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Abstract 

In this document, I demonstrate that: 1) Linear basis functions cannot outperform nonlinear ones 

to represent hand kinematics 2) Nonlinear autoencoders outperform PCA on the dimensionality 

reduction of hand kinematics, 3) Nonlinear autoencoders outperform PCA in human gait 

representation and recurrent nonlinear autoencoders can seamlessly express the temporal 

dynamics, 4) Factors that aid and inhibit one’s learning to operate low-dimensional controllers of 

high-dimensional hand systems, 5) Factors that are important for myoelectric latent representations 

for low-dimensional control. 

Due to the nonlinear nature of hand kinematics during object grasping and gesturing, linear 

methods, such as Principal Component Analysis (PCA), cannot outperform their nonlinear 

counterparts as claimed in Yan et al. (Yan et al., 2020). Here I present a demonstration of this by 

applying a simple three-layer nonlinear AE network to Yan’s dataset and highlight the superiority 

of the network over PCA.  

I present an analysis of the nonlinear AE network in reducing the dimension of complex hand 

kinematics and human gait, confirming the superiority of the nonlinear AE structure in its ability 

to efficiently compress biological data and maintain an equal spread of variance across latent 

dimensions. I also show that an AE network with a temporal component can perform a more 

accurate movement classification and individual identification.  

Next, I present a low-dimensional myoelectric controller, in which a high-dimensional virtual hand 

with 17 DOFs is controlled via a 2D space with muscle signals from the wrist. I conduct three 

studies to understand which factors affect how the user learns to operate such a controller. In 

particular, short exploration times are insufficient to facilitate learning. Inhibition on the learning 
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process also happens due to the difficulty of operating a myoelectric interface. Lastly, it is 

important to provide the users with a clear link between the underlying low-dimensional (2D) 

controller and the high-dimensional (17D) task of controlling a virtual hand to accelerate learning 

and achieve the most optimal performances at the end of the training. 

After identifying the challenges of learning to operate a low-dimensional controller, I explore what 

makes a latent space of myoelectric signals useful in the context of low-dimensional controllers. 

The final study demonstrates that the latent space structure greatly dependents on both the input 

data parameters and the dimensionality-reduction method type.  
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Chapter 1 Introduction 

It has been nearly 70 years since the development of the first myoelectric prosthetic hand (Reiter, 

1948). Since then, the field has seen many advancements: from intricate finger designs (Carrozza 

et al., 2002; Weghe et al., 2004; Gaiser et al., 2009; Hackett et al., 2013; Zuo and Olson, 2014) to 

complex control systems that incorporated emerging machine learning (ML) methods (Jiang et al., 

2008; Scheme and Englehart, 2011; Malhotra et al., 2012; Rehbaum et al., 2012; Young et al., 

2012; Benatti et al., 2017; Hahne et al., 2018). But despite the amount of effort that has been put 

into the development of usable prosthetic hands, the preferred method of hand replacement 

remained the same as it has been for many decades – a traditional split hook (Østlie et al., 2012). 

The paradox of that is staggering, yet clear when one understands, first, the ability of a unilateral 

amputee (the most common in arm amputations) to perform daily tasks single-handedly, and, 

second, the complexity of a human hand that a prosthesis must replace.  

Current prosthetic solutions, although intricate in their design and availability of many degrees of 

freedom (DOFs), lack a simple and intuitive control method. When dealing with myoelectric 

interfaces on amputees, availability of clean electromyographic (EMG) signals that could be usable 

for a control purpose is scarce. As a result, one is left with just a few signals to control a plethora 

of prosthetic DOFs – not an easy challenge at hand, actually and figuratively. 

The solutions to dealing (or rather avoiding) the mismatch problem between the controlling EMG 

signals and the controlled DOFs have been many: from finite-state machines (FSM) (Kyberd et 

al., 1995; Cipriani et al., 2008) to complex pattern recognition (PR) (Scheme and Englehart, 2011; 

Young et al., 2012; Kuiken et al., 2016). In the former, two EMG signals are used to switch 

between and select grip patterns. In the latter, up to eight muscle signals are used to classify a set 
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of unique contractions that are matched to specific preselected grasps. In both cases, the controller 

can become strenuous and mentally-fatiguing when presented with a large number of hand 

postures. 

An attempt to deal with the dimensionality mismatch in prosthetic control has been performed by 

several groups, who reduced the dimensionality of complex hand kinematics via a linear 

dimensionality-reduction algorithm, called principal component analysis (PCA) (Magenes et al., 

2008; Ciocarlie and Allen, 2009; Matrone et al., 2010; Matrone et al., 2012; Segil, 2013; Segil and 

Controzzi, 2014; Segil, 2015; Segil and Huddle, 2016). Simply speaking, PCA finds the directions 

in which the input data vary the most and projects the data along these directions, thus obtaining a 

low-dimensional, latent, space. In the past, PCA has been applied to hand kinematics during object 

grasping and proven to be an effective tool of reducing the dimensionality of kinematic signals 

(Santello et al., 1998; Todorov and Ghahramani, 2004; Ingram et al., 2008). Building on these 

results, several research groups have utilized PCA to obtain a latent space to perform a control of 

a high-dimensional system (e.g., virtual or prosthetic hand) via a low-dimensional controller. 

Unlike the classifiers used in PR, PCA has the advantage of being an unsupervised ML algorithm, 

which does not rely on labeled data and does not require any time-consuming training. In addition, 

one could argue that the method harnesses one’s natural way of controlling body parts as it is 

hypothesized that dimensionality reduction is how our brain deals with the dimensionality problem 

(Santello et al., 2013; Leo et al., 2016; Beyeler et al., 2019). The PCA-based approach has been 

proven to be a potentially useful tool for myoelectric prosthetic control. 

Although computationally inexpensive, PCA has a single main feature, which is, arguably, its main 

limitation. Being a linear method, PCA can only account for linear relationships in the input data 
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and does not have a way of dealing with nonlinearities. However, biological signals are not purely 

linear, and one must consider this aspect if a more accurate representation of the original input 

data within the latent space is of desire. 

One effective tool of nonlinear dimensionality reduction that emerged through the advancements 

in ML algorithms is an autoencoder (AE), which has been developed in the 1990s (Sanger, 1989; 

Kramer, 1991), following the creation of backpropagation process that many ML algorithms rely 

on (Rumelhart et al., 1985; LeCun et al., 1988). Being a type of neural network, AEs have the 

benefit of flexible structures, with varying numbers of layers, type of activation functions, and 

even incorporating a temporal component to account for the time domain the input data (Cho et 

al., 2014; Sutskever et al., 2014). As a result of their flexibility, they may be advantageous when 

encoding complex biological data for the purpose of low-dimensional control and could potentially 

outperform their linear counterparts, such as PCA. 

During my PhD project, I studied and compared the performance of linear and nonlinear 

dimensionality-reduction methods, such as PCA and various AEs, in their ability to compress high-

dimensional biological data. I then focused on developing a low-dimensional myoelectric 

controller for a high-dimensional virtual hand and studying what aspects of training affect user’s 

ability to learn to operate the novel controller. Lastly, I explored what makes a latent space derived 

from EMG signals useful for control purposes and what properties of the input data might affect 

its structure. 

Chapter 2 begins with the long-standing debate of the appropriateness of linear over nonlinear 

dimensionality-reduction techniques in the context of hand kinematics during grasping and 

American Sign Language (ASL) gestures. It addresses the statement in Yan et al. that “nonlinear 
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dimensionality reduction does not capture behaviorally relevant aspects of the hand kinematics 

more efficiently than does PCA” (Yan et al., 2020) and rebuts the claim by applying a simple 

nonlinear AE network to the given data and showing its superior performance in reconstruction 

over PCA. 

Chapter 3 takes a deeper dive into the “linear vs nonlinear” issue by applying PCA and a simple 

nonlinear AE network to the newly collected hand kinematics data during ASL gestures, object 

grasps, and activities of daily living (ADLs). Furthermore, it explores the superiority of the 

nonlinear AE over PCA beyond the reconstruction power and looks at factors such as class 

separability and latent dimension variance in the context of a potential use for myoelectric control. 

Chapter 4 revisits the debate on linear and nonlinear dimensionality-reduction techniques in the 

context of human gait and investigates the use of Long-Short-Term-Memory (LSTM) AEs to 

account for the temporal aspect of the input data. It also studies how efficiently the three methods 

(PCA, AE, and LSTM AE) are able to perform movement classification and individual 

identification – complex tasks that might be useful for prosthetic control purposes. 

Chapter 5 focuses on the development of a low-dimensional controller, in which the decoder part 

of the AE network trained on hand kinematics data is used to operate a high-dimensional (17D) 

virtual hand via a low-dimensional (2D) space. In addition, in its three studies, it explores the 

aspects that might aid or inhibit learning of such a controller. The explored aspects were 

exploration time, difficulty due to the myoelectric interface, and various training paradigms to 

either implicitly or explicitly train the user on the connection between the underlying control space 

dimensionality and the dimensionality of the presented hand-controlling task. 
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Chapter 6 explores the application of various dimensionality-reduction techniques on myoelectric 

data in the context of a low-dimensional controller. There, it aims to bridge the gap of 

dimensionality mismatch in prosthetic systems not only from the kinematics side but also from the 

side of myoelectric signals. The optimality of the latent space for control purposes is assessed 

using three proposed factors: class separability, location of resting EMG with respect to the rest of 

the data, and spread of latent dimension variance. In addition, various properties of the input data 

are explored and their effect on the defined latent space factors is determined. Lastly, the chapter 

investigates factor stability for the AE networks across different model training. 

Lastly, Chapter 7 ties our findings into a final discussion and closing remarks and possible 

directions for future research are explored. 
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Chapter 2 The Long-Standing Debate of Linear vs 

Nonlinear Dimensionality-Reduction Methods1 

This letter is a commentary on the paper on “Unexpected complexity of everyday manual 

behaviors”, recently published in Nature Communications (Yan et al., 2020). We agree with the 

authors’ conclusions regarding the residual of dimensionality-reduction methods not representing 

mere noise and having a structure that is informative of the task. However, available theoretical 

and empirical evidence, including from our own work, is inconsistent with the article’s statement 

that “nonlinear dimensionality reduction does not capture behaviorally relevant aspects of the hand 

kinematics more efficiently than does [principal component analysis] PCA”. 1 

Nonlinear dimensionality-reduction methods are many and diverse; nonlinear PCA (NLPCA) and 

Isomap, the two nonlinear methods used in the Yan et al. paper, are just two out of a big plethora 

of possibilities. We argue that based on these two methods alone, one cannot generalize about the 

inability of nonlinear methods to outperform their linear counterparts as stated by Yan et al. (Yan 

et al., 2020). 

More specifically, in May 2020, we published a paper where we used two methods, PCA (linear) 

and an Autoencoder (AE, nonlinear) network to reduce the dimension of complex hand kinematics 

performed during American Sign Language gesturing, object grasping, and activities of daily 

living (Portnova-Fahreeva et al., 2020). In this work, we compared the performances of these two 

dimensionality-reduction techniques and expanded the earlier hand synergies work by Santello 

 

1 The content of this chapter was submitted as Portnova-Fahreeva, AA, Rizzoglio, F, Nisky, I, Casadio, M, Mussa-

Ivaldi, FA and Rombokas, E. 2020. Matters Arising in Response to “Unexpected Complexity of Everyday Manual 

Behaviors” Nature Communications. 
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and Flanders (Santello et al., 1998). We observed and documented a clear advantage of the 

nonlinear AE method over PCA in capturing more variance of the hand kinematic with a smaller 

number of latent dimensions (Figure 2-1). A similar result was obtained by Tenenbaum et al. for 

image data (see Figure 2 and related discussion in (Tenenbaum et al., 2000)) using Isomap, another 

nonlinear approach. They found that for a fixed number of latent dimensions, Isomap outperformed 

PCA in capturing complex information. 

 

Figure 2-1. Performance of a nonlinear AE (blue) and PCA (red) when applied to complex hand 

kinematic datasets: American Sign Language (ASL) Gestures, Object Grasps, Activities of Daily 

Living (ADL) Tasks, and Combined data from the first three datasets (Portnova-Fahreeva et al., 

2020). 

We attempted to reproduce the results of Yan et al. by applying our nonlinear AE to their data and 

again observed that this nonlinear method clearly outperformed PCA (Figure 2-2). 
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Figure 2-2. Performance of a nonlinear AE network (blue) and PCA (red) on American Sign 

Language (ASL) gestures and object grasps; data from Yan et al. (Yan et al., 2020). 

Such discrepancies between the results of Yan et al. and our studies could depend on the type of 

nonlinear dimensionality-reduction network implemented in each case. The nonlinear PCA 

(NLPCA) method used in (Yan et al., 2020) is based on an AE similar to the one used in our study 

but nevertheless not identical. We used the simplest possible AE, which is based on minimizing 

the mean square error between the input pattern and the output pattern, a reconstruction of the 

input based on the latent variables (Kramer, 1991). In contrast, Yan et al. (Yan et al., 2020) used 

a variation of the AE that incorporates an additional constraint on the cost function of the network 

by forcing a hierarchization of latent space dimensions based on their variance. 

For a dimensionality-reduction task, this hierarchical approach imposes additional constraints that 

limit its capacity. This discrepancy explains the difference in performance: the AE performs better 

than the NLPCA. In the two figures presented here, we have compared the AE results to those 

obtained with PCA. Unfortunately, we have been unable to apply the NLPCA method to our 
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original data since insufficient information was available about the specific architecture of the 

Autoencoder used in (Yan et al., 2020) to implement NLPCA. Our attempts to apply the NLPCA 

code with a default structure did not allow us to replicate results in Yan et al., as the performance 

of the Autoencoder was heavily dependent on weight initialization. Perhaps, additional 

information on the architecture of the Autoencoder used to implement NLPCA would allow us to 

stably replicate the results in Yan et al. (Yan et al., 2020). 

We also note that the hierarchical Autoencoder achieved a maximum performance of 

approximately 90% VAF (Fig. 6 from (Yan et al., 2020)) instead of the expected 100%. This 

strongly supports our concerns that the hierarchical Autoencoder – at least in the particular 

implementation used by Yan et al. – could have been unable to reach a globally optimal solution 

during training. This discrepancy could also explain why the hierarchical AE in (Yan et al., 2020) 

exhibited less reconstruction power than PCA. 

This result highlights that the choice of architecture of the nonlinear AE can strongly affect its 

performance and supports our concern about the use of the hierarchical approach as a benchmark 

for nonlinear dimensionality reduction. 

In summary, we are concerned that the statement on the superior performance of linear methods 

over nonlinear dimensionality-reduction methods is incorrect as it does not represent the entire 

spectrum of possibilities offered by nonlinear methods. Without disputing the data in Yan et al.  

(Yan et al., 2020), the question that remains is whether nonlinear approaches do not capture 

relevant aspects of hand kinematics more efficiently than PCA or whether the NLPCA results just 

reflect limitations of this particular algorithmic approach. 
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To finalize, an additional question of importance when comparing different dimensionality-

reduction approaches: what does it mean to be “more efficient”? Our previous study and the results 

of applying a straightforward AE to the data in Yan et al. indicate that the nonlinear AE clearly 

outperforms the linear PCA in terms of signal reconstruction. However, there might be other 

criteria such as the need for superposition and orthogonality of the elemental kinematic patterns, 

that would make linear methods of higher preference for dimensionality reduction. We thank you 

for your time in reading our commentary, submitted in the hope it can facilitate a productive 

discussion on the topic of dimensionality-reduction approaches and their performances. 
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Chapter 3 Linear and Nonlinear Dimensionality-Reduction 

Techniques on Full Hand Kinematics2 

Introduction 

The complexity of the human hand makes it the subject of intensive research in prosthetics and 

robotics control. Controlling several degrees of freedom (DOFs)—there are 27 in each hand—can 

be a difficult task when both precision and speed are required as in dexterous prosthetic hand 

control. Since their first development in the 1940s, myoelectric prostheses, operated by 

electromyographic (EMG) signals, have undergone a series of design and control changes (Zuo 

and Olson, 2014). 

Technological advances have resulted in more complex prostheses with an increased number of 

DOFs (Belter et al., 2013). The increase in design complexity was also associated with the high 

demand of prosthetic users to be able to perform dexterous tasks, such as handicrafts, operation of 

domestic and electronic devices, as well as dressing/undressing (Pylatiuk et al., 2007). For 

acceptable performance in such tasks, individual digit control is often required. Instead of allowing 

the independent control of each degree of freedom, currently available market options include a 

variety of prosthetic hands with a limited number of preset gestures associated with the most 

common grasp patterns to be performed in activities of daily living (ADLs). For example, the 

Michelangelo Hand (Ottobock, Duderstadt, Germany) includes seven grip patterns whereas its 

successor, the Bebionic Hand, from the same company includes 14 grip patterns. 

 

2 The content of this chapter has been published as Portnova-Fahreeva, AA, Rizzoglio, F, Nisky, I, Casadio, 

M, Mussa-Ivaldi, FA and Rombokas, E, 2020. Linear and Non-linear Dimensionality-Reduction Techniques 

on Full Hand Kinematics. Frontiers in Bioengineering and Biotechnology. 
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While there have been many developments in the design of prosthetic hands, advances in control 

strategies have been limited. There are numerous types of controls used in upper-limb myoelectric 

prostheses from simple finite-state machines (FSM) to complex pattern recognition (PR) 

(Geethanjali, 2016). In FSM, usually two EMG signals are used to switch between grip patterns. 

This method can be effective for a small number of postures but in the case of 14 or even seven 

grips, this can be a strenuous and time-consuming task. In addition to slow controller speeds, 

prosthetic users have identified their myoelectric device speeds as inadequate for task completion 

(Pylatiuk et al., 2007). Such issues in the device performance could be contributing to the high 

abandonment rates that are prevalent in upper-limb prostheses (Biddiss and Chau, 2007). 

Recently, a new type of prosthetic control has been proposed—posture control (Geethanjali, 2016). 

This capitalizes on the results of previous dimensionality-reduction studies performed on hand 

kinematics (Santello et al., 1998; Todorov and Ghahramani, 2004; Ingram et al., 2008). In these 

studies, Principal Component Analysis (PCA) was utilized to simplify the complex kinematics of 

hand grasps by finding a reduced number of linear combinations of input signals that explain most 

of the variability observed in grasping data. These combinations span the latent manifold of hand 

kinematics. By projecting the data along these directions, it is possible to obtain a compressed 

representation of hand configurations. A related approach to the control of prosthetic hands was 

introduced by Bicchi's group with the “Soft hand” (Della Santina et al., 2017; Della Santina et al., 

2018). The underlying novel idea is that a variety of grasping patterns can be obtained by a single 

“synergy” of compliant actuators interacting mechanically with different shapes of grasped 

objects. While we recognize the value of this approach for the simplification of hand control during 

manipulation, here we are also considering the value of the hand as a communication device. In 
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this broader scope, as well as in the performance with musical instruments, the ability to explicitly 

and precisely control finger configuration is essential. For this, we are considering in this study a 

data set obtained from American Sign Language (ASL). 

In some myoelectric control methods, EMG signals are mapped to control parameters of the latent 

manifold, or principal components (PCs), which are derived through PCA (Matrone et al., 2010; 

Matrone et al., 2012; Segil, 2013; 2015; Segil and Huddle, 2016). An important difference of this 

method with respect to FSM and PR control is that posture control is continuous rather than 

discrete. This allows users to directly operate the prosthetic device in a way more consistent with 

natural movement control instead of being limited to a finite set of pre-defined grasp options. 

While PCA is a computationally straightforward and inexpensive procedure, it is limited by its 

ability to only account for linear relationships in the input signals. The assumption of linearity is 

not consistent with the geometry of hand kinematics. 

To account for kinematic non-linearities, this study considers a dimensionality-reduction method 

based on autoencoder (AE) networks. AEs are artificial neural networks that are trained to 

reconstruct their inputs. They are composed of two parts: an encoder that converts the input data 

to a lower-dimensional, latent, manifold and a decoder that converts the latent manifold into the 

outputs. AEs provide an unsupervised method, reconstructing inputs in their outputs, without the 

requirement of labeled data. Most importantly, AEs are able to cope with both linear and non-

linear relations in the input data by making use of linear and non-linear activation functions. 
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This study compares the performance of a non-linear AE to that of PCA on examples of hand 

kinematics observed in human participants. In addition, it evaluates the case for the potential use 

of AE over PCA in a prosthetic controller. 

Materials and Method 

Experimental Setup 

Ten unimpaired right-handed individuals (six males, four females, 32.8 ±  9.4 years old) 

participated in this study. Participant recruitment and data collection conformed with the 

University of Washington's Institutional Review Board (IRB). Informed written consent was 

obtained from each participant. Basic measurements were taken from the right hand of each 

participant and recorded with other information. 

The participants were first fitted with a right-handed data glove (Virtual Motion Labs, Dallas, TX, 

USA). A total of 20 signals were extracted from the glove that accounted for finger joint kinematics 

(Figure 3-1). The signals were recorded at a sampling rate of 100𝐻𝑧. 
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Figure 3-1. Virtual Motion Labs Glove used for the study to record kinematics of the right hand. 

Numbers on the glove represent the kinematic signals that were extracted and recorded for  

To calibrate the data glove, the participants were asked to perform a series of hand gestures 

presented to them on the screen. The movements were finger flexion/extension, finger 

abduction/adduction, thumb flexion/extension, and individual finger flexion against the thumb. 

Once the glove was calibrated, the participants were guided through a sequence of hand 

movements consisting of: (i) ASL Gestures, (ii) Object Grasps, and (iii) ADL Tasks (Figure 3-2) 

as described in the following sections. 
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Figure 3-2. Study setup consisting of three different phases: (A) American Sign Language (ASL) 

Gestures; (B) Object Grasps; (C) Activities of Daily Living (ADL) Tasks. 
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ASL Gestures 

During the first phase of the experiment, the participants were asked to perform 10 different ASL 

gestures (Figure 3-2A). They were asked to repeat each gesture 10 times. Each gesture repetition 

counted as a trial. At the beginning of each trial, the participants started in the REST position with 

their elbows on the table and the right hand raised straight up. 

When presented with a gesture, the participants were given 3𝑠 to mimic it as displayed on the 

screen and maintain the gesture until instructed to return to REST position. After 3𝑠 in the REST 

position, a new trial would start. The participants had an opportunity to practice the gestures before 

the beginning of the phase. 

Object Grasps 

During the second phase of the experiment, the participants were asked to perform a series of 

object grasps from the Southampton Hand Assessment Procedure (SHAP) (Figure 3-2B) (Light et 

al., 2002). The testing board was placed 8𝑐𝑚 from the edge of the table closest to the participant. 

The board was then aligned so that the target object was directly in front of the participant. There 

were 12 objects to be grasped with six different grasping types. Furthermore, each object could be 

either light or heavy. 

Each object had to be grasped 10 times. Before grasping a new object, video instructions were 

shown to the participants on the required way of grasping. They could then practice grasping under 

the supervision of the experimenter to ensure a correct and consistent execution. 

The participants were given 5𝑠 to complete each grasp starting and ending the grasp on the REST 

position. In the REST position, both participant's hands lied prone on the table. Between each trial, 

there was a 5𝑠 resting period. 



30 

 

ADL Tasks 

During the third phase of the experiment, the participants performed the ADL portion of the SHAP. 

A total of eight different tasks were selected for this phase (Figure 3-2C). Each task was performed 

10 times. The participants were given 7𝑠 to perform each task with a 5𝑠 of REST time between 

each trial. 

As in the second phase, the participants were shown a video with instructions on how to 

appropriately complete the task. They were then instructed to practice the task until ready. The 

testing board was placed 8𝑐𝑚 away from the edge of the table closest to the participant. During 

REST, the participants held the hands supine on the table to the sides of the testing board. 

Data Processing 

For each phase, data were recorded during both REST (when participants were instructed to be in 

REST position) and ACTIVE (when participants were instructed to perform the given task) 

conditions. Only ACTIVE conditions were used for data analysis. 

Preprocessing 

The recorded data were filtered with a first-order Butterworth filter in MATLAB (MathWorks, 

Natick, MA, USA). The cutoff frequency was 10𝐻𝑧. REST data were removed from analysis, and 

the remaining data points were labeled to indicate different hand movements and trial numbers for 

each participant. 

Trials, in which participants did not complete the movement as requested, possibly due to loss of 

attention or inability to understand the given task in due time, were excluded from the analysis. 
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The data were then arranged into four datasets: ASL Gestures, Object Grasps, ADL Tasks, and 

Combined. The Combined dataset contained data from ASL Gestures, Object Grasps, and ADL 

Tasks for each participant. 

Each signal was normalized by the absolute maximum value across all signals in each dataset prior 

to analysis (Sola and Sevilla, 1997). 

Data of each participant were randomly split into training (80%) and testing (20%) using a holdout 

method (Oxford and Daniel, 2001). Training samples were used to generate a model, PCA or AE. 

Data Analysis 

To study the effects of linear and non-linear dimensionality-reduction methods, we compared the 

performance of PCA and AE algorithms with two, three, four, five, and six latent dimensions [PCs 

and coding units (CUs), respectively]. 

PCA was performed using the built-in MATLAB function pca, which is based on singular value 

decomposition (Wall et al., 2003). Dimensionality reduction using AE was performed using 

TensorFlow, a Python (Python Software Foundation, DE, USA) library for machine learning 

applications developed by Google Brain (Abadi et al., 2016). 

Nonlinear Autoencoder Architecture 

The basic AE structure used for this experiment included a total of three hidden layers, the middle 

one being the bottleneck layer (Figure 3-3). Similarly to the original AE proposed by Kramer 

(1991), we chose a non-linear activation function for the first and third hidden layers, and a linear 

activation function for the bottleneck (Kramer, 1991). The use of both linear and non-linear 

activation functions had been shown to increase the ease with which the network learns linear 
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relationships in the data (Haesloop and Holt, 1990). The transformations from the normalized input 

𝑋 to the output data 𝑌 through the encoder (Equations 1, 2) and decoder (Equations 3, 4) parts of 

AE are: 

𝑙𝑎𝑦𝑒𝑟1 = 𝑡𝑎𝑛ℎ (𝑋 ∗  𝑤1 + 𝑏1) (1) 

𝑙𝑎𝑦𝑒𝑟2 = 𝑙𝑎𝑦𝑒𝑟1  ∗  𝑤2 + 𝑏2  (2) 

𝑙𝑎𝑦𝑒𝑟3 = 𝑡𝑎𝑛ℎ (𝑙𝑎𝑦𝑒𝑟2  ∗  𝑤3 + 𝑏3) (3) 

𝑌 = 𝑙𝑎𝑦𝑒𝑟3  ∗  𝑤4 + 𝑏4 (4) 

where 𝑤𝑖 were the weights and 𝑏𝑖 were the biases found during network modeling. 

 

Figure 3-3. The non-linear Autoencoder (AE) network structure used in this study. Curved lines 

over neurons represent that non-linear activation functions (i.e., hyperbolic tangent) were used to 

calculate that layer. Otherwise, activation functions were linear. 

While the main purpose of the study was to compare the performance of linear and non-linear 

dimensionality-reduction algorithms, it is important to note that neural network structures, such as 

AEs, can be optimized further for improved performance. A simple AE structure was chosen for 
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this study while more complex structures can be explored. Neural networks can have multiple 

layers, various structures, and many hyperparameters that directly affect the performance of the 

network. 

Full-batch gradient descent was used for training the network. 

Tuning of hyperparameters, such as the learning rate, number of steps, type of non-linear activation 

functions, and regularization, was performed (Figure 3-4). A separate validation dataset from a 

participant, whose data were not used in the experiment for overall analysis, was utilized for 

hyperparameter tuning. In this dataset, the participant (P0) performed all the tasks of the ASL 

Gestures phase, 10 trials each. A 5-fold cross-validation (CV) was conducted(Oxford and Daniel, 

2001), and the performance of each hyperparameter pair was evaluated using Variance Accounted 

For (VAF) (see section Performance Metrics for more information on VAF). 
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Figure 3-4. Effects of certain hyperparameters on the non-linear Autoencoder (AE) performance: 

(A) number of steps and learning rate (0.001,0.01,0.025,0.05); (B) learning rate and type of non-

linear activation function (tanh, relu, sig). The performance is calculated using Variance 

Accounted For (VAF), which represents the difference between the output and the input. Solid 

lines represent average results across all participants. Faint shaded lines represent 95% confidence 

interval. (C) AE performance difference on training and testing datasets for different activation 

functions with no regularization. Error bars represent 95% confidence intervals. The AE 

performance difference was minimal across the learning rates tested for over 10,000 steps. The 

difference in the performance was minimal for the learning rate of 0.01 across the non-linear 

activation functions tested. No evidence of overfitting of the dataset was found. 

Learning rates of 0.01 and 0.025 produced the most stable results across the variety of number of 

steps tested (Figure 3-4A). The largest learning rate of 0.05 produced the worst results while the 
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smallest learning rate of 0.001 produced the best results for the number of steps over 10,000. The 

AE performance difference was minimal across the learning rates of 0.01, 0.05, and 0.001 for 

10,000 steps. Although 20,000 steps resulted in a slightly improved performance of the network 

for the learning rate of 0.001, a larger number of steps would lead to longer training times for AE. 

Since it was of interest to optimize both the network performance as well as the training times, the 

learning rate of 0.01 and 10,000 steps were chosen for this study. 

Sigmoid (sig), hyperbolic tangent (tanh), and rectified linear unit (relu) performed similarly for 

the learning rate of 0.01 (Figure 3-4B). As a result, we were free to choose any non-linear 

activation function for the AE structure, and the hyperbolic tangent was chosen for this experiment. 

Adaptive Moment Estimation (ADAM) optimizer was used to speed up the training of the AE 

(Kingma and Ba, 2014). No regularization was used in training the model for this study, as we did 

not find any evidence of overfitting for our dataset (Figure 3-4C). 

For AE, the weights and biases for all models created for each participant were initialized in the 

same way for comparative purposes. 

Performance Metrics 

The performance in terms of VAF was evaluated on the testing samples. Variability of dimensions 

as well as visualization and separability of movements in the latent and reconstructed manifolds 

were tested on the entire dataset (training and testing combined). 

Dimensionality Reduction 

VAF measures the difference between reconstructed output and original input signals. It was 

chosen to capture the ability of a dimensionality-reduction method to reconstruct the desired signal 



36 

 

from the latent manifold. VAF offers a measure of the information preserved by the 

dimensionality-reduction algorithm and is directly related to reconstruction error (Equation 5). A 

VAF of 100% indicated that the output and the input were identical. 

𝑉𝐴𝐹(%) = (1 −
𝑣𝑎𝑟(𝑌−Ŷ)

𝑣𝑎𝑟(𝑌)
) ∗ 100  (5) 

𝑌−original data 

Ŷ−reconstructed data 

In addition, data variance across three datasets (ASL Gestures, Object Grasps, ADL Tasks) was 

calculated for each participant. It was done by first calculating the variance of each of the 20 

kinematic signals across all samples in the input data. The variance values were then averaged 

across 20 signals to produce one value of variance for each participant. The correlation between 

data variance and resulted VAF with two latent dimensions was calculated for both PCA and AE. 

Lastly, to explore the reconstructing performance of AE and PCA, the second gesture of the ASL 

Gesture dataset (“gesture signifying number one”) was reconstructed from two-dimensional latent 

manifolds of these dimensionality-reduction methods. To visualize the reconstructed gesture, one 

of the Leap Motion (Leap Motion Inc., San Francisco, CA, USA) hand models was utilized in 

Unity (Unity Technologies, San Francisco, CA, USA). A few snapshots were taken as the 

reconstructed gesture went from the REST into the ACTIVE positions. 

Dimension Variance 

Dimension variance was the variance associated with each dimension in the latent manifold of 

PCA and AE. To calculate dimension variance, the input data were reduced to PCs and CUs for 
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each participant across each of the four datasets. For PCA, it was done in the following way, where 

𝑒𝑖𝑔 produces a diagonal matrix 𝐷 of eigenvalues of a covariance matrix, 𝑐𝑜𝑣, of normalized data 

𝑋 (Equation 6). 

𝐷 = 𝑒𝑖𝑔(𝑐𝑜𝑣(𝑋)) (6) 

Each PCA dimension, 𝑃𝐶𝑖, where 𝑖 was the dimension number, was found by sorting the diagonal 

matrix 𝐷 in the descending order and taking the ith column of the sorted matrix (Equation 7). 

𝑃𝐶𝑖 = 𝑑𝑖𝑎𝑔(𝐷(: , 𝑖)) (7) 

For AE, latent dimensions were calculated by passing the normalized data 𝑋 through the encoder 

part of the network (Equations 1, 2). CUs were the corresponding columns of 𝑙𝑎𝑦𝑒𝑟2 (Equation 

8). 

𝐶𝑈𝑖 = 𝑙𝑎𝑦𝑒𝑟2(: , 𝑖) (8) 

Each latent dimension (PCs or CUs) was represented by 𝐴𝑖, an 𝑚 ×  𝑛 matrix, where 𝑚 was the 

number of observations and 𝑛 was the number of latent dimensions. The mean of each latent 

dimension was calculated (Equation 9). 

𝜇 =
1

𝑚
∑ 𝐴𝑗

𝑚
𝑗=1  (9) 

Afterwards, the variance of each latent dimension, 𝜐𝑖, was calculated (Equation 10). 

𝑣𝑖 =
1

𝑚−1
∑ ‖𝐴𝑗 − 𝜇‖

2𝑚
𝑗=1  (10) 



38 

 

Lastly, what was defined as dimension variance in this study, 𝑣𝑑𝑖𝑚, was calculated by determining 

the percentage of 𝑣𝑖 with respect to the overall variance of all considered latent dimensions 

(Equation 11). 

𝑣𝑑𝑖𝑚 =
𝑣𝑖

∑ 𝑣𝑖
𝑛
𝑖=1

 (11) 

Dimension variance was ordered in descending order for visualization and comparative purposes. 

In addition, the average difference between dimensions with the highest and lowest values of 

variance (𝑟𝑎𝑛𝑔𝑒𝑑𝑖𝑚,𝑎𝑣𝑔) was calculated across all 10 participants for each dataset and called range 

of dimension variance (Equation 12). 

𝑟𝑎𝑛𝑔𝑒dim,avg =
1

𝑛
∑ max(𝑣𝑑𝑖𝑚) − min (𝑣𝑑𝑖𝑚)𝑛

dim=1 (12) 

Visualization of Latent Trajectories 

To aid the visualization of the latent trajectories, we focused on manifolds with two dimensions. 

To visualize the PCA latent trajectories, the input data was first reduced to 2PCs. The PC pairs for 

each dataset and each participant were then plotted on a 2D surface where 𝑃𝐶1 represented the 𝑥-

axis and 𝑃𝐶2 represented the 𝑦-axis. Each sample representing a kinematic instance in 20D space 

was plotted as a point in this 2D graph. 

A similar technique was utilized for visualizing the latent trajectories of AE. After reducing the 

input data to the latent manifold, the pair of CUs for each dataset was plotted on a 2D linear surface 

where 𝐶𝑈1 represented the 𝑥-axis and 𝐶𝑈2 represented the 𝑦-axis. 

Separate movements for each dataset were plotted with a different color for ease of differentiation. 
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Movement Separability 

Movement separability was defined as a measure of distance between movements (from the 20D 

input, latent manifold, or reconstructed 20D data) that allowed a simple classification algorithm to 

differentiate between given classes of postures. Movement separability was calculated for all 

datasets, except for Combined, using SoftMax regression (Gao and Pavel, 2017). SoftMax 

regression was chosen as a simple example of a linear classification algorithm that did not require 

hyperparameter tuning such as Dense Neural Networks (DNNs), which can also be used for 

classification purposes (Schmidhuber, 2015). The aim was to develop a simple understanding of 

the linear separability of different movements across latent manifolds of AE and PCA. Higher 

accuracy percentage indicated a latent manifold in which classes (i.e., hand movements) were more 

linearly separable. 

When designing a controller, creating a space where different movements can be easily separated 

can be of high importance. When navigating along a more separable control space, the user might 

have the ability to switch between different tasks and/or movements much faster than in cases 

where tasks are less separable. 

SoftMax regression was applied to the 2CUs/PCs latent manifolds, as well as to the reconstructed 

20D data for AE and PCA and the original input data for each participant and dataset. Assessing 

the separability of reconstructed space might be important in understanding how data variability 

is preserved upon reconstruction in both AE and PCA. We used a 5-fold CV to calculate the 

accuracy on each dataset. 
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Statistical Analysis 

We used MATLAB Statistics Toolbox functions and custom-written code for our statistical 

analysis. The normality was tested by applying the Anderson-Darling (AD) Test (Anderson and 

Darling, 1954). When the normality assumption was violated, we used rank statistics for our 

statistical analysis. This was the case for the VAF, range of dimension variance, and classification 

accuracy. 

We used the Wilcoxon Signed-Rank Test (Wilcoxon, 1945) to understand the differences in VAF 

between the dimensionality-reduction methods, and the Friedman's Test (Friedman, 1937) to 

understand the effect of datasets (e.g., ADL Tasks, ASL Gestures, etc.) on VAF. In a post-hoc 

analysis, Bonferroni correction (Bonferroni, 1936) was used to verify statistically significant 

differences among datasets within AE and PCA. 

We also used the Wilcoxon Signed-Rank Test to compare the differences in range of dimension 

variance between two dimensionality-reduction methods across all latent dimensions and datasets, 

and for the comparison of SoftMax classification accuracy between reduced-dimension (2D) and 

reconstructed (20D) data for both AE and PCA. 

In all our analyses, the level of significance was set to 0.05. After the Bonferroni adjustment, the 

level of significance for the post-hoc analysis was set to 0.0125 (0.05/4). 

Results 

Dimensionality Reduction 

For all four datasets, AE outperformed PCA by reconstructing the input data with higher VAF for 

two, three, four, five, and six latent dimensions (Figure 3-5). The average VAF with just 2CUs 

across all datasets was 94% for AE whereas it was 78% with 2PCs for PCA. 
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Figure 3-5. Performance of non-linear Autoencoder (AE, blue) vs. Principal Component Analysis 

(PCA, red) with 2, 3, 4, 5, and 6 dimensions in the bottleneck layer on four different datasets: 

American Sign Language (ASL) Gestures, Object Grasps, Activities of Daily Living (ADL) Tasks, 

and Combined. The performance is calculated using Variance Accounted For (VAF), which 

represents the difference between the output and the input. Solid lines represent average results 

across all participants. Faint shaded lines represent 95% confidence interval. AE outperformed 

PCA across all datasets and for all number of latent dimensions tested in this study. 

Wilcoxon Signed-Rank Test revealed an effect on VAF by the dimensionality-reduction method 

(𝑝 <  0.001). When comparing AE and PCA, the difference in the performance between the two 

methods decreased as the number of dimensions in the latent manifold increased (Figure 3-5). 

By performing the Friedman's Test on VAF produced by PCA and AE models with two-

dimensional latent manifolds, an effect of datasets was revealed on both dimensionality-reduction 

methods (𝑝 <  0.001). Specifically, PCA performed similarly for both Object Grasps and ADL 

Tasks datasets (𝑝 =  0.986), but its performance decreased significantly for ASL Gestures (𝑝 =

 0.002 and 𝑝 =  0.006 when compared to Object Grasps and ADL Tasks, respectively). The AE, 

on the contrary, had higher performance for ASL Gestures over two dimensions in comparison to 

ADL Tasks (𝑝 <  0.001) and Combined (𝑝 <  0.001) datasets. 
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Accordingly, the correlation between VAF and signal variance of each dataset was analyzed 

(Figure 3-6A). The 𝑅2 values for a linear model between two variables were 0.58 and 0.54 for AE 

and PCA, respectively. The relationship is positive for AE and negative for PCA (observed from 

the slopes of the linear regression lines). Lastly, from Figure 3-7, one can observe the visual 

differences in the performance of two dimensionality-reduction methods. While AE (middle 

column) was able to closely match the original hand gesture (left column), PCA (right column) 

failed to reconstruct the proper flexion of middle, ring, and pinky fingers as well as the full 

extension of the index finger. 
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Figure 3-6. (A) Correlation between average signal variance of input data across 10 participants 

and Variance Accounted For (VAF) with two-dimensional latent manifold plotted for three 

different datasets (American Sign Language (ASL) Gestures, Object Grasps, Activities of Daily 

Living (ADL) Tasks) for non-linear Autoencoder (AE, blue) and Principal Component Analysis 

(PCA, red). (B) Correlation between average signal variance of input data across 10 participants 

and range of dimension variance for 2 Coding Units (CUs)/Principal Components (PCs). (C) 
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Correlation between VAF and range of dimension variance for 2CUs/PCs for three datasets (ASL 

Gestures, Object Grasps, ADL Tasks). PCA exhibited some correlation across all three scenarios 

tested whereas AE experienced no correlation. 

 

 

Figure 3-7. Visualization of gesture 1 from American Sign Language Gestures dataset, 

reconstructed from two-dimensional latent manifolds of non-linear Autoencoder (AE, middle 

column) and Principal Component Analysis (PCA, right column). The reconstructed gestures were 
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compared to original gesture (left column). A few snapshots of each gesture were taken in time 

from REST to ACTIVE states. 

Dimension Variance 

Variance spread across AE and PCA dimensions was plotted for participant P1 performing ASL 

Gestures (Figure 3-8). Variance dropped significantly for each new added PC dimension whereas 

AE exhibited a less prominent decrease in variance for every additional latent dimension. The 

sharper drop in PCA variance appears to be a consequence of the orthogonality of subsequent 

eigenvectors. 

 

Figure 3-8. Variance percentage of each latent dimension (represented with different colors) with 

respect to the overall variance of the dimensions considered in the analysis [number of Principal 

Components (PCs)/Coding Units (CUs)] for P1 performing American Sign Language (ASL) 

Gestures. Two, three, four, five, and six dimensions in the bottleneck are compared for non-linear 

Autoencoder (AE) and Principal Component Analysis (PCA) and ranked by order of decreasing 

variance. AE exhibited smaller drop of variance across latent dimensions in comparison to PCA 

for P1. 

Such behavior was consistent across all participants, as described by the average difference 

between dimensions with the highest and lowest variance (Figure 3-9). This difference was greater 
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for PCA than for AE and significant in all conditions (𝑝 =  0.002), with the exception of ASL 

Gestures reconstructed with 2CUs/PCs (𝑝 =  0.106), according to Wilcoxon Signed-Rank Test. 

 

Figure 3-9. Difference between dimensions with highest and lowest variance values averaged 

across all participants for four datasets: American Sign Language (ASL) Gestures, Object Grasps, 

Activities of Daily Living (ADL) Tasks, and Combined. Statistical significance: 𝑝 =  0.106 for 

ASL Gestures for 2CUs/PCs; *indicates statistical significance of 𝑝 =  0.002. AE exhibited 

smaller drop of variance across latent dimensions in comparison to PCA across all datasets and for 

all number of latent dimensions except for 2 dimensions in ASL Gestures. 

In addition, an interesting observation could be made in regard to the average difference between 

latent dimensions with highest and lowest variance across three datasets (ASL Gestures, Object 
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Grasps, ADL Tasks). When plotting the range of dimension variance vs. the signal variance across 

each dataset, a correlation is revealed for the PCA case—𝑅2 of 0.53 (Figure 3-6B). No such 

correlation was found for AE (𝑅2 of 0.05). The relationship found for PCA was inverse: higher 

signal variance dataset resulted in lower difference between latent dimensions with highest and 

lowest variance. 

Lastly, plotting the VAF of each participant for the three datasets vs. the range of dimension 

variance for 2CUs/PCs reveals similar correlation for PCA (𝑅2  =  0.78) and no correlation for 

AE (𝑅2  =  0.06) (Figure 3-6C). 

Visualization of Latent Trajectories 

AE and PCA latent trajectories were visualized for 2CUs/PCs in the case of participant P1 

performing ASL Gestures (Figure 3-10A), Object Grasps (Figure 3-10B), and ADL Tasks (Figure 

3-10C). All trials used in the analysis were plotted, and separate gestures were indicated using 

different colors. 
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Figure 3-10. Visualization of the latent trajectories for AE and PCA for P1 performing (A) 

American Sign Language (ASL) Gestures, (B) Object Grasps, and (C) Activities of Daily Living 

(ADL) Tasks. The hand movements tested are represented with different colors. The latent 
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manifold only consists of two dimensions. For Object Grasps, the legend can be interpreted as 

follows: the first letter represents the type of grasp (E, Extension; L, Lateral; P, Power; S, 

Spherical; T, Tip; Tri, Tripod); the last letter represents the weight of the object being grasped (H, 

Heavy; L, Light). 

 

The overall structures of the plotted latent trajectories were similar across PCA and AE, with 

different gestures visually separated. Some movements appeared closer to each other in the 2D 

manifold than to other movements. Certain ASL gestures (e.g., gestures 2 and 3) appeared closer 

to each other than to others in both AE and PCA manifolds. In Object Grasps, heavy and light 

versions of the same grasp took the same part of the visualization space. ADL tasks that required 

similar type of grasping (e.g., using a screwdriver and opening a jar lid) appeared in the same part 

of the 2D space. 

Movement Separability 

SoftMax regression on the 2D manifold of AE and PCA did not reveal any significant difference 

in separability of movements between the two methods (Figure 3-11). The difference was 

insignificant across all three datasets (𝑝 =  0.846 for ASL Gestures, 𝑝 =  0.695 for Object 

Grasps, and 𝑝 =  0.557 for ADL Tasks). 
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Figure 3-11. Accuracy of SoftMax regression applied to different datasets [American Sign 

Language (ASL) Gestures, Object Grasps, Activities of Daily Living (ADL) Tasks] across all 

participants. Regression was applied to original input data (green), reduced non-linear 

Autoencoder (AE) 2D (light blue) and reconstructed 20D (dark blue) data, as well as reduced 

Principal Component Analysis (PCA) 2D (light red) and reconstructed 20D (dark red) data. Error 

bars represent 95% confidence interval. Statistical significance: *indicates statistical significance 

of 𝑝 <  0.001. No significant difference was found on the reduced 2D manifold of AE and PCA 

across all datasets. Original data exhibited high (nearly 100%) of movements. There was a 

significant difference between the reconstructed (20D) and reduced (2D) manifolds of AE with 

the former being more separable than the latter. 

There was a significant difference (𝑝 =  0.002) in the classification accuracy when the 20D 

manifolds, reconstructed from two latent dimensions, were evaluated. Across all three datasets, 

AE generated more separable representations than PCA. There was no significant difference 

between the separability of the reconstructed 20D and reduced 2D representations with PCA across 

ASL Gestures (𝑝 =  0.695), Object Grasps (𝑝 =  0.492), and ADL Tasks (𝑝 =  0.695). 
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Lastly, when applying SoftMax regression on the original input 20D kinematic space, the 

separability of classes was higher than that of the reconstructed 20D and the reduced 2D manifolds 

for both PCA and AE. The classification accuracy was at nearly 100% across all datasets (Figure 

3-11). 

The overall separability was much higher for ASL Gestures than for Object Grasps or ADL Tasks 

datasets for the reduced 2D and reconstructed 20D spaces (Figure 3-11). 

Discussion 

The complexity of a human hand makes the control of its prosthetic analog a challenging task. 

While posture control has been shown to be a novel and innovative way of providing a continuous 

controller for prosthetic users of their highly sophisticated devices, it has been limited by the linear 

nature of its underlying dimensionality-reduction algorithm. In this study, a non-linear equivalent 

of PCA, AEs, demonstrated higher performance in: (i) reducing complex hand kinematics into a 

lower dimensional manifold with a smaller loss of data variability, (ii) creating higher spread of 

dimension variance in the latent manifold, and (iii) reconstructing a more separable manifold. All 

of these points could make AE a potentially effective at supporting continuous posture control for 

prosthetic hands. 

Dimensionality Reduction 

The ability to reduce the dimensions of kinematic data without ignoring their effective complexity 

is an essential yet challenging task to understand the biological mechanisms of control as well as 

to design precise artificial controllers. When it comes to developing a controller for multi-DOF 

hand prostheses, reducing the number of control signals may result in a more intuitive interface 

for the user. While the human brain is able to simultaneously manage multiple DOFs, such as those 
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in the hands, often with high dexterity and precision, many research studies suggest that it does so 

through a smaller number of control “knobs” identified as synergies (Santello et al., 1998; Todorov 

and Ghahramani, 2004; Weiss and Flanders, 2004; Feldman and Latash, 2005; Ting and 

Macpherson, 2005). 

To understand how dimensionality reduction may preserve the essential complexity of behavior, 

investigators have applied dimensionality-reduction techniques such as PCA to human hand 

coordination (Santello et al., 1998; Todorov and Ghahramani, 2004). Santello's group determined 

that 2PCs were sufficient to account, on average, for ~84% of hand kinematic variance, a higher 

value than the figure in our study. Such difference may be explained by the difference in the 

kinematic data. While the entire range of kinematic data from the REST to ACTIVE positions was 

recorded and used for analysis in our study, Santello's group only utilized one static instance of 

kinematics per imaginary grasp. In addition, the number of signals that was used in the Santello et 

al. was 15 whereas our study utilized 20 kinematic signals for analysis, which could have made it 

more difficult for PCA to reduce the dimensionality of the kinematic space. 

Such dependence of PCA performance on the number of analyzed signals was also presented in 

the study of Todorov and Ghahramani's (2004) as they ran PCA on 20 and 15 kinematic signals 

from a sensorized glove. They determined that in a 20-signal analysis, more PCs were required to 

account for the same variance of data than in a 15-signal analysis. In addition, they calculated that 

anywhere from three to seven PCs were required to account for 85% of data variance if the 

analyzed angle data was raw without normalization. The number of PCs depended on the 

performed task. In the aforementioned study by Todorov's group, the analysis was performed on a 
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larger set of kinematic samples, similar to our study; however, it was done on individual tasks 

rather than full datasets containing various tasks. 

In our study, it was also noted that PCA performance was significantly inferior for ASL Gestures 

than for Object Grasps and ADL Tasks with just 2PCs. Similar behavior could be observed in 

Todorov and Ghahramani's (2004) study where the number of PCs to describe individuated joint 

movements was higher than that for object grasping and manipulation. This might be explained by 

the kinematic complexity of ASL gestures, in which independent joint control is required. In ADL 

tasks and object grasping, on the contrary, many joints move simultaneously to achieve the 

desirable posture or grasp, potentially joining into linear combinations that can be easily detected 

by PCA. 

It is interesting to note that while PCA appeared to be less efficient with the ASL Gestures dataset 

(reconstructing with lower VAF), AE exhibited stronger performance with the ASL dataset 

(reconstructing with higher VAF) than with Object Grasps or ADL Tasks. This point was also 

clearly indicated in the inverse relationship between the signal variance of a dataset and the VAF 

with 2CUs for AE. As a result, AE improved VAF and signal reconstruction when the input signal 

had more variability (as in ASL Gestures), contrary to the linear PCA. This is consistent with the 

observation that attempting to estimate the dimension of the data generated by a non-linear process 

with a linear method, like PCA, results in the overestimation of the actual process dimensionality 

(Tenenbaum et al., 2000). Accordingly, adding variance to the input data would result in the 

reduction of VAF by an insufficient number of PCs. 

When comparing the performance of linear and non-linear dimensionality-reduction techniques, 

our study demonstrated that AE outperformed PCA by reconstructing over 90% of data variability 
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with only 2CUs. Such results overpower the dimensionality-reduction performance of PCA 

presented in earlier hand kinematic studies. A comparison of non-linear dimensionality reduction 

was performed earlier (Romero et al., 2010; Cui and Visell, 2014) over datasets obtained from 

hand grasping patterns. Somewhat surprisingly, Cui and Visell concluded that the quality of 

dimensionality reduction obtained by PCA was superior to that obtained by non-linear algorithms, 

including AE. Our findings are not consistent with their conclusion. We believe that this 

discrepancy may be attributed to two factors. First, the analysis of Cui and Visell was limited to 

grasping, whereas our data set included other hand task. Perhaps, most notably, our data included 

ASL gestures and a broader spectrum of hand configurations associated with ADLs. In fact, in our 

dataset, the difference in performance between PCA and AE was smaller for hand grasps. A second 

observation concerns the performance measures. While we base our conclusions on VAF, Cui and 

Visell adopted a criterion based on the preservation of neighborhood relations after dimensionality 

reduction. This criterion was based on Euclidean distance, which, as noted by the authors, has an 

implicit bias in favor of a linear method like PCA. And one can add that Euclidean distance is not 

a clearly applicable measure for angular manifolds. Like Cui and Visell, Romero and colleagues 

limited their analysis to grasping patterns. They compared the latent manifold generated by 

different non-linear dimensionality-reduction algorithms observing a better performance 

compared with PCA. 

Our findings highlight the potential superiority of AE when used as a control method for hand 

prostheses. Higher VAF value signifies that with a smaller number of control signals, the AE-

based controller would be competent to generate a more precise representation of multiple DOFs 

in a prosthetic hand, compared to PCA. As a result, tasks that require high precision and dexterity 
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(e.g., handcrafts, personal hygiene) may become more feasible. The decreased number of control 

signals required to control a precise motion of the prosthesis may result in lowering the mental 

burden on the users without sacrificing performance. For example, current techniques, such as PR 

in Coapt Gen2 (Coapt LLC, Chicago, IL, USA), rely on eight EMG signals to control a prosthetic 

device. The results of our study suggest that potentially by reducing the number of EMG signals 

to two and allowing each signal to control one CU would still allow the user to cover a large space 

of hand gestures. 

The findings of this study also suggest the inherent non-linear nature of hand kinematics. The 

apparent differences between AE and PCA with only two dimensions in the latent manifold 

highlight the former's ability to capture components of the data that are not being picked up by the 

linear function of PCA. Evidently, this may suggest the need to, first, test and, potentially, utilize 

non-linear methods when analyzing biological systems, such as hand kinematics. While their 

mathematical manipulation might be more difficult and less intuitive, the importance of capturing 

non-linearities of a system might be of greater importance. 

We feel it is important to emphasize that our use of an artificial neural network, the autoencoder, 

is not associated with any claim or pretense to represent information processing in the neural 

system. This is presumably a limit shared by PCA, as there is no evidence that constraint of 

orthonormality is satisfied by neuromuscular activity. Nevertheless, a relevant element in our 

analysis is that the information that can be extracted from the observation of hand motions is better 

captured by a low-dimensional non-linear manifold than by a linear space. While there are other 

non-linear statistical methods for signal processing (Tenenbaum et al., 2000), AEs have the 

distinctive property of acting as non-linear filters whose parameters are set by training on an initial 
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dataset. Then the network with these same parameters is used to project incoming data on the same 

latent manifold of the initial dataset, under the critical assumption that the signal statistics has not 

changed. 

Dimension Variance 

Dimension variance is an important aspect of every controller. In some cases, the distribution of 

control authority across the controlled dimensions should be uniform as controlling each DOF may 

be similarly important. One of such cases includes control of a two-dimensional cursor on a 

screen—in Euclidean geometry, where all directions are by definition equivalent, the control of 

each dimension should be distributed equally. However, if the dimensionality reduction results in 

an uneven distribution (a large range of dimension variance), then control is distributed unevenly. 

While keeping the number of control signals as low as possible is important in ensuring the mental 

load to the user is manageable, adding more signals can be crucial to allow the controller to account 

for important information that may otherwise be thrown away. As a result, it might not be useful 

to limit the controller to the minimal number of control signals. 

In such cases, the dimensionality-reduction method of choice may be detrimental. From the results 

presented above, AE could prove its feasibility as a method that would allow developers adding 

control signals that account for task-relevant variability. In the case of PCA, if the controller 

requires six signals, the last two signals oftentimes have the variance of < 5% of the entire range 

of motion for all six dimensions. In most cases, such addition would be equivalent to adding noise. 

Noisy signals may decrease the controller performance and negatively affect the user's ability to 

perform tasks. In AE, on the contrary, adding more control signals does not organize data variance 
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in a decreasing manner across dimensions but rather does so in a proportional manner where no 

signal accounts for < 10% of data variability. 

With a much smaller difference between the dimensions of highest and lowest variance for larger 

number of dimensions, AE highlights its ability to distribute data information across CUs more 

evenly than PCA. 

Another interesting point that was made in the analysis is the correlation between input data 

variance and the variance spread across latent dimensions in PCA. It appears that data of higher 

variance (e.g., ASL Gestures) results in latent dimensions with a smaller range of variance, 

implying that variance is distributed more equally across dimension. On the contrary, when input 

data exhibits less variance (e.g., Object Grasps, ADL Tasks), there is a large difference between 

dimensions of highest and lowest variance. Similarly, when VAF is high, PCA appears to exhibit 

a more dramatic drop between dimension variance, thus proving this dimensionality-reduction 

method to be the less desirable choice even in cases when it exhibits high VAF. Such results 

highlight that in cases when PCA is able to reconstruct with a desirable VAF, the variance across 

its latent dimensions will not be equally spread, thus resulting in a higher chance of producing 

control signals that would appear noisier. 

Visualization of Latent Trajectories 

Visualization of the latent trajectories can be useful in understanding the internal works of a 

dimensionality-reduction method. In addition, if this latent structure is utilized in the controller, it 

can aid researchers in identifying the properties of the control manifold. While visualization of the 

latent trajectories of PCA is simple due to the orthonormality of the principal eigenvectors and the 
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overall linearity of the space they span, things are different with AE since CUs are neither 

orthogonal nor linear elements. 

As one visualizes the latent trajectories of an AE by representing CUs as Cartesian coordinates, 

one must understand that this representation is unable to capture the non-linear properties of the 

manifold. However, research in visualization of non-linear manifolds has been limited. 

In this study, the 2D Cartesian representation of the latent trajectories was used to visualize the 

separability of different movements within each dataset. From the results, it appeared that there 

was no significant difference between the separability of classes of AE and PCA manifolds across 

all subjects. 

When visualized, certain movements appeared to be much closer in the 2D manifold to some than 

to others, increasing their chance of being misclassified. Such spatial closeness could be explained 

by the kinematic similarity of certain movements. For example, gestures 2 and 3 were closely 

placed on the 2D manifold of both AE and PCA. When examining the two gestures kinematically, 

one could notice that the only difference between the two was in the flexion of the thumb. 

Likewise, movements that were very different from each other kinematically (𝑒. 𝑔., gestures 1 and 

9) appeared further away from each other on the 2D plot. Same results could be seen across other 

datasets, indicating that kinematic similarity resulted in closer appearance of the movements on 

the 2D manifold. 

Movement Separability 

Separability between AE and PCA in 2D was participant- and movement-dependent, implying that 

some participants created a more separable AE manifold for certain tasks while others exhibited a 
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more separable PCA manifold for the same tasks. Such occurrence may be due to the kinematic 

difference across participants performing various tasks. It is also important to note that the goal of 

the created AE structure was to minimize the error between the output and the input and not to 

create a more separable manifold of reduced dimension. However, one could rewrite the algorithm 

in such a way that the network would search for parameters that create a more separable manifold 

in the bottleneck layer. 

It was noted in the results that separability of movements was much higher for ASL Gestures than 

other datasets for both AE and PCA. This could potentially be explained by hand kinematics being 

more distinct during ASL Gestures that clearly differentiate different classes. This is consistent 

with the very purpose of a sign language to generate readily distinguishable patterns. In addition, 

it is important to note that both heavy and light variations of the same grasp type were used as 

separate classes in Object Grasps, which could make it more difficult for the classifier to 

differentiate between them since they were very similar kinematically. If other information, such 

as for example, kinetic, was used in addition to kinematic data to differentiate between different 

grasps, the classification accuracy of Object Grasps would potentially be higher. Lastly, in ADL 

Tasks, many movements required similar grasping types, which, in turn, resulted in similar 

kinematic output, making classes less differentiable. 

While AE exhibited an increase in separability of classes when going from the 2D latent manifold 

to its 20D embedding, no such difference was observed for PCA. The latter result is expected, 

because with PCA the latent manifold is a 2D plane embedded in the 20D dimensional signal 

space. In this linear case, the Euclidean distances between points in the plane are the same if we 

take them over the plane or over the embedding signal space. The same cannot be concluded with 
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non-linear dimensionality reduction, because the latent manifold is now a curved space and 

distances between points over a curved surface are generally different when taken over the surface 

or over the embedding space. In fact, distances over a curved surface (think of a sphere) can only 

be longer than the differences over the embedding signal space. The results in Figure 3-10 show 

that this difference in Euclidean metric leads to a poorer classification when the distances are taken 

in the local coordinates of the latent manifold, as points belonging to the same class are mislabeled 

as belonging to different classes. Figure 3-10 also shows that there is not a difference in 

classification accuracy between AE and PCA, when the data are taken in the respective low-

dimensional latent representations. Therefore, we do not have a case for using the non-linear rather 

than linear dimensionality reduction for a prosthetic controller based on PR. However, the 

conclusions are different for a prosthetic system based on continuous control, where the 

reconstruction error and the variance accounted for play a greater role and where these both best 

captured by the non-linear dimensionality reduction (Figures 3-5, 3-6A). 

An interesting note could be made regarding the high separability of classes in the original input 

data. It is important to understand that the original data contains 20 signals that can each vary 

across different movements. And although every movement started from approximately the same 

position in every dataset, differences in signals that could appear insignificant on their own could 

result in a significant difference when added together across all 20 signals. Hence, it is intuitive 

that classes are more separable when more dimensions are present. However, in such a case, both 

PCA- and AE-reconstructed 20D spaces should exhibit just as high accuracy. While we noted 

before that the PCA-reconstructed space might not see a significant improvement in class 

separability when going from 2D to 20D, a careful consideration of the AE results must be made. 
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Although there was a significant improvement when going from 2D to 20D for AE, the 20D results 

were still not as high in accuracy as those of the original input data. This could be explained by 

the potential elimination of insignificant signal differences during reconstruction by the AE. These 

insignificant differences could be taken by the autoencoder as noise, which it aimed to reduce in 

the system, only leaving information that produced high variability. As a result, data with small 

variability is not reconstructed. This observation can also lead to the conclusion that PCA, when 

reconstructing, removes more of low-variability samples from the data, resulting in a less separable 

reconstructed space. 

Other Applications in Prosthetic Control 

It is important to mention that the findings of this study might have wider applications beyond the 

myoelectric control. One of such examples would be in hardware development similar to the 

aforementioned “Soft Hand,” in which the simplified prosthetic control relies on the linear 

combination of the first n PCs (Della Santina et al., 2017). This results from the linear nature of 

PCA that is discussed earlier in this paper. To obtain the desired posture in a hardware using AE, 

one might utilize the decoder part of the network and pass the first n CUs through the third and 

fourth layer as described in Equations (3) and (4). In such way, the development of the hardware 

of the prosthetic hand would rely on the composition of the decoder component of AE. 

In addition, when dealing with myoelectric control for prosthetic hands, one must consider not 

only the domain of kinematic behaviors of the device, but the control signals themselves (i.e., 

EMG). While reducing the dimensionality of kinematics is of high importance, one can consider 

applying dimensionality-reduction methods studied in this paper to the control signals. This would 

expand the potential of using a greater number of signals, fused in a latent manifold, for prosthetic 



62 

 

control. Such application of AE will be explored with EMG signals in future research of improving 

myoelectric control of hand prosthesis. 

Supervised vs Unsupervised Learning 

Many of the state-of-the-art techniques in prosthetic control involve supervised learning methods. 

For example, the PR method utilizes a form of a classification algorithm, which typically consists 

of a feature extraction from the given EMG signal and feature classification of the desired hand 

movement (Geethanjali, 2016). With the use of this technique, prosthetic users are able to associate 

certain EMG patterns with desired grips, thus decreasing the time it takes to select and perform 

the anticipated movement. Despite of its rising popularity, PR control exhibits issues such as long 

training time, chances of inaccurate classification, and being limited to a finite number of 

preselected hand postures (Hargrove et al., 2006; Scheme and Englehart, 2011; Young et al., 2011; 

Castellini et al., 2014; Atzori et al., 2016; Geethanjali, 2016). 

In addition, all forms of supervised learning are limited by their dependence on labeled data, the 

ground truth, based on which they learn a function that best approximates the relationship between 

the input and output observable in the data. For unimpaired individuals, creating supervised output 

might not be an issue (e.g., flex a joint to a specific degree, etc.). However, for individuals with 

motor impairments, such task is inherently difficult or completely unachievable, making the 

creation of labeled data impossible. 

In contrast, PCA and AEs are unsupervised algorithms, whose data do not need to be labeled as 

their goal is to learn the data's statistical properties rather than minimizing some classification 

error. As a consequence, a user interface based on unsupervised methods can adapt to the particular 
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statistics (e.g., in kinematics) of the users without requiring them to perform specific movements 

in specific ways. 

Another form of supervised learning is regression, which some research groups have proposed for 

prosthetic control (Muceli and Farina, 2011; Muceli et al., 2013; Ngeo et al., 2014; Geethanjali, 

2016). This is a form of a learning method, in which the output data is continuous in contrast to 

that of a classifier. While it may be a useful feature in the development of a continuous controller, 

in which device movements are not limited to a number of preset postures, regression has not been 

proven effective in its use with prostheses. Oftentimes, regression algorithms developed for 

prosthetic hands require clean forearm EMG signals that can be associated with certain hand 

movement. However, in case of transradial (below-elbow) amputations, these signals are heavily 

dependent on the site of amputation, amount of residual limb, and many other factors (Li et al., 

2010). Clean surface EMG signals can be obtained in a lab setting from able-bodied individuals 

but are much harder to get from amputees outside of the lab, thus making regression a less effective 

control tool for prostheses. 

In summary, unsupervised continuous learning methods, such as AEs, promise to be a useful tool 

in the development of prosthetic controllers in addition to their superior performance in 

dimensionality reduction. 
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Chapter 4 Dimensionality Reduction of Human Gait for 

Prosthetic Control3 

Introduction 

Models of human gait are the foundation upon which lower limb prosthesis controllers are built. 

Because gait is highly complex and multidimensional, these models take advantage of simplifying 

assumptions to narrow the problem space. Early above-knee prostheses relied upon events during 

stance and swing phases to trigger locking and unlocking of a mechanical knee, such as the knee 

hyperextension moment at toe-off (Mauch, 1968). As prosthetic technology has advanced, so have 

the underlying models. Variable damping knees use on-board sensors to detect speed and phase, 

adjusting knee and ankle joint control parameters to mimic human gait (Highsmith et al., 2010). 

Today, powered prostheses that generate work during gait are gaining in popularity in research 

circles (Azocar et al., 2020). However, the challenge of controlling prostheses has been recently 

brought again to attention (Tucker et al., 2015; Iandolo et al., 2019), and only highlighted by the 

untapped potential of powered devices to restore mobility. We assert that generating useful 

representations of human movement is necessary to unlock the potential of such devices. 

Gait models can be used to generate reference trajectories of kinematics or torque, or inform a set 

of control parameters for powered prostheses. Generating safe and reliable trajectories and 

parameters, given the complexity of human gait, poses a challenge. To do so, simplifications are 

made. At a high level, activities such as level ground walking, stair navigation, and ramp 

 

3 The content of this chapter has been published as Boe, D, Portnova-Fahreeva, AA, Sharma, A Rai, V, Sie, A, 

Preechayasomboon, P and Rombokas, E, 2021. Dimensionality Reduction of Human Gait for Prosthetic Control. 

Frontiers in Bioengineering and Biotechnology. 
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navigation, can each be called an individual “mode” of movement. At a lower level, control is 

achieved with respect to phases of gait. For instance, Simon et al. split the gait cycle of each mode 

into finite states delineated by gait phases, in which each state corresponds to a set of impedance 

parameters, totaling 140 tunable parameters (Simon et al., 2014). However, adding additional 

modes creates more tuning parameters, which poses an additional challenge. More recent 

approaches have reduced the number of tuning parameters by creating unified gait models that 

span across modes. Quintero et al. has developed a gait model that generates knee and ankle 

reference trajectories with respect to speed, phase, and incline (Quintero et al., 2018). This 

significantly reduces the solution space while maintaining expressiveness of the model output. 

However, it remains invariable to idiosyncratic gait characteristics, which Quintero et al. also 

identifies as the largest source of variability. 

Techniques to simplify gait can be used to address these challenges. One such technique is to 

reduce the dimensionality of gait by learning its “principal components” from real world data. 

Dimensionality reduction techniques like Principal Component Analysis (PCA) have been used to 

identify a variety of pathological gaits (Deluzio et al., 1997; Matsushima et al., 2017; Slijepcevic 

et al., 2017; Chen et al., 2020) and detect differences in kinetics with transfemoral amputation 

(Soares et al., 2016). Unlike standard PCA, nonlinear dimensionality reduction techniques like 

autoencoders are able to fit a nonlinear function to nonlinear data, though it is unclear which 

technique is suited for gait—which is a highly structured, periodic behavior. We have previously 

explored how PCA compares to an autoencoder for dimensionality reduction of hand kinematics, 

as it pertains to priorities for prosthetic control (Portnova-Fahreeva et al., 2020). In this study, we 

will present a similar analysis using lower limb kinematics collected during gait activities. We will 
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also compare performance between dimensionality reduction techniques on tasks relevant for 

prosthetic control - movement classification and individual identification. 

Movement classification is a broad, albeit powerful, way to simplify gait. For many lower limb 

prostheses, selecting the desired movement class, like flat ground walking and stair walking, is 

typically performed via user input, such as bouncing on the heel three times. Requiring manual 

input from the user side steps the challenge of selecting the desired movement class using only 

sensor inputs. Well performing dimensionality reduction techniques may simplify this challenge, 

enabling a classifier to automate selection of a movement class, and thus minimizing the control 

burden placed on the user. However, within a single movement class, gait may be highly variable 

from one individual to another, either due to pathology, amputation, or idiosyncrasy. These 

variations are assumed to be chosen to optimize over some set of parameters, like stability 

(Herssens et al., 2020) or metabolic cost (Summerside et al., 2018) and so are important to preserve 

during dimensionality reduction. 

Gait models and associated prosthesis control algorithms are also designed to be highly reliable. 

Because small, rare errors in the model or controller can have catastrophic consequences, simpler 

solutions are favored. Machine learning algorithms are capable of taking on large, high 

dimensional problems, but are prone to errors on unseen data and suffer from a lack of 

interpretability. However, significant interest in machine learning methods over the last decade 

have resulted in the creation of novel algorithms that offer unique potential for modeling gait. We 

have previously demonstrated the viability of using machine learning to predict joint kinematics 

for lower limb prosthesis control (Rai and Rombokas, 2019; Rai et al., 2020). In this study, we use 

autoencoders, which are a class of self-supervised networks with flexibility to handle virtually any 
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type of data. We will employ two autoencoders, one trained to reconstruct a single pose from gait 

(Pose-AE), and a recurrent autoencoder trained to reconstruct an entire movement (Move-AE). 

In this study, we seek to better understand how gait data can be simplified using dimensionality 

reduction. In the first part of this study, we compare the dimensionality reduction performance of 

PCA on poses and an autoencoder on poses taken from lower limb gait data. In the second part, 

we will compare performance on movement and individual classification tasks of PCA on poses, 

an autoencoder on poses, and a recurrent autoencoder on movements. We expect that autoencoders 

will outperform PCA in all cases, as demonstrated on hand kinematics in our prior work (Portnova-

Fahreeva et al., 2020). 

Materials and Methods 

Data Collection 

Gait data was collected in a previous study (Rai and Rombokas, 2019). Participants wore the Xsens 

Awinda suit (Xsens Technologies, Enschede, Netherlands), a wearable motion capture suit 

consisting of 17 body-worn sensors. Xsens Analyse software processes raw sensor data to provide 

joint kinematics in a 3D environment. All angles are in a 1 ×  3 Euler representation of the joint 

angle vector (𝑥, 𝑦, 𝑧) in degrees, calculated using the Euler sequence 𝑍𝑋𝑌 using the International 

Society of Biomechanics standard joint angle coordinate system (Wu et al., 2002). Recruitment 

and human subject protocols were performed in accordance with the University of Washington 

Institutional Review Board approval and each subject provided informed consent. De-identified 

data can be made available, via a data use agreement, upon request to the authors. 

From this dataset, we are examining 10 participants who performed flat ground walking and 14 

participants who performed stair ascent and descent. All participants in all groups were unique. 
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Flat ground data consists of participants walking at a self-selected speed down a long public 

corridor. Stair data consists of participants repeatedly descending a wide public 13-step staircase, 

turning around at the landing, and ascending the same staircase, also at a self-selected speed. 

We are also using the Virginia Tech Natural Motion Dataset (Geissinger and Asbeck, 2020), also 

collected using an Xsens system. It contains 40ℎ of natural, unscripted movement from 17 

participants, including 13 participants on a college campus and four participants working in a home 

improvement store. This dataset is representative of movement in daily life, as compared to 

constrained activities like steady state forward gait. 

Data Processing 

Xsens features a real-time engine that processes raw sensor data for each frame and algorithmically 

fits a human body model to estimate anthropomorphic joint and segment data. A post processing 

engine includes information from the past, present, and future to get an optimal estimate of the 

position and orientation of each segment. This “HD” processing raises the data quality by 

extracting more information from larger time windows and modeling for skin artifacts, etc. but 

also takes significantly longer time. We used HD processed data as training data for all three 

datasets. 

Each dataset was standardized according to the aggregated statistics of all three datasets. Three 

lower limb joints on each side of the body (hip, knee, ankle) were chosen for analysis. Each joint 

can be represented in frontal, transverse, and sagittal planes. Frontal and transverse plane motion 

was dropped for the knees, due to its propensity to reflect sensor noise over meaningful 

physiological movement. Because the natural motion dataset contains long periods of inactivity, 

such as sitting at a desk, it was filtered by pelvic velocity such that only moments punctuated by 
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movement of the pelvis would be included. The subjects of each dataset were then allocated into 

either train or test sets for analysis. For a comparison study of different techniques, achieving high 

performing, generalizable results are not our primary aim. Rather, we would like to highlight the 

attributes of how these techniques interact with the data without optimization. For this reason, we 

only consider the training set throughout the rest of this study (Table 1). 

TABLE 4-1. Details of the training dataset used in this study. Additional individuals were held out 

for a future testing dataset. Sampled duration reflects the combined length of the recordings from 

which samples were uniformly extracted. 

 

Data Analysis 

Data analysis was performed in Python 3.7 and the machine learning was implemented using 

Tensorflow 2.0 using a single GPU. Visualization of lower limb poses was achieved using an open-

source humanoid model in Unity (Unity Technologies, San Francisco, CA, United States). 

Principal Component Analysis 

PCA was performed for each dataset using the respective covariance matrix. PCA achieves 

dimensionality reduction by projecting the original data by the space defined by its principal 

components (PC), each of which are vectors aligned to maximally capture remaining variation in 

the data. A limited number of principal components often explain the majority of variation in the 

data, resulting in a lower dimensional space than the original data. This space will be referred to 

as the latent space. 
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Pose Autoencoder 

The autoencoder is one variant of the encoder-decoder architecture. Notably, encoder-decoder 

architectures have been used to power breakthroughs in natural language processing (Devlin et al., 

2018), but have been applied to computer vision (Hossain et al., 2019), time series analysis (Lim 

and Zohren, 2021), and human movement (Pettee et al., 2019). Pettee et al. used such techniques 

to produce manifolds of human dancing, from which samples of novel dance choreography may 

be decoded. Geissinger and Asbeck utilized similar principles to infer complete joint information 

from sparse sensor input on the natural motion dataset considered here (Geissinger and Asbeck, 

2020). 

Critically, the autoencoder contains a bottleneck through which it is forced to learn features of the 

data. The activations of the bottleneck layer represent the data in the latent space. Nonlinear 

activation functions in each layer can capture nonlinear relationships in the data, though often (but 

not always) at the cost of interpretability. 

As illustrated in Figure 4-1, inputs to Pose-AE were of size 1 ×  14 and consisted of hip, knee, 

and ankle joint angles, as described in the Data Processing section. For each time series of joint 

angles, inputs were sampled every 0.166𝑠. This 1 ×  14 vector is then passed through the encoder, 

after which it can be represented by a 1 ×  2 vector in the latent space. The decoder then attempts 

to reconstruct the original 1 ×  14 vector from the 1 ×  2 latent vector. The reconstruction error 

between the decoded 1 ×  14 vector and the input 1 ×  14 vector backpropagate through the 

network layers, forcing the network to learn how to best represent the 1 ×  14 input vector as a 

1 ×  2 latent vector. In other words, Pose-AE was trained to reconstruct 14 dimensional 

“snapshots” of lower limbs from only two dimensions. 
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Figure 4-1. Architecture for the Pose-AE network and Move-AE network. Both networks exhibit 

the classic autoencoder bottleneck shape. Whereas Pose-AE takes single poses as input, Move-AE 

makes use of stacked recurrent bidirectional LSTM layers to accept entire movement trajectories 

as input. Both networks embed each input as a single point in a two-dimensional latent space. 

Hyperparameter optimization was performed using a single random participant from the flat 

ground training dataset, with a training and validation split of 50/50. Tuning on a single subject 

was done as an alternative to k-fold hyperparameter tuning, which becomes combinatorially 

expensive with three activities. Considering the aim of the study is to compare techniques, not seek 

maximal performance, the authors decided to err on the side of underfitting, to ensure the most fair 

comparison across techniques. Hyperparameter choices were found to be insensitive to the chosen 

subject. We also tested several network widths and depths and found the best results with a three-

layer block for both the encoder and decoder (Figure 4-1). Batch normalization was implemented 

in the encoder to mitigate overfitting. Each configuration was evaluated by its reconstruction loss. 

Adaptive Moment Estimation was used to optimize learning during training. All Pose-AE models 
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were trained using full batch gradient descent for 8,000 iterations, which was heuristically 

determined to achieve model convergence before showing evidence of overfitting. 

Anecdotally, we discovered very little sensitivity of hyperparameters by subject. 

Movement Autoencoder 

Unlike Pose-AE, Move-AE reduces entire movements. The input to Move-AE was a one second 

window of all 14 joint kinematics, thus a sequence length of 60 timesteps, given the original 60𝐻𝑧 

recording rate. Though this time series data is higher dimensional, the signal exhibits both 

autocorrelation and periodicity, making the problem more tractable. Indeed, the fact remains that 

if one was asked to draw a canonical joint trajectory during flat ground gait of any length, only 

two pieces of information are required to adequately represent it: cadence and phase. Recurrent 

layers like the Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) are 

capable of extracting key information from time series data, and Bidirectional LSTMs (Schuster 

and Paliwal, 1997) have been employed here (Figure 4-1). A point in the latent space now 

represents one second of movement, rather than a snapshot of a pose. We chose one second of 

movement as a sufficient length of time to capture the context of a given pose. This is in contrast 

to the pose autoencoder and PCA, which would be unable to determine if one was walking forward 

or backward because they cannot learn the temporal dependencies within movements. 

Inputs to Move-AE consisted of the same 14 joints and planes as Pose-AE, but now extend to 

include 1 s of movement at 60𝐻𝑧. These inputs are similarly sampled every 0.166𝑠, regardless of 

gait phase, meaning there is overlapping data between multiple inputs. The input vector is now 

shaped 60 ×  14 (60 timesteps, 14 joints and planes). As before, the 60 ×  14 input vector passes 

through the encoder, after which it is represented as a 1 ×  2 latent vector. The decoder 



73 

 

reconstructs the entire 60 ×  14 input from this 1 ×  2 latent vector. Move-AE learns to represent 

entire movement trajectories of the lower limbs as a 1 ×  2 vector. 

Hyperparameter optimization was performed as previously described. The best performing 

architecture was found to have two bidirectional LSTM (biLSTM) layers for both the encoder and 

decoder and time distributed fully connected layers before and after. Making a fully connected 

layer “time distributed” allows it to accept sequential data by passing each timestep through 

individually. Time distributed fully connected layers of width 64 are used to generate the input 

sequence to the encoder biLSTM block, and generate the output sequence from the decoder 

biLSTM block. An intermediate fully connected layer was included after the encoder biLSTM 

block to facilitate dimensionality reduction to two dimensions in the latent layer. All models were 

trained for 8,000 iterations as previously described, except we used mini batch gradient descent 

with a batch size of 32 to decrease training time with larger inputs. 

Variance Metrics 

As described in our previous work (Portnova-Fahreeva et al., 2020), Variance Accounted For 

(VAF) is a measure of how well a model reconstructs an input from the latent space. A VAF of 

100% indicates the reconstructed output is identical to the input. VAF was evaluated for inputs 

reconstructed by PCA and autoencoder for each dataset. The equation is presented again here for 

clarity (Equation 1). 

𝑉𝐴𝐹(%) = (1 −
𝑣𝑎𝑟(𝑌−Ŷ)

𝑣𝑎𝑟(𝑌)
) ∗ 100 (1) 

We compare how variance is distributed between each dimension of the latent space. Principal 

components were ranked by variance explained and normalized to the sum of previous principal 
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components, thus converting the variance of each PC into a ratio of the total variance. The 

autoencoder was trained using various bottleneck widths. Similarly, the variance of activations in 

the bottleneck were normalized to the sum of all variances in the bottleneck layer. As per previous 

results (Portnova-Fahreeva et al., 2020), dimensional variance is expected to be more uniformly 

distributed in the autoencoder, which does not have the constraint of PCA’s orthonormality, but is 

capable of sharing variance across multiple latent dimensions. We also report the Root Mean 

Square Error (RMSE) between the original input and the reconstructed input. Note how RMSE 

differs from VAF, in that it directly measures error in reconstruction, whereas VAF measures what 

proportion of variance has been captured. 

Classification Tasks 

We compare the performance of all three dimensionality reduction methods on two classification 

tasks: movement classification and individual identification. For both tasks, we use a Support 

Vector Machine to classify within the latent space, performed using the scikit-learn (Pedregosa et 

al., 2011) implementation, in turn based on the formulation presented here (Chang and Lin, 2011). 

We use a radial basis function kernel to improve classification accuracy, given the low-

dimensional latent space. All parameters were fixed for all tasks and latent spaces. 

The movement classifier sought to determine whether a given point in the latent space represented 

flat ground walking or stairs navigation. The natural movement dataset was excluded due to the 

presence of both activities within the single dataset. The individual classifier sought to identify the 

individual from which a given input in the flat ground walking dataset originated. The error was 

calculated as the number of erroneously classified inputs divided by the total number of inputs. In 

both cases, the training dataset was used, and training was repeated 10 times for each model to 
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capture a better range of outcomes. The Kolmogorov-Smirnov (KS) test was employed to test if 

Pose-AE and Move-AE classification errors were drawn from different distributions. The KS test 

is well suited when the sets under comparison exhibit different variances. 

The classification results indicate how separable different movements and individuals are in the 

latent space. High separability will result in high classification accuracy, indicating that the 

dimensionality reduction technique has preserved high amount of information about the input. This 

test also allows a direct comparison to be made across techniques as diverse as PCA, autoencoders, 

and recurrent time-sensitive autoencoders. 

Results 

Dimensionality Reduction 

Pose-AE exhibited better pose reconstruction than PCA for flat ground and stair walking, but 

neither Pose-AE nor PCA was able to adequately reconstruct natural poses from a two-dimensional 

latent space (RMSE 0.63 vs 0.55, 0.80 vs 0.71, 1.05 vs 1.02) (Figure 4-2). For flat ground and 

stair walking, visual inspection of randomly chosen reconstructed poses by each method illustrate 

how even small improvements in RMSE may result in qualitatively improved pose reconstruction, 

especially in regards to sagittal plane. However, both methods perform poorly on the natural 

movement dataset. An RMSE > 1 indicates neither method is an improvement from simply 

reconstructing the mean pose. 
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Figure 4-2. (A) For each dataset, a randomly chosen sample was reconstructed using PCA and 

Pose-AE. Pose-AE produced qualitatively improved poses over PCA, though neither was able to 

reconstruct poses from natural movements dataset, instead electing to reconstruct a mean 

standing pose. (B) RMSE of joint angles was calculated for each dataset and method. Pose-AE 

shows a modest improvement over PCA. 

Similar to previous findings (Portnova-Fahreeva et al., 2020), Pose-AE captures greater variance 

in the data than PCA during dimensionality reduction, especially at low dimensions (Figure 4-3). 

Dimensional variance is more evenly distributed with Pose-AE than PCA. Though neither method 

was suited to reconstruct natural movement poses, Pose-AE retained an evenly distributed 

dimensional variance - indicating the capability to share dimensional variance across dimensions 

is inherent to autoencoders, regardless of dataset. 
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Figure 4-3. (A) For each dataset, a randomly chosen sample was reconstructed using PCA and 

Pose-AE. Pose-AE produced qualitatively improved poses over PCA, though neither was able to 

reconstruct poses from natural movements dataset, instead electing to reconstruct a mean standing 

pose. (B) RMSE of joint angles was calculated for each dataset and method. Pose-AE shows a 

modest improvement over PCA. 

Movement Separability 

Both autoencoder models produced latent spaces more suited for movement classification than 

PCA (error 21.8% PCA; 11.7 ±  3.4% Pose-AE; 3.3 ±  2.0% Move-AE). Move-AE exhibited 
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significantly different movement classification performance than Pose-AE (KS test, 𝑝 <

 0.0001). The latent spaces of each method’s best performing model are visualized in Figure 4-4. 

Unlike PCA, Pose-AE was sensitive to differences in flat ground walking and stair walking, thus 

embedding them with little overlap in the latent space. Though Move-AE was trained to compress 

its inputs by a much larger ratio (420: 1 for Move-AE vs 7: 1 for Pose-AE and PCA), it was able 

to embed whole movements in different regions of the latent space without explicit labels. We 

observed many variations in how the data were embedded in the latent space between each of the 

10 runs, especially for Move-AE, hence the increased variability in classification performance. 



79 

 

 

Figure 4-4. The three panes display the best performing latent space of their respective method. 

The latent space is a visualization of the activations of the two coding units in the bottleneck, or 

the first two principal components. The bottom-left pane shows the results of a movement classifier 

SVM trained on the latent spaces for each method. Error bars denote the varying performance from 

each of 10 runs for both autoencoders. The Move-AE latent space outperformed Pose-AE and PCA 

latent spaces on classifying between flat ground and stair walking. Recall that in the Move-AE 
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latent space, each point represents an entire movement. Flat ground walking is embedded in a 

cyclical structure that is well separated from stair walking. 

Individual Identification 

Similar to movement classification, Move-AE outperforms Pose-AE (KS test, 𝑝 <  0.0001), 

which in turn outperforms PCA on classification of individuals (error 62.0% PCA; 48.9 ±  2.6% 

Pose-AE; 28.9 ±  9.3% Move-AE). All three methods produce cyclical representations of gait 

within their latent spaces, but Move-AE also cleanly separates between many individual gaits, 

again without providing an explicit label (Figure 4-5). 
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Figure 4-5. The three panes display the best performing latent space of their respective method. 

The plotted data is colored by one of eight individual subjects. The classification error for the best 

performing model is included in the top-right of each plot. The bottom-left pane shows the results 

of an individual-specific classifier SVM trained on the latent spaces for each method. Note that 

the Move-AE latent space here is a well-performing outlier, though visual inspection of the other 

latent spaces confirms the general behavior of separately embedding individuals. 
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Discussion 

Understanding the high dimensionality of human gait remains a significant challenge but may 

yield an equally significant payoff. Creating a useful low dimensional representation of gait may 

serve to benefit both gait analysis and control of a device. Many techniques for dimensionality 

reduction exist, though PCA has remained popular for its ease of implementation and 

interpretability. However, our results indicate that autoencoders are better suited for reducing 

human movement on both performance measures of reconstruction and Variance Accounted For. 

Relationships with human gait features, and biological data in general, is generally nonlinear. The 

nonlinear activation function within neural networks enables them to capture such relationships, 

whereas PCA cannot. Nonlinear PCA methods like Kernel PCA may be better suited than standard 

PCA for such tasks (Mika et al., 1998). 

We employed three datasets of increasing complexity. Flat ground walking is the least complex, 

in that it only contains cyclic steady-state gait. Stair walking is more complex, as it contains 

upstairs and downstairs segments, and the transitions in between. Natural movements are most 

complex, in that they contain both cyclic movement and non-cyclic movements, with a variety of 

actions being performed. As data becomes more complex, the advantage of autoencoders over 

PCA is diminished (Figure 4-2). This may be due to the tradeoff between quantity and variety of 

movements within each dataset, thus the autoencoder is impoverished of sufficient examples of 

more complex movements from which to learn. Thus, care should be taken to carefully curate the 

activities within smaller datasets to achieve good dimensionality reduction. For instance, 

composition of the training data should be deliberately balanced to match the desired performance 

on each example. Movements that appear rarely will not affect the gradient sufficiently to achieve 
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adequate reconstruction, whereas movements that appear too often will dominate the gradient at 

the expense of others. 

Incorporating temporal context in the input to Move-AE dramatically enhances its capability to 

discriminate between movements and individual gait profiles. This is understandable considering 

how given a full second of gait, or about one full gait cycle, whatever differences that exist between 

individuals or movements will be present within every input. This capability is not afforded to 

standard PCA, which can only operate on n-dimensional vectors, rather than mxn-dimensional 

matrices. Interestingly, producing Move-AE also had some unintended consequences. For 

instance, while performing the individual identification task, it became apparent that half of subject 

7’s flat ground data was persistently embedded separate from all others in the latent space. Upon 

visual inspection of the data, it was apparent there was a minor sensor calibration or data 

processing error that was small enough to escape detection until that moment (offending data was 

removed and all trials repeated without it). 

We show that it is possible to reliably classify movements and some individuals using the Move-

AE architecture. However, without retraining the network on an equivalent dataset of actual 

prosthesis users, it is unknown how effective such a strategy may be in practice. Nevertheless, 

automating the selection of modes, or perhaps gait parameters, reduces the control burden on the 

users of mode-based prostheses, who must perform unnatural motions with their prosthesis to 

select the right mode for the terrain. We also show that Move-AE is sensitive to individual gaits. 

These variations, arising from the dynamic cost landscape of walking, are important to preserve. 

This also portends that such a network will be able to capture the dynamics of pathological or 

compensatory gait, embedding them within discrete latent structures. However, organization of 
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individuals in the latent space is not necessarily meaningful - sampling halfway between two 

individuals in the latent space may not produce a pose or movement that is halfway between them 

in Euclidean space. 

It should be noted that the aim of the classification task presented here is not intended to maximize 

classification performance of movements. There are other, better suited methods to achieve high 

classification accuracy, when labelled data is available. Rather, we designed the task to compare 

the relative capacity of each dimensionality reduction method to preserve valuable information 

like movement class or individual gait. Future work is needed to determine how such methods 

perform on unseen movements and individuals. Autoencoders in particular tend to “de-noise” 

unseen data such that it better resembles the data on which they were trained (Vincent et al., 2008). 

Although dimensionality reduction techniques as described here are powerful tools to simplify and 

analyze gait data, they are not sufficient to achieve prosthetic control alone. An autoencoder on 

movement data only serves to make sensor data more palatable—it does not provide its own 

inference about the data. For instance, the Move-AE architecture self-supervises to embed 

movements in the latent space, but does not classify without an additional classifier like an SVM. 

Our results show that such learned embeddings can automatically separate movements in the 

absence of any goal but reconstruction. Future work is needed to move the application of these 

tools from offline analysis to online integration with a controller. In a practical, online scenario, it 

is still unknown the quantity, variety, and richness of data required from an individual walker to 

train a personalized Move-AE architecture to satisfaction towards a given task, like movement 

classification. Indeed, this discussion focuses on facilitation of “high-level” prosthetic control, or 

mode selection, rather than “low-level” control over moment-to-moment commands to the actuator 
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which remains critically important. Furthermore, our results may still be replicable using raw 

inertial measurement unit data from a few strategically placed sensors on the lower limbs, rather 

than the full wearable motion capture system used here, in line with the work by (Geissinger and 

Asbeck, 2020). 

We have demonstrated that autoencoders can generate structured, interpretable latent spaces. This 

class of self-supervised networks are able to learn without hand-crafted labels, making them 

suitable to tackle complex problems like human movement. For instance, latent representations of 

gait form cyclic structures organized by phase, without human intervention to segment the gait 

data. Though not presented here, the authors found that distance to the center of the cyclic structure 

corresponds directly with cadence—faster cadences form tighter rings, slower cadences form 

larger ones. Contrary to the popular notion that neural networks are a black box, autoencoders can 

produce structured latent spaces, and thus could be incorporated into prosthetic controllers, either 

to simplify incoming sensor data, or to generate movement commands via sampling in the latent 

space. 

Interpretation of latent spaces is fast becoming an important topic of research as neural networks 

become more prevalent. It should be noted that sampling from these latent spaces may enable 

generation of individual-specific synthetic gait cycles. For instance, sampling points from a 

Gaussian distribution centered on the region where mid-swing is embedded in the latent space may 

produce multiple variations of a mid-swing trajectory in the decoder, as learned from training data. 

Further research is needed to determine how best to create a latent space that lends itself to 

sampling - as stated previously, distances within an autoencoder’s latent space are not necessarily 

meaningful. Sampling meaningful movements from the latent space is a non-trivial problem, in 



86 

 

part due to the difficulty in describing the latent space’s geometry, or manifold. Application of 

adversarial or variational autoencoders, which enforce additional distributional constraints on the 

latent space, may be key to building sample-suitable latent spaces. 

Useful representations of gait are a necessary ingredient for leveraging the power of machine 

learning for prosthetic control. This study shows how autoencoders may create such a 

representation purely from data, and crucially, are capable of handling temporal data. 
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Chapter 5 Learning to Operate a High-Dimensional Hand 

via a Low-Dimensional Controller 

Introduction 

The complexity of a human hand has been the topic of numerous research aimed at understanding 

its underlying control strategies. With 27 degrees of freedom (DOFs) controlled by 34 muscles, 

replacement of the hand, in cases of congenital or acquired amputation, can be a difficult task, 

oftentimes either oversimplified (e.g., one-dimensional hooks) or overcomplicated (e.g., high-

dimensional prosthetic hands) by prosthetic solutions. And while the intricacy of developed 

prosthetic hands available on the market grew over the last five decades (Belter et al., 2013), their 

control methods have fallen behind (Castellini, 2020). 

The conventional method of controlling dexterous prosthetic hands is through myoelectric 

interfaces, in which electromyographic (EMG) signals from existing muscles in the amputee’s 

residual limb are used to operate the device. However, lack of available clean muscle signals due 

to the difference in amputation levels oftentimes poses limitations on the controllers themselves 

(O'Neill et al., 1994). The issue arises from the fact that while there might be many DOFs in the 

device, which allows for an individuated movement, a limited number of EMG signals might be 

available on the residual limb to control these DOFs (Iqbal and Subramaniam, 2018). To account 

for the differences in the control and output dimensions, some have investigated the potential of 

using dimensionality-reduction (DR) methods. 

One of the most famous of all studies in which a DR technique was applied to complex hand 

kinematics during object grasping was the study by Santello et al. (Santello et al., 1998). There, 

the group used principal component analysis (PCA), a linear DR technique that creates a low 
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dimensional (latent) representation of the data by finding the directions in the original space that 

explain the most variance in the input data. In their study, they found that a two-dimensional latent 

space could account for approximately 80% of the variability of hand kinematics during grasping. 

Relying on this finding, several groups have developed, what they called, a postural controller in 

which a prosthetic hand with multiple DOFs could be operated through a 2D space (Magenes et 

al., 2008; Ciocarlie and Allen, 2009; Matrone et al., 2010; Matrone et al., 2012; Segil, 2013; Segil 

and Controzzi, 2014; Segil, 2015). 

One of the main limitations of PCA is its linearity, due to which it can only account for linear 

relationship in the input data. In our recent study, we explored the use of a nonlinear autoencoders 

(AEs) as a way to account for nonlinear relationships in hand kinematics data (Portnova-Fahreeva 

et al., 2020). In the study, we found that two latent dimensions of an AE could produce superior 

results to that of its linear counterpart, PCA, reconstructing over 90% of hand kinematics data. In 

addition, a nonlinear AE allowed to spread the variance more uniformly across its latent 

dimensions, which can consequently allow for a more uniform distribution of control across each 

DOF. 

With such superior characteristics, AEs may serve as a platform for more accurate lower-

dimensional prosthetic control, utilizing its reconstruction power and more equal spread of latent 

dimension variance. Based on these findings, our group developed a myoelectric interface that 

allowed for the low-dimensional (2D) control of a hand with 17 DOFs that is described further in 

this paper. In this paper, we refer to it as AE-based controller. 
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But is the dimensionality mismatch between device DOFs and control signals the only issue when 

it comes to myoelectric prosthetic control? Or is the problem at hand (figuratively and actually) 

more complex? 

We attempted to answer these questions with three studies where we trained the participants to 

perform various hand gestures on a virtual hand with 17 DOFs via a low-dimensional (2D) 

controller (Figure 5-1). The studies assessed the factors that contribute to the difficulty of a 

myoelectric hand control and design learning paradigms that address those factors. The explored 

factors were the difficulty of novel myoelectric interfaces and implicit and explicit training of the 

underlying control dimensionality. 

 

Figure 5-1. Experimental setup. (A) Study I had a long exploration window of 60𝑠 and implicit 

target-gesture training via a myoelectric interface. (B) Study II had a long exploration window of 
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60𝑠 and implicit target-gesture training via a mouse-based interface. (C) Study III incorporated 

explicit target-gesture training with a long exploration window of 60𝑠 and a mouse-based 

interface. 

Study I employed a myoelectric interface in which the participants controlled a virtual hand via a 

low-dimensional 2D controller with the use of their wrist muscles: flexion/extension and 

abduction/adduction. 

Study II employed a computer mouse to assess how much of the difficulty of learning the controller 

was from the difficulty of understanding to operate an EMG-based interface.  

Additionally, Studies I and II explored how having an additional session of target reaching in 2D 

affected the performance of controlling a virtual hand for both myoelectric and mouse-based 

interfaces. 

Lastly, Studies II and III explored how much of the difficulty in the learning arose from the user’s 

inability to establish the connection between the underlying 2D control and the actual 17D virtual 

hand. Like Study II, Study III employed a mouse-based interface, but included a modified target-

reaching session in 2D to establish an explicit connection for the user between the dimensionalities 

of the underlying control and the presented task. 

Methods 

Nonlinear Postural Controller 

Using the findings of our previous study (Portnova-Fahreeva et al., 2020), we developed a low-

dimensional controller, in which a 17-DOF virtual hand was operated using two control signals. 

In that study, we looked at the performance of an AE structure (Figure 5-2A) and determined its 
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superiority to the conventional linear PCA method when reducing the dimensionality of complex 

hand kinematics to two latent dimensions. 

 

Figure 5-2. (A) Structure of a regular autoencoder (AE) with three hidden layers. The middle 

layer represents the latent space. Curves over the neurons represent layers obtained with a 

nonlinear activation function. (B) Structure of a variational autoencoder (VAE) with three hidden 

layers and a regularizer term before the latent space. (C) Latent space derived by applying a 

variational autoencoder to hand kinematics data of an individual performing American Sign 

Language (ASL) gestures. 

AEs are artificial neural networks consisting of two components: an encoder that converts the 

inputs (𝑥) to a latent representation, followed by a decoder that transforms the latent representation 

into the outputs (𝑥̂), with the same dimensions as the inputs. They learn to efficiently encode the 
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input data variability within its latent space by minimizing the reconstruction error between the 

output and the input of the network (Equation 1). 

𝐿𝑜𝑠𝑠𝐴𝐸 = ‖𝑥 − 𝑥̂‖2 (1) 

Variational Autoencoder 

Despite their strong capabilities of reconstruction of biological data, standard AEs have a 

fundamental problem of creating a latent space whose topological characteristics inhibit easy and 

intuitive interpolation. Points that are not encoded onto the latent space often reconstruct to 

unrealistic data. In the case of the hand kinematic data from our previous study (Portnova-Fahreeva 

et al., 2020), this would result in the reconstruction of impossible gestures with joint angles outside 

of their possible ranges of motion. As a result, a latent space like this may not be the most optimal 

option for myoelectric prosthetic control. 

To counteract the fundamental problem of standard AEs for the development of our controller, we 

propose using a Variational Autoencoder (VAE) (Kingma and Welling, 2013). Differently from a 

standard AE, a regularizer term is added to the reconstruction error in the VAE cost function and 

aims to match the probability distributions of the latent space to that of a given distribution set 

prior to model training (Figure 5-2B). VAEs typically use the Kullback-Leibler Divergence (KLD) 

(Kullback and Leibler, 1951) to minimize the distance between the latent and the source 

distribution. The cost function that VAE optimizes is shown in Equation 2. 

𝐿𝑜𝑠𝑠𝑉𝐴𝐸 = ‖𝑥 − 𝑥̂‖2 + β ∗ 𝐾𝐿𝐷[𝑁(𝜇𝑥, 𝜎𝑥), 𝑁(0, 𝐼)] (2) 

By optimizing the two terms of the cost function, the resulted VAE latent space can locally 

maintain the similarity of nearby encodings via clustering yet is globally densely packed near the 
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latent space origin. This VAE structure may have an advantage of creating a usable 2D latent space 

for a postural control. In our study, the VAE was trained to regularize the latent space distribution 

𝑁(𝜇𝑥, 𝜎𝑥) into a normal Gaussian distribution (𝜇 = 0, 𝜎 = 1). If achieved, the space would exhibit 

a shape desired for center-out target-reaching tasks that we designed for the three studies. 

We performed hyperparameter tunning on the VAE network to determine the most optimal model 

for the given data. We used a separate validation dataset not included in the analysis performed in 

the original study, in which the participant performed American Sign Language (ASL) gestures. 

The hyperparameters under assessment were number of training epochs, nonlinear activation 

function between neural network layers, learning rate, and the weight on the regularizer term in 

the cost function, indicated as 𝛽 (Equation 2). The performance of each hyperparameter pair was 

evaluated in terms of reconstruction, assessed with a root-mean-square error (RMSE) between the 

input and the output of the network, and closeness of the latent space distribution to that of the 

normal Gaussian, calculated with the KLD. 

After hyperparameter tunning, the VAE network was applied to the data recorded from one the 

participants (P1) from Portnova-Fahreeva et al. and resulted in a 2D latent space with separable 

gesture classes and a shape that we aimed for the purpose of the center-out target-reaching task in 

the following studies (Figure 5-2C). 

Kinematic Decoding 

The resulted 2D latent space was consequently used for Studies I, II, and III to represent the lower-

dimensional control space. The decoder sub-network of the VAE model was utilized to reconstruct 

a point on a 2D control space (𝑥𝑙𝑎𝑡𝑒𝑛𝑡, 𝑦𝑙𝑎𝑡𝑒𝑛𝑡) to 17D virtual hand kinematics (𝐽ℎ𝑎𝑛𝑑), where 𝑤𝑖 
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and 𝑏𝑖 were weights and biases of the VAE decoder network layers (Equations 3, 4). Note that the 

decoder layers are the fourth and fifth of the overall VAE network (Figure 5-2B).  

𝑙𝑎𝑦𝑒𝑟4 = tanh ([𝑥𝑙𝑎𝑡𝑒𝑛𝑡 𝑦𝑙𝑎𝑡𝑒𝑛𝑡] ∗ 𝑤4 + 𝑏4) (3) 

𝐽ℎ𝑎𝑛𝑑 = 𝑙𝑎𝑦𝑒𝑟4 ∗ 𝑤5 + 𝑏5 (4) 

With this controller, a user was able to control a high-dimensional virtual hand by moving a point 

on a 2D plane. Different modalities of control input were applied in Studies I, II, and III – in 

Studies I, the participants moved the 2D controller via a myoelectric interface whereas the 

participants used a computer mouse interface in Studies II and III. 

Virtual Hand 

For all studies, we developed a virtual environment, in which we used a 3D computer model of a 

hand with 17 DOFs (Figure 5-3A). The 17 DOFs that were controlled were flexions/extensions of 

the three joints (metacarpal, proximal interphalangeal, distal interphalangeal) of the four fingers 

(pinky, ring, middle, and index) and flexion/extension of two joints of the thumb (metacarpal and 

interphalangeal) as well as the 3D rotation of its carpometacarpal joint. 
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Figure 5-3. (A) 17 degrees of a freedom (DOFs) of the virtual hand. (B) Surface electrode 

placement on the participant’s forearm in the myoelectric interface. Each electrode location is 

specific to one of the four wrist movements. (C) Experiment setup with the participant sitting 

approximately 1.5m away from the computer screen during one of the studies. (D) Eight American 

Sign Language (ASL) gestures that the participants were being trained to recreate during the 

studies. 

The plane that the users were operating on during the controller was defined by a square that 

enclosed all the points on the hand kinematics latent space defined in Figure 5-1C. As a result of 

that, locations on the 2D plane that were not defined as part of the encoded points could result in 

reconstructed postures of impossible kinematics. To prevent the hand from generating biologically 

unnatural gestures during the control, possible ranges of motion of the virtual hand joints were 

limited to the ranges of motions of an actual hand. 
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Myoelectric Interface 

In the myoelectric interface, the control was performed with muscle signals acquired from four 

surface EMG electrodes (Delsys Inc, MA, USA), placed on the participant’s right forearm at the 

location of four muscles for wrist movement (Figure 5-3B). Proper electrode placement for 

myoelectric control was verified in a separate calibration task described in the EMG Calibration 

section below. 

Raw EMG signals were recorded at a sampling frequency of 2𝑘𝐻𝑧. A series of standard pre-

processing techniques were applied to the raw recordings to extract the EMG envelope: band pass 

filter 30 − 450𝐻𝑧 to eliminate movement artifacts and high frequency noise, rectification, and 

low-pass filter at 3𝐻𝑧. 

EMG envelopes were mapped into hand kinematics as follows: vector summation algorithm of 

EMG, EMG-to-kinematics map, and hand kinematics decoding (Figure 5-4). We described the 

hand kinematics decoding in the earlier section of Kinematic Decoding. Vector summation and 

EMG-to-kinematics are described in the Vector Summation Algorithm of EMG and EMG-to-

Kinematics Mapping sections, respectively. Before that, we outline a calibration procedure for the 

recorded EMG signals that ensured participants had full coverage of the 2D control space. 
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Figure 5-4. Setup of a myoelectric interface. Wrist movements generated EMG signals, which, in 

turn, were combined using a Vector Summation Algorithm into a 2D vector (𝑋𝐸𝑀𝐺 , 𝑌𝐸𝑀𝐺). The 

vector, in turn, controlled the position of a 2D cursor on the latent space. Every point on the latent 

space (𝑋𝑘𝑖𝑛𝑒𝑚, 𝑌𝑘𝑖𝑛𝑒𝑚) reconstructed into full 17D hand kinematics via the decoder part of the 

variational autoencoder network. 

EMG Calibration 

Prior to Study I, each participant was asked to perform 60𝑠 of structured movements, in which 

they were asked to move their wrist up/down/right/left from the neutral position (hand resting 

upright on the lap). Each movement was performed seven times with the guidance of the study 

coordinator. The participants were asked to keep contractions at a comfortable level when 

performing the movements. They were also advised to perform each movement activating muscles 

as independently of the others as possible. 

In addition, we recorded 10𝑠 of resting EMG, in which the participants had their right hand placed 

on their lap in a comfortable position, with the muscles completely relaxed. The signals recorded 

during this resting phase were used to subtract from each muscle’s offsets that did not correspond 

to voluntary contractions of the muscles.  
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For each muscle 𝑖, the EMG signal was calibrated using the maximum value of the envelope 

recorded during rest, max(𝐸𝑀𝐺𝑟𝑒𝑠𝑡,𝑖), and during the structured movements, max(𝐸𝑀𝐺𝑠𝑡𝑟𝑢𝑐𝑡,𝑖) 

(Pistohl et al., 2013) (Equation 5). A scaling value, 𝑠𝑐𝑎𝑙𝑒𝑖, was also computed to ensure the 

participants had full coverage of the workspace without over-contracting their muscles. 

𝐸𝑀𝐺𝑐𝑎𝑙𝑖𝑏,𝑖 = 𝑠𝑐𝑎𝑙𝑒𝑖
𝐸𝑀𝐺𝑖−max(𝐸𝑀𝐺𝑟𝑒𝑠𝑡,𝑖)

max(𝐸𝑀𝐺𝑠𝑡𝑟𝑢𝑐𝑡,𝑖)−max (𝐸𝑀𝐺𝑟𝑒𝑠𝑡,𝑖)
 (5) 

Vector Summation Algorithm of EMG 

The calibrated EMG signals of the four wrist muscles were combined using a vector summation 

algorithm (VSA) to obtain a 2D control signal. The muscles that controlled wrist extension/flexion 

were mapped to move the 2D controller in the up/down direction (i.e., 𝑦 axis). Similarly, wrist 

abduction/adduction moved the controller in the right/left direction (i.e., 𝑥 axis). An offset was 

also added to both the 𝑥 and 𝑦 directions in cases when the calibrated rest position did not appear 

to match the center point of the workspace (Equations 6, 7). 

𝑥𝑐𝑢𝑟𝑠𝑜𝑟 = (𝐸𝑀𝐺𝑎𝑏𝑑,𝑐𝑎𝑙𝑖𝑏 − 𝐸𝑀𝐺𝑎𝑑𝑑,𝑐𝑎𝑙𝑖𝑏) − 𝑥𝑜𝑓𝑓𝑠𝑒𝑡 (6) 

𝑦𝑐𝑢𝑟𝑠𝑜𝑟 = (𝐸𝑀𝐺𝑒𝑥𝑡,𝑐𝑎𝑙𝑖𝑏 − 𝐸𝑀𝐺𝑓𝑙𝑒𝑥,𝑐𝑎𝑙𝑖𝑏) − 𝑦𝑜𝑓𝑓𝑠𝑒𝑡  (7) 

Matching the resting EMG position with the center of the latent space during calibration ensured 

that every trial started from the neutral position and every movement was performed in the center-

out reaching manner. In the resting position, the corresponding virtual hand position was with all 

five fingers completely open (neutral gesture). 

An additional low-pass filter of 1𝐻𝑧 was applied to the cursor position to reduce the signal-to-

noise ratio and stabilize the myoelectric controller.  
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EMG-to-Kinematics Mapping 

After mapping calibrated EMG signals to a 2D cursor position on the screen (𝑥𝑐𝑢𝑟𝑠𝑜𝑟, 𝑦𝑐𝑢𝑟𝑠𝑜𝑟), we 

then transformed into a 2D position on the latent space (𝑥𝑙𝑎𝑛𝑒𝑛𝑡 , 𝑦𝑙𝑎𝑡𝑒𝑛𝑡). It was done by scaling 

the cursor position using 𝑠𝑐𝑟𝑒𝑒𝑛𝑚𝑎𝑥, length of control plane in the local coordinate frame on the 

screen, and 𝑙𝑎𝑡𝑒𝑛𝑡𝑚𝑎𝑥, length of control plane in the latent space (Equations 8, 9). This was done 

to account for the difference in the screen and latent space dimensions. 

𝑥𝑙𝑎𝑡𝑒𝑛𝑡 = 𝑥𝑐𝑢𝑟𝑠𝑜𝑟 ∗
𝑙𝑎𝑡𝑒𝑛𝑡𝑚𝑎𝑥

𝑠𝑐𝑟𝑒𝑒𝑛𝑚𝑎𝑥
 (8) 

𝑦𝑙𝑎𝑡𝑒𝑛𝑡 = 𝑦𝑐𝑢𝑟𝑠𝑜𝑟 ∗
𝑙𝑎𝑡𝑒𝑛𝑡𝑚𝑎𝑥

𝑠𝑐𝑟𝑒𝑒𝑛𝑚𝑎𝑥
 (9) 

Mouse Interface 

In the mouse interface, the participants could operate the virtual hand by clicking and holding the 

left button of their computer mouse. Dragging the mouse across the screen, in turn, controlled the 

position of the 2D controller. Like the myoelectric interface, the mouse-based interface employed 

the same transformation between the screen and latent space reference frames (Equations 8, 9). 

White Gaussian noise (𝜇 = 0, 𝜎 = 0.02) was added to the position of the controller to recreate the 

intrinsic neuromuscular noise often found in myoelectric interfaces due to the nature of EMG 

acquisition. An additional low-pass filter of 1𝐻𝑧 was applied to the cursor position to recreate the 

pre-processing delay experienced in the previous myoelectric interface. 

Releasing the mouse button returned the control position back to the center of the 2D plane, which, 

in turn, corresponded to the neutral gesture in the virtual hand (all five fingers completely open). 
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Overall Protocol 

No physical constraints were imposed on the participants throughout the experiment as they were 

free to move their right arm while performing the experiment objectives. The only constrains were 

placed during data collection for EMG calibration purposes. More details can be found in the EMG 

Calibration section. 

During each study, the participants were seated in an upright position in front of a computer screen, 

at approximately 1.5𝑚 away at eye level (Figure 5-3C). Over the span of one-two hours, they 

engaged in different training tasks to learn to recreate gestures in a virtual 17D hand via the 

myoelectric or mouse interface. The gestures that they were required to recreate were eight ASL 

gestures, representing the numbers “zero”, “one”, “two”, “four”, “six”, “seven”, “eight”, and 

“nine” (Figure 5-3D). The training tasks differed based on the assigned group of each participant. 

There was a total of three groups: 

Absence of 2D training (17D Group) 

For the 17D group, the dimensionality of the visual feedback of the task did not match that of the 

underlying control interface. This means that the participants were always presented with two 

virtual hands – the hand to match (left, Figure 5-5A) and the hand to control (right, Figure 5-5A) 

– without any presentation of the underlying 2D control space. We referred to this as a 17D task 

(Figure 5-5A). More detailed information on the structure of the tasks can be found in the Study I 

section below. 
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Figure 5-5. (A) Setup of the 17D task with two virtual 17D hands present. The hand on the left is 

the target hand that the participants needed to match. The hand on the right is the controlled hand 

that the participants controlled either via a myoelectric or a mouse interface. (B) Setup of the 

2Dimplicit task where the participants performed simple 2D reaches – with the blue controlled cursor 

and the overlayed hand to the red target and its corresponding hand. (C) Setup of the 2Dexplicit task, 

in which the participants controlled the blue cursor on the 2D plane, which in turn controlled the 

17D of the hand on the right. The hand on the left was the target hand. The participants were 

required to learn which of the eight present red targets represent the 2D location of the target 

gesture. (D) Sequence of training and test session in each study. The only difference between the 

groups is in Train1 session, where the 17D group only experiences the 17D task while the 

2Dimplicit/explicit groups have the session split in half: 2Dimplicit/explicit task and 17D task. 

Implicit 2D Training (2Dimplicit Group) 

For this group, the dimensionality of the visual feedback of a training task matched that of the 

underlying control interface. Prior to being exposed to the 17D task, this group had an initial 

training where they could practice a series of target reaches in 2D, referred to as a 2Dimplicit task. 

The virtual hands that they matched and controlled were presented over the 2D target and the 

cursor, respectively (Figure 5-5B). Targets were presented one at a time. Both hands changed their 

kinematics in accordance with their location on the 2D plane. However, no explicit explanation 
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was given to the participants on how the target-reaching task related to the 17D task they were 

later presented with. 

Explicit 2D Training (2Dexplicit Group) 

Similar to the 2Dimplicit group, the 2Dexplicit group had an initial training on the 2D control space 

prior to the 17D task. We referred to this as a 2Dexplicit task. There, the participants were presented 

with eight red targets, which, in turn, represented 2D position of the eight ASL gestures on the 

latent space (Figure 5-5C). They were given visual feedback of the target (left, Figure 5-5C) and 

the controlled (right, Figure 5-5C) hands alongside the control plane rather than overlayed on the 

cursor position as in the 2Dimplicit task. Both hands changed their kinematics in accordance with 

their location on the 2D plane. In addition, the participants in this group were specifically 

instructed that cursor movements were directly related to the kinematics of the presented hand and, 

therefore, were explicitly instructed on the connection between the underlying dimensionality of 

the controller and the generated hand gestures. 

Each study was divided into four blocks: Train1, Test1, Train2, and Test2. Train1 session was 

split in two different parts of equal lengths for the 2Dimplicit and 2Dexplicit groups: 2Dimplicit/2Dexplicit 

task and 17D task (Figure 5-5D). 

Next, we outline the protocol details for each of the three studies.  

Study I 

The goal of Study I was 1) to verify the ability of the users to learn how to operate the lower- 

dimensional controller through a myoelectric interface and 2) to understand the effect of varying 

the dimensionality of visual feedback during training on learning the complex 17D gesture-
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matching task with an underlying 2D control (Figure 5-1A). It was designed after classical center-

out target-reaching studies, in which the participants were given a short exploration window to 

successfully complete a single trial (Pistohl et al., 2013; Segil, 2013; 2015; Dyson et al., 2018). 

For this study, we recruited 14 unimpaired right-handed individuals (four males, ten females, 

25.6 ± 5.9 years old). All participants were naïve to the myoelectric interface. Participant 

recruitment and data collection conformed with the University of Washington’s Institution Review 

Board (IRB). Informed written consent was obtained from each participant prior to the experiment. 

The participants were randomly split into two groups based on different learning paradigms (17D 

and 2Dimplcit). 

Training Sessions 

The main difference between the two participant groups was in Train1. The 2Dimplicit group 

practiced the 2Dimplicit task for the first half of Train1 and switched to the 17D task for the second 

half of the session (Figure 5-5D). The 17D group performed the 17D task for the entirety of the 

session. More information on the differences between the tasks can be found below. 

2Dimplicit Task 

During the 2Dimplicit task, the participants engaged in a center-out target-reaching task. They were 

presented with visual feedback of the cursor that they controlled and different targets that they 

needed to reach (Figure 5-5B). The targets and the cursor were represented with circles of the same 

size (approximately 0.25" radius). Target locations were placed at various distances from the center 

cursor, which effectively were the locations of the eight ASL gestures on the latent space. 
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Grey and white hands were placed over both the control cursor and the target, respectively. Both 

hands showed the reconstructed gestures related to the current position of the cursor and the target 

on the latent space using the VAE decoder described in the Kinematic Decoding section. The grey 

hand was slightly smaller in size than the white one for ease of differentiation once the two hands 

overlayed each other. 

The participants were given 60𝑠 to reach the targets. If the cursor was within the acceptable range 

from the target, both the hands and the target turned yellow for visual feedback. The acceptable 

range was equivalent to 0.5 units from the center of the target on the latent space (or 0.25" on the 

screen). The target was successfully reached if the cursor stayed within the acceptable range for 

0.75𝑠. Upon successful completion of each trial, the hands and the target turned green. 

At the end of each trial, successful or not, the participants heard a sound cue (“Relax your 

muscles”), asking them to relax their muscles, which, in turn, returned the cursor back to the neutral 

position in the center of the control plane. Once the participant was completely relaxed for 1.5𝑠, a 

new target was presented, and a sound cue (“Go”) was given to start the next reaching trial. 

During the 2Dimplicit task of Train1, ASL gestures were presented for a total of 64 trials (i.e., eight 

gestures repeated eight times) in a pseudo-random order. Gestures of the same type were never 

presented consequently one after another. The participants were given one minute to rest after 

every 32 trials. 

17D Task 

During the 17D task, the participants were presented with only two virtual hands (Figure 5-5A) 

and had no visual feedback about the location of the cursor and the target on the 2D latent space. 
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The hand on the left was the hand the participants needed to match. The hand on the right was the 

hand controlled with the wrist muscles through the myoelectric interface. A sound cue indicated 

the beginning of a new trial. Each trial always started from a neutral pose, which corresponded to 

the cursor placement in the center of the latent space and was generated by completely relaxing 

the muscles.  

At the beginning of a new trial, the matching hand would form a new gesture and the participants 

had 60𝑠 to match and hold it with the controlled hand within its acceptable range. The acceptable 

range in the 17D task was determined by the 2D control space (𝑖. 𝑒., if the 2D cursor related to the 

current hand gesture was close enough to the 2D target representing the gesture of the matching 

hand, then the controlled hand was within the acceptable range). Note that the acceptable range 

condition was the same as that of the 2Dimplicit task. The participants were required to maintain the 

gesture for 0.75𝑠 for the trial to be counted as successful. 

During the 17D task of Train1, the 2Dimplicit group got trained for a total of 64 trials (i.e., eight 

gestures repeated eight time) in a pseudo-random order. The 17D group experienced the 17D task 

for 128 trials total (i.e., eight ASL gestures repeated 16 times) during Train1. The participants in 

both groups were given one minute to rest after every 32 trials. 

Sound cues at the beginning (“Go”) and end (“Relax your muscles”) of each trial during the 17D 

task were the same as they were during the 2Dimplicit task. 

During Train2, both groups performed the 17D task, where the eight ASL gestures were repeated 

10 times in a pseudorandom order, for a total of 80 trials per session. One minute break was given 
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to the participants after 40 trials. The time-to-reach and time-to-hold were the same as in Train1 

with the same sound cues at the beginning and end of each trial. 

Test Sessions 

The goal of the test sessions was to determine whether the participants were able to transfer the 

skills acquired during training to conditions where they needed to recreate slightly different 

gestures. During both Test1 and Test2, the participants were asked to match the hand gesture that 

they saw on the right, similar to the 17D task during training.  

After hearing a sound cue, they had 6𝑠 to successfully match the gesture on the left with the hand 

on the right, with a 0. 75𝑠 of holding time within the acceptable range. The gestures that they were 

required to match during test sessions were slight modifications of the gestures they got trained 

on. They were created by reconstructing a point that was 75% along the path to the gesture on the 

latent space (Figure 5-6). Each new trial started and ended with the same sound cues as during 

training. 
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Figure 5-6. Sampling of modified gestures from the latent space. Modified gestures were sampled 

from 75% of the nominal path between the neutral position and the complete gesture on the latent 

space. 

Study II 

To assess how much of the challenge of learning the low-dimensional controller was due to the 

difficulty of operating the myoelectric interface, we designed Study II, in which the cursor position 

or the virtual hand gesture were controlled solely by the movement of a computer mouse (Figure 

5-1B). We hypothesized that when using a computer mouse, one would not have to focus on 

learning to operate their wrist muscle in a joystick manner, consequently unlearning the natural 
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ways of using forearm muscles to generate the ASL gestures, and instead would concentrate on 

learning to operate the virtual hand. 

A new group of 22 unimpaired right-handed participants was recruited (12 males, 10 females, 

27.4 ± 5.8 years old). All of them were naïve to the controller. As with Study I, the participants 

were split into two training groups: 2Dimplicit (11 participants) and 17D (11 participants). The rest 

of the protocol was as in Study I. 

During both training and test sessions, the participants did not have any visual feedback of the 

location of their mouse cursor. This was done in order to closely mimic the conditions of the 

myoelectric interface in Study I. Upon completion of every trial (during training and test sessions), 

the participants were asked to return to neutral position (i.e., the center of the 2D control space) by 

releasing the mouse button, which mimicked muscle relaxation during Study I. 

Study III 

To explore the importance of explicitly stating the underlying dimensionality of the controller and 

its connection to the presented high-dimensional task, we recruited a total of seven participants 

(27.6 ± 6.9 years old), who were naïve to the controller (Figure 5-1C). The training group that 

they were assigned to was 2Dexplicit and operated the controller via the mouse interface. For analysis 

purposes, their results were compared to 11 participants from the 2Dimplicit group in Study II. 

During their 2Dexplicit task in Train1, they always observed both hands (the matching and the 

controlled ones). There was a 2D plane presented between the two virtual hands. The plane was a 

visual representation of the underlying control space. On the plane, there were eight red targets 

presented at all times, which corresponded to the 2D position of the eight gestures the participants 
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were required to learn to recreate during training. A blue cursor corresponded to the 2D location 

of their controller, which, in turn, mapped into the 17D hand that the participants observed on the 

right (Figure 5-5C). 

After hearing a sound cue, the hand on the left showed a new gesture, and the participants had 60𝑠 

to determine which of the eight red targets produced the desired gesture in the hand on the right. 

Once the two hands were within an acceptable range, they both turned yellow. Holding the 

controller within the acceptable range (same as in Studies I and II) for 0.75𝑠 led to a successful 

gesture-matching, turning both hands green.  

Neither the blue cursor nor the red targets provided any visual feedback on the correctness of the 

gesture-matching. Only the target and the controlled hands provided visual feedback by turning 

yellow (within the acceptable range) or green (correct) through the session. This, in turn, forced 

the participants to pay attention to the hand gestures as well as cursor/target location on the 2D 

plane, thus creating a more explicit connection between the 2D planar task and the 17D virtual 

hand gesture. 

The rest of the training and test sessions was as in Study II. 

Outcome Measures 

Performance between and within the three groups in each study was assessed with the following 

metrics: 

Success Rate 

Success rate measured the percentage of successful trials performed in a single session.  
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Adjusted Reach Time (ART) 

Adjusted reach time was defined as the time taken to complete a hand gesture match (in the 17D 

task) or target reach (in the 2D task). For every missed trial, the ART of the trial was set to the 

timeout value (60𝑠). ART was only calculated for training trials. 

Adjusted Path Efficiency (APE) 

Adjusted path efficiency was a measure of straightness of the path taken to either reach the 2D 

target or match the 17D gesture. It was calculated using Equation 10, where 𝑑𝑡𝑟𝑎𝑣𝑒𝑙  was the length 

of the path covered by the cursor to reach the target/gesture and 𝑑𝑛𝑜𝑚𝑖𝑛𝑎𝑙 was the nominal distance 

between the central and the final target/gesture. 

𝑃𝐸 =
𝑑𝑖𝑑𝑒𝑎𝑙

𝑑𝑡𝑟𝑎𝑣𝑒𝑙
 ∗ 100% (10) 

Similar to ART, for every missed trial, the APE of the trial was set to the lowest possible value of 

0%. 

Learning Rate 

Learning rate was calculated by fitting an exponential function (Equation 11) to the curve of ART 

over all training repetitions, where the participants performed 17D gesture-matching tasks. There, 

𝑦 was the average ART value per repetition, 𝑥 was the repetition number, and 𝑏 was the measure 

of the learning rate. 

𝑦 = 𝑎 ∗ 𝑒−𝑏∗𝑥 + 𝑐 (11) 

Statistical Analysis 

For statistical analysis, we used MATLAB Statistics Toolbox functions (MathWorks, Natick, MA, 

USA). Anderson-Darling Test was used to determine the normality of the data (Anderson and 
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Darling, 1954). Since all data were determined to be non-Gaussian, we used non-parametric tests 

for statistical analysis. 

We evaluated differences within and across groups were tested on the following metrics: 

• average success rates per training or test sessions 

• average ART for the first or last repetition of the 2Dimplicit/explicit or 17D tasks 

• average APE for the first or last repetition of the 2Dimplicit/explicit or 17D tasks 

Differences across the groups were determined by applying Wilcoxon Rank Sum Test while  

differences within the groups were tested using Wilcoxon Sign Rank Test (Wilcoxon, 1945). In all 

our analyses, the threshold for significance was set to 0.05. 

Results 

Study I 

Success Rate 

The 2Dimplicit group completed the 2Dimplicit task with a 100% success rate (Figure 5-7A). When 

switching to the gesture-matching task in Train1, its success rate decreased significantly to an 

average of 86.8%. Its average success rate during Train2 was 91.8% - although not a significant 

improvement from the first training session (𝑝 = 0.16). The success rates during Test1 and Test2 

for the group were an average of 33.6% and 42.9%, respectively. 
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Figure 5-7. Outcome measures of Study I. (A) Average success rate for each session across groups. 

(B, left) Average adjusted reach time (ART) for every repetition across all training sessions for 

each group. (B, right) Average ART for the first 8 repetitions of the 17D task for each group. (C, 

left) Average adjusted path efficiency (APE) for every repetition across all training sessions for 

each group. (C, right) Average APE for the first 8 repetitions of the 17D task for each group. 

Green colors represent different training/test sessions of the 2Dimplicit group. Magenta colors 

represent different training/test sessions of the 17D group. Error bars represent standard errors. 

Black asterisks (*) signify statistical differences between the groups. Magenta asterisks (*) 

represent statistical differences within the 17D group. Green asterisks (*) represent statistical 

differences within the 2Dimplicit group. 

The 17D group had a significant improvement between Train1 and Train2, increasing its success 

rate from an average of 78.0% to 90.4%, respectively. The success rates during Test1 and Test2 

were both 33.6%. 

No statistical difference was observed across the two groups. 

Adjusted Reach Time 

The 2Dimplicit group significantly improved its ART during the 2D task – from an average of 8.6𝑠 

to 5.7𝑠 (Figure 5-7B, left). It also had a significant improvement in reach time for the 17D task – 

ART decreased from an average of 28.4𝑠 to an average of 18.6𝑠 by the end of training. 

The 17D group also significantly decreased its ART from an average of 39.7𝑠 to an average of 

21.6𝑠. 

When both groups just completed the first repetition of the 17D task (Figure 5-7B, right), we found 

a significant difference (39.7𝑠 for the 17D group and 28.4𝑠 for the 2Dimplicit group). At the end of 

the first eight repetition of the 17D task, however, there was no significant difference between the 

two groups anymore. 
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Fitting an exponential curve to the reaching time values, described in Equation 11, we obtain the 

learning rate of 0.53 (𝑅𝑎𝑑𝑗
2 = 0.85) for the 2D task. The learning rate decreases to 0.22 (𝑅𝑎𝑑𝑗

2 =

0.60) when the 2Dexplicit group switched to the 17D task. For the 17D group, the learning rate for 

the 17D task is 0.13 (𝑅𝑎𝑑𝑗
2 = 0.83). 

Adjusted Path Efficiency 

The 2Dimplicit group increases its APE from 26.5% to 33.5% during the 2D task (Figure 5-7C, 

left). The improvement is not statistically significant (𝑝 = 0.11). When switching to the 17D, the 

group completes the first repetition of target with an average APE of 10.5% and increases the APE 

to an average of 16.0% by the end of the training. Once again, the increase is not statistically 

significant (𝑝 = 0.08). 

On the contrary, the 17D group was able to significantly increase its APE over the course of the 

17D task training – from an average of 4.4% to 12.9%. 

When comparing what APE values both groups start the17D tasks for the first time, the values are 

10.5% and 4.4% for the 2Dimplicit and the 17D groups, respectively (Figure 5-7C, right). The 

difference between the two is statistically significant although it diminishes by the time the first 

eight repetitions of the 17D task are completed (𝑝 = 0.1). 

Study II 

Success Rate 

The 2Dimplicit group completed the 2D task with high success rate of 99.3% (Figure 5-8A). When 

switching to the 17D task in Train1, the success rate significantly decreased to 86.6%. The success 

rate for Train2 was 91.3% - a statistically significant improvement from Train1. During test 



115 

 

sessions, the group successfully completed 46.1% of Test1 and 54.1% of Test2. The difference 

between the test session is statistically significant. 
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Figure 5-8. Outcome measures of Study II. (A) Average success rate for each session across 

groups. (B, left) Average adjusted reach time (ART) for every repetition across all training 

sessions for each group. (B, right) Average ART for the first 8 repetitions of the 17D task for each 

group. (C, left) Average adjusted path efficiency (APE) for every repetition across all training 

sessions for each group. (C, right) Average adjusted APE for the first 8 repetitions of the 17D task 

for each group. Green colors represent different training/test sessions of the 2Dimplicit group. 

Magenta colors represent different training/test sessions of the 17D group. Error bars represent 

standard errors. Magenta asterisks (*) represent statistical differences within the 17D group. Green 

asterisks (*) represent statistical differences within the 2Dimplicit group. 

The 17D group successfully completed 88% of Train1 and 91.5% of Train2. The difference 

between the training sessions is statistically significant. Both Test1 and Test2 were successfully 

completed at a rate of 43.6% and 48.0%, respectively, although the improvement is not 

statistically significant. 

Adjusted Reach Time 

The participants in the 2Dimplicit group were able to significantly improve their average ART from 

the first to the last repetition in the 2Dimplicit task (from 5.3𝑠 to 2.9𝑠, respectively) (Figure 5-8B, 

left). The group was able to significantly improve its ART for the 17D task as well – from 23. 6𝑠 

for the first repetition and 15.1𝑠 for the last repetition during training. 

Similarly, the 17D group had a significant improvement in its average ART value – from 30. 7𝑠 to 

16.0𝑠.  

The difference between the two groups at the end of the training sessions was not statistically 

significant (𝑝 = 0.79). When considering the initial repetition of the 17D task for both groups, 

there was no significant difference between their values (𝑝 = 0.29) (Figure 5-8B, right). 
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The 2Dimplicit group had a learning rate of 1.7 (𝑅𝑎𝑑𝑗
2 = 0.62) for the 2D task. For the 17D task, the 

learning rate was 0.15 (𝑅𝑎𝑑𝑗
2 = 0.80). The17D group exhibited a learning rate of 0.20 (𝑅𝑎𝑑𝑗

2 =

0.88) during training. 

Adjusted Path Efficiency 

The increase of the APE values for the 2Dimplicit group during the 2Dimplicit task was not statistically 

significant (𝑝 = 0.37): from 74.3% to 82.7% (Figure 5-8C, left). Similarly, the increase in the 

APE from 30.7% to 40.0% during the 17D task was not statistically significant (𝑝 = 0.10). 

As in Study I, only the 17D group significantly increased its average APE value over the course 

of the training repetitions – from 20.7% to 37.5%. 

Comparing the first eight repetitions of the gesture-matching task across both groups did not reveal 

any statistical significance (Figure 5-8C, right). 

Study III 

Success Rate 

The 2Dexplicit group exhibited high average success rates during training sessions (100%, 99.1%, 

and 99.8% for Train1 (2Dexplicit task), Train1 (17D task), and Train2, respectively) (Figure 5-9A). 

The average success rates in the 17D training sessions of the 2Dexplicit group were significantly 

higher than those of the 2Dimplicit group. Average success rate during Test2 was significantly higher 

for 2Dexplicit group (77.5%) than the 2Dimplicit one (54.1%). The difference between the groups 

during Test1 was not statistically significant. 
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Figure 5-9. Outcome measures of Study III compared to Study II (2Dimplicit group only). (A) 

Average success rate for each session across groups. (B) Average adjusted reach time (ART) for 

every repetition across all training sessions for each group. (C) Average adjusted path efficiency 
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(APE) for every repetition across all training sessions for each group. Green lines represent 

different training/test sessions of the 2Dimplicit group. Blue lines represent different training/test 

sessions of the 2Dexplicit group. Blue asterisks (*) represent statistical significance within the 

2Dexplicit group. Black double asterisks (**) represent statistical significance between the 2Dexplicit 

and 2Dimplicit groups. 

Adjusted Reach Time 

The participants in the 2Dexplicit group significantly decreased their average ART during the 

2Dexplicit task – from 9.7𝑠 to 4.4𝑠 (Figure 5-9B). Once the visual presentation of the targets, cursor, 

and the 2D plane was switched off, the participants completed the first repetition of the 17D task 

within 12.0𝑠 on average and were able to significantly reduce the ART to at an average of 6.4𝑠 by 

the end of the training. 

During the 2Dimplicit/explicit tasks alone, the 2Dimplicit group reached targets significantly faster than 

the 2Dexplicit group at the beginning and the end of the 2D task trials. 

However, the 2Dexplicit group began the 17D task at a significantly lower ART value (12.0𝑠) than 

the 2Dimplicit group (23.7𝑠). At the end of the training, the 2Dexplicit group was also successfully 

matching gestures at a significantly faster ART (6.4𝑠) than the 2Dimplicit group (15.1𝑠). 

The 2Dexplicit group exhibited a learning rate of 0.54 (𝑅𝑎𝑑𝑗
2 = 0.95) during the 2Dexplicit task, which 

is significantly lower than that of the 2Dimplicit group during the 2Dimplicit task. Its learning rate for 

the entirety of the 17D task was also lower at the value of 0.18 (𝑅𝑎𝑑𝑗
2 = 0.63) than that of the 

2Dimplicit group. 

Adjusted Path Efficiency 

The 2Dexplicit group significantly improved its APE during both the 2Dexplicit and the 17D tasks 

(Figure 5-9C). During the 2Dexplicit task, the improvement is from an average of 38.1% to 62.9%. 
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During the 17D task, the improvement is from an average of 43.9% to 67.9%. In addition, the 

final APE of the 2Dexplicit group at the end of the 17D task (67.9%) was similar to the level that 

the group was able to achieve by the end of the 2Dexplicit task (62.9%). 

When considering the 2Dexplicit/implicit tasks, the 2Dexcplit group had consistently lower APE values 

than the 2Dimplicit group. When switching to the 17D task, the difference of average APE values 

between the 2Dexplicit and 2Dimplicit groups was not statistically significant (𝑝 = 0.13). However, by 

the end of the training, the 2Dexplicit group was able to perform significantly more efficient reaches 

(67.9%) than the 2Dimplicit group (40.0%). 

Discussion 

Through the series of the developed studies, we explored various aspects that might affect the 

user’s ability to learn the low-dimensional controller. Here, we highlighted the challenges of 

operating the controller via a myoelectric interface and determined the importance of providing 

the user with an explicit connection between the underlying low-dimensional control space and 

the presented high-dimensional task. In addition, we discuss the potential differences in learning 

linear and nonlinear controllers and compare the user performances obtained during our studies 

with other low-dimensional (PCA-based) controllers and assess the potential reasons for the 

differences in the results. Lastly, we discuss limitations of the developed studies and assess the 

potential implications of our findings for prosthetic users. 

Difficulty of Myoelectric Control 

The notion that the users can learn any mappings that you provide them (intuitive or not) has been 

supported by multiple studies (Liu and Scheidt, 2008; Radhakrishnan et al., 2008; Ison and 

Artemiadis, 2015; Zhou et al., 2019; Dyson et al., 2020). Oftentimes, in cases when a developed 
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controller is operated via a novel (e.g., myoelectric) interface, we forget to differentiate between 

the processes of learning the interface and learning the controller. Nonetheless, when both the 

controller (i.e., the map) and the interface are novel, as it was in our case, the user is required to 

learn both, oftentimes, simultaneously. 

One of the factors that we aimed to explore in this paper was understanding how much of the 

difficulty of learning the low-dimensional controller was due to the challenges of operating a 

myoelectric interface itself. The main difficulty that the participants in Study I may have 

experienced with the myoelectric interface could be the mismatch between the natural way of using 

forearm muscles to create gestures and the new way they were required to learn to use their wrist 

to operate the virtual hand. The new way was evidently unnatural and required an additional 

learning on top of controller learning  

The main significant difference between Studies I and II was that the participants in both groups 

(17D and 2Dimplicit) were able to reach targets or match gestures with a mouse interface in a 

significantly more efficient way (higher APE) using the mouse interface than the myoelectric 

interface. This observation appears to be self-evident – people perform straighter reaches by 

moving the mouse with their hand rather than trying to independently activate their muscles in an 

unnatural way. However, no significant differences were observed between the final ART values 

across both groups in Studies I and II, suggesting that the myoelectric interface was learnable and 

was not the main reason for poor performances across the Study I participants. When observing 

the learning rates across Studies I and II, we could see that they were comparable, suggesting that 

even when the operating interface was familiar to the user, a great factor of learning inhibition was 

due to the difficulty of the novel controller itself. 
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Effects of Learning Paradigms 

Having identified the difficulty that the participants had in learning the low-dimensional controller, 

we explored how different learning paradigms inhibited or aided learning of the controller. 

Let us first consider the 2D training provided to the 2Dimplicit group. There, the relationship between 

the underlying dimensionality of the controller and the gesture-matching task that followed the 

target reaching was not explicitly made. Presentations of a single target at a time along with smaller 

avatars of the controlled and matching hands, most likely, encouraged the participants to focus on 

the target location rather than the generated gesture. This observation is supported by the fact that 

the 2Dimplicit group did not outperform the 17D group during gesture-matching at the end of Train2. 

An interesting observation can be made when looking at the results of Study I: when operating a 

myoelectric interface, participants that completed eight repetitions of 2Dimplicit task, began the 

gesture-matching task at a significantly faster ART than the 17D group completing their first 

repetition of the 17D task. One may think that the initial training in 2D helped the participants 

perform their gesture matches faster. However, it is important to understand that the 2Dimplicit task 

did not only provide training on the controller but on the myoelectric interface as well.  

When adjusting for the eight repetitions of either the 17D or 2Dimplicit task, both groups completed 

gesture matching at comparable ARTs. This points to the fact that the initial training in 2D worked 

as well as (but not better) as having the initial training on the 17D task. The same effects are 

observed when looking at APE during Study I – the 2Dimplicit group had a significant superiority 

over the 17D group during its first repetition of the 17D task. But when adjusted for the training 

time on the myoelectric interface, the superiority of the 2Dimplicit group disappeared and the 

participants across both groups performed equally well. 
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When looking at the results of Study II, we do not observe a significant difference between the 

first repetitions of the 17D task in neither of the groups (in terms of both ART and APE). It is 

important to consider that in Study II, the participants controlled the interface using a computer 

mouse – something that they were assumed to have full proficiency of as the mouse moved as it 

would in daily activities when operating a computer. This strengthens the point that the 2Dimplicit 

training mostly affected the improvement in the myoelectric control proficiency for the 

participants in Study I who were naïve to the interface. 

When considering the learning rates during the 2Dimplicit task between Studies I and II, we can see 

that, once operating a more familiar mouse interface (Study II), the participants exhibit a 

significantly faster learning rate (𝐿𝑅 = 2.1) than when doing so with an unfamiliar myoelectric 

interface (Study I, 𝐿𝑅 = 0.53). This strongly suggests that the slower learning rate was attributed 

to the difficulty due to the unfamiliarity of the myoelectric interface. 

When designing Study III, we hypothesized that learning that took place during the 2D task did 

not provide the 2Dimplicit group with an explicit understanding of the underlying dimensionality of 

the control space. Instead, it only trained them to perform abstract (as they appeared to the 

participants) movements on a 2D plane. As a result of this observation, what we wanted to 

emphasize in the following study was as follows: locations on a 2D plane had a direct relationship 

to the eight gestures presented in the matching hand and to perform proper gesture matching, one 

must reach the required target in 2D, which would then be reconstructed to full hand kinematics. 

We hypothesized that once this relationship was understood, it would become a pure memorization 

problem of the gesture locations on the 2D plane. 
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The presentation of all eight targets without error feedback directly on the targets themselves 

forced the participants to pay attention not only to the target locations but at the desired hand 

gestures. In addition, in Study III, the participants clearly observed how their movement on the 2D 

plane related to the generated gestures as the hands were now more visually accentuated and 

significantly larger than those presented in Studies I and II. 

The results of Study III suggest that establishing an explicit connection between the underlying 

dimensionality of the controller and the presented hand gestures is essential when training a low-

dimensional controller. Without a clear understanding that what they truly did was reach targets 

on a 2D plane, the participants were unable to achieve high enough proficiency to perform fast 

gesture matches. 

Linear vs Nonlinear Postural Controllers 

We hypothesize that the explicit understanding of the controller-task relationship would be 

essential when teaching users novel controllers developed using nonlinear DR methods; however, 

such understanding might not be relevant in cases where PCA (a linear method) has been used. 

The reason for that would be that the latent space created by PCA follows the superposition 

principle. This means that new gestures could be superimposed from other gestures on the 2D 

plane. A good example of that would be if one dimension of the latent space solely controls the 

opening and closing of the thumb, while the other one flexes and extends the other four fingers, 

gestures generated within the space would be linear combinations of these two dimensions.  

The superposition principle does not hold in latent spaces generated by nonlinear systems. And 

while gestures that are close to each other kinematically, appear closer to each other on the latent 

space encoded by the AE (Portnova-Fahreeva et al., 2020), nonlinear maps might be harder for 
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users to interpolate from. Nonetheless, the differences in learning linear and nonlinear maps have 

not been explored in this paper, but we suggest that this might be an interesting route to investigate 

in future experiments. 

One of the major outcomes of the studies described in this paper was the application of nonlinear 

DR methods, such as AEs, for the development of a nonlinear postural controller, in which 

complex kinematics of a virtual hand with 17DOFs were extracted from the position on the 2D 

plane. In the past, linear controllers have been developed, in which the dimensionality of hand 

kinematics during grasping was reduced using PCA (Magenes et al., 2008; Matrone et al., 2010; 

Matrone et al., 2012; Belter et al., 2013; Segil, 2013; Segil and Controzzi, 2014; Segil, 2015). 

In the studies where linear postural controller was validated with a myoelectric interface on actual 

participants (Matrone et al., 2012; Segil and Controzzi, 2014; Segil, 2015), the average movement 

times (time to successfully reach but not hold the hand in a correct grasp) were between 3𝑠 and 

5𝑠. The results are comparable to those produced in our Study III; however, differ in the interface 

used to perform the movement. When compared to the results of our myoelectric interface study 

with longer exploration windows (Study I), movement times using the PCA-based controller were 

significantly lower than those using the AE-based controller.  

Explanations for the discrepancies in the results could be due to the major differences in the 

controller schemes and protocols. First of all, the dimensionality of the output system with a PCA-

based controller was 5 − 6 DOFs, in contrast to the 17 DOFs controlled in this paper, resulting in 

a more intricate but, most likely, complex control. In addition, in one of the aforementioned studies 

(Matrone et al., 2012), the participants were only required to learn to create three grasps in 
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comparison to learning eight unique ASL gestures in our studies. Another study (Segil, 2015) 

implemented potential fields that “snapped” the virtual hand in correct postures when the control 

cursor was close enough to the target posture on the 2D plane. That allowed for a simpler control 

and alleviated the challenges experienced during myoelectric control due to the noisy nature of 

EMG.  

By evaluating the results of the studies in which users operated PCA-based controllers, we can 

observe that the users were able to achieve high performance in comparison to those achieved in 

our studies using a myoelectric interface. However, following the results of Study III, in which we 

discover the most appropriate form of training paradigm for the AE-based controller, we 

hypothesize that high performance could also be achieved with the nonlinear postural controller, 

assuming that the users are able to learn to operate an EMG interface as well as they operated a 

mouse interface. As a result, we suggest that nonlinear postural controllers could still be a viable 

option for complex prosthetic control allowing for more precise dimensionality-reduction of 

intricate hand kinematics than what could be achieved by PCA. 

Limitations 

One of the major limitations of our studies was the design of the test sessions with very short 

window to perform reaches. Considering that the average ART during training sessions in Studies 

I and II was significantly higher than the time allowed for a successful reach during test, the 

participants were set up for failure, which explains the low success rates during test. In Study III, 

the average ART at the end of the training sessions is similar to the time allowed for a successful 

gesture-matching in test, which explains a significantly higher success rates during test sessions 

for the 2Dexplicit group. 
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Another limitation was a relatively small sample size for some of the studies, reducing the 

statistical power of the experiments. Considering that data collection took place during the times 

when the entire world was going to the pandemic, participant recruitment provided to be difficult. 

Studies that could be conducted remotely yielded a higher number of participants. 

Applicability to the Prosthetic Users 

When designing these studies, the end-user group that we considered were upper-limb amputees 

that utilize prosthetic hands in their daily living. Although the studies were performed on 

unimpaired individuals, they highlighted the possibility of using nonlinear controllers for the 

purpose of manipulating a myoelectric hand prosthesis. The myoelectric interface that we designed 

for Study I employed four wrist signals to operate on the 2D latent space. And although an upper-

limb amputee might not have those wrist muscles, other more distal locations can be chosen to 

obtain clean signals to control a location of a 2D cursor, which, in turn, operates the hand. The 

main advantage of our controller is that it does not require a large number of signals (only enough 

to operate the cursor on the 2D plane) to control a hand with a large number of DOFs. One does 

not even need to limit themselves to the EMG system – a 2D control signals can be obtained from 

a simple interface like Internal Measurement Units (IMUs). For example, an IMU can be placed 

on the user’s shoulders, consequently, controlling the posture of the prosthetic hand. In the past, 

IMUs have been widely used to operate a low-dimensional controller (Thorp et al., 2015; Seáñez-

González et al., 2016; Abdollahi et al., 2017; Pierella et al., 2017; Rizzoglio et al., 2020). Thus, 

nonlinear AE-based controllers, such as the one we developed for our studies, can be a versatile 

and modular solution for controlling complex upper-limb prosthetic devices via low-dimensional 

interfaces.  
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Chapter 6 Three Challenges of Myoelectric Low-

Dimensional Control 

Introduction 

Dimensionality-reduction methods are important tools for uncovering the underlying structures of 

complex signals. In a biological context, they have been used to understand the control strategy of 

arm and leg muscles (Ting, 2007; Ting et al., 2012; De Groote et al., 2014; Phinyomark et al., 

2018; Junior et al., 2020) as well as to uncover the underlying representations of complex hand 

kinematics during object grasping and sign-language gesturing (Santello et al., 1998; Todorov and 

Ghahramani, 2004; Portnova-Fahreeva et al., 2020). With the ability to compress high-dimensional 

signals into a lower-dimensional, latent, space, dimensionality-reduction methods serve as a 

powerful platform for control of robotic devices (e.g., prosthetic hands) with a large number of 

degrees of freedom (DOFs). 

Previously, our group has focused on applying Autoencoders (AEs), one of many dimensionality-

reduction methods, to hand kinematics as a way of simplifying the control of a virtual hand with 

17 DOFs (see Chapter 5). AEs are a computational architecture that aims to minimize the 

difference between the input and the output reconstructed from a latent space of lower dimension. 

In Chapter 5, we encoded kinematics of a biological hand into a lower-dimensional set of 

commands, allowing the user to operate a virtual hand via a 2D interface. However, dimensionality 

reduction was only used at the output end to obtain reconstructed hand kinematics. Like in many 

other robotic interfaces, such as hand prostheses, input signals through which the user operates the 

interface are just as important as the output of the system (i.e., joint angles). In case of myoelectric 

prostheses, the input is comprised of electromyographic (EMG) signals.  
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As we have discovered in a previous study (see Chapter 5), a challenge of operating myoelectric 

interfaces is related to the difficulty of learning to use muscles in a new and unnatural manner to 

control an external device. A potential way of alleviating this difficulty may lie in applying a 

dimensionality-reduction method to muscle signals. Not only might it uncover the hidden natural 

muscle combinations for control, but also eliminate the dimensionality mismatch between the input 

(control) and the output (controlled) signals. 

For EMG signals, a dimensionality-reduction method of use has mainly been Nonlinear Matrix 

Factorization (NNMF) (Tresch et al., 2006; Lambert-Shirzad and Van der Loos, 2017; Rabbi et 

al., 2020). In these studies, the purpose of dimensionality reduction was to uncover the hidden 

structure of what was assumed to be muscle control strategy via synergies. However, in such cases, 

NNMF was not used for control purposes, but for synergy extraction alone. 

AEs have a history of use for simplifying control. Vujakija and colleagues (Vujaklija et al., 2018) 

trained two separate AE models  on EMG signals recorded either during wrist flexion/extension 

or wrist abduction/adduction and used the AE output to control a 2D cursor. The AE that was 

trained to recognize wrist flexion/extension moved the cursor horizontally while the AE trained 

on wrist abduction/adduction moved it vertically on a 2D monitor. However, when attempting to 

apply this method, we found it difficult to locate independent muscle signals necessary to 

differentiate between flexion/extension and abduction/adduction with a conventional surface EMG 

acquisition system. When we recorded signals during abduction/adduction, muscles involved in 

flexion/extension were contracting as well, consequently being encoded into the lower-

dimensional space of the AE model trained on abduction/adduction. Therefore, an individuated 

control of two axes on the plane was impossible. Changing the position of electrodes did not 
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alleviate this issue. Hence, the approach of using separate AEs might not be ideal for prosthetic 

hand control, considering that EMG signals are acquired via electrodes located inside of a socket, 

which oftentimes cannot provide for the most accurate location of the muscles due to daily limb 

volume changes and electrode shift (Sanders et al., 2007; Sanders and Fatone, 2011). 

As a result, we set on to explore how applying various dimensionality reduction methods on EMG 

signals might affect the control space. Here, we looked at Principal Component Analysis (PCA), 

AE, and variational AE (VAE) and evaluated their applicability for the purpose of a low-

dimensional myoelectric controller. We outline different factors, outside of the standard measure 

of reconstruction error, to be considered when generating a latent space for a control purpose. The 

three factors identified in this study are latent dimension variance, class separability, and location 

of muscle resting signals. We evaluated these factors by applying PCA, AE, and VAE to different 

EMG datasets of various complexity. In addition, we explored the effects of the structure of the 

input data, such as user’s impairment level and signal density (number of acquired EMG signals), 

on latent-space organization. 

Importantly, this study explores the applicability of dimensionality reduction methods to 

myoelectric signals solely in the context of what has been termed as a postural control (Segil, 2013; 

2015; Segil and Huddle, 2016). Postural control is defined as a way of controlling hand kinematics 

(virtual or prosthetic) via a latent space. There, dimensionality reduction is applied to both the 

controlling EMG signals and to the controlled hand kinematics, consequently reconstructing hand 

gestures from a latent space. 

Methods 
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Dimensionality-Reduction Methods 

Principal Component Analysis 

PCA is a linear method, widely used to reduce the complexity of biological signals. This is done 

by projecting the input data along latent directions, effectively compressing representations of the 

input data (Figure 6-1A). Data compression by PCA has a few key features: 1) orthogonality of 

latent dimensions and 2) ability to only account for linear relationships in the input data. 

Considering that biological signals are oftentimes nonlinear in their nature, this method can be 

inadequate when applied to hand kinematics or muscle signals. 
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Figure 6-1. (A) Principal component analysis (PCA) achieves dimensionality reduction by finding 

the directions along which the input data vary the most and projecting the data along them. (B) 

Autoencoder (AE) network performs dimensionality reduction by compressing the input into the 

latent space via the encoder and reconstructs the output via the decoder. (C) Variational 

autoencoder (VAE) network performs dimensionality reduction, similar to AE, and regularizes its 

encodings distribution during training in order to ensure that its latent space has a target 

distribution. (D) Latent space of hand kinematics generated by applying a VAE on the data from 



134 

 

a participant performing American Sign Language number gestures. Different colors represent 

various number gestures. 

Autoencoders 

AEs are artificial neural networks consisting in the cascade of two components: an encoder that 

compresses the input to a latent representation, followed by a decoder that expands the latent 

representation into the output, with the same dimensions as the input (Figure 6-1B). The AEs learn 

to efficiently encode the input data variability within its latent space by minimizing the 

reconstruction error between the output and the input (Equation 1). 

𝐿𝑜𝑠𝑠𝐴𝐸 = ‖𝑥 − 𝑥̂‖2 (1) 

For an AE to be considered nonlinear, it must contain at least one nonlinear activation function 

between layers. Although AEs can vary greatly in the complexity of their structure, for the purpose 

of this study, we use the simple AE structure developed in our previous study (Portnova-Fahreeva 

et al., 2020). This network includes a total of three hidden layers. The middle layer is a bottleneck 

layer. The first and third hidden layers have a non-linear activation function. The rest of the layers 

are connected via a linear activation function. The combination of linear and non-linear activation 

functions had been shown to increase the efficiency with which the network learns linear 

relationships in the data (Haesloop and Holt, 1990). The structure of each layer is shown in the 

Equations 2-5. 

𝑙𝑎𝑦𝑒𝑟1 = 𝑛𝑜𝑛𝑙𝑖𝑛 (𝑋 ∗  𝑤1 + 𝑏1) (2) 

𝑙𝑎𝑦𝑒𝑟2 = 𝑙𝑎𝑦𝑒𝑟1 ∗ 𝑤2 + 𝑏2 (3) 

𝑙𝑎𝑦𝑒𝑟3 = 𝑛𝑜𝑛𝑙𝑖𝑛(𝑙𝑎𝑦𝑒𝑟2 ∗ 𝑤3 + 𝑏3) (4) 
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𝑌 = 𝑙𝑎𝑦𝑒𝑟3 ∗ 𝑤4 + 𝑏4 (5) 

where 𝑋 is the normalized input, 𝑌 is the normalized output, 𝑤𝑖 are the weights, and 𝑏𝑖 are the 

biases of the AE network. 

Variational Autoencoders 

Despite their strong capabilities of reconstructing biological data with higher precision that their 

linear counterpart, PCA, standard AEs have a fundamental problem of creating a noncontinuous 

latent space that may inhibit easy interpolation. Points that are not encoded onto the latent space 

often reconstruct to unrealistic data. As a result, latent spaces derived from regular AEs may not 

be the most optimal option for myoelectric prosthetic control. 

Here, we explore the use of VAEs on myoelectric data (Figure 6-1C). Differently from a standard 

AE, a regularizing term (Kullback-Lieber Divergence, KLD) (Kullback and Leibler, 1951) is 

added to the reconstruction error in the VAE cost function, which aims to match the probability 

distributions of the latent space to that of a given distribution (Equation 6). This term is simply a 

measure of how different the created distribution is from the target distribution. 

𝐿𝑜𝑠𝑠𝑉𝐴𝐸 = ‖𝑥 − 𝑥̂‖2 + β ∗ 𝐾𝐿𝐷[𝑁(𝜇𝑥, 𝜎𝑥), 𝑁(0, 𝐼)] (6) 

By optimizing the two terms of the cost function, the resulting VAE latent space can locally 

maintain the similarity of nearby encodings via clustering yet is globally densely packed near the 

latent space origin. In this paper, the distribution of choice is the normal Gaussian distribution 

(𝜇 = 0, 𝜎 = 1). 
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Datasets 

For this study, we used three open-source databases that contain myoelectric data recorded during 

either a variety of common grasps or simple wrist or finger movements. In the databases, EMG 

was collected with surface electrodes placed on the participants’ forearm muscles. 

The first database, MeganePro 1(MDS1), contains 12 channels of surface EMG acquired with 

Delsys (Delsys Inc, MA, USA) electrodes and is recorded on 15 transradial amputees and 30 able-

bodied individuals (Cognolato et al., 2020). All participants in the database performed grasps in a 

static or dynamic way and in either a sitting or a standing position. A static grasp indicates that 

participants grasped the objects without moving or lifting them. During a dynamic grasp, 

participants performed a functional task with an object. Both dynamic and static grasps were 

performed either in a standing or sitting conditions. From this database, we generated two datasets 

used in this study: 1) unimpaired dataset and 2) amputee dataset. For the unimpaired dataset, a 

single unimpaired participants (S10) performed object grasping in the dynamic sit condition. In 

the amputee dataset, the participant with lower-arm amputation (S101) performed object grasps in 

the dynamic sit condition. 

The second database, NinaPro2 (DB2), also contains 12 EMG signals acquired with Delsys 

electrodes and was recorded on 40 unimpaired individuals (Atzori et al., 2014). From this database, 

we extracted a low-density dataset, in which a single participant (S1) performed flexion, extension, 

abduction, and adduction movements of the wrist. 

The last database, Hyser, includes high-density surface EMG acquired with a total of 256 channels 

from 20 unimpaired participants, recorded on two separate days (Jiang et al., 2021). All 

participants performed dynamic tasks (1𝑠 duration, from relaxing state to the required gesture) and 
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maintenance tasks (4𝑠 duration, from a relaxed state to the required gesture followed with 

maintenance at that gesture). From this database, we created a high-density dataset, in which a 

single participant (S1) performed wrist flexion, extension, abduction, and adduction with fingers 

fully extended. This dataset was used for comparative purposes with the low-density dataset, so 

the movements were performed in the maintenance manner. The dataset includes only the 

movements performed in the first session. 

Pre-Processing 

EMG data in MDS1, DB2, and Hyser databases were collected at sampling rates of 1926𝐻𝑧, 

2000 𝐻𝑧, and 2048𝐻𝑧, respectively. Prior to performing dimensionality reduction on the data, the 

created datasets were run through a Bandpass filter (450𝐻𝑧 and 30𝐻𝑧). The signals were then 

rectified, and a Low-Pass filter at 2𝐻𝑧 is applied to create a less noisy input for the dimensionality-

reduction algorithms. Data from MDS1, DB2, and Hyser databases were downsampled to 107𝐻𝑧, 

100𝐻𝑧, and 102.4𝐻𝑧, respectively, to decrease the dimensionality-reduction model training times. 

If the dataset contains multiple repetitions of the same grasp type/movement, all repetitions are 

included in the input data. Both datasets are labeled for the type of grasp/movement the participant 

performed. 

The datasets are randomly split into training (80%) and testing (20%) using a holdout method 

(Oxford and Daniel, 2001). Training samples are used to generate a dimensionality-reduction 

model and the outcome measures are calculated on the test samples. Latent spaces are also 

constructed from the test samples. 
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To map the location of the resting signal encoded onto the latent space, resting EMG signals, 

𝐸𝑀𝐺𝑟𝑒𝑠𝑡, are extracted for unimpaired, amputee, and low-density datasets. The high-density 

dataset does not include any signal data with the forearm muscles completely relaxed, so 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 

is assumed to be an array of values with 𝜇 = 0, 𝜎 = 0.001 with a dimension equal to the number 

of collected channels (𝑛 = 256). 

Since the high-density dataset does not contain any recordings of resting muscles, we recreated 

𝐸𝑀𝐺𝑟𝑒𝑠𝑡 by using a 100𝑥256 matrix of randomly generated numbers on a normal distribution 

(𝜇 = 0, 𝜎 = 0.01) and rectified it (Equation 7). 

𝐸𝑀𝐺𝑟𝑒𝑠𝑡,𝑖 =  |
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 | (7) 

Hyperparameter Tuning 

To ensure model convergence, we performed hyperparameter tuning on AE and VAE networks 

via a five-fold cross-validation (Stone, 1974). For the AE, we evaluated the effects of the learning 

rate (𝑙𝑟) on the reconstruction error via root-mean-squared error (RMSE). For the VAE, we 

explored the effects of 𝑙𝑟 and the weighting factor (𝛽) of the regularization term in the loss 

function. We did so by evaluating the effects of the explored factor on both RMSE and KLD. 

Sigmoid was the function of choice for nonlinear layers in the network as it matches the range of 

filtered myoelectric signals, which are always positive. The seed parameter was randomly chosen 

for each run. 

Each dataset was individually tuned for AE and VAE networks. The best-performing 

hyperparameters are shown in Table 1, where 𝑙𝑟 is a learning rate, 𝑛 is the number of steps, and 𝛽 

is the weight of the KLD term in the VAE cost function. 
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Table 6-1. Hyperparameters of the autoencoder (AE) and variational autoencoder (VAE) networks 

found from hyperparameter tuning on the unimpaired, amputee, high-density, and low-density 

datasets. 𝑙𝑟 is the learning rate, 𝑛 is the number of steps, 𝛽 is the weighting term on the Kullback-

Lieber Divergence term in the VAE cost function. 

 
AE VAE 

Unimpaired 𝑙𝑟 = 0.01, 𝑛 = 5,000 𝑙𝑟 = 0.01, 𝑛 = 5,000, 𝛽 = 0.0005 

Amputee 𝑙𝑟 = 0.01, 𝑛 = 5,000 𝑙𝑟 = 0.01, 𝑛 = 5,000, 𝛽 = 0.0005 

High-Density 𝑙𝑟 = 0.0005, 𝑛 = 5,000 𝑙𝑟 = 0.0005, 𝑛 = 5,000, 𝛽 = 0.00075 

Low-Density 𝑙𝑟 = 0.005, 𝑛 = 5,000 𝑙𝑟 = 0.005, 𝑛 = 5,000, 𝛽 = 0.0005 

Latent Space of Hand Kinematics 

The importance of creating a usable latent space from EMG signals is evident when considering 

the mapping between the latent space of EMG to that of hand kinematics. For this, we assume that 

the most informative EMG latent space can be projected to the hand kinematics latent space via a 

1:1 mapping, requiring nothing more than a direct transformation between the two. This is where 

the importance of the developed latent space factors come into play. The hand kinematics latent 

space is derived by training a VAE on hand kinematics data an individual performing American 

Sign Language gestures (Figure 6-1D). 

Latent Space Factors 

In the most conventional application of dimensionality-reduction methods, reconstruction power, 

usually represented by a Variance Accounted For, has been the main metric for determining the 

appropriateness of the method in reducing the dimension of complex signals (Santello et al., 1998; 
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Todorov and Ghahramani, 2004; Hug et al., 2011; Pale et al., 2020). However, when the method 

is used to only reduce the dimensionality of EMG signals, which are then utilized to control a 

separate system (e.g., virtual hand), the importance of reconstruction diminishes altogether since 

EMG signals do not need to be reconstructed. What becomes important is the structure of the latent 

space representative of the complex myoelectric signals and its ability to match the hand 

kinematics latent space. 

Here, we outline the factors that make a latent space useful in a control setting: class separability, 

latent dimension variance, and location of resting position. 
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Figure 6-2. Visualization of latent space factors. (A) Class separability defined as a measure of 

how separable points of different classes on a latent space are with a straight line. (B) Location of 

the resting muscle signals, 𝐸𝑀𝐺𝑟𝑒𝑠𝑡, encoded on a latent space. 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location is found by first 

finding the minimum-area ellipse that includes all points on the latent space (blue). The ellipse is 

then transformed to a unit circle (magenta). The location of 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 is calculated by finding the 

Euclidian norm between the transformed 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 and the center of the unit circle. (C) Latent 

dimension variance is defined how much variance each of the dimension has with respect to the 

sum of variances of both dimensions. Latent dimension variance spread is defined as the difference 

between the dimensions of maximum and minimum variances. 

Class Separability 

When designing a controller, creating a space where different movements are easily separable can 

be of great importance. By navigating along a more separable control space, the user might acquire 
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the ability to switch between different grasps and movements much faster than in cases where 

tasks are not separable. 

Class separability was defined as how distinct the grasp/movement classes are when encoded onto 

the latent space (Figure 6-2A). It was calculated using SoftMax regression (Gao and Pavel, 2017). 

SoftMax regression was chosen as a simple example of a linear classification algorithm that does 

not require hyperparameter tuning. Higher accuracy percentage indicated a latent manifold in 

which classes (i.e., grasps or different wrist movements) were more linearly separable. 

SoftMax regression was applied to the 2D latent manifolds of the analyzed datasets. We used a 

five-fold cross-validation to calculate the average separability on each dataset. 

Muscle Resting (𝐸𝑀𝐺𝑟𝑒𝑠𝑡) Location 

In the following cases, we considered a myoelectric control that was based on the position 

paradigm, which meant that EMG activity was directly related to the position of the cursor on a 

2D plane. Consequently, no EMG activity meant returning of the cursor to the original position. 

To sustain a given position, besides that of rest, the user must constantly contract muscles at a 

certain level which keeps the cursor at the desired location on the 2D plane.  

As a result of such control, the position of 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 (where no muscle contraction takes place) on 

the latent space becomes of high importance as it indicates where the cursor will return to when 

the muscles are at complete rest. Choosing a latent space with an 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 position in the middle 

of all possible points encoded on the space makes it for an easier controller – the user is able to 

reach in different directions and can always come back to the center of the workspace, indicated 

as the neutral position. In cases of postural control, it can be defined as an open hand. 
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The visual representation of how we quantified the quality of the location of 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 can be seen 

in Figure 6-2B. The step-by-step algorithm is described below: 

First, we found an ellipse of minimum area that contained all points on the latent space (Moshtagh, 

2005). The ellipse was then transformed into a circle, with the latent points scaled accordingly. To 

do so, we considered the minimum-area ellipse in its matrix form (Equation 8), where 𝑥 is the 

point coordinate vector and 𝑄 is the 2𝑥2 ellipse matrix. 

x. ′ ∗ Q ∗ x = 1 (8) 

We then transformed the obtained ellipse to a unit circle using Equation 9, where 𝑥′ is the 

transformed locations of the latent space, 𝑥 is the original latent points, 𝐷 is the diagonal matrix 

of 𝑄, 𝑅 is the orthogonal matrix of 𝑄, and 𝑐𝑒𝑙𝑙𝑖𝑝𝑠𝑒 is the location of the center of the obtained 

ellipse. 

𝑥′ = 𝐷
1

2𝑅(𝑥 − 𝑐𝑒𝑙𝑙𝑖𝑝𝑠𝑒) (9) 

The transformed points were located on a unit circle. We then averaged the encoded resting 

positions to obtain a single point, representing 𝐸𝑀𝐺𝑟𝑒𝑠𝑡, and calculated the magnitude of the vector 

from the center of the transformed circle, 𝑐𝑐𝑖𝑟𝑐𝑙𝑒, to 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 (Equation 10). 

𝑑𝑟𝑒𝑠𝑡 = √(𝑐𝑐𝑖𝑟𝑐𝑙𝑒,𝑥 − 𝐸𝑀𝐺𝑟𝑒𝑠𝑡,𝑥)2 + (𝑐𝑐𝑖𝑟𝑐𝑙𝑒,𝑦 − 𝐸𝑀𝐺𝑟𝑒𝑠𝑡,𝑦)2 (10) 

Values of 𝑑𝑟𝑒𝑠𝑡 that were closer to 0 were considered to signify that the encoded 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 was 

closer to the center of the latent space and, thus, more optimal than values closer to 1. 
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Latent Dimension Variance Spread 

In cases of a lower-dimensional control, the variance associated with each latent dimension can be 

of great importance. By having equal distribution of variance across latent dimensions, one obtains 

a uniform controller in which motion is spread evenly across DOFs. One may argue that uneven 

variance distributions on latent spaces can be counteracted by applying one-dimensional scaling 

to the latent space to achieve an equal balance between dimensions. However, if one latent 

dimension has a significantly smaller variance than the others, “stretching” the latent space along 

that dimension will result in amplifying, what is effectively, noise. Such controller would then be 

not comfortable to use. 

As a result, we propose the third latent space factor to be the spread of dimension variance, or the 

variance associated with each dimension in the latent manifold of a dimensionality-reduction 

model (Figure 6-2C). To calculate dimension variance, the input data were reduced to two latent 

dimensions for every dataset. For PCA, it was done in the following way, where 𝑒𝑖𝑔 produces a 

diagonal matrix 𝐷 of eigenvalues of a covariance matrix, 𝑐𝑜𝑣, of normalized data 𝑋 (Equation 11). 

𝐷 = 𝑒𝑖𝑔(𝑐𝑜𝑣(𝑋)) (11) 

Each PCA dimension, 𝑃𝐶𝑖, where 𝑖 is the dimension number, was found by sorting the diagonal 

matrix 𝐷 in the descending order and taking the 𝑖th column of the sorted matrix (Equation 12). 

𝑃𝐶𝑖 = 𝑑𝑖𝑎𝑔(𝐷(: , 𝑖))    (12) 

For AE and VAE, latent dimensions (CUs) were calculated by passing the normalized data 𝑋 

through the encoder part of the network (Equations 2, 3). 𝐶𝑈𝑖 is a corresponding column of 𝑙𝑎𝑦𝑒𝑟2 

(Equation 13). 
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𝐶𝑈𝑖 = 𝑙𝑎𝑦𝑒𝑟2(: , 𝑖)    (13) 

Latent dimensions (PCs or CUs) are represented by A, an 𝑚 ×  𝑛 matrix, where 𝑚 is the number 

of observations and 𝑛 is the number of latent dimensions. The mean of each latent dimension was 

calculated (Equation 14). 

𝜇 =
1

𝑚
∑ 𝐴𝑖

𝑚
𝑖=1     (14) 

Afterwards, the variance of each latent dimension, 𝜐𝑖, was calculated: 

𝑣𝑖 =
1

𝑚−1
∑ ‖𝐴𝑖 − 𝜇‖2𝑚

𝑖=1    (15) 

What was defined as dimension variance in this study, 𝑣𝑑𝑖𝑚, was calculated by determining the 

percentage of 𝑣𝑖 with respect to the overall variance of all considered latent dimensions (Equation 

16). 

υdim =
𝑣𝑖

∑ 𝑣𝑖
𝑛
𝑖=1

    (16) 

Lastly, what we calculated was the spread of variance by determining the difference between the 

dimensions of highest and lowest variance (Equation 17). 

𝜐𝑠𝑝𝑟𝑒𝑎𝑑 = max(𝜐𝑑𝑖𝑚) − min (𝜐𝑑𝑖𝑚) (17) 

The 𝜐𝑠𝑝𝑟𝑒𝑎𝑑 values of desire for an even controller were close to 0%. 

Latent Space Analysis 

PCA, AE, and VAE are applied to the EMG datasets and the resulting latent spaces are plotted and 

assessed for their usability in myoelectric control. To avoid considering the effect of random seed 
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variability on the variability of the latent space in AEs and VAEs, we used a fixed seed for all 

network training. Random seeds were only used in model training during the exploration of the 

dependency of the latent-space factors on the initialization weights.  

The three latent space factors described above were obtained for every latent space and various 

aspects of the input data structures, such as participant’s impairment level and EMG signal density. 

Impairment Level 

We looked at the effect of impairments (such as partial arm amputation) on the structure of the 

developed latent space. The amputee dataset was compared to the unimpaired dataset. Latent 

spaces created by PCA, AE, and VAE were evaluated. 

Signal Density 

In this section, we explored how having EMG data acquired with a high-density interface affected 

the latent space created by PCA, AE, and VAE. The high- and low-density datasets were 

compared, with the participants performing wrist flexion, extension, abduction, and adduction. 

Latent Space Stability 

The terminal structure of neural networks, such as AEs and VAEs, has a great dependency on the 

initial weights and biases, determined by the seed. This means that every time one initializes 

differently, the trained model arrives to a different minimum, resulting in potentially different 

latent space structure. In such cases, PCA has the advantage of stability as it optimizes variance 

without depending on the seed parameter. 

Here, we explored how stable the latent space factors and trends were through different model 

initializations. To do so, we trained AE and VAE models 25 times with a random seed on the 

amputee, high- and low-density datasets. 
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Muscle Signal Correlation 

We studied the overall muscle signal correlation, 𝐸𝑀𝐺𝑐𝑜𝑟𝑟 in each dataset and assessed its effects 

on the latent space structure. To do so, we first took each of the datasets that we performed latent 

space analysis on and constructed a pairwise correlation matrix between each signal pair (Equation 

18). 

𝐸𝑀𝐺𝑐𝑜𝑟𝑟 = 𝑐𝑜𝑟𝑟(𝐸𝑀𝐺) (18) 

The matrix was then used for the reconstruction of a heatmap of correlation of each muscle signal 

pair. Then, we calculated the mean across all possible pairs to obtain the average 𝐸𝑀𝐺𝑐𝑜𝑟𝑟. We 

used the Wilcoxon Rank-Sum test (Wilcoxon, 1945)  to determine statistical differences between 

datasets in their muscle signal correlation (Mann and Whitney, 1947). 

Results 

Impairment Level 

PCA, AE, and VAE were applied to unimpaired and amputee datasets, in which the participants 

performed five different grasps in a dynamic sit condition (Figure 6-3). The initialization seed was 

fixed for both AE and VAE. The class separability factor was similar across different datasets and 

dimensionality-reduction methods. The latent spaces derived from the amputee dataset appeared 

to have the least optimal 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 locations for all three dimensionality-reduction methods and 

exhibited a marked “V” shape. The spread of dimension variance factor varied greatly across the 

datasets and methods. 
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Figure 6-3. Visualization of 2D latent spaces produced by principal component analysis (PCA), 

autoencoder (AE) network, and variational autoencoder (VAE) network. Latent spaces are 

generated on the unimpaired (first row) and amputee (second row) datasets. The AE- and VAE-

generated latent spaces are obtained with a fixed seed parameter. Grasps 1-5 are indicated by light 

blue, dark blue, purple, and pink colors, respectively. Both datasets were recorded in a dynamic sit 

condition, and the performed grasps were precision disk, prismatic pinch, index finger extension, 

adducted thumb, prismatic four-finger grasps. Black datapoints represent resting EMG signals 

encoded onto the latent space (𝐸𝑀𝐺𝑟𝑒𝑠𝑡). 𝑆𝑒𝑝 is the class separability factor, 𝑣𝑠𝑝𝑟𝑒𝑎𝑑 is the spread 

of dimension variance, and 𝐿𝑜𝑐𝑟𝑒𝑠𝑡 is the location of the resting EMG, 𝐸𝑀𝐺𝑟𝑒𝑠𝑡. 

Let us now consider the factor stability plot for the datasets. In the unimpaired dataset, random 

weight initialization for both AE and VAE yielded a stable class separability of approximately 

40% (Figure 6-4A). 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location had a large spread of possible values for both network types, 

and the spread was smaller in the VAE case. The spread of dimension variance for the AE network 

was big (from 0% to 75%), while it was small and stable for VAE. 
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Figure 6-4. Stability of latent space factors (class separability, resting EMG, 𝑬𝑴𝑮𝒓𝒆𝒔𝒕, location 

on the low-dimensional space, and spread of variance of two latent dimensions) for the unimpaired 

and amputee datasets. (A) Stability of class separability, 𝑬𝑴𝑮𝒓𝒆𝒔𝒕 location, dimension variance 

for unimpaired dataset considering random seed factor for autoencoder (AE) and variational 

autoencoder (VAE) networks. (B) Stability of class separability, 𝑬𝑴𝑮𝒓𝒆𝒔𝒕 location, dimension 

variance for the amputee dataset considering random seed factor for AE and VAE networks. Blue 

points indicate resulting factor values for the AE network. Magenta points indicate resulting factor 

values for the VAE network. Circles outlined in black indicate mean values while the errorbars 

signify standard deviation. 

The amputee dataset yielded latent spaces with stable but less optimal 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location values 

(0.8 − 1.0 for AE and 0.85 − 0.95 for VAE) (Figure 6-4B). The class separability factor was also 

stable across random weight initializations, with relatively poor classification of approximately 

38% for both neural networks. The dimension variance factor in AE had a large variability of 

approximately 80% while the VAE exhibited a significantly smaller variability of approximately 

12%. 

Signal Density 

Latent space dependency on the density of the acquired signal was explored for the low- and high-

density datasets (Figure 6-5). What changed dramatically between the datasets was the dimension 

of the input data (12 channels vs 256 channels). The most notable difference in the latent spaces 

was found in the spread of points for each class of wrist movement. The low-density dataset 

yielded latent spaces with a wider spread of points whereas the spread of points for the high-density 

dataset was narrower – almost lying on straight lines. It is important to note that these differences 

were not due to the difference in sample size between the datasets: prior to plotting, the low-density 

data were donwsampled to match the size of the high-density data. 
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Figure 6-5. Visualization of the 2D latent spaces produced by principal component analysis 

(PCA), autoencoder (AE) network, and variational autoencoder (VAE) network. Latent spaces are 

generated on the low-density (first row) and high-density (second row) datasets. The AE- and 

VAE-generated latent spaces are obtained with a fixed seed parameter. Flexion, extension, 

adduction, and abduction of the wrist are indicated by light blue, dark blue, purple, and pink colors, 

respectively. Black datapoints represent resting EMG signals encoded onto the latent space 

(𝐸𝑀𝐺𝑟𝑒𝑠𝑡). 𝑆𝑒𝑝 is the class separability factor, 𝑣𝑠𝑝𝑟𝑒𝑎𝑑 is the spread of dimension variance, and 

𝐿𝑜𝑐𝑟𝑒𝑠𝑡 is the location of the resting EMG, 𝐸𝑀𝐺𝑟𝑒𝑠𝑡. 

In the high-density dataset, the 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 point was at the bottom of the generated “V” shapes – 

similar to the PCA case of the low-density dataset. Such location yielded the least optimal 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 

values. The overall class separability for the high-density dataset was consistently high for the 

three dimensionality methods. In the case of low-density dataset, only the nonlinear networks 

produced latent spaces with high class separability while PCA did not. 
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Exploring the stability of the latent space factors in the high-density dataset, we first observe that 

class separability remained high regardless of random seed initialization, although VAE resulted 

in a significantly less separable latent space than AE (Figure 6-6A). In addition, the 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 

location factor was consistently poor for both nonlinear methods. In case of dimension variance 

spread, the trend was consistent with what was found in the amputee and unimpaired datasets: AE 

resulted in a large spread of variance, depending on the initialization seed, while VAE had a 

consistently stable outcome of variability less than 10%. 
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Figure 6-6. Stability of latent space factors (class separability, resting EMG, 𝐸𝑀𝐺𝑟𝑒𝑠𝑡, location 

on the low-dimensional space, and spread of variance of two latent dimensions) for the high- and 

low-density datasets. (A) Stability of class separability, 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location, dimension variance for 

the high-density dataset considering random seed factor for autoencoder (AE) and variational 

autoencoder (VAE) networks. (B) Stability of class separability, 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location, dimension 

variance for the low-density dataset considering random seed factor for AE and VAE networks. 

Blue points indicate resulting factor values for the AE network. Magenta points indicate resulting 

factor values for the VAE network. Circles outlined in black indicate mean values while the 

errorbars signify standard deviation. 

Latent-space factor stability was explored for the low-density data as well (Figure 6-6B). In case 

of AE, none of the factors were stable and produced varying results depending on the initialization 

parameter. Class separability, 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location, and dimension variance varied for 33%, 1.0, and 

90%, respectively. Similar trend took place in the VAE network (35% and 1.0 variability in class 

separability and rest location, respectively). The only thing that remained consistent was the 

dimension variance spread, where the random seeds produced relatively stable outputs (within 

11% of variability). 

Muscle Signal Correlation 

Here, we looked at how correlated the acquired muscle signals were for each of the datasets used 

in this study. By observing the heatmaps produced from the unimpaired datasets, one can see that, 

overall, 𝐸𝑀𝐺𝑐𝑜𝑟𝑟 was low (approximately 0.3) (Figure 6-7A).  For the amputee dataset, the 

average 𝐸𝑀𝐺𝑐𝑜𝑟𝑟 increased significantly to 0.6, indicating higher correlation between collected 

muscle signals (Figure 6-7B). The low-density dataset resulted in a similar average 𝐸𝑀𝐺𝑐𝑜𝑟𝑟 as 

the acquisition conditions datasets (approximately 0.4) (Figure 6-7C). The high-density dataset, 

on the contrary, resulted in a higher index of correlation (𝐸𝑀𝐺𝑐𝑜𝑟𝑟 = 0.7) (Figure 6-7D). 
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Figure 6-7. Correlation between muscle signals for different datasets. (A) Heatmaps of correlation 

between 12 acquired EMG signals for the acquisition conditions dataset. The four conditions are 

dynamic sit, dynamic stand, static sit, and static stand. (B) Heatmap of correlation between 12 

acquired EMG signals for the amputee dataset. (C) Heatmap of correlation of 12 acquired EMG 

signals for the low-density dataset. (D) Heatmap of correlation of 256 EMG signals for the high-

density dataset. (E) Average values EMG correlation (𝐸𝑀𝐺𝑐𝑜𝑟𝑟) for each of the dataset. The 

errorbars represent 95% confidence intervals. Double asterisk (**) indicates that the datasets yield 

𝐸𝑀𝐺𝑐𝑜𝑟𝑟 values that are statistically different than any other dataset values. Single asterisk (*) 

indicates significant difference in 𝐸𝑀𝐺𝑐𝑜𝑟𝑟 values between the datasets. 

Discussion 
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Structure of a latent space can be of high importance when considering low-dimensional 

controllers for high-dimensional systems. The way things are arranged when encoded has the 

potential to play a big role on the usability of the space for control purposes. As we discussed prior, 

latent spaces that have large spread in latent dimension variance yield unevenly distributed control 

across dimensions. Lacking high separability of classes in the low-dimension space can also result 

in the user’s inability to switch between different classes in a fast and simple manner. Lastly, in a 

position controller, location of the resting EMG signals can play a big role in how much of the 

space can be covered by the user. In cases of poor 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 locations, the myoelectric latent space 

results in the “V” shape mentioned throughout this paper. Such latent spaces cannot be mapped to 

the target kinematic latent space described in Figure 6-1D with a simple 1: 1 transformation. As a 

result, we identified these factors as an important assessment tool to determine the appropriateness 

of the latent space for the purpose of low-dimensional myoelectric control. 

In addition to proposing the factors, we assess the stability of latent spaces generated by neural 

networks with random initialization parameters. We determine the cases in which these factors 

remain stable and the cases that yield a big spread in the possible results. We also discuss the 

implications of the “V” shape that yields poorest 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location factor and determine the 

instances of input data that result in such a shape. Lastly, we outline the set of implications the 

results of our study have on the development of low-dimensional myoelectric controllers. 

Latent Space Stability 

Since PCA does not incorporate gradient descent, it has the advantage of resulting in a stable latent 

space, given the same input. However, when considering dimensionality-reduction methods, such 

as neural networks, structure of the latent space can be directly dependent on the initialization of 
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the weights and biases, thus resulting in a large variability in the latent-space factors evaluated in 

this study. What we discovered through this paper is that this effect can be strong for input data 

with certain characteristics while it does not appear in other data types. 

Class Separability 

The factor of class separability appeared to yield stable results for all four datasets (with the 

exception of a small variability in the low-density dataset) and for both AE and VAE networks. 

Class separability was low for the unimpaired and amputee datasets and high for the low- and 

high-density datasets. The main explanation for that can lie in the types of the movements that the 

participants performed in each dataset. The participants from the unimpaired and amputee datasets 

performed object grasps while the participants in the low- and high-density datasets performed 

simple wrist movements. It is possible that the differences in the class separability emerge due to 

the types of muscles involved in generating grasps or wrist movements. During wrist flexion, 

extension, abduction, and adduction, one is able to activate very specific groups of muscles that 

are “independent” from each other. However, in cases of object grasping, many different grasps, 

although completely unique from the kinematics perspective, may involve similar groups of 

muscles, which, in turn, resulted in less separable classes. As a result, this suggests that class 

separability was not really affected by the seed parameter, but mainly depended on the complexity 

of the encoded task. 

Dimension Variance 

AEs consistently yielded a large spread of possible dimension variance values across all datasets. 

VAEs, on the contrary, this latent space factor remained stable across random weight 

initializations. A possible explanation for such behavior may lie in the differences of the cost 

functions of AE and VAE, which every neural network aims to minimize. Since none of the latent-
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space factors described in this paper are set to be optimized directly within the cost function of an 

AE network, model training does not result in stable outputs of these factors. Spread of latent 

dimension variance, however, is woven, although indirectly, into the VAE cost function, which, 

in turn, creates a stable output. We know that the KLD term in the VAE network aims to create a 

latent space that matches the normal Gaussian distribution. If achieved by the end of model 

training, a latent space of such shape would consequently result in an even distribution of variance 

over the two latent dimensions. As a result, this factor remains both stable and nearly optimal for 

the VAE model regardless of the seed. This trend of a stable variance spread factor in VAE 

networks is observed across all tested datasets. 

Muscle Rest Location 

The stability of the factor of 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location greatly depended on the type of the dataset that the 

neural network was applied to. Differences in the stability across different network types were 

insignificant, however. In cases of the unimpaired and the low-density datasets, both AE and VAE 

yielded a variety of possible 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 locations – from more to least optimal values. On the 

contrary, when considering the high-density and amputee datasets, 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 locations were stable 

and least optimal (near 1.0). The potential reason for this trend is discussed further in the next 

section. 

The Curse of the V 

When the encoded 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 lies on or near the circumference of the transformed unit circle, the 

generated latent spaces take on the “V” shape mentioned throughout this paper. This shape was 

strongly prevalent in latent spaces created by PCA – we observed it in all datasets to which the 

linear dimensionality-reduction method was applied.  
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In cases of nonlinear neural networks, the “V” shape appeared in the high-density and amputee 

datasets, always resulting in the least optimal 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location values. In the cases of low-density 

and unimpaired datasets, however, it was not as prevalent and had a great dependency on 

initialization seed. 

To understand what determines the prevalence of the “V” shape in AEs and VAES, we considered 

the correlation index for the collected EMG signals across different datasets. Datasets that 

consistently yielded the described shape and, consequently, poor 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 locations, had high 

correlation indices (𝐸𝑀𝐺𝑐𝑜𝑟𝑟 > 0.6). On the contrary, datasets that had a variability of shapes in 

the latent space had significantly lower 𝐸𝑀𝐺𝑐𝑜𝑟𝑟  values (between 0.3 and 0.4). At the moment, 

no clear explanation exists for this phenomenon and needs further exploration. 

Implications 

PCA vs Neural Networks 

Although PCA exhibits stability in terms of the created structure of the latent space, they do, 

however, fall into the trap of yielding potentially unfavorable factors, such as unfavorable 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 

locations, consistently large spread of dimension variance (Portnova-Fahreeva et al., 2020; Boe et 

al., 2021), and low class separability in cases of low-density data. Neural networks, such as AEs 

and VAEs, on the contrary, can yield latent spaces with significantly more favorable factors, 

simply by changing the initialization seed. However, this only holds true for a specific input data 

structure, such as low-density datasets from unimpaired individuals. 

AE vs VAE 

One of the main advantages of VAE is their ability to generate small variance spread regardless of 

the initialization seed, unlike AE networks. This has the benefit of generating latent spaces with 
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more equally shared control between dimensions. In cases when the spread of dimension variance 

is large, the control of the dimension with the lowest variance may be equivalent to navigating 

along a noisy terrain. 

In addition, VAEs are able to produce a potentially useful relationship between the factors of class 

separability and 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location, in which latent spaces with more optimal 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 locations 

yield more separable classes. This can be useful when generating latent spaces used for myoelectric 

control purposes as we can assume that a more desirable shape can be achieved with a VAE, in 

which multiple factors are optimal. However, it is important to note once again that this 

relationship only holds true in a dataset with very specific characteristics. 

Signal Density 

High-density data, although advantageous in generating more separable classes in its latent space, 

also have the curse of generating the undesirable “V” shape. However, since this shape was only 

true for data with a high correlation index between signals, we hypothesize that having high-

density data that is less correlated can potentially create latent spaces with more class separability 

and a more optimal 𝐸𝑀𝐺𝑟𝑒𝑠𝑡 location. 

Users with Impairments 

From this study, we can clearly observe the challenges that researchers may face when developing 

a low-dimensional myoelectric controller for amputees. Even with proper EMG placement, 

amputees appear to yield data with highly correlated signals – something that is not observed in 

their unimpaired counterparts during the same exercises. As a result, neither of the explored neural 

networks were able to produce latent spaces with desirable characteristics. One of the potential 

solutions to this might be to consider other dimensionality-reduction methods, outside of the 
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conventional AEs and VAEs, that would aid in creating latent spaces with more favorable factors 

for control purposes. In addition, EMG collected from body locations further away from the site 

affected by amputation may lead to potentially less correlated signals, which, in turn, would allow 

one to take advantage of the neural networks and their ability to generate more favorable latent 

spaces. However, in such cases, the naturalness of the developed controller may be lost as muscles 

that are not naturally involved in generating hand/wrist movements are used for control purposes. 
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Chapter 7 Concluding Remarks 

Using other PCA-based controller methods that have been explored in the context of hand 

prosthetics as the basis of my research, I explored the applicability of nonlinear dimensionality-

reduction techniques in the creation of a low-dimensional myoelectric controller. First of all, I 

have proved that nonlinear dimensionality-reduction methods, such as autoencoders, have a 

significant advantage over their linear counterparts when applied to high-dimensional biological 

signals (i.e., hand kinematics, gait, and EMG). Their superiority is not only present in the 

reconstruction abilities but in the advantages of yielding a more balanced spread of variance across 

latent dimensions, which consequently can prove to be a useful asset in the development of the 

low-dimensional controller. In addition, the structural flexibility of neural networks allows them 

to effectively compress complex data and to control the practical shape of the encodings. Lastly, 

autoencoders have the advantage of including a temporal component, which allows for the 

incorporation of the time dynamics of the input data. As a result, these networks have a potential 

to be a powerful tool for hand prosthesis control. 

In addition to developing an autoencoder-based controller, in which a high-dimensional hand 

system was controlled via a low-dimensional space, I found the factors that inhibit or aid learning 

of such controllers. These findings can serve as a platform for future studies of low-dimensional 

controllers and highlight 1) the need to separate between learning of the interface and learning of 

the controller and 2) the value of presenting a training task that explicitly indicates the connection 

between the underlying low-dimensional control space and the presented high-dimensional task 

space. 
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Lastly, I explored how dimensionality-reduction techniques can also be applied to the myoelectric 

end of the low-dimensional controller in order to match the latent spaces of EMG and hand 

kinematics. Through the last study, I developed a series of latent space factors (i.e., class 

separability, dimension variance, and location of resting EMG) that one must consider when 

assessing the usefulness of the encoded EMG signals for control purposes. I discovered that while 

autoencoders have the advantage of having flexible structure, they can also yield unstable latent 

spaces (with different shapes and, hence, different factors) unlike PCA. Latent spaces derived from 

autoencoders greatly depend on the input data parameters, such as density signals and level of 

user’s impairment, as well as the type of the neural network used for dimensionality reduction. 

Latent spaces of least optimal shapes result from data with high index of correlation between 

muscle signals. The findings of the last study can serve as a useful platform for using 

dimensionality-reduction methods on EMG signals for the purposes of low-dimensional control. 

Future studies can explore if there is a difference in how people learn to operate linear and 

nonlinear low-dimensional controllers in the context of virtual hands. While through this PhD 

project, I have found a plethora of advantages that nonlinear neural networks, such as AEs, can 

have over their linear counterparts, PCA’s rigidity and a set of rules that it abides to (i.e., principles 

of orthogonality and superposition) have the potential to be advantageous when learning to operate 

low-dimensional controllers. Intuitively, these principles can aid the user in creating an internal 

map of the controller, consequently accelerating the learning process. On the contrary, AEs lack 

such principles, creating nonlinear latent space, that cannot be truly visualized with a simple 

transformation to a 2D plane. Nevertheless, it is important to point out that while not including 

any principles of orthogonality or superposition in its most basic forms, autoencoders are limitless 
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when it comes to their cost functions that they aim to optimize through training. As a result, it is 

possible to create neural networks that would, consequently, incorporate a stricter structure on the 

latent space; however, the performance of such networks can potentially be significantly different 

from what I have observed through my research.  
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