noticed that his toy car rolls further on a wood floor than on a thick

carpet.”). Then, the predicted form for the question setup is passed to an off-the-shelf DQA

reasoner to produce a set of possible answers. Finally, AQA predicts a logical form for the

consequent component of the problem (e.g., “This suggests that the carpet has more resistance”),

which is used to select the best DQA-inferred output to return.

9.1 Training for QuaRel

QuaRel consists of natural-language questions paired with logical forms, and thus self-annotation

is not necessary for this dataset. In addition, the dataset provides world-annotations which specify

the entities within each question that should be mapped to either world1 or world2. We use these

annotations so that our generated logical forms will be comparable to the gold-standard forms

given for each question. We also extend the representations produced by the semantic parser with

additional statements indicating the root forms of words found in the question text (we found

“child”

 - (isa child144 HumanChild)
...

“weaker”

 - (and (isa weak294 ComparisonEvent)
 (comparisonQtype weak294 Strength) ...)
 - (and (isa weak294 ComparisonEvent)
 (comparisonQtype weak294 Effectiveness) ...)

...
“adult”

 - (isa adult752 HumanAdult)

Figure 34. Partial semantic parse for the fill-in-
the-blank question “The small child was much

weaker than the adult and they ...”

(isa world1 HumanChild)
(wordInQuestion train-question-195 child)
(wordInQuestion train-question-195 small)

...
(and (isa weak294 ComparisonEvent)
 (comparisonQtype weak294 Strength) ...)
(and (isa weak294 ComparisonEvent)
 (comparisonQtype weak294 Effectiveness) ...)

...
(isa world2 HumanAdult)
(wordInQuestion train-question-195 adult)

Figure 35. Semantic parse but with world
substitutions and word-level statements

85

empirically that such information is helpful, as describe later). Figure 31 and Figure 32 show the

semantic parse for a question both before and after these world substitutions and extensions are

applied. The world substitutions mean that both the target form and the semantic parse for a

question are utilizing a shared set of entities, and thus entity alignment is not necessary for this

dataset.

 As with the other datasets, AQA applies the ILP approach of Section 5.2.2 which then

learns a set of QCs that can be used to answer the test questions. The system must learn two types

of query cases for QuaRel: 1) quantity prediction query cases, which propose quantity assertions

(e.g., (hasQuantity world1 ((QPQuantityFn Strength) world1))), and 2) ordinal prediction query

cases, which have consequent statements either direct comparatives (e.g., (qGreaterThan

((QPQuantityFn Friction) world1) ((QPQuantityFn Friction) world2))) or indirect comparatives (e.g.,

(and (valueOf ((QPQuantityFn Friction) world1) (LowAmountFn Friction)) (valueOf ((QPQuantityFn

Friction) world2) (HighAmountFn Friction))). AQA is used separately on each type of query case,

since this was found to improve the learning process. The ILP procedure constructs its positive

and negative sets of examples for learning quantities from the entire dataset. However, when

learning ordinals, it only draws positive and negative examples from questions involving the same

(queryCaseFor
 (and (hasQuantity world1 ((QPQuantityFn Strength) world1))
 (hasQuantity world2 ((QPQuantityFn Strength) world2))
 (and)
 (and (comparer strong623 world1)
 (isa strong623 ComparisonEvent)
 (comparisonQtype strong623 Strength)
 (comparee strong623 world2)))

Figure 36. A query case that would apply to the semantics
shown in Figure 34

86

quantity as the target form. For instance, when learning a QC with consequent (qGreaterThan

((QPQuantityFn Friction) world1) ((QPQuantityFn Friction) world2)), it constructs its sets of positive

and negative examples only from other Friction questions.

 The quantity and ordinal information provide all that is needed for our off-the-shelf DQA

algorithms to generate answers. An example for a quantity query case is provided in Figure 33.

Key to note, there are no non-abducible antecedents for QuaRel query cases (represented by the

empty conjunction in the QC). The decision was made to have all antecedents considered as

abducible because, for this task, being more precise (i.e., not returning a QC for every question)

resulted in worse performance. That is, it was always better to simply guess a QC that might apply

to a given question than to not answer (due to overly restrictive QC antecedents). Within code, this

was achieved by shifting all ILP output expressions for a question to the abducible antecedent set

of the question’s stored query case.

 In this larger dataset, the value of the ILP procedure in selecting the best choices becomes

more obvious. In our example from Figure 31, the semantic choice (isa world1 HumanChild), while

a seemingly relevant choice, is actually quite useless for predicting the correct quantity. Such a

statement appears in 5 questions regarding Strength and 22 questions involving other quantities

(e.g., “A child slips more easily on ice ...”, which involves Friction). Alternatively, the two choices

for “weaker”, being (comparisonQtype weak294962 Strength) and (comparisonQtype

weak294962 Effectiveness), both appear in 17 questions regarding Strength and only 3 questions

involving other quantities (e.g., “Earth has stronger gravity than Mars because ...”, which involves

Gravity). In this case, both “weaker” choices have the same gain score because they cover the same

87

numbers of positive and negative examples, which means the tie is broken by relatedness to the

target logical form.

Learning Quantities and Ordinals

The only difference between the process for constructing quantity versus ordinal query cases is in

how positive and negative examples are partitioned. With quantity query cases, the positive and

negative examples are those that would be expected, i.e., positive examples are questions with the

same target quantity and negative examples are those questions with a different target quantity.

This does not suffice for query cases predicting ordinals, because all questions involve essentially

the same logical form.

 For ordinal query cases, the system uses the same set of training questions for both the

positive and negative examples. It frames positive examples in terms of a qGreaterThan prediction

and all negative examples are framed in terms of a qLessThanOrEqualTo prediction. That is, for a

given question, its positive form is coerced into (qGreaterThan ((?GenericQuantity) world1)

((?GenericQuantity) world2)) and its negative form is coerced into (qLessThanOrEqualTo

((?GenericQuantity) world1) ((?GenericQuantity) world2)). Because antecedents are added to QC

until no negative examples are covered, this means that antecedents are added until the negation

of the correct logical form is no longer covered. For training ordinals, the positive and negative

sets of examples for a given question are then the same set, with positive examples being the

positive forms of questions and negative examples being the negative forms of questions.

88

9.2 Testing for QuaRel

The result of training is a case library of quantity and ordinal query cases. To predict the setup for

a question (i.e., the set of statements to hand off to the off-the-shelf DQA reasoner), AQA first

predicts a single quantity query case (taken as the best scoring QC from the Compose-QCs

procedure of Section 6), and then uses that predicted quantity to filter out irrelevant ordinals (i.e.,

those ordinal QCs that were generated for different quantities). From the pruned down set of

ordinal QCs, AQA again uses the Compose-QCs procedure to determine the best matching ordinal

prediction for the question. The predicted statements are added to the appropriate microtheories

along with any necessary qprop statements, and DQA is used to generate a set of possible answers

to the given question. For instance, given the statements in Figure 30, this may include

(qGreaterThan ((QPQuantityFn Distance) world2) ((QPQuantityFn Distance) world1)), because

distance is qualitatively proportional to strength. The consequent component to the question

(which has also been parsed by CNLU) is then passed to the QC application procedure, which

yields a quantity prediction that is then used to select a statement from the outputs of the DQA

reasoner to return to the user.

9.3 Experiments and Results

We measure the performance of our approach in terms of three metrics: 1) Consequent generation

accuracy (i.e., do we produce the same form for the logical form’s consequent as provided by

QuaRel), 2) Question setup accuracy (i.e., do we predict the correct ordinal and quantity values

for the setup to a given question), and 3) Both consequent and question setup accuracy (i.e., do we

correctly predict the gold-standard form in its entirety).

89

The original QuaRel paper introduced two Elmo-based (Peters, 2018) neural approaches:

1) QuaSP, a neural semantic parser intended to be a strong baseline that is representative of current

state-of-the-art neural semantic parsing approaches and 2) QuaSP+, an extension of QuaSP that

better handles the world formalism. Their reported performances for the QuaSP and QuaSP+

systems were 32.2% and 43.8% on the held-out test set. These percentages were measured for the

correct prediction of both the answer and question setup (they did not measure consequent or

question setup generation in isolation). While our system was capable of matching the lower

performing neural model, the top performing system specifically designed for QuaRel

outperformed ours, although we note that no system is yet close to the human results of 96.4%

(produced via Mechanical Turk).

Assessing Performance

An error analysis indicates that problems in mapping the generic world tokens onto entities in the

semantic parse accounted for a substantial number of the missed problems. Of the questions in the

test set, there were only 331 out of 552 questions (i.e., a little more than half) where both generic

world tokens (world1 or world2) could be mapped to entities in the corresponding semantic parse.

Similarly, only 1092 out 1947 training questions had mappings from both world entities to

semantic parse entities. This likely caused issues during both training and testing, as our approach

System Consequent Acc. Setup Acc. Both Acc.

AQAT 36.1% 44.7% 32.2%

QuaSP N/A N/A 32.2%

QuaSP+ N/A N/A 43.8%

Table 3. QuaRel Main Results

90

would thus typically be reasoning or learning with half of the relevant information for a given

question.

We also examined the value of adding word-level statements to the semantics output by

our semantic parser. As Table 3 shows, with word-level statements, the accuracy of logical form

prediction was 32.4%. Without word-level statements, performance for logical form prediction

dropped to 19.7%. Interestingly, word-level statements only had an impact at the level of quantity

prediction. For ordinal prediction, the utility of word-level statements was nonexistent. Recall that

the partitioning of positive and negative examples differs between the learning of quantity and

ordinal query cases. When learning quantities, the positive and negative examples form a disjoint

partition of the set of training questions, but when learning ordinals, the positive and negative

examples are both defined from the same set of training questions. This means that word-level

statements provide no information gain for ordinal prediction, as they appear in identical numbers

between the positive and negative examples. Thus, despite having full access to word-level

statements, none of the learned ordinal query cases had a word-level statement as an antecedent.

Interpretability and Explainability

Our main advantage over neural models lies in the difference in transparency of learned

representations and the learning process. In contrast to high-dimensional vector space

representations, our learned query cases are comprehensible to those familiar with predicate

calculus. In addition, the learning process itself is quite transparent. Each query case maintains the

list of questions it covered, which simplifies drawing dataset-level insights. For instance, word-

level statements are frequently sufficient to infer that Friction is the quantity of interest, e.g.,

(wordInQuestion train-question-29 resistance) is the sole antecedent to a query case that covers

91

74 questions. Furthermore, just the word “heat” was sufficient to cover 61 questions where

Temperature was the target quantity. Insights like these could help explain why the QuaSP system

was noted as performing particularly well at predicting quantities.

Because its representations are logic-based, our system can automatically generate

explanations for its answers in terms of natural language, using relationships stored during

language analysis and reasoning. The text can then be output to the user along with additional

information like the training questions used to generate the selected query cases. Figure 34 shows

an example of an automatically generated natural language explanation for how our approach

analyzed each part of the original QuaRel problem from Figure 29. In the figure, we can see that

the correct phrase is identified for generating the inputs to DQA. In addition, relevant qualitative

proportionalities are extracted based on the quantity of the generated logical form, which allows

Generated quantity + ordinal:

Distance("car on wood floor") is greater than

Distance("car on thick carpet")

Relevant question context:

 - “his toy car rolls further on a wood floor than on a thick

carpet”

 - “on”

Supporting training questions:

 - "... likes to push his toy car around the house ... notices his car

 rolls slower on the carpet ... than on the hardwood floor ..."

Used qualitative proportionality (from KB):

Distance is inversely qualitatively proportional to

Friction

Relevant question context:

 - “far”

 - “floor”

 - “carpet”

Supporting training questions:

 - “... when he pushes his book on the carpet, it doesn't go as far

 as when he pushes the book on the kitchen floor.”

Selected answer from DQA outputs:

Friction("car on thick carpet") is greater than

Friction("car on wood floor")

Relevant answer context:

 - “resistance”

Supporting training questions:

 - “A door mat has more resistance then a microfiber cloth.”

 - “Rolling a marble over dirt creates less resistance then rolling it

 over sand.”

Figure 37. Automatically generated natural language outputs for the question in Figure 1. The left
column is produced from generated logical forms (see Figure 2), while the right column is drawn from all

underlying justifications (i.e., semantic choices used to instantiate selected query cases and the training
questions those query cases were learned from).

92

our approach to justify them with the text used to instantiate the quantity prediction query case.

Lastly, the text associated with query cases during training helps explain which answer is selected.

We emphasize that these natural language outputs are automatically produced by our

approach. The presence of shallow, word-level statements can be seen (e.g., “resistance” was one

such case) and the outputs are not flawless. For instance, in the explanation for the generated

quantity and ordinal predictions, the word “on” by itself would seem out of place to an end-user

(though we note that the semantic choice underlying this justification was quite important, as it

was used to tie key elements of the semantic parse together). Overall, the coherence of the natural

language outputs highlights a key strength of our approach, namely that it allows for explanations

to be provided for even novice end-users.

9.4 QuaRel Related Work

The original QuaRel work (Tafjord et al., 2019) provided two neural-based semantic parsing

models that followed an encoder-decoder framework for generating logical forms. Given a

question-and-answer option, the concatenation of the question and answer would be fed to an

LSTM encoder which would produce a vector-space representation of the input text. A subsequent

decoder architecture would take as input the vector representation and sequentially decode

production rules from a formal grammar to build up an abstract syntax tree that would be

considered the logical form. Their method is completely neural, generating a logical form for both

the question and answer simultaneously (i.e., no qualitative reasoner is used to generate the answer

from the logical form of the question).

Subsequent efforts on QuaRel have instead focused on only the multiple-choice portion of

the dataset. For instance, (Mitra et al., 2019) proposed translating the logical forms to text such

93

that a BERT-based (Devlin et al., 2018) textual entailment model could be used to improve

multiple-choice performance. Similarly, (Asai and Hajishirzi, 2020) used logic-based rules to

extend the training data for QuaRel and enhance a RoBERTa-based (Liu, et al., 2019) multiple-

choice selection model.

In a similar shift from the use of formal representations, another dataset for question-

answering about qualitative relationships, QuaRTz (Tafjord et al., 2018), was released as a follow-

up to QuaRel. Unlike QuaRel which involves reasoning over formal qualitative knowledge

specified by a small ontology, QuaRTz involves only textual reasoning. However, despite adopting

a purely textual question-answering setting, it was still shown in the benchmark that state-of-the-

art language models had difficulty with questions that required qualitative knowledge.

94

10 Related Work

The high-level approach of using stored solved questions to formulate new answers is conceptually

quite similar to prior case-based question-answering techniques, e.g., (Burke, et al. 1997; Lenz, et

al. 1998; Weis, K. 2015). Where analogy-based methods (such as ours) typically distinguish

themselves from traditional case-based reasoning approaches is their emphasis on structural

similarity. That is, case-based reasoning methods do not uniformly hold themselves to enforcing

analogical constraints between the comparison of two cases (e.g., structural consistency or

systematicity) and instead focus only on representations and similarities that help solve whatever

task they have been given (Burstein, 1989).

 Inductive logic programming has been used previously to generate rules for question-

answering approaches (Calif and Mooney 1999; Zelle and Mooney 1996; Mitra and Baral 2016).

Such prior approaches have operated very similarly to our framework, where methods learn rules

that map from an initial general parse of a question to logical forms that can be passed to some

reasoner. AQA differs from these methods in one critical way, namely, that analogy is front-and-

center to our approach. For our work, analogy provides a theoretical commitment to the question

of how induced mappings between the initial parse (in our case, the NLU semantic parse) and task-

specific logical forms should be applied.

 The use of intermediate representations for factoid question-answering with semantic

parsing has been explored previously (Cheng et al., 2017; Choi et al., 2015; Kwiatkowski et al.,

2013; Reddy et al. 2016); however, such works have generally been subject to two main

limitations. First, they used very lightweight intermediate representations constructed on-the-fly

from natural language predicates, e.g., dependency parses (Reddy et al., 2016), FunQL (Kate et al.

95

2005; Cheng et al., 2017), and lambda calculus with Wikitionary-derived (Zesch et al. 2008)

features in (Kwiatkowski et al., 2013; Choi et al., 2015). Second, they assume that the correct

query for a given question will be isomorphic to the generated intermediate representation. That

is, they assume that there will be a structure-preserving one-to-one correspondence between each

element of their intermediate representation and their final query form. This assumption clearly

does not hold for non-factoid question-answering domains (e.g., with QuaRel or science tests).

 Barbella and Forbus (2011) introduced analogical dialogue acts (ADAs), which formalize

the roles played by individual utterances in instructional analogies. Their approach used the ADAs

recognized from the semantic parse of an instructional text to build structured cases that were then

compared with SME. Their system used inferences from these analogies to interpret and answer

questions. The approach of this work also uses analogical inferences to construct an interpretation

of text, however it goes a step further in that QCs are learned from natural language while ADAs

were recognized with manually constructed rules.

 Chang (2016) combined natural language understanding, spatial reasoning, and analogical

reasoning to interpret instructional analogies. These analogies could be used to learn qualitative

knowledge. Of particular relevance to AQA was the use of visual representations to disambiguate

natural language. Their work used the CogSketch sketch understanding system (Forbus et al.,

2011) to represent sketches with the Cyc ontology. CNLU semantic choice sets were

disambiguated by selecting those choices that were most related to the outputs of the sketch

understanding system.

 Khashabi et al. (2017) introduced the notion of essential question terms, which were terms

absolutely critical to the understanding of a particular question. They showed that without those

96

terms, human performance on science test questions dropped significantly. This is conceptually

related to the ILP procedure of Section 5.2.2, which learns the essential components of a question

needed to infer a particular task-specific form.

 Li and Clark (2015) introduced a system that answered multiple choice questions from

elementary science tests with connection subgraph techniques. Their system built a connection

subgraph that encompassed each answer and the entities of a question. The answer selected was

the one that gave rise to the best connection subgraph. Like with Khot et al. (2017), the work here

differs in that it builds connection subgraphs to train the system to produce answers to novel

questions without the need for multiple-choice questions.

 Liang et al., (2016) used unannotated natural language corpora to learn a semantic parser

for Yih et al.’s (2016) WebQuestionsSP dataset, a curated subset of Berant et al.’s (2013)

WebQuestions corpus answerable using Freebase. Their approach leverages the same insight, i.e.,

that a knowledge base can provide constraints for interpretation, but requires far more data than

our approach.

97

11 Conclusions

We now revisit the claims and contributions of this thesis and summarize how we provided

evidence for them. Following that, we will end with open questions and future work.

11.1 Claims Revisited

1. It is possible to design an approach to question-answering with analogy as its core

operation that performs effectively on a variety of question-answering domains and tasks.

In this work, we began by defining an analogical matching procedure based on the Structure

Mapping Theory of analogy. As detailed in Sections 4, 5, and 6, this procedure was a critical

component of both the training process (where it was used to identify structural regularities across

questions that could be used to build query cases) and the testing process (where it was used to

adapt learned query cases and propose candidate logical forms for a given question). Thus, it is

apparent that analogy should be considered a core operation of AQA. In addition, we showed that

AQA could perform well in a variety of different settings. With GeoQuery, we demonstrated the

ability of AQA to handle questions involving highly complex, compositional reasoning. With

Science Test Process Identification and QuaRel, we demonstrated the ability of AQA to handle

longer scenario questions that used broad and varied language.

2. Adapting an existing domain-general semantic parser to domain-specific question-

answering tasks leads to far more efficient learning on those tasks than would starting from

scratch.

In Section 7, we explored AQA’s data efficiency with a learning curve experiment on GeoQuery.

We showed that with only 20 questions (out of 600 available) to train on, it could achieve 50%

98

accuracy, and with only 100 questions its performance became comparable to other systems that

used all 600 questions for training.

3. Combining machine learning (in the form of inductive logic programming) with symbolic

reasoning methods can produce an approach to semantic parsing that is completely

transparent as to what it is learns and how it applies what it learns, while also performing

competitively with black-box neural methods.

Because its representations are symbolic s-expressions, the mappings AQA learns (shown in

Sections 7, 8, and 9) are readily interpretable by those familiar with predicate calculus. In addition,

the means by which AQA learns query cases allows it to maintain the provenance for each query

case, i.e., the exact training questions from which a particular query case was induced. We also

demonstrated that it is trivial to go beyond formal, logic-based representations. In Section 9, we

showed how the representations that AQA learns can be automatically turned into human-

understandable natural language explanations by linking the semantic choices used to instantiate

a query case to the natural language words and phrases that those semantic choices originated

from.

11.2 Contributions Revisited

1. It provides a method, Analogical Question-Answering (AQA), for adapting a general-

purpose semantic parser to question-answering tasks in multiple domains that each require

different types of reasoning.

This thesis provided a method, AQA, for adapting a general-purpose semantic parser to question-

answering tasks. During training, AQA combines analogical reasoning with inductive logic

programming to learn query cases, which are rule-like constructs that have as antecedents the

99

outputs of a domain-general semantic parser and as consequents the domain-specific logical forms

needed for the task at hand. During testing, AQA applies the query cases it has learned during

training to novel questions through an abductive analogy-based coverage algorithm, which

determines the best domain-specific logical forms to return for a given question.

2. It demonstrates that the method can perform on both annotated and unannotated question-

answering datasets.

Using two benchmark datasets, we have shown that the method performs competitively with

entirely machine learning-based approaches in both unannotated (GeoQuery) and annotated

(QuaRel) settings. In addition, with the Science Test Process Identification experiment, we went

further and showed how AQA could be applied to the setting where training questions were paired

with generic logical forms.

3. It characterizes the conditions that allow AQA to learn in data-sparse situations.

In Section 7, we explored the conditions allowing AQA to achieve data efficiency, with

experiments demonstrating that strong constraints imposed on the learning process can be made to

force AQA to produce more generalizable query cases from fewer amounts of data.

11.3 Open Questions and Future Work

In this thesis we demonstrated that AQA can map questions involving relatively limited language

to complex, compositional logical forms (GeoQuery). We also demonstrated that AQA can handle

varied language involving lengthy scenarios when those scenarios are mapped to simple logical

forms. It remains to be demonstrated that AQA can handle both of those challenges at once, i.e.,

map varied language to complex logical forms, while retaining competitiveness with state-of-the-

100

art methods (e.g., applying AQA to a dataset like WikiTables (Pasupat and Liang, 2015) or

WikiSQL (Zhong et al., 2017)).

 We believe AQA is strongest when the task-specific logical forms are limited in terms of

how varied they are. That is, domains like GeoQuery and QuaRel, though complex in terms of the

language they use, involve only a handful of predicates and collections. There are many settings

for which this limitation is not an issue (e.g., personal assistants that may only need to map

language to one of a few dozen commands), and it is in those settings that AQA should first be

applied. However, what would it take to let AQA scale to handling hundreds or even thousands of

relations? Certainly, self-annotation would become much more challenging, as the connection

graph procedure used to generate queries would face a much more expensive search. When

provided annotations, is it possible that the ILP procedure AQA uses during training would be

sufficient for handling such tasks?

 Lastly, AQA bridges the gap between semantic parser outputs and task-specific logical

forms, but should that gap be bridged in a single step? If query cases were hierarchical (i.e., a query

case could have as its antecedents the consequents of other query cases), there would effectively

be multiple layers of translation between the semantic parser and the final logical form. Prior work

has investigated learning higher order relations with ILP (Muggleton et al., 2015) that can

concisely capture more complex concepts. In addition to the challenge with learning compositional

query cases, the coverage-based nature of the query case composition procedure also does not

immediately lend itself to inference involving chaining.

101

References

Asai, Akari, and Hannaneh Hajishirzi. "Logic-guided data augmentation and regularization for

consistent question answering." arXiv preprint arXiv:2004.10157 (2020).

Baker, Collin F., Charles J. Fillmore, and John B. Lowe. "The berkeley framenet project." In

36th Annual Meeting of the Association for Computational Linguistics and 17th

International Conference on Computational Linguistics, Volume 1, pp. 86-90. 1998.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, U. Hermjakob,

Kevin Knight, Philipp Koehn, Martha Palmer and Nathan Schneider. “Abstract Meaning

Representation for Sembanking.” LAW@ACL (2013).

Barbella, David, and Kenneth Forbus. "Analogical dialogue acts: Supporting learning by reading

analogies in instructional texts." In Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 25, no. 1. 2011.

Berant, Jonathan, Andrew Chou, Roy Frostig, and Percy Liang. "Semantic parsing on freebase

from question-answer pairs." In Proceedings of the 2013 conference on empirical

methods in natural language processing, pp. 1533-1544. 2013.

Berant, Jonathan, Vivek Srikumar, P. Chen, A. V. Linden, Brittany Harding, Brad Huang, Peter

Clark and Christopher D. Manning. “Modeling Biological Processes for Reading

Comprehension.” EMNLP (2014).

Bevilacqua, Michele, Rexhina Blloshmi, and Roberto Navigli. "One SPRING to Rule Them

Both: Symmetric AMR Semantic Parsing and Generation without a Complex Pipeline."

AAAI (2021).

Burke, Robin D., Kristian J. Hammond, Vladimir Kulyukin, Steven L. Lytinen, Noriko Tomuro,

and Scott Schoenberg. "Question answering from frequently asked question files:

Experiences with the faq finder system." AI magazine 18, no. 2 (1997): 57-57.

Burstein, Mark H. "Analogy vs. CBR: The purpose of mapping." In Proc. of the 2nd Workshop

on Case-Based Reasoning, pp. 133-136. 1989.

Califf, Mary Elaine, and Raymond Mooney. "Relational Learning of Pattern-Match Rules for

Information Extraction." In CoNLL97: Computational Natural Language Learning. 1997.

Chang, Maria. "Capturing qualitative science knowledge with multimodal instructional

analogies." PhD diss., Northwestern University, 2016.

102

Chen, Kezhen, Irina Rabkina, Matthew D. McLure, and Kenneth D. Forbus. "Human-like sketch

object recognition via analogical learning." In Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, no. 01, pp. 1336-1343. 2019.

Cheng, Jianpeng, Siva Reddy, Vijay Saraswat, and Mirella Lapata. "Learning Structured Natural

Language Representations for Semantic Parsing." In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.

44-55. 2017.

Choi, Eunsol, Tom Kwiatkowski, and Luke Zettlemoyer. "Scalable semantic parsing with partial

ontologies." In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pp. 1311-1320. 2015.

Crouse, Maxwell and Forbus, Kenneth D. "Elementary school science as a cognitive system

domain: how much qualitative reasoning is required?." Advances in Cognitive Systems

19 (2016).

Crouse, Maxwell, C. McFate and Kenneth D. Forbus. “Learning From Unannotated QA Pairs to

Analogically Disambiguate and Answer Questions.” AAAI (2018).

Crouse, Maxwell, C. McFate and Kenneth D. Forbus. “Learning to Build Qualitative Scenario

Models From Natural Language.” In Proc. of the 31st Workshop on Qualitative

Reasoning (2018).

Darmann, Andreas, Ulrich Pferschy, Joachim Schauer, and Gerhard J. Woeginger. "Paths, trees

and matchings under disjunctive constraints." Discrete Applied Mathematics 159, no. 16

(2011): 1726-1735.

De Bruijn, Nicolaas Govert. "Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser theorem." In

Indagationes Mathematicae (Proceedings), vol. 75, no. 5, pp. 381-392. North-Holland,

1972.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of

deep bidirectional transformers for language understanding." arXiv preprint

arXiv:1810.04805 (2018).

Dong, Li, and Mirella Lapata. "Coarse-to-fine decoding for neural semantic parsing." ACL

(2018).

Falkenhainer, Brian, Kenneth D. Forbus, and Dedre Gentner. "The structure-mapping engine:

Algorithm and examples." Artificial intelligence 41, no. 1 (1989): 1-63.

103

Faloutsos, Christos, Kevin S. McCurley, and Andrew Tomkins. "Fast discovery of connection

subgraphs." In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 118-127. 2004.

Fan, James, and Bruce Porter. "Interpreting loosely encoded questions." In AAAI, pp. 399-405.

2004.

Forbus, Kenneth D. "Qualitative process theory." Artificial intelligence 24, no. 1-3 (1984): 85-

168.

Forbus, Kenneth D., Ronald W. Ferguson, Andrew Lovett, and Dedre Gentner. "Extending SME

to handle large‐scale cognitive modeling." Cognitive Science 41, no. 5 (2017): 1152-

1201.

Forbus, Kenneth, Jeffrey Usher, Andrew Lovett, Kate Lockwood, and Jon Wetzel. "CogSketch:

Sketch understanding for cognitive science research and for education." Topics in

Cognitive Science 3, no. 4 (2011): 648-666.

Gardner, Matt, and Tom Mitchell. "Efficient and expressive knowledge base completion using

subgraph feature extraction." In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pp. 1488-1498. 2015.

Gentner, Dedre. "Structure-mapping: A theoretical framework for analogy." Cognitive science 7,

no. 2 (1983): 155-170.

Guha, Ramanathan V. Contexts: a formalization and some applications. Vol. 101. Stanford, CA:

Stanford University, 1991.

Jia, Robin, and Percy Liang. "Data recombination for neural semantic parsing." arXiv preprint

arXiv:1606.03622 (2016).

Jia, Robin, and Percy Liang. 2017. "Adversarial Examples for Evaluating Reading

Comprehension Systems." Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing.

Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney. 2005. Learning to Transform Natural

to Formal Languages. In Proceedings for the 20th National Conference on Artificial

Intelligence. Pittsburgh, Pennsylvania, pages 1062–1068.

Khashabi, Daniel, Tushar Khot, Ashish Sabharwal, and Dan Roth. "Learning what is essential in

questions." In Proceedings of the 21st Conference on Computational Natural Language

Learning (CoNLL 2017), pp. 80-89. 2017.

Khot, Tushar, Ashish Sabharwal, and Peter Clark. "Answering complex questions using open

information extraction." arXiv preprint arXiv:1704.05572 (2017).

104

Klenk, Matthew, Kenneth Forbus, Emmett Tomai, Hyeonkyeong Kim, and Brian Kyckelhahn.

2005. "Solving Everyday Physical Reasoning Problems by Analogy using Sketches."

Proceedings of the AAAI Conference on Artificial Intelligence.

Kowalski, Robert. "A proof procedure using connection graphs." Journal of the ACM (JACM)

22, no. 4 (1975): 572-595.

Kwiatkowski, T., Eunsol Choi, Yoav Artzi and Luke Zettlemoyer. “Scaling Semantic Parsers

with On-the-Fly Ontology Matching.” EMNLP (2013).

Kwiatkowksi, Tom, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. "Inducing

probabilistic CCG grammars from logical form with higher-order unification." In

Proceedings of the 2010 conference on empirical methods in natural language processing,

pp. 1223-1233. 2010.

Lao, Ni, Tom Mitchell, and William Cohen. "Random walk inference and learning in a large

scale knowledge base." In Proceedings of the 2011 conference on empirical methods in

natural language processing, pp. 529-539. 2011.

Lenz, Mario, Andre Hübner, and Mirjam Kunze. "Question answering with textual CBR." In

International Conference on Flexible Query Answering Systems, pp. 236-247. Springer,

Berlin, Heidelberg, 1998.

Li, Yang, and Peter Clark. "Answering elementary science questions by constructing coherent

scenes using background knowledge." In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pp. 2007-2012. 2015.

Liang, Chen, Jonathan Berant, Quoc Le, Kenneth D. Forbus, and Ni Lao. "Neural symbolic

machines: Learning semantic parsers on freebase with weak supervision." arXiv preprint

arXiv:1611.00020 (2016).

Liang, Percy, Michael I. Jordan, and Dan Klein. "Learning dependency-based compositional

semantics." Computational Linguistics 39, no. 2 (2013): 389-446.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike

Lewis, Luke Zettlemoyer, and Veselin Stoyanov. "Roberta: A robustly optimized bert

pretraining approach." arXiv preprint arXiv:1907.11692 (2019).

Marcus, Gary. 2018. "Deep learning: A critical appraisal." arXiv preprint arXiv:1801.00631.

Matuszek, Cynthia, Michael Witbrock, John Cabral, and John DeOliveira. "An introduction to

the syntax and content of Cyc." UMBC Computer Science and Electrical Engineering

Department Collection (2006).

McFate, Clifton. and Kenneth D. Forbus. “NULEX: An Open-License Broad Coverage

Lexicon.” ACL (2011).

105

McLure, Matthew, Scott Friedman, and Kenneth Forbus. "Extending analogical generalization

with near-misses." In Proceedings of the AAAI Conference on Artificial Intelligence, vol.

29, no. 1. 2015.

Mitchell, Tom Michael. Version spaces: an approach to concept learning. STANFORD UNIV

CALIF DEPT OF COMPUTER SCIENCE, 1978.

Mitra, Arindam, and Chitta Baral. "Addressing a question answering challenge by combining

statistical methods with inductive rule learning and reasoning." In Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 30, no. 1. 2016.

Mitra, Arindam, Chitta Baral, Aurgho Bhattacharjee, and Ishan Shrivastava. "A generate-validate

approach to answering questions about qualitative relationships." arXiv preprint

arXiv:1908.03645 (2019).

Muggleton, Stephen, and Luc De Raedt. "Inductive logic programming: Theory and methods."

The Journal of Logic Programming 19 (1994): 629-679.

Muggleton, Stephen H., Dianhuan Lin, and Alireza Tamaddoni-Nezhad. "Meta-interpretive

learning of higher-order dyadic datalog: Predicate invention revisited." Machine Learning

100, no. 1 (2015): 49-73.

Pasupat, Panupong, and Percy Liang. "Compositional semantic parsing on semi-structured

tables." arXiv preprint arXiv:1508.00305 (2015).

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,

and Luke Zettlemoyer. "Deep contextualized word representations." arXiv preprint

arXiv:1802.05365 (2018).

Quinlan, J. Ross. "Learning logical definitions from relations." Machine learning 5, no. 3 (1990):

239-266.

Rajagopal, Dheeraj, Nidhi Vyas, Aditya Siddhant, Anirudha Rayasam, Niket Tandon and E.

Hovy. “Domain Adaptation of SRL Systems for Biological Processes.” BioNLP@ACL

(2019).

Reddy, Siva, Oscar Täckström, Michael Collins, T. Kwiatkowski, Dipanjan Das, Mark Steedman

and Mirella Lapata. “Transforming Dependency Structures to Logical Forms for

Semantic Parsing.” Transactions of the Association for Computational Linguistics 4

(2016): 127-140.

Ribeiro, Danilo, Thomas Hinrichs, Maxwell Crouse, Kenneth Forbus, Maria Chang, and Michael

Witbrock. "Predicting state changes in procedural text using analogical question

answering." In 7th Annual Conference on Advances in Cognitive Systems. 2019.

106

Schmitz, Michael, Stephen Soderland, Robert Bart, and Oren Etzioni. "Open language learning

for information extraction." In Proceedings of the 2012 joint conference on empirical

methods in natural language processing and computational natural language learning, pp.

523-534. 2012.

Sharma, Abhishek, and Kenneth Forbus. "Graph traversal methods for reasoning in large

knowledge-based systems." In Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 27, no. 1. 2013.

Tafjord, Oyvind, Peter Clark, Matt Gardner, Wen-tau Yih, and Ashish Sabharwal. 2019. "Quarel:

A dataset and models for answering questions about qualitative relationships."

Proceedings of the AAAI Conference on Artificial Intelligence.

Tafjord, Oyvind, Matt Gardner, Kevin Lin and P. Clark. “QuaRTz: An Open-Domain Dataset of

Qualitative Relationship Questions.” ArXiv abs/1909.03553 (2019): n. pag.

Tomai, Emmett, and Kenneth D. Forbus. "EA NLU: Practical Language Understanding for

Cognitive Modeling." In FLAIRS Conference. 2009.

Veale, Tony, and Mark T. Keane. "The competence of sub-optimal theories of structure mapping

on hard analogies." In IJCAI (1), pp. 232-237. 1997.

Weis, Karl-Heinz. "A case based reasoning approach for answer reranking in question

answering." arXiv preprint arXiv:1503.02917 (2015).

Weld, Daniel. 1990. "Theories of comparative analysis." MIT Press.

Wilson, Jason R., Kezhen Chen, Maxwell Crouse, Constantine Nakos, Danilo Neves Ribeiro,

Irina Rabkina, and Kenneth D. Forbus. "Analogical Question Answering in a Multimodal

Information Kiosk." In Proceedings of the Seventh Annual Conference on Advances in

Cognitive Systems. 2019.

Yih, Wen-tau, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. "The

value of semantic parse labeling for knowledge base question answering." In Proceedings

of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2:

Short Papers), pp. 201-206. 2016.

Zelle, John M., and Raymond J. Mooney. "Learning to parse database queries using inductive

logic programming." In Proceedings of the national conference on artificial intelligence,

pp. 1050-1055. 1996.

Zesch, Torsten, Christof Müller, and Iryna Gurevych. "Extracting Lexical Semantic Knowledge

from Wikipedia and Wiktionary." In LREC, vol. 8, no. 2008, pp. 1646-1652. 2008.

107

Zettlemoyer, Luke S., and Michael Collins. "Learning to map sentences to logical form:

Structured classification with probabilistic categorial grammars." arXiv preprint

arXiv:1207.1420 (2012).

Zhang, Sheng, Xutai Ma, Kevin Duh and Benjamin Van Durme. “AMR Parsing as Sequence-to-

Graph Transduction.” ACL (2019a).

Zhang, Sheng, Xutai Ma, Kevin Duh and Benjamin Van Durme. “Broad-Coverage Semantic

Parsing as Transduction.” ArXiv abs/1909.02607 (2019b)

Zhong, Victor, Caiming Xiong, and Richard Socher. "Seq2sql: Generating structured queries

from natural language using reinforcement learning." arXiv preprint arXiv:1709.00103

(2017).

