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ABSTRACT 

Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are two 

devastating neurodegenerative diseases that affect 100,000s of people globally. They have a 

severe adverse impact on society, yet there are currently no early diagnostic tools or disease-

modifying therapies available. Despite their clinical heterogeneity, evidence points to these 

diseases being on a spectrum, with shared molecular characteristics. 

Two proteins known to be associated with the disease spectrum are TDP-43 and FUS, 

both multifunctional DNA- and RNA-binding proteins. These two proteins share common 

structural features, have a core of common target genes, and have similar functions throughout 

the lifecycle of RNA, regulating transcription, splicing, localization, translation and stability. 

However, they also have distinct characteristics and differences as well. For both proteins, the 

current paradigm says that a combination of factors leads to nuclear clearance and aggregation 

into cytosolic inclusion bodies. An unresolved debate in the field is whether the disease occurs 

through loss-of-function or gain-of-toxicity mechanisms. 

This work was motivated to better understand the endogenous roles these proteins play in 

regulating the nervous system. In particular, much recent work has provided evidence that both 

proteins are involved with miRNA biogenesis and mitochondrial function, both of which have 

been implicated in the pathogenesis of the ALS-FTD spectrum. Because of the complexity of the 

number of potential RNA targets, a genome-wide approach is essential for understanding the 

roles of these proteins. Thus, we sought to explore both of these functions systematically using a 

combination of molecular biology and bioinformatics. 

We first systematically examined which miRNAs are regulated by TDP-43 and FUS in 

neuronal model systems. In this work, we designed a novel pipeline to both predict which 



 3 
miRNA-mRNA interactions are occurring in our model system, but also which pathways might 

be dysregulated. We identified FUS-regulated miRNAs that had established and predicted roles 

in synaptic regulation. Intriguingly, we identified several cancer-associated miRNAs regulated 

by TDP-43, with several TDP-43-regulated miRNAs predicted to have novel roles in lung cancer 

pathogenesis and prognosis. In particular, our pipeline identified one miRNA, miR-423-3p, with 

a predicted role in regulating cell migration. Follow-up experiments validated this prediction, 

demonstrating the power of this network approach. 

We next sought to determine which mitochondrial-associated genes may be regulated by 

FUS. In the course of initial work in this area, we realized that RNA-Sequencing data is 

compositional rather than count data. This means that it carries only relative information, not 

information about absolute copy number changes. Standard normalization methods can lead to 

distorted results if there is significantly more RNA in one condition versus another. We thus 

designed a new normalization approach, called compositional normalization (implemented in an 

extension of the popular sleuth tool, called sleuth-ALR), to deal with this problem, and we also 

designed a new simulation protocol, absSimSeq, to benchmark performance in a more accurate 

way. Compositional normalization performed similarly to standard normalization when 

analyzing data that did not have large number of changes; however, compositional normalization 

had much improved performance when analyzing data that did have a large number of changes. 

Applying sleuth-ALR to FUS RNA-Sequencing datasets led to a dramatic re-interpretation of the 

global expression patterns, as well as which set of transcripts and pathways were dysregulated. 

Finally, we studied the role of FUS in mitochondrial function in an HEK CRISPR/Cas9 

KO model. We did not observe any changes in proliferation, bioenergetics, or mitochondrial 

membrane potential measured at the cell-level. Surprisingly, we observed an increase in the 
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membrane potential of purified mitochondria, and we also present preliminary evidence that 

several mitochondrial-associated transcripts are up-regulated after FUS KO, suggesting the 

intriguing possibility that FUS is an inhibitor of mitochondrial function. 

  



 5 
Acknowledgments 

 This work could not have been possible without the help of so many people. First of all, 

my mentor, Dr. Jane Wu, deserves a large chunk of the praise. From countless hours providing 

guidance and support, setting a high standard but helping me to meet it, and even being there for 

me in the bad times—she always drove me to my full potential and showed a great dedication to 

the success and wellbeing of all her trainees. I will treasure my time under her tutelage. 

To Dr. Fushimi, Xiaoping, Ryan, Mickie, and all of the other Wu Lab members: thank 

you for the technical support, for the laughs, for the exchange of food, culture and life, and for 

just making the time in the lab such a fun experience. To Dr. Li Zhu, Dr. Jianghong Liu, Dr. 

Jianwen Deng, Dr. Peng Wang, Dr. Ruirui Kong, and all of the other members of the IBP group: 

thank you for welcoming me into your lab for those two months, for imparting to me your 

technical expertise, for giving me your hospitality and friendship, and for sharing with me all the 

wonders of the Chinese culture. To my committee—Dr. Kessler, Dr. Chandel, Dr. Kording, and 

Dr. Braun: thank you for all of your mentorship and support, especially for when you had to give 

me important and constructive feedback (on my work, my career, and life), and it was tough to 

swallow. To my fellow peers who became my teachers, especially Daniel Fisher, Sam Weinberg, 

and Manan Mehta: without your support, I would have been lost at the bench. To my 

collaborators, Harold Pimentel and Lior Pachter: thank you for taking a chance on a lone wolf 

bioinformatician and helping bring my computational work to the finish line. 

Finally, to my family, my siblings, friends and my dearest Kathryn: thank you for all of 

your love and support over this long, arduous journey. When I doubted, when I wasn’t taking 

care of myself, and when I lost sight of the goal, you were right there to help me stay balanced, 

help me persevere, and help remind me of the joy, love, and vocation underneath it all.  



 6 
 
 
 
 
 
 

Dedication 

 
 
 
 
 
 
 
 

To Him Who made all of this possible 
 

A.M.D.G.  



 7 
TABLE OF CONTENTS 

ABSTRACT ···························································································································································· 2 
ACKNOWLEDGMENTS ·········································································································································· 5 
DEDICATION ························································································································································ 6 
TABLE OF CONTENTS ············································································································································ 7 
LIST OF FIGURES AND TABLES ····························································································································· 10 
PREFACE ···························································································································································· 12 
CHAPTER 1: INTRODUCTION ······························································································································· 13 

1.1 THE NEURODEGENERATIVE DISEASES FTD AND ALS ···································································································· 13 
1.1.1 The Clinical and Social Impact of FTD and ALS ························································································· 13 
1.1.2 Clinical Features of FTD and ALS ·············································································································· 14 

1.1.2.a FTD ······································································································································································· 14 
1.1.2.b ALS ······································································································································································· 15 
1.1.2.c FTD-ALS spectrum ················································································································································ 15 

1.1.3 Dysregulation of miRNA biogenesis in ALS and FTD ················································································· 16 
1.1.4 Mitochondrial dysfunction in ALS and FTD ······························································································· 17 

1.2 TDP-43 AND FUS PROTEINOPATHIES ······················································································································· 18 
1.2.1 Discovery of the proteinopathies ············································································································· 18 
1.2.2 Pathological Characteristics of TDP-43 and FUS proteinopathies ···························································· 19 

1.2.2.a FTLD ······································································································································································ 19 
1.2.2.b ALS ······································································································································································· 20 

1.3 THE STRUCTURE AND FUNCTION OF TDP-43 AND FUS ································································································ 22 
1.3.1 TDP-43 ······················································································································································ 22 

1.3.1.a Structure and function of TDP-43 ························································································································ 22 
1.3.1.b Models of TDP-43 proteinopathy ························································································································· 24 
1.3.1.c The role of TDP-43 in miRNA biogenesis ·············································································································· 25 
1.3.1.d The role of TDP-43 in mitochondrial function ······································································································ 26 

1.3.2 FUS ··························································································································································· 28 
1.3.1.a Structure and function of FUS ······························································································································ 28 
1.3.1.b Models of FUS proteinopathy ······························································································································ 30 
1.3.1.c The role of FUS in miRNA biogenesis ··················································································································· 32 
1.3.1.d The role of FUS in mitochondrial function ··········································································································· 33 

1.4 HIGH-THROUGHPUT STUDIES OF TDP-43 AND FUS ···································································································· 34 
1.4.1 The Current Need for High-throughput Studies ······················································································· 34 
1.4.2 Global Patterns of regulation by TDP-43 and FUS ···················································································· 35 
1.4.3 Lack of overlap between TDP-43 studies ·································································································· 35 
1.4.6 Important functions missed by previous high-throughput studies ··························································· 36 

1.5 MOTIVATION AND OVERVIEW OF THIS THESIS ·············································································································· 37 
CHAPTER 2: MIRNA-MRNA NETWORKS REGULATED BY TDP-43 AND FUS IN CANCER AND IN THE NERVOUS 
SYSTEM ······························································································································································ 40 

2.1 INTRODUCTION ····················································································································································· 40 
2.1.1 Evidence that TDP-43 may have a role in cancer mediated by miRNAs ··················································· 40 
2.1.2 The need to use a network approach for studying miRNA-mRNA interactions ········································ 41 
2.1.3 Aims of this study ····································································································································· 42 

2.2 RESULTS ······························································································································································ 44 
2.2.1 TDP-43-regulated miRNAs are predicted to influence multiple pathways in lung cancer ························ 44 



 8 
2.2.2 TDP-43 associated miR-423-3p promotes lung cancer cell migration ······················································ 47 
2.2.3 FUS-regulated miRNAs in the brain are predicted to regulate synaptic and calcium signaling pathways49 
2.2.4 Follow-up Work ········································································································································ 51 

2.3 METHODS ··························································································································································· 51 
2.3.1 TCGA Data collection for miRNA-mRNA Functional Annotation and Predicted Causal Network ············· 51 
2.3.2 miRNA-mRNA Functional Annotation and Predicted Causal Network Pipeline ······································· 52 

2.3.2.a ProMISe analysis ·················································································································································· 52 
2.3.2.b Differential expression analysis and ranking transcripts ····················································································· 53 
2.3.2.c Fatiscan analysis ··················································································································································· 53 
2.3.2.d Selecting candidate miRNAs ································································································································ 54 
2.3.2.e FatiGO analysis ····················································································································································· 55 
2.3.2.f Construction of a predicted causal interaction network ······················································································ 56 

2.3.3 Culture of H1299 Cells and Transwell Migration Assay ············································································ 56 
2.3.4 Generation of FUS KO Brain paired mRNA-Seq/small-RNA-Seq dataset ·················································· 57 
2.3.5 Estimates of FUS KO Brain mRNA and miRNA abundances ····································································· 57 
2.3.6 miRNA-mRNA Functional Annotation and Predicted Causal Network Pipeline for the FUS KO Brain 
dataset ······························································································································································ 59 
2.3.7 Data availability ······································································································································· 59 

CHAPTER 3: DEVELOPMENT AND BENCHMARKING OF COMPOSITIONAL NORMALIZATION FOR RNA-
SEQUENCING DATA ············································································································································ 61 

3.1 INTRODUCTION ····················································································································································· 61 
3.2 RESULTS ······························································································································································ 66 

3.2.1 Simulation of RNA transcript copy numbers, normalization, and performance of different tools ··········· 66 
3.2.2 Performance is not degraded by significant variation in individual spike-ins ·········································· 69 
3.2.3 sleuth-ALR has best self-consistency and negative control performance among compositional 
normalization methods ····································································································································· 70 
3.2.4 Performance of compositional normalization on a dataset with a global decrease in transcription ······· 72 

3.3 MATERIALS AND METHODS ····································································································································· 77 
3.3.1 absSimSeq approach to simulating RNA-Seq data ·················································································· 77 
3.3.2 Simulation of copy numbers for this study ······························································································· 78 
3.3.3 Implementing a compositional approach for differential analysis tools: the Log-ratio transformation ·· 80 
3.3.4 How to choose a denominator for compositional normalization and how to interpret the results ········· 81 
3.3.5 How sleuth-ALR fits into the current sleuth pipeline ················································································ 82 
3.3.6 Compositional approach for the other tools ···························································································· 83 
3.3.7 Pipeline to analyze simulations ················································································································ 84 
3.3.8 Experiments from the original sleuth paper ····························································································· 85 
3.3.9 Pipeline to analyze yeast dataset ············································································································· 86 
3.3.10 Availability of data and code ·················································································································· 87 

CHAPTER 4: MOLECULAR AND BIOINFORMATICS STUDIES OF THE ROLE OF FUS IN MITOCHONDRIAL FUNCTION90 
4.1 INTRODUCTION ····················································································································································· 90 
4.2 RESULTS ······························································································································································ 92 

4.2.1 Using sleuth-ALR results in a dramatic re-interpretation of the global expression changes in FUS RNA-
Seq Studies ························································································································································ 92 
4.2.2 HEK FUS KO cells have no change in proliferation or galactose sensitivity ·············································· 94 
4.2.3 HEK FUS KO cells have no change in mitochondrial respiration or glycolysis ··········································· 95 
4.2.4 HEK FUS KO cells have no change in mitochondrial membrane potential, but increase in mitochondrial 
mass ·································································································································································· 95 
4.2.5 Isolated mitochondria from FUS KO cells have increased mitochondrial membrane potential ··············· 97 
4.2.6 qPCR validation failed when using standard approach ············································································ 97 
4.2.7 qPCR validation succeeded with sleuth-ALR ····························································································· 98 



 9 
4.2.8 GAPDH may also be increased in HEK FUS KO cells ·················································································· 99 

4.3 METHODS ························································································································································· 100 
4.3.1 Identification of eligible FUS and RNA-Seq datasets ·············································································· 100 
4.3.2 Pipeline for re-analysis of FUS RNA-Seq datasets ·················································································· 101 
4.3.3 generation and culture of the HEK FUS KO model system ····································································· 102 
4.3.4 proliferation assay ································································································································· 103 
4.3.6 galactose sensitivity assay ····················································································································· 103 
4.3.7 Seahorse assay ······································································································································· 103 
4.3.8 Mitochondrial membrane potential assay ····························································································· 104 
4.3.9 Measurement of membrane potential of purified mitochondria ··························································· 105 
4.3.10 qPCR ····················································································································································· 105 
4.3.11 modified qPCR ······································································································································ 106 
4.3.12 Data analysis ········································································································································ 107 

CHAPTER 5: DISCUSSION AND SUMMARY ········································································································ 108 
5.1 FUS, TDP-43, AND MIRNA BIOGENESIS: WHAT’S NEXT? ··························································································· 108 

5.1.1 The limitations of our network approach ······························································································· 108 
5.1.2 Future possibilities ································································································································· 109 

5.2 COMPOSITIONAL NORMALIZATION: WHAT’S NEXT? ·································································································· 111 
5.2.1 Results from Bottomly et al. self-consistency test and GEUVADIS null experiment ······························· 113 
5.2.2 The lack of real datasets with verified global changes ·········································································· 114 
5.2.3 How to choose a denominator for compositional normalization and interpret the results ··················· 114 
5.2.4 Concerns about the utility of spike-ins ··································································································· 117 
5.2.5 Conclusions ············································································································································· 118 

5.3 COMPOSITIONAL NORMALIZATION AND QPCR: WHAT’S NEXT? ···················································································· 119 
5.4 FUS AND MITOCHONDRIAL FUNCTION: WHAT’S NEXT? ······························································································· 119 
5.4 SUMMARY ························································································································································· 120 

REFERENCES ····················································································································································· 121 
APPENDIX 1: SUPPORTING INFORMATION FOR CHAPTER 2 ON THE ROLE OF TDP-43 AND FUS IN MIRNA 
REGULATION ···················································································································································· 150 

APPENDIX 1.1: SUPPLEMENTAL FIGURE FOR CHAPTER 2 ·································································································· 150 
APPENDIX 1.2: LEGENDS FOR SUPPLEMENTAL TABLES FOR CHAPTER 2 ················································································ 151 

APPENDIX 2: SUPPORTING INFORMATION FOR CHAPTER 3 ON SLEUTH-ALR AND COMPOSITIONAL 
NORMALIZATION ············································································································································· 152 

APPENDIX 2.1: *SEQ DATASETS ARE COMPOSITIONAL DATASETS ························································································ 152 
APPENDIX 2.2: REQUIREMENTS OF TECHNIQUES FOR ANALYZING COMPOSITIONAL DATA ························································· 154 
APPENDIX 2.3: RUVG AND THE COMPOSITIONAL BEHAVIOR OF SPIKE-INS ··········································································· 155 
APPENDIX 2.4: EXTENDING THE COMPOSITIONAL APPROACH TO OTHER HIGH-THROUGHPUT METHODS ····································· 160 
APPENDIX 2.5: HANDLING ZEROS IN SLEUTH-ALR ··········································································································· 161 
APPENDIX 2.6: SUPPLEMENTAL FIGURES FOR CHAPTER 3 ································································································· 163 
APPENDIX 2.7: LEGENDS FOR SUPPLEMENTAL TABLES FOR CHAPTER 3 ················································································ 171 

 

  



 10 
List of Figures and Tables 

MAIN FIGURES AND TABLE 
 

Figure 2.1: Flowchart of analysis pipeline ····························································· 30 

Figure 2.2: The network graph of miRNA-mRNA interactions and the significant FatiGO terms 

associated with the target mRNAs in LUAD and LUSC samples ··································· 34 

Figure 2.3: Effect of TDP-43 regulated miRNAs on lung cancer cell migration. ················· 36 

Figure 2.4: Network graph of miRNA-mRNA interactions in FUS KO whole mouse brains 

compared to wild-type. ····················································································· 38 

Figure 3.1: AbsSimSeq, A novel simulation protocol to model compositional RNA-Seq data. 54 

Figure 3.2: Compositional normalization markedly improves performance when there is a large 

compositional change ······················································································ 55 

Figure 3.3: Spike-ins have significant within-group and between-group variation, despite 

improved performance when used for normalization ·················································· 56 

Figure 3.4: sleuth-ALR Wald has best balance of self-consistency between less and more data 

from same dataset ··························································································· 58 

Figure 3.5: sleuth-ALR and limma perform best on the GEUVADIS null dataset ·············· 60 

Figure 3.6: A yeast starvation study shows a large global decrease in RNAs ····················· 61 

Table 3.1: Only compositional normalization (C.N.) accurately reflects global decrease in the 

yeast starvation study. ······················································································ 63 

Figure 4.1: Dramatic Reinterpretation of FUS RNA-Seq Datasets after sleuth-ALR analysis ·· 80 

Figure 4.2: No change in proliferation after FUS KO ················································ 81 

Figure 4.3: No change in bioenergetics after FUS KO ··············································· 82 

Figure 4.4: No change in MMP after FUS KO ························································ 83 



 11 
Figure 4.5: FUS KO cells have increased mitochondrial mass ······································ 83 

Figure 4.6: Individual mitochondria from FUS KO cells have increased MMP ·················· 84 

Figure 4.7: qPCR validation fails with hits identified by standard analysis ······················· 85 

Figure 4.8: Hits identified by sleuth-ALR had much higher rate of validation in FUS KO HEK 

cells ··········································································································· 86 

Figure 4.9: GAPDH may be up-regulated in HEK FUS KO ········································· 87 

APPENDIX FIGURES 

Figure A1.1: DE- and Pathway-filtered miRNA-mRNA predicted network in FUS KO Brain 138 

Figure A2.1: The sleuth-ALR approach for compositional normalization ························ 151 

Figure A2.2: A full-range view of the simulation results, accompanying Figure 3.2 ··········· 152 

Figure A2.3: ALDEx2 performs similarly in simulations regardless of which statistical method 

is used ······································································································· 153 

Figure A2.4: sleuth and sleuth-ALR perform similarly regardless of which statistical method or 

data unit is used ···························································································· 154 

Figure A2.5: Spike-ins show a broad range of fold changes and systematic differences in studies 

with large shifts, accompanying Figure 3.3 ···························································· 155 

Figure A2.6: The False Discovery Rate and Relative sensitivity for the Bottomly self-

consistency test at additional FDR levels ······························································· 156 

Figure A2.7: Effect of imputation value on bootstrap variation ···································· 157 

Figure A2.8: Effect of imputation on overall simulation performance ···························· 158 

  



 12 
PREFACE 

Parts of this dissertation did appear in the following publications: 

 
Chen, X., Fan, Z., McGee, W., Chen, M., Kong, R., Wen, P., Xiao, T., Chen, X., Liu, J., Zhu, L., 
et al. (2018). TDP-43 regulates cancer-associated microRNAs. Protein & Cell 9, 848–866. 
 

Parts of this dissertation will appear in: 

 
McGee, W.A., Pimentel, H., Pachter, L., and Wu, J.Y. (2019). Compositional Data Analysis is 
necessary for simulating and analyzing RNA-Seq data. 
 
 



 13 

CHAPTER 1: INTRODUCTION 

1.1 The Neurodegenerative Diseases FTD and ALS 

1.1.1 The Clinical and Social Impact of FTD and ALS 

Frontotemporal Dementia (FTD) is the second most common cause of early-onset 

dementia (<65 y/o), with an estimated incidence of 2-5/100,000 patients and a prevalence of  15-

22/100,000 patients (Onyike and Diehl-Schmid, 2013; Rabinovici and Miller, 2010; Seltman and 

Matthews, 2012). This means that FTD affects roughly 20,000-30,000 adults in the US 

(Knopman and Roberts, 2011), with ~60% of patients developing the disease between the ages of 

45-65 and ~13% developing it before age 50 (Onyike and Diehl-Schmid, 2013). Amyotrophic 

Lateral Sclerosis (ALS) is the most common motor neuron disease, with a global incidence 

ranging from 0.5-3/100,000 people (Al-Chalabi and Hardiman, 2013; Beghi et al., 2006; 

Hardiman et al., 2017). This translates to the disease affecting roughly 15,000-20,000 people in 

the US, with approximately 5,000 new US cases diagnosed every year (Mehta, 2018). 

Like other neurodegenerative diseases, FTD and ALS both represent a substantial 

economic and social burden (Galvin et al., 2017; Larkindale et al., 2014; Shrestha and Heisler, 

2011). Specifically, FTD costs on average $120,000 per year for affected families (including 

both direct and indirect costs), which is double the typical costs for a family affected by 

Alzheimer’s dementia (Galvin et al., 2017). ALS costs approximately $64,000 per year for 

affected families, and has an estimated national burden of roughly $1 billion per year (Larkindale 

et al., 2014). Both diseases primarily affect patients between the third and sixth decades of life, 

meaning that these patients would otherwise be in the workforce. This represents a special 

burden compared to Alzheimer’s dementia, which typically affects patients in the later decades. 
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Importantly, there are no therapies available for FTD, and only one approved therapy for ALS 

(riluzole). There are no disease-modifying therapies nor any diagnostic tests for early detection 

for either disease. 

1.1.2 Clinical Features of FTD and ALS 

1.1.2.a FTD 

FTD defines a heterogeneous group of clinical syndromes characterized by progressive 

and selective loss of the executive, behavioral, and language cognitive domains (Erkkinen et al., 

2018; Kaivorinne, 2012; Seltman and Matthews, 2012; Sieben et al., 2012; Young et al., 2017). 

The prognosis varies widely, with a median survival of 6-12 years from symptom onset and 3-4 

years from diagnosis (Kansal et al., 2016; Ng et al., 2015). Usually, though, the clinical course is 

more aggressive than what is seen in Alzheimer’s dementia (Rascovsky et al., 2005). 

There are two broad clinical categories based on the predominant clinical features and 

pattern of atrophy: the behavioral variant, called behavioral variant FTD (bvFTD), and the 

language variant, called Primary Progressive Aphasia (PPA). PPA can be subdivided further 

based on the divergent localization and precise language problems that develop: semantic variant 

PPA (i.e. Semantic Dementia, SD); non-fluent variant PPA (i.e. Progressive Non-Fluent 

Aphasia, PNFA), and logopenic variant PPA (Erkkinen et al., 2018; Mackenzie et al., 2008; 

Young et al., 2017). There are additional uncommon variants that are also included under the 

umbrella, which are reviewed elsewhere (Erkkinen et al., 2018; Kaivorinne, 2012). 

There appears to be a strong genetic component, with ~25-50% of patients having a 

family history of dementia, and ~10% showing an autosomal dominant pattern of inheritance 

(Rohrer et al., 2009). Three major genes have been identified to have mutations that cause the 
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disease (in order of discovery: MAPT/tau, GRN, and C9orf72); a dozen or so more genes have 

been linked with the disease in rare cases (reviewed in (Pottier et al., 2016)). 

1.1.2.b ALS 

In contrast, ALS is clinically characterized by a progressive loss of motor neurons, with a 

median survival of 3-5 years from diagnosis (Al-Chalabi and Hardiman, 2013; Bäumer et al., 

2014). The clinical manifestations are varied, with patients initially presenting with upper motor 

neuron dysfunction, lower motor neuron dysfunction, or with a bulbar onset (Hardiman et al., 

2017). About 10% of cases have a family history of ALS, with the rest being considered sporadic 

(Chiò et al., 2008; Renton et al., 2014; Rowland and Shneider, 2001). Since SOD1 was first gene 

identified to cause ALS (Rosen et al., 1993), more than twenty genes have been identified as 

causative for ALS (Al-Chalabi et al., 2012; Zou et al., 2017). The most commonly mutated gene 

is C9orf72, accounting for 10-15% of all ALS cases, familial and sporadic (Al-Chalabi et al., 

2017). 

1.1.2.c FTD-ALS spectrum 

Importantly, there are subset of patients with ALS or FTD that go on to develop the other 

syndrome; specifically, with approximately ~15% of FTD patients developing ALS, and 

approximately 30% of ALS patients developing FTD (Lomen-Hoerth, 2011; Rascovsky et al., 

2011). This, along with other genetic and pathological evidence, indicates that the two diseases 

exist on a spectrum (Gao et al., 2017; Geser et al., 2010; 2009). Many pathways have been 

implicated as dysregulated in this spectrum, including proteostasis, RNA metabolism, RNA and 

protein transport (including nucleocytoplasmic transport), and inflammation. Two processes of 

particular relevance to this work are the roles of microRNA dysfunction and mitochondrial 

dysfunction in these diseases. 
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1.1.3 Dysregulation of miRNA biogenesis in ALS and FTD 

MicroRNAs (miRNAs) are short noncoding RNAs (15-34 nt in length, average 22 nt) 

with a complex biogenesis and are involved in regulating almost every biological process 

(Finnegan and Pasquinelli, 2013; Ryan et al., 2015; Wilczynska and Bushell, 2015). Briefly, the 

canonical pathway consists of transcription of a primary miRNA transcript (pri-miRNA) 

followed by processing into a hairpin pre-miRNA (~60-70 nt) by the microprocessor complex, 

composed of Drosha and DGCR8. This pre-miRNA is then exported into the cytoplasm by 

exportin-5. This is processed further to a duplex of mature miRNAs by another complex 

composed of Dicer and TRBP. Finally, chaperone proteins like HSP90 and other proteins help 

load one of the two strands into an Argonaute protein (Ago1-4 in mammals) to form an RNA 

silencing complex (RISC) (Czech and Hannon, 2011). 

Recent studies have implicated miRNAs in neurodegenerative disorders, specifically 

ALS and FTD (reviewed in (Eitan and Hornstein, 2016; Gascon and Gao, 2012; 2014; Rinchetti 

et al., 2017)). Conditional knockout of Dicer in spinal motor neurons, thus blocking the 

production of miRNAs in these neurons, leads to dysfunction and loss of these neurons and 

recapitulated many pathological features of ALS (Haramati et al., 2010). On the other hand, 

enhancing Dicer function using the small molecule enoxacin partially alleviated neuromuscular 

dysfunction in two ALS mouse models (Emde et al., 2015). In addition, Drosha and DGCR8 

were found in inclusions co-localizing with the dipeptide repeats produced by C9orf72 

mutations, in both FTD and ALS patients (Porta et al., 2015). Finally, using microarrays, 

multiple miRNAs have been found to be dysregulated in FTD and ALS patients (Campos-Melo 

et al., 2013; Figueroa-Romero et al., 2016; Kocerha et al., 2011). 
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1.1.4 Mitochondrial dysfunction in ALS and FTD 

Mitochondria are critical organelles, both for energy homeostasis (through oxidative 

phosphorylation) and for integrating multiple signals in the cell (Bohovych and Khalimonchuk, 

2016; Chandel, 2014). These functions are especially critical in neurons, where great distances 

separate distal synaptic terminals from the soma and maintaining synaptic transmission has 

exceptionally high energy demands (Sheng, 2017). Of particular importance is so-called 

“retrograde signaling”, where mitochondria send signals back to the nucleus to modulate 

transcription (Hunt and Bateman, 2018). Besides the endoplasmic reticulum, mitochondria also 

serve as an additional site for calcium uptake and buffering; this is important in neurons, which 

use calcium signaling extensively during synaptic transmission (Pivovarova and Andrews, 2010). 

Interestingly, there are different populations of mitochondria in neurons (somatic mitochondria 

versus synaptic mitochondria) which have different properties related to the rate of the 

complexes that participate in oxidative phosphorylation (Davey and Clark, 1996; Davey et al., 

1998) and the capacity to buffer calcium (Brown et al., 2006; Stauch et al., 2014). 

Mitochondrial dysfunction has been known to be an aspect of ALS for a long time (Carrí 

et al., 2015; Cozzolino and Carrí, 2012; Jiang et al., 2015). Histological examination of ALS 

patient neurons showed swollen and vacuolated mitochondria (Cozzolino and Carrí, 2012). The 

first gene identified as mutated in ALS, SOD1, is a mitochondrial gene; much of the early work 

after its discovery was focused on the role of oxidative stress in ALS (reviewed in (Tan et al., 

2014)). Since then, multiple studies have observed defects in oxidative phosphorylation in cells 

taken from ALS patients (reviewed in (Cozzolino and Carrí, 2012)), including fibroblasts taken 

from patients with the C9orf72 mutation (Onesto et al., 2016). In addition, there is evidence to 
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link severity of disease in ALS with body weight, lipid profiles, and diabetes status (Jawaid et 

al., 2018), indicating that metabolism influences the disease. 

Though not as well studied, mitochondrial dysfunction has also been implicated in FTD. 

A novel mutation discovered in rare patients with ALS and FTD was found in CHCHD10, 

another mitochondrial gene (Bannwarth et al., 2014). Additional rare mutations in p97/VCP and 

p62/SQSTM1 have been found in patients with FTD, and both have also been implicated in 

mitochondrial dysfunction (reviewed in (Solomon et al., 2019)). Finally, a recent case series of 

FTLD post-mortem brain samples used electron microscopy to reveal significant mitochondrial 

damage, especially a marked loss or disruption of cristae (Deng et al., 2015). 

1.2 TDP-43 and FUS proteinopathies 

1.2.1 Discovery of the proteinopathies 

TAR DNA-Binding Protein, 43 kDa (TDP-43), was first identified in the context of 

repressing the transcription of the HIV-1 trans-activation response element (Ou et al., 1995). The 

Fused in Sarcoma / Translocated in Liposarcoma gene (FUS/TLS, hereafter FUS) was first 

discovered in the context of cancer, forming a fusion gene with CHOP to cause malignant 

myxoid liposarcoma (Crozat et al., 1993; Rabbitts et al., 1993). Both are multifunctional DNA 

and RNA binding proteins, participating in processes that span all steps of RNA processing from 

transcription, splicing, localization, and translation (see Section 1.3 below for a review of their 

structure and function). 

In 2006, TDP-43 was found to be the major protein component of ubiquitin positive 

inclusion bodies in patients with both Frontotemporal Lobar Degeneration (FTLD) and 

Amyotrophic Lateral Sclerosis (ALS) (Arai et al., 2006; Neumann et al., 2006). Later, in 2009, 

two groups discovered mutations in FUS that cause ALS (Kwiatkowski et al., 2009; Vance et al., 
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2009), and another group showed FUS to be the major protein component of ubiquitin positive 

inclusion of another subset of patients with FTLD (Neumann et al., 2009). Since then it has been 

realized that these cases are part of a clinical spectrum and have been reclassified as “TDP-43 

proteinopathy” and “FUS proteinopathy” because of their characteristic feature of FUS-positive 

inclusion bodies (Geser et al., 2010; Mackenzie and Neumann, 2017a). 

1.2.2 Pathological Characteristics of TDP-43 and FUS proteinopathies 

1.2.2.a FTLD 

Frontotemporal Lobar Degeneration (FTLD) defines the underlying pathology associated 

with FTD (Mackenzie and Neumann, 2016; Mackenzie et al., 2009; Neumann and Mackenzie, 

2019). The relationships between the two are complex, where one clinical category can be 

associated with multiple pathologies, and one type of pathology can be associated with multiple 

clinical syndromes (Erkkinen et al., 2018; Mackenzie and Neumann, 2016; Mackenzie et al., 

2009; Neumann and Mackenzie, 2019). The most common pathology is FTLD pathology due to 

TDP-43 (FTLD-TDP), accounting for ~45-50% of cases; the next most common is pathology 

due to the AD-associated protein tau (FTLD-Tau), accounting for ~40-45% of cases; third is 

pathology due to FUS (FTLD-FET), accounting for ~10% of cases (Kaivorinne, 2012). 

The normal histological pattern of TDP-43 immunostaining is a diffuse distribution 

predominantly in the nucleus. In contrast, the hallmark pathological pattern found in FTLD-TDP 

cases is a nuclear clearance accompanied by dense aggregations that are immunoreactive to 

TDP-43 and ubiquitin (Neumann and Mackenzie, 2019). These lesions vary widely by 

morphology and location, but frequently identified lesions include neuronal cytoplasmic 

inclusions, intranuclear inclusions, and dystrophic neurites. Despite the variability, 
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neuropathologists have found common patterns that led to a consensus definition of four 

pathological subtypes of FTLD-TDP (Mackenzie et al., 2011; Mackenzie and Neumann, 2017b). 

More recent work, especially with bvFTD patients, have identified specific regions and 

specific subpopulations of neurons that are especially vulnerable to developing TDP-43 

pathology (Nana et al., 2018; Seeley, 2008). In bvFTD, the regions most affected include the 

anterior cingulate and frontoinsular cortices, but other frontotemporal cortices and subcortical 

structures frequently have pathological lesions (Nana et al., 2018; Neumann and Mackenzie, 

2019). Intriguingly, a recent case series with identified neurons that had nuclear clearance of 

TDP-43 without any discernible aggregations of TDP-43, yet these neurons had similar atrophy 

compared to neurons that had TDP-43 aggregations (Nana et al., 2018). 

Similar to TDP-43, the normal histological pattern of FUS immunostaining is also a 

predominantly nuclear and diffuse staining (Mackenzie and Neumann, 2017a). In FTLD-FET, 

the characteristic lesions are also neuronal cytoplasmic inclusions that are strongly 

immunoreactive for FUS and ubiquitin, frequently (but not always) accompanied by nuclear 

clearance of FUS (Mackenzie and Neumann, 2017a). These cases are called FTLD-FET because 

FUS inclusions frequently also contain EWSR1 and TAF15, which with FUS form the FET 

family or proteins; these lesions also frequently include Transportin1, the carrier protein that 

facilitates transport of the FET proteins out of the nucleus (Mackenzie and Neumann, 2017a). In 

contrast to FTLD-TDP, the caudate nucleus is characteristically affected in FTLD-FET (Josephs 

et al., 2010). 

1.2.2.b ALS 

In ALS, the underlying pathology in a large majority of cases (95-98%) contains TDP-43 

(ALS-TDP) (Mackenzie et al., 2007), with the rest of the cases containing pathology either for 



 21 
SOD1 (ALS-SOD1, in patients with SOD1 mutations) and for FUS (ALS-FUS, in patients with 

FUS mutations) (Mackenzie et al., 2010). Interestingly, though TDP-43 and FUS mutations have 

been identified in ALS-TDP and ALS-FUS cases, respectively, so far TDP-43 and FUS 

mutations have only been rarely detected in FTLD-FET cases (Kaivorinne, 2012; Pratt et al., 

2012). 

Similar to FTLD-TDP, the characteristic lesion in ALS-TDP patients is a clearance of 

nuclear TDP-43 accompanied by nuclear cytoplasmic inclusions immunoreactive to TDP-43 and 

ubiquitin (Saberi et al., 2015). These lesions are found in lower and upper motor neurons, along 

with the frontal and temporal cortices, the hippocampus, and striatum. 

In addition, motor neurons in ALS-TDP frequently have an additional lesion called a 

“Bunina body”, small oval-to-round eosinophilic lesions found intracellularly in both lower and 

upper motor neurons (Saberi et al., 2015). They frequently are positive for Transferrin and 

Cystatin C, but are negative for other proteins frequently associated with neurodegeneration 

(Saberi et al., 2015). The biological significance is unknown. Interestingly, some subpopulations 

of motor neurons only rarely have Bunina bodies: Betz cells (the large projection neurons from 

the motor cortex to the spinal cord), the oculomotor nuclei, and the Onuf nuclei (found in the 

sacral spinal cord) (Saberi et al., 2015). Importantly, whereas the oculomotor nuclei and the Onuf 

nuclei are typically spared in ALS (Brockington et al., 2012; Fogarty, 2018), Betz cells are 

frequently atrophied and lost in ALS (Braak et al., 2017; Fogarty, 2018). A recent case series of 

ALS-TDP patients observed that Betz cells frequently have TDP-43 nuclear clearance without 

accompanying cytoplasmic inclusions (Braak et al., 2017), suggesting that Bunina bodies are 

related to the cytoplasmic aggregations. 



 22 
Similar to ALS-TDP, patients with ALS-FUS also have a characteristic nuclear clearance 

of FUS with accompanying neuronal cytoplasmic inclusions (Mackenzie and Neumann, 2017a). 

Previous work found that the degree of nuclear clearance of FUS was associated with the 

severity of the disease, as characterized by age of onset and rate of progression (Dormann et al., 

2010; Mackenzie and Neumann, 2017a). In contrast to ALS-TDP, there are no Bunina bodies in 

the neurons of ALS-FUS patients (Mackenzie and Neumann, 2017a). In contrast to FTLD-FET, 

FUS inclusions in ALS-FUS patients do not co-localize with EWSR1, TAF15, or Transportin1 

(Mackenzie and Neumann, 2017a). 

These differences suggest that, whereas nuclear clearance is a common theme across FUS 

and TDP-43 proteinopathies, there are likely different mechanisms in specific groups of patients 

with these diseases. A detailed understanding of the pathogenesis of these diseases is needed to 

better understand how to diagnose and treat these diseases. This would be helped by better 

understanding the structure and function of both TDP-43 and FUS. There are some important 

similarities between the two, but also some important differences (summarized below in section 

1.3). 

1.3 The Structure and Function of TDP-43 and FUS 

1.3.1 TDP-43 

1.3.1.a Structure and function of TDP-43 

Interested readers can explore two recent reviews for more in-depth discussion (Guo and 

Shorter, 2017; Prasad et al., 2019), but here will be a brief review of the structure and function of 

TDP-43. TDP-43 is a member of the heteronuclear ribonucleoproteins (hnRNP) family, with an 

N-terminal domain, two RNA Recognition Motifs (RRMs), and a C-terminal “prion-like” 

domain (Buratti and Baralle, 2001). It has a canonical bipartite nuclear localization signal (NLS) 
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between the N-terminal domain and the first RRM (aa82-95) (Winton et al., 2008). Though a 

nuclear export signal (NES) was proposed within the second RRM (aa239-250) (Winton et al., 

2008), later work provided strong evidence that this is not a true export signal and that instead 

TDP-43 likely is exported through passive diffusion (Archbold et al., 2018; Ederle et al., 2018; 

Pinarbasi et al., 2018). 

The N-terminal domain has two conformational states in equilibrium: a highly disordered 

unfolded state, and a well-folded state. The latter was found by NMR and circular dichroism to 

be a ubiquitin-like fold, despite low sequence similarity with ubiquitin (Qin et al., 2014). This N-

terminal domain can bind to ssDNA (Zhang et al., 2013a), and is required to facilitate 

homodimerization, an important prerequisite for splicing activity (Jiang et al., 2017; Zhang et al., 

2013a). Whereas a truncated form of TDP-43 lacking this domain and the NLS can easily 

aggregate (Jiang et al., 2017), full-length TDP-43 is less prone to aggregate unless its NLS is 

mutated (Zhang et al., 2013a). In the context of full-length TDP-43, the extreme N-terminus 

(residues 1-10) are required for aggregation (Zhang et al., 2013a). 

The RRM domains are both required for high-affinity RNA-binding activity, though both 

can bind RNA independently (Buratti and Baralle, 2001; Lukavsky et al., 2013). Studies have 

indicated that TDP-43 has a preference for TG/UG-rich motifs (Polymenidou et al., 2011; 

Tollervey et al., 2011), though UG repeats are neither necessary nor sufficient for TDP-43 

binding in cells (Kuo et al., 2014; Polymenidou et al., 2011). An NMR structure containing the 

two RRMs in tandem with a GU-rich RNA revealed conserved phenylalanines in both domains 

interacting with three UG repeats, including a central G that stabilizes a conformation between 

the two domains (Lukavsky et al., 2013). Further work indicated that RRM1 can bind ssDNA by 
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itself, whereas RRM2 cannot (Furukawa et al., 2016; Kuo et al., 2014); on the other hand, RRM2 

was required to provide sequence specificity to the binding of RRM1 (Furukawa et al., 2016). 

The majority of TDP-43 mutations identified in ALS are concentrated in the C-terminal 

domain, suggesting that ALS pathogenesis is at least in part mediated by abnormal aggregation 

of TDP-43 (Buratti, 2015). As mentioned before, this domain has a high propensity for 

aggregation as an isolated domain (Jiang et al., 2017). However, this domain is critically 

important for protein-protein interactions, and for mediating TDP-43’s functions in the cell, 

including splicing and formation of stress granules (Guo and Shorter, 2017; Prasad et al., 2019). 

1.3.1.b Models of TDP-43 proteinopathy 

A number of cellular and animal models have been developed for TDP-43 proteinopathy 

across multiple species, from yeast to human (reviewed in (De Giorgio et al., 2019; Guo et al., 

2017; Monahan et al., 2018; Romano et al., 2012; Solomon et al., 2019)). Previous work in the 

Wu lab has produced several models for studying TDP-43, including drosophila models (Li et 

al., 2010), cultured cortical neurons (Barmada et al., 2010), and stable cell lines expressing wild-

type and mutant TDP-43 (Guo et al., 2011; Zhu et al., 2014). TDP-43 is essential for early 

embryonic development for zebrafish (Schmid et al., 2013) and mice (Kraemer et al., 2010; 

Sephton et al., 2010), and results in severely restricted lifespan in flies (Feiguin et al., 2009). In 

contrast, it is dispensable in C. elegans (Zhang et al., 2012). Overexpression of TDP-43 is also 

toxic in multiple species, suggesting that TDP-43 expression is tightly controlled (D’Alton et al., 

2014). It is not surprising, then, to note that TDP-43 regulates its own expression by binding to 

its own 3’UTR (Ayala et al., 2011). 

There is evidence to suggest that both loss-of-function and gain-of-toxicity mechanisms 

are at play in the pathogenesis of ALS and FTD. On the one hand, reduction of TDP-43 leads to 
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synaptic transmission deficits, motor deficits, and neuron loss (Kraemer et al., 2010; Vanden 

Broeck et al., 2014). On the other hand, overexpression of TDP-43 or expression of mutant TDP-

43 also leads to motor and cognitive deficits (D’Alton et al., 2014). In addition, TDP-43 variants 

that lead to elevated expression have been directly linked to ALS-FTD in human patients (Gitcho 

et al., 2009). Also, dysregulation of the TDP-43’s autoregulation, as seen with ALS mutant 

M337V, can lead to motor and cognitive deficits (White et al., 2018). Importantly, neither 

nuclear clearance of TDP-43 nor cytoplasmic aggregation are required for toxicity (De Giorgio 

et al., 2019). 

Through these studies, TDP-43 has been shown to have multiple roles throughout RNA 

processing, including splicing (Highley et al., 2014; Polymenidou et al., 2011), suppression of 

toxic double-stranded RNA and RNAs derived from transposons (Krug et al., 2017; Li et al., 

2012; Saldi et al., 2014), transcription (Casafont et al., 2009; Hill et al., 2016), translation 

(Neelagandan et al., 2019), and RNA stability and localization (Alami et al., 2014; Izumikawa et 

al., 2017; Tank et al., 2018). The following sections will summarize what is known about TDP-

43’s role in miRNA biogenesis and mitochondrial function. 

1.3.1.c The role of TDP-43 in miRNA biogenesis 

Recent work has demonstrated that TDP-43 plays an important role in micro-RNA 

(miRNA) biogenesis (Eitan and Hornstein, 2016; Gascon and Gao, 2014). When the original 

Drosha/DGCR8 Microprocessor complex was discovered, TDP-43 was identified as an 

interacting subunit (Gregory et al., 2004). Two later studies found that TDP-43 can directly 

regulate Drosha. In human SH-SY5Y neuronal-like cells, TDP-43 was shown to directly regulate 

the stability of Drosha during retinoic acid treatment, with a global effect on miRNA biogenesis 

(Di Carlo et al., 2013). In mouse N2a neuronal-like cells, a phosphomimetic mutant of TDP-43 
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(mimicking the pathologically phosphorylated form of TDP-43 identified in inclusion bodies) 

also adversely affected the stability of Drosha (Kim et al., 2015). Other work identified that 

TDP-43 also interacts with the Dicer complex (Kawahara and Mieda-Sato, 2012), and it can 

directly interact with miRNAs at various stages of processing (Buratti et al., 2010; Kawahara and 

Mieda-Sato, 2012). 

Consistent with the above data, TDP-43 appears to regulate a subset of miRNAs that are 

relevant to neurodegeneration. One study found that, in flies, TDP-43 regulates a miR-9a, a 

miRNA critical for neuronal function (Zhu et al., 2012). This finding was replicated in rodent 

neurons and in patient-derived iPSCs (Zhang et al., 2013b). Further, TDP-43 has been shown to 

regulate the loading of mature miRNAs into RISC (King et al., 2014). Finally, through 

microarrays, TDP-43 was found to regulate several miRNAs, and that several TDP-43-associated 

miRNAs have been found to be dysregulated in disease (Freischmidt et al., 2013; Kawahara and 

Mieda-Sato, 2012; Kocerha et al., 2011; Rinchetti et al., 2017). 

1.3.1.d The role of TDP-43 in mitochondrial function 

The first observations linking TDP-43 to mitochondrial function were in 2010. One paper 

observed a loss in body weight accompanied by loss of body fat and changes in the serum lipid 

profiles of mice after a conditional TDP-43 knockdown (Chiang et al., 2010). Two other groups 

saw abnormal aggregations of mitochondria in two independent mouse models over-expressing 

human TDP-43 (Shan et al., 2010; Xu et al., 2010). The body weight and lipid metabolism 

observations were replicated in an overexpression mouse model (Stribl et al., 2014), and the 

mitochondrial aggregation was later replicated in a third independent mouse model expressing a 

TDP-43 mutant (Xu et al., 2011). In all three mouse models, ultrastructural examination via 

electron microscopy showed large accumulations of mitochondria (Shan et al., 2010; Xu et al., 
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2010; 2011). One study observed a depletion of mitochondria in axon terminals (Shan et al., 

2010). These results suggested deficits in mitochondrial transport or fission/fusion dynamics. 

Indeed, later work in cultured mouse neurons and in Drosophila models indicated that 

over-expressed wild-type or mutant TDP-43 disrupts the balance of fission and fusion toward 

fission (Altanbyek et al., 2016; Wang et al., 2013). A recent study demonstrated that 

overexpression of TDP-43 in the brain increased fusion protein Mitofusin2 in an age-dependent 

manner (Davis et al., 2018), and overexpression of Mitofusin2 alone recapitulated the 

cytoplasmic aggregation observed previously (Huang et al., 2007). 

Two of the original groups also observed ultrastructural changes indicating mitochondrial 

dysfunction, including vacuoles and disrupted cristae (Xu et al., 2010; 2011). These 

ultrastructural changes were recapitulated in a mouse model expressing a different ALS-

associated mutant form of TDP-43 (Stribl et al., 2014). These observations suggested a change in 

processes related to mitochondrial cristae, especially oxidative phosphorylation. Studies looking 

at this association have had mixed results. On the one hand, TDP-43 was found to directly 

localize to mitochondria in post-mortem samples from patients with ALS and FTD, as well as 

HEK cells, patient fibroblasts, and primary rodent neuronal cultures (Wang et al., 2016), as well 

as in transgenic mice overexpressing hTDP-43 (Wang et al., 2017). On the other hand, another 

study using different protocols failed to observe TDP-43 mitochondrial localization in patient 

fibroblasts with the same mutation nor changes in complex 1 activity (Onesto et al., 2016), and 

another study failed to detect any differences in oxygen consumption or extracellular 

acidification (a proxy for glycolytic activity) in HEK cells overexpressing or knocking down 

TDP-43 (Davis et al., 2018). 
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Further evidence, though, points to a role for TDP-43 in mitochondrial function. Despite 

the observation of no change in oxygen consumption, overexpression of wild-type or different 

mutant TDP-43 disrupted complex 1 assembly via translational inhibition of the ND3 and ND6 

mitochondrial-encoded subunits (Wang et al., 2016), and that inhibition of TDP-43 import using 

a small peptide alleviated these deficits (Wang et al., 2016) and improved motor and cognitive 

deficits in transgenic mice (Wang et al., 2017). In addition, another group observed that TDP-43 

stabilizes RNA intermediates of mitochondrial-encoded transcripts (Izumikawa et al., 2017). 

Finally, overexpression of TDP-43 was found to disrupt an interaction between mitochondria and 

endoplasmic reticulum, mediated by ER protein VAPB and mitochondrial protein PTPIP51 (Lau 

et al., 2018; Stoica et al., 2014). 

1.3.2 FUS 

1.3.1.a Structure and function of FUS 

Although it has long been recognized that FUS is a RNA/DNA binding protein involved 

in multiple gene regulatory processes, the biological function of this protein in the nervous 

system remains unclear (Sama et al., 2014). Like TDP-43, it is a member of the heteronuclear 

ribonucleoproteins (hnRNP) family. Also similar to TDP-43, it has a predominant nuclear 

localization with shuttling between the nucleus and cytoplasm, and the pathologic form is 

predominantly in the cytoplasm (Baloh, 2012; Lagier-Tourenne et al., 2010). Interested reads can 

read two in-depth reviews of FUS for more information (Efimova et al., 2017; Sama et al., 

2014), but here will be a brief review of its structure and function. 

The structure of FUS has some similarities but also some important differences with 

TDP-43. It also has a prion-like low complexity domain (LCD), but in the N-terminus. It also has 

an RRM domain, but instead of a second RRM, it instead has a zinc-finger domain (ZFD) 
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flanked by two DNA/RNA binding RGG domains. Finally, it contains a C-terminal non-

canonical nuclear localization signal. Like TDP-43, one group proposed an NES in its RRM 

domain (aa289-298) (Kino et al., 2011); however, later work showed that this NES is non-

functional and that FUS also likely is exported via passive diffusion (Ederle et al., 2018). Finally, 

also like TDP-43, FUS can regulate its own expression, though through a different mechanism 

than TDP-43 (Dini Modigliani et al., 2014; Zhou et al., 2013). 

The LCD has been shown to have important roles in the formation of “liquid-liquid phase 

separation”. In this process, FUS, TDP-43 and other proteins interact with RNAs to form 

membrane-less organelles in both the nucleus and cytoplasm to mediate diverse functions 

(reviewed in (Prasad et al., 2019; St George-Hyslop et al., 2018; Uversky, 2017)). As described 

in more detail below, the LCD of FUS is also involved in forming higher-order structures with 

RNA. Finally, multiple post-translational modifications within the LCD influence the ability of 

FUS to aggregate and induce phase separation, indicating that this process is tightly controlled 

(Monahan et al., 2017; Rhoads et al., 2018; Shorter, 2017). 

Because of the different domain structure in FUS versus TDP-43, it is not surprising that 

the mode of RNA and DNA binding is different between the two proteins. Whereas TDP-43 

appears to have a sequence preference for TG-rich/UG-rich motifs, there has been considerable 

debate about a motif for FUS binding (Lagier-Tourenne et al., 2012; Wang et al., 2015b). NMR 

of FUS’s RRM in complex with RNA indicated that the domain adopts a canonical structure 

despite having a significantly different sequence (Liu et al., 2013). Importantly, it lacks several 

aromatic residues that typically mediate sequence specificity, and instead has a conserved “KK-

loop” that is required for RNA binding via electrostatic interactions (Liu et al., 2013). Later work 
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revealed that all of the domains except the LCD can mediate DNA and RNA binding (Ozdilek et 

al., 2017; Schwartz et al., 2013; Wang et al., 2015b). 

Further, FUS can bind a wide range of different sequences, both single-strand and 

double-strand DNA and RNA, though FUS’s affinity for double-stranded DNA and RNA is 

weaker than that for single-strand (Ozdilek et al., 2017; Wang et al., 2015b). Instead, the affinity 

of FUS for RNA appears to be length-dependent. FUS has a binding preference for long introns 

(Hoell et al., 2011; Ishigaki et al., 2012; Lagier-Tourenne et al., 2012; Rogelj et al., 2012), and it 

forms fibrils on longer stretches of RNA in a highly cooperative manner; this cooperativity is 

mediated by the RGG-ZFD-RGG and the LCD (Schwartz et al., 2013; Wang et al., 2015b). It 

also interacts with general transcription factors and the RNA Polymerase II complex at 1000s of 

target genes (Sama et al., 2014; Schwartz et al., 2012); it further has a demonstrated role in DNA 

damage repair, especially damage associated with transcription (Hill et al., 2016; Sama et al., 

2014). The emerging picture is of a protein that helps coordinate activities between DNA and 

RNA from transcription through to localization and translation (Masuda et al., 2016a; Yu and 

Reed, 2015). 

1.3.1.b Models of FUS proteinopathy 

Similar to TDP-43, multiple models of FUS proteinopathy have been developed across 

species, from yeast to humans (De Giorgio et al., 2019; Guo et al., 2017; Lindström and Liu, 

2018; Nolan et al., 2016; Solomon et al., 2019). Previous work in the Wu lab has also developed 

multiple models: in yeast (Chen et al., 2016; 2011; Deng et al., 2015; 2018; Fushimi et al., 2011). 

Two FUS KO models were published at the same time in 2000 (Hicks et al., 2000; 

Kuroda et al., 2000). One KO was done on the C57J/B6 background, and those mice die 

immediately after birth with unclear etiology(Hicks et al., 2000), though the immune system 
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appears affected. The second KO was produced on either a 129/SvEvH background, or a mixed 

outbred CD1 and 129/SvEvH background. The former also had perinatal lethality of unknown 

cause, but the latter had mice survive to adulthood. However, they had reduced weight, were 

infertile, and were sensitive to ionizing radiation. 

In the Hicks KO model, hippocampal neurons from these mice have abnormal spine 

development(Fujii et al., 2005). They observed that FUS shuttled to dendrites in an activity-

dependent manner, with an increased localization after mGluR5 activation via DHPG. They 

suggested that FUS localizes RNA to dendritic spines in an activity dependent manner. Another 

KO model was generated on an outbred line (ICR crossed with B6) that lived to adulthood, and 

had no motor defects nor tremor, but had behavioral deficits (hyperactivity and reduced anxiety-

related behavior), suggesting that the KO does not recapitulate an ALS phenotype, but may 

recapitulate an FTLD phenotype(Kino et al., 2015). In this outbred model, they observed 

vacuolation of hippocampal neurons, with the vacuoles staining positive for the somatodendritic 

marker MAP2. 

Similar to TDP-43, there is a similar debate in the field about whether the pathogenesis in 

FUS proteinopathy is mediated by a loss-of-function or a gain-of-toxicity mechanism (Gao et al., 

2017; Ishigaki and Sobue, 2018; Sobue et al., 2018). On the one hand, mutant FUS leads to 

aberrant cytoplasmic localization and abnormal stress granule formation (Gao et al., 2017), and 

sequestration of essential spliceosome components (Sun et al., 2015; Yu et al., 2015). Further, 

increased FUS expression has been detected in FTLD cases (Deng et al., 2015). On the other 

hand, nuclear clearance of FUS and sequestration into aggregates leads to an impaired DNA 

damage response (Sama et al., 2014), impaired splicing (Ishigaki and Sobue, 2018; Lagier-
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Tourenne et al., 2012), and decreased stability of synaptic-related transcripts (Udagawa et al., 

2015). 

With regard to downstream pathways affected by FUS, it was mentioned above that FUS 

appears to have a role in synaptic development and maintenance (reviewed in (Ling, 2018)). 

Besides direct interaction with spliceosome components, FUS was also found to regulate introns 

processed by the U11/U12 minor spliceosome (Reber et al., 2016). Similar to TDP-43, FUS has 

also recently been implicated in miRNA biogenesis and mitochondrial function, which will be 

summarized next. 

1.3.1.c The role of FUS in miRNA biogenesis 

Multiple recent studies have demonstrated that, like TDP-43, FUS also has a role in 

miRNA biogenesis (Eitan and Hornstein, 2016; Gascon and Gao, 2014). FUS was also 

discovered as an interacting subunit of the microprocessor complex (Gregory et al., 2004). FUS 

was found to be involved in a co-transcriptional recruitment of Drosha to sites of pri-miRNA 

transcription (Morlando et al., 2012), and can directly bind both miRNA precursors (Fernandes, 

2012; Morlando et al., 2012) and mature miRNAs (Zhang et al., 2018). As an example, FUS 

regulates the expression of two miRNAs (miR-141 and miR-200a) that target FUS itself; this 

occurs via a feedforward loop involving the inhibition of Zeb1, a transcriptional repressor of 

these miRNAs (Dini Modigliani et al., 2014). Finally, a recent study demonstrated that FUS is 

critical for the proper silencing activity of multiple miRNAs (Zhang et al., 2018). FUS directly 

interacts with RISC component Ago2, mediated by the second RGG domain. Disrupting this 

interaction either by deletion of the RGG domain or by FUS mutation led to reduced silencing 

activity, independent of miRNA biogenesis. Finally, FUS-associated miRNAs have already by 

linked to neurodegeneration (Eitan and Hornstein, 2016; Gascon and Gao, 2014). 
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1.3.1.d The role of FUS in mitochondrial function 

There have been mentions of a possible connection between FUS and mitochondria in 

previous work. An ultrastructure study of motor neurons in ALS-FUS patients revealed 

aggregations of ER and mitochondria near FUS inclusion bodies (Huang et al., 2010). 

Transgenic rats expressing a different ALS-associated R521C FUS had ubiquitin-positive 

inclusions that did not stain for FUS but did stain positive for COXIV, a component of complex 

IV (Huang et al., 2011). Cultured mouse motor-neurons transfected with other ALS mutants had 

smaller mitochondria in their axons (Tradewell et al., 2011). A comparison of wild-type and 

mutant FUS indicated Finally, similar to TDP-43, FUS was also found to regulate the VAPB-

PTPIP51 interaction mediating ER-mitochondria communication (Lau et al., 2018; Stoica et al., 

2016). 

Additional evidence, in both non-neuronal and neuronal model systems, indicate that 

FUS binds to and regulates mitochondria-associated genes. One study looked at FUS binding in 

HEK293 cells, both wild-type and ALS mutants. An over-representation analysis identified 

“mitochondrion” and “mitochondrial inner membrane” as two pathways that were affected by 

mutant FUS binding as compared to wild-type (see Supplementary Table 3 from (Hoell et al., 

2011)). A similar study with [[FIX THIS]] found that a different FUS mutation associated with 

multiple metabolic enzymes (Wang et al., 2015a). Another study looked at the interaction of 

FUS and RNA Polymerase II in HEK293 cells, showing a role for FUS in the phosphorylation of 

the C-terminal domain, regulating polyadenylation. Finally, an overrepresentation analysis of 

genes with at least 20% fold-change and significant p-value identified multiple mitochondrial 

gene ontology terms as hits (Schwartz et al., 2012). 
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Our group has recently demonstrated mitochondrial localization of FUS and discovered 

interaction of FUS with mitochondrial chaperonin HSP60 (Deng et al., 2015). Overexpression of 

wild-type or mutant FUS led to mitochondrial localization of FUS and mitochondrial 

fragmentation in multiple models, as seen in immunofluorescence and immuno-EM studies; a 

similar phenotype observed in post-mortem brain samples of FTLD-FUS cases. Along with the 

structural changes, we also observed a decrease in mitochondrial membrane potential, oxygen 

consumption rates, and ATP production (Deng et al., 2015). We further demonstrated that FUS-

toxicity was mediated by HSP-60, with HSP60 knockdown partially rescuing the mitochondrial 

deficits. In a more recent study, we observed that wild-type or mutant FUS overexpression 

causes a dysregulation of PINK1 and Parkin protein levels, and also aberrant ubiquitination of 

Miro1, with a resulting deficit in mitochondrial retrograde movement in fly and mammalian 

neurons (Chen et al., 2016). Finally, we most recently have shown a direct interaction between 

FUS and members of complex V, especially ATP5B (Deng et al., 2018). 

1.4 High-throughput Studies of TDP-43 and FUS 

1.4.1 The Current Need for High-throughput Studies 

Cells and tissues work as a unified whole for the sake of the organism, and thus it is an 

essential task for biologists to understand how different processes are integrated to produce a 

response, and how such integration is disrupted in diseases (Talbott, 2010; 2011). This is no less 

true for understanding the pathogenesis of complex diseases like ALS and FTD (Cooper-Knock 

et al., 2017; Ferrari et al., 2016; Fontana et al., 2015; Mao et al., 2017), nor for understanding the 

function of particular RNA-binding proteins like TDP-43 and FUS (Gama-Carvalho et al., 2017). 

This is especially so given all of the evidence to suggest that these proteins coordinate multiple 

steps of RNA processing from transcription to translation (as described in the previous section). 
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High-throughput studies can assay changes on a genome-wide scale (“omics” scale), allowing 

researchers the possibility of understanding this integration (Hawkins et al., 2010). 

It is no surprise then that many high-throughput studies have already been done on TDP-

43 and FUS. In fact, there have been 55 high-throughput datasets generated to study TDP-43, 

and 58 datasets to study FUS (including one of our own). The following section will summarize 

some of the studies, with a particular emphasis on RNA-Sequencing studies, the subject of 

Chapters 3 and 4. 

1.4.2 Global Patterns of regulation by TDP-43 and FUS 

High-throughput studies on FUS and TDP-43 have examined various roles of these 

proteins across the entire spectrum of RNA processing (see section 1.3 for details). In general, 

studies have found that there appears to be a common set of targets regulated by both proteins 

(Honda et al., 2014; Lagier-Tourenne et al., 2012), though there are also major differences in 

other targets or in competing regulation for a common target (Colombrita et al., 2015; Lagier-

Tourenne et al., 2012). There is evidence to suggest that these proteins are connected in function 

(Ratti and Buratti, 2016). Interestingly, though both proteins target 1000s of transcripts in the 

genome, studies have concluded that there are only a modest number of changes (Colombrita et 

al., 2015; Polymenidou et al., 2011; Sama et al., 2014). This is an intriguing discrepancy. 

1.4.3 Lack of overlap between TDP-43 studies 

A small meta-analysis was done using three datasets generated from TDP-43 model 

systems (Buratti et al., 2013). They examined the overlap of hits predicted from three microarray 

studies and found zero hits that were identified in all three studies. Further, when examining the 

overlap of target genes affected by TDP-43 knockdown in non-neuronal cell lines, and targets 

bound by TDP-43 in the brain, they also found very little overlap. Other work has also found it 
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challenging to reproduce differential expression results from similar experiments (Subramanian 

et al., 2005). Work in both microarrays and in RNA-Seq has found that, independent of 

biological differences, the issue of low overlap is strongly dependent technical factors such as 

the RNA quality (Fasold and Binder, 2014), the platform and protocol used (Baran-Gale et al., 

2015; Lahens et al., 2014), the depth of sequencing in RNA-Seq studies (Hart et al., 2013; Zhao 

et al., 2014), and the choice of annotation and pipeline (Baruzzo et al., 2017; Williams et al., 

2016; Zhao and Zhang, 2015). Re-analyzing datasets can only address in a limited way the 

technical factors due to the experiment; it can, however, address the variation due to the choice 

of analysis pipeline but analyzing all of the data on the same pipeline. 

1.4.6 Important functions missed by previous high-throughput studies 

Re-analysis of previously generated data serves an important role in discovering new 

functions missed by past work. Focusing on just studies related to FUS and TDP-43, there have 

been new functions discovered through re-analysis of past data. For example, a study discovered 

that FUS has a role in minor intron splicing, and found the same pattern of regulation in a 

previous dataset that was missed by the original authors (Reber et al., 2016). Another study 

discovered a role for TDP-43 in suppressing cryptic exons, and also observed the same pattern of 

regulation in previous studies that were missed by the previous authors (Ling et al., 2015). 

When it comes to analyzing specific pathways regulated in RNA-Sequencing or 

Microarray studies, recent work has demonstrated that there are important biases that impact the 

analysis (Timmons et al., 2015; Young et al., 2010). In particular, one has to be careful with 

length bias in RNA-Seq data (gene sets with longer genes tend to be selected for enrichment) 

when using counts (Young et al., 2010), and the results from an enrichment analysis are 

incredibly sensitive to the choice of the “background gene list” to use for comparison, with the 
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default background list provided by popular tools like DAVID or GeneOntology Enrichment are 

typically not suitable and will yield biased or uninformative results(Timmons et al., 2015). 

 

1.5 Motivation and overview of this thesis 

Given the above background, we hypothesized that FUS and TDP-43 both have roles in 

regulating the maintenance and function of the nervous system through their regulation of 

miRNA biogenesis, and through the regulation of mitochondria. To study this hypothesis, this 

work had three basic aims: 

Aim 1: Systematically study the miRNA-mRNA network regulated by TDP-43 and 

FUS. Before this work, no systematic analysis of FUS and TDP-43 regulated miRNAs had been 

done. Any transcriptome-wide study was done using microarrays, which are limited by the 

annotation at the time. Further, no one had studied the network of interactions between FUS, 

miRNAs, and the target mRNAs, and how that network may impact critical processes in the 

nervous system. This aim was explored through the work described in Chapter 2. 

Aim 2: Develop a pipeline to analyze RNA-Sequencing Data related to FUS and 

TDP-43 model systems. Initial failures with qPCR validation (see Figure 4.7) and reflection on 

the nature of RNA-Sequencing data required the need to design a new method for normalizing 

the data, as well as a new simulation protocol to properly benchmark RNA-Seq tools. This led to 

the development of sleuth-ALR and absSimSeq. Chapter 3 describes this work.  

Aim 3: Using both molecular and bioinformatic methods, evaluate the role of FUS in 

mitochondrial function. Despite evidence of mitochondrial regulation, no high-throughput 

study had systematically studied putative FUS- and TDP-43-regulated mitochondrial genes. Our 

FUS overexpression work motivated us to study FUS KO impact on mitochondria. Unpublished 
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observations motivated us to pursue further studies in HEK FUS KO cells. Chapter 4 describes 

some initial work to achieve this goal. 
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Chapter 2: miRNA-mRNA networks regulated by TDP-43 and FUS 

in cancer and in the nervous system 

2.1 Introduction 

2.1.1 Evidence that TDP-43 may have a role in cancer mediated by miRNAs 

As discussed in the introductory chapter, both TDP-43 and FUS have important roles to 

play in microRNA biogenesis. Before this work, however, there had been few systematic studies 

of miRNAs regulated by TDP-43 and FUS, and what had been done used microarrays. However, 

compared with microarrays, high-throughput may be a better choice. The probes on a microarray 

are limited by the annotations available at the time of design, whereas sequencing is not tied to 

an annotation and therefore can detected unannotated sequences; there are also known issues 

with cross-hybridization (Leshkowitz et al., 2013; Mestdagh et al., 2014). We thus set out to 

assay microRNAs regulated by TDP-43 and FUS using small-RNA-Sequencing. For TDP-43, 

we conducted a knockdown experiment using a pool of siRNAs in three cell lines (SH-SY5Y, 

SNB19, and HT-22), and performed small-RNA-Sequencing (Chen et al., 2018). In this study, 

despite conducting the work in neuronal-like cell lines, we identified several TDP-43-regulated 

miRNAs that had known roles in cancer pathogenesis (Chen et al., 2018). This prompted us to 

explore a possible role for TDP-43 in cancer through its regulation of miRNAs. 

There is ample evidence to suggest a connection between TDP-43 and FUS 

proteinopathies and cancer. FUS was originally discovered in the context of cancer (Crozat et al., 

1993; Rabbitts et al., 1993). Recent work has also implicated TDP-43 in cancer (Campos-Melo 

et al.). In particular, a variant near the TARDBP gene (encoding TDP-43) was linked to 

susceptibility of Ewing Sarcoma (Postel-Vinay et al., 2012). TDP-43 was identified as 
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differentially expressed after a breast cancer cell line, MCF-7, was treated with the known anti-

cancer agent curcumin (Fang et al., 2011). TDP-43 was also shown to directly regulate 

glycolysis via a miRNA in a hepatocellular carcinoma cell line (Park et al., 2013). Finally, 

multiple studies have shown an inverse association the risk for cancer and for neurodegeneration 

(Gibson et al., 2016; Katisko et al., 2018; Umansky, 2018); a few have presented evidence that 

this inverse relationship may be explained by the role of miRNAs in both (Murmann et al., 2018; 

Umansky, 2018). It thus seems reasonable to hypothesize that TDP-43 has a role in cancer 

pathogenesis and that this role may be mediated by TDP-43-regulated miRNAs. Because a 

majority of the identified TDP-43-regulated miRNAs with known roles in cancer were involved 

in lung cancer, we decided to look more closely at lung cancer. 

2.1.2 The need to use a network approach for studying miRNA-mRNA interactions 

How do miRNAs regulate their target mRNAs? Canonically, RISC, with a loaded mature 

miRNA, binds a target mRNA and targets it either for translational inhibition or for degradation 

(Wilczynska and Bushell, 2015). Most miRNA-mRNA interactions result in only modest 

reduction of their target gene. There are two major functional consequences to the target gene as 

described by Bartel and Chen: either an mRNA that should not be present is repressed 

completely (e.g. a glial-specific gene in the context of a mature neuron), or a gene that requires a 

specific range of protein can be tuned to the right level by the miRNA (Bartel and Chen, 2004). 

They used the analogy of a dimmer switch or a rheostat, and called the former case an “off 

switch” interaction, and the latter case a “tuning” interaction. An example of the “off switch” 

interaction in neurons is mir-9 shutting off onecut1 (OC1) during transition from early-born to 

late-born motor neurons in chicks (Luxenhofer et al., 2014). An example of the “tuning” 

interaction in neurons can be seen with miR-8 and atrophin in Drosophila (Karres et al., 2007).  
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In many cases, miRNAs are regulated by the same transcription factors (TFs) as their 

targets, and this facilitates their ability to facilitate an off switch or a tuning interaction (Le et al., 

2015; Osella et al., 2011; Vera et al., 2012). In a coherent feedforward loop, a TF shuts off the 

expression of a gene and activates a miRNA, which targets that gene; this facilitates an “off 

switch” interaction where the miRNA acts a fail-safe to prevent any mRNA transcripts that leak 

through the TF-mediated repression from being translated. In an incoherent feedforward loop, a 

TF activates the expression of a gene and a miRNA which targets that gene; this facilitates a 

“tuning” interaction where the miRNA dampens fluctuations in the target gene and maintains it 

in a specific range (Osella et al., 2011). Of note, miRNAs and mRNAs interacting in an “off 

switch” capacity tend to have anti-correlation, and whereas those interacting a “tuning” capacity 

tend to be correlated (Osella et al., 2011). 

2.1.3 Aims of this study 

With the above as background, we had two aims. The first aim was to understand the 

network of TDP-43-regulated miRNAs and their downstream target mRNAs, as well as the 

processes regulated by these miRNA-mRNA interactions. To do this, we had to design a novel 

pipeline to generate a network of predicted causal miRNA-pathway associations mediated by 

miRNA-mRNA interactions (see Methods and Figure 2.1). We applied this pipeline to the 

Cancer Genome Atlas data available on two lung cancers: lung adenocarcinoma (LUAD) and 

lung squamous carcinoma (LUSC). This pipeline identified several TDP-43-regulated miRNAs 

with putative roles in cancer pathogenesis. One of these miRNAs, miR-423-3p, was predicted to 

have a role in cell migration, mediated through four downstream target genes. We therefore did 

follow-up work to demonstrate that TDP-43 directly bound miR-423-3p in a lung cancer line, 
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and that TDP-43 promoted cell migration via a miR-423-3p-dependent mechanism. Thus, our 
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Figure 2.1: Flowchart of analysis pipeline. We designed a custom pipeline to analyze our data to identify 
candidate miRNA and miRNA-mRNA interactions that were predicted to be influencing cellular processes 
important for neuronal function. Step 1: We start with three inputs (shown across the top): paired 
expression profiles from (A) mRNA-enriched RNA-Seq and (B) small-RNA-Seq (to asses miRNA 
expression levels), and (C) initial target site predictions from mirMAP (2013/01 pre-calculated 
predictions). Step 2: For the expression profiles, we preprocessed the fragments using trimmomatic to 
remove adapter contamination and low-quality and small reads. Step 3: We then mapped these reads to 
the mm10/GRCm38 mouse genome using Ensembl annotation (v78). For mRNA-Seq, we used bowtie2 
streamed into eXpress, allowing multiple mappings as possible and utilizing all of them; for small-RNA-
Seq, we used miRExpress and then custom code to prepare the data for differential expression analysis. 
Step 4: We then submitted the effective counts from both respectively to DESeq2 for differential 
expression analysis. Step 5: Using the effective counts from both, along with the mirMAP target site 
predictions, we calculated miRNA-mRNA interaction predictions for each sample individually using 
ProMISe; we kept only predictions made with non-zero probability in all samples analyzed. Step 6: 
annotating each transcript with the miRNAs predicted to target them (as calculated by ProMISe), we 
submitted all transcripts ranked by their –log(adjusted p-value) * sign of their change (+ for up; - for 
down) to Fatiscan to look for enrichment of differentially expressed genes targeted by miRNAs. Step 7 
and 8: We took the adjusted p-values from DESeq2 for each miRNA and used our modified SPIA analysis 
to identify candidate miRNAs which were both differentially expressed (determined by DESeq2) and had 
enrichment among its predicted targets for DE genes (determined by Fatiscan). 
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network analysis pipeline produced a prediction that was experimentally validated. 

The second aim was to apply this pipeline to the role of miRNAs in the nervous system. 

This pipeline requires paired mRNA and miRNA expression profiles to directly predict 

interactions between miRNAs and their target mRNAs. Since no such dataset had been generated 

for either TDP-43 or FUS, we generated a dataset of paired mRNA and miRNA expression 

profiles from the brains of FUS KO mice and their wild-type littermates. Using this dataset, we 

generated a network of miRNA-pathway associations mediated by predicted miRNA-mRNA 

interactions. This predicted a role for FUS-regulated miRNAs in synaptic maintenance and 

regulation, especially calcium signaling. 

2.2 Results 

2.2.1 TDP-43-regulated miRNAs are predicted to influence multiple pathways in lung cancer 

In order to predict how TDP-43 might be involved in lung cancer via the miRNAs that it 

regulates, we designed an analysis pipeline that combined ProMISe (probabilistic miRNA-

mRNA interaction signature) (Li et al., 2014), DESeq2 (Love et al., 2014), Fatiscan (Al-

Shahrour et al., 2007b) and FatiGO (Al-Shahrour et al., 2007a). See the Methods (Section 2.3.2) 

and Figure 2.1 for a graphic of the analysis pipeline. For this analysis, we focused on the two 

datasets studying NSCLC, lung squamous cell carcinoma (LUSC) and lung adenocarcinoma 

(LUAD), with samples that had paired miRNA-mRNA expression profiles available from The 

Cancer Genome Atlas as of July 2014 (Collins and Barker, 2007). 

First, the miRNAs were tested for differential expression using DESeq2; out of the 1100 

human miRNAs in the miRBase v21 database (Kozomara and Griffiths-Jones, 2014), this 

resulted in 417 and 563 miRNAs being differentially expressed in LUAD and LUSC samples, 

respectively, versus control samples. MiRNAs putatively regulated by TDP-43 were over-
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represented in these groups (hypergeometric test p-value for LUAD (57/417 vs 83/1033) and 

LUSC (61/563 vs 83/1037): 5.24e-8 and 1.48e-4, respectively). Because TDP-43 may not 

regulate all of these miRNAs in this context, we examined the correlation between each miRNA 

and TDP-43 expression in lung cancer samples. We performed Pearson correlation, and after 

correcting for multiple hypothesis testing, found 408 and 467 miRNAs significantly correlated 

with TDP-43 in LUAD and LUSC samples, respectively (FDR<0.1). MiRNAs putatively 

regulated by TDP-43 had a trend for overrepresentation in these groups as well (hypergeometric 

test p-value for LUAD (39/408 vs 83/1033) and LUSC (45/467 vs 83/1037): 0.091 and 0.059, 

respectively). 

To identify which miRNAs had an enrichment for differentially expressed targets, we 

used the combination of ProMISe and Fatiscan. From the ProMISe step, out of the 1033 and 

1037 miRNAs in LUAD and LUSC samples that had some expression, there were 213 and 274 

miRNAs that had at least 5 predicted targets in every LUAD and LUSC sample, respectively; 

miRNAs regulated by TDP-43 were also over-represented in these groups (hypergeometric test 

p-value for LUAD (67/213 vs 83/1033) and LUSC (74/274 vs 83/1037): 3.36e-35 and 1.89e-36, 

respectively). A ranked list of the transcripts (using log fold change and log differential 

expression p-value from DESeq2) was submitted along with the predicted miRNA-mRNA 

interactions from ProMISe as custom annotations to Fatiscan, as part of the Babelomics v4 suite 

(Medina et al., 2010). 

In order to identify miRNAs that were both differentially expressed and had enrichment 

for differentially expressed targets, we then combined the Fatiscan results with earlier DESeq2 

results for the miRNAs to get a joint p-value. We applied filter criteria to reduce the list of 
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miRNAs to the most relevant one (for details, see Methods, Section 2.3.2.d). The results of this 

step for LUAD and LUSC are shown in Table A1.1. 

To determine what biological processes were related to the identified targets, we 

extracted the unique transcripts from the previous step and submitted them to FatiGO, also part 

of the Babelomics v4 suite; this tool performs an overrepresentation analysis for gene ontology 

and pathway terms. Among the down-regulated transcripts, the most significant hits included 

integrin cell surface interactions and negative regulation of cell proliferation; among the up-

regulated transcripts, the most significant hits included nucleotide synthesis, cell cycle 

checkpoints, and RNA processing. This suggests that TDP-43–regulated miRNAs may play a 

role in promoting carcinogenesis and metastasis. The full list of hits can be found in Table A1.2. 

From this analysis pipeline, we defined “predicted causal interactions” as those miRNA-

mRNA interactions between putative TDP-43-regulated miRNAs and target mRNA transcripts 

with annotations in the processes discovered by FatiGO. Figure 2.2A-B shows the representative 

network graph of up-regulated miRNAs and down-regulated transcripts in LUAD (one network 

of 7 up-regulated miRNAs, 50 down-regulated transcripts, and 13 processes; another network of 

4 down-regulated miRNAs, 62 transcripts, and 17 processes), and Figure 2.2C-D for the LUSC 

network, which was much larger. See Table A1.3 for the full node and edge lists. 

In summary, our analysis pipeline identified a number of putative TDP-43-regulated 

miRNAs which target several transcripts that have roles in cancer biology. One of these was 

experimentally examined further for its role in lung cancer. 
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2.2.2 TDP-43 associated miR-423-3p promotes lung cancer cell migration 

Other work performed in our lab identified miR-423-3p as a putative TDP-43-regulated 

miRNA; we also performed additional work to show that TDP-43 directly bound miR-423-3p in 

SH-SY5Y cells (Chen et al., 2018). From our analysis pipeline, miR-423-3p was one miRNA 

Figure 2.2: The network graph of miRNA-mRNA interactions and the significant FatiGO terms associated with 
the target mRNAs in LUAD and LUSC samples. These are hive plots linking miRNAs to putative mRNA targets, and 
gene ontology terms identified to be significantly enriched in these diseases using Fatiscan. The radial distance is the 
rank of the nodes within their respective groups. The node size is proportional to the number of connections for a node. 
The color of the miRNA and gene nodes is related to the statistical significance of differential expression, and the color 
of the Pathway / GO term is related to the category. Finally, the color of the miRNA-mRNA connections is related to the 
statistical significance of the Fatiscan step, and the color of the mRNA-FatiGO connection is also related to the 
category. Note that some of the significant pathway terms are omitted for clarity. See Tables S1.2 and S1.3 for the full 
list of significant pathways and the list of edges and nodes depicted. (A) down-regulated miRNAs targeting up-regulated 
transcripts in LUAD samples. (B) Up-regulated miRNAs targeting down-regulated transcripts in LUAD samples. (C) 
Down-regulated miRNAs targeting up-regulated transcripts in LUSC samples. (D) Up-regulated miRNAs targeting 
down-regulated transcripts in LUSC samples. 
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that met all of our criteria in LUSC samples: it was differentially expressed, significantly 

correlated with TDP-43, and had targets with statistically overrepresented pathway annotations 

(Figure 2.2D). Of the four mRNA targets that were hits, three (CRK, LCP2, and ITGA9) were 

related to the reactome pathway “Integrin Cell Surface Interactions”; even when including the 

rest of the differentially expressed targets of miR-423-3p, this was the only significant pathway 

identified by FatiGO (data not shown). Thus, we hypothesized that TDP-43 might influence lung 

cancer cell migration via miR-423-3p. 

To test this hypothesis, we performed TDP-43 knockdown on H1299 lung cancer cells 

and measured cell migration using the transwell migration assay. Transwell migration assays 

using human lung cancer H1299 cells showed statistically significant reduction in cell migration 

by TDP-43 knockdown (Figure 2.3A-C). In order to address whether this inhibition of cell 

migration was related to TDP-43-regulated miRNAs, we co-transfected H1299 cells with TDP-

43 siRNAs and one other TDP-43-regulated miRNA previously identified with lung cancer, 

miR-146b-5p. MiR-146b-5p was selected as a negative control because it had already been 

shown not to affect cell migration in a different lung cancer cell line (A549) (Patnaik et al., 

2011). After co-transfection with miR-423-3p, cell migration increased significantly (p-

value<0.05) as compared with cells transfected with TDP-43 siRNAs alone (Figure 2.3A-B). 

Co-transfection with miR-146b-5p did not rescue cell migration (Figure 2.3A-B). Similar to 

results from SH-SY5Y cells (Chen et al., 2018), examination of the interaction between miR-

423-3p and TDP-43 using RNA immunoprecipitation (RIP) and RNA pull-down assay showed 

that miR-423-3p interacts with TDP-43 in H1299 lung cancer cells (Figure 2.3D-E). Thus, these 

results suggest that TDP-43 promotes lung cancer cell migration through the direct regulation of 
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miR-423-3p, corroborating the prediction 

from the functional annotation pipeline that 

TDP-43 is a tumor promoter. 

2.2.3 FUS-regulated miRNAs in the brain are 

predicted to regulate synaptic and calcium 

signaling pathways 

After the success of the pipeline on 

cancer data, we sought to generate predictions 

from miRNAs regulated in the nervous 

system. To do this, we generated paired 

mRNA-Seq and small-RNA-Seq expression 

profiles from the brains of FUS KO mice and compared them to the profiles from the brain of 

wild-type littermates. Out of roughly 1000 mature miRNAs that were expressed in the brain 

(average normalized read count ≥ 5), 17 miRNAs were down-regulated and 15 were up-regulated 

after FUS KO (DESeq2 FDR≤0.1). Out of roughly 53,000 transcripts that were expressed (also 

Figure 2.3: Effect of TDP-43 regulated miRNAs on 
lung cancer cell migration. (NOTE: this is Figure 5 from 
Chen X, Fan Z et al 2018) (A) H1299 cell migration after 
transfection with either control siRNAs or TDP-43 siRNAs 
alone (upper panel) or in combination with has-miR-146b-
5p (bottom left) or has-miR-423-3p (bottom right). (B) 
Quantification of migrated cells. (C) Western blot showing 
the effect of TDP-43 knockdown in H1299 cells. (D) RIP 
coupled qRT-PCR assay of interaction between TDP-43 
and has-miR-423 in H1299 cells. Enrichment was 
determined as miR-423 associated to TDP-43 IP relative to 
control IgG. (E) RNA pull-down assays of the interaction 
between has-miR-423 and TDP-43 (combined with qRT-
PCR) in H1299 cells. Lane 1, ~3% input; Lane2, negative 
control; Lane 3 and 4, biotinylated has-miR-423-3p and 
antisense-hsa-miR-423-3p, respectively. (n = 3; means ± 
SEM; ** = p < 0.05; *** = p < 0.01.) 
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average normalized read count ≥5), 1035 transcripts were down-regulated and 627 were up-

regulated after FUS KO (DESeq2 FDR≤0.1). The full results for miRNAs and mRNAs are 

available in Table A1.4. 

To generate predictions of FUS-regulated miRNAs regulating downstream targets and 

pathways, we used a similar pipeline as above to get predicted miRNA-mRNA interactions; we 

then used Fatiscan to identify which miRNAs had an enrichment of up- and/or down-regulated 

transcripts. Fatiscan enrichment of targets and miRNA differential expression were then 

combined into one p-value. 13 of the 17 down-regulated miRNAs and 13 of the 15 up-regulated 

miRNAs also had an enrichment of down-regulated predicted targets (Fatiscan FDR≤0.05). In 

stark contrast, no differentially expressed miRNAs had an enrichment for up-regulated predicted 

targets. The full list of combined results is available in Table A1.5. 

 We then looked at pathways enriched among the identified targets using FatiGO and 

constructed a network of predicted miRNA-mRNA causal interactions and mRNA-pathway 

associations. When we further restricted the interactions to mRNA targets with at least one GO 

term identified as significantly enriched, miRNA-mRNA interactions that were conserved in 

humans, and miRNAs with DESeq2 differential expression FDR<0.1, we were left with the 

small network shown in Figure 2.4. The reduced network including pathway terms can be seen 

in Figure A1.1. Importantly, many of the GO terms identified related to synaptic maintenance 

and function. In summary, the miRNA-mRNA predicted causal network and functional 

annotation pipeline revealed putative FUS-regulated miRNAs with predicted roles in regulating 

synaptic function. 
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2.2.4 Follow-up Work 

Because of changing circumstances in the lab and technical difficulties (data not shown), 

we did not pursue further work related to miRNAs regulated by TDP-43 or FUS. See Section 5.1 

for discussion of further hypotheses to pursue in this area. 

2.3 Methods 

2.3.1 TCGA Data collection for miRNA-mRNA Functional Annotation and Predicted Causal 

Network 

See Figure 2.1 above for a summary of the analysis pipeline. From the Cancer Genome 

Atlas (TCGA) database for lung squamous cell carcinoma and lung adenocarcinoma samples 

(Collins and Barker, 2007), we extracted the data from all samples that had paired miRNA-Seq 

and RNA-SeqV2 profiles available as of July 2014 (330 tumor, 37 control for LUSC; 422 tumor, 

Figure 2.4: Network graph of miRNA-mRNA interactions in FUS KO whole mouse brains compared to wild-type. The 
above graph shows all significant miRNA-mRNA interactions that have evidence of conservation between mouse and human. 
All miRNAs shown are up-regulated in the FUS KO condition, suggesting that FUS inhibits their expression. The miRNAs in red 
have a differential expression FDR <0.05, and the miRNAs in purple have an FDR <0.1 (as estimated by DESeq2). Each edge 
between a miRNA and target mRNA represents one transcript predicted to be regulated by the miRNA; there are a few 
examples where the miRNA is predicted to regulate more than one transcript isoform of a gene, and this is a represented by 
multiple edges. The genes in orange are three genes that were interesting candidates for downstream analysis. This graph was 
constructed in Cytoscape. 
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19 control for LUAD). From the pre-calculated human target predictions from miRanda ((Betel 

et al., 2010); http://www.microrna.org/microrna/getDownloads.do), a matrix was generated using 

a python script reporting the number of binding sites for each miRNA-mRNA interaction in 

humans. Only predicted sites with a “good mirSVR” score were used, irrespective of 

conservation. A Perl script was then used to assign the TCGA raw miRNA counts 

(*.isoform.quantification.txt files) to the mature miRNAs, as defined by miRBase version 21 

(Kozomara and Griffiths-Jones, 2014). Another Perl script was used to isolate the mRNA 

expression estimates (*.isoforms.normalized_results files) for the next steps. 

2.3.2 miRNA-mRNA Functional Annotation and Predicted Causal Network Pipeline 

2.3.2.a ProMISe analysis 

Probabilistic MiRNA-mRNA Interaction Signature (ProMISe) is a recently developed 

technique (Li et al., 2014) that incorporates information about the number of binding sites a 

miRNA has on a target gene as well as expression levels of both the miRNAs and the target 

genes. Unique to ProMISe, though, is the generation of a competition model of miRNAs 

competing for a particular mRNA, and mRNAs competing to be inhibited by a particular 

miRNA. The joint model of these two competition models outperforms all other available 

miRNA-mRNA interaction prediction tools; it also has the advantage of predicting these 

interactions within a single sample (Li et al., 2014). For our data, the matrix from the miRanda 

predictions, the processed miRNA expression profiles, and the normalized mRNA isoform 

expression profiles were used as input for ProMISe, using the “joint model”, to generate for each 

sample a “ProMISe signal” consisting of a probability matrix of any particular miRNA targeting 

any particular gene. From the ProMISe signature for each sample, all miRNA-mRNA 

interactions with non-zero probability were counted as predicted miRNAs targets for that 
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sample. For each miRNA, only interactions seen in all samples were included as a “predicted 

target” for downstream analyses. We restricted analysis to those miRNAs that had at least five 

targets. 

2.3.2.b Differential expression analysis and ranking transcripts 

The isoform counts for miRNAs and mRNAs were submitted to DESeq2 (Love et al., 

2014) for differential expression analysis using the standard settings. For miRNAs, the raw 

aggregated counts for mature miRNAs were used. For mRNAs, the RSEM normalized estimated 

counts were used; this is analogous to using estimated transcript abundances, as described in a 

recent paper (Soneson et al., 2016). In order to rank the transcripts for the Fatiscan step, an 

“adjusted rank” was used to give the most weight to transcripts that had the most expression, the 

most log-fold change, and the most statistically significant change. If the transcript had a base 

mean of 30 or less, then its rank was log10 of its base mean plus the absolute value of its log2 

fold change; otherwise, its rank was those two items plus the absolute value of log10 of its 

adjusted p-value. Then the rank was given the same sign as the transcripts’ fold change (negative 

for down-regulated; positive for up-regulated). 

2.3.2.c Fatiscan analysis 

Fatiscan (Al-Shahrour et al., 2007b) is a tool that is threshold-independent, using a heuristic to 

define a partition of a ranked list of genes or transcripts to identify whether a set of them are 

overrepresented among the most up-regulated or most down-regulated. In our case, we submitted 

a list of custom annotations based on the ProMISe results, with each transcript annotated with the 

miRNAs that target them, as well as the “adjusted rank” list generated in the previous step. We 

then ran Fatiscan with the options “remove duplicates”, “Fatiscan” model, “Two-tailed Fisher’s 



 54 
Exact Test”, and our custom miRNA annotations as the database to test. The results were 

downloaded, and the adjusted p-values were extracted. 

2.3.2.d Selecting candidate miRNAs 

SPIA (Tarca et al., 2009) is a technique that combines two dimensions of data to estimate 

which pathways are significantly altered: overrepresentation of differentially expressed genes, 

and their own metric estimating the “pathway perturbation”. The p-values for both can be 

combined using Fisher’s product method, or their “normal inversion” method, which gives 

greater weight when both dimensions have a low p-value. In our study, we used the latter method 

of combining p-values to combine the DESeq2 adjusted p-value and the Fatiscan adjusted p-

value for each miRNA. In this way, our goal was to identify a miRNA that is both perturbed and 

has a large number of perturbed downstream targets. This would lead us to predict that this 

miRNA is affecting the network through its targets. This combined p-value was then adjusted 

using the Benjamini-Hochberg method. 

We identified all miRNAs that had an adjusted combined p-value < 0.05, and then 

applied four criteria to select candidate miRNAs: (A) the miRNA had to have a DESeq2 

differential expression FDR < 0.1; (B) the targets of the miRNA had to be changing in the 

opposite direction (if the miRNA is up-regulated, the targets must be down-regulated, and vice 

versa); (C) from earlier work, the miRNA had to have a significant change in at least one of three 

cell lines (SH-SY5Y, SNB19, or HT22) after TDP-43 knockdown (Chen et al., 2018); (D) the 

expression profile of the TDP-43-regulated miRNA had to have a statistically significant 

correlation (FDR < 0.1) with the TDP-43 expression profile, suggesting that TDP-43 was 

regulating this miRNA in lung cancer. 
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To calculate the correlation, we extracted out the TDP-43 normalized gene counts from 

the TCGA data, and then performed a Pearson correlation of the TDP-43 gene counts against 

each miRNA’s normalized counts (as calculated by DESeq2). We took the p-value of that 

correlation, and adjusted it using the Benjamini-Hochberg method. The resulting list of miRNAs 

for each combination of miRNA-mRNA interactions (down-regulated miRNAs targeting up-

regulated mRNAs, and vice versa for LUAD and LUSC each) were submitted for the FatiGO 

step. 

2.3.2.e FatiGO analysis 

To generate a list of functional annotations, the transcripts identified extracted from the 

targets of each candidate miRNA. Four functional groups were tested separately: the down-

regulated targets of up-regulated miRNAs and the up-regulated targets of down-regulated 

miRNAs for LUAD and LUSC each. The first step was to convert the UCSC IDs to gene names. 

A Perl script with the June 2011 TCGA human genome annotation (the annotation used at the 

time of data generation; available at https://www.synapse.org/#!Synapse:syn1356421), along 

with the current kgXref_table and the versions 5 and 6 from the UCSC database were used to 

construct a table converting the UCSC transcript IDs to gene names, with some manual updating 

of those names using the Ensembl and Unigene databases. The resulting lists were submitted as 

gene lists to FatiGO (Al-Shahrour et al., 2007a), as part of the Babelomics 4.3 suite ((Medina et 

al., 2010); v4.babelomics.org). Each gene list was compared against the human genome; the gene 

ontology biological process, gene ontology molecular function, BIOCARTA, KEGG, and 

Reactome databases were tested using the default settings. 
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2.3.2.f Construction of a predicted causal interaction network 

From all of the above results, a network of predicted causal links, from TDP-43 to lung 

cancer through TDP-43-regulated miRNAs and their targets, was constructed based on the 

significant targets that had at least one annotation. The resulting interaction network graphic was 

constructed using the HiveR R package 

(http://academic.depauw.edu/~hanson/HiveR/HiveR.html), based on the principles of the Hive 

Plot (Krzywinski et al., 2012). A python script was used to convert the various attributes (e.g., 

rank) to hive plot characteristics (e.g. node color). Each item was treated as a node on one of 

three axes: miRNAs, mRNAs, and pathway terms. The miRNA-mRNA edges are significant 

interactions identified by our pipeline; the mRNA-term edges are significant annotations 

identified by the FatiGO step. The rank of the node was mapped to the radial distance; the signed 

log10 of the FDR was mapped to the color for the miRNA and mRNA nodes; the signed log10 of 

the Fatiscan result was mapped to the miRNA-mRNA edges; the database category was mapped 

to the pathway term node color and to the mRNA-term edges; finally, the number of connections 

was mapped to the size of each node. 

2.3.3 Culture of H1299 Cells and Transwell Migration Assay 

Human non-small cell lung cancer cells (H1299) were cultured in DMEM supplemented 

with 10% fetal bovine serum at 5% CO2 and 37°C. For the in vitro cell migration assay, 5×104 

cells were suspended in 0.5 mL DMEM without serum, and then plated into the transwell inserts 

(BD Biosciences). 0.75 mL DMEM with serum was added to the bottom well. Cells were 

incubated for 12 hours, fixed in 75% ethanol for 10 minutes, and stained by crystal violet for 30 

minutes. Cells that migrated cross the membrane were counted under a microscope from 6 

randomly selected fields (at 20× magnification). 
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2.3.4 Generation of FUS KO Brain paired mRNA-Seq/small-RNA-Seq dataset 

This experiment was done using the Hicks FUS KO model (Hicks et al., 2000). Brains 

were collected from E18-E19 FUS knockout embryos or from their littermate wild-type controls. 

Total RNA was extracted using Trizol (Invitrogen). Two aliquots were taken from each sample 

to generate paired libraries for mRNA-Sequencing and small-RNA-Sequencing. The libraries 

were prepared and sequenced by RiboBio (Guangzhou, China; en.ribobio.com/siteen/). 

The mRNA-Sequencing libraries were prepared using the TruSeq® Stranded mRNA HT 

Sample Prep Kit (Illumina). Briefly, poly-adenylated RNA was isolated and then fragmented to 

200 nucleotides. The sequences used for the trimming of the mRNA libraries were the following: 

5’adapter (3’ end of i5 adapter): 5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’; 

3’adapter (5’ end of i7 adapter): 5’-GATCGGAAGAGCACACGTCTGAACTCCAGTC-3’. 

The small-RNA-Sequencing libraries were prepared using the TruSeq® Small RNA 

Sample Prep Kit (Illumina). The 5’adapter used for trimming these libraries had the sequence 5’-

GUUCAGAGUUCUACAGUCCGACGAUC-3’, and the 3’adapter used for trimming had the 

sequence 5’-AGATCGGAAGAGCACACGTCT-3’. 

Following cDNA synthesis and PCR amplification, cDNA library quality was assessed 

using an Agilent 2200 TapeStation and Qubit 2.0. Both sets of libraries were sequenced using an 

Illumina Hiseq 2500. For the mRNA-Seq data, 101-nucleotide paired-end reads were generated; 

for the small-RNA-Seq data, 51-nucleotide single-end reads were generated. 

2.3.5 Estimates of FUS KO Brain mRNA and miRNA abundances 

The raw reads from the mRNA-Seq data were first trimmed using trimmomatic (Bolger 

et al., 2014). For trimmomatic, the parameters “ILLUMINACLIP:adapters.fa:2:30:10 

LEADING:4 TRAILING:4 MINLEN:36” were used. The trimmed reads were then mapped to 



 58 
the Ensembl mouse transcriptome (GRCm38, Ensembl version 77) using bowtie2 (Ben 

Langmead and Salzberg, 2012) and eXpress (Roberts and Pachter, 2012). The bowtie2 command 

was “bowtie -aS -X 800 -q --no-mixed”. The estimates from eXpress were used directly for 

differential expression. 

The raw reads from the small-RNA-Seq data were first trimmed using trimmomatic. The 

trimmomatic parameters used were “ILLUMINACLIP:adapters.fasta:2:30:6 LEADING:4 

TRAILING:4 MINLEN:10” with the adapter sequences described above. They were then 

mapped to the miRNA sequences from miRBase version 21 using miRExpress 2.1.4 (Wang et 

al., 2009). The datasets were downloaded from the miRExpress website 

(mirexpress.mbc.nctu.edu.tw). Alignment identity of 85% was used to account for isomiR 

variation (Neilsen et al., 2012). 

A custom python script was used to take the “alignment” files output by miRExpress and 

calculate an alignment score using the Smith-Waterman algorithm (match = 3; mismatch = –2; 

indel = –7) and generate statistics about any isomiR variation. A second python script was then 

used to filter out bad alignments (miRExpress alignment score <20) and recalculate the total 

expression of a mature miRNA when reads mapped to multiple locations (assuming a naïve 

equal probability of an ambiguous read mapping to each miRNA). These adjusted read counts 

were used for differential expression. 

Differential expression for both mRNAs and miRNAs was assessed using DESeq2 with 

default parameters (Love et al., 2014). 
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2.3.6 miRNA-mRNA Functional Annotation and Predicted Causal Network Pipeline for the FUS KO 

Brain dataset 

The same pipeline described in section 2.3.2 above was used for the FUS KO Brain 

dataset with the following modifications. FUS-regulated miRNAs were defined as any miRNA 

that was identified as differentially expressed between FUS KO and control samples using 

DESeq2 with FDR<0.05. For the ProMISe analysis, we then used the pre-calculated predictions 

from mirMAP (Vejnar and Zdobnov, 2012), which predicts the percent of repression of an 

mRNA target by a miRNA; we defined any non-zero repression as a predicted target. Because of 

the large number of miRNAs after the SPIA combined analysis, we also restricted analysis to 

differentially expressed miRNAs that also had an Fatiscan FDR<0.05. For the final network, we 

restricted interactions to those where there was evidence of conservation between mice and 

humans, the gene had a GO term identified as significant. 

2.3.7 Data availability 

The code and steps needed to reproduce the TCGA functional annotation and predicted 

causal network pipeline can be found on Github: https://github.com/warrenmcg/TDP43_ 

miRNA_Paper. The code for the FUS network predictions are available upon request. 
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Preface to Chapter 3 

 

The work in this chapter will appear in the following: 

McGee, W.A., Pimentel, H., Pachter, L., and Wu, J.Y. (2019). Compositional Data Analysis is 
necessary for simulating and analyzing RNA-Seq data. 
 
 
Harold Pimentel and Lior Pachter need to be acknowledged for the design of the sleuth 

experiments highlighted in Figures 3.4 and 3.5, and Harold especially needs to be acknowledged 

for developing the initial codebase to run the simulation and benchmarks from which this work 

builds. 
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CHAPTER 3: Development and Benchmarking of Compositional 

Normalization for RNA-Sequencing Data 

3.1 Introduction 

High-throughput methods, including RNA-Seq, are frequently used to determine what 

features—genes, transcripts, protein isoforms—change in abundance between different conditions 

(Huang et al., 2015). Importantly, though, researchers ultimately care about the absolute 

abundance of RNA transcripts. In other words, is there a change in the number of RNA molecules 

in a cell when the conditions change? However, current techniques are limited to reporting relative 

abundances of RNA molecules: the proportion of fragments generated by a sequencer that contain 

a given sequence (Fernandes et al., 2014; Lovell et al., 2011; 2015; Quinn et al., 2018b). This 

means that RNA-Seq is inherently compositional data, where relative proportions are the only 

information available, yet those are being used to draw conclusions about the absolute abundance 

of features (Fernandes et al., 2014; Lovell et al., 2011; 2015; Quinn et al., 2018b) (see Appendix 

2.1). Several studies have raised the alarm on ways in which interpretation of the results can be 

distorted if RNA-Seq data are not properly treated as compositional (Lovell et al., 2015). 

The first statistical problem in an RNA-Seq analysis lies in determining the origin of the 

fragments generated. There are two classes of tools available to solve this problem: (1) tools that 

use traditional alignments to determine the exact genomic location (tophat2, bwa, STAR, 

HISAT2, etc.) (reviewed in (Risso et al., 2014)); there are other tools that take these traditional 

alignments and estimate exon-, transcript-, or gene-level expression levels (reviewed in (SEQC 

MAQC-III Consortium, 2014)); (2) tools that probabilistically estimate transcript sets that are 
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compatible with producing the corresponding fragments using pseudoalignment and quantify the 

levels of transcript expression (kallisto, salmon, sailfish) (SEQC MAQC-III Consortium, 2014). 

The second statistical problem, the focus of this chapter, is to compare the differences in 

samples collected under different experimental conditions (e.g. comparing cancer cells with 

control cells; comparing wild-type cells with mutant cells). We will refer to this second step as 

“differential analysis.” A number of tools are available for differential analyses (DESeq2, edgeR, 

limma-voom, etc.), using continuous or count data (reviewed in (Ferreira et al., 2014)). One 

recently developed tool, sleuth, utilizes the bootstraps produced by the quasi-mapping tools to 

estimate the technical variation introduced by the inferential procedure (SEQC MAQC-III 

Consortium, 2014). 

It is a recognized need to normalize and transform the data before conducting differential 

analyses. Multiple strategies have been developed to meet this need, including quantile 

normalization (Jia et al., 2017; Pimentel et al., 2017), the trimmed mean of M-values (TMM) 

method used by edgeR (SEQC MAQC-III Consortium, 2014), the median ratio method used by 

DESeq and DESeq2 (Risso et al., 2014), and the voom transformation used by limma (Piras and 

Selvarajoo, 2015). In addition, multiple units are used when modeling and reporting RNA-Seq 

results (Lovén et al., 2012), including counts (Fernandes et al., 2014; Lovell et al., 2011; 2015), 

CPM (Fernandes et al., 2014; Gloor et al., 2017), FPKM (Chen et al., 2015), and TPM (Gloor et 

al., 2017). Importantly, all of these strategies, even those that are focused just on the counts for 

each feature, utilize units that are really proportions, which belies the fact that RNA-Seq data are 

compositional (Ejigu et al., 2013; Rudnick et al., 2014) (see Appendix 2.1). Furthermore, all of 

these normalization strategies assume that the total RNA content does not change substantially 

across the samples (see (Martín Fernández et al., 2011) for a review). This assumption allows users 
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to leap from the inherently relative information contained in the dataset to the RNA copy number 

changes in the population under study without quantifying the actual RNA copy numbers. 

However, there are biological contexts where this assumption is not true (SEQC MAQC-III 

Consortium, 2014), and it is unclear how much change can occur before distorting results when 

the datasets are not considered as compositional during analyses. 

If information is available about negative controls (e.g. spike-ins, validated reference 

genes), then such information could be used to anchor the data. This has been done in several 

studies, where the use of spike-ins led to a radically different interpretation of the data compared 

to the standard pipeline (Martín-Fernández et al., 2003). In one study, the RUVg approach was 

designed to use this reference information to normalize RNA-Seq data, as part of the RUVSeq R 

package (Martín-Fernández et al., 2003). There have been recommendations to include spike-ins 

as part of the standard protocol (Martín-Fernández et al., 2003). However, Risso et al. observed 

significant variation in the percentage of reads mapping to spike-ins, as well as discordant global 

behavior between spike-ins and genes (Martín-Fernández et al., 2003). While spike-ins are often 

used in single-cell RNA-Seq applications, they are not routinely used in bulk RNA-Seq 

experiments. 

John Aitchison developed an approach to compositional data with the insight that ratios (or 

log-transformed ratios, called “log-ratios”) capture the relative information contained in 

compositional data (Aitchison, 2008). There are three requirements for any analytical approach to 

compositional data: scale invariance, subcompositional coherence, and permutation invariance 

(see Appendix 2.2) (van den Boogaart and Tolosana-Delgado, 2013). It was recently demonstrated 

that correlation, a widely used measure of association in RNA-Seq analysis, is subcompositionally 

incoherent and may lead to meaningless results, and an alternative called “proportionality” was 



 64 
proposed (Lovell et al., 2015). A tool was previously developed to apply compositional data 

analysis to differential analysis, called ALDEx2 (Fernandes et al., 2014). However, ALDEx2 is 

not well-suited for utilizing the bootstraps generated by the pseudoalignment tools and is unable 

to detect any differentially expressed features when there are less than five replicates (Quinn et al., 

2018a). Therefore, it is necessary to develop a compositional approach for other tools. 

Two tools are commonly used to simulate RNA-Seq: polyester and RSEM-sim (Frazee et 

al., 2015; Li and Dewey, 2011). These tools require the input of estimated counts per transcript 

and the expected fold changes between groups. However, without considering the data as 

compositional, protocols used to simulate RNA-Seq data result in the total read counts being 

confounded with the condition, such that one condition will have on average a greater depth 

compared to the other condition (for example, see Supplementary Table S2 of (Pimentel et al., 

2017)). A protocol that simulates many changing features and at the same time yields similar 

sequencing depth per sample, is lacking, but could be done using principles from compositional 

data analysis. This challenge, along with the one above, both motivated the present work. 

Here, we present absSimSeq, a protocol to simulate RNA-Seq data using concepts from 

compositional data analysis. This protocol allows us to directly model large global shifts in RNA 

content while still maintaining equivalent sequencing depths per sample. Further, we developed a 

normalization approach that uses negative control features (e.g. spike-ins) with log-ratios, which 

we call “compositional normalization”. We created an extension of sleuth, called sleuth-ALR, to 

use compositional normalization, both to predict candidate reference genes and to normalize the 

data. We also adapted already available methods to implement compositional normalization for 

other differential analysis tools. We then used absSimSeq to benchmark performance of 

differential analysis tools in the setting of either a small or large change to the total RNA content. 
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Within each setting, we compared the current normalization approaches versus either 

compositional normalization or the RUVg approach with spike-ins. 

When there was only a small change in total RNA content, all tested tools had similar 

performance on simulated data, whereas sleuth, sleuth-ALR and limma had the best performance 

on real data. However, when there was a large change in the RNA content, either up or down, all 

tools had much better performance if compositional normalization with spike-ins was used. When 

analyzing a well-characterized real dataset which had a large change in total RNA content per cell 

(Lovell et al., 2015; Marguerat et al., 2012), only compositional normalization with a validated 

reference gene was able to capture the overall decrease in RNA transcription. Surprisingly, RUVg 

had poor performance, and the choice of normalization approach had a greater impact on 

performance than the choice of tool. Furthermore, both of the concerns about spike-ins raised by 

Risso and colleagues (Risso et al., 2014) are actually the expected consequences of how 

compositional data behaves between samples, though they do raise concerns about the proper 

protocol for including spike-ins. 

In summary, we provide absSimSeq as a resource to generate simulated RNA-Seq datasets 

that more accurately reflect the behavior of real datasets. This will help future development of 

RNA-Seq analysis when testing performance. Furthermore, our work suggests that using 

compositional normalization with spike-ins or validated reference genes is essential for differential 

analyses of RNA-Seq data. When such information is missing, it raises major concerns about the 

limitations of drawing conclusions from the inherently compositional data of RNA-Seq and other 

“omics” techniques. 
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3.2 Results 

3.2.1 Simulation of RNA transcript copy numbers, normalization, and performance of different 

tools 

To test how changes in the total RNA content can affect performance of differential 

analysis tools, we developed absSimSeq to simulate RNA-Seq data (Figure 3.1). Because the 

experimental step of generating a library from samples in a real RNA-Seq experiment generates a 

compositional dataset, this protocol directly simulates that step, producing simulated 

compositional data. Using this protocol, we carried out three simulation studies, each having five 

experiments. In each study, current normalization methods were compared to compositional 

normalization and RUVg. A set of highly expressed spike-ins was used as the set of negative 

control features for compositional normalization and RUVg (see methods for details). 

In the first study (“small”), only a small fraction of features was changed (5% of all 

transcripts), and the total RNA content was similar between experimental groups (<2% change) 

(Table A2.1 and Table A2.2). This study was intended to simulate an experiment that fulfills the 

assumption of the current normalization methods. Under these conditions, all tools tested 

performed similarly whether using their current normalization approaches or using compositional 

normalization (Figure 3.2A; Figure S2.2, panel A). 

In the second set of studies (“down” and “up”), many features were differentially expressed 

(20% of all transcripts), resulting in a large change in the composition, with the total RNA content 

decreased by ~33% or increased ~2.8-fold, respectively (Table A2.1 and Table A2.2). Under such 

conditions, compositional normalization led to greatly improved performance for all tools 

compared to these tools using their current normalization methods (Figure 3.2B-C; Figure S2.2B-
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C). In contrast to current normalization methods and compositional normalization, the RUVg 

approach from RUVSeq resulted in the worst performance for edgeR and DESeq2 in all three 

studies (Figure 3.2), even though it used the same set of spike-ins as compositional normalization. 

Figure 3.1: AbsSimSeq, A novel simulation protocol to model compositional RNA-Seq data. All RNA-
Seq experiments convert copy numbers per cell to relative abundances because of the selection step and 
because the depth of sequencing is arbitrary with respect to the total RNA present (top panel; see 
Appendix 2.1). The absSimSeq protocol simulates that conversion process (bottom diagram), with the 
key, novel steps highlighted in red. It takes the mean empirical relative abundances (in TPM units) from 
any dataset. It then makes a conceptual leap by assuming those values are copy numbers per cell. Then, 
the fold changes are simulated on these copy numbers for the experimental condition. After that, in the 
crucial step of the protocol, the copy numbers are re-normalized back to relative abundances to 
simulate what happens in the RNA-Seq experiment. From there, the expected reads per transcripts are 
calculated using relative abundances and the median of the estimated effective lengths from the 
original dataset. These are then submitted to the polyester R package for a negative binomial 
simulation. 

 
Figure 3.0.2: AbsSimSeq, A novel simulation protocol to model compositional RNA-Seq data. All 
RNA-Seq experiments convert copy numbers per cell to relative abundances because of the selection 
step and because the depth of sequencing is arbitrary with respect to the total RNA present (top panel; 
see Appendix 2.1). The absSimSeq protocol simulates that conversion process (bottom diagram), with 
the key, novel steps highlighted in red. It takes the mean empirical relative abundances (in TPM units) 
from any dataset. It then makes a conceptual leap by assuming those values are copy numbers per cell. 
Then, the fold changes are simulated on these copy numbers for the experimental condition. After that, 
in the crucial step of the protocol, the copy numbers are re-normalized back to relative abundances to 
simulate what happens in the RNA-Seq experiment. From there, the expected reads per transcripts are 
calculated using relative abundances and the median of the estimated effective lengths from the 
original dataset. These are then submitted to the polyester R package for a negative binomial 
simulation. 
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It is worth noting that, among the tools tested, sleuth and ALDEx2 performed the best 

when there were large compositional changes in the data (Figure 3.2B-C); ALDEx2 uses the 

IQLR transformation, which is a compositional approach designed to be robust in the presence of 

large changes to the composition. We also observed that for each transformation used by 

ALDEx2, it performed almost identically regardless of statistical test used (Figure S2.3). 

Finally, sleuth-ALR had similar performance whether TPMs or estimated counts were modeled, 

or if the Wald test or the likelihood ratio test was used (Figure S2.4). 

Figure 3.2: Compositional normalization markedly improves performance when there is a large 
compositional change. The copy numbers were modeled using the estimated average abundances from 
the GEUVADIS Finnish women samples (N = 58). Each of the three studies consists of five simulations 
under specified global conditions: (A) the “small” group has the total average copy numbers per cell 
in each group roughly equal, (B) the “down” group has a large number of transcripts changing, with 
90% of the transcripts down-regulated, and (C) the ”up” group has the same number of transcripts 
changing as the “down” group, but 90% of the transcripts are up-regulated. The compositional 
normalization methods (solid lines) used a set of highly expressed spike-ins to illustrate. Average false 
discovery rate across the simulations within each group (n = 5) is shown on the x-axis, and average 
sensitivity is shown on the y-axis. The FDR range between 0 and 0.25 is shown. Note that edgeR+RUVg 
is not shown because it always had an FDR above 0.25. See Figure S2.2 for the full range. 
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3.2.2 Performance is not degraded by significant variation in individual spike-ins 

A previous study reported that spike-ins had significant variation (Risso et al., 2014), 

raising a concern about their utility for normalization. In particular, they observed significant 

variation both between and within groups. In our simulated data, spike-ins were modeled similarly 

as other features, with over-dispersed variation, drawing from a negative binomial distribution. 

When estimating the percentage of transcript fragments mapping to spike-ins per sample, we also 

detected significant variation across samples (Figure 3.3). Importantly, in the “up” and “down” 

Figure 3.3: Spike-ins have significant within-group and between-group variation, despite improved 
performance when used for normalization. Previous work expressed a concern about variation observed 
in spike-ins between samples. In each experiment, the 92 ERCC spike-ins from Mix 1 were simulated to 
have no change in copy numbers between the two conditions, as well as to have over-dispersed variation 
between samples, drawing from a negative binomial distribution. Plotted here is the percentage of all 
fragments that map to spike-ins, compared to the total number of fragments from the sample, in (A) the 
“small” study, with <2% change in the total RNA in each condition; (B) the “down” study, with a ~33% 
decrease in total RNA in the experimental condition; and (C) the “up” study, with a ~2.8-fold increase in 
total RNA in the experimental condition. The dotted line represents the expected percentage of fragments 
mapping to spike-ins in the control group. Across all experiments, there is significant within-group 
variation; in the “down” and “up” studies, there is also significant between-group variation. The latter is 
to be expected given the compositional nature of the data (see Appendix 2.3). 
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studies, there were systematic differences between groups, similar to what was observed in the 

MAQC-III study and in the zebrafish study previously analyzed (Risso et al., 2014). These 

systematic differences between groups are expected given the compositional nature of the data 

(see Appendix 2.3 and Discussion). We further observed a large spectrum of estimated fold 

changes across individual spike-ins, with a systematic asymmetry in the distribution of fold 

changes in the experiments from the “up” and “down” studies (Figure A2.5). Despite the 

significant variation of spike-ins, individually and collectively, spike-ins led to greatly improved 

performance when used for normalization (Figure 3.2). Consistent with previous work (Munro et 

al., 2014; SEQC MAQC-III Consortium, 2014), our results suggest that the ratio information 

contained in spike-ins are collectively robust to variation, and that spike-ins can be used for 

sample-wise normalization.  

 

3.2.3 sleuth-ALR has best self-consistency and negative control performance among 

compositional normalization methods 

To confirm that compositional normalization performs similarly to current methods in the 

context of real data, we repeated the analyses using data from the original study on sleuth (Pimentel 

et al., 2017). The first test was the “self-consistency” test using data from (Bottomly et al., 2011). 

We reasoned that a tool should provide consistent results from an experiment, whether a few 

samples per group are sequenced (in this case, n = 3 per group), or more samples per group are 

used (n = 7-8), as measured by the “true positive rate” (TPR) and “false discovery rate” (FDR). In 

this experiment, true positives were defined as hits identified in both the smaller and larger 

datasets, and false positives were defined as hits identified by the smaller dataset but not by the 
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larger dataset. Among all tools using compositional normalization, sleuth and sleuth-ALR with 

Wald test showed the best balance between the TPR and FDR (Figure 3.4; Figure S2.6). Limma-

voom and sleuth/sleuth-ALR with the likelihood ratio test had the lowest FDR at the cost of a 

lower TPR. DESeq2 and edgeR both had higher FDR, and on average slightly lower TPR 

compared to sleuth-ALR. In contrast, the Welch and Wilcoxon statistics in ALDEx2 were unable 

to identify any hits in any of the “training” datasets, consistent with a recent benchmarking study 

Figure 3.4: sleuth-ALR Wald has best balance of self-consistency between less and more data from 
same dataset. Depicted is the Bottomly et al self-consistency test at the isoform level, with (A) the false 
discovery rate at three specified levels, and (B) the relative sensitivity as compared to sleuth-ALR with 
the Wald test. This extends the test from the original sleuth paper (Pimentel et al., 2017). A large dataset 
is split into a small ”training” dataset (3 samples per group), and larger “validation” datasets. A “false 
discovery” in this test is defined as a hit identified in the “training” dataset but not in the larger 
“validation” dataset at the given FDR level, and a “true positive” in this test is a hit identified in both 
datasets at that FDR level. A tool performs well in this test if it can identify the same hits with less data, 
as well as control the “false discovery rate” at the specified FDR level. The full dataset was split twenty 
times. Note that the number above each tool in panel A is the number of “training” datasets out of twenty 
that identified at least one hit at the specified FDR level. See Figure S2.6 for the results at the FDR levels 
of 0.01 and 0.05. 
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(Quinn et al., 2018a) (data not shown), suggesting that they have greatly reduced power with less 

data (N = 3 samples per group). ALDEx2’s “overlap” statistic was able to identify hits, but this 

led to the worst consistency (i.e. highest false discovery rate) among the tools tested. Finally, while 

DESeq2 with RUVg had similar performance to DESeq2 with compositional normalization, edgeR 

with RUVg had among the worst consistency. 

Next, we tested the performance of compositional normalization on a negative control 

dataset, where there are no expected differentially expressed features. We repeated the null 

resampling experiment from the sleuth paper (Pimentel et al., 2017) using the GEUVADIS Finnish 

women dataset (n = 58) (The Geuvadis Consortium et al., 2013). Six samples were randomly 

selected (stratified by lab to minimize technical variation) and split into two groups, with the 

expectation of finding no hits. We found that sleuth-ALR with the likelihood ratio test performed 

similarly to sleuth and limma-voom (median number of false positives < 5) (Figure 3.5), and 

sleuth-ALR with the Wald test also showed good false positive control (median number of false 

positives = 10). In contrast, DESeq2 and edgeR with compositional normalization showed higher 

numbers of false positives (median of 71 and 66, respectively), and the “overlap” statistic for 

ALDEx2 showed the highest number of false positives (median of >5000 at the 0.1 FDR level). 

3.2.4 Performance of compositional normalization on a dataset with a global decrease in 

transcription 

To compare different tools in a real dataset with a large compositional change, we used the 

“yeast starvation dataset” (Marguerat et al., 2012). In this dataset, yeast cells were starved of a 

nitrogen source, inducing them to enter a reversible quiescent state without active cell division 

(Yanagida, 2009). Absolute copy numbers per cell were estimated for each mRNA by being 
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normalized to a collection of 49 mRNAs that were quantified using NanoString nCounter 

(Kulkarni, 2001). Our re-analysis clearly shows a large global decrease in RNA content (Figure 

3.6A), with ~95% of genes decreasing in copy numbers per cell in the starvation group versus 

control, confirming that the dataset has a large compositional change (Figure 3.6B). On the 

contrary, analyses using previously developed methods failed to identify this pattern of changes in 

gene expression, only reporting equivalent numbers of hits up- and down-regulated transcripts 

(Table 3.1).  

Figure 3.5: sleuth-ALR and limma perform best on the GEUVADIS null dataset. Depicted is the null 
experiment at the isoform level (A). This also extends the test from the original sleuth paper (Pimentel et al., 
2017). The data were from the lymphoblastoid cells of 58 Finnish women, a relatively homogeneous population, 
taken from the GEUVADIS project (The Geuvadis Consortium et al., 2013). Data from six women were resampled from 
the larger dataset, stratifying by lab to minimize technical variation, and then randomly split into two groups to 
simulate a “null experiment”. The number of false positives, defined as any hits, are reported here based on twenty 
rounds of resamplings. A tool performs well in this experiment by minimizing the number of hits reported. ALDEx2 
used the IQLR transformation; all “C.N.” methods and sleuth-ALR used compositional normalization; all “RUVg” 
methods used RUVg for normalization. 
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Next, we examined the importance of using negative control features with compositional 

normalization. We first analyzed the data using the gene with the most constant proportion across 

all samples (as measured by coefficient of variation), rqc1 (Pombase: SPAC1142.01). In this 

context, compositional normalization missed the global pattern of down-regulation; instead, it 

reported a similar number of hits compared to other tools using current normalization methods, 

both up-regulated and down-regulated (Table 3.1). We then selected a gene with approximately 

constant expression (opt3, Pombase: SPCC1840.12) as the denominator for compositional 

normalization. Compared to current methods, compositional normalization using a validated 

reference gene was able to identify the global decrease in transcription observed by previous 

Figure 3.6: A yeast starvation study shows a large global decrease in RNAs. (A) A violin plot showing 
the distribution of absolute counts in control yeast cells (pink) and yeast cells starved of their nitrogen 
source for 24 hours (green). The data were from Marguerat et al (Marguerat et al., 2012). The absolute 
counts were estimated by normalizing RNA-Seq data to a panel of reference genes whose copy numbers 
were quantified using the NanoString nCounter assay. As can be observed, there is a global decrease in 
the RNA present. (B) a comparison of log2 fold changes calculated using a standard RNA-Seq pipeline 
(the example shown here in gray is kallisto + sleuth), and the log2 fold changes calculated using 
compositional normalization (sleuth-ALR, shown in purple) or directly from the estimated absolute counts 
(in blue). As shown, the vast majority of genes were observed to be downregulated when estimating from 
the absolute counts. The standard RNA-Seq approach misses this global shift, but compositional 
normalization is able to identify it. 
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analyses of the data (Lovell et al., 2015; Marguerat et al., 2012) (Table 3.1). All tools tested 

(ALDEx2, DESeq2, edgeR, limma-voom, and sleuth-ALR) were able to identify a similar number 

of hits when using compositional normalization. In contrast, while RUVg was also given the same 

validated reference gene, surprisingly it had greatly reduced power and was unable to capture the 

global pattern of down-regulation.  



 76 
 

Tool Up-Regulated Genes Down-Regulated Genes 

ALDEx2 ALR overlap 719 4496 

ALDEx2 IQLR overlap 2716 2677 

DESeq2 2424 2415 

DESeq2 + C.N. 632 4344 

DESeq2 + RUVg 698 1001 

edgeR 2621 2536 

edgeR + C.N. 582 4290 

edgeR + RUVg 109 90 

limma 2603 2527 

limma + C.N. 573 4332 

sleuth 2529 2554 

sleuth-ALR (trend) 2692 2225 

sleuth-ALR 614 4356 

Absolute Counts 522 5751 

Table 3.2: Only compositional normalization (C.N.) accurately reflects global decrease in the yeast 
starvation study. This table shows the number of hits identified by each tool using default settings and 
kallisto-calculated estimated counts and abundances. “Sleuth-ALR trend” used rqc1 (Pombase: 
SPAC1142.01) as a denominator; this gene had the most consistent abundance (TPM value) across all 
samples. The compositional normalization methods (all tools in red: “ALDEx2 ALR overlap”; “sleuth-
ALR”; all “+C.N.” tools) used opt3 (Pombase: SPCC1840.12) as a denominator; this gene was 
considered a “validated reference gene”. “RUVg” for edgeR and DESeq2 (in blue) also used opt3 as a 
negative control gene. Only compositional normalization methods, using opt3, were able to accurately 
reflect the severe global decrease observed in the data, as shown by the number of genes showing down-
regulation of the absolute counts. Note that ALDEx2 Welch and Wilcoxon statistics yielded <5 significant 
hits. 
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3.3 Materials and methods 

3.3.1 absSimSeq approach to simulating RNA-Seq data 

See Figure 3.1 for a summary diagram of our protocol for absSimSeq. When generating 

RNA-Seq data, the key experimental step which requires a compositional approach is when the 

actual changes in the RNA content are sampled using an equal but arbitrary amount of RNA by 

the library preparation process, resulting in a dataset of proportions. To simulate this shift from 

count data to compositional data, the absSimSeq protocol starts with a set of transcripts and their 

TPMs, either defined by the user or estimated from real data. It then conceptually shifts from 

considering transcripts per million (a proportion) to considering copy numbers per cell, i.e. the 

number of transcripts present in each cell (the absolute count unit of interest). It then simulates 

the fold changes expected to occur between groups directly on the copy numbers, which may or 

may not result in a substantial change in the total RNA per cell. The next key step is then 

converting these new expected copy numbers back to TPMs to represent the expected proportion 

of each transcript that would be present in an equal aliquot taken from each group. These new 

TPMs are then converted to expected counts per transcript based on their lengths and the desired 

library sequencing depth, and those expected counts, along with user-defined or estimated 

parameters for variance within each group, are then submitted to the R package polyester to 

simulate an RNA-Seq experiment. 

AbsSimSeq also has the option to add spike-ins to the simulated experiment. In our 

studies, the ERCC ExFold Spike-in mixes are used to define which sequences are included and 

in what proportions. The user can define what percentage of the transcripts should be coming 

from spike-ins and which mix to use. 
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3.3.2 Simulation of copy numbers for this study 

To model a simulated dataset after real data, we took an approach modified from Patro et 

al (Patro et al., 2017) and Pimentel et al (Pimentel et al., 2017). To estimate the mean and variance 

for the control group for our simulation, we wished to use a population without expected biological 

changes within the group. We thus used as a proxy the largest homogeneous population in the 

GEUVADIS data set, a set of 58 lymphoblastoid cell lines taken from Finnish women. We 

estimated transcript abundances using kallisto and human Gencode v. 25 transcripts (Ensembl v. 

87), and then estimated negative binomial parameters (the Cox-Reid dispersion parameter) using 

DESeq2. We next took the mean TPMs from this dataset, for input into absSimSeq. 

Three simulation studies were performed, with five simulation experiments in each study. 

The “small” study was intended to simulate experiments where there was no substantial change in 

the copy numbers per cell per group. The “down” and “up” studies were designed to simulate 

experiments where there was a large compositional shift, with the total copy numbers either 

decreasing or increasing. 

To simulate differential expression, we first applied a filter where the transcript had to have 

a TPM value of at least 1. We then randomly and independently assigned each filtered transcript 

as either not changing (i.e. fold-change of 1) or differentially expressed, using a Bernoulli trial 

with varying probability of success (5% of all transcripts for the “small” study; 20% for the “down” 

and “up” studies). For each differentially expressed transcript, a truncated normal distribution was 

used to simulate the fold change, with a mean of 2-fold, a standard deviation of 2, and a floor of 

1.5-fold. A Bernoulli trial was then used to choose either up-regulation or down-regulation with 

varying probability of success (70% down for the “small” study, chosen to produce roughly equal 

total RNA in each group; 90% down for the “down” study; 90% up for the “up” study). 
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The estimated null distribution and the simulated fold changes thus defined the mean copy 

numbers per cell for the control group and the experimental group, respectively. These copy 

numbers were then converted back to TPM. Because TPM is proportional to the estimated counts 

divided by effective length (Pimentel et al., 2017), the TPMs were multiplied by the effective 

lengths and then normalized by the sum to get the expected proportion of reads per transcript per 

condition. This was then multiplied by a library size of 30 million reads to get the expected reads 

per transcript per condition. This matrix of expected reads and the Cox-Reid dispersion parameters 

estimated from the GEUVADIS dataset were used as input for the polyester package (Frazee et 

al., 2015) to simulate 5 samples in each group, with a random variation of about 2-3% introduced 

into the exact sequencing depth used. The dispersion parameters for the spike-ins was set to the 

median dispersion of all transcript that had a mean TPM within 5% of the TPM for the spike-in. 

Table A2.1 summarizes the simulation parameters and the number of transcripts that are 

differentially expressed, and Table A2.2 shows the average global copy numbers per cell per 

condition for each of the fifteen runs. Note that the experimental group in the “up” study had a 

~2.8-fold increase, on average, in the total RNA copy numbers per cell. This is less than the 5.5-

fold increase in total mRNA observed after over-expressing the oncogene c-Myc (See the 

normalized data in Table S2 in Lovén et al., 2012)). The experimental group in the “down” study 

had a ~33% decrease in the total RNA copy numbers per cell. This is less than the decrease in total 

RNA observed in the yeast dataset (See Supplementary Table S2 from (Marguerat et al., 2012)). 
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3.3.3 Implementing a compositional approach for differential analysis tools: the Log-ratio 

transformation 

To allow tools to use negative control features, like spike-ins or validated reference genes, 

in a compositional manner, we present a method that uses what is called the “additive log-ratio” 

(ALR) transformation. This was proposed by John Aitchison to address problems analyzing 

compositional data. He demonstrated that any meaningful function of compositions must use ratios 

(Aitchison, 2008). Further, he proposed the use of log-ratios to avoid the statistical difficulty 

arising from using raw ratios. ALR is the simplest of the transformations proposed by Aitchison 

and others in the field of Compositional Data Analysis. In ALR, if there are D components in a 

composition, then the D-th component is used as the denominator for all of the other D-1 

components. 

Formally, if T is a set of D transcripts, then x = {x&}&⊂) defines the relative abundance of 

the t-th transcript in the composition, with ∑
&,-

.
x/ = C, where C is some arbitrary constant (e.g. 1 

million for TPMs). These relative abundances are proportional to the units commonly used in 

RNA-Seq (RPKM, TPM, etc.) (Pachter, 2011). The ALR transformation takes a component to be 

used as the denominator, analogous to the "reference gene" used in qPCR experiments (see "How 

to interpret the results" below). This forms a new set of D − 1 transformed log-ratios, 
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that can then be used for downstream statistical analyses. If one wishes to use a collection 

of features (e.g. a panel of validated reference genes; a pool of spike-ins), then the geometric mean, 

g(x), of those multiple features can be used on all D components: 

log6
x-
g(x) , log6

x6
g(x) , … , log6

x.
g(x) 

If this is a subset of features, this is called the “multi-additive log-ratio” (malr) (Quinn et 

al., 2018a). If the geometric mean of all of the features are used, this is the "centered log-ratio" 

(CLR) transformation introduced by Aitchison and is used in the default mode of ALDEx2 

(Fernandes et al., 2014). These are all options available for use in sleuth-ALR. 

Log-ratio transformations are undefined if either the numerator or denominator is zero. 

Sleuth-ALR has implemented an imputation procedure for handling zeros that minimizes any 

distortions on the dependencies within the composition. See Appendix 2.5 for more details.  

3.3.4 How to choose a denominator for compositional normalization and how to interpret the 

results 

The proposed interpretation of the results generated by sleuth-ALR is simple: whatever 

the denominator is, the results show how all the other features change relative to that feature or 

features. This is consistent with the permutation invariance requirement for compositional data 

analysis (see Appendix 2.2). For example, if GAPDH is selected as the reference feature, the 

results show how every other gene is changing relative to GAPDH. 

What is important for interpretation of the results, though, is whether negative controls are 

available or not. Thus, if there are one or more features which are known a priori to be negative 

controls—a validated reference gene, a pool of spike-ins—these are natural choices for use as a 
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denominator in sleuth-ALR, either using a single feature, or using the geometric mean of multiple 

features. Since the copy numbers of these features are expected to be constant between samples, 

there is now an anchor for the relative proportions between samples.  

If negative controls are unavailable, though, we propose identifying one or more features 

that have the most consistent proportion across all samples. For sleuth-ALR, we chose the 

coefficient of variation as the metric to measure consistency in proportion. Without external 

information, though, it is unknown if this “consistent feature” is indeed also consistent in copy 

numbers. If there is a global change in RNA content, this feature would represent the average 

change. All current normalization methods assume there is no such change, and so make 

corrections to the data to remove any perceived change; they are therefore mathematically 

equivalent to this proposed approach (see (Quinn et al., 2018b) for a full mathematical proof). 

However, this approach has the advantage of making explicit the implicit and necessary 

interpretation (how are features changing relative to the selected reference feature(s)?). It also 

provides a feature or set of features that can be used as a reference gene for follow-up validation. 

3.3.5 How sleuth-ALR fits into the current sleuth pipeline 

See Figure S2.1 for the pipeline and how it compares to the current pipeline. In the current 

sleuth pipeline, estimated counts of transcripts from kallisto or salmon are first normalized by the 

DESeq2 median-of-ratios method (Anders and Huber, 2010), and then transformed on the natural 

log scale with a 0.5-fragment offset to prevent taking the logarithm of zero and to reduce the 

variability of low-abundance transcripts (Law et al., 2014; Pimentel et al., 2017). With the additive 

log-ratio transformation, the size factor is replaced by the estimated expression of the chosen 

denominator, and the offset is replaced by the imputation procedure. Once a denominator is 
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chosen, zero values are imputed, the ratios between each feature and the denominator is calculated, 

and the data is then transformed on a log scale, which can then be used directly in the sleuth model. 

Our implementation simply replaces the current normalization and transformation functions with 

the function provided by the sleuth-ALR package. For ease of interpretation, the modeling can be 

done on TPMs directly (using the which_var argument for sleuth_fit), though the previous choice 

of modeling the estimated counts can also be used. 

3.3.6 Compositional approach for the other tools 

ALDEx2 has an explicitly compositional approach, and it solves the imputation problem 

by simulating bootstraps on the data using the Dirichlet-multinomial distribution, which will never 

yield zero values. It then calculates estimated statistics by examining the differences between 

groups within each bootstrap. Its default option is to use the CLR transformation, but it has several 

options for other choices of denominator. A recent paper examined ALDEx2’s performance using 

these different options (Quinn et al., 2018a); and its results suggested that the IQLR (“interquartile 

range log-ratio transformation”) provided the best balance of performance across real and 

simulated datasets, with respect to accuracy and computer time. This transformation uses the 

subset of all features that, after using the CLR transformation, have a sample-wise variance in the 

interquartile range. Theoretically, this transformation is robust to many features changing either 

up or down. This and the CLR transformation were used as the normalization methods tested in 

our study. It can also take a predefined subset of features and uses the geometric mean of those 

features within each sample; this was the approach taken when utilizing spike-ins for 

compositional normalization. 
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DESeq2 uses the median-of-ratios method (Anders and Huber, 2010). If one wishes to 

calculate a single size factor to normalize each sample, it is calculated by the estimateSizeFactors 

function. This function has a controlGenes option, which allows the user to define a set of features 

that are expected to have constant expression across all samples. A recent review demonstrated 

that the DESeq2 size factor is mathematically equivalent to the compositional log-ratio proposed 

by Aitchison (Quinn et al., 2018b). If a dataset has known negative control features (e.g. spike-

ins), these can be used to calculate a DESeq2 size factor similar to what is calculated by sleuth-

ALR or ALDEx2. For DESeq2, edgeR, and limma, we calculated DESeq2 size factors using the 

estimateSizeFactors function with designated negative control features (spike-ins for the simulated 

data; a validated reference gene for the yeast starvation dataset). 

3.3.7 Pipeline to analyze simulations 

The simulated data (FASTA files) were analyzed by kallisto for downstream use by all of 

the tools tested. Spike-ins from ERCC Spike-in Mix 1 were included for the simulations (2% of 

the total RNA), and so were used as the set of features known to have constant expression between 

samples. Previous studies observed that only highly expressed spike-ins had consistent ratios 

across samples (Munro et al., 2014; SEQC MAQC-III Consortium, 2014). Thus, we selected spike-

ins that had an average log2 concentration of at least 3 between both mixes. This filter results in a 

set of 47 spike-ins that were used for compositional normalization and for RUVg from RUVSeq. 

RUVg was used with DESeq2 and edgeR to test its ability to use spike-in information using its 

own approach. 

Filtering is an important issue for managing the accuracy of estimation. Different pipelines 

make different decisions about what features to filter. To allow the tools to be compared fairly, the 
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same set of filtered transcripts were tested in all tools, defined by those transcripts that passed the 

standard sleuth filter of having at least 5 estimated counts in at least half of the samples. DESeq2’s 

default functionality to use independent filtering and Cooks’ outlier filtering did not significantly 

impact its performance on the simulated data (data not shown), so these were left on. 

3.3.8 Experiments from the original sleuth paper 

To see if compositional normalization would produce similar results with fewer replicates, 

we repeated the self-consistency experiment as described in the sleuth paper (Pimentel et al., 

2017). Briefly, we used the Bottomly et al dataset (Bottomly et al., 2011), randomly split the 21 

samples into a small training dataset consisting of 3 samples in each condition, and a large 

validation dataset consisting of remaining samples. The “truth” set of features was defined by the 

hits identified in the larger validation dataset. This was repeated 20 times. At each of three FDR 

levels (0.01, 0.05, 0.1), we compared the smaller dataset against the larger dataset, and plotted the 

estimated FDR and sensitivity relative to sleuth-ALR. Since spike-ins were not used in this 

experiment, and it is unknown if there was any significant change in the total RNA between the 

groups, the denominator for compositional normalization was chosen based on which feature had 

the lowest coefficient of variation across the whole dataset. Zfp106-201 

(ENSMUST00000055241.12 in Ensembl v. 87) was used as the denominator for sleuth-ALR in 

all datasets. This was also used for RUVg. The IQLR transformation was used for ALDEx2, and 

otherwise the current normalization methods from the original sleuth paper were used. 

To test the performance of compositional normalization when analyzing a negative control 

dataset, we also repeated the null resampling experiment as described in the sleuth paper (Pimentel 

et al., 2017). Briefly, we used the Finnish samples from the GEUVADIS dataset, and randomly 
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subsampled the data into twenty null experiments with 3 samples in two groups. This subsampling 

was stratified by lab to minimize technical variability that may have occurred between labs. 

Because of the homogeneous population and minimized technical variation, the expectation is that 

there would be zero differentially expressed features. The null experiments were analyzed, and the 

number of false positives was plotted at the transcript-level and gene-level. The same denominator 

was used for compositional normalization in sleuth-ALR across all twenty of the null experiments: 

SRSF4-201 (ENST00000373795.6) for the transcript-level and SRSF4 (ENSG00000116350) for 

the gene-level. This transcript and gene were determined to have the respective lowest coefficient 

of variation across all of the samples used for this experiment. 

3.3.9 Pipeline to analyze yeast dataset 

To test the different tools and normalization approaches on a real dataset, we chose a well-

characterized “yeast starvation” dataset (Marguerat et al., 2012). In this dataset, yeast cells were 

cultured in two conditions: (1) freely proliferating using Edinburgh Minimal Medium; (2) the same 

medium without a nitrogen source (NH4Cl), resulting in the cells reversibly arresting into a 

quiescent state. Two samples from each condition were processed for poly-A selected RNA-Seq 

or for total RNA (no selection or depletion step). A collection of 49 mRNAs were selected for 

absolute quantification using the NanoString nCounter, which uses a fluorescent tagging protocol 

to digitally count mRNA molecules without the need for RNA purification. The results were 

normalized to external RNA controls to estimate copy numbers per cell of each mRNA. We used 

the absolute counts summarized in Supplementary Table S2 of (Marguerat et al., 2012) as a basis 

for selecting opt3 (Pombase: SPCC1840.12.1) as the gene with the smallest coefficient of variation 

for estimated absolute counts among all samples. This can be considered a validated reference 



 87 
gene. Thus, it was used with methods utilizing negative control features (sleuth-ALR, RUVg, and 

other tools using DESeq2’s estimateSizeFactors with controlGenes argument) to normalize the 

data. Sleuth-ALR was also tested using rqc1 (Pombase: SPAC1142.01.1), which was selected as 

having the smallest coefficient of variation for raw abundances (TPM values) across all the 

samples. This gene represents the “average global trend” or “average global change” in the data, 

as discussed in “How to choose a denominator” section above. 

To re-analyze the RNA-Seq data, we downloaded the Schizosaccharomyces pombe 

genome cDNA FASTA file from ftp.ensemblgenomes.org (Fungi release 37). This was used as 

the reference for generating the kallisto index. Each tool was then run using default settings. 

3.3.10 Availability of data and code 

The yeast starvation dataset was taken from Marguerat et al (Marguerat et al., 2012) from 

ArrayExpress at accession E-MTAB-1154, and the absolute counts were taken from 

Supplementary Table S2 from (Marguerat et al., 2012). The GEUVADIS Finnish data can be found 

at ArrayExpress using accession E-GEUV-1, using the samples with the population code “FIN” 

and sex “female”. The Bottomly et al data (Bottomly et al., 2011) can be found on the Sequence 

Read Archive (SRA) using the accession SRP004777. Human annotations were taken from 

Gencode v. 25 and Ensembl v. 87, mouse annotations were taken from Gencode v. M12 and 

Ensembl v. 87, and yeast annotations were taken from Ensembl Genomes Fungi release 37. The 

code and vignette for absSimSeq can be found on GitHub at 

www.github.com/warrenmcg/absSimSeq, the code and vignette for using sleuth-ALR can be 

found at www.github.com/warrenmcg/sleuth-ALR, and the full code to reproduce the analyses in 

this chapter can be found at www.github.com/warrenmcg/sleuthALR_paper_analysis. Here are the 
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versions of each of the software used: kallisto v. 0.44.0, limma v. 3.34.9, edgeR v. 3.20.9, 

RUVSeq 1.12.0, and DESeq2 1.18.1; the version of polyester used is a forked branch that 

modified version 1.14.1 with significant speed improvements (found here: 

www.github.com/warrenmcg/polyester); the version of sleuth used is a forked branch that 

modified version 0.29.0 with speed improvements and modifications to allow for sleuth-ALR 

(found here: www.github.com/warrenmcg/sleuth/tree/ speedy_fit); the version of ALDEx2 used 

is a forked branch that modified version 1.10.0 to make some speed improvements and to fix a bug 

that prevented getting effects if the ALR transformation with one feature was used (found here: 

www.github.com/warrenmcg/ALDEx2). All R code was run using R version 3.4.4, and the full 

pipeline was run using snakemake. 
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Preface to Chapter 4 

 

Haipeng Cheng needs to be acknowledged for generating the HEK FUS KO cells. Jianwen Deng 

needs to be acknowledged for the initial EM observations that prompted this study, as well as the 

individual mitochondria study that appears in Figure 4.5, as well as some of the qPCR work that 

appears in this study (Figure 4.8).  
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CHAPTER 4: Molecular and Bioinformatics Studies of the Role of 

FUS in Mitochondrial Function 

4.1 Introduction 

Several studies have examined FUS targets using high-throughput methods in a variety of 

biological contexts. Early work examined FUS targets using microarrays (Blechingberg et al., 

2012; Camats et al., 2008; Colombrita et al., 2015; Fujioka et al., 2013; Ishigaki et al., 2012) and 

Affymetrix ChIP-Chip or RIP-Chip (Colombrita et al., 2012; Tan et al., 2012), whereas later 

studies employed RNA-Seq (Kapeli et al., 2016; Lagier-Tourenne et al., 2012; Masuda et al., 

2015; Nakaya et al., 2013; Reber et al., 2016; Scekic-Zahirovic et al., 2016; Schwartz et al., 

2012; van Blitterswijk et al., 2013) and RASL-Seq (Scekic-Zahirovic et al., 2016; Sun et al., 

2015) for expression and alternative splicing profiling, and PAR-CLIP (Hoell et al., 2011), 

HITS-CLIP(Ishigaki et al., 2012), iCLIP (Rogelj et al., 2012), CLIP-Seq (Kapeli et al., 2016; 

Lagier-Tourenne et al., 2012; Masuda et al., 2015) and RIP-Seq (Reber et al., 2016) for 

identification of FUS targets. As mentioned in section 1.3, the challenge with identifying FUS 

targets is that FUS does not seem to have a clear sequence preference or structural motif for 

binding sites. Instead, it appears to have affinity for RNAs dependent on length, with RNA 

seeding oligomers of FUS (Schwartz et al., 2013; Wang et al., 2015b). Further, work using CAP-

Seq, GRO-Seq, and Poly-A-Seq have examined the role of FUS in selection of transcription start 

sites and poly-adenylation sites (Masuda et al., 2015; 2016b). 

All told, there have been 57 datasets generated from 34 published and unpublished 

studies on FUS using these high throughput technologies. Many of these papers used an 

overrepresentation analysis to examine what processes were enriched among statistically 
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significant hits, with a majority identifying synaptic maintenance and function as major 

processes affected. However, besides the mention of mitochondrial function in two of the studies 

(both in HEK293 cells) (Hoell et al., 2011; Schwartz et al., 2012), there has been no comment on 

a possible link between FUS and mitochondrial function in any of these high-throughput studies. 

We hypothesized two reasons for this: (A) it has only recently been noted that pathway 

enrichment analyses are sensitive to the choice of background genes to include (Timmons et al., 

2015); and (B) it is possible that FUS has a strong global effect on RNA processing, such that 

there is a compositional shift that would distort differential expression estimates (see Chapter 3). 

Before this work, we had preliminary evidence to suggest that FUS had an endogenous 

role in mitochondrial function. In HEK cells, mitochondrial pathways were identified as 

significantly enriched with genes affected by FUS knockdown (Schwartz et al., 2012). In our 

previous work with FUS overexpression models and in post-mortem brain samples, we observed 

a pool of FUS that endogenously localized to mitochondria in HEK cells and in the brains of 

healthy humans (Deng et al., 2015). We then observed smaller mitochondria in the brains of FUS 

KO mice using electron microscopy; this size decrease was similar to what was observed in our 

overexpression models (unpublished observations). 

We thus reasoned that, because of the established roles of FUS in RNA regulation and 

RNA localization (see section 1.3), FUS may have a role in regulating mitochondrial-associated 

transcripts. Further, because there is evidence to suggest that loss-of-function mechanisms 

contribute to the pathogenesis of FTLD and ALS, studying the endogenous role of FUS in 

mitochondrial function may help contribute to our understanding of the diseases. We thus sought 

to use a knockout model of FUS to study more carefully its role in mitochondrial regulation. 
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To this end, we generated HEK FUS KO cells using CRISPR/Cas9. Using electron 

microscopy, we observed a similar size decrease in mitochondria after FUS KO (unpublished 

observation). Our aims in this study were (A) to characterize the mitochondrial dysfunction in 

HEK FUS KO cells; (B) to identify from previous high-throughput studies putative FUS-

regulated mitochondrial-associated genes; and (C) see if these mitochondrial-associated genes 

regulated the observed mitochondrial dysfunction. 

4.2 Results 

4.2.1 Using sleuth-ALR results in a dramatic re-interpretation of the global expression changes in 

FUS RNA-Seq Studies 

Of the many RNA-Seq datasets available for FUS, we decided to focus on three: a FUS 

KO dataset generated from the embryonic brains of a brand new mouse model (not the Hicks or 

Kuroda model) (Scekic-Zahirovic et al., 2016), a FUS knockdown dataset generated in neuronal-

like N2a mouse cells (Masuda et al., 2015), and a mutant FUS (R521G) dataset generated from 

patient-derived iPS cells differentiated into motor neurons (compared to cells derived from wild-

type siblings) (Kapeli et al., 2016). They represent a broad range of neuronal model systems 

across two species, and they also represent both loss-of-function and gain-of-function models, 

including one directly relevant to disease. 

We analyze each dataset using the same pipeline that culminated in a traditional 

normalization approach (the standard normalization provided with sleuth (Pimentel et al., 

2017)), and a compositional normalization approach (using sleuth-ALR discussed in Chapter 3 

(McGee et al., 2019)). For all three datasets, we chose the same reference gene as the 

denominator for sleuth-ALR: GAPDH. The study in N2a cells (Masuda et al., 2015) explicitly 

mentioned (A) that there are no FUS binding sites in GAPDH, and (B) GAPDH expression was 
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unchanged after FUS knockdown (though they did not show this data). Even though GAPDH has 

not been validated, it is commonly used as a reference gene, including in the iPSC-derived 

motorneurons study (Kapeli et al., 2016). We wanted to see if there were any significant 

differences in the interpretation of the data after manipulation of FUS. 

Surprisingly, in all three datasets, normalizing the RNA-Seq data to GAPDH expression 

resulted in a dramatic re-interpretation of the global expression patterns (Figure 4.1). In 

particular, whereas the standard analysis identified a symmetric pattern of up- and down-

regulated transcripts, the GAPDH-normalized data showed an extremely skewed distribution of 

differentially expressed transcripts, with almost all transcripts showing up-regulation (Figure 

4.1A). This pattern was observed in all three datasets. There was only a modest overlap when 

comparing the list of hits from each analysis (Figure 4.1B), and there was even less overlap 
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Figure 4.1: Dramatic Reinterpretation of FUS RNA-Seq Datasets after sleuth-ALR analysis. (A) A 
violin plot of the distribution of fold changes of transcripts identified as differentially expressed by sleuth 
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when examining which pathways were identified as affected by FUS manipulation (Figure 

4.1C). If GAPDH is a true reference gene, this global pattern of regulation indicates that FUS 

globally acts as a repressor of mRNA expression, whether at the transcriptional or post-

transcriptional level. 

4.2.2 HEK FUS KO cells have no change in proliferation or galactose sensitivity 

A previous study observed that cell viability (as measured by the MTT) was 

compromised in the mouse cell line NSC-34 and in HEK cells after shRNA FUS knockdown 

(Ward et al., 2014). Given that observation our observation of the smaller mitochondria in HEK 

FUS KO cells, we hypothesized that FUS KO would compromise mitochondrial bioenergetics. 

However, when we measured cell number and apoptotic cells using an automated cell counter, 

we saw no difference between HEK FUS KO cells and control cells (Figure 4.2). 

If there was no difference in cell proliferation under unstressed conditions, we then 

sought to determine if there would be a difference if the cells were forced to just rely on 

mitochondrial respiration. The galactose sensitivity assay measures the ability of cells to 

proliferate when they are forced to use galactose, a sugar that can only be metabolized using 

mitochondrial respiration. Treating the cells with antimycin A and galactose served as a negative 

control. We again observed no difference 

between FUS KO cells and control cells 

(data not shown). In summary, no change 

in proliferation and no change in 
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Figure 4.2: No change in proliferation 
after FUS KO. Cells were grown for 48 
hours and cell counts were estimated 
using an automated cell counter. 
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galactose sensitivity makes it unlikely that the mitochondria are severely compromised under 

these conditions. 

4.2.3 HEK FUS KO cells have no change in mitochondrial respiration or glycolysis 

If mitochondria are not severely compromised in HEK FUS KO cells, we next sought to 

determine if there is a more subtle defect in bioenergetics. To do this, we used the Seahorse 

assay, which can assess in a comprehensive way the bioenergetics profile of cells (Brand and 

Nicholls, 2011). The assay can directly measure oxygen consumption (as a proxy for 

mitochondrial function) and extracellular acidification (as a proxy for glycolysis). In our hands, 

we saw no differences across the whole profile for both oxygen consumption and glycolysis 

(Figure 4.3). 

4.2.4 HEK FUS KO cells have no change in mitochondrial membrane potential, but increase in 

mitochondrial mass 

If smaller mitochondria have no change in bioenergetics, it is possible that they have a 

compromise in maintaining mitochondrial membrane potential (MMP). We thus tested whether 

mitochondrial membrane potential was changed in FUS KO cells, using FACS and the TMRE 
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Figure 4.3: No change in bioenergetics after FUS KO. The Seahorse assay was used to measure oxygen 
consumption (OCR, left panel) and extracellular acidification (ECAR, right panel). See methods for 
drugs and concentrations used. No differences were observed across the whole profile. 
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MMP-sensitive dye (Cottet Rousselle et al., 

2011). Because this dye is possibly sensitive 

to mitochondrial size and density, we 

normalized the TMRE signal to MitoTracker 

Green FM,  which is known to be insensitive 

to MMP (Cottet Rousselle et al., 2011). In our 

hands we did not see a difference in 

normalized TMRE signal between FUS KO 

cells and control cells (Figure 4.4). We did, 

however, see an increased in MitoTracker 

Green signal, suggesting that there was 

increased mitochondrial mass in HEK FUS KO cells (Figure 4.5). 
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Figure 4.5: FUS KO cells have increased mitochondrial mass. HEK cells were stained with 
MitoTracker Green FM. Fluorescence intensity is a proxy for mitochondrial mass. Both FUS KO 
clones have increased mitochondrial mass. Shown are two independent experiments. The posthoc 
p-values are displayed with each comparison.  
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4.2.5 Isolated mitochondria from FUS KO cells 

have increased mitochondrial membrane 

potential 

The increase in mitochondrial mass 

despite a smaller mitochondrial size 

suggested that there might be a 

compensatory effect occurring, where 

individual mitochondria might be 

compromised, but the cells respond by 

producing more. To test this, we isolated mitochondria from FUS KO and control HEK cells, and 

repeated the MMP experiment, looking at the signal from individual mitochondria. Surprisingly, 

we observed an increased in TMRM signal in FUS KO cells versus control HEK cells, 

suggesting a hyper-polarization and an improved function of mitochondria (Figure 4.6). 

4.2.6 qPCR validation failed when using standard approach 

A previous study had identified mitochondrial function as the most strongly affected 

pathway in HEK cells after FUS knockdown (Schwartz et al., 2012). We thus sought to 

determine which mitochondrial-associated genes would be consistently decreased in HEK cells 

and the nervous system. The original data for that study was not available, so we used the RNA-

Seq data from the neuronal models as a proxy. After re-analyzing the RNA-Seq datasets from 

FUS neuronal models using the standard approach, we identified several mitochondrial-

associated genes that were consistently decreased across multiple studies. We thus sought to 

determine if these genes were also decreased in HEK cells. However, out of 10 genes tested, we 

only detected changes in two genes (Figure 4.7). One was a decrease in MTHFD2, which the 

Figure 4.6: Individual mitochondria from FUS KO 
cells have increased MMP. Purified mitochondria 
were stained with TMRM and measured using 
FACS. (A) A histogram of TMRM intensities for 
control cells and FUS KO clone #78. (B) 
Quantification of the mean intensity average across 
three experiments 



 98 
neuronal RNA-Seq data had predicted to be 

decreasing. The other was an increase in 

HSPD1/HSP60, which we had already 

identified as a significant interactor with FUS 

in a previous study (Deng et al., 2015). 

However, the neuronal datasets had predicted 

a decrease in HSP60, suggesting inconsistent 

regulation of HSP60 in neuronal versus non-

neuronal cells.  

4.2.7 qPCR validation succeeded with sleuth-

ALR  

After developing the sleuth-ALR 

approach and re-analyzing the previous 

datasets using GAPDH as a denominator, all of 

the genes were previously tested were no longer considered significant, and a new set of genes 

were identified as significantly changing across multiple neuronal studies. We therefore tested 

this new set of genes in our HEK cells, using GAPDH as a reference gene. We selected 12 genes, 

all of which were predicted to increase after FUS KO from the neuronal datasets. Out of the 12 

genes tested, eight of them showed an increase in expression relative to GAPDH (Figure 4.8). 

Importantly, all of the genes detected as changing had a consistent direction of change as 

compared to the neuronal datasets. 
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Figure 4.7: qPCR validation fails with hits 
identified by standard analysis. Shown are eleven 
transcript-specific or gene-level primer sets to 
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4.2.8 GAPDH may also be increased in HEK FUS KO cells 

To validate GAPDH as a reference gene in our HEK FUS KO cells, we designed a 

modified qPCR protocol that uses an exogenous RNA “spike-in” control (see Methods, section 

4.3.10). This was inspired by previous work showing the efficacy of using spike-in controls to 

normalize data in situations where the global content of RNA significantly changes (Lovén et al., 

2012). These spike-in RNAs have similar properties to other polyadenylated do not have 

significant homology with any known sequences in the human genome. We isolated RNA from a 

pre-defined number of cells, and then we added the spike-in RNAs in a pre-determined amount 

proportional to the number of cells. We also prepared a control sample that had the same amount 

of spike-in RNA but did not go through the RNA isolation. By taking equal volumes rather than 

equal RNA mass to perform reverse transcription, we could compare each sample to the control 

sample to test (A) whether there was any inhibition in the reverse transcription or qPCR 

reactions, and (B) to normalize each sample for any variation in total RNA content or efficiency 

from the RNA isolation protocol. The spike-in RNAs can then serve as a proper reference to 

assay any validate any reference genes. 

Using this modified protocol, we observed in a preliminary experiment a two-fold 

increase in GAPDH expression between HEK FUS KO cells versus control cells (Figure 4.9). 

These results need to be reproduced in additional experiments, but it suggests that GAPDH may 

Figure 4.8: Hits identified by sleuth-ALR had 
much higher rate of validation in FUS KO HEK 
cells. Shown is a comparison of control cells with 
FUS KO clone 78. Of an additional twelve genes 
tested, eight of them were validated. 
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be increased in our FUS KO cells. If this is true, then mitochondrial-associated genes that failed 

validation in Figure 4.7 may also be increasing. 

4.3 Methods 

4.3.1 Identification of eligible FUS and RNA-Seq datasets 

To identify eligible datasets for inclusion in a re-analysis of FUS, a focused search was 

performed on Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/), ArrayExpress 

(https://www.ebi.ac.uk/arrayexpress/), and the DNA Data Bank of Japan (DDBJ; 

https://www.ddbj.nig.ac.jp/index-e.html). The following search terms were used: ‘FUS OR TLS 

OR “Fused in Sarcoma” OR “Translocated in Liposarcoma”’. The resulting hits were manually 

reviewed to identify all relevant datasets. Datasets related to studies of FUS fusion proteins were 

excluded. All other datasets, regardless of method, were included. This search was performed in 

December of 2016. 

For additional datasets, a focused literature search was performed using the following 

search terms on Pubmed: ‘(FUS OR TLS OR “Fused in Sarcoma” OR “Translocated in 
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Figure 4.9: GAPDH may be up-regulated in 
HEK FUS KO. A modified protocol was used to 
include exogenous spike-in RNA proportional to 
the number of cells used for RNA isolation, and 
then equal volumes were used for reverse 
transcription. The spike-in is then used as a 
validated reference feature to validate other 
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Liposarcoma”) AND (“RNA-Seq” OR “RNA-Sequencing” OR “RNA sequencing” OR 

“Microarray”)’. 

4.3.2 Pipeline for re-analysis of FUS RNA-Seq datasets 

Studies that used RNA-Sequencing were selected for re-analysis. Raw FASTQ files were 

downloaded from SRA or ERA using the study accession. Fragments were aligned without 

trimming to the appropriate transcriptome downloaded from Gencode (v25 for humans; vM13 

for mice) or Ensembl (version 87; December 2016 release) using kallisto (Bray et al., 2016). For 

read lengths 75-nt or shorter, a k-mer length of 21 was used to build the kallisto index; 

otherwise, the default k-mer length of 31 was used. The shorter k-mer was necessary because 

smaller read lengths are less likely to map correctly if the default length is used (for example, if 

an error or variant occurs at position 25 in a read of length 50, there is no chance for the read to 

map with a k-mer of 31). 

After kallisto quantification, standard sleuth (Pimentel et al., 2017) or sleuth-ALR 

(McGee et al., 2019) was used to perform transcript-level differential expression analysis. Gene-

level differential expression was also done using p-value aggregation (Yi et al., 2018). If a 

reference gene was used in the study for follow-up validation, the most abundant transcript for 

that gene was used as the denominator for sleuth-ALR. Otherwise, GAPDH was used. GAPDH 

was chosen because (A) it was a commonly used reference across multiple studies, and (B) one 

study had stated that GAPDH was not a target of FUS nor was its expression level changed after 

FUS knockdown (Masuda et al., 2015). 

After sleuth-ALR differential analysis, the topGO R package (Alexa et al., 2006) was 

used to calculate gene ontology enrichment of significant genes using its default algorithm. This 

method de-correlates the gene ontology terms with each other, which greatly reduces redundancy 
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in the list of enriched pathways. Analysis was focused on the “Biological Process” set of gene 

ontology terms, and gene sets with less than 5 genes were excluded. The list of significant genes 

was defined as all genes that had an FDR≤0.05 after p-value aggregation. The list of background 

genes were all genes that had at least one transcript that passed the standard sleuth filter (at least 

5 counts in at least 47% of the samples). 

A custom R script was then used to compare the results from standard sleuth analysis and 

sleuth-ALR analysis. 

4.3.3 generation and culture of the HEK FUS KO model system 

All HEK293T cells were cultured in DMEM (4.5g/L of glucose; Sigma) supplemented 

with 10% (vol/vol) fetal bovine serum (FBS), 1% (vol/vol) of Penicillin, Streptomycin (P/S), and 

Glutamate (Gibco) (unless otherwise noted) at 5% CO2 and 37°C. Cells were split at confluency 

using the standard protocol with trypsin (TrypLE Express, Gibco). These cells were treated for 

mycoplasma contamination using Plasmocin treatment (InvivoGen) following the manufacturer’s 

instructions; the cells were confirmed to be mycoplasma free using Universal Mycoplasma 

Detection Kit (ATCC). 

To generate FUS KO cells, we followed a published protocol (Ran et al., 2013). HEK 

cells were plated in 6-well plates containing medium without antibiotics at a density of 

3´105/mL with 1 mL of media per well, and the cells were allowed to attach for 24 hours. They 

were then transfected with the pSpCas9(BB)-2A-puro plasmid and sgRNA targeting exon 1 of 

FUS (sequence: 5’- TGCGCGGACATGGCCTCAAA-3’) using lipofectamine2000. The sgRNA 

was designed to minimize off-target effects. After 18 hours, the media was changed. After 

another 6 hours, the cells were trypsinized and re-plated in 10-cm dishes at a dilution of 1:1200. 

After 48 hours, puromycin (final concentration: 2.5 ug/mL) was added as a selection marker, and 
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then media with puromycin was changed every 1-2 days. After 1 week, clones were selected, and 

tested for FUS KO status using western blot. Two clones (78 and 80) were selected for 

downstream experiments. In experiments with one clone, the clone with the more extreme 

phenotype (78) was used. 

4.3.4 proliferation assay 

HEK FUS KO cells and control cells were grown to confluency in a 10-cm dish, and then 

trypsinized for 3 minutes until the cells were detached, quenched with pre-warmed media, spun 

at 300g for 5 minutes at 4˚C. Supernatant was removed, and the pellet was resuspended in 2 mL 

of pre-warmed media. Cell density was measured using a Cellometer (Nexcelom) following the 

manufacturer’s protocol. Cells were then plated into 12-well plates in quadruplicate for each time 

point at a density of 1´105/well (1 mL media), using DMEM (4.5 g/L glucose) and 10% FBS and 

1% P/S without glutamate or pyruvate. Cell densities were measured at 24 hours, 48 hours, and 

72 hours using the Cellometer. Data presented is representative of three experiments.  

4.3.6 galactose sensitivity assay 

HEK FUS KO cells and control cells were seeded into 12-well plates as described above 

(section 4.3.4). This time, they were cultured with media containing DMEM and 10% and 1% 

P/S without pyruvate or glutamate, and either glucose (4.5 g/L) or galactose (4.5 g/L), and either 

treated with antimycin A (final concentration: 2 uM) or left untreated. Cell densities were 

measured at 24 hours, 48 hours, and 72 hours using the Cellometer. 

4.3.7 Seahorse assay 

The XFe96 Seahorse cartridge was hydrated using the provided Seahorse XF Calibrant 

overnight in a 37˚C humidified incubator using room air (low CO2). CellTak was applied to the 

Seahorse plate following manufacturer’s instructions. Then, the HEK FUS KO cells and controls 
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were seeded at a density of 5´104 cells/well, spun in a centrifuge to get the cells to attach. They 

were then incubated in a non-CO2 incubator for at least 30 minutes before running the plate. Port 

1 applied oligomycin at a final concentration of 2 uM, port 2 applied CCCP at a final 

concentration of 100 nM, and port 3 applied a combination of rotenone (9 uM), antimycin A (9 

um), and 2-deoxyglucose (2 mM). All biological replicates were seeded onto the plate in at least 

quadruplicate to measure technical variation. 

4.3.8 Mitochondrial membrane potential assay 

The day before the experiment, HEK FUS KO cells or control cells were trypsinized and 

seeded into 12-well plates at a density of 1´105 cells/well (1 mL of media). On the day of the 

experiment, media was removed, and media containing the dyes were added: a mix of TMRE 

(final concentration: 25 nM) and MitoTracker Green FM (final concentration: 50 nM); at these 

concentrations, these dyes are known to be non-quenching (Mitra and Lippincott Schwartz, 

2010; Perry et al., 2011; Schaefer et al., 2016). The cells were incubated in the dark for 30 

minutes at 37˚C. The media was then removed, and the cells were tryspinized and collected into 

FACS tubes. These were spun in a centrifuge at 300g for 5 minutes at 4˚C. The supernatant was 

removed, and the pellet was resuspended in 300 uL of “staining buffer” (PBS plus 2% FBS). The 

cells were then transported on ice and in the dark to the Flow Cytometry core facility, and then 

measured on a BD LSRFortessa Analyzer. Gates were set up to filter out doubles and debris as 

well as to filter out non-specific signal from unstained conditions. At least 10,000 events were 

analyzed. Single-stain controls were used to confirm that no compensation was necessary for 

these dyes on this instrument. We also treated the cells with 10 uM of CCCP for 5 minutes as a 

depolarization control. The data was analyzed using FlowJo, by taking the ratio of the TMRE 
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signal and the MitoTracker signal for each event and subtracting the average signal from the 

CCCP-treated condition. 

4.3.9 Measurement of membrane potential of purified mitochondria 

For each condition, the mitochondrial fraction was isolated from two 10-cm plates using 

a previously published protocol (Deng et al., 2015). This purified fraction was resuspended in 1 

mL of mitochondria assay (120 mM KCl, 5 mM KH2PO4, 1 mM EDTA, 1 mM MgCl2, 3 mM 

HEPES, pH 7.8, 1% BSA) and divided into 100 uL portions that were supplemented with 10 mM 

succinate. After 1 hour of incubation at 37℃, the mitochondria were stained for an additional 15 

minutes with 1 mM MitoTracker Green to differentiate intact mitochondria from cellular debris 

and 100 nM TMRM to determine mitochondrial membrane potential. Samples were analyzed on 

a BD FACS Calibur machine with FlowJo software. At least 100,000 positive events were 

collected for each sample. Data represents three independent experiments. 

4.3.10 qPCR 

HEK FUS KO cells and control cells were grown to near confluency, and then total RNA 

was collected using Trizol, following the manufacturer’s instructions. Isolated RNA was 

resuspended in 40 uL DEPC-treated water. RNA purity and concentration were measured using a 

NanoDrop 2000 Instrument (ThermoFisher). All samples had 260/280 ratios > 1.9 and 260/230 

ratios > 2.0. Reverse transcription was carried out using the SuperScriptIII reverse polymerase, 

following manufacture instructions and a 1:1 mix of oligo-dT(18) primers and N6 random 

primers. For each batch of samples, the same input mass of RNA was used (1-5 ug). The cDNA 

was diluted to a final concentration of 5 ug/uL, and 10 ug was used as input for each qPCR 

reaction. 
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qPCR was either performed on a BioRad CXF96 instrument using the Power SYBR™ 

Green PCR Master Mix (Applied Biosystems), or on a Stratagene MX3005P instrument 

(Agilent) using the UltraSYBR (Low ROX) Master Mix (CWBio CW2601M). In both cases, a 

fast 2-step protocol was used with an initial melting step at 95˚C for 10 mins, then 40 cycles of 

15 seconds at 95˚C followed by 30 seconds (BioRad) or 1 minute (Stratagene) at 60˚C. A 

melting curve was then done to check for product specificity, consisting of a dissociation step at 

95˚C for 15 sec followed by 1 min at 55˚C and continual readings up to 95˚C with a 

0.1˚C/second ramp. 

4.3.11 modified qPCR 

In this modified protocol, the same procedure is done with the following modifications. 

We first counted cells using a hemocytometer and isolated RNA from 1´106 cells per sample. 

The cells were spun in a centrifuge at 300g for 5 minutes at 4˚C; the supernatant was removed 

and 600 uL of Trizol was added to each sample. After this, 2´107 or 8´107 copies of Universal 

RNA Spike-in 1 or 2 (TATAA Biocenter), were added to the sample to serve as an external 

spike-in. The standard Trizol RNA extraction protocol was followed. The isolated RNA was 

resuspended in 40 uL of DEPC-treated water. RNA concentration and purity were measured on a 

NanoDrop 2000 instrument. Extraction and inhibition controls were made by adding the same 

amount of TATAA RNA Spike-in 1 or 2 (2´107 or 8´107 copies) to DEPC-treated water. 

Then, instead of equal mass of RNA input for each sample, equal 4-uL aliquots (10% of 

total RNA extracted) were used for the reverse transcription step using the SuperScriptIII reverse 

polymerase, with a mix of 1:1 oligo-dT(18) and N6 random primers used. Included in each 

reaction (including the control samples) was 2´107 copies of Luciferase Control RNA (Promega) 
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to serve as an inhibition control. The cDNA was then diluted 1:10 before use with the 

instrument, taking 2 uL aliquots for each qPCR reaction. 

4.3.12 Data analysis 

All data generated from the Seahorse, Proliferation, and Galactose sensitivity assays were 

analyzed using a one-way ANOVA with Tukey post-hoc tests in GraphPrism 7. All qPCR data 

was processed using the LinRegPCR normalization method (Ramakers et al., 2003; Ruijter et al., 

2009)(either the stand-alone software or the “slope” method in the sliwin function in the qpcR R 

package (Ritz and Spiess, 2008)). The LinRegPCR method estimates an amplification efficiency 

for each sample; the mean efficiency per gene was used for subsequent analysis. The processed 

data was then processed using R 3.4 and a custom R script, using a nested ANOVA model 

(technical samples nested in biological replicates) on the relative abundances calculated by ∆∆Ct 

method (Pfaffl, 2001).  
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CHAPTER 5: Discussion and Summary 

5.1 FUS, TDP-43, and miRNA biogenesis: what’s next? 

5.1.1 The limitations of our network approach 

We set out to design a pipeline that would predict the processes that TDP-43 would 

regulate via its regulated miRNAs and their predicted target genes. There are some limitations to 

the approach taken: (1) if a target interaction was missing from even one sample, it was excluded 

from the set of targets analyzed for a miRNA; this made the analysis easier to interpret, but it 

excluded miRNA-mRNA interactions that are likely important for a subset of lung cancer 

samples; (2) only the most differentially expressed genes from the Fatiscan results were included 

for the FatiGO analysis; thus, any subtle but biologically important signals in the data were 

ignored; (3) we did not examine whether there were miRNA-mRNA interactions that were 

positively correlated, which can indicate miRNAs either enhancing mRNA expression (Orang et 

al., 2014) or acting in a “tuning” or noise-buffering capacity (Bartel, 2009; Noorbakhsh et al., 

2013; Osella et al., 2011); (4) we cannot exclude the possibility of other miRNAs or other genes 

being the true cause of the changes we observe in the target gene. However, despite these 

limitations, this pipeline provides a clear set of hypotheses for future work to validate.  

The resultant predicted causal interaction network provides a complex picture of the 

predicted impact of TDP-43 on the pathogenesis of lung cancer. One aspect that complicates 

analysis has to do with the opposing roles of alternative isoforms. Several of the genes have only 

one transcript predicted to be a target, and this leads to a context-specific effect on cancer 

pathogenesis. For example, our pipeline predicted miR-423-3p to have four important targets in 

LUSC. Prima facie, the results seem mixed because you have two genes that inhibit cell 
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migration (LCP2 (Baker et al., 2009) and ADRB2 (Yu et al., 2007)), one with mixed results with 

respect to cell migration (ITGA9 (Mostovich et al., 2011)), and one that is an oncogene that 

promotes cell migration (CRK (Sriram and Birge, 2011)). However, when one looks more 

closely at the transcript level, the CRK transcript that is targeted is CrkIII, the shortest isoform 

with a predicted structure that has a truncated SH3 domain (Sriram and Birge, 2011). Thus, it is 

reasonable to suppose that, given the established role of miR-423-3p in promoting cell migration, 

CrkIII acts as a competitive inhibitor of Crk signaling and that inhibition by miR-423-3p leads to 

restoration of Crk signaling that promotes cell migration. Future work would need to be done to 

confirm this hypothesis and tease out the other complexities of transcript-specific miRNA 

targeting.  

Another complicating aspect was how the miRNAs that were hits in our pipeline have 

mixed roles in tumorigenesis. Of the 28 miRNAs reported as hits in either LUSC or LUAD 

samples, 22 have previous literature exploring their roles in cancer (12 miRNAs are indicated as 

suppressors and 10 are indicated as oncomiRs; see supplemental tables 7 and 8); there was a 

trend toward tumor suppressor TDP-43-regulated miRNAs being down-regulated 

(hypergeometric test p-value for LUAD (4/4 vs 40/85) and LUSC (7/9 vs 40/85) respectively: 

0.045 and 0.054), which suggested that TDP-43 is a tumor promoter. However, this trend was 

not seen with oncomiRs overrepresented among up-regulated hits (p-values for LUAD and 

LUSC were 0.614 and 0.177 respectively). 

5.1.2 Future possibilities 

FUS was identified to regulate synaptic processes via FUS-regulated miRNAs, which is 

consistent with previous work (Ling, 2018). One important way to improve on this analysis is to 

apply the compositional normalization approach to this network analysis. It’s not clear if there is 
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a large global change in RNA content in our dataset that would result in distorting the observed 

fold changes. Given how dramatically the observe global pattern changed when using sleuth-

ALR, more work needs to be done to carefully validate reference genes and determine the global 

pattern of FUS and TDP-43 regulation. The set of mRNA targets that are differentially 

expressed. An additional problem with studying tissue is that there is an additional layer of 

compositional data generated because of the various cell types present in the tissue. One could 

imagine a scenario where no differential expression occurred within a cell type, but that number 

of cells varied between conditions. In this situation, the change in cell composition results in 

observed differential expression independent of cellular changes. There are a few techniques 

available to try to resolve this both computationally (Mancarci et al., 2017; Xu et al., 2013), and 

experimentally (Miller et al., 2014; Wang et al., 2019b), so these could be implemented here. 

Another intriguing angle to pursue is the recent line of work suggesting a connection 

between cancer risk and neurodegeneration risk discussed in the introduction (Murmann et al., 

2018; Umansky, 2018). Since both FUS and TDP-43 are both intimately involved with miRNA 

biogenesis, it is tempting to hypothesize that they are important contributors to suppressing toxic 

small RNAs. TDP-43 is known to suppress transposable elements (Li et al., 2012), and a recent 

preprint provides evidence that FUS suppresses the production of snoRNA-derived small RNAs 

(Plewka et al., 2019). This would be an interesting line of inquiry to pursue in the future. 

Finally, more work could be done to explore the “tuning” interactions of miRNAs with 

their targets. As mentioned above, in these interactions, a positive correlation would be expected, 

and these are completely unexplored. Recent papers have published methods of assaying paired 

mRNA and small-RNA expression profiles in single cells (Wang et al., 2019a; Xiao et al., 2018). 

Since correlations are not compositionally coherent (and thus are meaningless without a negative 
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control feature), this work would require including external spike-ins. This could prove to be a 

powerful method to measure the genome-wide network of miRNA-mRNA interactions.  

5.2 Compositional Normalization: What’s Next? 

Compositional normalization performed similarly to current normalization methods when 

there was only a small change to total RNA (Figure 3.2A; Figure 3.4; Figure 3.5). This 

similarity is expected because, in this scenario, it is valid to assume that most features are not 

changing. However, when there was a large change in global RNA, compositional normalization 

using negative control features (spike-ins) had much better performance compared to the current 

normalization methods, for both simulated data (Figure 3.2B-C) and real data (Table 3.1). In 

this case, the assumption held by the current methods is violated, and this is likely what greatly 

reduced their performance. Further, although the IQLR transformation in ALDEx2 was designed 

to be robust to large changes in global RNA, it only modestly improved performance. This 

indicates that at least some of the features it selected and assumed to be unchanging were indeed 

changing, in both the simulated data and the real data. 

The worse performance of current normalization methods is likely related to how fold 

changes behave in the absolute case versus the relative case. Current normalization methods 

assume that most features are not changing; one could equivalently assume that the total RNA 

per cell is unchanged (Evans et al., 2018). Thus, if the total RNA content changes, current 

methods will anchor the data on whatever this global change is. This results in a shift in the 

observed distribution of fold changes (see Supplementary Figure S16 of (Lovell et al., 2015)). 

Extreme changes will still be observed to have the same direction, but there will be a group of 

features that are changing less dramatically than the global change that will be observed to have 

the wrong sign, and many unchanged features will appear to be changing. 
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Interestingly, the choice of normalization method had a much greater impact on 

performance than the choice of differential analysis tool, validating a finding from an older study 

(Bullard et al., 2010). This was true both for the simulated data (Figure 3.2B-C) and for the 

yeast dataset (Table 3.1). In both cases, compositional normalization clearly outperformed 

current methods when analyzing a dataset with substantial changes to the total RNA content, 

whether simulated or real. However, this was only true when negative control features were used 

(Table 3.1). This indicates that the choice of tool is much less important than the choice of 

normalization and the availability of negative control features (spike-ins, validated reference 

gene) to properly anchor the data.  

Surprisingly, RUVg had poor performance in both the simulated data and the 

experimental yeast dataset. It is unclear why this occurred, other than the likely possibility that it 

treats the data as count data rather than compositional data. More work would need to be done to 

see if RUVg could be modified to more accurately capture the global trend in the data from 

negative control features. 

In our simulations, the total RNA content was either decreased by 33% or tripled, 

respectively. The overall change in the “up” study was less extreme than what was observed after 

c-Myc overexpression (Lin et al., 2012; Lovén et al., 2012). In that context, the researchers 

found a general transcriptional activation that was not captured by the traditional analysis of the 

RNA-Seq data, and required cell number normalization using spike-ins to see the overall trend of 

increasing gene expression; the total RNA content increase observed by RNA-Seq was ~5.5-fold 

(see Table S2 of (Lovén et al., 2012)). The overall change in the “down” group was less extreme 

than that observed after the Marguerat et al dataset, which observed an 88% decrease total RNA 

content when using normalized RNA-Seq data. How often large shifts occur in real datasets is 
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unclear because of how infrequently spike-ins or validated reference genes are used when 

generating data. Future work should determine more carefully how drastic composition changes 

need to be before performance starts to degrade for methods which assume that most features are 

not changing. 

5.2.1 Results from Bottomly et al. self-consistency test and GEUVADIS null experiment 

Sleuth-ALR had the best self-consistency (Figure 3.5), and sleuth-ALR and limma had 

the best performance in the negative control dataset (Figure 3.6). ALDEx2 was unable to 

identify any hits using three samples per group with the standard statistical methods (Wilcoxon 

and Welch), and its “overlap” statistic showed a very high FDR, indicating that its results were 

inconsistent between the “training” and larger “validation” datasets. This indicates that ALDEx2 

may not perform well when there are few replicates per group. While this manuscript was in 

preparation, a recent benchmarking study came to the same conclusion (Quinn et al., 2018a). 

This behavior is likely due to the fact that the algorithm of ALDEx2 does not include any 

shrinkage of the variance. Variance shrinkage has been demonstrated to improve performance 

when there are few replicates (Law et al., 2014; Love et al., 2014; Wu et al., 2013). Interestingly, 

though, all three statistics used by ALDEx2 had similar performance on the simulated data 

(Figure S2.3), and the “overlap” statistic identified a similar set of hits in the real dataset as 

other compositional normalization methods (Table 3.1), suggesting that the “overlap” statistic 

may have utility in small datasets despite poor self-consistency or poor control of false positives 

in a negative control dataset. Future work could explore how to improve ALDEx2 performance 

for smaller datasets. 
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5.2.2 The lack of real datasets with verified global changes 

It was difficult to identify an example of a real dataset, with clear-cut evidence of 

substantial changes to the total RNA content, that was also amenable to re-analysis using our 

pipeline. We were unable to re-analyze the previous data measuring the impact of c-Myc 

overexpression (Lovén et al., 2012) because the RNA-Seq dataset did not have technical or 

biological replicates. We were also unable to re-analyze the selective growth assay used in the 

ALDEx2 paper (Fernandes et al., 2014) because the raw data, which is necessary for our 

pipeline, was not publicly available. Other datasets have used spike-ins, but they had no other 

confirmatory data on the absolute copy numbers to confirm if the spike-ins accurately captured 

the global trend or not. This dearth of bulk RNA-Seq datasets with verified global changes 

speaks to how much the problem of neglecting to treat bulk RNA-Seq as compositional data has 

gone unrecognized in the community. 

5.2.3 How to choose a denominator for compositional normalization and interpret the results 

When using compositional normalization, regardless of which denominator is chosen, the 

interpretation of differential expression and fold-changes is "the change of feature X with respect 

to the denominator". Although all transformations are permutation invariant and therefore any 

chosen denominator will produce mathematically equivalent results (Aitchison, 2008), the choice 

of denominator has important implications for the interpretation of the results and for the 

downstream validation experiments. 

If an experimenter has information about absolute copy numbers per cell in their 

experiment, they can readily use that information with compositional normalization. For 

example, if spike-ins are included proportional to the number of cells, as recommended in the c-

Myc study (Lovén et al., 2012), those spike-ins can be used as the denominator. If one or more 
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reference genes are validated, as was done with the Yeast Starvation study (Marguerat et al., 

2012), then a reference gene known to be approximately constant under the experimental 

conditions can be used. In principle, if qPCR is used to validate differential analysis results in 

this scenario, a predicted reference gene after using spike-ins or the validated reference gene 

used for compositional normalization would be the best choice for a reference gene. 

What about experiments that do not have spike-ins or validated reference genes? Spike-

ins have only slowly been adopted as a part of *Seq protocols (Hardwick et al., 2017). It has 

further been extensively documented that reference genes are frequently not properly validated 

(Bustin et al., 2009), and that expression of commonly used reference genes could change 

dramatically under certain circumstances (Barber, 2005; Rubie et al., 2005). There have been 

several techniques to identify reference genes using RNA-Seq data (Bin Zhuo et al., 2016; Van L 

T Hoang et al., 2017; Yim et al., 2015). Importantly, these techniques all find a feature that has 

an approximately constant proportion throughout all of the samples. However, researchers are 

usually attempting to identify a reference gene with approximately constant absolute copy 

numbers per cell throughout. In order to draw this conclusion, the techniques must make the 

same assumption that standard RNA-Seq analysis tools make, i.e. that the global RNA content 

remains constant in all samples, or that only a few features are differentially expressed. If many 

features are changes, features identified by these tools will only reflect the global change (up or 

down), rather than being approximately constant in absolute copy numbers per cell. 

None of the compositional normalization methods solve this problem (for an example, 

see sleuth-ALR with the “trend” feature compared to the other methods in Table 3.1), because 

no tool can in principle solve this problem without access to external information. As described 

in a recent review article (Quinn et al., 2018b), no approach can formally recapitulate the 
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absolute data, and only approaches that are using truly constant features can adequately anchor 

the data to accurately estimate the true changes in the absolute data. In most datasets without 

spike-ins or validated reference genes, it is unknown if there is a significant change in the total 

RNA per cell. Thus, all that is left is how one feature behaves relative to another feature. 

When one feature is used, there is a clear advantage to compositional normalization 

versus current methods because there is a clear interpretation of the results (i.e. how features are 

behaving relative to this feature), and because there would be a clear choice of reference gene for 

any qPCR validation downstream (for example, spp1 would be used in the yeast starvation 

study). Any other choice for qPCR reference gene would likely yield discordant results. 

Importantly, though, identifying a feature with approximately constant proportion, in the absence 

of information about the overall changes in RNA content, can still help experimenters identify 

important biology. This is analogous to the approach taken by Gene Set Enrichment Analysis 

(GSEA) (Subramanian et al., 2005). Its “competitive" null hypothesis leads to the identification 

of gene sets or pathways that are behaving differently with respect to the general trend of 

expression changes across the whole genome (Maciejewski, 2014). GSEA’s approach has led to 

uncovering interesting biology in the past, as demonstrated by how frequently it has been used 

and cited. 

In the context of RNA-Seq differential analysis, most datasets will be restricted to this 

option, and thus experiments will be forced to sacrifice knowledge about the absolute copy 

numbers for an interpretation of the data anchored to whatever the global change is. This should 

alarm researchers conducting these experiments to recognize the limitations of the current 

methodologies. This should also push the community to call for technical innovation and 

standardization that will make more widespread both the use of spike-ins for normalization, and 
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the validation of reference genes specific to the experiment at hand. Furthermore, this issue 

regarding the compositional nature of the data is not limited to RNA-Seq, but to many if not all 

high-throughput (“omics”) techniques (see Appendix 2.4). 

5.2.4 Concerns about the utility of spike-ins 

The authors of RUVg (Risso et al., 2014) made two observations that raised concerns 

about the utility of spike-ins. However, when interpreting the spike-in abundances through the 

lens of compositional data analysis, the observed behavior of spike-ins is precisely what would 

be expected (See Appendix 2.3). In particular, systematic variation between conditions in the 

spike-in abundances is expected if there is a global change (Figure 3.3; Figure S2.5; Table 

A2.4). This was observed in the yeast dataset, with the validated reference gene have a greatly 

increased abundance in the nitrogen starved cells versus control cells. 

However, their other observation raises valid concerns about the current protocol for 

using spike-ins. They observed a global discrepancy between spike-ins and the rest of the genes 

when comparing two control libraries to each other (see Figure 4d of (Risso et al., 2014)). This 

could be partially explained by dropout effects, but it is most likely due to differences in non-

poly-adenylated RNA expression (especially rRNA) between the samples. The way that the 

spike-ins were added in their experiment (adding an equal amount to approximately equal 

aliquots of the total RNA) causes the spike-ins to also be subject to compositional changes 

(Table A2.5). For bulk RNA-Seq experiments, the standard protocol adds spike-ins to equal 

amounts of RNA after isolation and selection (poly-A selection or rRNA-depletion), but if there 

are changes in the excluded RNAs, this protocol impedes the ability of the spike-ins to accurately 

capture the true fold changes of the RNAs under consideration. In contrast, the approach 

advocated by Lovén et al (Lovén et al., 2012) was to add spike-ins before RNA isolation, in 
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proportion to the number of cells. With this approach, the spike-ins can, in principle, accurately 

capture the behavior of the genes, even when there are non-poly-adenylated RNA changes 

(Table A2.6). There are challenges with using spike-ins in complex tissues (Evans et al., 2018), 

and there may be technical biases that affect spike-ins differently from endogenous RNAs, but 

further work must clarify this. What is certain is that future work with spike-ins absolutely must 

keep in mind the compositional nature of the data being generated, and protocols for bulk RNA-

Seq may need to be revised to improve the chance of spike-ins accurately anchoring the data to 

copy numbers. 

5.2.5 Conclusions 

In summary, simulating RNA-Seq data using a compositional approach more closely 

aligns with the kind of data being generated in RNA-Seq. Compositional normalization using 

negative control features yields a significant improvement over previous methods, in that it 

performs best in experimental contexts where the composition changes substantially. 

Importantly, this method can still be safely used in contexts where the compositional changes are 

unknown. There is much potential to extend the principles of compositional data analysis to 

other “omics” approaches, since they all generate compositional data; one intriguing possibility 

is a normalization free method that examines “differential proportionality” (Erb et al., 2018). 

However, our results from simulation and from real datasets demonstrate that, without access to 

spike-ins or to validated reference features, a researcher is limited in what conclusions can be 

drawn from *Seq data because of the compositional nature of the data. This work also makes a 

strong case for there to be more effort to improve and standardize the use of spike-in controls 

and validated reference features in all “omics” experiments. 
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5.3 Compositional Normalization and qPCR: what’s next? 

It has been known for a quite a while that qPCR requires the use of a validated reference 

gene to draw valid conclusions. The work presented here is only preliminary and would need 

additional replication along with some validation with additional techniques (e.g. the NanoString 

instrument used in (Marguerat et al., 2012)). The key idea is that one or more external RNA is 

added to the sample in proportion to a unit of biological relevance (most often with in vitro cell 

line work, it would be number of cells isolated for RNA extraction), and then add at least one 

more external RNA just before the reverse transcription step to control for reverse transcription 

and/or qPCR inhibition. This would provide a relatively inexpensive and easy approach to 

validating any reference gene in any biological context. 

5.4 FUS and mitochondrial function: what’s next? 

Assuming all of the negative data collected in our HEK FUS KO cells is reproducible, the 

most parsimonious explanation is that FUS serves as an inhibitor of mitochondrial function and 

biogenesis. Indeed, in our model system, FUS KO cells have more mitochondrial mass and 

purified mitochondria have higher mitochondrial membrane potential, indicating that they are 

more active than their wild-type counterparts. Work from our lab that was published very 

recently provides further evidence of this inhibitory role for FUS; in an overexpression model, 

FUS interacts with Complex V component ATP5B and reduces ATP synthesis. It would be 

intriguing to know if endogenous FUS can also inhibit ATP synthesis. 

Further, all of the mitochondrial-associated genes tested so far are up-regulated after FUS 

KO (relative to GAPDH), suggesting that FUS inhibits either their transcription, or some 

downstream step during their processing. If the observation that GAPDH is up-regulated in HEK 
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cells after FUS KO is reproducible, then it’s likely that the genes that were not validated may 

actually also be increasing as well. 

Since all of the work in this thesis was performed in a non-neuronal model, it is unclear 

what relevance any of this has to neurons. One piece of evidence connecting this work to brain is 

the observation that FUS KO also reduces mitochondrial size in the brains of mice, a phenocopy 

of what we observe in the HEK cells. Past work has demonstrated that there is heterogeneity of 

mitochondrial populations within neurons (Brown et al., 2006; Davey and Clark, 1996; Stauch et 

al., 2014), and that these have important implications for local mitochondrial function. It will be 

an intriguing line of future work to explore if FUS has a role to play in regulating this 

heterogeneity. 

5.4 Summary 

This work has provided evidence that TDP-43 and FUS both regulate a network of 

pathways via miRNA-mRNA interactions, and that these networks have biological relevance in 

both cancer and neurodegeneration. Additionally, this work has created a new normalization 

approach that will at minimum help researchers more correctly interpret their RNA-Sequencing 

data, with implications for qPCR and other genome-wide techniques. Finally, this work has 

provided some additional evidence for the role of FUS in mitochondrial function. All of these 

represent intriguing and relevant future directions to get one step closer to understanding enough 

of the pathogenesis of FTD and ALS to develop new diagnostic tools and new therapies. 
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Appendix 1: Supporting Information for Chapter 2 on the role of 

TDP-43 and FUS in miRNA regulation 

Appendix 1.1: Supplemental Figure for Chapter 2 

Figure A1.1: DE- and Pathway-filtered miRNA-mRNA predicted network in FUS KO Brain. This 
network is the same network as shown in Figure 2.4, but in this network, only miRNAs that have a 
DESeq2 FDR≤0.05 and only targets that had an enriched pathway are included. This resulting network is 
small, with only four miRNAs and three target transcripts involved in eleven pathways. All of the miRNAs 
are up-regulated after FUS KO and all of the transcripts are down-regulated after FUS KO. 
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Appendix 1.2: Legends for Supplemental Tables for Chapter 2 

Table A1.1: a summary of the LUAD and LUSC analyses. miRNAs that are significant from the 
combined analysis are included, with a separate table for those that are differentially expressed 
and those that are not. There is a separate sheet to summarize the correlations for all miRNAs in 
each dataset, and a final sheet to list the TDP-43-regulated miRNAs. 
 
Table A1.2: a list of all of the cellular processes identified by FatiGO. The first sheet contains a 
description of the column names for orientation, and then each sheet lists the results from the 
LUAD and LUSC datasets, focusing on the miRNA-mRNA interactions that are negatively 
correlated (down-regulated miRNA, up-regulated target; vice versa). 
 
Table A1.3: a table to show the data to produce the hive plots shown in Figure 2.2. The first 
sheet contains a description of the columns, and then each subsequent sheet corresponds to the 
network in each of the four panels of Figure 2.2. 
 
Table A1.4: a list of all the DESeq2 results for both miRNAs and mRNAs in the FUS KO brain 
dataset. Within each category, the individual transcripts/miRNAs are ordered by adjusted p-
value. For the mRNA targets, there is also a column listing whether it was identified as a FUS-
bound target in a previous study (Ishigaki et al., 2012). 
 
Table A1.5: results from combining the miRNA differential expression with the Fatiscan 
enrichment for differentially expressed targets. The first sheet describes the columns, and the rest 
describe the full list of significant and non-significant miRNAs. 
  



 152 
Appendix 2: Supporting Information for Chapter 3 on sleuth-ALR 

and Compositional Normalization 

Appendix 2.1: *Seq datasets are compositional datasets 

The term “compositional data” is defined as data where the reported values are 

quantitative descriptions of parts of a whole. Any data that use units relating parts to a whole 

(probabilities, proportions, percentages, parts per million, etc.) are thus compositional data. In 

other words, compositional data are restricted to reporting relative proportions of each of the 

components. In addition, compositional data have a "whole-sum" constraint: if one proportion 

increases between samples, one or more other proportions have to decrease because all of the 

proportions always add to the same arbitrary constant. This complicates any description of 

independence between components. Therefore, this kind of data requires a different statistical 

approach than what is usually applied to counts or continuous data, or to interval or ratio data. 

Importantly, compositional data are often collected in a context where only the relative 

proportions matter: the absolute amounts are arbitrary with respect to the true interests of the 

experimenter. For example, in geology, geologists study the composition of rocks without regard 

to the size of the rock under study (Aitchison, 2008). Another example is an economist studying 

household budgets; the important aspect under study is the proportion of the budget spent on 

various categories like housing, food, or taxes. However, what if these disciplines wanted to 

know about the absolute amounts? What if the geologist wanted to know the difference in the 

mass of silicon present in one rock versus another? What if the economist wanted to know how 

much actual money was spent on taxes by one household versus another? The only way to do 

that is to anchor the proportions onto some value related to the whole, either the total amount 
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present or to some “reference value” that is unchanged between samples. Thus, the geologist 

would need to know the total mass of each rock, and to relate the percentages of each mineral to 

the total mass; the economist would need to know the total income for each household. 

With *Seq experiments, the RNA molecules are not directly assayed; instead, protocols 

usually aliquot an equal and arbitrary amount of the total RNA from each sample to create the 

library for sequencing. The output for a *Seq experiment is a collection of sequenced fragments, 

originating from features of interest. The total number of fragments is not proportional to the 

total amount of RNA; instead, it is proportional to other factors, such as the experimental design, 

the capacity of the sequencer, and the choice of how deep the sequencing will be per sample. 

Because the total amount of the data (i.e. fragments) is arbitrary with respect to the value of 

interest (e.g. copy number changes in cell populations), *Seq experiments thus produce 

compositional data. The field generally already intuits this conclusion because the units used to 

report results from *Seq experiments are often inherently proportions: fragments per kilobase per 

million fragments (FPKM), transcripts per million (TPM), counts per million (CPM), etc. These 

units were used because it has been recognized that the sequencing depth is arbitrary with respect 

to the amount of RNA originally present. For example, if the same library is sequenced again at 

twice the depth, one could not directly compare the fragment counts between the two samples. 

At a minimum, one would have to account for the library size when doing any normalization. 

However, we ultimately care how RNA copy numbers change between groups. To take 

an extreme example, if every gene was transcriptionally activated to produce twice the number 

of RNA molecules than what they usually produce, this would lead to an identical composition 

(see Appendix 2, Table A2.3). If an experimenter did not know about this activation, and 

conducted an RNA-Seq experiment, the conclusion would be that nothing had changed between 
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the groups, even though this is obviously not the case. Thus, *Seq experiments are restricted to 

only reporting how relative proportions behave unless additional assumptions are made, or 

additional information is collected. Compositional normalization works around these 

assumptions by shifting the interpretation of the data to one of pure relative comparisons: how 

does gene 1 behave relative to gene 2? Gene 2 may be a true “reference gene” (i.e. does not 

change in expression between samples), it may be a “spike-in” control, or in the absence of 

external information, it may reflect the average global change of RNA between samples. 

 

Appendix 2.2: Requirements of techniques for analyzing compositional data 

The following three requirements for techniques analyzing compositional data as 

compositional data were described by John Aitchison (Aitchison, 2003; 2008). Compositional 

normalization meets all three requirements, with one important exception when negative control 

features are available. 

1. Scale invariance: analyses must treat vectors with proportional positive components 

as representing the same composition. In the context of *Seq experiments, this for the most part 

is empirically demonstrated by sequencing the same library at twice the depth. In this 

hypothetical example, one would expect to see twice as many fragments originating from most 

features in the sample with twice the sequencing depth, yet the abundance of each feature is the 

same. However, an important caveat for *Seq experiments, especially for single-cell RNA-Seq, 

is the detection limit of rare features and the dropout rate where rare features are not detected in a 

particular sample (Kharchenko et al., 2014; Phipson et al., 2017). 
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2. Subcompositional coherence: inferences about parts of a composition should be 

consistent, regardless of which components are included. This is important in *Seq experiments 

because frequently, some RNAs are selected from the total population (e.g. poly-A selection, 

size selection) or are depleted (e.g. rRNA depletion). Previous work has shown that correlation is 

subcompositionally incoherent and is therefore not a suitable measure for *Seq data (Lovell et 

al., 2015). 

3. Permutation invariance: conclusions must not depend on the order of the 

components. Importantly, on the surface, choosing a different denominator for compositional 

normalization results in different estimates; however, estimates are mathematically equivalent to 

each other (e.g. if gene 1 increases 50% with respect to gene 2, then if gene 1 is used as the 

denominator instead, gene 2 will be reported as decreasing 33% with respect to gene 1, which is 

equivalent to the inverse of 1.5-fold increase). 

What is critical for this last requirement is how one may interpret the results depending 

on whether negative control features are used. If they are present, using these features allows an 

anchoring of the data in absolute abundances that are not available using other features. 

However, if these features are not available, then all that is available is how some features 

behave relative to other features. The interpretation is restricted entirely to the relative 

information, and this requirement becomes imperative. 

 

Appendix 2.3: RUVg and the Compositional Behavior of Spike-ins 

Risso et al (Risso et al., 2014) had two major concerns: (1) the percentage of reads 

mapping to spike-ins had large systematic variation between conditions (treated versus control) 
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(see their Figure 4b and 4c); (2) the global behavior of spike-ins was discordant from the global 

behavior of genes when comparing two control libraries (see their Figure 4d and Figure 5c). 

In both cases, the discrepancies arise due to how the spike-ins were added and the 

compositional nature of generating a library for RNA sequencing. As will be shown, observation 

#1 is exactly to be expected if there is a large global change in the mRNA population, and thus, it 

should not raise a concern. Observation #2, however, does raise a concern about how spike-ins 

are utilized in standard protocols. The latter concern supports an alternative method, where 

spike-ins are added in proportion either to the total RNA or to the number of cells, before RNA 

isolation. Otherwise, the spike-ins themselves are affected by the compositional changes in the 

data. 

For observation #1, if the data are interpreted as compositional data rather than as count 

data, the systematic variations observed between conditions are exactly to be expected if there 

are any compositional shifts between them. There is reason to suspect that there are indeed is a 

significant global change between conditions for both datasets they examined. In the SEQC 

dataset (SEQC MAQC-III Consortium, 2014), sample A was Stratagene’s Universal Human 

Reference RNA, which is a mix of RNA from ten human cancerous cell lines, one of which is a 

glioblastoma cell line. Sample B was Ambion’s human brain reference RNA, which is a mix of 

RNA from the brains of 23 individuals. The two samples derive from completely different 

biological contexts, so one would expect a large number of changing features; indeed, the 

original paper identified about 5,000 genes that were differentially expressed when comparing A 

vs B, out of 23,437 tested (SEQC MAQC-III Consortium, 2014), representing ~20% of the tested 

transcriptome, roughly the same percentage as in our simulations. In the zebrafish dataset, the 

zebrafish were treated with gallein, which blocks Gbg activity. The original paper identified 
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several histone modification enzymes whose expression was affected after gallein treatment 

(Ferreira et al., 2014). This suggests that there are likely global changes in histone methylation, 

which would result in widespread transcriptional changes. Indeed, they also detected about 5000 

differentially expressed genes out of ~21,000 detected genes. 

In both datasets, the percentage of reads mapped to spike-ins tends to be lower in the 

control group (SEQC: sample A) and higher in the treatment group (SEQC: sample B). If there is 

a global decrease in mRNA but the same spike-ins are added to each sample, this would increase 

the observed abundances (percentage) of spike-ins. This can be illustrated by a toy example 

(Table A2.4). In this example with four mRNA genes, one rRNA gene, and two spike-ins, all 

four mRNA genes decrease by 20%. When the RNA is sampled, the spike-ins are added, and the 

rRNA is depleted, the abundances of the spike-ins increase while the abundances of the mRNAs 

appear roughly the same. However, when the mRNAs are normalized to the spike-ins, the 

expected fold-changes are recovered (Table A2.4). 

For observation #2, there are two possible explanations to explain the discrepant behavior 

between the spike-ins and the rest of the genes: (A) there was a dropout effect that 

disproportionately effects low-abundance spike-ins versus the rest of the genes; (B) there was a 

global change in rRNA, which would induce discrepant changes in the composition between 

spike-ins and mRNA genes. 

It is unlikely that the observation was due to spike-in dropout. The dropout effect is 

related to sequencing depth: the SEQC/MAC-III observed that, even when sequencing to a 

billion reads, there were still new low-abundance genes being detected (SEQC MAQC-III 

Consortium, 2014). For a given sequencing depth, abundance, and length of a transcript, there is 

a probability that that transcript will not be observed. This effect is prominent in single-cell 
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RNA-Seq (Jia et al., 2017; Pimentel et al., 2017), but still occurs with bulk RNA-Seq. The 

SEQC/MAC-III consortium also previously demonstrated that low-abundance spike-ins cannot 

adequately recover ratios between samples (see Figure 4c in (SEQC MAQC-III Consortium, 

2014)). If we reexamine Figure 4d in (Risso et al., 2014), low-abundance spike-ins are observed 

to have very low fold-changes, suggesting dropouts. However, if the loess local regression was 

repeated with the lowest quartile of spike-ins dropped, the same discrepant behavior is observed 

between spike-ins and genes (data not shown). 

This leads to the more concerning possibility that there was a possible global change in 

rRNA or other non-poly-adenylated RNA. Given the variability between cells of the same type 

within an individual observed when conducting single-cell RNA-Seq (Piras and Selvarajoo, 

2015), some variability between biological replicates is to be expected, even with rRNA. Now 

assume the same toy example above; in a new scenario, suppose a change between two 

biological replicates that led to a decrease in ribosomal RNA but no change in any mRNAs 

(Table A2.5). Then further assume that the spike-ins were accurately added in the same amount 

to an equal sample of total RNA, as is done in the standard protocol. Then, when the poly-A 

selection occurs, there is the same amount of poly-A+ mRNA by mass present in the second 

sample for a given amount of total RNA, but the same amount of spike-in RNA was isolated. 

This would then lead to a decrease in the proportion of spike-ins, and an increase in the global 

percentage of mRNA in the second sample. This would be a problem after normalization because 

the mRNAs would be observed to increase relative to the spike-ins, even though they did not 

change (Table A2.5). 

This leads to the necessity of adding spike-ins relative either to total RNA isolated or to 

the total number of cells analyzed. The work by Lovén et al (Lovén et al., 2012) used spike-ins 
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proportional to the number of cells isolated, so it avoided this problem. In our work, the yeast 

dataset was reanalyzed using a validated reference gene, which itself was quantified relative to 

an external standard. A final toy example can illustrate the power of this alternative approach 

(Table A2.6). In this example, the rRNA has changed substantially, and the mRNAs are 

changing in different directions. One of the spike-ins is added in proportion to the total RNA 

before isolation, and another is added in proportion to the sample of total RNA that will be used 

for the library construction (an arbitrary amount). Then, after the rest of the experiment, only the 

spike-in added before isolation can accurately recapitulate the true fold changes (Table A2.6). 

Current protocols specify adding spike-ins in equal amounts to a sample of total RNA 

after RNA isolation, but before selection and sequencing. Thus, as shown by the toy examples in 

Supplemental Tables S5 and S6, if there are global changes in the excluded RNAs, this 

approach will distort the ability of the spike-ins to capture the true fold changes of the RNAs 

under consideration. Alleviating this concern, the thought experiments in Table A2.4 and S6 

both illustrate that spike-ins, when used carefully, can in principle capture the true fold changes. 

Note that in the toy examples, the ground truth is known, and no other biases are 

considered. Once biases are introduced, there may be additional challenges in capturing the true 

fold changes of the genes under consideration. Additional work must be done to see if available 

spike-ins are affected differently by selection protocols or the sequencing process. However, this 

work must always keep in mind the compositional nature of the data being generated, especially 

with regard to the possible changes in excluded features. 
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Appendix 2.4: Extending the compositional approach to other high-throughput 

methods 

Considering future directions for this work, it has been previously noted that 

compositional data is near ubiquitous in high-throughput methods available to biologists 

(Fernandes et al., 2014; Lovell et al., 2011; 2015). Our work focused on differential analysis in 

the context of RNA-Seq. One area within RNA-Seq analysis to which compositional data 

analysis methodology can be readily extended is in studying differential splicing. Compositional 

data analysis would directly be able to assess changes in the proportions of splice isoforms with 

respect to each other (or to the total gene expression). Compositional data analysis methodology 

can also be extended to other high-throughput methods. All of these other methods inherit the 

compositional nature described here in RNA-Seq data (Fernandes et al., 2014; Gloor et al., 

2017), and all of these other methods thus have a need to consider spike-in normalization (Chen 

et al., 2015). 

For example, consider a study comparing the binding sites of a protein across two 

conditions using a crosslinking immunoprecipitation sequencing method for RNA sites (CLIP-

Seq) or DNA sites (ChIP-Seq). Setting aside the issues surrounding determining what constitutes 

a peak and quantifying those peaks, once one has estimates of peaks, this is still essentially a 

compositional dataset, since the total amount of fragments observed is arbitrary with respect to 

the total amount of RNA or DNA bound by the protein between the two conditions. Another 

example is metagenomics, in which researchers are interested directly in compositions of 

microbial communities across two populations (Gloor et al., 2017). This methodology can also 

be applied to proteomic or metabolomic studies, in which the normalization techniques used in 

those areas also assume that only a few proteins or metabolites are changing (Ejigu et al., 2013; 
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Rudnick et al., 2014). If one is studying a translational repressor or a stress condition where 

many metabolites may change dramatically, applying a compositional data analysis approach in 

those areas may lead to more accurate estimates. 

Appendix 2.5: Handling Zeros in sleuth-ALR 

A long-standing and unresolved problem in compositional data analysis is the problem of 

zeros (Martín Fernández et al., 2011). Zeros in either the numerator or denominator result in 

undefined logratios. There is also a distinction between an “essential zero”, i.e. a feature with 

truly zero abundance, and a “rounded zero”, i.e. a feature that appears to have zero abundance 

because the true abundance was below the limit of detection. “Rounded zeros” are considered an 

easier problem because they can be interpolated. In sleuth-ALR, two assumptions are made: (1) 

if a feature has zero counts in all samples, it is assumed to be an “essential zero” as a feature that 

is under transcriptional silencing, and can therefore be excluded; (2) if a feature has zero counts 

in some conditions but non-zero counts in others, then it is assumed to be a “rounded zero” as a 

feature that has the potential to be transcribed but that had low abundance because of the limit of 

detection related to the sequencing depth of the sample. We think that the latter is a reasonable 

assumption because a recent study showed that sequencing even to a depth of 1 billion reads 

(well beyond the typical sequencing depth in most experiments) still did not saturate the number 

of new, rare features being detected (SEQC MAQC-III Consortium, 2014). 

Other tools (sleuth, limma, edgeR, DESeq2) have handled this issue by (A) filtering out 

low-abundance transcripts, and (B) introducing “pseudo-counts” (e.g. 0.5) to all features. 

Because of the subcompositional coherence principle (see Supplemental Note 2 above), 

filtering is an appropriate step, and so sleuth-ALR uses the standard filtering in sleuth. However, 

introducing pseudo-counts can distort the composition and the dependency relationships between 
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features (Martín-Fernández et al., 2003). In sleuth-ALR, a multiplicative strategy that minimizes 

the distortion is done following (Martín-Fernández et al., 2003). Let x be a D-component 

composition, x = (x-, x6, . . . , x.), with rounded zeros; the components are replaced in the 

following fashion: 

x= = {
δ=, if x= = 0

x= ∗ (1 −
∑δ=
c=
), if x= > 0 

where c= is the sum constraint imposed on the data (e.g. 10C if TPM units are used, or the 

sequencing depth if counts are used). This has been shown to have the best theoretical and 

practical behavior of the available strategies for imputation (Martín-Fernández et al., 2003). For 

sleuth-ALR, δ= = 0.1 is the default for counts, and δ= = 0.01 for TPMs, though the user can 

choose any δ=. These are much higher values than the much smaller value recommended by 

(Martín-Fernández et al., 2003), but (a) these offsets are similar to the 1 or 0.5 count offset used 

by previous tools, (b) they stabilize the variation among the bootstraps for low-abundance 

features (see Figure A2.7), and thus (c) they improve performance compared to recommended 

values for δ= (see Figure A2.8). It is important to note that, within a certain range spanning at 

least an order of magnitude, the choice of δ= did not significantly impact performance (see 

Figure A2.8).  
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Appendix 2.6: Supplemental Figures for Chapter 3 

 

Figure A2.1: The sleuth-ALR approach for compositional normalization. Under the sleuth model, an 
observation is modeled as having some error associated with it that is due to the inferential procedure. 
The true value is modeled as a linear combination of covariates and biological noise. In the original 
sleuth model (shown in the bottom left), the estimate for the noisy observation was the estimated counts 
for feature i in sample j, normalized by the DESeq2 size factor. This and other current normalization 
methods attempt to translate purely relative information to inferences about absolute changes, but only  
by assuming no change to the total RNA content. The proposed sleuth-ALR estimate (shown on the bottom 
right) is an example of how to use compositional normalization. It first focuses on abundances (TPMs) 
rather than estimated counts, and second normalizes the abundances by a “reference feature”. This 
avoids having to assume only a few features change, but at the cost of not translating to inferences about 
absolute changes unless the chosen feature is a validated reference gene or spike-in. 
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Figure A2.2: A full-range view of the simulation results, accompanying Figure 3.2. This shows the full 
range of FDR and sensitivity for the three simulation studies: (A) “small” (5% DE; roughly equal copy 
numbers in each group); (B) “down” (20% DE; ~33% decrease in copy numbers in the experimental 
group); and (C) “up” (20% DE; ~2.8-fold increase in copy numbers in the experimental group). This 
shows that (1) compositional normalization has similar or superior performance throughout the full 
range of sensitivities and FDR, and (2) RUVg has poor performance, especially when combined with 
edgeR. 
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Figure A2.3: ALDEx2 performs similarly in simulations regardless of which statistical method is used. 
With the same simulation studies described in Figure 3.2, the performance of ALDEx2 was compared 
using the Welch t-test (the recommended statistic by the developers), the non-parametric Wilcoxon test, or 
the reported “overlap” statistic. The overlap statistic is the posterior probability of the effect size being 0 
or the opposite direction as what is reported, given the Dirichlet bootstrap samples observed. These three 
statistics perform approximately similarly no matter which transformation is used: CLR, IQLR, or 
“denom” (aka ALR, the same as used in sleuth-ALR). This remains true across all three studies: (A) 
“small” (5% DE; roughly equal copy numbers in each group); (B) “down” (20% DE; 33% decrease in 
copy numbers in the experimental group); and (C) “up” (20% DE; 2.8-fold increase in copy numbers in 
the experimental group). This is important because the Welch and Wilcoxon statistics were the ones 
recommended by the developers but have poor performance when there are few samples. 
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Figure A2.4: sleuth and sleuth-ALR perform similarly regardless of which statistical method or data 
unit is used. With the same simulation studies described in Figure 3.2, the performance of sleuth and 
sleuth-ALR was compared when using the Wald test or the likelihood ratio test (LRT), as well as when 
using TPMs or estimated counts for modeling. All combinations perform similarly within each tool across 
all three studies: (A) “small” (5% DE; roughly equal copy numbers in each group); (B) “down” (20% 
DE; 33% decrease in copy numbers in the experimental group); and (C) “up” (20% DE; 2.8-fold 
increase in copy numbers in the experimental group). 
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Figure A2.5: Spike-ins show a broad range of fold changes and systematic differences in studies with 
large shifts, accompanying Figure 3.3. Using the “ground truth” counts from polyester, the log2 fold 
change was calculated for all spike-ins, and then separated by their concentration in the ERCC Mixes, 
with “high” expression spike-ins having an average log2 concentration of at least 3 attomoles between 
both mixes (N = 47 out of 92). These were the spike-ins used for normalization in Figure 3.2. Shown are 
boxplots of the spike-in fold changes in each experiment across the three studies: (A) “small” 
(approximately constant total RNA); (B) “down” (~33 decrease in total RNA); and (C) “up” (~2.8-fold 
increase in total RNA). Low-expression spike-ins tend to have a broad range of fold changes, and the 
high-expression spike-ins tend to have a systematic bias in fold changes in the “down” and “up” studies. 
For reference, the red dotted line in each run indicates the “ideal” fold change for a spike-in, if it 
precisely matches the reciprocal of the change in copy numbers between the control and experimental 
conditions; the blue and gold dotted lines indicate the fold change between conditions of the DESeq2 
median-of-ratios and the sleuth-ALR geometric mean of high-expression spike-ins, respectively, 
suggesting that both are generally good approximations of the “ideal” fold change, and thus are good 
denominators for normalization. 



 168 

 
Figure A2.6: The False Discovery Rate and Relative sensitivity for the Bottomly self-consistency test at 
additional FDR levels. This accompanies Figure 3.4 in the main text. Shown here are the (A) False 
Discovery Rate, and (B) relative sensitivity (% change) at the FDR levels of 0.01 and 0.05. 
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Figure A2.7: Effect of imputation value on bootstrap variation. This depicts the summary of bootstraps 
variation for AAGAB-207 (ENST00000561452.5) within each sample of run #6. The true fold change for 
AAGAB-207 copy numbers is an 82% decrease. The recommended strategy in Compositional Data 
Analysis for imputing zero values is to choose a value smaller than the smallest observed value; however, 
because of the extremely small estimated abundances, this results in a very large variation in the 
bootstraps within each sample (A). This occurs when at least one bootstrap reports an estimated 
abundance of zero. Our recommendation is to follow the strategy of previous tools and choose a larger 
value to impute. Panel (B) shows the reduction in bootstrap variation after choosing 0.01 for the 
imputation. The wide variation observed in (A) resulted in a non-significant q-value (0.450), whereas the 
stabilized variation observed in (B) resulted in a significant q-value (0.047). 

  



 170 

Figure A2.8: Effect of imputation on overall simulation performance. This depicts the full sensitivity 
versus false discovery rate curve for different choices of imputation value, as compared to standard 
sleuth as well as the recommended strategy of choosing a value smaller than the smallest observed value 
(here depicted as “sleuth-ALR counts” for A-C and “sleuth-ALR TPM” for D-F). (A) and (D) show the 
results for the “small” simulation group (5% DE; <2% change in copy numbers per cell); (B) and (E) 
show the results for the “down” simulation group (20% DE; 33% decrease in overall copy numbers per 
cell); (C) and (F) show the results for the “up” simulation group (20% DE; 2.8-fold increase in overall 
copy numbers per cell). There is improved performance of using imputation versus no imputation, and 
there are only minor differences in performance in all three studies among any of the choices for 
imputation values except 0.1 TPM impute value, which is very high (roughly equivalent to a count 
imputation of 3), in the “up” study. 
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Appendix 2.7: Legends for Supplemental Tables for Chapter 3 

Table A2.1: Summary of Parameters for Simulation Studies. For each of the fifteen simulation runs, 
shown are the parameters to establish the number of differentially expressed (DE) transcripts, as well as the 
number that are up-regulated versus down-regulated. Only transcripts with a TPM of at least 1 were used to 
simulated differential expression, but the probability of differential expression was determined by the total 
number of transcripts (~200K). The proportion of up-regulated transcripts for the “small” study was tuned to 
result in similar total RNA content in both conditions. The random number generator seed was chosen solely 
on the basis of yielding consistency in total RNA content across each run within a study. Also shown are the 
actual number of DE transcripts present in the set of filtered transcripts used by all tools for each run. 
 
Table A2.2: Total RNA Content Per Cell Per Condition for all Simulation Runs. For each of the fifteen 
simulation runs, shown are the total RNA copy numbers per cell for each condition. Also reported are the 
average change in copy numbers between the two conditions for each study. 
 
Table A2.3: Doubling the copy numbers per cell results in the same composition. Depicted is a toy 
example of a simple cell with five genes of varying abundances. After an experimental manipulation, each 
gene has exactly double the copy numbers per cell compared to the control condition. This results in the 
same relative abundances, and therefore the same composition. 
 
Table A2.4: Spike-in abundances change with large compositional shifts but still accurately capture 
fold changes. Depicted is another toy example using the same cell with five genes. In this case, there are 
large changes in the mRNA genes, but no change in the rRNA gene. Spike-ins added in equal amounts 
both before and after RNA isolation, show changes in their abundances, and therefore would have changes 
in the percentage of reads mapping to them. Despite this change in their abundance, spike-ins accurately 
capture the true fold changes. 
 
Table A2.5: Spike-in abundances change discordantly when non-poly-adenylated RNA changes. 
Depicted is another toy example using the same cell with five genes. In this experiment, there is a small 
change in the rRNA, but no changes to the mRNA genes. Spike-ins were added in equal amounts after 
RNA isolation, to simulate the protocol used in the zebrafish dataset. Because of the unobserved rRNA 
change, the spike-ins are affected by the compositional change and show discordant fold changes when 
compared to the mRNA genes. Normalizing the mRNA genes to the spike-ins results in artefactually 
elevated fold changes. Thus, the discrepancy observed in the zebrafish dataset can be explained by 
unobserved changes in the rRNA. 
 
Table A2.6: Spike-ins must be added before RNA isolation to accurately capture true fold changes. 
Depicted is a final toy example using the same cell with five genes. In this experiment, there are large and 
varying changes to both the rRNA and mRNA genes. Spike-ins were added in equal amounts both before 
and after RNA isolation. Only the spike-in added before RNA isolation can accurately capture the fold 
changes of the mRNA genes; the spike-in added after is itself affected by the compositional shift of the 
simultaneous changes in both the rRNA and mRNA genes. 
 


