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ABSTRACT

Advances in Risk Management Simulation

R. Evren Baysal

Risk measurement involves estimating some functional of a loss distribution. This

calls for nested simulation, in which risk factors are sampled at an outer level of simula-

tion, while the inner level of simulation provides estimates of loss given each realization

of the risk factors. Assessing the statistical uncertainty of estimates of risk measures at

the outer simulation level is crucial in designing computationally efficient two-level sim-

ulation procedures for risk management applications. Confidence intervals for the risk

measure of interest provide information about this statistical uncertainty and we provide

asymptotically valid confidence intervals and confidence regions involving value at risk,

conditional tail expectation, and expected shortfall (conditional value at risk), based on

three different methodologies. One is an extension of previous work based on robust sta-

tistics, the second is a straightforward application of bootstrapping, and we derive the

third using empirical likelihood. We then evaluate the small-sample coverage of the con-

fidence intervals and regions in simulation experiments using financial examples. We find

that the coverage probabilities are approximately nominal for large sample sizes, but are
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noticeably low when sample sizes are too small (roughly, less than 500 here). The new

empirical likelihood method provides the highest coverage at moderate sample sizes in

these experiments.

Nested simulations can also be used in evaluating trading and hedging strategies. Sup-

pose that one wishes to evaluate the distribution of profit and loss (P&L) resulting from

a dynamic trading strategy. A straightforward method, then, is to simulate thousands of

paths (i.e., time series) of relevant financial variables and to track the resulting P&L at

every time at which the trading strategy rebalances its portfolio. In many cases, this re-

quires numerical computation of portfolio weights at every rebalancing time on every path

by a nested simulation performed conditional on market conditions at that time on that

path. Such a two-level simulation could involve many millions of simulations to compute

portfolio weights, and thus be too computationally expensive to attain high precision. We

show that response surface methodology enables a more efficient simulation procedure: in

particular, it is possible to do far fewer simulations by using kriging to model portfolio

weights as a function of underlying financial variables.
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CHAPTER 1

Empirical Likelihood for Value at Risk and Expected Shortfall

1.1. Introduction

We want to measure the risk of a given portfolio which has random profits at the end of

a predetermined investment period. We can sample from the distribution of the portfolio’s

profits using Monte Carlo simulation based on a stochastic model of financial markets. Our

focus will be on estimating risk measures for our portfolio based on simulated profits and

providing information in the form of confidence intervals and regions about the statistical

uncertainty of these estimates. We address only this Monte Carlo sampling error in

estimating risk, not the model risk that includes errors introduced by using an incorrect

model of financial markets and statistical error in estimating the model’s parameters from

data. We will emphasize moderate Monte Carlo sample sizes, which are appropriate when

it is computationally expensive to simulate financial scenarios and determine the value of

the portfolio in each scenario.

Define V to be the random profit of the given portfolio at a specific investment horizon.

The 95% Value at Risk (VaR95%) of the portfolio is the 95% quantile of the loss −V . A

related risk measure is the 95% Conditional Tail Expectation (CTE95%), which is

CTE95% = E[−V | − V ≥ VaR95%].
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Another closely related risk measure is Expected Shortfall (ES95%), which is

ES95% = − 1

0.05

(
E[V 1{V≤v0.05}] + v0.05(0.05−P[V ≤ v0.05])

)
,

where ν0.05 is the lower 5% quantile (Def. 1.5.2) of the distribution of V . Under continuity

conditions on the loss distribution, CTE equals ES ([2]). ES always equals Conditional

Value-at-Risk (CVaR), which is coherent ([2], [37]). A risk measure is coherent if it

satisfies certain axioms of translation invariance, subadditivity, positive homogeneity and

monotonicity ([6]). We use the term “expected shortfall” here because ES includes an

expectation, which is closely related to simulation, on which we focus, while CVaR is

closely associated with a minimization formula due to [36, 37].

Our goal is to construct confidence intervals and regions for the above risk measures

based on a simulated sample V1, . . . , Vk of independent profits with common distribution

F0. Let V[1], . . . , V[k] be ascending order statistics. The obvious point estimators of VaR

and CTE at the (1− p) level, assuming kp is an integer, are

V̂aR1−p,k = −V[kp] and(1.1)

ĈTE1−p,k = − 1

kp

kp∑
i=1

V[i](1.2)

respectively. Other point estimators are discussed in Section 1.7.

Here we focus on constructing a confidence interval for ES and a confidence region

for VaR and CTE simultaneously. We consider three methods of constructing them.

To facilitate comparisons between their error rates, we also compare the three methods’

confidence intervals for VaR to a standard confidence interval for VaR. This standard is the
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binomial confidence interval for a quantile ([14]), which we summarize in Section 1.2. In

Section 1.3, we construct confidence intervals and regions by extending results of [45] and

[30] based on the influence function used in robust statistics. Section 1.4 briefly discusses

how to construct them by bootstrapping. The major new results are in Section 1.5, where

we show how to construct them using empirical likelihood (Owen 2001). In Section 1.6,

we present computer simulation experiments which show that these confidence intervals

and regions achieve close to nominal coverage for large sample sizes, but not for moderate

sample sizes that are too small. Empirical likelihood provides the highest coverage at

moderate sample sizes in these experiments, for the most part.

One contribution of this paper is simply in providing the first test (known to us) of the

coverage of confidence regions and intervals involving CTE on financial examples. This

provides some guidance about how large the sample size must be before the coverage is

adequate, or how low the coverage might be at low sample sizes. Through a nontrivial

application of empirical likelihood, we provide a method for generating confidence regions

and intervals with higher coverage. The empirical likelihood approach is also useful in

enabling risk measurement procedures that can cope with the need to use simulation

at two levels: in sampling from a distribution of risky scenarios, and in estimating the

portfolio loss in each of those scenarios ([29]).

1.2. Binomial Confidence Intervals for VaR

There is a well-known confidence interval for quantiles ([14]), and thus VaR, based on

the binomial distribution of the number of losses N(q) :=
∑k

i=1 1{−Vi ≥ q} that exceed

a threshold q. The lower and upper limits of a two-sided confidence interval for VaR1−p
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with (1− α) nominal coverage probability are respectively

inf

q |
k∑

n=N(q)+1

(
k

n

)
pn(1− p)k−n ≥ α

2

 and sup

q |
N(q)∑
n=0

(
k

n

)
pn(1− p)k−n ≥ α

2

 .

The limit of a one-sided upper confidence interval for VaR1−p with (1−α) nominal coverage

probability is sup{q |
∑N(q)

n=0

(
k
n

)
pn(1− p)k−n ≥ α}.

These endpoints of the confidence interval equal order statistics of the data sample, i.e.

quantiles of the empirical distribution function. It is not generally possible to get exactly

nominal coverage for the confidence interval because of the discreteness of the empirical

distribution function, or, viewed differently, because of the discreteness of the binomial

distribution ([3]). Nonetheless, these confidence intervals are often called “exact” because

they are related to an exact hypothesis test for the value of the quantile. The justification

of these confidence intervals does not involve the convergence of a statistic’s distribution

to a limiting distribution as sample size k grows, as do the methods described in later

sections.

1.3. Influence Function

The approach based on the influence function in the theory of robust statistics allows

us to compute the variances of the asymptotic normal distributions of the estimators in

Equations (1.1)–(1.2). As [30, note 6] state, under regularity conditions discussed in [43],

(1.3) kVar(ĈTE1−p,k)→
Var(−V | −V > VaR1−p) + p (CTE1−p − VaR1−p)

2

(1− p)
,
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(1.4) kVar(V̂aR1−p,k)→
p (1− p)

f 2(VaR1−p)
, and

(1.5) kCov(ĈTE1−p,k, V̂aR1−p,k)→
p (CTE1−p − VaR1−p)

f(VaR1−p)
,

where f(VaR1−p) is the value of the probability density of the underlying distribution

at the quantile. Similar results appear in [45], but complicated by a truncation argu-

ment. [45] report confidence intervals for VaR and ES, but not a confidence region for

both simultaneously. It also remains to show how to estimate the unknown quantities in

Equations (1.3)–(1.5) to construct a confidence interval or region.

[30] propose the following estimates of asymptotic variances and covariances:

(1.6) V̂ark(ĈTE1−p,k) =

1
kp−1

∑kp
i=1(ĈTE1−p,k + V[i])

2 + p (ĈTE1−p,k + V[kp])
2

k (1− p)
,

(1.7) V̂ark(V̂aR1−p,k) =
p (1− p)
kf̂ 2(−V[kp])

, and

(1.8) Ĉovk(ĈTE1−p,k, V̂aR1−p,k) =
p (ĈTE1−p,k + V[kp])

k f̂(−V[kp])
,

wheref̂(−V[kp]) is an estimate of the probability density. [30] propose to use

f̂(−V[kp]) =
ξ

F−1
k (p)− F−1

k (p− ξ)

where Fk(x) = (1/k)
∑k

i=1 1{Vi≤x} is the empirical distribution derived from the sample of

size k and ξ is chosen to be a small number. Note that the choice of ξ affects the empirical
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density function estimate f̂ considerably, especially for small samples. Hence, we propose

to use the kernel method to estimate f via a Gaussian kernel estimator function:

(1.9) f̂k(−V[kp]) =
1

kh

k∑
i=1

Φ′
(
−V[kp] + V[i]

h

)

where h = ( 4
3k

)1/5σ, Φ′(u) = (2π)−1/2 exp (−u2/2) and the sample standard deviation can

be used for σ.

We extend the results above to create confidence intervals and regions. We define

Y :=

 V̂aR1−p,k

ĈTE1−p,k

 based on a sample of size k. This is asymptotically normal with mean

y0 :=

 VaR1−p

CTE1−p

 and covariance matrix Σ described by Equations (1.3)–(1.5). There

exists a unique symmetric positive definite matrix A such that A>A = Σ−1. We define

Z := A(Y −y0) whose components are independent and asymptotically standard normal.

Then, the quadratic form (Y − y0)>Σ−1(Y − y0) = Z>Z is distributed asymptotically as

χ2 with two degrees of freedom. Note that the asymptotic formulae (1.6)–(1.8) can be

used to construct Σ̂ as an estimate of the covariance matrix Σ. With probability one,

V̂ark(ĈTE1−p,k) converges to Var(ĈTE1−p,k) ([27]). Weak convergence results for the

kernel density estimate f̂k (1.9) are given by [42] and [11]. Hence, Σ̂ is a consistent

estimator of Σ and by the converging-together lemma of [18] an asymptotically valid

(1 − α) confidence region for VaR1−p and CTE1−p, is an elliptical region centered at

(V̂aR1−p,k, ĈTE1−p,k) and is given by

(1.10)
{
y0

∣∣∣(Y − y0)>Σ̂−1(Y − y0) ≤ χ2
(2),1−α

}
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where χ2
(2),1−α is the 1 − α quantile of the chi-squared distribution with two degrees of

freedom. By applying the converging-together lemma to ĈTE1−p,k and V̂ark(ĈTE1−p,k),

one can show that where Z1−α/2 is the 1−α/2 quantile of the standard normal distribution,

(1.11)

{
µ0

∣∣∣∣|ĈTE1−p,k − µ0| ≤ Z1−α/2

√
V̂ark(ĈTE1−p,k)

}

is a two-sided confidence interval for CTE1−p ([27]). Correspondingly,

(1.12)

{
µ0

∣∣∣∣µ0 ≤ ĈTE1−p,k + Z1−α

√
V̂ark(ĈTE1−p,k)

}

is a one-sided upper confidence interval for CTE1−p. Likewise,

(1.13)

{
q0

∣∣∣∣|V̂aR1−p,k − q0| ≤ Z1−α/2

√
V̂ark(V̂aR1−p,k)

}

is a two-sided confidence interval for VaR1−p and

(1.14)

{
q0

∣∣∣∣q0 ≤ V̂aR1−p,k + Z1−α

√
V̂ark(V̂aR1−p,k)

}
.

is a one-sided upper confidence interval for VaR1−p.

1.4. Bootstrapping

The idea of bootstrapping to create confidence intervals for CTE was suggested by

[17] and [24]. Bootstrap methods are in general motivated by the need to evaluate the

accuracy of an estimate in the absence of distributional assumptions ([13]). [39] discuss in

detail the application of bootstrap methods to hypothesis testing and confidence interval
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estimation for various statistics including quantiles. The logic behind bootstrapping for

quantile estimation is readily applicable to estimating VaR, CTE, and ES.

As before, let V[1] ≤ . . . ≤ V[k] be order statistics, sorted after sampling profits inde-

pendently from the common distribution F0. We assume kp is an integer. To estimate

VaR1−p and CTE1−p based on this sample, we compute the obvious estimators previously

mentioned, V̂aR1−p,k = −V[kp] and ĈTE1−p,k = − 1
kp

∑kp
i=1 V[i]. We will denote them by

q̂k(p) and µ̂k(p), respectively, to emphasize their dependence on the initial sample of size

k. Because kp is an integer, the estimate µ̂k(p) of CTE1−p is also an estimate of ES1−p.

In order to assess the uncertainty associated with these estimates, we generate B i.i.d.

bootstrap samples by resampling from the empirical distribution function Fk of the initial

Monte Carlo sample. For risk management applications, resampling may be considerably

faster than generating samples from the original distribution F0. We denote the bootstrap

samples by V̂ b
[1], . . . , V̂

b
[k] for b = 1, . . . , B. From the bth bootstrap sample, we compute the

estimates

µ̂b(p) = − 1

kp

kp∑
i=1

V̂ b
[i] and q̂b(p) = −V̂ b

[kp].

Note that we only need V̂ b
[1], . . . , V̂

b
[kp] to compute q̂b(p) and µ̂b(p), and the bootstrap

sample for the first kp order statistics can be generated efficiently by V̂ b
[j] = F−1

k (U[j])

where U[1], . . . , U[k] are the order statistics of an i.i.d. sample of size k from the standard

uniform distribution. The following algorithm of order O(kp) from [15] can be used to



19

generate U[1], . . . , U[kp]:

U[0] = 0,

for i = 1 to kp

generate Vi ∼ Uniform[0, 1],

U[i] = 1− (1− U[i−1])V
1

kp−i+1

i ,

end for.

1.4.1. Bootstrap Confidence Intervals for VaR and ES

There are various methods for constructing asymptotically valid confidence intervals for

VaR1−p and ES1−p from q̂1(p), . . . , q̂B(p) and µ̂1(p), . . . , µ̂B(p), such as the bootstrap t,

the bootstrap percentile, the bootstrap bias-corrected percentile, and the bootstrap bias-

corrected/accelerated (BCa) percentile methods ([39]). We use the bootci function of

the MATLAB Statistical Toolbox to construct BCa intervals in our experiments. We set

the upper confidence limits of one-sided 100(1 − α)% upper confidence intervals to the

upper limits of the corresponding two-sided confidence intervals with (1 − 2α) nominal

coverage probability.

1.4.2. Bootstrap Confidence Regions for VaR and CTE

[16] suggests basing a joint bootstrap confidence region for a vector parameter y0 on the

quadratic form

Q = (Y − y0)>Σ̂−1(Y − y0)
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where Y is an estimate of y0 and Σ̂ is the estimated covariance matrix of Y . When Y is

approximately normal, Q will be approximately χ2
(2). Its distribution can be assessed by

bootstrapping instead.

As in Section 1.3, we let y0 =

 VaR1−p

CTE1−p

, Y =

 −V[kp]

− 1
kp

∑kp
i=1 V[i]

, and Σ̂−1 be

the influence function estimate of the covariance matrix of Y , as in Equations (1.6)–(1.8).

We calculate

Qb = (Yb − Y )>Σ̂−1
b (Yb − Y )

for each bootstrap sample b = 1, . . . , B, yielding an estimate Yb of CTE1−p and an esti-

mated covariance matrix Σ̂−1
b . We denote the ordered bootstrap values as Qb[1] ≤ · · · ≤

Qb[B]. Then a bootstrap confidence region for the vector parameter y0 is the set

(1.15)
{
y0 | (Y − y0)>Σ̂−1(Y − y0) ≤ Qb[B(1−α)]

}
,

which is similar to Equation (1.10) but with Qb[B(1−α)] replacing χ2
(2),1−α.

1.5. Empirical Likelihood

Empirical likelihood (EL) is a nonparametric method for hypothesis testing (and there-

fore for confidence region construction) that is similar to the usual parametric likelihood

ratio approach, which rejects a hypothesis when its likelihood ratio is too low. The empiri-

cal likelihood ratio, instead of being constructed from a parametric family of distributions,

considers the family Fk := {F | F � Fk} of discrete distributions absolutely continu-

ous with respect to the empirical cumulative distribution Fk whose support equals the

observed data points. Such a distribution F � Fk puts weights (i.e., probability mass)



21

w1, . . . , wk on order statistics V[1], . . . , V[k], where the weights must be nonnegative and

sum to 1. The empirical likelihood of F is
∏k

i=1 wi and the empirical likelihood ratio

of F is defined as R(F ) :=
∏k

i=1(kwi), since the maximum likelihood member of Fk is

the empirical distribution, Fk, which has all weights equal to 1/k and thus has empirical

likelihood k−k.

Let T (·) be some statistical functional of the distribution F0, where F0 is the true

distribution of portfolio profit V . The nonparametric maximum likelihood estimate of

T (F0) is T (Fk) and sets of the form

(1.16) {T (F ) | R(F ) ≥ r, F ∈ Fk}

can be used as confidence regions for T (F0) where r is chosen appropriately to get the

right asymptotic coverage, as k →∞ ([32]).

In particular, the empirical likelihood confidence interval for VaR coincides with the

binomial confidence interval of Section 1.2 (Owen 2001, Sec. 3.6).

1.5.1. A Nonparametric Confidence Region for VaR and CTE

Definition 1.5.1. For any 0 < p < 1, any value Qp such that P(V ≤ Qp) ≥

p and P(V ≥ Qp) ≥ 1− p is a p-quantile of F0 ([34]).

We defined the 95% Value at Risk of our portfolio as the 95% quantile of the loss

given by Q95%
−V . Using the definition above, we see that this is equivalent to the negative

of the 5% quantile of the profit, which is given by −Q5%
V . Then, the 95% Conditional Tail

Expectation of our portfolio is E[−V | −V ≥ Q95%
−V ] = −E[V | V ≤ Q5%

V ].
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Our goal is to construct an empirical likelihood confidence region for VaR1−p = −Qp
V

and CTE1−p = −E[V | V ≤ Qp
V ] and to provide asymptotic coverage probability results

for such confidence regions.

Definition 1.5.2. The lower and upper p-quantiles of any distribution F are defined

as νp := inf{v|F (v) ≥ p} and νp := inf{v|F (v) > p}, respectively ([2]).

Definition 1.5.3. The expected shortfall at level 1− p of V is defined as

ES1−p := −p−1
(
E[V 1{V≤vp}] + vp (p− Pr[V ≤ vp])

)
where νp is the lower p-quantile of the distribution of V ([2]).

Because it is not, in general, uniquely defined, it is not possible to write Qp
V of Def-

inition 1.5.1 as a statistical functional T (F0). This poses a problem for constructing

confidence regions of the form (1.16). However, if F0 is continuous and strictly increasing

at Qp
V , then Qp

V is unique and is equal to νp. Furthermore, P(V ≤ Qp
V ) = P(V ≤ νp) = p,

which by Definition 1.5.3 implies ES1−p = CTE1−p. Under this simple restriction on F0,

the empirical likelihood results for M-estimates ([33]) can be used to construct empirical

likelihood confidence regions for VaR1−p and ES1−p.

Definition 1.5.4. An M-estimate is a statistical functional defined as a root t = Tψ(F )

of

(1.17)

∫
ψ(V, t)F (dV ) = 0

where V ∼ F ([33]).
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Proposition 1.5.1. If F0 is continuous and strictly increasing at its p-quantile, the

functional Tψ defined by Equation (1.17) is an M-estimate for the vector (VaR1−p,ES1−p)

where the function ψ : R × R2 → R2 is given by ψ(V, (q, µ)) := (p − 1{V≤−q}, µ +

1
p
V 1{V≤−q}).

Proof: The unique root of Equation (1.17) with F = F0 is (VaR1−p,ES1−p), as

follows. First,
∫

(p − 1{V≤−q})F0(dV ) = p − F0(−q) = 0 which implies F0(−q) = p.

Since we assumed F0 has a unique p-quantile with F0(Qp
V ) = p, we find Qp

V = −q and

VaR1−p = −Qp
V = q. Second,

∫
(µ+ 1

p
V 1{V≤−q})F0(dV ) = µ+ 1

p

∫ −q
−∞ V F0(dV ) = 0 which

implies µ = −E[V | V ≤ −q]. Again by uniqueness of Qp
V = νp = −q and therefore of

ES1−p = −E[V | V ≤ vp], we get µ = ES1−p. �

Note that for ψ(V, (q, µ)) defined as in Proposition 1.5.1 and Tψ(F ) defined as in

Definition 1.5.4, the set {Tψ(F ) | F � Fk, R(F ) ≥ r} equals the confidence region

{(q, µ) |
∫
ψ(V, (q, µ))F (dV ) = 0, F � Fk, R(F ) ≥ r)} for VaR1−p and ES1−p depicted in

Figure 1.1.

Proposition 1.5.2. For ψ defined as in Proposition 1.5.1, if F0 is continuous and

strictly increasing at its p-quantile, and if V 1{V≤QpV } is not a constant and E[V 21{V≤QpV }] <

∞, then {Tψ(F ) | F � Fk, R(F ) ≥ exp(−1
2
χ2

(2),1−α)} is a confidence region for VaR1−p

and CTE1−p with (1− α) asymptotic coverage probability.

Proof: By Proposition 1.5.1, Tψ(F0) exists and is unique if F0 is continuous and

increasing at νp, which we already assumed. The assumption that V 1{V≤QpV } is not a

constant and E[V 21{V≤QpV }] < ∞ implies that the rank of Var[ψ(V, t)] is two. Then, we
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can use Theorem 3 of [33] to show that Pr [Tψ(F0) /∈ {Tψ(F ) | F � Fk, R(F ) ≥ r}] → α

as k →∞ if we pick r = exp(−1
2
χ2

(2),1−α). �

While computing {Tψ(F ) | F � Fk, R(F ) ≥ r}, we must restrict our attention to F

within the family Fk such that for some l, Wl defined by

(1.18) Wl :=
l∑

i=1

wi

is equal to p. Otherwise, Tψ(F ) does not exist. It is worth noting that Tψ(F ) is not

unique for such F ∈ Fk since for any q such that −q ∈
[
V[l], V[l+1]

)
, (q,−1

p

∑l
i=1wiV[i]) is

a root of
∫
ψ(V, t)dF (V ) = 0; however, we require only Tψ(F0) to be unique.

A confidence region with (1− α) asymptotic coverage probability can be written as

CR1−α =

{
t

∣∣∣∣∫ ψ(V, t)dF (V ) = 0, F � Fk, R(F ) ≥ r

}

=
k−1⋃
l=1

{
µ

∣∣∣∣∣
k∏
i=1

(kwi) ≥ r,
l∑

i=1

wi = p, µ = −1

p

l∑
i=1

V[i]wi, wi ≥ 0,
k∑
i=1

wi = 1

}
×

(
−V[l+1],−V[l]

]
=

k−1⋃
l=1

(
−V[l+1],−V[l]

]
×
{
µ | Rψ

l (µ) ≥ r
}

whereRψ
l (µ) := maxw

{∏k
i=1(kwi) |

∑l
i=1wi = p, µ = −1

p

∑l
i=1 V[i]wi, wi ≥ 0,

∑k
i=1wi = 1

}
.

Appendix 1 up through Lemma 1.1 shows that this maximum is attained at {w∗i }i=1,...,k

given by

(1.19) w∗i =


p
l
[1− (V[i] + µ)λ∗]−1 for i = 1, . . . , l

1−p
k−l for i = l + 1, . . . , k
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where λ∗ is the unique solution to

l∑
i=1

V[i] + µ

1− (V[i] + µ)λ∗
= 0

which can be computed by numerical root finding within the interval
[

1−1/l
µ+V[1]

, 1−1/l
µ+V[l]

]
. By

Figure 1.1. Influence Function and Empirical Likelihood Confidence Regions

Lemma 1.2 in Appendix 1, for each l, Rψ
l (µ) is single peaked at−1

l

∑l
i=1 V[i] and continuous

and monotone on either side of this peak. This implies Iψl := {µ | Rψ
l (µ) ≥ r} is an
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interval if it is not empty. Because maxµR
ψ
l (µ) = kk

(
p
l

)l (1−p
k−l

)k−l
, Iψl is non-empty if

k log k+l log p
l
+(k−l) log 1−p

k−l ≥ −
1
2
χ2

(2),1−α. Therefore Iψl ⊆
[
−V[l], V[1]

]
can be computed

as Iψl =
[
µlol , µ

hi
l

]
where

µlol is the unique root of Rψ
l (µ) = r in

[
−V[l],−

1

l

l∑
i=1

V[i]

]

and

µhil is the unique root of Rψ
l (µ) = r in

[
−1

l

l∑
i=1

V[i],−V[1]

]
.

Finally, we compute CR1−α =
⋃k−1
l=1

(
−V[l+1],−V[l]

]
×
[
µlol , µ

hi
l

]
. Figure 1.1 compares the

shape of such a confidence region to the shape of a confidence region constructed by the

influence function approach.

1.5.2. Nonparametric Confidence Intervals for Expected Shortfall

Complications arise when we try to compute a confidence interval for CTE even if we

restrict our attention to continuous distributions for which CTE is coherent. This is

because ψ(V, (q, µ)) is a non-smooth function of (q, µ) and hence theoretical justification

is lacking to profile out either component of (q, µ) to get a confidence interval for the

other. We, therefore, turn our attention to expected shortfall (ES), for which we can use

empirical likelihood theory to compute an asymptotically valid confidence interval. Note

that ES is still coherent even if the profit distribution F0 is not continuous or strictly

increasing at Qp.

Empirical likelihood most naturally produces two-sided confidence intervals, and we

will focus on these in this section. We produce one-sided confidence intervals according
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to the following suggestion of Owen (2001, Sec. 2.7). Where (L,U) is a two-sided 100(1−

2α)% empirical likelihood confidence interval, (−∞, U) can be used as a one-sided 100(1−

α)% confidence interval.

[2] show that ES1−p of Definition 1.5.3 can be represented as a functional T by T (F0) :=

−1
p

∫ p
0

F−1
0 (u)du where F−1

0 (u) := inf{v | F0(v) ≥ u}. The empirical likelihood ratio of

the hypothesis µ = T (F0) is defined as

R(µ) := max

{
k∏
i=1

(kwi) | T (F ) = µ, F � Fk

}

where F has weights {wi}i=1,...,k and, with W defined as in Equation (1.18),

T (F ) = −1

p

{
l−1∑
i=1

∫ Wi

Wi−1

V[i]du+

∫ p

Wl−1

V[l]du

}
= −1

p

{
l−1∑
i=1

wiV[i] + (p−Wl−1)V[l]

}

with l determined by Wl ≥ p and Wl−1 < p.

Proposition 1.5.3. If |F−1
0 (u)| is O(u−

1
3

+ε) as u → 0, for some ε > 0, then a

confidence interval for ES1−p with 100(1− α)% asymptotic coverage probability is

{
µ | F � Fk, R(µ) ≥ exp(−1

2
χ2

(1),1−α)

}
.

Proof: We start by writing ES1−p = T (F0) =
∫ 1

0
F−1

0 (u)g(u)du where g(u) =

−1
p
1{u≤p}. Note that T (F ) produces an L-estimator when we plug in the c.d.f. Fk for F. Ac-

cording to Theorem 10.2 of [34], Pr
[
T (F0) /∈

{
µ | F � Fk, R(µ) ≥ exp(−1

2
χ2

(1),1−α)
}]
→
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α as k →∞ if for some c ∈ (0,∞), some M ∈ (0,∞), and some d ∈ (1
6
, 1

2
), both

|g(u)| ≤M [u(1− u)]
1
c
− 1

2
+d and

|F−1
0 (u)| ≤M [u(1− u)]−

1
c

hold for all 0 < u < 1. In our case, g(u) = 0 for u > p, so only the left tail behavior is

relevant. That is, we are only concerned with the behavior of F−1
0 as u→ 0, because our

L-estimator uses only values less than the median of the data sample. We will show that

|g(u)| ≤Mu
1
c
− 1

2
+d and(1.20)

|F−1
0 (u)| ≤Mu−

1
c(1.21)

hold for suitable values of c, d, and M , given the assumption that F−1
0 (u) is O(u−

1
3

+ε) as

u→ 0.

The interesting case is when losses are unbounded, in which case ε < 1/3. Take

c = 1/(1/3− ε) and d = 1/6+ ε. Then (1.21) holds for sufficiently large M by assumption

and (1.20) holds for M ≥ 1/p because 1/c− 1/2 + d = 0 and |g(u)| = 1/p for u < p.

If losses are bounded, take M to be the maximum of the bound and 1/p. Take c = 3

and d = 1/3. Then (1.21) holds because |F−1
0 (u)| ≤M ≤Mu−

1
3 and (1.20) holds because

|g(u)| ≤M ≤Mu−
1
6 . �
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We compute R(µ) by R(µ) = maxl=1,...,k Rl(µ) where

Rl(µ) = sup

{
k∏
i=1

(kwi) | µ = T (F ),Wl ≥ p,Wl−1 < p,Wk = 1, wi ≥ 0

}

= max
{
Rψ
l (µ), Rint

l (µ)
}

and Rint
l (µ) is defined as

Rint
l (µ) := sup

{
k∏
i=1

(kwi) | µ = T (F ),Wl > p,Wl−1 < p,Wk = 1, wi ≥ 0

}
.

We observe that Rψ
l (µ) = max{

∏k
i=1(kwi) | µ = T (F ),Wl = p,Wk = 1, wi ≥ 0} is as

defined in the previous section because for Wl = p, we get T (F ) = −1
p

∑l
i=1wiV[i] with

Wl−1 < p, optimally. As Wl → p and as Wl−1 → p, limits of feasible points in this

maximization converge to feasible points in the maximizations of the previous section

whose optimal values are, respectively, Rψ
l (µ) and Rψ

l−1(µ). This reasoning shows that

(1.22) R(µ) = max
l=1,...,k

{
max

{
Rψ
l (µ), Rint

l (µ)
}}

= max

{
max
l=1,...,k

Rψ
l (µ), max

l∈Lint(µ)
Rint
l (µ)

}

where l ∈ Lint(µ) if and only if Rint
l (µ) is attained at an interior solution characterized

by Wl > p and Wl−1 < p, since otherwise Rint
l (µ) = Rψ

l (µ) or Rψ
l−1(µ).
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Since we have already found a way to compute Rψ
l (µ), we need only concern ourselves

with interior solutions Rint
l (µ) with l ∈ Lint(µ) to the following problem:

(1.23)

maximize
∏k

i=1(kwi)

subject to µ = −V[l] − 1
p

∑l−1
i=1wi(V[i] − V[l])

Wl > p and Wl−1 < p

Wk = 1 and wi ≥ 0

which we will refer to as Maximization Problem II. It is maximization of a concave ob-

jective with linear constraints and nonzero Hessian, so there is an interior solution if and

only if there is a solution to the two first-order conditions in two unknowns, which are

(1.24) W ∗
l−1 −

l−1∑
i=1

gi(W
∗
l−1, λ

∗) = 0

and

(1.25)
l−1∑
i=1

gi(W
∗
l−1, λ

∗)(V[l] − V[i])− p(µ+ V[l]) = 0

where gi is a function specifying the optimal weight wi for i = 1, . . . , l−1. In Appendix 2,

we show that gi(W
∗
l−1, λ

∗) :=
[
k−l+1

1−W ∗l−1
+ λ∗(V[l] − V[i])

]−1

, so the optimal weights are

(1.26) w∗i =


[
k−l+1

1−W ∗l−1
+ λ∗(V[l] − V[i])

]−1

for i = 1, . . . , l − 1

1−W ∗l−1

k−l+1
for i = l, . . . , k

where λ∗ and W ∗
l−1 ∈

(
p− 1−p

k−l , p
)

solve the first order conditions.

We construct a confidence interval with 100(1−α)% asymptotic coverage probability

for expected shortfall as CI1−α := {µ | F � Fk, R(µ) ≥ r}. By Equation (1.22), µ is in
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CI1−α if and only if Rψ
l ≥ r for some l or Rint

l (µ) ≥ r for some l ∈ Lint(µ). Then, CI1−α

can be computed as

CI1−α =

(
k⋃
l=1

Iψl

)⋃(
k⋃
l=1

I intl

)
where we define I intl := {µ | l ∈ Lint(µ), Rint

l (µ) ≥ r} = {µ | µ ∈M int
l , Rint

l (µ) ≥ r} and

M int
l = {µ | l ∈ Lint(µ)} is the set of µ such that Equations (1.24) and (1.25) have an

interior solution. We show by Lemma 2.2 of Appendix 2 that M int
l is an open interval

whose lower endpoint mlo
l satisfies Equations (1.24) and (1.25) with W ∗

l−1 = p− 1−p
k−l and

whose upper endpoint mhi
l satisfies Equations (1.24) and (1.25) with W ∗

l−1 = p.

We have already shown how to calculate Iψl in Section 1.5.1 and it remains to compute

I intl . By definition, I intl is a subset of M int
l =

(
mlo
l ,m

hi
l

)
where mlo

l and mhi
l can be found

by solving Equation (1.24) for λ∗ with W ∗
l−1 = p − 1−p

k−l and W ∗
l−1 = p, respectively and

then by solving Equation (1.25) for µ with these W ∗
l−1 and λ∗. Continuity of Rint

l and

Lemma 2.3 of Appendix 2 justify the following procedure:

(1) If l ≤ kp: If Rint
l (mlo

l ) < r, then I intl is empty. Otherwise, the lower endpoint of I li

is mlo
l and the upper endpoint of I intl is the root of Rint

l (µ)− r = 0 on
(
mlo
l ,m

hi
l

)
.

(2) If kp < l < kp+1: The roots of Rint
l (µ)−r = 0 on

(
mlo
l , T (Fk)

)
and

(
T (Fk),m

hi
l

)
are the lower and upper endpoints of I intl .

(3) If l ≥ kp+1: If Rint
l (mhi

l ) < r, then I intl is empty. Otherwise, the upper endpoint

of I li is mhi
l and the lower endpoint of I intl is the root of Rint

l (µ) − r = 0 on(
mlo
l ,m

hi
l

)
.
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Finally, since both I intl and Iψl are intervals, we compute

CI1−α =

(
k⋃
l=1

Iψl

)⋃(
k⋃
l=1

I intl

)
=
[
µlo, µhi

]
by setting µhi equal to the maximum of the upper endpoints of Iψl and of I intl and likewise

by setting µlo equal to the minimum of the lower endpoints of Iψl and I intl .

1.6. Experimental Results

We use the following two examples from [30] to test the performances of our confidence

intervals and regions.

(1) Put Option: The owner of the portfolio has issued an in-the-money European

put option and we use Monte Carlo simulation to estimate risk measures of this

simple portfolio. The put option matures in 10 years with a strike price of $110.

The current stock price is $100 and assumed to follow a lognormal return process

with drift 8% and volatility 15%. The continuous discount rate is 6%.

(2) Pareto Distribution: The loss is assumed to have a Pareto distribution, whose

tail behavior is similar to that observed in some applications. The Pareto distri-

bution is tractable enough for obtaining closed form expressions for the variance

of the CTE estimator. We use Monte Carlo simulation to estimate risk measures

for losses generated by a heavy-tailed Pareto distribution with shape and scale

parameters set to 2.5 and 25, respectively.

These are simple examples, but the results should be indicative of the coverage we

would expect these procedures to provide for similar, larger examples. The simulations

reported here do not use variance reduction. It is not straightforward to combine variance
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reduction techniques, such as those applied to this problem by [30], with the methods for

constructing confidence intervals and regions.

To evaluate the procedures for generating confidence intervals and regions, we run each

of them 10,000 or 50,000 times. Each of these N macroreplications contains k simulated

losses, where the sample size k is 500, 1,000, 2,000, or more in the experiments whose

results are depicted in the following figures. From each macroreplication, we calculate

one-sided and two-sided confidence intervals for ES0.95 and confidence regions for VaR0.95

and CTE0.95 at a nominal confidence level of 95% by the influence function, bootstrap,

and empirical likelihood methods. We also calculate one-sided confidence intervals for

VaR0.95 at a nominal confidence level of 95% by the binomial, influence function, and

bootstrap methods. The number of bootstrap samples B we use is either 2,000 or 10,000.

We compute, for each sample size k, the observed coverage probabilities of confidence

intervals or regions

(1− α̂) := # {confidence intervals or regions that include the true value} /N

where the true values are computed according to the formulae given by [30]. The cover-

age results for confidence intervals and regions are summarized in the following figures.

The error bars in these figures represent 95% binomial confidence intervals for coverage

probabilities based on observing N macroreplications, each of which is a success if the

true value is included, a failure otherwise.

We first consider the example of selling a put option in the Black-Scholes model. We

examine one-sided confidence intervals for VaR in Figure 1.2 to see how the methods

under consideration differ in the well-studied setting of quantile estimation. As has been
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documented by [3], the one-sided binomial confidence interval shows modest overcoverage

for sample sizes between 500 and 2,000. The bootstrap and influence function meth-

ods show modest undercoverage, but attain coverage above 94% by sample size 4,000.

Bootstrapping is slightly better than the influence function method at small sample sizes.

Figure 1.2. (Put Option) Coverage Probability of One-Sided Confidence
Intervals for Value at Risk (N = 50, 000 Macroreplications)

Next we turn to one-sided confidence intervals for ES in Figure 1.3. Again boot-

strapping shows modest undercoverage, but for ES it attains nominal coverage by sample

size 4,000. Empirical likelihood provides somewhat worse undercoverage until sample size



35

4,000. The influence function method has the worst undercoverage and has not attained

nominal coverage even by sample size 8,000.

Figure 1.3. (Put Option) Coverage Probability of One-Sided Confidence
Intervals for Expected Shortfall (N = 50, 000 Macroreplications)

Figure 1.4 shows the coverage of two-sided confidence intervals for ES. The results

are qualitatively similar to those for one-sided confidence intervals, but as usual, the two-

sided confidence intervals have less undercoverage. This figure and the next also show

that the bootstrap sample size B = 2, 000 we use elsewhere is adequate: the improvement

in coverage created by using a bootstrap sample size of B = 10, 000 is negligible.

In Figure 1.5 we investigate the coverage of the confidence regions for VaR and CTE.

The empirical likelihood method attains nominal coverage by sample size 2,000, while
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Figure 1.4. (Put Option) Coverage Probability of Two-Sided Confidence
Intervals for Expected Shortfall (N = 50, 000 Macroreplications)

the bootstrap and influence function methods produce disastrous undercoverage at these

small sample sizes. We suspect that this deficiency is due to the difficulty of density

estimation, resulting in poor covariance matrix estimates.

The subsequent figures portray the results of experiments on the Pareto distribution

example, which serve to illustrate how well the methods perform when the loss distri-

bution’s tail is heavy instead of light. We focus on one-sided confidence intervals for

ES in this example. Figure 1.6 shows that this example is much more challenging. All

the methods produce severe undercoverage at small sample sizes, where bootstrapping is

slightly better than empirical likelihood, which is in turn much better than the influence



37

Figure 1.5. (Put Option) Coverage Probability of Confidence Regions for
VaR and CTE (N = 50, 000 Macroreplications)

function method. At large sample sizes, bootstrapping and empirical likelihood perform

similarly. They still undercover somewhat even at a sample size of k = 128, 000, but they

are greatly superior to the influence function method.

Considering that confidence intervals fail to produce nearly nominal coverage even for

very large sample sizes when the distribution is heavy-tailed, we investigate empirically

how quickly the coverage converges to the nominal level. Figure 1.7 is a log-log plot of

coverage error, defined as the absolute value of the difference between observed coverage

and nominal coverage |α̂ − α|, against sample size k. For each method, the slope of the

curve indicates how quickly the coverage converges to the nominal level. For example, the
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Figure 1.6. (Pareto Distribution) Coverage Probability of One-Sided
Confidence Intervals for Expected Shortfall (N = 10, 000 Macroreplications)

coverage error for one-sided confidence intervals is typically O(k−1/2) when produced by

empirical likelihood (Owen 2001, Sec. 2.7), and O(k−1) when produced by the BCa boot-

strapping method (Owen 2001, Sec. A.6). This implies that on a log-log plot of coverage

error versus sample size, these methods should yield curves whose slopes approach -0.5

and -1, respectively, for large sample size. It is possible to correct empirical likelihood

one-sided confidence intervals so that their coverage error is also O(k−1) (Owen 2001,

Ch. 13).
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However, far from finding that BCa bootstrapping dominates empirical likelihood

asymptotically, we found that as sample size increases, the empirical likelihood method

catches up with bootstrapping. Also, the influence function method becomes increasingly

uncompetitive. We can see this in Figure 1.7, where we estimated slopes on the log-log

plot of coverage error versus sample size of -0.34 for the influence function method, -0.42

for the empirical likelihood method, and -0.38 for bootstrapping, over a range of sample

sizes from 500 to 128,000. The slope of -0.42 for empirical likelihood is not too far from

the theoretical asymptotic slope of -0.5, but the slope of -0.38 for BCa bootstrapping

is far from the typical theoretical asymptotic slope of -1. Of course, for finite sample

sizes, the slope may differ from the asymptotic slope as sample size goes to infinity. We

conjecture that there is another reason that the slope is far from -1 in Figure 1.7 for the

coverage error of the BCa bootstrap one-sided confidence interval. In this example, the

loss distribution is extremely heavy-tailed: the Pareto distribution with shape parameter

2.5 has first and second moments, but no third moment. Because the BCa method is

based on a skewness correction, one would not expect it to work if skewness does not

exist.

1.7. Conclusions and Future Research

Based on empirical likelihood, we have developed an asymptotically valid confidence

interval for ES and confidence region for VaR and CTE. In Monte Carlo experiments, we

found that they have coverage close to nominal for moderate sample sizes: about 1,000

samples in a financial example in which losses are light-tailed, and somewhat more in

an example in which the loss distribution is Pareto. The confidence interval based on
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Figure 1.7. (Pareto Distribution) Log-Log Plot of Coverage Error of
One-Sided 95% Confidence Intervals for Expected Shortfall vs. Sample Size
(N = 10, 000 Macroreplications)

empirical likelihood performed about as well as one based on bootstrapping and better

than one based on the influence function. The confidence region based on empirical

likelihood performed better than both its competitors.

The confidence intervals and regions discussed here are based on the most straightfor-

ward point estimators of VaR and CTE or ES. The most straightforward point estimator

of VaR, which is a quantile, is a sample quantile. There is a large literature on quantile

estimation which shows that more complicated estimators, such as kernel estimators and

the Harrell-Davis estimator, can outperform the sample quantile [11, 41].
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In this study, we have applied the basic version of empirical likelihood, but more

advanced versions could be applied to the same problem. Methods such as Bartlett

correction can improve the coverage of empirical likelihood confidence intervals (Owen

2001, Ch. 13). It has been found that smoothed or adjusted empirical likelihood methods

can produce confidence intervals for quantiles with improved coverage [12, 46]. It is also

possible to apply data tilting methods, which are generalizations of empirical likelihood, to

construct confidence intervals for quantiles. [35] do this for extreme quantiles by explicitly

estimating the tail index of the loss distribution. This method may also be applied to

CTE or ES.

As suggested by [17], the techniques described here could be applied to any spectral

measure of risk ([2]) as well as to ES. Another direction for future research is to show how

to construct confidence intervals and regions when variance reduction techniques are used

in the Monte Carlo sampling. This would yield smaller confidence intervals and regions

given the same amount of computational effort.
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CHAPTER 2

Response Surface Methodology for Simulating Hedging and

Trading Strategies: A Simple Kriging Approach

2.1. Introduction

Suppose that one wishes to evaluate the distribution of profit and loss (P&L) resulting

from a dynamic trading strategy. For example, one may be interested in a strategy that

aims to make a profit by trading stocks and options, or in a hedging strategy that is

intended to reduce the risk associated with selling over-the-counter derivative securities.

One would like to know the distribution of P&L that results from a strategy so as to decide

whether or not to adopt the strategy, or which of several rival strategies to implement.

Monte Carlo simulation is an appealing tool to use for this purpose: given a stochas-

tic model of the market’s dynamic behavior, one can simulate multiple scenarios for the

market’s behavior, determine the strategy’s P&L in each scenario, and consider the result-

ing empirical distribution of P&L over all scenarios. Because of our interest in dynamic

trading strategies, each scenario takes the form of a time series, a sequence of snapshots

of the market’s state at successive moments in time, which we will call a path. Given

a path, we need to be able to compute the strategy’s P&L along the path. This may

require computation of the portfolio weights that the strategy chooses at each time and

the values of financial securities at those times.
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For some problems, those computations are easy, in which case the simulation ap-

proach is relatively straightforward (§2.4.1). The motivation for this article is the case in

which substantial computational effort is required to approximate the portfolio weights

or security values, and the accuracy of the approximations is proportional to the compu-

tational effort expended. This happens frequently in practice. For example, it happens

when the portfolio weights are hedge ratios for which no formula exists. We will focus on

the use of simulation to compute portfolio weights and security values, but the framework

we propose in this chapter is applicable even if they are computed by other methods such

as trees or numerical solution of partial differential equations.

The absence of formulae for portfolio weights and security values leads to a two-

level simulation procedure (§2.4.2) which is used in practice: at the outer level, simulate

paths; at the inner level, use simulation to compute portfolio weights and security values

at every time step on every path. The inner-level simulation typically involves simulating

many terminal payoffs of relevant securities. We refer to the Monte Carlo samples used to

generate these payoffs as pricing replications. It may be necessary to use tens of thousands

of pricing replications at every time step on every path, and thousands of paths, to attain

high accuracy. As there are often dozens to thousands of times at which the portfolio

is rebalanced, the total number of pricing replications required can be many millions or

even billions. Thus, the disadvantage of this method, which we call “full simulation,” is

that it can be very slow. Our goal is to create a more efficient simulation procedure.

The central insight is that the full simulation method described above does too much

work in pricing replications. For example, suppose that the problem involves hedging an

option on a single stock using that stock and a riskless money market account (as in §2.3).
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When the full simulation method needs to compute portfolio weights at time step 3 given

a stock price of $100, it does so using a full set of entirely new pricing replications, even

if the procedure had previously computed portfolio weights on a different path in which

the stock price was $100.10 at time step 3. For many securities—although not for all

securities, such as barrier options, whose value functions can be discontinuous—it seems

that we should be able to use information from nearby paths to reduce the computational

burden. The same insight underlies the use of regression Monte Carlo methods in pricing

American options (see, e.g., [7], §8.6). Those methods use regression to approximate the

option’s value as a function of underlying state variables, such as the stock price in our

example, for each potential exercise time separately. In our context, where there may be

many rebalancing times, we expand on this idea by modeling security values and portfolio

weights as functions of time and other state variables jointly.

We apply response surface methodology to each security value and portfolio weight

that we need to know. Each of them is modeled as a function of time and state variables.

We call a combination of time and state variables (such as stock price) a point. Response

surface methodology in simulation works by performing simulations that estimate the

response only at certain design points, and then attempting to infer the value of the

response at other points. Our simulation procedure based on this idea (§2.4.3) first

performs pricing replications at perhaps a few hundred design points, then constructs

response surfaces, and finally uses the response surfaces to approximate portfolio weights

and security values at thousands of points.

In this chapter, we show that response surface methodology can yield a more efficient

simulation procedure for evaluating hedging and trading strategies. The response surface
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methodology we apply to this problem is kriging and the experimental design we use for

choosing design points is based on a Latin hypercube, with some modifications due to the

structure of this financial problem. These issues are discussed in more detail in §2.4. First

we give a formal statement of the problem and present our notation in §2.2 and describe

a simple example in §2.3. Finally, we present results of computer experiments in §2.5.

2.2. Problem Formulation

Let Π be a random variable representing the strategy’s terminal P&L. We focus on

learning the univariate distribution FΠ of terminal P&L, although our method is also

applicable to studying the joint distribution of P&L at various times. We do not know FΠ

or how to sample from it directly; we only know how to sample from the distribution of

paths: the outer level of simulation. P&L is some function of path, but we do not know this

function either. P&L is given by Equation (2.1) below, but to use it, we need to compute

security values and portfolio weights, which are also not known as functions of the path.

We do know how to estimate these quantities by an inner level of simulation. One way

to think of the situation is that we can approximately sample from FΠ, by sampling a

path and then doing high-precision inner-level simulation to approximate the P&L on this

path. [29] have discussed a rigorous framework for understanding two-level simulation

and shown how to get confidence intervals from it for functionals of FΠ. Another recent

contribution to two-level simulation in financial risk analysis is [23]. Here we will focus

on point estimation of the mean and variance of FΠ, corresponding to evaluation of the

strategy’s average profitability and its risk.

We will use the following notation:
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• T : the time horizon over which the strategy is to be evaluated.

• s: the number of times at which the portfolio can change.

• t0, t1, . . . , ts: times at which the portfolio is analyzed. A portfolio is set up at

t0 = 0, final P&L is measured at ts = T , and t1, t2, . . . , ts−1 are the times at

which the portfolio is rebalanced.

• S(t): the state vector of market risk factors at time t.

• Si = S(ti): condensed notation for the state vector of market risk factors at time

ti.

• Vi: the vector of values of the securities at time ti.

• f : the vector function of security values, so that the value of security l at time i

is Vil = fl(ti,Si).

• θi: the vector of portfolio weights at time ti.

• g: the vector function of portfolio weights, so that the number of shares of security

l in the portfolio at time i is θil = gl(ti,Si).

• Πi: the cumulative P&L up to time ti.

• k: the number of paths simulated.

• m: the number of replications used in inner-level simulation at any point.

• A superscript indicates the realization of a random variable on a particular path:

for example, Sji is the vector of market risk factors at time ti on path j, and Sj

is the jth sample path of the discrete-time vector Markov process S.

The P&L that occurs over step i, that is, between times ti−1 and ti, is the sum of

the changes in value of the portfolio’s holdings in each security. The number of shares

of each security remains constant over this time step, so step i’s contribution to P&L is
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θ>i−1(Vi −Vi−1). The cumulative P&L up to time ti is thus

(2.1) Πi =
i∑

i′=1

θ>i′−1(Vi′ −Vi′−1).

In mathematical finance, it is standard to consider self-financing strategies, which have

the property that the portfolio’s value does not change when the portfolio is rebalanced:

(2.2) θ>i−1Vi = θ>i Vi

for all i = 1, 2, . . . , s. For self-financing strategies, P&L also equals the change in the

portfolio’s value across all steps to date, which is

(2.3) Πi = θ>i Vi − θ>0 V0.

To estimate the P&L of a strategy at times t0 = 0, t1, . . . , ts = T , we simulate a path

of market risk factors S0,S1, . . . ,Ss at each of these times. We need to estimate security

values Vi and portfolio weights θi at each time i = 0, 1, . . . , s to use Equation (2.1) to

find P&L at each time. Section 2.3 describes some simplifications that are possible in a

typical application of hedging a derivative security. We simulate k paths to get a sample

Π1,Π2, . . . ,Πk. Its sample average is an estimate of the mean terminal P&L, while its

sample standard deviation is an estimate of the standard deviation of terminal P&L.

Estimation of security values and portfolio weights is founded on inner-level simula-

tion. We assume that we are in the typical complete-markets, Markov-process setting in

which each security’s value at any time t is the conditional expectation of its payoff under



48

the risk-neutral probability measure given the value of S(t) (see, e.g.,[31], §5.8). For sim-

plicity, we also assume that all securities have maturity T = ts and are path-independent.

In this case, the inner-level simulation need only sample values of S(T ) = Ss. Otherwise,

the inner-level simulation must sample state vectors at the maturities of all securities. If

securities are path-dependent, then the inner-level simulation must sample paths of the

state vector observed at all relevant times.

Consider an inner-level simulation at some point x = (t∗,S∗) which is a combina-

tion of time t∗ and state S∗. The inner-level simulation samples inner-level replications

S1
s(x),S2

s(x), . . . ,Sms (x) from the risk-neutral conditional distribution of Ss = S(T ) given

S(t∗) = S∗. The terminal payoff function g(T, ·) of all securities at maturity is known.

This allows us to estimate the security value gl(t
∗,S∗) at time t∗ by

∑m
j=1 gl(T,S

j
s(x))/m

for each security l ([22], §1.2).

Portfolio weights in hedging strategies often arise as sensitivities of security values to

risk factors. See [22] Ch. 7 on Monte Carlo methods for estimating sensitivities such as

delta. In general, the method we describe can be applied if the portfolio weights can be

computed by some method founded on simulation: for example, if the portfolio weights

arise from a portfolio optimization problem at each point, then they can be estimated by

optimization-via-simulation, and the method applies.

We give a simple, concrete example of a hedging strategy in this framework in §2.3. In

§2.4, we describe three different methods for estimating security values Vi and portfolio

weights θi at each time i = 0, 1, . . . , s.
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2.3. Delta-Hedging A European Put Option

Our computational experiments feature the example of delta-hedging a European put

option on a stock under the Black-Scholes model (see, e.g., [31], Ch. 6 for further back-

ground). Under the Black-Scholes model, the stock price S is geometric Brownian motion.

The securities in the hedging portfolio include a riskless money-market account and the

underlying stock. Their values at time ti are respectively Vi1 = erti where r is the interest

rate and Vi2 = Si. The put option (denoted as security 0) is hedged from the time it is

sold until its maturity, when it pays off Vs0 = f0(T, Ss) = max{K − Ss, 0}, where K is

the strike price.

For i = 0, 1, . . . , s− 1, the number θi2 of shares of stock to hold at time ti is set equal

to the negative of the first-order sensitivity ∂Vi0/∂Si of the put option value with respect

to the stock price at that point in time, which is called the delta of the option. At time

ts = T , the option matures and the hedge is unwound, so θs2 = 0. The number of shares

in the money-market account is set so that the hedging strategy is self-financing:

(2.4) θi1 = θi−1,1 + (θi−1,2 − θi2)Vi2/Vi1

for i = 1, 2, . . . , s, based on Equation (2.2). The initial number of shares in the money-

market account is set so that the value of the initial portfolio is zero:

(2.5) θ01 = −(V00 + θ02V02)/V01.
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At any time ti, i = 0, 1, . . . , s, there is θi0 = 1 share of the put option. Because the total

initial portfolio value is zero, the final P&L according to Equation (2.3) is

(2.6) Πs = Vs0 + θs1Vs1.

Some simplifications of the general framework for P&L presented in §2.2 apply in many

examples, including this one. Suppose that we have a self-financing strategy for hedging a

derivative security until maturity, the derivative security’s initial value is known, and we

are only interested in terminal P&L. Then we can use Equation (2.3) and we need only

compute portfolio weights, not security values. The reason is that underlying security

values (e.g., of the stock and money market account) are known functions of the path,

and the value of the derivative security (e.g., put option) is known at the times that we

need it. We do not need to know the derivative security value at intermediate times, its

initial value is given, and its terminal value is always a known function of the path, such as

max{K −Ss, 0} in the example of the European put option. Even though only the initial

and terminal portfolio weight vectors θ0 and θs appear in Equation (2.3), we do need to

know the portfolio weight vectors at intermediate times too. They are required to enforce

the self-financing condition. For our put option example, we can use Equation (2.4)

recursively with Equation (2.5) as its initial condition, use Vi1 = erti and Vi2 = Si, plug

into Equation (2.6), and get

Πs = Vs0 +
s∑
i=1

(θi−1,2 − θi2)Sie
r(T−ti) − (V00 + θ02S0)erT .

This shows that we need to know delta at all steps i = 0, 1, . . . , s− 1, to get θi2, but the

only option values we need are V00, the given initial value, and Vs0, which is the payoff
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max{K−Ss, 0}. We use pathwise derivative estimation (Glasserman 2003, §7.2) for delta:

θ̂i2 = e−r(T−ti)
1

m

m∑
j=1

1{Sjs < K}S
j
s

Sji
.

In the particular example we use in our computational experiments, the stock price

follows a geometric Brownian motion with initial value S0 = $100, drift µ = 8%, and

volatility σ = 15%. The put option has maturity of T = 1 years and strike price K = $110.

The interest rate on the money-market account is r = 5%. There are s = 60 rebalancing

times, and ti = iT/s for i = 1, 2, . . . , s.

2.4. Methods

In this section, we describe three simulation procedures used in our experimental

results. The procedures differ only in how they estimate security values and portfolio

weights at times after t0: by using a formula, by using a nested simulation at every time

step on every path, or by using response surface modeling. We assume that security values

and portfolio weights are known at t0 even in procedures that do not rely on formulae for

them. In practice, even if security values and portfolio weights at t0 need to be estimated

by simulation, they have usually been estimated to very high precision; it is only security

values and portfolio weights in hypothetical scenarios at future times that we can not

afford to estimate to high precision.

For similar reasons, we regard the P&L distribution produced by the formula-based

procedure (§ 2.4.2) as the true P&L distribution. Even if formulae are not available, the

decision-maker will estimate f(ti,Si) and g(ti,Si) to high precision when in state Si at

time ti. The actual P&L arising on a path S1,S2, . . . ,Ss will be nearly the P&L assigned
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to it by the formula-based procedure, which is the limit of the P&L assigned to it by the

full nested simulation procedure (§ 2.4.1) as the number m of inner-level replications goes

to infinity.

2.4.1. Formula-Based

The example described in §2.3 is so simple that we actually do have formulae for the

put option’s value and delta as functions of time and stock price (see, e.g., [31], §6.6).

This means that the security values and portfolio weights are known as functions of the

path. By using these functions, we can avoid any inner-level simulation and eliminate

all associated statistical error. In general, these functions are unknown, but using them

in this simple example allows us to study the statistical error associated with inner-level

simulation in one of the following two methods. The formula-based procedure for sampling

P&L Πj
i for every step i = 1, 2, . . . , s and on paths j = 1, 2, . . . , k is as follows.

• for j = 1, 2, . . . , k,

– Πj
0 = 0

– for i = 1, 2, . . . , s,

∗ sample Sji from the conditional distribution of Si given Si−1 = Sji−1

∗ θji = g(ti,S
j
i ) and Vj

i = f(ti,S
j
i )

∗ Πj
i = Πj

i−1 + (θji−1)>(Vj
i −Vj

i−1)

• next j
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2.4.2. Full Nested Simulation

In the absence of formulae for these functions, we require estimates of security values and

portfolio weights at each of s time steps on each of k paths. One way to get them is from

fully nested simulation: at each of ks points, do an inner-level simulation to estimate

security values and portfolio weights there. For simplicity, we suppose there are the same

number m of inner-level replications at all points. The full nested simulation procedure

is as follows.

• for j = 1, 2, . . . , k,

– Πj
0 = 0

– for i = 1, 2, . . . , s,

∗ sample Sji from the conditional distribution of Si given Si−1 = Sji−1

∗ for h = 1, 2, . . . ,m,

· sample Shs (ti,S
j
i ) from the conditional risk-neutral distribution of

Ss given Si = Sji

∗ using this inner-level simulation, estimate θji by θ̂ji and Vj
i by V̂j

i

∗ Πj
i = Πj

i−1 + (θ̂ji−1)>(V̂j
i − V̂j

i−1)

• next j

2.4.3. Response Surface Modeling

Instead of performing inner-level simulation at each of the ks points at which we want

to know security values and portfolio weights, this method reads estimates at each of

those points from functions called response surfaces. These response surfaces are in turn

computed as the result of inner-level simulation, which is performed only at certain design
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points. [20] and [40] have also applied response surface modeling in financial risk analysis.

In our experiments, we use a response surface methodology called kriging, which chooses

the value of a response surface at any point that is not among the design points by inter-

polating among the values observed at design points. Figure 2.1 shows a response surface

for the value of the put option constructed by kriging based on inner-level simulation,

and the error due to kriging in estimating the response surface given by the Black-Scholes

formula in the example of §2.3. On the kriging method and its use in the design and

analysis of computer experiments see, e.g., [19], [38], and [44].

Figure 2.1. A response surface estimated by kriging, and its difference from
the Black-Scholes formula, for the price of the put option in §2.3.

By choosing a set of n � ks design points, the response surface modeling method

can be faster than full nested simulation with the same numbers k of paths, s of time

steps, and m of inner-level replications per point. This speed can come at the price of
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accuracy in assessing the distribution of P&L, because the response surface models of

security values and portfolio weights at a point (ti,S
∗) tend not to be as accurate as

estimates provided by inner-level simulation performed conditional on Si = S∗; that is,

interpolating estimates from other points is not as accurate as simulating at this point.

The goal is to trade off a little bit of accuracy for a lot of speed to get a more efficient

procedure.

Our response surface modeling procedure has three parts. First, we choose a set

{x1, x2, . . . , xn} of design points and perform inner-level simulation at each of them to

estimate the security values and portfolio weights there. Second, use kriging to build

response surfaces for each component, separately, of the security value function f and the

portfolio weight function g. Third, compute P&L on each path by using the response

surfaces to provide estimates of security values and portfolio weights.

The choice of experimental design (the set of design points) can have a very large

impact on the fidelity of the response surface generated by kriging. In most applications

of kriging, one knows in advance a finite region within which one wishes to estimate

a response. However, in the financial examples we consider here, this is not so: for

example, asset prices are typically unbounded. We solve this problem by first simulating

all the paths we need, and then modeling responses over a finite region that contains

all the simulated data. In the example of §3, this region is contained in the Cartesian

product [t0, ts−1] × [Smin, Smax] where Smin = min{Sji |j = 1, 2, . . . , k, i = 1, 2, . . . , s} and

Smax = max{Sji |j = 1, 2, . . . , k, i = 1, 2, . . . , s} are the smallest and largest observed

stock prices. The reason that ts = T is excluded from response surface modeling is

twofold. We do not need a response surface model at maturity because security values
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then are payoffs, which are known functions, and likewise portfolio weights then do not

need to be estimated. There is also a discontinuity at maturity in the put option’s

delta, and hence in g2, the number of shares of stock to hold: limS↑K g2(T, S) = 1 while

limS↓K g2(T, S) = 0. In general, response surface modeling can encounter severe problems

when the true function is discontinuous.

Latin hypercube designs (see, e.g., [22], §4.4) have been reported to be more effective

in kriging than uniform grid designs; our experiments confirmed this. Our experimental

design for the example of §2.3, based on a Latin hypercube, is constructed as follows.

• Partition [t0, ts−1] and [Smin, Smax] into d intervals of equal width.

• Sample one point uniformly within each interval.

• Randomly pair the time and stock price values to get d design points.

• Add the four points (t0, Smin), (t0, Smax), (ts−1, Smin) and (ts−1, Smax) to the de-

sign.

The last step is important: without the addition of the four corner points there can be a

point (ti, S
j
i ) on some path that falls outside the convex hull of the Latin hypercube design.

This causes problems because kriging, as an interpolation method, performs quite badly

when it is used to extrapolate outside the convex hull of design points. An illustration of

this experimental design appears in Figure 2.2.

We feed estimated security values and portfolio weights at the design points to kriging,

which constructs response surfaces by interpolating among them. The interpolated value

at a point x is a weighted average of the values observed at all design points. The weight a

design point xj receives depends on its distance to x; the basic idea behind kriging is that

nearer design points are more highly correlated (in a loose sense) with the point of interest,
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Figure 2.2. An experimental design for the example of §2.3 with 29 design
points. The 4 red squares are corner points and the 25 blue dots form a
Latin hypercube design.

and so get greater weight. The kriging model requires a choice of a correlation function

that governs how weights diminish with distance. We used the exponential correlation

function.

The response surface modeling procedure is as follows.

• for j = 1, 2, . . . , k,

– for i = 1, 2, . . . , s,

∗ sample Sji from the conditional distribution of Si given Si−1 = Sji−1

– next i

• lay down a design of points x1 = (t∗1,S
∗
1), x2 = (t∗2,S

∗
2), . . . , xn = (t∗n,S

∗
n)

• for j = 1, 2, . . . , n,

– for h = 1, 2, . . . ,m,
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∗ sample Shs (xj) from the conditonal risk-neutral distribution of Ss given

S(t∗j) = S∗j

– using this inner-level simulation, estimate θ(xj) by θ̂(xj) and V(xj) by V̂(xj)

• next j

• for each security l,

– build response surfaces f̂l for fl using V̂l(x1), V̂l(x2), . . . , V̂l(xn) and ĝl for gl

using θ̂l(x1), θ̂l(x2), . . . , θ̂l(xn)

• next l

• for j = 1, 2, . . . , k,

– Πj
0 = 0

– for i = 1, 2, . . . , s,

∗ Πj
i = Πj

i−1 + (ĝ(ti,S
j
i−1)>(f̂(ti,S

j
i )− f̂(ti,S

j
i−1))

• next j

2.5. Experiments

We performed experiments in MATLAB, implementing kriging with the DACE toolbox

and generating Latin hypercube designs with the lhsdesign function. We used k =

1, 000 paths and m = 1, 000 inner-level replications in the example described in §2.3.

Our experimental designs had n = 104 or n = 404 design points. This means that

the full nested simulation procedure required 60 million inner-level replications while

the response surface modeling procedure required only 104,000 or 404,000. Of course,

performing kriging takes time too. However, the relative effort required for inner-level

replications, sampling paths, and performing kriging varies with the problem and the
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computing platform. Because we expect that the time spent on inner-level replications

will dominate unless m is small and the stochastic model of the market is simple, we

ignore the other computational costs.

To assess the accuracy of these simulation procedures, we ran 100 macro-replications,

each an independent run of the entire procedure, involving independently generated paths

and design points. However, within a single macro-replication, all procedures used the

same paths. This produced 100 estimates of the mean P&L and the standard deviation of

P&L at each time step, for each procedure: that is, each of 100 runs produces an estimate

of E[Πi] and an estimate of
√

Var[Πi] for each time step i = 0, 1, . . . , s. We depict

the average and the sample root mean squared error (RMSE) of these 100 estimates

in Figures 2.3–2.6. The error used in computing RMSE is the difference between one

macro-replication’s estimate of E[Πi] or
√

Var[Πi] and our best estimate of E[Πi] or√
Var[Πi], which we get by combining all 100,000 replications generated by the formula-

based procedure.

It is a feature of the financial example, not a problem with the simulation procedure,

that the mean P&L E[Πi] is decreasing in the time step i for the formula-based procedure

in Figure 2.3. Because of the option’s convexity, the discrete-time hedging strategy that

is delta-neutral at the beginning of each time step holds too little stock, on average,

between portfolio re-balancing times. Because the stock’s expected return exceeds the

interest rate, holding too little stock gives the strategy a negative expected return.

In Figure 2.4, even the formula-based procedure yields an estimate with positive RMSE

because of outer-level sampling error: each macro-replication has a different set of k =

1, 000 paths.
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Figure 2.3. The average, over 100 macro-replications, of four simulation
methods’ estimates of mean P&L at each time step.

Figures 2.3 and 2.4 show that response surface modeling can introduce substantial

bias and variance into estimating mean P&L, but the problem is ameliorated by using

a moderate number of design points. With n = 104 design points, kriging tends to

generate a response surface with poor fidelity. Particularly noticeable is the bias just

before maturity, where the put option’s price and delta are badly behaved functions, as

explained in §2.3. Increasing the number of design points to n = 404 greatly reduces this

bias. With 404 design points, response surface modeling estimates mean P&L with a fair

degree of accuracy, compared to the standard deviation of P&L portrayed in Figure 2.5.

The bias and variance introduced by response surface modeling are much greater at time
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Figure 2.4. The sample root mean squared error, over 100 macro-
replications, of four simulation methods’ estimates of mean P&L at each
time step.

ts−1 than at time ts = T and at time t1 than at time t0 = 0 (where P&L is zero by

construction). This happens because the simulation procedure relies on the response

surface for the put option price to produce P&L at times ts−1 and t1 but not at times ts

and t0.

Figures 2.5 and 2.6 show that response surface modeling with n = 404 design points

performs similarly to the other procedures in estimating the standard deviation of P&L,

except at early times, when it is not as accurate as the formula-based procedure, but more

accurate than full nested simulation. Again, the jump from time t0 to time t1 in RMSE of
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Figure 2.5. The average, over 100 macro-replications, of four simulation
methods’ estimates of the standard deviation of P&L at each time step.

estimates from methods other than the formula-based method is explained by inner-level

sampling error in estimating the put option value function f0(t1, ·).

Next we focus on the distribution of terminal P&L generated by each of the simulation

methods. We pool the terminal P&L values on k = 1, 000 paths in each of 100 macro-

replications to produce a picture of the probability density of terminal P&L in Figure 2.7.

Table 2.1 summarizes the results in Figures 2.3–2.6 for P&L at time T = 1 only. It

also shows the standard errors in estimating these quantities with 100 macro-replications.

The standard error in estimating RMSE is calculated by the delta method (see, e.g., [7],

§III.3). From the table we see that the response surface modeling procedure with n = 404
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Figure 2.6. The sample root mean squared error, over 100 macro-
replications, of four simulation methods’ estimates of the standard deviation
of P&L at each time step.

design points is quite accurate in estimating the mean and standard deviation of terminal

P&L, compared to full nested simulation, but it is on the order of 100 times faster.

2.6. Conclusions and Future Research

We have found, in exploring one example that using kriging to create response surfaces

for the price and delta of a put option enables fast, accurate estimation of the mean and

standard deviation of the terminal P&L of a hedging strategy for the put option. This

suggests that kriging can be an effective tool for reducing the computational cost of nested

simulations of hedging and trading strategies. However, the method’s performance needs
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Figure 2.7. Approximate probability density functions of terminal P&L gen-
erated by four simulation methods, based on 100, 000 samples of terminal
P&L.

Table 2.1. The average, standard error (SE) and the root mean square error
(RMSE) statistics of the mean estimates of terminal P&L.

Mean P&L Std. Dev. of P&L
Method Average RMSE Average RMSE
Formula -0.030 0.0573 0.792 0.6136
Based (0.006) (0.007) (0.051) (0.035)

Full Nested 0.017 0.0651 0.854 0.6152
Simulation (0.004) (0.005) (0.047) (0.037)

RSM, n=104 0.037 0.1748 0.970 0.6895
(0.016) (0.030) (0.046) (0.036)

RSM, n=404 0.013 0.1231 1.014 0.9429
(0.012) (0.012) (0.076) (0.080)
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to be investigated in other examples, especially examples in which response surfaces are

built over a higher-dimensional space. Kriging in higher dimensions is more challenging,

and the example we used here has only two dimensions, time and stock price.

There are also possibilities for improving the performance of kriging in this setting.

It is well-known in kriging that experimental design has a major impact on performance,

and we found the same in our example, having tried other designs in computational

experiments not reported here. One could look for designs better than the one illustrated

in Figure 2.2.
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CHAPTER 3

Response Surface Methodology for Simulating Trading and

Hedging Strategies: Stochastic Kriging and Trend Modeling

Applications

3.1. Introduction

Chapter 2 suggests that simple kriging can be an effective tool for reducing the com-

putational cost of nested simulations of hedging and trading strategies. In addition to

problem specific modifications to the way kriging is applied on a problem, such as design

specifications depending on a qualitative analysis of the actual response surface, we can

also use other versions of the kriging methodology which might work better in practice

for simulating and trading simulations.

One improvement to simple kriging, in which the response surface is formed simply

by interpolating among observed values, is the theory of kriging that incorporates the

modeling of trends in the response surface, as in regression. For example, one might model

the response surface as a linear function of the spatial variables plus local deviations from

this trend: then the spatial correlation model applies only to the local deviations. We

introduce the concept of trend modeling in §3.2 and explore its effectiveness on a financial

example in §3.3.

Kriging was developed for analyzing the results of deterministic experiments, for ex-

ample, physical experiments in geology or deterministic computer experiments such as
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finite-element codes: if these experiments were to be repeated, they would yield the same

results, at least roughly. Kriging interpolates between the values observed at design points

because it assumes that these values are the truth. This is not so in our financial frame-

work, in which the values observed at design points include inner-level sampling error.

[5] describes a stochastic kriging procedure which takes account of this uncertainty when

constructing the response surface. We briefly describe this procedure in §3.4 and apply

it on a financial example in §3.5. We compare the performances of the resulting response

surfaces with surfaces generated by a simple kriging procedure.

3.2. Response Surface Modeling with Trend

Kriging is based on an assumption that the response surface has a location-invariant

correlation structure: roughly speaking, the values of the response surface at locations

separated by the same distance have the same degree of similarity regardless of where you

look. Figure 2.1 suggests that this stationarity assumption is untrue in our example of a

put option since the variability of the price of the option changes considerably in different

regions of the (time × stock price) design space. To be more specific, at a particular time

the put option’s value is almost constant at nearly zero as long as the option is deep out of

the money, i.e the stock price is larger than the strike price, while the option’s value varies

a lot in the subregion of the design space where the option is deep in the money where the

stock price effects the value of the option considerably. For the particular example in §2.3,

the value of the option at time stock price pairs (0.8, 120) and (0.8, 130) are very similar

(nearly zero), but the option values at (0.8, 80) and (0.8, 90) are quite different (by about

$10). Several approaches have been used in the literature to enhance random function
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modeling while retaining some of the theoretical simplifications that stationarity provides.

The most frequently used of these techniques is to let the mean of the stochastic process

generating the response depend on the risk factors in a standard regression manner while

assuming that the residual variation still follows a stationary Gaussian random process.

We will model the response Y (x) at a design point x by

(3.1) Y (x) =
b∑

j=1

Bj(x)βj + Z(x) = B>β + Z(x)

where B1, . . . Bb are known basis functions to model the trend in the mean of the stochastic

process, β = (β1, . . . , βb)
> is a vector of unknown regression coefficients and Z(·) is a

zero mean Gaussian random field with a location-invariant correlation structure over the

domain of the risk factors x.

Given the responses at a number of design points, an estimate of the regression coeffi-

cient vector β can be calculated as a function of the covariance structure of the Gaussian

random process using the method of generalized least squares. The details on how to esti-

mate regression coefficients together with the parameters of the Gaussian random process

can be found in [38] and [19].

In the literature on design and analysis of computer experiments, trend modeling is

frequently reported not to work well in practice. However, because we have many more

design points in our financial examples than are typical in that literature, it is possible that

trend modeling may improve the performance of kriging when used as the response surface

methodology for hedging and trading simulations. We investigate, in the next section, the
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effect of using basis functions on response surface modeling within the context of another

hedging simulation example.

3.3. Delta-Hedging a European Call Option under Stochastic Volatility

Our experiments in Chapter 3 featured the example of delta-hedging a European put

option on a stock under the Black-Scholes model. We looked at three different simulation

procedures which differed in how they estimated the security values and portfolio weights

at each re-hedging time on each path of the outer hedging simulation. Both security

values and portfolio weights were functions of time and the stock price, which resulted in

a two-dimensional design space. We can increase the dimensionality of our design space

by introducing stochastic volatility to the evolution of the stock price so that security

values and portfolio weights depend not only on stock price and time but also on the level

of stochastic volatility given the stock price at that time.

One of the most well-known and popular of all stochastic volatility models is the Heston

model ([26]). Under the Heston model, the stock price follows a geometric Brownian

motion while the squared volatility of the stock price has a mean reverting square root

diffusion process.

Our experiment will be on delta-hedging a European call option where outer simulation

paths are sampled under the Heston model. Our hedging portfolio will include a riskless

money-market account and the underlying stock. The number of shares of stock to hold

at any re-hedging time is equal to the delta of the option. Both the delta and value of

the option are calculated under the same stochastic volatility process which is used to

generate outer simulation paths.
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In the particular example we use in our computational experiments the stock price

price follows a Heston stochastic volatility process with initial value S0 = 100, drift µ =

0.08, initial squared volatility ν = 0.0174, long-term mean squared volatility ν̄ = 0.0354,

volatility of volatility η = 0.3877, speed of reversion of squared volatility to its long-term

mean λ = 1.3253, correlation between stock returns and changes in squared volatility

ρ = −0.7165. The interest rate on the money-market account is r = 0.0422. The call

option has maturity of T = 1 years and strike price K =100.

The paper of ([28]) proposes a nice numerical computation procedure, which we use

in our formula-based approach described in §2.4.1 to calculate the value and delta of a

European call option by Heston’s formula ([26]). For the full nested simulation approach

of §2.4.2, we use the Quadratic-Exponential scheme of [4] as the discretization scheme

for the Monte Carlo simulation of the Heston stochastic volatility model. This scheme is

straightforward, easier to implement and execute compared to the bias-free algorithm of

[10], which is too complex and computationally expensive for the purposes of our analysis.

Calculation of the delta of the option with Monte Carlo simulation will be done by using

the path-wise estimation method as described in [9].

The response surface modeling approach of §2.4.3 should be modified to take into ac-

count the additional squared volatility component of the design space. The region which

contains all the simulated data is now the Cartesian product [t0, ts−1] × [Smin, Smax] ×

[Vmin, Vmax], where Vmin = min{V j
i |j = 1, 2, . . . , k, i = 1, 2, . . . , s} and Vmax = max{V j

i |j =

1, 2, . . . , k, i = 1, 2, . . . , s} are the smallest and largest observed squared volatility values.

Then, our experimental design is also updated as follows:

• Partition [t0, ts−1], [Smin, Smax] and [Vmin, Vmax] into d intervals of equal width.
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• Sample one point uniformly within each interval.

• Randomly combine the time, stock price and squared volatility values to get d

design points.

• Add the eight points (t0, Smin, Vmin), (t0, Smax, Vmin),(ts−1, Smin, Vmin),

(ts−1, Smax, Vmin), (t0, Smin, Vmax), (t0, Smax, Vmax), (ts−1, Smin, Vmax) and

(ts−1, Smax, Vmax) to the design.

We performed experiments in MATLAB, implementing kriging with the PERK toolbox

and generating Latin hypercube designs with the lhsdesign function. We used k = 500

paths, m = 5, 000 inner-level replications and 150 inner-level discretization steps for our

simulation study. Our experimental designs had n = 208 design points. Using the same

experimental design (both the design points and the responses at these points), we fit two

kriging surfaces each, for both the value and the delta of the option. For fitting one of the

value (delta) surfaces, the value (delta) of the call option under the Black-Scholes model

is calculated at each of the design points and is used as a basis function for trend modeling

in addition to a vector of 1’s, which is used to estimate the mean of the residuals of the

fitted Gaussian random process (B1(S, t, V ) = 1 and B2(S, t, V ) = BSPrice(S, t, V ) for

price and B2(S, t, V ) = BSDelta(S, t, V )) for delta response surface. For a call option,

the Black-Scholes model call prices and deltas are

BSCall(S, t, V ) = SΦ(d1)−K exp(−r(T − t))Φ(d2),

BSDelta(S, t, V ) = Φ(d1)
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where

d1 =
log(S/K) + (σ − r2

2
)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t and φ is the standard normal cumulative distribution function.

The second value (delta) surface is generated by using just a vector of 1’s as inputs at

design points to estimate the mean of the fitted Gaussian random process for the value

(delta) of the call option.

Figure 3.1 (Figure 3.3) shows the absolute error of the predicted values (deltas) of

the call option at each re-hedging time along each hedging path by the response surface

fitted with Black-Scholes value (delta) function as the basis function. The absolute error

at a prediction point is calculated by taking the absolute difference of the value (delta)

of the option predicted by the response surface and value (delta) of the option given

by the formula based approach. Figure 3.2 (Figure 3.4) shows the absolute error at

prediction points for the response surface created with no basis function other than a

constant function, which is equal to 1. The colors of the points in these graphs are used

to represent the level of the squared volatility at the prediction points.

Figure 3.1 (Figure 3.3) and Figure 3.2 (Figure 3.4) show that introduction of a reason-

able basis function such as the value (delta) of the option under the Black-Scholes model

helps us to reduce the substantial errors of the response surfaces particularly shortly be-

fore maturity, where both the value and delta of the option are badly behaved functions.

We hope to reduce the error of the response surfaces even further by improving our ex-

perimental design. To assess the accuracy of the simulation procedures described in this

section and also to produce graphs for the evolution of the mean and standard deviation of



73

the P&L during the hedging horizon, we propose to run a number of macro-replications,

involving independently generated paths and design points, but with all procedures using

the same paths in a specific macro-replication as part of future research.
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Figure 3.1. The absolute error of the price response surface estimated by
kriging with Black-Scholes function for price used as a basis function

Figure 3.2. The absolute error of the price response surface estimated by
simple kriging without any trend
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Figure 3.3. The absolute error of the delta response surface estimated by
kriging with Black-Scholes function for delta used as a basis function

Figure 3.4. The absolute error of the delta response surface estimated by
simple kriging without any trend
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3.4. Response Surface Modeling with Stochastic Kriging

The application of response surface methodology to hedging and trading simulations

can be improved by including the effect of inner-sampling error inherent in the calculation

of the response at the design points. When portfolio weights or security values at a specific

design point are estimated using Monte Carlo simulation, the intrinsic variance of the

response due to sampling error will in general depend on where the design point is. As an

example, the standard error of the Monte Carlo estimate of the value of a European call

option will be high if the option is deep in or out of the money, while that of the Monte

Carlo estimate of the delta of a European call option will be very small.

Figure 3.5. The standard errors of the Monte Carlo estimates of the price
of the European call option at the design points in §3.3
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Figure 3.6. The standard errors of the Monte Carlo estimates of the delta
of the European call option at the design points in §3.3

Figure 3.5 and Figure 3.6 demonstrate perfectly how the intrinsic sampling errors of

estimates of the value and delta of the European call option under Heston model in §3.3,

change according to where in the design space these responses are simulated.

[5] describes a stochastic kriging procedure, which accounts for both sampling and

response surface uncertainty, and shows through a queueing model example how including

sampling variability has an impact on experiment design, response surface estimation and

inference. They model the response Yj(x) from the jth replication of a simulation study

at a design point x by

(3.2) Yj(x) = B>β + Z(x) + εj(x)
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where the only difference from the model of the previous section is the intrinsic vari-

ance term εj(x). The intrinsic noise ε1(x), ε2(x), . . . at a design point x is naturally

independent and identically distributed across simulation replications but is not constant

over the design space, i.e. the intrinsic variance depends on the design point at which the

simulation is performed. Given the responses and the intrinsic variances associated with

these responses at a number of design points, estimates of the regression coefficients β and

the parameters of the Gaussian random process which determine the spatial correlation

structure can be computed by the method of maximum likelihood estimation([5]). [8]

describes an efficient procedure for parameter estimation of stochastic kriging.

In the next section, we apply the same stochastic kriging procedure of [5], implemented

as described in [8], on a financial example, the hedging of a simple portfolio of options,

and compare the results with those of a regular kriging procedure applied on the same

problem.

3.5. Delta-Hedging a Portfolio of Options

Our computational experiments feature the example of delta-hedging a portfolio con-

sisting of a European put option and a European call option on the same stock with

different strike prices under the Black-Scholes model. Under the Black-Scholes model,

the stock price S is geometric Brownian motion. The securities in the hedging portfolio

include a riskless money-market account and the underlying stock. Their values at time

ti are respectively Vi1 = erti where r is the interest rate and Vi2 = Si. The value Vi0 of

the portfolio at any time is equal to the sum of the values of the put option and the call

option at that time.
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The portfolio (denoted as security 0) is hedged from the time it is sold until its ma-

turity, when it pays off Vs0 = f0(T, Ss) = max{K1 − Ss, 0}+ max{Ss −K2, 0}, where K1

are the strike prices of the put and the call options, respectively.

For i = 0, 1, . . . , s− 1, the number θi2 of shares of stock to hold at time ti is set equal

to the negative of the first-order sensitivity ∂Vi0/∂Si of the portfolio value with respect

to the stock price at that point in time, which is equal to the negative of the sum of the

deltas of the two options.

At time ts = T , the options mature and the hedge is unwound, so θs2 = 0. The number

of shares in the money-market account is set so that the hedging strategy is self-financing

as in §2.3.

In the particular example we use in our computational experiments, the stock price

follows a geometric Brownian motion with initial value S0 = $100, drift µ = 8%, and

volatility σ = 15%. Both options have maturities of T = 0.5 years and strike price of the

put option is K1 = $110 and the strike price of the call option is K2 = $100. The interest

rate on the money-market account is r = 5%. There are s = 20 re-balancing times, and

ti = iT/s for i = 1, 2, . . . , s.

We can evaluate the P&L distribution resulting from delta-hedging our portfolio, which

contains two securities, the values of which, together with their sensitivities to the un-

derlying stock on any path, can be calculated through both the formula based and full

nested simulation approaches of §2.4. For response surface modeling approach, we try two

different experimental setups for each of the two different response surface methodologies:

stochastic kriging and regular kriging. The first setup is the original experimental setup

of the second chapter, where the response (the value or the sensitivity) is a function of
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time and the underlying stock price. So, for a single outer hedging simulation, a single

value and a single sensitivity response surface is generated over the (time)×(stock price)

domain. The second setup is a new experimental setup, we propose to cope with the

non-stationarity characteristics of our financial example, where a different value and a

different sensitivity response surface over the (stock price) domain is generated at each

re-hedging time for an outer hedging simulation.

The response surface modeling approaches with stochastic kriging require us to es-

timate through inner-simulations not only the value of the portfolio and its sensitivity

with respect to the underlying stock, but also the sampling variabilities of the estimates

of these quantities. Note that for each response surface methodology, only two response

surfaces are fit: one for the value of the portfolio and one for the delta of the portfolio.

Another approach would be to create response surfaces for the values and deltas of the

options separately and use these response surfaces to estimate the value of the portfolio

and its delta.

We performed our experiments in MATLAB, implementing regular kriging with the

PERK toolbox. The stochastic kriging code in MATLAB was written based on the pro-

cedure described in [8]. Generating Latin hypercube designs was performed by the

lhsdesign function.

We used k = 1, 000 paths for hedging and m = 500 inner-level replications for pricing

Our experimental design had n = 114 design points for the original setup and n = 6 design

points for the new setup. Note that the new setup requires generating response surfaces

at each of the 20 − 1 = 19 re-hedging times, therefore an equal number 19 × 6 = 114

of inner level simulations are performed for the new experimental setup compared to the
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original setup. We subtract one from the number of re-hedging times since we do not

need response surfaces at the last re-hedging time corresponding to the maturity of the

options in our portfolio.

To assess the accuracy of the four simulation procedures, we ran 100 macro-replications,

each an independent run of the entire procedure, involving independently generated paths

and design points. However, within a single macro-replication, all procedures used the

same paths and the response surfaces were fit using stochastic and regular kriging based

on the same design. This produced 100 estimates of the mean P&L and the standard de-

viation of P&L at each time step, for each procedure: that is, each of 100 runs produces

an estimate of E[Πi] and an estimate of
√

Var[Πi] for each time step i = 0, 1, . . . , s. We

depict the average and the sample root mean squared error (RMSE) of these 100 estimates

in Figures 3.9–3.12.

Figures 3.9 and 3.10 show that response surface modeling with ordinary kriging can

introduce substantial bias and variance into estimating mean P&L. With n = 114 design

points and not taking into account intrinsic variability, ordinary kriging tends to generate

a response surface with poor fidelity.

Particularly noticeable is the bias just before maturity, where the portfolio’s price and

delta are badly behaved functions, for reasons explained in §2.3 for the value and the delta

of the put option. We see that this bias is considerably smaller for the response surface

modeling approach using the stochastic kriging procedure. This is due to the fact that

the response surfaces for both the price and delta of the portfolio generated by stochastic

kriging take into account the variability of the standard errors of the estimates of the price

and delta of the portfolio over the design space, which can be observed in Figure 3.7 and
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Figure 3.7. The variability in the standard error of the value of the portfolio
estimated through inner-simulations for a single macro-replication

Figure 3.8 for a single macro-replication. Furthermore, estimating a different response

surface at each re-hedging time does a poor job in terms of estimating the mean P&L

compared to the original setup especially when ordinary kriging methodology is used. The

stochastic kriging methodology gives significantly better results with both experimental

setups, which indicates that including an intrinsic variance term varying over the design

space for a global response surface is more useful for this example than estimating different

local response surface over different sub-domains, i.e. each re-hedging time.

We conjecture that increasing the number of design points as in §2.5 can bring the bias

of response surface modeling estimates of mean P&L for both methods at intermediary

times to a fair degree of accuracy, compared to the standard deviation of P&L portrayed

in Figure 3.11.
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Figure 3.8. The variability in the standard error of the delta of the portfolio
estimated through inner-simulations for a single macro-replication

Figures 3.11 and 3.12 show that response surface modeling with stochastic kriging

procedure performs similarly under both experimental setups, the original setup slightly

better than the new setup towards maturity, in estimating the standard deviation of P&L,

while the ordinary kriging method, especially with the new experimental setup, fails to

give good estimates of the standard deviation P&L.

The bias and variance introduced by response surface modeling are much greater at

time ts−1 than at time ts = T and at time t1 than at time t0 = 0 (where P&L is zero

by construction). This happens because the simulation procedure relies on the response

surface for the portfolio values to produce P&L at times ts−1 and t1 but not at times ts

and t0. The jump from time t0 to time t1 in RMSE of estimates from methods other than
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Figure 3.9. The average, over 100 macro-replications, of four simulation
methods’ estimates of mean P&L at each time step

the formula-based method is explained by inner-level sampling error in estimating the put

option value function f0(t1, ·).

Next we focus on the distribution of terminal P&L generated by each of the simulation

methods. We pool the terminal P&L values on k = 1, 000 paths in each of 100 macro-

replications to produce a picture of the probability density of terminal P&L in Figure 3.13.

Table 3.1 summarizes the results in Figures 3.9–3.12 for P&L at time T = 0.5 only. It

also shows the standard errors in estimating these quantities with 100 macro-replications.

The standard error in estimating RMSE is calculated by the delta method (see, e.g.,

[7], §III.3). From the table we see that the response surface modeling procedure with

stochastic kriging is quite accurate in estimating the mean and standard deviation of

terminal P&L.
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Figure 3.10. The sample root mean squared error, over 100 macro-
replications, of four simulation methods’ estimates of mean P&L at each
time step

Table 3.1. The average, standard error (SE) and the root mean square error
(RMSE) statistics of the mean estimates of terminal P&L.

Mean P&L Std. Dev. of P&L
Method Average RMSE Average RMSE
Formula 0.010 0.0428 1.376 0.4613
Based (0.004) (0.003) (0.003) (0.003)

Full Nested 0.009 0.0430 1.406 0.4920
Simulation (0.004) (0.004) (0.004) (0.004)

Ordinary Kriging 0.011 0.0435 1.492 0.5782
(RSM at Each Time) (0.004) (0.004) (0.004) (0.004)

Ordinary Kriging 0.015 0.0484 1.438 0.5237
(0.005) (0.004) (0.004) (0.004)

Stochastic Kriging 0.009 0.0457 1.450 0.5357
(RSM at Each Time) (0.005) (0.004) (0.004) (0.004)

Stochastic Kriging 0.016 0.0482 1.437 0.5231
(0.005) (0.004) (0.004) (0.004)
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Figure 3.11. The average, over 100 macro-replications, of four simulation
methods’ estimates of the standard deviation of P&L at each time step

3.6. Conclusion and Future Research

We have seen that versions of kriging method with trend modeling can perform better

compared to simple kriging for financial applications due to large number of design points.

Although the responses surfaces created for the price and delta of a European call option

under the Heston model were relatively satisfactory, the performance of using the Black-

Scholes value and delta functions as basis functions for this specific example should be

further tested by performing experiments with macro-replications similar to those of §2.5

and §3.5. It should be noted that such experiments are computationally expensive since a

single macro-replication as in §3.3 requires the numerical computation and Monte Carlo

estimation of the values and deltas of the European option under the Heston model at ks

risk factor combinations.
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Figure 3.12. The sample root mean squared error, over 100 macro-
replications, of four simulation methods’ estimates of the standard deviation
of P&L at each time step

We have also seen that stochastic kriging by taking into account intrinsic variability

of the responses at design points performs considerably better than regular kriging for

hedging simulations where the responses such as the prices and price sensitivities of secu-

rities with respect to risk factors are estimated using Monte Carlo simulation. In addition

to better fitting the hedging simulation framework through allowing design dependent

intrinsic variance analysis, stochastic kriging has computational advantages over regular

kriging, especially for parameter estimation. A detailed description and analysis of com-

putational aspects of the efficient stochastic kriging code used for our analysis here can

be found in [8]. Using the algorithm of this code to compare the efficiency gains due to

making fewer simulations to the computational effort required to fit a response surface
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Figure 3.13. Approximate probability density functions of terminal P&L
generated by four simulation methods, based on 100, 000 samples of terminal
P&L.

and to predict the responses at unexplored cites using the fitted response surface is part

of future research.

Another issue that we would like to analyze for future research is the effect of the

choice of correlation function for the kriging procedure on the performance of response

surface modeling for financial applications. We have used in all of our experiments corre-

lation functions from the family of product exponential functions, i.e. correlation dies out

exponentially in distance along each dimension and the correlation between two points

is calculated by taking the product of the correlation components along each dimension.

This is definitely a restriction especially for financial applications, which involve in general

an interaction between dimensions and where the correlation between two design points

depends on not only how apart they are spaced but also where in the design space they
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are located. We have observed especially for stochastic kriging that the scale parameter

of the power exponential correlation function, which controls how fast correlation dies out

in distance, along the time dimension is quite small. This implies that the variability in

the response surface is mostly explained by the spot price, which on average is true, and

is homogeneous along the time dimension. On the contrary, we know that the price of an

at-the-money option will be different according to how much time there is until maturity

while time to maturity has negligible effect if the option is deep in or out of the money.

Therefore, if we were able to focus on a subregion of the design space, where the option

is slightly in or out of the money, we could actually see an increase in the estimated

scale parameter for the correlation function along the time dimension. Note that this is a

better problem specific approach than dividing the problem domain into sub-domains at

each re-hedging time, which did not work well for the portfolio example in this chapter.

Since the limits of our design space is controlled by the outer level simulations, it might

be appropriate to look for improvements in how we design the two-level simulations as

well as improvements in the kriging procedure itself such as choice of correlation function

(e.g. non-stationary correlation functions with interaction terms) and design.
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APPENDIX A

Empirical Likelihood for VaR and ES

1. Maximization Problem I

The problem of computing Rψ
l (µ) given by

(.1) Rψ
l (µ) = max

{
k∏
i=1

(kwi) |
l∑

i=1

wi = p, µ = −1

p

l∑
i=1

V[i]wi, wi ≥ 0,
k∑
i=1

wi = 1

}

reduces to solving the following problem referred to as Maximization Problem I:

maximize
∑l

i=1 log(kwi) + (k − l) log(k 1−p
k−l )(.2)

subject to −1
p

∑l
i=1 wiV[i] = µ

∑l
i=1wi = p

since Wl =
∑l

i=1wi is restricted to be exactly equal to p by (.1) and in this case Rψ
l (µ)

is achieved by assigning equal weights to the remaining k−l portfolio values V[l+1], . . . , V[k].

Note that the first equation in (.2) can be written as
∑l

i=1wi(µ + V[i]) = 0 by pµ +∑l
i=1wiV[i] = (

∑l
i=1wi)µ+

∑l
i=1wiV[i].

Since a strictly concave function is maximized on a linear set of equality constraints,

the solution to this maximization problem will be found by using the Lagrangian function

L =
l∑

i=1

log(kwi) + (k − l) log(k
1− p
k − l

) +
l

p
λ

l∑
i=1

wi(V[i] + µ) + γ(
l∑

i=1

wi − p)
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and the first order conditions

(.3)
∂L
∂w∗i

=
1

w∗i
+
l

p
λ∗(V[i] + µ) + γ∗ = 0 ∀i = 1, . . . , l

are sufficient.

Using equations (.3), we get
∑l

i=1w
∗
i
∂L
∂w∗i

= 0, which leads together with constraints in

(.2) to l+ 0 + γ∗p = 0 and hence γ∗ = −l/p. Plugging the value of γ∗ back into equations

(.3), we get

(.4) w∗i =
p

l

[
1− (V[i] + µ)λ∗

]−1 ∀i = 1, . . . , l.

Plugging the values of w∗i calculated above into the first constraint in (.2), we get

(.5)
l∑

i=1

V[i] + µ

1− (V[i] + µ)λ∗
= 0.

Lemma 1.1. If µ ∈ (−V[l],−V[1]), then Equation (.5) is satisfied for some

λ∗ ∈
(

l − 1

l(µ+ V[1])
,

l − 1

l(µ+ V[l])

)
.

Proof: Define fi(µ, λ) :=
V[i]+µ

1−(V[i]+µ)λ
and fµi (λ) := fi(µ, λ). Each fµi has one discon-

tinuity at (V[i] + µ)−1, where fµi is not defined. Therefore
∑l

i=1 f
µ
i (λ) is continuous on(

(V[1] + µ)−1, (V[l] + µ)−1
)
. Because the partial derivative

∂fi
∂λ

=
(V[i] + µ)2

[1− (V[i] + µ)λ]2
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is positive unless µ = −V[i], in which case it is zero, we can see that
∑l

i=1 f
µ
i (λ) is

increasing in λ on
(
(V[1] + µ)−1, (V[l] + µ)−1

)
. Because

lim
λ↑(V[l]+µ)−1

fµl (λ) =∞ and lim
λ↓(V[1]+µ)−1

fµ1 (λ) = −∞,

there exists λ∗ ∈
(
(V[1] + µ)−1, (V[l] + µ)−1

)
such that

∑l
i=1 f

µ
i (λ∗) = 0.

In fact, we can find tighter bounds for λ∗ than (V[1] + µ)−1 and (V[l] + µ)−1. Because

w∗1 = p
l
[1 − λ∗(V[1] + µ)]−1 ≤ p and V[1] < −µ ⇒ V[1] + µ < 0, λ∗ > l−1

l(µ+V[1])
. Likewise,

using w∗l = p
l
[1− λ(V[l] + µ)]−1 ≤ p and −µ < V[l] ⇒ V[l] + µ > 0, we find λ∗ < l−1

l(µ+V[l])
. �

Lemma 1.2. Rψ
l is increasing on

(
−V[l], µ

∗
l

)
and decreasing on

(
µ∗l ,−V[1]

)
, where µ∗l

is defined as µ∗l := −1
l

∑l
i=1 V[i].

Proof: The empirical likelihood ratio Rψ
l is maximized at µ∗l , where the solution to

Maximization Problem I with µ = µ∗l involves λ∗ = 0, so the optimal weights are p/l for

i = 1, . . . , l and are (1 − p)/(k − l) for i = l + 1, . . . , k. Consider some µ ∈ (−V[l], µ
∗
l ).

Let Fµ, with weights {wµi }i=1,...,k, be the distribution at which Rψ
l (µ) is attained. Because

µ < µ∗l , Equations (.2) and (.4) imply that λ∗µ > 0 at the solution to Maximization

Problem I. This makes the optimal weights {wµi }i=1,...,l increasing in i. In the trivial

case where V[i] is the same for all i = 1, . . . , l, the conclusion of the lemma holds; we

henceforth assume that there exist m < n ≤ l such that V[m] < V[n]. Because the weights

are increasing, for some ε > 0, wµm = wµn − ε. For any µ′ ∈ (µ, µ + (ε/2)(V[n] − V[m]), let

δ = (µ′−µ)/(V[n]−V[m]). Construct F ′ with weights {w′i}i=1,...,k such that F ′ = Fµ except

w′m = wµm + δ and w′n = wµn − δ. Because δ ∈
(
0, ε

2

)
, w′mw

′
n > wµmw

µ
n, so R(F ′) > R(Fµ).

This leads to the conclusion Rψ
l (µ′) ≥ R(F ′) > R(Fµ) = Rψ

l (µ). We therefore showed that
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for all µ ∈ (−V[l], µ
∗
l ), R

ψ
l is increasing on a nonempty open interval whose left endpoint is

µ, which in turn proves that Rψ
l is increasing on

(
−V[l], µ

∗
l

)
. A similar analysis for µ > µ∗l ,

involving λ∗µ < 0, proves that Rψ
l is decreasing on

(
µ∗l ,−V[1]

)
. �

2. Maximization Problem II

Maximization Problem II is more complicated due to the inequality constraints for Wl

andWl−1. We write wl = p−Wl−1+δ where δ > 0 so that the constraintWl > p is satisfied.

The expected shortfall constraint can be written as p(µ+V[l]) =
∑l−1

i=1 wi(V[l]−V[i]). Since

wl does not appear in the modified expected shortfall constraint, Rint
l (µ) will be attained

when wl is as close as possible to wl+1 = . . . = wk = 1−Wl−1

k−l+1
and this implies Wl−1 > p− 1−p

k−l

since δ is defined to be positive. Then, the problem of finding Rint
l (µ) reduces to solving

the following maximization problem:

(.6)

maximize
∑l−1

i=1 log(kwi) + (k − l + 1) log(k 1−Wl−1

k−l+1
)

subject to
∑l−1

i=1 wi(V[l] − V[i]) = p(µ+ V[l])

Wl−1 =
∑l−1

i=1wi

Wlb < Wl−1 < Wub

where Wlb := p − 1−p
k−l and Wub := p. The Hessian of the above objective function is an

l-dimensional diagonal matrix with {− 1
w2
i
}i,...,l−1 and − 1

(1−Wl−1)2
as the diagonal entries

and therefore is negative definite. Since a concave function is maximized subject to linear

constraints, there exists a unique global optimum for the above maximization problem.
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This maximum can be computed by using the Lagrangian function

L =
l−1∑
i=1

log(kwi) + (k − l + 1) log(k
1−Wl−1

k − l + 1
)− λ

(
l−1∑
i=1

wi(V[l] − V[i])− p (µ+ V[l])

)

−γ

(
Wl−1 −

l−1∑
i=1

wi

)

and the first order conditions

0 =
∂L
∂w∗i

=
1

w∗i
− λ∗(V[l] − V[i]) + γ∗ , ∀i = 1, . . . , l − 1 and(.7)

0 =
∂L

∂W ∗
l−1

= −k − l + 1

1−W ∗
l−1

− γ∗ = 0(.8)

are sufficient. Using equations (.7) and (.8), we write

(.9) w∗i := gi(W
∗
l−1, λ

∗) =

[
k − l + 1

1−W ∗
l−1

+ λ∗(V[l] − V[i])

]−1

,∀i = 1, . . . , l − 1

and get the following system of nonlinear equations in two unknowns:

W ∗
l−1 −

l−1∑
i=1

gi(W
∗
l−1, λ

∗) = 0 and

l−1∑
i=1

gi(W
∗
l−1, λ

∗)(V[l] − V[i])− p(µ+ V[l]) = 0.

Lemma 2.1. The function gi defined in Equation (1.19) is strictly decreasing in each

of its arguments.
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Proof: The partial derivatives of gi with respect to Wl−1 and λ are

∂gi(Wl−1, λ)

∂Wl−1

= −(k − l + 1)w2
i

(1−Wl−1)2
and(.10)

∂gi(Wl−1, λ)

∂λ
= −(V[l] − V[i])w

2
i(.11)

which are negative everywhere. �

The following lemma provides bounds on µ for which Rint
l (µ) can be found by solving

the first order conditions for Maximization Problem II. Define M int
l as a set which contains

µ if and only if Equations (1.24) and (1.25) have a solution (W ∗
l−1, λ

∗) with W ∗
l−1 ∈

(Wlb,Wub).

Lemma 2.2. The set M int
l is an interval

(
mlo
l ,m

hi
l

)
such that Equations (1.24) and

(1.25) can be solved for µ = mlo
l and Wl−1 = Wlb and for µ = mhi

l and Wl−1 = Wub. If

(Wl−1, λ) and (W̃l−1, λ̃) satisfy the first order conditions (1.24) and (1.25) for µ and µ̃,

respectively, while Wlb ≤ Wl−1 < W̃l−1 ≤ Wub, then λ̃ < λ and µ̃ > µ.

Proof: The first statement follows from the second, whose proof follows. Suppose

that a pair (Wl−1, λ) with Wl−1 < p solves Equations (1.24) and (1.25) for some µ. This

implies wi = gi(Wl−1, λ) as in Equation (1.19). If Wl−1 is increased by δ to W̃l−1 =

Wl−1 + δ < p, then gi(W̃l−1, λ) < gi(Wl−1, λ) ,∀i = 1, . . . , l − 1 and
∑l−1

i=1 gi(W̃l−1, λ) <∑l−1
i=1 gi(Wl−1, λ) = Wl−1. By Lemma 2.1,

∑l−1
i=1 gi(W̃l−1, λ

′) = Wl−1 can be satisfied only

for a unique λ′ < λ. Since V[1], . . . , V[k] are sorted in ascending order, (V[l] − V[i]) is

decreasing in i and the derivative of gi(Wl−1, λ) with respect to λ given in Equation (.11)

is increasing in i. Therefore, for λ′ < λ, i < j implies gi(W̃l−1, λ
′) − gi(W̃l−1, λ) >
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gj(W̃l−1, λ
′)− gj(W̃l−1, λ). If

∑l−1
i=1 gi(W̃l−1, λ

′) =
∑l−1

i=1 gi(Wl−1, λ) is satisfied, then there

exists iδ < l − 1 such that gi(W̃l−1, λ
′) ≥ gi(Wl−1, λ) for i ≤ iδ and gi(W̃l−1, λ

′) <

gi(Wl−1, λ) for i > iδ. We define ∆ :=
∑iδ

i=1 gi(W̃l−1, λ
′)−

∑iδ
i=1 gi(Wl−1, λ) to be the total

increase of w1, . . . , wiδ and
∑l−1

i=iδ+1 gi(Wl−1, λ)−
∑l−1

i=iδ+1 gi(W̃l−1, λ
′) = −∆ follows from

the fact that both the new and original weights add up to Wl−1. We, then, plug the new

weights in equation (1.25) to find the expected shortfall µ′ corresponding to (W̃l−1, λ
′) by

p (µ′ + V[l]) =
∑l−1

i=1 gi(W̃l−1, λ
′)(V[l] − V[i]). Note that

p (µ′ + V[l])− p (µ+ V[l]) =
k∑
i=1

[gi(W̃l−1, λ
′)− gi(Wl−1, λ)](V[l] − V[i])

=

iδ∑
i=1

[gi(W̃l−1, λ
′)− gi(Wl−1, λ)](V[l] − V[i])

+
k∑

i=iδ+1

[gi(W̃l−1, λ
′)− gi(Wl−1, λ)](V[l] − V[i])

≥
iδ∑
i=1

[gi(W̃l−1, λ
′)− gi(Wl−1, λ)](V[l] − V[iδ])(.12)

+
k∑

i=iδ+1

[gi(W̃l−1, λ
′)− gi(Wl−1, λ)](V[l] − V[iδ+1])

= ∆(V[l] − V[iδ])−∆(V[l] − V[iδ+1])

= ∆(V[iδ+1] − V[iδ]) ≥ 0

which implies µ′ ≥ µ. Inequality (.12) follows since

(V[l] − V[iδ]) ≤ (V[l] − V[i]) and gi(W̃l−1, λ
′)− gi(Wl−1, λ) ≥ 0 , ∀i ≤ iδ and

(V[l] − V[iδ+1]) ≥ (V[l] − V[i]) and gi(W̃l−1, λ
′)− gi(Wl−1, λ) ≤ 0 , ∀i ≥ iδ + 1.
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Equation (1.24) for W̃l−1 becomes
∑l−1

i=1 gi(W̃l−1, λ̃) = W̃l−1 > Wl−1, which can be satisfied

only for a unique λ̃ < λ′. Due to monotonicity, gi(W̃l−1, λ̃) > gi(W̃l−1, λ
′) ,∀i = 1, . . . , l−1

and this implies for the expected shortfall µ̃ corresponding to (W̃l−1, λ̃)

p (µ̃+ V[l]) =
l−1∑
i=1

gi(W̃l−1, λ̃)(V[l] − V[i])

>

l−1∑
i=1

gi(W̃l−1, λ
′)(V[l] − V[i])

= p (µ′ + V[l])

≥ p (µ+ V[l]).

Hence, we showed that if (Wl−1, λ) and (W̃l−1, λ̃) satisfy the first order conditions (1.24)

and (1.25) for µ and µ̃, respectively, while W̃l−1 > Wl−1, then µ̃ > µ.

We complete the proof of the lemma by showing that there exist W0 ∈ (Wlb,Wub), λ0,

and µ0 such that Equations (1.24) and (1.25) are solved with (Wl−1, λ) = (W0, λ0) and

µ = µ0; this proves that M int
l is nonempty. Define f(Wl−1, λ) := Wl−1−

∑l−1
i=1 gi(Wl−1, λ),

which is increasing in λ by Lemma 2.1. For any W0 ∈ (Wlb,Wub), limλ→∞ f(W0, λ) = W0.

Let λlb be the solution of g1(W0, λlb) = W0. Then 0 < gi(W0, λlb) ≤ W0 , ∀i > 1 because

the absolute value of the derivative of gi(W0, λ) with respect to λ given in equation (.11)

is decreasing in i. Consequently, f(W0, λlb) = W0 −W0 −
∑l−1

i=2 gi(W0, λ) < 0. Because

f is continuous in its second argument over the range [λlb,∞), there exists λ0 such that

f(W0, λ0) = 0, i.e. Equation (1.24) holds for Wl−1 = W0 and λ = λ0. Then µ0 is chosen

to satisfy Equation (1.25). �
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The following lemma justifies the way in which root-finding is used to determine the

endpoints of confidence intervals and the rectangles that make up confidence regions.

Lemma 2.3. If

• l ≤ kp: Rint
l is decreasing on (mlo

l ,m
hi
l ), and the supremum of Rint

l on (mlo
l ,m

hi
l )

is Rint
l (mlo

l ), where the first-order conditions with µ = mlo
l are solved at W ∗

l−1 =

Wlb = p− (1− p)/(k − l) and λ∗ < 0.

• kp < l < kp+1: Rint
l is increasing on (mlo

l , T (Fk)) and decreasing on (T (Fk),m
hi
l ),

and the supremum of Rint
l on (mlo

l ,m
hi
l ) is Rint

l (T (Fk)) = 1, where the first-order

conditions with µ = T (Fk) are solved at W ∗
l−1 = (l − 1)/k and λ∗ = 0.

• l ≥ kp + 1: Rint
l is increasing on (mlo

l ,m
hi
l ) and the supremum of Rint

l on

(mlo
l ,m

hi
l ) is Rint

l (mhi
l ), where the first-order conditions with µ = mhi

l are solved

at W ∗
l−1 = Wub = p and λ∗ > 0.

Proof: Consider the set F∗l of all points (W ∗
l−1, λ

∗, µ) such that the first-order condi-

tions of Maximization Problem II are satisfied, for W ∗
l−1 ∈ (0, 1). This includes the point

( l−1
k
, 0, T (Fk)), corresponding to equal weights w∗1, . . . , w

∗
k = 1/k.

This point is feasible iff l−1
k
∈ (Wlb,Wub), that is, kp < l < kp + 1, and in this case

Rint
l (T (Fk)) = 1, the largest possible empirical likelihood ratio. It follows from Lemma 2.2

that if (Wl−1, λ, µ) and (W̃l−1, λ̃, µ̃) are in F∗l while µ < µ̃ < T (Fk), then Wl−1 < W̃l−1 <

l−1
k

and λ > λ̃ > 0. Because Wl−1 < W̃l−1 <
l−1
k

, the average weight in the tail (i.e. wi

for i = 1, . . . , l− 1) is “too small”, that is, less than 1/k, in the solution to Maximization

Problem II with µ̃ and it is even less in the solution with µ. Because λ > λ̃ > 0, the

weights in the tail are unequal to each other in the solutions to Maximization Problem II
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with µ or with µ̃, and they are more distorted in the solution with µ. Both of these effects

cause Rint
l (µ) < Rint

l (µ̃). Thus Rint
l is increasing on (−V[k], T (Fk)]. By similar reasoning,

it is decreasing on [T (Fk),−V[1]).

Next consider the case l ≥ kp + 1. In this case, ( l−1
k
, 0, T (Fk)) is infeasible because

l−1
k
≥ p = Wub. By Lemma 2.2, (mlo

l ,m
hi
l ) ⊂ (−V[k], T (Fk)], and the conclusion follows.

Finally, consider the case l ≤ kp, where ( l−1
k
, 0, T (Fk)) is infeasible because l−1

k
≤ Wlb.

The conclusion follows in a similar manner from (mlo
l ,m

hi
l ) ⊂ (T (Fk),−V[1]). �
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