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ABSTRACT

Symmetry, Synchronization, and Switching Chimeras

Yuanzhao Zhang

There is a rich history on the study of the interplay between symmetry and synchro-

nization in networks. At the most fundamental level, many synchronization patterns are

induced by underlying network symmetries. However, when stability is taken into account,

the relation between symmetry and synchronization is far from monotonic. In this disser-

tation, we first demonstrate that introducing asymmetry in a network can often improve

its synchronizability. Such asymmetry can reside in either the network structure or the

node proprieties. In both cases, we characterize the unexpected positive effect of asymme-

try on synchronization through theory, simulations, and experiments. On the other hand,

even networks with the highest degree of symmetry can support very complex synchro-

nization patterns. One prominent example is the so-called chimera states—patterns of

synchrony representing coexistence of coherence and incoherence among identically cou-

pled identical oscillators. Here, we give a detailed characterization of switching chimeras,

which are chimera states that are robust and sensitive to noise at the same time. We

also establish incoherence-stabilized coherence as a model-free mechanism that gives rise
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to chimeras in a wide range of systems. The phenomena above provide valuable insights

into the intricate relation between symmetry and synchronization, and they call for a gen-

eral framework to analyze network synchronization that is not encumbered by symmetry

considerations. Utilizing the theory of matrix-∗ algebra, we develop such a symmetry-

independent framework, which leads to fast and versatile algorithms that can characterize

the stability of arbitrary synchronization patterns on networks. This framework is then

further extended to treat dynamical processes in complex systems with generalized inter-

actions, including hypergraphs, simplicial complexes, multilayer networks, and temporal

networks.
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CHAPTER 1

Introduction

The relational data describing the interactions between different components of a com-

plex system are often represented as networks, and their field of study is referred to as

network science [23, 183]. Given the prevalence of different forms of interactions, the

study of dynamical processes on networks has become a rapidly developing topic for the

past two decades [275]. Unsurprisingly, researchers realized early on that the underlying

structure of a network can profoundly influence the collective dynamics it supports. Ex-

amples include epidemic spreading in human contact networks [213], cascading failure in

power grids [53], and navigation in the Internet [127]. Given the societal and economic

significance of these collective processes, a deeper insight into their organizing principles

will be imperative for harnessing the potential of our increasingly interconnected world.

In this dissertation, we focus on network synchronization as one of the central manifes-

tations of collective dynamics that occurs widely in both natural and man-made systems

[13]. At the core of this quest is to understand when and how can coordinated behav-

ior emerge from decentralized interactions among otherwise independent components. In

particular, one fundamental objective is to disentangle the intricate play between network

structure and the dynamics taking place on top of it.

The structure of a network can be characterized from many different angles, using

measures such as degree distribution, modularity, centrality, and reciprocity [183]. How-

ever, perhaps none of them has a more profound impact on the observable dynamics on a
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network than symmetry, which describes the ways nodes can be permuted without affect-

ing the underlying network property [149]. It is easy to see that symmetry has a direct

influence on the existence of synchronization solutions. If there is a symmetry operation

that maps one node to another, then the two nodes are guaranteed to receive the same

input from the rest of the network and thus admit a synchronization solution [219]. The

relation between symmetry and stability, however, is much more subtle.

In Chapter 2, we show that the stability of a cluster synchronization state can almost

always be enhanced precisely by breaking the structural symmetry of the network. As

a consequence, less symmetry in a network can give rise to more synchronized dynam-

ics. These results lead to new possibilities for the topological control of synchronization

patterns, which we substantiate by presenting an algorithm that optimizes the network

structure under various constraints and is further validated by experiments performed by

collaborators.

The symmetry of a network can also be broken by making the nodes nonidentical.

In Chapter 3, we show that synchronization in multiscale systems can often be improved

by introducing internal differences on the node level. The only requirement is that each

node can be decomposed into two or more interacting subnodes. This discovery calls

for a general formalism to study the identical synchronization of nonidentical oscillators,

even when the multiscale structure is absent. In Chapter 4, we develop such a formal-

ism and demonstrate its utility using heterogeneous Stuart-Landau oscillators. These

theoretical results naturally raise the question of whether similar phenomena can be ob-

served in experiments. In Chapter 5, we establish that random heterogeneity among

delay-coupled Stuart-Landau oscillators can often stabilize synchronization states that
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are otherwise unstable, which we verify experimentally using electrochemical oscillators.

In Chapter 6, we present experimental evidence that for chaotic Chua’s oscillators imple-

mented as electronic circuits, random mismatches in their capacitances consistently lead

to better synchronization performance.

On the other hand, a fully symmetric network may also exhibit dynamics less uniform

than global synchrony. One such example is chimera states, which represent symmetry-

breaking phenomena in networks. Most of the early examples of chimeras are somewhat

fragile and require specific initial conditions to be observed. In Chapter 7, we report

on a new type of chimera state that attracts almost all initial conditions. Despite their

global attractiveness, these chimeras are extremely sensitive to noise: the coherent and

incoherent part of the system switch roles in the presence of arbitrarily small noise (but

not in the absence of noise). The average switching rate scales as a power law with the

noise intensity, which is in stark contrast with the exponential scaling observed in typical

stochastic transitions (think of protein folding, chemical reactions, and spin systems).

We explain the origin of this power-law switching behavior using tools from random

walk, quasi-potential theory, and intermingled basins. Finally, we demonstrate that these

intricate dynamics can be reproduced in optoelectronic experiments. In Chapter 8, we

further explore whether there is a common mechanism that gives rise to chimeras in

networks with very different local dynamics. We show that a broad class of chimeras

are stabilized by an analog of noise-induced synchronization, in which coherence emerges

because of (not despite) the co-occurrence of incoherence. This finding provides a system-

independent explanation for the coexistence of coherence and incoherence in network

systems.
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The results in the chapters above demonstrate that symmetry has its limitations when

it comes to predicting observable synchronization patterns, and a symmetry-independent

framework is needed to fully capture the rich dynamics that can appear in networks. In

Chapter 9, we establish a framework that does not rely on information about network

symmetry, which makes it versatile enough to characterize the stability of any cluster syn-

chronization pattern, even when the oscillators and/or their interactions are nonidentical.

The new framework is based on finding the finest simultaneous block diagonalization of

matrices in the variational equation and leads to an algorithm that is error-tolerant and

orders of magnitudes faster than existing symmetry-based algorithms. It is worth noting

that this method can even be applied beyond the realm of traditional networks, which

assume connections to be static and only describe pairwise interactions. Thus, in Chap-

ter 10, we present an extension of the framework to include networks with non-pairwise

interactions and networks whose connections vary over time. This extension allows the

discovery of interesting dynamics that are not possible in traditional networks.

Each of the chapters in this dissertation is self-contained. Notations are consistent

across chapters but are also independently introduced in each chapter. Thus, chapters do

not have to be read in an sequential order. A brief outlook for future research is given in

Chapter 11.



22

CHAPTER 2

Topological Control of Synchronization Patterns

Symmetries are ubiquitous in network systems and have profound impacts on the

observable dynamics. At the most fundamental level, many synchronization patterns

are induced by underlying network symmetry, and a high degree of symmetry is be-

lieved to enhance the stability of identical synchronization. Yet, here we show that the

synchronizability of almost any symmetry cluster in a network of identical nodes can

be enhanced precisely by breaking its structural symmetry. This counterintuitive effect

holds for generic node dynamics and arbitrary network structure and is, moreover, ro-

bust against noise and imperfections typical of real systems, which we demonstrate by

implementing a state-of-the-art optoelectronic experiment. These results lead to new pos-

sibilities for the topological control of synchronization patterns, which we substantiate by

presenting an algorithm that optimizes the structure of individual clusters under various

constraints.

This chapter is based on the joint work with Joseph D. Hart, Rajarshi Roy, and Adilson

E. Motter. The presentation closely follows Ref. [109].

2.1. Background

Symmetry and synchronization are interrelated concepts in network systems. Syn-

chronization, being a symmetric state among oscillators, has its existence and stability

influenced by the symmetry of the network [272, 187, 6]. For example, recent research



23

has shown that network symmetry can be systematically explored to identify stable syn-

chronization patterns in complex networks [219]. Different work has shown that structural

homogeneity (and hence a higher degree of network symmetry) usually enhances synchro-

nization stability [72, 68, 194]. Any given network of identical oscillators can always

be partitioned into so-called symmetry clusters [149], characterized as clusters of oscilla-

tors that are identically coupled, both within the cluster and to the rest of the network,

making them natural candidates for cluster synchronization [219, 265]. Cluster synchro-

nization has been investigated in numerous experimental systems, including networks of

optoelectronic oscillators [219, 265, 302], semiconductor lasers [195, 14], Boolean sys-

tems [238], neurons [291], slime molds [278], and chemical oscillators [288]. Many of

these experiments explicitly investigated the beneficial impact of network symmetries on

cluster formation [288, 278, 219, 265, 106]. Taken together, previous results support

the expectation that oscillators that are indistinguishable on structural grounds are also

more likely to exhibit indistinguishable (synchronous) dynamics.

In this chapter, we investigate the relation between symmetry and synchronization

in the general context of cluster synchronization (including global synchronization). We

show that, in order to induce stable synchronization, one often has to break the underlying

structural symmetry. This counterintuitive result holds for the general class of networks

of diffusively coupled identical oscillators with a bounded and connected stability region,

and it follows rigorously from our demonstration that almost all clusters exhibiting opti-

mal synchronizability are necessarily asymmetric. In particular, the synchronizability of

almost any symmetry cluster can be enhanced precisely by breaking the internal structural

symmetry of the cluster. These findings add an important new dimension to the recent
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discovery of parametric asymmetry-induced synchronization [192, 317, 313], a scenario

in which the synchronization of identically coupled identical oscillators is enhanced by as-

signing nonidentical parameters to the oscillators. Here, we show that synchronization of

identically coupled identical oscillators is enhanced by changing the connection patterns of

the oscillators to be nonidentical. We refer to this effect as structural asymmetry-induced

synchronization (AISync). We confirm that this behavior is robust against noise and can

be found in real systems by providing the first experimental demonstration of structural

AISync using networks of coupled optoelectronic oscillators. In excellent agreement with

theory, the experiments show unequivocally that both intertwined and nonintertwined

clusters can be optimized by reducing structural symmetry.

2.2. Isolating clusters for stability analysis

We consider a network of n diffusively coupled identical oscillators,

(2.1) ẋi = f(xi)− σ
n∑
j=1

Lijh(xj),

where xi is the state of the ith oscillator, f is the vector field governing the uncoupled

dynamics of each oscillator, L = {Lij} is the Laplacian matrix describing the structure of

an arbitrary unweighed network, h is the interaction function, and σ > 0 is the coupling

strength. We are interested in the dynamics inside a symmetry cluster. To facilitate

presentation, we first assume that the cluster is nonintertwined [219, 59]; that is, it

can synchronize independent of whether other clusters synchronize or not. The general

case of intertwined clusters—in which desynchronization in one cluster can lead to loss of



25

synchrony in another cluster—requires considering the intertwined clusters concurrently,

and this important case is addressed after our analysis of nonintertwined clusters.

Numbering the oscillators in that cluster from 1 to m, we obtain the dynamical equa-

tion for the cluster:

ẋi = f(xi)− σ
m∑
j=1

Lijh(xj) + σ
n∑

j=m+1
Aijh(xj)

= f(xi)− σ
m∑
j=1

Lijh(xj) + σI
(
{xj}j>m

)
,

(2.2)

where Lij = δijµi − Aij, A = {Aij} is the adjacency matrix of the network, µi is the

indegree of node i, and the equation holds for 1 ≤ i ≤ m. Here, we denote the input

term from the rest of the network ∑n
j=m+1Aijh(xj) by I

(
{xj}j>m

)
to emphasize that

this term is independent of i and hence equal for all oscillators 1, . . . ,m. This term is

zero only when the cluster receives no connection from the rest of the network, such as

the important case in which the entire network consists of a single symmetry cluster (i.e.,

m = n).

For m < n, if we regard the cluster subnetwork consisting of oscillators 1, . . . ,m as

a separate network (by ignoring its connections with other clusters), then its m × m

Laplacian matrix L̃ is closely related to the corresponding block of the n × n Laplacian

matrix L of the full network:

(2.3) Lij =


L̃ij, 1 ≤ i 6= j ≤ m,

L̃ij + µ̃, 1 ≤ i = j ≤ m,
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where µ̃ ≥ 0 is the number of connections each oscillator in the cluster receives from

the rest of the network. It is then clear that there are two differences in the dynamical

equation when the cluster subnetwork is part of a larger network [i.e., as a symmetry

cluster, described by Eq. (2.2)] rather than as an isolated network. First, the Laplacian

matrix L̃ in the dynamical equation is replaced by L̂ = {Lij}1≤i,j≤m = L̃+ µ̃1m; that is,

the diagonal entries are uniformly increased by µ̃. Second, each oscillator now receives a

common input σI
(
{xj}j>m

)
produced by its coupling with other clusters, which generally

alters the synchronization trajectory sI ≡ x1 = · · · = xm, causing it to be typically

different from the ones generated by the uncoupled dynamics ṡ = f(s). This has to be

accounted for when calculating the maximum Lyapunov exponent transverse to the cluster

synchronization manifold to determine the stability of the cluster synchronous state.

Despite these differences, a diagonalization procedure similar to the one used in the

master stability function approach [217] can still be applied to the variational equation in

order to assess the cluster’s synchronization stability. The variational equation describing

the evolution of the deviation away from sI inside the cluster can be written as

(2.4) δẊ =
[
1m ⊗ Jf(sI)− σL̂⊗ Jh(sI)

]
δX,

where δX = (δxᵀ1, · · · , δxᵀm)ᵀ = (xᵀ1 − sᵀI , · · · ,xᵀm − s
ᵀ
I)ᵀ and ⊗ denotes the Kronecker

product. The rest of the network does not enter the equation explicitly, other than

through its influence on the coupling matrix L̂ and the synchronization trajectory sI . If

L̂ is diagonalizable (as for any undirected network), the decoupling of Eq. (2.4) results in
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m independent d-dimensional equations corresponding to individual perturbation modes:

(2.5) η̇i =
[
Jf(sI)− σv̂iJh(sI)

]
ηi,

where d is the dimension of node dynamics, J is the Jacobian operator, η = (ηᵀ1 , · · · ,ηᵀm)ᵀ

is δX expressed in the new coordinates that diagonalize L̂, and v̂i = ṽi + µ̃ are the

eigenvalues of L̂ in ascending order of their real parts [with {ṽi} = eig(L̃)]. If L̂ is not

diagonalizable [189], the analysis can be carried out by using the Jordan canonical form

of this matrix to replace diagonalization by block diagonalization, as explicitly shown in

Appendix A.1. In both cases the cluster synchronous state is stable if Λ(σv̂i) < 0 for i =

2, . . . ,m, where Λ is the largest Lyapunov exponent of Eq. (2.5) and v̂2, . . . , v̂m represent

the transverse modes; the maximum transverse Lyapunov exponent (MTLE) determining

the stability of the synchronous state is max2≤i≤m Λ(σv̂i). Moreover, for the large class

of oscillator networks for which the stability region is bounded and connected [24, 145,

80, 115], as assumed here and verified for all models we consider1, the synchronizability

of a cluster can be quantified in terms of the eigenratio R = Re(ṽm)/Re(ṽ2): the smaller

this ratio, in general, the larger the range of σ over which the cluster synchronous state

can be stable. The cluster subnetwork is most synchronizable when ṽ2 = · · · = ṽm, which

also implies that all eigenvalues are real and in fact integers if the network is unweighted

[191], as considered here. It is important to notice that the optimality of the cluster

subnetwork is conserved in the sense that if ṽ2 = · · · = ṽm for the isolated cluster, then

v̂2 = · · · = v̂m will hold for the cluster as part of a larger network. Since the analysis

1For nonlinear oscillators, this can be done numerically by calculating the master stability function for
a sufficiently large region in the complex plane that encompasses all eigenvalues of the coupling matrix
scaled by the permissible coupling strength.
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above does not invoke the continuity of the equations anywhere, it holds for discrete-time

systems as well. In this case one can simply replace δẊ and δX in Eq. (2.4) by δX(t+1)

and δX(t), respectively.

2.3. Asymmetric clusters are more synchronizable

Now we can compare symmetry clusters with optimal clusters and show rigorously that

almost all optimally synchronizable clusters are asymmetric. Without loss of generality,

we consider an unweighted cluster in isolation and assume it has m nodes and ` directed

links internal to the cluster. In a symmetry cluster, because the nodes are structurally

identical, the in- and outdegrees of all nodes must be equal. Thus, ` must be divisible by

m if the cluster is symmetric. In an optimal cluster, because ṽ2 = · · · = ṽm ≡ ṽ and thus

tr(L̃) = (m − 1)ṽ, it follows that ṽ = `/(m − 1). The fact that ṽ is an integer implies

that ` must be divisible by m − 1 if the cluster is optimal. Since ` ≤ m(m − 1), the

two divisibility conditions can be satisfied simultaneously if and only if ` = m(m − 1)

(i.e., when the isolated cluster is a complete graph). But there are numerous optimal

clusters for ` < m(m − 1) [189, 191]. Therefore, for any given number m of nodes, all

optimal clusters other than the complete graph are necessarily asymmetric, meaning that

(with the exception of the complete graph) the synchronization stability of any symmetry

cluster can be improved by breaking its structural symmetry.2 This general conclusion

forms the basis of structural AISync and holds, in particular, when an entire network

consists of a single symmetry cluster.

2Note that although structural symmetry is broken in this process, the oscillators can still synchronize
identically as a Laplacian cluster because of the diffusive coupling.
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Symmetry
clusters

Eigenratio 4 2.5 2 1.5 1
Optimal
clusters

Eigenratio 1 1 1 1 1

Table 2.1. Connected symmetry clusters of 6 nodes and optimal clusters
embedded within them. Some symmetry clusters have more than one em-
bedded optimal network, in which case we show one that can be obtained
through a minimal number of link deletions.

When viewed as isolated subnetworks, symmetry clusters are equivalent to the vertex-

transitive digraphs in algebraic graph theory, defined as directed graphs in which every

pair of nodes is equivalent under some node permutation [40, 168]. Thus, in order to

improve the synchronizability of any nonintertwined symmetry cluster from an arbitrary

network, we only need to optimize the corresponding vertex-transitive digraph by ma-

nipulating its (internal) links. In particular, this can always be done by removing links

inside the symmetry cluster [190, 191], despite the fact that sparser networks are usually

harder to synchronize. For concreteness, we focus on clusters that are initially undirected

and consider the selective removal of individual directional links. As an example, we show

in Table 2.1 all connected undirected symmetry clusters of 6 nodes and their embedded

optimal networks. Apart from the complete graph, which is already optimal to begin

with, the synchronizability of the other symmetry clusters as measured by the eigenratio

R is significantly improved in all cases.

Because in practice it can be costly or unnecessary to fully optimize a symmetry

cluster, it is natural to ask whether its synchronizability can be significantly improved
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by just modifying a few links. We developed an efficient algorithm for this purpose and

summarize the statistical results based on all connected undirected symmetry clusters of

sizes between m = 8 and 17 in Appendix A.2. On average, only about 14% of the links

need to be rewired to reduce R−1 by half and thus significantly improve synchronizability

of symmetry clusters. This illustrates the potential of structural AISync as a mechanism

for the topological control of synchronization stability. Our simulated annealing code to

improve cluster synchronizability is available online at https://github.com/y-z-zhang/

optimize_sym_cluster/. This algorithm can also be used to demonstrate structural

AISync in global synchronization, as shown in Appendix A.3.

2.4. Experimental validation

Having established a theoretical foundation for our main finding, we now turn to our

experimental results. The experiments are performed using networks of identical opto-

electronic oscillators whose nonlinear component is a Mach-Zehnder intensity modulator.

The system can be modeled as

(2.6) xi(t+ 1) = βI[xi(t)]− σ
n∑
j=1

LijI[xj(t)] mod 2π,

where t is now a discrete time, β is the feedback strength, I(xi) = sin2(xi + δ) is the

normalized intensity output of the modulator, xi is the normalized voltage applied to the

modulator, and δ is the operating point (set to π/4 in our experiments). Each oscillator

consists of a clocked optoelectronic feedback loop. Light from a 780 nm continuous-

wave laser passes through the modulator, which provides the nonlinearity. The light

https://github.com/y-z-zhang/optimize_sym_cluster/
https://github.com/y-z-zhang/optimize_sym_cluster/
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intensity is converted into an electrical signal by a photoreceiver and measured by a field-

programmable gate array (FPGA) via an analog-to-digital converter (ADC). The FPGA

is clocked at 10 kHz, resulting in the discrete-time map dynamics of the oscillators. The

FPGA controls a digital-to-analog converter (DAC) that drives the modulator with a

voltage xi(t+1) = βI[xi(t)], closing the feedback loop. The oscillators are coupled together

electronically on the FPGA according to the desired Laplacian matrix. Specifically, the

experimental system uses time multiplexing and time delays to realize a network of coupled

oscillators from a single time-delayed feedback loop, as described in detail in Ref. [108].

A schematic illustration of the experimental setup can be found in Appendix A.4.

We first consider the network configuration shown in Fig. 2.1(a), which is a complex

network with five symmetry clusters. The symmetry cluster highlighted in magenta is

nonintertwined, and can be optimized by removing the red dashed links. The MTLE

calculation in Fig. 2.1(b) predicts AISync to be common in the parameter space. Fixing

β = 6, we performed 8 runs of the experiment starting from different random initial

conditions, and measured the normalized voltages xi for 8196 iterations at each fixed

coupling strength before increasing σ by 0.015. The synchronization error is defined as

∆ =
√∑

1≤i≤m ‖xi − x̄‖2/m, where x̄ is the mean inside the cluster. The data points in

Fig. 2.1(c) correspond to the average synchronization error 〈∆〉, defined as ∆ averaged

over the last 5000 iterations for each σ and then further averaged over the 8 experimental

runs. The error bars corresponding to the standard deviation across different runs are

smaller than the size of the symbols. One can observe AISync over a wide range of

the coupling strength σ, matching the theoretical prediction. Structural AISync is also
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FIG. S8. Experimental demonstration of structural AISync in cluster synchronization. (a) Example network in which a
symmetry cluster (magenta) is optimized for synchronization by removing links (red). (b) Predictions based on the theoretical
computation of the MTLE, showing that in the �⇥� parameter space there is an AISync region (purple); the other colors indicate
the regions where both clusters synchronize (blue) and where neither cluster can synchronize (green). (c) Experimentally
measured average synchronization error h�i in the original (orange) and optimized (blue) cluster for � = 6. The experimental
results are in good agreement with the MTLE calculations (color-coded curves).
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FIG. S9. Experimental demonstration of Structural AISync in intertwined clusters. (a) Example network in which two
intertwined clusters (magenta) are optimized to induce synchronization by removing red links. (b) The region in the � ⇥ �
parameter space satisfying condition (S4) is expanded from orange shaded area to include purple shaded area when the clusters
are optimized. Dark purple area corresponds to the AISync region determined through direct simulations. (c) Experimentally
measured average synchronization error h�i in the original and optimized clusters when moving through the parameter space
quasi-statically along the dashed line in (b). The blue dots are not seen because h�i are almost identical in the two optimized
clusters.

Figure 2.1. Experimental demonstration of structural AISync in a nonin-
tertwined cluster. (a) Example network in which a symmetry cluster (ma-
genta) is optimized for synchronization by removing the red links. (b)
Predictions based on the theoretical computation of the MTLE, showing
that in the σ × β parameter space there is an AISync region (purple); the
other colors indicate the regions where both clusters synchronize (blue) and
where neither cluster can synchronize (green). (c) Experimentally measured
average synchronization error 〈∆〉 in the original (orange) and optimized
(blue) clusters for β = 6. The experimental results are in good agreement
with the MTLE calculations (color-coded curves).

common for different oscillator types and network structures and is robust against noise

and parameter mismatches, as demonstrated systematically in Appendix A.5.

2.5. Generalizing topological control to intertwined clusters

We now turn to the case of intertwined clusters. Consider two intertwined clusters

X and Y subject to transverse perturbations δX and δY , respectively. The variational

equation for δX has the same form as Eq. (2.4) except for an additional cross-coupling

term σC ⊗ Jh(sIY
)δY added to the right, where C is the adjacency matrix describing

the intercluster coupling from cluster Y to cluster X. The variational equation for δY is
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defined similarly. Now, if δX (δY ) does not converge to zero according to Eq. (2.4), then

the cross-coupling term must not vanish and ‖δY ‖ (‖δX‖) must stay away from zero

in order for ‖δX‖ → 0 (‖δY ‖ → 0) in the full variational equation. Thus, in order to

stabilize synchronization in intertwined clusters, the following condition must be satisfied

for each cluster:

(2.7) ‖ηi‖ → 0 in Eq. (2.5) for all transverse modes.

In other words, ‖δX‖ and ‖δY ‖ converging to zero in Eq. (2.4) is a necessary condition

for stable synchronization in X and Y . Because optimizing the clusters independently (as

if they were nonintertwined) is guaranteed to expand the region satisfying the condition

in Eq. (2.7), such independent optimization is an effective strategy for improving synchro-

nization in intertwined clusters. For more details on this analysis, see Appendix A.6.

We demonstrate the strength of our approach on a random network containing two

intertwined clusters, which are highlighted in Fig. 2.2(a). Each cluster is optimized by

removing the red dashed links, which breaks the structural symmetry but reduces the

eigenratio of the cluster to 1. The orange shade in Fig. 2.2(b) indicates the region where

the condition in Eq. (2.7) is satisfied by the original clusters. The region satisfying this

condition is expanded to include the purple region when the clusters are optimized. Di-

rect simulations allow us to identify a large parameter region exhibiting AISync, which is

highlighted in dark shades in Fig. 2.2(b) and is included mainly in the expanded (purple)

region. A small portion of the AISync region also extends into the orange region, which

follows from the condition in Eq. (2.7) being necessary but not sufficient for synchro-

nization in the original clusters. To validate the theory and the numerics, we perform
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FIG. S7. Experimental demonstration of structural AISync in cluster synchronization. (a) Example network in which a
symmetry cluster (magenta) is optimized for synchronization by removing links (red). (b) Predictions based on the theoretical
computation of the MTLE, showing that in the �⇥� parameter space there is an AISync region (purple); the other colors indicate
the regions where both clusters synchronize (blue) and where neither cluster can synchronize (green). (c) Experimentally
measured average synchronization error h�i in the original (orange) and optimized (blue) cluster for � = 6. The experimental
results are in good agreement with the MTLE calculations (color-coded curves).

XY

(a)

2.0 3.5 5.0
0.5

0.8

1.1

AISync

(b)

�

�

h�
i

symmetric (X)

optimized (X)

symmetric (Y )

optimized (Y )

(c)

FIG. S8. Experimental demonstration of Structural AISync in intertwined clusters. (a) Example network in which two
intertwined clusters (magenta) are optimized to induce synchronization by removing red links. (b) The region in the � ⇥ �
parameter space satisfying condition (S3) is expanded from orange shaded area to include purple shaded area when the clusters
are optimized. Dark purple area corresponds to the AISync region determined through direct simulations. (c) Experimentally
measured average synchronization error h�i in the original and optimized clusters when moving through the parameter space
quasi-statically along the dashed line in (b). The blue dots are not seen because h�i are almost identical in the two optimized
clusters.

Figure 2.2. Demonstration of structural AISync in intertwined clusters. (a)
Network in which two intertwined clusters (magenta) are optimized to in-
duce synchronization by removing the red links. (b) Region in the σ × β
parameter space satisfying the condition in Eq. (2.7), which is expanded
from the orange shaded area to include the purple shaded area when the
clusters are optimized. The dark shades (orange and purple) highlight the
AISync region determined through direct simulations. (c) Experimentally
measured average synchronization error 〈∆〉 in the original and optimized
clusters when moving through the parameter space quasistatically along the
dashed line in (b).

experiments with parameters varied quasistatically along the dashed line in Fig. 2.2(b).

As shown in Fig. 2.2(c), the symmetry clusters are both incoherent for the entire range of

parameters studied. The two optimized clusters exhibit perfectly synchronized dynamics

except at the very edge of the AISync region, where the noise in the ADC has a marked

impact on the dynamics (nevertheless, they are still much more synchronized than the
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symmetry clusters). It is interesting to mention that although both optimized clusters

are in synchrony themselves, they are not synchronized with each other.

2.6. Concluding remarks

In summary, we established the role of structural asymmetry (or structural hetero-

geneity) in promoting spontaneous synchronization through both theory and experiments.

Our theory confirmed the generality of the phenomenon, while our experiments demon-

strated its robustness. Because symmetry clusters arise naturally in complex networks,

our findings are applicable to a wide range of coupled dynamical systems. In particular,

since identical synchronization in a symmetry cluster is the basic building block of more

complex synchronization patterns, our results can be used for the targeted topological

control of cluster synchronization in complex networks, which echoes the positive effect

of structural asymmetry on input control [298].
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CHAPTER 3

Asymmetry-Induced Synchronization in Multiscale Networks

A scenario has recently been reported in which in order to stabilize complete syn-

chronization of an oscillator network—a symmetric state—the symmetry of the system

itself has to be broken by making the oscillators nonidentical. But how often does such

behavior—which we term asymmetry-induced synchronization (AISync)—occur in oscil-

lator networks? Here we present the first general scheme for constructing AISync systems

and demonstrate that this behavior is the norm rather than the exception in a wide class

of physical systems that can be seen as multilayer networks. Since a symmetric network

in complete synchrony is the basic building block of cluster synchronization in more gen-

eral networks, AISync should be common also in facilitating cluster synchronization by

breaking the symmetry of the cluster subnetworks.

This chapter is based on the joint work with Takashi Nishikawa and Adilson E. Motter.

The presentation closely follows Ref. [317].

3.1. Background

A common assumption in the field of network dynamics is that homogeneity in the

local dynamics [233, 276] and interaction network [194, 68, 72]—or in the combina-

tion of both [176, 320]—can facilitate complete synchronization. It has been recently

shown, however, that structural heterogeneity in networks of identical oscillators [191]
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or oscillator heterogeneity in structurally symmetric networks [192] can stabilize other-

wise unstable synchronous states, thus effectively breaking the symmetry of a system to

stabilize a symmetric state. These scenarios, which we refer to as asymmetry-induced

synchronization (AISync), can be interpreted as the converse of symmetry breaking, and

hence as a converse of chimera states [133, 3]. Perhaps the most striking and the strongest

form of AISync is the one in which oscillators coupled in a symmetric network (i.e., each

oscillator plays exactly the same structural role) can converge to identical dynamics only

when they themselves are nonidentical; this has been demonstrated, however, exclusively

for rotationally symmetric networks and one type of periodic oscillators [192]. Whether

such AISync behavior can be shown to be common among systems with other symmetric

network structures and oscillator dynamics, including experimentally testable ones, has

been an open question.

In this chapter, we introduce and analyze a broad class of AISync systems that can

have general symmetric network structure with multiple link types and general oscillator

dynamics (which can be chaotic, periodic, continuous-time, discrete-time, etc.). This in

particular includes physical systems previously used in network synchronization experi-

ments, thus providing a recipe for future empirical studies. For this class, we demonstrate

that AISync is indeed common and provide a full characterization of those networks that

support AISync behavior, showing that the fraction of such networks is significant over a

range of network sizes and link densities.
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3.2. Definition of AISync

To formulate a precise definition of AISync, we consider networks of N (not necessarily

identical) oscillators coupled through K different types of interactions. The network

dynamics is described by

(3.1) Ẋi = Fi(Xi) +
K∑
α=1

N∑
i′=1
i′ 6=i

A
(α)
ii′ H

(α)(Xi,Xi′),

whereXi = Xi(t) is the M -dimensional state vector of node i, the function Fi governs the

intrinsic dynamics of node i, the adjacency matrix A(α) = (A(α)
ii′ ) represents the topology

of interactions through links of type α, and H(α) is the coupling function associated with

the link type α. A completely synchronous state of the network is defined by X1(t) =

X2(t) = · · · = XN(t).

To isolate the effect of breaking the homogeneity of oscillators, we consider adjacency

matrices A(α) that together represent a symmetric network, defined as a network in which

every node can be mapped to any other node by some permutation of nodes without

changing any A(α). Thus, the set of links of any given type must couple every node

identically (see Fig. 3.1(a) for an example). The rationale for using symmetric network

structures here is to ensure that any stabilization of complete synchronization by oscillator

heterogeneity is due to the reduced system symmetry (as required for AISync) and not

due to having network heterogeneity and oscillator heterogeneity compensating each other,

which may not break the system symmetry.

When restricted to undirected networks with a single link type, our definition of sym-

metric networks yields the class of vertex-transitive graphs from graph theory [40]. This



39

2

1

23

4

H(1)

H(2)

H(3)

(a)

1040

30 20

100400

300 200

(b)
400

30 200

10

40

300 20

100

(c) 0 1

0 0

1 0

0 0

00

10

10

10

0 1

0 1

0 0

1 0

01

00

00

10

0 1

0 0

0 1

0 1

01

00

00

01

0 0

1 0

0 1

0 0

10

10

00

00

(d)

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators

and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix eA for the monolayer network in
(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x

(i)
` ) +

NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x

(i0)
`0 ) � h(x

(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-

erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . , �n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

Figure 3.1. Multilayer construction of AISync networks. (a) Example of
a symmetric network of N = 4 heterogeneous oscillators and K = 3 types
of (directed) links with associated coupling functions H(1), H(2) and H(3).
(b) One of many possible multilayer networks corresponding to the network
in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer
1 and 2, respectively. (c) Flattened, monolayer representation of the mul-
tilayer network in (b). (d) Block structure of the adjacency matrix Ã for
the monolayer network in (c). Colors indicate different types of nodes (F (i),
diagonal blocks) and links (Ã(ii′), off-diagonal blocks).

rich class encompasses Cayley graphs (defined as a network of relations between elements

of a finite group; Appendix B.1) and circulant graphs (defined as a network whose nodes

can be arranged in a ring so that the network is invariant under rotations), which have

previously been used to study chimera states [210]. Enumerating all vertex-transitive

graphs of a given size N becomes challenging as N grows and has so far been completed

only for N < 32.3 The symmetric networks we consider here generalizes vertex-transitive

graphs to the even richer class of networks that can be directed and include multiple link

types.

Given a symmetric network structure, the system in Eq. (3.1) exhibits AISync if it

satisfies the following two conditions: (C1) there are no asymptotically stable synchronous

states for any homogeneous system (i.e., with F1 = · · · = FN), and (C2) there is an

3See Sequence A006799 in the On-Line Encyclopedia of Integer Sequences, published electronically at
https://oeis.org.

https://oeis.org
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asymptotically heterogeneous system (i.e., with Fi 6= Fi′ , for some i 6= i′) for which a stable

synchronous state exists. A challenge in establishing AISync is that the form of Eq. (3.1)

does not guarantee the existence of a completely synchronous state. Another challenge

concerns the stability analysis of such a state, since Eq. (3.1) is beyond the framework

normally used in the master stability function (MSF) approach and its generalizations

currently available [276, 62, 219, 67]: oscillators can be nonidentical (different Fi), and

the network can host K > 1 types of directed interactions.

3.3. Multilayer systems considered

To overcome these challenges, below we propose a multilayer construction that de-

fines a large, general subclass of systems within the class given by Eq. (3.1). We show

that any system in this subclass is guaranteed to have a synchronous state, and the sta-

bility of that state can be analyzed by applying the MSF framework to the flattened

representation of the system. The MSF approach decouples the oscillator dynamics from

the network structure, which enables us to draw conclusions about AISync for general

oscillator dynamics.

In our multilayer system, each node is composed of L identical subnodes, belonging to

L different layers and connected by a set of internal sublinks. The pattern of these inter-

nal sublinks is thus part of the node’s properties and determines the heterogeneity across

nodes. For a pair of connected nodes, the type of the connecting link is determined by the

pattern of external sublinks between the subnodes of these two nodes. This construction

yields a multilayer network [88, 98, 66, 42, 65] of subnodes and sublinks with L layers;

see Fig. 3.1(b) for an L = 2 example. Note that in general there is more than one possible
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multilayer network for a given symmetric network. Networks with such layered structure

have been used extensively as realistic models of various natural and man-made systems.

The class of systems just defined is broader than most classes of systems used in previous

studies of synchronization on multilayer networks [312, 85], since the links between two

different layers are not constrained to be one-to-one. The underlying hierarchical orga-

nization, in which each node decomposes into interacting subnodes, is shared by many

physical systems, such as the multi-processor nodes in modern supercomputers.

Coupling the dynamics of subnodes diffusively in this network, the multilayer system

can be described at the subnode level as

(3.2) ẋ
(i)
` = f(x(i)

` ) +
N∑
i′=1

L∑
`′=1

Ã
(ii′)
``′

[
h(x(i′)

`′ )− h(x(i)
` )
]
,

where x(i)
` = x

(i)
` (t) is the m-dimensional state vector for subnode ` (i.e., in layer `) of node

i, the function f determines the dynamics of every isolated subnode, and h is the coupling

function common to all sublinks. Here, for all links of a given type between different

nodes, the corresponding coupling matrix Ã(ii′) := (Ã(ii′)
``′ ), i 6= i′, is the same and encodes

the subnode connection pattern for that link type. In contrast, the subnode connection

pattern within each node i is encoded in the matrix F (i) := (Ã(ii)
``′ ). Since the subnode-

to-subnode interactions are diffusive, the synchronous state given by x(i)
` (t) = s(t), ∀i, `

with ṡ = f (s) is guaranteed to exist. Note that the diffusive coupling among subnodes

do not necessarily imply that the node-to-node interactions are diffusive, as intralayer

synchronization of the form x
(i)
` = s` among subnodes is also valid as a state of complete

synchronization among all nodes. The interactions among nodes do not vanish in this case

due to the existence of external sublink connections among different layers. To summarize,
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Eq. (3.2) describes a general class of multilayer models of symmetric networks that admit

a state corresponding to complete synchronization, Xi(t) = S(t), ∀i, when written in the

form of Eq. (3.1) (see Appendix B.2 for details).

3.4. Establishing AISync

To facilitate the stability analysis required to establish AISync, we flatten the multi-

layer network representation into a single layer (see Fig. 3.1(c) for an example). We use

Ã = (Ãjj′) to denote the adjacency matrix that encodes the structure of the resulting

monolayer network (see Fig. 3.1(d) for an example). This matrix has a block structure

in which the matrices F (i) appearing on the diagonal blocks characterize node properties,

while Ã(ii′) appearing on the off-diagonal blocks reflect the link types. Since subnodes

and sublinks are identical, we can directly apply the MSF analysis [217] to the mono-

layer network and obtain the stability function ψ(λ) (see Appendix B.3 for details). The

maximum transverse Lyapunov exponent (MTLE) of the synchronous state is then com-

puted as Ψ := max2≤j≤n ψ(λj), where λ1, . . . , λn are the eigenvalues of the corresponding

Laplacian matrix L̃ := (L̃jj′), defined as L̃jj′ := δjj′
∑n
k=1 Ãjk − Ãjj′ , where δjj′ is the

Kronecker delta function. Here, λ1 is the identically zero eigenvalue, which is excluded in

the definition of Ψ for corresponding to a mode of perturbation that does not affect syn-

chronization. Thus, the synchronous state is asymptotically stable if Ψ < 0 and unstable

if Ψ > 0.

To establish AISync for our multilayer system, we first verify that all homogeneous

systems have Ψ > 0 (i.e., synchronous state x(i)
` = s, ∀i, `, is unstable), and check

numerically that all other synchronous states x(i)
` = s`, ∀i, `, are also unstable. This
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establishes condition (C1). We then find a heterogeneous system with Ψ < 0, which

establishes condition (C2). This procedure is detailed in Appendix B.4.

In the case of linear f and h, which is widely used to study consensus dynamics

and encompasses a variety of nontrivial stability regions [145], the problem of verifying

AISync is fully solvable. To see this, we first note that in this case the stability function

ψ(λ) determines the (common) stability of all completely synchronous states of the form

x
(i)
` = s`, ∀i, `, where the subnode states s` can in general be different for different `.

Next, for a given (homogeneous or heterogeneous) system, we sort its Laplacian eigen-

values into two groups: λ1, . . . , λj∗ , corresponding only to those perturbations parallel

to the synchronization manifold, and λj∗+1, . . . , λn, corresponding to perturbations that

are transverse to the manifold and thus destroy synchronization. The stability (of all

completely synchronous states) is then determined by Ψ′ := maxj∗<j≤n ψ(λj), noting that

both j∗ and λj generally depend on the network structure. This leads to the following

solution for the AISync conditions: Ψ′ ≥ 0 for all homogeneous systems and Ψ′ < 0 for

some heterogeneous system (where we include Ψ′ = 0 in the first condition because Ψ′ = 0

for linear system would exclude asymptotically stable synchronization).

3.5. Examples of AISync

3.5.1. Consensus dynamics

Here we establish AISync for the system with the symmetric network structure shown in

Fig. 3.2, in which the subnodes follow the consensus dynamics used in Ref. [145]:

(3.3) ẋi = Df xi −
∑
j

L̃ij Dhxj,
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where

(3.4) Df =



−2 2 −1 2

−1 1 0 0

0 0 −3 4

0 0 −1 1


Dh =



0 0 0 0

0 0 0 0

0 1 0 −1

−1 0 1 0


.

This leads to the stability region ψ(λ) < 0 shown in Fig. 3.2(c), defined by

(3.5) x(x+ 3)− y2 − (2x+ 3)2y2 > 0,

where x and y denote the real and imaginary parts of λ, respectively.

For L = 2 there are only two possible homogeneous systems, associated with the

two possible directions of the internal sublink in each node. The homogeneous sys-

tem in Fig. 3.2(a) has Laplacian eigenvalues λ1 = 0, λ2 = 2, λ3,4 ≈ 0.5 ± 0.866i, and

λ5,6 ≈ 1.5 ± 0.866i, where λ1 and λ2 correspond to the perturbations parallel to the

synchronization manifold and λ3, . . . , λ6 correspond to those in the transverse directions

(i.e., j∗ = 2). Since ψ(λj) > 0 for j = 3, 4, 5, 6 [i.e., all these λj’s fall outside the stabil-

ity region defined by Eq. (3.5), as indicated by the red squares in Fig. 3.2(c)], we have

Ψ′ = max2<j≤6 ψ(λj) > 0. The other homogeneous system is not synchronizable since all

the single-prime subnodes have no incoming sublink. In contrast, for the heterogeneous

system in Fig. 3.2(b), the Laplacian eigenvalues are λ1 = 0, λj = 1 for 1 < j ≤ 5, and

λ6 = 2 (i.e., j∗ = 1 in this case). As shown by the blue dots in Fig. 3.2(c), we have

Ψ′ = max1<j≤6 ψ(λj) < 0 for this heterogeneous system. We thus see that Ψ′ ≥ 0 (i.e.,

the synchronous state is not asymptotically stable) for both homogeneous systems and
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Figure 3.2. Example of consensus system showing AISync. (a) Symmetric
network of N = 3 homogeneous nodes, each with L = 2 subnodes coupled
by a directed link (from subnode i′′ to i′). (b) The same network but with
heterogeneous nodes, in which the direction of the internal sublink in the
(light) cyan node is the opposite of that in the (dark) green nodes. In
both (a) and (b) we show the corresponding node-level visualization of the
network at the top right. (c) Stability region (shaded gray) for the consensus
dynamics. All the transverse modes for the homogeneous system in (a) are
unstable (red squares), while those for the heterogeneous system in (b) are
stable (blue dots).

Ψ′ < 0 (i.e., the synchronous state is asymptotically stable) for a heterogeneous system,

establishing AISync: the agents can reach consensus only when some of them are different

from the others.

3.5.2. Coupled Lorenz oscillators

An example of nonlinear system exhibiting AISync is shown in Fig. 3.3. The network

structure is symmetric and has N = 3 nodes and K = 2 types of links representing

sublink patterns in the clockwise and counterclockwise directions in Fig. 3.3(a). Each
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node consists of L = 2 subnodes, each of which is a chaotic Lorenz oscillator. The two

subnodes are connected by a sublink, the direction of which determines the node type.

This gives rise to two node types, and there are four possible distinct combinations of node

types for the network—two homogeneous and two heterogeneous. The system has two

parameters, a and b, representing the coupling strength of internal and external sublinks,

respectively. We seek to determine for which values of a and b the system exhibits AISync.

In Fig. 3.3(b), we show Ψ= (red) and Ψ6= (blue) as functions of a and b, where Ψ=

(Ψ6=) are defined to be the smaller value of Ψ between the two possible homogeneous

(heterogeneous) systems. In the region shaded purple (where Ψ6= > 0 and Ψ= < 0),

the synchronous state x(i)
` (t) = s(t), ∀i, ` is stable for at least one of the heterogeneous

systems, but unstable for both homogeneous systems. We further verify in this region

that the other possible forms of synchronous states, x(i)
` (t) = s`(t), ∀i, `, are unstable for

both homogeneous systems (through extensive numerical simulation—see Appendix B.5

for details). This establishes conditions (C1) and (C2), thus confirming that the system

exhibits AISync in the purple region. The AISync behavior of the system for a specific

combination of a and b is illustrated by the sample trajectory in Fig. 3.3(c), which diverges

from synchrony while the nodes are kept homogeneous, but re-synchronizes spontaneously

after the nodes are made heterogeneous.
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FIG. 2. Example of AISync system. (a) Symmetric network of
N = 3 nodes, each with L = 2 directionally coupled subnodes
of Lorenz oscillators. The sublink direction in one node (cyan)
is di↵erent from the other two (green). (b) Contour plots of
 = (red) for the case of homogeneous nodes (all green or all-
cyan nodes) and  6= (blue) for heterogeneous nodes (one or
two green nodes). The shaded region corresponds to AISync
systems, for which  = > 0 and  6= < 0. (c) Sample trajectory
of the system for a = 8 and b = 6 [cross symbol in (b)],
exhibiting AISync. The first component x1 of the Lorenz
oscillator state vector is shown for all n = 6 subnodes.

(common) stability of all completely synchronous states

of the form x
(i)
` = s`, 8i, `, where the subnode states

s` can in general be di↵erent for di↵erent `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: �1, . . . , �j⇤ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and �j⇤+1, . . . , �n, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroys synchronization. The stability (of
all completely synchronous states) is then determined by
 0 := maxj⇤<jn  (�j), noting that both j⇤ and �j gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions:  0 > 0
for all homogeneous systems and  0 < 0 for some het-
erogeneous system (see SM [26], Sec. S3 for an example
satisfying these conditions).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 2(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the di-
rection of which determines the node type. The system
has two parameters, a and b, representing the coupling
strength of internal and external sublinks, respectively.
In Fig. 2(b), we show  = (red) and  6= (blue) as func-
tions of these parameters, where  = ( 6=) are defined
to be the smaller value of  between the two possible

homogeneous (heterogeneous) systems. We verify condi-
tions (C1) and (C2) as described in SM [26] (Sec. S4)
in the region for which  = > 0 and  6= < 0 [shaded
purple in Fig. 2(b)], thus establishing that the system
exhibits AISync in that region. This is illustrated for
a sample trajectory in Fig. 2(c), which diverges from
synchrony while the nodes are kept homogeneous, but
re-synchronizes spontaneously after the nodes are made
heterogeneous (see SM [26], Sec. S5 for details). While
this provides an AISync example with a directed net-
work structure and a bounded stability region, we also
demonstrate AISync for experimentally testable systems
(coupled electro-optic oscillators [28]; SM [26], Sec. S6),
for systems with unbounded stability region (SM [26],
Sec. S7), and for systems with undirected network struc-
ture (SM [26], Sec. S8). These examples include both lin-
ear and nonlinear coupling functions, as well as discrete-
and continuous-time dynamics.

But how often does a network structure support
AISync? To systematically address this question, we
use the spread � of the eigenvalues of the Laplacian ma-

trix eL for the monolayer network representation, which
is a measure of synchronizability [8] defined by �2 :=Pn

j=2 |�j � �|2/[d2(n � 1)], where d :=
Pn

j=1
eLjj/n and

� :=
Pn

j=2 �j/(n � 1). A smaller � indicates higher
synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread �= among all systems with homoge-
neous F (i) to the corresponding minimum � 6= among all

systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if � 6= < �=, which indicates

that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 � � 6=/�=  1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies � 6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 2 has �= ⇡ 0.56
and � 6= ⇡ 0.33, and r ⇡ 0.41.

Using this AISync strength r, we first enumerate all
networks of a given size supporting AISync (Table I). For
each N , we generate one or more diagrams representing
all N -node symmetric networks, which are shown in the
first row of Table I for N = 3, 4, 5 (see SM [26], Sec. S9 for
larger N). In these diagrams, each color indicates a set of
links that, in any given symmetric network, must all exist
together and be of the same type or not exist at all (not-
ing that links from di↵erent sets can be of the same type).
For example, there are three distinct symmetric networks
for N = 3: a directed ring (cyan or black links), an undi-
rected ring (cyan and black links of the same type), and
the superposition of two directed rings in opposite direc-
tions (cyan and black links of di↵erent types; as in Fig. 2).
For a given symmetric network derived from these dia-
grams, we choose the external sublink pattern for each
link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we

Figure 3.3. Example of coupled Lorenz systems showing AISync. (a)
Symmetric network of N = 3 nodes, each with L = 2 directionally coupled
subnodes of Lorenz oscillators. Here we show an instance of a heteroge-
neous system in which the sublink direction in one node (cyan) is different
from the other two (green). (b) Contour plots of Ψ= (red) for the case of
homogeneous nodes (all-green or all-cyan nodes) and Ψ6= (blue) for hetero-
geneous nodes (one or two green nodes). The shaded region corresponds to
AISync systems, for which Ψ= > 0 and Ψ6= < 0. (c) Sample trajectory of
the system for a = 8 and b = 6 [cross symbol in (b)], exhibiting AISync.
The first component x1 of the Lorenz oscillator state vector is shown for all
n = 6 subnodes.

3.5.3. Coupled electro-optic systems

We now present an experimentally testable AISync system based on the discrete-time

model of the electro-optic system implemented in Refs. [104, 219] and given by

(3.6) xt+1
i =

[
f(xti)−

∑
j

L̃ijf(xtj) + δ

]
mod 2π,
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FIG. S2. Symmetric network (directed ring in this case) consisting of three nodes, each composed of two electro-optic subnodes.
(a–c) Networks with heterogeneous (a) and homogeneous nodes (b, c). (d) Stability function  (�) for the electro-optic system.
(e–g) numerical results indicating where each system in (a–c) is synchronizable in the parameter space. Each pixel is categorized
into three classes according to 24 independent simulations from random initial conditions (see text for details). (h) The AISync
region (shaded purple), which is the union of yellow and green regions in (a) minus the analogous unions in (b) and (c). The
red contours encode the MLE for the heterogeneous system.

Figure 3.4. Example of coupled electro-optic systems showing AISync.
(a–c) Networks with heterogeneous (a) and homogeneous nodes (b,c). (d)
Stability function ψ(λ) for the electro-optic system. (e–g) Numerical results
indicating where each system in (a–c) is synchronizable in the parameter
space. Each pixel is categorized into three classes according to 24 indepen-
dent simulations from random initial conditions (see text for details). (h)
The AISync region (shaded purple), which is the union of yellow and green
regions in (e) minus the analogous unions in (f) and (g). The red contours
encode the MTLE for the heterogeneous system.

where f(x) = βI(x) determines the isolated subnode dynamics and also serves as the

coupling function. Here, I(x) = (1−cosx)/2 is the normalized optical intensity, β = 1.7π

is the self-feedback strength, δ = 0.2 is the offset introduced to suppress the trivial solution

xi = 0, and L̃ij is the weighted graph Laplacian [weights controlled by parameters a and

b, as shown in Fig. 3.4(a–c)].

Figure 3.4 shows an example of AISync using these electro-optic maps as subnodes.

The internal connections are chosen from the quaternary set (no sublink, one directed sub-

link in either direction, and directed sublinks in both directions). When the same choice

is made for all internal connections, this leads to four different homogeneous systems, but
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two of them have λ2 = 0 (not synchronizable), leaving only two homogeneous systems

to consider [Figs. 3.4(b) and (c)]. For comparison, we take the heterogeneous system in

Fig. 3.4(a), which forms a directed chain network in its monolayer representation. Each of

the three systems [Figs. 3.4(a–c)] has a companion plot showing under what parameters

the nodes are synchronizable [Figs. 3.4(e–g)]. In the latter panels, each pixel is gener-

ated from 24 independent simulations run from random initial conditions. The pixels are

then color-coded according to how many times a fully synchronized state was reached

after 2500 iterations (“sync-only”: 24 times; “desync-only”: 0 times; “multistability”: all

other cases). Here we consider a trajectory to be fully synchronized if the synchronization

error e defined in Eq. (B.7) and averaged over the last 100 iterations falls below 10−3.

It is worth noting that, in this example, when a homogeneous system is synchronizable

the synchronous state is always in the form of cluster synchronization among subnodes

(those indexed with prime and double prime form two separate synchronized clusters),

since complete synchronization among subnodes is always unstable for both homogeneous

systems.

Figure 3.4(d) shows the stability function ψ(λ) for the electro-optic subnode dynamics

and coupling function, which has a bounded stable region. The lines are quite dense inside

the stable region, meaning that the stability landscape is steep there and the function

reaches very deep negative values. This is confirmed in Fig. 3.4(h), where the AISync

regions are shaded purple, with the MTLE of the synchronous state for the heterogeneous

system shown as red contour lines.
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3.6. Propensity for AISync

But how often does a network structure support AISync? To systematically address

this question, we use the spread σ of the eigenvalues of the Laplacian matrix L̃ for the

monolayer network representation, which is a measure of synchronizability [191] defined

by σ2 := ∑n
j=2 |λj − λ|2/[d2(n − 1)], where d := ∑n

j=1 L̃jj/n and λ := ∑n
j=2 λj/(n −

1). A smaller σ indicates higher synchronizability. Given an external sublink structure

corresponding to a symmetric network, we compare the minimum spread σ= among all

systems with homogeneous F (i) to the corresponding minimum σ 6= among all systems

with strictly heterogeneous F (i). We call the structure AISync-favoring if σ 6= < σ=, which

indicates that heterogeneous F (i) can make the system easier to synchronize than any

homogeneous F (i). As a measure of how strongly the structure supports AISync, we

define r := 1−σ 6=/σ= ≤ 1, where r > 0 indicates an AISync-favoring structure, and r = 1

implies σ6= = 0 (i.e., there is a heterogeneous system with optimal synchronizability). For

example, the structure in Fig. 3.3 has σ= ≈ 0.56 and σ 6= ≈ 0.33, and r ≈ 0.41.

Using this AISync strength r, we first enumerate all networks of a given size supporting

AISync (Table 3.1). For each N , we generate one or more diagrams representing all N -

node symmetric networks, which are shown in the first row of Table 3.1 for N = 3, 4, 5. In

these diagrams, each color indicates a set of links that, in any given symmetric network,

must all exist together and be of the same type or not exist at all (noting that links from

different sets can be of the same type). For example, there are three distinct symmetric

networks for N = 3: a directed ring (cyan or black links), an undirected ring (cyan and

black links of the same type), and the superposition of two directed rings in opposite

directions (cyan and black links of different types; as in Fig. 3.3). For a given symmetric
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N = 3 N = 4 N = 5

symmetric
networks

Q (optimal) 9 14 21
Q (r > 0.2) 11 81 254
Q (r > 0.05) 29 318 2154
B (r > 0.2) 11 101 204
B (r > 0.05) 31 400 2406

Table 3.1. Number of isomorphically distinct AISync-favoring networks,
listed for N = 3, 4, 5 nodes and L = 2 layers (with a = b = 1 to enable
counting). The numbers are given for both binary (B) and quaternary (Q)
choices of internal sublink configurations, as well as for different AISync
strength (as measured by r defined in the text). The network diagrams
encode all possible symmetric networks of a given size.

network derived from these diagrams, we choose the external sublink pattern for each

link type from all possible ways of connecting a subnode pair to another. For the internal

sublink patterns, we use either the binary or quaternary choices, where each node has

one directed sublink (in either direction) in the binary case, while all four possibilities

are allowed in the quaternary case. The rest of Table 3.1 lists the total numbers of

isomorphically distinct external sublink structures with r > 0.05, r > 0.2, and (optimal)

r = 1.

Table 3.2 extends the first row in Table 3.1, showing the symmetric network diagrams

for N = 6, 7, and 8. In each row, the leftmost diagram is the full representation as in Table

3.1, which is decomposed into multiple components (the partial diagrams in the same row)

to make them more clearly visible. The partial diagrams with the same background color

indicate identical components appearing in multiple rows. Thus, for N = 6, we have four

different diagrams (rows), each with a different combination of components. There is only
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Table 3.2. Diagrams of symmetric networks with N = 6, 7, and 8 nodes.

N = 6

=

=

=

=

+ +

+ +

+ +

+ +

N = 7 = + +

N = 8 =

and 11 others

+ + +
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4

N = 3 N = 4 N = 5

symmetric
networks

Q (optimal) 9 14 21

Q (r > 0.2) 11 81 254
Q (r > 0.05) 29 318 2154
B (r > 0.2) 11 101 204
B (r > 0.05) 31 400 2406

TABLE I. Number of isomorphically distinct AISync-favoring
networks with N = 3, 4, 5 nodes and L = 2 layers (with
a = b = 1 to enable counting). The numbers are given for
both binary (B) and quaternary (Q) choices of internal sub-
link configurations, as well as for di↵erent AISync strength
[as measured by r defined in the text]. The network diagrams
encode all possible symmetric networks of a given size. See
SM [26], Sec. S9 for details and network diagrams for larger N .

link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we
use either the binary or quaternary choices, where each
node has one directed sublink (in either direction) in the
binary case, while all four possibilities are allowed in the
quaternary case: no sublink, one directed sublink, and
both directed sublinks. The rest of Table I lists the to-
tal numbers of isomorphically distinct external sublink

structures eA with r > 0.05, r > 0.2, and (optimal) r = 1;
see SM [26], Sec. S9 for all optimal networks with N = 3
and 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link
type, circulant graph (which covers all symmetric net-
works if N is prime). Sampling uniformly within this
class (see SM [26], Sec. S10, for details [30]), we ob-
serve that significant fraction of external sublink struc-
tures are AISync-favoring over a range of sublink densi-
ties [Fig. 3(a)] and network sizes [Fig. 3(b)]. We also ob-
serve that sparse and dense structures favor AISync more
often than medium-density ones, despite the expectation
that the e↵ect of internal sublink heterogeneity would be
smaller with higher external sublink density.

Given a symmetric network of identical oscillators, it
is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry
is broken by making the network structure asymmetric.
For directed unweighted networks of di↵usively-coupled
identical oscillators, it can be shown that: 1) with the
exception of the complete graphs, all topologies that op-
timize synchronizability (i.e., those with � = 0) are asym-
metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state

(a)

(b)

FIG. 3. Statistics on the prevalence of AISync-favoring net-
works as functions of (a) external sublink density and (b)
network size N . Both panels show the fraction of systems
with AISync strength r > 0.05 among those with circulant-
graph network structures, where the external sublink density
is given by D/[L2(N � 1)], and D is the external sublink
in-degree. For further analysis of these results, see SM [26],
Sec. S11.

that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one of these clusters plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-

4

N = 3 N = 4 N = 5

symmetric
networks

Q (optimal) 9 14 21

Q (r > 0.2) 11 81 254
Q (r > 0.05) 29 318 2154
B (r > 0.2) 11 101 204
B (r > 0.05) 31 400 2406

TABLE I. Number of isomorphically distinct AISync-favoring
networks with N = 3, 4, 5 nodes and L = 2 layers (with
a = b = 1 to enable counting). The numbers are given for
both binary (B) and quaternary (Q) choices of internal sub-
link configurations, as well as for di↵erent AISync strength
[as measured by r defined in the text]. The network diagrams
encode all possible symmetric networks of a given size. See
SM [26], Sec. S9 for details and network diagrams for larger N .

link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we
use either the binary or quaternary choices, where each
node has one directed sublink (in either direction) in the
binary case, while all four possibilities are allowed in the
quaternary case: no sublink, one directed sublink, and
both directed sublinks. The rest of Table I lists the to-
tal numbers of isomorphically distinct external sublink

structures eA with r > 0.05, r > 0.2, and (optimal) r = 1;
see SM [26], Sec. S9 for all optimal networks with N = 3
and 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link
type, circulant graph (which covers all symmetric net-
works if N is prime). Sampling uniformly within this
class (see SM [26], Sec. S10, for details [30]), we ob-
serve that significant fraction of external sublink struc-
tures are AISync-favoring over a range of sublink densi-
ties [Fig. 3(a)] and network sizes [Fig. 3(b)]. We also ob-
serve that sparse and dense structures favor AISync more
often than medium-density ones, despite the expectation
that the e↵ect of internal sublink heterogeneity would be
smaller with higher external sublink density.

Given a symmetric network of identical oscillators, it
is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry
is broken by making the network structure asymmetric.
For directed unweighted networks of di↵usively-coupled
identical oscillators, it can be shown that: 1) with the
exception of the complete graphs, all topologies that op-
timize synchronizability (i.e., those with � = 0) are asym-
metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state

(a)

(b)

FIG. 3. Statistics on the prevalence of AISync-favoring net-
works as functions of (a) external sublink density and (b)
network size N . Both panels show the fraction of systems
with AISync strength r > 0.05 among those with circulant-
graph network structures, where the external sublink density
is given by D/[L2(N � 1)], and D is the external sublink
in-degree. For further analysis of these results, see SM [26],
Sec. S11.

that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one of these clusters plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-

Figure 3.5. Statistics on the prevalence of AISync-favoring networks.
Shown as functions of (a) external sublink density and (b) network size N .
Both panels show the fraction of systems with AISync strength r > 0.05
among those with circulant network structures, where the external sublink
density is given by D/[L2(N−1)], and D is the number of external sublinks
received by a node (which is the same for all nodes).

one diagram for N = 7, while we show one representative diagram out of twelve in the

case of N = 8.

Figure 3.5 shows the statistics of AISync-favoring networks. For numerical feasibility,

we focus on those systems whose network structure is a directed circulant graph with

multiple link types (which covers all symmetric networks if N is a prime number). Sam-

pling uniformly within this class (Appendix B.6), we observe that significant fraction of

external sublink structures are AISync-favoring over a range of external sublink densi-

ties [Fig. 3.5(a)] and network sizes [Fig. 3.5(b)]. We also observe that sparse and dense

structures favor AISync more often than medium-density ones, despite the expectation

that the effect of internal sublink heterogeneity would be smaller with higher external

sublink density. This phenomenon is further explored in Appendix B.7 by establishing

the approximate left-right symmetry in Fig. 3.5(a).
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3.7. Concluding remarks

Given a symmetric network of identical oscillators, it is instructive to compare our

results above in which the symmetry is broken by making the oscillators nonidentical

with the alternative scenario in which the symmetry is broken by making the network

structure asymmetric. For directed unweighted networks of diffusively-coupled identi-

cal oscillators, it can be shown that: 1) with the exception of the complete graphs, all

topologies that optimize synchronizability (i.e., those with σ = 0) are asymmetric; 2)

any network topology that can be spanned from a node (i.e., mini≥2 Re(λi) > 0) embeds

optimally synchronizable subnetworks generated by deleting a subset of links [190, 191].

For example, a synchronous state that is not stable for a directed ring network may be-

come stable for a directed chain formed by removing a link. More generally, introducing

structural heterogeneity (breaking the symmetry of the network) can stabilize otherwise

unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of AISync considered here—that pre-

serving the symmetry of a stable state requires breaking the symmetry of the system—can

bear analogs in oscillator networks whose structure is not necessarily symmetric. Such a

network can always be partitioned into symmetric subnetwork clusters (structurally equiv-

alent subsets of nodes) that are candidates for cluster synchronization [96, 219, 187].

Synchronization of one of these clusters plays the role of complete synchronization in a

symmetric network, which opens the possibility of exploiting AISync to tune cluster syn-

chronization patterns through oscillator heterogeneity in arbitrary complex networks. We
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hope that our findings, and future theoretical and experimental studies they will stim-

ulate, will significantly advance understanding of the interplay between symmetry and

network dynamics.
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CHAPTER 4

Identical Synchronization of Nonidentical Oscillators

An outstanding problem in the study of networks of heterogeneous dynamical units

concerns the development of rigorous methods to probe the stability of synchronous states

when the differences between the units are not small. Here, we address this problem by

presenting a generalization of the master stability formalism that can be applied to het-

erogeneous oscillators with large mismatches. Our approach is based on the simultaneous

block diagonalization of the matrix terms in the variational equation, and it leads to di-

mension reduction that simplifies the original equation significantly. This new formalism

allows the systematic investigation of scenarios in which the oscillators need to be noniden-

tical in order to reach an identical state, where all oscillators are completely synchronized.

In the case of networks of identically coupled oscillators, this corresponds to breaking the

symmetry of the system as a means to preserve the symmetry of the dynamical state—

a recently discovered effect termed asymmetry-induced synchronization (AISync). Our

framework enables us to identify communication delay as a new and potentially common

mechanism giving rise to AISync, which we demonstrate using networks of delay-coupled

Stuart-Landau oscillators. The results also have potential implications for control, as they

reveal oscillator heterogeneity as an attribute that may be manipulated to enhance the

stability of synchronous states.

This chapter is based on the joint work with Adilson E. Motter. The presentation

closely follows Ref. [313].
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4.1. Background

The study of synchronization phenomena in networks of coupled dynamical systems

has traditionally focused on either the partial synchronization of nonidentical oscillators,

such as in the Kuramoto model [131], or the complete synchronization of identical ones, as

in the Pecora-Carroll model [216, 217]. The first concerns primarily studies in the limit

of large population sizes and uses approaches that stem from statistical physics, while

the second emphasizes the study of finite-size systems using dynamical systems methods

to characterize the stability of synchronous states [2]. Until recently, little attention was

given to the possibility of complete synchronization of nonidentical oscillators. This was

the case because, on the one hand, there has been a lack of rigorous dynamical systems

approaches that can be used to study complete synchronization in networks of nonidenti-

cal oscillators; on the other hand, it was not appreciated that complete synchronization

could occur for nonidentical oscillators, let alone that it would lead to interesting new

effects. The latter has changed with the recent discovery of so-called asymmetry-induced

synchronization (AISync) [192, 317], where complete synchronization becomes stable

in networks of nonidentical oscillators because of (not despite) the differences between

the oscillators. This was demonstrated for networks of identically coupled oscillators,

meaning that the symmetry of the system had to be broken to preserve the symmetry of

the stable solution—a property that corresponds to the converse of symmetry breaking

(hence of chimera states [210]) and after which the effect is named.

Motivated by that discovery, in this chapter we first present a rigorous framework

to analyze complete synchronization in the most general class of coupled nonidentical
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oscillators that permits complete synchronization, and then apply this formalism to char-

acterize a new mechanism through which AISync can occur. This class includes networks

of nonidentical oscillators with arbitrary differences, provided that they admit at least one

common orbit when coupled. Our framework consists of a generalization of the master

stability function (MSF) formalism [217], which can be applied to this class of noniden-

tical oscillators and several forms of coupling. The new mechanism for AISync identified

here is mediated by delay-coupling and is demonstrated for networks of Stuart-Landau

oscillators.

Complete (or identical) synchronization refers to the scenario in which all oscillators

converge to the same dynamical state (with respect to all of their variables). In a network

of N oscillators, where the d-dimensional state of the i-th oscillator is denoted xi, complete

synchronization corresponds to

(4.1) x1(t) = x2(t) = · · · = xN(t) ≡ s(t)

for all t, where s(t) denotes the synchronous state4. This should be contrasted with cases

in which a condition of the form (4.1) is satisfied for only some of the variables or a

function of the variables, as in the cases of identical-frequency (but not identical-phase)

synchronization in power-grid networks [175, 73, 236] and output-function synchroniza-

tion in output consensus dynamics [255, 147].

It is instructive to first recall the previous main mechanisms through which AISync

has been demonstrated:

4For notational simplicity, throughout the text (but not in equations) the synchronization orbit of indi-
vidual oscillators s(t) will also be used to denote the synchronization orbit of the full network, as a short
for the N × d-dimensional vector (s(t), · · · , s(t))
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• Amplitude-dependent coupling in networks of phase-amplitude oscillators [192],

where suitable heterogeneity in the amplitude term stabilizes the otherwise un-

stable state of complete synchronization.

• Subnode coupling in multilayer networks [317], where heterogeneity is required

in the internal couplings between different variables of the oscillators in order to

stabilize complete synchronization.

In the mechanism considered here, on the other hand, the oscillator heterogeneity is in the

angular term of delay-coupled Stuart-Landau oscillators. This heterogeneity stabilizes the

complete synchronization state that would otherwise become unstable in the presence of

coupling delay. While we exemplify our results on a selection of representative networks,

the oscillator model we consider can be tested for AISync (using our formalism) in any

network of identically coupled nodes, which includes the rich class of vertex-transitive

graphs. We also demonstrate the analog of AISync in a broader class of networks by

showing that oscillator heterogeneity can stabilize synchronization when the oscillators

are not necessarily identically coupled. For the oscillators that we explicitly consider,

the latter includes arbitrary regular graphs.

The generalization of the MSF formalism presented in this work applies to oscillators

that are not necessarily similar to each other. This should be contrasted with previous

generalizations of the MSF formalism to systems with small parameter mismatches in the

oscillators [276, 4] and systems with small mismatches in the oscillators and coupling

functions [266], where the focus is on approximate (rather than complete) synchroniza-

tion. Other approaches, such as the dichotomy technique used in Ref. [220], are also

designed for approximate synchronization of nearly identical oscillators. Here, while we
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Table 4.1. Necessary and sufficient conditions for the existence of a complete
synchronization state s(t). Here, Fi is the intrinsic dynamics of the i-th
oscillator, H is the interaction function, µi is the indegree of the i-th node
(denoted by µ when equal for all nodes), σ is the coupling strength, and τ
is the communication delay. In each case, the conditions are to be satisfied
for all t.

Coupling type Networks with arbitrary indegrees Networks with common indegrees
Laplacian-matrix

coupling
(Sec. 4.2.1)

Fi(s(t)) independent of i
ṡ(t)=Fi(s(t))

Fi(s(t)) independent of i
ṡ(t)=Fi(s(t))

Adjacency-matrix
coupling

(Sec. 4.2.2)

Fi(s(t)) + σµiH(s(t)) independent of i
ṡ(t)=Fi(s(t)) + σµiH(s(t))

Fi(s(t)) independent of i
ṡ(t)=Fi(s(t)) + σµH(s(t))

Delay coupling
(Sec. 4.2.3)

Fi(s(t)) +σµi [H(s(t−τ))−H(s(t))] independent of i
ṡ(t)=Fi(s(t)) + σµi [H(s(t−τ))−H(s(t))]

Fi(s(t)) independent of i
ṡ(t)=Fi(s(t)) + σµ [H(s(t−τ))−H(s(t))]

consider oscillators that can differ by more than a small mismatch, our focus is on the

case of complete synchronization. A notable exception in the existing literature to also

have considered complete synchronization in a non-perturbative parameter regime comes

from the control community [318], where it has been shown that sufficient conditions for

the global stability of a state of complete synchronization among nonidentical oscillators

can be given based on a Lyapunov function approach. Those conditions are expressed

through equations with the dimension of the individual oscillators, but their verification

requires finding time-varying matrices that satisfy matrix inequalities for all t; moreover,

like other Lyapunov function methods, such an approach has limitations when applied to

multi-stable systems. The approach we present, on the other hand, gives verifiable neces-

sary and sufficient conditions for the linear stability of states of complete synchronization

in networks with any number of stable states or attractors (including chaotic ones).
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The chapter is organized as follows. In Sec. 4.2, we first develop our framework for non-

identical oscillators in the context of Laplacian-matrix (diffusive) coupling (Sec. 4.2.1). We

then discuss the conditions under which the framework also applies to two classes of non-

diffusively coupled systems, namely networks with adjacency-matrix coupling (Sec. 4.2.2)

and networks with delay coupling (Sec. 4.2.3). Table 4.1 summarizes the conditions for

nonidentical oscillators to admit complete synchronization for each of the three types of

couplings we consider. In Sec. 4.3, we elaborate on the theoretical background and algo-

rithmic implementation of our approach, which is based on the irreducible decomposition

of an algebraic structure known as matrix ∗-algebra. In Sec. 4.4, we present our applica-

tion of the formalism to establish networks of delay-coupled Stuart-Landau oscillators

as a new class of systems that exhibit AISync. To that end, following a brief discus-

sion of the delay-coupled dynamics (Sec. 4.4.1), we show that oscillator heterogeneity

can stabilize an otherwise unstable state of complete synchronization on representative

networks (Sec. 4.4.2). We also demonstrate the analogs of AISync for networks in which

the oscillators are not identically coupled (Sec. 4.4.3) and for networks with unrestricted

oscillator parameters (Sec. 4.4.4). We show that delay is a key ingredient leading to this

effect in the class of systems we consider, which suggests that AISync may be common

in physical systems, where delay is often significant. Concluding remarks are presented

in Sec. 4.5.
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4.2. Generalized master stability analysis for nonidentical oscillators

The MSF formalism was originally introduced to study the stability of states of com-

plete synchronization in networks of diffusively coupled identical oscillators [217]. Ap-

plied to the linearized dynamics around the synchronization manifold, it effectively re-

duces the dimension of the variational equation from the dimension N × d of the full

system to the dimension d of the local dynamics. This is achieved by simultaneously

diagonalizing the Laplacian matrix and the identity matrix, which can always be done

when the Laplacian matrix is diagonalizable, as in the case of undirected networks. The

approach has also been adapted to directed networks in which the Laplacian matrix is

not diagonalizable by replacing the diagonalization with a transformation into a Jordan

canonical form [189].

The main difficulty in extending this powerful formalism to the case of nonidentical

oscillators is that the identity matrix is then replaced by a set of more complicated matrices

that, in general, cannot be simultaneously diagonalized with the coupling matrix. We

address this problem by instead finding the finest simultaneous block diagonalization

of this set of matrices and the coupling matrix, corresponding to the largest possible

dimension reduction from the original system that can be achieved by an orthogonal

transformation matrix. Our approach is partially inspired by the framework of irreducible

representation previously used to study cluster synchronization in networks of identical

oscillators [219], which leads to dimension reduction in that context. As shown below, our

extension of the MSF formalism has the advantage of being applicable to both diffusive

and non-diffusive coupling forms, and independently of whether the coupling matrix is

diagonalizable or not, provided the conditions for complete synchronization are satisfied.
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4.2.1. Networks with diffusive coupling

We consider a network of N nonidentical dynamical units coupled diffusively as

(4.2) ẋi = Fi(xi)− σ
N∑
j=1

Li,jH(xj),

where xi is the d-dimensional state vector, Fi : Rd → Rd is the vector field governing the

uncoupled dynamics of the i-th oscillator, L the graph Laplacian encoding the (possibly

weighted and directed) network structure, H is the interaction function, and σ is the

coupling strength. The Laplacian matrix L is defined as Li,j = δi,jµi − Ai,j, where δi,j is

the Kronecker delta, Ai,j is the entry of the adjacency matrix representing the connection

from node j to node i, and µi = ∑
j Ai,j is the (weighted) indegree of node i. The vector

field functions Fi are chosen from a set of M nonidentical functions {F (β)}. In a state of

complete synchronization, the condition in equation (4.1) holds for some orbit s(t), which,

together with equation (4.2), implies that ṡ(t) = Fi(s(t)) for all i and thus that F1(s(t)) =

F2(s(t)) = · · · = FN(s(t)). Therefore, the necessary and sufficient condition for complete

synchronization of diffusively coupled nonidentical oscillators is that all oscillators coincide

on some common orbit s(t) that is a solution of each uncoupled oscillator (which in this

case is equivalent to being a common orbit of the coupled oscillators). Assuming this

condition is satisfied, the question we address next is how to establish an easily verifiable

condition for the stability of such complete synchronization states.

The equation governing the evolution of a perturbation from the state of complete

synchronization can be obtained by linearizing equation (4.2):
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(4.3) δẊ =
 M∑
β=1
D(β) ⊗ JF (β)(s)− σL⊗ JH(s)

 δX,

where δX = (δxᵀ1, · · · , δxᵀN)ᵀ = ((x1 − s)ᵀ, · · · , (xN − s)ᵀ)ᵀ is the perturbation vector,

⊗ denotes the Kronecker product, J is the Jacobian operator, and ᵀ indicates matrix

transpose. Denoting by Nβ the set of nodes equipped with the β-th vector field function

F (β), the D(β) are N ×N diagonal matrices given by

(4.4) D
(β)
i,i =


1, if i ∈ Nβ,

0, otherwise.

Note that ∑M
β=1D

(β) = 1N , where 1N denotes the identity matrix. It is generally impos-

sible to find a basis of eigenvectors that would simultaneously diagonalize the matrices

{D(β)} and L. Thus, to generalize the MSF formalism to the case of nonidentical oscil-

lators starting from equation (4.3), we must abandon the hope of completely decoupling

the perturbation modes in general. Indeed, the class of systems is too broad to allow a

simple reduced form as in the original MSF formalism (this is the case also for previous

generalizations applied to the problems of cluster synchronization [219] and nonidentical

interaction functions [67]). Informally, because a transformation that simplifies some

of these matrices would generally complicate others, the key is to find the best balance

between the competing goals of simplifying different matrices.

We now establish a formalism able to exploit partial decoupling among the perturba-

tion modes in equation (4.3). This is achieved through a transformation of equation (4.3)

by a matrix P that implements the finest simultaneous block diagonalization (SBD)
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of all D(β) and L (the notion of finest is defined rigorously below). This transforma-

tion will be referred to as the SBD transformation, and the corresponding coordinates

as the SBD coordinates. The transformation matrix P can be defined as an orthogo-

nal matrix ( generally not unique) that decomposes the matrix ∗-algebra generated by

{D(1),D(2), · · · ,D(M),L} into the direct sum of (possibly multiple copies of) lower di-

mensional irreducible matrix ∗-algebras. For clarity, we defer to Sec. 4.3 the discussion

on the construction of matrix P and proceed for the moment assuming that this matrix

has been calculated.

The transformation matrix P applied to equation (4.3) leads to

(4.5) η̇ =
 M∑
β=1
D̃(β) ⊗ JF (β)(s)− σL̃⊗ JH(s)

η,
where η = (P ᵀ ⊗ 1d) δX is the perturbation vector expressed in the SBD coordinates.

Here, the set of matrices {D̃(β)} = {P ᵀD(β)P } and L̃ = P ᵀLP are block diagonal

matrices with the same block structure. It is instructive to notice that the effect of the

nonidentical Jacobians {JF (β)(s)} on the variational equation (4.5) is analogous to that

of the Jacobians {JF (sm)} associated with different synchronization states sm of different

clusters in the cluster synchronization systems studied in Ref. [265]. A key difference is

that the assignment of {JF (sm)} in cluster synchronization is linked to L by symmetries

of the network, whereas here {JF (β)(s)} can be assigned arbitrarily (through the choice

of the matrices {D(β)}). This implies a more flexible relation among the matrices in

equation (4.5), whose SBD transformation is in general not an irreducible representation

transformation.
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It is also instructive to notice that the original MSF formalism is recovered when

M = 1 and the network is undirected (i.e., the Laplacian matrix is symmetric). In this

case D(1) = D̃(1) = 1N , matrix P can be constructed from the eigenvectors of L, and L̃

is a diagonal matrix with the eigenvalues vi of L as diagonal elements. Letting F = F (1),

equation (4.5) reduces to N decoupled equations,

(4.6) η̇i = (JF (s)− σviJH(s))ηi,

from which the MSF can be calculated as the maximal Lyapunov exponent (MLE) for

different values of v = σvi.

Numerical algorithms are available for the calculation of P given a set of matrices.

Here, we adopt the method introduced in Ref. [151], which we discuss in some detail in

Sec. 4.3. As an example, we simultaneously block diagonalize three 16 × 16 matrices:

L, D(1), and D(2). Matrix L is the Laplacian of an undirected 16-node wheel network

(figure 4.1(a)), which is a ring network with additional connections between opposite

nodes; matrices D(1) and D(2) encode alternating arrangements of two kinds of oscillators

(figure 4.1(b)-(c)). The matrices are simultaneously transformed into seven 2× 2 blocks

and two 1 × 1 blocks (figure 4.1(d)-(f)). Thus, the original equation of 16d dimensions

can be reduced to seven equations of dimension 2d and two equations of dimension d,

which significantly simplifies the stability analysis.

Equation (4.5) is partially decoupled according to the block structure of {D̃(β)} and

L̃. Therefore, we can calculate the Lyapunov exponents of the equations corresponding

to each block separately. The block structure does not depend on the synchronization

state s(t), but equation (4.5) itself does, and so do the associated Lyapunov exponents.
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Figure 4.1. (a) Matrix L, (b) matrixD(1), and (c) matrixD(2) representing
an undirected wheel network with an alternating arrangement of two kinds
of oscillators. (d-f) The corresponding matrices after the SBD transforma-
tion, showing that all transformed matrices share the same block structure.
The grayscale indicates the absolute value of each element in the matrices.

One of the Lyapunov exponents corresponds to perturbations along the synchronization

orbit s(t), and is zero whether this orbit is periodic or chaotic. The primary question

of interest concerns the stability of the synchronization state s(t), which is determined

by the maximal transverse Lyapunov exponent (MTLE). The MTLE always excludes the

(null) Lyapunov exponent along s(t). However, in contrast with the case of identical

oscillators, more general perturbations of the form δX = (δxᵀ, · · · , δxᵀ)ᵀ usually do not

preserve synchronization and cannot be excluded upfront in the stability analysis in the

case of non-identical oscillators. This is because the condition F1(s(t) + δx1(t)) = · · · =

FN(s(t) + δxN(t)) is generally not satisfied for all t even when δx1(0) = · · · = δxN(0).
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Our approach takes this into account automatically since, unlike the MSF formalism,

it does not discard the contribution from such perturbation modes in the calculation of

the MTLE (instead it only excludes Lyapunov exponents associated with perturbations

satisfying δx1(t) = · · · = δxN(t) for all t).

Systems in which the synchronization orbit s(t) is not unique may synchronize even

when the individual orbits are unstable. This is the case when the distinct oscillators in

the system share common dynamics in a neighborhood of a chaotic attractor, and thus

share all the (uncountably many) orbits of the attractor as synchronization orbits. Due

to chaos, those orbits are necessarily unstable, but parallel perturbations of the form

δX = (δxᵀ, · · · , δxᵀ)ᵀ may merely change synchronization trajectory without destroying

long-term synchronization. An example in which a full synchronization manifold x1 =

· · · = xN is invariant for nonidentical oscillators is given in Sec. 4.2.2.

Finally, we note that our approach also applies to systems with nonidentical interac-

tion functions by simultaneously block diagonalizing the set of Laplacian matrices that

represent different types of interactions. In particular, by finding the finest simultane-

ous block diagonalization of the set of all matrices in the ∗-algebra associated with the

variational equation, our method can provide a more significant dimension reduction

than the coordinates proposed in Ref. [67] in the study of networks with multiple inter-

action layers, where partial diagonalization was implemented by choosing as a basis the

eigenvectors of one of the Laplacian matrices from the set. For identical oscillators, the

utility of the SBD transformation in this context has been demonstrated in a separate

study [118]. Our formulation, however, applies to systems in which both the interactions

and the oscillators are allowed to be nonidentical (provided they satisfy the conditions for



69

complete synchronization). Another advantage of the approach is that, because it does

not require the graph Laplacians to be diagonalizable, its use extends to systems with

directed couplings in general.

4.2.2. Networks with adjacency-matrix coupling

The method developed in Sec. 4.2.1 also applies to oscillator networks with adjacency-

matrix coupling:

(4.7) ẋi = Fi(xi) + σ
N∑
j=1

Ai,jH(xj),

whereA represents the adjacency matrix of the network and the other symbols are defined

as in equation (4.2). This form of coupling has been considered for the case of identical

oscillators (i.e., identical Fi for all i) in the study of cluster (hence partial) synchronization

[219]. In order to consider complete synchronization for nonidentical Fi, we first note

that the necessary and sufficient condition for the existence of a synchronous state s(t)

as defined by equation (4.1) is that Fi(s(t)) + σµiH(s(t)) = ṡ(t) holds for all i, where

we recall that µi denotes the indegree of node i.

Following the same procedure used for diffusive coupling, we obtain an equation anal-

ogous to equation (4.5),

(4.8) η̇ =
 M∑
β=1
D̃(β) ⊗ JF (β)(s) + σÃ⊗ JH(s)

η,
where Ã = P ᵀAP is the adjacency matrix A after the orthogonal transformation P . As

in the case of diffusive coupling, this transformation reduces the dimension of the problem

by partially decoupling the perturbation modes in the original equation. The stability
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of the synchronization orbit s(t) is now determined by considering the MTLE associated

with equation (4.8), which always excludes the (null) Lyapunov exponent associated with

the perturbation mode along this orbit (and it often excludes only this exponent, but see

an exception below).

As an example, consider N nonidentical Rössler oscillators coupled through an undi-

rected chain network. The equation for an isolated Rössler oscillator ẋi = Fi(xi) is given

by

(4.9)



ẋi1 = −xi2 − xi3,

ẋi2 = xi1 + aixi2,

ẋi3 = bi + (xi1 − ci)xi3,

and the coupling function is taken to be H(xj) = (0, xj2, 0)ᵀ. For the two end nodes,

i = 1 and N , we set the oscillator parameters to be (ai, bi, ci) = (0.1, 0.2, 9); for all the

other nodes, 1 < i < N , the parameters are (ai, bi, ci) = (0, 0.2, 9). Since µi = 1 for i = 1

and N , and µi = 2 for all other i, there exist common orbits s = (s1, s2, s3) such that

Fi(s(t)) + σµiH(s(t)) do not depend on i and are equal to
(
− s2 − s3, s1 + 0.2s2, 0.2 +

(s1−9)s3
)ᵀ

for the coupling strength σ = 0.1. In this case, the synchronization manifold

is invariant and s(t) is any orbit in the chaotic attractor of an isolated Rössler oscillator

for parameters (a, b, c) = (0.2, 0.2, 9); thus, perturbations parallel to the synchronization

manifold do not lead to desynchronization. (An undirected ring network of identical

Rössler oscillators with parameters (ai, bi, ci) = (0, 0.2, 9) also admits the same s(t) as

complete synchronization states for the same H and σ, although the stability can be
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different in general.) For the chain of heterogeneous Rössler oscillators, we have

(4.10) JFi =


0 −1 −1

1 ai 0

xi3 0 xi1 − ci

 and JH =


0 0 0

0 1 0

0 0 0

 .

For N = 4 oscillators, equation (4.8) then leads to the following (non-unique) set of

matrices with the same block structure:

(4.11) Ã =



0.60 0.24 0 0

0.24 −1.60 0 0

0 0 1.60 0.22

0 0 0.22 −0.60


, D̃(1) =



0.81 −0.39 0 0

−0.39 0.19 0 0

0 0 0.19 0.40

0 0 0.40 0.81


, D̃(2) =



0.19 0.39 0 0

0.39 0.81 0 0

0 0 0.81 −0.40

0 0 −0.40 0.19


,

where we have two matrices D̃(β) because this example has two types of oscillators.

A scenario of special interest in our application to AISync below is the one in which

all oscillators are identically coupled, which implies that

(4.12) µ1 = µ2 = · · · = µN ≡ µ,

for some common indegree µ. In this case, as in the case of diffusive coupling, the condition

for the synchronous state to exist is thus that all Fi coincide on some orbit s(t). However,

in contrast with the case of diffusive coupling, in the case of adjacency-matrix coupling

this orbit is generally not a solution of the uncoupled oscillator dynamics, but rather of

ṡ(t) = Fi(s(t)) + σµH(s(t)).
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4.2.3. Networks with delay coupling

An important generalization of equation (4.2) is oscillator networks with delay coupling

of the form

(4.13) ẋi(t) = Fi(xi(t)) + σ
N∑
j=1

Ai,j [H(xj(t− τ))−H(xi(t))] ,

where τ is the time delay. Other forms of delay coupling are possible, including those

that do not consider the self-feedback term H(xi(t)) [80, 116] and those that incorporate

processing delay alongside the propagation delay τ [307, 324]. Our framework applies

to those scenarios as well, and here we focus on the coupling form in equation (4.13) for

concreteness. We first note that, although for τ = 0 this system reduces to the form of

equation (4.2), for τ > 0 the coupling is no longer diffusive in the sense that the coupling

term does not necessarily vanish in a state of complete synchronization. In this case,

the necessary and sufficient condition for the existence of a synchronous state s(t) is

that Fi(s(t)) + σµi [H(s(t− τ))−H(s(t))] = ṡ(t) holds for all i. Like in the case of

adjacency-matrix coupling, this reduces to all Fi being equal along the orbit s(t) when the

condition in equation (4.12) is satisfied, which is the case if the oscillators are identically

coupled.

We can now extend the formalism established in Sec. 4.2.1 to also include the delay-

coupled system (4.13). As a sufficient condition for this extension, we will assume that the

matrices JF (β)(s) and JH(s) do not depend on time. Like in the other cases considered

above, the oscillators can in principle be arbitrarily different from each other as long as

they coincide on the synchronization orbit s(t), which is generally not a solution of
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the isolated node dynamics. No assumption need to be made about the structure of the

network.

Using µ to denote the diagonal matrix with µi in the i-th diagonal entry, the analog

of equation (4.3) can be written as

(4.14) δẊ(t) =
 M∑
β=1
D(β) ⊗ JF (β) − σµ⊗ JH

 δX(t) + σ (A⊗ JH) δX(t− τ).

The SBD transformation can then be applied to {D(β)}, µ, and A, to obtain

(4.15) η̇(t) =
 M∑
β=1
D̃(β) ⊗ JF (β) − σµ̃⊗ JH

η(t) + σ
(
Ã⊗ JH

)
η(t− τ),

where µ̃ is the matrix µ after the transformation. If we now invoke the assumption that

{JF (β)} and JH are constant matrices on the orbit s(t), it follows that the effect of

the time delay τ in η(t− τ) can be represented by the factor e−Λτ [60], resulting in the

following transcendental characteristic equation for the exponent Λ:

(4.16) det


M∑
β=1
D̃(β) ⊗ JF (β) + σ(e−ΛτÃ− µ̃)⊗ JH − Λ1dN

 = 0.

Equation (4.16) can be factorized according to the common block structure of {D(β)}, µ,

and A. The Lyapunov exponents are then obtained as Re(Λ), where Λ can be calculated

efficiently for each block using already available root-finding algorithms. The largest

Lyapunov exponent calculated from the decoupled blocks corresponds to the MLE of the

original full system. The stability of a synchronization orbit s(t) is determined by the

MTLE associated with equation (4.15), which, as in the previous cases, is determined
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by excluding the Lyapunov exponents associated with perturbations satisfying δx1(t) =

· · · = δxN(t) for all t.

As an example, we note that the block diagonalized structure in figure 4.1 also applies

to equation (4.16) if we choose A to be the adjacency matrix of the same wheel network

and the same arrangement of oscillators as represented by D(1) and D(2). Since µ = µ̃ =

µ1N in this case, the only difference between the sets of matrices to be block diagonalized

in these two examples is that matrix L is now replaced by matrix A. More generally,

we can show that when the corresponding adjacency matrix A is in the matrix ∗-algebra

generated by the Laplacian matrix L and {D(β)}, the SBD transformation of A and

{D(β)} always yields the same block structure as the one from L and {D(β)}. This

includes the case of identically coupled oscillators, where A = −L+ µ1N .

4.3. Finding the finest simultaneous block diagonalization

Having established in Sec. 4.2 the usefulness of the SBD transformation in address-

ing the synchronization of nonidentical oscillators, we now consider this transformation

rigorously. Moreover, we put on firm ground the notion of finest simultaneous block diag-

onalization and also discuss an algorithm for the calculation of the transformation matrix

P .

To define the SBD transformation we must first introduce the matrix ∗-algebra [178],

which is an object of study in non-commutative algebra. Denoting byMN the set of N×N

real matrices, a subset T of MN is a matrix ∗-algebra over R if

(4.17) B, C ∈ T ; α, β ∈ R =⇒ αB + βC, BC, Bᵀ ∈ T ,
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and 1N ∈ T . This structure is convenient because it is closed under the involution

operation defined by the matrix transpose (thus the ∗). We say a subspace W of RN is

T -invariant if BW ⊆W for every B ∈ T . A matrix ∗-algebra T is said to be irreducible

if {0} and RN are the only T -invariant subspaces.

A matrix ∗-algebra T can always be decomposed, through an orthogonal matrix P ,

into the direct sum of lower dimensional matrix ∗-algebras that can be further decomposed

into irreducible matrix ∗-algebras Tj:

(4.18) P ᵀT P =
⊕̀
j=1

(
1mj
⊗ Tj

)
= diag{1m1 ⊗ T1, · · · ,1m`

⊗ T`}.

Here ⊕ denotes direct sum, ` is the number of irreducible matrix ∗-algebras in the de-

composition, mj is the multiplicity of Tj, and thus ` and/or mj are strictly larger than

one unless T is already irreducible. The existence of such orthogonal matrix P follows

from Artin-Wedderburn type structure theorems (Theorems 3.1 and 6.1 in Ref. [178]).

This decomposition implies that, with a single orthogonal matrix P , all matrices in T can

be transformed simultaneously to a block diagonal form determined by equation (4.18).

The orthogonal matrix P in this equation is not unique, but the irreducible ∗-algebras

Tj are uniquely determined by T (up to isomorphism). That is, each diagonal block of

the matrices after an SBD transformation is uniquely determined up to an orthogonal

transformation.

Now we are in a position to define precisely what we mean by the finest simultane-

ous block diagonalization of a given set of matrices. An orthogonal matrix P is said

to give the finest simultaneous block diagonalization of a set of N × N real matrices

B = {B1, · · · ,Bn}, if it leads to the irreducible decomposition of the matrix ∗-algebra
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generated by {1N ,B1, · · · ,Bn}. It follows that the dimension of each diagonal block is

finest also in the sense that it cannot be further reduced without violating the condition

of it being a simultaneous block diagonalization for all matrices in the ∗-algebra, even if

we allow non-orthogonal similarity transformation matrices.

If we allow non-orthogonal transformation matrices, then there can be a stronger def-

inition of finest simultaneous block diagonalization in the sense that, after the transfor-

mation, the i-th common blocks of all matrices in B only share trivial invariant subspaces

for all i. However, in the important case in which all matrices in B are symmetric, such

as the synchronization models of Sec. 4.2 when considered on undirected networks, this

stronger definition is equivalent to the one above based on the irreducible decomposition

of the matrix ∗-algebra. Thus, for symmetric matrices, the orthogonal matrix P in equa-

tion (4.18) always gives the finest simultaneous block diagonalization of B according to

both definitions. Henceforth we shall refer to the finest simultaneous block diagonalization

exclusively in the sense of matrix ∗-algebra.

We can now turn to the numerical calculation of the transformation matrix P . Algo-

rithms for the determination of P given a set of matrices have been developed in previous

studies motivated by their applications in semidefinite programming and independent

component analysis. While to the best of our knowledge their potential for synchro-

nization problems remains underexplored, we can in fact benefit quite directly from such

algorithms in connection with the SBD transformations we consider. In this work we

adopt an implementation of the method introduced in Ref. [151], which considers the

commutant algebra of the matrix ∗-algebra generated by {1N ,B1, · · · ,Bn}, defined as
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the set of matrices that commute with all matrices of that ∗-algebra; this approach pro-

vides a simpler algorithm than those working directly with the original matrix ∗-algebra

[178, 150]. The algorithm finds P through numerical linear-algebraic computations (i.e.,

eigenvalue/eigenvector calculations) and does not require any algebraic structure to be

known in advance. Using the notation [Bk, X] = BkX −XBk, we can summarize the

algorithm into two steps as follows.

SBD Algorithm. (Algorithm 3.5 in Ref. [151])

• Calculate a symmetric N × N matrix X as a generic solution of [Bk, X] = 0,

k = 1, . . . , n.

• Calculate an orthogonal matrix P that diagonalizes matrix X.

Here, a generic solution means a matrix X with no accidental eigenvalue degeneracy

that is not enforced by {Bk}. While the second step is straightforward using standard

algorithms, the first step can be addressed by translating it into an eigenvector problem

that can then be solved efficiently using the Lanczos method.

The intuition behind this algorithm is that the common invariant subspaces among

{Bk} can be captured by X, and P automatically decomposes RN into the direct sum

of those invariant subspaces. Note that, even though X commutes with all Bk and P

diagonalizes X, the matrix P will generally not diagonalize the matrices Bk but rather

block diagonalize them—this is true even for symmetric matrices. Moreover, since we do

not limit ourselves to symmetric matrices, being simultaneously diagonalizable (or even

diagonalizable at all) is not implied by having a null commutator.
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4.4. AISync in delay-coupled oscillator networks

For the purpose of studying AISync, we require the network structure to be symmetric

(i.e., all oscillators to be identically coupled), so that any system asymmetry can be

attributed to oscillator heterogeneity. Formally, a (possibly directed and weighted)

network is said to be symmetric if all nodes belong to a single orbit under the action of

the network’s automorphism group, whose elements can be represented by permutation

matrices that re-order the nodes while leaving the adjacency matrix invariant. This is

a generalization of the (undirected and unweighted) vertex-transitive graphs considered

in algebraic graph theory, and makes precise the intuition that all nodes play the same

structural role by requiring the existence of symmetry operations that map one node to

any other node in the network.5

Network symmetry implies the condition in equation (4.12). Thus, for symmetric

networks, the condition for complete synchronization of nonidentical oscillators in the

cases of adjacency-matrix coupling (4.7) and delay coupling (4.13) is that the vector field

functions satisfy F1(s) = F2(s) = · · · = FN(s) (as in the case of diffusive coupling (4.2)),

where the synchronous state s = s(t) is now a common solution of the coupled dynamics

of all oscillators. Because the oscillators are nonidentical, these equalities generally do

not hold for state-space points outside the orbit s(t), which can impact the stability of

this orbit as a synchronous state solution.

Given {F (β)}, we say a system exhibits AISync if it satisfies the following two con-

ditions: 1) there are no stable states of complete synchronization for any homogeneous

system (i.e., any system for which F1(x) = F2(x) = · · · = FN(x) ∀x); 2) there is
5A network being symmetric should not be confused with a network having a symmetric coupling matrix,
which is neither sufficient nor necessary for the network to be symmetric.
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a heterogeneous system (i.e., a system such that Fi 6= Fj for some i 6= j) for which a

stable synchronous state exists. Using the formalism presented above, now we show that

AISync occurs in networks of delay-coupled Stuart-Landau oscillators. We also show

that the scenario in which stable synchronization requires oscillators to be nonidentical

extends naturally to non-symmetric networks.

4.4.1. Stuart-Landau oscillators sharing a common orbit

We start with N delay-coupled identical (supercritical) Stuart-Landau oscillators, whose

equation in complex variable notation reads

(4.19) żj(t) = f(zj(t)) + σ
N∑
k=1

Aj,k [zk(t− τ)− zj(t)] ,

where zj = rje
iψj ∈ C for τ and σ as in equation (4.13). The adjacency matrix A

represents the structure of a symmetric network and thus has a common row sum µ =∑
k Aj,k ∀j. Because the common row sum condition is equivalent to the condition in

equation (4.12) and is thus satisfied by any network with the same indegree for all nodes

j, our analysis also applies to arbitrary non-symmetric network structures that satisfy

this indegree condition (including all directed regular graphs), as illustrated below in

Sec. 4.4.3.

The local dynamics of each oscillator is given by the normal form of a supercritical

Hopf bifurcation [132]:

(4.20) f(zj) =
[
λ+ iω − (1 + iγ)|zj|2

]
zj,
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where λ, ω, and γ are real parameters. Intuitively, λ relates to the amplitude of the

oscillation, ω represents the base angular velocity, and γ controls the amplitude-dependent

angular velocity term.

Substituting the limit cycle ansatz zj = r0e
iΩt into equation (4.19) and assuming

r2
0 6= 0, we obtain the invariant solution

r2
0 = λ+ µσ(cos Φ− 1),(4.21a)

Ω = ω − γr2
0 + µσ sin Φ,(4.21b)

where we use the notation Φ = −Ωτ . This set of equations can be solved for Ω by

substituting the r2
0 in equation (4.21b) with the right hand side of equation (4.21a) and

solving numerically the resulting transcendental equation. After determining Ω, the value

of r2
0 can be immediately calculated from equation (4.21a). There can be multiple solutions

of Ω (thus also of r2
0) for certain combinations of parameters (including spurious solutions

with r2
0 < 0). Here, we focus on regions where a unique solution of positive r2

0 exists.

In addition, there is always a time-independent solution r0 = 0, corresponding to an

amplitude death state, which was excluded in our derivation of equation (4.21) but can

be identified directly from equations (4.19) and (4.20).

For identical Stuart-Landau oscillators, a variational equation for the limit cycle syn-

chronous state (zj = r0e
iΩt) is derived in Ref. [60] as

(4.22) ξ̇(t) = 1N ⊗ (J0 − µσR)ξ(t) + σ(A⊗R)ξ(t− τ),
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where J0 =
( −2r2

0 0
−2γr2

0 0

)
and R =

(
cos Φ − sin Φ
sin Φ cos Φ

)
. The 2N -dimensional perturbation vector is

defined as ξ = (ξᵀ1 , · · · , ξᵀN)ᵀ, where ξj = (δrj, δψj)ᵀ and (rj, ψj) =
(
r0(1+δrj),Ωt+δψj

)
.

Equation (4.22) is a special case of equation (4.14) obtained by setting M = 1, JF (1) = J0,

and JH = R. Because the oscillators are identical, one can apply the standard MSF

formalism to diagonalize A and obtain decoupled variational equations of the form

(4.23) η̇k(t) = J0ηk(t)− σR [µηk(t)− vkηk(t− τ)] ,

with ηk representing the perturbation vector associated with the eigenvalue vk of A after

diagonalization. In particular, v0 = µ corresponds to the perturbation mode (eigenvector)

along the synchronization manifold. Since J0 and R are constant matrices, the Lyapunov

exponents of the perturbation modes are obtained as Re(Λ), where the exponents Λ can

be determined from the characteristic equation

(4.24) det{J0 − Λ12 + (−σµ+ σvke
−Λτ )R} = 0.

As usual, the resulting MLE can be interpreted as the MSF and visualized on the complex

plane parametrized by the effective coupling parameter v = σvk.

For a given Stuart-Landau oscillator f(z;λ0, ω0, γ0) along with fixed parameters σµ

and τ , there exists an entire class of nonidentical Stuart-Landau oscillators SL(λ0, ω0, γ0)

characterized by a parameter h, consisting of oscillators of the form f(z;λ0, ω0 + h, γ0 +

h/r2
0) for all values of h ∈ R. All oscillators in this class share the common orbit s = r0e

iΩt

according to equation (4.21), and are thus potential candidates for AISync. Moreover,

γ = γ0 + h/r2
0 enters the variational equation (4.22) through J0, so in general one would
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As usual, the resulting MLE can be interpreted as the MSF and visualized on the

complex plane parametrized by the e↵ective coupling parameter v = �vk.
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Figure 2. MSF calculated from equation (24) for (a) h = 0 and (b) h = 0.8. The

red contours mark the boundary of linear stability (i.e., where the MLE changes sign).

The other parameters are �µ = 0.3, ⌧ = 1.8⇡, �0 = 0.1, !0 = 1, and �0 = 0, which are

the values used throughout the rest of the article, except when indicated otherwise.

For a given Stuart-Landau oscillator f(z;�0, !0, �0) along with fixed parameters

�µ and ⌧ , there exists an entire class of nonidentical Stuart-Landau oscillators

SL(�0, !0, �0) characterized by parameter h, consisting of the oscillators of the form

f(z;�0, !0 + h, �0 + h/r2
0) for all values of h 2 R. All oscillators in this class share the

common orbit s = r0e
i⌦t according to equation (21), and are thus potential candidates

for AISync. Moreover, � = �0 +h/r2
0 enters the variational equation (22) through J0, so

in general one would expect di↵erent stability of the synchronous solution for oscillators

in SL(�0, !0, �0) with di↵erent h if the delay ⌧ is nonzero (if ⌧ = 0, then R becomes

diagonal and the o↵ diagonal term �2�r2
0 in J0 will not contribute to the characteristic

equation). This dependence on h is illustrated in the example of figure 2. Note that the

amplitude death state, zj = 0 for all j, is also a solution common to all Stuart-Landau

oscillators in the general form (19), including all oscillators in SL(�0, !0, �0).

4.2. Demonstration of AISync in delay-coupled Stuart-Landau oscillators

We now apply the framework developed thus far to characterize the AISync

property in networks of identically coupled Stuart-Landau oscillators. As a concrete

example, we consider a directed ring network of N = 6 nodes populated with Stuart-

Landau oscillators of two kinds: F (1)(z) = f(z;�0, !0 + h, �0 + h/r2
0) and F (2)(z) =

f(z;�0, !0 � h, �0 � h/r2
0) in the notation of Sec. 2, for �0 = 0.1, !0 = 1, �0 = 0,

and h (which we convention to be positive from this point on) serving as a measure of

the heterogeneity among oscillators. The other parameters are set to be �µ = 0.3 and

⌧ = 1.8⇡. Both F (1) and F (2) belong to SL(0.1, 1, 0) and thus satisfy F (1)(s) = F (2)(s).

Each of the six nodes in the directed ring network can be chosen as F (1) or F (2), which

results in two possible homogeneous systems—F (1) in all nodes (referred to as +h) or

F (2) in all nodes (referred to as �h)—and 11 distinct heterogeneous systems.

Equation (16) with µ = µ1N can be applied to any of the 13 systems above. The

block structure of D̃(1), D̃(2) and Ã varies from system to system. For example, when

Figure 4.2. MSF calculated from equation (4.24) for (a) h = 0 and (b)
h = 0.8. The red contours mark the boundary of linear stability (i.e., where
the MLE changes sign). The other parameters are σµ = 0.3, τ = 1.8π,
λ0 = 0.1, ω0 = 1, and γ0 = 0, which are the values used throughout the rest
of the chapter, except when indicated otherwise.

expect different stability of the synchronous solution for oscillators in SL(λ0, ω0, γ0) with

different h if the delay τ is nonzero (if τ = 0, thenR becomes diagonal and the off diagonal

term −2γr2
0 in J0 will not contribute to the characteristic equation). This dependence on

h is illustrated in the example of figure 4.2. Note that the amplitude death state, zj = 0

for all j, is also a solution common to all oscillators in SL(λ0, ω0, γ0).

4.4.2. Demonstration of AISync in delay-coupled Stuart-Landau oscillators

We now apply the framework developed thus far to characterize the AISync property

in networks of identically coupled Stuart-Landau oscillators. As a concrete example, we

consider a directed ring network of N = 6 nodes populated with Stuart-Landau oscillators

of two kinds: F (1)(z) = f(z;λ0, ω0 +h, γ0 +h/r2
0) and F (2)(z) = f(z;λ0, ω0−h, γ0−h/r2

0)

in the notation of Sec. 4.2, for λ0 = 0.1, ω0 = 1, γ0 = 0, and h (which we convention to be

positive from this point on) serving as a measure of the heterogeneity among oscillators.

The other parameters are set to be σµ = 0.3 and τ = 1.8π. Both F (1) and F (2) belong
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to SL(0.1, 1, 0) and thus satisfy F (1)(s) = F (2)(s). Each of the six nodes in the directed

ring network can be chosen as F (1) or F (2), which results in two possible homogeneous

systems—F (1) in all nodes (referred to as +h) or F (2) in all nodes (referred to as −h)—and

11 distinct heterogeneous systems.

Equation (4.16) with µ = µ1N can be applied to any of the 13 systems above. The

block structure of D̃(1), D̃(2) and Ã varies from system to system. For example, when

F (1) and F (2) are arranged on the ring such that every other oscillator is identical (cor-

responding to D(1) = diag{1, 0, 1, 0, 1, 0} and D(2) = diag{0, 1, 0, 1, 0, 1}), they share a

common block structure of one 2× 2 block and one 4× 4 block. This reduction from an

N ×N system of equations may seem small for N = 6, but for any directed ring network

of an even number of nodes N , the largest block will always be 4× 4, which represents a

tremendous simplification from the fully coupled set of equations when N is large.

Figure 4.3 shows results of applying this method to calculate the MTLE of all hetero-

geneous systems (gray and blue lines) and of the corresponding homogeneous systems +h

(cyan line) and −h (red line). Blue marks the most synchronizable heterogeneous system,

which has D(1) = diag{1, 1, 1, 0, 1, 0} and D(2) = diag{0, 0, 0, 1, 0, 1}, and is referred to

as ±h. The limit cycle synchronous state of system ±h is stable for the entire range

of h considered. For the homogeneous system −h, the synchronous state is stable for

h ∈ (0, 0.23), and for the homogeneous system +h this state is stable for h ∈ (0, 0.32).

This gives rise to a wide AISync region, ranging from h = 0.32 all the way to at least

h = 1.0 (the largest value considered in our calculations). We also verified that the other

possible symmetric state—the amplitude death state—is unstable for both homogeneous

systems, and we show the corresponding MLEs in the inset of figure 4.3.
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Figure 4.3. Dependence of the MTLE on the heterogeneity h for heteroge-
neous systems (gray and blue lines) and homogeneous systems (+h, cyan
line; −h, red line). A total of 10 out of 11 heterogeneous systems exhibit
AISync for some range of h ∈ (0, 1). The most synchronizable heteroge-
neous system is ±h (highlighted in blue, and accompanied by its network
diagram color-coded by oscillator type). The MLE of the amplitude death
state is shown as inset for both homogeneous systems. The dashed line at
zero marks the boundary of linear stability, and the top green line marks
the region h ∈ (0.32, 1) where AISync occurs.

Figure 4.4 shows the result of direct simulations of systems initiated close to the limit

cycle synchronous state with h set to 0.8. In figure 4.4(a) we compare the homogeneous

system +h with the heterogeneous system ±h. The upper panel trajectory is produced by

system +h alone, which loses synchrony over time due to instability. In the lower panel

trajectory, +h is switched to the heterogeneous system ±h at t = 100. This stabilizes

the synchronous trajectory and no desynchronization is observed for the course of the

simulation. As the effect of this switching in the lower panel trajectory is not very visually

distinctive, we also plot the synchronization error δ for t ∈ [0, 1000], where δ is defined as
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the standard deviation among zj:

(4.25) δ =

√√√√√ 1
N

N∑
j=1
‖zj − z̄‖2, z̄ = 1

N

N∑
j=1

zj.

The error plot clearly shows that δ grows for t < 100 and decreases for t > 100. Sim-

ilarly, in figure 4.4(b) we compare the homogeneous system −h with the heterogeneous

system ±h. The upper panel trajectory (now produced by system −h alone) quickly loses

synchrony and evolves into a high-dimensional incoherent state, while the lower panel

trajectory converges to the amplitude death state after switching to ±h. Note that this

state is different from the limit cycle state in figure 4.4(a), illustrating that ±h has two

distinct symmetric states that are stabilized by system asymmetry.

We further characterize the AISync property of those systems in terms of the time

delay τ . The stability of the homogeneous systems is compared with the heterogeneous

system ±h for a range of τ and h. As shown in figure 4.5, the parameter space is

divided into three regions: a region where the heterogeneous system ±h and at least

one of the homogeneous systems are stable (region I); a region where the heterogeneous

system ±h is stable but both homogeneous systems are unstable (region II); and a region

where all three systems, ±h, +h and −h, are unstable (region III). This figure establishes

the occurrence of AISync in the entire region II. We note, moreover, that region II is

a conservative estimate of the AISync region as it only considers one out of eleven

possible heterogeneous systems and only concerns the limit cycle synchronous state (not

accounting for the possibility of a stable amplitude death state for ±h; we have verified

that this fixed point is unstable for both +h and −h over the entire range of h and τ

considered in our simulations).
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Figure 4. (a) Time evolution of typical trajectories of the network in figure 3

initiated close to the limit cycle synchronous state zj = r0e
i⌦t, where the main panels

show the imaginary part of zj = xj + iyj , j = 1, · · · , 6. Top panel: trajectory for

the homogeneous system +h. Middle panel: trajectory starting from the same initial

condition when a switch to the heterogeneous system ±h is performed at t = 100.

Bottom panel: time evolution of the synchronization error �, further demonstrating

that the trajectory deviates from the limit cycle state for the homogeneous system but

converges to it for the heterogeneous one. (b) Same as in the main panels of (a) but

now for the homogeneous system �h, where in this case the heterogeneous system ±h

converges to the amplitude death state. In these examples, the heterogeneity h was

chosen to be 0.8. To initiate the system close to the limit cycle synchronous state, we

extended zj = r0e
i⌦t backward ⌧ time units from t = 0, and perturbed the components

of each oscillator independently at t = 0 with a pulse (numerically approximating a

Dirac-delta function) of amplitude chosen randomly from the interval (0, 0.1).

cycle synchronous state with h set to 0.8. In figure 4(a) we compare the homogeneous

system +h with the heterogeneous system ±h. The upper panel trajectory is produced

by system +h alone, which loses synchrony over time due to instability. In the lower

Figure 4.4. (a) Time evolution of typical trajectories of the systems +h
and ±h in figure 4.3 initiated close to the limit cycle synchronous state
zj = r0e

iΩt, where the main panels show the imaginary part of zj = xj +
iyj, j = 1, · · · , 6. Top panel: trajectory for the homogeneous system +h.
Middle panel: trajectory starting from the same initial condition when a
switch to the heterogeneous system ±h is performed at t = 100. Bottom
panel: time evolution of the synchronization error δ, further demonstrating
that the trajectory deviates from the limit cycle state for the homogeneous
system but converges to it for the heterogeneous one. (b) Same as in the
main panels of (a) but now for the homogeneous system −h, where in this
case the heterogeneous system ±h converges to the amplitude death state.
In these examples, the heterogeneity h was chosen to be 0.8. To initiate the
system close to the limit cycle synchronous state, we extended zj = r0e

iΩt

backward τ time units from t = 0, and perturbed the components of each
oscillator independently at t = 0 with a displacement chosen randomly from
the interval (0, 0.1).
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Figure 5. Regions in the ⌧ versus h plane categorized by the stability of the limit cycle

synchronous state for the directed ring network with N = 6 nodes. In region I (purple),

the synchronous state is stable for both the heterogeneous system ±h and at least one

homogeneous systems (�h and/or +h). In region II (orange), the synchronous state is

stable only for the heterogeneous system. Region II is thus part of the AISync region.

In region III (green), the synchronous state is unstable for both homogeneous systems

and for the heterogeneous system.

have weight a and the outer edges have fixed weight 1. It is intuitively clear that all

nodes are identically coupled. This can be verified in figure 6(a) by applying 90-degree

rotations (which connect nodes of the same color) and reflections with respect to the

dashed line (which connects nodes of di↵erent colors) to show that all nodes belong to

the same orbit under automorphisms of the graph.

We calculate the stability of the limit cycle synchronous state for both homogeneous

systems (all nodes equipped with F (1) or all nodes equipped with F (2)) and a

representative heterogeneous system. The heterogeneous system has F (1) and F (2)

arranged alternatingly, as indicated by the colors in figure 6(a), which is a configuration

described by D(1) = diag{1, 0, 1, 0, 1, 0, 1, 0} and D(2) = diag{0, 1, 0, 1, 0, 1, 0, 1}. These

matrices and the adjacency matrix of the crown graph can be simultaneously block

diagonalized into a block structure composed of four 2 ⇥ 2 blocks, which significantly

simplifies the calculation of the MTLE. The results are shown in figure 6(b) for a range

of inner edge weight a and oscillator heterogeneity h, where the regions I, II, and III

are defined as before. We have also verified that, for the entire range of parameters in

figure 6(b), the amplitude death state is unstable for both homogeneous systems. For

the same reasons as in figure 5, region II is a conservative estimate of the AISync region.

The AISync region extends from a = 0, where the network is an unweighted ring, to

a = 1, where the network is an unweighted crown. Incidentally, this example shows that

AISync can also occur for undirected networks (previous examples, both in this article

and in the literature [5, 6], were limited to directed networks).

Figure 4.5. Regions in the τ versus h plane categorized by the stability of
the limit cycle synchronous state for the 6-node directed ring network in
figure 4.3. In region I (purple), the synchronous state is stable for both the
heterogeneous system±h and at least one homogeneous systems (−h and/or
+h). In region II (orange), the synchronous state is stable only for the
heterogeneous system. Region II is thus part of the AISync region. In region
III (green), the synchronous state is unstable for the two homogeneous
systems as well as for the heterogeneous one.

Another interesting fact to note is that unlike many other delay-coupled systems [55],

here larger delay does not always lead to reduced synchronizability, as both region I and

the union of regions I and II expand with increasing time delay τ . This adds to the

few existing examples showing time-delay enhanced synchronization [18, 74, 70, 294],

which can have implications for phenomena such as the remote synchronization between

neurons in distant cortical areas.

Thus far we have focused on Stuart-Landau oscillators coupled through a directed ring

network, which is a directed version of a circulant graph. Such graphs have the property of

admitting a circulant matrix as their adjacency matrix. Networks of identically coupled

oscillators can be much more complex, as most symmetric networks are non-circulant.

It is thus natural to ask whether AISync can be observed for Stuart-Landau oscillators

coupled through such networks.
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Figure 6. AISync in a symmetric non-circulate network. (a) Crown graph of N = 8

nodes, for outer edges of weight 1 and inner edges of weight a. (b) Illustration in the a

versus h plane of the regions categorized by the stability of the limit cycle synchronous

state, where the heterogeneous system alternates the two types of oscillators as color-

coded in (a). As in the previous example, region II is part of the AISync region, since

in this region synchronization is unstable for both homogeneous systems (+h and �h)

but is stable for the heterogeneous one.

4.3. Synchronization in non-symmetric networks induced by oscillator heterogeneity

The scenario in which identically coupled oscillators synchronize stably only when

the oscillators themselves are nonidentical is arguably AISync in its most compelling

form, as all the heterogeneity can then be attributed to the oscillators and there is no

potential for a compensating heterogeneity to result from the network structure. But

the possibility of synchronization induced by oscillator heterogeneity is not restricted

to such symmetric networks, and we hypothesize that this e↵ect can be prevalent also

in networks that do not have symmetric structure. To support this hypothesis, we first

note that our analysis extends naturally to networks that have the same (weighted)

indegree for all nodes (as defined in equation (12)) but are otherwise arbitrary.

Figure 7 shows an example for a 6-node non-symmetric network of Stuart-Landau

oscillators. The network, which is directed and has both positive and negative edge

weights, is composed of three symmetry clusters, as defined by the orbits of the

graph automorphism group. Each symmetry cluster consists of two nodes that are

diagonally opposite and can be mapped to each other by rotations of 180 degrees in the

representation of figure 7(a). Thus, the oscillators are indeed not identically coupled. As

a representative heterogeneous system to be compared with the homogeneous systems

(+h and �h), we consider four nodes equipped with the dynamics F (1) and the other

Figure 4.6. AISync in a symmetric non-circulant network. (a) Crown net-
work of N = 8 nodes, for outer edges of weight 1 and inner edges of weight
a. (b) Illustration in the a versus h plane of the regions categorized by
the stability of the limit cycle synchronous state, where the heterogeneous
system alternates the two types of oscillators as color-coded in (a). As in
the previous example, region II is part of the AISync region, since in this
region synchronization is unstable for both homogeneous systems (+h and
−h) but is stable for the heterogeneous one.

In figure 4.6 we show the example of a (weighted) crown network of 8 nodes, which,

when weighted, is the smallest non-circulant vertex-transitive graph [40]. In this illustra-

tion, the inner edges have weight a and the outer edges have fixed weight 1. It is intuitively

clear that all nodes are identically coupled. This can be verified in figure 4.6(a) by ap-

plying 90-degree rotations (which connect nodes of the same color) and reflections with

respect to the dashed line (which connects nodes of different colors) to show that all nodes

belong to the same orbit under automorphisms of the network.

We calculate the stability of the limit cycle synchronous state for both homogeneous

systems (all nodes equipped with F (1) or all nodes equipped with F (2)) and a repre-

sentative heterogeneous system. The heterogeneous system has F (1) and F (2) arranged

alternatingly, as indicated by the colors in figure 4.6(a), which is a configuration described
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by D(1) = diag{1, 0, 1, 0, 1, 0, 1, 0} and D(2) = diag{0, 1, 0, 1, 0, 1, 0, 1}. These matrices

and the adjacency matrix of the crown network can be simultaneously block diagonalized

into a block structure composed of four 2 × 2 blocks, which significantly simplifies the

calculation of the MTLE. The results are shown in figure 4.6(b) for a range of inner edge

weight a and oscillator heterogeneity h, where the regions I, II, and III are defined as

before. We have also verified that, for the entire range of parameters in figure 4.6(b), the

amplitude death state is unstable for both homogeneous systems. For the same reasons

as in figure 4.5, region II is a conservative estimate of the AISync region. The AISync

region extends from a = 0, where the network is an unweighted ring, to a = 1, where

the network is an unweighted crown. Incidentally, this example shows that AISync can

also occur for undirected networks (previous examples, both in this chapter and in the

literature [192, 317], were limited to directed networks).

4.4.3. Synchronization in non-symmetric networks induced by oscillator het-

erogeneity

The scenario in which identically coupled oscillators synchronize stably only when the

oscillators themselves are nonidentical is, arguably, AISync in its most compelling form,

as all the heterogeneity can then be attributed to the oscillators and there is no potential

for compensatory heterogeneity to result from the network structure. But the possibility

of synchronization induced by oscillator heterogeneity is not restricted to such symmetric

networks, and we hypothesize that this effect can be prevalent also in networks that do

not have symmetric structure. In examining this hypothesis, it is useful to note that
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Figure 4.7. Synchronization induced by oscillator heterogeneity in a non-
symmetric network. (a) Network of N = 6 nodes with outer (directed)
edges of weight +1 and inner (undirected) edges of weight a = −0.1, which
has 3 symmetry clusters. (b) Illustration in the σµ versus h plane of the
regions categorized by the stability of the limit cycle synchronous state,
where the heterogeneous system has two oscillators of one type and four
oscillators of the other type, as indicated by the colors in (a). Once again,
region II corresponds to the scenario in which the homogeneous systems −h
and +h do not synchronize stably whereas the heterogeneous system does.

our analysis extends naturally to networks that have the same (weighted) indegree for all

nodes (as defined in equation (4.12)) but are otherwise arbitrary.

Figure 4.7 shows an example for a 6-node non-symmetric network of Stuart-Landau

oscillators. The network, which is directed and has both positive and negative edge

weights, is composed of three symmetry clusters, as defined by the orbits of its automor-

phism group. Each symmetry cluster consists of two nodes that are diagonally opposite

and can be mapped to each other by rotations of 180 degrees in the representation of

figure 4.7(a). Thus, the oscillators are indeed not identically coupled. As a representa-

tive heterogeneous system to be compared with the homogeneous systems (+h and −h),

we consider four nodes equipped with the dynamics F (1) and the other two nodes with
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F (2) (as indicated by the colors in figure 4.7(a), where F (1) and F (2) are defined as in

Sec. 4.4.2). In figure 4.7(b) we show the results of the stability analysis for a range of

the effective coupling strength σµ and oscillator heterogeneity h, with the same definition

of regions I, II and III as above. Again, we verified that, for the range of parameters

in figure 4.7(b), the amplitude death state is unstable for both homogeneous systems.

Region II occupies a sizable portion of the diagram, showing that the scenario in which

the oscillators are required to be nonidentical for the network to synchronize stably can

also be common for non-symmetric networks.

4.4.4. Generalization to unrestricted parameters

We note that our Stuart-Landau system exhibits even stronger notions of AISync than

the one considered thus far. For example, if a mixture of heterogeneous oscillators with

parameters +h and −h can synchronize stably, then it may be natural to ask whether

the homogeneous systems are all unstable even when the oscillator parameter is chosen

from the entire interval [−h,+h], rather than just from the pair {−h,+h}. The system

in equation (4.19) exhibits AISync also in this stronger sense. The region between τ =

1.5π and τ = 1.6π in figure 4.5 provides one such example, where both homogeneous

systems +h and −h are unstable for any h ∈ [0, 1], while the heterogeneous system ±h

is stable for a range of h in this interval. A similar result holds for heterogeneity-induced

synchronization in non-symmetric networks, as illustrated by the example in figure 4.7

for σµ larger than 0.13.

One can further ask whether it is possible for a heterogeneous system to be stable for

some h while the homogeneous systems are unstable for any h ∈ (−∞,+∞). We have
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extended the range of h in figure 4.5 to verify numerically that no homogeneous system

can synchronize for any h in the region 1.5π < τ < 1.6π (and, similarly, in figure 4.7

for any h in the region σµ > 0.13). Thus, these are scenarios in which the oscillators

need to be nonidentical for the system to synchronize even if the homogeneous system

has unrestricted access to the values of the parameter h.

Naturally, we can also imagine heterogeneous systems in which each oscillator is al-

lowed to take an independent value of the parameter h in the full interval (−∞,+∞).

Computational challenges aside, this would only show that the phenomenon of AISync is

even more common, since there would then be a larger set of heterogeneous systems to

choose from.

4.5. Concluding remarks

Motivated by the recent discovery of asymmetry-induced synchronization, here we

established a general stability analysis method for demonstrating and examining identical

synchronization among nonidentical oscillators. This can be seen as a generalization of the

standard master stability analysis to non-perturbative regimes of parameter mismatches,

and is illustrated for systems with Laplacian- and adjacency-matrix coupling as well as

time-delay coupling. In establishing our formalism, we first characterized the most general

conditions under which nonidentical oscillators can synchronize completely for the various

coupling schemes. When the coupling is non-diffusive, the balanced input conditions

required for the synchronization of identical oscillators [96, 6] is replaced by conditions

that involve both the node dynamics and the coupling term. We then established our
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approach to simultaneously block diagonalize the matrices in the variational equation,

which reduces dimension and facilitates stability analysis.

This new framework was applied to networks of heterogeneous delay-coupled Stuart-

Landau oscillators and reveals AISync as a robust behavior. We identify coupling delay

as a new key ingredient leading to AISync in this class of systems, which suggests that

AISync may be more common than previously anticipated in real systems, where delay is

ubiquitous [128, 188]. The possibility of AISync, along with the conditions we establish

for complete synchronization, has the potential to lead to new optimization and control

approaches focused on creating or enhancing synchronization stability in networks that

may not synchronize spontaneously when the dynamical units are identical. By tuning

the oscillators to suitable nonidentical parameters, such approaches promise to be useful

specially when the network structure is fixed, since they could rely solely on nonstructural

degrees of freedom associated with the local (node) dynamics.

Our analysis of the heterogeneous Stuart-Landau system is far from exhaustive, as we

explored only slices of its vast parameter space and our parameter choices were not fine-

tuned. In particular, we only considered real coupling strength σ, while complex coupling

strength (known as conjugate coupling) has been shown to have significant impact on

stability [60]; the effect of the oscillation amplitude parameter λ, not varied here, also

warrants further investigation. Moreover, we focused mainly on heterogeneous systems

of only two kinds of oscillators, while more diverse populations of oscillators are yet

to be explored in detail. Another promising future direction concerns the underlying

network structure, as it is still an open question whether there exist ways to characterize

a system’s potential to exhibit AISync on the basis of its network structure. In particular,
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it would be desirable to identify algebraic indexes determined by the coupling matrix that

could provide such a characterization (similar to the way matrix eigenvalues determine

synchronizability of certain coupled-oscillator systems).

Finally, we emphasize that while we have explicitly developed our framework for three

widely adopted forms of coupling, complete synchronization can be investigated through

a similar formulation whenever necessary and sufficient conditions analogous to those in

Table 4.1 can be derived. In particular, this may include systems with different types

of coupling matrices, other forms of time delay, heterogeneous interaction functions, and

explicit periodic time dependence in the coupling terms. Another area for future research

concerns extending this work to systems in which the synchronization applies to some

(but not all) dynamical variables or to functions of the variables (but not the variables

themselves), as found in various applications. Such systems are candidates to exhibit yet

new synchronization phenomena, which we hope will be revealed by future research.
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CHAPTER 5

Outperforming Design with Random Heterogeneity in Network

Synchronization

A fundamental and widely held assumption on network dynamics is that similar com-

ponents are more likely to exhibit similar behavior than dissimilar ones and that generic

differences among them are necessarily detrimental to synchronization. Here, we show

that this assumption does not hold in oscillator networks when communication delays

are present. We demonstrate, in particular, that random parameter mismatches among

oscillators can consistently rescue the system from losing synchrony. This finding is sup-

ported by electrochemical oscillator-experiments performed under realistic conditions. Re-

markably, at intermediate levels, random mismatches are far more effective in promoting

synchronization than differences specially designed to facilitate identical synchronization.

Our results suggest that, rather than being eliminated or ignored, intrinsic disorder in

technological and biological systems can be harnessed to help maintain coherent dynam-

ics required for function.

This chapter is based on the joint work with Jorge L. Ocampo-Espindola, István Z.

Kiss, and Adilson E. Motter.
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5.1. Background

Heterogeneity among interacting components is usually seen as detrimental to the

emergence of uniform dynamics in networks, including consensus [198, 155] and syn-

chronization [274, 13]. For networks of coupled oscillators, the implicit assertion is

that global synchronization would be hindered by parameter mismatches among os-

cillators. This assertion, which has been established rigorously for Kuramoto mod-

els [274], remains under-substantiated for more general classes of oscillator networks

[301, 145, 196], especially those studied using variants of the master stability function

formalism [217, 190, 60, 280]. This lack of theoretical understanding can be partially

attributed to the mathematical difficulties involved in the study of nonidentical oscil-

lators. In the relatively few theoretical studies that have explicitly considered oscillator

heterogeneity beyond the context of Kuramoto models, the focus has been on small param-

eter mismatches and the persistence of synchronization among nearly-identical oscillators

[233, 276, 220, 5, 264]. These results have further reinforced the perception that dis-

order, in the form of random oscillator heterogeneity, is undesirable for synchronization.

Yet, a few exceptions to the above perception exist in the literature. In particular, it

was shown that disorder can sometimes enhance synchronization and/or spatiotemporal

order in arrays of driven dissipative pendulums with free boundary conditions [50, 49, 51].

For example, for initially identical oscillators in a chaotic regime, heterogeneity was shown

to suppress chaos, giving rise to more regular spatiotemporal patterns [50]. Still, in such

cases disorder does not stabilize the system around the original synchronization orbit

present in the homogeneous system. More recently, it was realized that certain oscilla-

tor heterogeneity can stabilize the original synchronization orbit that is unstable in the
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homogeneous system [193, 314]. In those findings the heterogeneity must be judiciously

designed to preserve at least one common orbit among the nonidentical oscillators, which

may be difficult to achieve in practice.

Here, we show that generic differences among individual oscillators can consistently

stabilize the dynamics around an otherwise unstable global synchronization orbit of the

homogeneous system. We demonstrate the phenomenon for random heterogeneity in

delay-coupled Stuart-Landau oscillators, which is a canonical model for limit-cycle oscil-

lations close to a Hopf bifurcation. Stuart-Landau oscillators have been used to describe

diverse processes, ranging from electrochemical reactions [323] to plant circadian rhythms

[83]. Importantly, we establish the surprising result that random heterogeneity can be

more effective than judiciously designed heterogeneity in preserving system-level coher-

ence. To support the theoretical and numerical results, we performed experiments using

coupled electrochemical oscillators. The experimental results confirm our predictions and

further extend the effect to systems that are not limited to the vicinity of a Hopf bifurca-

tion. Thus, our findings are expected to have implications for a broad class of technological

and biological systems, whose function depends on the synchronization of heterogeneous

components.

5.2. Modeling the dynamics of heterogeneous oscillators

We consider a network of N delay-coupled nonidentical Stuart-Landau oscillators,

whose dynamics is governed by

(5.1) żj(t) = fj(zj(t)) +K
N∑
k=1

Ajk [zk(t− τ)− zj(t)] ,
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where zj = rje
iψj = xj + iyj is a complex variable representing the state of the jth

oscillator, and K is the coupling strength. The adjacency matrix A = {Ajk} represents

a network with a common indegree d = ∑
k Ajk for all oscillators j. The coupling delay

τ models the finite speed of signal propagation in real systems, which is often significant

in biological [74, 52, 292], physical [78, 79, 39], and control systems [227, 102]. The

local dynamics fj is the canonical form for systems born out of a Hopf bifurcation [132],

(5.2) fj(zj) =
[
λj + iωj − (1 + iγj)|zj|2

]
zj,

where λj, ωj, and γj are real parameters associated with the amplitude, base frequency,

and amplitude-dependent frequency of the underlying limit-cycle oscillations.

The oscillators are identical when λj = λ, ωj = ω, and γj = γ for all j. For iden-

tical oscillators, the amplitude r0 and angular velocity Ω0 of the limit-cycle synchronous

solution

(5.3) zj = r0e
iΩ0t, j = 1, · · · , N

can be found by solving the transcendental equations

r2
0 = λ+ dK(cos Φ− 1),(5.4a)

Ω0 = ω − γr2
0 + dK sin Φ,(5.4b)

where Φ = −Ω0τ [60]. When random heterogeneity is introduced through one or more os-

cillator parameters, the identical synchronization state [5.3] no longer exists. Nonetheless,

we show that heterogeneous systems can still admit states that are synchronized in the
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Figure 5.1. Impact of oscillator heterogeneity on the synchronization dy-
namics of Stuart-Landau oscillators. The different panels show the time
evolution of the imaginary components yj (top), order parameters R1 and
R2 (middle), and angular velocities Ωj = ψ̇j (bottom), for trajectories in
a 18-node ring network initialized close to the identical synchronization
state. (A) Homogeneous system for the parameters defined in the text. (B)
Heterogeneous system for the same parameters, except for base angular ve-
locities {wj}, which are drawn from a Gaussian distribution with standard
deviation σ = 0.1. The trajectories show that synchronization is unstable
in the homogeneous system but becomes stable in the heterogeneous one.

sense of exhibiting cohesive phase and amplitude dynamics, as formalized below. Here,

we consider synchronization in this sense and ask whether it can be stabilized by random

oscillator heterogeneity.

We start by considering a homogeneous system of N = 18 identical Stuart-Landau

oscillators coupled through a directed ring network for λ = 0.1, ω = −0.28, γ = −4.42,

K = 0.3, d = 1 and τ = 1.8π. Under this parameter choice, the limit-cycle synchronous

solution [5.3] is unstable, and the system evolves into a symmetry-broken state exhibiting

incoherent chaotic dynamics. As an example of a heterogeneous system, we draw each

base frequency ωj from a Gaussian distribution, then linearly shift and rescale them so

the set {ωj} has mean equal to ω = −0.28, as in the homogeneous system, and standard

deviation σ = 0.1.
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In Fig. 5.1, we show typical trajectories of the imaginary components yj, order pa-

rameters R1 and R2, and angular velocities Ωj = ψ̇j for the homogeneous and heteroge-

neous systems. Here, two order parameters are introduced to measure the cohesiveness

of the dynamics: the phase order parameter R1 =
∣∣∣∑j e

iψj/N
∣∣∣, which is the one typ-

ically used in the study of Kuramoto oscillators; the phase-amplitude order parameter

R2 = 1
max(rj)

∣∣∣∑j rje
iψj/N

∣∣∣, which measures the coherence in both phases and amplitudes.

It follows that both R1 and R2 are constant for frequency-synchronized states. For the tra-

jectories shown, the two systems were initialized close to the limit-cycle synchronous state

and evolved for 3000 time units. The homogeneous system loses synchrony at t ≈ 1500

and transitions to an incoherent state with both R1 and R2 fluctuating around 0.2. Re-

markably, despite having different base frequencies, the heterogeneous oscillators converge

to a stable cohesive state with high order parameters (R1 > R2 > 0.9) and identical an-

gular velocities. That is, the oscillators are not only approximately synchronized in phase

and amplitude—they are also exactly synchronized in frequency (i.e., phase-locked).

5.3. Synchronization states and stability conditions

To gain theoretical understanding of the observation in Fig. 5.1 and its prevalence,

we characterize the synchronization states of interest in the presence of heterogeneity and

derive analytical conditions for their stability. These results are established for delay-

coupled Stuart-Landau oscillators with arbitrary heterogeneity.

Inspired by the fact that the heterogeneous system in Fig. 5.1 settles into a frequency-

synchronized state, for which the frequencies of all oscillators are equal and the phase
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Figure 5.2. Distribution of the phase lags δj and the normalized amplitudes
rj/r0 for σ = 0.06. The data are obtained by solving Eqs. 5.6 for 10 in-
dependent realizations of heterogeneous ωj. The network and the other
parameters are the same as in Fig. 5.1.

differences and amplitudes are constant, we employ the following ansatz:

(5.5) zj = rje
i(Ωt+δj),

where each oscillator has amplitude rj and phase lag δj but all oscillators share the same

angular velocity Ω. Substituting the ansatz into Eq. 5.1, we obtain 2N nonlinear algebraic

equations with 2N unknowns:

r2
j = λj +K

N∑
k=1

Ajk
rk
rj

cos Φjk − dK,(5.6a)

Ω = ωj − γjr2
j +K

N∑
k=1

Ajk
rk
rj

sin Φjk,(5.6b)

for j = 1, · · · , N , where Φjk = δk − δj − Ωτ . Taking δ1 = 0, which can be done

without loss of generality, the solution of Eqs. 5.6 determines δ2, · · · , δN , r1, · · · , rN , and

Ω. As shown in Fig. 5.2, when parameter heterogeneity is not too large, this gives us

frequency-synchronized states that are close to the identical synchronization state of the

homogeneous system given by Eqs. (5.3) and (5.4).
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We can analyze the stability of the frequency-synchronized state through the varia-

tional equation that governs the evolution of small deviations δrj(t) and δψj(t) from the

frequency-synchronized state. Letting zj(t) = rj[1 + δrj(t)]ei[Ωt+δj+δψj(t)], ηj = (δrj, δψj)ᵀ,

and η = (η1, · · · ,ηN)ᵀ, the variational equation reads

(5.7) η̇(t) = ⊕ (Jj −KPj)η(t) +K(A⊗Rjk)η(t− τ),

where Jj = ( −2r2
j 0

−2γjr
2
j 0 ), Rjk = rk

rj
( cos Φjk − sin Φjk

sin Φjk cos Φjk
), ⊕(Jj−KPj) = diag(J1−KP1, · · · ,JN−

KPN), Pj = ∑
k AjkRjk, and A ⊗Rjk is a 2N × 2N matrix obtained by replacing each

entry Ajk in A with 2× 2 block AjkRjk.

Since all the matrices in Eq. 5.7 are time independent, the stability calculation boils

down to finding the eigenvalues v of the following characteristic equation:

(5.8) det{⊕ (Jj −KPj) +K(A⊗Rjk)e−vτ − v12N} = 0.

To obtain Eq. 5.8 we have replaced η(t− τ) in Eq. 5.7 by e−vτη(t). The real part of the

eigenvalues v gives us the Lyapunov exponents of Eq. 5.7. After removing the eigenvalue

v = 0 (which corresponds to perturbing the phase of each oscillator by the same amount

and thus does not affect the synchronization state), we can take the maximum among

the remaining Re(v) to obtain Λ—the maximum transverse Lyapunov exponent (MTLE)

relative to the frequency-synchronization manifold. The sign of Λ determines the stability

of the frequency-synchronized state.
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Figure 5.3. Statistics on the synchronizing effect of disorder for systems
with (A) nonidentical ωj, (B) nonidentical λj, and (C) nonidentical γj.
For each upper panel, we generate 1000 realizations of disorder in the cor-
responding parameter and then, for each realization, calculate R1(σ) and
Λ(σ) of the frequency-synchronized state as σ is increased from 0 to 0.15.
The filled green curves show the percentage of realizations that successfully
stabilize a frequency-synchronized state with order parameter R1 > 0.7,
which are validated by direct simulations shown as purple circles. To visu-
alize the differences between different realizations and their characteristics
as an ensemble, each lower panel shows Λ(σ) for 100 independent realiza-
tions of disorder. The stable portions are highlighted in blue. The network
and other parameters are the same as in Fig. 5.1.

5.4. Disorder consistently promotes synchronization

Next, we examine the phenomenon systematically and, in particular, address key

questions underlying its prevalence. For example, what is the effect of the magnitude

of parameter mismatches? Do the results change significantly depending on which pa-

rameters are made heterogeneous? And, most importantly, can different realizations of

random heterogeneity consistently induce synchronization?

In Fig. 5.3, we start with the same homogeneous system as in Fig. 5.1 and introduce

heterogeneity in {ωj}, {λj}, and r2
0{γj}, respectively. (Here, the factor r2

0 is introduced to

scale σ for γj because the influence of γj in Eq. 5.2 is scaled by the square of the oscillation
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amplitude. The constant r0 can be found by solving Eqs. 5.4 for the corresponding

homogeneous system.) In all cases, the standard deviation is σ and the mean is taken

to be the same as the corresponding parameter in the homogeneous system. For each

realization of heterogeneity, as σ increases from zero, the identical synchronization state

progressively changes into a phase-locked state with high order parameters. The stability

of this state is measured by Λ(σ), which we obtain by solving Eq. (5.8) for each realization

of heterogeneity. The filled green curves in the upper panels show the probability that

synchronization is stabilized by random heterogeneity in each parameter. These results

are verified by direct simulations of Eqs. (5.1) and (5.2) for various σ, shown as purple

circles. In the lower panels, we plot Λ(σ) for a representative subset of realizations of

heterogeneity in each parameter, visualizing their impact on stability as an ensemble.

One can see from Fig. 5.3 that there is always a sweet spot of optimal heterogeneity

at an intermediate value of σ. Around that sweet spot, the green curves stay very close

to 1, indicating that intermediate heterogeneity can consistently induce synchronization,

largely independent of its particular realization. It is interesting to note from the lower

panels that small heterogeneity always improves stability, as reflected in the monotonic

decrease of Λ(σ) at small σ. Disorder can also consistently stabilize synchronization when

all three parameters are allowed to be heterogeneous, as demonstrated in Appendix C.1.

Furthermore, we verified that the same effect can be observed for a wide range of network

sizes and different network structures (see Appendices C.2 and C.3).
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5.5. Disorder is better than design

It is important to compare the effect of random and nonrandom heterogeneities. When

the heterogeneity is judiciously designed, Stuart-Landau oscillators can synchronize iden-

tically (i.e., all phase differences are identically zero and all amplitudes are equal) even

when they are nonidentical. This is most easily seen from Eqs. 5.4, whose solution re-

mains invariant under the transformation ω → ω + h, γ → γ + h/r2
0 for any h ∈ R.

Thus, any given Stuart-Landau oscillator belongs to a continuous family of nonidentical

Stuart-Landau oscillators parameterized by h, within which the oscillators can synchronize

identically with each other. Moreover, as shown in Ref. [314], mixing different oscilla-

tors from the same family can stabilize identical synchronization that would otherwise be

unstable.

By designing heterogeneity to preserve identical synchronization, can we do better than

by relying on randomness and disorder? Once again we start with the homogeneous system

studied in Figs. 5.1 and 5.3. The oscillators are then made heterogeneous by sampling

from the identically synchronizable family, with h drawn from a Gaussian distribution.

More concretely, ωj = ω+hj and γj = γ+hj/r2
0, where {hj} has standard deviation σ and

mean zero. This can be seen as a special subset of oscillators with random heterogeneity

in both parameters {ωj} and {γj}, the only difference being that ωj − ω and γj − γ are

independent when heterogeneity is random.

In Fig. 5.4, we compare the ensemble average MTLE and order parameters between

systems with random heterogeneity and systems with designed heterogeneity. Consis-

tent with Fig. 5.3, random heterogeneity is most effective for intermediate magnitudes σ,

ranging from 0.05 to 0.1. On the other hand, designed heterogeneity is effective for much



106

Figure 5.4. Comparing systems with random and designed heterogeneity in
{ωj} and {γj}, where the latter preserves a common orbit among heteroge-
neous oscillators. (A) Average MTLE of systems with random heterogeneity
(purple line) and designed heterogeneity (orange line). The shades indicate
the standard deviation among 1000 independent realizations. Designed het-
erogeneity stabilizes synchronization when σ is large, but fails to do so for
intermediate σ, where random heterogeneity is effective. (B) Magnifica-
tion of the marked portion of A, highlighting the effectiveness of random
heterogeneity of intermediate magnitude. (C) Average order parameters
of systems with random and designed heterogeneities. Each data point is
averaged over 1000 independent realizations of heterogeneity and also aver-
aged over time for steady states that are not frequency synchronized. The
network and other parameters are the same as in Fig. 5.1.

larger σ, from about 0.4 to 0.6, which may be interpreted as a consequence of the iden-

tical synchronization solution being preserved in this case. Remarkably, no system with

designed heterogeneity is stable within the range for which random heterogeneity is effec-

tive. This implies that at intermediate magnitude, random heterogeneity can outperform

those designed to preserve identical synchronization.



107

5.6. Insight from a minimal system

To gain further understanding, in Fig. 5.5 we focus on a minimal system formed by

three nonidentical Stuart-Landau oscillators coupled through a directed ring network. The

jth oscillator has parameters {λj, ωj, γj} = {λ, ω+h, γ+(h+∆j)/r2
0}, with the constraint

that ∑3
j=1 ∆j = 0. The parameter h is introduced to vary the synchronization stability

of the homogeneous system without altering the synchronous solution. This enables us

to investigate all possible realizations of heterogeneous γj for different levels of instability

by sweeping the ∆1–∆2 plane.

In Figs. 5.5A and B, the origin is the only point corresponding to a homogeneous

system, and the differences among oscillators increase as one moves away from the origin

along the radial directions. Stability analysis indicates that regions of stability appear

for intermediate magnitude of the disorder, as shown in Fig. 5.5A (Λ < 0, blue belts).

The phase-locked state is unstable for weak disorder (Λ > 0, red areas) and ceases to

exist for strong disorder (blank areas). A complementary perspective is offered by direct

simulations, as shown in Fig. 5.5B. Because order parameters averaged over time is a

poor indicator of coherence for systems with a small number of oscillators, we quantify

the level of coherence using the minimum of R2 over a period of 10000 time units after

the initial transient. For zero and small heterogeneity, the three oscillators are in an

incoherent state with minR2 ≈ 0. As σ is increased further, the oscillators first settle

into an approximate synchronization state with minR2 ranging from 0.6 to 0.9 (light

purple regions). The level of coherence continues to improve until it plateaus at minR2 ≈

0.96 for phase-locked states (dark purple regions), which correspond to the stable states

marked by the blue belts in Fig. 5.5A. Finally, once we cross the stability boundary,
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Figure 5.5. Synchronization among three nonidentical Stuart-Landau oscil-
lators coupled through a directed ring network. (A) MTLE of the phase-
locked state in the ∆1–∆2 plane. The homogeneous system lies at the origin
of each panel, and its instability increases as h changes from −1.1 to −1.7.
For small ∆1 and ∆2, heterogeneity is not strong enough to tame the insta-
bility (red regions). At intermediate ∆1 and/or ∆2, a stability belt emerges
(blue regions), demonstrating the stabilizing effect of heterogeneity. When
heterogeneity becomes too strong, however, the phase-locked solution no
longer exists (blank regions). (B) Minimum of the order parameter R2 over
10000 time units in a steady state. As one moves along the green line for
increasing σ, we observe the incoherence-coherence-incoherence transitions
predicted by the stability analysis. (C) Time evolution of yj (colored by
oscillator) for representative states corresponding to the parameters marked
by the dots in the left panel in B. In all panels, the other parameters are
λ = 0.1, ω = 1, γ = 0, K = 0.3, d = 1, and τ = 1.8π.

synchrony is lost again and the value of minR2 falls back to approximately 0. This

incoherence-coherence-incoherence transition is illustrated in Fig. 5.5C with representative

trajectories from each stage. It is worth noting that even before the phase-locked state

is fully stabilized, disorder can already induce approximate synchronization states with

well-defined rhythms, as illustrated by the second trajectory.



109

Figure 5.5 demonstrates two competing effects of disorder: when heterogeneity is too

small, it cannot tame synchronization instability; when it is too large, it destroys the

synchronization state. In other words, there is a trade-off between synchronizability and

stability, and stable synchronization naturally emerges at intermediate levels of disorder.

Another interesting observation is that the stable belts are contiguous in all cases in

Fig. 5.5A and completely surround the unstable regions in the middle, which explains

why intermediate disorder can consistently stabilize synchronization. It also demonstrates

that the effect is robust against increasing instability (controlled by h) in the homogeneous

system.

5.7. Electrochemical experiments

A natural question at this point is whether the described phenomenon is robust and

general enough to be observed in real systems. To provide an answer, we perform ex-

periments using chemical reaction oscillators based on the electrochemical dissolution of

nickel in sulfuric acidic media [323]. The experimental apparatus consist of a counter

electrode, a reference electrode, a potentiostat, and N nickel wires submerged in the same

sulfuric acidic media, each attached to a resistor (Fig. 5.6A). At constant circuit potential

(V0 = 1.240 V relative to the reference electrode) and with the resistance of resistors set to

ξj = 1.06 k ohm, the dissolution rate of each nickel wire, measured as its current, exhibits

periodic oscillations [125]. The oscillatory dynamics originate from a Hopf bifurcation

at V0 = 1.070 V. Compared to the voltage used in some of the previous studies [39],

the system here is farther away from the bifurcation point. When the wires are placed



110

sufficiently far from each other, the current oscillations do not show noticeable synchro-

nization, confirming that the interactions through the solution are negligible. Coupling

among the wires can be introduced through external feedback [323, 39], in which the

circuit potential of the wires Vj(t) are set based on the measured currents Ij(t) as

(5.9) Vj(t) = V0 +K
N∑
k=1

Ajk [Ij(t− τ)− Ik(t)]

for j = 1, · · · , N , where K and τ are the experimental coupling strength and delay,

respectively. Here, we investigate N = 16 wires with oscillatory currents arranged in

an undirected 4-by-4 lattice network with periodic boundary conditions, which can be

seen as a 2-dimensional variant of the ring networks considered above. For details of the

experimental setup and procedure, see Appendix C.4.

With relatively strong coupling (K ≈ −0.10 V/mA) and no delay (τ = 0 s), the system

exhibits in-phase synchronization [310]. Similar in-phase synchronization exists for large

delay (τ ≈ 2.4 s) that corresponds to the mean period of the uncoupled oscillations.

When τ is set to about 1.2 s (about half of the oscillation period), the system exhibits a

two-cluster state where every other elements on the grid are in phase, and the neighboring

elements are in anti-phase. When the delay is set between these two regions (τ ≈ 1.75

s), the system exhibits a desynchronized state. Parametric heterogeneity was introduced

by setting the resistance of each oscillator to a different value ξj while keeping the mean

resistance fixed to ξ = 1.06 k ohm. The level of parametric heterogeneity is measured by

the standard deviation σ among all ξj.

First, we randomly pick one heterogeneity profile and experimentally test its effect on

the collective dynamics at different heterogeneity level σ. Each experiment starts close to
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Figure 5.6. Electrochemical oscillator experiments showing that random
heterogeneity promotes synchronization. (A) Diagram illustrating the setup
of the experimental system, where C is the counter electrode, R is the ref-
erence electrode, and W are the working electrodes. (B) Time-averaged
synchronization error 〈e〉 as a function of the parametric heterogeneity σ for
one realization of heterogeneous resistances. (C) Time-averaged synchro-
nization error 〈e〉 vs. dynamical heterogeneity ∆, where each dot represents
a different realization of heterogeneous (orange) and homogeneous (blue)
systems for σ = 0.13 k ohm and σ = 0 k ohm, respectively.

the in-phase synchronization state and consists of running the system for 600 seconds. The

level of coherence is measured by the synchronization error e(t), defined as the standard

deviation among currents at time t. Here, the synchronization error is a more straight-

forward coherence measure than order parameters because the experimental systems are

not in the vicinity of a Hopf bifurcation and the dynamics of the amplitude variables are

nontrivial. (Nevertheless, we have verified that the order parameters of phases extracted

using either Hilbert transform or peak detection algorithms give similar results as the ones

obtained using synchronization error.) The experimental results summarized in Fig. 5.6B

reveal a well-defined minimum of the average synchronization error 〈e〉 (averaged over

the last 200 seconds of each experimental run) for an intermediate level of parametric

heterogeneity σ = 0.1 k ohm. This is consistent with what we observed numerically for

delay-coupled Stuart-Landau oscillators.
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Unlike the idealized systems used in simulations, experimental systems come with

unavoidable imperfections and uncertainties. As a result, the electrochemical oscillators

in our system have slightly different dynamics even when resistances are all set to the

same nominal value. These relatively small intrinsic heterogeneities can arise because

of unavoidable differences in the metal wires (e.g., in composition and size) and surface

conditions (oxide film layer thickness and composition, localized corrosion, etc.). To

account for such intrinsic heterogeneity, we use peak detection algorithms6 to extract the

natural frequency and amplitude of each uncoupled oscillator, and we use that information

to measure the dynamical heterogeneity ∆ for systems both with homogeneous ξj and

with heterogeneous ξj. Here, ∆ = ρT + ρA, where ρT (ρA) is the standard deviation of

the average oscillation periods (amplitudes) of the uncoupled oscillators normalized by

the mean. In Fig. 5.6C, we show results for five sets of independent experiments. Each

experiment corresponds to a different realization of heterogeneous resistances (for σ fixed

at 0.13 k ohm), and of the homogeneous system (corresponding to σ = 0 k ohm). It can

be seen that when uncoupled, all heterogeneous systems have a much higher dynamical

heterogeneity ∆ than homogeneous systems. In contrast, when coupled, the heterogeneous

systems achieve significantly better coherence than the homogeneous systems, which is

reflected by consistently smaller 〈e〉.

The contrast between the homogeneous and heterogeneous systems is further visu-

alized in Fig. 5.7. There, we compare the first data point (σ = 0 k ohm) and the fifth

data point (σ = 0.13 k ohm) from Fig. 5.6B. The time series of the homogeneous sys-

tem (Fig. 5.7A) is very much incoherent compared to that of the heterogeneous system

6Peak detection algorithms in SciPy: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.signal.find_peaks.html.

https://docs.scipy.org/doc/scipy/ reference/generated/scipy.signal.find_peaks.html
https://docs.scipy.org/doc/scipy/ reference/generated/scipy.signal.find_peaks.html
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Figure 5.7. Comparison between the dynamics of homogeneous and het-
erogeneous systems in the electrochemical oscillator experiment. (A) Time
series of the currents in the homogeneous system, which shows desynchro-
nized dynamics. (B) Time series of the currents in the heterogeneous sys-
tem, showing that they remain synchronized throughout the experiment.
(C–D) Evolution of synchronization error e (C) and mean-field current (D)
for the two systems. In all panels, we show the last 50 s of trajectories of 600
s, initialized close to a synchronized state for σ = 0 k ohm (homogeneous
system) and σ = 0.13 k ohm (heterogeneous system).

(Fig. 5.7B). Accordingly, the heterogeneous system exhibits a smaller synchronization

error and a more regular rhythm, as demonstrated in Figs. 5.7C and D.

5.8. Concluding remarks

It is often challenging, if not impossible, to completely eliminate component mis-

matches in coupled systems. Our results suggest that, instead of trying to erase these

imperfections (often to no avail), one may be able to take advantage of them to promote

synchronization required for the system to function. Indeed, our theory, simulations, and

experiments consistently show that synchronization can be stabilized by intermediate lev-

els of random oscillator heterogeneity. The fact that no fine-tuning of the heterogeneity

profile is needed to induce synchronization can be valuable for controlling synchronization
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in both technological and biological systems. For example, it is often important in appli-

cations to generate high power, high frequency voltage oscillations in electric circuits. A

single Josephson junction can achieve oscillations as fast as a terahertz, but only with low

power output [235]. It is thus desirable to couple many Josephson junctions together and

use their synchronized oscillations to increase power. While in practice no two junctions

are perfectly identical, our results indicate that it might be possible to boost the perfor-

mance of coupled Josephson junctions by amplifying rather than reducing the existing

mismatches.

In physiology, many important rhythmic processes also depend on the coordination

and coherence among a diverse population of cells [91]. The heartbeat, for example, is

generated by the mutual entrainment of thousands of pacemaker cells in the sinoatrial node

[170, 154], whereas the sleep-wake cycle is regulated by the rhythmic and synchronized

oscillation of circadian cells in the suprachiasmatic nucleus [141, 99, 286]. Our findings

thus raise the question of whether the heterogeneity among pacemaker or circadian cells

is a fundamental limitation of the biology, or, instead, a feature selected by nature to

promote synchronization and stabilize vital rhythms in living organisms.

The effect of disorder is also one of the central focus in condensed matter physics

[181]. For example, exotic materials such as topological insulators have attracted vast

amount of attention over the past decade [110, 228]. A defining property of topological

insulators is the existence of edge states that are protected by time-reversal symmetry,

which makes the states robust to weak disorder. In the context of oscillator networks, we

have been able to go one step further and show that synchronization states may not only

be immune to but also thrive on disorder.
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It is worth pointing out connections between the phenomenon described here and

noise-induced synchronization previously reported in the literature [319, 289]. It has

been found that spatially correlated (i.e., common) noise can enhance synchronization

both when the oscillators are coupled [179] and uncoupled [282, 180], even if the noise

is temporally uncorrelated (i.e., white). In contrast, the disorder we consider here are

spatially uncorrelated and temporally quenched. It was recently shown that uncorrelated

noise can even outperform common noise in increasing coherence when oscillators are

nonidentical [186]. Thus, understanding the interplay between noise and oscillator het-

erogeneity poses an intriguing challenge for future research.

Bringing the analogy one step further, stochastic resonance [33, 169, 300, 86] and

coherence resonance [87, 229, 225, 295] are also phenomena for which order can emerge

from disorder. In those cases, the signal-to-noise ratio is maximized for intermediate

noise intensity. Just as noise-induced synchronization and the resonance phenomena have

found abundant biological and engineering applications, we believe the relation between

disorder and coherence uncovered here should play an important role in numerous natural

and man-made systems. Future studies further exploring this relation in specific systems

will undoubtedly deepen our understanding of collective behaviors in general and lead to

new ways to control the dynamics of interconnected components.
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CHAPTER 6

Synchronizing Chaos with Imperfections

Previous research on nonlinear oscillator networks has shown that chaos synchroniza-

tion is attainable for identical oscillators but deteriorates in the presence of parameter

mismatches. Here, we identify regimes for which the opposite occurs and show that oscil-

lator heterogeneity can synchronize chaos for conditions under which identical oscillators

cannot. This effect is not limited to small mismatches and is observed for random oscillator

heterogeneity on both homogeneous and heterogeneous network structures. The results

are demonstrated experimentally using networks of Chua’s oscillators and are further sup-

ported by numerical simulations and theoretical analysis. Since individual differences are

ubiquitous and often unavoidable in real systems, it follows that such imperfections can

be an unexpected source of synchronization stability.

This chapter is based on the joint work with Yoshiki Sugitani and Adilson E. Motter.

6.1. Background

Synchronization in networks of chaotic oscillators is a remarkable phenomenon that

is now well established theoretically and experimentally [218], with implications for nu-

merous biological and technological systems [290, 174, 75]. Two conditions are generally

assumed for this phenomenon to occur: (i) that the coupling strength be sufficiently large

and (ii) that the oscillators be sufficiently identical. If the coupling is too weak, the

oscillators evolve mostly independently from each other, and their trajectories tend to
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diverge due to sensitive dependence on initial conditions—a hallmark of chaos [204]. On

the other hand, if the oscillators are not sufficiently identical, their trajectories tend to

diverge due to sensitive dependence on parameters—another hallmark of chaos [204]—

even if the initial conditions are exactly the same and the coupling strength is otherwise

suitably strong.

Previous analyses of synchronization of nonidentical chaotic oscillators have focused

mainly on cluster synchronization [26, 62] and phase synchronization [237, 69, 124,

321, 262]. For example, oscillator heterogeneity has been shown to mediate relay syn-

chronization [78] and to induce frequency locking by suppressing chaos [50]. Global chaos

synchronization of nonidentical oscillators, on the other hand, has only been explored for

strong coupling and small parameter mismatches [234, 191, 266, 4], with an empha-

sis on the extent to which synchrony persists when the oscillators are slightly different

[277, 220]. These previous results consistently show that global synchronization degrades

as heterogeneity is increased.

A different body of work has recently shown that, for periodic oscillators, hetero-

geneity can in fact facilitate synchronization [193, 173]. A natural question is then

whether a similar effect would be possible for chaotic oscillators despite the fact that

their dynamics exhibit sensitive dependence on parameters and that a well-defined syn-

chronization manifold no longer exists for nonidentical chaotic oscillators. This question

is especially relevant in weak coupling regimes, in which synchronization is unstable for

identical chaotic oscillators.
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In this chapter, we experimentally demonstrate that oscillator heterogeneity can enable

synchronization of weakly coupled chaotic oscillators that would otherwise not synchro-

nize. This surprising result is demonstrated using Chua’s oscillators diffusively coupled

through their x components, which leads to a semi-infinite stability region for identical

oscillators. The robustness of the effect is established by showing that it occurs con-

sistently for random parameter heterogeneity and for different parameters respectively

associated with temporal and state variable scales. The effect is demonstrated across dif-

ferent network structures and is further supported by simulations and theoretical analysis.

The role of oscillator heterogeneity is isolated by showing the persistence of the effect for

structurally homogeneous networks of identically coupled oscillators. These results have

immediate implications for real systems, where heterogeneity is ubiquitous. They also

have foundational consequences for establishing an unanticipated relation between net-

work coupling, oscillator heterogeneity, and sensitive dependence on initial conditions. In

particular, although condition (i) cannot be violated in isolation without causing desyn-

chronization, our results show that the violation of (ii) (albeit detrimental by itself) can

mitigate the effect of infringing (i), and thus the synchronization of chaotic oscillators can

persist if both (i) and (ii) are violated together.

6.2. Experimental setup

We start by considering networks of N diffusively coupled oscillators described by

(6.1) τiẋi = F (xi)− k
N∑
j=1

LijH(xj),
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where τi denotes the time scale and xi is the state variable of the ith oscillator. The

functions F and H describe the dynamics of a single oscillator and their interactions,

respectively. The Laplacian matrix L = (Lij) represents the network structure and k is

the coupling strength.

The oscillators and coupling are implemented in our experiment using electrical cir-

cuits, as shown in Fig. 6.1. The oscillators consist of x-coupled Chua’s circuits [165] given

by

F (x) =


η{y − x− g(x)}

x− y + z

−y/γ

 , H(x) =


x

0

0

 ,(6.2)

g(x) = bx+ 1
2(b− a) (|x− 1| − |x+ 1|) ,(6.3)

where x, y, and z are the state variables and η, γ, a, and b are parameters. The variables

correspond respectively to the voltages vx and vy across the capacitors Cx and Cy and the

current iL through the inductor L (which is implemented using a generalized impedance

converter circuit). The parameters a and b are determined by a nonlinear resistor (NR)

with a piecewise linear characteristic made from op-amps (TL084) and resistors [122].

The tunable parameters of the oscillators are controlled through tunable capacitors. The

oscillators are coupled through the voltage vx, where the directionality of the coupling is

implemented using voltage followers. A light-emitting diode (LED) is attached to each

oscillator so as to monitor the oscillation visually, with the diode turning on for vx > 0

and off for vx < 0. The voltage v(i)
x for each oscillator is recorded in a computer through

an analog-to-digital converter (ADC) attached to the circuit.
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 j

Figure 6.1. Circuit diagram of coupled Chua’s oscillators in our experiment.
The individual oscillators are coupled through their voltage v(i)

x , and an
LED is attached to each oscillator to visualize the voltage oscillations. The
capacitors are tunable and control the heterogeneity across the oscillators.

The circuit parameters and variables are associated with the dimensionless quantities

in Eqs. (6.1)-(6.3) as follows:

τi =
C(i)
y

C̄y
, k = η

R

r
, η =

C(i)
y

C
(i)
x

, γ = C(i)
z R1R3R4

C
(i)
y R2R2

,

a = m1R, b = m0R, x(i) = v(i)
x

Bp

, y(i) =
v(i)
y

Bp

, z(i) = i
(i)
L R

Bp

,

where C̄y = 1
N

∑N
i=1C

(i)
y , m1 and m0 are determined by the NR, and Bp depends on

both the saturation voltage of the op-amps and the resistors connected to them [122].

The dimensionless time used in Eq. (6.1) is defined as t′ = t/(RC̄y) and, without loss

of generality, it follows that the mean time scale is τ̄ = 1
N

∑N
i=1 τi ≡ 1 (this condition

is also imposed in our simulations and analysis). Unless noted otherwise, the oscillator
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parameters are fixed at η = 10, γ = 0.056, a = −1.44, and b = −0.72, which gives rise to

a double-scroll chaotic attractor in the absence of coupling [161]. These parameters are

realized in the experiment by setting R1 = R2 = R3 = 1kΩ, R = R4 = 1.8kΩ, C̄y = 5.7µF,

Bp = 1.3V, m0 = −0.4mΩ−1, and m1 = −0.8mΩ−1, and keeping the capacitance ratios as

(6.4) C(i)
y = 10C(i)

x , C
(i)
z = C(i)

x ,

which ensure the same η and γ values across all oscillators. The capacitors C(i)
y , which

control the time scales τi, are tuned to vary the heterogeneity among the oscillators, and

the resistors r are changed to modify the coupling strength k.

6.3. Synchronization emerges from random oscillator heterogeneity

We first analyze in Fig. 6.2(a) the experimental time series of v(i)
x for a directed ring

network of five oscillators, where the coupling strength is below the synchronization tran-

sition threshold for the identical oscillators. The upper panel confirms that, for homo-

geneous time scales, the trajectories of the oscillators diverge from each other and the

system moves away from the synchronous chaotic state. In the lower panel, we introduce

a random perturbation to the time scales, as indicated on the network image. Although

the synchronization manifold x1 = · · · = xN is no longer invariant, the heterogeneous

system remains closely synchronized for the duration of the experiment and, collectively,

exhibits double-scroll chaotic dynamics comparable to those of the uncoupled oscillators.

Figure 6.2(b) shows similar result for a random network with nonuniform indegrees. Once

again, for the subcritical coupling strength considered, the synchronization is lost in the

homogeneous system but persists in the heterogeneous system.



122

4.2 4.4 4.6 4.8 5.0
-5

0

5

4.2 4.4 4.6 4.8 5.0
-5

0

5

Z = 0.68

Z = 0.35

Z = 0.10

4.2 4.4 4.6 4.8 5.0
-5

0

5

4.75 4.8

-5

0

5

Z = 2.26

1.000

1.000 1.000

1.000 1.000

1.018

1.088 0.895

1.053 0.947

1.035

1.000 1.123

0.895 0.947

1.000

1.000 1.000

1.000 1.000

(b)

(a)

4.2 4.4 4.6 4.8 5.0
-5

0

5

Figure 6.2. Experimental time series of the voltage v(i)
x in two different

networks: (a) directed ring for k = 8.18 and (b) random network for k = 5.
Left: network structures, where each node is labeled with the time scale
τi, and the corresponding synchronization errors Z. Right: time series
after the initial transient colored by oscillator for initial conditions close to
the synchronous state, showing that chaos synchronization is stable in the
heterogeneous system but not in the homogeneous one.

The degree of synchronization in our experiment is further quantified by calculating

the synchronization error Z. We first define

(6.5) evx =
〈√√√√ 1

N

N∑
i=1

[
v

(i)
x (t)− v̄x(t)

]2 〉
,
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where v̄x(t) is the average of v(i)
x (t) over the oscillators at time t, and 〈·〉 denotes the

time average over a period of 5 seconds after the initial transient. The synchronization

error Z is then calculated as the average of evx over the experimental trials (taken to be

5 in Fig. 6.2). In Fig. 6.2(a), for example, the synchronization error for the homogeneous

system is Z = 2.26, whereas for the heterogeneous system it is Z = 0.10.

To explore the effect of random heterogeneity more systematically, we focus on a

minimal system of three circuit oscillators. Figure 6.3(a) shows the synchronization error

Z in the (τ1, τ2) parameter space, for τ3 satisfying τ3 = 3 − τ1 − τ2. The center of the

image (τ1, τ2, τ3) = (1, 1, 1) corresponds to the homogeneous system, which is characterized

by a large synchronization error. As we move away from the center, regardless of the

direction, Z eventually decreases to a value closer to zero. The contours in the figure

show the standard deviation σ among the τi. We see that in almost all directions Z

decreases abruptly when σ becomes larger than 0.05, which indicates that the oscillator

heterogeneity consistently promotes chaos synchronization in our system.

To further substantiate these results, we perform numerical simulations for the same

network and parameters using the model in Eqs. (6.1)-(6.3). In our experiments, the

saturation of the output from the op-amps limits the amplitude of the voltages vx and

vy. However, because this aspect of the experiment is not explicitly accounted for in

the model, desynchronization in the numerical simulations would cause the divergence

of the state variables to infinity due to the lack of saturation. Thus, in the numerical

results presented in Fig. 6.3(b), we use P (ex > 0.5/Bp) as the measure of synchronization,

which denotes the probability that ex ≡ evx/Bp is larger than 0.5/Bp and is calculated

based on 36 independent trials for each parameter set. Compared with the experiments,
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Figure 6.3. Experimental and numerical results for a directed ring network
of three oscillators. (a) Synchronization error Z from the experiments,
where the contour lines indicate the standard deviation of τi. The outsets
show representative examples of the time series of v(i)

x for the corresponding
parameters. (b) Results from numerical simulations, which are in qualita-
tive agreement with the experimental data. Each data point is determined
from 10 experimental trials in (a) and 36 simulated trials in (b), each cor-
responding to a random initial condition. The coupling strength is set to
k = 5.

our numerical simulations show qualitatively similar transitions to synchronization in all

directions of the parameter space (τ1, τ2) as the heterogeneity is increased but for a

slightly larger value of σ. Given the idealized nature of the model in Eqs. (6.1)-(6.3), the

agreement between the experiments and simulations is impressive, and it indicates that

the model successfully captures the essence of the experimental system.

Having shown experimentally that random parameter heterogeneity facilitates syn-

chronization, we turn to the analytically tractable case of small mismatches to provide

insight into this counter-intuitive observation. To this end, we adapt the extended master

stability approach originally developed in Ref. [277], which enables the stability analysis

of synchronization in networks of nearly-identical dynamical systems. Equation (6.1) can
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be rewritten as,

(6.6) ẋi = F̂ (xi, τi)− k
N∑
j=1

LijĤ(xj, τi),

where F̂ (xi, τi) = F (xi)/τi and Ĥ(xj, τi) = H(xj)/τi. Assuming that the parameter

mismatches δi = τi − τ̄ are small, we can derive an extended master stability function

Λ(α, β) to determine the synchronization stability. The function Λ(α, β) is the largest

Lyapunov exponent of the variational equation

(6.7) ξ̇ =
[
DxF̂ (x̄, τ̄)− αDxĤ(x̄, τ̄)

]
ξ +

[
Dτ F̂ (x̄, τ̄)− αDτĤ(x̄, τ̄)

]
β,

where D represents the Jacobian operator and x̄ is the trajectory of a single oscillator

with the time scale set to the mean time scale τ̄ . Here, ξ is the perturbation mode that

corresponds to the eigenvalue λi of the modified graph Laplacian G = (Gij) defined by

Gij = Lij − 1
N

∑N
i=1 Lij. The parameter α = kλi is determined by the coupling strength

k and the eigenvalue λi, and β = wT
i δ is the inner product of the parameter mismatch

vector δ = [δ1, · · · , δN ]T and the left eigenvector wi of G corresponding to λi. Thus, the

extended master stability function Λ(α, β) depends on the coupling strength and network

structure encoded in α as well as the oscillator heterogeneity encoded in β.

Figure 6.4 shows Λ(kλ, β) as a function of β for different values of k, and λ correspond-

ing to the most unstable mode of the system in Fig. 6.3. As we increase the heterogeneity,

measured as |β|, the function Λ decreases and reaches a minimum for |β| ≥ 0.06 for all

relevant k. This theoretical result confirms that synchronization stability can be improved
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Figure 6.4. Dependence of Λ on |β| for the oscillator network considered
in Fig. 6.3 and a range of values of the coupling strength k. In all cases,
the stability is predicted to improve as heterogeneity is increased from zero,
reaching an optimum for intermediate values of |β|.

by increasing oscillators heterogeneity, in further support of the experimental results in

Fig. 6.3.

There are two approximations involved when assessing stability using the formalism

above. First, because the analysis is perturbative, the δi are assumed to be small. Sec-

ond, the synchronization trajectory of the heterogeneous oscillators is assumed to be well

represented by the trajectory of a single oscillator with τ = τ̄ (the mean time scale in the

network). Because these approximations become increasingly less reliable as heterogene-

ity increases, the accuracy of the prediction tends to deteriorate for large heterogeneity.

For k = 5, for example, the experimental system synchronizes for sufficiently large hetero-

geneity despite the fact that the corresponding Λ calculated using Eq. (6.7) never becomes

negative. This result suggests that the predictions generated using the extended master

stability function are conservative for our system.
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Figure 6.5. Synchronizing effect of heterogeneity in γi from (a) experiments
and (b) numerical simulations. In each panel, the network, undeclared
parameters, and plotted quantities are the same as in Fig. 6.3.

Thus far we have focused on the effect of heterogeneity in the time scales τi. While the

time scale is a natural parameter to consider, as it allows probing the effect of heterogene-

ity when the chaotic properties of the dynamics are manifestly preserved, the phenomenon

reported here is not limited to τi and can also be observed for other parameters. This is

illustrated in Fig. 6.5, both experimentally and numerically, where we relax the second

condition in Eq. (6.4) to allow the parameter γ to take different values γi across different

oscillators. The network and parameters are the same as in Fig. 6.3, except that in this

case all τi are set to 1 and the γi are individually varied under the constraint that the av-

erage among the oscillators is kept fixed as γ̄ = 0.056. Our numerical simulations indicate

that similar results also hold when the parameter η is heterogeneous across oscillators. It

follows that generic parameter mismatches can consistently improve synchronization in

networks of Chua’s oscillators, and we believe the same phenomenon should be observed

in other networks of coupled chaotic systems.
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6.4. Concluding remarks

For the oscillators and coupling function considered in this study, the stability region

is semi-infinite as a function of the coupling strength, which in particular shows that the

effect described is not reminiscent of a compromise between short and long wavelength

instabilities. For different oscillators and/or coupling functions, the stability region can be

finite [217], and for such systems there is a limit on the number of identical oscillators that

can remain stably synchronized in specific network configurations, such as ring and star

networks. It is a natural question for future research to consider whether systems with a

finite stability region can exhibit the effect described here and, if so, whether heterogeneity

would allow for a larger number of oscillators to remain stably synchronized in the same

network configuration.

Our demonstration that parameter heterogeneity can enable rather than halt syn-

chronization has several implications. In particular, it completes a full circle in revealing

the interplay between chaos and coupling interactions. Early work on synchronization

between coupled oscillators showed that sufficiently strong coupling can mitigate sensi-

tive dependence on initial conditions. By demonstrating that parameter heterogeneity

can enable synchronization below the synchronization transition of identical oscillators,

this work shows that even weak coupling can mitigate sensitive dependence on param-

eter assignment—and thus on initial conditions—and lead to convergence rather than

divergence between the trajectories of mismatched systems. Thus, our findings show

that oscillator heterogeneity can consistently reduce the effective coupling threshold for

synchronization. In man-made systems, this has the important implication that experi-

mental imperfections may become an unexpected source of synchronization stability. In
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natural systems that rely on synchronization, it also suggests the possibility of observed

mismatches being the result from evolutionary pressure to favor synchronization.
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CHAPTER 7

Critical Switching in Globally Attractive Chimeras

We report on a new type of chimera state that attracts almost all initial conditions and

exhibits power-law switching behavior in networks of coupled oscillators. Such switching

chimeras consist of two symmetric configurations, which we refer to as subchimeras, in

which one cluster is synchronized and the other is incoherent. Despite each subchimera

being linearly stable, switching chimeras are extremely sensitive to noise: Arbitrarily small

noise triggers and sustains persistent switching between the two symmetric subchimeras.

The average switching frequency scales as a power law with the noise intensity, which is

in contrast with the exponential scaling observed in typical stochastic transitions. Rig-

orous numerical analysis reveals that the power-law switching behavior originates from

intermingled basins of attraction associated with the two subchimeras, which, in turn, are

induced by chaos and symmetry in the system. The theoretical results are supported by

experiments on coupled optoelectronic oscillators, which demonstrate the generality and

robustness of switching chimeras.

This chapter is based on the joint work with Zachary G. Nicolaou, Joseph D. Hart,

Rajarshi Roy, and Adilson E. Motter. The presentation closely follows Ref. [316].

7.1. Background

The relationship between symmetry and synchronization underlies many recent dis-

coveries in network dynamics. Symmetries influence the possible dynamical patterns in a
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network [219, 96] and can either facilitate [187, 197, 311] or inhibit [192, 241, 109]

synchronization. A particularly interesting symmetry phenomenon in networks is the

coexistence of coherent and incoherent clusters in populations of identically coupled

identical oscillators [133, 121]—the so-called chimera states [3]. Since chimeras have

less symmetry than the system itself, they represent symmetry-broken states [61] of

the network dynamics. Over the years, different forms of chimera states have been

discovered [252, 1, 157, 139, 308, 309, 305, 249, 256], which has been accompa-

nied by new results on robustness [104, 285, 159, 39, 287] and existence conditions

[202, 251, 17, 158, 185, 201, 22].

Early work on chimera states focused mainly on networks of phase oscillators in the

limit of a large system size [210], where dimension reduction is often possible by employing

the Ott-Antonsen ansatz [206, 207, 215]. For finite-size systems, some chimera states

have been shown to be long transients [304], while others have been shown to be stable

[224, 211] using the Watanabe-Strogatz ansatz [296, 160]. Recent research has placed

an increased emphasis on chimeras in finite-size networks of chaotic oscillators [199, 200,

250, 106, 59], which are important given the prevalence of chaos in physical systems

[44]. In that context, it has been shown that the stability of chimera states can be

studied rigorously using cluster synchronization techniques [106, 59].

Even for permanently stable chimeras, an important question is how carefully one has

to prepare the initial conditions in order to observe them. Early examples of chimera states

required specially prepared initial conditions [3, 1, 156], while more recent examples

include chimera states that emerge from a wide range of initial conditions [202, 253,

246, 308, 245, 129]. In the presence of global feedback control, some chimeras have



132

even been observed to attract almost all initial conditions [48, 258]. However, whether

globally attractive chimeras can emerge in the absence of control is still an open problem.

Because of the symmetry-broken nature of chimera states, another important question

concerns the coexistence of multiple chimeras [156] and the possibility of transitions

between them [148]. When multiple chimeras coexist, adding fluctuation or mismatch

terms may induce switching events between them. This phenomenon has been studied

under the name of “alternating chimeras” [135, 54, 249]. In previous studies, finite

transition barriers must be overcome for transitions between otherwise persistent chimeras

to occur. Accordingly, the transition rates are expected to scale exponentially with noise

intensity.

Here, we report on switching chimeras, which are chimera states that both exhibit

power-law dependence of the switching frequency on noise intensity and attract almost

all initial conditions in the absence of control. A switching chimera is comprised of two

symmetric metastable states—referred to as subchimeras—between which the switching

occurs. The power-law switching dynamics is a signature of critical behavior and stems

from a vanishing quasipotential barrier between the two metastable states. It follows that

the switching persists indefinitely for any nonzero noise intensity. Strikingly, when the

noise intensity is strictly zero, the symmetric subchimeras are linearly stable. Thus, the

deterministic dynamics settle into one of the two subchimeras, and, as in the original stud-

ies of chimeras, the state symmetry is broken. For any nonzero noise intensity, however,

the long-term dynamical symmetry is restored due to the persistent switching between

the two subchimeras. This dependence on noise intensity shares similarities with singular

limits [36], in that the asymptotic network dynamics are qualitatively different for zero
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and small noise. Our analytical and numerical results are further validated by an ex-

perimental demonstration of switching chimeras in networks of optoelectronic oscillators.

We suggest that switching chimeras can find applications in the study of intermittently

alternating dynamics in biological systems and the development of approaches to measure

small experimental noise.

The chapter is organized as follows. In Sec. 7.2, we introduce a representative system

exhibiting switching chimeras. The power-law dependence between the average switching

period and noise intensity is presented in Sec. 7.3.1. This critical switching behavior is then

established and explained from various angles in the subsequent subsections. In Sec. 7.3.2,

we show that it arises robustly in a first-exit model derived from an extension of the

Freidlin-Wentzell theory. In Sec. 7.3.3, we further elucidate the mechanism underlying the

switching dynamics by describing the dominant transition paths and the role of invariant

saddles. In Sec. 7.3.4, we relate the scaling in the switching dynamics with the existence

of transition paths of arbitrarily small action and compare it to critical phenomena in

phase transitions. In Sec. 7.3.5, we establish a connection between power-law switching

and intermingled basins of attraction. Experiments confirming switching chimeras and

their power-law scaling in a network of optoelectronic oscillators are presented in Sec. 7.4.

In Sec. 7.5, we discuss connections between switching chimeras and other phenomena in

physical and biological systems. Finally, we present our concluding remarks in Sec. 7.6.

7.2. Computational observation of switching chimeras

We consider 2n-node networks formed by two rings of n nodes, with nearest-neighbor

coupling of strength σ in each ring. The two rings are all-to-all coupled by weaker links
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of strength cσ for some 0 < c < 1. In this way, all the nodes are identically coupled, as

shown by the network diagram in Fig. 7.1(a). We assume the oscillators are diffusively

coupled, so the network can be represented through a Laplacian matrix in the dynamical

equation. Adding to each node an uncorrelated Gaussian noise term of zero mean and

tunable standard deviation ξ (which we refer to as the noise intensity) and writing down

the coupling explicitly, the resulting stochastic dynamical equation for the first ring reads:

x
(1)
i [t+ 1] =

{
r f
(
x

(1)
i [t]

)
︸ ︷︷ ︸

intrinsic dynamics

+σ
(
f
(
x

(1)
i−1[t]

)
+ f

(
x

(1)
i+1[t]

)
− 2f

(
x

(1)
i [t]

))
︸ ︷︷ ︸

intracluster coupling

+ cσ
n∑
j=1

(
f
(
x

(2)
j [t]

)
− f

(
x

(1)
i [t]

))
︸ ︷︷ ︸

intercluster coupling

+ ξN
(1)
i [t]︸ ︷︷ ︸

Gaussian noise

}
mod 1, 1 ≤ i ≤ n,

(7.1)

where N (1)
i is Gaussian noise with unit standard deviation and the superscripts indicate

which ring the variables are associated with. The dynamical equation for the second

ring can be expressed similarly. (We note that it is not essential for the dynamics to be

discrete; an example of switching chimeras in systems with continuous-time dynamics is

presented in Appendix D.1.)

We first assume that the dynamics of each node is governed by a logistic map f(x) =

x(1 − x). For concreteness, we also set n = 6 and c = 0.2 unless mentioned otherwise.

Using a generalization of the master stability function formalism developed in Ref. [109],
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Figure 7.1. Globally attractive chimera state whose coherent and incoherent
clusters switch under extremely small noise. (a) Network system, formed by
two rings of logistic maps mutually coupled through weaker links [Eq. (7.1)].
(b) Parameter space color coded according to the linear stability of the
possible states, namely, whether both rings can synchronize (cyan), only
one ring can synchronize (purple), or neither ring can synchronize (red).
The four dots mark the parameters used in Fig. 7.2. (c) Direct simulation
of the system for σ = 1.7 and r = 3.05 [orange dot in (b)] for noise intensity
ξ = 10−10, illustrating the dynamics of a switching chimera. The top and
bottom panels show the oscillator states in each of the two rings (color
coded by oscillator, where single-color segments indicate synchronization),
while the center panel shows the synchronization error [defined in Eq. (7.2)]
in each ring.

we can calculate the maximum transverse Lyapunov exponent associated with chimera

states efficiently (Appendix D.2). In particular, we find parameters under which

i) the two clusters cannot be simultaneously in stable synchronous states (i.e., any

solution satisfying x(1)
i [t] = s1[t], x(2)

i [t] = s2[t] for all i is linearly unstable);

ii) one of the clusters can be in a stable synchronous state if the other cluster is not.

Inside the region where both conditions are satisfied, coherence is induced by incoherence,

meaning that synchronization in one cluster is stabilized by desynchronization in the other

cluster. Figure 7.1(b) shows that the system in Fig. 7.1(a) has a large parameter region

(purple) in which these two conditions are satisfied. In that region, chimera states are

linearly stable and do not coexist with stable globally synchronized states.
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To confirm that the desynchronized ring is indeed in an incoherent state, we run direct

simulations7 from random initial conditions for 108 iterations under noise of intensity

ξ = 10−10. Figure 7.1(c) shows representative trajectories and associated synchronization

errors for σ = 1.7 and r = 3.05. The synchronization error in the j-th cluster is defined

as

(7.2) ej :=

√√√√ n∑
i=1

‖x(j)
i − x̄(j)‖2

n
,

where ‖x‖ = min(|x|, 1− |x|) and x̄(j) is the mean of x(j)
i over all i.

The system exhibits not only chimera dynamics but also persistent transitions in which

the coherent and incoherent rings switch roles: As one ring loses synchrony and becomes

incoherent, the other ring synchronizes. Moreover, as we show below, the switching ob-

served here is critical—the transition rate depends on the noise intensity as a power law

and switching can be triggered by arbitrarily small noise. This power-law dependence dis-

tinguishes switching chimeras from previously reported “alternating chimeras,” in which

the transitions either are forced by large fluctuation terms [148, 135, 54, 249] or rely

on heteroclinic dynamics [112, 37, 94]. In the first case, there are finite barriers sepa-

rating the different states, while in the second case each state is inherently unstable and

switching occurs in the absence of noise.

The persistence of switching chimeras under many transition cycles suggests it is

globally attractive. To verify that this is indeed the case, we evolve the system for

104 iterations starting from 106 different random initial conditions for σ = 1.7 and

7Simulation code available at https://github.com/y-z-zhang/switching-chimeras

https://github.com/y-z-zhang/switching-chimeras
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r = 2.9, 2.95, 3.0, and 3.05 [dots in Fig. 7.1(b)]. In all tests, the oscillators are swiftly

attracted to the chimera state and no other attractors are observed.

7.3. Power-law switching

7.3.1. Extreme sensitivity to noise

Next, we present numerical results characterizing the effect of noise intensity ξ on the

average switching period T . Figure 7.2 shows that, as one approaches the boundary of

the chimera region [from the green dot to the orange dot in the bottom right of Fig. 7.1(b)],

T decreases and switching becomes more frequent. For each fixed value of r, the average

switching period increases as the noise intensity decreases, with scaling that follows a

power law. It is remarkable that even noise of intensity as small as ξ = 10−15 (the

resolution limit of computers using double-precision floating-point format) can induce

frequent switching.

This switching between the coherent and incoherent clusters does not contradict the

fact that synchronization in one cluster is linearly stable if the other cluster is incoherent.

This is the case because linear stability analysis assumes the perturbations to be infinites-

imally small, whereas finite-size perturbations, no matter how small, can still grow large

enough along the unstable portions of a chaotic attractor to disrupt synchrony in the

coherent ring and induce switching.

The power-law scaling of the average switching period and, consequently, the ex-

treme noise sensitivity of chimera states, makes the switching behavior observed here

“anomalous” in the sense that it appears to contradict the Freidlin-Wentzell theory [81].

According to that theory, for a stochastic system with deterministic dynamics F and a
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Figure 7.2. Average switching period T as a function of the noise intensity
ξ for σ = 1.7 and various values of r [dots in Fig. 7.1(b)]. The switching
periods are extracted from long time series of switching chimeras obtained
by simulating Eq. (7.1) for different values of ξ. The numbers indicate the
scaling exponents and are obtained through least-square fit (slopes of the
solid lines).

noise term of intensity ξ,

(7.3) x[t+ 1] = F (x[t]) + ξN [t],

the rate of transition from one metastable8 state A to another metastable state B scales

as exp(−SA→B/ξ2), and the first exit time scales as exp(SA→B/ξ2) [297]. Here, SA→B

is the infimum of the Freidlin-Wentzell action among all paths X connecting state A to

state B:

(7.4) SA→B := 1
2 inf

X
X[0]∈A
X[m]∈B

m−1∑
t=0
‖X[t+ 1]− F (X[t])‖2.

8We consider a state to be metastable if it is linearly stable in the absence of noise but only has a finite
lifetime when noise is present.
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The infimum of the action measures how much one has to work against the deterministic

part of the dynamics to induce a transition from A to B. This quantity is also known in

the literature as a quasipotential barrier [322] and is analogous to a potential barrier for

transitions in gradient systems.

7.3.2. First-exit problem in log-error space

Although the power-law scaling observed for switching chimeras and the exponential scal-

ing predicted by the Freidlin-Wentzell theory seem incompatible at first glance, we can

establish a connection between them. We first note that the synchronization error in-

side the coherent ring usually fluctuates close to an error floor determined by the noise

intensity, but switching can be triggered by rare events that drive the error all the way

to an error ceiling determined by the synchronization error of the incoherent ring [for an

example, see the middle panel of Fig. 7.1(c)]. Moreover, since the variational equation

acts multiplicatively on the synchronization error see Appendix D.2), the error naturally

evolves on a log scale as long as the linearization around the synchronization manifold is

still valid.

Motivated by these observations, we focus on an attribute ε, defined as the logarithm

of the synchronization error inside the coherent ring:

(7.5) ε := ln (min{e1, e2}) .

As a first approximation, the dynamics of ε can be modeled as a biased one-dimensional

random walk confined within two boundaries, corresponding to the error floor and the

error ceiling. At each step, ε has probability p of moving up a fixed distance d1 and
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Figure 7.3. Modeling transitions in switching chimeras. (a) Illustration of
a random walk model in the log-error space, where a switching event is
triggered when the walker reaches the error ceiling. The time series is
colored differently after each switching event. (b) Distribution of the local
Lyapunov exponents associated with Eq. (7.1) for σ = 1.7 and r = 3.05,
which is used to refine the random walk model for the switching chimeras.
(c) Power-law scalings predicted by the random walk model and its refined
versions (dashed lines). The scaling obtained from direct simulations of
Eq. (7.1) is also shown for comparison (solid orange line).

probability 1− p of moving down a distance d2. The random walker starts from the error

floor, and it never goes below that boundary. Every time ε reaches the error ceiling,

we consider that a switching event has occurred and reset ε to the lower boundary. An

illustration of this process can be found in Fig. 7.3(a).

To derive a relation between the average switching period T and the interboundary

distance D in the random walk model, we note that when pd1 < (1− p)d2 and D � d1,2

this is a first-exit problem. Thus, according to the Freidlin-Wentzell theory,

(7.6) T ∝ exp(λD),

where λ is some constant determined by p, d1, and d2. Now recall that D is determined

by the distance between the error floor and error ceiling. The error floor is given by ln(ξ),

and, without loss of generality, we set the error ceiling to be 1. Thus, D = ln(1)− ln(ξ) =
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ln(ξ−1), and Eq. (7.6) becomes

(7.7) T ∝ ξ−λ.

This scaling reproduces the power-law relation between the average switching period T

and the noise intensity ξ observed in Fig. 7.2.

We now turn to a more quantitative analysis to support the idea that the switching

events in the original system can be inferred from the one-dimensional attribute ε. Starting

with the system in Eq. (7.1), we compute the growth rate of the synchronization error in

the coherent ring ε[t+ 1]− ε[t] at each iteration. The distribution of this quantity, which

we call the local Lyapunov exponent, is shown in Fig. 7.3(b) for σ = 1.7 and r = 3.05.

Of all the local Lyapunov exponents sampled, 35% are negative, with a mean of −0.46;

the remaining 65% of the exponents are positive, with a mean of 0.19. Because e is a

one-dimensional variable, the Lyapunov exponent that determines its asymptotic stability

at 0 is given by averaging over the local Lyapunov exponents from t = 0 to t =∞. Since

−0.46 × 0.35 + 0.19 × 0.65 < 0, although 65% of the chaotic attractor is repelling, the

chimera state is actually linearly stable. From the above information, we can set p = 0.65,

d1 = 0.19, and d2 = 0.46 in our random walk model and calculate the relation between

the average switching period T and the noise intensity ξ.

The brown circles in Fig. 7.3(c) indicate how T scales with ξ for this random walk

model; they follow a well-defined power law, as expected from Eq. (7.7). But it is also

clear that a random walk is not a very accurate picture for the dynamics of ε, since

the predicted average switching periods are much larger than the ones obtained from

simulating Eq. (7.1) (orange circles). This discrepancy is partially due to the crude
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approximation we made when fixing the step sizes of the random walk to be constants.

If we choose the step size as well as the direction of the random walk according to the

distribution in Fig. 7.3(b), we observe the scaling indicated by cyan circles in Fig. 7.3(c),

which is closer to the true scaling. However, the predicted exponent of −0.26 is not yet

close to the true value of −0.12, which indicates that something is still missing.

The approach we just took is equivalent to shuffling the time series of the local Lya-

punov exponents and using the shuffled sequence to generate the random walk. This

shuffling preserves the information of the full distribution but ignores temporal correla-

tions. Because the stable and unstable portions of a chaotic attractor are usually not well

mixed, the actual evolution of ε is a non-Markovian process, and we expect the tempo-

ral information to be relevant. This effect tends to correlate the upward movements of

ε, which, in turn, makes it more likely for ε to reach the error ceiling and shortens the

average switching period for small noise. When the temporal information is incorporated

into the model (by using the original sequence of local Lyapunov exponents rather than

randomly sampling them), we arrive at a more realistic model for the switching dynam-

ics, which takes the form of a deterministic walker. The prediction of this refined model

(purple circles) is in excellent agreement with the true scaling (orange circles).

It is important to note that the power-law scaling is preserved even after we allow

variable step sizes and strong correlation between steps in our model. We thus suggest

that Eq. (7.7) is robust and that power-law switching is expected for a general class of

systems. Transitions in such systems can be modeled as a first-exit problem in which the

distance to the exit increases linearly with the logarithm of the inverse of noise intensity.
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7.3.3. Transition pathways

We can gain a deeper understanding of the switching dynamics by investigating the tran-

sition paths connecting the two symmetric subchimeras. One natural question concerns

whether there is a single pathway or multiple pathways for the switching. If multiple path-

ways exist, do they intersect at key intermediate states? For the system in Fig. 7.1(a),

with n = 6, it turns out that there is only one dominant pathway when noise is small.

We illustrate the key transitions (T1 to T4) and intermediate states of this pathway in

Fig. 7.4. We later analyze an explicit realization of this pathway in Fig. 7.5, which pro-

vides strong numerical support for the following transition sequence:

(T1) Starting from one of the subchimeras, the incoherent ring occasionally visits near-

synchronized states (referred to as temporary clustering in Fig. 7.4).

(T2) The temporary clustering in the incoherent ring strongly correlates with the instabil-

ity windows in the coherent ring. This correlation is not surprising, since states with both

rings synchronized are unstable. Within those short windows, small noise or perturba-

tions applied to the coherent ring are amplified and lead to a short-wavelength bifurcation.

That is, the coherent ring partially desynchronizes and splits into two alternating groups

with different dynamics (oscillators in the same group remain synchronized). Reaching

this “activated state” is the only stage in which noise is needed, even though it can be

arbitrarily small.

(T3, T4) The state between T3 and T4 lives in an invariant subspace induced by the

rotational symmetry in each ring. In fact, the state is an invariant saddle and serves as

the key intermediate state connecting the two subchimeras. During T3, the system moves

along the stable manifold of the invariant saddle, and the six oscillators in the upper ring
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Figure 7.4. Dominant transition pathway between the two symmetric sub-
chimeras, which consists of the intermediary stages T1 to T4. Only T2 re-
quires activation from noise, which can be arbitrarily small but not strictly
zero; all other transitions follow directly from the deterministic dynamics of
Eq. (7.1). In particular, T3 and T4 follow the stable and unstable manifolds
of the invariant saddle, respectively.

converge to a synchronized state. During T4, the system moves away from the saddle

following its unstable manifold, where the partially desynchronized state in the lower ring

evolves into an incoherent state. The roles of the rings are now reversed, thus concluding

the entire sequence of transitions from one subchimera to the other.

The short-wavelength perturbation

(7.8) ∆sw(δ) = 1√
6

(δ,−δ, δ,−δ, δ,−δ),

where the i-th component of this vector is to be interpreted as a perturbation to the i-th

node in the ring, is the dominant instability in the coherent ring according to our linear

stability analysis and is the one being excited by noise during transition T2. To further

support this claim, we run direct simulations of Eq. (7.1), but with ∆sw filtered out

from the noise applied to each ring. This time, for noise intensity ξ ≤ 10−9, the average

switching period T becomes independent of ξ and always equals the average switching

period induced by round-off errors, as shown in Appendix D.3. These simulations confirm
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that the overwhelming majority of the switching events must be initiated through a short-

wavelength bifurcation in the coherent ring when noise is small9.

To better visualize the subchimeras and the invariant saddles, we project them onto

the mean state of each ring: x̄(1) = ∑
x

(1)
i /n and x̄(2) = ∑

x
(2)
i /n. Figure 7.5(a) shows the

projection of the two symmetric subchimeras colored in blue and orange, respectively. We

can see the fine structure of the subchimeras under this projection, which is indicative of

their fractal nature. In Fig. 7.5(b), we show the projection of the two invariant saddles

(red and green).

We now try to explicitly find a least-action path connecting the two subchimeras,

which can be challenging even for transitions between fixed points or periodic orbits

[297, 322]. In our case, the high dimensionality and the chaotic nature of the subchimeras

make the optimization of the transition path extremely difficult when using traditional

methods. Fortunately, the mechanism presented in Fig. 7.4 points to an efficient way

of finding paths of arbitrarily low action connecting the two subchimeras. We simply

wait for the incoherent ring to visit a near-synchronized state and then introduce a one-

time perturbation in the form of ∆sw(δ) to excite the short-wavelength bifurcation in the

coherent ring. If a transition is successfully triggered, the action of the transition path is

simply 1
2δ

2.

Using this strategy, we can easily find a transition path with action as small as 10−28

(i.e., δ around 10−14), which is shown in Fig. 7.5(c) and Fig. 7.5(d) for different projections.

The coordinate e′1 (e′2) in Fig. 7.5(c) is defined as the sum of the synchronization error

9The same result holds for all n > 2. A ring network with n nodes has eigenvalues λk = 4 sin2(kπ/n) and
eigenvectors ηk = (1, e 2πi

n k, e
2πi
n 2k, . . . , e

2πi
n (n−1)k)/

√
n. For Eq. (7.1), the leading instability is associated

with the largest eigenvalue. This corresponds to ηn/2 = (1,−1, 1,−1, . . . , 1,−1)/
√
n for n even and to

both η(n−1)/2 and η(n+1)/2 for n odd.
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Figure 7.5. Projections of invariant sets and transition paths. (a) Symmet-
ric subchimeras when projected onto the mean state of each ring. Each
subchimera is indicated by a different color. (b) Invariant saddle in Fig. 7.4
(and its symmetric counterpart) projected onto the mean state of each ring.
(c) Transition path with an action of 10−28 projected onto coordinates e′1
and e′2. Under this projection, the invariant saddle is projected onto the
lower left corner. The stable and unstable manifolds of the invariant saddle
are marked by s and u, respectively. The path starts at the blue subchimera
in the upper left corner and ends at the orange subchimera in the lower right
corner. (d) Same transition path as in (c) projected onto e1 and e2. The
perturbation that initiates the transition is marked by an arrow.

among the odd oscillators and the synchronization error among the even oscillators in the

first (second) ring. For this projection, the two subchimeras are found in the upper left and

the lower right corners, while the key invariant saddle connecting the two subchimeras

is projected onto the lower left corner (e′1 = e′2 = 0). It is informative to view the
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projected transition path in Fig. 7.5(c) in light of the pathway shown in Fig. 7.4: The

first two transitions (T1 and T2) correspond to the upper left corner, while the other two

transitions (T3 and T4) loop around the lower left corner as they follow the stable and

unstable manifolds of the invariant saddle closely. Conversely, the projected path provides

strong numerical support for the pathway illustrated in Fig. 7.4. However, the evidence is

not yet conclusive, as states with both rings synchronized also project onto the lower left

corner for the coordinates in Fig. 7.5(c). Could the two subchimeras be connected by an

unstable synchronized state instead of the invariant saddles in Fig. 7.4? The projection

to the synchronization errors e1 and e2 in Fig. 7.5(d) excludes this possibility, since the

path goes through the upper right corner (both rings desynchronized) rather than the

lower left corner (each ring synchronized). Multiple transition paths with action ranging

from 10−30 to 10−10 are tested, and they are all qualitatively identical to each other under

both projections. This evidence further supports the existence of a dominant transition

pathway for the observed switching between subchimeras.

7.3.4. Connections with critical phenomena

The fact that switching can be induced by arbitrarily small noise but not in the absence of

noise implies that (i) no matter how small the action of a transition path, we can always

find another path with even smaller action, and (ii) there is no zero-action path of finite

length connecting the two subchimeras. Thus, a least-action path does not exist in our

system. Instead, given an arbitrarily small upper bound on the available action, there are

always finite-length transition paths that meet that constraint. It follows that the infimum

of the action over all transition paths (i.e., the quasipotential barrier S separating the two
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subchimeras) vanishes. In Fig. 7.6(a), we show that the quasipotential barrier does indeed

vanish by applying a single perturbation ∆sw(δ) to the coherent ring, with δ ranging from

10−5 to 10−15. The distribution of the number of times a transition path is found through

this procedure shows that the landscape is highly nontrivial for paths of small action:

Transition barriers of all heights exist, and the height distribution follows a power law.

This claim is further supported by Fig. 7.6(b), where we show the action for 1000 different

transition paths, each obtained by applying ∆sw(δ) at a different time t (the same initial

condition is used for all simulations). One can see that the landscape varies wildly and

the associated action spans many decades. As we include more transition paths, deeper

and deeper valleys can be found, bringing the smallest action ever closer to zero.

The power-law distribution of barrier heights, in turn, gives rise to the power-law

scaling of the average switching periods shown in Fig. 7.2. This relationship follows

because the only transition paths that matter are the ones with action comparable to

the square of noise intensity. Although there are many more higher-action paths, the

probability of crossing those barriers is exponentially smaller. The argument is further

supported by the scaling exponents in Figs. 7.2 and 7.6, which differ only by a negative

sign.

There are intriguing parallels between what we find here and critical phenomena in

second-order phase transitions [269, 268]. For instance, in site percolation models, the

correlation (which quantifies the likelihood of two sites being connected) decays exponen-

tially with distance when the occupation probability is p < pc, but the decay changes to

a power law at the critical point p = pc. Here, the average switching period scales expo-

nentially with the inverse square of noise intensity, ξ−2, when the quasipotential barrier
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Figure 7.6. Action profile for transition paths. (a) Probability p of finding
small-action transition paths by introducing a short-wavelength perturba-
tion of magnitude δ in a single iteration. The simulations are performed
for ξ = 0 and the other parameters are the same as in Fig. 7.2. Paths
with arbitrarily small action exist but small-action paths become increas-
ingly more difficult to find as the available action is decreased, resulting
in power-law relationships between the probability p and the perturbation
size δ. Notice that the scaling exponents here match those in Fig. 7.2. (b)
Minimum action (1

2δ
2) needed to induce a transition by applying ∆sw(δ) at

a given time t, for ξ = 0, σ = 1.7, and r = 2.95. This highly structured
profile can be regarded as a visualization of the transition-barrier landscape
for switching chimeras.

has S > 0, but it is replaced by a power law when S = 0. There are finite barriers of

all heights between the two subchimeras when S = 0; similarly, in percolation, there are

finite clusters of all sizes at the critical point p = pc. The power laws uncovered here,

however, are more robust than those from the percolation theory. The latter happens

only at the critical point and requires fine-tuning, whereas here the power-law switching

persists for a wide range of parameters. In this sense, the analogy is perhaps closer with
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self-organized criticality [20, 21, 71], in which scale-invariance emerges in the absence of

fine-tuning.

7.3.5. Intermingled basins

By now, we have explained the “anomalous” power-law switching behavior from a first-

exit model in log-error space (Sec. 7.3.2) as well as by characterizing the action landscape

of transition paths (Sec. 7.3.4). In those characterizations, one can catch glimpses of chaos

lurking in the background, but its exact role is still unclear. In this section, we establish

a direct connection between power-law switching and riddled basins [8, 209, 208, 113,

205, 15, 152, 7, 242], which is possible only for chaotic attractors [16], thus bringing

the fundamental importance of the chaotic dynamics to the forefront.

Chaos has long been known to produce power laws by generating fractal structures

in state space [204]. For example, in the presence of fractal basin boundaries, a small

uncertainty ε in the initial conditions translates to an uncertainty of Aεα percent on the

final states, where prefactor A is a constant and α is the uncertainty exponent given by

the difference between the state-space dimension and the box-counting dimension of the

basin boundary [167]. In the case of riddled basins, the entire basin is its own (fractal)

boundary and α = 0. This means that, for any ε, the ε-neighborhood of an arbitrary

point in a riddled basin will always include points that are in the basin of some other

attractor [204].

In Fig. 7.7, we show a two-dimensional section of the twelve-dimensional state space

to visually illustrate that the attraction basin of each subchimera is riddled. Because

the two basins are mutually riddled, they are referred to as intermingled basins. In this
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Figure 7.7. Two-dimensional section of the state space showing intermin-
gled basins of the two subchimeras. The two basins, shown in blue and
orange, are fat fractals [204] intermingled with each other everywhere. Or-
ange points are attracted to the subchimera where the first ring is synchro-
nized, and the blue ones converge to the subchimera with the second ring
synchronized. There is a symmetry between the two basins with respect to
reflections across the diagonal, which originates from the reflection symme-
try of the network. The areas marked for magnification are intentionally
oversized to facilitate visualization. The choice of state-space section and
system parameters are specified in the text.

figure, the initial conditions for x(1)
6 and x(2)

6 are sampled independently from the interval

[0, 1], while the initial conditions for the other oscillators are specified as x(1)
i = x

(1)
6 /2 and

x
(2)
i = x

(2)
6 /2, where 1 ≤ i ≤ 5. We then simulate Eq. (7.1) for σ = 1.7 and r = 2.95 in

the absence of noise and record the subchimera attractor each trajectory is attracted to.

(There is nothing special about the choice of the parameters or the section of the state

space, since other choices lead to similar results.) One can observe intricate fractal-like
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structures in all parts of the two-dimensional section, for all resolutions considered (up

to pixels of size 10−10 × 10−10). There is also a symmetry between the two basins. If an

initial condition is in the basin of one subchimera, then its mirror image reflected along

the diagonal line must be in the basin of the other subchimera [i.e., if (x(1)
6 , x

(2)
6 ) = (a, b)

is blue, then (x(1)
6 , x

(2)
6 ) = (b, a) is orange]. This is the result of the reflection symmetry

between the two rings in Fig. 7.1(a).

Because the basins are intermingled, the basin of one subchimera has points arbitrarily

close to the other subchimera attractor, and vice versa, which gives rise to arbitrarily small

transition barriers in Fig. 7.6. Thus, the subchimeras are attractors in the sense of Milnor

[172] (i.e., attracts initial conditions of nonzero measure) but not in the sense of attracting

an open neighborhood of initial conditions containing the attractor.

Apart from the Freidlin-Wentzell action, the perturbation magnitude δ in Fig. 7.6 can

also be interpreted as a distance from the closest subchimera attractor. The probability

p then measures the fraction of the state space that converges to the opposite subchimera

when at distance δ from the subchimera attractor. As the initial conditions are taken

further away from one subchimera, it becomes more likely for the system to land in the

basin of the other subchimera. Conversely, as δ → 0, the probability of escaping to the

opposite subchimera approaches zero algebraically. This property is visualized using a

transverse section of the intermingled basins that directly connects the two subchimera

attractors, as shown in Appendix D.4.

Although arbitrarily small perturbations can drive the system out of a subchimera

attractor, both subchimeras are transversally stable according to linear stability analysis.

While seemingly incompatible, these two conditions can coexist when an attractor is
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transversally stable for the natural measure but unstable for some other invariant ergodic

measure. In fact, transversal stability for the natural measure and instability for at least

one other invariant ergodic measure are necessary conditions for riddled basins to occur

[16]. This mathematical statement is, in its core, similar to the intuitive explanation

given in Sec. 7.3.1 on why a system can be driven away from a linearly stable state by

arbitrarily small perturbations.

7.4. Experimental observation of switching chimeras

Thus far, we have focused on the theoretical analysis of networks of logistic maps,

which reveals remarkable features of a new chimera state, including intermingled basins

and switching triggered by arbitrarily small noise. To demonstrate that the theoretical

results can be observed under realistic conditions and for different oscillator dynamics, we

perform experiments on networks of coupled optoelectronic oscillators. As we show next,

our experiments confirm the existence of switching chimeras in physical systems.

The experimental setup is schematically shown in Fig. 7.8(a). A single optoelectronic

oscillator draws nonlinearity from a Mach-Zehnder modulator, which takes voltage x as

an input and outputs light of intensity sin2(x+ φ). The operation point φ is fixed at π/4

throughout the experiments. Time multiplexing and delays are used to realize multiple

oscillators from a single time-delayed feedback loop, which reduces apparatus costs and

allows for the realization of a large number of truly identical oscillators. The oscillators

are coupled together by a digital filter implemented electronically on a field-programmable

gate array (FPGA) according to a predetermined Laplacian matrix L = {Lij}. In this



154

Figure 7.8. Experimental realization of globally attractive switching
chimeras. (a) Schematic diagram of the optoelectronic system, where the
dashed box depicts our implementation of the coupling scheme. (b) Pa-
rameter space color coded according to direct simulations of Eq. (7.9). The
regions shown include switching chimeras (purple), nonswitching chimeras
(green), chimera death [309] (yellow), and incoherence (red). (c) Experi-
mentally measured average switching period T as a function of the noise
intensity ξ for β = 1.3 and two values of σ [dots in (b)]. The scaling
exponents annotated on the figure are obtained through linear least-square
fitting applied to the relationship between log(T ) and log(ξ). The exponents
obtained from experiments are in good agreement with those predicted from
simulations (shown in parentheses).

case, L describes the two-cluster network shown in Fig. 7.1(a). Further details of the

optoelectronic system can be found in Refs. [108, 107].

The main source of intrinsic noise comes from the measurement of light intensity,

including the noise introduced by the analog-to-digital converter (ADC) due to its finite

resolution. To best model the experimental system, we introduce independent Gaussian

noise to the oscillators at each iteration: I
(
x

(1,2)
i [t]

)
= sin2

(
x

(1,2)
i [t] +φ

)
+ ξN

(1,2)
i [t]. The

dynamical equation describing the optoelectronic oscillator network can then be written
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as

x
(1,2)
i [t+ 1] = β I

(
x

(1,2)
i [t]

)
+σ

(
I
(
x

(1,2)
i−1 [t]

)
+ I

(
x

(1,2)
i+1 [t]

)
− 2I

(
x

(1,2)
i [t]

))
+cσ

n∑
j=1

(
I
(
x

(2,1)
j [t]

)
− I

(
x

(1,2)
i [t]

))
,

(7.9)

where the noise term is implicitly included in I. In our experiments, we again set c = 0.2

and n = 6.

We first sweep the parameter space of feedback strength β and coupling strength

σ using direct simulations of Eq. (7.9). As shown in Fig. 7.8(b), switching chimeras are

predicted to occupy a significant portion of this space. Inside the switching chimera region

(purple), the red and green dots denote the parameters to be systematically investigated

in the experiments.

The dynamics exhibited by the experimental system is in many ways qualitatively

similar to that of coupled logistic maps. In particular, a clear pattern of irregular switching

between two subchimeras is observed for suitable parameters, as shown in Fig. 7.9(b). To

characterize the experimental dynamics quantitatively, we first test whether the power-

law relationship between the average switching time T and noise intensity ξ holds in the

experimental data. An important step in the data analysis is to estimate the level of

the intrinsic experimental noise, which we do by simulating Eq. (7.9) under different ξ

to extract T for a range of noise intensities. The simulation results are then compared

with the T observed in the experiments. For both parameter sets (β = 1.3, σ = 1.05

and β = 1.3, σ = 1.1), the simulations with noise intensity 0.0019 agree best with the

experiments. We thus choose Gaussian noise of intensity ξ1 to approximate the base-noise
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Figure 7.9. Statistics and dynamics of a switching chimera in the experi-
ments. (a) Distribution of switching periods for β = 1.3 and σ = 1.05 [green
dot in Fig. 7.8(b)]. (b) Portion of the experimentally measured time series
used to generate (a). These measurements are performed at the base-noise
level of the system, which is estimated to be 0.0019.

level intrinsic to the experimental system. It is worth noting that this technique can, in

principle, be extended to estimate the level of intrinsic noise in other oscillators, even

when the noise is extremely small—an outstanding problem for which, to the best of our

knowledge, no general approach currently exists.

To implement variable noise in the experiments, we introduce an additional Gaussian

noise term of tunable intensity ξ2 via the FPGA. Assuming that the intrinsic and external

noise terms are independent, the experimental system is effectively subject to a Gaussian

noise of intensity ξ =
√
ξ2

1 + ξ2
2 . Figure 7.8(c) summarizes the experimentally measured

T for different ξ from the lower bound 0.0019 all the way to 0.02. Each data point is

averaged over at least 20000 experimentally observed switching events. It can be seen

that the power-law relationship holds under realistic noise levels and is robust against the

imperfections typical of an experimental system. In addition, we also perform systematic

simulations to further confirm that the power-law scaling persists in the presence of a

small amount of heterogeneity among the oscillators (Appendix D.5).
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Figure 7.9(a) shows the distribution of the switching periods T extracted from 45000

switching events, for data collected from multiple experimental runs with β = 1.3, σ =

1.05, and ξ2 = 0. The distribution of periods is clearly exponential. This is a consequence

of the fact that, although the evolution of the synchronization errors e1 and e2 is non-

Markovian (Sec. 7.3.2), the switching events themselves are described by a Poisson process.

In particular, the experimental data show that the waiting period until the next switching

event is independent of the previous switching events. For such a memoryless process

with a constant transition rate, the time between switching events is guaranteed to be

exponentially distributed [240].

Our experimental results are further visualized using an animated spatiotemporal

representation of the time-series data presented in Fig. 7.9(b) (Appendix D.6). As in

the case of coupled logistic maps, the underlying state-space structure giving rise to this

dynamics is the intermingled nature of the attraction basins. Indeed, direct simulations

of Eq. (7.9) confirm that the basins of the two symmetric subchimeras are intermingled

(Appendix D.7).

7.5. Connections with biological and other physical systems

A switching chimera can be seen as a chimera state whose symmetry is not broken when

considering the long-term dynamics—asymptotically, one cannot distinguish between the

behavior of the two clusters. With this observation in mind, we can establish an intriguing

parallel between the switching chimera and the symmetry-breaking phenomenon of dipole

inversion [11]. Many small molecules, such as ammonia, have more than one (symmetry-

broken) ground state with nonvanishing dipole moments. However, due to quantum
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tunneling, an ammonia molecule switches rapidly between its two ground states, canceling

out the opposite dipole moments and restoring the broken symmetry. The same can be

stated for switching chimeras, since each of the two symmetric subchimeras has a broken

parity symmetry but the switching between them restores that symmetry. For larger

and heavier molecules, such as sugars or phosphorus trifluoride, dipole inversion is no

longer likely to be excited by quantum tunneling or even thermal fluctuations, and, thus,

the symmetry is spontaneously broken and nonvanishing dipole moments persist. We

observe that the tendency for transitioning between subchimeras also decreases in larger

systems, with the average switching period growing exponentially as the number of nodes

is increased (Appendix D.8).

It is instructive to notice that an exponential dependence of the average switching

period on system size is also observed for the magnetized states in the Ising model for

any nonzero temperature below the critical point [123, 140]. However, because there

is a finite energy barrier to overcome for transitions between the magnetized states, the

dependence of the average switching period on the inverse temperature (the analog of the

inverse square of noise intensity in our systems) is not power law but instead exponential.

Switching between symmetry-broken states are not limited to physical systems. In

particular, switching chimeras may have implications for aperiodic lateral switching in

biological systems, of which interhemispheric switching in songbirds during vocal pro-

duction is an example [293]. Other examples of lateral switching include alternating

eye movement in chameleons and fish [223], switching in neural activity inside the two si-

nuses of leech hearts [271], and unihemispheric sleep in dolphins, birds, and other animals

[230, 164]. A common aspect of these various processes is that they involve alternations
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in the activity between two approximately symmetrical lateral sides. Despite previous

progress [247], the underlying mechanism of lateral switching remains elusive. This is

especially the case for aperiodic lateral switching, since such cases cannot be easily mod-

eled by hypothesizing the existence of a central pattern generator or propagating wave

dynamics, as in previous alternating chimeras [148, 112, 37]. In the case of the songbird

zebra finches, for instance, the interhemispheric switching between song-control areas of

the brain is highly irregular, characterized by switching intervals ranging from 4 to 150 ms

[293]. Switching chimeras offer a simple mechanism by which a wide range of switching

intervals can emerge naturally, and, thus, suggest the possibility that aperiodic lateral

switching could be generated spontaneously (as opposed to, for example, being forced by

neurotransmitter release [138]).

7.6. Concluding remarks

The theoretical, computational, and experimental results presented here offer a com-

prehensive characterization of a novel class of chimera states that are globally attractive

and exhibit power-law switching dynamics. We extended the Freidlin-Wentzell theory

to derive the observed power-law scaling, and we demonstrated that there is no finite

quasipotential barrier separating the two symmetric subchimeras. This unexpected scal-

ing behavior, which should be contrasted with the exponential scaling observed for typical

noise-induced transitions [105, 47], was confirmed under realistic conditions in our ex-

periments using networks of optoelectronic oscillators. We also established a connection

between switching chimeras and intermingled basins, which provides insight into both
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phenomena. In particular, the latter explains why switching between subchimeras occurs

for arbitrarily small noise despite each subchimera being linearly stable.

We expect switching chimeras to be a common phenomenon in multilayer networks

with symmetry. These networks are generalizations of the two-layer networks considered

in Ref. [1]. In particular, switching between symmetric subchimeras is expected to be

possible for networks formed by any number of identically coupled identical layers, where

the layers themselves can have an arbitrary structure. Thus, while we focused on networks

with two subchimeras, our analysis extends naturally to other states and to a larger

number of switching configurations. From the dynamical perspective, we point to the

following conditions for the emergence of power-law switching behavior: (i) There are two

or more attractors and they are embedded in manifolds of dimension lower than that of

the state space; (ii) each attractor is chaotic and has transversally unstable periodic orbits

embedded within. If the transitions are not restricted to chimera states, the requirement

on the network structure can be further relaxed, as these conditions are often satisfied

even by single-layer oscillator networks.

Finally, we note that the observed high noise sensitivity of the switching dynamics

has far-reaching implications. It can be exploited, for instance, to detect small intrinsic

noise in oscillator systems—e.g., by using time multiplexing to create a network of such

systems that exhibits power-law switching. It also offers a potential explanation for irreg-

ular switching noticed in biological systems, which suggests that the dynamical behavior

described here may be observed in naturally evolved processes.
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CHAPTER 8

Mechanism for Strong Chimeras

Chimera states have attracted significant attention as symmetry-broken states ex-

hibiting the unexpected coexistence of coherence and incoherence. Despite the valuable

insights gained from analyzing specific systems, an understanding of the general physical

mechanism underlying the emergence of chimeras is still lacking. Here, we show that sta-

ble chimeras can arise because coherence in part of the system is sustained by incoherence

in the rest of the system. This mechanism may be regarded as a deterministic analog of

the phenomenon of noise-induced synchronization and is shown to underlie a broad class

of strong chimeras, which are chimera states with identically synchronized coherence as a

defining property. Recognizing this mechanism offers a new meaning to the interpretation

that chimeras are a natural link between coherence and incoherence.

This chapter is based on the joint work with Adilson E. Motter.

8.1. Background

Chimera states are a remarkable phenomenon in which coherence and incoherence co-

exist in a system of identically-coupled identical oscillators [210, 201]. Initially regarded

as a state that requires specific nonlocal coupling structure [133, 3] and/or specially

prepared initial conditions [1, 156], chimeras have since been shown to be a general phe-

nomenon that can occur robustly as a system (upon parameter changes) transitions from

coherence to incoherence [202, 48, 104, 253, 246, 158, 39]. Despite numerous efforts
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to elucidate the underlying principles [159, 251, 308, 250, 245, 249, 185, 129], in-

cluding irregular forcing in globally-coupled Kuramoto-Sakaguchi oscillators with delayed

self-feedback [308], currently no system-independent mechanistic explanation exists that

can provide broad physical insight into the emergence of chimeras.

Our goal is to bridge this gap by proposing a general mechanism for chimeras that is

not tied to specific node dynamics, network structure, or coupling scheme. We consider

the important class of permanently stable chimera states whose coherent part is identically

synchronized, which have been observed for both periodic [308, 246, 211] and chaotic

oscillators [106, 59, 316]. We also focus on parameter regions where global coherence is

unstable, so the chimeras may be observed without the need of specially prepared initial

conditions [202, 258, 308, 246, 245, 129, 59, 316]. Here, chimera states that i) are

permanently stable, ii) exhibit identically synchronized coherence, and iii) do not co-occur

with stable global synchronization are referred to as strong chimeras.

In this chapter, we characterize strong chimeras that emerge between a globally

synchronized state and a globally incoherent state as a bifurcation parameter is varied

(Fig. 8.1). In such chimera states, the coexistence of a synchronous and an incoherent

cluster challenges the intuition that inputs from the incoherent cluster would inevitably

desynchronize the other cluster. Yet, our analysis shows that incoherence in part of the

system in fact stabilizes the otherwise unstable coherence in the rest of the system, thus

preventing a direct transition from coherence to incoherence when the former becomes

unstable. This incoherence-stabilized coherence effect can be seen as a deterministic ana-

log of synchronization induced by common noise [321, 93, 179, 226] and serves as a

general mechanism giving rise to strong chimeras.
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Figure 8.1. Example scenario considered in this chapter. As a bifurcation
parameter is varied and the system transitions from coherence to incoher-
ence, an intermediate chimera region emerges.

We first note that strong chimeras can be observed for both periodic and chaotic

node dynamics, and in networks with either diffusive or non-diffusive coupling. In all

cases, the necessary and sufficient condition for the coherent cluster to admit an identical

synchronization solution is that each of its oscillators receives the same input from the

incoherent cluster. This condition translates generically to the coherent cluster belonging

to an equitable partition and not being intertwined with the rest of the network, although

intertwined clusters are still allowed elsewhere in the network. (For diffusive coupling, the

partition can be further relaxed to be externally equitable [244].) This structure allows

the oscillators in the coherent cluster to synchronize identically regardless of the state in

the rest of the network, but such a synchronous state may be unstable. A strong chimera

will emerge if synchronization in the coherent cluster can be stable while synchronization

in the rest of the network is necessarily unstable. This characterization of strong chimeras

is not limited to networks of a particular structure and extends immediately to chimera

states consisting of multiple coherent and incoherent clusters as well as to generalized

chimeras on arbitrary networks [210].
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8.2. Incoherence-stabilized coherence

The impact of the rest of the network on the coherent cluster of a strong chimera can

be analyzed by considering a network of N coupled oscillators described by

(8.1) xt+1
i = βf(xti) +K

N∑
j=1

Mijh(xtj), i = 1, . . . , N,

where xti is the state of the i-th oscillator at time t, function f governs the dynamics of the

uncoupled oscillators, β denotes the self-feedback strength of the oscillators, M = (Mij)

is the coupling matrix representing the network structure, h is the coupling function, and

K is the overall coupling strength. We assume the oscillators to be time-discrete and

one-dimensional for simplicity, but the analysis extends straightforwardly to continuous-

time and high-dimensional systems. The matrix M can be rather general, including both

diffusive and non-diffusive coupling schemes. Now, suppose that C is the coherent cluster

and that it consists of n nodes numbered from 1 to n. For oscillators in this cluster, the

dynamical equation takes the form

(8.2) xt+1
i = βf(xti) +K

n∑
j=1

Mijh(xtj) + I(t), i = 1, . . . , n,

where I(t) = K
∑N
j=n+1 Mijh(xtj) is the input from the rest of the network, which does

not depend on i since the cluster must belong to a partition that is at least externally

equitable. Thus, the function I(t) is common across all nodes in C and the identical

synchronization state st in this cluster is given by

(8.3) st+1 = βf
(
st
)

+Kµh
(
st
)

+ I(t),
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where µ = ∑n
j=1Mij is a constant not depending on i for any 1 ≤ i ≤ n. The stability of

this state is determined by the largest transverse Lyapunov exponent (LTLE) Λ specified

by the variational equations

(8.4) ηt+1
i =

[
βf ′(st) +Kλ̂ih

′(st)
]
ηti , i = 2, . . . , n,

where λ̂i is the i-th eigenvalue of the n× n sub-coupling matrix M̂ = (Mij)1≤i,j≤n and ηi

is the corresponding perturbation mode. The mode associated with λ̂1 = µ is excluded as

it corresponds to perturbations parallel to the synchronization manifold. Equation (8.4)

implicitly assumes that M̂ is diagonalizable, but this assumption can be lifted using the

Jordan canonical form of this matrix [189, 109], and all conclusions extend immediately

to all cases.

We explicitly examine the two most widely studied coupling schemes, namely diffu-

sive coupling defined by the Laplacian matrix L and non-diffusive coupling defined by

adjacency matrix A. For Laplacian coupling, M = −L and thus µ is the negative of the

indegree of nodes in C due to connections from the rest of the network. The eigenvalue λ̂i

is given by λ̂i = −λi + µ, where λi is the eigenvalue of the Laplacian matrix of C in iso-

lation (i.e., consisting of intracluster connections only). For adjacency-matrix coupling,

M = A, the factor µ is the indegree of nodes in C when the cluster is considered in

isolation, and the eigenvalues are λ̂i = λi, where λi are the eigenvalues of the adjacency

matrix of C in isolation.

We first consider Laplacian coupling and, for concreteness, focus on networks com-

posed of two identical clusters with all-to-all intercluster coupling. These networks are

known to exhibit chimera states, which have been extensively studied in the literature
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[1, 285, 159, 211]. Assume that as a bifurcation parameter q is increased, the coherent

state of a two-cluster network becomes unstable at a critical value qc. Because this point

marks the end of coherence, at least one cluster must become incoherent when q is further

increased. Since both clusters are identical, one might expect that both will become un-

stable at qc and that the system will thus transition directly from coherence (both clusters

synchronized) into incoherence (both clusters incoherent). That is, due to the symmetry

between the two clusters, both clusters are expected to lose synchrony at the same time.

Nevertheless, chimera states often emerge right at the instability transition, breaking the

symmetry between the clusters, with only one cluster becoming incoherent while the other

remains perfectly synchronized. So, what prevents the system from evolving directly into

global incoherence? The short answer is that, beyond qc, incoherence in one cluster sta-

bilizes synchronization in the other cluster, delaying the onset of global incoherence and

instead giving rise to a chimera.

To further investigate this question, we focus on the node dynamics and coupling

function given by

(8.5) f(x) = h(x) = sin2(x+ π/4),

which model optoelectronic oscillators that have been realized in synchronization experi-

ments [108, 316]. While the intracluster coupling structure can be arbitrary in general,

for clarity we focus on a network consisting of two ring clusters of n = 3 nodes. The

clusters have internal coupling of strength K and are connected to each other by all-to-all
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Figure 8.2. Strong chimeras in a network of diffusively coupled oscillators
given by Eq. (8.5). (a) Network consisting of two identical clusters, C1 and
C2. (b) Diagram in the β−K parameter space marking the regions for which
the system exhibits coherence (cyan), chimeras (purple), and incoherence
(red) for c = 0.2. (c) State transitions as parameter q is varied quasi-
statically along the dashed line in (b), showing the abrupt change from
coherence to a chimera at qc and then from the chimera to incoherence at
qc′ . The individual panels show the states in each cluster colored by the
individual oscillators (top and middle) and the synchronization error in each
cluster defined by the standard deviation among the oscillator states (bot-
tom).

coupling of strength cK [Fig. 8.2(a)], where c is included in matrix M in the represen-

tation of Eq. (8.1). There is nothing special about this choice of dynamics and cluster

structure, and we anticipate that our conclusions hold for other functions and networks.

Figure 8.2(b) shows the corresponding state diagram in the β−K parameter space for

c = 0.2. The classification of states in the diagram is based on the linear stability analysis

of the coherent and chimera states as determined by the corresponding LTLE. A generic

bifurcation scenario is depicted in Fig. 8.2(c): as a linear combination of the parameters

β and K is increased [dashed line in Fig. 8.2(b)], the system transitions from global

coherence to a chimera state, and then from the chimera state to global incoherence. In

this example, the chimera is defined by incoherence in cluster C1 and coherence in cluster

C2. Starting from random initial conditions, it is equally likely for the clusters to exhibit
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Figure 8.3. Impact of the incoherent cluster on the stability of the coherent
one. (a) MSF for the coherent cluster before (red) and after (green) the
other cluster transitions to incoherence, showing a widening of the stable
region. (b) LTLE of the coherent cluster (purple) as the parameter q = q(β)
in Fig. 8.2(b) is varied, showing a discontinuous transition at qc and a
continuous one at qc′ due to the corresponding changes in Γs (red). The
system and other parameters are as in Fig. 8.2.

swapped states, corresponding to a chimera in qc < q < qc′ that has incoherence in C2

and coherence in C1.

We can now establish a theoretical foundation for the mechanism underlying the on-

set of such chimeras by examining Eqs. (8.3)-(8.4) in the most general case of arbitrary

networks and coupling matrices. Crucially, the input from the rest of the network is ir-

regular temporally but uniform spatially and does not affect the variational equations of

C directly, since I(t) does not appear in Eq. (8.4). Yet, it indirectly impacts synchroniza-

tion stability by changing the synchronous state st according to Eq. (8.3). It is entirely

through the change it causes to st that incoherence in the rest of the network stabilizes

coherence in C, giving rise to a stable chimera.

To establish this rigorously we note that the Lyapunov exponents of Eq. (8.4) can be

written as Λ(i) = ln |−Kλ̂i−β|+Γs, where Γs = limT→∞ ln
∣∣∣ΠT

t=1f
′(st)

∣∣∣ 1
T for f ′(x) = h′(x)

as in the systems explicitly examined here. Since Γs is generally finite, the associated

master stability function (MSF) Λ̃(α, β) = ln |α− β|+ Γs defines a finite stability region,
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and synchronization in C is stable if and only if

(8.6) | −Kλ̂i − β| < e−Γs , i = 2, . . . , n.

This equation explains what happens at the interface between global coherence and a

chimera state. As the bifurcation parameter q is varied and the transition is approached

from the coherent region, the condition in Eq. (8.6) is violated by at least one mode and

Λ = maxi≥2{Λ(i)} vanishes at q = qc. But past this point, Kµh(st)+I(t) becomes nonzero

and Γs changes (abruptly) from Γcos to Γins according to its dependence on Eq. (8.3). If

Γins < Γcos , the stability region defined by Eq. (8.6) expands (i.e., Λ becomes negative

again for q > qc), and a chimera region then emerges due to stabilization caused by

the incoherent input I(t). In the example of Fig. 8.2(b), in particular, Γcos = −0.92 and

Γins = −1.6, confirming our phenomenological observation that incoherence in C1 stabilizes

coherence in C2. Figure 8.3 shows the impact of this change on Λ̃ [Fig. 8.3(a)] as well as

the co-dependence of Λ and Γs as the bifurcation parameter is varied [Fig. 8.3(b)].

8.3. Relation with noise-induced synchronization

To further validate the hypothesis that the synchronization stability in the coherent

cluster can be induced by the incoherent driving, we model the effective input Kµh
(
st
)

+

I(t) in Eq. (8.3) as a driving noise term ξ(t). The synchronization trajectory st in the

coherent cluster is then

(8.7) st+1 = f
(
st
)

+ ξ(t),
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with the corresponding variational equations given by Eq. (8.4) for λ̂i = −λi − cn. Fig-

ure 8.4(a) shows the result of our stability analysis for β = 1.2, K = 1.2, and c = 0.2.

We see that synchronization in the coherent cluster is unstable (Λ > 0) in the absence

of external driving (ν = σ = 0), but it can be stabilized (Λ < 0) by a Gaussian noise

effective input over a range of mean ν and standard deviation σ. Direct simulation of the

corresponding chimera state shows that the effective input from the incoherent cluster

has ν = −0.30 and σ = 0.15, which is inside the stable region in Fig. 8.4(a). On the other

hand, the scenario in which both clusters are synchronized corresponds to ν = σ = 0 for

diffusive coupling, which is equivalent to not having external driving, and is thus unstable

for the given parameters. More generally, for diffusive coupling, wherever the coherent

state takes the form of identical synchronization, coherence in one cluster can benefit from

common driving only when the other cluster is not in the same state.

For a more systematic understanding of the interaction between the two clusters,

we vary the intercluster coupling strength by varying c while the other parameters are

kept fixed. Figure 8.4(b) shows the resulting LTLE for synchronization in the coherent

cluster [modeled by Eq. (8.7)] when this cluster is subject to noise input or input from the

incoherent cluster. For each value of c, the mean and standard deviation of the input are

set respectively to the values of ν = ν(c) and σ = σ(c) calculated from direct simulation

of the dynamics. Both forms of input lead to the stabilization of synchronization for

intermediate intercluster coupling strength, which is to be contrasted with the unstable

state obtained if the other cluster is set to the same coherent state (shown in Fig. 8.4(b)

as a reference). This suggests that the stabilization effect of a common driving signal is
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Figure 8.4. Incoherence-stabilized coherence for the influence of the inco-
herent cluster modeled as a noise effective input. The system is the same as
in Fig. 8.2 for β = 1.2, K = 1.2, and C2 as the coherent cluster. (a) LTLE
of the coherent cluster for c = 0.2 and the input drawn from a Gaussian
distribution of mean ν and standard deviation σ. Also marked are the cor-
responding (ν, σ) from direct simulation of the dynamics when the other
cluster is incoherent (blue cross) or coherent (red cross). (b) LTLE of the
coherent cluster as a function of c for noise input (purple), input from di-
rect simulation of the incoherent cluster (green), and input from an identical
coherent state (red).

relatively insensitive to the form of the signal, as long as the mean and standard deviation

of the signal are suitable.

8.4. Insight into previously-studied chimera systems

We now turn to adjacency matrix coupling for

(8.8) f(x) = h(x) + (π/6)/β = [1− cos(x)]/2 + (π/6)/β,

which is a closely-related class of optoelectronic oscillators for which this type of cou-

pling has been implemented experimentally [219]. Here, the dynamical variables are

constrained to the interval [0, 2π) by taking mod 2π at each iteration. Our primary goal

with this model is to illustrate a coupling scheme for which the intercluster coupling term
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Figure 8.5. Strong chimeras in a network of non-diffusively coupled oscil-
lators given by Eq. (8.8). (a) Network of identically-coupled oscillators
organized into an incoherent (C1) and a coherent (C2) cluster. Right: rep-
resentative chimera trajectory for K = −0.72. (b) LTLE of the coherent
cluster as a function of K from direct simulation when the other cluster is
taken to be in an identical coherent state (red) or an incoherent one (green).
In the shaded region, coherence in C2 is stabilized by incoherence in C1.

does not vanish in the coherent state. But we also want to show that our results do not

depend on the coherent and incoherent clusters being equal. To facilitate comparison with

the literature, we adopt a network and parameter setting for the system in Eq. (8.8) first

considered in Ref. [59]. The network consists of a ring of six nodes coupled to their first

and second nearest neighbors [Fig. 8.5(a)], and the parameters are set to β = 2π/3− 4K.

For −0.65 < K < −0.53, synchronization in cluster C1 (comprising two oscillators) is

unstable while synchronization in cluster C2 (comprising four oscillators) is stable [59].

Thus, for coupling strength in this range, a chimera state with two asymmetric clusters

is expected to exist. However, this prediction is derived by assuming that C1 and C2 are

both in a synchronized state when performing the stability analysis. Once C1 becomes

incoherent and the system transitions from global coherence into a chimera state, this

assumption is no longer valid. Thus, incoherence in C1 should be taken into account

when estimating the range of parameters for which the chimera can be stable.
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In Fig. 8.5(b), we perform a comparative analysis and plot the LTLE for coherence

in C2 when C1 is assumed to be coherent and incoherent, respectively. We see that

incoherence in C1 significantly delays the instability transition in C2 from K = −0.65 to

K = −0.80 and, as a consequence, gives rise to a much wider chimera region than initially

expected. A representative time series for the chimera state at K = −0.72, whose coherent

cluster is stabilized by the incoherent one, is shown in Fig. 8.5(a).

8.5. Concluding remarks

The analysis presented above reveals a physical mechanism underlying the emergence

of strong chimeras. The self-consistency of such states was partially elucidated by the

previous demonstration that desynchronization in one cluster does not necessarily lead

to the concurrent desynchronization in another cluster [219, 59]. Here, we have been

able to go one step further and demonstrate that incoherence in one cluster can in fact

stabilize coherence in the other cluster. This incoherence-stabilized coherence adds a new

dimension to the proposition that chimera states are the natural link between coherent

and incoherent states [202, 199, 200]. As a promising direction for future research,

we note that chimera states not meeting the conditions for strong chimeras have been

studied in the literature, including those with coherent clusters that are not identically

synchronized [3, 104, 39, 46] and those that co-occur with stable global coherence [1,

156, 251, 129]. It remains to be shown how the mechanism uncovered for strong chimeras

may provide insight into those states. Given the prevalence of related phenomena such as

noise-induced synchronization [319, 282, 180, 289], we believe the cooperative relation
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between incoherence and coherence revealed by our analysis can be a general mechanism

giving rise to a wide range of chimera states.
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CHAPTER 9

Symmetry-Independent Stability Analysis of Synchronization

Patterns

The field of network synchronization has seen tremendous growth following the in-

troduction of the master stability function (MSF) formalism, which enables the efficient

stability analysis of synchronization in large oscillator networks. However, to make fur-

ther progress we must overcome the limitations of this celebrated formalism, which focuses

on global synchronization and requires both the oscillators and their interactions to be

identical, while many systems of interest are inherently heterogeneous and exhibit com-

plex synchronization patterns. Here, we establish a generalization of the MSF formalism

that can characterize the stability of any cluster synchronization pattern, even when the

oscillators and/or their interactions are nonidentical. The new framework is based on

finding the finest simultaneous block diagonalization of matrices and does not rely on in-

formation about network symmetry. This leads to an algorithm that is error-tolerant and

orders of magnitude faster than existing symmetry-based algorithms. As an application,

we rigorously characterize the stability of chimera states in networks with multiple types

of interactions.

This chapter is based on the joint work with Adilson E. Motter. The presentation

closely follows Ref. [315].
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9.1. Background

Coupled oscillator networks have been extensively studied as a fundamental model of

collective behavior in complex systems [274, 44, 184, 45, 13, 55, 2]. The field is unique

in its close interaction between theoretical developments [216, 237, 283, 206, 6] and

practical applications [299, 77, 27, 145, 175]. A central theme of current research is how

to characterize the stability of increasingly complex synchronization patterns in arbitrary

network structures. Such patterns can be regarded as forms of cluster synchronization,

in which the oscillators form one or more internally synchronized clusters that exhibit

mutually distinct dynamics [29, 97, 30, 62, 238, 302, 203, 108]. The stability of

a synchronization pattern is important because it usually cannot be observed if it is

unstable, and thus a bifurcation leading to the loss or restoration of stability has significant

ramifications in various biological and technological systems.

In order to perform efficient stability analysis for large networks of coupled oscillators,

the key is to first divide the full state space of the variational equation into minimal flow-

invariant subspaces (defined below) and then calculate the maximum Lyapunov exponent

in each flow-invariant subspace to determine whether perturbations within that subspace

would grow. To achieve this for the global synchronization of identical oscillators, the MSF

formalism [217] finds a coordinate transformation that diagonalizes the coupling matrix,

which in turn decouples the high-dimensional variational equation of the full network into

low-dimensional equations describing the evolution of independent perturbation modes.

The full equation has a dimension that grows linearly with the network size, while the

decoupled equations all have a fixed dimension equal to that of an individual oscillator,

irrespective of the network size.
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However, when one considers cluster synchronization states, nonidentical oscillators,

or disparate interactions, all of which common in real systems, there are in general two or

more non-commuting matrices in the variational equation. Since non-commuting matrices

cannot be diagonalized simultaneously (even when the individual matrices can), the MSF

formalism is not applicable to these cases. The goal of the current chapter is to introduce

an extension of the MSF formalism and propose a fundamentally new framework based

on the theory of matrix ∗-algebra that addresses these important cases. In particular, we

present a highly scalable algorithm that finds a finest simultaneous block diagonalization

(SBD) of any given set of self-adjoint matrices, leading to an optimal separation of the

perturbation modes and efficient stability analysis of arbitrary synchronization patterns.

Our framework applies to the general class of network dynamical systems described

by

(9.1) ẋi = Fi(xi) +
R∑
r=1

σr
n∑
j=1
Cr(i, j)Hr(xi,xj), i = 1, . . . , n,

where xi is the d-dimensional state vector of the i-th oscillator, n is the number of os-

cillators, R is the number of interaction types, and overdot represents time derivative.

Here, Fi : Rd → Rd is the vector field governing the uncoupled dynamics of the i-th

oscillator and Cr is a self-adjoint coupling matrix representing interactions of the form

Hr and strength σr. The synchronization patterns we study can be derived from any

balanced equivalence relation [97, 120], which is the most general class of patterns for

which oscillators in the same cluster can admit equal dynamics for generic Fi and Hr.

In general, nodes in a cluster can be separated by nodes from other clusters and do not

necessarily form a connected component of the network. The resulting synchronization
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patterns describe a wide range of network dynamics, including remote synchronization

and chimera states.10

A related extension of the MSF formalism to study cluster synchronization patterns

was previously proposed by Pecora and colleagues [219]. That framework was originally

developed for networks with adjacency-matrix coupling and has since been extended to

diffusively coupled networks [265] and multilayer networks [41]. In those studies, the

authors simplified the stability analysis using the machinery of irreducible representations

(IRR) [284], which decouples the variational equation according to symmetries present

in the system.

Both the IRR framework and our SBD framework reduce to the MSF formalism for

global synchronization of identical oscillators with a single type of interaction. The key

difference between the two frameworks is that the former relies on network symmetry to

perform stability analysis, whereas the latter does not.11 As a result, the IRR frame-

work has to resort to ad hoc modifications when a cluster synchronization pattern is not

induced by network symmetry [265, 257]. In contrast, our SBD framework does not

require any symmetry information to be known in advance and is directly applicable to

all cluster synchronization patterns. Moreover, it forgoes the calculation on irreducible

representations of network symmetry, which becomes computationally prohibitive very

quickly as the number of symmetries grow. This leads to a faster, simpler, and more

10For the ease of presentation, we ground our discussions in this chapter on Eq. (9.1), but we note that
it is straightforward to generalize our methods beyond ODE settings. For instance, it is possible to
introduce coupling delay into the interaction functions and the resulting delay differential equations can
still be analyzed within our framework. Naturally, the framework also applies to discrete-time dynamical
systems.
11We note that it is computationally inexpensive to identify synchronization patterns when compared to
the cost of determining their stabilities. We thus assume that the synchronization patterns of interest
are given before stability analysis are performed.
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robust algorithm than existing ones based on the IRR framework and enables the study

of complex synchronization patterns in large networks.

The chapter is organized as follows. In Section 9.2, we present the concept of matrix

∗-algebra and a fast algorithm for finding a finest simultaneous block diagonalization for

any set of self-adjoint matrices. Then, in Section 9.3, we develop a symmetry-independent

framework for the stability analysis of arbitrary cluster synchronization patterns and com-

pare our algorithm with state-of-the-art algorithms based on irreducible representations.

We further show in Section 9.4 that our algorithm can be applied to analyze cluster

synchronization patterns of nonidentical oscillators and oscillators with multiple types of

interactions. The strength of this unified framework is demonstrated with the character-

ization of permanently stable chimera-like states in multilayer networks. A discussion on

open problems and future directions is presented in Section 9.5.

9.2. Finest simultaneous block diagonalization

Given a set of n × n matrices B = {B1, · · · ,BK}, we say that a subspace W of Cn

is invariant under B if BkW ⊆ W for every Bk ∈ B. Further, an invariant subspace W

is minimal if no proper subspace of W other than 0 is invariant under B. An invertible

matrix T is said to give a finest simultaneous block diagonalization of the matrix set B

if it brings all matrices in B into a common block-diagonal form that cannot be further

refined. Equivalently, T decomposes Cn into minimal invariant subspaces under B, such

that the j-th common blocks in T−1BT only have 0 and Cnj as invariant subspaces, where

nj is the dimension of the j-th blocks.
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To make progress in finding a finest simultaneous block diagonalization, it is beneficial

to consider an algebraic structure called matrix ∗-algebra. Letting Mn denote the set of

all n×n matrices with complex entries, a subset T ofMn is said to be a matrix ∗-algebra

over C if the identity matrix In belongs to T and

(9.2) B, C ∈ T ; α, β ∈ C =⇒ αB + βC, BC, B∗ ∈ T ,

where ∗ denotes conjugate transpose.12 Matrix ∗-algebras enjoy better properties than

matrix algebras because they are closed under the conjugate transpose operation. This

makes matrix ∗-algebras semisimple and thus characterizable by the Artin-Wedderburn

theorem [136].

According to structure theorems based on the Artin-Wedderburn theorem (Theo-

rem 3.1 and Theorem 6.1 in Ref. [178]), a matrix ∗-algebra T can always be decomposed

through a unitary transformation P into the direct sum of ` irreducible matrix ∗-algebras

Tj:

(9.3) P ∗T P =
⊕̀
j=1

(
Imj
⊗ Tj

)
= diag{Im1 ⊗ T1, · · · , Im`

⊗ T`},

where Tj ⊆ Mnj
, mj is the multiplicity of Tj, and ∑`

j=1 njmj = n. The ⊗ symbol

denotes the tensor product of matrices (i.e., the Kronecker product), the summand Imj
⊗

Tj = {⊕mj

k=1B : B ∈ Tj} represents mj copies of the irreducible matrix ∗-algebra Tj

arranged diagonally (not to be confused with ⊕mj

k=1 Tj). We say that a matrix ∗-algebra

12The results remain applicable if the matrix ∗-algebras are over R, as in various examples considered
throughout the chapter. However, working in C both allows complex coupling matrices, which arise
for oscillator networks that are naturally expressed using complex vector fields (such as coupled Stuart-
Landau oscillators), and can lead to finer block structures when networks are directed.
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Tj is irreducible if it contains matrices that only share trivial invariant subspaces (i.e.,

0 and Cnj ). Equation (9.3) is the canonical form of an irreducible decomposition of a

matrix ∗-algebra, which is unique up to block permutations and unitary transformations

localized within each block. As a consequence, all the matrices in T can be transformed

simultaneously into a block-diagonal form of ∑`
j=1mj blocks through a single unitary

matrix P .

A matrix ∗-algebra T is said to be generated by a set of matrices B if B ⊆ T and every

matrix in T can be constructed from In and B using the operations of matrix ∗-algebras

(i.e., scalar multiplication, matrix addition, matrix multiplication, and conjugate trans-

pose). In order to calculate a transformation matrix P that gives a finest simultaneous

block diagonalization of all matrices in T , we propose a new algorithm (Algorithm 1)

and refer to the corresponding coordinate transformation as an SBD transformation. The

algorithm involves only numerical linear-algebraic calculations and does not require any

algebraic structure (e.g., symmetries) to be known in advance.

The idea behind the algorithm is simple. First, pick an eigenvector v1 of a self-adjoint

matrix B = ∑K
k=1[ck(Bk +B∗k) + idk(Bk −B∗k)], where ck and dk are random coefficients

drawn from a Gaussian distribution. This eigenvector lies inside one of the minimal

invariant subspaces of B with probability 1. Furthermore, all the images of v1 under

{Bk} and {B∗k} must also be inside the same minimal invariant subspace. By running the

Gram-Schmidt process on {v1,B1v1,B
∗
1v1, · · · ,BKv1,B

∗
Kv1} and discarding the linearly

redundant vectors, we can obtain a set of orthonormal vectors all inside the same minimal

invariant subspace. If these vectors span the entire invariant subspace, then we have

discovered a common block and can repeat the process starting from another eigenvector
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Algorithm 1 Finding an SBD transformation for a matrix ∗-algebra generated by a set
of n × n matrices B = {Bk} in O(n3). (A MATLAB implementation is available as a
Github repository at https://github.com/y-z-zhang/net-sync-sym/.)

. step 1: generate a self-adjoint matrix B from combining matrices in B with random
coefficients ck and dk

1: B = ∑K
k=1[ck(Bk +B∗k) + idk(Bk −B∗k)]

2: find the eigenvectors {vj} of B
. steps 3 to 9: find (a basis of) the minimal invariant subspace that contains v1

3: perform Gram-Schmidt orthonormalization on {v1,Bkv1,B
∗
kv1}, k = 1, . . . , K to

obtain a set of orthonormal vectors V
4: let v be a random linear combination of the vectors from V
5: while the images {Bkv,B

∗
kv}, k = 1, . . . , K include vectors that are linearly inde-

pendent from V do
6: make these new vectors orthonormal to V and to each other
7: expand V to include the new vectors
8: let v be a random combination of the vectors from the expanded V
9: end while

10: let P be a matrix whose columns are made of vectors from V
. steps 11 to 16: find the rest of the minimal invariant subspaces

11: while the matrix P has less than n columns do
12: find an eigenvector vj outside the span of P ’s column vectors
13: make vj orthonormal to the column vectors of P
14: repeat step 3 to 9 with v1 replaced by vj
15: add the vectors from V to P as additional columns
16: end while

ofB outside the discovered minimal invariant subspace. Otherwise, we generate a random

linear combination v of the existing orthonormal vectors and “explore” the invariant

subspace further by generating images of v under {Bk} and {B∗k}. It is easy to see

that a complete basis for a minimal invariant subspace can always be reached after no

more than n such iterations. The computational complexity of the algorithm scales as

O(n3)—it can easily handle n × n matrices with n in the range of thousands.13 This

distinguishes Algorithm 1 from the best competing algorithms available [178, 150, 151],

13It takes O(n2) operations to calculate the image of v under Bk, and O(n) such images need to be
computed to discover the transformation matrix P .

https://github.com/y-z-zhang/net-sync-sym/
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which run in O(n4) time and are already slow at n ≈ 100. Moreover, applications of

those algorithms to network synchronization have been limited to the study of global

synchronization [118, 313], while our framework enables application of the new algorithm

to general synchronization patterns.

In most cases, we are interested in a given set of matrices instead of the full matrix

∗-algebra. When is Algorithm 1 guaranteed to find a finest simultaneous block diago-

nalization for a given matrix set B? A sufficient condition is that the matrices in B are

self-adjoint.

Proposition 1. Given a set of n × n self-adjoint matrices B = {B1, · · · ,BK}, let

T be the matrix ∗-algebra generated by B. If a unitary matrix P leads to an irreducible

decomposition of T , then it also gives rise to a finest simultaneous block diagonalization

of B.

Proof. Assume that an invertible matrix T yields a finest simultaneous block diago-

nalization of the set of self-adjoint matrices B. Since

T−1(αBj + βBk)T = αT−1BjT + βT−1BkT ,

T−1BjBkT = (T−1BjT )(T−1BkT ),

T−1B∗jT = T−1BjT for self-adjoint Bj,

all matrices in T−1T T can admit the same block structure shared by the matrices in its

generating set T−1BT . Since this block structure is finest in B, it is also finest in T . By

definition, the unitary matrix P yields a finest simultaneous block diagonalization of the
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matrices in T . Because B and T have the same finest common block structure, P also

generates a finest simultaneous block diagonalization of the matrix set B. �

Taken together, Proposition 1 and Algorithm 1 establish a powerful framework for

finding a finest simultaneous block diagonalization for any set of self-adjoint matrices.

In the sections below, we show how SBD transformations can be used to characterize

the stability of synchronization patterns in an efficient and unified fashion. We will

focus mainly on oscillators coupled through undirected networks (i.e., self-adjoint coupling

matrices). The possibility of extending the current framework to directed networks will

be discussed in Section 9.5.

9.3. Cluster synchronization from a symmetry-independent perspective

Consider a network of n identical d-dimensional oscillators forming a synchronization

pattern of M clusters. The cluster synchronization subspace can be defined as an Md-

dimensional subspace of the full nd-dimensional state space, in which oscillators from the

same cluster have exactly the same dynamics. Parallel perturbations are perturbations

inside the cluster synchronization subspace—they do not destroy the cluster synchroniza-

tion pattern. Transverse perturbations are the ones that are perpendicular to the cluster

synchronization subspace—all of them must have negative Lyapunov exponents under the

evolution of the variational equation in order for the cluster synchronization pattern to

be stable.

One key step in analyzing the stability of a synchronization pattern amounts to finding

a coordinate system that separates the evolution of transverse and parallel perturbation

modes. The coordinate transformation should also decouple the transverse perturbation
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modes as much as possible. The current state-of-the-art method exploits symmetries in

the network structure and uses the machinery of group representation theory [219]. In this

section, we establish a symmetry-independent framework based on SBD transformations

and compare Algorithm 1 with symmetry-based algorithms in terms of speed, simplicity,

and error tolerance.

9.3.1. The symmetry perspective

A network of n identical oscillators with adjacency-matrix coupling can be described as

the following special case of Eq. (9.1):

(9.4) ẋi = F (xi) + σ
n∑
j=1

A(i, j)H(xj),

where A = {A(i, j)} is the self-adjoint adjacency matrix encoding the structure of the

underlying network.

To study the stability of cluster synchronization states, it is necessary to first identify

possible synchronization patterns supported by Eq. (9.4), a subset of which is determined

by the symmetries of the network. The network symmetries, described by the graph

automorphism group Aut(A), can be computed using discrete algebra softwares [270].

The nodes can be partitioned into disjoint clusters: two nodes belong to the same cluster

if there is a symmetry operation (i.e., node permutations that respect the adjacency

matrix) from the automorphism group that maps one node to the other. In other words,

nodes are partitioned according to the orbits under the action of Aut(A) [219]. This is

the coarsest synchronization pattern that can be derived from network symmetry. If one

instead considers a subgroup G of Aut(A), the nodes can then be partitioned into finer
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clusters according to the orbits under the action of G. We call these partitions the orbital

partitions of the network and refer to the corresponding clusters as symmetry clusters.

Each element g ∈ G can be represented by a permutation matrix Rg, upon whose action

the adjacency matrix A stays invariant, i.e., R∗gARg = A. The set of matrices {Rg} form

a permutation representation of the subgroup G. As a result of network symmetry, nodes

in each symmetry cluster receive the same input from other clusters and admit equal

dynamics. In other words, cluster synchronization patterns based on symmetry clusters

are guaranteed to be flow invariant (i.e., subspaces of the state space that are invariant

under time evolution of the system).

Once a subgroup G and the corresponding orbital partition have been identified, one

can find the associated cluster synchronization manifold by evolving the dynamical equa-

tion on a quotient network in which each symmetry cluster is represented by a single

node. Equation (9.4) can then be linearized around the cluster synchronization mani-

fold, leading to a variational equation that determines the stability of the corresponding

synchronization pattern:

δẊ =
(

M∑
m=1

Em ⊗ JF (sm) + σ (A⊗ Id)
M∑
m=1

Em ⊗ JH(sm)
)
δX,

=
(

M∑
m=1

Em ⊗ JF (sm) + σ
M∑
m=1

AEm ⊗ JH(sm)
)
δX,

(9.5)

where sm is the synchronization trajectory of the m-th cluster, δX = (δxᵀ1, · · · , δxᵀn)ᵀ is

the nd-dimensional perturbation vector, and J is the Jacobian operator. Let Cm denote
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the set of nodes in the m-th cluster. Then

Em(i, i) =


1, if i ∈ Cm,

0, otherwise,

is an n × n diagonal matrix encoding the nodes in the m-th cluster. It follows that∑M
m=1Em = In.

A key insight from Ref. [219] is that there exists a coordinate choice under which the

transformed adjacency matrix Ã = Q∗AQ has a block-diagonal form that matches the

cluster structure. They termed it the IRR coordinates since the transformation matrix

Q decomposes the permutation representation {Rg} into the direct sum of irreducible

representations of G. In particular,

(9.6) R̃g = Q∗RgQ =
⊕̀
j=1

(
R̃(j)
g ⊗ Inj

)
, Ã = Q∗AQ =

⊕̀
j=1

(
Imj
⊗ Ã(j)

)
,

where ` is the number of distinct IRRs present in {R̃g}, the j-th block Ã(j) is an nj × nj

matrix with nj equal to the multiplicity of the j-th IRR {R̃(j)
g }, and mj is the multiplicity

of Ã(j) as well as the dimension of R̃(j)
g . The trivial IRR (which maps every g ∈ G to

1) is always present with multiplicity M , so there is always an M × M block in Ã

corresponding to the dynamics inside the cluster synchronization subspace [219]. In this

way, Q completely decouples the transverse perturbations from the parallel ones and also

separates the transverse perturbation modes.
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9.3.2. The symmetry-independent perspective

The IRR transformation decouples Eq. (9.5) by exploiting the network symmetry and its

irreducible representations. The end result of this transformation is a block diagonaliza-

tion of the matrix set A = {E1, · · · ,EM ,A}. But is finding the irreducible representa-

tions the most effective way to block diagonalize these matrices? Below we show that the

answer is negative.

The readers might have noticed the parallel between the block forms in Eq. (9.3) and

Eq. (9.6), which hints at a deep connection between the IRR and the SBD transformations.

We now make this parallel precise by looking at the IRR transformation through the lens

of matrix ∗-algebras.

To proceed, we introduce the commutant algebra T ′ of a matrix ∗-algebra T ⊆ Mn,

which is the set of all matrices C ∈Mn that commute with every element in T . Letting

[B, C] = BC −CB, one has

(9.7) T ′ = {C ∈Mn | [B,C] = 0, ∀ B ∈ T }.

T ′ is also a matrix ∗-algebra and enjoys the following dual relations with T [151]:

(a) T ′′ = T , known as the double commutant property.

(b) If the irreducible decomposition of T has blocks of sizes nj and multiplicities

mj, then the irreducible decomposition of T ′ is the direct sum of blocks of sizes

mj and multiplicities nj.
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Given a subgroup G of Aut(A), let S be the set of all n× n matrices over C that are

invariant under the action of G. That is,

(9.8) S = {S ∈Mn | R∗gSRg = S, ∀ g ∈ G}.

First, we note that S is a matrix ∗-algebra. Second, we make a key observation involving

the commutant algebra S ′. It is clear from Eq. (9.8) that S is the commutant algebra

of the matrix ∗-algebra R generated by {Rg}. According to the double commutant

property, we have S ′ = R′′ = R, and hence {Rg} is a generating set of S ′. Since the IRR

transformation Q decomposes {Rg} into the form R̃g = Q∗RgQ = ⊕`
j=1

(
R̃(j)
g ⊗ Inj

)
,

the irreducible decomposition of S ′ has blocks of sizes mj and multiplicities nj.14

Next, we utilize the relation SRg = RgS, or equivalently,

S̃R̃g = Q∗SQQ∗RgQ = Q∗RgQQ
∗SQ = R̃gS̃

to show that Q performs the irreducible decomposition of S. Writing out R̃g and S̃ more

explicitly,

R̃g =



R̃(1)
g ⊗ In1 · · · 0

R̃(2)
g ⊗ In2

...
... . . .

0 · · · R̃(`)
g ⊗ In`


, S̃ =



S̃11 S̃12 · · · S̃1`

S̃21 S̃22 · · · S̃2`

... ... . . . ...

S̃`1 S̃`2 · · · S̃``


,

14For any pairs of square matrices X and Y there exists a permutation matrix O such that X ⊗ Y =
Oᵀ(Y ⊗X)O.
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one can see that the commutativity relation implies (R̃(i)
g ⊗ Ini

)S̃ij = S̃ij(R̃(j)
g ⊗ Inj

).

According to Schur’s Lemma [284, 136], S̃ij = 0 when i 6= j (i.e., when the irreducible

representations {R̃(i)
g } and {R̃(j)

g } are non-isomorphic); and S̃ij = Imj
⊗ S̃(j) when i = j,

where S̃(j) is an nj × nj complex matrix. Taken together,

(9.9) S̃ = Q∗SQ =
⊕̀
j=1

(
Imj
⊗ S̃(j)

)
.

Thus, Q simultaneously block diagonalizes all matrices in S into blocks of sizes nj, each

of multiplicity mj. Based on the dual relation (b) between the commutant algebras, we

see that this is the irreducible decomposition of S.

Accordingly, the IRR transformation can be interpreted within the framework of ma-

trix ∗-algebra: it performs the irreducible decomposition of the matrix ∗-algebra S formed

by all n × n matrices satisfying the symmetry condition Eq. (9.8). This interpretation

explains the parallel between Eqs. (9.3) and (9.6). However, S may not always be the

best matrix ∗-algebra to work with for the stability analysis of synchronization patterns.

In particular, notice that the matrix ∗-algebra T generated by the matrix set A =

{E1, · · · ,EM ,A} is always a subalgebra of S, as Em and A all share the symmetries

defined by the subgroup G:

R∗gARg = A, R∗gEmRg = Em, ∀ g ∈ G and 1 ≤ m ≤M.

This means that the IRR transformation could be considering the simultaneous block

diagonalization of an unnecessarily large set of matrices, and S might have a coarser

irreducible decomposition than its subalgebra T . Thus, an SBD transformation applied
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directly to A will always give a block structure on par or finer than the one found by the

IRR transformation.

9.3.3. Optimal separation of perturbation modes

Next, we further characterize the decoupling among perturbation modes achieved by an

SBD transformation. Given an adjacency matrix A and a flow-invariant synchronization

pattern described by {Em}, we divide the perturbation modes into three classes according

to their dynamical characteristics:

(I) perturbation modes inside the cluster synchronization subspace;

(II) perturbation modes transverse to the cluster synchronization subspace and belong-

ing to a d-dimensional (the dimension of a single oscillator) flow-invariant subspace

under the variational equation Eq. (9.5);

(III) perturbation modes transverse to the cluster synchronization subspace and that do

not belong to a d-dimensional flow-invariant subspace under the variational equation

Eq. (9.5).

Class I perturbation modes do not destroy the cluster synchronization pattern, while those

from classes II and III do.

From an algebraic point of view, the class I perturbation modes correspond to the

M -dimensional invariant subspace spanned by the diagonal vectors of matrices in {Em}.

Perturbation modes of class II are associated with a one-dimensional invariant subspace

under the matrix set A, whereas perturbation modes of class III are induced by higher-

dimensional invariant subspaces.
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In particular, perturbation modes in Class II are localized inside individual clusters

and each of them is decoupled from all other perturbation modes. This is the basis of the

so-called isolated desynchronization [219], in which an individual cluster can desynchro-

nize without destroying synchronization in other clusters despite their mutual influence

through inter-cluster coupling. Class III perturbation modes arise from intertwined clus-

ters [219, 59]. Two clusters are intertwined if there exists transverse perturbations inside

one cluster that are coupled to transverse perturbations in the other. It is worth noting

that not all transverse perturbations inside intertwined clusters belong to Class III, as

some of them form d-dimensional invariant subspaces on their own and are thus Class II.

An SBD transformation finds the optimal separation of perturbation modes that can

be inferred from the network structure and cluster patterns. In particular, it is guaranteed

to separate the parallel perturbations (Class I) from the transverse ones (Class II and III),

completely decouple the perturbation modes in Class II, and separate the ones in Class

III as much as possible. This separation is “robust” in the sense that it works for any

intrinsic dynamics F and coupling function H , since it is induced solely by the algebraic

structure of the system. For some special F and H , the flow-invariant subspaces (under

the variational equation) induced by the minimal invariant subspaces (under the matrix

set A) may not be minimal and can be further decomposed.15 But such special flow-

invariant subspaces are not robust and will be destroyed by small changes to F and/or

H .

15A flow-invariant subspace is said to be minimal if it does not contain proper subspaces that are flow
invariant.
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9.3.4. Treating clusters not induced by symmetry

The strength of the SBD framework becomes even more evident when the oscillators are

diffusively coupled, which is another natural class of coupling schemes [217, 187] featured

prominently in real systems, such as consensus networks [145, 198]. This class of systems

is a special case of Eq. (9.1) and can be described by

(9.10) ẋi = F (xi)− σ
n∑
j=1

L(i, j)H(xj),

where the Laplacian matrix L = {L(i, j)} is defined as L(i, j) = δijµi−A(i, j), for δij de-

noting the Kronecker delta and µi = ∑
j A(i, j) representing the indegree of node i. The

main difference of systems with Laplacian-matrix coupling from those with adjacency-

matrix coupling is that the interaction between two oscillators vanishes when they syn-

chronize.

As a consequence of the diffusive coupling, additional flow-invariant synchronization

patterns can emerge that are not predicted by network symmetry. These additional

patterns are called Laplacian clusters, and they can be formed by merging some of the

symmetry clusters [265]. Since an adjacency matrix and its corresponding Laplacian

matrix have exactly the same symmetry (i.e., Aut(A) = Aut(L)), the original IRR trans-

formation cannot distinguish the systems described by equations Eqs. (9.4) and (9.10).

Thus, it fails to decouple the parallel and transverse perturbations if applied directly. In

Ref. [265], it was proposed that one can apply the IRR transformation to the adjacency

matrix of the diffusive network first, then perform additional local coordinate transforma-

tions to account for the merging of symmetry clusters induced by the diffusive coupling.
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This method provides valuable insight, but at the same time it adds an additional layer

of complexity on top of the irreducible representation calculations. In fact, all necessary

information for the separation of perturbation modes is already encoded in the Laplacian

matrix L and Laplacian clusters {Cm}. Accordingly, neither network symmetry nor lo-

cal coordinate transformations are needed in order to properly decouple the variational

equation.

What the IRR transformation misses is the diffusive nature of the Laplacian-matrix

coupling. Due to the IRR transformation’s inability to detect non-symmetry features

(e.g., the zero-row-sum of the Laplacian matrix), one has to perform local coordinate

transformations to “manually” incorporate that information. An SBD transformation, on

the other hand, does not assume any symmetry a priori. It can thus be applied directly to

the matrix set L = {E1, · · · ,EM ,L} and automatically takes the additional features of

L into account. As in the case of adjacency-matrix coupling, an SBD transformation can

find the optimal separation of perturbation modes for any flow-invariant synchronization

pattern under the Laplacian-matrix coupling.

More recently, Ref. [244] introduced the concept of external equitable partition as a

new way of finding flow-invariant synchronization patterns in Laplacian-matrix coupled

systems. An external equitable partition splits a network into input clusters such that

each node inside a cluster connects to the same number of nodes in another cluster. This

definition guarantees that any external equitable partition corresponds to a flow-invariant

synchronization pattern and is more general than orbital partitions. One example of an

external equitable partition that is not an orbital partition is presented in Fig. 9.1(a).

Ref. [244] also proposed the only other widely known symmetry-independent method for
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Figure 9.1. Input clusters not induced by network symmetry. (a) External
equitable partition that is not an orbital partition. The partition con-
sists of two clusters—colored red and blue, respectively. The corresponding
synchronization pattern is flow invariant under Laplacian-matrix coupling
despite there being no symmetry between the blue nodes from different
cliques or between the three red nodes. (b) Common block structure of
{E1,E2,L} found by an SBD transformation. Colored circles indicate the
cluster each perturbation mode belongs to. Gray squares mark the block as-
sociated with the parallel perturbations while green squares indicate trans-
verse blocks that are not 1 × 1. (c) Common block structure produced by
the transformation proposed in Ref. [244].

the stability analysis of cluster synchronization patterns, which is based on the concept

of quotient graphs and uses results from algebraic graph theory. While it succeeds in

decoupling the parallel and transverse perturbations, it in general fails to further separate

the transverse perturbation modes. In contrast, an SBD transformation not only sepa-

rates the parallel perturbations from the transverse ones but also optimally decouples the

transverse perturbations (compare Fig. 9.1(b) to Fig. 9.1(c)). It is still possible to modify

the symmetry-based IRR framework for the stability analysis of input clusters by intro-

ducing additional local coordinate transformations [257]. However, the SBD framework

can be applied more directly to the problem and, as we show below, leads to a much more

scalable algorithm.



196

9.3.5. Computational efficiency and error tolerance

An SBD transformation is not only directly applicable to more synchronization patterns

but is also demonstrably more efficient to compute. The computational complexity of

the SBD algorithm (Algorithm 1) scales with the network size as O(n3). Moreover, the

computational cost is independent of the number of symmetries in the network, as demon-

strated in Fig. 9.2(a). This gives the SBD algorithm a huge computational advantage over

the algorithm based on the IRR transformation [103], which relies on the computation of

irreducible group representations and becomes inefficient when a large number of symme-

tries is present. Since the complete graph with n nodes has the symmetric group Sn as its

automorphism group and |Sn| = n!, the number of symmetries can grow as the factorial

of network size n. Combined with the observation that the CPU time scales with the

number of symmetries as a power law for the IRR algorithm (orange dots in Fig. 9.2(a)),

it follows that the computational cost of the IRR algorithm can grow super-exponentially

with the network size. This is further illustrated in Fig. 9.2(b), where the gap between

the worst-case CPU time for the two algorithms grows rapidly with n, and the IRR al-

gorithm can be more than six orders of magnitude slower than the SBD algorithm even

for networks of moderate sizes (e.g., n = 14). We note that another polynomial-time

algorithm exists, which applies to symmetry clusters [59]. However, that algorithm was

designed to separate clusters that synchronize independently of each other, and thus is

not intended to have the same decoupling power as the IRR and SBD algorithms for

intertwined clusters and their generalizations.

Another aspect in which the SBD algorithm excels is its error tolerance. Algorithm 1

can be easily adapted to treat cases in which the coupling matrices contain small errors.
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Figure 9.2. Comparing the efficiency of the SBD algorithm (Algorithm 1)
and the IRR algorithm [103]. The tests are done using networks of varying
sizes formed by randomly removing 2–10 edges from complete graphs. (a)
CPU time required to find the IRR transformations (orange) and the SBD
transformations (blue) for the symmetry clusters produced by the orbital
partition of Aut(A), plotted against the number of network symmetries.
(b) Same data with CPU time plotted as functions of the network size. All
tests are done on an Intel Xeon E5-2680 v3 Processor.

In this case one can simply replace the linear dependence tests by approximate linear

dependence tests. That is, a vector can be regarded as being linearly independent from a

set of vectors if it cannot be expressed as a linear combination of the existing vectors within

some preset tolerance. Unlike the IRR algorithm, which works best when the entries in

the adjacency matrix are exact, the SBD algorithm, with its error control capability, has

the flexibility to deal with noises and uncertainties in real data.

As an example, we consider a 30-node network generated by deleting 6 randomly

selected edges from a complete graph. For each entry of the otherwise binary adjacency

matrix, we add a mismatch term drawn from a normal distribution with zero mean and

a standard deviation of 10−3. These mismatches can model hardware imperfections and

measurement errors in real systems. We then equip each node with the dynamics of an

electro-optic oscillator used for the first experimental demonstration of chimera states
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Figure 9.3. Symmetry-breaking bifurcations of cluster synchronization pat-
terns in a dense random network. (a) 30-node network (generated by re-
moving the 6 red dashed edges from a complete graph) colored according
to the orbital partition induced by Aut(A). (b) Synchronization error for
each cluster as the bifurcation parameter β is increased slowly from 3 to
6.5. (c) MTLE for individual clusters calculated from the SBD coordinates.
Both (b) and (c) show a sequence of three desynchronization bifurcations
as β increases, which are indicated by vertical dashed lines.

[104], described by

(9.11) θi(t+ 1) =
βI(θi(t)) + σ

n∑
j=1

A(i, j)I(θj(t)) + ξi(t) + δ

mod 2π,

where θi is the phase for the i-th oscillator, β is the strength of the self-feedback coupling,

and δ = 0.525 is introduced to suppress the trivial solution at the origin. The nonlinear

function I(θ) = [1 − cos(θ)]/2 models the dynamics of individual oscillators as well as

their interaction function. To demonstrate the robustness of our approach in the context

of Eq. (9.4), here we also introduce noise terms ξi to mimic experimental conditions. The

noise terms are Gaussian, have intensity of 10−5, and are independent for each oscillator.

The network admits a flow-invariant synchronization pattern of 4 clusters, as shown in

Fig. 9.3 (clusters are indicated by node colors), which is induced by the orbital partition of

Aut(A). The IRR algorithm is not practical for this system due to the mismatch terms in
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the adjacency matrix and the huge number of symmetries present, which is generally the

case for dense random networks. This particular network has approximately 1.557× 1020

symmetries, and thus extrapolation from Fig. 9.2 suggests around a billion years of CPU

time for the IRR algorithm to find the right transformation. In contrast, Algorithm 1

finds an SBD transformation of {E1, · · · ,E4,A} within one CPU second. Under the

SBD coordinates, the matrices share one 4×4 block corresponding to class I perturbation

modes, twenty-four 1 × 1 blocks corresponding to class II perturbation modes, and one

2× 2 block corresponding to class III perturbation modes (the red and blue clusters are

intertwined)16.

Based on this decomposition, we calculate the maximal transverse Lyapunov exponent

(MTLE) for each cluster over a range of parameter β. We further verify their stabilities by

directly simulating equation Eq. (9.11) for β slowly increasing from 3 to 6.5 and calculating

the synchronization error in each cluster. We define the synchronization error em in the

m-th cluster Cm with nm nodes as the standard deviation of the phases θi in that cluster:

em =
√∑
j∈Cm

(θj − θ̄)2/nm,

where θ̄ = ∑
j∈Cm

θj/nm. Fig. 9.3(b) and (c) show a sequence of three symmetry-breaking

bifurcations as β is increased: it starts with the isolated desynchronization of the magenta

cluster around β = 3.9, followed by the concurrent loss of stability of the red and blue

clusters around β = 4.9, and ends with a transition to incoherence in the green cluster

just below β = 5.5.

16See Section 9.3.3 for the definition of the perturbation classes.
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9.4. Extension to nonidentical oscillators and coupling functions

The techniques developed in the previous sections can be easily extended to study

cluster synchronization of nonidentical oscillators with disparate coupling functions. In

this section, we establish such a generalized formalism and use it to discover permanently

stable chimera states in multilayer networks.

A system of (possibly nonidentical) oscillators diffusively coupled through a multilayer

network with R different types of interactions can be described by

(9.12) ẋi = Fk(i)(xi)−
R∑
r=1

σr
n∑
j=1
Lr(i, j)Hr(xj),

where Fk(i) : Rd → Rd is the vector field governing the uncoupled dynamics of the i-th

oscillator, k indexes the K different functions {Fk} that can be assigned to each oscillator,

and Lr is the Laplacian matrix representing the r-th type of interactionHr. Other special

cases of Eq. (9.1), corresponding to different choices of the coupling matrices in Eq. (9.12),

can be treated similarly, as outlined below.

For any flow-invariant synchronization pattern, a variational equation governing the

evolution of δX = (δxᵀ1, · · · , δxᵀn)ᵀ can be obtained by linearizing Eq. (9.12) around the

corresponding cluster synchronization manifold:

(9.13) δẊ =
∑
m,k

EmDk ⊗ JFk(sm)−
∑
m,r

σrLrEm ⊗ JHr(sm)
 δX,

where sm is the synchronization trajectory of the m-th cluster. Recall that Em is an n×n

diagonal matrix encoding the nodes inside the m-th cluster. Similarly, let Nk be the set
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of nodes equipped with the k-th function Fk. Then

Dk(i, i) =


1, if i ∈ Nk,

0, otherwise,

are n × n diagonal matrices encoding the assignment of heterogeneous nodes, whose

sum satisfies ∑K
k=1Dk = In. In order to find the coordinates that optimally decouple

Eq. (9.13), one can apply Algorithm 1 to the following matrix set: {E1, · · · ,EM ,D1, · · · ,

DK ,L1, · · · ,LR}.

Our formalism can be used, in particular, to search for permanently stable chimera

states in multilayer networks. Broadly speaking, chimera states and their generalizations

refer to states in which coherence and incoherence coexist in a system. In the context

of coupled oscillators, a network in a chimera state splits into one group of synchronized

oscillators and one group of incoherent oscillators [210, 201]. Over the past two decades,

chimera states have been shown to be a general phenomenon [121, 133, 3, 1, 202, 308,

251, 245, 17, 249] that arises robustly in physical systems [104, 285, 159, 39, 287].

Meanwhile, multilayer and multiplex networks have recently emerged as suitable descrip-

tions of many real systems [126, 42]. In the synchronization community, such networks

are often used to represent oscillators coupled through multiple types of interactions

[263, 118, 254, 67, 41, 280].

Given the relevance of these developments, it is of interest to consider chimera and

chimera-like states in networks with two or more types of interactions There has been

previous reports of chimera states in multiplex networks based on numerical simulations
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Figure 9.4. Chimera states in a multilayer network. (a) Two-layer network
of Lorenz oscillators with different intralayer and interlayer interactions,
given by H1 = (0, 0, z)ᵀ and H2 = (0, 0, x)ᵀ, respectively. The color coded
nodes represent a chimera state in which the first layer is incoherent and
the second layer is synchronized. (b) Finest common block structure for
the two-cluster state in which both layers are synchronized, which is ob-
tained through an SBD transformation. (c) Finest common block structure
for the seven-cluster state depicted in (a), also obtained through an SBD
transformation. (d) Diagram in the ρ-σ plane characterizing the stability
of the two patterns. The three regions correspond to parameters for which
both patterns are unstable (red), both patterns are stable (blue), and only
the seven-cluster pattern (i.e., chimera state) is stable (green).

[89, 153]. However, an analytical treatment of their stability is still lacking. The formal-

ism developed here bridges this gap, since many chimera and chimera-like states can be

seen as special cluster synchronization patterns [106, 59].

As an example, we consider a multilayer network depicted in Fig. 9.4(a). Each layer

consists of six identical Lorenz oscillators interacting through eight connections with the

coupling function H1 = (0, 0, z)ᵀ. We represent the intralayer connections in the first
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Figure 9.5. Trajectories converging to a chimera state in which layer 2 syn-
chronizes and layer 1 remains incoherent for the system in Fig. 9.4. Top
and bottom panels: trajectories for oscillators in each layer. Each oscillator
in one layer is assigned a different color. When a layer is synchronized, only
one color is visible since all trajectories overlap. Middle panel: synchroniza-
tion errors e1 for the first layer (orange) and e2 for the second layer (blue).
The parameters used are ρ = 60 and σ = 2.

(second) layer using the Laplacian matrix L(1)
1 (L(2)

1 ). In addition, the two layers are

all-to-all coupled through the coupling function H2 = (0, 0, x)ᵀ. The oscillators in the

first layer are thus described by the equations

ẋ
(1)
i = α(y(1)

i − x
(1)
i ),

ẏ
(1)
i = x

(1)
i (ρ− z(1)

i )− y(1)
i ,

ż
(1)
i = x

(1)
i y

(1)
i − βz

(1)
i − σ1

∑
j

L
(1)
1 (i, j)z(1)

j + σ2
∑
j

(x(2)
j − x

(1)
i ),

(9.14)

where we set α = 10, β = 2, σ1 = σ, and σ2 = 0.2σ, leaving the parameters ρ and σ to

be varied. The oscillators in the second layer are described by similar equations.

To search for chimera states where one layer is synchronized and the other is inco-

herent, we need to analyze the linear stability of two different cluster synchronization

patterns (both formed by input clusters). Specifically, the two-cluster state in which both
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layers are coherent (x(1)
1 = · · · = x

(1)
6 , x(2)

1 = · · · = x
(2)
6 ) should be unstable while the

seven-cluster state x(1)
1 6= · · · 6= x

(1)
6 ,x

(2)
1 = · · · = x

(2)
6 (each cluster represented by a

different color in Fig. 9.4(a)) should be stable. In both cases, the cluster synchronization

manifold can be found by simulating Lorenz oscillators coupled through the correspond-

ing quotient network. Applying the SBD algorithm to the two-cluster state leads to a

common block structure for the matrices in the variational equation Eq. (9.13), as shown

in Fig. 9.4(b), where a diagonal entry is colored orange if the corresponding perturbation

mode belongs to the first layer and is colored blue if the mode belongs to the second layer.

In this case, the transverse perturbation modes are fully decoupled and the 2 × 2 block

corresponds to perturbations inside the cluster synchronization subspace. Similarly, the

common block structure for the seven-cluster state is shown in Fig. 9.4(c). In this case, we

have a 7× 7 block representing the parallel perturbations and five 1× 1 blocks related to

the transverse perturbation modes for the coherent layer. It is straightforward to perform

stability analysis under these SBD coordinates. We show the results in the ρ-σ diagram

of Fig. 9.4(d). Red indicates parameters for which both patterns are unstable while blue

indicates where both patterns are stable. Chimera states are found in the green region,

where only the seven-cluster pattern is stable.

A representative trajectory of the chimera state for ρ = 60 and σ = 2 is shown in

Fig. 9.5. The lower and upper panels show the dynamics of x variables for oscillators

in each layer, while the middle panel shows their respective synchronization error. This

chimera state is permanently stable and can emerge from random initial conditions.
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9.5. Concluding remarks

The framework established here utilizes the finest simultaneous block diagonalization

of matrices to study cluster synchronization patterns in complex networks. This frame-

work has its theoretical foundation rooted in the theory of matrix ∗-algebra and does not

rely on symmetry information in the system. This results in an algorithm that is faster,

simpler, and more robust than the state-of-the-art algorithm based on irreducible repre-

sentations of network symmetry. In particular, the SBD framework enjoys the following

advantages over the IRR framework and its variants:

(1) It applies straightforwardly to any flow-invariant synchronization pattern, includ-

ing those formed by symmetry clusters, Laplacian clusters, and input clusters.

(2) It can easily treat nonidentical oscillators and oscillators coupled through multiple

types of interactions.

(3) It is highly scalable because the SBD transformations can be calculated much

more efficiently than the IRR transformations, which enables the stability anal-

ysis of complex synchronization patterns in large networks and in networks with

a high degree of symmetry.

(4) It is especially suited for practical applications because Algorithm 1 is robust

against uncertainties in the network structure typical of real systems.

A Matlab implementation of Algorithm 1 is available online and comes with illustrative

examples of use.17 The utility of this algorithm is not limited to network synchronization

problems. It can be applied, for instance, to reduce the complexity of many problems in

17See https://github.com/y-z-zhang/net-sync-sym/.

https://github.com/y-z-zhang/net-sync-sym/
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which multiple matrices are involved, such as in the control of network systems and in

semidefinite programming [178].

An important open problem for future research concerns the case of directed networks.

When considering cluster synchronization patterns in directed networks, two complica-

tions arise. The first concerns the identification of valid clusters. Directed networks

support many flow-invariant synchronization patterns that do not result from orbital par-

titions. Thus, it is often the case that a synchronization pattern of interest will not

be identified by a software based on computational group theory. Indeed, any partition

of the nodes that satisfies the balanced equivalence relations [95, 272] gives rise to a

flow-invariant cluster synchronization pattern.

The second difficulty involves finding an optimal coordinate system to separate pertur-

bation modes in the stability analysis. Since in directed networks the coupling matrices

are no longer self-adjoint, one must consider the corresponding matrix algebra (as opposed

to the matrix ∗-algebra) to obtain a finest simultaneous block diagonalization of matrices

in the variational equation. Unlike matrix ∗-algebras, matrix algebras are no longer closed

under the conjugate transpose operation and are generally not semisimple algebras. This

renders the Artin-Wedderburn theorem inapplicable and introduces “bad” elements called

radicals [136] such that, in general, matrix algebras cannot be decomposed into the direct

sum of irreducible matrix algebras. Thus, a promising direction for future research is to

generalize the current algorithm to find a finest simultaneous block diagonalization for

matrices that are not necessarily self-adjoint.
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CHAPTER 10

Unified Treatment of Dynamical Processes on Higher-Order and

Temporal Networks

For the past two decades, networks have emerged as a versatile description of in-

terconnected complex systems. However, it is also increasingly clear that the original

formulation of a static network representing a single type of pairwise interaction has its

limitations. For this reason, the original formulation has been generalized in different

directions, including hypergraphs that account for higher-order interactions, multilayer

networks that accommodate multiple types of interactions, and temporal networks for in-

teraction patterns that change over time. Naturally, with the increased descriptive power

comes increased analytical complexity, especially for dynamical processes on those gen-

eralized networks. This renders many of the traditional tools, such as master stability

functions, inapplicable in the new settings. Here, we first establish a natural general-

ization of master stability functions that enables analysis of arbitrary synchronization

patterns in hypergraphs. It simplifies the stability analysis to the fullest extent possible

by finding the finest simultaneous block diagonalization (SBD) of matrices in the varia-

tional equation. We demonstrate the utility of the SBD framework by applying it to real

datasets describing the macaque brain connectome and to characterize chimera states

arising from nonpairwise interactions. By exploiting similar underlying mathematical
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structure, our results can be easily extended to other dynamical processes (diffusion, ran-

dom walk, etc.) and other generalized networks (e.g., temporal networks). Such a unified

framework will facilitate a deeper understanding of dynamical processes on generalized

networks frequently encountered in the real world.

This chapter is based on the joint work with Vito Latora and Adilson E. Motter.

10.1. Background

Many biological and technological networks show intricate synchronization patterns,

where one or more internally coherent but mutually independent clusters coexist [272,

30, 62, 187, 302, 238, 82]. Maintaining the desired dynamical patterns is critical to

the function of those networked systems [248]. For instance, long-range synchronization

between the prefrontal cortex and the temporal cortex has been shown to improve working

memory in older adults [232]. Whether a synchronization pattern can persist ultimately

depends on its stability, which is determined by the Lyapunov exponents transverse to the

cluster synchronization manifold. The case of globally synchronization was readily simpli-

fied by the master stability function (MSF) formalism [217], which separates the effect of

local dynamics and network structure through the diagonalization of the coupling matrix.

The analysis of complex dynamical patterns beyond global synchronization, however, is

much more challenging due to the existence of additional nontrivial matrices in the vari-

ational equation, which precludes its decoupling through simple diagonalization of any

single matrix. This issue was partially addressed with the introduction of sophisticated

methods utilizing irreducible representations of network symmetry [219] and was further
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resolved using simpler and more versatile methods based on matrix ∗-algebras (which are

not encumbered by symmetry restrictions) [315].

Up until now, these endeavors have focused exclusively on networks with pairwise

interactions. However, many real-world systems cannot be adequately described by these

traditional networks [137]. Very often, three or more nodes can influence each other in

a nonlinear fashion such that the many-body interaction cannot be broken down into

the sum of pairwise interactions [25]. Examples include scientific collaborations [214],

random walks and diffusion [243, 56, 64], social and biological contagion [221, 117,

162, 63, 267], ecological communities [19, 166, 143], functional brain networks [222,

90, 231, 259], gene, drug, and protein interaction networks [134, 281, 76], and consensus

dynamics [182]. In these cases, hypergraphs [34] or simplicial complexes [111] are needed

to accurately describe the higher-order interactions.

Recently, phase oscillators coupled through non-pairwise interactions have received

significant attention [279, 38, 260, 261, 306, 57, 146, 171], partly driven by the

fact that such systems arise naturally from phase reduction beyond the first order [142]

and have been observed in experiments [163]. However, the dynamics of more general

oscillators with non-pairwise interactions, especially when the collective dynamical pat-

tern is more complex than global synchronization, remains underexplored. This is in no

small part due to the technical difficulties associated with such analysis in the context of

hypergraphs.

In this chapter, we generalize the simultaneous block diagonalization (SBD) framework

first developed in Ref. [315] to simplify the stability analysis of synchronization patterns



210

formed by general oscillators on hypergraphs. Furthermore, we show that the same tech-

nique can be easily extended to temporal networks, providing a unified framework for the

treatment of dynamical processes on many generalized networks.

10.2. Simplifying master stability functions for hypergraphs

Hypergraphs and simplicial complexes provide general languages to study networks

with higher-order interactions and have been widely adopted in the literature [32, 31].

However, the associated tensors describing those higher-order structures are much more

cumbersome to work with than matrices, especially when combined with the analysis of

dynamical processes. Naturally, there have been several attempts to generalize the MSF

formalism to those settings, for which different variants of an aggregated Laplacian have

been proposed [177, 146, 57, 64]. The aggregated Laplacian captures the interactions of

all orders in a single matrix, whose spectral decomposition allows the stability analysis to

be decoupled into structural and dynamical components, just like the MSF in traditional

networks. However, such powerful reduction comes with inevitable cost—simplifying as-

sumptions must be made about the network structure (e.g., all-to-all coupling), node

dynamics (e.g., fixed points), and/or interaction functions (e.g., linear) in order for the

aggregation to a single matrix to be valid.

Here, for the ease of presentation and without loss of generality, we first focus on

networks with interactions that involve up to three oscillators simultaneously:

(10.1) ẋi = F (xi) + σ1

N∑
j=1

A
(1)
ij H

(1) (xi,xj) + σ2

N∑
j=1

N∑
k=1

A
(2)
ijkH

(2) (xi,xj,xk) .
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The adjacency matrix A(1) and adjacency tensor A(2) represent the pairwise and the

three-body interactions, respectively. The coupling is assumed to be diffusive, that is,

H(1)(xs,xs) = 0 and H(2)(xs,xs,xs) = 0 for any synchronous state xs. The challenges

posed by the higher-order interactions are demonstrated through the analysis presented in

Ref. [84], where Eq. (10.1) is considered without the aforementioned restrictions. A key

insight in that study is that one can define the generalized Laplacian for the adjacency

tensor

(10.2) L
(2)
ij =


−∑k A

(2)
ijk for i 6= j,

−∑j 6=i L
(2)
ij for i = j,

so that the variational equation for the global synchronization state can be written as

(10.3) δ̇ =
(
Id ⊗ JF − σ1L

(1) ⊗ JH(1) − σ2L
(2) ⊗ JH(2)

)
δ.

Here, δ is the deviation from the synchronization trajectory xs, Id is an identity matrix,

⊗ is the Kronecker product,

JH(1) = ∂xj
H(1) (xi,xj) |(xs,xs),

and

JH(2) = ∂xj
H(2) (xi,xj,xk) |(xs,xs,xs) + ∂xk

H(2) (xi,xj,xk) |(xs,xs,xs).

One can then seek to separate the parallel and transverse perturbations by diagonalizing

L(1). However, this often does not lead to the optimal decoupling of Eq. (10.3), whose
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transverse perturbations can potentially be further divided into lower-dimensional flow-

invariant subspaces. This is especially true for simplicial complexes, whose generalized

Laplacians are not independent from each other. In fact, L(m) for m ≥ 2 are entirely

determined by L(1) for simplicial complexes.

We solve this problem by finding coordinates that block diagonalize L(1) and L(2)

simultaneously. For this purpose, we developed an algorithm to find an orthogonal trans-

formation matrix P that reveals the finest SBD of any given set of symmetric matrices,

which in turn gives rise to the optimal separation of perturbation modes in Eq. (10.3).

Given a set of matrices B = {B(1),B(2), . . . ,B(M)}, the SBD Algorithm consists of two

simple steps:

i) Find the eigenvectors vi of a symmetric matrix L = ∑
m ξm(B(m) + (B(m))ᵀ), where ξm

are independent random numbers drawn from a Gaussian distribution.

ii) Order vi to form a basis (i.e., the orthogonal transformation matrix P ) such that the

base vectors corresponding to the same common block are next to each other.

This strategy is based on the fact that each vi has probability 1 to be inside a minimal

invariant subspace under the action of B. The SBD algorithm proposed here is either sim-

pler or faster than existing algorithms [150, 151, 315] and is available online as Matlab

and Python packages18.

To establish the utility of SBD transformations, we apply it to simplicial complexes

built on random networks with varying degrees of symmetry. We measure the reduction

in complexity achieved through SBD transformations using r(α) = ∑
i n

α
i /N

α, where ni is

the size of the ith common block between PL(1)P ᵀ and PL(2)P ᵀ. If the computational

18https://github.com/y-z-zhang/SBD

https://github.com/y-z-zhang/SBD
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Figure 10.1. Applying SBD transformations to the first two generalized
Laplacians of simplicial complexes generated from 8000 random networks
of size N = 100. Each dot represents a network realization. Larger concen-
tration of dots is naturally reflected through darker shades. The reduction
in complexity, as measured by r(α) = ∑

i n
α
i /N

α, scales algebraically with
the number of symmetries Nsym in a network.

complexity of analyzing Eq. (10.3) in its original form scales as O(Nα), then r(α) gives the

fraction of time needed to analyze Eq. (10.3) in its SBD decoupled form. In Fig. 10.1, we

set19 α = 3 and plot it against the number of network symmetries Nsym normalized by the

maximal number of possible symmetries N !. From 8000 independent network realizations

for N = 100, we see that SBD transformations generally reduce more complexity when

there is more symmetry in the network and can speed up computations by up to four

orders of magnitudes already for modest network size.

To demonstrate our framework on a real dataset, we apply SBD transformations to

a macaque brain connectome [239]. Since the network data includes directional binary

links, we construct a directed simplicial complex using the following rule: Aijk = 1 if

and only if Aij = 1, Aik = 1, and Ajk = 1. This dataset is particularly challenging

since the generalized Laplacians are non-diagonalizable. Figure 10.2 shows that SBD

19Given that the computational complexity of finding eigenvalues of an N×N matrix lies between O(N2)
andO(N3), it is reasonable to assume α = 3 when performing stability analysis (i.e., calculating Lyapunov
exponents) by solving Eqs. (10.1) and (10.3). Furthermore, our results do not depend sensitively on the
choice of α.
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Figure 10.2. SBD transformations applied to a directed simplicial complex
constructed from the macaque brain connectome depicted in (a). A visu-
alization of decoupled Eq. (10.3) after the transformation is given in (b),
which has been simplified into a 59× 59 block and thirty-two 1× 1 blocks.

transformations still perform well in this case and give significant reduction in complexity,

as evidenced by the common block structure depicted in (b). Other rules of constructing

directed simplicial complexes, such as Aij = 1, Ajk = 1, Aki = 1 =⇒ Aijk = 1, admits

similar reductions.

10.3. Chimera states arising from higher-order interactions

The techniques above can be easily extended from global synchronization to more

complex cluster synchronization patterns. This is achieved by adding the following diago-

nal matricesD(k) to be simultaneously block diagonalized with the generalized Laplacians
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L(m):

(10.4) D
(k)
ii =


1, if node i ∈ Ck

0, otherwise,

where Ck represents the kth cluster. The corresponding variational equation to be block

diagonalized then reads (we now consider the most general case involving interactions of

any order):

(10.5) δ̇ =
{∑

k

D(k) ⊗ JF (xsk)−
∑
m,k

σmL
(m)D(k) ⊗ JH(m)(xsk)

}
δ,

where xsk is the synchronized state of the oscillators in the kth cluster. Since D(k)

and L(m) are the only nontrivial matrices in the variational equation, their simultaneous

block diagonalization will reveal independent perturbation modes and simplify stability

analysis. In particular, SBD transformations can always separate the perturbation modes

parallel and transverse to the cluster synchronization manifold, and decouple transverse

perturbations to the fullest extent possible.

As an application to nontrivial synchronization patterns, we study chimera states

[210, 201] in hypergraphs. The hypergraph in Fig. 10.3(a) consists of two clusters of

optoelectronic oscillators. Each cluster is a simplicial complex—a node is coupled to its

four nearest neighbors through pairwise interaction of strength σ1 and it also participates

in three-body interaction of strength σ2. The two clusters are all-to-all coupled through

weaker links of strength σ1/5. The individual oscillators are modeled as discrete maps

xi[t + 1] = β sin2
(
xi[t] + π/4

)
and have been recently used in the experimental demon-

stration of globally attractive chimeras with power-law switching dynamics [316]. For the
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Figure 10.3. Chimera state arising from higher-order interactions. (a) Two
coupled simplicial complexes of optoelectronic oscillators. The three-body
interactions are indicated by yellow triangles. (b) Simulation of the opto-
electronic system for σ1 = 0.6 and σ2 = 0.3 [purple dot in (c)], illustrating
the dynamics of a chimera state. (c) Linear stability analysis of full syn-
chrony and chimera states for a range of pairwise interaction strength σ1
and three-body interaction strength σ2. Blue: stable full synchrony; yellow:
stable chimera; green: incoherence.

pairwise interaction, we set H(1)(xi, xj) = sin2
(
xj +φ

)
−sin2

(
xi+φ

)
. For the three-body

interaction, we set H(2)(xi, xj, xk) = sin2
(
xj + xk − 2xi

)
. The full dynamical equation

can be summarized as follows:

xi[t+ 1] = β sin2
(
xi[t] + π

4
)

+σ1

N∑
j=1

A
(1)
ij

(
sin2

(
xj[t] + π

4
)
− sin2

(
xi[t] + π

4
))

+σ2

N∑
j=1

N∑
k=1

A
(2)
ijk sin2

(
xj[t] + xk[t]− 2xi[t]

)
,

(10.6)

where β is the self-feedback strength of the oscillators.

Figure 10.3(b) shows simulations of Eq. (10.6) for β = 1.1, σ1 = 0.6, and σ2 = 0.3. For

the chosen initial condition, the system settles into a chimera state in which the first cluster

is fully synchronized and the second cluster is incoherent. We then perform stability

analysis in the σ1-σ2 parameter space for fixed β to map out the region where chimera
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Figure 10.4. Equivalent of Fig. 10.1 for temporal networks. Each of the
8000 dots represents a temporal network of N = 100 nodes, in which a
single unreliable link turns on and off over time.

states are linearly stable. In this case, the SBD transformation completely decouples

the transverse perturbations into 1 × 1 blocks. As can be seen from Fig. 10.3(c), when

σ1 is small, three-body interaction has no effect on the emergence of chimera states–the

boundary between full sync (blue) and chimera (yellow) is independent of σ2. On the other

hand, for large σ1, the three-body interactions become relevant for intermediate σ2 around

0.3, where it gives rise to chimera states that would otherwise not exist. Such chimera

states are unstable when oscillators are coupled only through pairwise interactions.

10.4. The case of temporal networks

Another class of systems that lend itself naturally to the SBD framework are temporal

networks [114]. Such networks are ubiquitous in nature and society [9, 212] and their

time-varying nature has been shown to significantly alter many dynamical characteristics,

including controllability [144] and synchronizability [10, 119]. To keep the formalism to

the minimum, we focus on global synchronization, but the same methods can be used to

analyze more complex synchronization patterns by including additional diagonal matrices

D(k).
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Consider a temporal network that switches between M different connection patterns

described by L(m),

(10.7) ẋi = F (xi)− σ
M∑
m=1

Γm(t)
N∑
j=1

L
(m)
ij h

(m)(xj),

where Γm(t) are switching functions that encode the temporal evolution of the network.

At any given t, we have Γm(t) = 1 for m = k, where k is the connection pattern that is

active at that time, and Γm(t) = 0 for all m 6= k.

Synchronization stability in temporal networks is also governed by variational equa-

tions with similar mathematical structure:

(10.8) δ̇ =
(
Id ⊗ JF (xs)− σ

M∑
m=1

Γm(t)L(m) ⊗ Jh(m)(xs)
)
δ.

Thus, once again the stability analysis can by simplified by simultaneously block diag-

onalizing L(m) to optimally decouple Eq. (10.8). This framework generalizes the one

developed in Ref. [43], which assumes the set of all L(m) to be commutative. It also does

not require separation of time scales between the evolution of the network structure and

the internal dynamics of oscillators (e.g., the fast switching limit), which was assumed in

various blinking models in exchange of analytical insight [28, 273]. Therefore, a broad

range of systems, including important classes of temporal networks previously considered,

can be examined within the same unified framework.

As an application, we consider diffusively-coupled networks that contains a single unre-

liable connection, which fails from time to time. Such scenarios are frequently encountered

in power grids and other engineered systems [58]. This class of temporal networks can be

described by two Laplacian matrices: L(1) for the network with the unreliable link active,
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and L(2) for the network with the unreliable link inactive. In Fig. 10.4, we consider such

temporal networks based on random networks with varying degrees of symmetry. Simi-

larly to Fig. 10.1, we observe more significant reduction in complexity in networks that

have more symmetries. Although in this case even for networks with few symmetries it is

possible to achieve sizable (up to 10000 fold) reduction in computational cost.

10.5. Concluding remarks

In this chapter we established SBD transformations as a versatile tool to analyze

complex synchronization patterns in generalized networks with higher-order and/or time-

varying interactions. It should be noted that our framework can also be applied in the

analysis of other dynamical processes on generalized networks, such as diffusion and ran-

dom walk. Indeed, the equations describing many such processes often involve several

nontrivial matrices, whose simultaneous block diagonalization naturally leads to the de-

coupling of the equation and simplification of the analysis. In all cases, our SBD approach

is highly scalable, whose computational complexity is dominated by the cost of finding the

eigenvectors of an N ×N symmetric matrix. Moreover, for a given generalized network,

the transformation only needs to be performed once and the same coordinates can be

reused for different values of node parameters.
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CHAPTER 11

Outlook

As a community that studies complex systems, we have come a long way from the

early days of lattice network models and mean-field theories. Along the way, we have

gradually incorporated more nuanced features into our models, including network het-

erogeneity, rich node annotations, higher-order interactions, multilayer structures, and

cluster synchronization patterns. At any given time, there will always be systems that

are well understood and systems that are out of reach due to their complexity. The most

fruitful research opportunities will most likely lie at the boundary between the two, which

consists of the simplest complex systems into which we can obtain valuable insight. Next

we discuss some promising directions for the three main topics covered in this dissertation

and where they fit in the broader research landscape.

The differences among interacting nodes, especially for those with dynamics more

complex than Kuramoto oscillators, is a feature that presents abundant new opportunities

[173]. The work in Chapters 2 to 6 only revealed the tip of the iceberg in terms of the

effect of heterogeneity on collective dynamics. In particular, characterizing when and how

can such heterogeneity give rise to more synchronized behavior is a key challenge yet to

be solved. A system-independent explanation of this phenomenon has the potential to

transform our understanding of how order emerges in networked systems.

On the other hand, the chimera states discussed in Chapters 7 and 8 have been the

focus of intensive research efforts for quite some time [210]. However, the significance of
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chimeras in natural systems is still much debated and needs further elucidation. A fertile

ground for this line of research is the brain, where chimera-like states have been observed

[12, 22]. What are the physiological and cognitive functions of these chimera-like dy-

namics? What is driving the switching between chimeras and other partially synchronous

states in the brains of dolphins and songbirds? How can we bridge the gap between theo-

retical models of chimeras and the (much messier) chimera-like states in living organisms?

These questions could serve as a driving force for future chimera research.

We have shown in Chapters 4, 9 and 10 that the SBD formalism is versatile enough

to analyze complex synchronization patterns in networks with higher-order, multilayer,

and temporal interactions. The next frontier to which this formalism could be expanded

is adaptive networks, in which the network structure is not only time-varying but its evo-

lution is also coupled to the dynamical states of the nodes [100]. Such two-way influence

between the network structure and network dynamics is important for many collective

processes, including epidemic spreading [101], consensus seeking [130], and synchroniza-

tion [35]. A unified framework that can analyze these co-evolutionary dynamics under a

general stetting would undoubtedly advance our understanding of many adaptive systems.

The interplay between network science and nonlinear dynamics has been fruitful for

the past three decades. The cross-fertilization between the two fields, which forms the

basis of this dissertation work, will only accelerate moving forward. During this exciting

time, it is up to all of us to build new tools and find new connections so that more and

more complex systems will eventually become simple.
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Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., and Zanin,
M. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1 (2014),
1–122.

[43] Boccaletti, S., Hwang, D.-U., Chavez, M., Amann, A., Kurths, J., and
Pecora, L. M. Synchronization in dynamical networks: Evolution along commu-
tative graphs. Phys. Rev. E 74, 1 (2006), 016102.

[44] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., and Zhou, C.
The synchronization of chaotic systems. Phys. Rep. 366, 1 (2002), 1–101.

[45] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U.
Complex networks: Structure and dynamics. Phys. Rep. 424, 4 (2006), 175–308.

[46] Bogomolov, S. A., Slepnev, A. V., Strelkova, G. I., Schöll, E., and
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existence of synchrony and incoherence in oscillatory media under nonlinear global
coupling. Chaos 24, 1 (2014), 013102.

[247] Schmidt, M. F. Using both sides of your brain: the case for rapid interhemispheric
switching. PLoS Biol. 6, 10 (2008), e269.

[248] Schnitzler, A., and Gross, J. Normal and pathological oscillatory communi-
cation in the brain. Nat. Rev. Neurosci. 6, 4 (2005), 285–296.

[249] Semenova, N., Zakharova, A., Anishchenko, V., and Schöll, E.
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APPENDIX A

Supplemental Information on Topological Control of

Synchronization Patterns

A.1. Stability analysis of nondiagonalizable clusters

When dealing with directed networks, one must be aware of the possibility of nondi-

agonalizable coupling matrices, which can be the case even for symmetric networks [92].

Here, we present details of how the analysis in the manuscript also applies to nondiag-

onalizable networks. To demonstrate that, our key observation is that the treatment of

nondiagonalizable networks in Refs. [190, 189] can be generalized to the case of a cluster

subnetwork in which each oscillator receives a common input from the rest of the network.

We start from the variational equation of the system in the form of Eq. (2.4) in the

main text,

(A.1) δẊ =
[
1m ⊗ Jf(sI)− σL̂⊗ Jh(sI)

]
δX,

but this time we lift the assumption that the matrix L̂ is diagonalizable. For such systems,

in general we can not find m independent eigenvectors for L̂. Nevertheless, this matrix can

always be transformed into a Jordan canonical form through a similarity transformation
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defined by an invertible matrix P , such that

(A.2) B = P−1L̂P =



µ̃

B1

. . .

Bq


, Bj =



v̂j+1

1 v̂j+1

. . . . . .

1 v̂j+1


,

where v̂j+1 is the eigenvalue of L̂ corresponding to the Jordan block Bj, and the matrix

entries not shown are zero. The eigenvalues are numbered from 2 to q+ 1 for consistency

with the eigenvalue notation in the main text, and are thus ordered as in the rest of

the chapter but now without relabeling the (identical) eigenvalues associated with the

same Jordan block (which is why q + 1 < m in the nondiagonalizable case). The special

case in which L̂ is diagonalizable is also included in this transformation, and it merely

corresponds to the case in which all Jordan blocks are 1× 1.

Equation (A.1) can now be decoupled into q + 1 independent equations accounting

for the Jordan blocks. The central difference between the case of an isolated network,

as considered in Refs. [190, 189], and the cluster subnetworks considered here is the

entry B11 = µ̃, which is zero for isolated networks. However, this term corresponds to

a perturbation mode parallel to the cluster synchronization manifold and hence has no

influence on the stability of the synchronization state. (The input connections from the

rest of the network to the cluster also impact the synchronization state sI and shift the

eigenvalues v̂j, but those are not material differences since the same also occurs in the
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diagonalizable case.) Thus, to analyze the transverse modes, we focus on the q block-

decoupled equations associated with the Jordan blocks B1, · · · ,Bq:

(A.3) η̇(j) = [1k ⊗ Jf(sI)− σBj ⊗ Jh(sI)]η(j), j = 1, . . . , q.

Assuming that Bj is k × k, the corresponding equation can be written explicitly for

each mode as

η̇
(j)
1 = [Jf(sI)− σv̂j+1Jh(sI)]η(j)

1 ,

η̇
(j)
2 = [Jf(sI)− σv̂j+1Jh(sI)]η(j)

2 − σJh(sI)η(j)
1 ,

· · ·

η̇
(j)
k = [Jf(sI)− σv̂j+1Jh(sI)]η(j)

k − σJh(sI)η(j)
k−1.

(A.4)

Starting from the first equation in Eq. (A.4), we notice that η(j)
1 does not depend on any

other η(j)
i and its equation is exactly the master stability equation [Eq. (2.5) in the main

text]. If Eq. (2.5) is stable for v̂j+1, then η(j)
1 converges to zero exponentially. Turning to

the second equation in Eq. (A.4), we can see that the influence of η(j)
1 on η(j)

2 vanishes

and η(j)
2 will also approach zero as t→∞ (under the reasonable assumption that Jh(sI)

is bounded). Applying the same argument iteratively, it follows that the stability of

Eq. (A.4) is entirely determined by the stability of Eq. (2.5) for the eigenvalue v̂j+1 (with

ηi demoted by η(j)
1 ). The same applies for all j and leads to the conclusion that, even if L̂

is nondiagonalizable, the condition for the cluster synchronous state to be stable is that

Λ(σv̂j+1) < 0 for j = 1, . . . , q, where Λ is the largest Lyapunov exponent of Eq. (2.5) and

v̂2, · · · , v̂q+1 represent the eigenvalues associated with the transverse modes. Therefore,
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FIG. S7. Experimental demonstration of structural AISync in global synchronization. (a) Symmetric 16-node network of
coupled optoelectronic oscillators used in the experiment, which has 128 symmetries, consists of a single (global) symmetry
cluster, and has an eigenratio of R = 4.62. (b) Optimized network found through simulated annealing, where 7 links are
removed (red) and 7 links are added (blue) to the network in (a), resulting in a network with only 2 symmetries and 15
symmetry clusters but an eigenratio of R = 2.80. (c) Experimentally measured average synchronization error h�i for the
symmetric and symmetry-broken network in (a) and (b), respectively, where only the latter can synchronize for a range of
� (purple region). The feedback strength was set to � = 2.8. This experimental result is consistent with the theoretically
computed MTLE (color-coded curves), which is more negative for the symmetry-broken network.

Figure A.1. Improvement of synchronizability by breaking the cluster sym-
metry through link rewiring. (a) Percentage of rewiring, p, needed to reduce
the eigenratio gap R − 1 by half. The violin plots show the kernel density
estimation of p over all connected undirected symmetry clusters for each
cluster size m. Inside each violin plot, the white dot represents the median
of the data, the thick line indicates the interquartile range, and the thin line
encompasses the 95% confidence interval. (b) Color-coded p in the diagram
of link density D versus eigenratio R for all symmetry clusters considered
in panel (a), where each cluster corresponds to one data point.

our analysis of synchronizability presented in the main text (including the use of the

eigenratio R) applies equally well to nondiagonalizable networks.

A.2. Improving synchronizability through minimal link rewiring

In this section, we consider the optimization of symmetry clusters by rewiring a small

number of links. One rewiring consists of removing an existing link and adding a dif-

ferent link not yet present in the cluster. Specifically, we developed an algorithm to

optimize synchronizability by rewiring intra-cluster connections (https://github.com/

y-z-zhang/optimize_sym_cluster/), which preserves the nonintertwined nature of the

clusters. This allows us to investigate how many directional links need to be rewired to

reduce the eigenratio gap R− 1 by half.

Figure A.1 summarizes results for all connected symmetry clusters that are undirected

of sizes between m = 8 and 17, where the rewiring percentage p = h/` is the ratio between

https://github.com/y-z-zhang/optimize_sym_cluster/
https://github.com/y-z-zhang/optimize_sym_cluster/
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the minimal number of link rewiring h that halves R−1 and the total number ` of internal

directed links of the cluster. Figure A.1(a) shows that on average only about 14% of the

links need to be rewired to significantly improve synchronizability of symmetry clusters,

and it is largely size independent. Our algorithm also works for link addition and link

removal. In the case of link addition, link density needs to increase by about 20% on

average to reduce the eigenratio gap to half; for link removal, about 40% of the links need

to be removed to achieve the same effect.

Figure A.1(b) shows the rewiring percentage p as function of the eigenratio R and link

density D = `
m(m−1) , where each data point represents one symmetry cluster. It is clear

that clusters that are small in both D and R require the highest percentage of links to

be rewired in order to significantly reduce the eigenratio gap. This confirms the intuition

that if a network achieves a small eigenratio with a relatively small number of links,

then its organization is efficient and its synchronizability is relatively hard to improve.

Conversely, a dense non-optimal network or a network with a relatively large eigenratio

is easy to optimize with a small number of link modifications.

A.3. Application of the minimal-rewiring algorithm to global synchronization

In this section, we apply the algorithm from the last section to a case in which the

full network is symmetric and we seek to optimize global synchronization. In Fig. A.2 we

study a 16-node symmetric network and show explicitly through our experiments that it

becomes more synchronizable with less symmetry. In the original network [Fig. A.2(a)],

all nodes play exactly the same structural role. After seven directional link rewiring

[marked in Fig. A.2(b)], the symmetry of the network is largely broken and almost all
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nodes are now structurally different: the original 16-node symmetry cluster is reduced to

14 single-node clusters and only 2 nodes occupying symmetric positions. The eigenratio,

however, reduces from R = 4.62 to R = 2.80 and thus improves significantly.

4

;FIG. S3.
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FIG. S4. Experimental demonstration of structural AISync in global synchronization. (a) Symmetric 16-node network of
coupled optoelectronic oscillators used in the experiment, which has 128 symmetries, consists of a single (global) symmetry
cluster, and has an eigenratio of R = 4.62. (b) Optimized network found through simulated annealing, where 7 links are
removed (red) and 7 links are added (blue) to the network in (a), resulting in a network with only 2 symmetries and 15
symmetry clusters but an eigenratio of R = 2.80. (c) Experimentally measured average synchronization error h�i for the
symmetric and symmetry-broken network in (a) and (b), respectively, where only the latter can synchronize for a range of
� (purple region). The feedback strength was set to � = 2.8. This experimental result is consistent with the theoretically
computed MTLE (color-coded curves), which is more negative for the symmetry-broken network.

Figure A.2. Experimental demonstration of structural AISync in global syn-
chronization. (a) Symmetric 16-node network of coupled optoelectronic os-
cillators used in the experiment, which has 128 symmetries, consists of a
single (global) symmetry cluster, and has an eigenratio of R = 4.62. (b)
Optimized network found through simulated annealing, where 7 links are
removed (red) and 7 links are added (blue) to the network in (a), resulting in
a network with only 2 symmetries and 15 symmetry clusters but an eigen-
ratio of R = 2.80. (c) Experimentally measured average synchronization
error 〈∆〉 for the symmetric and symmetry-broken network in (a) and (b),
respectively, where only the latter can synchronize for a range of σ (purple
region). The feedback strength was set to β = 2.8. This experimental result
is consistent with the theoretically computed MTLE (color-coded curves),
which is more negative for the symmetry-broken network.
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The experimental results are presented in Fig. A.2(c), where we show the average syn-

chronization error as a function of the coupling strength for both networks. The exper-

imental data clearly demonstrates that synchronization is only achieved for the network

with reduced symmetry. The experimental result is consistent with the MTLE deter-

mined from numerical calculations of the variational equation of the model in Eq. (2.6)

[color-coded curves in Fig. A.2(c)]. Indeed, for values of σ close to the boundary of lin-

ear stability, synchronization is not observed in experiments due to noise in the ADC

[108], but synchronization is consistently observed once the MTLE becomes sufficiently

negative.

A.4. Experimental implementation of the coupled optoelectronic oscillators

clock
laser

Mach-Zehnder
Modulator photodiode

DC port RF port

δ

sin2(x+δ)

x(k+1)

I(k+1)
ADC

FPGA

. . .
t+1
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k = nt+i

ampli�er

k = standard time
t = network time
i = node number
n = number of nodes

DAC

. . .

+
Lij[  ]

I0
I1 I2 I3 In

I0 I1 I2 I3 In

σ

β

Figure A.3. Schematic illustration of the apparatus used in the optoelec-
tronic experiments. The diagram shows the components of one optoelec-
tronic oscillator (left) and associated coupling scheme (right), which is im-
plemented using time multiplexing in the FPGA.
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Figure A.4. Robustness of structural AISync against noise and oscilla-
tor heterogeneity, demonstrated for (a) the network of Bernoulli maps in
Fig. A.5, (b) the network of Hénon maps in Fig. A.5, and (c) the network of
optoelectronic oscillators in Fig. 2.1. Upper left panels: direct simulations
with random parameter mismatch at magnitude ξ = 10−3. Middle left pan-
els: direct simulations with noise at intensity ξ = 10−3. Lower left panels:
MTLE of the synchronized state in the symmetry cluster and optimized
cluster. Right panels: dependence of the average synchronization error 〈∆〉
on ξ, when the system parameters are fixed at the value indicated by the
dashed lines on the left.

A.5. Robustness of structural AISync

In order to demonstrate the robustness of structural AISync, we perform direct sim-

ulations of three different systems in the presence of Gaussian noise or random oscillator

heterogeneity; the results are summarized in Fig. A.4. The three systems include the

Bernoulli maps and Hénon maps studied in Appendix A.7, as well as the optoelectronic

oscillators from the main text.



256

In Fig. A.4(a), we fix the parameter of the Bernoulli map to be r = 5 and slowly in-

crease the coupling strength σ from 0.3 to 1. For the trajectories in the upper left panel, a

random mismatch of magnitude ξ = 10−3 is introduced to the oscillator parameter r; For

the trajectories in the middle left panel, the oscillators are subject to Gaussian noise with

zero mean and standard deviation equal to ξ = 10−3 (approximately the noise intensity

in the experimental system). Despite the noise and oscillator heterogeneity, the synchro-

nization error ∆ match well with the prediction based on the MTLE calculations shown in

the lower left panel. We investigate the dependence of the time-averaged synchronization

error 〈∆〉 on the magnitude ξ of noise/mismatch in the right panel, where σ is fixed at

0.85 (corresponding to the dashed line on the left).

The same analysis is performed for the Hénon maps in Fig. A.4(b) and for the opto-

electronic oscillators in Fig. A.4(c). For the Hénon maps, mismatch is introduced in the

parameter b, whose homogeneous value is set to b = 0.3, for coupling strength fixed at

σ = 0.5. For the optoelectronic oscillators, mismatch is introduced in the parameter β,

whose homogeneous value is set to β = 6. It can be seen that in all three cases structural

AISync is robust against both noise and oscillator heterogeneity.

A.6. Optimizing intertwined clusters

In this section, we provide more details on the optimization of intertwined clusters.

When two clusters are intertwined, desynchronization in one cluster will in general lead

to the loss of synchrony in the other cluster (an example would be two equal-sized rings

coupled in one-to-one fashion). This is because the symmetry group acting on the two
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clusters does not admit a geometric decomposition; that is, symmetry permutations can-

not be applied to each cluster independently. As a consequence, a desynchronized cluster

sends incoherent signals to nodes in the other cluster, causing its intertwined counterpart

to desynchronize as well. The irreducible representation transformation introduced in

Ref. [219] is a powerful formalism that enables stability analysis on many cluster syn-

chronization patterns. In that framework, the presence of intertwined clusters is reflected

in nontrivial transverse blocks (i.e., blocks with dimension greater than 1) in the trans-

formed coupling matrix, whereas nonintertwined clusters only give rise to 1×1 transverse

blocks. Unfortunately, the high dimensionality of the transverse blocks makes the effect

of topological perturbations on cluster synchronizability opaque, and thus the analysis of

the transformed matrix offers little insight into how to optimize the clusters to support

desired synchronization patterns.

We developed a new perspective that gives a simple necessary condition for the syn-

chronization in intertwined clusters. This in turn points to an extension of the previous

optimization scheme that is no longer limited to nonintertwined clusters.

Consider two intertwined clusters X and Y subject to transverse perturbations δX

and δY , respectively. Their variational equation reads

(A.5)


δẊ =

(
1m ⊗ Jf(sIX

)− σL̂X ⊗ Jh(sIX
)
)
δX + σC ⊗ Jh(sIY

)δY ,

δẎ =
(
1m′ ⊗ Jf(sIY

)− σL̂Y ⊗ Jh(sIY
)
)
δY + σD ⊗ Jh(sIX

)δX.

Here, Cij = 1 if the i-th oscillator in cluster X receives an input from the j-th oscillator

in cluster Y and Cij = 0 otherwise. The intercluster coupling matrix D is similarly

defined with the role of two clusters exchanged (D = Cᵀ if the intercluster coupling is
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undirected). Without the cross-coupling term, Eq. (A.5) reduces to the nonintertwined

case discussed in the main text

(A.6)


δẊ =

(
1m ⊗ Jf(sIX

)− σL̂X ⊗ Jh(sIX
)
)
δX,

δẎ =
(
1m′ ⊗ Jf(sIY

)− σL̂Y ⊗ Jh(sIY
)
)
δY .

Because of the intertwined nature of the two clusters, they must be considered concur-

rently when synchronization is desired in either of them. That is, L̂X and L̂Y should be

optimized to ensure that δX and δY both vanish in Eq. (A.5).

It is difficult to establish a synchronizability measure on two clusters based on Eq. (A.5),

but we can see the following connection between Eqs. (A.5) and (A.6):

(A.7) ‖δX‖ → 0 and ‖δY ‖ → 0 in Eq. (A.5)

⇓

(A.8) ‖δX‖ → 0 and ‖δY ‖ → 0 in Eq. (A.6).

That is, ‖δX‖ and ‖δY ‖ going to zero in Eq. (A.6) is a necessary condition for the syn-

chronization in intertwined clusters. For example, if ‖δX‖ does not vanish in Eq. (A.6),

then ‖δY ‖ must be away from zero in order for ‖δX‖ → 0 in Eq. (A.5). This connec-

tion between Eqs. (A.5) and (A.6) implies that we can promote synchronization in the

intertwined clusters by optimizing each of the two clusters independently, using the same

method originally developed for nonintertwined clusters. In particular, such optimization

is guaranteed to expand the region in parameter space satisfying the necessary condition
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in Eq. (A.8) (i.e., the condition in Eq. (2.7) in the main text). Inside this expanded

region, one is likely to observe structural AISync, as experimentally demonstrated in the

main text. It is worth mentioning that the same argument still holds when more than

two clusters are intertwined.

A.7. Prevalence of structural AISync

To further demonstrate that the phenomenon we describe is common across differ-

ent nodal dynamics and network structure, we present two additional examples. For

both examples we consider a random network with five symmetry clusters, as shown in

Fig. A.5(a). Within this network, we focus on the highlighted symmetry cluster (magenta

nodes), which in isolation corresponds to the second symmetry cluster in Table 2.1, and

we contrast its synchronizability with that of the non-symmetric cluster generated by

removing a subset of its links (red links).

We first consider this system when the nodes are equipped with dynamics of a Bernoulli

map,

(A.9) xi(t+ 1) = r xi(t)− σ
n∑
j=1

Lijxj(t) mod 2π,

which, for being piecewise linear and one dimensional, is arguably one of the simplest pos-

sible nodal dynamics that one can consider in an oscillator network. Despite its simplicity,

this system exhibits a rich stability diagram in the r × σ parameter space, including a

wide region in which synchronization is stable for the non-symmetric cluster but unstable

for the symmetric one, as shown in Fig. A.5(b). For r ≥ 5, in particular, synchronization

in the symmetric cluster is unstable for any coupling strength σ. Topological control is
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Figure A.5. Cluster synchronization stabilized by breaking the structural
symmetry of the cluster. (a) Random network with five symmetry clus-
ters (grouped nodes), in which the cluster considered in our examples is
highlighted (magenta nodes). Upon removal of the marked links (red), this
cluster becomes optimally synchronizable but non-symmetric. (b, c) Sta-
bility diagram in the r × σ space for Bernoulli map oscillators (b) and in
the σ × a space for Hénon map oscillators (c). The different colors mark
regions in which synchronization is stable in both clusters (blue), unstable
for both clusters (green), and unstable for the symmetric cluster but stable
for the asymmetric one (purple), as determined by our calculation of the
MTLE.

particularly valuable in this case as it allows for stability that would be impossible by

merely adjusting σ in the original cluster.

As an illustration of higher dimensional nonlinear nodal dynamics, we also consider

the system in Fig. A.5(a) when equipped with the dynamics of a Hénon map,

(A.10)


xi(t+ 1) = 1− a x2

i (t) + yi(t)− σ
∑n
j=1 Lijyj(t),

yi(t+ 1) = b xi(t),

where the variables xi and yi are defined on a torus and limited to [−2, 2]; the coupling

between oscillators are through the yi variables. As shown in Fig. A.5(c), fixing b = 0.3

and calculating the stability diagram in the σ×a parameter space, once again we identify

a wide region in which the non-symmetric cluster exhibits stable synchronization whereas

the symmetric one does not.
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As illustrated by these and other systems we have studied in detail, in general a

significant portion of the parameter space is occupied by a region in which synchronization

is not stable for the symmetric cluster but it becomes stable when the structure of the

cluster is optimized, which in turn goes in tandem with breaking its symmetry under the

given constraints. These examples also further illustrate the excellent agreement between

direct simulations and theoretical predictions observed throughout.
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APPENDIX B

Supplemental Information on Asymmetry-Induced

Synchronization in Multiscale Networks

B.1. Definition of Cayley graphs

Given a generating set S of a finite group G, the Cayley graph associated with S and

G is defined as the network in which a node represents an element of G and a directed

link from one node g ∈ G to another g′ ∈ G represents the composition of some element

s ∈ S with g that gives g′ (i.e., gs = g′). While such a network is generally directed,

it will be undirected if the inverse of every element of S belongs to S. Choosing S to

be a generating set guarantees that the resulting network is (strongly) connected. A

generalization to multiple link types can be obtained if we assign different elements of S

to different link types.

B.2. Details on multilayer models

Since Eq. (3.2) defines a subclass of systems governed by Eq. (3.1), it can always be

written in the form of Eq. (3.1) for a given network structure specified by A(α). This

can be seen by stacking the m-dimensional vectors in Eq. (3.2) and defining appropriate
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functions as follows:

Xi :=


x

(i)
1

...

x
(i)
L

 , Fi :=


F

(i)
1

...

F
(i)
L

 , H(α) :=


H

(α)
1

...

H
(α)
L

 ,(B.1)

F
(i)
` (Xi) := f(x(i)

` ) +
L∑

`′=1
Ã

(ii)
``′ [h(x(i)

`′ )− h(x(i)
` )],(B.2)

H
(α)
` (Xi,Xi′) :=

L∑
`′=1

B
(α)
``′ [h(x(i′)

`′ )− h(x(i)
` )],(B.3)

where B(α)
``′ is defined to be the value of Ã(ii′)

``′ when node i′ is connected to node i by a link

of type α. Note that these node-to-node interactions are not necessarily diffusive, since

we can have H(α)(Xi,Xi′) 6= 0 even for Xi = Xi′ , if x(i)
` 6= x

(i′)
`′ for some ` 6= `′ [which in

particular means that the coupling term cannot be written in the form H(α)(Xi,Xi′) =

H̃(α)(Xi′) − H̃(α)(Xi)]. For example, even when nodes 1 and 4 are synchronized in the

network of Fig. 3.1, i.e., X1 = X4 = (s1(t), s2(t))T , the coupling term corresponding to

the link of type α = 3 between them is in general not identically zero:

(B.4) H(3)(X1,X4) =

h(s2)− h(s1)

0

 6≡ 0.

However, since we assume identical dynamics for subnodes and diffusive coupling between

subnodes, a synchronous state of Eq. (3.2) given by x(i)
` (t) = s(t), ∀i, ` with ṡ = f (s)

is guaranteed to exist even if F (i)’s are heterogeneous. This corresponds to a global

synchronous state of Eq. (3.1) defined by Xi = S := (s, . . . , s)T , ∀i, which can be verified

by noting that H(α)(S,S) = 0 and F (i)
` (S) := f(s), ∀i, `.
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B.3. Details on MSF analysis

Equation (3.2) can be rewritten as a monolayer network by defining a single index

for all the n := LN subnodes, in which node i has subnodes j = ki1, . . . , kiL with ki` :=

(i−1)L+`. This leads to the standard form for a (monolayer) diffusively coupled network

of oscillators:

(B.5) ẋj = f(xj) +
n∑

j′=1
Ãjj′ [h(xj′)− h(xj)],

where xj = x
(i)
` and Ãjj′ := Ã

(ii′)
``′ for j = ki` and j′ = ki′`′ . In the monolayer adjacency

matrix Ã = (Ãjj′), the matrix B(α) = (B(α)
``′ ) appears as multiple off-diagonal blocks of

size L, and the arrangement of those blocks within Ã matches with the structure of the

corresponding adjacency matrix A(α), reflecting the topology of node-to-node interactions

through links of type α [see Fig. 3.1(d) for an example]. This equation allows application

of the MSF analysis [217] because subnodes and sublinks (and the associated coupling

functions) are identical. The stability function ψ(λ) is defined as the maximum Lyapunov

exponent of the reduced variational equation,

(B.6) ξ̇ = [Df(s)− λDh(s)]ξ,

where ξ is an m-dimensional perturbation vector, Df(s) and Dh(s) are the Jacobian of

f and h, respectively, at the synchronous state, xj = s(t), ∀j, and λ is a complex-valued

parameter.
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B.4. Verifying the AISync conditions

Here we describe our scheme for verifying AISync conditions (C1) and (C2) given a

symmetric network structure (adjacency matrices A(α)), external sublink configurations

(matrices B(α)), a set F of possible internal sublink configurations (from which matrices

F (i) are chosen), isolated subnode dynamics f , and sublink coupling function h. We first

obtain the stability function ψ(λ):

(1) Compute a trajectory s(t) of an isolated subnode by integrating ṡ = f (s), which

determines the synchronous state, x(i)
` (t) = s(t), ∀i, `.

(2) Integrate Eq. (B.6) and calculate its maximum Lyapunov exponent (MLE), which

defines ψ(λ) for a range of λ in the complex plane.

Note that ψ(λ) depends only on f , h, and s(t). For a given symmetric network structure

and external sublink configurations, we can compute the stability Ψ of the synchronous

state for any combination of F (i) ∈ F by calculating and substituting the Laplacian

eigenvalues λj into the formula Ψ = max2≤j≤n ψ(λj). To establish the AISync property,

we verify the following conditions:

• (C1)′: For each matrix F ∈ F , set F (1) = · · · = F (N) = F (leading to a homoge-

neous system) and verify Ψ > 0.

• (C2)′: Identify a combination of (heterogeneous) F (i) ∈ F for which Ψ < 0

(e.g., by checking exhaustively or by using a numerical optimization algorithm

to minimize Ψ over F (i)).

The verification of condition (C1)′ provides strong support for (C1), since the only other

possibility for a stable synchronization of all nodes is a state of the form x
(i)
` = s`(t), ∀i, `,
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with at least one s`(t) different from the others (which we find does not exist in many cases,

such as the examples in Fig. 3.3). To provide additional support for (C1), we directly

simulate Eq. (3.2) from a set of initial conditions and verify that the synchronization error

e does not approach zero whenever F (1) = · · · = F (N), where e is defined as the standard

deviation of the node state vectors, or equivalently,

(B.7) e2 := 1
N

N∑
i=1

L∑
`=1
||x(i)

` − x`||2, x` := 1
N

N∑
i=1
x

(i)
` .

Here || · || denotes the 2-norm in the state space of the subnode dynamics, and e = 0 is

achieved if and only if the system is in a synchronous state of the form x
(i)
` = s`(t). To

complete our procedure, we verify condition (C2)′, which rigorously establishes (C2).

B.5. Details on the example in Fig. 3.3

In the example system from Fig. 3.3, the coupling matrices for the two link types

are B(1) = ( b b0 0 ) and B(2) = ( 0 0
0 b ), where the constant b represents the coupling strength

common to all external sublinks. The coupling matrix F (i) for internal sublinks is chosen

from the binary set F = {( 0 a
0 0 ), ( 0 0

a 0 )}, corresponding to the two possible sublink direc-

tions [and thus to two types of nodes indicated by green and cyan color, respectively, in

Fig. 3.3(a)], where the constant a represents the coupling strength common to all internal

sublinks. The Lorenz dynamics of the subnodes and the coupling represented by sublinks

are given by

f(x) =


γ(x2 − x1)

x1(ρ− x3)− x2

x1x2 − βx3

 , h(x) =


x2

0

0

 , x =


x1

x2

x3

(B.8)
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Figure B.1. Stability function ψ(λ) for the AISync system in Fig. 3.3.

with the standard parameters, γ = 10, ρ = 28, and β = 8/3.

The stability function ψ(λ) is determined by Eq. (B.6), which for this system reads

(B.9)


ξ̇1

ξ̇2

ξ̇3

 =


−γ γ − λ 0

ρ− s3 −1 −s1

s2 s1 −β




ξ1

ξ2

ξ3

 ,

where ξ := (ξ1, ξ2, ξ3)T is the variation of the state vector x and the synchronous state

s := (s1, s2, s3)T satisfies the equation for a single isolated Lorenz oscillator:

(B.10)



ṡ1 = γ(s2 − s1),

ṡ2 = s1(ρ− s3)− s2,

ṡ3 = s1s2 − βs3.

For a given λ in the complex plane, we compute ψ(λ) by numerically integrating Eqs. (B.9)

and (B.10) for 2×104 time units and estimating the MLE [303] associated with the variable

ξ. Figure B.1 shows the resulting estimate of ψ(λ), which has a bounded stability region

{λ ∈ C |ψ(λ) < 0}.
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For a given combination of a and b, we obtain Ψ= and Ψ 6=, which are shown in

Fig. 3.3(b). Note that for this example there are only two distinct homogeneous systems

and two distinct heterogeneous systems. One of these heterogeneous systems is shown

in Fig. 3.3(a). We also note that Ψ= > 0 and Ψ6= < 0 are equivalent to the conditions

(C1)′ and (C2)′ in Appendix B.4, respectively. For each combination of a and b satisfying

both conditions [on a grid covering Fig. 3.3(b) with a resolution of 0.2], we additionally

run 24 direct simulations of Eq. (3.2) for 200 time units. The initial condition x(i)
` (0)

for each subnode is chosen randomly and independently from the uniform distribution

in the region [0, 10] × [0, 10] × [0, 10] of its state space. The results confirm that the

synchronization error e defined in Eq. (B.7) and averaged over the last 100 time units

does not fall below 10−3 in all 24 runs for both homogeneous systems, providing solid

evidence that the system satisfies the AISync condition (C1) for these combinations of

a and b. Since Ψ6= < 0 implies (C2)′ and thus (C2), this confirms AISync in the region

shaded purple in Fig. 3.3(b).

The initial condition for the sample trajectory in Fig. 3.3(c) is chosen randomly within

a distance of 10−3 from the synchronous state. The trajectory is then computed by

integrating the system with all nodes green for t ≤ 25, instantaneously switching the

direction of the sublink between subnodes 2′ and 2′′, and then continuing to integrate for

25 ≤ t ≤ 50.

B.6. Sampling protocol used in Fig. 3.5

We randomly sample systems whose network structure A(α) is a circulant graph (with

directed links of possibly multiple types) of given size N and external sublink in-degree D
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(i.e., the total number of sublinks received by the subnodes of a given node). Each of the

D sublinks coming into node 1 is chosen randomly; it connects a random subnode chosen

uniformly from the other N − 1 nodes to a random subnode chosen uniformly from node

1. The incoming sublinks into nodes 2 to N are then chosen to precisely match those

coming into node 1, which ensures that the network structure is a circulant graph. This

simultaneously specifies A(α) and B(α) defining the system. To determine σ6=, σ=, and r

for this system, we calculate the eigenspread σ of the monolayer network representation

for all the possible internal sublink configurations F (i), chosen here from the binary set

{( 0 1
0 0 ), ( 0 0

1 0 )}. For each combination of N and D, we generate a sample of 4,000 such

systems to compute the fraction of AISync-favoring networks.

B.7. Approximate symmetry in Fig. 3.5

The approximate symmetry with respect to the vertical line at density 0.5 observed in

Fig. 3.5(a) can be explained using the notion of network complement. The complement of

a given (unweighted) network with adjacency matrix Ã = (Ãjj′) is defined as the network

having the adjacency matrix Ãc = (Ãcjj′) given by

(B.11) Ãcjj′ := (1− Ãjj′)(1− δjj′).

The external sublink density of a network and its complement add up to one, placing them

symmetrically about the vertical line at density 0.5 in Fig. 3.5(a). When the nontrivial

Laplacian eigenvalues of the network and its complement, which we denote λ2, . . . , λn and

λc2, . . . , λ
c
n, respectively, are both indexed in the order of increasing real part, they are

related by λj + λcn+2−j = n [191]. This implies that, if σ is the eigenvalue spread for a
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monolayer network with given internal sublink configurations F (i), then the spread for its

complement is given by

(B.12) σc = m̃σ

n(n− 1)− m̃,

where m̃ := ∑
j

∑
j′ 6=j Ãjj′ is the number of directed links in the network Ã. Now consider

two systems with n subnodes and adjacency matrices Ã1 and Ã2, whose σ values are σ1

and σ2, respectively. If we denote the σ values of the complement of these systems by σc1

and σc2, respectively, we have

(B.13) σ1

σ2
= σc1
σc2

when Ã1 and Ã2 have the same number of directed links, i.e., m̃1 = m̃2. It follows from

Eq. (B.12) that if Ã1 is the best homogeneous system and Ã2 the best heterogeneous

system for a given external connection pattern with density x, then their complements

are the best homogeneous and heterogeneous system for an external connection pattern

with density 1 − x. Thus, the value of AISync strength r is the same at density x and

1− x. The symmetry, however, is not perfect between sparse and dense parts of the plot,

since we exclude the cases in which the network is not synchronizable (i.e., we require

minj≥2 Re(λj) > 0), the effect of which is not symmetric between sparse and dense cases.
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APPENDIX C

Supplemental Information on Outperforming Design with

Random Heterogeneity in Network Synchronization

C.1. Random heterogeneity in all parameters

In Fig. C.1, we show that disorder can also consistently induce synchronization when

it is present in all three parameters. In this case, the parameters {ωj}, {λj}, and r2
0{γj}

are all independently drawn from a Gaussian distribution with standard deviation σ.

Figure C.1. Effect of random heterogeneity in all parameters. (A) Proba-
bility of inducing synchronization when disorder is present in {ωj; γj;λj},
estimated from 1000 realizations of the heterogeneity profile. (B) MTLE
Λ(σ) for 100 such realizations, where the portions highlighted in blue cor-
respond to Λ(σ) < 0. (C) Order parameter R1(σ) of the (possibly unsta-
ble) phase-locked state for the same 100 realizations, where blue indicates
R1(σ) > 0.7. The network and parameters are the same as in Fig. 5.3.

C.2. Effect of network size

In Fig. C.2, we explore how the network size affects the probability of inducing syn-

chronization with random oscillator heterogeneity. In all cases the effect is persistent
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across a wide range of network sizes, for directed ring networks ranging from N = 9 to

N = 72. It can be seen that the peak of the curve shifts leftward as N increases, but it

always maintains its height above 0.9 for all sizes N investigated here.

Figure C.2. Effect of random heterogeneity across network sizes. (A–C)
Probability of inducing synchronization for heterogeneous {ωj} (A), {ωj; γj}
(B), and {ωj; γj;λj} (C) in directed ring networks of various sizes N . Each
probability curve is estimated from 1000 realizations of the heterogeneity
profile. The parameters are λ = 0.1, ω = 1.35, γ = 3.81, K = 0.3, and
τ = 1.8π.

C.3. Random heterogeneity in random networks

In Fig. C.3, we show that random oscillator heterogeneity can also induce synchroniza-

tion in networks beyond directed rings. Two representative examples of random networks

with common indegrees are studied in detail. Direct simulations show that random het-

erogeneity in any or all of the three parameters can consistently promote synchrony in

both networks.

C.4. Experimental protocols

The experiments are performed using a standard three-electrode cell with a platinum

counter, a Hg/Hg2SO4/sat.K2SO4 reference, and a nickel array working electrode. The
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Figure C.3. Effect of random oscillator heterogeneity in random networks.
(A) Random network with indegree d = 2. (B) Average order parameters
for the network in A with heterogeneity introduced in {ωj}, {λj}, {γj},
and {ωj; γj;λj}, respectively. (C) Random network with indegree d = 3.
(D) Counterpart of B for the network in C. The results in B and D are
based on 300 realizations of the heterogeneity profile. The parameters for
the homogeneous systems are chosen from the region where synchronization
is unstable: λ = 0.1, ω = −2.7, γ = −30, K = 0.05, and τ = 1.8π in B;
λ = 0.1, ω = −3.9, γ = −42.8, K = 0.033, and τ = 1.8π in D.

electrolyte was 3M H2SO4 at 10 °C. The electrode array consisted of sixteen 1 mm diame-

ter nickel wires with a spacing of 3 mm. The wires were embedded in epoxy, so that only

the wire ends were exposed to the electrolyte. Before the experiments, the electrode array

was polished with a series of sandpapers. A multichannel potentiostat (Gill-IK64, ACM

Instruments), interfaced with a real-time LabVIEW controller, was used to measure the

current Ij(t) and set the potential Vj(t) of the jth wire according to Eq. 5.9 at a rate of

200 Hz. Throughout the experiments we set the circuit potential V0 = 1.240 V. Without

heterogeneity, the individual resistors were set to 1.06 k ohm. Parametric heterogeneity
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was introduced by setting the individual resistors to different values drawn from a normal

distribution while keeping the mean resistance fixed to 1.06 k ohm. To avoid accidentally

balancing out the intrinsic heterogeneity, only heterogeneity profiles that have a negligi-

ble correlation with the natural frequencies of the unperturbed oscillators were used (we

require that the absolute value of the correlation coefficient be smaller than 0.2). The

coupling delay τ was set to 75% of the mean natural period of the oscillations, which

corresponds to τ in the range of 1.50 s to 1.75 s throughout the reported experiments.

The coupling strength K was set to values about 10% larger than the desynchronization

threshold (between −0.12 and −0.10 V/mA in the reported experiments).
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APPENDIX D

Supplemental Information on Critical Switching in Globally

Attractive Chimeras

D.1. Switching chimeras in systems with continuous-time dynamics

As an example of continuous-dynamics switching chimeras, we consider the multilayer

network depicted in Fig. D.1(a), where each layer consists of six identical Lorenz oscillators

interacting through the coupling function H1 = (0, 0, z)ᵀ. In addition, the two layers are

all-to-all coupled through the coupling function H2 = (0, 0, x)ᵀ. The oscillators in the

first layer are thus described by the equations

(D.1)

ẋ
(1)
i = α

(
y

(1)
i − x

(1)
i

)
,

ẏ
(1)
i = x

(1)
i

(
ρ− z(1)

i

)
− y(1)

i ,

ż
(1)
i = x

(1)
i y

(1)
i − βz

(1)
i + σ

(
z

(1)
i−1 + z

(1)
i+1 − 2z(1)

i

)
+ cσ

∑
j

(
x

(2)
j − x

(1)
i

)
,

where we set α = 10, β = 2, and c = 0.2, leaving the parameters ρ and σ to be varied

[Fig. D.1(b)]. The oscillators in the second layer are described by similar equations.

A representative trajectory of the system for ρ = 60 and σ = 2 is shown in Fig. D.1(c).

The lower and upper panels show the dynamics of the x variables for oscillators in the

respective layer, while the middle panel shows their synchronization error. A space-time
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plot of the synchronization error in each layer is presented in Fig. D.1(d), where the

intermittently alternating dynamics is more apparent.

D.2. Linear stability analysis of chimera states

In order to assess the linear stability of a chimera state, we calculate the synchro-

nization stability in the coherent cluster while taking into account the influence of the

incoherent cluster. This calculation can be done efficiently using a generalization of the

master stability function formalism developed in Ref. [109], which is tailored to describe

the synchronization stability of individual clusters.

Consider a network of 2n diffusively coupled identical oscillators:

(D.2) xi[t+ 1] = f(xi[t])− σ
2n∑
j=1

Lijh(xj[t]),

where xi is the state of the i-th oscillator, f is the mapping function governing the

uncoupled dynamics of each oscillator, L = {Lij} is the Laplacian matrix describing the

structure of an undirected network with two nonintertwined identical clusters, h is the

interaction function, and σ > 0 is the coupling strength.

Let L̃ be the n × n Laplacian matrix that encodes the intracluster connection inside

the coherent cluster, µ be the total strength of intercluster connections each oscillator in

the coherent cluster receives from the incoherent cluster, and x1 = x2 = · · · = xn = s be

the synchronization manifold for the n oscillators in the coherent cluster. The variational

equation describing the evolution of the deviation away from s can be written as

(D.3) δX[t+ 1] =
(
1n ⊗ f ′(s[t])− σL̂⊗ h′(s[t])

)
δX[t],
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Figure D.1. Switching chimera in a multilayer network of Lorenz oscilla-
tors. (a) Two-layer network of Lorenz oscillators with different intralayer
and interlayer interactions, given by H1 = (0, 0, z)ᵀ and H2 = (0, 0, x)ᵀ,
respectively. The color coded nodes represent a chimera state in which the
first layer is incoherent and the second layer is synchronized. (b) Diagram
in the ρ-σ plane characterizing the linear stability of synchronization in the
two layers. The color codes are the same as those in Fig. 7.1(b). (c) Direct
simulation of the system for σ = 2.1 and ρ = 60 [brown dot in (b)], where
the different panels show the color-coded trajectories for the x component
of the oscillators (bottom and top) and the synchronization error in each
layer (middle). (d) Switching chimera dynamics visualized in a space-time
representation of synchronization error. In (c) and (d), the switching is
induced by round-off errors in the simulations performed using double pre-
cision.
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where 1n is the identity matrix, L̂ = L̃+µ1n, δX = (δx1, . . . , δxn)ᵀ = (x1−s, . . . , xn−s)ᵀ,

and ⊗ denotes the Kronecker product. Although the incoherent cluster does not enter

the equation explicitly, it influences the matrix L̂ and the synchronization trajectory s[t]

through the intercluster coupling. We note that the input from the incoherent cluster

faithfully accounts for the state of those oscillators and is time dependent in general.

Equation (D.3) can be decoupled into n independent equations by diagonalizing L̂:

(D.4) ηi[t+ 1] =
(
f ′(s[t])− σv̂ih′(s[t])

)
ηi[t],

where η = (η1, . . . , ηn)ᵀ is δX expressed in the new coordinates that diagonalize L̂ and

v̂i = ṽi + µ are the eigenvalues of L̂ in ascending order. Synchronization in the coherent

cluster is stable if and only if Λ(σv̂i) < 0 for i = 2, . . . , n, where

(D.5) Λ(σv̂i) = lim
T→∞

1
T

T−1∑
t=0

ln
∣∣∣∣f ′(s[t])− σv̂ih′(s[t])∣∣∣∣

is the Lyapunov exponent of Eq. (D.4) and v̂2, . . . , v̂n represent the perturbation modes

transverse to the synchronization manifold of the coherent cluster. The maximum trans-

verse Lyapunov exponent (MTLE) determining the synchronization stability is max2≤i≤n Λ(σv̂i).

A chimera state is stable for ξ = 0 if the MTLE for synchronization in the coherent cluster

is negative under the influence of the incoherent cluster.

D.3. Dominant switching route

Here, we provide more evidence that short-wavelength bifurcation is the dominant

mechanism to initiate switching between the two symmetric subchimeras. Again, we

simulate Eq. (7.1) to extract the average switching period T for various levels of noise
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intensity ξ, but this time the short-wavelength component ∆sw is filtered out from the

noise applied to each ring. If a short-wavelength bifurcation is indeed the dominant route

for switching, then one would expect the average switching period to become independent

of the noise intensity after filtration.

10 510 1010 15
102

105

108

T

r = 2.95 r = 3.00 r = 3.05

Figure D.2. Average switching period T as a function of noise intensity ξ for
various r. The system is the network of logistic maps in Fig. 7.1(a) for σ =
1.7, and the noise is Gaussian (but with the short-wavelength component
filtered out). The flatness of the fitting lines below ξ = 10−9 confirms that
short-wavelength bifurcation is the dominant route for chimera switching.

This is exactly the case shown in Fig. D.2, where the slope becomes completely flat

for each r when the noise intensity goes below 10−9 (compare with Fig. 7.2). Due to

the presence of round-off errors in our simulations, whose short-wavelength component

cannot be filtered, switching can still be observed in the flat region at a rate induced by

the round-off errors (noise intensity around 10−16). When the noise intensity goes above

10−9, new switching pathways besides the short-wavelength bifurcation start to become

available, as demonstrated by the resulting decrease of the average switching period.



280

Figure D.3. Transversal section of the intermingled basins that directly con-
nects the two symmetric subchimeras. This corresponds to a different state-
space section of the system considered in Fig. 7.7.

D.4. Transversal section of intermingled basins

Figure D.3 shows the intermingled basins for a two-dimensional section of the state

space for the logistic map system described by Eq. (7.1). This section is defined by

(D.6) x(1) = x16 + ∆sw(δ), x(2) = x16 + ∆sw(δmax − δ),

where δmax is taken to be 0.2. For δ = 0, the first ring is synchronized and the second ring

is incoherent (orange subchimera), while for δ = δmax, the second ring is synchronized

and the first ring is incoherent (blue subchimera). Thus, this section of the state space

directly connects the two symmetric subchimeras. As one approaches the orange (blue)

subchimera, the points become predominantly orange (blue), but no matter how close δ

is to zero (δmax), speckles of blue (orange) dots can always be found.
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D.5. Robustness against oscillator heterogeneity

In Fig. D.4, we quantify the effect of oscillator heterogeneity on the switching dynam-

ics, explicitly demonstrating the robustness of the switching chimeras. We start from a

system of identical oscillators (the system in Fig. 7.1 for r = 3 and σ = 1.7) and introduce

independent random perturbations to the parameter r of each oscillator, drawn from a

Gaussian distribution of zero mean and standard deviation ∆.

10 510 1010 15
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104
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Figure D.4. Effect of oscillator heterogeneity on the switching behavior de-
termined from direct simulations. The solid line indicates the power-law
scaling for ξ ≥ ∆, which is precisely the scaling observed in the absence
of oscillator heterogeneity. For each of the four levels of heterogeneity ∆
considered, when ξ < ∆ the effect of heterogeneity becomes dominant and
the average switching period T becomes independent of ξ.

For ξ ≥ ∆, the average switching periods in the homogeneous and heterogeneous sys-

tems become indistinguishable, with both following a well-defined power-law distribution

on noise intensity. For ξ < ∆, the effect of heterogeneity dominates the effect of noise; as a

result, the average switching period (dashed lines) branches out of the original power-law

relation (solid line) and approaches a constant determined by ∆. These results are largely

independent of the particular realization of oscillator heterogeneity.
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D.6. Animated dynamics of a switching chimera

Figure D.5. Animation of a switching chimera from the optoelectronic ex-
periment. Left: Nodes of the two-ring network of optoelectronic oscillators
(links not shown), where each oscillator is color coded according to its state
x

(1,2)
i . Right: Spatiotemporal representation of the data on the left, fol-

lowing the same color code. The defining features of a switching chimera
are evident in both representations. The animation is available online at
https://youtu.be/PIVgurLIGN0.

D.7. Predicted intermingled basins in experimental system

Figure D.6 shows intermingled basins for one of the optoelectronic systems studied in

Fig. 7.8.

D.8. Effect of system size

We surveyed the σ × r plane for different cluster sizes n to determine the area where

each of the five possible dynamical behaviors is observed. The results are presented in

Fig. D.7(a) and indicate a decreasing propensity for the switching between subchimeras

as n increases. For parameters in the switching region, we also calculated the average

switching period as a function of ring size. As shown in Fig. D.7(b) for σ = 2.1, r =

2.3, and various values of noise intensity ξ, the average switching period T increases

exponentially with n.
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Figure D.6. Counterpart of Fig. 7.7 for the experimental system studied in
Fig. 7.8. The parameters used are β = 1.3 and σ = 1.05.

Figure D.7. Impact of system size on switching propensity. (a) Probabilities
of observing the five distinct dynamical behaviors as functions of ring size
n. The parameter region sampled is [2.3, 3.1]× [1.4, 2.8] in the σ× r plane,
and is chosen so as to encompass most of the chimera regions. Comparing
the purple and green shades, one can see that chimeras are less likely to be
switching when n is large. (b) Average switching period T as a function of
ring size n for σ = 2.1, r = 2.3, and various values of noise intensity ξ. The
smaller the noise intensity, the stronger the dependence of the switching
period on system size.
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